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Abstract

A great deal is known about second-order statistics. For many years, most of signal processing
problems have been addressed under the perspective of first and second-order moments of the
data, known to be optimal under normal conditions. Nowadays data grow in complexity, ren-
dering the second-order approach insufficient. To cope with this, descriptors of data that come
from the field of information theory have been utilized in recent years as a substitute for clas-
sical second-order methods. Divergence, entropy, and information are the basis of information-
theoretic methods, endowed with the capability of discovering the intricacies of underlying dis-
tributions. However, the estimation and utilization of information measures have also proven to
be a difficult task, due to their nonlinear nature and the difficulty of estimating a density function.

Meanwhile, the field of machine learning has also advanced toward the analysis of data in a
nonlinear fashion. Kernel methods are a primer example of this, procuring an apparently simple
way of dealing with nonlinearities, called the kernel “trick”, but concealing a mathematically rig-
orous background that strengthens the method. A kernel performs linear operations in a possibly
infinite-dimensional feature space without the requirement of explicitly operating in such space.
Thanks to this, kernels have the potential to define nonparametric methods that may be unfeasible
to address otherwise. This approach has been used to deal with the aforementioned information-
theoretical measures, whose nonlinearity is easily manageable in the feature space. However,
their strengths also become their disadvantages. To operate in an unvisited feature space is to
lack interpretability. To operate in a high-dimensional feature space is an ingredient for sparsity,
requiring a blind regularization. Furthermore, their data-driven approach often comes at the cost
of a computational complexity that grows exponentially with the data size.

This dissertation deals with the analysis of complex phenomena embedded in large amounts
of data by leveraging well-known second-order statistics tools. This task is performed from two
different points of view. In the first part, and following a similar rationale to kernel methods,
this dissertation develops a framework that is capable of dealing with nonlinearities in a linear
fashion. To do so, the data is mapped into a feature space of higher dimensionality than the data
space. However, this feature space is neither infinite-dimensional nor unknown, gaining not only
in interpretability but also scalability for its use on large data sets. Correlation and covariance
are measured in the feature space with the purpose of estimating measures of information, which
constitutes the primary motivation of the mapping. While regularization is still needed in the
proposed approach, a consequence of increasing the intrinsic dimensionality of the problem, the
deterministic feature space allows the characterization of an appropriate regularization, which
ends up exhibiting a strong duality with classical spectral estimation techniques.

The second part of the dissertation focuses on the use of information measures in problems
that are typically solved through second-order statistics. Specifically, entropy is an uncertainty
measure that provides better granularity of the underlying distribution than the variance. Entropy
does not only retain the information of first and second-order statistics but also of higher-order
statistics. The resulting methods gain in robustness, and at the same time, the information pro-
vided by the variance is still discerned in the entropy-based approach. A specific entropy estima-
tor that derives into kernel methods is used for this task thanks to its relationship with U-statistics,
which have the advantage of an asymptotic tendency to the sample variance. Consequently, the
framework is again rotated, providing a unified rationale of information and second-order statis-
tics.
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Resum

Les estadístiques de segon ordre són una eina àmpliament coneguda i utilitzada gràcies al fet
que les tècniques de processament de senyal clàssiques basades en aquestes són òptimes sota
l’assumpció de Gaussianitat. No obstant això, avui dia el processat requereix tractar amb dades
d’una complexitat incrementada, deixant obsoleta la formulació amb estadístiques de segon or-
dre. Últimament, ha crescut l’interès en la utilització de descriptors de dades que provenen del
camp de la teoria de la informació, en substitució del primer i segon ordre. La divergència, l’en-
tropia i la informació són la base d’aquest altre enfocament, dotats amb la capacitat de descobrir
la riquesa de la distribució subjacent. Així i tot, la seva inherent no-linealitat i una estimació
enrevessada dificulta la utilització d’aquestes mesures en la majoria dels casos.

Paral·lelament, el camp de l’aprenentatge automàtic també ha avançat en l’anàlisi no lineal de
dades. Per exemple, els mètodes de nucli (“kernel”) ofereixen una manera que és, aparentment,
senzilla de tractar les no-linealitats. Aquest s’anomena el “truc” del nucli, però que amaga un
fons matemàtic molt rigorós. Aquests nuclis permeten efectuar operacions lineals una vegada
les dades són traslladades a un espai de característiques d’alta dimensió, però sense la necessitat
d’explícitament operar en aquest espai. Gràcies a això, aquests tenen el potencial de ser utilitzats
en mètodes no paramètrics que d’altra manera podrien esdevenir inviables, com per exemple
l’estimació de les mesures esmentades anteriorment. Aquest plantejament, però, té també els
seus problemes. Ja que l’espai de característiques no es visita, l’operació lineal es fa cegament.
També són propicis a requerir una regularització, donat l’augment de dimensionalitat, la qual s’ha
de fer, altre cop, cegament. I, a més, solen comportar una complexitat computacional elevada,
car creixen exponencialment amb el nombre de dades.

Aquesta tesi desenvolupa les dues idees anteriors i les ajunta en un sol marc de treball per a
l’anàlisi de fenòmens complexos presents en les dades, aprofitant també les estadístiques de segon
ordre i el seu llarg recorregut en aquesta àrea de coneixement. Per a tal, ho analitzem de dues
formes diferents. En primera instància, busquem una manera de tractar amb les no-linealitats de
les dades de forma lineal, similar a com ho fan els mètodes de nucli, però limitant la dimensió de
l’espai de característiques per tal de guanyar en ambdues interpretacions i complexitat computa-
cional. Per a obtenir el millor dels dos mons, la dimensió és major a la de les dades, però menor
que en mètodes de nucli. És llavors en aquest espai on calculem correlació i covariància, i ho
traslladem a mesures d’informació. Si bé la regularització es manté necessària donat l’increment
en la dimensió del problema, el fet que coneixem l’espai de característiques ens permet analitzar
el procediment i proposar una regularització adequada, la qual acaba mostrant una forta connexió
amb tècniques clàssiques d’estimació espectral.

La segona part de la tesi es centra en l’aplicació d’aquestes mesures d’informació, però en
problemes que normalment es resolen amb la utilització de tècniques de segon ordre. En concret,
utilitzem l’entropia, una mesura d’incertesa, per tal d’avaluar les propietats d’una funció de den-
sitat de probabilitat que no pas la variància, ja que aquesta no només depèn de les estadístiques
de primer i segon ordre, sinó també d’estadístiques d’ordre superior. Els mètodes que fan servir
aquest plantejament guanyen en robustesa quan les dades no són Gaussianes, però sense perdre
de vista la seva relació intrínseca amb la variància. Per a tal, fem ús d’un estimador concret
que, mentre prové de mètodes de nucli, és una estadística no esbiaixada i manté una forta relació
amb el moment de segon ordre. Amb això, l’anàlisi dona la volta sobre si mateix i permet el
desenvolupament d’un plantejament comú entre informació i estadístiques de segon ordre.
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NVar {â} Normalized Var, defined as Ep

{
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Chapter 1

Introduction

Information is, for those who are familiar with information theory, a measurable concept, a mathe-
matical descriptor of the randomness of the source of such information. Claude E. Shannon lever-
aged this notion into the definition of entropy and Mutual Information (MI) [Sha48]. With them, he
established the basis of the fundamental limits in data compression and data transmission [CT06;
Gra11]. However, Shannon did not provide a unique definition for information. In fact, a proper
definition of information is still nowadays a subject of discussion (see, for instance, [Pop17] Section
1.1). Inspired by the laws of thermodynamics, Shannon referred to information as the reduction
of uncertainty, and, as such, deeply tied to Von Neumann’s entropy [Von18]. Before that, the def-
inition of information was discussed by Ralph Hartley [Har28], who referred to information as a
“very elastic” term, discussing whether information carries a connotation of physiological or phys-
ical factors. In the end, Hartley determined that information is something that can be quantified,
and, therefore, compared between two communication systems. Some years after, Alfred Rényi
elucidated two main categories of information: axiomatic and pragmatic. Axiomatic refers to the
definition that arises from a set of postulates that information must follow, as Shannon did in his
seminal work. Pragmatic, on the other hand, is the definition more aligned with Hartley’s. From
the words of Rényi [Rén65]: “This approach starts from certain particular problems of informa-
tion theory and accepts as measures of the amount of information the quantities which present
themselves in the solution. According to this point of view the real justification of some measure of
information is that it does work.”. In other words, a measure of information is something that adds
value to a problem, a quantity that is perceived for the purpose of assessing the information source,
whatever that source may be, and it is the definition with which this dissertation is concerned.

From the pragmatic point of view, information gauges a variety of attributes of random vari-
ables and probability distributions. Entropy measures uncertainty, MI measures dependence (or
independence), and more generally, the KullbackLeibler (KL) divergence (or relative entropy),
measures discrimination [KL51]. In the last decades there has been an uprising interest on trans-
lating these measures of information to other fields beyond communications with the objective of
characterizing the output of a signal or a system. The motivation behind this new paradigm is
driven by the increasing nonlinearity of data models. As data grows in complexity, linear models
may not hold in practice, and the classical approach of second-order statistics becomes skewed.
In this framework, entropy and MI have been used to substitute, or to work in tandem, with the
conventional statistical tools of variance and covariance. Thanks to their capability of grasping the
intricacies of the underlying model, these measures are sought as more reliable descriptors of data.
As a result, some researchers have used these measures in multiple different areas, such as data
science, machine learning, neuroscience, economics, biology, language, and other experimental
sciences (see [CT06; WKV09] and references therein).

A prominent example that benefits from this approach is the area of Information-Theoretic
Learning (ITL), a term coined by Príncipe [Prí10; Erd02], which cuts across signal processing and
machine learning by reviewing the learning process under the umbrella of information theory. In
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its core, ITL is concerned about employing information measures to improve the performance of
adaptive systems. For example, a minimum error entropy criterion gains in robustness in front of
the Mean Squared Error (MSE) for the identification of nonlinear dynamical systems [EP02], re-
gression analysis [Hu+13], or data classification [SSA10]. In these cases, the advantage of entropy
arises when the Gaussian assumption does not hold in practice, acknowledging that an information
measure captures information beyond the mean and variance. As a result, information measures
give an edge for more convoluted distributions, long tails, or faulty observations/outliers [HH18].
Nonetheless, this information-theoretic approach can be encountered in the classic signal process-
ing literature. For example, it is devised in the Independent Component Analysis (ICA) method
[NK11; Pha04], where MI is used to recede from Gaussianity, or in model-order selection prob-
lems [WK85; SS04], which employ the KL divergence for determining the discrepancy between
the data and the modelled distribution.

One of the most challenging aspects of information-theoretic methods is to procure an accurate,
if possible low complex, information estimation. These algorithms are required for the analysis of
systems or data and posterior enhancement of a given application. Plug-in methods have been
traditionally used for this purpose, which are based on estimating first the distributions of the ob-
served data, and to measure the functional of interest in a second stage [MRL95; Par62]. However,
these methods are generally susceptible to estimation errors when dealing with random variables
with long tails in their distributions, and their rate of convergence may be too slow for real world
case scenarios [HM93]. Other estimation approaches have been proposed, which surpass the ca-
pabilities of the base plug-in approach, although they are also, generally speaking, derivatives of
plug-in estimates [WKV09; DV99; KSG04; BT11]. As a matter of fact, one of the key aspects for
the proficiency of ITL is that most of its literature employs surrogates of Shannon’s information
measures. Generally speaking, the Rényi information measures are considered [Rén61; Rén65],
which generalize the notion of Shannon’s measures (and KL divergence in some cases) as the limit
case of their additional parameter α, usually referred to as the entropic index. These surrogates
have the advantage of being well-known in the field of information theory, where they have been
characterized, discussed, and applied to many different problems [Csi95; Csi08; Ver15; EH14;
BR78]. Sometimes, these surrogates are sufficient from an information-theoretic standpoint. The
advantage and motivation for their use outside of information theory is that these surrogates may
become “easier” to estimate [LPS08; PPS10; OUE08; Kim18; Sar16]. For instance, it has been
shown that and estimate of Rényi’s entropy converges faster than its Shannon counterpart [Ach+16],
at least for discrete sources, and the case of α = 2 (or second-order Rényi entropy) is shown to
cope specifically well with the plug-in estimate, to the point that it can be written in closed-form
expression [AH84; Joe89]. This last property is given thanks to the particular expression of the
second-order Rényi entropy, which is a function of the L2-norm of the probability function and
resembles a second-order moment.

Another remarkable trend in the literature to deal with nonlinearities is the use of kernel meth-
ods. A kernel is a function that implicitly measures an inner product in an unvisited feature space,
endowed with a solid mathematical background by the hands of James Mercer and Nachman Aron-
szajn [Mer09; Aro50]. Its characteristic mechanism is to map the data in a feature space of allegedly
infinite dimension, conduct some linear operator, and return with just the result of such operation.
Their approach is data-driven and universal, meaning that no model is assumed, and it is the data
that leads to the appropriate solution. Thanks to the increase in the dimension with respect to the
data space, it is usually stated that the problem can be solved in a linear fashion, either for clas-
sification following Covers’ theorem [Cov65] or in regression problems. Its apparent simplicity,
yet being a powerful tool, has made kernel methods a very appealing framework, being imple-
mented for feature extraction and pattern recognition problems [SSM98; CS00; BJ02], in signal
processing problems [Roj+18; PB04], communications theory [Din+13; Sav+15], information the-
ory [Bac22], or ITL itself [Xu+08], among many others. For that matter, the use of kernel methods
is not a stranger to the measure of information. The linearization in the feature space is also em-
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ployed to measure information by means of covariance or correlation operators [SS00; Gre+05b;
SSB+02]. The covariance and correlation operators in the feature space spanned by kernel methods
can be seen, in fact, as a generalization of the selfsame operators in the Euclidean space [Mua+17].
Therefore, kernel methods provide a very interesting approach to the measure of information based
on second-order statistics tools. As the methods that derive from measures of covariance and cor-
relation are well-known, we found here an opportunity to strengthen both worlds by providing a
unified approach. However, kernel methods are not without some caveats. Their mapping into a
higher feature space is prone to sparsity in such space, driving a collection of problems for reg-
ularization of a space that is not visited. Furthermore, kernel methods do not learn nor question
the required mapping dimension, since it is “let to decide” by the kernel. The result is that kernels
tend to overshoot the minimum required problem dimension. This also translates as increasing
the computational complexity, since the only other dimensionality left is the data, rendering the
approach prohibitive for large data sets, and defying the sole purpose of procuring a data-driven
approach. In fact, a lot of research has been conducted in an attempt to decrease the complexity of
kernel methods. [RR07; Lim+15; LP20].

This dissertation tackles both the use of information measures to solve certain problems that
are classically approached with second-order statistics, and the measurement of such information
through covariance and correlation operators on a high-dimensional feature space. In essence, the
objective is to provide a unified view of the intersection between information and second-order
statistics. To perform such action, it is clear that some method of linearization is required, akin to
kernel methods. However, while kernel methods are capable of solving very complex problems,
they are also incapable of explaining the required process for learning or decision-making. This
thesis opposes this point of view by going into detail on how data is processed, what is required
for linearizing a nonlinear problem, and how information is measured. Afterwards, how to employ
this knowledge to solve a problem with an information-theoretic perspective is also discussed.

1.1 Objectives

Following the overview of the information-theoretic philosophy, literature and methods, we then
proceed to allocate this dissertation to a concrete framework with clear and detailed objectives.
Generally speaking, we can divide the contents and associated philosophy of this work in two dif-
ferent topics. The first one is concerned about developing insightful tools for measuring meaningful
indicators of the amount of information contained in raw data. The second topic addresses the use
of information for the problem of parameter estimation. Regarding the first topic, the following are
the primary focus with which the information estimators are derived:

• Interpretability: In machine learning, this term refers to the understanding of the learn-
ing or decision process, which has gained relevance in contemporary practical applications
[Eld+17]. The framework and methods developed in this dissertation are based on an explicit
feature map, given by the characteristic function, instead of an implicit one. By controlling
the mapping itself, we gain insight, which can then be exploited to improve the estimation
process itself.

• Scalability: Another relevant objective is to develop an estimation procedure whose com-
putational complexity has an appropriate growth with the data size. This is partially done
thanks to the explicit feature map, which allows focusing on the dimension of the feature
space. By governing the dimensionality of the problem, we can provide a trade-off between
complexity and accuracy, which is complemented by the interpretability of the problem.

• Universality: A particular emphasis is given to making the estimation procedure universal,
that is, that the algorithm converges to the measure being estimated without any knowledge
of the underlying probability distributions. Therefore, the proposed approach is data-driven,
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which implies that it makes decisions only based on the data observations, and a nonpara-
metric estimate, i.e. it is distribution-free.

• Second-order approach: Finally, our main interest relies on the use of well-known tech-
niques in classical signal processing problems. To be specific, we will leverage the Principal
Component Analysis (PCA) and the Canonical Correlation Analysis (CCA) techniques for
the estimation of information measures. This can be done thanks to characteristic function
mapping, which links independence and uncorrelation. Due to this property, the method
for estimating information with second-order statistics in the feature space arises naturally,
providing an alternative path to kernel methods, which is similar but different in nature.

As a general remark, the interpretability, scalability, and universality of the approach can all be
associated with the use of the characteristic function as a mapping and the posterior use of second-
order statistics. On the one hand, it is a well-known tool in the field of probability theory with clear
operational meaning. It can be shown that the covariance and correlation operators in the charac-
teristic function space are fundamentally related to the same operators for the associated random
variables. Furthermore, the regularization technique in this space will be strongly related to the
contamination of sources with additive noise. As the contamination is deliberately introduced to
regularize the problem, its distribution is known and its consequences to the characteristic function
are measurable. On the other hand, the reduction of dimensionality will be provided by sampling
the characteristic function. Thanks to this, the problem of estimating information is related to the
estimation of covariance and correlation matrices, which is known to be consistent for a wide range
of distributions, as well as the empiric estimate of the characteristic function. The proposed map-
ping and regularization with contamination help to the universality and scalability of the problem
by controlling the overall characteristic function shape, admitting any kind of distribution.

The second topic, the information-theoretic approach to concrete problems, is more focused
on the given applications at hand. Nevertheless, there is a general philosophy that accompanies
how these problems are approached. In this sense, the objective is to contribute with a broad
entropy-based viewpoint to some parameter estimation problem. The concrete objectives are the
information-theoretic estimation of the variance of a random scalar sequence, the coherence of
a random vector sequence, and the Signal-to-Noise Ratio (SNR) in a linearly modulated digital
communications channel. The chosen information measure surrogate to perform such tasks is the
Rényi entropy (with the entropic index equal to 2), which provides more granularity than the low-
order moments. An accurate evaluation of the employed entropy estimator is provided. While still
intrinsically under the kernel method standpoint, it is a particular formulation of kernel methods
that yields an explicit feature map, contributing to the interpretability of the problem. Given that it
is a kernel method, regularization is still required, although the overall effect of this regularization
on the final estimate is known. Moreover, the entropy estimate is asymptotically related to the
sample variance estimator, thus giving a joint vision to the topic of this dissertation.

1.2 Thesis outline and contributions

To end this chapter, the contents of the dissertation are elaborated, jointly with a list of the different
research contributions for each of them. As mentioned above, most of the results that derive from
this dissertation can be divided in two branches, where each one studies a different perspective of
the relationship between information and second-order statistics. In the sequel, a brief explanation
of every chapter is given:

• Chapter 2 provides a general review of measures of information that are relevant to the con-
tents of this thesis. Both linear-based (correlation and covariance) and nonlinear (information-
theoretic) measures are addressed. The first will serve as the main second-order statistics
methods on which the posterior framework is based, and the latter focuses on determining
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the appropriate information-theoretic surrogates for the purpose of estimation. While this
chapter is generally composed of background concepts, it also provides a fresh and novel
view of the difference between some surrogates of measures of information.

• Chapter 3 unveils the relationship between kernel methods and some of the information-
theoretical measures addressed in Chapter 2. First, the theory of reproducing kernel Hilbert
spaces is concisely reviewed, and then some methods that take advantage of it are unravelled.
All of the presented kernel methods are based on measuring covariance and correlation in
the infinite-dimensional feature space, hence they are employed as a point of comparison
for the method developed in the following chapter. Moreover, this chapter also deals with
a specific entropy surrogate estimator that will be used in future derivations. Although this
estimator is derived from the family of plug-in estimators, it is intrinsically related to kernel
methods, and it possesses some properties that will be exploited in Chapter 5.

• Chapter 4 develops the framework for the estimation of information measures in a finite-
dimensional feature space, in contrast with kernel methods. On a first stage, the mapping is
determined for discrete sources, emphasizing its implications. Then, the insights gained in
the discrete case are employed for the continuous case. Numerical results are provided for
the latter, focusing on the choice of the new hyper-parameters and the derived estimators are
compared with existing methods in the literature. This chapter spans the first branch of the
thesis, where information measures capitalize on the use of second-order statistics.

The technical works comprised in this chapter are:

� F. de Cabrera and J. Riba. “A novel formulation of Independence Detection based on
the Sample Characteristic Function”. In: 26th European Signal Processing Conference
(EUSIPCO), Rome, Italy, 2018.

� F. de Cabrera and J. Riba. “Squared-Loss Mutual Information via High-Dimension Co-
herence Matrix Estimation”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brighton, UK, 2019.

� F. de Cabrera and J. Riba. “Regularized Estimation of Information via Canonical Cor-
relation Analysis on a Finite-Dimensional Feature Space”. In: IEEE Transactions on
Information Theory, Early Access, DOI: 10.1109/TIT.2023.3258182.

• Chapter 5 tackles three different problems: the estimation of the determinant of a covari-
ance matrix, the estimation of the magnitude-squared coherence, and the estimation of the
SNR. All three applications share the same backbone by employing the entropy estimator
addressed in Chapter 3. Thanks to the use of entropy, the estimators gain robustness in front
of the lack of optimal conditions, whether they are faulty observations or a mismatch of the
parameters of the channel. The chapter begins by analyzing the behaviour of the entropy
estimator and then assesses the performances of the entropy-based applications separately.
This chapter considers the second branch, where an information-theoretic measure is em-
ployed in exchange for second-order statistics.

The technical works comprised in this chapter are:

� F. de Cabrera, J. Riba and G. Vázquez. “Entropy-based covariance determinant es-
timation”. In: IEEE 18th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Sapporo, Japan, 2017.

� F. de Cabrera, J. Riba and G. Vázquez. “Robust estimation of the magnitude squared
coherence based on kernel signal processing”. In: 51st Asilomar Conference on Sig-
nals, Systems, and Computers, Pacific Grove, CA, USA, 2017.
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� F. de Cabrera and J. Riba. “Entropy-Based Non-Data-Aided SNR Estimation”. In:
53rd Asilomar Conference on Signals, Systems, and Computers , Pacific Grove, CA,
USA, 2019.

• Chapter 6 concludes the dissertation by outlining the contents and contributions of the the-
sis, as well as reflecting on possible future lines of research with the scope of expanding and
enhancing the present work.

Other contributions: The following publications are related to some contents in this thesis.
These are inside the general framework discussed here, albeit they are not part of the specific
rationale of each chapter. Observations based on the relationship of these publications with the core
contents of the thesis will be pointed out when necessary, thus widening the network of connections
with the works done by the author.

� J. Riba and F. de Cabrera. “A Proof of de Bruijn Identity based on Generalized Price’s
Theorem”. In: IEEE International Symposium on Information Theory (ISIT), Paris, France,
2019.

� C. A. López, F. de Cabrera and J. Riba. “Estimation of Information in Parallel Gaussian
Channels via Model Order Selection”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020.

The author has also contributed in:

� J. Riba, F. de Cabrera and J.M. Juan. “Multi-Satellite Cycle-Slip Detection and Exclusion
Using the Noise Subspace of Residual Dynamics.” In: 26th European Signal Processing
Conference (EUSIPCO), Rome, Italy, 2018.

� A. Martí, J. Portell, D. Amblas, F. de Cabrera, M. Vilà, J. Riba, G. Mitchell, “Compres-
sion of Multibeam Echosounders Bathymetry and Water Column Data”. In Remote Sensing,
14(9):2063, 2022.
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Chapter 2

A review of information measures

A fundamental task in this dissertation is to determine what information-theoretic measures are
covered. There are many surrogates of the fundamental measures, which are Shannon’s entropy,
KL divergence, and mutual information, that coexist and provide different viewing angles to ran-
domness, dissimilarity, and dependence, respectively. For instance, a generalization of the KL
divergence [KL51] is the class of f -divergences, which, at the same time, include multiple other
definitions, each one with its own set of properties and applications [LV06; EH14]. Shannon’s
entropy shares an identical situation, where it is usually generalized by the Rényi [Rén61] or the
Tsallis entropies [Tsa88], and so on. However, not all these measures are equally suitable for the
objective of this thesis. This chapter addresses the derivation and choice of the appropriate surro-
gates that may be more amicable with the data. Specifically, we sought those surrogates that have
some kind of relationship with second-order statistics, since those are the ones that are, in princi-
ple, able to be estimated using well-known second-order techniques. For clarity in the exposition,
these latter techniques are also addressed in this chapter.

The structure of this chapter is organized as follows. Section 2.1 provides a short exposition of
the characteristic function and Szegös theorem. While the first is part of the essence of the mapping
that will be proposed hereinafter, the second will be used to analyze asymptotic behaviours of the
Toeplitz matrix that will appear due to the characteristic function mapping itself. Section 2.2 is a
brief review of methods for measuring correlation, hence linear dependencies. In particular, we
focus on the principal component and the canonical correlation analyses, as they will serve as the
main tools for measuring information through second-order statistics. Lastly, in Section 2.3, several
information-theoretic measures are studied. The rationale for choosing the appropriate surrogates
is addressed, and some comparisons with their original counterparts are provided.

2.1 Preliminaries

2.1.1 A brief review of the characteristic function

The Characteristic Function (CF) is an important tool in the field of probability theory that serves
for multitude of different applications [Luk63]. In its core, the CF has a unequivocal relationship
with the Probability Density Function (PDF) of a given random variable, determined by the Fourier
transform. This motivates the use of the CF as an equivalent descriptor of any random variable,
which may be easier to work with. Since it is the Fourier pair of the PDF, it also carries some
interesting properties that will be exploitable in order to solve complex problems. For instance, the
CF can be used to find the moments of a random variable through the derivative, which may be
useful for analyzing small-scale phenomena. Due to these reasons, the CF is an excellent tool, and
it shall be used as a promoter of the contents of this thesis.

Definition 1. Let X be an absolutely continuous random variable with PDF fX(x) defined on the
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set X . The CF of X is the function ϕ : R→ C defined as follows:

ϕX (ω) =

∫
X
ejωxfX (x) dx = EfX

{
ejωx

}
, ∀ω ∈ R. (2.1)

The interpretation of the CF can be either the expectation over a complex exponential func-
tion or the Fourier transform with reverse sign in the complex exponential. Following this last
interpretation, the subsequent properties are straightforward from the properties of the PDF:

1. Unity at origin: ϕX(0) = 1.

2. Bounded by one: |ϕX (ω) | ≤ 1.

3. Hermitian: ϕX (−ω) = ϕ∗
X (ω).

Since the density function of a random variable is always absolutely integrable, the CF always
exists. Furthermore, it can be shown that the CF is uniformly continuous for every ω ∈ R [Luk70,
Thm. 2.1.2]. The Fourier interpretation can also be used to determine the CF of the sum of random
variables. For instance, let X1 and X2 be independent random variables, and let Y = X1 + X2

with PDF fY (y). It is well-known that the distribution of Y is determined by the convolution of
the distributions of X1 and X2:

fY (y) =

∫
X
fX1 (x) fX2 (y − x) dx. (2.2)

Therefore, thanks to the convolution theorem of the Fourier transform, it is straightforward to see
that their respective CF will be given by the product such that

ϕY (ω) = ϕX1 (ω)ϕX2 (ω) . (2.3)

Another relevant property of the CF is given by the uniqueness theorem, which states the fol-
lowing:

Theorem 2.1 (Uniqueness theorem [Luk70]). Let F1 (x) and F2 (x) be two Cumulative Distribu-
tion Function (CDF)s. The functions F1 (x) and F2 (x) are identical if, and only if, their charac-
teristic functions ϕ1 (ω) and ϕ2 (ω) are identical.

However, this theorem only concerns CDFs, and it does not determine the inverse path, i.e. the
CDF given a CF. For this, we need the following theorem:

Theorem 2.2 (Inversion theorem [Luk70]). Let ϕX (ω) be the CF of the random variable X . If
ϕX (ω) is absolutely integral over the whole real line,

∫
R |ϕX (ω)| dω < ∞, then the following

holds true:
fX (x) =

1

2π

∫
R
ϕX (ω) e−jωxdω, (2.4)

with fX (x) = F ′
X (x), and fX (x) being uniformly continuous for x ∈ R.

Given the inversion theorem, the CF and the PDF are Fourier pairs provided that the CDF is
differentiable. This last condition is relevant, since the uniqueness theorem governs over the CDF.
The PDFs that fulfil this requirement are then leveraged by the bijective property of the Fourier
transform, and there exist a one-to-one relationship between the CF and the PDF. However, these
are only a subset (those whose derivative exists) of all possible PDFs, contrary to all the one-to-one
relationship with all the CDFs.

The duality pair provided by the inverse theorem can also be used in applications where the
estimation of probability functions is required, inherent, or directly main goal. For instance, since
the PDF behaves like a Power Spectral Density (PSD), given both are nonnegative finite-area func-
tions, it is possible to exploit well-known tools in the context of spectral estimation through the
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estimation the CF. This way, one can draw applications such that of estimation of the PDF [PL96],
or the estimation of Shannon’s entropy and the Kullback-Leibler divergence [BV00; Ram+09].

Next, we will proceed to the generalization of the CF for multivariate random variables. Let
X = {X1, ..., XN} be a N -variate random variable with PDF fX (x) defined on the set X . The
multivariate CF is then defined as the function ϕ : RN → C such that

ϕX (ω) =

∫
X
ejω

TxfX (x) dx ∀ω ∈ RN . (2.5)

Given that the product between ω = [ω1, ..., ωN ]T and x = [x1, ..., xN ]T leads to a sum, its
exponential can be factorized:

ϕX (ω1, ..., ωN ) =

∫
X
ejω1x1 · · · ejωNxN fX (x1, ..., xN ) dx1 · · · dxN . (2.6)

For independent random variables, i.e. fX (x1, ..., xN ) = fX1 (x1) fX2 (x2) · · · fXN
(xN ), the

separability of PDFs also entails the separability of CFs such that

ϕX (ω1, ..., ωN ) =

∫
X
ejω1x1 · · · ejωNxN fX1 (x1) · · · fXN

(xN ) dx1 · · · dxN (2.7a)

=

∫
X
ejω1x1fX1 (x1) dx1 · · ·

∫
X
ejωNxN fXN

(xN ) dxN = ϕX1 (ω1) · · ·ϕXN
(ωN ) .

(2.7b)

Therefore, independence factorizes both PDFs and CFs equally.
Furthermore, by retrieving the definition of the CF as the expectation over some nonlinear

function in (2.1), we can further elaborate on the implications of the separability. Without loss of
generalization, let us fix N = 2 where Z1 = ejω1X1 and Z2 = ejω2X2 are the new complex random
variables obtained from X1 and X2. The joint CF can be expressed as follows

ϕX (ω1, ω2) = EfX {Z1Z2} . (2.8)

Clearly, if X1 and X2 are independent we can write

ϕX (ω1, ω2) = EfX1
{Z1}EfX2

{Z2} = ϕX1 (ω1)ϕX2 (ω2) (2.9)

for ω1, ω2 ∈ R. The implication is that we are moving an independence requirement to an un-
correlation one, thanks to the specific nonlinear mapping of the original random variables. Also
note that, due to the uniqueness property of the CF, the converse is also true: if for any value of
ω1 and ω2 these new variables are uncorrelated, then the original variables are independent. This
implies that, if ϕX (ω1, ω2) = ϕX1 (ω1)ϕX2 (ω2), then fX (x1, x2) = fX1 (x1) fX2 (x2), which
is the converse statement from (2.7).

This property of the CF has been traditionally employed as a detector of independent random
variables by testing the distance between the joint and the product of marginal CFs in [Csö85].
Moreover, the implication of the converse statement is that any form of dependence between X1

and X2 is revealed through correlation between the variables Z1 and Z2 for some values of ω1 and
ω2. An independence detector was established in our conference paper [CR18] by detecting corre-
lation, provided that a sufficient number of ω1 and ω2 are explored. In conclusion, this observation
motivates the use of second-order statistics after some nonlinear mapping for measuring statistical
dependency, and it will be leveraged to estimate measures of information in the following chapter.

2.1.1.1 Characteristic function and moments

We will now review the relationship between the CF and the k-th-order moment of the associated
random variable. This one is another relevant property of the CF as it enables the study of local
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approximations as a function of mean, variance, skewness, etc. In particular, the moments of a
random variable are linked to the CF through its derivatives at the origin, which is specifically
useful for approximating a function through its Maclaurin series.

Consider the N -variate random variable X = {X1, ..., XN} with CF ϕX (ω). By differenti-
ating at the origin (see Appendix 7.1.1) we obtain

∂k1+k2+...+kNϕX (ω)

∂ωk1
1 ∂ωk2

2 ...∂ωkN
N

∣∣∣∣∣
ω=0N

= jk1+k2+...+kNEfX

{
Xk1

1 · · ·X
kN
N

}
, (2.10)

where kn ∈ N for n = {1, ..., N}. Here, the CF’s derivative is expressed as general as possible,
where kn indicates the kn-th derivative for the corresponding n-th random variable. However, it
does not guarantee the existence of the derivative for all CFs. The following theorem determines
the conditions for it to hold true:

Theorem 2.3 (Characteristic function and moments [Luk70]). If the CF ϕX (ω) has a derivative
of order k at ω = 0N , then all the moments of X exist up to order k if k is even, or up to order k−1
if k is odd. It also follows that if the k-th moment of X exists, then the CF can be differentiated k
times.

Simply put, the existence of the moments of a random variable implies that these can be found
by differentiating the CF at the origin. Now we are in terms of particularizing to the most relevant
cases from the point of view of this thesis, which are the first and second-order moments.

Since kn can be zero, then (2.10) includes the kn-th partial derivative of the marginal CF
ϕXn (ωn) such that

∂knϕXn (ωn)

∂ωkn
n

∣∣∣∣
ωn=0

= jk1EfX

{
Xkn

n

}
, (2.11)

which is equivalent to determine the k-th derivative for the univariate case N = 1. From these,
and focusing on the statistical expectation, the first and second-order moments correspond to

EfXn
{Xn} = −j

∂ϕXn (ωn)

∂ωn

∣∣∣∣
ωn=0

, EfXn

{
X2

n

}
= − ∂2ϕXn (ωn)

∂ω2
n

∣∣∣∣
ωn=0

, (2.12)

respectively. The particularization from (2.10) is as follows

EfX

{
Xk1

1 Xk2
2

}
=

1

jk1+k2

∂k1+k2ϕ (ω1, ω2)

∂ωk1
1 ∂ωk2

2

∣∣∣∣∣
ω1,ω2=0

, (2.13)

which can be used to determine the appropriate required derivative for any {k1, k2} combination.
In conclusion, the CF provides a preliminary link between statistical dependence and the mo-

ments of a random variable. We are particularly interested on the cases in which the CF can be
approximated by the mean and variance of X , since these are the ones that piece (2.8) and (2.13)
together. For instance, if we approximate (2.8) by its Maclaurin decomposition up to the second or-
der, we can see that the correlation between Z1 and Z2 is indeed related to the correlation between
the original variables X1 and X2, albeit approximately. Although it is reduced to an asymptotic
tendency, e.g. when the CF can be approximated by a constant around the origin, it provides an
analysis tool for the posterior derivations based on the CF.

2.1.2 Limit theorems of Toeplitz matrices

We will encounter multiple Toeplitz matrices over the course of the dissertation. Most times, we
are interested in operating with these matrices to achieve some concrete goal, let it be to estimate
some measure or to characterize a distribution. Furthermore, we are particularly interested in the
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CHAPTER 2. A REVIEW OF INFORMATION MEASURES

characterizations of these matrices for an increasing matrix dimension and how is the limit be-
haviour of their eigenvalues. This subsection deals with the limit theorems of the behaviour of
Toeplitz matrices, which will prove to be useful when handling various types of Toeplitz matrices.

To begin with, we will define both Toeplitz and circulant matrices:

Definition 2. A Toeplitz matrix T ∈ CN×N is matrix with constant-valued diagonals

[T]n,n′ = [T]n−n′,0 = tn−n′ , (2.14)

for n, n′ = 0, ..., N − 1. In matrix form, that is

T =



t0 t−1 t−2 · · · t−N+1

t1 t0 t−1
. . . ...

t2 t1
. . . . . . t−2

... . . . . . . t0 t−1

tN−1 · · · t2 t1 t0


. (2.15)

Generally speaking, all Toeplitz matrices that will arise along the thesis will also be Hermi-
tian, which endows them with the structure tn = t∗−n. Consequently, and for simplicity, we will
construct a Hermitian-Toeplitz from the vector t = [t0, t1, · · · , tN−1]

T , denoted by T = Toe (t).

Definition 3. A circulant matrix C is a special case of Toeplitz matrix where every row of the
matrix is a right/left circular shift of the row above/below:

C =



c0 c−1 c−2 · · · c−N+1

c−N+1 c0 c−1
. . . ...

c−N+2 c−N+1
. . . . . . c− 2

... . . . . . . c0 c−1

c−1 · · · c−N+2 c−N+1 c0


. (2.16)

Both Toeplitz and circulant matrices, and their properties, are well-known in the literature
[GS58; Dav79]. In the context of limit behaviours, it is of particular interest the property that
circulant matrices are diagonalizable by the unitary discrete Fourier matrix W. In particular, any
circulant matrix satisfies

C = WΛWH , (2.17)

where

W =
1√
N


1 1 1 · · · 1

1 e−j2π/N e−j2π2/N · · · e−j2π(N−1)/N

1 e−j2π2/N e−j2π4/N · · · e−j2π2(N−1)/N

...
...

... . . . e−j2π3(N−1)/N

1 e−j2π(N−1)/N e−j2π2(N−1)/N e−j2π3(N−1)/N e−j2π(N−1)(N−1)/N

 ,

(2.18)
and Λ is a diagonal matrix that contains the eigenvalues of C, which correspond to the samples
of the discrete Fourier transform of the sequence c−n (or directly the sequence cn depending on
how the circulant matrix has been defined). Toeplitz matrices have also a similar property with
Vandermonde matrices [YXS16], whose columns are composed by sampled complex exponential
functions. However, our interest relies on the fact that Toeplitz matrices are asymptotically circulant
matrices, whose properties, and particularly the eigenvalue behaviour, can then be easily exploited
through the Fourier transform. In this sense, the following theorems will be used to improve the
analysis and performance of the proposed estimation techniques based on operating with Toeplitz
matrices.

11
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Theorem 2.4 (Szegö’s theorem on asymptotic eigenvalues behaviour [GS58]). Let tn be the se-
quence that determines a Hermitian-Toeplitz matrix T for n = 0, ..., N − 1. Consider f (x) a
bounded and real-valued continuous function defined by the Fourier series with coefficients tn,
related by

tn =
1

2π

∫ π

−π
f (x) e−jnxdx. (2.19)

Moreover, let F (λ) be a continuous function in the same interval as f (x). Then, Szegö’s theorem
states that

lim
N→∞

1

N

N−1∑
n=0

F (λn) =
1

2π

∫ π

−π
F (f (x)) dx, (2.20)

where λn are the eigenvalues of T.

Note that, by construction of the Fourier series, it is inherent that f (x) is considered to be a
periodic function with period 2π, hence the normalization and limits of the integral.

Theorem 2.5 (Szegö’s theorem on asymptotic circulant matrices [Gra+06]). Let tn be the sequence
that determines a Hermitian-Toeplitz matrix T for n = 0, ..., N −1, and that it possesses a limited
number of M nonzero entries in its diagonals with M < N . Consider a circulant matrix C
composed by the sequence cn with

cn =


t−n n = 0, 1, ...,M − 1

tk−n n = k −M + 1, ..., k − 1

0 otherwise
(2.21)

for k = 0, ..., N − 1. Then, T is asymptotically C such that

lim
N→∞

√√√√ 1

N

N−1∑
n=0

N−1∑
n′=0

∣∣∣[T]n,n′ − [C]n,n′

∣∣∣2 = 0. (2.22)

To put it simply, the previous theorem states that a banded Toeplitz matrix is asymptotically
a circulant matrix. However, this is still a restrictive constraint that may not be applicable with
most Toeplitz matrices. It is possible, however, to relax the condition with a milder assumption. In
particular, the most general and relaxed assumption that guarantees the behaviour described in the
previous theorem is that the sequence tn is square-integrable for N →∞. This is usually referred
as the weak conditions of Szegö’s theorem [Bin12]. In that case, a Toeplitz matrix can still be
asymptotically approximated by an equivalent circulant matrix.

The relevance of this limit case can be encountered in the behaviour of their respective eigen-
values. In particular, the following Corollary to Theorem 2.5 encompasses the desired property for
asymptotically large Toeplitz matrices:

Corollary 2.5.1. [Gra+06, Lemma 4.3] Let T and C be the Toeplitz and circulant matrices from
Theorem 2.5, and let λn (T) and λn (C) be their respective eigenvalues. Then

lim
N→∞

1

N

N−1∑
n=0

(
λβ
n (T)− λβ

n (C)
)
= 0 (2.23)

for any positive integer β. For a finite N , then∣∣∣∣∣ 1N
N−1∑
n=0

(
λβ
n (T)− λβ

n (C)
)∣∣∣∣∣ ≤ γN−1/2, (2.24)

where γ is independent from N .

12
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As a result, not only the matrices are asymptotically the same, but also their eigenvalues, hence
any Toeplitz matrix with the aforementioned assumptions can be processed as a circulant matrix.
We are purposely interested in this property given the diagonalization of circulant matrices. In
particular, to diagonalize a Toeplitz matrix by the unitary Fourier matrix will serve as a tool for
simplifying matrix inversions.

2.2 Measures of linear dependence

Before delving into the core content of the thesis, we will briefly review the analyses of linear de-
pendence that will be used to leverage the estimation of information measures and their surrogates.
Albeit well-known, the contents of this section play a very important role in future parts of the
thesis. It is then within reason to review some of the most important methods that measure linear
dependence through second-order statistics. To be concrete, we will be focusing on the PCA and
on the CCA.

2.2.1 Principal component analysis

PCA is generally regarded as a dimensionality reduction algorithm that computes the direction
of maximum variance of a set of multivariate data [Jol02]. Its principle is based on finding the
orthogonal weight vectors that maximize data variation. These weight vectors, called the principal
components, are then used to linearly transform the original data to new uncorrelated variables.
The dimensionality reduction comes from the property that the variances of these new variables
are ordered, which serves as good descriptor of the most relevant directions and similarity among
the data.

Consider theN -variate zero-mean random variableX = {X1, .., XN} ∈ X defined on the set1
X ⊆ CN with PDF fX (x). Let x(i) ∈ CN be L independent and identically distributed (i.i.d.)
samples from X , where i = 0, ..., L−1 and x(i) = [x1(i), ..., xN (i)]T . The data will be processed
in the form of a data matrixX ∈ CN×L composed by the column vectorsX = [x(0), ...,x(L− 1)].
PCA seeks for the linear combinations z = uHx that maximize data variation, where u ∈ CN .
PCA is then expressed as:

ρPCA = max
u

EfX

{
|z|2
}

uHu
= max

u

uHEfX

{
xxH

}
u

uHu
= max

u

uHRxu

uHu
, (2.25)

where Rx is the autocorrelation matrix and whose empirical estimate is

R̂x =
1

L

L−1∑
i=0

x(i)xH(i) =
1

L
XXH . (2.26)

Note that, due to X being a zero-mean variable, the autocorrelation and autocovariance matrices
coincide. In the opposite case, the mean value of each column must be subtracted, or the autoco-
variance matrix must be computed with

Ĉx =
1

L− 1

L−1∑
i=0

x(i)− 1

L

L−1∑
j=0

x(j)

x(i)− 1

L

L−1∑
j=0

x(j)

H

=
1

L− 1
XPXH , (2.27)

where P⊥
1 = IN − 1N1TN/L is the projection matrix onto the orthogonal space spanned by 1N ,

which is a real symmetric P⊥
1 =

(
P⊥

1

)T and idempotent P⊥
1P

⊥
1 = P⊥

1 matrix, and the L−1 term

1Complex-valued variables are defined in preparation for the next sections, where a nonlinear mapping to a complex
space will be provided, hence the data will also be complex-valued.
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is given by the Bessel correction. Then the empirical PCA just becomes

ρ̂PCA = max
u

uHĈxu

uHu
. (2.28)

It is also worth noting that the denominator uHu constrains u to not fall into the trivial solution
‖u‖22 = uHu→∞. Otherwise, without this constraint, u ∈ CN is usually defined as a unit-length
weight vector.

The previous maximization problem is actually related to the problem of finding the points
of zero derivative of the Rayleigh quotient, endowing the analysis with physical interpretations
[Bor98]. The Rayleigh quotient is defined as

ρ =
uHAu

uHBu
, (2.29)

where A and B are Hermitian (symmetric for the real-valued case) matrices and B is positive
semi-definite. It can be shown that the zero-derivative points of this quotient can be solved by
means of the generalized eigenvalue problem [GKC19]

AU = BUΛ, (2.30)

where U ∈ CN×N is a square unitary matrix whose columns are the eigenvectors un for 1 ≤
n ≤ N , and Λ ∈ CN×N is a diagonal matrix containing the eigenvalues λn associated to the
eigenvectors un. The eigenvalue decomposition is then

B−1A = UΛU−1. (2.31)

This perspective allows to unify multiple related algorithms to a common framework of solving
the generalized eigenvalue problem [BLK97]. In the case of PCA, it is equivalent to fix A = Ĉx

and B = IN , where U ∈ CN×N is composed by the column vectors un. Also, since B−1A =
INA = A is a symmetric matrix, then we have U−1 = UH . Note that, while in (2.28) only one
vector u1 and the largest principal component are assessed, in (2.31) all the subsequent principal
components with associated weight vectors un, for n = 2, .., N , are also computed. Therefore,
the empirical ρ̂PCA corresponds to the largest eigenvalue λ1 with eigenvector u = u1. All the
remaining principal components are ordered inside of matrix Λ.

The estimated principal component can also be expressed as

ρ̂PCA = ||Ĉx||2, (2.32)

where ‖·‖2 denotes the spectral norm in the case of matrices, and corresponds to the largest singular
value such that

||Ĉx||2 = σ1

(
Ĉx

)
=

√
λ1

(
ĈH

x Ĉx

)
. (2.33)

In this case, given that Ĉx is a Hermitian, thus normal, matrix with ĈxĈ
H
x = ĈH

x Ĉx, we can also
express the largest singular value as σ1(Ĉx) = |λ1(Ĉx)|.

2.2.2 Canonical correlation analysis

Consider now two multivariate zero-mean random variables

X = {X1, .., XNx} ∈ X , Y =
{
Y1, .., YNy

}
∈ Y, (2.34)

defined on the setsX ⊆ CNx andY ⊆ CNy , respectively, with joint PDF fXY (x,y), and marginal
PDFs fX (x) and fY (y). Let {x (i) ,y (i)} be L i.i.d. observations with i = 0, ..., L − 1. The
corresponding data matrices are X ∈ CNx×L and Y ∈ CNy×L. CCA [Hot36] finds the new
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variables, denoted as the canonical variables zx = uH
x x and zy = uH

y y for ux ∈ CNx and
uy ∈ CNy , that maximize the correlation coefficient ρCCA, called the canonical correlation.

