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Abstract

Deep learning techniques have an enormous impact on the state-of-the-art in many fields,
such as computer vision, natural language processing, audio analysis and synthesis, and
many others. The increasing computing power and the increasing amount of available data,
and the algorithms’ evolution are fostering this impact.

This thesis addresses the general goal of designing deep learning methods that are able
to leverage the increasing computational resources and data. On the one hand, the thesis
studies how deep learning workloads can be distributed over a High Performance Computing
(HPC) infrastructure. A technology stack based on Apache Spark is deployed and evaluated
on the MareNostrum supercomputer. In order to evaluate the performance and scalability
of the proposed stack, different workloads and different deployment setups are tested. The
goal is to provide insights into how the job configuration on a traditional HPC setup can be
optimized to run this kind of workload efficiently. In addition to the performance evaluation,
a use case related to the training deep CNNs for annotating and filtering images from social
media is also explored. On the other hand, this thesis applies deep learning techniques to the
problems of earthquake detection and location. Single-station 3-channel seismic waveforms
are processed with convolutional neural networks trained over a medium-sized computer
cluster. New data preprocessing techniques and new network architectures are proposed.
Also, a new dataset, the first for the study region, is made public for reproducibility and
benchmarking purposes. The proposed methods outperform the State of the Art methods
for the target seismicity and show good generalization properties when applied to data from
other areas.
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Chapter 1

Introduction

1.1 Challenge

These days, the use of Deep Learning (DL) techniques has generated a transformation in the
state of the art in different areas of knowledge, such as computer vision, natural language
processing, audio analysis and synthesis, and many others. It has become a boiling hot area
of research due to the increasing computing power, the increasing amount of available data,
and the evolution of algorithms.

On the one hand, this thesis applies DL techniques to large parallel systems to train and
validate Neural Networks (NN) models for different applications. First, this work employs
technology stacks to enable the distribution of deep learning workloads on a traditional High
Performance Computing (HPC) setup, such as the MareNostrum supercomputer. Enabling
the distributed training of deep neural networks on a large parallel system is a complex
process involving integrating and configuring several layers of general-purpose and custom
software. This thesis contributes to the design of such a technology stack based on Apache
Spark and develops DL models to process image datasets retrieved from social media with
the purpose of image classification and object recognition.

On the other hand, this thesis applies DL techniques to the problems of earthquake
detection and location. In past decades, the number of seismic networks and monitoring
sensors has experienced a significant increase, and the continuously growing seismic records
call for efficient processing algorithms to ensure that seismic catalogs contain complete and
accurate information. These catalogs are used in hazard analyses where the probability of
earthquake occurrence under a given magnitude is quantified. The thesis applies convolutional
neural networks to the processing of single-station 3-channel seismic waveforms. New data
preprocessing techniques and new network architectures are proposed. A framework is built
to rank different NN architectures and hyperparameterization according to their detection
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and location performance on a given seismic dataset. Also, a new dataset, the first for the
study region, is made public for reproducibility and benchmarking purposes.

1.2 Contribution

This thesis addresses the general goal of designing deep learning methods that are able
to leverage the increasing computational resources and data. More specifically, the thesis
studies how deep learning workloads can be distributed over a HPC infrastructure such as the
MareNostrum supercomputer, and also how deep neural networks (DNNs) can be applied
over the increasing volume of seismic data to address some problems in seismology such as
earthquake detection. The thesis is divided into two main contributions:

• C1: Design, implement and evaluate a strategy to execute distributed DL workloads
over an HPC infrastructure.

1. Deployment and evaluation of a technology stack based on Apache Spark to
distribute DL workloads on a real-world, petascale, HPC setup, the MareNostrum
supercomputer.

2. Study of a use case, the automatic annotation of social media images. The use
case involves training DL models for image classification and object recognition.

• C2: Study new DL models to approach the earthquake detection and epicentral region
estimation problems.

1. With the data provided by The Venezuelan Foundation for Seismological Re-
search (FUNVISIS), build a new dataset of seismic data to train and evaluate DL
models for earthquake detection and source region estimation in North Central
Venezuela.

2. Design, train an evaluate a new DNN to approach the earthquake’s P-wave
detection and source region estimation problem by processing three-channel
seismic signals. The resulting network will be applied over the new dataset of
seismic data from North Central Venezuela and will be applied to facilitate the
revision and generation of the FUNVISIS seismic catalogs.

1.3 List of Publications

• Leonel Cruz, Ruben Tous and Beatriz Otero. Distributed Training of Deep Neural
Networks with Spark: The MareNostrum Experience. Pattern Recognition Letters, vol.
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Research.com.
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1.4 Dissertation Outline

Table 1.1 shows the structure of the work of this thesis and summarises in an abbreviated
form the contributions made in each chapter. We have classified our contributions according
to the type of problem addressed in two parts, emphasising the Deep Learning methodology
used.

Table 1.1 Thesis structure.

Part I Chapter 3.1 Chapter 3.2
Exploring the distributed Distributed training Digital marketing

Paradigm for Deep of CNN with a case study[C1.2]
Learning Algorithms. spark [C1.1]

Part II Chapter 4.1 Chapter 4.2
Exploring Seismic Data Deep neural Epicentral region

with Deep Neural network for estimation using deep
Networks earthquake detection[C2.1] neural networks[C2.2]

Part I consists of Chapter 3 and its contributions divided into two subchapters, Chapter
3.1 shows how to exploit the distributed paradigm for deep learning algorithms on a petascale
supercomputer, by deploying a stack of technologies to enable deep learning workloads on
Marenostrum. These components of a layered architecture, based on the usage of Apache
Spark, are described and the performance and scalability of the resulting system is evaluated.
Chapter 3.2 presents a work consisting in using deep CNNs to facilitate the curation of
brand-related social media images. The images are captured in real time and automatically
annotated with multiple CNNs. In order to speed-up the training of custom CNNs we applied
a transfer learning strategy, having as a final goal to facilitate searching and discovering
user-generated content(UGC) with potential value for digital marketing tasks.

Part II, chapter 4. Moves the focus to use the deep learning techniques used in the
first part of the research towards a practical application in the growing area of seismology
studies. Taking account the number of seismic networks and monitoring sensors have steadily
increased in recent years, and the continuous growth of seismic records have opened up
the opportunity to explore new processing algorithms that assist in solving problems in
seismology. Chapter 4.1 presents the results of applying a deep convolutional neural network,
called UPC-UCV, over single-station three-channel signal windows for P-wave earthquake
detection and source region estimation in north central Venezuela. Chapter 4.2 extends the
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previous work using a relaxed UPC-UCV model; the epicentral region estimation problem
is explored in more detail here. This part evaluates the hypothesis that the source region
estimation accuracy is significantly increased if the geographical partitioning is performed
considering the regional geological characteristics such as the tectonic plate boundaries.
Also, it raises the transformation of the training data to increase the accuracy of the predictive
model based on a Projected Coordinate Reference (PCR) System.



Chapter 2

Background

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) [27][127] are non-linear mapping structures that draw
inspiration from the human brain; ANNs are also called Feed forward neural networks
(FFNNs) or Multilayer Perceptrons (MLP) [80]. Basically, ANNs can be defined as a direct
graph where information travels forward (see figure 2.1).

Fig. 2.1 Composition of an ANN represented as a direct graph. Adapted from [6].

The ANNs are composed of at least three layers interconnected, defined as an input layer,
a hidden layer, and an output layer. Within each layer, we will find artificial neurons (AN) or
perceptrons that make up each.
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The work presented in [81] modelled the AN as a binary threshold unit, with two possible
states: active or inactive; these receive inputs from other neurons and essentially contain a
nonlinear function that processes them and produces outputs (see figure 2.2).

Fig. 2.2 The structure of an AN. Adapted from [4].

Each input is associated with a weight that will determine its importance; the output is
the summation of the product of Xi and its weight Wi and b is the threshold value o bias.
This scalar function is mathematically represented by the equation 2.1

y = b+
n

∑
i=1

(WiXi) (2.1)

Once the input value is calculated, the processing element then uses a transfer function or
also known as activation function to produce its output. The transfer function transforms the
AN’s input value to generate the output signal. Typically this transformation involves the use
of a sigmoid, hyperbolic-tangent, rectified linear units or other nonlinear function 2.2.

sgn(y) =

{
−1, y < 0,
+1, y ⩾ 0.

(2.2)

The main purpose of this nonlinear function is to convert an input signal of a node in an
ANN to an output signal. This output signal is used as input to the next layer in the stack.
The activation function is important for an ANN to learn and make sense of complicated
problems to deal with such as images, videos, audio, speech, etc [33].

An additional set of learning rules makes use of backpropagation [49], a process through
which the ANN can adjust its output results by taking errors into account also called cost
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function. Through backpropagation, each time the output is labeled as an error during the
supervised training phase, the information is sent backward as can be seen in the figure 2.3.
Each weight is updated proportionally to how much they were responsible for the error.

Fig. 2.3 Learning process of an ANN. Adapted from [103].

Therefore, the error is employed to re-calibrate the weight of the ANN’s unit connections
to consider the difference between the desired outcome and the actual one. In due course,
the ANN will “learn” how to minimize the chance for errors (cost function) and undesirable
results. This is achieved by running the ANN over and over again.

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) [66][78] is a class of ANN commonly used in
image-related tasks but also in other problems such as, e.g. natural language processing
[46] or speech recognition [28]. Due to their excellent performance, CNNs have become
dominant in multiple tasks during the last decade. Besides fully-connected layers, CNNs
incorporates convolutional layers and pooling layers. Because of their architecture, CNNs
are able to automatically and adaptively learn spatial hierarchies of features.

In the figure 2.4, we can see an example of a CNN [66]. In the first steps, we can see
a 1-channel image that is passed through a set of convolutional layers. Each convolutional
layer consists on a set of filters (convolutional kernels) that are swiped over the layer input
generating a set of feature maps. These feature maps detect or enhance features in the
incoming data [70]. The kernels’ parameters are automatically learned.

A problem with the output feature maps is that they depend on the location of the features
in the input data. In order to make the results of convolutional layers more robust to changes
in the position of the features (local translation invariance), typically a pooling layer is added
after each convolutional layer. Pooling layers perform a dimensional reduction (subsampling)
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Fig. 2.4 Example of the composition of a CNN model. Adapted from [66].

summarizing the presence of features in patches of the feature map. Two common pooling
methods are average pooling and max pooling. This process (convolution and pooling) is
repeated multiple times. Whereas more layers are placed, the features obtained will be more
representative. After the convolutional and pooling layers, some fully connected layers are
usually added. Depending on the goal of the network (classification, regression, etc.) the last
layers will end with, e.g., a softmax layer (for classification).

Although CNNs are widely known for their use with images, they have also shown
benefits on other types of data, such as seismic signals. In the figure 2.5, we can see an
example of a CNN architecture for processing seismic waves. Here, the input is a 3-channel
seismic signal and the output are the probabilities that the signal is not an earthquake or is an
earthquake whose epicenter is in one of the 6 given geographic regions (clusters).

Fig. 2.5 CNN model used for processing seismic signals.



10 Background

2.3 Metrics

All the NNs are evaluated using different metrics that ensure and test their efficiency. These
metrics are the Accuracy (ACC), Loss, AUC, Precision and Recall. Firstly, the accuracy is
represented in Equation 2.3 and defined as the True Positives (TP) plus the True Negatives
(TN) divided by the sum of TP, TN, False Positives (FP) and False Negatives (FN):

Accuracy =
T P+T N

T P+T N +FP+FN
(2.3)

Secondly, the most common loss is the binary cross-entropy loss which formula is
represented in Equation 2.4. Note that the y value represents the real output, whereas the ŷ
represents the output estimation:

Loss =−[y · log(ŷ)+(1− y) · log(1− ŷ)] (2.4)

Finally, the precision and the recall are metrics defined in Equations 2.5 and 2.6, respec-
tively.

Precision =
T P

T P+FP
(2.5)

Recall =
T P

T P+FN
(2.6)

The metrics used, for these several target systems the false positives are as crucial as
false negatives (it is not a medical diagnosing system) and accuracy was a convenient metric.
Regarding the second metric, it is used to obtain the final model in the training process of the
convolutional networks in each of the published works. The remaining ones are part of the
parameters obtained to refine the selection of the models during each iteration.

2.4 Distributed CNNs

Nowadays, there are large amounts of data available thanks to social networks. These
have greatly helped the rebirth of CNN, but have also represented a bottleneck for model
processing and training. Even using GPUs, calculations can take days or weeks if only a
single machine or node is used. Despite the increase in computational power in recent years,
the use of parallelism techniques is increasingly necessary [56][105][118][119].

There are two paradigms for parallelizing the training of deep learning models. On the
one hand, data parallelism, or across data dimension, where each machine or node contains



2.4 Distributed CNNs 11

a complete replica of the model but only processes a part of the data. On the other hand,
model parallelism, also called across model dimension, where different parts of the model
are executed in distinct nodes in parallel.