Unlike PCA, CCA identifies linear combinations between two different variables while deter-
mining the directions in which their correlation is stronger. The greater canonical correlation is
then obtained by solving the following maximization problem:

ρCCA = max
ux,uy

EfX,Y

{
zxz

∗
y

}√
EfX

{
|zx|2

}
EfY

{
|zy|2

} (2.35a)

= max
ux,uy

uH
x EfX,Y

{
xyH

}
uy√

(uH
x EfX {xxH}ux)

(
uH
y EfY {yyH}uy

) (2.35b)

= max
ux,v

uHRxyuy√
uH
x Rxux

√
uH
y Ryuy

, (2.35c)

where Rxy is the cross-correlation matrix, whose estimate is

R̂xy =
1

L

L−1∑
i=0

x(i)yH(i) =
1

L
XYH , (2.36)

and Rx and Ry are the autocorrelation matrices as in (2.26). Similarly as with PCA, if nonzero-
mean random variables are used then covariance matrices are used instead, being the cross-correlation
matrix

Ĉxy =
1

L− 1

L−1∑
i=0

x(i)− 1

L

L−1∑
j=0

x(j)

y(i)− 1

L

L−1∑
j=0

y(j)

H

=
1

L− 1
XPYH , (2.37)

and the autocovariance matrices as in (2.27). CCA can also be solved through the generalized
eigenvalue problem [BLK97]. This time, the matrices from (2.31) are

A =

[
0Nx×Nx Ĉxy

Ĉyx 0Ny×Ny

]
, B =

[
Ĉx 0Nx×Ny

0Ny×Nx Ĉy

]
, U =

[
Ux

Uy

]
, (2.38)

where Ux ∈ CNx×N , Uy ∈ CNy×N , and N = min {Nx, Ny}.
The eigenvalue decomposition can then be written by two different equations{

Ĉ−1
x ĈxyĈ

−1
y ĈyxUx = Λ2

xUx

Ĉ−1
y ĈyxĈ

−1
x ĈxyUy = Λ2

yUy

. (2.39)

In this case, Λ2
x ∈ RNx×Nx and Λ2

y ∈ RNy×Ny contain the same squared canonical correlations
(up to the N -th, the rest are zero-valued), and the largest corresponds to ρ̂2CCA. Equivalently, one
can perform the Singular Value Decomposition (SVD) Ĉ = FΣGH , or Σ = FHĈG, where

Ĉ = Ĉ−1/2
x Ĉxy

(
Ĉ−1/2

y

)H
(2.40)

is called the empirical coherence matrix [SM00], and the diagonal matrix Σ contains all the canon-
ical correlations. The empirical maximum canonical correlation can then be expressed as

ρ̂CCA = ||Ĉ||2. (2.41)

While CCA is usually portrayed as a measure of the maximum correlation, the assessment of
all canonical correlations (contained in Λx or Λy) have other multiple applications, e.g. in model-
order selection [RS15]. A similar scenario was studied in our conference paper [LCR20], where the
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coherence matrix is used to determine the mutual information (due to Gaussian assumption, CCA
and information are closely related) by detecting the number of correlated signals in a channel.

A common problem with CCA is that its performance greatly depends on the available number
of samples. The measurement of the canonical correlations is prone to errors if the variables are of
high dimensionality but reduced sample size [Bao+19]. This behavior follows from the requirement
of estimating sample covariance matrices, which may also be flawed if the sample size is small.
In order to overcome this problem, some algorithms have been designed that minimize the overall
dimensionality of the involved matrices [Pez+04; AN17]. This issue is relevant because, as we
employ the CCA to estimate information, the dimensionality of the data will be translated to the
dimensionality of some feature space. Therefore, the choice of the dimensionality of such feature
space will become an important issue to monitor.

2.3 Measures of information

Once measures of linear dependence have been reviewed, we then provide a review of information-
theoretic measures that are pivotal within the objective of measuring information through classical
signal processing techniques based on second-order statistics. Generally speaking, these measures
originate from Shannon’s entropy, the KL divergence and MI. While these surrogates succeed on
providing an assessment of the quantity of uncertainty, dissimilarity and dependence, respectively,
their properties may or not may be different from their original measures. These surrogates share
a common property however, which is the capability of being expressed as the squared Euclidean
norm of some functional based on probability distributions. For this reason, we refer to these sur-
rogates as “quadratic measures of information”. Although the focus of this thesis is on continuous
sources, the discrete case will also be addressed as a guiding line to better understand the origin,
properties and uses. Lastly, the following measures of information will be based on univariate ran-
dom variables, given that the generalizations to multivariate random variables can be easily done
if required.

2.3.1 Uncertainty measures

Consider the discrete random variable X with Probability Mass Function (PMF) pX (x) defined
on the set X . Shannon’s entropy (in nats) is defined as

H (X) = −
∑
X

pX (x) ln pX (x) = −EpX {ln pX (x)} . (2.42)

This measure was born from Shannon in the pursuit of quantifying the average information of the
outcome of a given random variable [Sha48]. Shannon’s entropy gives a measure of randomness
of a random variable, which is maximized by the uniform distribution. The importance of this
measure is well-known in the fields of communications and information theory, and its use has
since then escalated tremendously by being used in very disparate fields (the reader is referred
to [WKV09; CT06], and references therein, for a review of areas and applications where entropy
arises in a natural manner).

In an attempt to define the uncertainty of a continuous random variable, Shannon proposed the
so called differential entropy. Given a continuous random variable X ∈ X with PDF fX (x), it is
defined as follows:

h (X) = −
∫
X
fX (x) ln fX (x) dx = −EfX {ln fX (x)} . (2.43)

In contrast to its discrete counterpart, this definition of entropy can attain negative values, which
may be counter-intuitive for the purpose of quantifying information. This is due to the fact that
differential entropy is not the limit case of Shannon’s entropy [CT06, Sec. 8.3]. Nevertheless,
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outside the basic definition of uncertainty, differential entropy can still be used in other settings in
which a negative outcome does not, by itself, denote an improper generalization from the discrete
case (although it is).

In terms of a random variable, entropy is sensitive to the probability of the outcomes and not
to their values, which would be the case of the mean or the variance. Thus, the capability of
entropy for describing a random variable differs from that of the classic second-order statistics. As
such, entropy may be a better data descriptor that measures local particularities of the PDF, while
variance measures its global spread. This idea will be particularly addressed on Chapter 5.

Regarding the scope of this thesis, these measures of information carry some inherent problems
to is own definition. First, the estimation of differential entropy from a set of observations is not an
easy task. Although there are numerous estimators in the literature with varying grade of success
(see [WKV09] for a review of estimators and their applications), most of them suffer from a great
computational complexity for big data-sets, especially for nonparametric estimators. Secondly, the
logarithm involved in its definition can be bothersome for some distributions. Generally speaking,
to cope with the estimation of differential entropy, most estimators rely on plug-in methods. These
follow the methodology that first estimates fX (x) and then they plug it into the desired functional.
This means that, if a given density is not easily estimated, e.g. distributions with long tails, then
this approach may lead to bigger errors. A potential solution can be encountered in the method of
importance sampling [TK10], where the expectation (as the one given in (2.43)) is estimated by a
weighted average of i.i.d. observations. However, this approach concerns a target distribution, from
which the expectation is computed, while we are interested in developing an universal approach,
capable of estimating the entropy given any underlying distribution. A more straightforward ap-
proach is to alleviate the estimation error by increasing the sample size, but this would mean to
increase further the computational complexity. For these reasons, it may be interesting to study
other forms of entropy that may convey a better procedure of estimation, and that also describe the
quantity of information given by the outcome of a random variable.

In light of the work of Shannon, there was an upraise in the pursuit of knowledge regarding the
meaning, use and significance of these new measures of information. In 1961, a mathematician
called Alfréd Rényi proposed a generalization of Shannon’s entropy. In [Rén61] he introduced a
class of parameterized entropies that preserved most of its axioms, but relaxing the strong additivity
axiom with a weaker postulate (additivity) [Csi08; ABH18]. Concretely, the additivity property
states that the joint entropy of various independent random variables is equal to the sum of the
entropies of these random variables. It does not, however, hold any inequality as with Shannon’s
entropy.

In the case of a discrete random variable X , it is defined as follows:

Hα (X) =
1

1− α
ln
∑
X

pαX (x) =
1

1− α
lnEpX

{
pα−1
X (x)

}
. (2.44)

We will refer to the parameter α ∈ R+\{1} as the entropic index, and it is used to determine the
order of Rényi’s entropy. While this parameter opens the possibility for infinite representations of
Rényi’s entropy, generally speaking the most used and studied values are 0,1,2 and∞. For α→ 1
this measure adopts the special case of being defined only by the limit, which can be shown that is
indeed Shannon’s entropy through Hôpital’s rule [Rén61]:

lim
α→1

Hα (X) = H (X) . (2.45)

The implications are that, not only does Rényi’s entropy provide an alternative measure of random-
ness, but it also generalizes Shannon’s entropy. Regarding the other cases, these are enumerated
below:

1. Max / Hartley entropy:
H0 = ln |X | , (2.46)

where |· | indicates the cardinality of the set, and assuming that all probabilities are nonzero.
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2. Collision entropy:
H2 (X) = − ln ‖pX (x)‖22 , (2.47)

where ‖a‖p = (
∑n

i=1 |ai|
p)1/p is the p-norm of the vector a for p ∈ [1,∞).

3. Min entropy:
H∞ (X) = min

i
{− ln pX (xi)} , (2.48)

which is another case of convergence for α→∞ in order to preserve the continuity.

Furthermore, it is know that the Rényi entropies are monotonically decreasing with respect to the
entropic index. In particular, Hα (X) satisfies

Hα (X) ≥ Hβ (X) s.t. α ≤ β. (2.49)

Therefore, we can establish a clear relation between the particular cases:

H0 (X) ≥ H (X) ≥ H2 (X) ≥ ... ≥ H∞ (X) , (2.50)

where equality holds for uniform distributions.
From these, we are particularly interested in the case α = 2, given that it provides a measure

of information based on the Euclidean norm of a given PMF. The name, collision entropy, indi-
cates that this particular surrogate measures the probability of two of the same sample coinciding.
However, this notion will be lost when moving to the continuous case. It is also worth noting that
this surrogate can be naturally obtained by applying Jensen’s inequality thanks to the concavity of
the natural logarithm function:

H (X) = −EpX {ln pX (x)} ≥ − lnEpX {pX (x)} = H2 (X) . (2.51)

While being conceived as a generalization of Shannon’s entropy, the family of Rényi entropies
has found applications on a very varied scientific fields. Some examples are encountered in statis-
tics [BR78], coding [Cam65; Csi95], cryptography [Skó15], thermodynamics [Bae22], or physics
[Don16]. However, Rényi’s entropy suffers for some of its limitations due to the relaxation of its
properties. For instance, the definition of conditional Rényi’s entropy is not so well-defined as the
conditional entropy described by Shannon [FB14], which translates to a challenging transition to
the Rényi mutual information [Csi95; LP19a]. The definition used in this thesis will be addressed
further on, when describing the surrogates of dependence measures in Subsection 2.3.3.

In the case of continuous variables, Rényi’s entropy is generalized in a similar fashion to that
of differential entropy:

hα (X) =
1

1− α
ln

∫
X
fα
X (x) dx =

1

1− α
lnEfX

{
fα−1
X (x)

}
. (2.52)

Similarly to the bridge between Shannon’s and differential entropies, the differential Rényi entropy
is not the limit case of Rényi’s entropy [TBA16], and can also be negative.

The differential Rényi entropy of order 2, or directly the second-order Rényi entropy, is then

h2 (X) = − ln

∫
X
f2
X (x) dx = − lnEfX {fX (x)} . (2.53)

Alternatively, one can generalize the p-norm to a function space Lp and express the second-order
Rényi entropy as

h2 (X) = − ln ‖fX (x)‖22 , (2.54)

since the PDF, and its p-th power, are Lebesgue integrable with

‖fX (x)‖p =
(∫

X
|fX (x)|p dx

)1/p

. (2.55)
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As a result, the second-order Rényi entropy can be seen as analogous to the second-order moment.
However, the expectation of the PDF is evaluated instead of the possible outcomes of the random
variable. This perspective allows us to move from the classical view of second-order statistics,
to the second-order information measures. Moreover, note that no logarithm is involved in the
measure itself, since it can be added a posteriori, unlike with Shannon’s entropy. This property
suggests that it may be less complex to estimate this surrogate of entropy rather than Shannon’s
entropy. As a matter of fact, this property has been explored for some authors in the same pursuit
of estimating information. In [Prí10, Sec. 2.3] an estimator is derived by taking advantage of this
attribute, which will be addressed in Section 3.3 due to its close relation with kernel methods. An
equivalent result is observed in [OUE08] by blending the kernel density estimate with the sample-
spacing method.

Finally, let us briefly address other families of entropy. In particular, the Tsallis entropy is a
widely spread measure in the field of statistical physics, born from the work of Tsallis to generalize
the Boltzmann-Gibbs entropy [Tsa88]. However, here we will focus on the information-theoretic
aspect of it, that is, that entropy is a function of probability distributions. For a discrete random
variable X , Tsallis entropy is defined as

Sα (X) =
1

1− α

(∑
X

pαX (x)− 1

)
=

1

1− α

(
EpX

{
pα−1
X (x)

}
− 1
)
, (2.56)

whereas in the continuous case it is

sα (X) =
1

1− α

(∫
X
fα
X (x) dx− 1

)
=

1

1− α

(
EfX

{
fα−1
X (x)

}
− 1
)
. (2.57)

The Tsallis entropy exhibits similar properties to Rényi’s entropy given its close proximity. In fact,
one can define Rényi’s entropy from Tsallis entropy with

hα (X) =
1

1− α
ln (1 + (1− α) sα (X)) . (2.58)

Similar to Rényi’s entropy, the Tsallis entropy also tends to Shannon’s entropy for α→ 1. Despite
this, Tsallis entropy is not a common measure encountered in information theory problems. This is
due to the lack of logarithm in its definition, since it is the logarithm function that allows the quan-
tification of information (in bits, nats, etc). Although for α = 2 it presents the same properties
than the second-order Rényi entropy, such as the capability of being expressed as a second-order
statistic (note that they share the integral of the α-th power of the PDF), we will not focus our at-
tention with this entropy measure. However, it is relevant to note that by estimating (or employing)
Rényi’s entropy, one can always recover the Tsallis entropy, if required per application.

2.3.2 Dissimilarity measures

Next, we move to divergences. Jointly with entropy, these are considered the fundamental measures
of information, being the MI a particular case. The procedure to identify the surrogate will follow
a similar structure to those of the uncertainty measures.

Consider now two PMFs pX (x) and pY (x) defined on the same set X . The KL divergence
[KL51] is given by:

D (pX ‖ pY ) =
∑
X

pX (x) ln
pX (x)

pY (x)
= EpX

{
ln

pX (x)

pY (x)

}
. (2.59)

The KL divergence is nonegative, and zero if and only if pX (x) = pY (x). It is also well-known
that is not a proper distance metric, given that it is not symmetric with respect to its arguments.
For this reason, it may be more appropriate to categorize the divergences as dissimilarity mea-
sures, which increase as the disparity increases. To avoid limit cases and inconsistencies with its
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definition, the convention is to assume 0 ln 0/0 = 0, 0 ln 0/a = 0 and a ln a/0 = ∞, such that
D (pX ‖ pY ) ≥ 0.

Regarding continuous distributions, consider fX (x) and fY (x), and assume absolute conti-
nuity with respect to each other. The KL divergence is then

D (fX ‖ fY ) =
∫
X
fX (x) ln

(
fX (x)

fY (x)

)
dx = EfX

{
ln

(
fX (x)

fY (x)

)}
. (2.60)

The translation to continuous random variables is well-defined in the case of the KL divergence,
given that its properties are preserved. Notoriously,D (fX ‖ fY ) is also nonnegative for any fX (x)
and fY (x), unlike with the leap between Shannon’s and differential entropy.

The KL divergence belongs to the class of f -divergences, which are a set of dissimilarity mea-
sures between probability distributions. The divergences that pertain in this class satisfy a set
of common properties, notoriously the nonnegativity and the data processing inequality [LV06].
The most commonly used divergences and relationships among them can be found in [GS02;
GSS14; SV16]. From these we are particularly interested in the Rényi divergence, Dα, and the
χ2-divergence, Dχ2 , since their definition is akin to a measure based on second-order statistics.

Similarly to the case of Shannon’s entropy, the Rényi divergence [Rén61] generalizes the notion
of the KL divergence with

Dα (fX ‖ fY ) =
1

α− 1
ln

∫
X
fα
X (x) f1−α

Y (x) dx =
1

α− 1
lnEfX

{(
fX (x)

fY (x)

)α−1
}
, (2.61)

where for α→ 1 this measure is asymptotically the KL divergence. For an extensive review of its
operational characterization, the reader is referred to [EH14]. Also note that Dα has been directly
expressed for continuous distributions. Unlike with entropy measures, where some properties are
lost in the transition from variables with finite support to an infinite one, the case of Rényi diver-
gence does not need any specific clarification, and the extension from finite spaces is the same for
any value of α.

Following the identification of an appropriate surrogate in the case of entropy, we will directly
focus our attention to the case of α = 2. However, note that many other values of α resolve into
well-known divergences in the literature. For example, for α = 1/2 the resulting divergence is a
function of both Bhattacharyya and Hellinger distances [Bha46; GS02].

For α = 2, then (2.61) resolves into

D2 (fX ‖ fY ) = ln

∫
X

f2
X (x)

fY (x)
dx = lnEfX

{
fX (x)

fY (x)

}
, (2.62)

which we refer to as the second-order Rényi divergence. Again, this surrogate can be immediately
obtained by applying Jensen’s inequality:

D (fX ‖ fY ) = EfX

{
ln

fX (x)

fY (x)

}
≤ lnEfX

{
fX (x)

fY (x)

}
= D2 (fX ‖ fY ) , (2.63)

where equality is hold if and only if pX (x) = pY (x), which denotes 0 divergence. Otherwise, the
strict inequality is held by the strict concavity of the natural logarithm.

The case of second-order Rényi divergence is particularly interesting since it shares similar
properties to that of the second-order Rényi entropy. In particular, one can express this divergence
as a function of an Euclidean norm such that

D2 (fX ‖ fY ) = ln

∥∥∥∥∥ fX (x)√
fY (x)

∥∥∥∥∥
2

2

, (2.64)

showing that the capability of being expressed as a second-order moment of Rényi information
measures is shared among them for α = 2.
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Alternatively, the second-order Rényi entropy can also be expressed as follows:

D2 (fX ‖ fY ) = ln
(
1 +Dχ2 (fX ‖ fY )

)
, (2.65)

where Dχ2 (fX ‖ fY ) denotes the Pearson χ2-divergence

Dχ2 (fX ‖ fY ) =
∫
X

f2
X (x)

fY (x)
dx− 1 = EfX

{
fX (x)

fY (x)

}
− 1 =

∥∥∥∥∥ fX (x)√
fY (x)

∥∥∥∥∥
2

2

− 1. (2.66)

By doing some manipulations (see Appendix 7.1.2), one can also express (2.66) in its more well-
known form:

Dχ2 (fX ‖ fY ) =∫
X

(fX (x)− fY (x))2

fY (x)
dx = EfX

{
(fX (x)− fY (x))2

fX (x) fY (x)

}
=

∥∥∥∥∥fX (x)− fY (x)√
fY (x)

∥∥∥∥∥
2

2

.

(2.67)

From the fundamental logarithm and Jensen’s inequalities (ln (1 + x) ≤ x), we can state the fol-
lowing bounds:

D (fX ‖ fY ) ≤ D2 (fX ‖ fY ) ≤ Dχ2 (fX ‖ fY ) . (2.68)

The equality holds for fX (x) = fY (x), otherwise the inequality is strict for nonzero divergence.
The relationship between the χ2 and KL divergences can also be tackled by assuming closeness
between the two probability functions. To be concrete, as the divergence measures approximate to
zero, we can consider fY (x) = fX (x)+ ε∆(x) where ε is an arbitrarily small number and ∆(x)
is a function with null area. Then, we can write

D (fX ||fX + ε∆) =
1

2
Dχ2 (fX ||fX + ε∆) +O(ε3), (2.69)

as can be seen in Appendix 7.1.3. As a result, one can see the χ2-divergence as a local approx-
imation of the KL divergence for close distributions. Moreover, the analysis shows that 1

2Dχ2 is
not a bound, but an approximation. The rationale behind this local approximation can also be en-
countered in [HSZ15], where their interest relies on translating information theory problems to
linear algebra problems, a similar philosophy than the one of this thesis. Likewise, the relation
between MI and SMI under local approximations has also been expressed in [Hua+19, Eq. (61)]
(and corresponding footnote), although more focused on providing an insightful measure of local
information geometry.

The χ2-divergence is a recurrent measure of dissimilarity in the literature. Its use can be traced
back to Pearson, in the study of associations among categorical data [Pea04], where it was referred
to as the mean-square contingency. In the past decades, the χ2-test has been particularly used for
the goodness of fit method for parameter estimation [CL54]. The relationship between Dχ2 and D2

is conveyed in a similar fashion to that of between the Tsallis entropy sα and Rényi’s entropy hα.
However, while in the case of sα the lack of logarithm was detrimental in the sense of measuring
uncertainty, here the dissimilarity measure does not lose its meaning even without the logarithm.
Nonetheless, Dχ2 looses the additivity property with respect to independent (i.e. multiplicative)
components in fX (x) or fY (x), which is a property satisfied by both KL and Rényi divergences.

The particularly expression provided in (2.67) is also of interest since it differs from the ones
in both (2.64) and (2.66), thus providing an alternative measure to a similar approach. As usual,
we are particularly interested in information measures that convey a similar structure to that of
second-order statistics. Hence, while both (2.66) and (2.67) satisfy this condition, the latter will
be unveiled to portray a very specific structure in the case of measuring dependence.
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2.3.3 Dependence measures

Finally, we will briefly address the special case of measuring dependence. Since the measure of
dependence is strongly tied to the measure of dissimilarity, the properties and analysis are identical
to the ones in previous subsection. In short, one just needs to measure the dissimilarity between the
joint probability distribution and the product of marginal ones. However, although dependence can
be seen as a particular case, it is still relevant due to its well-known interpretation and applications.

We first begin with the KL divergence. Consider now the joint PDF fX,Y (x, y) defined on the
set X × Y , and the product of marginal distributions fX (x) fY (y) also defined on X × Y . The
KL divergence between these distributions is as follows

D (fX,Y ‖ fXfY ) =

∫
X×Y

fXY (x, y) ln
fX,Y (x, y)

fX (x) fY (y)
dxdy = EfX,Y

{
ln

(
fX,Y (x, y)

fX (x) fY (y)

)}
,

(2.70)
which is classically referred to as the MI with notation I (X;Y ). This measure is nonnegative with
I (X;Y ) ≥ 0 and symmetric with respect to its arguments I (X;Y ) = I (Y,X).

This measure was born from Shannon in the same mathematical analysis in which Shannon’s
entropy was defined [Sha48]. In its classical paper, I (X;Y ) determines the theoretical limits of
the capacity of the channel between the transmitter, associated with the random variable X , and
the receiver, associated with the random variable Y . Although the characterization of the MI in
the field of communications runs much more deeper, in terms of this thesis we are just interested
in its information-theoretic interpretation as a functional of probability distributions. In this sense,
our interest is generalized for many other applications with a similar point of view.

Outside of the theory of communications, the MI is “simply” regarded as a general descrip-
tor of the relationship between random variables. Statistics and machine learning are two fields
where the MI has found a variety of applications. Particularly, it can be encountered in feature
selection [GE03], independent component analysis [HO00], and in the study of neural networks
[TZ15], among others. In these applications, the most straightforward description of I (X;Y )
is that it “tests” for independence, that is, if I (X;Y ) = 0, then X is independent to Y due to
fXY (x, y) = fX (x) fY (y) in the independent case. That is why, in the case of its estimation, it is
usually referred to as an independence measure, and not the opposite. Another way to interpret this
measure is to trace en equivalence to correlation. Both measures indicate a relationship between
random variables with a given degree of dependence. However, correlation only determines linear
relationships, while MI is generally regarded as a nonlinear descriptor of statistical dependence.
This notion will become pivotal in the development of strategies for estimating information.

Similarly to the derivation of the MI from the KL divergence, one can particularize the Rényi
divergence with

Iα (X;Y ) = Dα (fX,Y ‖ fXfY ) =
1

α− 1
ln

∫
X×Y

fα
X,Y (x, y)

(fX (x) fY (y))α−1 dxdy (2.71a)

=
1

α− 1
lnEfX,Y

{(
fX,Y (x)

fX (x) fY (y)

)α−1
}
, (2.71b)

where Iα (X;Y ) is called the Rényi α-information. It is important to note that other definitions
may be given to the Rényi α-information [Ver15; LP19a]. The most relevant are the ones given
by Arimoto [Ari77], Csiszár [Csi95] and Sibson [Sib69], where their interest mostly relied on the
definition of Rényi α-information through the conditional Rényi entropy of a discrete channel.
Instead, the definition from (2.71) is directly derived from Dα, as it appears in [Rén07] , and is
in agreement with [TZI15]. Either way, the properties of (2.71) are still shared with the ones of
(2.61), and it is asymptotically equivalent to the MI for α→ 1.

For α = 2 we have the second-order Rényi information:

I2 (X;Y ) = ln

∫
X×Y

f2
X,Y (x, y)

fX (x) fY (y)
dxdy = lnEfX,Y

{
fX,Y (x, y)

fX (x) fY (y)

}
(2.72a)
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= ln

∥∥∥∥∥ fX,Y (x, y)√
fX (x) fY (x)

∥∥∥∥∥
2

2

. (2.72b)

Following the same steps as in (2.65), we can express

I2 (X;Y ) = ln (1 + Is (X;Y )) , (2.73)

where

Is (X;Y ) = Dχ2 (fX,Y ‖ fXfY ) = EfX,Y

{
fX,Y (x, y)

fX (x) fY (y)

}
=

∥∥∥∥∥ fX,Y (x, y)√
fX (x) fY (y)

∥∥∥∥∥
2

2

− 1

(2.74a)

= EfX,Y

{
(fX,Y (x, y)− fX (x) fY (y))2

fX,Y (x, y) fX (x) fY (y)

}
=

∥∥∥∥∥fX,Y (x, y)− fX (x) fY (y)√
fX (x) fY (y)

∥∥∥∥∥
2

2

− 1.

(2.74b)

The dependence measure Is (X;Y ) will be called the Squared-loss mutual information (SMI),
coined in [Suz+09] for the purpose of feature selection. However, other authors have referred to
this measure as the mean-square contingency [Hir35], a term characterized by Pearson in [Pea04],
and also studied by Rényi as a measure of dependence in [Rén59]. It should also be noted that
in [Suz+09] the term refers to half of the magnitude of (2.74). The reason behind this constant is
to approximate Is (X;Y ) to I (X;Y ) in the low dependence regime (as it follows from (2.69)).
However, here we will strictly define the SMI as it resolves from the χ2-divergence.

Following the bound from the dissimilarity measures in (2.68), the measures of dependence
follow the same rules with

I (X;Y ) ≤ I2 (X;Y ) ≤ Is (X;Y ) . (2.75)

In this case, the inequalities are strict for dependent random variables, and the equality is to zero
for independent random variables with fX,Y (x, y) = fX (x) fY (y). It also follows from (2.69)
that, for small values of dependence with fX(x)fY (y) = fX,Y (x, y) + ε∆(x, y), where ε is an
arbitrarily small value and ∆(x, y) is defined on the set X ×Y and is constrained to have null area,
we can then express

I (X;Y ) =
1

2
Is (X;Y ) +O(ε3). (2.76)

A similar observation can be encountered in [GN18] on the topic of co-clustering contingency
tables, and in [Hua+19] in the study of local measures of information from the perspective of
information geometry. In order to illustrate this approximation, Figure 2.1 shows the closeness
for the small dependence scenario and univariate random variables. The distributions shown are
the Gaussian, the Pareto with location parameter θ = 1 for both marginal distributions [DV00],
the Student’s t-distribution with ν = 10 degrees of freedom [KN04] and a Gaussian Mixture
Model (GMM) distributed as (X,Y ) ∼ N (0,Σρ) /2 +N (0,Σ−ρ) /2, and the marginal random

variables distributed as X ∼ N (0, 1) and Y ∼ N (0, 1), where Σa =

[
1 a
a 1

]
and ρ ∈ [0, 1),

as it is encountered in [Res+11] under the name of “X” model. Note that the Gaussian variable has
MI I (X;Y ) = −0.5 ln

(
1− ρ2

)
and SMI Is (X;Y ) = ρ2/

(
1− ρ2

)
, which are equal up to the

first order approximation f (ρ) ≈ f(0) + f ′(0)ρ with

I (X;Y ) = −0.5 ln
(
1− ρ2

)
≈ ρ2

1− ρ2
= Is (X;Y ) (2.77)

given that d
dρ ln

(
1− ρ2

)
= −2ρ

1−ρ2
. Due to this, the Gaussian is more easily approximated and its

curve approximates the equality faster. Unfortunately, the other distributions are not so easily com-
puted (either the MI or the SMI). Its relation, however, seems to be of a higher-order approximation
since they are further from the equality line.
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Figure 2.1: Half of the SMI versus the MI for different distributions.

2.3.4 Other dependence measures

Apart from the classical derivations from the KL divergence and the MI, there are other measures
of dependence that may prove to be of interest during the course of the thesis. Generally speaking,
the rest of this subsection addresses independence measures rather than measuring dependence
from the point of view of information. For this reason, the empirical estimation of the following
measures usually serves as independence detectors instead of conveying a tangible measure, e.g.
the channel capacity in the case of the MI. However, the following measures do convey, in a way
or another, a connection with measures from the previous subsections, although it may not be
apparent.

2.3.4.1 Hirschfeld-Gebelein-Rényi maximal correlation coefficient

The Hirschfeld-Gebelein-Rényi (HGR) coefficient is a generalization of the well-known Pearson
coefficient. In particular, the HGR coefficient determines the maximum correlation coefficient
between two random variables after a given mapping, which is usually nonlinear. Let X and Y
be two random variables with PDFs fX (x) and fY (y) defined on the sets X and Y , respectively,
with joint probability distribution fX,Y (x, y) defined on the set X × Y and let gX : X → R and
gY : Y → R be Borel-measurable functions. The HGR coefficient [Hir35; Rén59] is then

ρHGR (X;Y ) = sup
gX ,gY

EfX,Y
{gX (X) gY (Y )} s.t.

{
EfX {gX (X)} = EfY {gY (Y )} = 0

EfX

{
g2X (X)

}
= EfY

{
g2Y (Y )

}
= 1

(2.78)
Due to the constraints, the expectation is equivalent to measure the correlation between gX (X)
and gY (Y ). Consequently, the HGR coefficient may also be written as

ρHGR (X;Y ) = sup
gX ,gY

Corr {gX (X) , gY (Y )} s.t.

{
EfX {gX (X)} = EfY {gY (Y )} = 0

EfX

{
g2X (X)

}
= EfY

{
g2Y (Y )

}
= 1

(2.79a)

= sup
gX ,gY

Cov {gX (X) , gY (Y )}√
Var {gX (X)}

√
Var {gY (Y )}

s.t.

{
EfX {gX (X)} = EfY {gY (Y )} = 0

EfX

{
g2X (X)

}
= EfY

{
g2Y (Y )

}
= 1

(2.79b)
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= sup
gX ,gY

EfX,Y
{(gX (X)− EfX {gX (X)}) (gY (Y )− EfY {gY (Y )})}√

EfX

{
g2X (X)

}
− E2

fX
{gX (X)}

√
EfY

{
g2Y (Y )

}
− E2

fY
{gY (Y )}

s.t.

{
EfX {gX (X)} = EfY {gY (Y )} = 0

EfX

{
g2X (X)

}
= EfY

{
g2Y (Y )

}
= 1

.

(2.79c)

Particularly, in [Rén59], Rényi was primarily interested in characterizing the dependency between
two random variables through a given statistic with a list of predetermined desirable properties. In
terms of the HGR coefficient, these are:

1. ρHGR (X;Y ) is defined for a pair of nonconstant random variables X and Y .

2. It is symmetric:
ρHGR (X;Y ) = ρHGR (Y ;X) . (2.80)

3. It is bounded:
0 ≤ ρHGR (X;Y ) ≤ 1. (2.81)

4. ρHGR (X;Y ) = 0 only for independent random variables, and ρHGR (X;Y ) = 1 only for a
strict dependence and Borel-measurable functions.

5. If gX , gY : R→ R are bijective Borel-measurable functions, then

ρHGR (X;Y ) = ρHGR (gX (X) ; gY (Y )) . (2.82)

6. If X and Y are correlated Gaussian variables, then

ρHGR (X;Y ) = |ρ (X;Y )| , (2.83)

where
ρ (X;Y ) =

Cov (X,Y )√
Var (X)

√
Var (Y )

(2.84)

is the Pearson correlation coefficient.

While these properties are purposely desirable for determining statistical dependency, other well-
known dependence measures do not necessarily satisfy them. For instance, the MI does not meet
some of them, as it is notoriously not upper-bounded nor it is strictly the Pearson coefficient for
Gaussian variables (although it is a function of it). It is also worth noting that in [Rén59] the SMI
is also reviewed under the point of view of these properties. Similarly to the MI, the SMI also does
not satisfy some of them, although a transformation can be applied to bound the SMI between zero
and one.

Generally speaking, the supremum is taken over an infinite-dimensional space for continuous
random variables, usually deeming the HGR coefficient as computationally not feasible [LHS13].
However, it is possible to obtain a computationally tractable implementation thanks to kernel meth-
ods. This implementation will be addressed in Section 3.2.

2.3.4.2 Quadratic measure of dependence

The rest of independence measures focus on the requirement of being zero if and only if the ran-
dom variables are independent. For this purpose, it is usually enough to test either the condition
fX,Y (x, y) = fX (x) fY (y) (hypothesis H0) or fX,Y (x, y) 6= fX (x) fY (y) (hypothesis H1).
This indicator (see [Set+11, Eq. (4)]) can be portrayed as follows:

ξ(X;Y ) = EfX,Y

{
(fX,Y (x, y)− fX(x)fY (y))

2

fX,Y (x, y)

}
= ‖fX,Y (x, y)− fX(x)fY (y)‖22 . (2.85)
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As can be seen, the previous expression is just the squared norm of a difference of densities, which
portrays the distance between the joint PDF and the product of the marginal ones. The simplicity in
its formulation comes with the cost of lacking a connection with the MI, since neither inequalities
or local behavior can be stated in the way that have been established for the SMI.

2.3.4.3 Distance covariance and correlation

Finally, we will briefly address the distance covariance and distance correlation. These are statis-
tical tests of independence for random vectors that do not necessarily have the same dimension.
Again, both tests focus on the property of being zero only for independent random variables, and
they possess a close link with the previous measure ξ(X;Y ).

LetϕX (ω1), ϕX (ω2) andϕX,Y (ω1,ω2) be the CFs, defined in (2.5), of the random variables
X , Y and X×Y , respectively, with ω1 ∈ RN , ω2 ∈ RM . Then, the distance covariance [SRB07]
is as follows:

V2(X;Y, υ) = ‖ϕX,Y (ω1,ω2)− ϕX (ω1)ϕX (ω2)‖2υ , (2.86)

where the norm ‖·‖2υ is defined as

‖gX,Y (ω1,ω2)‖2υ =

∫
RN

∫
RM

|gX,Y (ω1,ω2)|2 υ (ω1,ω2) dω1dω2. (2.87)

Here υ acts as a weight function so that the integral exists and the distance covariance is scale and
rotation invariant. The proposed weight function in [SRB07; SR09] is as follows:

υ (ω1,ω2) =
1

cNcM ‖ω1‖1+N
2 ‖ω2‖1+M

2

, (2.88)

where cP = π(1+P )/2Γ ((1 + P ) /2).
Unlike the quadratic measures of dependence, this measure is the distance between the joint

and the product of the marginal characteristic functions but defined on the space of the weighted
L2-norm. However, since the PDF and the characteristic function are Fourier pairs, the distance
covariance is closely related to the test from (2.85). For an appropriate choice of weight function,
the ξ(X;Y ) and the V2(X;Y, υ) tests are equivalent thanks to the Plancherel-Parseval theorem.

One of the main advantages of this measure is that by expanding the norm and operating with the
characteristic functions, one can determine an estimate that only depends on pairwise differences
among the random variables. Specifically, in [SRB07] it is shown that, for finite first-order moments
of the random variables X and Y , the distance covariance coefficient is equivalent to the following
expression:

V2(X;Y ) = EfX,Y

{
EfX′,Y ′

{∥∥X −X ′∥∥
2

∥∥Y − Y ′∥∥
2

}}
+ EfX

{
EfX′

{∥∥X −X ′∥∥
2

}}
EfY

{
EfY ′

{∥∥Y − Y ′∥∥
2

}}
− 2EfX,Y

{
EfX

{∥∥X −X ′∥∥
2

}
EfY

{∥∥Y − Y ′∥∥
2

}}
, (2.89)

where fX,Y = fX′,Y ′ , fX = fX′ and fY = fY ′ . From this expression, one can easily determine an
empirical estimate of the distance covariance by substituting the expectations with sample means,
as it appears in [SRB07].

Finally, the distance correlation extends the notion of covariance to a one similar to the Pearson
coefficient, and is defined as

R2(X;Y, υ) =

{ V2(X;Y,υ)√
V2(X,υ)

√
V2(Y,υ)

V2(X, υ)V2(Y, υ) > 0

0 V2(X, υ)V2(Y, υ) = 0
, (2.90)

for V2(Z, υ) = V2(Z;Z, υ). These measures are of particular interest since they can be related
to a kernel measure of independence, as will be seen in the following section. However, similar
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to ξ(X;Y ), they do not convey any significance with respect to other information measures other
than resembling a correlation coefficient and following the desirable properties for any dependence
measure from Subsection 2.3.4.1.

2.4 Summary

This chapter has reviewed some information-theoretic measures with advantageous properties for
estimation. In exchange for the classical measures of information classically utilized in the litera-
ture, which are those that derive from the KL divergence, the surrogates gain relevance thanks to
their particular expressions. While there are some concessions in terms of properties, these new
measures provide a fresh view on how to measure uncertainty, dissimilarity, and information, while
at the same time being well-known figures of merit in other areas outside the signal processing and
information theory fields. In particular, the second-order Rényi entropy and the SMI are relevant
surrogates with plenty of potential different applications, but are still partially unknown in digital
communications, applied statistics, machine learning, etc. Moreover, a local approximation anal-
ysis for the SMI has also been conducted. The outcome is that the SMI is an upper-bound except
for the small dependence regime, where it behaves as an approximate estimation of twice the MI.

From the point of view of this thesis, the interest in these surrogates mainly relies upon their
capability of being expressed as a second-order moment. From this observation, the proposal is
to develop methods that are capable of exploiting these expressions by leveraging second-order
statistics. These last techniques have a very long and rich history and much is known of their
capabilities, so it becomes natural to try to unify the two apparently different standpoints. The gap,
however, remains in the nonlinearity presented by an information measure.

In view of this objective, we move to the next chapter to review the definition and uses of kernel
methods. Kernels are particularly designed to cope with nonlinear problems in a linear fashion. It
is then within reason to benefit from the structure of kernels to merge the nonlinear information
measures with well-known techniques that measure correlation, such as PCA and CCA, addressed
at the beginning of this chapter. We will see that, in fact, there are existing techniques that capitalize
on measuring linear dependencies using kernel methods, and we will contextualize them within the
thesis.
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Chapter 3

Information-theoretic kernel methods

Kernel methods are powerful techniques that allow solving complex nonlinear problems in the field
of machine learning. While the origins of a proper kernel function trace back to the beginnings
of the last century [Mer09], its popularity exponentially grew upon its use for binary classification
problems [BGV92], which then was particularized to be known as Support Vector Machine (SVM).
In SVM, the classification is done by optimizing the hyperplane that linearly separates the classes,
defined by the inner product between a given support vector and the data. However, this approach,
referred to as the primal model, can not provide linearly separable classes with nonlinear data.
Instead, the kernels allow for a nonlinear mapping and posterior measurements of inner products in
a high-dimensional feature space, possibly infinite-dimensional, where the problem can be solved
in a linear fashion with high probability. This statement follows directly from Cover’s theorem
[Cov65]. The alternative optimization problem cast by the kernel methods is referred to as the dual
model [CS00]. In the dual model the inner product in the feature space is done implicitly, that is,
the inner product is not explicitly calculated, but directly obtained thanks to the kernel function.
This property constitutes the main advantage of kernels, as computations in a infinite-dimensional
space are prohibitively complex. The advantages provided by the kernels are not limited to SVM,
but can be generalized by any method that is defined by an inner product and may require a high-
dimensional mapping. Thanks to this, kernel methods are widely used in a plethora of nonlinear
problems, and their applications have been spread in the machine learning and signal processing
fields [HSS08; Roj+18; PLH11]. In many of theses cases, we may also refer to the use of kernels
as “kernel signal processing”. On the other hand, the cost of embracing kernel methods is usually
a high computational complexity. Although it may vary case by case, while avoiding explicitly
visiting the feature space, the complexity grows exponentially with the data size.

This chapter is structured as follows. First, the concept of a kernel is disseminated through
an introduction to the kernel function in Section 3.1. The objective is to give a brief background
on what constitutes a kernel and how to use it as a mapping to infinite-dimensional feature spaces
for the purpose of solving linear problems after a nonlinear transformation. In 3.2 we provide a
unified review on kernel methods employed for estimating information measures. We focus on
these techniques that are linked with the measures addressed in the previous chapter. Lastly, in
Section 3.3, a particular case is drawn, where the kernel method arises naturally rather than from
the ground up.

3.1 Reproducing kernel Hilbert spaces

While the theory of kernels was consolidated by Mercer in [Mer09], the following definitions will
follow the ones provided by Aronszajn in [Aro50]. The exposition of the theory of reproducing
kernel Hilbert spaces will also follow a similar structure as the one given in [Vae10].

28



CHAPTER 3. INFORMATION-THEORETIC KERNEL METHODS

Definition 4. A Hilbert space H is a complete inner product space in the sense of Cauchy, i.e.
every Cauchy sequence converges inside the space.

Example 4.1. The L2-space with inner product

〈f, g〉 =
∫

f (x) g (x)dx (3.1)

is a Hilbert space. From all the Lp-spaces, only the L2 is a norm induced by a inner product, thus
a Hilbert space.

In terms of the signal processing field, Hilbert spaces allows to deal with signals with infinite
length, endowing them with the constrain of finite energy. As a consequence, we say that the signal
has finite norm, thus its scalar product is well-defined. Note that, while there are finite-dimensional
Hilbert spaces (e.g. the Euclidean space), here we are interested in the generalization to infinite-
dimensional feature spaces.

Let us now proceed by defining a kernel, which will then be put in relation to a Hilbert space:

Definition 5. A kernel is a continuous, symmetric and positive definite function k : X × X → R
that satisfies

L−1∑
i,j=0

αiαjk (x(i),x(j)) ≥ 0 ∀αi, αj ∈ R, (3.2)

for any set of data {x(i)}i=0,..,L−1 ∈ X .

Example 5.1. The polynomial function

k (x(i),x(j)) =
(
xH(i)x(j) + a

)b (3.3)

with a ≥ 0, is a kernel. Note that the dot product is included in this family 〈x(i),x(j)〉 =
xH(i)x(j), and therefore it is also a kernel.

Example 5.2. The radial basis (or Gaussian) function

g (x(i),x(j)) = exp

(
−‖x(i)− x(j)‖2

2σ2

)
(3.4)

is a kernel.

The kernel function can also be seen as a similarity measure. For instance, the dot product
from Example 5.1 is well-known in this regard, since it intrinsically computes the cosine of the
angle between x(i) and x(j), and is equal to zero for orthogonal vectors. In the Gaussian kernel
case, the similarity measure is clearly seen in the subtraction between two vectors, which is equal
to one for x(i) = x(j), and it tends to zero as the dissimilarity between x(i) and x(j) increases.
By computing similarities of two vectors and returning a single real value, kernels are sought as
descriptors of data.

Let us now consider a function φ : X → H defined on the nonempty set X that provides the
feature map given an input x(i) onto the Hilbert spaceH.

Definition 6. The kernel k : X × X → R is a reproducing kernel of the Hilbert spaceH if

1. For ∀x(i) ∈ X , every function k (x(i), ·) belongs toH.

2. For ∀x(i) ∈ X and ∀φ ∈ H, it satisfies the reproducing property:

〈φ, k (x(i), ·)〉H = φ (x(i)) (3.5)
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Particularly, the reproducing property also states that

〈k (x(i), ·) , k (x(j), ·)〉H = 〈φ (x(i)) , φ (x(j))〉H = k (x(i),x(j)) . (3.6)

If a reproducing kernel exists, then H is called a Reproducing Kernel Hilbert Space (RKHS). It
also follows that a kernel is positive definite only if it is a reproducing kernel. Intuitively, (3.6)
shows that the inner product of the mapped data through the function φ can be directly obtained
as the evaluation of a kernel function. In other words, we can avoid the computation of the inner
product in the Hilbert spaceH thanks to the reproducing kernel.

It may also be useful to define the kernel matrix:

Definition 7. A kernel matrix K ∈ RL×L is a positive definite matrix αTKα ≥ 0 for ∀α ∈ RL,
with elements [K]i,j = k (x(i),x(j)) for {x(i)}i=0,..,L−1 ∈ X .

Due to the definition of a kernel, the kernel matrix is also a Gram matrix since its entries are
given by an inner product {K}i,j = 〈φ (x(i)) , φ (x(j))〉H, satisfying K = KT . In some ways,
kernel matrices have many properties in common with correlation matrices. Both matrices are
Gram matrices, but what differentiates them is in which space the inner product occurs.

Finally, we can state the following theorem:

Theorem 3.1 (Moore-Aronszajn theorem [Aro50]). Let k : X × X → R be a positive definite
function. A unique RKHS exists with reproducing kernel k.

Remark 3.1.1. While a RKHS determines a unique reproducing kernel k, the converse is not true
[SSB+02, Sec. 2.2.3].

The relevance of the Moore-Aronszajn theorem is that it states that any positive definite function
k (x(i),x(j)) is a reproducing kernel. Moreover, since every kernel is positive definite, then every
reproducing kernel is a kernel, which is at the same time a positive definite function. In this way,
this theorem closes a circle of definitions that revolve around the theory of RKHS.

One of the most powerful techniques within RKHS is the famously called “kernel trick”. This
trick refers to the capability of interchanging kernel functions to solve the same problem [SSB+02,
Remark 2.8]. The only restriction is that we work with positive definite kernel functions, which
endows them with the theory of RKHS. In essence, the trick is to actually choose a given kernel
function, and to not worry about the RKHS that its inner product spans. Furthermore, from (3.6),
one does not even worry about computing the inner product. The most exemplary use of the kernel
trick is in the application of SVM, where the dual model is precisely taking advantage of it [SAP10].

Kernel methods can then be described as a simple approach to complex problems. It is pre-
cisely the flexibility provided by the reproducing property and the kernel trick what makes this
approach attractive for a plethora of different problems. Despite this, a blind mapping onto a
infinite-dimensional feature space may entail other problems that may be avoidable with lower-
dimensional representations of the data. Specifically, as the dimensionality increases, the embed-
ded data onto the feature space tends to become sparse. The result is that some problems may tend
to be ill-conditioned. This effect is generally referred to as “the curse of dimensionality” [BN06].
This problem can be solved in two ways. The first is to exponentially increase the number of data
available, in hopes that the sparsity is reduced in the high-dimensional space. Since the amount of
data may vary per application, this solution is often disregarded. The second and more common
solution is regularization, which is usually based on an ad hoc approach. Regardless of the curse
of dimensionality, many kernel-based algorithms enjoy from multiple benefits of its intrinsic high-
dimensional feature space. In most algorithms, the sole capability of solving nonlinear problems
outweighs, for example, the need for regularization.

3.2 Kernel measures of information

In the last decades, the theory of RKHS has been harnessed for numerous applications in the fields
of probability and statistics, particularly in statistical learning and inference [BT11]. This last group
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includes the estimation of measures of information [Xu+08; ZC06]. Since information measures
can be seen as nonlinear descriptors of random variables, it should be within reason the use of
nonlinear techniques such as kernel methods. The rationale endowed to these problems is shared
among them: a nonlinear mapping provided by the kernel functions should help to solve the prob-
lem in a linear fashion. These linear solutions are frequently found in measures of correlation and/or
covariance, thus second-order statistics. This is particularly interesting as it is a first approach to
relate information theory measures with second-order statistics, and they shall be used as a basis
for the thesis. However, as will be noted along the rest of this section, the study of correlation and
covariance operators in a possibly infinite-dimensional feature space comes with a cost. While it is
true that we can relate probabilistic measures to the dissimilarity measures spanned by the kernels
[ZC06], the analysis of these operators in the Hilbert space is often a difficult task. These opera-
tors need to be reduced in a matrix form through a lower-dimensional representation of the Hilbert
space, while still needing regularization techniques to avoid ill-conditioned problems, or matrices
in this case.

In the sequel, some of the most important approaches to the use of RKHS to measure informa-
tion will be provided. In each case, the focus will become how such measures become manageable
from the point of view of an empirical estimate, and how these estimates relate to the original
information measure.

3.2.1 Kernel principal component analysis

As a starting point, we will address the kernelized version of the PCA. While in its original formu-
lation it is considered a measure of linear dependence (within the components of the same data-set),
the kernel method promotes this dependence to a nonlinear one. Simply put, Kernel Principal Com-
ponent Analysis (KPCA) performs PCA in the feature space. Consequently, if the kernel function
used to map the data onto the feature space is the dot product, then both methods are equivalent.

For now, the KPCA does not hold any apparent relationship with any of the previously covered
information measures. However, we will see in Chapter 4 how the KPCA is actually related to an
entropy measure. Therefore, it is still relevant to discuss how the PCA can be handled within the
theory of RKHS, and to serve as a basis for the kernelized version of the CCA, which does directly
relate to an information measure.

Let gX ∈ K, where K is a RKHS with associated kernel k. Consider the feature map

φX (X) = k (X, ·) ∀φX ∈ K ∀X ∈ X . (3.7)

Thanks to the reproducing property from (3.5), we can express

gX (X) = 〈φX (X) , gX〉K . (3.8)

The equivalent formulation of the PCA from (2.25) is then

ρKPCA (X) = max
gX

Cov {〈φX (X) , gX〉K , 〈φX (X) , gX〉K} . (3.9)

This formulation takes advantage of the kernel trick in order to define the KPCA as the covariance
of the inner product of a given feature space, following similar steps as in [BJ02]. Next, we will
consider a finite-dimensional subspace of the RKHS in order to formulate an empirical estimate of
this measure.

For now, assume that the data is centered in the feature space, i.e. EfX {gX (X)} = 0. Let
x(i) ∈ RN be L i.i.d. observations with 0 ≤ i ≤ L − 1, whose images in the feature space are
ΦX = [φX (x(0)) , ...,φX (x(L− 1))]. Then, the empirical representation of the autocovariance
is expressed as

Ĉov {〈φX (X) , gX〉K , 〈φX (X) , gX〉K} =
1

L

L−1∑
i=0

〈φX (x(i)) , gX〉K 〈φX (x(i)) , gX〉HK .

(3.10)
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Equivalently, gX can be linearly decomposed by the images of the feature space such that gX =∑L−1
k=0 ukφX (x(k)). This linear combination serves as the principal component that lies in the

feature space [KG03]. Then, the autocovariance from (3.10) becomes

Ĉov {〈φX (x) ,gX〉K , 〈φX (x) ,gX〉K} (3.11a)

=
1

L

L−1∑
i=0

〈
φX (x(i)) ,

L−1∑
k=0

ukφX (x(k))

〉H

K

〈
φX (x(i)) ,

L−1∑
l=0

ulφX (x(l))

〉
K

(3.11b)

=
1

L

L−1∑
i=0

L−1∑
k=0

L−1∑
l=0

u∗kk (x(k),x(i)) k (x(l),x(i))ul (3.11c)

=
1

L
uHKKu. (3.11d)

By substituting the previous expression into (3.9), the supremum then translates to the maximum
over the vector u. However, similar to the trivial solution to the original PCA problem in (2.25),
we either constrain the principal components with

gH
XgX =

L−1∑
k=0

L−1∑
l=0

u∗kφ
H
X (x(k))φX (x(l))ul = uHKu = 1, (3.12)

or perform the equivalent maximization problem with uHKu in the denominator. Lastly, we will
consider the case in which the data is not centered in the feature space. Although this is an apparent
difficult task, it can be shown [SSM98] that the kernel matrix of the centered variables in the feature
space corresponds to

K̄ = P⊥
1KP⊥

1 , (3.13)

whereP⊥
1 is the projection matrix from (2.27). By gathering all previous considerations, the equiv-

alent problem formulation is the following:

ρ̂KPCA (X) = max
u

1

L

uHK̄K̄u

uHK̄u
. (3.14)

Following the Rayleigh quotient (2.29), the solution to the maximization problem is equivalent to
finding the maximum eigenvalue of the generalized eigenvalue problem

1

L
K̄K̄U = K̄UΛ. (3.15)

Since K̄ is a symmetric (Gram) matrix, the previous eigenvalue problem is equivalent to solving

1

L
K̄U = UΛ, (3.16)

whose largest eigenvalue leads to the following empirical estimate

ρ̂KPCA (X) =
1

L
||K̄||2. (3.17)

3.2.2 Kernel canonical correlation analysis

Following the KPCA, we will now discuss the tractable version of the HGR coefficient from Sub-
section 2.3.4.1. Thanks to the RKHS framework, it is actually possible to determine an empirical
estimate of the HGR by letting the functions gX and gY be elements of RKHSs. This imple-
mentation is referred to as the Kernel Canonical Correlation Analysis (KCCA) [BJ02], since its
empirical estimate is obtained by solving the CCA problem through kernel matrices, similarly as
with the KPCA.
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Let gX ∈ K and gY ∈ L, where K and L are RKHSs with associated kernels k and l, respec-
tively. Consider the feature maps

φX (X) = k (X, ·) , φY (Y ) = l (Y, ·) ∀φX ∈ K ∀φY ∈ L ∀X ∈ X . (3.18)

Again, following the application of the reproducing property as in (3.11), we can express

gX (X) = 〈φX (X) , gX〉K ,

gY (Y ) = 〈φY (Y ) , gY 〉L . (3.19)

The equivalent formulation of the HGR from (2.78) is then

ρKCCA (X;Y ) = sup
gX ,gY

Corr {〈φX (X) , gX〉K , 〈φY (Y ) , gY 〉L} (3.20a)

= sup
gX ,gY

Cov {〈φX (x) , gX〉K , 〈φY (y) , gY 〉L}√
Var {〈φX (x) , gX〉K}Var {〈φY (y) , gY 〉L}

. (3.20b)

Again, let us assume, for now, that the data is centered in the feature space, i.e. EfX {gX (X)} =
EfY {gY (Y )} = 0. Let x(i) ∈ RNx and y(i) ∈ RNy be L i.i.d. observations from the ran-
dom variables X and Y with 0 ≤ i ≤ L − 1, whose images in the feature space are ΦX =
[φX (x(0)) , ...,φX (x(L− 1))] and ΦY = [φY (y(0)) , ...,φY (y(L− 1))], respectively. The
empirical representation of the correlation is then

ˆCorr {〈φX (x) , gX〉K , 〈φY (y) , gY 〉L} =
1
L

∑L−1
i=0 〈φX (x(i)) , gX〉K 〈φY (y(i)) , gY 〉HL√

1
L

∑L−1
i=0 〈φX (x(i)) , gX〉K 〈φX (x(i)) , gX〉HK

√
1
L

∑L−1
i=0 〈φY (y(i)) , gY 〉L 〈φY (y(i)) , gY 〉HL

.

(3.21)

The functions gX and gY can be linearly decomposed by the images of the feature space such that
gX =

∑L−1
k=0 ukφX (x(k)) and gY =

∑L−1
l=0 vlφY (y(l)). These linear combinations serve as the

canonical variates that lie in the feature space [KG03]. Then, the covariance from (3.21) becomes

Ĉov {〈φX (x) , gX〉K , 〈φY (y) , gY 〉L} (3.22a)

=
1

L

L−1∑
i=0

〈
φX (x(i)) ,

L−1∑
k=0

ukφX (x(k))

〉H

K

〈
φY (y(i)) ,

L−1∑
l=0

vlφY (y(l))

〉
L

(3.22b)

=
1

L

L−1∑
i=0

L−1∑
k=0

L−1∑
l=0

u∗kk (x(k),x(i)) l (y(l),y(i)) vl (3.22c)

=
1

L
uHKLv, (3.22d)

where u and v are L-dimensional column vectors, and K ∈ RL×L and L ∈ RL×L are the kernel
matrices from Definition 7 with entries [K]i,j = k (x(i),x(j)) and [L]i,j = l (y(i),y(j)). The
variances correspond to the autocovariance from (3.11) with

V̂ar {〈φX (x) , gX〉K} =
1

L
uHKKu (3.23)

V̂ar {〈φY (y) , gY 〉L} =
1

L
vHLLv. (3.24)

By gathering all previous derivations, and considering that the kernel matrices have been centered
in the feature space (3.13), we then have

ρ̂KCCA (X;Y ) = max
u,v

uHK̄L̄v√
uHK̄K̄u

√
vHL̄L̄v

. (3.25)
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Clearly, since we have moved from functions to vectors, the supremum is now taken as the u and
v that maximizes the canonical correlate, or in this case, the estimate of the HGR coefficient. The
equivalent generalized eigenvalue problem AW = BWΛ can now be determined similarly as in
the original CCA problem (2.38) with

A =

[
0 K̄L̄

L̄K̄ 0

]
, B =

[
K̄K̄ 0
0 L̄L̄

]
, W =

[
U
V

]
. (3.26)

Since the HGR coefficient is specifically the maximum above all the possible solutions, its estima-
tion corresponds to only the largest eigenvalue.

Nonetheless, this tractable computation of the HGR coefficient carries some problems. On the
one hand, the problem yields ρ̂KCCA (X;Y ) = 1 for u, and v being columns of L−1K, which
occurs when the kernel matrices are invertible [HSS04]. Or, in other words, finding the correlation
coefficient becomes trivial. This is prone to happen if the dimensionality of the feature space is
much higher than the one of the input space, a characteristic indicator of overfitting [Vae10]. For
instance, the classic Gaussian kernel spans a feature space of infinite dimensionality, enticing the
need of regularization. Either way, this issue is in line with the common problems of kernel methods
addressed at the end of Section 3.1. To avoid overfitting, the usual proposed solution [BJ02] is to
regularize such that the matrix (3.25) becomes

ρ̂KCCA (X;Y ) = max
u,v

uHK̄L̄v√
uHK̄K̄u+ εuHK̄u

√
vHL̄L̄v + εvHL̄v

, (3.27)

where ε > 0 is the regularization constant. This procedure can be seen as an equivalent to per-
forming the Tikhonov regularization [BLG08], a commonly method used for regularizing overfitted
problems with high number of parameters.

On the other hand, not any kernel function preserves the proprieties of the HGR coefficient.
As shown in [Gre+05b], ρKCCA (X;Y ) = 0 for independent random variables if K and L are the
sets of bounded and continuous functions, i.e. the kernels k and l are continuous and bounded. It
is also worth noting that in [BJ02] the kernels were required to be smooth functions, which is a
stronger condition than continuous functions. Specifically, the KCCA usually requires the kernel
functions to be smooth [BJ02] and bounded functions [Gre+05b]. If these two conditions are met,
then we can ensure that ρKCCA (X;Y ) = 0 for independent random variables.

Finally, by proceeding similarly as with the CCA [HSS04], we can determine that the HGR
coefficient can be estimated by solving either of the two following eigenvalue problems:{(

K̄+ εI
)−1

L̄
(
L̄+ εI

)−1
K̄U = Λ2

kU(
L̄+ εI

)−1
K̄
(
K̄+ εI

)−1
L̄V = Λ2

lV
, (3.28)

where the diagonal matrices Λ2
k and Λ2

l contain all the squared kernelized canonical correlations.
This time, since K̄ and L̄ have the same dimensionality, Λ2

k and Λ2
l are equivalent and contain all

the same eigenvalues. Therefore, we can express the estimated KCCA coefficient as

ρ̂KCCA (X;Y ) =

√
λ1

((
K̄+ εI

)−1
L̄
(
L̄+ εI

)−1
K̄
)
. (3.29)

This expression can be further simplified by operating with the largest eigenvalue such thatλ1 (AB) =
λ1 (BA) (which can be derived from [HJ12], Theorem 1.3.22). Then, we can finally express

ρ̂KCCA (X;Y ) =
√
λ1 (ΓkΓl) (3.30)

for Γk = K̄
(
K̄+ εI

)−1 and Γl = L̄
(
L̄+ εI

)−1.
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3.2.3 Constrained covariance

The regularization problem of KCCA is, indeed, its rigid form that follows from the HGR coef-
ficient and its properties. While the whitening process of the correlation operator ensures a full-
fledged dependence measure, it ends up being detrimental to the estimation process. This obser-
vation led to Gretton et al. [Gre+05c] to explore a different RKHS based methods to explore less
restrictive dependence measures. Specifically, they proposed to switch the correlation operator to
a covariance operator, referred to as the Constrained Covariance (COCO). This interchangeability
can be done at the expense of dropping some of the properties from Subsection 2.3.4.1, mainly
the equality to one for deterministic dependence. The advantage is that the covariance and corre-
lation operators behave identically under independent random variables. Therefore, the focus in
[Gre+05c] shifts to a test of independence while providing a more stable measure without the need
for regularization.

The ultimate goal of the COCO is to determine the maximum cross-covariance between the
spaces spanned by the functions gX and gY . Following the same terms used for defining the HGR
coefficient, the COCO is defined as

ρCOCO (X;Y ) = sup
gX ,gY

Cov {gX (X) , gY (Y )} . (3.31)

Again, let gX ∈ K and gY ∈ L be functions that map the data onto the RKHSs K and L, and let k
and l be the kernels associated to these RKHSs. Following (3.20), we can determine

ρCOCO (X;Y ) = sup
gX ,gY

Cov {〈φX (X) , gX〉K , 〈φY (Y ) , gY 〉L} , (3.32)

where φX and φY are the feature maps as in (3.18). Then, we can outright express the covariance
operator as it appears in (3.22):

Ĉov {〈φX (x) , gX〉K , 〈φY (y) , gY 〉L} =
1

L
uHK̄L̄v, (3.33)

where the data has been centered in the feature space. The empirical COCO then becomes

ρ̂COCO (X;Y ) = max
u,v

1

L
uHK̄L̄v. (3.34)

We can also express ρ̂COCO (X;Y ) in terms of the generalized eigenvalue problem [Gre+05b] with

A =
1

L

[
0 L̄
K̄ 0

]
, B =

[
I 0
0 I

]
, W =

[
U
V

]
, (3.35)

whose maximum eigenvalue leads to the following empirical estimate:

ρ̂COCO (X;Y ) =
1

L
||K̄1/2L̄1/2||2 =

1

L
||K1/2P⊥

1L
1/2||2, (3.36)

where the square root of a positive semi-definite matrix (which kernel matrices are) M1/2 denotes
M1/2M1/2 = M.

Similarly to the KCCA, the COCO also requires some conditions on the kernels. While the set
of continuous and bounded functions is sufficient for ρCOCO (X;Y ) = 0 under independent random
variables, in [Gre+05b] it is argued that these conditions provide a rich choice of functions that may
not guarantee good convergence properties of the empirical estimate ρ̂COCO (X;Y ). Therefore,
they propose to limit k and l to be universal kernels, that is, kernel functions whose RKHS is
dense in the space of continuous functions [MXZ06]. Either way, the most well-known and used
kernel, the Gaussian kernel from (3.4), meets all of the previous properties.
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3.2.4 Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) [Gre+05a] is an extension of the COCO that
does not compute only the largest covariance coefficient but all the covariance operator spectrum.
This way, this generalization accomplishes two things: it does not require regularization due to
measuring covariance, and drops the supremum carried over from the HGR coefficient, which
allows for an easier measurement both statistically and in computational complexity. At indepen-
dence, it behaves identically to the COCO. Hence, the key point of developing an independence
measure is preserved.

In order to see the HSIC, let us begin by defining the Hilbert-Schmidt (HS) norm:

Definition 8. Let H1 and H2 be Hilbert spaces with othonormal bases fn and gm, respectively,
and let A : H1 → H2 be a bounded linear operator. The HS norm of A is then defined as

‖A‖2HS =
∑
n,m

∣∣〈fn, Agm〉H2

∣∣2 . (3.37)

In the case of finite-dimensional Euclidean spaces, the HS norm corresponds to the Frobenius
norm. For instance, let A ∈ RN×M be a matrix operator A : RM → RN with left and right
singular vectors correspond to {fn}n=1,...,N and {gm}m=1,...,M , respectively. On the one hand, the
Frobenius norm is defined as

‖A‖F =

√∑
n,m

∣∣∣[A]n,m

∣∣∣2 =
√√√√min(N,M)∑

i

σ2
i (A) = tr

(
AAT

)
= tr

(
ATA

)
. (3.38)

On the other hand, the squared HS norm from (3.37) becomes

‖A‖2HS =
∑
n,m

∣∣〈AT fn,gm
〉∣∣2 =∑

n,m

∣∣fHn Agm
∣∣2 =∑

n,m

∣∣∣[Σ]n,m

∣∣∣2 = min{N,M}∑
i

σ2
i (A) = ‖A‖2F ,

(3.39)
where Σ = FHAG is the diagonal matrix that contains the singular values σi, and F and G are
the matrices that contains the left and right singular vectors. It is also straightforward to see that

‖A‖2HS =

min{N,M}∑
i

σ2
i (A) ≥ σ2

1 (A) = ‖A‖22 , (3.40)

or, equivalently, ‖A‖HS ≥ ‖A‖2, where equality holds for N = M = 1 or for zero-valued norms.
Consider now the RKHSs K and L with mapping functions gX ∈ K and gX ∈ L. The HSIC

is then similar to the COCO but, instead of taking only the supremum, it measures the HS norm of
the covariance such that

ρHSIC (X;Y ) = ‖Cov {〈φX (X) , gX〉K , 〈φY (Y ) , gY 〉L}‖
2
HS . (3.41)

The empirical measure of the HSIC can then be directly obtained by substituting the spectral norm
from (3.36) with the squared HS norm. However, as we have spanned the data onto a finite di-
mensional subspace of an infinite-dimensional Hilbert space, the HS norm becomes the Frobenius
norm, thus becoming easily attainable. The estimator is then expressed as follows

ρ̂HSIC (X;Y ) =

(
1

L

∥∥∥K1/2P⊥
1L

1/2
∥∥∥

HS

)2

=
1

L2
tr
(
L1/2P⊥

1K
1/2K1/2P⊥

1L
1/2
)

(3.42a)

=
1

L2
tr
(
P⊥

1KP⊥
1L
)
, (3.42b)
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where the final expression is obtained thanks to the circularity of the trace. It also should be noted
that in [Gre+05a] the HS norm is averaged over (L− 1)2 elements instead of L2 as in the previous
expression. While (L − 1)2 is in line with the unbiased sample covariance, due to the Bessel
correction, here we will express the empirical HSIC with L2 to maintain its direct derivation from
the COCO.

Due to the inequality from (3.40), the HSIC upper-bounds the COCO such that

ρHSIC (X;Y ) ≥ ρ2COCO (X;Y ) , (3.43)

where equality holds for ρHSIC (X;Y ) = ρCOCO (X;Y ) = 0. Therefore, both COCO and HSIC
are valid options to detect independence. However, to compute the trace of a matrix is compu-
tationally less complex than performing the complete SVD. Since the dimensionality of kernels
matrices increases exponentially with the data-set length, this reduced complexity advantage be-
comes significant rapidly.

Moreover, the HSIC has a strong relationship with the distance covariance from Subsection
2.3.4.3. To see this connection, let us express the HSIC in terms of expectations over kernel func-
tions. From [Gre+05a], the HSIC becomes

ρHSIC (X;Y ) = EfX,Y

{
EfX′,Y ′

{
k
(
X,X ′) l (Y, Y ′)}}

+ EfX

{
EfX′

{
k
(
X,X ′)}}EfY

{
EfY ′

{
l
(
Y, Y ′)}}

− 2EfX,Y

{
EfX

{
k
(
X,X ′)}EfY

{
l
(
Y, Y ′)}} . (3.44)

It is worth noting that the previous expression can be directly obtained by expanding the covariance
from (3.41) with 〈φX (X) , φX (X ′)〉K = k (X,X ′) and 〈φY (Y ) , φY (Y ′)〉L = l (Y, Y ′). From
here, the connection between the expansion of the distance covariance in (2.89) and (3.44) becomes
straightforward. For a complete proof through the use of semimetrics, the reader is referred to
[Sej+13]. However, by realizing that the Euclidean norm is a form of a linear kernel function, the
equivalence becomes a clear case of the kernel “trick”. Here, the expression in (3.44) generalizes
the concept by letting k and l be any kernel function, but the underlying measure remains equivalent.
In essence, the following expression states a generalized distance correlation measure:

R2 (X;Y ) =
‖Cov {〈φX (X) , gX〉K , 〈φY (Y ) , gY 〉L}‖

2
HS

‖Var {〈φX (X) , gX〉K}‖HS ‖Var {〈φY (Y ) , gY 〉L}‖HS
, (3.45)

where the numerator is directly the HSIC, and the original measure of distance correlation can be
recovered with the right choice of kernel functions. By following the same steps as in (3.42), we
can write

R̂2 (X;Y )=
1
L2

∥∥K1/2P⊥
1L

1/2
∥∥2

HS
1
L

∥∥K1/2P⊥
1K

1/2
∥∥

HS
1
L

∥∥L1/2P⊥
1L

1/2
∥∥

HS
=

tr
(
P⊥

1KP⊥
1L
)√

tr
(
P⊥

1KP⊥
1K
)

tr
(
P⊥

1LP
⊥
1L
) .

(3.46)

3.2.5 Normalized cross-covariance operator

Lastly, we will finish the kernel methods for measuring information with the Normalized Cross-
Covariance Operator (NOCCO). The core idea of the NOCCO is to provide an alternative to
the KCCA with better, and known, consistency [Fuk+07; FBG07]. Similarly with the HSIC, the
NOCCO can also be seen as the generalization to the HS norm of the KCCA. Thanks to this, the
NOCCO becomes a measure of information rather than independence, with a close link with other
well-known measures in the literature.

The NOCCO is defined as follows:

ρNOCCO (X;Y ) = ‖Corr {〈φX (X) , gX〉K , 〈φY (Y ) , gY 〉L}‖
2
HS
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=

∥∥∥∥∥ Cov {〈φX (x) , gX〉K , 〈φY (y) , gY 〉L}√
Var {〈φX (x) , gX〉K}Var {〈φY (y) , gY 〉L}

∥∥∥∥∥
2

HS

. (3.47)

Note that this expression is equivalent to (3.20), but with the HS norm instead of the supremum.
By operating with the empirical matrices obtained by the finite-dimensional representations of the
covariance operators [Fuk+07], similarly as in (3.42), the empirical NOCCO is then

ρ̂NOCCO (X;Y ) = tr (ΓkΓl) , (3.48)

where Γk = K̄
(
K̄+ εI

)−1 and Γl = L̄
(
L̄+ εI

)−1 as in (3.30). The NOCCO can then be seen
as a generalization of the KCCA where all the spectrum of some expression with kernel matrices
is computed instead of only the largest eigenvalue. Also note that regularization is still needed in
order to properly operate with the inverses.

Moreover, it is shown in [FBG07] that the NOCCO is corresponds to the SMI, as it is defined
in Subsection 2.3.3. The proof of this relationship is rather complex and out of the scope of this
subsection, thus it will not be detailed. However, in [Fuk+07, Thm. 4] the statement is proved
through the eigenvalue decomposition of the correlation and covariance operators, and whose result
is referred to as the kernel-free integral expression. In particular, the result is that ρNOCCO (X;Y ) =
Is (X;Y ) under some assumptions. Furthermore, they also show that the empirical NOCCO is
consistent with

lim
L→∞

ρ̂NOCCO (X;Y ) = ρNOCCO (X;Y ) . (3.49)

Therefore, the SMI becomes the measure of information that is estimated by (3.48). This observa-
tion is important since it directly relates a kernel measure with an expression of some probability
density functions. While the correlation and covariance in the data space only capture the first
moments of a random variable, the correlation and covariance in the infinite-dimensional feature
space are also capable of representing the higher-order moments that are required to define com-
plex functions such as a PDF. This will become a core aspect of the thesis as we develop other
measure of information based on a mapping of the data onto other, more controlled, feature spaces.

3.2.6 Unified kernel map

Once all the kernel measures of information are defined, we can determine a map of connections
between all of them and their significance in relation to other measures of information. Figure
3.1 shows the path followed by the rationale provided in this subsection. Apart from defining the
KPCA, which serves to generalize to the KCCA, we have begun by trying to estimate the HGR
coefficient by means of kernel methods. This has required to determine a kernelized version of
the CCA, based on measuring the maximum correlation (spectral norm) after some mapping to the
feature space. Then, the COCO tries to avoid the computational problems associated to the matrix
inverses required in KCCA by measuring only the covariance in the feature space. The HSIC
generalizes this last concept by measuring and summing up all the covariance coefficients instead
of only the largest (HS norm). By doing this, the HSIC gains in granularity and becomes more
sensible to potential small covariance coefficients that also denote dependence, an information lost
by measuring only the largest one. And finally, we realize that, in order to asses a proper measure
of information, the normalization with the marginal variances is required, leading to the NOCCO.
Thanks to both measuring all the spectrum and being a proper measure of information, the NOCCO
can be uniquely determined as an estimator of the SMI. All the same, we realize that the SMI is
intrinsically related to measuring second-order in a high dimensional space. Generally speaking,
here we can observe a trend between these statistical methods: only those that are designed as
measures of correlation have an information measure counterpart. While a similar relationship has
been done with the HSIC and a quadratic measure of information, namely the distance covariance,
this last one lacks a strong connection with the MI or its surrogates. As a result, this joint rationale
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KCCA COCO

HSICNOCCO

HGR

SMI

Supremum

HS norm

CovarianceCorrelation

Statistical methodMeasure of information

Figure 3.1: Block diagram of the relationship between different kernel measures and their measures
of information counterparts.

further suggests that the SMI is the suitable measure if we want to estimate information through
second-order statistics.

On an additional note, the connection between the HGR and SMI has not been completely ad-
dressed in this subsection since it would require an additional step to all the previous formulations.
Specifically, it is neither based on a correlation measure by itself nor it is strictly defined as the HS
norm of some operator. The red dashed line indicates these additional required steps, although it
can be crossed under some mild assumptions. This issue will be addressed in the following chapter,
jointly with a finite-dimensional representation of the feature space. However, the relationship be-
tween these two measures can be surmised by realizing that, under some specific matrix operator,
the HGR becomes the largest eigenvalue (3.30) and the SMI the sum of all of them (3.48).

3.3 The second-order Rényi entropy

So far, some estimators that rely on the RKHS have been reviewed. Their common goal is to
measure some covariance/correlation operator in a Hilbert space of unknown dimensionality thanks
to kernel methods. Next, we will see the opposite path. Instead of relying on kernels from the
beginning, some special cases lean into kernel methods in a natural manner. In this case, we recover
the second-order Rényi entropy due to its expression as the L2-norm of a PDF, and we will see how
this property leads to kernel methods naturally. The derivation of the estimator presented in this
section first appeared in [AH84], and the rationale will be based on the work of Príncipe et al. in
[Prí10], although we will introduce further concepts in order to broaden the discussion, such as
its connection with unbiased statistics. For this reason, we begin by introducing these concepts to
enhance the afterward exposition of the estimation of second-order Rényi entropy.

3.3.1 Parzen-Rosenblatt window estimate

A direct procedure for the estimation of information measures is to first estimate the PDFs, and then
to estimate the desired expression [MRL95; Bei+97]. These kind of methods are called “plug-in”
estimators, as they plug the estimate of the probability function in the functional of interest. The
most well-known plug-in estimator is the one referred to as the Kernel Density Estimate (KDE).

39



3.3. THE SECOND-ORDER RÉNYI ENTROPY

However, the definition of a kernel in this algorithm is different to the one given in Definition 5.
For this reason, and to not mistake terminology, this estimation methodology will be denominated
here as the Parzen-Rosenblatt window estimate [Par62; Ros56]. For clarity, let us first begin by
univariate random variables, and generalize to multivariate random variables afterwards.

Definition 9. A window gh : R→ R with bandwidth h is a function that satisfies

1. It is nonnegative gh (x) ≥ 0, ∀x ∈ R.

2. It has unit area
∫
R gh (x) dx = 1.

3. It is finite with lim
|x|→∞

gh (x) = 0.

Generally speaking, window functions are considered to be zero-valued outside of some in-
terval. Particularly, it is the bandwidth of the function that determines the interval in which the
function is not zero-valued. While this interval may vary from function to function in terms of h,
the bandwidth is integrated in the definition as a general approach to bandwidth-limited functions.

Example 9.1. The Gaussian window is defined as

gh (x) =
1√
2πh2

exp

(
− x2

2h2

)
, (3.50)

where the bandwidth coincides with the standard deviation of the Gaussian PDF.

Many more window functions could be defined as examples, but we will limit to the Gaussian
window as it is the one that will be mainly used in the derivation of estimators of information.

Consider L i.i.d. samples {x(i)}i=0,...,L−1 drawn from the random variable X ∈ R with prob-
ability distribution fX (x). An estimate of fX (x) is given by

f̂X (x) =
1

L

L−1∑
i=0

gh (x− x(i)) . (3.51)

As can be seen, the estimate is a uniformly weighted average of the window function centered at the
samples x(i). For f̂X (x) to be a PDF, the first two properties from Definition 9 must be ensured.
It is also worth noting that we are employing a different definition of the estimator than in [Par62],
which is the usual depiction of the Parzen-Rosenblatt window estimate in the literature. The reason
to include the bandwidth parameter inside the window function, instead to (3.51), is just for clarity
of exposition in forthcoming expressions.

In [Par62] the bias and variance of the estimator are also evaluated, which correspond to

Bias
{
f̂X (x)

}
= EfX

{
f̂X (x)

}
− fX (x) =

h2

2

∂2fX (x)

∂x2

∫
R
z2g1 (z) dz +O

(
h2
)
, (3.52)

Var
{
f̂X (x)

}
= EfX

{∣∣∣f̂X (x)− fX (x)
∣∣∣2} =

1

hL
fX (x)

∫
R
g21 (z) dz +O

(
1

hL

)
. (3.53)

As can be seen, this is a biased estimator for h > 0, as any window function with a given bandwidth
smooths the underlying PDF. In particular, it is well-known that the expected estimated probabil-
ity density is just the convolution of the target density with the window function [Sil86]. To see
that relation, let X0, ..., XL−1 be L independent random variables that share the same distribution
fXi (x) = fX (x). Then we have

EfXi

{
f̂X (x)

}
=

1

L

L−1∑
i=0

EfXi
{gh (x−Xi)} = EfXi

{gh (x−Xi)} (3.54a)
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=

∫
R
gh (x−Xi) fX (Xi) dXi = (gh ∗ fX) (x) . (3.54b)

The expected PDF then corresponds to the true one fX (x) for h = 0, since (3.54) is then equiv-
alent to the convolution with a Dirac delta function δ (x) and given that (δ ∗ fX) (x) = fX (x).
This result is in line with what Parzen wanted to achieve in [Par62], which was an asymptotically
unbiased estimator for L → ∞ at the same time as h → 0. However, in practical applications, h
cannot be a null (or too small) value, since the number of available data is limited, which implies
that Var{f̂X (x)} would increase infinitely. As a result, the bias-variance relationship is a trade-
off that depends primarily on the window bandwidth. On the positive side, Bias{f̂X (x)} tends
to zero quadratically with h for h → 0, while Var{f̂X (x)} increases linearly, hence small values
of h are still preferred. Numerous attempts to solve this conundrum have been provided in the
literature [Che15]. The most used and accepted is possibly the Silverman’s rule of thumb [Sil86].
Concretely, this rule states that, for Gaussian data with a Gaussian kernel, the optimal choice of
kernel bandwidth is

hS = σ̂

(
4

3L

)1/5

, (3.55)

where σ̂ is the empirical standard deviation of the data {x(i)}i=0,...,L−1. This bandwidth is opti-
mized by minimizing the Mean Integrated Squared Error (MISE), defined as

MISE
{
f̂X (x)

}
=

∫
R

(
f̂X (x)− fX (x)

)2
dx. (3.56)

Although this optimal bandwidth is derived under the Gaussian assumption, it is generally used as
a recurrent bandwidth with generally good performance for Gaussian windows. For that, it is a rule
of thumb that avoids complex computations for different underlying distributions.

For N -variate random variables X ∈ X with X ⊆ RN , one has just to take multivariate
window functions such that

f̂X (x) =
1

L

L−1∑
i=0

gH (x− x(i)) (3.57)

for x(i) = [x1(i), ..., xN (i)]T and H ∈ RN×N being the symmetric and positive definite band-
width matrix. In this case, the multivariate window function can also be easily defined by gener-
alizing the properties from Definition 9 to a multivariate function. Generally speaking, isotropic
Gaussian windows are typically used. These are of the form

gH (z) =
1

(2π)N/2 |H|1/2
exp

(
−1

2
zTH−1z

)
, (3.58)

where H = h2IN , which can be simplified to

gh (z) =
1

(2π)N/2 hN
exp

(
−‖z‖

2

2h2

)
. (3.59)

In the multivariate case, the relationship between the kernel bandwidth and the bias is main-
tained as in (3.52), but the variance decreases exponentially with N [Sil86, Sec. 4.3] such that

Var
{
f̂X (x)

}
=

1

hNL
fX (x)

∫
RN

g2H (z) dz+O

(
1

hNL

)
, (3.60)

which maintains the desired bias-variance trade-off. Lastly, by following similar steps to those in
(3.56), Silverman’s rule is then as follows:

hS = σ̂

(
4

(2N + 1)L

) 1
N+4

, (3.61)

where σ̂ =
∑N

n=1 σ̂n/N is the average marginal standard deviation, with σ̂n being the sample esti-
mator of the n-th variable. These notions will become useful for defining estimators of information
of multivariate random variables.
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3.3.2 Unbiased statistics

Another important concept that will naturally emerge from the estimator of entropy is the class of
unbiased statistics or, in short, U-statistics. This class of statistics was introduced by Hoeffding in
[Hoe48], where he was concerned about characterizing the statistics that are asymptotically normal
under a given structure. From a general point of view, this class is a generalization of the sample
average that allows for the derivation of minimum-variance unbiased estimators. For this reason,
this class of statistics is usually employed in nonparametric estimation [Ser09].

Consider L i.i.d. observations x (i) of the random variable X with density function fX (x) for
i = 0, ..., L− 1, and consider the parameter θ for which there is an unbiased estimator of the form

θ = EfX {g (x (i1) , ..., x (iN ))} (3.62)

for some symmetric function g 1, that is

g (z1, ..., zN ) =
1

N !

∑
PN

g (zp1 , ..., zpN ) , (3.63)

where the summation is over the set PN of all permutations of the N -dimensional vector in the
argument. Again, this notion can be generalized to multivariate random variables, but we will
remain with the univariate case for clarity of exposition.

Definition 10. Let {x (i)}i=0,..,L−1 have the same distribution, and consider a symmetric function
g (z1, ..., zN )withN ≤ L. The U-statistic of the parameter θ is given by the average of the function
g over all the observations:

U =
1(
L
N

) ∑
PL,N

g (x (i1) , ..., x (iN )) , (3.64)

where the summation is over the set PL,N of all possible combinations over the binomial coefficient(
L
N

)
.

Example 10.1. (Sample mean) Consider N = 1 and the function g (z) = z. The U-statistic of g
is the sample mean:

U =
1

L

L−1∑
i=0

x(i). (3.65)

Example 10.2. (Sample variance [Ser09]) Consider N = 2 and g (z1, z2) = 1
2 (z1 − z2)

2. The
U-statistic of g is the sample variance:

U =
2

L(L− 1)

L−1∑
i1=0

L−1∑
i2=1
i2>i1

1

2
(x(i1)− x(i2))

2 =
1

L(L− 1)

∑
0≤i1<i2≤L−1

(x(i1)− x(i2))
2

(3.66a)

=
1

L− 1

∑
0≤i1≤L−1

x(i1)−
1

L

∑
0≤i2≤L−1

x(i2)

2

. (3.66b)

While it can be shown the suitability of these statistics in terms of their asymptotic Gaussian
distribution [Ser09], we are just interested in the fact that they are, indeed, unbiased estimates. In

1Typically, g is also referred to as a kernel. In order to not overlap definitions and properties, here we will not give
g a proper name since it will be easily recognizable under a given context. Nonetheless, any kernel can be used as a
function g for any U-statistic, specially due to its symmetry property.
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this sense, this definition will be used for identifying appropriate estimators that have a similar
structure, and to exploit their properties.

For instance, one of its main properties comes in the form of the “incomplete” U-statistics.
The incomplete adjective refers to the action of sampling fewer terms than the complete version of
U-statistic. Let us define the incomplete U-statistics as follows:

Definition 11. Let U be a U-statistic with symmetric function g (z1, ..., zN ) over L i.i.d. observa-
tions {x (i)}i=0,..,L−1:

U =
1(
L
N

) ∑
PL,N

g (x (i1) , ..., x (iN )) (3.67)

An incomplete U-statistic, denoted Ui, with the same symmetric function g, is given by

Ui =
1(
M
N

) ∑
PM,N

g (x (i1) , ..., x (iN )) , (3.68)

where N ≤M < L.

As can be deduced, the incomplete U-statistics are also unbiased, and the cost of fewer sam-
ples is an increase of variance with Var {Ui} ≥ Var {U}. Particularly, for Var {g} = σ2

g , if the
subsamples are selected randomly from the pool of all available samples, then [Blo76]

Var {Ui} =
σ2
g

M
+

(
1− 1

M

)
Var {U} . (3.69)

Generally speaking, the main advantage of Ui is the reduced computational complexity, as all the
combinations P =

(
L
N

)
increase the number of operations exponentially with O

(
LN
)

[CK19].
However, these kind of statistics may also shine for nonrandomized sampling. A potential case
of use of this approach is a random process that is not i.i.d., since it then becomes sensitive to a
random subsampling. The asymptotic behaviour in these cases has also been studied in [Jan84].
While these notions may not directly influence the estimation of information from this subsection,
their utility will become apparent when employing the entropy estimator in some particular cases
in Section 5.4.

3.3.3 Information potential

Let us take the second-order Rényi entropy from (2.53) and express it as

h2 (X) = − ln

∫
X
f2
X (x) dx = − lnV (X) . (3.70)

The argument of the logarithm is called the Information Potential (IP) [Prí10], and it is just the
expectation over the PDF

V (X) = EfX {fX (x)} . (3.71)

For estimation purposes, we can just compute the IP and then measure the uncertainty, since the
second-order Rényi entropy is a monotonic function of the IP. As it turns out, this particular case
(from all the Rényi entropies) copes particularly well with the Parzen-Rosenblatt window estimate.
To see that, let us take the estimator from (3.51) and plug-in to the IP expression. Consider the
samples {x(i)}i=0,...,L−1 drawn from the random variable X ∈ X with X ⊆ R. The plug-in
window estimate of the IP is then as follows:

V̂ (X) =

∫
R
f̂2
X (x) dx =

∫
R

1

L

L−1∑
i=0

gh (x− x(i))
1

L

L−1∑
j=0

gh (x− x(j)) dx (3.72a)
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=
1

L2

L−1∑
i,j=0

∫
R
gh (x− x(i)) gh (x− x(j)) dx. (3.72b)

Assuming that the Gaussian window is used, we then have

V̂ (X) =
1

L2

L−1∑
i,j=0

k√2h (x(i), x(j)) , (3.73)

where

kσ (x(i), x(j)) =
1√
2πσ2

exp

(
−(x(i)− x(j))2

2σ2

)
. (3.74)

While this result can be directly obtained by observing that it corresponds to a single point of
the convolution between two Gaussian functions, which is also Gaussian, the full derivation of
(3.73) is detailed in Appendix 7.2.1. As can be seen, this procedure completely avoids the need of
estimating the PDF and measuring the integral. It allows then for a direct estimation solely based
on pairwise differences of the data. As the dissimilarity increases, i.e. the data is more spread out,
the IP decreases and the second-order Rényi entropy (thus the uncertainty measure) increases, and
vice versa.

Furthermore, note that the notation of the associated function has changed from g to k. This
is due to kσ not being a window function, but a kernel. In this regard, it can be easily seen that
kσ : X × X → R, which is also a symmetric and positive definite function. In fact, (3.74) is just
a normalized (to unit area) version of the Gaussian kernel from (3.4). Due to the kernel trick, we
can say that (3.73) is intrinsically computing some norm in an infinite-dimensional Hilbert space
by evaluating the relationship among input data through a kernel function2. Due to the exponential
form of the window gh, the constructed kernel is specifically shift-invariant, which entails further
kernel properties, such as a one to one relationship with a PDF. The definition and repercussions
of these types of kernels will be particularly addressed in the next chapter.

The main difference between the kernel methods presented in Section 3.2 and (3.73) is that in
the latter the norm in the infinite-dimensional space has been computed explicitly. Both approaches
fulfil the kernel signal processing tag by coming from opposite ways. In the classical approach, an
inner product in an unknown feature space is interchanged with a kernel. In the approach presented
here, the kernel is attained after the inner product has been calculated. This two-way relationship
allows to locate this special case of entropy estimation within the RKHS framework. In fact, in
[Xu+08] is is shown that this framework can be generalized to the set of square-integrable PDFs
with a given L2 norm.

To further see this relation, let us recover the reproducing property

kσ (x(i), x(j)) = 〈φ (x(i)) , φ (x(j))〉H . (3.75)

Then, we may express

V̂ (X) =
1

L2

L−1∑
i,j=0

〈φ (x(i)) , φ (x(j))〉H =

〈
1

L

L−1∑
i=0

φ (x(i)) ,
1

L

L−1∑
j=0

φ (x(j))

〉
H

= ‖µ̂φX
‖22 ,

(3.76)
where µ̂φX

is the mean of the mapped data in the feature space. Therefore, the estimation of entropy
is closely related to a measure of the first-order statistics in an infinite-dimensional feature space.

Due to the symmetry of the kernel function, as well as that k√2h (x(i), x(j)) is a constant
data-independent value for i = j, we can further reduce the summation of samples such that

Û (X) =
2

L(L− 1)

∑
0≤i<j≤L−1

k√2h (x(i), x(j)) . (3.77)

2Generally speaking, other window functions could be used instead, but the evaluation of the integral is not as
convenient as with Gaussian functions.
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Its relation with (3.73) is then given by

V̂ (X) =
L− 1

L
Û (X) +

1

L

(
4πh2

)−1/2
. (3.78)

In (3.77), while the L(L− 1) terms indicate the number of elements that correspond to i < j, the
2 in the numerator just replicates these elements such that it includes i > j. For L → ∞, both
estimators are asymptotically the same measure, since (L − 1)/L → 1 and the data-independent
second term tends to 0. However, we are more interested in Û (X) as it has a distinguishable
expression. Concretely, Û (X) is actually a U-statistic, as it is defined in Definition 10, with
g (x(i), x(i)) = k√2h (x(i), x(j)) and M = 2. Therefore, Û (X) is an unbiased estimate of
EfX{k√2h (x(i), x(j))}. However, it is noteworthy that the expected outcome of the estimator,
EfX{Û (X)}, is not the true IP. This is to be expected since, as we have started with the Parzen-
Rosenblatt estimator, we have added some Gaussian contamination from the beginning. In [Prí10]
the bias of the estimator is computed 3 and it results in

Bias
{
Û (X)

}
≈ h2EfX

{
∂2fX (x)

∂x2

}
. (3.79)

Similarly as with the Parzen-Rosenblatt estimator, if we let h → 0 at the same time as L → ∞,
then V̂ (X) and Û (X) are also asymptotically unbiased estimates of V (X). Even so, for known
fX (x), it is still possible to compute the true unbiased estimate EfX{k√2h (x(i), x(j))}. This
knowledge can be particularly useful for applications where the estimation of entropy is not the
main focus, but to measure some parameter that may depend on it. For example, let X ∈ X be a
univariate random variable with PDF fX (x, γ), where γ is some unknown parameter that controls
its shape, location, etc. Then, the known expected value of the IP estimator becomes

EfX

{
k√2h (x(i), x(j))

}
=

∫
X

∫
X
k√2h

(
x, x′

)
fX (x, γ) fX

(
x′, γ

)
dxdx′ = g (h, γ) . (3.80)

If the previous integral can be solved, then g is known and only depends on the kernel bandwidth
and on the parameter to be estimated. If g has inverse function, then one can recover the parameter
γ through just an entropy estimate. We will see some particular applications of this rationale in
Chapter 5.

While the asymptotic case of h → 0 provides the rationale for unbiasedness, we can do an
equivalent asymptotic enquiry for h → ∞. In particular, for an increasing kernel bandwidth, the
estimator unveils an inherent dependence with the sample variance estimator. To see this relation,
let us take k√2h (x(i), x(j)) from (3.77) and make a change of variable δ2 = (x(i)− x(j))2 /4h2

such that

k√2h (x(i), x(j)) =
1√
4πh2

exp (δ) =
δ√

π (x(i)− x(j))2
exp

(
−δ2

)
. (3.81)

By assuming that the kernel bandwidth is very large, hence δ goes to zero, we can approximate
k√2h (x(i), x(j)) by its Taylor expansion at the point δ = 0, i.e. its Maclaurin series. Then we
have

k√2h

∣∣∣
δ=0

= 0,
∂

∂δ
k√2h

∣∣∣∣
δ=0

=
1√

π (x(i)− x(j))2
, (3.82a)

∂2

∂δ2
k√2h

∣∣∣∣
δ=0

= 0,
∂3

∂δ3
k√2h

∣∣∣∣
δ=0

=
−6√

π (x(i)− x(j))2
, (3.82b)

3In [Prí10] the bias is actually measured for V̂ (X). However, since V̂ (X) is asymptotically Û (X) for L → ∞,
then we can say that the bias is approximately the same.
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which yields the following second-order Taylor expansion:

k√2h (x(i), x(j)) ≈
2

L(L− 1)

∑
0≤i<j≤L−1

(
1√
4πh2

− (x(i)− x(j))2

8h3
√
π

)
(3.83a)

=
1√
4πh2

− (x(i)− x(j))2

8h3
√
π

. (3.83b)

By plugging-in this approximation into the IP estimator in (3.77), we then have

Û (X) ≈ 2

L(L− 1)

∑
0≤i<j≤L−1

(
1√
4πh2

− (x(i)− x(j))2

8h3
√
π

)
(3.84a)

=
1√
4πh2

− 1

L(L− 1)4h3
√
π

∑
0≤i<j≤L−1

(x(i)− x(j))2 . (3.84b)

From the U-statistics standpoint, the sum is then directly the sample variance, as in Example 10.2.
Consequently, for very large kernel bandwidth, the IP estimator is a biased and scaled estimator
of the sample variance, but a second-order statistic nonetheless. It is worth noting that the first
term corresponds to the IP of a Gaussian variable 4 with variance h2. This observation shows that,
if the variance of the contamination is sufficiently high to conceal the underlying true PDF (from
the Parzen-Rosenblatt perspective), the resulting IP is governed by the IP of this contamination.
While an expected result, here it is appropriately described. A similar analysis can be encountered
in [Prí10], albeit for a generic kernel function with unknown derivatives.

The generalization to multivariate random variables can be obtained directly from the univari-
ate case, if the proper window function is used. Let x(i) = [x1(i), ..., xN (i)]T be L i.i.d. samples
from the set X ⊆ RN with i = 0, ..., L − 1. By taking (3.57) as the density estimate with an
isotropic Gaussian window (3.59) and variance h2G from (3.61), then the multivariate IP estimator
just becomes

V̂ (X) =
1

L2

L−1∑
i,j=0

k√2h (x(i),x(j)) . (3.85)

Similarly, due to the properties of kernels, one can define the U-statistic for multivariate random
variables as

Û (X) =
2

L(L− 1)

∑
0≤i<j≤L−1

k√2h (x(i),x(j)) . (3.86)

To end with this section, we will further simplify the IP estimates by taking advantage of kernel
matrices (Definition 7). First, in (3.85) it can be easily seen that it corresponds to the summation
of all the terms of the kernel matrix K ∈ RL×L with entries [K]i,j = k2h2I (x(i),x(j)). Then, we
can express the estimator as

V̂ (X) =
1

L2
1TK1. (3.87)

The U-statistic version can be easily obtained by again noticing the symmetry of the Gram kernel
matrix. As we only need to compute the cases for which i < j, or vice versa, we can express (3.86)
as follows:

Û (X) =
2

L(L− 1)
1T (K� L)1, (3.88)

4The proof is omitted here because it will be derived later on. Specifically, it can be obtained through the Appendix
7.3.5 by looking at the argument of the natural logarithm in the case of a single Gaussian component.
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where L is a L × L lower triangular matrix with ones in its entries below the diagonal, and the
diagonal elements equal to zero:

L =


0 0 · · · 0

1
. . . ...