In both approaches, some synchronization between workers is required. In model paral-
lelism, neuron activities need to be communicated, while in data parallelism model parameters
(weights and biases) are transmitted to ensure all models are trained evenly [62].

2.4.1 Data Parallelism

Data parallelism requires keeping a global model and some way of updating its parameters
by gathering results from workers. The main algorithm to carry out the learning process is
Stochastic Gradient Descent (SGD) [126], and to execute it in parallel, a global model is
maintained. Workers send their gradients, which are aggregated, to the global model. There
are two ways to update these gradients: synchronously (awaiting all the workers to finish
before updating the model), and asynchronously (allowing model updates with just a part of
nodes results).

Ultimately, the updated global model must be promoted to all workers. Therefore,
techniques common in collective communication and HPC are highly relevant for model
gradient update and propagation. One implementation of data parallelism is Parameter Server
[95], which is efficient and scalable. This framework distributes data and model parameters
across multiple nodes to disperse the workload.

Fig. 2.6 Parameter server framework. Adapted from [42].

The implementation of the parameter server model is illustrated in figure 2.6, where the
data is divided across nodes each containing a model replica. The parameter server collects
model gradients ∆W from each machine and returns an aggregated model parameter W that
is used to update every model replica.
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2.4.2 Model Parallelism

In this paradigm the model is distributed or partitioned among the different nodes, synchro-
nization between nodes is done when one node needs neuron activities output by another
node as input. Communication overhead in NN model graph is mitigated by partitioning in a
way that edges running between separated components (as shown in the figure 2.7) of the
model are minimal or the amount of data that flows through the edges is low.

Fig. 2.7 Model parallelism. Adapted from [42].

A key advantage of the model-parallel approach is that it explicitly partitions the model
parameters into subsets, allowing ML problems with massive model spaces to be tackled on
nodes with limited memory, as for example would be applicable when using GPUs.

2.5 Earthquake Detection Techniques

A seismic wave is a wave of energy that travels through the Earth as shown in the figure 2.8.
It can result from an earthquake but also from volcanic eruptions, avalanches, landslides,
man-made explosions or other causes. Seismic waves that travel through the interior of the
Earth are known as body weights, the ones that travel across the surface are known as surface
waves. Body waves can be divided into primary (P-waves) [12] and secondary (S-waves)
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[83]. P waves (see figure 2.9) can travel through any type of material, including fluids, and
travel faster than the S waves (they arrive first to seismic stations).

Fig. 2.8 Earthquake composition. Adapted from [5].

Seismometers continuously detect ground motions excited by seismic waves and record
them into seismograms. A seismogram shows ground displacement on the y axis and time on
the x axis. Modern seismograms include 3 channels (see figure 2.10), one for each movement
direction: up-down, north-south, and east-west.

Fig. 2.9 Types of waves in a seismic signal. Adapted from [100].

Seismometers are located within seismic station. A number of interconnected seismic
stations form a seismic network. Today, the data from all of the stations of a seismic network
are transmitted (by radio, internet or satellite) in real-time to a data center, where the data are
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Fig. 2.10 Example seismograms

processed and an earthquake catalog is generated. An earthquake catalog is a description of
seismic events, with each entry describing one earthquake. The description usually includes
the location, origin time and magnitude of the event, and may include other information such
as the focal mechanism. Some of the information of the catalogs are produced by human
experts, which implies some limitations. On the one hand, as seismic monitoring equipment
continue to spread and become more efficient, the amount of data surpasses the capabilities of
human analysts. On the other hand, small-magnitude earthquakes (more frequent) sometimes
pass undetected by trained analysts [91].

For these reasons, during the last four decades multiple research works have addressed the
automation of interpretation tasks such as event detection, event identification, hypocenter lo-
cation, and source mechanism analysis. Lately, recent advances are related to the application
of ANNs to automate some of these interpretation tasks. Published results [87][101][124]
show that these networks are able to learn the interpretation abilities of human analysts and
improve the performance of traditional algorithms.



Chapter 3

Exploring The Distributed Paradigm for
Deep Learning Algorithms.

3.1 Distributed Training of Deep Neural Networks with
Spark: The MareNostrum Experience

3.1.1 Introduction

Over the past several years, DNNs have proven to be an incredibly effective tool for a variety
of problems, from computer vision, speech recognition or natural language processing. Their
number of parameters and complexity, and the size of the training datasets, have quickly
grown, leading to be a first-class workload for HPC infrastructures. However, enabling
deep learning workloads on a large parallel system is a very complex process, involving the
integration and configuration of several layers of both, general-purpose and custom software.
The details of such kind of deployments are rarely described in the literature.

The goal of the deployment is to be able to take profit of the computation resources
provided by MareNostrum (almost 50K cores and more than 100TB of aggregated RAM)
for training DNNs. Nowadays, the usage of GPUs has proven to be the more efficient
alternative to train neural networks, speeding up common operations such as large matrix
computations [67, 36]. As their price, performance and energy efficiency improves, GPUs
are gaining ground in HPC (both in special-purpose systems and in hybrid general-purpose
supercomputers). However, there are still many systems, such as MareNostrum, that are not
equipped with GPUs.

The key element of the deployed layered architecture is Apache Spark [118]. In order
to isolate machine-learning applications from the particularities of MareNostrum, Spark is
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usually used as an intermediate layer (not only in MareNostrum, [111] does the same on a
Cray X-series supercomputer). The deployment of Spark-enabled clusters over MareNostrum
is not trivial, and it has been done with the help of Spark4MN [105], a custom interoperability
layer. On top of this stack (Marenostrum, Spark4MN and Spark) we place a deep learning
specific layer, DL4J. DL4J, that is written in Java and has a direct integration with Spark,
enables distributed training of deep neural networks through a synchronous data parallelism
method.

These four elements (DL4J, Spark, Spark4MN and MareNostrum) have been integrated
enabling to efficiently train deep neural networks. Apart from the deployment details, the
challenge is scalability and proper configuration. Simply running on many cores may yield
poor benefits or even degraded performance due to overheads. We deal with this issue and
we aim to make the first step towards systematic analysis of the several parameters and
optimized configuration.

In order to evaluate the performance and scalability of the proposed software stack on
MareNostrum, we have experimented with different workloads and different deployment
setups (number of nodes, parallelism configuration, etc.). Through the following sections
we explain the different components of the deployment in more detail. Then, we discuss the
performed experiments and the obtained results, aiming to shed light onto the parameters
that have the biggest impact and their effective configuration. We provide insights into how
the job configuration on a traditional HPC setup can be optimized to efficiently run this
kind of workloads. The derived conclusions should be useful to guide similarly complex
deployments in the future.

3.1.2 Related Work

Several works have addressed the execution of deep learning workloads on large specific
purpose clusters usually involving nodes equipped with GPUs. In [65], authors present a
Caffe-based approach to execute deep learning workloads on a contemporary HPC system
equipped with Xeon-Phi nodes. They use the Intel distribution of Caffe, that improves
Caffe performance when running on CPUs. Authors report to be able, due to a hybrid
approach, to overcome the limitations of synchronous systems scaling the training of a
model up to thousands of nodes. In [116], authors describe another method (tested over
Intel Knights Landing (KNL) clusters and multi-GPU clusters) with very good weak scaling
efficiency (e.g. 92% for GoogleNet on 2176 cores with respect to a Intel Caffe baseline).
Alternatively, distributed DNNs training can be deployed through an integrated software
stack. Despite of the potential performance limitations, the possibility to take profit of
thousands of underutilized cores to alleviate the pressing demand of computational resources
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to train deep learning models with a solution with minimum cost and setup time is an
option for many general-purpose HPC infrastructures, specially if they already provide the
lower components of the stack. A common case are infrastructures with an Apache Spark
abstraction layer. Enabling distributed DNNs training in these situations is straightforward
through the integration of a DL4J layer. While the performance of Spark on HPC setups
have been already studied by many works (e.g. [48][72][111]), as far as we know, there
are no previous works evaluating the feasibility and scalability of a Spark-DL4J integrated
solution when applied to an HPC setup. One potential limitation of DL4J is that its currently
constrained to synchronous SGD-based training. The work described in [57] analyzes the
main bottlenecks of the synchronous approach. The authors conclude that the issue is quickly
turning into a vastly communication bound problem which is severely limiting the scalability
in most practical scenarios.

3.1.3 Components for distributed training

Deep Neural Networks

DNNs are layered compositional models that enable learning representations of data with
multiple levels of abstraction. State-of-the-art DNNs include many variants, specialized
in different domains (CNNs, recurrent neural networks (RNNs), etc.). DNNs are usually
trained by using iterative, gradient-based optimizers (typically mini-batch SGD) that drive a
non-convex cost function to a local minimum. In every iteration step, we use information
about the gradient ∇E at the current point. In iteration step [t +1] the weight update ∆w[t] is
determined by taking a step (γ is the learning rate) into the direction of the negative gradient
at position w[t] such that (in the case of stochastic training):

∆w[t] =−γ
∂En

∂w[t]
(3.1)

State-of-the-art networks have a huge number of weights W and the core computation in their
training is dominated by dense linear algebra. Usually, in order to improve the efficiency, the
training dataset is split into mini-batches of size B (typically chosen between 1 and a few
hundreds) and the model is only updated (one iteration) after accumulating the gradients of
all the training samples within a mini-batch.

DNNs training on a single node involves several software and hardware layers. At the top
of the stack there is normally a deep learning framework such as DL4J, TensorFlow, Torch,
etc. (there may be even an upper layer such as Keras). Below, the framework relies on an
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underlying numerical library such as NVIDIA’s cuDNN or Intel’s MKL. Finally, the models
are usually trained on NVIDIA GPUs or Intel’s Xeon Phi processors.

When trained on multiple nodes, one can apply data parallelism (distributing training
samples among nodes) and/or model parallelism (distributing model parameters among
nodes). In our deployment, we only apply data parallelism. The B training samples within a
min-batch are split into n equal sized sets of size b (with b = B/n). The resulting mini-batch-
splits are then fed to n nodes holding a complete copy of the model. The results (gradients)
off all nodes are then accumulated and used to update the model.

While DL4J limits us to perform this process synchronously (awaiting all the workers to
finish before updating the model), it could be also performed asynchronously (allowing model
updates with just a part of nodes results). Asynchronous data parallelism can potentially gain
higher throughput, but depending on the infrastructure status we can have the stale gradient
problem. By the time a slow worker has finished its calculations based on a given state of
the model, the model may have been updated a number of times and the outdated update
may have a negative impact. Some solutions to this problem (e.g. [76]) have been recently
proposed.

DL4J

Deeplearning4j (DL4J) is a computing framework written for Java with wide support for
deep learning algorithms. DL4J is powered by its own numerical computing library, ND4J,
and provides distributed parallel versions (both for GPUs and CPUs) of the algorithms that
integrate with Apache Hadoop and Spark. Through a C++ native library, Libnd4j (with a
BLAS backend), ND4J provides intra-node parallelism for matrix operations (implemented
with OpenMP vectorizable loops with SIMD support). With the help of JavaCPP and Java
Native Interface (JNI), pointers to off-heap memory (allocated outside of the Java Virtual
Machine (JVM) and not managed by the Garbage Collector (GC)) are passed to the underlying
C++ code. In order to achieve distributed network training over Spark, DL4J performs a
version of the synchronous data parallelism mechanism called parameter averaging. Instead
of transferring gradients to the master, the nodes perform first a local model update and then
they transfer the resulting weights to the master, where they are averaged. With respect to
generic parameter averaging, in DL4J the Spark driver and reduction operations take the
place of the parameter server (see figure 3.1).

There are several parameters that must be adjusted to optimize training time. These
include, but are not limited to, mini-batch-split size, averaging frequency (too low averaging
periods may imply too networking overhead), prefetching (how many mini-batch-splits a
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Fig. 3.1 Parameter averaging in DL4J over Spark (example using two mini-batches).

worker must prefetch to avoid waiting for the data to be loaded), and repartitioning strategy
(when and how to repartition data to keep the partitions balanced).

Apache Spark

As mentioned before, Apache Spark is the key component of the proposed framework. Spark
is a distributed system for processing data-intensive workloads. It excels in an efficient
memory usage, outperforming Hadoop for many applications [117]. Spark is being used to
execute big data workloads on the MareNostrum supercomputer, isolating the applications
from the particularities of this HPC infrastructure. Spark is designed to avoid the file system
as much as possible, retaining most data resident in distributed memory across phases in
the same job. Such memory-resident feature stands to benefit many applications, such
as machine learning or clustering, that require extensive reuse of results across multiple
iterations. Essentially, Spark is an implementation of the so-called Resilient Distributed
Dataset (RDD) abstraction [117], which hides the details of distribution and fault-tolerance
for large collections of items. The usage of Spark over alternatives with potentially better



20 Exploring The Distributed Paradigm for Deep Learning Algorithms.

performance, e.g. MPI, was a prerequisite of the described deployment. While Spark has
some advantages such as fault tolerance, its main advantage over other alternatives in this
case was that it minimized the deployment cost.

The Spark4MN Framework

The MareNostrum supercomputer is accessed through an IBM LSF Platform workload
manager. In order to be able to deploy Spark clusters over MareNostrum, we employ an
intermediate layer called Spark4MN [105]. Spark4MN is also in charge of managing the
deployment of any additional resource Spark needs, such as a service-based distributed
file system (DFS) like Hadoop distributed file system (HDFS). Essentially, Spark4MN is
a collection of bash scripts that deploy the Spark cluster’s services, and executes the user
applications. Spark4MN scripts read a configuration file, describing the application and the
Spark cluster configuration, and submit one or more jobs to the MareNostrum workload
manager. Once the cluster’s job scheduler chooses a Spark4MN job to be executed, an
exclusive number of cluster’s nodes are reserved for the Spark cluster and (if requested) for
the DFS (e.g. HDFS) cluster (may be the same nodes, depending on the configuration). After
the resource allocation procedure, Spark4MN starts the different services. In Spark4MN, the
Spark master corresponds to the standalone Spark manager, and workers are Spark worker
services, where the Spark executors are received and launched. The cluster startup requires
about 12 seconds. This is independent of the size of the cluster (the number of nodes). Each
application is executed via spark-submit calls. During each Spark job execution, intermediate
data is produced, e.g., due to shuffling. Such data are stored on the local disks and not on
DFS by default (as in [72], this yields the best performance). Finally, Spark timeouts are
automatically configured to the maximum duration of the job, as set by the user.

Marenostrum supercomputer

MareNostrum is the Spanish Tier-0 supercomputer provided by BSC. It is an IBM System
X iDataplex based on Intel Sandy Bridge EP processors at 2.6 GHz (two 8-core Intel Xeon
processors E5-2670 per machine), 2 GB/core (32 GB/node) and around 500 GB of local disk
(IBM 500 GB 7.2K 6Gbps NL SATA 3.5). Currently the supercomputer consists of 48896
Intel Sandy Bridge cores in 3056 JS21 nodes, with more than 104.6 TB of main memory and
2 PB of General Parallel File System (GPFS) disk storage. More specifically, GPFS provides
1.9 PB for user data storage, 33.5 TB for metadata storage (inodes and internal filesystem
data) and total aggregated performance of 15GB/s. The GPFS filesystems are configured
and optimized to be mounted on 3000 nodes. All compute nodes are interconnected through
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an Infiniband FDR10 network, with a non-blocking fat tree network topology. In addition
to the 40 Gb/s Infiniband, 1 Gb/s full duplex Ethernet is in place. With the last upgrade,
MareNostrum has a peak performance of 1.1 Petaflops.

3.1.4 Experiment

The main goal of the experiments is to evaluate the scalability properties of the proposed
deployment. To this end, we have experimented with different workloads and different
deployment setups. Regarding the benchmarking workloads, we have chosen two widely
used convolutional networks, AlexNet [64] and GoogLeNet [97]. Both networks have been
used in other state-of-the-art works (e.g. [57]) and let us compare our results with others.
While AlexNet implements a rather shallow network with many parameters, GoogLeNet is a
very deep network with many convolutional layers. We apply both networks to dataset of the
ImageNet [90] visual recognition challenge. For reproducibility, we stick to the ILSVRC2012
classification task training and test datasets and their standard evaluation procedure.

Table 3.1 Properties of the DNNs used in the experiments.

Properties AlexNet GoogLeNet
Default batch size 256 32
Default step-size 0.1 0.1
# Iterations till convergence 450k 1000k
# Layers 25 159
# Convolutional layers 5 59
# Fully-connected (FC) layers 3 1
# Weights in FC layers 55M 1M

Regarding the deployment setup, we have tested different values for the number of nodes,
the number of Spark workers per node, the Spark data partition size, the DL4J averaging
frequency and the persistence level. Figure 3.2 shows the speedup results obtained with
B = 256 and B = 1024 (two Spark workers per node, averaging each 3 mini-batch-splits,
Spark’s persistence level set to MEMORY_AND_DISK_SER and automatic partitioning). The
step sizes were increased according to the batch size as suggested by [52], while the number
of iterations has been decreased by the same factor. For each different number of nodes n,
each node processes mini-batch splits of size b = B/n.

Under a basic setup (averaging for each computed minibatch and uniform node workload)
synchronous data parallelism trough parameter averaging is mathematically equivalent to a
non-parallel computation and yields the same accuracy results. However, accuracy degrades
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Fig. 3.2 Speedup results for AlexNet and GoogLeNet with different mini-batch sizes B.



3.1 Distributed Training of Deep Neural Networks with Spark: The MareNostrum
Experience 23

(regardless of parallelization) when mini-batch sizes become too large [55], which imposes a
constraint on scalability. Table 3.2 shows the accuracy results for the different configurations.

Table 3.2 Impact on accuracy of the different configurations.

mini-batch size accuracy
AlexNet (B = 256) 56.9%
AlexNet (B = 1024) 53.6%
GoogLeNet (B = 256) 67.1%
GoogLeNet (B = 1024) 65.4%

The following table 3.3 shows the different elements used to set up the experiment.

Table 3.3 Experiment setup summary.

Dataset Pre-Processing Model Evaluation Software
Data Architecture Version

ImageNet none CNN: Marenostrum 3: Spark 1.5.2
- GoogLeNet[96] *115.5TB RAM Dl4j 0.4-rc3
- AlexNet[63] *3,056 nodes Spark4MN

*3PB storage

The results of our evaluation show that DL4J and Spark are able to scale deep learning
workloads over MareNostrum. However, the effective scaling stops above 32 nodes with
the best configurations. This limitation agrees with the results reported in [57], that studies
the theoretic constraints of synchronous data parallelism for DNNs training. The main
bottleneck of the synchronous approach is the computation to communication ratio. The
synchronous parallelization of DNN training requires the communication of the model wt

and the computed gradients ∆wt between all nodes in every iteration t. Since w has to be
synchronous in all nodes and ∆wt+1 can not be computed before wt is available, the entire
communication has to be completed before the next iteration t +1. The problem is that w and
∆w have the size of all weights in the neural network, which can be hundreds of megabytes.
The compute times per iteration are rather low and decrease when scaling to more nodes.
Depending on the model size and layout, the training problem becomes communication
bound after scaling to only few nodes. Shallow networks with many neurons per layer (like
AlexNet) scale worse than deep networks with less neurons (like GoogLeNet) where longer
compute times meet smaller model sizes.

A second problem of the synchronous approach is that nodes process mini-batch-splits
instead of mini-batches, and the size b of these splits depends on the number of nodes n.
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If b is too small (less than 32 samples in our experiments), there will be a negative impact
on the inner parallel computation (within the node), especially in the case of the FC layers.
One solution would be to increase the mini-batch size in parallel to the number of nodes,
but too large batch sizes have been shown to cause slowdown in convergence and degrade
the generalization properties of the trained model [65]. As larger mini-batch sizes enable
lower absolute training times when many nodes are used, they are always preferred, with the
limitation of accuracy degradation. While intra-node parallelism of fully connected layers
improves with a larger mini-batch size, the poor scalability results observed at low core
counts can be attributed to a poor intra-node parallelism of the other layers (dropout, pooling
and LRN). The observed behavior is consistent with the results from Keuper and Pfreundt
(2016). Another aspect negatively impacting scalability at low core counts (few nodes) can
be related to data loading. Our implementation uses asynchronous data prefetching (as it is
the default DL4J behavior). The next mini-batch-splits are loaded in another thread of the
worker while training is proceeding in the main thread. Under ideal circumstances (fast disk
access and small mini-batch-split size), asynchronous prefetching implies negligible data
loading delays (except on the first iteration). However, MareNostrum nodes are equipped
with relatively slow local disks (IBM 500 GB 7.2K 6Gbps NL SATA 3.5), a circumstance
that can turn data loading into a bottleneck when mini-batch-splits are too big (i.e. when
large mini-batches are distributed among few nodes) and the network is shallow.

A third problem is stragglers. The duration of the iteration depends on the slowest node.
This effect gets worse with scale.

Asynchronous parallelization, not possible with the current version of DL4J, would solve
these problems but, as mentioned before, has the stale gradient problem (though our nodes
are homogeneous and the impact would be low). Some recent works like [65] propose a
hybrid approach in which synchronous parallelism just takes place within groups of nodes.
Partial solutions to the stale gradient problem, e.g. [76]), have also been proposed.

3.1.5 Conclusions

This work explores the feasibility and efficiency of using Apache Spark and DL4J for deploy-
ing deep learning workloads over a real-world, petascale, HPC setup, such as MareNostrum.
To this end, we have designed a layered architecture consisting in both, general-purpose
(Spark and DL4J) and custom components (Spark4MN). We have evaluated the deployment
by training AlexNet and GoogLeNet over the ImageNet dataset. We have tested different
deployment setups (number of nodes, number of Spark workers per node, data partition size,
mini-batch size, mini-batch-split size, averaging frequency, prefetching and repartitioning
strategy).
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We conclude that it is feasible to rely on Apache Spark to deploy DL workloads over a
traditional HPC setup. This approach minimizes deployment costs and enables a systematic
tuning of the different configuration parameters, both at application level and at infrastructure
level. However, the effective scaling is strongly limited by the synchronous parallelism
approach applied by the latest DL4J version. Problems such as the communication overhead,
mini-batch-split size and stragglers degrade the scalability beyond 32 nodes. In order to
overcome this limitation, it would be necessary to replace the synchronous mechanism by
a hybrid approach in which synchronization just takes place within fixed-size node sets.
Assessing the impact of certain aspects, such as a quantitative evaluation of the effects on
performance of asynchronous data prefetching, deserves further investigation and will be
carried out in future work.
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3.2 Digital Marketing: A Case Study

3.2.1 Introduction

Nowadays, there is a growing interest in exploiting the photos that users share on social
networks such as Instagram or Twitter [22][107], a part of the so-called user-generated
content (UGC). A significant part of these images has potential value for digital marketing
tasks. On the one hand, users’ photos can be analyzed to obtain knowledge about users’
behavior and opinions in general, or with respect to a certain products or brands. On the
other hand, some users’ photos can be of value themselves, as original and authentic content
that can be used, upon users’ permission, in the different brands’ communication channels.
This work is related to this second use case, searching, discovering and exploiting UGC
for digital marketing tasks, that has been traditionally addressed by the so-called content
curation technologies.

Fig. 3.3 Example images posted by Instagram users and tagged with Desigual’s promotional
hashtags (e.g. #lavidaeschula), used to feed the proposed solution

Platforms for photo-centric UGC are proliferating rapidly nowadays (e.g. Olapic [ola],
Chute [chu] and Curalate[cur]), but discovering valuable images on social media streams is
challenging. The potential bandwidth to analyze is huge and, while they help, user defined
tags are scarce and noisy. A large part of current solutions relies on costly manual curation
tasks over random samples. This way many contents are not even processed, and many
valuable photos go unnoticed. Adoption of image recognition techniques in commercial
UGC systems is currently very limited. In the best case, they provide generic classifiers
whose categories and original training data were not specific to UGC. Often these classifiers
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limit to the categories of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
but the vast majority of Instagram/Twitter photos are people-centric (selfies, food, clothes,
etc.) while ILSVRC is more generic (fauna, flora, etc.). An important particularity of UGC
is the huge amount of spam images, i.e. images that, in the most usage scenarios, have no
value neither as knowledge carriers nor as a exploitable content. The incapacity of detecting
the multiple types of spam images limits the usability and efficiency of existing solutions.
Another difficulty of adopting image recognition techniques into UGC systems is the high
computational cost of CNN-based image classifiers and object detectors. These systems need
to process incoming streams of hundreds of images per second and a very volatile traffic.
Any additional processing component need to be extremely efficient and scalable.

In this work, it has been proposed an approach based on deep CNNs and transfer learning
to minimize manual curation as much as possible and to make it more efficient. As a result,
we increase the number of photos processed several orders of magnitude, we increase the
quality of the resulting photos (as more photos are analyzed and only the best ones go through
manual curation), we enable near real-time discovery and, last but not least, we drastically
reduce the cost.