... . . . . . . 0
1 · · · 1 0

 . (3.89)

This estimate of the second-order Rényi entropy is actually related to the KPCA. The fact that
we work with the same kernel matrix allows us to make connections that go beyond the qualitative
link. Let K = UΛUH be the eigendecomposition of the kernel matrix. The estimator in (3.87)
then becomes

V̂ (X) =
1

L2
1TUΛUH1 =

1

L2

L−1∑
i=0

λi

(
uH
i 1
)2

, (3.90)

where ui are the eigenvectors and λi the eigenvalues. Consequently, the estimator of second-
order Rényi entropy is composed of projections onto the directions obtained by the KPCA [Jen09].
Furthermore, it can be shown that by performing KPCA, one is minimizing the IP, thus maximizing
the second-order Rényi entropy [PXP06]. All these notions and connections will become apparent
in the next chapter.

3.3.3.1 A remark on the information potential bias

A final remark on the bias induced on the IP estimate is in order. In view of (3.54), the resulting
estimator

Ûh2 (X) =
2

L(L− 1)

∑
0≤i<j≤L−1

k√2h (x(i), x(j)) (3.91)

is, in fact, estimating

EfX

{
Ûh2 (X)

}
=

∫
R
((gh ∗ fX) (x))2 dx. (3.92)

Note that the subindex term, which corresponds to the kernel variance h2, has been added to high-
light the relation between the contamination and the estimator, for reasons that will become ap-
parent. The interpretation 5 is that the measured IP has an average value that corresponds to the
IP of the original random variable at the output of an additive Gaussian noise channel with noise
variance h. A natural question then arises on how sensitive is the IP of a random variable in front of
a Gaussian perturbation. As a matter of fact, the approximation in (3.79) suggests that the second
derivative (the rate of change) of the original PDF has a prominent role in the amount of bias, and
the obtained expression resembles a negative Fisher-like expression, albeit evaluated on the PDF
itself instead of on the logarithm of the likelihood. To see that clearly, let us express the normalized
bias (in terms of h2) in (3.79) such that

EfX

{
Ûh2 (X)

}
− U (X)

h2
≈ EfX

{
∂2

∂x2
fX (x)

}
. (3.93)

The left side of the equation is, in fact, the derivative with respect to h2 for h2 → 0. Therefore, we
can write

lim
h2→0

EfX

{
Ûh2 (X)

}
− V (X)

h2
=

∂

∂h2
EfX

{
Ûh2 (X)

}∣∣∣∣
h2=0

≈ EfX

{
∂2

∂x2
fX (x)

}
. (3.94)

5All these notions will be specified later on, in Chapter 4.
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It is worth noting that the previous expression is always negative, given that a contamination process
decreases the value of IP (increases the second-order Rényi entropy).

Following the rationale, it is well-known that Shannon entropy sensitivity to the variance of an
additive Gaussian perturbation is directed related to the Fisher information through the well-known
de Bruijn identity [Sta59]. These observations motivate the study of whether a similar relationship
exists for other entropic measures. This is the work performed in our publication [RC19], where
both the classical Fisher and a Fisher-like measures are provided under a unified view based on
the generalization of Price’s theorem. While the development of this theoretical line is outside the
scope of this dissertation, the main results resonate into multiple facets of this section. Therefore,
we will outline some of the most important aspects in [RC19] to gain intuition of the relationship
between the Gaussian perturbation and the IP estimate.

Consider the random variable X with finite second-order moment, Z ∼ N (0, 1), and g is
any memoryless nonlinear transformation. The additive Gaussian noise model is then defined as
Y = X+

√
ηZ with PDF fY |η (y) on the setY , where η > 0 is the variance6 of the contamination.

A generalization of Price’s theorem [RC19] is given by

∂

∂η
EfY |η {g (X +

√
ηZ)} = 1

2
EfY |η

{
∂2

∂y2
g (y)|y=X+

√
ηZ

}
. (3.95)

The result is that the sensitivity of the system output g (Y ) in front of the Gaussian perturbation
can be computed in terms of the second derivative of the output itself. The relevance of this version
of Price’s theorem is that it can actually be related to an entropic measure, or, more generally, to a
measure of information, which then further establishes a connection with de Bruijn identity. For
that, consider the IP of Y such that

V (Y ) = V (X +
√
ηZ) =

∫
Y
f2
Y |η (y) dy. (3.96)

Using the chain rule, we can view the derivative of the contaminated IP with respect to η from the
perspective of the generalized Price’s theorem such that

∂

∂η
V (X +

√
ηZ) = 2

∫
Y
fY |η (y)

∂

∂v
fY |η (y) dy. (3.97)

Following similar steps than those in [RC19], the resulting memoryless transformation is defined
as

g (y) = −2fY |η (y) . (3.98)

Finally, in view of the previous expressions, we can derive the final Bruijn-like identity for the IP:

∂

∂η
V (X +

√
ηZ) = −JIP (X +

√
ηZ) , (3.99)

where JIP (Y ) is a Fisher-like information associated to the PDF of Y with respect to a location
parameter such that

JIP (Y ) = −EfY |η

{
∂2

∂y2
fY |η (y)

}
. (3.100)

The negative sign in (3.99) is required to obtain an expression that is in accordance with (3.94).
Similarly to (3.94), the previous expressions show that the sensitivity of the IP to a Gaussian per-
turbation, or Gaussian smoothing, depends on the shape of the resulting PDF. The more disrupted
distributions by the Gaussian contamination are then those with strong curvatures in the shape of

6Note that h in (3.91) refers to the standard deviation, or kernel bandwidth, while here we define η as the variance.
This is done in order to comply with Price’s theorem [Pri58], which will be used in subsequent derivations. However,
we can ultimately recover the kernel bandwidth perspective by the change of variable h =

√
η.
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the PDF. For example, “sharp” distributions, or with fine details, are more susceptible to contam-
ination. This relationship is then translated to the estimation of the IP, with similar results. Given
that estimating the IP through (3.91) is equivalent to estimating the IP of the additive Gaussian
channel Y = X +

√
ηZ, the bias induced by this implicit contamination is directly influenced by

the shape of the PDF itself. In comparison with (3.94), the equation in (3.99) is expressed in terms
of the contaminated PDF fY |η (y), and not fX (x). Nonetheless, the equivalence is ensued if we
let η → 0, given that fY |η (y)

∣∣
η=0

= fX (x), similarly to how we let h2 → 0. It is also worth
mentioning that this problem is also studied by Valero-Toranzo et al. in [VZB17] for the case of
the φ-entropies, where they propose a generalization of de Bruijn identity for multivariate random
variables and with any kind of noise, and not only Gaussian perturbations.

3.4 General remarks

This chapter has discussed some kernel-based measures in the literature that are connected to
information-theoretical descriptors. In particular, we realize that, by estimating correlation and
covariance in a given feature space, those measures that are expressed as second-order moments
of some functional arise naturally. From the HGR, and interchanging multiple points of view on
how to properly deal with the kernel matrices, we have ended up with the SMI, as can be seen in
Figure 3.1. Hence, the rationale provided in Chapter 2 is strengthened.

However, kernel methods are still susceptible to some undesired properties. The first is the so-
called “curse of dimensionality”, addressed in this chapter, which makes any infinite-dimensional-
based mapping prone to sparsity problems, a trademark of kernel methods. To avoid computing
inverses is, in summary, to not estimate a proper dependence measure. The required regularization
is then performed blindly since kernel methods do not require to directly operate in the feature
space. The second issue is their computational complexity. As the quantity of available data in-
creases, kernel methods tend to be computationally prohibitive [SS00; BJ02].

Apart from that, the estimation of the second-order Rényi entropy has been addressed from the
perspective of a plug-in estimate. This entropy surrogate estimator is a particular case that directly
leads to kernels. Unlike the kernel methods built from the ground up, this estimator has a known
feature map, which provides some advantages with respect to other kernel-based derivations. While
regularization is still conducted, which is embedded in the kernel bandwidth parameter, no inverses
are required and the repercussion of this regularization is manageable. Nonetheless, the computa-
tional complexity issue is still present.

In fact, there has been an active pursuit of techniques that tackle the problem of regularization,
but especially so the problem of computational complexity. While the first is usually performed
by some kind of penalization to the weight vector in feature space (see [SSB+02], Chapter 4 and
references therein), which ends up reassembling the Tikhonov regularization as seen in (3.27) and
(3.29), several attempts have been performed to cope with the latter. Most of them are focused
on substituting the kernel matrix with low-rank approximations. For example, by means of the
incomplete Cholesky decomposition [SC04; SP09], or by using the Nyström method to approx-
imate the kernel matrix from a subspace spanned by a subset of its columns [WS00; KMT12].
However, these approaches still require computing the kernel matrix, apart from performing the
chosen low-rank matrix approximation method. Another approach is studied by Rahimi et al. in
[RR07] by mapping the data into a random “low-”dimensional feature space, where the desired
operations can be computed to approximate the infinite-dimensional feature space. Recently, fol-
lowing this last method, Li et al. have proposed to cope with the computational complexity issue
by defining an explicit feature map of reduced dimension [LP19b; LP20]. Their approach is to
construct an equivalent kernel with reproducing kernel properties. Therefore, their interest relies
on the approximation of the inner product performed by the kernels.

From here, we move to the next chapter with the objective of rightfully addressing the two
challenges with kernel methods. Generally speaking, we will first focus on the dimensionality of
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the mapping, not only to reduce the computational complexity, but also to discuss which is the
required dimension of the finite-dimensional feature space with the purpose of estimating informa-
tion. Moreover, by limiting the feature space the question of the regularization will arise naturally,
combining both issues into a single argument.
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Chapter 4

Leveraging second-order statistics to
measure information

This chapter tackles the estimation of entropy and dependence in a feature space with a higher
dimension than the data space by means of second-order statistics. Similarly to the approximation
methods pursuing a finite-dimensional space, the one proposed here is also explicit and of finite
dimension. This finite dimension will be achieved by sampling a function space, of inherent “in-
finite” dimension (provided that it is sufficiently dense). In contrast with [RR07] and [LP20], the
proposed approach is neither an approximation of the original infinite-dimensional feature space
nor its inner product. In fact, our proposal is akin to returning to the primal model of the SVM,
where instead of casting the problem to an infinite-dimensional space, we directly stay at the finite-
dimensional representation. It is therefore a change of the paradigm, which will be characterized
by the outer products in the mapped space, instead of reproducing or approximating inner products.
The difference will be apparent because, instead of pairwise data differences, we will encounter
pairwise differences in the sampled function space. As a result, the problem gains in interpretabil-
ity, which further allows for a regularization strategy that benefits from well-known concepts in the
field of spectral estimation.

This chapter is structured as follows. Section 4.1 begins by focusing on estimating information
for discrete sources. The objective is twofold: to show the fundamental link between the proposed
surrogates and second-order statistics, and to unveil the implications of casting the problem to a
finite-dimensional feature space, which translates into just a smaller dimension than the source car-
dinality in the case of discrete sources. Then, Section 4.2 moves the problem into analog sources,
first by analyzing the function space to be sampled, and then by assessing the sampling and reg-
ularization strategies. Lastly, Section 4.3 particularizes the second-order Rényi entropy and SMI
estimators with the tools developed in the previous sections, and their performance is illustrated by
computer simulations.

4.1 Second-order statistics in the simplex feature space

The following case studies will be based on information measures that can be expressed as the
second-order moment of some relation between distribution functions. These particular cases are,
as previously pointed out, the second-order Rényi entropy and the SMI. Here, we will first focus
our attention on discrete sources and on the mapping to the feature space, whose dimension will
be based on the cardinality of the source. Since our objective is the estimation of measures of
information for continuous random variables, we are particularly interested in the case in which
the dimension of the mapping is lower than the dimension of the original space, presuming that the
required mapping to do so in the analog case is given by a function of implicit infinite dimension.
The derivation for discrete random variables will then serve as the bridge to the case of analog
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sources. In short, this section studies the implications of the mapping and determines an adequate
pre-conditioning of the data in pursuit of developing a tool that is capable of estimating information
based on second-order statistics.

4.1.1 Collision entropy

Consider that X is a discrete random variable with alphabetX = {xn}n=1,2,...,N and PMF pX (x).
Let us define the probability column vector as p ∈ RN

+ , whose elements are pn = Pr {X = xn} =
pX (xn). Then the second-order Rényi entropy, or collision entropy in the case of discrete sources,
can be expressed as follows:

H2 (X) = − ln

N∑
n=1

p2n = − ln ‖p‖22 . (4.1)

In order to prepare for the forthcoming mapping, let us express H2 (X) in a matrix form as

H2 (X) = − ln ‖p‖22 = − ln tr
(
PPT

)
= − ln ‖P‖2F , (4.2)

where P = diag (p) ∈ RN×N
+ is a diagonal matrix such that [P]n,n = pn. The advantage of this

formulation is given by the properties of the Frobenius norm. Clearly, since the Frobenius norm
is invariant under unitary transformations, it allows for a formulation of the collision entropy by
mapping the data to a concrete feature space, provided the mapping is given by a unitary matrix.
To see that more clearly, let us move into the estimation of the collision entropy.

Consider a sequence of L i.i.d. observations x (i) ∈ X for i = 0, ..., L− 1. An estimate of p,
can be obtained as follows:

p̂ =
1

L
D1L, (4.3)

where D ∈ RN×L is the data matrix with elements

[D]n,i = 1{x(i)=xn}. (4.4)

Here, 1{x(i)=xn} is the indicator function and 1L is a L-dimensional column vector that contains
all ones. The data matrix D is the result of a one-to-one mapping from the observations x (i) to
the canonical basis of dimension equal to the set cardinality |X |. That is, column i of matrix D
contains a one in the n-th row and N − 1 zeros. Consequently, we can write

ˆ̃H2 (X) = − ln

∥∥∥∥ 1LDDT

∥∥∥∥2
F
, (4.5)

where the ˜ notation indicates a nonmapped version of the estimator. Given that D is referred
to as the data matrix, then the mass function estimate required in the computation of the collision
entropy can be seen as just an autocorrelation matrix

P̂ =
1

L
DDT , (4.6)

which leads to the following estimator:
ˆ̃H2 (X) = − ln ||P̂||2F. (4.7)

It is worth noting that, for the discrete random variables case, (4.6) just refers to an empirical
estimate of the PMF that simply reckons the number of times that an event xn occurs divided by
the total number of observations.

Let us proceed by mapping the data to the feature space, and to measure the uncertainty after
the mapping. First, we will consider that the dimensionality of the mapping is the same as the
cardinality of the source, which encompasses the desired properties and results. Then, the mapping
will be limited, whose impact on the estimate of the collision entropy will be discussed. The
following lemma establishes the implications of the first case:
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Lemma 4.1. Let X ∈ CN×L be the data matrix obtained by X = FD, where F ∈ CN×N is a
unitary matrix. The estimated collision entropy is then

Ĥ2 (X) = − ln ||R̂||2F = − ln

∥∥∥∥ 1LXXH

∥∥∥∥2
F
= ˆ̃H2 (X) , (4.8)

where R̂ = XXH/L is the autocorrelation matrix of the mapped data.

Proof. The equality can be easily proven by

Ĥ2 (X) = − ln

∥∥∥∥ 1LXXH

∥∥∥∥2
F
= − ln tr

(
1

L2
XXHXXH

)
(4.9a)

= − ln tr
(

1

L2
FDDTFHFDDTFH

)
= − ln tr

(
FHFP̂P̂

)
(4.9b)

= − ln tr
(
P̂P̂
)
= − ln ||P̂||2F = ˆ̃H2 (X) , (4.9c)

since FHF = IN , P̂T = P̂, and due to the circularity of the trace. �

The full-rank case just proves the direct but useful consequence of orthonormal matrices being
isometric, thus preserving any given norm. We refer to matrix F as the mapping matrix since
its role is to map the events of the source X onto its own columns. Consequently, the mapping
matrix behaves as the code-book that contains all possible column vectors [F]:,n. The new mapped
data matrix is then used to construct the correlation matrix, whose norm determines the estimate
of uncertainty of the random variable X . It is also noteworthy that the data is considered to be
real and the mapping is defined in the complex field. Nonetheless, the whole methodology is not
restricted to consider otherwise, such as to determine a mapping to the space of real numbers. In
our case, the complex mapping matrices are used in preparation of the mapping into the space of
the characteristic function.

Thereupon, we analyze how a mapping of lower dimensionality than the cardinality of the
source compromises the collision entropy estimator. Let X ∈ CN ′×L be the data matrix obtained
by X = FD with N ′ ≤ N , where F ∈ CN ′×N is a semi-unitary matrix with FFH = IN ′ for
N ′ < N , and a unitary matrix for N ′ = N . The estimated collision entropy is then

Ĥ2 (X) = − ln ||R̂||2F = − ln

∥∥∥∥ 1LXXH

∥∥∥∥2
F
, (4.10)

where R̂ = XXH/L is the autocorrelation matrix of the mapped data.

Proposition 4.1. Let ˆ̃H2 (X) be the collision entropy estimator given in (4.7), and Ĥ2 (X) the
estimator given in (4.10). For N ′ ≤ N , the following inequality holds

Ĥ2 (X) ≥ ˆ̃H2 (X) , (4.11)

where the equality is met for N ′ = N .

Proof. See Appendix 7.3.1. �

A sufficient condition for the equality in (4.11) is that F = IN , i.e. to map the data onto the
orthonormal canonical basis, or that F is a full-rank unitary matrix, such as the discrete Fourier
transform matrix as portrayed in (2.18). The relevance of sufficient condition is, however, en-
countered in analog sources rather than with discrete sources. In the first case, they are inherently
of infinite dimensionality, thus an infinite-dimensional feature map is required, directly appealing
to kernel methods and their capabilities of implicitly mapping into infinite-dimensional spaces.
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For discrete sources specifically, the inequality is rather observational than a real constraint, but it
shows what to expect when moving to analog sources. On a side note, one can see the mapping to
a lower dimension than the cardinality of the source related to the problem of compressed sensing
[Don06; CW08], where the interest relies on finding the adequate orthonormal basis, or code-book
as previously mentioned, that better describes the original signal without loosing too much infor-
mation about the observations themselves. For the case of estimating entropy, this translates to
the choice of F, and consequently also N ′, that allows for the best estimate while mapping to the
smallest dimension as possible. Nevertheless, while in compressed sensing the goal is to recon-
struct the original signal, here we are only interested the mapping itself, and how it determines the
final second-order Rényi entropy estimate. The discussion regarding the dimensionality reduction
and its consequences will be properly addressed in Section 4.2.

4.1.1.1 Relation to principal component analysis and kernel methods

Before moving to the estimate of a measure of information, it is of relevance to establish connec-
tions to previously addressed methods. To be concrete, the problem of estimating uncertainty is
linked with the problem of PCA, and particularly to its kernelized version KPCA. We have previ-
ously seen this link in the form of (3.90). To see this link from (4.7), and for clarity of exposition,
let us express the estimate of the IP with

ˆ̃V (X) = ||P̂||2F. (4.12)

By operating with correlation matrices, this measure is related to the PCA problem from (2.32),
albeit here the entire spectrum of the correlation matrix is computed instead of only the largest
singular value. This difference is akin to that between the COCO and the HSIC, or between the
KCCA and the NOCCO, as shown in Figure 3.1. However, while in (2.32) a covariance matrix is
required (or zero-mean data), in (4.12) the estimation is performed through the correlation matrix.

On the other hand, the estimate of the IP by mapping the data onto a feature space is given by

V̂ (X) = ||R̂||2F. (4.13)

Due to the mapping, this approach is more akin to the KPCA from (3.17), given that we are mea-
suring some norm operator of a matrix conformed by the correlation mapped data in the feature
space. Nevertheless, the main difference between operating with correlation or covariance is still
present, rendering the relevance of the link less useful. While it is still possible that the expectation
of the mapped data in the feature space is zero, hence closing the gap between both methods, that
is not generally the case. Fortunately, this is only the case for the problem of estimating the IP,
and we will see that the equivalent formulation for estimating information does allow for building
relationships with its equivalent problem, namely CCA.

Still, the structure of both formulations is sufficiently rich to provide more insights on the
problem of estimating the IP. To be concrete, from (4.10), let us express the estimator as follows:

V̂ (X) = ||R̂||2F =

∥∥∥∥ 1LXXH

∥∥∥∥2
F
= tr

(
1

L2
XXHXXH

)
(4.14a)

= tr
(

1

L2
XHXXHX

)
= tr (KxKx) = ‖Kx‖2F , (4.14b)

where Kx = XHX/L ∈ RL×L. Clearly, the previous formulation presents a duality of the prob-
lem of estimating the IP thanks to the properties of the Frobenius norm. On the one hand, the
expression derived from Lemma 4.1 is constructed by outer products of the mapped data matrices.
The problem is then focused on the dimensionality of the space, rather than in the number of data
observations. Due to its similarities with the SVM dual representations, we refer to this approach
as the primal model. On the other hand, (4.14) is drawn from inner products of the mapped data,
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which ends up constructing a kernel-like Gram matrix. This time, the matrix dimension is dictated
by the data size L. This represents the dual problem, which also restores to kernels as with the
SVM dual model.

This rationale exemplifies the difference between kernel methods and the proposed approach,
and resonates with the main objectives of this thesis. By controlling the dimensionality of the
problem in terms of the feature space dimension, we are not only moving the involved matrices
dimension from L × L to N × N , thus reducing the associated computational complexity for
N < L, but also the feature space is known and manageable. Furthermore, we can formulate the
problem with the reduced dimension N ′. The problem then becomes even more computationally
convenient at the cost of adding a certain bias in the estimation. However, it is worth noting that
the kernel estimate of the IP (as in (3.87)) is also biased in terms of the kernel bandwidth, which
is how kernel methods address the regularization of an infinite-dimensional and probably sparse
feature space. In conclusion, we are moving the problem of determining a pertinent kernel function
that operates to an unvisited space to the determination of the new problem parameter N ′.

4.1.2 Squared-loss mutual information

The case of measuring the SMI for discrete sources follows closely the one of the collision entropy.
Nevertheless, its relation to a classic second-order processing technique is more intricate, and it
shall be properly addressed. In the sequel, we first establish an estimate of the SMI by mapping the
data through the corresponding mapping matrices. Afterwards, we will unveil the full link between
the SMI and CCA.

Consider the discrete random variables X and Y with alphabets X = {xn}n=1,2,...,N and
Y = {ym}m=1,2,...,M , whose PMFs are pX (x) and pY (y). The joint PMF is defined as pXY (x, y).
The probability column vectors are now p ∈ RN

+ and q ∈ RM
+ , and their elements are pn =

Pr {X = xn} = pX (xn) and qm = Pr {Y = ym} = pY (ym), respectively. Let us define the
marginal probability matrices as P = diag (p) ∈ RN×N

+ and Q = diag (q) ∈ RM×M
+ , which are

diagonal matrices with elements [P]n,n = pn and [Q]m,m = qm, and the joint probability matrix
J ∈ RN×M

+ whose elements are [J]n,m = Pr {X = xn, Y = ym} = pXY (xn, ym). The SMI for
discrete random variables, as can be deduced from (2.74), then corresponds to

Is (X;Y ) =

N∑
n=1

M∑
m=1

(pXY (xn, ym)− pX (xn) pY (ym))2

pX (xn) pY (ym)
(4.15a)

=

N∑
n=1

M∑
m=1

[C]2n,m = tr(CTC) = ‖C‖2F , (4.15b)

where
C = P−1/2

(
J− pqT

)
Q−1/2. (4.16)

We refer to matrix C as the information coherence matrix due to its link with the coherence matrix
from (2.40) used in CCA. This matrix form is also encountered in linear information coupling
problems [HSZ15], whose objective is to simplify information theory problems by linearly ap-
proximating local features. To see this relation, let us express the information coherence matrix
as:

C =
(
B− q1/2pT/2

)T
, (4.17)

with
B = Q−1/2JTP−1/2, (4.18)

where q1/2 and pT/2 =
(
p1/2

)T are element-wise powers of vectors. Matrix B ∈ RM×N
+ is

referred to as the Divergence Transition Matrix (DTM) in [HSZ15]. Particularly, we can express
the DTM as

B = Q−1/2MTP1/2, (4.19)
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where M ∈ RM×N
+ is the channel transition matrix with elements

[M]m,n = Pr {Y = ym|X = xn} , (4.20)

and therefore
J = PTMT = PMT . (4.21)

This matrix is used for studying the local geometry of the χ2-divergence (2.66), whose SVD be-
comes a descriptor of dependencies between distributions that are close to each other [HZ12].
Moreover, the information coherence matrix C is the same as the Canonical Dependence Ma-
trix (CDM) studied in the framework of the modal decomposition of the joint probability mass
function matrix [Mak19; Hua+19]. Both the DTM and the CDM accomplish a similar task: they
decompose information in a series of features, embedded in their SVD, which is then used to an-
alyze phenomena among random variables. In this sense, the following steps are guided by this
decomposition with the perspective of estimating information.

We first begin by analysing the properties of the DTM and the CDM, and then to use these
properties to discuss its relationship with the SMI. In particular, a fundamental property of the
DTM is that its largest singular value is σ1 (B) = 1 [Mak19]. The corresponding right and left
singular vectors of the largest singular value are p1/2 and q1/2, respectively. Since the largest
singular value is always 1, we focus our attention to the second largest σsmax, whose singular vectors
are usmax and vsmax. Therefore, the SVD of B can be expressed as follows:

B = p1/2qT/2 + σmax (B)umaxvmax +

min{N,M}∑
i=3

σi (B)uivi. (4.22)

Given (4.17), it is straightforward to see that the SVD of C corresponds to

C =
(
B− p−1/2qT/2

)T
(4.23a)

=

p1/2qT/2 + σsmax (B)usmaxvsmax +

min{N,M}∑
i=3

σi (B)uiv
T
i − q1/2pT/2

T

(4.23b)

=

σsmax (B)usmaxvsmax +

min{N,M}∑
i=3

σi (B)uiv
T
i

T

(4.23c)

=

σsmax (B)usmaxvsmax +

min{N,M}−1∑
i=2

σi (C)ui+1v
T
i+1

T

. (4.23d)

Consequently, it is the largest singular value of C the one that corresponds to the second largest sin-
gular value ofB. Furthermore, the minimum singular value ofC corresponds to 0 as a consequence
of (4.23). In essence, the spectrum of C coincides with the one of B up to the min {N,M} − 1
value, and the remaining singular value is either 0 or 1, respectively. Note that, while the expres-
sion inside of the parenthesis in (4.23) is the SVD of CT . Nevertheless, as we are interested only
in the singular values, the assessment of the corresponding singular vectors of C is not required,
and (4.23) is equally valid for studying σi (C).

In view of the previous characterization of C, we can now establish the following proposition:

Proposition 4.2. Consider Is (X;Y ) the SMI defined in (4.15). It is bounded as follows:

0 ≤ Is (X;Y ) ≤ min {N,M} − 1. (4.24)
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Proof. Let {σi (C)}i=1,...,min{N,M} be the singular values of C. We know from (4.23) that the
largest singular value corresponds to the second largest singular value of B, which is bounded by
one such that σsmax (B) ≤ 1, and the minimum singular value is 0. The bound is then directly
obtained due to the squared Frobenius norm of (4.15), which corresponds to the summation of
all the squared singular values of C (or, equivalently, the summation of all the singular values of
CTC). Since 0 ≤ σi (C) ≤ 1, we obtain the stated bounds of the SMI. �

The reason behind the bound of min {N,M} − 1 is that the vectors p and q are probability
simplexes, which is the subset of the unit simplex whose vectors satisfy

x ≥ 0, 1Tx = 1. (4.25)

Clearly, the probability vectors satisfy this condition:

1TNp = 1, 1TMq = 1. (4.26)

Since the probability simplex has one dimension less than the unit simplex1 due to the unit-sum
constraint, this property is being reflected in bounding the SMI. In particular, the contribution of
one of the elements is lost, i.e. a singular value becomes zero, and only N − 1 (or M − 1) become
relevant. We refer to this property as the simplex condition, and it will play a major role in the
forthcoming subsection.

The relation between the decomposition of C and the χ2-divergence (between any given distri-
bution) is indeed well-known in the literature. In [Hir35], Hirschfeld determined the relationship
between the mean-square contingency (as addressed in Subsection 2.3.2) and the SVD of the in-
formation coherence matrix. In [Pin+17] this decomposition of dependence between X and Y is
referred to as the principal inertia components, which are studied for privacy applications, and
then expanded in [Mak19] for the study of strong data processing inequalities for certain classes
of f -divergences. Moreover, they determine that the second largest singular value σsmax (B) cor-
responds to the HGR coefficient, which will be discussed after introducing the mapping matrices
for estimating the SMI in the next subsection.

Next, we proceed with the empirical estimate of the SMI. Consider L i.i.d. observations
{x (i) , y (i)} ∈ X × Y for i = 0, ..., L − 1. The empirical estimates of the marginal probability
column vectors and the joint probability matrix are now

p̂ =
1

L
Dx1L, q̂ =

1

L
Dy1L, Ĵ =

1

L
DxD

T
y , (4.27)

where the data matrices Dx ∈ RN×L and Dy ∈ RM×L are defined as in (4.4) with

[Dx]n,i = 1{x(i)=xn}, [Dy]m,i = 1{y(i)=ym}. (4.28)

Equivalently, the diagonal matrices containing the probability vectors are

P̂ =
1

L
DxD

T
x , Q̂ =

1

L
DyD

T
y . (4.29)

An estimate of the SMI can then be constructed as follows:

ˆ̃Is (X;Y ) =
∥∥∥P̂−1/2

(
Ĵ− p̂q̂T

)
Q̂−1/2

∥∥∥2
F
. (4.30)

For simplicity, we can also take advantage of the projection matrixP⊥
1 = IN−1N1TN/L to express

the centered joint probability matrix in the following way:

Ĵ− p̂q̂T =
1

L
DxP

⊥
1D

T
y . (4.31)

1The unit simplex also includes the zero vector and satisfies 1Tx ≤ 1 instead of the equality in (4.25).
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As a result, the required matrices to estimate the SMI are just two sample autocorrelation matrices
and a sample cross-covariance matrix.

Similarly to the mapping matrices introduced in the estimation of the collision entropy in Propo-
sition 4.1, we can also take advantage of the Frobenius norm properties for the estimation of the
SMI. LetX ∈ CN×L andY ∈ CM×L be the data matrices obtained byX = FDx andY = GDy,
respectively, where F ∈ CN×N and G ∈ CM×M are unitary matrices. An estimate of the SMI is
given by the squared Frobenius norm of the information coherence matrix, that is:

Îs (X;Y ) = ||Ĉ||2F, (4.32)

where
Ĉ = R̂−1/2

x ĈxyR̂
−1/2
y , (4.33)

being
R̂x =

1

L
XXH , R̂y =

1

L
YYH , Ĉxy =

1

L
XP⊥

1Y
H (4.34)

the sample autocorrelation matrices and the sample cross-covariance matrix, respectively. The fol-
lowing lemma introduces the mapping of the data matrices Dx and Dy, and provides a preliminary
link to CCA:

Lemma 4.2 (Preliminary link SMI-CCA). Let ˆ̃Is (X;Y ) be the SMI estimator given in (4.30), and
Îs (X;Y ) the estimator given in (4.32). The following equality holds:

Îs (X;Y ) = ˆ̃Is (X;Y ) (4.35)

Proof. Lemma 4.2 is a direct consequence of the SMI (Frobenius norm) being invariant to nonsin-
gular transformations. Nonetheless, the proof is fully shown in Appendix 7.3.2. �

The previous lemma states a first link between the SMI and second-order statistics. The infor-
mation coherence matrix Ĉ is similar to the one required to perform the CCA, as shown in (2.40).
Nevertheless, it is not a coherence matrix as it is depicted in CCA, i.e. two autocovariance matrices
are needed for a full comparison instead of two autocorrelation matrices. Furthermore, the previous
lemma only concerns mappings with dimensionality equal to the cardinality of the sources.

4.1.2.1 Relation to canonical correlation analysis

In order to address all previous considerations, we shall first address the case of reduced dimen-
sionality, and full link with CCA will be shown afterwards. Let F ∈ CN ′×N and G ∈ CM ′×M be
semi-unitary mapping matrices with FFH = IN ′ and GGH = IM ′ , and let X = FDx ∈ CN ′×L

and Y = GDy ∈ CM ′×L be the data matrices for N ′ ≤ N and M ′ ≤M . Consider the small-size
sample coherence matrix as

K̂N ′,M ′ = Ĉ−1/2
x ĈxyĈ

−1/2
y , (4.36)

where Ĉx = XP⊥
1X

H/L, Ĉy = YP⊥
1Y

H/L, and Ĉxy = XP⊥
1Y

H/L are the sample autoco-
variance and cross-covariance matrices, respectively. The corresponding SMI estimator is given
by

Î ′s (X;Y ) = ||K̂N ′,M ′ ||2F. (4.37)

The following theorem establishes the relation between the previous expression and the full-size
SMI estimator:

Theorem 4.1 (Full link SMI-CCA). Let Îs (X;Y ) be the SMI estimator given in (4.32), and
Î ′s (X;Y ) the estimator given in (4.37). For N ′ = N − 1 and M ′ = M − 1, the following
equality holds:

Î ′s (X;Y ) = ||K̂N−1,M−1||2F = Îs (X;Y ) . (4.38)
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Figure 4.1: Illustration of the mapping X → R|X |−1 into the (|X | − 1)-simplex.

Proof. See Appendix 7.3.3. �

The implication of Theorem 4.1 is that we can estimate the SMI by either measuring the Frobe-
nius norm of K̂N−1,M−1 or Ĉ. In other words, the sample autocovariance and autocorrelation
matrices are interchangeable if the dimensionality of the mapping is equal to the cardinality of the
sources minus one, thus N ′ = N − 1 and M ′ = M − 1, or directly N ′ = N and M ′ = M . As a
result, the information coherence matrix Ĉ is equivalent to the sample coherence matrix required
in CCA, and we conclude that the estimate of the SMI can be expressed as the summation of the
squared canonical correlations, which correspond to the singular values of Ĉ:

Îs (X;Y ) =

min{N,M}−1∑
i=1

σ2
i

(
Ĉ
)
. (4.39)

This result can also be seen as a consequence of the simplex condition addressed in Proposition 4.2.
Given that the autocovariance matrices are conformed by the probability vectors, the contribution
of one singular value is lost, and only N ′ = N − 1 and/or M ′ = M − 1 are required. A sufficient
condition for the equality in Theorem 4.1 to be true is that the columns of F and G are given by
the (N − 1)-simplex and the (M − 1)-simplex, respectively. As a result, autocorrelation matrices
(and specifically the information coherence matrix C) are equally valid as autocovariance matrices
for the purpose of estimating information. It is also worth noting that, given the resulting estimator
is measured as the squared Frobenius norm of a coherence matrix, the SMI estimate is related to
the local test for correlated Gaussian vectors from [Ram+13]. However, (4.39) applies to any kind
of data mapped on a specific feature space.

Figure 4.1 illustrates the mapping into the simplex and the intuition behind Theorem 4.1: binary
data (i.e. a discrete source with two possible outcomes) can be mapped to 1-dimensional points in
the set

{−1, 1} , (4.40)

ternary data (i.e. a discrete source with three possible outcomes) can be mapped to 2-dimensional
points in the set {

[1, 0] ,
[
−0.5,

√
3/2
]
,
[
−0.5,−

√
3/2
]}

, (4.41)

and so on. Note that these vectors are not probability simplexes, as described in (4.25), but they
conform semi-unitary matrices, as required in Theorem 4.1.

In short, Theorem 4.1 allows to estimate an information measure through second-order statis-
tics by mapping the events of the sources onto F and G. For discrete sources, the SMI benefits
from invariance under linear invertible transformations. Consequently, the code-books used for
estimating the SMI are irrelevant, as long as the columns of F and G are linearly independent.
The minimum dimensions of the spaces spanned after the mapping are required to be equal to the
cardinality minus one. Otherwise, if only one (or either) of the dimension of the mapping is smaller
than N −1 or M −1, then the contribution of some canonical correlations is lost. This property is
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also another consequence of the CCA standpoint, where any dimensionality reduction applied to
a pair of vectors will result in a bounded sum of singular vectors. The following corollary gathers
this result:

Corollary 4.1.1. Given Theorem 4.2, and the SMI estimator Î ′s (X;Y ) defined in (4.37), then we
have:

Î ′s (X;Y ) =

min{N ′,M ′}∑
i=1

σ2
i

(
K̂N ′,M ′

)
≤

min{N,M}−1∑
i=1

σ2
i

(
Ĉ
)
= Îs (X;Y ) , (4.42)

and
Î ′s (X;Y ) ≤ min

{
N ′,M ′} ≤ min {N − 1,M − 1} (4.43)

for N ′ ≤ N and M ′ ≤M .

The resulting bounds contrast with Proposition 4.2, which are now given by N ′ and M ′, and
not by the cardinality of the sources minus one. If we have either N ′ ≤ N−1 or M ′ ≤M−1, then
the Moore-Penrose inverse is usually required to cope with the rank-deficient matrices [Pez+04].
Moreover, Theorem 4.1 also implicitly states that a higher dimensionality than required (N ′ >
N − 1 and/or M ′ > M − 1) also yields to a low-rank structure on the autocovariance matrices.

4.1.2.2 Relation to the Hirschfeld-Gebelein-Rényi coefficient

To finish this segment, we will show how the SMI, and its measure as determined in Theorem
4.1, can be linked to the estimate of the HGR coefficient from Subsection 2.3.4.1. While a similar
observation can be also encountered in [Hua+19; Xu+22], our interest relies on putting the HGR
coefficient estimation within the context of this thesis. Next, a particular example (mapping the
events of the sources onto the reals) of the HGR is provided to examine the link between both
measures.

Consider again the discrete sources X and Y . Let u ∈ RN and v ∈ RM be the vectors
containing the values on which the events of the sources X and Y are mapped. That is, [u]n =
f (xn) and [v]m = g (ym) for n = 1, ..., N and m = 1, ...,M , respectively. Consider then a
sequence of L i.i.d. pairs {x (i) , y (i)}, for which we obtain the data matrices Dx ∈ RN×L and
Dy ∈ RM×L, and then the L-th length mapped samples

x = uTDx, y = vTDy. (4.44)

An estimate of the HGR is then expressed as follows:

ρ̂HGR (X;Y ) = max
u,v

(
x− 1Tx

)T (
y − 1Ty

)
/L√

(x− 1Tx)T (x− 1Tx) /L

√
(y − 1Tx)T (y − 1Ty) /L

(4.45a)

= max
u,v

(
DT

xu− 1TDT
xu
)T (

DT
y v − 1TDT

y v
)√

(DT
xu− 1TDT

xu)
T (DT

xu− 1TDT
xu)

√(
DT

y v − 1TDT
y v
)T (

DT
y v − 1TDT

y v
)

(4.45b)

= max
u,v

uT (Dx − p̂) (Dy − q̂)v√
uT (Dx − p̂) (Dx − p̂)u

√
vT (Dy − q̂) (Dy − q̂)v

(4.45c)

= max
u,v

uT Ĉxyv√
uT Ĉxu

√
vT Ĉyv

. (4.45d)

Clearly, this problem is the same as solving the CCA, which is given by the maximum singular
value of the coherence matrix Ĉ, hence also implying 0 ≤ ρ̂HGR (X;Y ) ≤ 1. As a result, the
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Figure 4.2: Comparison between the SMI and the HGR coefficient in terms of their half of the ratio
of the MI for random discrete channels with random input distributions, and different alphabet sizes
with N = M .

HGR coefficient does only provide the largest canonical correlation. In contrast, the SMI is given
by the sum of all the squared canonical correlations, which are potentially nonzero. The SMI then
can be seen as a more thorough measure, one that not only tells the best single mapping to the reals,
as the HGR coefficient does, but one that also looks to other mappings to canonical coordinates
of the coherence. The SMI is then expected to be more sensitive to complex hidden relationships
between the observed data.

Figure 4.2 illustrates these ideas by comparing the two measures of information and their rela-
tion with the MI. The ratio of half the SMI/HGR coefficient is inspired from the local relationship
between the SMI and the MI from (2.76). In particular, we are interested in seeing the dispersion
of both measures at the small dependence regime. In this sense, the SMI not only exhibits a no-
ticeably more consistent behaviour for different alphabet sizes, but also less dispersion when close
to independence. Although this concrete case can be seen as an extreme case of measuring the
HGR coefficient by mapping the sources to reals instead of mapping them onto linearly indepen-
dent vectors, it still exemplifies the loss of information with respect to the MI. In conclusion, since
both information measures are tied and estimated by performing CCA in the feature space, in terms
of estimating information the SMI provides a potentially better representation of the dependence
between two random variables.

4.2 Second-order statistics in the function space

Once the case for discrete sources has been addressed, we proceed to move into the case of analog
sources. In this section, the core idea of the mapping for continuous random variables is established.
Particularly, the mapping is inspired by the CF from Section 2.1.1 due to its property of translating
independence to uncorrelation, and vice versa. Thanks to the fact that the CF is the inverse Fourier
transform of a PDF, we will be able to naturally link the proposed mapping with power spectral
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density estimation theory. What follows is an analysis of a mapping to the space of functions
and its relation with kernel methods. We are particularly interested in the relationship between the
derivation of kernels provided in Chapter 3 and the CF space. However, we will also take advantage
of the properties of kernels to enhance the intended mapping.

4.2.1 The characteristic function space

We start by considering a mapping from reals to the CF space Z . Let X be a continuous random
variable defined in the set X ⊆ R and PDF fX (x). Consider L i.i.d. observations {x (i)} for
i = 0, ..., L− 1. A tentative mapping z̃ : X → Z is then:

z̃x(i) (ω) = ejωx(i), ∀ω ∈ R. (4.46)

The main motivation of this mapping comes from the quality of the CF of linking nonlinear de-
pendence with linear dependence (correlation). Given that our objective is to measure the SMI
with just the first and second-order statistics in the feature space, the CF proves to be an excellent
candidate for a feature space. However, we are still not in position to determine whether (4.46)
is a valid mapping or not. In fact, we require that the scalar product in this feature space is well-
defined. This question is relevant since it allows for bridging between the proposed mapping and
kernel methods. For that, we need the following expression to be finite:

〈
z̃x(i) (ω) , z̃x(j) (ω)

〉
=

∫
R
z̃x(i) (ω) z̃

∗
x(j) (ω) dω =

∫
R
ejω(x(i)−x(j))dω, (4.47)

where j = 0, ..., L−1. As can be seen, the scalar product is not finite, thus the mapped observations
in the feature space are not of finite norm. This property poses a problem, hence a modification is
needed in order to ensure a well-defined scalar product. Particularly, let us consider the following
mapping:

zx(i) = ejωx(i)G (ω) ∀ω ∈ R, (4.48)

where G (ω) acts as a window function with finite-norm constraint such that∫
R
|G (ω)|2 dω <∞. (4.49)

This mapping can be seen as a pure frequency shift of the deterministic function G (ω), whose
shifting is determined by the magnitude of x (i). As a result, we have now a well-defined scalar
product

〈
zx(i) (ω) , zx(j) (ω)

〉
=

∫
R
z̃x(i) (ω)G (ω) z̃∗x(j) (ω)G

∗ (ω) dω (4.50a)

=

∫
R
ejω(x(i)−x(j)) |G (ω)|2 dω, (4.50b)

which can be shown to be finite given the Cauchy-Schwarz inequality:

∣∣〈zx(i) (ω) , zx(j) (ω)〉∣∣ ≤
√∫

R

∣∣z̃x(i) (ω)G (ω)
∣∣2 dω

√∫
R

∣∣z̃x(j) (ω)G (ω)
∣∣2 dω (4.51a)

=

√∫
R

∣∣ejωx(i)∣∣2 |G (ω)|2 dω

√∫
R

∣∣ejωx(j)∣∣2 |G (ω)|2 dω (4.51b)

=

√∫
R
|G (ω)|2 dω

√∫
R
|G (ω)|2 dω = ‖G (ω)‖22 . (4.51c)
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As a result from (4.50), the scalar product of the windowed mapping based on the CF is just
the squared modulus of the Fourier transform of G (ω), namely g (α) = F {G (ω)}. It also means
that, following Definition 4, we are now in front of a Hilbert space, and the scalar product can be
seen as a kernel, albeit explicitly defined. Particularly, we have〈

zx(i) (ω) , zx(j) (ω)
〉
= 〈φ (x (i)) , φ (x (j))〉 = k (x (i) , x (j)) , (4.52)

where the kernel function k is given by

k (x (i) , x (j)) =

∫
R
ejω(x(i)−x(j)) |G (ω)|2 dω, (4.53)

which is just the inverse Fourier transform of |G (ω)|2 evaluated at the pairwise difference x (i)−
x (j). As a result, we can express the kernel function as the autocorrelation of g (α) such that

k (x (i) , x (j)) =

∫
R
g ((x (i)− x (j)) + β) g∗ (β) dβ. (4.54)

Since k (x (i) , x (j)) comes from an autocorrelation function, its derivation entails further im-
plications on k. On the one hand, it is a shift-invariant kernel, which can be directly written as
k (x (i) , x (j)) = k (x (i)− x (j)) (with some abuse of notation). We have actually observed this
property in the IP estimator from (3.73), where it originated from the Gaussian window and its
expression as an exponential function. Here, the reason is equivalent, given that (4.53) is a direct
consequence of the feature map, which comes from the separability of the CF, i.e. ejω(x(i)−x(j)) =
ejωx(i)e−jωx(j). On the other hand, the resulting kernel is also bounded by the squared L2 norm of
G (ω), i.e. |k (x (i) , x (j))| ≤ ‖G (ω)‖22, which is an additional consequence of “controlling” the
feature space.

In the literature, these type of kernels are called autocorrelation kernels [Roj+18, Chapter
4]. While autocorrelation kernels have found their use in image signal processing [PT01; Hor04;
ZZJ04] as a way to avoid an explicit measure of a costly autocorrelation, they have also been used
in communications problems [Fig+12; Fig+14]. Nonetheless, the autocorrelation point of view
comes from (4.53), which spans a more general kind of kernels: the shift-invariant kernel. These
kernels actually come from Bochner’s theorem [Rud90, Sec. 1.4], which states that a continuous
function k on R is positive definite if and only if it is the Fourier transform of a non-negative
measure p (ω) such that:

kp (x (i) , x (j)) =

∫
R
ejω(x(i)−x(j))p (ω) dω. (4.55)

Under this setting, if kp is properly scaled, then p (ω) is a density function, which implies

kp (x (i) , x (j)) = Ep

{
ejω(x(i)−x(j))

}
. (4.56)

This relationship with Bochner’s theorem is what drives the approximation of the kernel function
with a combination of N features [RR07; LP20] such that

kp (x (i) , x (j)) = Ep

{
z̃x(i) (ω) z̃

∗
x(j) (ω)

}
≈ 1

N

N−1∑
n=0

z̃x(i) (ωn) z̃
∗
x(j) (ω) , (4.57)

where ωn are samples of ω referred to as nodes. Therefore, by imposing that p (ω) is a PDF, the
feature space is explicitly known and related to the CF, which can then be used to approximate any
shift-invariant kernel. This final expression is relevant since, as our objective is to implicitly reduce
the dimension of the mapping, it provides a point of comparison with forthcoming derivations of
the proposed method, which will be addressed in Subsection 4.2.1.3.
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In contrast to (4.56), (4.53) does not impose any constraint on G (ω). From the tentative map-
ping to the shift-invariant autocorrelation kernel, we just require a square-integrable window func-
tion. The result is that the well-defined scalar product is what ensures a proper nonnegative kernel
function, and not the opposite. While still endorsed by the theory of RKHS, the derivation here
gains in intuition, and provides a fresh look into kernel functions.