3.2.2 Related Work

Classification and search of brand-related images in social networks

The work presented in this paper is related to recent works attempting to facilitate the classi-
fication and search of images in social networks such as Instagram and Twitter. Some works,
such as [29][40][75][79][106], also apply scene-based and object-based image recognition
techniques to enrich the metadata originally present in the images in order to facilitate their
processing. All latest works rely on CNNs as an underlying technique. In our case, the
applied image recognition techniques, while also relying in CNNs, are tuned for content
curation for digital marketing tasks. This implies new problems, such as the need to recognize
more abstract categories (e.g. "mediterranean") and the need to deal with smaller datasets
(e.g. brand-based image datasets). Previous works such as [39][41][122] also classify social
media data paying special attention to brands and products. Regarding the annotation of
images with generic object categories, we reuse Google’s Inception-v3 model [98], trained
for the ImageNet Large Scale Visual Recognition Challenge and 1000 object categories
with a top-5 error rate of 15.3%. Regarding the training of classifiers for new categories,
we solved the overfitting problem related to the usage of small training sets by applying a
transfer learning approach the same way Berkeley researches do in [32].
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Visual brand identity recognition

As far as we know, this is the first work that addresses the automatic recognition of visual
brand identity in images. In [14] researchers from Georgia Tech and Yahoo labs identified a
relationship between certain visual aspects (warmth, exposure, and contrast) and a photo’s
engagement on Flicker and Instagram. Some years before, researchers from the University
of Portsmouth, UK, analyzed how wavelength hues influenced users’ perception and reaction
[23]. In [121], authors perform personalized (for each individual viewer) image emotion
classification in social networks. In our approach, emotions are just one of the aspects to
consider, as brands pay also attention to other aspects (lifestyle, values, etc.). Regarding the
training of classifiers for the recognition of visual brand identity, we also applied a transfer
learning approach to avoid overfitting as we need to deal with small training sets.

Logo detection

Regarding the detection of logos, in [108] authors propose a dense histogram type feature
to classify logo and non-logo image patches from the Sina Weibo platform, a Chinese
microblogging site. In [82], authors propose CNN-based approach able to predict bounding
boxes and class probabilities in just one evaluation, without the need to apply a sliding
window. This approach is extremely fast and authors claim being able to process images at
45 frames per second. In our case, due to need to generate the detectors in an on-demand
basis, we opted for a solution with worse real-time performance but that doesn’t need too
many resources for training (data and computation power). We have developed a system that
automatically processes, in real-time, an incoming stream of social media images and detects
and localizes all the occurrences of any of a set of supported logotypes. The system makes
use of two state-of-the-art deep CNNs designed for object detection, SSD InceptionV2 and
Faster Atrous InceptionV4 (that provides better performance on small objects). The resulting
system is currently being integrated within a real commercial service, the Adsmurai’s Visual
Commerce Platform

In this part of the work, we describe the technical design of the system and the results of
the performance evaluation experiments in which real images related with two commercial
brands, Estrella Damm and Futbol Club Barcelona, have been used. We examine the impact
of different configurations and derive conclusions aiming to pave the way towards systematic
and optimized methodologies for automatic logo detection in UGC.
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3.2.3 Experiments

3.2.3.1 User Generation Content

Outline of the system
The system developed processes images for one or more marketing campaigns. Each user
(usually a brand’s account manager) can operate multiple campaigns simultaneously. The
functionality of the system can be divided into two different stages, data acquisition and data
consumption.

During data acquisition the system captures and annotates new images from social media
with potential value for a given campaign, and indexes them into a database. During this
stage, new images are captured in real-time, as they are published on the underlying sources
(Instagram and Twitter). Descriptors of the images (including the URL pointing to the image
content) are acquired using the APIs provided by these underlying sources. These APIs
impose limits over the number of images that can be obtained during a certain period of
time. So, processing the entire stream of images produced by a given API is not possible.
APIs provide the possibility to subscribe to certain filters, such as tags or geolocation
bounding boxes. These filters produce partial streams that may be overlapped. In order
to capture images with potential value for a campaign, our system first needs information
about geographical areas and/or hashtags that are related to the campaign (e.g. promotional
hashtags such as Desigual’s "#lavidaeschula" or Estrella Damm’s "#mediterraneamente").
These data are used by the system to program a set of subscriptions to the underlying sources.
Each subscription will produce a continuous stream of images that we call "channel". The
throughput of the channels may be extremely volatile, requiring a proper scalability strategy.
Once a new image is captured, it is processed by multiple deep convolutional neural networks
that automatically enrich the image’s metadata with tags that describe their visual content
(e.g. "selfie", "pizza", etc.) plus a score that measures how the image fits the visual identity
of the brand.

During the data consumption stage users can navigate, search and select images from
the database. Depending on the communication channel where an image is going to be
used (paid ads, organic posts, images feeds, etc.) the user who post the image will be asked
authorization. Both stages (acquisition and consumption) interact through the common
images database, and they can occur concurrently (once images start feeding the database
users can start using them). Figure 3.4 shows visually the overall data flow of the system.

Image semantics recognition
During the acquisition stage, captured images are processed by a set of multi-class and binary
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Fig. 3.4 Overall data flow of the system. Images are acquired and annotated in real-time. The
resulting metadata are stored and queried by a manual curation graphical user interface.
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image classifiers that try describing their visual content (for logo detection, explained below,
we have applied a different approach). All the involved classifiers share the same architecture,
Google’s Inception-v3 [98], a deep convolutional neural network trained for the ILSVRC.
One of the classifiers that we apply is Inception-v3 itself, which let us classify the images
into 1000 different categories. As these categories are very specific terms from WordNet,
we expanded ImageNet categories with their corresponding WordNet hypernyms reaching a
total of more than 7,000 different tags. Table 3.4 shows some of them.

Table 3.4 Some of the 1000 ILSVRC tags and their expanded WordNet hypernyms.

Original ILSVRC tag 4-depth WordNet hypernyms
Siberian husky sled dog, working dog, dog, canine

beer bottle bottle, vessel, container, instrumentality
red wine wine, alcohol, beverage, food

consomme soup, dish, nutriment, food
cowboy hat ten-gallon hat, hat, headdress, clothing

burrito dish, nutriment, food, substance
... ...

However, we have observed that many objects and scenes that typically appear in In-
stagram/Twitter images do not appear in ILSVRC. The vast majority of Instagram/Twitter
photos are people-centric (selfies, food, clothes, etc.) while ILSVRC is more generic (fauna,
flora, etc.). Also, even if an object or scene appears in ILSVRC often it is not part of the
ILSVRC categories dictionary (i.e. WordNet). In order to provide a more comprehensive
and practical set of tags, we have trained our own classifiers (more than 100, Table 3.7 shows
some of them), retraining the last layer of Inception-v3. The most part of them are binary
classifiers, that enable us to determine if an image should be annotated with a given tag
(one for classifier). Notable examples are spam and selfie, tags that have proven to be very
useful when searching this kind of images. The criteria of inclusion of new tags is currently
heuristic, driven by the feedback of users interacting with the final curation interface. Figure
3.5 shows some example images from the spam dataset.

Visual brand identity (VBI) recognition
Besides annotating the incoming images with tags that describe their semantics, we have
also trained a set of CNNs that perform what we call VBI recognition. Nowadays, the main
course in almost all branding initiatives is to develop a unique and consistent visual brand
identity that expresses and reflects the brand’s culture and character. A VBI may involve
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Fig. 3.5 Example images from different sub-categories of the spam dataset.

the preference for some colors, lighting, themes, etc. It’s easy to find examples of visual
identities for iconic brands such as Coca-Cola, Levis or McDonald’s.

Each VBI classifier is a binary image classifier based on Inception-v3 and fine-tuned
with a dataset provided by a brand. The classifier learns to distinguish which images satisfy
some visual patterns found in the brand’s imagery. Initially, the classifier is trained with a
dataset provided by the brand (e.g. a set of images used in a previous marketing campaigns
and that are representative of the brand’s visual identity). Later, each time a certain amount
of usage actions (selection of new images by the user) have been recorded (a training batch),
the model weights are updated. Figures 3.6 and 3.7 show some example images used to train
VBI classifiers for the Estrella Damm beer brand (related to the Mediterranean lifestyle) and
Pepsi, respectively.

Transfer learning approach
In order to reduce overfitting, improve accuracy and reduce training times we have chosen
a Transfer Learning approach for training the classifiers (for both the image semantics
recognition and the VBI recognition). The method consists on fine-tuning a deep architecture
already trained with millions of images on a set of traditional object recognition tasks. We
start by processing each one of our training images through all the layers of the Google’s
Inception-v3 model [98] except the last one. For each image, we save the values of the
penultimate layer of Inception (called the image bottleneck). Once we have computed all
the bottlenecks, we replace the final layer of Inception with a new one, defined over the
categories of the model that we want to train (e.g. a binary spam-detector model with just
two classes). Then we run some (around 4K) training steps over the network (feeding the
bottlenecks directly into the final layer).
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Fig. 3.6 Example images showing the visual brand identity of the Estrella Damm beer brand,
related to the Mediterranean lifestyle.

Fig. 3.7 Example images showing the visual brand identity of the Pepsi.
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Alternative algorithms
We have compared the obtained results with two other methods, a Bag of Words (BoW)
approach and training our own lightweight CNNs. Regarding BoW, with the help of OpenCV
we computed Opponent-SIFT descriptors from the images and clustered them to obtain a
dictionary of k-dimensional visual words. With the help of the dictionary we transformed
each image into a k-dimensional vector. With the obtained vectors, we trained a Support
vector machine (SVM) classifier with an Radial basis function (RBF) kernel. We performed
experiments with different configurations (different descriptors, different downscaling sizes,
different kernels, etc.). Regarding the training of our own CNNs, we defined and trained,
with the help of TensorFlow, a lightweight, 6-layer deep convolutional neural network (3
convolutional+relu layers, two fully connected layers and a softmax layer). We applied data
augmentation and disabled Local Response Normalization.

Datasets
Table 3.5 shows the details of the datasets used in this work for which results are provided
in the next section. We worked with three different groups of datasets, the ones for training
new generic image recognition classifiers or NGR (e.g. "selfie" and "spam"), the ones for
visual brand identity recognition classifiers or VBI (e.g. "Pepsi" and "FC Barcelona") and
the ones for logo detection or LOGO (e.g. "Estrella Damm logo"). We only provide details
about a representative subset of the classifiers/detectors actually trained. Regarding NGR,
we finally trained more than 100 new classifiers (here we show details about 6 of them).
Regarding VBI, we trained more than 20 classifiers (here we show details about 6 of them).
Regarding LOGO, it is a new feature in which we are currently working and here we only
provide results for the Estrella Damm logo.

Regarding datasets acquisition for NGR, the most part of the new models required to
acquire training images that are not part of any public images dataset. In order to solve this
problem, we combined images both from Instagram and the WWW. Instagram photos were
obtained from the Instagram API, filtered with user defined tags and manually purged. As
user defined tags are very noisy this method proved to be inefficient and very time-consuming.
In order to facilitate the generation of more ground truth annotations and a larger training
dataset we also obtained images from Google Images through the Custom Google Search
API. This method, which allowed to automatically annotate a bigger set of images, turned
out to be very useful as almost all the retrieved images showed the desired category (e.g.
"handbag") and minimum manual purge was required. The resulting dataset contains more
than 50K images distributed in 100 different categories.
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Table 3.5 Summary of training datasets (NGR = New generic recognition, VBI = Visual brand identification,
LOGO = Logo detection).

tag type #positives #negatives
selfie NGR 295 8,959

group_selfie NGR 98 8,884
spam NGR 319 8,979

burguer NGR 474 8,845
nails NGR 434 8,866
sushi NGR 571 8,920
Pepsi VBI 680 8,422

FC Barcelona VBI 1,023 8,366
Estrella Damm VBI 663 8,363

Desigual VBI 1,381 8,862
Catalunya Experience VBI 89 8,809
Estrella Damm logo LOGO 322 1,681

Regarding datasets acquisition for VBI, the brands are responsible of providing a curated
dataset of images that satisfy their VBI criteria. In our prototype, our main source of (positive)
training images are the brand’s Instagram profiles. With the help of the Instagram API we
have been able to collect training sets with sizes varying from several hundred (e.g Ecooltra)
to several thousand (e.g. Desigual). As negatives we use images from multiple NGR
classifiers’ datasets with low probability of semantic overlapping. While the performance
of a VBI classifier depends initially on the quality of the starting dataset, it improves as the
system is used.

The data acquisition for LOGO is the only one which required a totally manual process.
First, we captured Instagram images annotated with the Estrella Damm promotional hashtag.
Then we manually annotated the bounding boxes of all the logo occurrences with a tool that
we developed for this task.

It’s worth mentioning that we didn’t use a public dataset such as Brand-Social-Net
because the goal of the work was to evaluate the viability of the whole approach on a real
scenario. This included to experience with the generation of training datasets for custom
(brand-specific) classifiers on demand.

Regarding compliance with laws and ethical standards, the system analyzed publicly
available photos as they were published in Instagram, without keeping them. All statistical
data retained had no identifying information about individuals and no confidential data
that allow statistical units to be identified, either directly or indirectly, thereby disclosing
individual information. For photos identified as relevant, explicit consent from users was
requested (through Instagram direct messaging tools) before publishing them in brands’
communication channels.
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Software and hardware configuration
The data acquisition system was implemented with Java and served as a set of RESTful APIs.
The scalable image metadata database was implemented with Elasticsearch. The image
recognition service was implemented with Python and TensorFlow, and also implemented as
a set of RESTful APIs. Once in production, the system is running over a cluster of 6 Amazon
EC2 t2.large instances (dual core 3.3 GHz Intel Xeon processor and 8 GB of memory). The
CNNs were trained over a high-end server with a quadcore Intel i7-3820 at 3.6 GHz with 64
GB of DDR3 RAM memory, and 4 NVIDIA Tesla K40 GPU cards with 12 GB of GDDR5
each. The following table 3.6 shows the different elements used to set up the experiment.

Table 3.6 Experiment setup summary.

Dataset Pre-Processing Model Evaluation Software
Data Architecture Version

ImageNet none Inception- 6 Amazon EC2 TensorFlow 0.12.1
VBI-dataset Re-Size data V3[99] (t2.large) Python 2.7
ISR-dataset Re-Size data VBI models Server i7-3820 ElasticSearch 5.3.0

ISR models 64GB Ram Docker Engine 1.13
4 NVIDIA Tesla K40

Results
The combined method that we propose integrates multiple state-of-the-art image recognition
and object detection algorithms. As mentioned previously, the goal of the work is not to
re-evaluate the performance of these algorithms but to analyze their suitability among other
alternatives and to asses the viability of the whole approach on a real scenario. Therefore,
following we provide representative results for the three different groups of models that we
trained (NGR, VBI and LOGO). The difference between NGR and VBI classifiers is the way
the training data is obtained, but the underlying method is the same. In order to evaluate the
suitability of the chosen method (Transfer Learning) we compared its classification accuracy,
classification time and training time with two alternative methods (BoW+RBF-SVM and
lightweight CNN). We also provide some results of the chosen method when applied to VBI
classifiers.

Classification accuracy
Table 3.7 shows some representative results obtained for the image semantics recognition part.
The results show that the classic BoW approach provides the worst accuracy but it is the fastest
to train and predict and the one with a smallest memory footprint. The approach consisting
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in defining and training our own deep CNN provides accuracy improvements of more than
10% with respect to BoW. However, with our small training sets this method implies a strong
overfitting, as pointed in [32]. Training times in a high-end server with 4 NVIDIA Tesla
K40 GPU cards are between 3 and 5 hours. One advantage of this method (with respect of
the Transfer Learning approach that we finally chose) is that models have a small memory
footprint. Another advantage is that predictions are faster (as the network is significantly
simpler). Disadvantages of this method (with respect to Transfer Learning) are overfitting,
significantly higher training times and (about 5%) lower accuracies. Finally, the transfer
learning approach improves accuracies (with respect to training our own lightweight CNN)
about 5%, reduces overfitting and reduces training times to less than 2 hours (significantly
less if some images are reused as the bottlenecks need to be obtained just once). One
significant disadvantage (specially when many models have to be served simultaneously) is
that models have a big memory footprint. Another disadvantage is that prediction times are
higher.

Table 3.7 Training results of some of the 100 new models that we have trained for image semantics recognition.

tag BoW CNN CNN-TL
selfie 72% 87% 93%

group_selfie 76% 88% 95%
spam 69% 78% 91%

burguer 81% 89% 95%
nails 83% 92% 97%
sushi 86% 93% 96%

Because of its advantages in terms of accuracy, reduced overfitting and training times,
we finally chose the Transfer Learning approach for training the classifiers. Its ability to
work with small datasets is especially suited the visual brand identity recognition task. Table
3.8 shows the VBI classification results that we obtained for 5 real brands with the Transfer
Learning approach.

Table 3.8 Training setup and results for 5 visual brand identity classifiers.

Brand name training accy.
Pepsi 5,922s 87%

FC Barcelona 6,141s 96%
Estrella Damm 5,789s 93%

Desigual 6,310s 95%
Catalunya Experience 5,624s 76%
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Classification time
Classification time is critical as the system needs to process in real-time a huge and volatile
amount of incoming images. Each image needs to be classified by multiple models. Figure
3.8 shows a decomposition of the average classification time of one low-resolution (320x320)
Instagram image by one model. The values are just indicative as download times are context-
dependent. The main component of the classification time is the bottleneck computation (0.4
seconds). This computation, along with the downloading of the image (0.25 seconds), need
to be done just once, as the bottlenecks are the same for all the models and they can be fed
directly into the final layer. As the time to process the final layer is very small (0.05 seconds),
including more models does not imply a significant cost, neither in terms of time, being the
memory the only limitation in practice. On average, we need 0.7 seconds to classify one
image.

Regarding logo detection, on average this stage adds around 0.8 seconds to the annotation
of a single image (increasing the total time to around 1.5 seconds/image). Our current
implementation does not support reusing intermediate layers among multiple logo detectors,
so this time gets multiplied if more than one logo detector has to be applied to the same
image. Even if just one logo detector is applied, a 0.8 seconds increase is a big penalty. For
this reason, we have opted to only apply the logo detector when certain conditions are met.
These conditions are expressed in terms of the other classifiers (e.g. not applying the logo
detector if the image has been classified as spam). These conditions are configurable in a
per-campaign basis.

The overall annotation process is an embarrassingly parallel problem and the throughput
of the system can scale linearly adding more computational resources. We run as many
annotations in parallel as possible, depending on the available cpu and memory.

Figure 3.9 shows a slice of a time series for the amount of images acquired and indexed
during September 2016. In that period, the system was running an average of 5 campaigns
simultaneously, including, but not limited to, Estrella Damm, Desigual, Catalunya Experience,
Ecooltra and Shakn. Acquisition was done mainly based on hashtags (around 5 per brand),
but some geolocation-based filters were also used (e.g. some specific beaches from the
Balearic Islands for the Estrella Damm campaign). Each captured image was classified
with the corresponding VBI model, inception, and 5-10 of our own semantics recognition
models. More than 1 million images were captured, classified and indexed during one month,
providing, on average, more than 200K images for each campaign.
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Fig. 3.8 Classification time for a single 320x320 image and one model.

Fig. 3.9 Slice of the time series showing the amount of images acquired per hour during
September 2016.



40 Exploring The Distributed Paradigm for Deep Learning Algorithms.

3.2.4 Conclusions

The research work presented analyzes the usage of deep CNNs for curating and filtering
UGC for digital marketing tasks. We have built a system that captures images from Instagram
and Twitter in real-time, and processes them by multiple CNNs that automatically enrich
their metadata with tags that describe their visual content and also how they fit the visual
identity of a brand. As far as we know, this is the first work that addresses the automatic
recognition of visual brand identity in UGC. We have compared the results of three different
methods (BoW+RBF-SVM, lightweight CNN and Transfer Learning) and we conclude
that the Transfer Learning approach is the one that better suits this domain (best accuracy,
less overfitting with small datasets, and low training times). With this method, we have
trained VBI classifiers for more than 10 real brands and more than 100 classifiers for generic
description of social media images. We have employed a ground truth of more than 50K
images. Each model can be trained in less than 2 hours and the most part of resulting
accuracies are always above 90%. We also process the images with Google’s Inception-v3
and expand its 1000 WordNet categories with their corresponding hypernyms to obtain a
dictionary of more than 7,000 tags. On average, we need 0.7 seconds to classify each image.
As the bottleneck computation and image download consume the most part of this time,
applying more models sequentially has just a sub-linear impact on the elapsed time. In
practice, we run as many classifications in parallel as possible, depending on the available
cpu and memory. During a experiment conducted on September 2016, the system captured,
classified and indexed more than 1 million images related to 5 different brands. Discovering
valuable images among them is finally done by using the provided search interface and
applying the different filters (over the VBI tags, expanded inception tags, our own semantics
tags, and any metadata provided by Instagram/Twitter). With respect of traditional curation
methods, our approach minimizes human visual inspection, increases the number of photos
processed several orders of magnitude, increases the quality of the resulting photos, enables
near real-time discovery and reduces the cost drastically. There are some issues that need to
be addressed, however. Our logo detection implementation has a high detection time and
is currently single-label. Directions for future research include the evaluation of alternative
logo detection algorithms. On the other hand, regarding image semantics recognition, the
criteria of inclusion of new tags is currently heuristic, and should be addressed. Besides, as
the number of possible tags becomes very large, it becomes more difficult to design a human
curation interface able to take profit from them.



Chapter 4

Exploring Seismic Data with Deep
Neural Networks.

4.1 Deep Neural Networks for Earthquake Detection

4.1.1 Introduction

The number of seismic networks and monitoring sensors have steadily increased in recent
years, and the continuous growth of seismic records call for new processing algorithms that
assist in solving problems in seismology. A fundamental endeavor is earthquake recognition,
which pertains to the identification of seismic events in continuous data, with real-time
application to early warning systems, or offline data postprocessing in the search for unde-
tected past earthquakes. Based on time-dependent or spectral analyses of seismic traces,
earthquakes of large or moderate magnitudes are easy to detect by conventional algorithms,
some of which are cited below. Such earthquakes may impact the economy and human
lives, but they are more rare and therefore scarce in seismic catalogs. Alternatively, small-
magnitude earthquakes are more frequent, but they sometimes pass undetected by trained
analysts or automatic recognition if, for instance, traces present poor signal-to-noise SNR
ratios or recordings of overlapping events. Thus, seismic catalogs may be incomplete in the
low magnitude range, as mentioned in [73][89][91][112]. Such catalogs are used in seismic
hazard analysis for ground motion estimation under a given earthquake magnitude, which
serves as a basis for building codes. In addition, accurate detection of the foreshocks and
aftershocks associated with a main shock are used to constrain the actual fault configuration,
total rupture area, and evolution of the tectonic stresses. All of these topics are fundamental
in seismology, and they allow for better understanding of the hosting fault system and assess-
ment of its destructive potential under surrounding geological conditions. Here we address
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the earthquake detection and epicentral estimation problems for seismic data collected by
broadband stations in north-central Venezuela during the time period from April 2018 to
April 2019. Two main contributions of this study are as follows:

• A new analyst-labeled dataset, called CARABOBO according to the recording region,
was built and made public for result reproducibility and benchmarking purposes. This
dataset contains seismic data related to 949 earthquakes with magnitudes ranging
between 1.1 Mw and 5.2 Mw.

• A deep CNN is proposed, called UPC-UCV and inspired by ConvNetQuake, to ap-
proach the P-wave detection problem by processing three-channel seismic signals in
the mentioned geographic area. The method also performs source region estimation,
mapping positive events to geographical partitions (automatically obtained with the
k-means clustering algorithm) of the study region. Although our epicentral estimation
lacks depth approximation for complete hypocentral location, it represents information
that is available in real time and is complementary to standard earthquake location
procedures.

4.1.2 Related Work

Conventional algorithms have been developed for automatic detection of seismic phases
and picking the arrival times of P- and S- waves. Most of these techniques rely on general
properties of seismic waves, waveform attributes, and statistical correlation or wave polariza-
tion analyses. A popular P-wave detector developed in [7] and [8] calculates the ratio of the
average of the absolute amplitude of a signal in a short time window (STA) to the average
of the signal in a long time window (LTA). The phase identification of S-waves is usually
difficult due to superposition with P coda and converted phases, and some elaborate picking
methods were developed in [13][21][31][84]. The P and S detection algorithm presented by
[86] combines some of the aforementioned waveform analyses with STA/LTA measures. By
using recordings from local stations, this method is also able to pick fault-zone head waves
that may be triggered during earthquakes.

A different class of detection algorithms are based on pattern recognition or intensive
autocorrelation. Most methods build appropriate pattern sets of earthquake and noise signals,
and the association of new trace windows with one set based on sufficient similarity serves
as the discrimination basis for detection. Among the early pattern recognition methods,
one can find [9][20][58][69]. Earthquake signals that share the same source mechanism,
along with similar path and site conditions, should present strong waveform similarities.
Earthquake detection by intensive autocorrelation is undertaken by the methods in [44] and
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[19]. This category of detection algorithms naturally adapts to general regional and network
conditions and behaves reliably, but obtaining results is computationally intensive when
processing large datasets. To reduce the computational cost, this class has evolved into the
template matching algorithms that maintain a reduced database of representative waveforms
to be fully compared against new traces or that extract and store key discriminative features
from waveforms to be used in the similarity search. Some works focused on earthquake
swarms and sequences of foreshocks and aftershocks are those of [16][47][92][94], and the
Fingerprint and Similarity Thresholding (FAST) algorithm in [115]. In FAST, discriminative
features are binary fingerprints, stored in a special dictionary according to their similarity, that
allow for efficient searches owing to a locality-sensible hashing. Special FAST adaptations
to sparse seismic networks have been recently proposed in [17].

Many of the latest methods use deep learning related techniques such as CNNs and RNN.
Among the state-of-the-art CNNs for earthquake detection, we find ConvNetQuake developed
by [101], the generalized phase detection (GPD) introduced in [88], and PhaseNet proposed
by [125]. ConvNetQuake operates on three-channel seismograms from local stations for
P-wave detection and has been used for the recognition of natural or human-induced (related
to waste water injection) low-magnitude events in central Oklahoma, USA (hereafter referred
to as the OKLAHOMA dataset). For training, the authors employ a seismic catalog of
over two thousand events that occurred during 2014-2016 and then validate the network by
using 209 additional events. This network is extensively used in this work as a reference, so
additional ConvNetQuake characteristics and new performance assessments will be discussed
in the following sections. The training and validation of GDP and PhaseNet make use of the
extremely large seismic datasets, properly labeled by human analysts, that are available from
the Californian seismic networks. In particular, GDP detection has also been tested on the
2016 Bombay Beach, California swarm of small and moderate (≤ 4.8 Mw) events and with
the data of the 7.0 Mw Kumamoto earthquake that occurred in 2016.