Nonetheless, there is still some advantages by imposing additional constraints to G (ω). In
particular, since we want to deal with CFs, we may impose that G (ω) is also the CF of a given
random variable. Therefore it is g (α) that will become a PDF (unit area and nonnegative function),
following Theorem 2.2, and not |G (ω)|2. This approach subverts the usual kernels derived from
Bochner’s theorem, given that we are primarily interested in the feature space, rather than in the ker-
nel measure itself. Interestingly, by doing so, the resulting kernel k is an autocorrelation between
two PDFs. This property coincides with the estimate of the IP based on the Parzen-Rosenblatt
window estimate in (3.72), which also leads to the shift-invariant kernel (3.74) and originates from
the interest on the feature space itself. Again, while in (3.72) the kernel is defined by the auto-
correlation itself, here the kernel is derived from the scalar product in the function space, hence
operating in the inverse path. Later, we will leverage the notion of G (ω) being a CF to define a
mapping based on the contamination of random variables.

4.2.1.1 First and second-order statistics in the characteristic space

Once the mapping is defined, and following the case for discrete sources, we are now interested in
studying the first and second-order statistics in the characteristic space. Since the feature map is
based on the CF, we will see that the expectation and the correlation among the mapped data in
this space can be evaluated in a closed form. To get a better insight, let us begin from (4.46). The
expectation over the mapped data is

EfX {z̃x (ω)} =
∫
R
ejωxfX (x) dx = ϕX (ω) , (4.58)

which is directly the CF of X . The sample mean estimator is then

ϕ̂X (ω) =
1

L

L−1∑
i=0

ejωx(i). (4.59)

Clearly, this directly translates to the empirical estimator of the CF, which is known to be consistent
for a wide class of probability distributions [FM77]. By introducing the window function, the
expected value becomes

EfX {zx (ω)} =
∫
R
G (ω) ejωxfX (x) dx = G (ω)ϕX (ω) = ξ (ω) , (4.60)

and the sample mean is

ξ̂ (ω) = G (ω)
1

L

L−1∑
i=0

ejωx(i) = G (ω) ϕ̂X (ω) . (4.61)

Given that G (ω) is data invariant, the estimator is also consistent for a wide class of probability
distributions.

Next, we proceed to consider the second-order statistics in the windowed CF space. For that,
consider two random variables X and Y defined in the sets X ⊆ R and Y ⊆ R, whose PDFs are
fX (x) and fY (y), respectively, and the joint PDF is fX,Y (x, y). First, we consider the autoco-
variance of the mapped data:
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Cov {zx (ω1) , zx (ω2)}
= EfX {zx (ω1) z

∗
x (ω2)} − EfX {zx (ω1)}EfX {z

∗
x (ω2)} (4.62a)

= EfX

{
ejω1xG (ω1) e

−jω2xG∗ (ω2)
}
− EfX

{
ejω1xG (ω1)

}
EfX

{
e−jω2xG∗ (ω2)

}
(4.62b)

= G (ω1)G
∗ (ω2)

(∫
R
ej(ω1−ω2)xfX (x) dx−

∫
R
ejω1xfX (x) dx

∫
R
e−jω2xfX (x) dx

)
(4.62c)

= G (ω1)G
∗ (ω2) (ϕX (ω1 − ω2)− ϕX (ω1)ϕX (−ω2)) . (4.62d)

As can be seen, the autocovariance becomes a function of the univariate CF, and consequently to
the first-order statistics. This is a particular property of the proposed mapping, which will entail
further advantages when operating with the finite-dimensional feature space. On the other hand, by
proceeding analogously as in (4.62), the cross-covariance between the mapped data is the following:

Cov {zx (ω1) , zy (ω2)}
= EfX,Y

{
zx (ω1) z

∗
y (ω2)

}
− EfX {zx (ω1)}EfY

{
z∗y (ω2)

}
(4.63a)

= EfX,Y

{
ejω1xG (ω1) e

−jω2yG∗ (ω2)
}
− EfX

{
ejω1xG (ω1)

}
EfY

{
e−jω2yG∗ (ω2)

}
(4.63b)

= G (ω1)G
∗ (ω2)

(∫
R2

ejω1x−jω2yfX,Y (x, y) dxdy −
∫
R
ejω1xfX (x) dx

∫
R
e−jω2yfY (y) dy

)
(4.63c)

= G (ω1)G
∗ (ω2) (ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2)) . (4.63d)

By considering a set ofL i.i.d. observations of the original sources {x (i) , y (i)} for i = 0, ..., L−1,
then the empirical estimate of (4.63) 2 can be directly computed as follows:

Ĉov {zx (ω1) , zy (ω2)}

= G (ω1)G
∗ (ω2)

(
1

L

L−1∑
i=0

ejω1x(i)e−jω2y(i) − 1

L

L−1∑
i=0

ejω1x(i) 1

L

L−1∑
i=0

e−jω2y(i)

)
. (4.64)

As it turns out, the cross-covariance just becomes a windowed version of the joint CF with reverse
sign in one of its arguments. Following (4.61), the previous expression is also a consistent estimate
of the covariance of the mapped data, provided that G (ω) is known. Thanks to the property of
the CF of translating uncorrelation to independence, as addressed in Section 2.1.1, the correlation
between the mapped data can be seen as a detector of dependence. However, due to the nature of
functions, the uncorrelation has to be checked for all possible values of ω1 and ω2, i.e. ∀ (ω1, ω2) ∈
R2.

In order to limit the feature space with the purpose of estimating an information measure, we
proceed to further determine the implications, properties and behaviour of the first and second-
order statistics in the windowed feature space. In the sequel, we analyze what the previous expres-
sions entail while studying further constraints to the window function to comply with the desired
finite-dimensional mapping.

On complete second-order statistics When dealing with complex random variables, the com-
plete information is not given by the proper second-order statistics, but their improper depiction.
The improper perspective can be achieved by gathering the usual proper representation, for exam-
ple EfX,Y

{
zx (ω1) z

∗
y (ω2)

}
, with the extended one, EfX,Y

{zx (ω1) zy (ω2)}. The complementary
2The empirical derivation of (4.62) is omitted because it is equivalent to performing (4.61) due to the first-order

statistic point of view.
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Figure 4.3: Illustrative rationale for a Hermitian window function.

information, referred to as the complete characterization of second-order statistics, leads to the
consideration of the augmented covariance (or augmented matrix in the case of random vectors).
For a complete overview of improper statistical processing, the reader is referred to the works of
Schreier et al. [SS10]. This is relevant in our problem given that the characteristic function space
is defined in the complex set. Therefore, given (4.62) and (4.63), the complete characterization of
the proposed complex feature space is, in principle, required.

In order to comply with the complete characterization, we would need to compute the proper
covariance and add the improper representation. Nevertheless, this may pose a problem when
limiting the feature space, given that, when moving from functions to matrices, the augmented
covariance matrix (improper) has double the size of the nonaugmented one (proper). In order to
avoid this derivation, and, at the same time, to not loose the information given by the complete rep-
resentation of the second-order statistics, the window function will be constrained to be Hermitian
with G∗ (ω) = G (−ω).

Figure 4.3 exemplifies the previous argument. If the window is Hermitian from the start, then
one “just” needs to explore ∀ (ω1, ω2) ∈ R2 on the (only) proper statistics to include the complete
characterization of the second-order statistics. It is also worth noting that the Hermitian constraint
is, in fact, in agreement withϕX,Y ,ϕX andϕY , since the CF is always a Hermitian function. There-
fore, by imposing this additional constraint, the complete representation of second-order statistics
is achieved both for the window function and CFs.

Another consequence of imposing a Hermitian window is that its Fourier transform g (α) is
real-valued. Therefore, from (4.54), the kernel k is a real-valued positive definite function, which
is in agreement with Definition 5. Thanks to considering the complete second-order statistics and
imposing some additional restrictions onG (ω), the resulting derivation entails some relevant prop-
erties that guarantee k to be a proper reproducing kernel for x ∈ R. Or, in the opposite side, kernels
must be real-valued and positive definite so that the complete characterization is performed. The
resulting constraint is the same as derived from the mathematical kernel background, albeit ex-
pressed in the terms of this dissertation, with a more intuitive point of view.

On the contamination of the CF As mentioned before, a straightforward approach to the design
of Hermitian window functions is to also assume that G (ω) is a CF. This constraint also implies
that |G (ω)| ≤ G (0) = 1, hence g (α) is a PDF and the kernel is properly scaled, similarly to
(4.56). Not only that, but it also entails the characterization of first and second-order statistics under
a contamination point of view. Here, we consider this particular case to study its implications.
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First, we consider the first-order statistics from (4.60). Generally speaking, ξ (ω) is just a
windowed version of the CF of X . However, if G (ω) is a CF, we can ensure that ξ (ω) is also a
CF. Given that the product of CFs implies the convolution of PDFs, (4.61) can be seen as directly
the first-order statistic of some virtual source X ′ with density function fX′ (x). To better see this
rationale, let us consider i.i.d. observations of X ′ such that

x′ (i) = x (i) + vx (i) (4.65)

where vx (i) are independent realizations of a random variable with PDF g (x), and also inde-
pendent from x (i). We refer to this approach as a contamination of the original random variable
due to its resemblance with an additive noise channel. The PDF of the virtual source is just the
convolution of the original PDF with g, that is

fX′ (x) = (fX ∗ g) (x) , (4.66)

and its CF becomes the product of CFs such that

ϕX′ (ω) = ξ (ω) = ϕX (ω)G (ω) . (4.67)

Consequently, to window the feature space and measure the first-order statistic is equivalent to
directly operate with the virtual source X ′ mapped in the original, windowless, feature space.
Therefore, we can write

EfX′ {z̃x′ (ω)} = EfX {zx (ω)} , (4.68)

recalling that z̃ denotes the nonregularized feature space (4.46), but X ′ implies that the regulariza-
tion is performed from the contamination point of view.

Henceforth, we will directly deal with the virtual sources instead, given that the contamination
in (4.65) will be required for the adequate evaluation of the second-order statistics, and operations
further on, from the point of view of a necessary regularization. It is thanks to G (ω) being a CF
that we can benefit from the idea of convolutions between PDFs, and it will be further addressed
in Subsection 4.2.1.2.

Next, we proceed to consider the autocovariance and cross-covariance of the virtual sources,
following (4.62) and (4.63). On the one hand, the autocovariance of the contaminated mapped
sources yields:

Cov {z̃x′ (ω1) , z̃x′ (ω2)}
= EfX′ {z̃x′ (ω1) z̃

∗
x′ (ω2)} − EfX′ {z̃x′ (ω1)}EfX′ {z̃∗x′ (ω2)} (4.69a)

= EfX′

{
ejω1x′

e−jω2x′
}
− EfX

{
ejω1x′

}
EfX

{
e−jω2x′

}
(4.69b)

=

∫
R
ej(ω1−ω2)x′

fX′ (x) dx−
(∫

R
ejω1x′

fX′ (x) dx
)(∫

R
e−jω2x′

fX′ (x) dx
)

(4.69c)

= ϕX′ (ω1 − ω2)− ϕX′ (ω1)ϕX′ (−ω2) (4.69d)
= ϕX (ω1 − ω2)G (ω1 − ω2)−G (ω1)G (−ω2)ϕX (ω1)ϕX (−ω2) . (4.69e)

In contrast to (4.62), the window that governs over ϕX (ω1 − ω2) is now also G (ω1 − ω2), and not
G (ω1)G

∗ (ω2). This variation is a consequence of the contamination point of view, which imposes
some constraints to the window function, now considered a CF. Thanks to this expression, we will
be able to simplify the computation of the autocovariance function when limiting the feature space.
On the other hand, the cross-covariance is as follows:

Cov
{
z̃x′ (ω1) , z̃y′ (ω2)

}
= EfX′,Y ′

{
z̃x′ (ω1) z̃

∗
y′ (ω2)

}
− EfX′ {z̃x′ (ω1)}EfY ′

{
z̃∗y′ (ω2)

}
(4.70a)

= EfX’,Y ′

{
ejω1x′

e−jω2y′
}
− EfX′

{
ejω1x′

}
EfY ′

{
e−jω2y′

}
(4.70b)
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=

∫
R2

ejω1x′−jω2y′fX′,Y ′ (x, y) dxdy −
∫
R
ejω1xfX′ (x) dx

∫
R
e−jω2yfY ′ (y) dy

= ϕX′,Y ′ (ω1,−ω2)− ϕX′ (ω1)ϕY ′ (−ω2) (4.70c)
= G (ω1,−ω2)ϕX,Y (ω1,−ω2)−G (ω1)ϕX (ω1)G (−ω2)ϕY (−ω2) , (4.70d)

where G (ω1, ω2) is the joint CF (the bivariate case in (2.5)) of the chosen distribution for regular-
ization purposes. Similarly to (4.69), we will use this particular derivation of the cross-correlation
when measuring information after the limitation of the feature space.

On the window effective finite support As mentioned before, an uncountable number of (ω1, ω2)
pairs is required to measure dependence in this feature space due to the nature of the characteris-
tic function space. This approach is studied, for instance, in the distance covariance method from
Subsection 2.3.4.3. Specifically, (2.86) checks the magnitude of correlation ∀ (ω1, ω2) ∈ R2 by
performing an integral. Furthermore, the distance covariance is also regularized by a window
function to ensure the convergence of the integral, consolidating the idea that the proposed feature
space needs regularization. With the purpose of limiting the number of pairs required to asses
uncorrelation, we explore here further considerations of the window function to achieve it.

The key point is to assume that G (ω) has an effective finite support with a given bandwidth,
namely ν. Since G (ω) is deterministic and ν is determined beforehand, its shape and effective
finite support give some clues to deciding the largest values of ω1 and ω2 that need to be tested.
For example, we can benefit from the Chebyshev’s inequality to determine an approximate decay of
the contaminated CF. Moreover, the addition of the window function can be seen as a tapering of
the CF that helps with improving the estimation of the CF itself. This property exhibits an insight-
ful duality with the classical spectral estimation problem [Kay88]. In particular, Blackman-Tukey
spectral estimation “tapers” the estimated autocorrelation function to trade-off bias and variance of
the spectral estimate. In fact, we will see that, by determining the shape ofG (ω)with a given band-
width, the trade-off of the taper function is replicated in terms of the window bandwidth. All these
notions will be leveraged for deciding the required bandwidth for the estimation of information
measures in Section 4.3.

Nevertheless, the finite effective support of G (ω) may not be a sufficient condition for a proper
estimation of information. In particular, we are also interested in requiring that g (α) also has a
finite effective support. This is in preparation for an eventual limitation of the function space based
on sampling ω1 and ω2 (for example, as in (4.57)). Consequently, following the Nyquist-Shannon
sampling theorem, it is desirable to reduce the potential impact of the replicas from the contam-
inated PDF fX′ (x) by considering that the resulting PDF also has an effective finite support3.
Given that we are working in the frequency domain, a possible way to manage the decay of the
Fourier transform is to consider G (ω) to be a smooth function. In this regard, it is well-known that
the smoothness of a function, i.e. a function that is differentiable everywhere, is tied to the decay
of its Fourier transform (see, for instance, [SS11] Section 2.2). In particular, a function that is
n-th differentiable has a Fourier transform that decays with O

(
|ω|−n) as |ω| → ∞. It is therefore

desirable that G (ω) is smooth. The result is no surprising since smoothness was also assumed
when addressing kernel methods in Chapter 3. In particular, the smoothness condition also has
been assumed in Subsection 3.2.2 (which addressed the KCCA) in order to properly estimate the
HGR coefficient.

By gathering all previous observations, an appropriate window function is then a smooth CF
that provides the minimum spreading over both g (α) and G (ω). A window function that fulfills
all the previous conditions is, for instance, the Gaussian window. By imposing G (ω) to be the CF
of a Gaussian random variable, then the contamination from (4.65) is an Additive White Gaussian
Noise (AWGN) process. The Gaussian window is also known to be optimal in terms of minimizing

3The full implications of the sampling will be detailed in Section 4.3. Right now, the sampling standpoint is only
provided to identify an adequate window function.
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Figure 4.4: Diagram of the window function properties and their implications.

the spreading in both time and frequency domains in the context of spectral estimation [Jan91],
and in time-frequency analysis methods [JB95], thus complying with the effective finite supports
requirement. This property of the Gaussian window is also studied in radar detection problems,
which characterizes the spread of the so-called ambiguity function, where it is also desirable to be
as sharp as possible in both time and frequency domains [Lie90].

Unified window map In order to gather all previous particularizations and implications of the
window function G (ω), Figure 4.4 shows an orientation map of the constraints imposed and their
respective outcomes. We have begun this subsection by imposing a finite scalar product to the
feature space by means of G (ω). Thanks to the addition of the window function, we can relate
the proposed feature map with Bochner’s theorem, which also yields the autocorrelation kernels.
Furthermore, if a kernel comes from an autocorrelation function, then we can ensure that it fulfills
the reproducing property, hence it spans a RKHS. Next, by considering the complete representa-
tion of the second-order statistics, we have imposed that G (ω) is Hermitian so that it considers
both proper and improper statistics. Consequently, the resulting kernel is real-valued, thus also
complying with the reproducing property of kernels. In another regard, we require the window
function and its Fourier transform, at the same time, to have an effective finite support. On the one
hand, we have assumed that the decay of the window function in the frequency domain is governed
by a certain kernel bandwidth. This has been done in preparation for a forthcoming limitation of
the feature space based on sampling ω. On the other hand, a smooth window function also en-
sures the decaying in the transformed domain (and also that the kernel is smooth), thus minimizing
the potential aliasing introduced by the sampling. By uniting the previous statements, we have
concluded that the Gaussian function provides the desired behaviour in both domains. Nonethe-
less, there are further advantages to choosing a Gaussian function, which will be addressed in the
following subsection.

Relation to second-order statistics in the data space Lastly, before advancing to the next sub-
section, it is also of interest to characterize how the second-order statistics in the CF space are
related to the second-order statistics in the data space. In particular, consider again that G (ω) has
a window bandwidth ν. If we let ν to be very close to 0, then we can approximate (4.69) and (4.70)
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by means of the Taylor expansion in its origin, as it is addressed in Subsection 2.1.1.1. As a study
case, let us take (4.70) to analyze the resulting approximation 4. Following Appendix 7.3.4, the
approximation for small values of ν yields the following:

Cov
{
z̃x′ (ω1) , z̃y′ (ω2)

}
≈ ω1ω2

(
EfX,Y

{XY }+ EfX {X}EfY {Y }
)
. (4.71)

The resulting cross-covariance is then expressed as a function of the first and second-order statis-
tics of the original random variables. However, it is not completely the covariance, given that the
marginal variances are added instead of subtracted. Also note that a very small value of ν corre-
sponds to a large value of the bandwidth of g (x), since it is the Fourier pair of G (ω). Therefore,
as the variance of the contamination process increases, the windowed mapping restores to second-
order statistics. This behaviour resembles, again, the asymptotic IP estimator provided in (3.84),
where an increase of the kernel bandwidth allowed us to link the kernel estimate with the sample
variance. In this case, however, it is performed from the CF point of view.

4.2.1.2 Gaussian regularization

We are now in conditions of detailing the particular feature space given by imposing a Gaussian
window function. To be concrete, consider G (ω) to be the CF of a zero-mean Gaussian random
variable such that

G (ω) = e−σ2ω2/2 (4.72)

for nonzero variance σ2. Consequently, its Fourier pair (with the appropriate 1/2π normalization
to make the transformation unitary) is

g (α) =
1√
2πσ2

e−
α2

2σ2 = fV (α) , (4.73)

which results in the PDF of the zero-mean Gaussian random variable V , i.e. N
(
0, σ2

)
. The feature

map is then directly as follows:

zx(i) = ejωx(i)e−σ2ω2/2 = ejωx(i)−σ2ω2/2 ∀ω ∈ R, (4.74)

which is the CF of a Gaussian random variable with mean x (i) and variance σ2, i.e. N
(
x (i) , σ2

)
.

Then, the scalar product in the feature space can now be computed (as in Appendix 7.2.1) with

k (α) =

∫
R
g (α+ β) g∗ (β) dβ =

1√
4πσ2

e−
α2

4σ2 . (4.75)

The resulting kernel function is equivalent to the one from (3.74) for α = x (i)− x (j), which just
confirms the expected result of obtaining a Gaussian kernel by imposing a Gaussian shape on the
window in the characteristic space.

Following the perspective of virtual sources from (4.65), the CF becomes

ϕX′ (ω) = ϕX (ω)ϕV (ω) , ϕY ′ (ω) = ϕY (ω)ϕV (ω) , (4.76)

where ϕV (ω) = G (ω). The implications of the Gaussian virtual contamination are particularly
meaningful in the form of the first-order statistics in the characteristic space. For instance, it is
worth noting that the Fourier transform of the sample estimate is equivalent to estimating the PDF
of X through the Parzen-Rosenblatt method shown in (3.51):

F
{
EfX

{
zx(i)

}}
= F

{
1

L

L−1∑
i=0

ejωx(i)−σ2ω2/2

}
=

1

L

L−1∑
i=0

F
{
ejωx(i)−σ2ω2/2

}
(4.77a)

4A similar procedure can be performed with (4.69). However, for clarity, only one of the cases will be shown.
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=
1

L

L−1∑
i=0

1√
2πσ2

e−
(x−x(i))2

2σ2 . (4.77b)

This means that (4.74) is intrinsically estimating the sample CF ofX by the summation of Gaussian
random data in the original space, whose expectation is the convolution between the original PDF
and the window function as in (3.54). However, here we have a direct control of the shape of the
Gaussian function in the feature space in terms of σ. Particularly, we can directly determine the
bandwidth of the window function that operates in the inherently infinite-dimensional feature space
in terms of the bandwidth h required for estimating the PDF with the Parzen-Rosenblatt method
(3.51). This behavior allows to determine an specific trade-off between the required (ω1, ω2) pairs
and the sensitivity of the CF in front of ϕV (ω). Clearly, we want to limit the CF but also to let
the bandwidth to be sufficiently large to contain all the relevant areas of the CF. The question is
then how to determine the window bandwidth without tampering too much the CF for a given set
of observations. This topic will be addressed later, on Section 4.3.

Lastly, another advantage of this particular case is that smoothing with Gaussian convolutions
is known to act as a natural regularization of the problem of estimating measures of information.
Goldfeld et al. [Gol+19; Gol+20] proposed to employ the contamination with a Gaussian variable
to improve the convergence rate of estimation with respect to the sample size, even achieving the
parametric rate of convergence with nonparametric estimators. Particularly, in [Gol+20] the case of
theχ2-divergence is addressed, which specifically ties into the estimation of SMI. The consequence
of smoothing is reflected on an additional bias of the estimators. For the estimation of the second-
order Rényi entropy, the smoothed density function becomes “more” Gaussian, or sub-Gaussian,
resulting in a positive bias. For the estimation of the SMI, the contributing bias is negative due to
the general data processing inequality for f -divergences (see, for instance, [PPW17; Col19]). Both
of these behaviors will be verified on Section 4.3 via computer simulations.

For all the reasons above, we will fix G (ω) = ϕV (ω) to be the Gaussian CF and it will be
used as a basis for windowing the feature map on the characteristic space.

4.2.1.3 From the function space to the finite-dimensional feature space

Before moving into the finite-dimensional feature space formulation, we will provide some insight
on its properties, advantages, disadvantages and challenges. So far, we have seen that the feature
space requires some sort of regularization, whose implementation resonates in multiple facets of
the mapping. On the one hand, by windowing the feature space to allow for a well-defined scalar
product, we are intrinsically “kernelizing” the problem. This kernel is uniquely determined by the
window function, and it is directly related to the kernel methods addressed in Chapter 3. The im-
position of a windowed CF space also helps on gaining interpretability of the feature map, whose
study has lead to Figure 4.4. On the other hand, the regularization of the feature space is equiva-
lent to contaminating the original random variable, which, by imposing a bandwidth to the window
function, permits to control the decay of the CF. Furthermore, the window function G (ω) helps
in the universality standpoint. Thanks to imposing an effective finite support on the characteristic
space, any underlying CF of the data is admitted, and the resulting estimate will only be concerned
by a bias penalty. With the objective of limiting the feature space, we have concluded that the
Gaussian window not only meets all the required constraints, but also has a strong relationship
with the concept of smoothing convolutions for the estimation of information measures. Under
this assumption, the first-order statistics is also equivalent to the Parzen-Rosenblatt window es-
timate. However, this course is intrinsically tied to kernel methods. Since the path took by the
kernel methods is well-studied, we are more interested in operating with the first and second-order
statistics in this particular space, opening the possibility of applying classical signal processing
techniques. In essence, we want to establish the dual problem sketched in (4.14): outer products
in front of inner products, kernel methods in front of second-order statistics.
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We are now interested on limiting the dimension of the feature space to perform any kind of
processing based on first and second-order statistics efficiently. As we move to analog sources,
a mapping to functions is required, in principle. This can be theoretically done by rearranging
a combination of the covariances studied in Subsection 4.2.1.1 so that the second-order Rényi
entropy or the SMI are obtained. In essence, this would mean to translate the expressions from
(4.8) and (4.32) to an integral form. However, the evaluation of this integral is still required to be
solved numerically. The immediate solution is then to sample the function space, so it has a limited
dimension. By doing so, we are inherently introducing bias to the estimate, a direct consequence of
Proposition 4.1 and Theorem 4.1, but we recover the matrix and Frobenius norm structure. Under
this setting, a relevant question becomes how is the required sampling of ω.

This is a similar problem as the one posed in (4.57), where the selected features ωn, called
nodes, have to be determined appropriately for a good approximation of the inner product. Rahimi
et al. [RR07] proposed to randomize the selected features by generating samples from a uniform
distribution. This approach, however, does not account for the shape of the underlying distribution,
and it is let to converge in probability as the number of features increases. In this sense, the approach
proposed in this section is that the Gaussian shape of G (ω) is known, which can be leveraged to
improve the required mapping. Dao et al. [DDR17] proposed, in return, to approximate the integral
given in (4.55) by means of a Gaussian quadrature. The approximate is then cast as follows

kp (x (i) , x (j)) =

∫
R
ejω(x(i)−x(j))p (ω) dω ≈

N∑
n=1

αne
jωn(x(i)−x(j)), (4.78)

where the challenge is then to determine αn and ωn, based on the distribution p (ω), that better
approximate the inner product with the minimum value of N . In particular, given (4.74), we are
interested in the Gauss-Hermite quadrature ([AS64], 25.4.46), which is generally used for approx-
imating integrals with infinite interval of the form∫

R
e−ω2

f (ω) dω ≈
N∑

n=1

αnf (ωn) . (4.79)

From here, we are only interested on the nodes ωn. The reason is that our objective is not to approx-
imate (4.53), that is the inner product kernel approach, but to translate the problem of sampling ωn

into the required one in Subsection 4.2.1.1. The values of ωn for the Gauss-Hermite quadrature are
given by the roots of the Hermite polynomial

HN (ω) = (−1)N eω
2 ∂N

∂ωN
e−ω2

. (4.80)

As it turns out, the roots of the previous expression are approximately equally spaced (see, for
instance, [GM48]). Figure 4.5 illustrates this outcome by comparing the mean distance between
nodes given by the roots of (4.80) which is proportional to 1/

√
N . This result denotes that, by

imposing a uniform sampling on ω, we are approximately complying with the Gauss-Hermite
quadrature. Moreover, a uniform sampling will be advantageous since then the involved matrices
for estimating information measures will be Toeplitz. Consequently, we can benefit from Szegö’s
theorem to determine asymptotic behaviours of these matrices. These concepts will be clarified as
the finite-dimensional mapping is specified.

4.3 Estimating information with second-order statistics

In view of the observations and phenomena addressed in the previous section, we now proceed
to propose a finite-dimensional space. We are particularly interested on three key aspects. First,
to analyze how to translate a function space to a finite one, which will be the first question to be
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Figure 4.5: Mean value of the distance between nodes for an increasing value of N .

addressed. Secondly, since we want to deal with analog sources, any limitation of the dimension
of the space entails a bounded estimation that depends on the feature space dimension itself. This
covers the results observed in Proposition 4.1, in the case of the second-order Rényi entropy, and
in Theorem 4.1, in the case of the SMI. And finally, the dimension of the feature space becomes a
meaningful parameter that has to be chosen appropriately. This question will become undoubtedly
tied to the choice of window G (ω) and associated bandwidth. In the sequel, the finite-dimensional
mapping is proposed and discussed, the second-order Rényi entropy and SMI estimators are de-
rived, and some numerical results are provided.

4.3.1 An explicit finite-dimensional feature space

Consider a sequence of L i.i.d. pairs {x(i), y(i)}i=0,1,...L−1 drawn from the random variables X
and Y defined in the sets X ⊆ R and Y ⊆ R, respectively. Let us begin by considering the
mapping from (4.48), and by proposing a sampling of the windowed CF such that the resulting
complex-valued vector is the following:

z̃x′(i) =
1

4
√
N

ejx
′(i)αn ∈ CN , (4.81a)

z̃y′(i) =
1

4
√
N

ejy
′(i)αm ∈ CM , (4.81b)

where n ∈ NN and m ∈ NM with

n =
[
−K · · · 0 · · · K

]T
, m =

[
−P · · · 0 · · · P

]T
, (4.82)

hence N = 2K + 1 and M = 2P + 1. Here ejx
′(i)αn and ejy

′(i)αm denote an element-wise
exponential vector. This mapping represents a uniform sampling of the ω domain with a given
sampling period α. Without loss of generality, we will consider the case M = N for simplicity,
and therefore m = n. As a result, we determine z : R→ C2N+1 as the general function that maps
the data onto a high-dimensional (but finite) space. The case M 6= N can be considered if the true
CFs ϕX or ϕY require either a narrower or a broader sampling limit.

The proposed uniform sampling goes as follows. Given that analog sources can be considered
of inherent “infinite-dimensionality”, a finite-dimensional mapping infringes, by default, the or-
thonormality requirement imposed for discrete sources (see, for instance, Proposition 4.1). The
new parameters that control the gap between the function and the finite-dimensional mappings are
N andα. In particular, if we letN →∞ andα→ 0 simultaneously such thatNα→∞, we would
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be then mapping the sources onto asymptotically orthonormal vectors. For example, α = N−1/2

fulfils the condition for N → ∞. If such condition is achieved, then the posteriors estimates that
take advantage of this mapping would be also asymptotically unbiased (Proposition 4.1 and The-
orem 4.1). However, we are interested on limiting N such that the computational complexity of
the problem does not grow exponentially, and particularly for it to be lower than the one of kernel
methods, i.e. N � L. For that, we will determine the values of N and α from the data itself,
trying to limit as much as possible the dimensionality while providing a sufficiently accurate esti-
mation. Also note that the factor of 1/ 4

√
N is added to obtain asymptotically (with respect to N )

orthonormal vectors, which will be crucial for estimation purposes.
Using the mapping defined in (4.81) we can then construct the data matrices X ∈ CN×L and

Y ∈ CN×L such that

X =
[
z̃x′(0) · · · z̃x′(L−1)

]
, Y =

[
z̃y′(0) · · · z̃y′(L−1)

]
. (4.83)

These matrices conform the mapped data matrices from Lemma 4.2. Consequently, it is straight-
forward to define the sample correlation and covariance matrices required for the estimation. The
autocorrelation matrices5 are

R̂x′ = EfX′

{
z̃x′(i)z̃

H
x′(i)

}
=

1

L

L−1∑
i=0

z̃x′(i)z̃
H
x′(i) =

1

L
XXH , (4.84a)

R̂y′ = EfY ′

{
z̃y′(i)z̃

H
y′(i)

}
=

1

L

L−1∑
i=0

z̃y′(i)z̃
H
y′(i) =

1

L
YYH , (4.84b)

and the cross-covariance matrix is

Ĉx′y′ = EfX′,Y ′

{
z̃x′(i)z̃

H
y′(i)

}
− EfX

{
z̃x′(i)

}
EfY

{
z̃y′(i)

}H (4.85a)

=
1

L

L−1∑
i=0

z̃x′(i)z̃
H
y′(i) −

(
1

L

L−1∑
i=0

z̃x′(i)

)(
1

L

L−1∑
i=0

z̃y′(i)

)H

(4.85b)

=
1

L
XP⊥

1Y
H . (4.85c)

Note that, following the concept of Gaussian convolutions, the sample autocorrelation and cross-
covariance matrices refer to the contaminated sources X ′ and Y ′. We can then specify the regular-
ized feature space by following the same rule as in (4.69) and (4.70).

One the one hand, from (4.69), the elements of the autocorrelation matrices can be written as:

[
R̂x′

]
n,n′

=
1√
N

(
1

L

L−1∑
i=0

ejx(i)α(n−n′)

)
ϕV

(
α
(
n− n′)) (4.86a)

[
R̂y′

]
n,n′

=
1√
N

(
1

L

L−1∑
i=0

ejy(i)α(n−n′)

)
ϕV

(
α
(
n− n′)) (4.86b)

for
ϕV

(
α
(
n− n′)) = e−σ2α2(n−n′)2/2. (4.87)

Thanks to this particular expression of the autocorrelation matrix, which only depends on the first-
order statistics, we observe that (4.86) is a Toeplitz matrix for n, n′ = 0, ..., 2K. For example,

5Only the autocorrelation matrices and the cross-covariance matrix will be shown, as these are the only matrices
required for estimating both the second-order Rényi entropy and the SMI.
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the autocorrelation matrix R̂x′ can be expressed as the matrix whose diagonals are constant and
correspond to the sample mean of the regularized feature space:

R̂x′ =



1
[
R̂x′

]
0,1

[
R̂x′

]
0,2

· · ·
[
R̂x′

]
0,2K[

R̂x′

]
1,0

1
[
R̂x′

]
0,1

. . . ...[
R̂x′

]
2,0

[
R̂x′

]
1,0

. . . . . .
[
R̂x′

]
0,2

... . . . . . . 1
[
R̂x′

]
0,1[

R̂x′

]
2K,0

· · ·
[
R̂x′

]
2,0

[
R̂x′

]
1,0

1


. (4.88)

As a result, we can construct both autocorrelation matrices as follows:

R̂x′ =
1√
N

Toe (p̂a) , R̂y′ =
1√
N

Toe (q̂a) , (4.89)

where p̂a and q̂a are the extended weighed first-order statistics

p̂a =

(
1

L

L−1∑
i=0

ejx(i)αna

)
�wa, q̂a =

(
1

L

L−1∑
i=0

ejy(i)αna

)
�wa (4.90)

for na = [0, 1, · · · , 2K]T = [0, 1, · · · , N − 1]T and the asymmetric window vectors

wa = ϕV (αna) = e−σ2α2n2
a /2. (4.91)

Note that (4.89) is expressed following Definition 2 in order to simplify and operate with Hermitian-
Toeplitz matrices.

On the other hand, from (4.70), the elements of the cross-covariance matrices can be expressed
as follows:[

Ĉx′y′

]
n,n′

=
1√
N

(
1

L

L−1∑
i=0

ejx(i)ne−jy(i)n′

)
ϕV (αn)ϕV

(
−αn′)

− 1
4
√
N

(
1

L

L−1∑
k=0

ejx(k)n

)
1

4
√
N

(
1

L

L−1∑
k=0

e−jy(k)n′

)
ϕV (αn)ϕV

(
−αn′) . (4.92)

Unfortunately, this structure does not yield a Toeplitz matrix, and no further simplifications can be
done. We can, however, express the full matrix as follows:

Ĉx′y′ =
1√
N

(
1

L

L−1∑
i=0

ejx(i)ne−jy(i)nT

)
�
(
wwT

)
− α√

N
p̂q̂H , (4.93)

where the weighted first order statistics are

p̂ =

(
1

L

L−1∑
i=0

ejx(i)n

)
�w, q̂ =

(
1

L

L−1∑
i=0

ejy(i)n

)
�w (4.94)

and the symmetric window vector

w = ϕV (αn) = e−σ2α2n2/2. (4.95)

Finally, with the definition of the required matrices for estimation of information measures, we
are now in terms of determining a new class of estimators based on the second-order statistics in
the finite-dimensional windowed characteristic space.
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4.3.2 Entropy estimation via empirical characteristic function

Consider the sample correlation matrix R̂x′ from (4.84), whose elements are defined in (4.86).
From (4.10), an estimate of the second-order Rényi entropy just becomes

ĥ2 (X) = − ln

(
α

2π

∥∥∥R̂x′

∥∥∥2
F

)
. (4.96)

The normalization factor α/2π is required since we are sampling ω rather than 2πf , which is
typical when defining the Fourier transform. This relation will become clear as we analyze the
implications of the mapping and its asymptotic behaviour. To simplify further equations, we will
just consider the estimate of the IP, namely V̂ (X). By gathering all previous definitions, the
estimate is as follows:

V̂ (X) =
α

2π

∥∥∥R̂x′

∥∥∥2
F
=

α

2π

K∑
k,k′=−K

∣∣∣∣[R̂x′

]
k,k′

∣∣∣∣2 (4.97a)

=
α

2π

K∑
k,k′=−K

∣∣∣∣∣ 1√
N

(
1

L

L−1∑
i=0

ejx(i)α(k−k′)

)
e−σ2α2(k−k′)2/2

∣∣∣∣∣
2

(4.97b)

=
α

2π

K∑
k,k′=−K

1

N

∣∣∣∣∣
(
1

L

L−1∑
i=0

ejx(i)α(k−k′)

)∣∣∣∣∣
2 ∣∣∣e−σ2α2(k−k′)2/2

∣∣∣2 . (4.97c)

Additionally, we can further simplify the estimation by exploiting the Toeplitz structure of R̂x′ .
Thanks to the correlation matrix only relying on first-order statistics, it may be more efficient to
just operate with the vector of sample means p̂a given in (4.90). This observation can be easily
deduced from the matrix structure in (4.88), where only the first column/row is required, and the
summation of all the squared-modulus elements is equivalent to sum all [p̂a]n for n = 0, ..., 2K
and multiplied by a unilateral triangular window. In particular, we can write the IP estimator as

V̂ (X) =
α

2π

(
2K∑
n=0

∣∣∣∣ 1√
N

[p̂a]n

∣∣∣∣2 2 [va]n −
1

N
N

)
(4.98a)

=
α

2π

N−1∑
n=0

1

N

∣∣∣∣∣ 1L
L−1∑
i=0

ejx(i)αn

∣∣∣∣∣
2

e−σ2α2n2
2 (N − n)− 1

 , (4.98b)

where
va = [2K + 1, 2K, 2K − 1, · · · , 2, 1]T = [N,N − 1 · · · , 1]T , (4.99)

and wa as defined in (4.91). Note that N elements of value 1/N are subtracted since the main
diagonal is only computed once, while all the m-th diagonals, for m = 1, ..., 2K are computed
twice, hence the factor of 2 in front of va. This can be done since (4.98) sums squared-modulus
elements of a Hermitian matrix. At last, the computationally efficient second-order Rényi entropy
estimator is the following:

ĥ2 (X) = − ln
(
V̂ (X)

)
= − ln

(
α

2π
1TN

(
2

N
|p̂a|2 � va − 1

))
. (4.100)

4.3.2.1 Regularization and choice of parameters

Given the second-order Rényi estimator, the only left question is how to chooseN , α and σ2. These
parameters determine all the relevant aspects regarding the uniform sampling. Our objective is to
establish a rule so that, provided that the effective support of the CF is known, a single parameter
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determines the required sampling hyper-parameters. To do so, we will again take advantage of
the known shape of ϕV (ω) and follow a similar regularization as the one considered in [Gol+20].
However, while in [Gol+20] a smoothing variance is added to improve the convergence rate of the
estimator, here a smoothing variance is added to regularize the problem by limiting the required
samples. Nevertheless, we will see the first is also true, and a strong regularization/smoothing
increases the convergence rate of the estimator at the cost of an added bias.

We will begin by fixing the variance of the contamination process σ2, where we will leverage
the known decay of the Gaussian window according to the approximated bandwidth of the CF of
the data. As it is addressed in Subsection 4.2.1.1, we assume that the Gaussian window has an
effective finite support, outside of which ϕV (ω) is approximately zero. We define this support as
the ωmax that yields

|ϕV (ω)| < ε, ∀ |ω| > ωmax, (4.101)

being ε > 0 an arbitrary small number, and

ωmax = kσ−1, (4.102)

with k > 0. Note that the ωmax is expressed in terms of the standard deviation σ. Consequently,
due to the separability of CFs, we can determine that

|ϕX′ (ω)| = |ϕX (ω)ϕV (ω)| ≤ ε, ∀ |ω| > ωmax (4.103)

given the global bound |ϕX (ω)| ≤ 1. Therefore, we just need to choose a sufficiently low value of ε
given ωmax = kσ−1. For that, we will generally use the Chebyshev’s inequality, where the interval
is decided in accordance with a sufficiently high percentage of the population. However, since the
normal distribution is well-known, we can particularize the inequality to be tighter. Specifically,
in [Das00] it is shown that, for normal distributions with mean µ and nonzero standard deviation
ν, the inequality then becomes

Pr {|X − µ| ≥ kν} ≤ 1

3k2
. (4.104)

For the case of the Gaussian CF, we have the equivalent kσ−1 instead of ν, but k remains un-
changed. Therefore, we will usually use k = 2.5 as a general rule, since this provides approxi-
mately 98.67% of the population, and a further increase of k would negatively sway the number
of sampling points. While the choice of k may seem to follow an arbitrary rule, it is based on the
controlled decay of a Gaussian shape, providing a certain degree of robustness in front of the real
(unknown) effective support.

The next step is to determine N , which is tied to both the observed lags in the CF and the
dimension of the mapping. Previously, we have fixed in (4.81) that we perform a uniform sampling
in ω with sampling period α. Since the CF and the PDF are Fourier pairs, the sampling in ω implies
a periodicity of the PDF equal to 2π/α. Specifically, the implicit density of X ′ becomes

fX′ (x) =

{∑∞
k=−∞ (fX ∗ fV )

(
x− k 2π

α

) −π
α ≤ x ≤ π

α

0 otherwise
. (4.105)

Thus the smaller is α, the more separated are the replicas of the (fX ∗ fV ) (x) and the smaller is
the aliasing. Since we want to avoid the overlapping between the replicas as much as possible, then
the sampling period can be determined as the inverse of the expected dynamic range of the PDF of
the sources. In particular, we will let

α =
1

qσx
, (4.106)

where σx denotes the standard deviation of X , and q > 0. In contrast with the choice of k, wherein
the Gaussian CF has a well-behaved shape, q needs to be high enough to contain most of the PDF
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for a wide class of probability distributions. Hence, we will now strictly follow the Chebyshev’s
inequality [PP02], that is Pr {|X − µx| ≥ qσx} ≤ q−2. In view of this, we propose to use q = 6,
as it guarantees that approximately 97.22% of the population is not overlapping. Note that, while
lower values may become critical in terms of overlapping replicas in (4.105), higher values mainly
contribute to an increase of N . Therefore, while q is chosen as a somewhat heuristic approach
between overlapping and sampling size, and similar with k, it is reinforced by the Chebyshev’s
inequality.

Next, we will combine N , α and σ into a single parameter by letting ωmax = αK, i.e. the last
sample from (4.81), and combining the result with (4.102). The following relation is then obtained:

ωmax =
k

σ
= αK =

K

qσx
, (4.107)

and consequently we can determine N = 2K + 1 such that

N = 2
⌈
kq

σx
σ

⌉
+ 1. (4.108)

As a result, we have tied the choice of N and α to only the smoothing variance σ2. Note that
while the choices of k and q are driven by two different aspects (regularization and sampling,
respectively), both equally influence the value of N . In fact, an increase in q can be mitigated by
decreasing k accordingly, in terms of N . On another note, the stronger the smoothing of the CF,
less sampling points are required. This rationale is in agreement with the observations made in
Subsection 4.2.1.2 regarding Gaussian convolutions, where a “strong” regularization adds a higher
bias but improves the rate of convergence of the estimator. In terms of the proposed estimator and
consequent choice of parameters, the regularization narrows the required observed support of the
CF, not only improving the rate in which the estimator approximates the true (contaminated) value,
but also by decreasing the computational complexity of the overall process. The final interpretation
of (4.108) is that we are moving the problem to a finite parametrization of the PDF, which originally
belongs to the nonparametric class. As the implicit number of parameters becomes finite, the
problem of estimating the second-order Rényi entropy becomes consistent.

Finally, the only parameter left to be chosen is σ2. The role of σ2 is to determine smoothing
of the underlying PDF and to regularize the required sampling points. However, σ2 also implic-
itly governs the convergence rate of the estimator by adding a trade-off between bias and variance.
Therefore, we will take advantage of the duality with the taper function in the context of spectral
density estimation, where the relation between data size and perturbation variance is determined
after minimizing the MSE with respect to the taper bandwidth [HA17]. Generally speaking, the
required contamination is reduced as the number of observations L increases, and vice versa. This
is a similar observation to that made by Silverman’s rule of thumb in (3.55), which is also portrayed
in link between the empirical estimate of the CF and the Parzen-Rosenblatt method in (4.77). Fol-
lowing these arguments, the choice of σ2 goes as follows. Consider the bias and variance of the IP
estimator for large L such that

Bias
{
V̂ (X)

}
= −O

(
σ2
)
+O

(
σ−1L−1

)
, Var

{
V̂ (X)

}
= O

(
σ−1L−1

)
. (4.109)

Note that the term −O
(
σ2
)
, for O

(
σ2
)
≥ 0 is the result of smoothing the original PDF with a

normal distribution, as addressed in Subsection 4.2.1.2. If the second-order Rényi entropy were
analyzed here, the signs of the contributed bias would be reversed, but the case of the IP is exhibited
to avoid further approximations with the natural logarithm. However, note that as the general rule
for determining the bias-variance trade-off is implemented, it will also serve as a valid rule for ap-
proximating the desired smoothing for both the second-order Rényi entropy and the SMI in the next
subsection. The key point is that both bias and variance are let to be decreased with O

(
σ−1L−1

)
so that

lim
L→∞

σ2 = lim
L→∞

σ−1L−1 = 0. (4.110)
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As a result, the desired limit limL→∞ MSE
{
V̂ (X)

}
= 0 is attained, where

MSE
{
V̂ (X)

}
= Bias2

{
V̂ (X)

}
+ Var

{
V̂ (X)

}
. (4.111)

To achieve this limit, the variance σ2 is required to be a monotonically decreasing function of L
such that σ−1L−1 is also monotonically decreasing. For this, let us adopt a power law σ = O(L−γ),
for 0 < γ < 1, that guarantees the desired convergence with

MSE
{
V̂ (X)

}
= O

(
L−min{4γ,1−γ}

)
. (4.112)

Then, the value of γ can finally be chosen by the following MinMax rule:

γ = argmax
γ
{min {4γ, 1− γ}} = 1

5
. (4.113)

Notice that the resulting power law of the standard deviation σ is the same as the Silverman’s rule
of thumb, that is σ = O(L−1/5). Consequently, we will set the value of σ2 as the following:

σ2 =
p

L2/5
, (4.114)

where p is the new relative free parameter of the estimator. However, the choice of p is less re-
strictive as a general choice of σ2, since the contamination is now always governed by the desired
power law. The selection of p can then be done by choosing a sufficiently small value, which will
be confirmed with computer simulations.

4.3.2.2 Szegö’s limit theorem

Before delving into the numerical results, the proposed estimator will be analyzed by means of
Szegö’s theorem. For clarity, let us define the Hermitian-Toeplitz matrixPx′ = Toe (pa) ∈ CN×N ,
where pa is the sampled CF whose sample estimate can be found in (4.90). Note that, by construc-
tion, the difference between Px′ and Rx′ is the normalization factor 1/

√
N , i.e. it is composed by

the elements
[Px′ ]n,n′ = ϕX

(
α
(
n− n′))ϕV

(
α
(
n− n′)) (4.115)

for n, n′ = 0, ..., N − 1, and Rx′ = Px′/
√
N . The elements of Px′ are then samples of the CF of

the contaminated random variable X ′. From (2.1) we have

[pa]n =

∫ π/α

−π/α
fX′ (x) ejαnxdx, (4.116)

where the integration limits are added due to the sampling of the CF, as described in (4.105).
In view of this relationship, the involvement of Theorem 2.4 is straightforward. In this case the
sign of the exponential is reversed given that [pa]

∗
n = [pa]−n. Moreover, note that in (4.116)

the normalization factor (adjusted to α) that makes the Fourier transform unitary is missing, as
it is also not present in (2.1). The factor 2π/α is required, however, in the inverse transform,
which is manifested by the inverted factor in the integral. In light of Theorem 2.5 and the previous
considerations, for large feature dimension N we can write:

lim
N→∞

1

N

N−1∑
n=0

λ2
n (Px′)

α

2π
=

∫ π/α

−π/α
f2
X′ (x) dx =

∫ π/α

−π/α
(fX ∗ fV )2 (x) dx. (4.117)

As a result, the integral is just the IP of the contaminated variable X ′, namely V (X ′), which is
the measure that we want to estimate. In comparison with the original expression in (2.20), here
the CF is uniformly sampled with sampling period α, hence the integration limits are changed to
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encompass the region for which we assume, for a sufficiently small α, that no replica is present.
Given Px (or Rx) is a Hermitian matrix, the eigenvalues are real and nonnegative, and equal to
the singular values. Hence, we can write the particular form of Szegö’s theorem in terms of the
Frobenius norm:

lim
N→∞

1

N
‖Px′‖2F

α

2π
=

∫ π/α

−π/α
(fX ∗ fV )2 (x) dx, (4.118)

where we finally have
1

N
‖Px′‖2F

α

2π
= ‖Rx′‖2F

α

2π
. (4.119)

In light of this observation, we can deduce that for α → 0 and N → ∞ at the same time, which
corresponds to the same constraint made in Subsection 4.3.1, the estimator becomes unbiased with
respect to the contaminated IP. In particular, we can assert that

lim
N→∞,α→0

EfX

{
V̂ (X)

}
= V

(
X ′) . (4.120)

Note that, given (4.108), to decrease α is intrinsically tied to an increase of N , ensuring that the
asymptotic limits are attained simultaneously. In conclusion, by estimating the elements of Rx′ as
the sample mean of the CF, its squared Frobenius norm tends to the true IP of X ′. The resulting
estimator is not only consistent in terms of L [FM77], but also in terms of N .