The aforementioned detection methods, as well as multiple alternative applications, could
also be compared in terms of data preprocessing (trace normalization, filtering, windowing,
etc.) and achieved accuracy, among other possible aspects. An interested reader, in addition
to directly inspecting our listed references, may review any of the following survey papers:
[30], [35], [59] and [85].
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4.1.3 Methodology

The CARABOBO Dataset

The CARABOBO dataset of analyst-labeled P-wave arrivals is based on the data provided
by FUNVISIS, the governmental agency for monitoring and reporting seismic activity in
Venezuela. The FUNVISIS network includes 35 broadband stations recording three-channel
continuous data at 100 Hz. The stations are mainly deployed in the regions with higher
seismic activity which are close to the active fault systems in northern Venezuela. The
dataset is the first for this region and contains seismic data (in miniSEED format) collected
by broadband stations in north-central Venezuela, in the region of 9.5 to 11.5N and 67.0
to 69.0W, during the time period from April 2018 to April 2019. During this period, 949
earthquakes were recorded in that area by 5 seismological stations (BAUV, BENV, MAPV,
TACV and TURV). The dataset also includes a catalog with the metadata related to the events
(hypocenter, P-wave arrival times, magnitude, etc.) in Nordic format.

The method is also designed to perform source region estimation, mapping positive
events to geographical partitions. Windows can be classified into k+1 classes: one class for
windows not containing a P-wave (negatives) and k classes for windows containing a P-wave
(positives) but classified into the k geographic regions that we want to discriminate. This
section focuses on detection experiments and results. Source region estimation experiments
and results are described in Section 4.2.

Earthquake Detection and Source Region Estimation

Earthquake detection and source region estimation are approached as a single multiclass
classification problem, in which fixed-size windows of waveform data must be classified into
K +1 classes. The first K classes are for windows containing a P-wave from an event whose
epicenter is located in one of the given K source regions. The last class is for windows that are
free of any P-wave arrival. The proposed method (UPC-UCV) is inspired by ConvNetQuake
[101], which addresses these problems with a supervised learning approach. ConvNetQuake
consists of a series of data preprocessing steps to convert the input waveforms into a set of
fixed-size windows and the application of a deep convolutional network to infer the best
class for a given window. ConvNetQuake was the first choice to perform detection over the
CARABOBO dataset.
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Data Preprocessing

Several data preprocessing steps are applied in order to obtain the training and evaluation
datasets. First, input streams with no data in any of the three channels are purged. Then,
each input stream is normalized (independently for each of the three channels), and if the
stream contains seismograms from multiple stations, it is divided into multiple 3-channel
streams. Because different events can be detected by a different set of seismic stations (in
different locations, a station is not always operative, etc.), processing single-station data
enables obtaining a more homogeneous and larger training dataset. Each 3-channel stream is
split into multiple 3-channel temporal windows of fixed size (window sizes in the range of
10-60 sec have been tested). With the event information obtained from the metadata files, the
windows are divided into K +1 classes (K classes for positive detection originating in one of
the given K source regions and one class for negative detection). These preprocessing steps
are identical to those performed by ConvNetQuake, with the exception that ConvNetQuake
only reports results with 10 sec windows. However, to improve the detection performance, the
proposed method incorporates some preprocessing improvements. Unlike ConvNetQuake,
which splits the input streams into non-overlapping windows, the proposed method applies a
sliding window approach so that the resulting windows partially overlap. Another difference
with respect to ConvNetQuake involves dataset balancing. ConvNetQuake works with
an extremely imbalanced dataset, but the proposed method balances the training data by
undersampling the negative data. Finally, unlike ConvNetQuake, bandpass filtering ([0.5, 10]
Hz) is applied to attenuate the noise. This preprocessing setup applied over the CARABOBO
dataset results in sixty thousand windows, 50% positive and 50% negative.

UPC-UCV network architecture

The proposed model is a deep convolutional network inspired by the one described in
[101] but enhanced to be able to work properly with the CARABOBO dataset. First, the
convolutional part of the network is flattened by enlarging the size of the convolutional
kernels (from 3 to 20) and reducing the number of convolutional layers to only 4 (from 8 in
ConvNetQuake). Greater robustness to noise and distortions is obtained by applying max
pooling after each convolutional layer. Second, two additional fully connected layers are
incorporated. All of these changes result in a significant increase in the number of trainable
parameters (to 70K, from 23K in ConvNetQuake) but not in the training time, as the depth of
the network becomes slightly reduced. Figure 4.1 shows the proposed network architecture.

The network takes a multiple-channel seismogram window as input and outputs K +1
detection probabilities. The first K values estimate whether the window contains a P-wave
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Fig. 4.1 Network architecture with a 3-channel input, 4 convolutional+max_pooling layers, 3
fully connected layers and a softmax layer.

triggered within one of the given source regions, and the last output is the probability that
the window does not contain any P-wave. The input and output of the network are the
same as those in ConvNetQuake, with the exceptions of the input window size (10 sec in
ConvNetQuake; 50 sec in the best configuration of UPC-UCV) and the value of K (6 for
the OKLAHOMA dataset targeted by ConvNetQuake; 5 and 3 for the CARABOBO dataset
targeted by UPC-UCV).

The input of the model is a window of, in the best configuration of UPC-UCV, 50 sec. As
the signal is sampled at 100 Hz, the window contains 5000 samples. Each sample presents
three values, one for each component (N-S, E-W, and up-down). This would result in a tensor
of shape [5000, 3] ([window size x sampling rate, number of channels]). However, in the
same way as in ConvNetQuake, UPC-UCV’s network works with an input tensor of [5000, 1,
3] ([window size x sampling rate, 1, number of channels]), a more convenient shape to feed a
ConvNet network, which is typically used to work with color images received as tensors with
shape [width, height, color channels]. Thus, from a conventional ConvNet point-of-view,
UPC-UCV’s input is like a just-one-row image with three color channels. Figure 4.1 attempts
to clarify this by showing the input tensor as a flat cuboid (while a color image would be a
normal 3D cuboid).

The network has four convolutional layers, each with an associated max pooling layer. All
of the layers have 32 convolutional kernels. Conventionally, the deeper layers of a ConvNet,
which work with higher-level features, contain fewer kernels than the first layers. However,
after testing different configurations, it was decided to retain the same configuration as in
ConvNetQuake for this aspect.

The convolutions are applied in 1D fashion (only through the temporal axis), but the
kernels are 2D to process the multiple input channels. Given a 2D kernel k of size s× c
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(width s over c channels) of a given layer l, the weight matrix W k,l ∈ IR2s+1×c is:

W (k,l) =
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−s,c
...

...
...
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0,c

...
...

...
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s,1 . . . W (k,l)

s,c


(4.1)

Empirically, the value of the s hyperparameter (size of the kernel) has been set to 20 (3
in ConvNetQuake). Thus, each convolutional kernel is a 20× c matrix, with c denoting the
number of output channels of the previous layer (3 for the first convolutional layer and 32
for the following ones). The 20×3 cuboids in figure 4.1 correspond to the convolutional
kernels of the first layer, i.e., to Equation 4.1 when l = 1, s = 20 and c = 3. Each kernel is
applied to all of the 20-size windows of the input tensor with a stride of 2 (the same as in
ConvNetQuake). For each of these windows, the discrete convolution of the input 2D tensor
Y with kernel W k,l at position t of the input tensor (the kernel only moves in 1D) is given by:

(Y ∗W k,l)t =
s

∑
u=−s

c

∑
v=1

W k,l
u,v ∗Yt+u,v (4.2)

The result of equation 4.2 is known as a convolved feature map. As each kernel is applied to
different windows of the input tensor (different values of t), many convolved feature maps are
obtained for each kernel (e.g., 2500 in the first convolutional layer). A bias and an activation
function are applied to each convolved feature map to provide nonlinearity and obtain the
final output of the layer (also known as a rectified feature map) at each position. The output
at position t of a convolutional layer l and kernel k is computed as:

Y (l)
k,t = σ(b(l)k +(Y (l−1) ∗W k,l)t ′) (4.3)

in which t ′ is the index of the input tensor. t ′ (t in Equation 4.2) depends not only on t but also
on the stride (2 in this case). σ(x) = max(0,x) is the nonlinear ReLU (rectified linear unit)
activation function, and b(l)k is the bias term for kernel k in layer l. After each convolutional
layer, we apply a max pooling layer with a pooling window of size 5 and stride 3.

After the last convolutional layer, the resulting 2D tensor is flattened into a 1D tensor.
This feature vector is then processed by three fully connected layers with ReLU activation
functions (10 neurons for the first ones and K +1 neurons for the last one). The size of the
last fully connected layer depends on the number of classes (two if only P-waves are being
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detected and K +1 if the source region where the P-wave originated is also being inferred
from K predefined regions). The outputs of the last fully connected layer, the so-called logits,
are raw prediction values with a range of [−in f inity,+in f inity]. To transform these values
into probabilities (range of [0,1], sum to one) a softmax function is applied. Each of the K
outputs of the network is the probability (a float value within the range of [0,1]) that the input
window contains a P-wave that originated in one of the K regions. One output of the network
contains the probability that the input window does not contain a P-wave. This is the same
output that is defined in ConvNetQuake.

The network is trained with 80% of the balanced dataset (48K windows), and the remain-
ing 20% (12K windows) is used for the evaluation.

4.1.4 Experiment

The main goal of the experiments is to evaluate the detection performance of the different
aspects (including the data preprocessing strategy and the network architecture) of the UPC-
UCV method. The source region estimation performance is also addressed, but a deeper
discussion about this aspect will take place in Section 4.2, focused this problem. All of
the reported results are obtained when evaluating each configuration over a test dataset of
previously unseen windows (20% of the dataset). The experiments were conducted on one of
the computing clusters of the Computer Architecture Department of the UPC. The cluster
is accessed through a Sun Grid Engine (SGE) batch-queuing system and comprises 200
heterogeneous nodes, the newest ones being equipped with 2x Intel Xeon E5-2630L v4
processors running at 2.20 GHz with 128 GB of RAM. The following table 4.1 gives an
overview of the configurations used.

Table 4.1 Experiment setup summary.

Dataset Pre-Processing Model Evaluation Software
Data Architecture Version

CARABOBO Normalize 3 channel ConvNet- Sun Grid Engine obspy 1.0.2
Under sampling Quake[101] 200 nodes Tensorflow 0.12.0
balancing UPC- Intel Xeon Python 2.7
Bandpass Filtering UCV[104] E5-2630L Seisbos
Dataset split:
- 80% training
- 20% evaluation

Before deciding the final configuration, different data preprocessing configurations (win-
dow size, frequency filtering, number of channels, etc.) and different network geometries and
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parametrizations were tested. Table 4.3 summarizes the impacts of the different preprocessing
choices on the performance. The obtained results confirm that all of the proposed modifica-
tions with respect to [101] exert a positive impact on the performance. The preprocessing
modification with the highest impact is the slicing of the input streams into highly overlapping
windows, which can be seen as a phase shifting-based data augmentation technique. The
usage of the three channels, which is mainly aimed at improving source region estimation,
exerts a small impact on the P-wave detection accuracy, as expected.

One important hyperparameter is the window size. Window sizes in the range of 10-60
sec have been tested. Figure 4.2 shows the impact of the window size on the detection
accuracy for both UPC-UCV and ConvNetQuake. It is interesting to observe how the optimal
window size differs between methods, with larger windows (approximately 50 sec) being
better for the proposed method.

Fig. 4.2 Impact of window size on accuracy for both the reference model (ConvNetQuake)
and the proposed model (UPC-UCV). Models are trained with the CARABOBO dataset.

Table 4.2 summarizes the results of UPC-UCV (with all the described preprocessing
and network architecture improvements) in comparison with the reference method, Con-
vNetQuake. While the goal of this work is to provide reliable detection and source region
estimation for the target region, its performance when trained and evaluated on the dataset
employed in [101] (the OKLAHOMA dataset) has also been assessed to study the applicabil-
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ity of the proposed network setup to different seismic data. Because the experiment is based
on an already preprocessed dataset, the test is limited to a configuration of 10 sec windows
without overlap. Although the UPC-UCV hyperparameters were not fine-tuned over this
dataset, it achieves a 98.21% detection accuracy, while ConvNetQuake reaches a similar
97.32% (balanced) accuracy.

Table 4.2 Final P-wave detection results.

Preprocessing Model Win. size Accuracy
ConvNetQuake ConvNetQuake 10 81.95%∗

ConvNetQuake ConvNetQuake 50 83.25%∗

UPC-UCV ConvNetQuake 10 89.63%
UPC-UCV ConvNetQuake 50 90.10%
UPC-UCV UPC-UCV 10 89.96%
UPC-UCV UPC-UCV 50 95.27%

Detection accuracy results for both the reference model (ConvNetQuake) and the proposed model (UPC-UCV) on the CARABOBO
dataset with two different window sizes (10 sec and 50 sec). ∗Accuracy values for the ConvNetQuake preprocessing are balanced
accuracies, as the dataset is imbalanced.

Figures 4.3 and 4.4 compare test cases with satisfactory and wrong P-wave detections.
Most of the false positives are windows shortly after the P-wave (out-of-phase detection).
When applied in a real setup, these false positives could be avoided by introducing an
exclusion window after the detection of the P-wave (if there is a true positive detection). In
the worst cases, out-of-phase detection implies a false negative followed by a false positive.
Irregular waveforms related to the heterogeneous characteristics and states of the sensors are
the other main source of detection errors.

Regarding source region estimation, the method obtains a 95.68% accuracy with 3
geographical clusters and a 93.36% accuracy with 5 geographical clusters. These results are
satisfactory considering that the source region is being estimated with the information of just
one seismic station. A more detailed description of the source region estimation experiments
will take place in Section 4.2, in which an alternative method will be proposed. Regarding
the computational efficiency of UPC-UCV during inference time, processing a window
(which happens every 10 sec of the input stream) takes an average of 4.4 milliseconds. Such
performance would enable our network to process a one hour stream in less than 2 seconds,
allowing an efficient real-time processing. This performance is very similar to that observed
for ConvNetQuake, which takes an average of 3.8 milliseconds to process each window.
Regarding the memory footprint, UPC-UCV (which has 70K parameters) occupies about
3.5 MB of memory during inference time. ConvNetQuake, which has only 23K parameters,
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Fig. 4.3 Example seismograms (only Z component for readability) with P-waves successfully
detected (true-positive windows are overlaid in green).
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Fig. 4.4 Example seismograms (only Z component for readability) with detection errors
(false positive in red and false negative in cyan).
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occupies about 3 MB, that represents a similar cost. Some of the overheads introduced by
TensorFlow are not actually proportional to the number of network parameters.

Table 4.3 Impact of different hyperparameters.

Overlapping Filtering [0.5, 10] Hz Components Accuracy
yes yes 3 95.27%
no yes 3 89.9%
yes no 3 92.48%
yes yes 1 94.11%

Impact of different hyperparameters on the detection accuracy of the proposed method on the CARABOBO dataset.

4.1.5 Conclusions

Results of the proposed UPC-UCV method, consisting of applying a convolutional neu-
ral network to single-station 3-channel waveforms for P-wave earthquake detection and
source region estimation in north-central Venezuela, have been reported. In addition, the
CARABOBO dataset of analyst-labeled P-wave arrivals, named after the studied seismic
region, has been built and made public for reproducibility and benchmarking purposes.
Both the UPC-UCV network and the CARABOBO dataset are the first developed for this
geographic region. This convolutional network is inspired by ConvNetQuake developed by
[101] but incorporates many improvements, both in the data preprocessing strategy and the
network architecture, to yield higher detection accuracy (13.3 percentage point increase) for
the new target seismicity. Regarding the preprocessing strategy, the main modifications are
the usage of larger and overlapping windows, the balancing of the dataset and the application
of a bandpass filter to input seismic signals. Regarding the network architecture, the main
enhancements are the flattening of the convolutional part (fewer layers with larger kernels),
max pooling and more fully connected layers. UPC-UCV achieves a 95.27% detection
accuracy over a subset of windows of the CARABOBO dataset that were never seen during
training, while ConvNetQuake obtains a 81.95% detection accuracy over the same subset.
Regarding source region estimation, UPC-UCV achieves a 95.68% accuracy with K = 3
geographic partitions, while ConvNetQuake obtains an 84.58% accuracy. In the case of K =

5 geographic partitions, UPC-UCV reaches a 93.36% accuracy, compared to ConvNetQuake
that yields an 82.08% accuracy. The dataset partitioning into K geographical clusters is
automatically performed by the k-means algorithm, and the optimality of these K values
has been assessed using the Elbow and the Silhouette methods. In addition, without any
modification, this network yields excellent detection results when trained and evaluated
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on the OKLAHOMA dataset, which corresponds to a totally different geographical region
(98.21% detection accuracy; ConvNetQuake, fine-tuned for this dataset, achieves a 97.32%
detection accuracy).
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4.2 Epicentral Region Estimation using Deep Neural Net-
works

4.2.1 Introduction

Reliable earthquake detection and location algorithms are needed to properly catalog and
analyze steadily growing seismic records. ANN have been employed in [74][101][120] and
[61] to study earthquake detection and location of seismics events.

One of the most important tasks of seismic source characterisation is the estimation
of epicentre location of event over a geographical area. Here, we study the application of
the method described in Section 4.1 to the earthquake source region estimation problem,
i.e. mapping positive events to geographical partitions of the study region. The proposed
method is essentially a signal window classifier. With only two classes/labels (P-wave or not
P-wave), the method behaves similar to a P-wave detector. Increasing the number of classes
and properly labeling the windows that contain a P-wave enable inference of properties about
the event that triggered the detected P-wave. One possibility, the one addressed in this work,
is attempting to determine the epicentral source region of the event. First, the study area is
partitioned into K geographic subdivisions. Second, the positive windows are labeled with
the identifier of the subdivision to which the event source location belongs. Third, a classifier
with K +1 classes is trained. The first step, geographic partitioning, can be performed in
many different ways, including manually.

The study region (see figure 4.5), characterized by shallow seismicity, includes the central
part of the Caribbean mountain system with important cities such as Caracas, Valencia and
Maracay. The magnitudes of the earthquakes range between 1.1 and 5.2 Mw (figure 4.6
shows the magnitude distribution of the events); P- and S- wave arrival times are reported
in the FUNVISIS catalogs [37] [38]. Most seismic events belong to a seismic swarm with
epicenters located within northwestern Valencia (Carabobo state). The seismicity of the
region is associated with the San Sebastián and La Victoria fault systems, along with some
minor faults such as the Las Trincheras and Morón faults, all of which are right lateral strike-
slip faults [11] [93]. The San Sebastián and La Victoria faults belong to the continental scale
Boconó - San Sebastián - El Pilar fault system along the interface between the Caribbean and
South American plates [10].

It is worthy of mentioning that the study region in figure 4.5 concentrates a large popu-
lation and a variety of big industries, and the human and industrial activities induce a high
level of seismic noise. Unfortunately, some of the seismic stations of the local FUNVISIS
network failed during the recording period of this study, and the seismic processing of the
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Fig. 4.5 Epicenters of seismic activity in the center-north region (67W - 69 W, 9.5N - 11.5N)
of Venezuela (circles), seismological stations (triangles), and active faults (red lines) compiled
by [15]; inset: relative location of the study area at the Caribbean-South American plate
interaction. The figure also shows the geographical partitioning (obtained with k-means and
K=5) of the events (yellow lines).
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Fig. 4.6 Magnitude distribution of the events.

recorded data was carried out by trained analysts assisted by STA/LTA detection software.
The combination of these facts leads to a detection deficiency of small events, and reflect
on the apparent scarcity of the seismic activity below 2 Mw, as depicted in figure 4.6. This
cumulative earthquake distribution does not follow a standard frequency magnitude relation,
such as the Gutenberg–Richter law. However, more elaborate earthquake detection proce-
dures could reveal several small events, allowing a future enrichment of the CARABOBO
dataset. This work is based on dividing the geographical distribution process as follows:

• Carry out an automatic distribution using automatic clustering algorithms.

• Use an approach associated with manual distribution provided by an expert seismologist
with Spatial Projection techniques.

4.2.2 Related Work

ANNs represent a suitable framework for earthquake detection and location due to their pro-
ficiency in complex pattern recognition. Since the mid-1990s, there has been a tremendous
amount of contributions that vary in terms of the underlying learning technique, network
architecture and functionality, and spatial extent of the documented application, among
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other distinct aspects. Early works based on supervised learning involve simple FFNNs,
which were followed by some scattered cases of RNNs, and we then find some recent ap-
plications of very deep CNNs. FFNNs for seismic phase detection have been proposed in
[25][26][34][109][110][123] and applied to local and regional earthquake data. In particu-
lar, the testing dataset used in [25] consists of slightly more than 850 local events, while
[123] employed over 1200 seismograms of the IRIS network for training and validation.
Alternatively, the FFNNs introduced in [102] make use of a dataset of P-wave signals from
193 teleseismic events recorded at 3 short period stations in central Finland. In [43], the
singular network IUANT2 presents a problem adaptive structure that is inferred during the
training process. This technique is used for phase picking by employing records of 342 local
earthquakes recorded by 23 different stations (approximately 5K traces). [113] implement an
RNN for real-time detection of small magnitude (below 2.5 Mw) earthquakes in populated
and noisy areas owing to an elaborate design of filter banks processing the STA/LTA ratios
of seismic waveforms. This process allows for the extraction of relevant frequencies from
input data, making this network less prone to false detection occurrences. The initial training
relies on 170 events, including regional and teleseismic earthquakes, and the full operating
network was tested during different time periods in 2009. Recent applications of RNNs to
early warning systems and to earthquake prediction are given in [18] and [53], respectively.

For locating the earthquake hypocenter, as part of the core information in seismic catalogs,
only a few scattered estimation approaches incorporating ANNs can be found. For instance,
ConvNetQuake maps hypocenters to a cluster of different geographical areas based on
a Voronoi partition. Alternatively, the detection CNN proposed by [60] is trained on an
earthquake swarm of 2000 events recorded by several local three-component stations. During
testing, this network locates approximately 900 earthquakes with standard deviations of
nearly 56 m, 124 m and 136 m along the east-west, north-south and vertical directions,
respectively. Lastly, the detection CNN introduced in [114] constructs a 3D probability
volume of location likelihood inside the Earth. This work employs the OKLAHOMA dataset
for training and evaluating the model, and reports an average error of 4.9 km in the epicenter
location estimation (1.0 km in the depth estimation).

4.2.3 Methodology

Data

As in Section 4.1, the experiments have been done over the CARABOBO dataset. It contains
data (signals in miniSEED format and metadata in Nordic format) collected among April
2018 and April 2019 through 5 seismological stations (BAUV, BENV, MAPV, TACV, and
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TURV) in northcentral Venezuela, specifically on the region between the coordinates 9.5°
to 11.5° N and 67.0° to 69.0° W. The earthquakes have a magnitude ranging from 1.7 to
5.2 Mw distributed over the region shown (see figure 4.7), whose epicenters are located
on the northcentral states of Carabobo, Aragua and Miranda. These zones contain a set of
interconnected faults such as: San Sebastián and La Victoria that make up an important
seismic area, belong to a continental scale, converging to a larger fault system called Boconó.
As well as El Pilar fault system that lies the Caribbean and South American plates.

Fig. 4.7 Geographical distribution of the Boconó, La Victoria and San Sebastián faults, and
locations of FUNVISIS stations.

Earthquake Source Region Estimation

Source region estimation is a relaxed version of the earthquake location problem that consists
on, first, partitioning a study area into k geographic subdivisions and, second, attempting to
determine to which one the earthquake epicenter belongs. Several works have demonstrated
the possibility to estimate the source region of an earthquake from a single-station 3-channel
waveform [101][102][104]. In this work, source region estimation is approached as a
multiclass classification problem. First, the wave is divided into three-channel temporal



60 Exploring Seismic Data with Deep Neural Networks.

windows of a fixed-size, and these windows will be classified into k+1 classes: one class for
windows not containing a P-wave (negatives) and k classes for windows containing a P-wave
(positives) but classified into the k geographic regions that we want to discriminate.

Partitioning the Study Area into Geographic subdivisions

In order to perform source region estimation, it is first necessary to partition the study area
into multiple geographic subdivisions and to define the membership criteria.

Our work had two approaches, in the first instance of this work, it is performed by
clustering all of the event locations in the dataset wit k-means [68] for different values of K
(see figure 4.5). The tested values of K are the optimal ones resulting from the application
of both the Elbow method and the Silhouette method. Figure 4.8 shows the results of both
methods for finding the appropriate number of source regions.

Fig. 4.8 Results of the methods for finding the appropriate number of source regions (clusters).
Elbow method (left), and Silhouette method (right).

On the other hand, we have developed an approach based on the geographical subdivision
that the FUNVISIS expert gave us (see figures 4.9 and 4.10), four different partitions were
obtained (k = 3, 4, 5, 10). All these delimited by irregular polygons covering the main
seismic faults of Venezuela, according to the following study [71].

Seismic hazard studies carried out north and central Venezuela by FUNVISIS analyze
the seismic activity in shallow seismogenic regions [50] [51]. These regions were defined
as polygons around each fault segment, which were chosen according to their tectonics and
degree of seismicity (see figure 4.10). At first, 10 regions were delimited, which were later
regrouped in new bigger regions with similar seismic-tectonic characteristics, leaving the
whole study area split into the 4 regions shown in figure 4.9.
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Fig. 4.9 Clustering the locations of all the earthquakes with fault-based geographic partition-
ing on 4 zones.