The application of Szegö’s theorem for estimating an entropy measure has also been studied in
[Ram+09]. In contrast with the proposed approach, the authors of [Ram+09] explore the reverse
path by exploiting the analogy between a PDF and a PSD, and the estimation of the differential
entropy and the KL divergence arises from Szegö’s theorem. Instead, the estimator in (4.100) is
conceived from the feature map perspective and analyzed through Szegö’s theorem lenses. Nev-
ertheless, the process to regularize the estimator is also very different. In [Ram+09] the data is
normalized so that the PDF is inside of the interval [−1/2, 1/2], and the CF is sampled with sam-
pling period 1, hence the integral limits in (4.116) are directly inside of [−1/2, 1/2] and no nor-
malization is required. Afterwards, the dimension N is also chosen in view of classical spectral
estimating techniques, but it is done by modelling the PDF as an autoregressive model [Kay98;
BV00] and with a posterior minimum description length criterion to determine the required lags of
the CF. In the proposed approach, the normalization and regularization is performed through α and
N . Thanks to the Gaussian convolutions, the overall regularization problem is tied with a physical
sense of contaminating random variables, and the required samples of the CF are governed by the
degree of contamination. As a result, the estimation process is endowed with a more direct and
manageable approach, which allows formulations as the ones made to control the curve of learning
in (4.114).

4.3.2.3 Numerical results

In this subsection, the performance of the proposed second-order Rényi entropy estimator is ana-
lyzed by means of Monte Carlo simulations. Generally speaking, we will evaluate the estimator
by modelling the data as GMMs. Particularly, we will consider L i.i.d. observations x (i), with
i = 0, ..., L− 1, from the following distribution

X ∼
M−1∑
m=0

pmN
(
µm, σ2

m

)
. (4.121)

One can also write the probability weight, mean and variance vectors as

p = [p0, ..., pM−1]
T , µ = [µ0, ..., µM−1]

T , σ2
X =

[
σ2
0, ..., σ

2
M−1

]T
, (4.122)

80



CHAPTER 4. LEVERAGING SECOND-ORDER STATISTICS TO MEASURE
INFORMATION

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.6: PDF of the GMM with M = 3, p = [0.5, 0.2, 0.3]T , σ2 = [0.3, 0.1, 0.3]T and
µ = [−1.5, 0, 1.5]T .

respectively, with
∑M−1

m=0 pm = 1. The reason for modelling the data this way is that it allows for
an extra flexibility on generating different kind of models, while h2 (X) is always known in closed
form. Particularly, by following Appendix 7.3.5, the second-order Rényi entropy of a GMM is

h2 (X) = − ln (V (X)) = − ln

M−1∑
m′=0

M−1∑
m=0

pm′pm√
2π
(
σ2
m′ + σ2

m

) exp
(
− (µm − µm′)2

2
(
σ2
m′ + σ2

m

) )
 .

(4.123)
Furthermore, for any smoothing variance σ2, the second-order Rényi entropy of the contaminated
variable, i.e. h2 (X ′), can be immediately obtained by letting the new variance vector be σ2

X′ =[
σ2
0 + σ2, σ2

1 + σ2, ..., σ2
M−1 + σ2

]T , which yields

h2
(
X ′) = − ln

M−1∑
m′=0

M−1∑
m=0

pm′pm√
2π
(
2σ2 + σ2

m′ + σ2
m

) exp
(
− (µm − µm′)2

2
(
2σ2 + σ2

m′ + σ2
m

))
 .

(4.124)
Unless otherwise specified, the choice of parameters will follow the rationale from Subsection

4.3.2, where k = 2.5, q = 6 and therefore

N = 2

⌈
15

σ̂x
σ

⌉
+ 1, (4.125)

with the sample variance being σ̂x = 1
L−1

∑L−1
i=0 (x (i)− µ̂x)

2, and µ̂x = 1
L

∑L−1
i=0 x (i). The

smoothing variance (or contamination) σ2 will be determined following (4.114), that is σ2 =
pL−2/5, where p will be indicated per simulation.

To begin with, the repercussion of choosing p is analyzed. The distribution used to this end is
the GMM illustrated in Figure 4.6. These parameters are chosen so that the distribution has a dis-
tinctive non-Gaussian shape while maintaining a relative simple model. The resulting distribution
has three clear distinguishable clusters that provide a particular vulnerability in front of the added
contamination. When the smoothing effect of the Gaussian regularization is strong, the nuance of
the original distribution is lost. For this reason, the proposed distribution is useful for studying if
the regularization is well-behaved, i.e. if it maintains the information embedded in the underlying
distribution, or if the smoothing effect is overly strong so that it disrupts it.
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Figure 4.7: Expected value of ĥ2 (X) with different values of p (left) and with different values of
σ2 (right). The solid black line represents the true h2 (X) value, while the color-coded solid lines
represent the contaminated entropies h2 (X ′) for each value of p or σ2.
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Figure 4.8: Expected value of the second-order Rényi entropy estimator with different values of p
and L. The color-coded solid lines represent the contaminated entropies h2 (X ′) for each value of
p with fixed L = 104.

Figure 4.7 exhibits the effectiveness of letting σ2 to be decided by the rule in (4.114), where
the distribution is the one from the previous figure. Consequently, the second-order Rényi entropy
of the contaminated random variable h2 (X ′) changes as L grows, approximating the true second-
order Rényi entropy h2 (X). On the one hand, in the left figure, it is shown that high values of
p the estimator tends faster to h2 (X

′), but not necessarily to h2 (X), than with lower p values.
As a drawback, the added positive bias is noticeable for large values of p. Nevertheless, given
(4.114), the smoothing variance is reduced as L increases for any given choice of p, attaining an
asymptotically unbiased estimator. On the other hand, in the right figure, it is shown what happens
if the smoothing variance σ2 is fixed 6. While the expected value and bias results the same around

6The choice of σ2 in this case is based on the “objective” σ2 from the left figure for L = 104, that is σ2 = p10−8/5,
and p equal to its corresponding value in the left figure.
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Figure 4.9: Expected value of the second-order Rényi entropy estimator for different distributions
for h2 (X) = 1.5.

the targeted L, which in this case corresponds to the rightmost part of the curve, the convergence
rate is not properly managed, resulting in an increased bias in the overall estimate. Furthermore,
since σ2 is not a function of L, then the estimator is not asymptotically unbiased. In conclusion, by
adopting the power law described in (4.114), we are capable of both improving the convergence rate
and the introduced bias. While the choice of p remains undecided, ultimately left to be determined
by a rule of thumb, its consequences are less strict than those of choosing a fixed value of σ2.

Figure 4.8 iterates on the display of the behaviour of the estimator for different values of the
parameter p and data size L. In this figure, we examine different values of h2 (X) and how these
may influence the choice of parameters. To obtain these different values, we have taken advantage
of the GMM from Figure 4.6 by just changing σ2

0 . It can be seen that lower values of h2 (X)
become more susceptible to higher contamination values. This is as expected since the underlying
PDF becomes narrower in some portions of the overall dynamic range, and the convolution with
a smoothing distribution is more noticeable. On the contrary, while higher values of h2 (X) are
more robust to the contamination, for p sufficiently low the bias’s sign is ultimately reversed. This
observation reveals that, for a sufficiently low p, the estimator becomes asymptotically close from
below, and not from above. The consequence is that lower levels of h2 (X) become reliant on the
dimension, requiring a lower p, while higher levels become dependent on the data size, requiring
higher L.

Next, we test the convergence rate with fixed p for different distributions. Figure 4.9 shows this
comparison for the Gaussian distribution, the GMM from Figure 4.6, the Student’s t-distribution,
the Pareto uniform distributions. The reason behind each one of these distributions goes as follows:
The Gaussian distribution serves as the basis for comparison, whose second-order Rényi entropy is
h2 (X) = 0.5 ln

(
4πσ2

G
)

where σ2
G denotes the variance, jointly with the GMM distribution from

Figure 4.6. The Student’s t-distribution, whose second-order Rényi entropy is known, represents
a distribution with a long tail, which is, in principle, a favorable distribution as it endures better
the induced contamination, and whose effective support of the CF is more limited. However, it
requires a higher sampling rate in order to avoid aliasing from the long tails of the PDF. The
Pareto Type I and the uniform distributions serve a similar function by presenting a discontinuity
in the PDF. While the first is a unilateral exponential distribution, with a discontinuity in x =
0, the latter is just defined inside of the support x ∈ [a, b]. As a result, both distributions are
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Figure 4.10: MSE of the estimated second-order Rényi entropy as a function of data size L for
h2 (X) = 1.5 and p = 0.1.

susceptible to the smoothing variance, and it is expected that the introduced bias is greater. The
second-order Rényi entropy of the Pareto distribution can be found in [NZ03], while for the uniform
distribution is h2 (X) = ln (b− a). All distributions have been calibrated so that h2 (X) = 1.5.
The phenomenon of the data-dependent regime from Figure 4.8 can also be seen in Figure 4.9.

For this second-order Rényi entropy value, the estimator becomes asymptotically close from be-
low, introducing a negative bias. However, the estimate tends to the contaminated entropy h2 (X

′),
and not to the true value (as happens, for instance, in (3.92) for the case of the IP). Ultimately, this
is translated to a reversed bias sign, which is visibly manifested for higher values ofL. As expected,
the bias introduced by the regularization is especially distinguishable for the uniform and Pareto
distributions. While the Gaussian distribution is the most robust in front of the contamination, ei-
ther Student’s t-distribution or the GMM come close, and the end result is almost not perceivable.
Even so, apart from the implication of σ2, all five distribution share a similar learning curve for an
increasing value of L, showing the qualities of the proposed second-order Rényi entropy estimator.

Finally, the proposed estimator based on the Frobenius norm of the mapped correlation matrix,
denoted Frobenius Second-Order statistics (FSO) in the figures, is compared with other second-
order Rényi entropy estimators in the literature. Specifically, the other shown techniques are the fol-
lowing: the KDE estimator defined in (3.77), where the kernel bandwidth is decided as in [Che15],
the estimator based on the k-Nearest Neighbors (KNN) method [LPS08; LLC09], with k = 3, and
the one based on Sample Spacings (SP) of the data [Wac+05; HLE05], which is a direct expansion
of the Vasicek’s entropy estimation [Vas76], and with internal parameter m =

⌊√
L
⌋
. We use

the information theoretical estimators toolbox [Sza14] for the estimation of the Rényi entropy with
both KNN and SP methods. Note that, in the case of estimating the second-order Rényi entropy,
the classical approach of plugging-in the estimated PDF through the Parzen-Rosenblatt window
method into the functional of interest is equivalent to performing (3.77) [AH84].

Figure 4.10 illustrates the MSE of the aforementioned estimators for the GMM from Figure
4.6, defined as

MSE
{
ĥ2 (X)

}
= EfX

{(
ĥ2 (X)− h2 (X)

)2}
. (4.126)

Clearly, the proposed estimator competes with the KNN and SP estimators, while the KDE one
struggles to reach a similar performance. It can be observed, however, how the bias sign is reversed
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when increasing L, ultimately deteriorating the MSE. This is a consequence of the regime change
illustrated in Figure 4.8. This outcome can be avoided by decreasing p so it behaves better at higher
L, but the cost is then a worse performance for low values ofL. Note that the contrary is also true, in
order to improve the performance of the estimator at the low L regime, a stronger smoothing effect
can be applied by increasing p, at the cost of a worse performance at high L. These phenomena
can be implicitly observed in Figure 4.7.

4.3.3 Information estimation via empirical characteristic function

Once the second-order Rényi entropy estimator has been developed and analyzed, the equivalent
for estimating the SMI is straightforward. From (4.39) we have

Îs (X;Y ) = ||Ĉ||2F =
∥∥∥R̂−1/2

x′ Ĉx′y′R̂
−1/2
y′

∥∥∥2
F
, (4.127)

where the sample autocorrelation and cross-covariance matrices are defined in (4.89) and in (4.93),
respectively. It is worth noting that, unlike with h2 (X), the SMI estimate does not require any
additional normalization factor, given that it just cancels out by the autocorrelation matrices. Nev-
ertheless, similar to h2 (X), we are moving the problem of estimating information measures to
the problem of estimating sample correlation and covariance matrices, which are known to be a
consistent estimate for i.i.d. data.

The choice of parameters is performed equally to the second-order Rényi entropy case. Specif-
ically, we let

α =
1

qσmax
(4.128)

where σmax = max {σx, σy}. In other words, the choice of sampling period is determined by
the most restrictive distribution in terms of overlapping replicas, which is the one that requires
a denser sampling in the ω domain. The maximum value of the effective support is maintained
with ωmax = kσ−1, since it is determined by the contamination rather than the distribution. It is
noteworthy that this assumption can be done since the joint CF is also bounded, similar to (4.103).
Specifically, assume that we have

|ϕX′(ω1)| < ε, |ϕY ′(ω2)| < ε,
∣∣ϕX′,Y ′(ω1, ω2)

∣∣ < ε2, ∀ω1, ω2 > ωmax. (4.129)

The last bound is derived by following the separability of the CF for independent random variables

ϕX′,Y ′(ω1, ω2) = ϕX,Y (ω1, ω2)ϕV (ω1)ϕV (ω2), (4.130)

given that |ϕX,Y (ω1, ω2)| ≤ 1 and

|ϕV (ω1)| < ε, |ϕV (ω2)| < ε, ∀ω1, ω2 > ωmax. (4.131)

Lastly, the choice of N is the same as in (4.108), and the smoothing variance as in (4.114).
It is also worth noting that, thanks to the Gaussian convolutions perspective, the inversion of

R̂x′ and R̂y′ can be done without issues. Contrary to the diagonal loading that is usually required
to invert the kernel matrices, for instance in (3.27), the proposed approach succeeds in regularizing
the feature space by providing a physical interpretation of the overall effect on the final estimate.

4.3.3.1 Large feature space dimension

While the information coherence matrix Ĉ that is required for estimating the SMI is not Toeplitz,
the autocorrelation matrices R̂x′ and R̂y′ indeed are. Like with the second-order Rényi entropy
estimation, we can further exploit their asymptotic behaviour. In this case, we are particularly
interested in facilitating the matrix inversions.
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Recall from Theorem 2.5 and Corollary 2.5.1 that Toeplitz matrices behave asymptotically
like circulant matrices, which are diagonalizable by the unitary Fourier matrix. A weak condition
for this asymptotic behaviour is that the columns of the Toeplitz matrix are square integrable for
N → ∞ [Gra+06]. While this condition may not be guaranteed for any R̂x, since it depends on
the unknown CF of the data, thanks to the addition of the Gaussian windowing this condition is
ensured for R̂x′ . Particularly, for σ2 > 0, and given that∣∣∣∣∣ 1L

L−1∑
i=0

ejx(i)αn

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣ 1L
L−1∑
i=0

ejy(i)αn

∣∣∣∣∣ ≤ 1, (4.132)

then the sample vectors p̂a and q̂a from (4.90) are square-integrable such that they have finite L2-
norm:

lim
N→∞

‖p̂a‖22 <∞, lim
N→∞

‖p̂a‖22 <∞. (4.133)

The following lemma sets the required theoretical framework:

Lemma 4.3. Let tn ∈ C be a Hermitian sequence, that is tn = t∗−n, with t0 = 1 and

lim
N→∞

N−1∑
n=0

|tn|2 <∞. (4.134)

Let us define vector t ∈ CN and associated Hermitian-Toeplitz matrix T ∈ CN×N as [t]n = tn
and T = Toe {t}, respectively. Let W ∈ CN×N be the unitary discrete Fourier transform matrix
from (2.18). Then

lim
N→∞

√√√√ 1

N

N−1∑
n=0

N−1∑
n′=0

∣∣∣∣∣[WTWH ]n,n′ −
[
diag

(
2√
N

Re {W (t� va)} − 1N

)]
n,n′

∣∣∣∣∣
2

= 0

(4.135)
for n = 0, 1, . . . , N − 1, where va is a unilateral triangular window

va = [N,N − 1 · · · , 1]T . (4.136)

Proof. See Appendix 7.3.6. �

Next, we define the computationally efficient SMI estimator, and show that is asymptotically
Îs (X;Y ) for N →∞. Consider the sample cross-covariance matrix Ĉx′y′ ∈ CN×N from (4.93),
p̂a ∈ CN and q̂a ∈ CN the sample weighted first-order statistics from (4.90), W ∈ CN×N the
unitary Fourier matrix as in (2.18) and va ∈ RN a unilateral triangular window with elements
[va]n = N − n for n = 0, ..., N − 1, as in (4.136). Then, the reduced computational complexity
estimator of the SMI is as follows:

Îas (X;Y ) =
∥∥∥P̂′−1/2WĈx′y′W

HQ̂′−1/2
∥∥∥2
F
, (4.137)

where P̂′ = 1√
N

diag {p̂′}, Q̂′ = 1√
N

diag {q̂′}, and

p̂′ = 2Re
(
WH (p̂a � va)

)
− 1N , q̂′ = 2Re

(
WH (q̂a � va)

)
− 1N . (4.138)

Theorem 4.2. Consider the SMI estimator Îs (X;Y ) from (4.127). Let

Îs (X;Y ) =

∥∥∥∥(WR̂x′WH
)−1/2

WĈx′y′W
H
(
WR̂y′W

H
)−1/2

∥∥∥∥2
F
= ||Â||2F, (4.139)

and
Îas (X;Y ) =

∥∥∥P̂′−1/2WĈx′y′W
HQ̂′−1/2

∥∥∥2
F
= ||B̂||2F (4.140)
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from (4.137). For an increasing feature space dimension N , then

lim
N→∞

1√
N

∥∥∥Â− B̂
∥∥∥

F
= 0, (4.141)

and consequently
lim

N→∞
Îs (X;Y ) = lim

N→∞
Îas (X;Y ) . (4.142)

Proof. See Appendix 7.3.7. �

The implication of Theorem 4.2 is that we can approximate the Fourier transform of the auto-
correlation matrices as diagonal matrices, whose inverse is then an element-wise operation, hence
reducing the computational complexity typically associated with the inversion of matrices of high
dimension. As the dimension increases, the individual elements of the matrices involved in the es-
timation of the SMI tend to have the same value, and both estimators yield virtually the same SMI.
The cost of this approximation is that a high value of N is required to cope with the limit behaviour.
Nevertheless, we will see through computer simulations that this high-dimensional regime is ac-
tually quite fast to achieve. The main advantage of this approximation is that, as the N required
increases, e.g. the required smoothing variance σ2 is low, the approximate estimator becomes more
enticing, and the overall computational complexity does not increase exponentially.

4.3.3.2 Numerical results

Lastly, the performance of the proposed estimators and the impact of their free parameters are
evaluated by means of Monte Carlo simulations. Similarly to the second-order Rényi entropy case,
we will exploit the GMMs in order to model the data and to easily generate different scenarios.
Unless otherwise stated, the following GMM will be used:

(X,Y ) ∼ 1

4
N (µ1,Σ1) +

1

4
N (−µ1,Σ1) +

1

4
N (µ2,Σ2) +

1

4
N (−µ2,Σ2) , (4.143)

where
µ1 =

[
−
√
λρ√
λρ

]
, µ2 =

[ √
λρ√
λρ

]
, (4.144a)

Σ1 =

[
1− λρ (1− λ) ρ
(1− λ) ρ 1− λρ

]
, Σ2 =

[
1− λρ − (1− λ) ρ
− (1− λ) ρ 1− λρ

]
, (4.144b)

with ρ ∈ [0, 1), and λ ∈ [0, 1] so that Σ1 and Σ2 are positive semi-definite matrices. The marginal
random variables are then distributed as follows:

X ∼1

2
N
(√

λρ, 1− λρ
)
+

1

2
N
(
−
√
λρ, 1− λρ

)
, (4.145a)

Y ∼1

2
N
(√

λρ, 1− λρ
)
+

1

2
N
(
−
√
λρ, 1− λρ

)
. (4.145b)

The parameter ρ determines the degree of dependence between both random variables, performing
a similar role as a correlation coefficient, where 0 yields to independent random variables, hence
Is (X;Y ) = 0. Conversely, λ determines different scenarios with varying degree of difficulty,
and it shall be used to evaluate the performance of the estimator in front of different distributions.
Following this model, L i.i.d. data samples can be generated by

x(i) = hx (i)
(
−
√
λ+ z (i)

√
1− λ

)√
ρ+ wx (i)

√
1− ρ (4.146a)

y(i) = hy (i)
(√

λ+ z (i)
√
1− λ

)√
ρ+ wy (i)

√
1− ρ, (4.146b)

for i = 0, ..., L− 1, where z, wx, wy ∼ N (0, 1) are i.i.d. random variables and hx, hy are discrete
random variables that can take the values in {−1, 1} with equal probability.
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Figure 4.11: Contour plots of the proposed GMM model for two λ. The SMI has been calibrated
to be approximately the same.

The usefulness of this model is that the correlation between X and Y is always null, i.e.
EfX,Y

{XY } = 0, thanks to the decorrelating random variables hx and hy. The reason behind this
constraint is to demonstrate that the dependence measure can be estimated by measuring correlation
in the feature space, thus forcing the estimator to discover dependence from originally uncorrelated
data. Moreover, for simplicity, the model has been calibrated so that EfX

{
X2
}
= EfY

{
Y 2
}
= 1.

Note, however, that this has been done so that the σmax from (4.128) is always around the same value
for comparison purposes.

From (4.143) two distributions with different λ value will be used: λ = 0 and λ = 0.9. The
joint distributions for both these cases can be seen in Figure 4.11. The advantage of λ = 0 is that the
marginal distributions are then just normal with X ∼ N (0, 1) and Y ∼ N (0, 1). Consequently,
the SMI can be computed for any given smoothing variance σ2, which is the following:

Is (X,Y )λ=0 =
ρ4

(1 + σ2)4 − ρ4
. (4.147)

This property allows to characterize the true SMI values for any given Gaussian regularization. This
model has also been previously used to test independence detectors in [Res+11; dR19]. This is also
the model that has been used in Figure 2.1 under the name of GMM. On the other hand, for λ = 0.9
the SMI needs to be measured by a genie-aided estimator based on the empirical average of the SMI
under the knowledge of the marginal and joint distributions [WKV09]. A similar distribution to
this one has also been used to test an independence detector based on kernel methods, as can be
seen in [Gre+07; GG10]. However, while in these works independence is generated by rotating the
nonoverlapping (λ = 1) Gaussian components, here it is embedded in the parameter ρ.

We begin the analysis by performing a similar test to that from Figure 4.8 in the case of h2 (X)
estimation. Figure 4.12 shows the expected value of the estimated SMI values as a function of small
(Is (X;Y ) ∈ [0, 0.1], left figures) and moderate (Is (X;Y ) ∈ [0, 1], right figures) SMI values with
different combinations of p and L. Similar to the case of estimating the second-order Rényi en-
tropy with the same tool as here, we can identify two different regimes. On the one hand, the small
dependence regime is the data-limited regime, where a large value of data size L is required. On
the other hand, the strong dependence is the dimension-limited regime, requiring a smaller value of
p to reduce the estimation bias. Nonetheless, it is worth noting that the regimes have pivoted with
respect to the h2 (X) case. On the one hand, here the bias is inherently negative, following the gen-
eral data processing inequality for f -divergences [Col19], which yields Is (X;Y ) ≥ Is (X

′;Y ′).
On the other hand, the estimator becomes asymptotically close from above to the contaminated
SMI for L → ∞. Furthermore, the case of estimating the SMI entails some further advantages
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Figure 4.12: Expected value of the SMI estimator (up) and the reduced-bias estimator (down) as
a function of the true SMI value for the GMM model with λ = 0.9. The solid black line denotes
Is (X;Y ), while the solid color-based lines denote Is (X

′;Y ′) for their respective value of p.

that are not possible when estimating h2 (X). In particular, following (4.127), and consequently
(4.39), some of the singular values of Ĉ yield an arbitrarily small value, which correspond to the
theoretically null squared canonical correlations. The estimator then aggregates these residuals,
which originates a ground level and a bigger estimator error. This can be seen in Figure 4.12, and
particularly for low L values, given that the estimation error of these squared canonical correla-
tions increases. However, in the case of SMI estimation we can compensate this behaviour thanks
to a reduced bias estimator Îs (X;Y )− Îs (X;Yind), portrayed in the bottom figures, where Yind is
another independent random variable with the same distribution than Y . This data can be obtained
by circularly shifting the data sequence associated to Y by j ∈ N∗ positions, where j ∈ [1, L− 1].
The overall result is an improvement over the original estimator, reducing the bias in the small data
regime regardless of the kind of data statistics.

Next, we test the convergence rate of the method with different distributions. Figure 4.13 shows
the expected value of the estimator for a varying value L. The distributions shown are the same as
in Figure 2.1, and are the corresponding bidimensional distributions from Figure 4.9. Similarly to
the case of entropy estimation, the distributions with discontinuities are of special difficulty for the
proposed estimator. This time, however, the SMI estimation with the Student’s t-distribution is not
as well-behaved as in the second-order Rényi entropy case. Another relevant observation is that,
within the GMM model proposed in (4.143), the case λ = 0 presents the slower convergence rate,
while this rate is improved by increasing λ. Furthermore, for λ = 0 the rate of learning is even
faster than the Gaussian case, manifesting the negative bias given by the Gaussian regularization
for relatively low values of L.
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Figure 4.13: Expected value of the SMI estimator for different distributions, with Is (X;Y ) = 0.1
and p = 2.5.
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Figure 4.14: NMSE of the estimated SMI as a function of the data size L. Parameters of choice
for the FSO estimator: (a.1) p = 5, (a.2) p = 2.5, (b.1) p = 0.5, (b.2) p = 0.25.

Figure 4.14 depicts the Normalized Mean Squared Error (NMSE) of the proposed estimator,
denoted as FSO in the figure, along with the reduced bias version Îs (X;Y )− Îs (X;Yind), denoted
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as FSOg in the figure, where ·g stands for ground. The MSE is computed as follows:

NMSE
{
Îs (X;Y )

}
=

EfX,Y

{(
Îs (X;Y )− Is (X;Y )

)2}
Is (X;Y )2

, (4.148)

and it is used to fairly compare different values of SMI, given that it is now relevant to study the
small information regime in particular due to its links with the MI. For the sake of comparison,
four other SMI estimators are shown: the Least-Squares Mutual Information (LSMI) estimator
[Suz+09], the estimator based on the Adaptive Partitioning (AP) of the observation space [DV99],
the NOCCO [Fuk+07], addressed in Subsection 3.2.5, and the one that employs the KDE [MRL95].
Both the AP and the KDE based have been adapted to specifically estimate the SMI, since they
are plug-in estimators. The LSMI estimator is an explicit estimator of the LSMI, and no further
adjustment is required. The kernel bandwidth for the KDE is again chosen following [CK19],
and the hyper-parameter of the LSMI is chosen through the cross-validation procedure depicted
in [Suz+09]. Generally speaking, the proposed method and choice of parameters are shown to be
effective and comparable with the other estimators from the literature. It is only for λ = 0 and
small dependence that the FSO struggles a bit, jointly with the LSMI, which corresponds to the
known previously analyzed case of slow convergence in Figure 4.13. It can also be seen that the
FSOg is particularly effective for λ = 0.9. This is a result of this model requiring a higher mapping
dimension N , but with the same amount of SMI, hence contributing to a higher ground value. For
λ = 0, fewer samples of the CF are required, and the ground level can be ultimately neglected.
Regarding the choice of p, it is observed that “easier” scenarios require very small values of p,
while more difficult scenarios require higher values of p, thus a stronger regularization.

The advantage of the FSO is that, contrary to other methods, its computational complexity
scales with the dimension of the mapping N , rather than with the sample size L. This is espe-
cially true for the KDE and LSMI, whose computational complexity is O

(
L2
)

[Nos+21], and for
the NOCCO, which is O

(
L3
)

if no low-rank approximation is computed [LP20]. Furthermore,
the LSMI estimator requires the cross-validation procedure, which increases the overall compu-
tational complexity well above the rest of the methods. The computational complexity of the AP
estimator depends on the partitioning algorithm [SN12], although it still scales with L. In the case
of the proposed estimator, the complexity stays at O

(
N2L

)
, since it is required to multiply N ×L

matrices. The advantage becomes appealing for N � L. For reference, the largest N required in
Figure 4.14 is N = 601, which is only attained for L = 104. Although it varies from model to
model, choosing the estimation method is then a trade-off between accuracy and complexity.

To conclude, Figure 4.15 shows the performance of the asymptotic frequency-domain estimator
Îas (X;Y ) depicted in Theorem 4.2. First, since we are testing the bias with respect to the true
SMI value, note that the bias does not tend to 0 but to the difference between the contaminated
SMI and Is (X;Y ) = 1. That is, except for the case p = 0, which denotes that no regularization
is being performed and the bias of the estimator diverges as N increases. This behaviour ratifies
the need of regularizing the proposed estimator, and particularly for the case of estimating the
SMI. Besides that, for an increasing value of N the asymptotic estimator converges to the regular
estimator, as stated in (4.141). Another phenomenon that can be observed is that the stronger the
regularization is, which entails a large value of p, the faster the convergence becomes, in the sense
of the difference between the frequency-domain estimator and the original performance. This can
be seen as a consequence of the increased convergence rate given a large smoothing variance,
which not only governs the learning rate of Îs (X;Y ), but also how rapidly Îas (X;Y ) tends to
the original estimator. The reason is that, given a strong decay of the CF, matrices R̂x′ and R̂y′

become virtually banded (as in Theorem 2.5), and the asymptotic behaviour of Szegö’s theorem is
rapidly achieved.
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Figure 4.15: Bias of the estimated SMI as a function of the mapping dimensionN for Is (X;Y ) = 1
and L = 105. The data is modelled following the GMM with λ = 0.9.

4.4 Concluding remarks

In this chapter a framework for estimating information measures based on measuring correlation
and covariance in a given feature space has been developed. This tool maps the data onto a feature
space of higher dimension to perform the required measurements of second-order statistics, avoid-
ing the classic approach of plug-in methods that require a prior estimate of the density functions.
Instead of relying on the kernel “trick”, as it is usual in kernel methods, our approach thrives on
explicitly determining the feature map. Thanks to this, we can perform the estimation of informa-
tion measures, provided that the desired surrogate can be expressed as the Frobenius norm of a
quadratic measure of uncertainty/dependence.

While the required dimension in the discrete case is known and limited by the source cardi-
nality, in the case of analog sources the feature space is limited by sampling the feature space. To
reduce the implicit dimension entails an inherent error in the estimate, which becomes asymptoti-
cally unbiased in terms of the dimension N . Consequently, the estimate poses a classical trade-off
between accuracy and complexity, but reformulated in terms of a simple sampling. The paradigm
then becomes to determine the required sampling points, tied in the required dimension of the
mapping itself.

To bestow the tool with the required capability of estimating the second-order Rényi entropy
and the SMI under any kind of data or underlying distribution, the approach engages with different
classical techniques from other fields, such as information theory, signal processing, and mathe-
matical analysis. In front the imposed regularization for any high-dimensional mapping, we have
proposed an approach based on a Gaussian regularization. It does not only improve the conver-
gence rate of the estimator, but it also allows the inverse of the autocorrelation matrices in the
feature space. Given that the feature space is based on the CF, the repercussions of the windowing
in this space overlap with the ideas of classical spectral estimation problems. Finally, the required
matrix operations have been linked with Szegö’s theorem, providing both an asymptotic theoretic
guarantee (in the case of the second-order Rényi entropy) and a computation complexity reduction
(in the case of the SMI). The choice of parameters is embedded in the parallelisms traced with
the regularization approach, and, although there are some additional hyper-parameters, these have
been unified in a single approach. Nonetheless, the choice of this single parameter is still vulnera-
ble in front of different values of second-order Rényi entropy or SMI. The simulations support the
good behaviour of the estimator and reveal that its performance can be on pair with well-known
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INFORMATION

methods in the literature.
Following this chapter, we move to the other side of the balance. Instead of leveraging second-

order statistics to estimate information measures, we next proceed to leverage information measures
to solve problems usually performed by second-order statistics. The perspective is then shifted, but
for the sake of unifying both paths. Specifically, we will focus on methods based on estimating
an entropic measure, specifically the IP, and how the properties of these measures enhance the
original measure.
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Chapter 5

Entropy-based applications

This chapter deals with specific problems that benefit from an information-theoretic point of view.
In particular, three different parameter estimation problems are analyzed by performing an entropy
estimate first, and afterward the measure of the parameter of interest. While the previous chapter
has focused on utilizing second-order statistics to estimate a measure of information, this chapter
strives to substitute the second-order statics approach in concrete applications. The use of an en-
tropic measure is driven by its property of being a more sensitive measure of the underlying PDF
than the first and second-order moments. The estimator used in this chapter is the one addressed in
Chapter 3. The reasons to choose this estimator are its inherent relation with second-order statistics,
as it is studied in Subsection 3.3.3, as well as its depiction as a U-statistic in (3.86). The first reason
allows us to generalize the second-order statistics by an entropy-based approach by tuning the kernel
variance of the entropy estimator. For high values of kernel variance, the estimator behaves as the
sample variance, which can be beneficial when the data is Gaussian or quasi-Gaussian. However,
the entropy estimator gains in awareness of the complexity of the data for low values of kernel vari-
ance, resulting in a more robust estimate when the assumed distribution does not correspond with
the real one. The second reason, regarding the U-statistics, pursues a specific modification of the
entropy estimator that helps with the robustness of one of the entropy-based applications addressed
here. Thanks to the computation of the absolute value of pair-wise differences, one can develop
strategies that take advantage of this particular expression. As this section is being unravelled, all
of these properties, advantages, and results will become clear.

The structure of this chapter is straightforward, where each section addresses a different ap-
plication. First, Section 5.1 establishes the entropic measure utilized throughout this chapter, and
analyzes its expected value and variance under GMMs. Section 5.2 studies the problem of estimat-
ing the determinant of the covariance matrix. The objective here is to gain robustness in front the
of classical Gaussian assumption. Section 5.3 carries on the rationale of the previous section, but
this time it is extended to the estimation of the coherence between two random sequences. Lastly,
5.4 changes the perspective and tackles a different problem, which is the estimation of the SNR in
a digital communication channel.

5.1 Preliminaries

Before we delve into the core contents of this chapter, we will define again the IP estimator from
(3.86), but particularized for complex-valued random variables. The objective is to determine the
bias and variance for a given signal model based on a GMM, and to employ this knowledge to
improve the entropy-based methods afterwards.
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Consider the random variable X ∈ X with X ⊆ CN , and a set of L i.i.d. observations x (i) =
[x1 (i) , ..., xN (i)]T for i = 0, ..., L− 1. The IP estimator is then defined as

Û (X) =
2

L(L− 1)

∑
0≤i<j≤L−1

kV (x(i),x(j)) , (5.1)

where
kV (x(i),x(j)) =

1

πN |V|
exp

(
− (x(i)− x(j))H V−1 (x(i)− x(j))

)
. (5.2)

Note that, in contrast with (3.86), here we let the kernel variance (the square of the kernel band-
width) matrixV ∈ RN×N to be any given positive semi-definite matrix, which represents a general
expression of the covariance matrix of a multivariate Gaussian distribution. This generalization is
used as the basis for characterizing the IP estimator, whose structure will be specified per applica-
tion. Nevertheless, in most cases a diagonal matrix is used, where a particular kernel bandwidth is
associated to each one of the dimensions of the original random variable.

We use this particular estimator for two reasons. On the one hand, it is an unbiased estimate of
EfX {kV (x(i),x(j))}, given that (5.1) is a U-statistic. Recall that, from Definition 10, a U-statistic
is an unbiased estimate of a given parameter based on the average of a symmetric function whose
argument is composed of combinations of i.i.d. observations. Consequently, if this expectation can
be computed, we can guarantee that the expected value of the estimator is known, jointly with the
bias to the true value of IP. On the other hand, some data models work particularly well with the
Gaussian function in (5.2), and we can determine other relevant properties of the IP estimator, such
as its variance. Specifically, by employing a general assumption that the data is modelled as a GMM
the problem becomes manageable. This assumption can be seen as an extension to the well-known
and widely used Gaussian assumption. As a matter of fact, we shall see how this assumption can be
used, in tandem with the entropy-based processing, to enhance the solution to problems typically
undertaken with just the Gaussian assumption. In the sequel, we proceed to determine the statistical
model of the data, its corresponding true IP value, and the bias and variance of the estimator.

Let X be a random variable defined on the set X with PDF fX (x) that is distributed as a
GMM:

X ∼
M−1∑
m=0

pmCN (µm,Σm) . (5.3)

Recall that the IP is defined as
V (X) =

∫
X
f2
X (x) dx. (5.4)

Hence, the corresponding IP of the multivariate complex GMM (see Appendix 7.4.1) is the fol-
lowing:

V (X | pm,µm,Σm) =

M−1∑
m,m′=0

pmpm′

πN |Σm +Σm′ |
exp

(
− (µm − µm′)H (Σm +Σm′)−1 (µm − µm′)

)
. (5.5)

Next we determine the expected value of the IP estimator based on the following proposition and
corollary:

Proposition 5.1. Let Z be a N -dimensional complex random variable defined on the set Z and
modelled as a GMM such that Z ∼

∑Q−1
q=0 pqCN (aq,Wq) with PDF fZ (z), where aq ∈ RN is

the mean vector of the q-th component, and Wq ∈ RN×N its covariance matrix. Then

EfZ {kV (z)} =
∫
Z
kV (z) fZ (z) dz =

Q−1∑
q=0

pq
πN |Wr +V|

exp
(
−aHq (Wq +V)−1 aq

)
,

(5.6)
where kV (z) is defined as in (5.2).
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Proof. See Appendix 7.4.2. �

Corollary 5.1.1. Given Proposition 5.1, the expected value of the IP estimator from (5.1) is as
follows:

EfX

{
Û (X)

}
=

2

L(L− 1)

∑
0≤i<j≤L−1

EfX {kV (x(i),x(j))} = EfX {kV (x(i),x(j))} (5.7a)

=
M−1∑

m,m′=0

pmpm′

πN |Σm +Σm′ +V|
exp

(
− (µm − µm′)H (Σm +Σm′ +V)−1 (µm − µm′)

)
(5.7b)

= V (X | pm,µm,Σm +V/2) (5.7c)

Proof. From the argument of (5.1) we can determine that z = x(i)−x(j), which yields Q = M2,
aq = µm − µm′ and Wq = Σm +Σm′ . �

As a consequence of employing (5.1), the expected value of the estimator just becomes a con-
taminated version of the true IP, determined by the kernel variance matrix V. In contrast with
(5.1), the resulting expected value does take the collision between two equal Gaussian components
into consideration. In other words, while in (5.1) we discard the data-independent additive constant
provided by the samples with i = j, the resulting IP recovers the original exponential summation
of pairwise Gaussian components differences. Given this result, the bias of the estimator is directly
computed as

Bias
{
Û (X)

}
= V (X | pm,µm,Σm)− V (X | pm,µm,Σm +V/2) . (5.8)

Clearly, the bias then tends to zero as the elements of V also tend to zero. This result is a particu-
larization of the analysis in (3.79), but applied to multivariate random variables.

Next, we perform a similar analysis to determine the variance of the estimator. To do so, we
will take advantage of the following lemma 1:

Lemma 5.1. LetZ1 andZ2 beD-dimensional complex random variables modelled as a GMM such
that Z1 ∼

∑R−1
r=0 prCN (ar,W) and Z2 ∼

∑R′−1
r′=0 pr′CN (ar′ ,W), where EfZ1,Z2

{z1z2} =

γW, ar ∈ RD and a′r ∈ RD are the mean vectors of the r-th and r′-th components, respectively,
and W ∈ RD×D is a shared covariance matrix. Then

EfZ1,Z2
{kV1 (z1) kV2 (z2)} =

∫
Z
kV1 (z1) kV2 (z2) fZ1,Z2 (z1, z2) dz1dz2 (5.9a)

=
1

π2D |U|

R−1∑
r=0

R′−1∑
r′=0

exp

(
−
[

ar
ar′

]H
U−1

[
ar
ar′

])
, (5.9b)

where
U =

[
W +V1 γW
γW W +V2

]
. (5.10)

Proof. Let z = [z1 z2]
T . Then, (5.9) can be obtained through Proposition 5.1 by fixing

Wq =

[
W γW
γW W

]
, V =

[
V1 0
0 V2

]
, aq =

[
ar
ar′

]
, (5.11)

N = 2D, and Q = RR′. �

1For simplicity, the covariance matrices of each Gaussian component are defined now equally, thus we have dropped
the subindex associated with each of them.
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Using Proposition 5.1 and Lemma 5.1, we can now finally state the following proposition:

Proposition 5.2. Let Û (X) be the IP estimator given in (5.1), where X is a N -dimensional
complex random variable with X ∼

∑M−1
m=0 pmCN (µm,Σ), µm ∈ RN the mean vector, and

Σ ∈ RN×N the covariance matrix. The “cross-covariance” of the IP estimator given two kernel
variance matrices V1 and V2 is the following

Cov
{
ÛV1 (X) ÛV2 (X)

}
= EfX

{
ÛV1 (X) ÛV2 (X)

}
− EfX

{
ÛV1 (X)

}
EfX

{
ÛV2 (X)

}
(5.12a)

=
4 (L− 2) (a− c) + 2 (b− c)

L (L− 1)
, (5.12b)

where

a =
1

π2N |Ua|

M−1∑
m,m′,n=0

pmpm′pn exp

(
−
[
µm − µm′

µn − µm′

]H
U−1

a

[
µm − µm′

µn − µm′

])
, (5.13)

b =
1

π2N |Ub|

M−1∑
m,m′=0

pmpm′ exp

(
−
[
µm − µm′

µm − µm′

]H
U−1

b

[
µm − µm′

µm − µm′

])
, (5.14)

and

c = EfX

{
ÛV1 (X)

}
EfX

{
ÛV2 (X)

}
(5.15a)

= V (X | pm,µm,Σ +V1/2)V (X | pm,µm,Σ +V2/2) . (5.15b)

as in Corollary 5.1.1, for

Ua =

[
2Σ+V1 Σ

Σ 2Σ+V2

]
, Ub =

[
2Σ+V1 2Σ

2Σ 2Σ+V2

]
. (5.16)

Proof. See Appendix 7.4.3 �

From this analysis is it clear that Û (X) is a consistent estimator for any finite value of a, b and
c. In particular, the variance of the estimator decreases inversely proportional to L as L → ∞.
The rationale is then similar to the one in Subsection 3.3.3. As L increases, both variance and
bias tend to zero, given that the required kernel variance also tends to 0. It is noteworthy that a
similar analysis is provided by Príncipe in [Prí10], albeit for univariate random variables and for
the estimator in (3.73). The term b is ignored in [Prí10] as it becomes asymptotically negligible.
However, as we advance in the analysis of bias and variance of the particular estimators for different
applications, we will see that we are interested in the case in which the kernel variance matrix
becomes close to 0 with a fixed L. In these cases, b is prone to dominate the variance of the
estimators, and it should be computed likewise as a and c.

With this, we are now in terms to move into the entropy-based applications based on the U-
statistic estimator in (5.1).

5.2 Covariance determinant estimation

The first entropy-based application to be addressed is the variance estimation of a random scalar
sequence. The classical approach to this problem is to make a prior assumption that the data is
Gaussian, referred to as nominal conditions. Under this setting, it is well-known that the maximum
likelihood estimator of the covariance matrix is the sample covariance matrix (see, for instance,
(2.27)). However, the Gaussian assumption does not always hold in practice. In many applications,

97



5.2. COVARIANCE DETERMINANT ESTIMATION

Gaussian
assumption

Second-order
statistics

Parameter
estimation

Entropy-based
processing

Gaussian
assumption

Parameter
estimation

(a)

(b)

Figure 5.1: Main rationale of the robust entropy-based approach (b) in front of the classical Gaus-
sian assumption (a).

the underlying distributions tend to be leptokurtic, i.e. the distribution has a longer tail than the
mesokurtik (zero kurtosis regardless of the parameters) Gaussian distribution. A typical occurrence
of long tails is given by faulty observations, considered outliers that are detached from the expected
range of operation. In these cases, the Gaussian assumption may become detrimental to the overall
processing (see [PSQ13] and references therein).

We refer to robust signal processing to these methods that are conscious of the faulty Gaus-
sian assumption and develop an alternative that is resistant against the effects of deviations. In
particular, a common problem is to develop a robust estimation of the mean and covariance matrix
from a random sequence [SBP15], which arises in multiple areas [Zou+12]. A common practice
is to directly assume that the underlying model has a heavy-tailed distribution due to the outlier
contamination [Hub64], or some elliptical distribution [Tyl87; KT88].

Here, we will address the estimate of just the determinant of the covariance matrix in a robust
manner. In some applications, only the determinant is required, such as in multichannel signal
detection [LV01; Ram+11]. We first focus on the determinant because it naturally links with the IP
of a Gaussian distribution. In particular, we can see from (5.5) that, provided the data is distributed
as a zero-mean Gaussian variable (corresponding to a GMM with just one component), the IP is
proportional to the determinant of the covariance matrix. As a consequence, the retrieval of the
determinant of the covariance matrix from an entropy estimate becomes straightforward.

An entropic measure may be more favorable to estimate the determinant of the covariance
matrix than the classic sample approach. In particular, a favorable property of entropy (or the IP
in this case) is that only depends on the probability of the events, and not on their magnitude.
This property may be particularly advantageous in front of outliers, which is an occurrence with
low probability, but with great impact for the sample estimate. This property contrasts with the
use of the Huber loss function [Hub64], typically used in robust statistics, which penalizes the
low probability events so their magnitude is not as impactful in the overall estimate. An entropy-
based approach acquires robustness in a natural manner, thanks to the properties of the entropic
measure itself rather than by a trade-off between accuracy and closeness between the assumed and
the real model. At the end, the proposed approach here is an information-theoretic method to the
estimation of variance, which substitutes a classical second-order statistics approach (to measure
sample covariance matrices) to one based on measures of information.

Nevertheless, the proposed approach still considers a Gaussian assumption in its formulation.
The expected IP is assumed to be from a normal distribution for a proper isolation of the deter-
minant of the covariance matrix. However, this assumption is not made from the point of view
of the underlying distribution, but from the perspective of the IP. In particular, we subvert the
Gaussian assumption not by omitting it, but by a displacement of its typical order. Figure 5.1 il-
lustrates this philosophy by comparing the classical approach versus the one proposed here. The
Gaussian assumption is then taken in a second step, once the nonparametric entropy measure has
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been performed. This allows us to relax the penalty of infringing the nominal condition, gaining
in both robustness and simplicity with respect to other formulations that consider more complex
underlying distributions.

In the sequel, the estimator is derived, the impact of the free parameters of the IP estimator are
unveiled, and an analysis of the performance is provided.