Fig. 4.10 Clustering the locations of all the earthquakes with fault-based geographic parti-
tioning on 10 zones.

Data Preprocessing

For the training of the model, a filtering is carried out first, purging the most dispersed events
over the study region in order to reduce overfitting.

Input waveforms are first normalized and divided into single-station streams. Each 3-
channel single-station stream is split into multiple 3-channel temporal windows of a fixed
size. With the events information obtained from the metadata files, we divide the windows
into k+1 classes: one class for windows not containing a P-wave(negatives) and k classes
for windows containing a P-wave(positives) but classified into the K geographic regions
that we want to discriminate. With a 50 sec./window our preprocessing stage yields 12,685
positives and 84,911 negatives. The classification of windows among the different K regions
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is done using clustering the locations of all the earthquakes with a fault-based geographic
partitioning provided by a seismologist.

Figures 4.9 and 4.10, we can observe the several segmentations granted by FUNVISIS
and the distribution of the events over the study region that will be used for the comparison
of the k-means clustering method.

Spatial Data Preprocessing

In the Carabobo dataset, each of its records contains coordinates that indicate the epicenter of
seismic events. To deal with this information is necessary to have a reference frame capable
of making sense of these data to view and manipulate them and thus feed the CNN model.
This reference frame is known as Coordinate Reference System (CRS) [54], classified in
Geographical Coordinate System (GCS) and Projected Coordinate System (PCS). Figure
4.11 shows the representation of a specific place on earth, on the left, we have its three-
dimensional visualization on the globe with a GCS, and on the right, the two-dimensional
projection of this same point projected in PCS.

Fig. 4.11 Types of coordination reference system.

The first is a reference framework that defines the locations of features on a model of the
earth. It’s shaped like a globe-spherical. Its units are angular, commonly degrees. It’s the best
for the location and visualization of elements, but distance measurements have a distortion
when using latitude and longitude due to the earth’s shape. The second is flat. It contains
a GCS, but it converts that GCS into a flat surface using a projection algorithm [54] and it
is excellent for performing calculations involving distance measurements over geographic
areas.
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For our dataset, we have selected the GCS called WGS84 to work with our initial data
and its corresponding PCR named Pseudo-Mercator, which is by de facto the standard for
web services such as Google Maps, Bing Maps, OpenStreet, among others. The coordinates
provided generate perimeters with undefined shapes, which in Spatial Data are known as
irregular polygons. In order to handle this information, it is necessary to create a JSON
(see listing 1) structure that could store an indeterminate number of points that formed these
polygons.

1 {
2 "cluster_type": "RCPoligons",
3 "clusters":[
4

5 {
6 "id": 1,
7 "label": "Zone_01",
8 "points": [
9 {"x": 10.41413, "y": -67.90393},

10 {"x": 10.42613, "y": -66.10873},
11 {"x": 10.39413, "y": -66.90323}]
12 },
13

14 {
15 "id": 2,
16 "label": "Zone_02",
17 "points": [
18 {"x": 10.71413, "y": -66.20393},
19 {"x": 10.62613, "y": -66.40873},
20 {"x": 10.79413, "y": -67.10323},
21 {"x": 10.22763, "y": -66.30822},
22 {"x": 10.11113, "y": -67.09223}]
23 },
24

25 ...
26 ]
27 }

Listing 1 JSON Structure

The JSON file contains a key called clusters, whose value is composed of a list of
elements that describe the n-regions of which the coordinates define each region’s perimeter.
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An essential section of the file is the points key, because here the coordinates that delimit the
boundary and shape of the area are stored; unlike other approaches here, there is no fixed
number of elements when forming the list.

For instance, the list 1 shows an irregular polygon is made up of 3 points while the second
zone is made up of 5. After defining the type of CRS and the JSON structure that stores the
shape of the polygons, we proceeded to use Computational Geometry techniques to assign
each of the events to a specific cluster and label it for use model training process. To this, we
face the Point in polygon (PIP) problem in which it is decided whether or not a point is in an
irregular polygon, described below:

Given a point R and a polygon P represented by n points: P0,P1, ...,Pn−1,Pn = P0, deter-
mine whether R is inside or outside the polygon P. When a line is drawn from R to other point
S that is wagered to extend outside the polygon. If this line RS crosses the edges ei = PiPi+1

of the polygon an odd number of times, the points is inside P, otherwise it is outside.
To carry out the PIP queries, we used Shapely’s binary predicates [45] that implement

these algorithms to assess the topological relationship between geographic objects. It is
based on the widely deployed Geometry Engine Open Source (GEOS), allowing work with
three main Point, Line String, and Polygons objects. These algorithms are used to determine
whether a seismic event falls within the perimeter of a given zone.

4.2.4 Experiment

This work’s main objective is to assess the effectiveness of source region estimation using a
geographic partitioning provided by an expert and determine the impact on the prediction’s
improvement using a PCR transformation, compared with the approach automatically gen-
erated with k-means as in [104]. The UPC-UVC network’s best configuration was taken
as a basis, considering the network’s parametrization and geometry to carry out this new
approach.

The experiments were performed on equipment provided by the Computer Architecture
Department of the UPC. The device had Intel(R) Core(TM) i7-3770 CPU running at 3.40GHz
and 8GB in RAM. With this configuration, the training process was carried out between 3 to
4 hours per model. An overview of the job configuration is shown in the table 4.4 below.

In the first instance, a set of experiments were performed to determine if Spatial-Data
techniques within the pre-processing of the training data increased the accuracy of the model
prediction results. The data in the Table 4.5 describe the experiment; in the first column, we
partition the study area into k regions; in the second column, we have the experiment’s result
without using a pre-processing, taking by default a GCS as in the works [77][104]. In the
last column, we have the effect after transforming the original data and converting them into
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Table 4.4 Experiment setup summary.

Dataset Pre-Processing Model Evaluation Software
Data Architecture Version

CARABOBO Normalize 3 channel ConvNet- Intel(R) obspy 1.0.2
Under sampling Quake[101] Core(TM) Tensorflow 0.12.0
balancing UPC- i7-3770 Python 2.7
Bandpass Filtering UCV[104] CPU 3.40GHz Seisbos
Dataset split: UPC-UCV- 8GB RAM
- 80% training GEO[24]
- 20% evaluation

a PCS. As shown in the table, the post-transformation result obtains an accuracy higher than
90% in each of the cases.

Table 4.5 Forecasting impact of source region estimation based on Coordinate Reference
System

K Zones Accuracy GCS Accuracy PCS
4 86.52% 95.43%

10 87.72% 91.78%
16 88.93% 91.43%

Table 4.6 summarizes the results of UPC-UCV-GEO obtained using spatial data pre-
procesing. The results of ConvNetQuake and UPC-UVC are provided for comparison. For a
small number of geographic subdivisions (3-5), the obtained results don’t enable to confirm
the target hypothesis. The partitioning into 4 regions recommended by the expert (UPC-
UCV-GEO with K=4) provided an accuracy of 95.43%, just slightly above than the results
for a k-means based partitioning (UPC-UCV) with K=5 (93.36%) and slightly below than
the results for a k-means based partitioning (UPC-UCV) with K=3 (95.68%). However,
the hypothesis seems to be confirmed for a more fine-grained partitioning (K=10), as UPC-
UCV-GEO obtains an accuracy of 91.43% while the accuracy of UPC-UCV degradates to
66.10%.

4.2.5 Conclusions

In this work, we have evaluated the hypothesis that the accuracy of methods (such as [101]
and [104]) for the automated estimation of the epicentral source region of a seismic event is
increased if the geographical partitioning is performed considering the regional geophysical
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Table 4.6 Source region estimation results

K Zones Model Accuracy

3
ConvNetQuake 84.58%

UPC-UCV 95.68%
4 UPC-UCV-GEO 95.43%

5
ConvNetQuake 82.08%

UPC-UCV 93.36%

10
UPC-UCV-GEO 91.78%

UPC-UCV 66.10%

characteristics. The UPC-UCV-GEO deep convolutional neural network is applied over the
CARABOBO dataset, consisting of three-channel seismic waveforms recorded in north-
central Venezuela from April 2018 to April 2019. Instead of partitioning the data with
K-means, we have applied several geographical tessellations provided by seismologists from
the study area.

While the obtained results for a small number of geographic subdivisions are not better
than the ones obtained with k-means clustering, the good results obtained with a large number
of subdivisions (91.78% with K=10) outperform the k-means approach (66.10%). It should be
noted that to obtain these results, the use of spatial-based techniques significantly improved
the final model. This confirms the target hypothesis that the source region estimation
accuracy is significantly increased if the geographical partitioning is performed considering
the regional geophysical characteristics such as the tectonic plate boundaries.
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In the last decades, we have seen an explosion of data in the world due to the digital
revolution and the massive use of technological tools by persons and companies such as
social networks, mobile devices, geo-location, and all kinds of sensors connected to the
network. In the same way, the growing increase in computing power and storage has led to
deep learning algorithms to become very relevant. In this thesis, novel deep learning methods
were developed to leverage these growing computational and data resources. We focused on
two main research directions, a strategy for executing distributed deep learning workloads
over an HPC infrastructure and the application of deep neural networks to approach the
earthquake detection and source region estimation problem.

Regarding the first part of this work, a technology based on Apache Spark was used to
distribute deep learning workloads on a real-world, petascale, HPC setup, the MareNostrum
supercomputer. Different workloads and deployment setups (number of nodes, parallelism
configuration, etc.) were tested to evaluate the performance and scalability of the proposed
software stack. Insights into how the job configuration on a traditional HPC setup can be
optimized to efficiently run this kind of workloads were provided. The deployment was also
tested in a use case study that analyzed the usage CNNs to curate and filter user-generated
content for digital marketing tasks. We conclude that relying on Apache Spark to deploy deep
learning workloads over a traditional HPC setup is feasible, minimizing deployment costs
and enabling a systematic tuning of the different configuration parameters at the application
level and infrastructure level. Nonetheless, the effective scaling is strongly limited by the
synchronous parallelism approach applied by the 1.5 DL4J version. The derived conclusions
should be useful to guide similarly complex deployments in the future. Future research
could explore ways to overcome the identified limitations, such as replacing the synchronous
mechanism by a hybrid approach in which synchronization just takes place within fixed-size
node sets.

Regarding the second part of this work, a novel method, based on the usage of deep neural
networks, for earthquake P-wave detection and source region was developed and evaluated.
Models with hundreds of different parametrizations were trained in parallel on a medium-size
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cluster of commodity servers. The method, called UPC-UCV, consists of applying a convolu-
tional neural network to single-station 3-channel waveforms. It was applied to data recorded
by the broadband stations of the Venezuelan Foundation for Seismological Research in the
region of 9.5°–11.5°N and 67.0°–69.0°W during the time period from April 2018 to April
2019. A dataset, named CARABOBO, was also built and made public for reproducibility
and benchmarking purposes. The method improves the detection accuracy of the state-of-
the-art method ConvNetQuake by almost 10%. Regarding source region estimation, a novel
approach consisting on using geographical tessellations provided by seismologists from the
study area was compared to the state-of-the-art approach of geographically partitioning the
data with k-means clustering. While the obtained results for a small number of geographic
subdivisions are not better than the ones obtained with k-means, the results obtained with a
large number of subdivisions (91.78% region estimation accuracy with K=10) outperform
the k-means approach (66.10%). This confirms the target hypothesis that the source region
estimation accuracy is significantly increased if the geographical partitioning is performed
considering the regional geophysical characteristics such as the tectonic plate boundaries.

Several DL models have been developed to tackle the problem of earthquake recognition
and the location of the epicentral region when processing seismic archives. These models are
ranked according to their detection efficacy to propose optimal configurations that can be later
applied to new datasets. This ranking and analysis serve to identify the best NN architecture
and hyperparameterization for a given seismic dataset. The results are more general than
Hyperband, which is only capable of parameter tuning for a given NN architecture. Future
studies could investigate the possibility of applying the proposed method to the problem of
S-wave detection on the CARABOBO dataset. Furthermore, future research should certainly
study the application of the latest advances in deep learning (e.g. transformers, autoregressive
models, diffusion models, etc.) to fundamental problems in seismology.
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ILSVRC ImageNet Large Scale Visual Recognition Challenge. 27

JNI Java Native Interface. 18

JVM Java Virtual Machine. 18

KNL Knights Landing. 16

LTA Long-time average. 42

MLP Multilayer Perceptrons. 6

NGR New generic recognition. 34

NN Neural Networks. 1

PCS Projected Coordinate System. 62

PIP Point in polygon. 64

RBF Radial basis function. 34

RDD Resilient Distributed Dataset. 19

RNNs recurrent neural networks. 17

SGD Stochastic Gradient Descent. 11

SGE Sun Grid Engine. 48

SNR Signal-to-noise ratios. 41

STA Short-time average. 42

SVM Support vector machine. 34

UGC user-generated content. 26

VBI Visual brand identity. 31
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