5.2.1 Problem formulation

Let us assume that the samples are drawn from a N -dimensional complex Gaussian distribution
X ∼ CN (µ,Σ) with

fX (x) =
1

πN |Σ|
exp

(
− (x− µ)H Σ−1 (x− µ)

)
. (5.17)

In nominal conditions, the IP can directly be obtained from (5.5), which results in

V (X) =
1

πN |2Σ|
. (5.18)

Clearly, since the determinant of the covariance matrix is inversely proportional to the IP, our focus
will be on first estimating the IP and then measuring the determinant. Another relevant property is
that, for a sole Gaussian component, the IP is invariant in front of the mean value of the distribution,
a shared property with other entropic measures.

For convenience, we will use the Modified Information Potential (MIP), which will further
simplify the consequent expressions and the bias and variance analysis. Consider L observations
of the random variable X denoted as x(i) ∈ CN for i = 0, ..., L − 1. The MIP estimator is then
defined as follows:

Ŵ (X) =
2πN |V|
L(L− 1)

∑
0≤i<j≤L−1

kV (x(i),x(j)) , (5.19)

where kV (x(i),x(j)) is given in (5.2). It can be seen that the only difference between Û (X) and
the MIP estimator Ŵ (X) is the constant factor 1/πN |V|, i.e.

Ŵ (X) = πN |V| Û (X) . (5.20)

Therefore, there is no significant change in the previous analyses of the base estimator apart from a
constant value that depends on the determinant of the kernel variance matrix. The expected value
can be directly obtained from Corollary 5.1.1 (for M = 1), and becomes the following:

EfX

{
Ŵ (X)

}
=

|V|
|2Σ +V|

, (5.21)

which is just EfX

{
Ŵ (X)

}
= πN |V|EfX

{
Û (X)

}
. Consequently, if we want to retrieve the

determinant of the covariance matrix, the contamination added by the kernel variance matrix V
must be considered. On the other hand, the variance of the MIP can be obtained from Proposition
5.2 by letting M = 1 and V1 = V2, which results in

Var
{
Ŵ (X)

}
= EfX

{
Ŵ 2 (X)

}
− EfX

{
Ŵ (X)

}2
=

4 (L− 2) (a− c) + 2 (b− c)

L (L− 1)
, (5.22)

where

a =
|V|2∣∣∣∣ 2Σ +V Σ

Σ 2Σ +V

∣∣∣∣ =
|V|2

|Σ +V| |3Σ +V|
(5.23a)
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b =
|V|2∣∣∣∣ 2Σ +V 2Σ

2Σ 2Σ +V

∣∣∣∣ =
|V|2

|V| |4Σ +V|
(5.23b)

c =
|V|2

|2Σ +V|2
. (5.23c)

It is worth noting that the resulting variance tends to zero asV goes to zero, as can be seen from a, b
and c. This result is different from the classical IP estimate, whose variance increases as the kernel
variance decreases, and further requiring L→∞ for its variance to go to zero. However, the MSE
of both estimators tend to zero as L increases, where Ŵ (X) and Û (X) converge to the real value
of MIP and IP, respectively. This property can be retrieved from the KDE estimator in Subsection
3.3.1, given that both IP and MIP estimators are constructed from the Parzen-Rosenblatt method.

in both cases the estimator is consistent, since for fixed a, b and c the estimator converges in
probability to the real value W (X) in the case of the MIP, or U (X) in the case of the IP, with
respect to L.

These observations reinforce the idea that the MIP may be more appropriate for a parameter
estimation. However, note that the resulting expression could not be used as a pure IP estimator,
since the expected value also goes to zero as V decreases, and it is only used here for the purpose
of determining the determinant of the covariance matrix. The consequences of this choice and the
analysis of the parameters will be provided in the following subsections.

With the knowledge of the expected value and the variance, the problem then moves to con-
structing an estimator of the form

D̂IP = ξV

(
Ŵ (X)

)
, (5.24)

where ξV : R→ R is a monotonic decreasing function of Ŵ (X), whose bias and variance depend
on the parameter V. Note that D̂IP corresponds to the bottom rationale from Figure 5.1. On the
contrary, the upper rationale would be the equivalent of estimating the sample covariance matrix
with

Σ̂S =
1

L
XPXH , (5.25)

where X = [x(0), ...,x(L− 1)], P⊥
1 = IN − 11T /L, and then by

D̂S =
∣∣∣Σ̂S

∣∣∣ . (5.26)

These expressions illustrate the main differences between both approaches, where the nominal
condition is assumed separately in different stages. The entropy-based rationale is again illustrated
in Figure 5.2, where it has now been updated (from Figure 5.1) to specify the problem of the
estimation of the determinant of the covariance matrix.

5.2.2 Performance analysis

For the purpose of properly characterizing the estimator, and for clarity, we focus here on the
univariate case N = 1, where V and Σ are now v2 and σ2, respectively. To be concrete, the kernel
function employed to estimate the MIP in (5.19) is the following:

hv (x(i), x(j)) = exp

(
−|x(i)− x(j)|2

v2

)
. (5.27)

This particular case transforms the estimation of the determinant of the covariance matrix into the
estimation of variance σ2. In this case, by isolating (5.21) we have that

D̂IP = σ̂2 = ξv

(
Ŵ (X)

)
=

v2

2

(
1

Ŵ (X)
− 1

)
, (5.28)
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Figure 5.2: Entropy-based approach for the problem of estimating the determinant of the covariance
matrix (b) in front of the sample covariance estimator approach (a).

which is, ultimately, an entropy-based estimator of the variance. Henceforth, we also define

EfX

{
Ŵ (X)

}
= W (X) =

v2

2σ2 + v2
. (5.29)

Note that this assessment can be done following the unbiased property of the U-statistic in (5.21).
Next, we analyze the bias and variance of this new estimator with the purpose of determining

the role of the main free parameter, the kernel bandwidth v, as well as determining the efficiency
of the estimator. For the bias, we just use Jensen’s inequality to state that

EfX

{
σ̂2
}
≥ v2

2

 1

EfX

{
Ŵ (X)

} − 1

 =
v2

2

(
2σ2 + v2

v2
− 1

)
= σ2, (5.30)

given that 1/x is a concave function for x > 0, and Ŵ (X) > 0 for v > 0. As a consequence, we
have

Bias
{
σ̂2
}
= EfX

{
σ̂2
}
− σ2 ≥ 0. (5.31)

On the one hand, the previous expression just confirms that the bias is always nonnegative. There-
fore, for any given value of v, the estimate tends to σ2 from above. This property contrasts with the
second-order Rényi entropy estimator from Chapter 4, which had two different regimes depending
on the number of available data and the added contamination. On the other hand, the bias is well-
behaved, given that the estimator Ŵ (X) is a consistent estimate of W (X), thus the estimator σ̂2

is also well-behaved.
In order to determine the variance of the estimator, a small error analysis is performed, fol-

lowing a similar approach as López-Valcarce et al. in [LM07]. Consider a Taylor expansion of
ξv

(
Ŵ (X)

)
up to the first order around the point Ŵ (X) = W (X) is given by

σ̂2 ≈ σ2 +
(
Ŵ (X)−W (X)

) ∂ξv (z)

∂z

∣∣∣∣
z=W (X)

, (5.32)

where the derivative yields the following result:

∂ξv (z)

∂z

∣∣∣∣
z=W (X)

=
∂

∂z

(
v2

2

(
1

z
− 1

))∣∣∣∣
z=W (X)

= − v2

2UM (X)2
= −

(
2σ2 + v2

)2
2v2

. (5.33)

Consequently, the estimator variance can be approximated by

Var
{
σ̂2
}
≈ Var

{
Ŵ (X)

}( ∂ξv (z)

∂z

∣∣∣∣
z=W (X)

)2

= Var
{
Ŵ (X)

} (2σ2 + v2
)4

4v4
, (5.34)
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Figure 5.3: Normalized variance of the MIP estimator as a function of the relative kernel variance
for different values of data size.

where Var
{
Ŵ (X)

}
is given in (5.22). We define here the relative kernel variance

w =
v2

σ2
(5.35)

in order to better analyze the variance of the estimator. Notice that it is a common practice in kernel
methods to let the kernel bandwidth/variance depend on the true standard deviation/variance of the
data, e.g. (3.55). It is then within reason to evaluate the impact of v2 in a relative manner, which
also generalizes for any given σ2. The relative variance is then written as follows:

Ṽar
{
σ̂2
}
=

Var
{
σ̂2
}

σ4
≈ Var

{
Ŵ (X)

} (2 + w)4

4w2
. (5.36)

The variance of the MIP estimator is given in (5.22), which can be written in terms of the relative
variance as follows:

a =
w2

(w + 1) (w + 3)
, b =

w2

w (w + 4)
, c =

w2

(w + 2)2
. (5.37)

Note that, unlike the normalization in (5.36), the previous expressions are not normalized, but only
a change of variable has been applied, which yields

Var
{
Ŵ (X)

}
=
4 (L− 2)

L (L− 1)

(
w2

(w + 1) (w + 3)
− w2

(w + 2)2

)
+

2

L (L− 1)

(
w2

w (w + 4)
− w2

(w + 2)2

)
. (5.38)

From this result, one can observe that the relative variance of the estimator goes to infinity as
w → 0, independently from the fact that a, b, c → 0. The reason for this is that b goes to zero as
O (w) instead of O

(
w2
)

as happens with a and c, i.e. b decreases slowly than a and c, and this
is why b was not neglected in (5.12) nor in (5.22) as it is done in [Prí10, Sec. 2.5]. Figure 5.3
illustrates this effect by showing the normalized variance (with respect to L) of the MIP estimator
both empirically and theoretically, given in (5.38). While for low and moderate values of w the
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normalized variance depends on the value of L, high values of w mitigate this dependency and tend
to the same value. These discrepancies at low w values are mostly due to b, which increases the
relative variance as L decreases. Nonetheless, the penalty term provided by b becomes negligible
as L increases.

In terms of the variance estimate σ̂2, it should be noted that its relative estimators variance
Ṽar
{
σ̂2
}

does not go to zero as w decreases, but to infinity. This property is recovered from
the nonmodified IP estimator, which only goes to zero as L → ∞. This property can be seen
as a consequence of estimating a parameter of the data, instead of just the MIP. As a result, the
choice of w is again a rather complex choice, provided that the final application is to estimate true
descriptor of the data and not some modified intermediate value.

Lastly, we would like to point out that the strategy for evaluating the relative variance here in
(5.34) differs slightly from the one used in our published paper [CRV17], which is based on a small
perturbation analysis. The reason behind this choice is to unify all three applications addressed in
this chapter, given that the analysis of the variance of the SNR is cumbersome with the small
perturbation approach. Although in [CRV17] the approximation is performed up to the second
order, which ultimately conveys an additional term in (5.36), they are the same result up to the
first order. Nevertheless, both approaches will render the same results in the hereunder asymptotic
analysis.

5.2.2.1 Asymptotic performance

We are now interested in determining the behaviour of the estimator in the case of large data size
L. For w > 0, we can gather from (5.22) that

lim
L→∞

LVar
{
Ŵ (X)

}
= 4 (a− c) . (5.39)

Therefore, by joining (5.36) and (5.38) we have

lim
L→∞

LṼar
{
σ̂2
}
= 4 (a− c)

(2 + w)4

4w2
=

(
w2

(w + 1) (w + 3)
− w2

(w + 2)2

)
(2 + w)4

4w2
(5.40a)

=
(w + 2)2

(w + 1) (w + 3)
. (5.40b)

The limits regarding the relative kernel variance are given by w → 0 and w → ∞, yielding 4/3
and 1, respectively2. We can therefore write the following

1 ≤ lim
L→∞

LṼar
{
σ̂2
}
≤ 4

3
. (5.41)

From this result, it can be seen that the estimator is asymptotically efficient as w → ∞, since it
reaches the Cramér-Rao Bound (CRB) of the sample variance estimator, namely σ̂2

S , which is σ4/L
for circular complex data (and 2σ4/L for real-valued data, see [Kay93]). This is not a surprising
outcome since it is known from the large kernel bandwidth analysis in Subsection 3.3.3 that the IP
estimator (and equivalently the MIP) becomes a function of the sample variance estimator. On the
other hand, the variance increases as w decreases, but never more than 4/3, which represents the
maximum asymptotic penalty. In fact, the small kernel bandwidth values are the ones interesting
for the purpose of gaining robustness in front of outliers, as we will see in Subsection 5.2.3.

5.2.2.2 Threshold effect

Before advancing to the robust side of the proposed method, we will determine the required con-
dition for the previous asymptotic analysis to be valid. In particular, it is assumed that L is large

2For w → ∞ it is also required that (5.40) is monotonically decreasing. Since its derivative −2(w + 2)/((w +
1)2(w + 3)2) is negative for w > 0, then it is strictly decreasing.
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Figure 5.4: Variance amplification with respect the CRB as a function of the relative kernel variance
for complex-valued data with different L.

enough such that the impact of b in Var
{
σ̂2
}

from (5.22) is negligible. To be concrete, the follow-
ing is assumed for α� 1:

2

L (L− 1)
(b− c) <

1

α

4 (L− 2)

L (L− 1)
(a− c) , (5.42)

which translates to
(b− c) <

1

α
2 (L− 2) (a− c) . (5.43)

Using (5.37) we can state the following relation between the data sizeL, the relative kernel variance
w and α:

L > 2

(
α
(w + 1) (w + 3)

w (w + 4)
+ 1

)
. (5.44)

It can be seen that for small values of w, higher values of L are required so that the estimator
reaches the asymptotic behaviour. If this inequality is not fulfilled, the variance of the estimator
will not correspond to the given approximation with a much higher value than desired.

This condition also serves as a lead hint to the determination of w as a function of L. For
this purpose, consider that we have a very small relative kernel variance w so that (5.44) can be
simplified to

w >
3α

2L
. (5.45)

If we fix α = 10, for example, we obtain an approximate minimum relative kernel variance such
that

wmin ≈
15

L
. (5.46)

Although the choice of kernel variance is crucial in the estimation of the MIP, we can at least
guarantee that the variance of the estimator will not be more amplified than approximately 4/3
with respect the CRB if (5.46) is fulfilled, following (5.41).

To illustrate this threshold effect, Figure 5.4 shows the variance of the estimator under nominal
conditions as a function of w and for different values of L. On the one hand, it can be seen that
the normalized variance tends to the factor of 4/3 with respect to the CRB for moderately small
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Figure 5.5: Variance amplification with respect the CRB for real-valued variables.

w and increasing values of L from (5.41). Consequently, the larger is L the smaller can be the
relative kernel variance before the variance of the estimator is overly amplified. This also implies
that the larger is L the less critical becomes to choose an adequate value of w in order to have
sufficiently high accuracy under nominal conditions. Figure 5.4 also shows the required minimum
w for achieving the asymptotic regime for each value of L, following (5.46) and indicated by the
upward arrows. The normalized variances of the estimator corresponding to these wmin values are
quite close the 4/3 factor, proving that the rule for determining a floor value of w for each L is
behaving as expected.

Real-valued case It is also worth noting that, in the case of real-valued data, the resulting asymp-
totic relative variance of the estimator results in (the computation is quickly sketched in Appendix
7.4.4):

lim
L→∞

LṼar
{
σ̂2
}
= 4 (a− c)

(w + 2)3

w
= 4 (w + 2)2

(
w + 2√

(w + 1) (w + 3)
− 1

)
, (5.47)

whose limits are
2 ≤ lim

L→∞
LṼar

{
σ̂2
}
≤ 2.4752. (5.48)

The minimum kernel variance is then determined by

w >
(α
L

)2 3
4

(
1(

2−
√
3
)2
)
. (5.49)

As it turns out, the w required for the asymptotic behaviour is then inversely proportional to L2.
The minimum kernel variance is now roughly wmin ≈ 1044/L2 for α = 10. Although the resulting
wmin becomes small faster than the complex-valued case with respect toL, the constant factor is one
order of magnitude above the complex-valued case in (5.46). As a result, for very small values of
L the kernel variance required in the complex-valued case may be lower than the real-valued case,
but this tendency is quickly pivoted and wmin decreases much faster in the real-valued case (for
L > 70, approximately). This result implies that the performance of the estimator is more robust
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in front of the choice of w, since the possible values of w that achieve the asymptotic threshold are
less limiting.

Figure 5.5 also shows the normalized variance of the estimator, following Figure 5.4, but for
the real-valued case. The floor value from (5.48) is also shown. Clearly, the margin for choosing
w is much broader than in the complex-valued case, given that for the same value of L the variance
requires a much smaller relative kernel variance before it is amplified. This property can be ob-
served in the distances between the asymptote of different values of L, which are now greater than
in Figure 5.4. The upward arrows now point to the corresponding relative variance by following
the minimum relative kernel variance from (5.49) for α = 10. It is also worth noting that the
penalty term is divided by 2 for the sake of comparison, given that the CRB in the real-valued case
is two times greater than in the complex-valued case. Consequently, the resulting estimator is also
efficient for w →∞.

5.2.2.3 Kernel variance determination

Following the previous subsections, the strategy for determining the kernel variance is provided
hereunder. Until now, the analysis of the estimator’s behaviour has featured the relative kernel
variance w. The reason is that the kernel variance needs to operate in a range around the true
variance σ2. Precisely, (5.41) illustrates this requirement by showing that very relative small values
have a penalty to the variance and very relative high values tend to the sample variance case.
However, given that σ2 is precisely the parameter to be estimated, we propose to determine the
kernel variance v2 from the available data in a iterative manner. Moreover, the relative kernel
variance w has to meet (5.46) for any value of L and data variance in order to attain the desired
asymptotic variance results. Consequently, v2 = 15σ̂2

S/L will be used as a tentative value for
determining the kernel variance, and it shall be used to initiate the iterative method.

Algorithm 1 Iterative procedure for determining the kernel variance.

σ̂2 [0] = σ̂2
S; ∆ = 1; q = 1; 0 < δ � 1; k = 1

while ∆ > δ
v2 [k] = 15σ̂2 [k] /L
Ŵ [k] = 2

L(L−1)

∑
0≤i<j≤L−1 hv[k] (x (i)− x (j))

σ̂2 [k] = v2[k]
2

(
1

Ŵ [k]
− 1
)

∆ =
∣∣σ̂2 [k]− σ̂2 [k − 1]

∣∣ /σ̂2 [k]
k ← k + 1

end

Algorithm 1 specifies the proposed iterative method in terms of the sample variance estimator
σ̂2

S. The method measures the MIP through (5.19) in order to retrieve a tentative value of σ2 from
the expected value of the MIP in (5.28). The operation is repeated until no significant change is
observed in the estimate of the variance. At every step, the algorithm uses a conservative value of
the kernel variance as a function of the estimated variance and the available number of samples,
following (5.46). As a result, the final iteration of the algorithm directly provides an estimation of
the variance, as intended.

5.2.3 Robustness to outliers

Finally, the sensitivity of the estimator in front of outliers is quantified. To do so, we will use a
contaminated additive model given by

xε (i) = x (i) + z (i) y (i) , (5.50)
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where Xε is the new random variable whose PDF is defined as fXε (x). Here, z (i) can be either
one or zero, whose probabilities are Pr {z (i) = 1} = ε and Pr {z (i) = 0} = 1− ε, respectively,
and assuming that ε is an arbitrarily small value. This is a common model utilized for studying
distributions that are close to Gaussian models, but with some error probability to departure from
normality [Mar+19, Sec. 2.2]. However, while the new random variable Y is usually considered
to be a Gaussian process independent of X , thus constructing a GMM, here we will assume that it
is a discrete random variable such that

Pr {Y = ym} = pY (ym) = pm, (5.51)

with m = 1, ...,M and PMF pY (y). This model allows for a better analysis in terms of the
proposed estimator, which will result in deterministic and well-defined bounds of the contaminated
IP value. With (5.50), we assume that there is a small probability ε that an outlier y (i) is disturbing
the original observation. This is particularly harmful for the sample variance estimator, whose
expected value under this model becomes the following (see Appendix 7.4.5 for details on the
computation):

EfX

{
σ̂2

S
}
=

1

2
EfXε

{
|xε (i)− xε (j)|2

}
= σ2 + ε

(
σ2
y + µ2

y (1− ε)
)
, (5.52)

where µy and σ2
y are the mean and variance of the random variable Y , respectively. As a result,

the variance estimation is biased with a term that is proportional to the probability of an outlier, as
well as to the mean and variance of the contamination process. While ε can be expected to be a
fairly low value, the fact that it also depends µy and σ2

y is not a desirable property, since both mean
and variance can be very large in comparison to σ2.

Once the sample variance case is outlined, we are now interested in analyzing the impact of
the contamination model on the entropy-based estimator. Since the proposed estimator is based on
the estimated IP 3, we will examine how the outliers and their probabilities deteriorate the IP of the
random variable Xε. For this, recall that the IP is expressed as

V (Xε) =

∫
X
f2
Xε

(x) dx. (5.53)

The PDF of the contaminated data is expressed as follows:

fXε (x) = (1− ε) fX (x) + ε
M∑

m=1

pmfX (x− ym) . (5.54)

This density distribution corresponds to a weighted sum of shifted replicas of the original PDF
fX (x). Alternatively, we can write

fXε (x) =
M∑

m=0

p̃mfX (x− ym) , (5.55)

where

p̃m =

{
1− ε for m = 0

εpm for 1 ≤ m ≤M
(5.56)

and y0 = 0. First, let us examine an upper bound of the IP through the Cauchy-Schwarz inequality:

fXε (x)=
M∑

m=0

√
p̃m
√
p̃mfX (x− ym)≤

√√√√ M∑
m=0

(√
p̃m

)2 M∑
m′=0

(√
p̃m′fX (x− ym′)

)2
. (5.57)

3Or equivalently, the MIP. However, the analysis of robustness in front of outliers will be executed in terms of the
IP, since it simplifies the computation and shows the exact same result.
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We have that

M∑
m=0

(√
p̃m

)2
=

M∑
m=0

p̃m = 1− ε+ ε

M∑
m=1

pm = 1− ε+ ε = 1, (5.58)

which yields

fXε (x) ≤

√√√√ M∑
m=0

p̃mf2
X (x− ym). (5.59)

The IP of the contaminated random variable is then bounded by

V (Xε) ≤
∫
X

M∑
m=0

p̃mf2
X (x− ym) dx =

M∑
m=0

p̃m

∫
X
f2
X (x− ym) dx (5.60a)

=
M∑

m=0

p̃mV (X) = V (X) , (5.60b)

where in the last equality we consider that the support of X is all the complex numbers.
On the other hand, let us now examine a lower bound. By plugging-in (5.55) into (5.53) we

can express

V (Xε) =
M∑

m=0

M∑
m′=0

p̃mp̃m′ζ (ym − ym′) , (5.61)

where
ζ (z) =

∫
X
fX (x+ z) fX (x) dx ≤ ζ (0) = V (X) . (5.62)

Notice that ζ (z) is expressed as an autocorrelation, and that is why it is bounded by its value at the
origin, which coincides with

∫
X f2

X (x) dx and thus the IP. Consequently, we can write

V (Xε) ≥
M∑

m=0

p̃2mζ (0) = V (X)
M∑

m=0

p̃2m. (5.63)

The resulting sum of squared p̃m can be seen as the argument of the logarithm in the collision
entropy expression (2.47), and therefore will be denoted as the collision probability Col (Z;Y ),
where

Col (Z;Y ) = (1− ε)2 + ε2
M∑

m=1

p2m ≤ 1. (5.64)

In particular, this expression captures the probability that two different realizations of Y will take
the same value, wrapped by the contamination rate. By gathering the previous bounds, we can state
the following inequalities:

V (X)Col (Z;Y ) ≤ V (Xε) ≤ V (X) . (5.65)

The outcome of contaminating the random variable X is then assimilated by a shrinking of the IP.
From (5.65) it can be seen that the deterioration of the IP is governed by the collision probability,
whose relevance is that it only depends on ε and pm, rather than µy and σ2

y . Therefore, the values
that Y can take do not have any impact whatsoever for the entropy-based estimator, unlike with
the sample variance estimator. This is the key observation that justifies to use an entropy-based
approach to the problem of estimating the variance with the purpose of achieving robustness.

Once we have analyzed the bounds of the contaminated IP, we proceed to give further insights
on the implications of these bounds in terms of the estimation of σ2. The upper-bound in (5.65)
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corresponds to the noncontaminated case, and therefore it is implicitly addressed in previous sub-
sections. The relevant case now is the lower-bound in (5.65), which yields the worst-case scenario,
i.e. it is the farthest from the true IP value V (X). We then proceed by considering the MIP, since
it is the entropic measure used for estimating σ2. Given the expected value of the MIP in (5.29),
its worst-case expected estimate is the following:

EfXε

{
Ŵ (Xε)

}
= Col (Z;Y )EfX

{
Ŵ (X)

}
=

v2Col (Z;Y )

2σ2 + v2
. (5.66)

Therefore, by plugging the previous expression into (5.28), the bound of the expected variance
estimate becomes

EfXε

{
σ̂2
}
≥ v2

2

 1

EfX

{
Ŵ (Xε)

} − 1

 =
v2

2

(
2σ2 + v2

v2Col (Z;Y )
− 1

)
(5.67a)

=
σ2

Col (Z;Y )
+

v2

2

(
1

Col (Z;Y )
− 1

)
. (5.67b)

Since we want the variance estimate to be as close as possible to σ2, it is clear from (5.67) that we
are interested on small kernel variances. As L grows to infinity, the kernel variance goes to zero
naturally4, providing an asymptotic floor value of

lim
L→∞

EfXε

{
σ̂2
}
=

σ2

Col (Z;Y )
. (5.68)

Again, it is worth noting that this is only attained by considering the worst case in (5.65) (the
lower-bound), which is influenced by the variance of the contamination σ2

y . Nevertheless, as σ2
y

increases, (5.68) is quickly achieved and then it is saturated, preventing the bias to further increase,
unlike with the sample variance. This result will become apparent when showing the computer
simulations.

It is also worth analyzing the minimum penalty in front of the “best” contamination case. On
the one hand, for a fixed value of ε in (5.68), the minimum penalty occurs when Col (Z;Y ) =
(1− ε)2 + ε2 (which requires that pm is 1 only once, and the remaining terms are 0). Then the
asymptotic expectation of the variance estimator becomes

lim
L→∞

EfXε

{
σ̂2
}
=

σ2

(1− ε)2 + ε2
. (5.69)

On the other hand, from (5.52), the expectation of the sample variance becomes

EfX

{
σ̂2

S
}
= σ2 + µ2

yε (1− ε) . (5.70)

Therefore, even in the most favorable case, the sample variance estimator is still dependent on the
squared magnitude of the single outlier, unlike the entropy-based approach.

Figure 5.6 exhibits the robustness of the proposed entropy-based method in front of the sample
variance. The normalized bias, namely NBias

{
σ̂2
}
=
(
EfX

{
σ̂2
}
− σ2

)
/σ2, is shown in terms

of the normalized contamination variance for two different contamination rates ε and two values
of L. The dotted lines indicate the asymptotic floor values assuming (5.68), which results in

lim
L→∞

NBias
{
σ̂2
}
=

σ2

Col(Z;Y ) − σ2

σ2
=

1

Col (Z;Y )
− 1. (5.71)

It can be seen that, while the sample variance increases with σ2
y , as in (5.52), the bias of the entropy-

based approach exhibits a ceiling effect, showing that ε becomes relevant instead of σ2
y .

4It is a shared desirable property of the chosen IP estimator, as addressed in Subsection 3.3.3. Generally speaking,
it follows from the KDE estimator, hence it can be seen as analogous to Silverman’s rule given in (3.55), which also
decreases the kernel variance as the data size increases.
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Figure 5.6: Normalized bias of the variance estimators as a function of the relation between the
variance of the contaminating random variable and the true variances.
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Figure 5.7: Average iterations for each measurement of the kernel variance in Algorithm 1 as a
function of the relative contamination variance.

In order to demonstrate the effectiveness of Algorithm 1, Figure 5.7 shows the average number
of iterations required for the robust measure of variance in relation to Figure 5.6. On the one hand,
for a small contamination rate, i.e. close to nominal conditions, the algorithm proves to converge
quickly and only two or three iterations are required. On the other hand, a higher ε requires, in
average, more iterations. After some value of σ2

y/σ
2 the number of average iterations still increases,

albeit slowly. However, generally speaking, these are still very few iterations, proving Algorithm 1
to be an effective tool for determining v2.

5.2.4 Conclusion

In this section, a method for estimating the determinant of the covariance matrix, without explicitly
estimating that matrix, has been studied. It has been shown that performing the Gaussian assump-
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tion in a second stage, after an entropy-based estimate, is a valid strategy for gaining robustness
in front of, precisely, the lack of nominal conditions. The key point is that entropy is sensitive to
the probability of the outliers, rather than to their value. Consequently, robustness is acquired by
introducing an information measure to a problem that is classically performed under the second-
order statistics perspective. Furthermore, the proposed entropy estimate has an intrinsic relation
with second-order statistics in form of an asymptotic trend of the kernel variance. Therefore, the
entropy-based method for estimating the determinant of the covariance matrix can be seen as a
generalization of the second-order statistics approach, where, in the worst case, are comparable.
We will precisely see that this is a recurrent topic when using the IP estimator from Section 3.3.
Next, we continue to study this entropy-based proposition to widen its applications with a more
general case than the one addressed until now.

5.3 Coherence estimation

Once the estimation of the determinant of the covariance matrix has been addressed from the point
of view of an entropy estimate, we proceed to broaden this concept by addressing an entropy-based
coherence estimation. We refer to coherence as the statistic that provides a measure of similarity
between two different signals. In its most general form, this statistic translates to the Generalized
Coherence (GC) [GC88], which is commonly encountered as a nonparametric detector of a com-
mon signal on two noisy channels [CGS95; GPC06; KAS14].

To get more insights on this problem, we begin by defining the GC. Consider an i.i.d. complex
sequence of the form

x (i) =

[
x1 (i)
x2 (i)

]
(5.72)

for x1 (i) ∈ CN1 and x2 (i) ∈ CN2 , whose covariance matrix is a block-composite matrix such
that

Σ =

[
Σ1 Σ1,2

Σ2,1 Σ2

]
, (5.73)

where

Σ1 = EfX1

{(
x1 − EfX1

{x1}
)(

x1 − EfX1
{x1}

)H}
(5.74a)

Σ2 = EfX2

{(
x2 − EfX2

{x2}
)(

x2 − EfX2
{x2}

)H}
(5.74b)

Σ1,2 = ΣH
2,1 = EfX

{(
x1 − EfX1

{x1}
)(

x2 − EfX2
{x2}

)H}
(5.74c)

are the autocovariance and cross-covariance matrices, respectively. The GC is then defined as

γ = 1− |Σ|
|Σ1| |Σ2|

, (5.75)

where 0 ≤ γ ≤ 1. The second term in the right-hand side of (5.75) corresponds to the Hadamard
ratio [Ram+10], which is just the determinant of the covariance matrix over the product of the
determinants of the marginal covariance matrices. In this setting, the Hadamard ratio becomes
the generalized likelihood ratio test for distinguishing a block diagonal matrix (Gaussian data)
from an arbitrary Hermitian matrix [Ram+13; Hua+14]. Since it is a measure that only depends on
determinants of covariance matrices, the GC can be seen as an extension to the previous subsection,
hence indicating a good predisposition to be estimated based on an entropy-based approach. In fact,
this observation has also been exploited for measuring the time delay among spatially separated
sensors based on an entropy estimate [BHC07], albeit with Shannon’s entropy.
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For completeness, the GC can also be seen under the perspective of the CCA. To see that, let
us rearrange the GC as follows:

γ = 1−
|Σ2|

∣∣Σ1 −Σ1,2Σ
−1
2 Σ2,1

∣∣
|Σ1| |Σ2|

= 1−
∣∣Σ−1

1

(
Σ1 −Σ1,2Σ

−1
2 Σ2,1

)∣∣ = 1− |I−C| , (5.76)

where C = Σ−1
1 Σ1,2Σ

−1
2 Σ2,1 is the squared coherence matrix, as it is addressed in Subsection

2.2.2. The GC can be then expressed as a function of the eigenvalues of C such that

γ = 1−
min{N1,N2}∏

n=1

(1− λn (C)) . (5.77)

Consequently, to estimate the GC is equivalent to perform the CCA of the sample coherence matrix
and to retrieve γ afterwards. Under normal distributions, this link between the GC and CCA is
translated to the MI. In particular, the MI between X1 and X2 then becomes

I (X1;X2) = − ln

(
|Σ|

|Σ1| |Σ2|

)
= − ln (1− γ) (5.78)

This set of relationships helps us to locate the GC within the framework of the thesis, and justifies
our interest in estimating this statistic through an entropic measure.

5.3.1 Problem formulation

Similar to the case of the covariance determinant estimation, we focus here on the particular case
of N1 = N2 = 1 for simplicity, which corresponds to the bivariate case in Section 5.1 with N = 2.
The covariance matrix is then defined as

Σ =

[
σ2
1 ρ

√
σ2
1σ

2
2

ρ
√
σ2
1σ

2
2 σ2

2

]
(5.79)

for ρ ∈ [0, 1). As a result, the parameter to be estimated is the following:

γ = 1− σ2
1σ

2
2 − ρ2σ2

1σ
2
2

σ2
1σ

2
2

= ρ2, (5.80)

where ρ is just the coherence factor or Pearson coefficient. In this case, γ is commonly referred to
as the Magnitude-Squared Coherence (MSC) [CGS95]. To justify this particular case, we would
like to point out that the MSC is a well-known approach to test whether there is a common signal in
different noisy channels or not, whose statistical behaviour under the null hypothesis is well-known
for Gaussian noise [Nut81; GC87].

The intention is then to take advantage of the entropy-based estimator from sections 5.1 and
5.2 for the purpose of estimating the MSC. Given that we now have to deal with the bivariate
case, the kernel variance is now defined as the matrix W ∈ R2×2. For general purpose, we will
assume that W is a diagonal matrix with elements [W]n,n = v2n and n = 1, 2. Note that this is
a common assumption for estimating a multivariate PDF through the Parzen-Rosenblatt window
estimate, and therefore a common assumption for estimating the IP (see, for instance, (3.58) and
(3.85)). For simplicity and cohesion with the previous section, the relative kernel variance will be
defined as follows:

w =
v21
σ2
1

=
v22
σ2
2

. (5.81)

If the marginal variances are known, which is uncommon, then only the marginal kernel variances
v21 and v21 need to be estimated. For example, by running Algorithm 1 once for each kernel variance.
Otherwise, the variance of each complex sequence also needs to be estimated, for example with
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Figure 5.8: Entropy-based approach for the problem of estimating the MSC (b) in front of the
sample estimator (a), and Tyler’s approach (c).

the univariate robust estimator addressed in Section 5.2 and then used to normalize the data. By
performing such pre-processing, the estimate of the MSC, namely γ̂, then only requires a single
relative kernel variance w.

We begin by expressing the expected value of the estimation of the MIP. From (5.21) we have

EfX

{
Ŵ (X)

}
=

|V|
|2Σ +V|

=
v21v

2
2(

2σ2
1 + v21

) (
2σ2

2 + v22
)
− 4γσ2

1σ
2
1

, (5.82)

which, by expressing it in terms of the relative kernel variance, yields

EfX

{
Ŵ (X)

}
=

w2

(w + 2)2 − 4γ
. (5.83)

Consequently, the estimate of the MSC is expressed as follows:

γ̂ = ζw

(
Ŵ (X)

)
=

w2

4

(
1− 1

Ŵ (X)

)
+ w + 1. (5.84)

The previous expression provides the baseline on which the robust estimator will be constructed,
performing a similar function to σ̂2 = ξv

(
Ŵ (X)

)
from the previous section in (5.28), but now

the kernel variance is normalized from the start.
A comparison of different approaches for estimating the MSC is illustrated in Figure 5.8,

following the general rationale from Figure 5.1. The sample and entropy-based approaches are
equivalent to the estimation of the determinant of the covariance matrix, but now the entropy-
based approach, which corresponds to the middle row (b), is based on the specific function γ̂ =

ζw

(
Ŵ (X)

)
. Tyler’s approach [Tyl87] is also shown in the lower row (c), which assumes an el-

liptical distribution with long tails to gain robustness to potential outliers, given that it will be used
to contrast the entropy-based approach with another robust method.

In the sequel, a bias and variance analysis will be performed following the steps of the variance
estimator. Again, we are particularly interested on the interplay between the data size L and w
under nominal conditions as a means of learning about the problem of estimating the MSC in a
robust manner.
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5.3.2 Performance analysis

In terms of the bias of the estimator, by the convexity of −1/x for x > 0 and Jensen’s inequality,
we can now state

EfX {γ̂} ≤
w2

4

1− 1

EfX

{
Ŵ (X)

}
+ w + 1 =

w2

4

(
1− (w + 2)2 − 4γ

w2

)
+ w + 1 = γ,

(5.85)
which resolves into the following bias:

Bias {γ̂} = EfX {γ̂} − γ ≤ 0. (5.86)

In contradistinction to the variance estimator, the MSC estimate has a strict negative bias. Never-
theless, given that EfX

{
Ŵ (X)

}
converges to the real MIP for a fixed value of w, then γ̂ turns

out to be asymptotically unbiased.
For determining the variance of the estimator, the same small error approximation as in (5.32)

will be used. From the function ζ
(
Ŵ (X)

)
in (5.84) and the equivalent Taylor expansion from

(5.32), we have now

∂ζw (z)

∂z

∣∣∣∣
z=W (X)

=
w2

4

1

z2

∣∣∣∣
z=W (X)

=

(
(w + 2)2 − 4γ

)2
4w2

. (5.87)

The relative variance is then approximated as

Ṽar {γ̂} ≈ Var
{
Ŵ (X)

}( ∂ζw (z)

∂z

∣∣∣∣
z=W (X)

)2

= Var
{
Ŵ (X)

}((w + 2)2 − 4γ

2w

)4

. (5.88)

The variance of the MIP estimator is composed as in (5.22), namely

Var
{
Ŵ (X)

}
=

4 (L− 2) (a− c) + 2 (b− c)

L (L− 1)
, (5.89)

where now we have

a =
w4(

(w + 1)2 − γ
)(

(w + 3)2 − 9γ
) , b =

w4(
(w + 4)2 − 16γ

)
w2

, (5.90a)

c =
w4(

(w + 2)2 − 4γ
)2 . (5.90b)

While a, b, and c may seem similar to the case of variance estimation, their dependence on w
entails different asymptotic tendencies. In this case, the variance increases without limit as both
w → 0 and w → ∞ for a fixed value of L, whereas the entropy-based variance estimator only
tends to infinity for w → 0. All the same, the relevant relative kernel variances for both variance
and MSC estimators to gain robustness are those close to 0. As a result, we will only provide the
analysis for small values of w in the subsequent asymptotic analysis.

In view of (5.88), let us now examine the asymptotic performance of the MSC estimator. First,
from (5.40), the equivalent expression for the MSC is as follows:

lim
L→∞

LṼar {γ̂} = 4 (a− c)

(
(w + 2)2 − 4γ

2w

)4

(5.91a)
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=


(
(w + 2)2 − 4γ

)2
−
(
(w + 1)2 − γ

)(
(w + 3)2 − 9γ

)
(
(w + 1)2 − γ

)(
(w + 3)2 − 9γ

)
((w + 2)2 − 4γ

2

)2

.

(5.91b)

In this case, it is direct to see that the variance reaches a minimum for w = 0, instead of an
asymptotic trend as in (5.41). In particular, using (5.91) the following is obtained:

lim
L→∞

LṼar
{
σ̂2
}∣∣∣

w=0
=

(
(4− 4γ)2 − (1− γ) (9− 9γ)

(1− γ) (9− 9γ)

)(
4− 4γ

2

)2

=
28

9
(1− γ)2 .

(5.92)
Clearly, this value becomes maximum for γ = 0 and tends to zero for γ → 1.

We can also determine the new required w for attaining the asymptotic behaviour. From Sub-
section 5.2.2.2 and following the same rule as in (5.43), we now have

L >
α

2

(
b− c

a− c

)
+ 2 (5.93a)

=
α

2

((
(w + 2)2 − 4γ

)2
−
(
(w + 4)2 − 16γ

)
w2

)(
(w + 1)2 − γ

)(
(w + 3)2 − 9γ

)
((

(w + 2)2 − 4γ
)2
−
(
(w + 1)2 − γ

)(
(w + 3)2 − 9γ

))(
(w + 4)2 − 16γ

)
w2

+ 2,

(5.93b)

which, assuming that w is very small, translates into the minimum w required such that

w2 >
α

2L

(4− 4γ)2 (1− γ) (9− 9γ)(
(4− 4γ)2 − (1− γ) (9− 9γ)

)
(16− 16γ)

(5.94a)

=
α

2L

16 (1− γ)2 (1− γ) 9 (1− γ)

7 (1− γ)2 16 (1− γ)
(5.94b)

=
9α

14L
(1− γ) . (5.94c)

For α = 10, we finally obtain the approximate minimum relative kernel variance

wmin ≈
√

45

7L
(1− γ) ≤

√
45

7L
. (5.95)

Similarly to (5.46), this approximate wmin is the one used as a tentative value for determining the
kernel variance in Algorithm 1 for the case of estimating the MSC. Since γ is the parameter to
be estimated, the rational choice is to be as conservative as possible and assume the “worst-case”,
which is given by assuming γ = 0, resulting in the upper bound given in (5.95). In terms of the
dependency with the data size L, wmin is this time inversely proportional to the square root of L,
which translates into a slower dependence than in (5.46). As a consequence, the choice of kernel
variance for the MSC estimate is more restrictive. Nevertheless, considering again the real case,
the dependency is then inversely proportional to L, similar to the difference between (5.45) and
(5.49).

All the effects described above are illustrated in Figure 5.9. As mentioned, the variance of
the MSC estimator tends to infinity for w → ∞, regardless of the data size L, and to the value
described in (5.92) for w → 0 at the same time as L→∞. The minimum relative kernel variance
from (5.95) is also shown. As expected, the higher is γ, the lower is the minimum w. Moreover,
it can be seen that the relative variance indicated by wmin also corresponds, approximately, to its
minimum value for a givenL, suggesting that (5.95) is a fitting rule for deciding the kernel variance.
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Figure 5.9: Variance of the MSC estimator as a function of the relative kernel variance.

5.3.3 Robustness to outliers

Next, we focus on the robustness of the entropy-based MSC estimate. This time, we consider a
bivariate model of replacement outliers [Zou+12; Mar+19], where the outliers do not modify the
marginal variances. The observed data under this model is defined as

xε (i) = (1− z (i))x (i) + z (i)y (i) (5.96)

for i = 0, ..., L−1 and z (i) defined as in (5.50). The random variablesX and Y will be considered
to be complex Gaussian variables with X ∼ CN (µ,Σx) and Y ∼ CN (µ,Σy), independent to
each other, where

Σx =

[
1 ρ
ρ 1

]
, Σy =

[
1 −ρ
−ρ 1

]
. (5.97)

The model in (5.96) can actually be seen as a GMM of two components with weights 1− ε and ε,
whose covariance matrix is

Σ = (1− ε)
(
Σx + µµT

)
+ ε

(
Σy + µµT

)
− ((1− ε)µ+ εµ) ((1− ε)µ+ εµ)T (5.98a)

= (1− ε)Σx + εΣy + (1− ε)
(
µµT

)
+ ε

(
µµT

)
− µµT (5.98b)

= (1− ε)Σx + εΣy. (5.98c)

Consequently, the MSC of Xε is directly given by

γε,s = 1−
∣∣∣∣(1− ε)

[
1 ρ
ρ 1

]
+ ε

[
1 −ρ
−ρ 1

]∣∣∣∣ = 1−
∣∣∣∣[ 1 ρ (1− 2ε)

ρ (1− 2ε) 1

]∣∣∣∣ (5.99a)

= 1− 1 + |ρ|2 (1− 2ε)2 = γ (1− 2ε)2 , (5.99b)

where the subscript ·ε refers to the contaminated signal (5.96), and the subscript ·s denotes the
sample approach to the MSC, similar to the one given in (5.52). Given that (1− 2ε)2 ≤ 1 for
ε ∈ [0, 1], then γε,s shrinks for any value of ε. In addition, for ε = 0.5 the resulting MSC becomes
null, resulting in a particular difficult case for the sample estimate 5. In contrast, the entropy-based

5Nevertheless, it is not expected to reach such values, taking into account that the probability of an outlier ε is
expected to be rather low.
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MSC estimate is sensitive to the PDF of the contaminated data, which is a GMM given by

fXε (x) =
(1− ε)

π2 (1− γ)
exp

(
− (x− µ)H Σ−1

x (x− µ)
)

+
ε

π2 (1− γ)
exp

(
− (x− µ)H Σ−1

y (x− µ)
)
. (5.100)

From here, we can determine the resulting IP of the contaminated random variable such that

V (Xε) =

∫
X
f2
Xε

(x) dx (5.101a)

=

∫
X

(1− ε)2

π4 (1− γ)2
exp

(
−2 (x− µ)H Σ−1

x (x− µ)
)

dx

+

∫
X

ε2

π4 (1− γ)2
exp

(
−2 (x− µ)H Σ−1

y (x− µ)
)

dx

+ 2

∫
X

(1− ε) ε

π4 (1− γ)2
exp

(
− (x− µ)H Σ−1

x (x− µ)− (x− µ)H Σ−1
y (x− µ)

)
dx.

(5.101b)

The first two integrals correspond to scaled versions the IPs of the random variables X and Y ,
namely (1− ε)2 V (X) and ε2V (Y ), which can be solved through as in (??) and correspond to

(1− ε)2 V (X) =
(1− ε)2

π24 (1− γ)
, ε2V (Y ) =

ε2

π24 (1− γ)
. (5.102)

The third integral is solved following similar steps to those in Appendix 7.4.1, which yields

A =

∫
X

2 (1− ε) ε

π4 (1− γ)2
exp

(
− (x− µ)H Σ−1

x (x− µ)− (x− µ)H Σ−1
y (x− µ)

)
dx (5.103a)

=
2 (1− ε) ε

π4 (1− γ)2

∫
X
exp

(
− (x− 2µ)H

(
Σ−1

x +Σ−1
y

)
(x− 2µ)

)
dx (5.103b)

=
2 (1− ε) ε

π4 (1− γ)2

∫
X
exp

(
−2 ‖x− 2µ‖2

1− γ

)
dx =

2 (1− ε) ε

π4 (1− γ)2
π2 (1− γ)2

4
=

(1− ε) ε

2π2
.

(5.103c)

By rearranging and substituting, we finally obtain

V (Xε) =
(1− ε)2 + ε2

4π2 (1− γ)
+

(1− ε) ε

2π2
=

(1− ε)2 + ε2 + 2 (1− γ) (1− ε) ε

4π2 (1− γ)
(5.104a)

= V (X) (1− 2γε (1− ε)) , (5.104b)

where V (X) =
(
4π2 (1− γ)

)−1 is the IP of the noncontaminated random variable. The conse-
quence of the contamination is that the IP is decreased as a function of γ and ε, and the inferred
MSC (assuming that w → 0) becomes

γε = 1− 1− γ

1− 2γε (1− ε)
. (5.105)

Once the entropy-based estimator has been addressed, we are now interested in comparing the
resulting MSC estimate with the one given by the sample estimate. In particular, from (5.99), the
bias of the sample MSC is

Bias {γ̂s} = γ (1− 2ε)2 − γ = 4γε (ε− 1) . (5.106)
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Figure 5.10: Absolute value of the bias of the MSC estimators as a function of the true value of
MSC for L = 500.

On the other hand, the asymptotic bias of the entropy-based estimator is

lim
w→∞

Bias {γ̂} = 1− 1− γ

1− 2γε (1− ε)
− γ =

2γε (1− ε) (γ − 1)

1− 2γε (1− ε)
. (5.107)

By testing which is bigger or smaller between (5.106) and (5.107), the resulting inequality 6 is∣∣∣ lim
w→∞

Bias {γ̂}
∣∣∣ ≤ |Bias {γ̂s}| , (5.108)

where the equality is met for ε = 0 and equal to γ, meaning that both approaches are unbiased
without contamination. However, the inequality is strict for ε > 0. As a result, the theoretical
entropy-based MSC estimate proves to be more robust than the sample MSC estimate, given that
the shrinkage is always lower. Although the required condition for (5.105) is that w → 0, which
translates into L → ∞, generally speaking the kernel variance will be a relatively low value,
following the rule in (5.95), and maintaining the robustness of the entropy-based method.

Figure 5.10 shows the absolute value of the bias (given that is it negative) of the entropy-based
MSC estimator in comparison with the sample covariance and the Tyler [Tyl87] approach (with 10
iterations). While the sample covariance method is nonrobust, Tyler’s method is a robust approach
that is shown to compare with the proposed, also robust, method. Two different contamination
rates are shown, ε = 0.2 and the particularly difficult case of ε = 0.5. In both of these, the sample
covariance grows linearly with γ with a slope proportional to ε, as expected. Tyler’s approach shows
its robustness for moderate value of ε, albeit it does not hold up for ε = 0.5. On the contrary, the
entropy-based method achieves robustness in all scenarios. Moreover, it can be seen that with only
L = 500 it is considerably close to the asymptotic value given in (5.105), and only for higher
values of γ a higher value of L is required. It is only in these last cases where Tyler’s method
outperforms the proposed entropy-based approach. However, as pointed out in [SBP15], Tyler’s
requires a prior estimation of the mean, leading to severe problems in practice depending on the
nature of the outlier process, while the entropy-based method is invariant to it.

6The proof is omitted since it just requires to simplify the absolute value of the previous expressions by isolating γ
and testing whether it is bigger or lower than the resulting inequality, which is always true for γ ∈ [0, 1). While it may
be cumbersome, it is not complex, and the empirical results will shown the inequality to be true.
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5.3.4 Conclusion

After addressing the case of just the determinant of the covariance matrix, the case of estimating
the coherence, and in particular the MSC, has been studied. Similarly to the previous section, the
entropy-based approach achieves a certain degree of robustness in front of outliers by relying on
an information measure. The Gaussian assumption is done again after an estimate of the IP (or
its surrogate), providing certain advantages over the usual preliminary Gaussian assumption. The
result is that the entropy-based is less harmed by the probability of outliers than other methods,
and consolidates the information-theoretic perspective in the problem of estimating determinants
of covariance matrices.

Next, we move into a different problem, albeit similar in many aspects. Instead of estimating
a single parameter of a random variable, the objective is to estimate the relation between two of
them: the signal power and the noise level of a noisy channel. The signal model will now be
characterized as a GMM, which allow us to seize the complete derivations from Section 5.1. The
desired parameters are then retrieved from the expected IP and the second-order Rényi entropy
of a complex GMM. The objective is to determine not only the intravariance (equivalent to the
variance for a univariate random variable), but also the intervariance between different components
of the GMM. In contrast with the second-order statistics approach, which is classically used for
this problem and provides good results when the intravariance is large, entropy provides a more
throughout characterization of the signal and becomes sensitive to both inter and intravariance.

5.4 Signal-to-noise ratio estimation

To end this chapter, the estimation of the SNR in a digital communications system will be addressed.
An accurate assessment of the link quality of a channel is a fundamental task for adaptive coding
and modulation, optimum signal detection, or turbo decoding, among others (see [SW98; PB00]
and references therein). The constant growth of the complexity of communication systems requires
both increasing accuracy and faster, in-service, algorithms. The main interest relies on determining
this link quality, embedded in the SNR, with as little information as possible. Moreover, it is also
desirable to design algorithms that are invariant/robust in front of as many parameters as possible,
such as the transmitted symbols, the carrier phase, carrier frequency or modulation, among others.

To comply with these specifications, the most common approach is a Nondata-Aided (NDA)
algorithm, which are designed to tackle the estimation of the SNR without the knowledge of the
transmitted data. Conversely, Data-Aided (DA) methods require pilot information and have the
advantage of a known closed-form maximum likelihood estimator. Nevertheless, although NDA
methods provide a worse CRB at low SNR values than the DA methods, it proves to be too little
of an advantage in front of the capability of NDA methods of measuring the SNR in-service and
without prior information [PB00; Gap08; BMA14].

Within the NDA category, there are many different estimator classes. From an entropy perspec-
tive, and for reasons that will become clear in short, we are particularly interested in the classifica-
tion between Envelope-Based (EVB) and coherent methods. Coherent methods compute the SNR
by preserving the in-phase and quadrature components, while EVB methods directly compute the
magnitude, i.e. the envelope, of the received signal. Another main category is encountered be-
tween baud-rate sampled versus oversampled methods [Sev+07; RVV10], and further distinctions
are usually portrayed by the characteristics of the channel, either by considering multiple-input
multiple-output systems [MDW16; Wau+07] or different kind of channel distributions [HKS15;
JH13], among many others.

The advantage of EVB methods is that are invariant in front of phase and frequency errors.
However, due to the suppression of the phase information of the signal, their CRB is two times big-
ger than the CRB of coherent methods at high SNR [GLM09]. Moreover, EVB methods also tend
to perform poorly for multilevel constellations, particularly in the medium to high SNR range. The
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most notable and widely used EVB approach is based on measuring the even-order moments of the
signal and to solve a linear system of equations from these estimates. In its most basic form, namely
the M2M4 method [ME94], it measures the SNR through the second and fourth-order statistics.
However, since the M2M4 only leverages low-order statistics, it is prone to being only sensitive
to the noise level (intravariance), and looses perception of the complexity of the different GMM
clusters (intervariance). As a result, the M2M4 provides good result for low SNR values and con-
stant modulus constellations, but worsens its performance otherwise. To cope with this problem,
the use of higher-order moment have been proposed. These are the moments-based estimators that
encompasses up to the eight-order statistics [ÁLM10] (hence using the eight-, sixth-, fourth- and
second-order moments) and up to the sixth-order statistics [LM07] (with the sixth-, fourth- and
second-order moments). Nonetheless, constellations with three or more levels remain of particu-
larly difficulty for the method of moments family. This approach has also been explored for different
channel configurations, such as with Multiple-Input Multiple-Output (MIMO) systems [MDW16]
or under a Nakagami fading channel [HKS15]. More recent EVB methods utilize the Kolmogorov-
Smirnov test between the empirical cumulative distribution function and a set of stored cumulative
distribution functions [Fu+15; WSW20]. Their estimation is improved for a wide range of SNR
values with respect to the method of moments, but it is required to store a predetermined set of
cumulative functions, and the performance is still lacking at medium and high SNR values.

On the other hand, NDA coherent methods are narrowed down to the Expectation-Maximization
(EM) algorithm [Das08], a commonly used algorithm that provides an iterative solution to the max-
imum likelihood parameter estimation. The EM approach attains a variance of the estimator very
close to the CRB, but at the cost of a high computational complexity. Moreover, it requires a perfect
synchronization of the channel, or at least that the phase and frequency errors are estimated and
corrected [GLM10]. However, by performing such joint estimation, its computational complexity
is then further increased, opposing the desired characteristic of an in-service algorithm. These
conditions preclude the EM for applications in which the standard conditions are not guaranteed,
or where its computational intensity is detrimental.

The purpose of this section is to study an SNR estimator from an entropy measure, following
the trail of the entropy-based MSC and variance estimators. The use of entropy provides more
awareness to the intricacies of the GMM, akin to the use of higher-order moments in the case
of EVB methods. However, entropy generalizes the idea and inherently includes all higher-order
moments, both even and odd. Moreover, we will observe a similar situation of gaining robustness
than in previous sections, albeit it comes from a different direction. From the SNR estimation point
of view, the central feature is that entropy is invariant in front of rotations, meaning that an estimate
of an entropy measure remains unaffected in front of carrier phase errors. Moreover, thanks to the
estimator provided in Section 5.1, it is also possible to build an estimator that is robust in front
of carrier frequency errors following the properties of incomplete U-statistics (Subsection 3.3.2).
The resulting estimator is then considered a hybrid between EVB and coherent methods, but it has
the capability of achieving the CRB of coherent methods. As a result, we call this entropy-based
approach a semi-EVB method.

5.4.1 Signal model

The entropy-based approach to the estimation of the SNR addressed here considers a complex ad-
ditive white Gaussian noise channel where the quality of the signal is estimated at the output of the
matched filter at the optimal sampling instants. The method is generalized for any linearly mod-
ulated signal, although we will assume that the constellation and symbol probabilities are known.
The signal follows the same model contemplated in [GLM10]. Considering that the signal power
S′ and noise power N ′ are constant over a block of L symbols, the symbol-rate samples at the
receiver are the following:

x′ (i) =
√
S′s (i) ej

(
2π4f i+φ

)
+
√
N ′z (i) (5.109)
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for i = 0, ..., L − 1. Here z (i) are i.i.d. samples of a complex zero-mean Gaussian process with
unit variance such that Z ∼ CN (0, 1). The transmitted symbols are represented by s (i) and are
independently drawn from a constellation C, which is composed by M complex symbols sm =
rmejθm whose probabilities are Pr{s (k) = sm} = pm for m = 0, ...,M − 1. We will also
assume that the constellation symbols have zero mean and unit variance such that

M−1∑
m=0

pmsm = 0,

M−1∑
m=0

pm |sm|2 = 1. (5.110)

The parameter φ corresponds to the phase error, which is constant during all the observation win-
dow, and4f denotes the frequency error, which is normalized to the symbol rate and is considered
sufficiently small so that the intersymbol interference can be neglected. The problem of estimating
the SNR is then cast as the estimation of ρ = S′/N ′ given L samples from (5.109).

Along this section, we refer to standard conditions then both carrier phase and frequency off-
sets are null, i.e. 4f = φ = 0. This is a common assumption in coherent NDA SNR estimators.
Otherwise, the carrier phase has to be synchronized beforehand. Conversely, EVB methods are
invariant to phase and frequency errors, and the measure of SNR can be done before any synchro-
nization stage. In the case of the entropy-based estimator, we will consider both scenarios for a
proper evaluation of the semi-EVB property.

In addition, we will also consider that the data has been normalized with

x (i) =
x′ (i)√
M̂2

=
x′ (i)√

1
L

∑L−1
j=0 |x′(j)|

2
, (5.111)

where M̂2 is the estimate of the second-order moment whose expectation is

EfX

{
M̂2

}
= M2 = S′ +N ′. (5.112)

The SNR is then ρ = S/N , where S = S′/M̂2 and N = N ′/M̂2. Since M̂2 is a consistent
estimate of the envelope [ÁLM10], we ensure that the normalized signal and noise powers S and N
are roughly between 0 and 1. Although this normalization is not strictly necessary for the entropy-
based estimator, it guarantees some consistency for determining the kernel variance. In particular,
we know from the previous sections that it is desirable to determine the kernel variance in terms
of the variance of the data itself. Thanks to the normalization, the whole search is limited, which
will ultimately help with the choice of parameters of the estimator.

With all this into consideration, we can now define the second-order Rényi entropy of the re-
ceived data. Following the signal model in (5.109) with the standard condition assumption and the
normalization from (5.111), X is distributed as follows:

X ∼
M−1∑
m=0

pmCN
(√

Ssm, N
)
. (5.113)

Hence, given Appendix 7.4.1 for univariate random variables, the second-order Rényi entropy of
the noisy constellation C is directly given by

h2 (X) = − ln (V (X)) = − ln

(
M−1∑
m=0

M−1∑
m′=0

pmpm′

2πN
exp

(
−S |sm − sm′ |2

2N

))
. (5.114)

As it can be seen, h2 (X) only depends on S and N , considering that sm and pm are known. On top
of that, the invariance in front of phase errors is gained thanks to the computation of the squared
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Figure 5.11: Diagram of the entropy-based approach in terms of EVB and coherent methods.

absolute value of symbols pairwise differences. Concretely, for4f = 0 and φ 6= 0, the argument
of the exponential becomes

−S
∣∣smejφ − sm′ejφ

∣∣2
2N

=
−S

∣∣ejφ (sm − sm′)
∣∣2

2N
=
−S |sm − sm′ |2

2N
. (5.115)

As a result, we can ensure that

h2 (X)|φ 6=0 = h2 (X)|φ=0 . (5.116)

Given this particular signal model, this property can be seen as the equivalent of the most well-
known mean invariance property of any given entropic measure. In this case, thanks to the use
of the second-order Rényi entropy, we gain the property of rotation invariance. However, carrier
frequency errors do still influence the entropy measure. Since gaining robustness in this last case
is more complex, we will address it in Subsection 5.4.4. For now, the data will be assumed that
just have an arbitrary carrier phase error, which is the same as assuming the standard conditions
for the entropy-based approach.

In view of the previous properties, Figure 5.11 illustrates the allocation of the entropy-based
approach as a function of their invariance in front of carrier phase and/or frequency errors. While
coherent methods are not, generally speaking, invariant to carrier offsets, the entropy-based ap-
proach is a coherent method, and it is invariant to constant rotations. That is why we refer to the
proposed method here as a semi-EVB approach.

5.4.2 Problem formulation

Next, we proceed to evaluate the entropy estimator from (5.1) in the context of this section with
the purpose of determining the SNR estimation. Given L i.i.d. observations from (5.109), the
second-order Rényi entropy is given by

ĥ2,v (X) = − ln

 2

L (L− 1)

∑∑
0≤i<j≤L−1

kv (x (i)− x (j))

 = − ln
(
Ûv (X)

)
(5.117)

It is worth noting that, this time, the kernel bandwidth v is included in the subscript of both second-
order Rényi entropy and IP estimator. The subscript is included in preparation for an eventual
requirement of various different kernel bandwidths, so every entropy estimate with different pa-
rameters is properly differentiable. To be concrete, we define the second-order Rényi entropy of X
contaminated by a variance v as follows:

h2,v (X) = − ln (Vv (X)) = − ln

(
M−1∑
m=0

M−1∑
m′=0

pmpm′

π (2N + v2)
exp

(
−S |sm − sm′ |2

2N + v2

))
,

(5.118)
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where Vv (X) is also the contaminated IP. As a result, the implicit distribution of the contaminated
X is now

X ′ ∼
M−1∑
m=0

pmCN
(√

Ssm, N + v/2
)
. (5.119)

Focusing now only on the IP, the expected value of the estimator is

EfX

{
Ûv (X)

}
=

M−1∑
m=0

M−1∑
m′=0

pmpm′

π (2N + v2)
exp

(
−S |sm − sm′ |2

2N + v2

)
= Vv (X) , (5.120)

which can be obtained directly from Corollary 5.1.1 for univariate GMM with µm =
√
Ssm and

σ2
m = N . As can be seen, the expected value of the IP estimator is in agreement with the con-

taminated IP in (5.118). Another relevant observation is that the amount of contamination given
by the kernel variance v2 directly sways the noise power N in an additive manner. Although both
parameters, S and N , are to be estimated by an entropic measure, v2 will be chosen in terms of
the noise power. This makes sense because, by contaminating all the GMM components equally,
the affected variance is the intravariance, and not the intervariance, which translates to the additive
behaviour of v2 in front of N .

We are now in terms of determining the expression of the SNR estimator. Given (5.120), we
will employ the estimate of the second-order Rényi entropy to retrieve S and N in a similar fashion
to the method of moments. In particular, the moments-based estimators are defined by two (or
more) equations based on the measurement of the even statistical moments (odd moments are not
considered, since it would infringe the EVB approach with, apparently, no gain in performance).
In the case of the entropy-based approach, the equivalent equations are given by different kernel
variances. This way, we can construct a nonlinear system with any desired number of equations.

Given a set of Q kernel bandwidths {v1, v2, ..., vQ}, the SNR estimator can be constructed by
fitting the model of the true second-order Rényi entropy h2,vq to the estimated one by minimizing
with respect to the desired parameters S and N . The estimation is then cast as the following
Nonlinear Least-Squares (NLS) problem:

{
Ŝ, N̂

}
= argmin

S,N

Q∑
q=1

(
h2,vq (X)− ĥ2,vq (X)

)2
, (5.121)

and then by computing the SNR with ρ̂ = Ŝ/N̂ . This optimization problem can be solved with the
Levenberg–Marquardt algorithm [NW06], which behaves both as a gradient-descent method and
as the Gauss-Newton method depending on the distance of the parameters to their optimal value.
As a result, this algorithm provides both fast and good local convergence. Due to the normalization
in (5.111), the signal and noise powers are assessed only between 0 and 1, hence facilitating the
minimization problem.

Regarding the initialization of parameters, a moments-based method is generally used. For
instance, an initial guess from the sixth-order statistics estimator [LM07] provides a good enough
first approach with a very low computational cost. Although the error increases for multilevel
constellations at high SNR values, it is usually enough for the entropy-based estimator to find the
values that minimize (5.121). Otherwise, the bias is propagated into the entropy-based estimator,
and the global minimum may not be achieved.

It is worth noting that the second-order Rényi entropy is used instead of the IP for the purpose
of estimating the SNR, unlike the variance and MSC estimators. The main reason is given by the
concavity of h2,vq (X) with respect to S and N . To see that, consider (5.118) as follows:

h2,vq (X) = ln
(
π
(
2N + v2q

))
− ln

(
M−1∑
m=0

M−1∑
m′=0

pmpm′ exp

(
−S |sm − sm′ |2

2N + v2q

))
. (5.122)
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On the one hand, we have that ln
(
π
(
2N + v2q

))
is strictly concave. On the other hand, it is known

that the logarithm of the sum of exponential functions is convex [BV04], hence its reverse sign is
concave. Given that the sum of concave functions is another concave function, hence h2,vq (X) is
concave. The quadratic adjustment of the logarithm is then used since it does not alter the perfor-
mance of the fitting. Nonetheless, the concavity of (h2,vq(X) − ĥ2,vq(X))2 in (5.121) cannot be
guaranteed since the difference between the second-order Rényi entropy and its estimate (the argu-
ment of the previous expression) is not strictly nonpositive. This observation may pose a problem
in terms of the convergence of the NLS. However, we will see in the computer simulations that the
optimization process generally behaves as expected, with the exception for very high SNR values,
which is the most difficult regime for the chosen initial estimate M̂6. Nonetheless, the conver-
gence can be controlled by choosing an adequate kernel bandwidth, as we will see in forthcoming
subsections.

5.4.3 Performance analysis

Once the base estimator is established, we are then interested on unraveling the performance of
the SNR estimator. First, we analyze the behaviour of the second-order Rényi entropy at different
values of true SNR in the case of a GMM. Then, the variance of the estimator is analyzed, which
will be used to determine the strategy for choosing the adequate value of kernel variances.

5.4.3.1 Asymptotic behaviour

Consider the expression of the contaminated second-order Rényi entropy h2,vq (X) in (5.122).
Given that the signal model is now based on a GMM, rather than a single Gaussian, we are now in-
terested on addressing the behaviour of this entropic measure when the true value of SNR increases
or decreases indefinitely.

First, let us examine the low SNR case. For that, and for clarity, we will express the SNR
as a function of a single parameter, which can be either S or N . This can be done thanks to the
normalization in (5.111), with which we can express

S =
S′

N ′ + S′ , N =
N ′

N ′ + S′ , (5.123)

where S +N = 1 and
ρ =

1−N

N
=

S

1− S
. (5.124)

Then, it is clear that ρ→ 0 is equivalent to N → 1 and S → 0 at the same time. With this in mind,
the asymptotic second-order Rényi entropy at low SNR yields

lim
ρ→0

h2,vq (X) = ln
(
π
(
2N + v2q

))
−ln

(
M−1∑
m=0

M−1∑
m′=0

pmpm′

)
= − ln

(
1

π
(
2N + v2q

)) . (5.125)

As a result, the second-order Rényi entropy of a GMM at low SNR becomes the one of a con-
taminated Gaussian variable (as be seen, for example, from the IP in (5.18) for univariate random
variables). This is an expected behaviour since, as the signal power decreases and the signal noise
increases, the components of the GMM have a strong overlap and the distribution becomes Gaus-
sian. In this low SNR regime, it is possible to retrieve the SNR just by isolating N from an estimate
of (5.125). Therefore, only a single kernel variance and entropy estimation (Q = 1) is required.

Under the context of parameter estimation with inherent Gaussian distributions, it is well-
known that second-order becomes a sufficient statistic for estimating the parameters of interest
[VV05]. However, for the estimation of SNR, two parameters are assessed, S and N . The second-
order moment is indeed a sufficient statistic for estimating N at low SNR. This can be seen by
recalling that M2 = S + N , which becomes M2 ≈ N as ρ → 0. This is a similar outcome than
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Figure 5.12: Contour plot of the complex GMM distribution in the complex plane for different
values of SNR for pm = 1/M . Both original (a) and contaminated (b) distributions are shown.

in (5.125). However, the SNR requires the estimation of both signal and noise powers, requiring
two equations for two unknowns. Therefore, it is the combination of the two lower (even) moments
that become a sufficient statistic. This is exemplified by the M2M4 estimator, which yields very
good results for low values of SNR, particularly for single level constellations. Moreover, we know
from (3.84) in Subsection 3.3.3 that the U-statistics entropy estimator becomes a scaled version of
the sample variance. Consequently, very large values of v2q become beneficial for the estimation
of SNR, albeit only at the low SNR regime. In fact, the entropy-based estimator approximates the
M2M4 estimator for very large values of v2q . This behaviour will be later confirmed through both
theoretical estimator variance analysis and computer simulations.

To illustrate the second-order Rényi entropy for different values of SNR, Figure 5.12 shows
the low SNR scenario with the quasi-Gaussian distribution for the Quadrature Phase-Shift Keying
(QPSK) constellation, along with other scenarios that will be addressed shortly after. The upper
row shows the true PDF as it is expressed in (5.113), while the lower row shows the contaminated
PDF in (5.119), where v2q = 10−1 is chosen for illustration purposes. The low SNR regime can be
appreciated for ρ = 0 dB, which is enough for a good approximation of (5.125). Furthermore, it can
be seen that the contaminated PDF becomes even more Gaussian, provided that the contamination
is strong enough, thus providing a better approximate of (5.125).

On the other hand, for ρ → ∞ the components of the GMM become clearly distinguishable.
Consequently, a very small kernel variance is preferred in order to preserve the separation among
different clusters. Otherwise, high values of v2q would conceal the rich structure provided by the
corresponding GMM, and the second-order Rényi entropy would derive again to the Gaussian case.
This outcome can be observed in Figure 5.12 for ρ = 10 dB, where the contaminated PDF portrays
an overlapping not present in the original PDF.

By considering ρ → ∞ and v2q → 0, the only nonzero terms within the sum of exponential
functions are those with sm = s′m, rendering the following asymptotic entropy value:

lim
ρ→∞,v2q→0

h2,vq (X) = ln
(
π
(
2N + v2q

))
− ln

(
M−1∑
m=0

M−1∑
m′=0

pmpm′δm,m′

)
(5.126a)

= − ln

(
M−1∑
m=0

p2m

)
+ ln

(
π
(
2N + v2q

))
, (5.126b)
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where δm,m′ is the Kronecker delta, which is equal to 1 if and only if m = m′, and 0 otherwise.
The result is similar to that of the low SNR regime in that the second-order Rényi entropy does
only depend on N . Nevertheless, in contrast with the low SNR case, now the argument of the
logarithm (the IP) also depends on the symbol probabilities. In fact,

∑M−1
m=0 p2m corresponds to the

collision probability of the constellation symbols. Similarly to the case of estimating the variance
in Subsection 5.2.3, the resulting IP here is also swayed by the collision probability. The minimum
IP (maximum h2,vq(X)) is then achieved by equiprobable symbols, and it just becomes an scaled
version (by 1/M ) of the IP in the case of low SNR regime, as can be see in (5.125).

Again, in this regime one could retrieve the SNR by just isolating the noise variance in (5.126),
provided a very small value of kernel variance is used. This strategy is actually used in our pub-
lished paper [dR19]. However, it requires a determination of the threshold in which this regime is
achieved. In order to unify the methodology, this approach will not be considered (and neither the
low SNR one for the same reasons), and the SNR estimation will be addressed equally by solving
the NLS problem.

Lastly, intermediate values of SNR result in an underlying PDF that is neither Gaussian (or
quasi-Gaussian) nor distinct components of a GMM. In this case, the second-order Rényi entropy
cannot be simplified by an asymptotic analysis. This is the regime that is shown in Figure 5.12 for
ρ = 5 dB. As it can be seen, both original and contaminated PDFs are just overlapping components
of a GMM. In this case, the only option is to estimate the SNR following (5.121), which we
will see that it is precisely a particularly difficult regime. Nonetheless, in terms of the choice of
kernel variance, it can be seen that different regimes require different values: low SNR appreciates
large values of v2q , high SNR calls for low v2q to avoid overlapping of the GMM components, and
intermediate SNR values need an intermediate choice, since higher values would also just end up
with a quasi-Gaussian distribution. In short, the required kernel variance is in tone with the true
SNR value.

As a final remark, this result is in agreement with the observations made in Subsection 3.3.3.1.
The more intricate the underlying distribution, the more sensitive it becomes in front of the additive
Gaussian noise, which is inherent in the entropy estimate utilized in this chapter. While the SNR
estimator is not directly concerned about the added bias on the entropy estimate, given that it is
known and taken into account in the computations, the choice of kernel variance is still relevant.
If chosen carelessly, the sole process of estimating entropy may hinder the final SNR estimate.

5.4.3.2 Variance analysis

Next, we evaluate the variance of the SNR estimator, namely Var {ρ̂}. The intention is not only to
corroborate the performance of the estimator under different settings, but also to help decide the
best kernel bandwidths for each one of them. Similar to previous sections, the knowledge of the
variance is leveraged to decide the appropriate kernel bandwidth. While the computation can be
cumbersome, the knowledge of a closed-form expression of the variance of the estimator proves to
be useful for improving the performance of the final estimator thanks to an appropriate choice of
kernel variance.

For that, we first need to analyze the cross-covaraince of the second-order Rényi estimator

Cov
{
ĥ2,vq (X) , ĥ2,vq′ (X)

}
=

EfX

{
ĥ2,vq (X) ĥ2,vq′ (X)

}
− EfX

{
ĥ2,vq (X)

}
EfX

{
ĥ2,vq′ (X)

}
(5.127)

for q, q′ = 1, ..., Q. To simplify the notation, the cross-covaraince will be denoted as σ2
h {q, q′}.

Similarly, we define the cross-covariance of the IP as

σ2
U

{
q, q′

}
= EfX

{
Ûvq (X) Ûvq′ (X)

}
− µU {q}µU

{
q′
}
, (5.128)
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where µU {q} = EfX

{
Ûvq (X)

}
denotes the expected value of the IP from (5.120).

In Section 5.1, the covariance of the IP is computed, but we now require the covariance of
the second-order Rényi entropy estimate. For this, consider two random variables Y and Z with
joint PDF fY,Z and marginal PDFs fY and fZ . Given a differentiable and real function f (x), the
covariance to be determined is as follows

Cov {f (Y ) , f (Z)} = EfY,Z
{f (Y ) f (Z)} − EfY {f (Y )}EfZ {f (Z)} . (5.129)

The covariance will be approximated with the Taylor series up to the second order around the
expected value of Y and Z [BHN05, Sec. 4.3.3]. The approximation yields

EfY {f (Y )} ≈ f (EfY {Y }) +
Var {Y }

2

∂f (x)

∂x

∣∣∣∣
x=EfY

{Y }
, (5.130)

EfZ {f (Z)} ≈ f (EfZ {Z}) +
Var {Z}

2

∂f (x)

∂x

∣∣∣∣
x=EfZ

{Z}
, (5.131)

and

EfY,Z
{f (Y ) f (Z)} ≈f (EfY {Y }) f (EfZ {Z})

+ f (EfY {Y })
Var {Z}

2

∂2f (x)

∂x2

∣∣∣∣
x=EfZ

{Z}

+ f (EfZ {Z})
Var {Y }

2

∂2f (x)

∂x2

∣∣∣∣
x=EfY

{Y }

+ Cov {Y, Z} ∂f (x)

∂x

∣∣∣∣
x=EfZ

{Z}

∂f (x)

∂x

∣∣∣∣
x=EfY

{Y }
. (5.132)

By combining the previous equations with (5.129), the following approximation is obtained:

Cov {f (Y ) , f (Z)} ≈ Cov {Y, Z} ∂f (x)

∂x

∣∣∣∣
x=EfZ

{Z}

∂f (x)

∂x

∣∣∣∣
x=EfY

{Y }

− Var {Y }Var {Z}
4

∂2f (x)

∂x2

∣∣∣∣
x=EfY

{Y }

∂2f (x)

∂x2

∣∣∣∣
x=EfZ

{Z}
(5.133)

For the case of the second-order Rényi entropy, we need to substitute the expected values with

EfY {Y } = µU {q} , EfZ {Z} = µU

{
q′
}
, (5.134)

and the variances and covariance with

Var {Y } = σ2
U {q, q} , EfZ {Z} = σ2

U

{
q′, q′

}
, Cov {Y, Z} = σ2

U

{
q, q′

}
. (5.135)

From (5.117), f and its derivatives are

f (x) = − ln (x) ,
∂f (x)

∂x
= −1

x
,

∂2f (x)

∂x2
=

1

x2
, (5.136)

which, by gathering all previous expressions, it finally yields the approximate variance of the
second-order Rényi entropy estimator:

σ2
h

{
q, q′

}
≈

σ2
U {q, q′}

µU {q}µU {q′}
−

σ2
U {q, q}σ2

U {q′, q′}
4 (µU {q}µU {q′})2

. (5.137)
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Figure 5.13: Variance amplification of the estimated second-order Rényi entropy as a function of
the relative kernel variance w for two different constellations and two different values of true SNR
(in dB).

The cross-covariance of the IP estimator with two different kernel bandwidths is given in Proposi-
tion 5.2 and yields

σ2
U

{
q, q′

}
= σ2

U

{
q, q′

}
=

4 (L− 2) (a− c) + 2 (b− c)

L (L− 1)
, (5.138)

where now we have

a =

M−1∑
m,m′,n=0

pmpm′pn

π2
(
2N
(
v2q + v2q′ + 1.5N

)
+ v2qv

2
q′

) exp

(
−S

[
sm − sm′

sn − sm′

]H
U−1

a

[
sm − sm′

sn − sm′

])
,

(5.139)
with

Ua =

[
2N + v2q N

N 2N + v2q′

]
, (5.140)

the term

b =
pmpm′

π2
(
vqvq′ + 2N

(
vq + vq′

)) M−1∑
m=0

M−1∑
m′=0

exp

− S |sm − sm′ |2

2N +
(

1
vq

+ 1
vq′

)−1

 , (5.141)

and
c = µU {q}µU

{
q′
}
. (5.142)

Figure 5.13 illustrates the variance of the second-order Rényi entropy estimator, i.e. the co-
variance with the same kernel bandwidth Var

{
ĥ2,vq (X)

}
= σ2

h {q, q}. Following (5.81), here it
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is shown as a function of the relative kernel variance, defined as

w =
v2q
N

. (5.143)

For completeness, two different constellations with different degree of complexity are shown, the
QPSK and the 16-Amplitude and Phase-Shift Keying (APSK) (specified in [DVB06]). For these,
the symbols are assumed to be equiprobable with pm = 1/M . Moreover, the variance is evaluated
for two different values of ρ. It can be seen that the approximation performed in (5.137) corresponds
to the one obtained empirically, thus confirming that is is a valid estimate. For low values of
SNR, we know from Subsection 5.4.3.1 that the GMM becomes quasi-Gaussian. Consequently, the
variance of the ĥ2,vq (X) estimate resembles the one in Figure 5.3, albeit with a floor value for low
values ofw. When the SNR increases, the clusters do not overlap anymore and the particularities of
each constellation become noticeable. Unfortunately, the sum of exponential functions added to the
different symbol differences for each constellation makes the asymptotic analysis (as performed in
Subsections 5.2.2.1 and 5.3.2) mathematically complex, if tractable at all. However, for any given
constellation, the trend is that the variance of the estimator decreases as w increases, which is a
common trait with all the entropy-based applications in this chapter given the base estimator (5.1).

Next, we measure the variance of the SNR estimator. A small error approximation will be
used following (5.32). However, now the multivariate case is contemplated. Consider the vector of
parameters α = [S,N ]T with which the SNR is computed through the function ρ = ξ (α) = S/N
with ξ : R2 → R. The array α is defined through function ζ : RQ → R2 with α = ζ (h2) and
h2 =

[
h2,v1 , ..., h2,vQ

]T . While ξ is known, ζ comes from the Q equations of the NLS problem in
(5.121) and it is unknown. The variance of the SNR estimator is then approximated by

Var {ρ̂} ≈

(
∂

∂z
ξ (ζ (z))

∣∣∣∣
z=h2

)H

Σh2

(
∂

∂z
ξ (ζ (z))

∣∣∣∣
z=h2

)
, (5.144)

where the Jacobian for z = [z1, ..., zQ]
T is

∂

∂z
ξ (ζ (z))

∣∣∣∣
z=h2

=

[
∂

∂z1
ξ (ζ (z))

∣∣∣∣
z=h2

, ...,
∂

∂zQ
ξ (ζ (z))

∣∣∣∣
z=h2

]T
, (5.145)

and the covaraince matrix

Σh2 =


σ2
h {1, 1} σ2

h {1, 2} · · · σ2
h {1, Q}

σ2
h {2, 1} σ2

h {2, 2}
...

... . . . ...
σ2
h {Q, 1} · · · · · · σ2

h {Q,Q}

 . (5.146)

For the elements of the Jacobian, the chain rule states that

∂

∂zq
ξ (ζ (z)) =

(
∂ξ (α)

∂α

)T ∂α

∂zq
, (5.147)

where
∂ξ (α)

∂α
=

[
∂

∂S

S

N
,

∂

∂N

S

N

]T
=

[
1

N
,
−S
N2

]T
. (5.148)

Conversely, the derivative of α = ζ (h2) cannot be directly computed given that ζ is unknown.
For that, we will make use of the inverse function theorem ([Rud76], Theorem 9.42). Here, it
is worth noting that the inverse function theorem is generally expressed for differentiable vector-
valued functions f : RQ → RQ, so the consequent Jacobian matrix is a square matrix. To avoid

129



5.4. SIGNAL-TO-NOISE RATIO ESTIMATION

any associated problems with the inversion of matrices, we will fix now Q = 2, which translates
into a nonlinear system of two unknowns and two equations with ζ : R2 → R2. An overdetermined
system (Q > 2) may provide more robustness to the estimate through (5.121) (which can also be
solved with the Levenberg–Marquardt algorithm), alleviating the choice of kernel bandwidth by
just considering many more diverse v2q values. However, the theoretical variance cannot then be
accurately computed as with Q = 2. At the end, one could either optimize the two different kernel
bandwidths as a function of the variance of the estimator, or to just set many different fixed kernel
bandwidth values to gain in consistency with the estimated S and N . The first option is preferred
since it is less computationally complex (for every kernel bandwidth a new estimate of an L × L
matrix is required).

Then, from (5.147) and the inverse function theorem with Q = 2, the derivatives required in
(5.147) are obtained by inverting the matrix that is composed by the derivatives of the second-order
Rényi entropy expression for each parameter S and N such that ∂S

∂z1

∣∣∣
z1=h2,v1

∂N
∂z1

∣∣∣
z1=h2,v1

∂S
∂z2

∣∣∣
z2=h2,v2

∂N
∂z2

∣∣∣
z2=h2,v2

 =

 ∂h2,v1

∂S

∂h2,v1

∂N

∂h2,v2

∂S

∂h2,v2

∂N

−1

. (5.149)

Following again the chain rule, we have

∂h2,vq
∂S

=
∂h2,vq
∂Vvq

∂Vvq

∂S
= − dq

µU {q}
(5.150)

and
∂h2,vq
∂N

=
∂h2,vq
∂Vvq

∂Vvq

∂N
= − eq

µU {q}
, (5.151)

where

dq =
∂Vvq

∂S
(5.152a)

=
M−1∑
m=0

M−1∑
m′=0

1

M2π (2N + vq)

(
−|sm − sm′ |2

2N + vq

)
exp

(
−S |sm − sm′ |2

2N + vq

)
, (5.152b)

and

eq =
∂Vvq

∂N
(5.153a)

=
M−1∑
m=0

M−1∑
m′=0

pmpm′

π (2N + vq)
3

(
2S |sm − sm′ |2 − 2 (2N + vq)

)
exp

(
−S |sm − sm′ |2

2N + vq

)
.

(5.153b)

Finally, by gathering the previous derivatives into (5.149) and computing (5.147), the approximate
variance of the SNR estimator results in

Var {ρ̂} ≈


µV {1}(−Ne2−Sd2)
N2(d1e2−d2e1)

µV {2}(Ne1+Sd1)
N2(d1e2−d2e1)


H [

σ2
h {1, 1} σ2

h {1, 2}
σ2
h {2, 1} σ2

h {2, 2}

]
µV {1}(−Ne2−Sd2)
N2(d1e2−d2e1)

µV {2}(Ne1+Sd1)
N2(d1e2−d2e1)

 (5.154)

From the previous expression, it is relevant to mention that the variance goes to infinity for v21 = v22 ,
given that then we have d1e2 = d2e1 in the denominators of the gradient. This case actually corre-
sponds to the NLS problem forQ = 1, which can in fact be solved thanks to the normalization from
(5.111) and following (5.123) and (5.124). Nonetheless, it is shown in [dR19] that this approach
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Figure 5.14: Normalized variance of the SNR estimator as a function of its true value for multiple
v21 and a fixed v22 = 103 with L = 500.

induces a nonmonotonic dependence of the IP in terms of the SNR, resulting in a worse estimation
for the low and medium SNR regimes. Consequently,Q = 2 is strongly suggested for a consistently
good performance of the SNR estimator and an appropriate evaluation of the theoretical variance.
From now on Q = 2 will be assumed unless otherwise stated.

To avoid the use of the same kernel bandwidth, we will generally impose v22 to be a high enough
value so that v21 is always beneath. The reason to prefer a high value of v22 is encountered in
Figure 5.13, where larger values of relative kernel variance have lower entropy estimation variance.
Later in this section we will see how the kernel variances will be chosen in base of this particular
observation.

Apart from v21 = v22 , another conflicting kernel variance values are the ones that yield dq = eq.
That is, when the derivatives with respect to S andN coincide, the matrix from (5.149) is of rank 1,
and therefore not invertible. The theoretical analysis of these vq values is rather complex, thus this
problem will be circumvented, at the time of determining the kernel variance values, by a two-step
optimization with different initial guesses.

Figure 5.14 shows the comparison between the theoretical estimator variance in (5.154) and the
empirically obtained by solving the NLS problem in (5.121) by means of Monte Carlo simulations
with 500 iterations. This figure takes into consideration that one of the kernel variances (v22) should
be always greater than the other (v21). Therefore, for illustration simplicity, a sufficiently high value
of v22 is fixed while three different values of v21 are shown. The normalized variance is defined
as NVar {ρ̂} = EfX

{
(ρ̂− EfX {ρ̂})

2
}
/ρ2, which it is compared to the Normalized Cramér-Rao

Bound (NCRB) of both EVB and coherent estimators as provided in [GLM09]. As can be seen, the
theoretical variance is mostly accurate except for low SNR values with high kernel variance values,
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or for high SNR values with low kernel variance values. This mismatch is mainly caused by a poor
resolution of the NLS problem, which does not find the global minimum for the given v21 and v22
values. However, it can be corrected by increasing or decreasing, respectively, the kernel variance
at these SNR values. Some spikes can also be observed, exemplifying that the estimator variance
greatly increases for d1e2 − d2e1 ≈ 0, with an asymptote at d1e2 = d2e1. This occurrence will be
addressed in the following subsection.

5.4.3.3 Kernel variance choice

Following the previous subsection, we can consider that the problem of determining the kernel
variances is an optimization problem by itself. As a general rule, the best kernel variances are
the ones that provide the minimum SNR estimator variance, given that the bias introduced by the
kernel IP estimator is taken into consideration in the NLS problem. Since the theoretical variance
has been assessed, the most direct approach is to determine v21 and v22 by minimizing Var {ρ̂}.

Consider now that we have a relative kernel variance for each one of v21 and v22 such that

w1 =
v21
N

, w2 =
v22
N

. (5.155)

Since N is unknown, the relative variance must be computed by a first estimate N̂ . Given that
NLS also requires an initialization, we will benefit from the prior estimation given by the sixth-
order method of moments, namely N̂6. Therefore, the kernel variances used for the estimation of
SNR will be v2q = wqN̂6. Unless stated otherwise, all v2q will be based on N̂6 in both empirical
and theoretical results.

Given the w2
1 6= w2

2 constraint, the most direct approach is to optimize the relative kernel
bandwidths in a coordinate descent manner. In other words, we will use a gradient descent method
for each relative kernel variance at a time, alternating between the two of them until the global
minima has been reached. For convenience, we will further constrain the relative kernel bandwidth
with w2 > w1 so that w2

1 6= w2
2 is never achieved.

To get more insights on the problem, Figure 5.15 illustrates the normalized variance as a
function of the relative kernel variance w1 for fixed w2 with different SNR values. The value
of w2 = 102 is chosen so that w2 > w1 is guaranteed for all the shown values of w1. This figure
represents a possible stage of the coordinated optimization problem, in this case on the side of w1.
Both empirical and theoretical estimator variances are shown again to corroborate that the opti-
mized kernel variances values would endorse the desired empirical variance. Again, the empirical
values are obtained through Monte Carlo simulations with 500 iterations. The overall intention is
to show that the relative kernel variances can be easily optimized with a gradient descend method,
albeit with a downside. The spikes that can be observed for some values of SNR correspond to
the dq = eq conundrum. These are particularly difficult to avoid, since they can disrupt the good
behaviour of the gradient descend method if the initialization is either in one of its sides. To avoid
this, the first step will be to perform two different gradient descend algorithms, each one with a
different initialization, in order to iterate with the potentially better choice of kernel variances. It is
also worth mentioning that the mismatch between the empirical and theoretical variances, mainly
for low values of SNR and w1, is again due to a poor resolution of the NLS problem, similar to
Figure 5.14.

On a more general note, Figure 5.15 also shows that the entropy-based method exhibits the
best performance for ω1 ≈ 1 as the SNR increases. This observation confirms that the best kernel
variances at high SNR, i.e. separated GMM clusters, are the ones that are at a similar order of
magnitude to the noise variance. Conversely, low SNR values perform better as w1 increases,
confirming that a quasi-Gaussian distribution prefers high values of contamination to appropriately
determine the true noise level. Furthermore, the empirical variance of the M2M4 estimator is also
shown for ρ = 0 dB as a dashed line. As can be seen, the entropy-based estimator tends to this
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Figure 5.15: Normalized variance of the SNR estimator as a function of its true value for multiple
values of v21 and fixed v22 = 103.

value for an increasing kernel variance, confirming the low SNR regime study that is addressed in
Subsection 5.4.3.1.

Finally, Algorithm 2 depicts the proposed coordinated descend method used for determining
the relative kernel variances, and posterior v21 and v22 , by gathering all previous insights. Here,
min
wq

{Var {ρ̂} , w0, A,B} denotes the relative kernel variance that minimizes the SNR estimator

variance with an initial guess w0 constrained in the region A ≤ wq ≤ B. After some parameter
initialization, including a very large initial w2, the algorithm looks for the minimum value at either
sides of the spike. Once one side has been determined, the algorithm iterates w1 and w2 in an
alternate manner until convergence is achieved. At each iteration, the w2 > w1 constraint is en-
forced to the regions of the optimization method. The step tolerance ε that will be used throughout
this section will be ε = 10−10, unless otherwise stated. Generally speaking, the algorithm deter-
mines a considerable good kernel variance value with few steps, with the exception of the most
difficult, medium SNR values. This behaviour will be confirmed jointly with the performance of
the estimator in Subsection 5.4.5.

5.4.4 Frequency error robustness

Before proceeding further, it is worth briefly reviewing how robustness has been addressed up until
this point. In Sections 5.2 (determinant of the covariance matrix) and 5.3 (generalized coherence),
the sample estimators are nonrobust, and the entropy-based approach has been proposed to gain
robustness. However, in this section, the scenario is different, and the SNR estimators based on the
sample estimate of the moments are now the robust methods. Even more, they are EVB methods,
meaning that the moment-based estimators are invariant to two common errors in digital commu-
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Algorithm 2 Coordinate gradient descend method for determining the relative kernel variances.

k = 1; 0 < ε� 1;A = 10−4;B = 104;w2 [0] = B

w1 [0] = min

{
min
w1

{Var {ρ̂} , A,A,B} ,min
w1

{Var {ρ̂} , B,A,B}
}

while ∆ > ε
w2 [k]← min

w2

{Var {ρ̂} , w2 [k − 1] , w1 [k − 1] , B}
w1 [k]← min

w1

{Var {ρ̂} , w1 [k − 1] , A, w2 [k]}

∆ = max
{

|w1[k]−w1[k−1]|
w1[k]

, |w2[k]−w2[k−1]|
w2[k]

}
k ← k + 1

end

nications channels (carrier phase and frequency errors). Thanks to this, EVB methods are widely
used when the coherence time of the channel, in the sense of nonvarying carrier error offsets, is
unknown, given that it is inconsequential for the EVB approach. Meanwhile, the entropy-based
approach is a coherent method, and it is “only” invariant to carrier phase errors. Nevertheless,
low-order moments are still not capable of discerning the intricacies of the implicit PDF, unlike
an entropy measure, which makes them prone to a high SNR estimation bias for multilevel con-
stellations. Higher-order moments provide an intermediate solution to this problem, being both
invariant to carrier offsets and with better awareness of the complexity of the PDF, but they are not
so easily manageable. Therefore, it is relevant to develop techniques that bestow both robustness
in front of carrier errors and good performance with multi-level constellations, thus providing an
alternative to moments-based estimators.

This subsection is devoted to the study of a method to gain robustness in front of carrier fre-
quency errors for the entropy-based approach. Until this point, the entropy-based applications have
been capitalizing on the U-statistics properties of the IP estimator. Thanks to the U-statistics stand-
point, the entropy estimator is inherently unbiased, provided that the kernel variance is known and
considered in the expected value, and only the variance becomes relevant. Here we develop the
concept further, taking advantage of the incomplete U-statistics (addressed in Subsection 3.3.2),
which still provide an unbiased estimate, but at the cost of a higher variance. While this approach
may deteriorate the overall SNR estimate, it also may be advantageous in a scenario where the esti-
mate window cannot be aligned with the coherence time of the channel. In fact, a common practice
in estimation and detection problems in the presence of frequency errors is to limit the coherent
integration of the estimator [GLS16]. This implicitly decreases the performance of the coherent
estimators that require such limitations. Meanwhile, the method proposed in this subsection takes
advantage of the complete length of the available data, as we will see hereunder.

First and foremost, and for the sake of clarity, let us express again the second-order Rényi en-
tropy estimator based on kernel pairwise differences, but also expressed in terms of the consequent
kernel matrix:

ĥ2,vq (X) = − ln

 2

L (L− 1)

∑
0≤i<j≤L−1

kvq (x (i)− x (j))

 (5.156a)

= − ln

 1

L (L− 1)

L−1∑
i,j=0

kvq (x (i)− x (j))− L

 = − ln
(
1TLK1L − L

)
, (5.156b)

where [K]i,j = kvq (x (i)− x (j)). The incomplete U-statistic approach comes from the obser-
vation that there is a strong dependence among the terms of the summation, mainly due to the
repetition of samples x (i) and x (j). Following this rationale, the set of terms that contribute
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Figure 5.16: Kernel matrix composition and number of elements in each block.

mostly to the estimator are then those terms whose sample pairs do not repeat indexes:{
kvq (x (1)− x (2)) , kvq (x (3)− x (4)) , ..., kvq (x (L− 2)− x (L− 1))

}
. (5.157)

The subsequent terms are also of importance to reduce the variance of the estimator, but their
contribution becomes smaller the more indexes are repeated. The general approach is then to reduce
the total number of pairs, L (L− 1), so that only the ones that are close to each other (in terms of
the observation window) are used in the computation of the estimator. This new subset of terms is
then considered to have negligible carrier frequency error.

Thanks to the particular structure of the kernel matrix, those terms in which we are interested
are the ones closer to the main diagonal. In particular, we will determine the used terms for estimat-
ing the second-order Rényi entropy as those that are comprised within the first K diagonals. These
diagonals contain the terms whose maximum index distance j − i is K, consequently bounded by
1 ≤ K ≤ L− 1. While K = 1 corresponds to only the first diagonal, K = L− 1 denotes that the
complete kernel matrix is being used in the estimation of the IP or the second-order Rényi entropy,
and it is therefore equal to the estimator in (5.156). The subset of terms that are used to compute
the second-order Rényi entropy is then composed by the pairwise differences whose indexes are
within this distance. Concretely, the incomplete estimator then becomes

ĥ2,vq ,K (X) = − ln
(
Ûvq ,K (X)

)
, (5.158)

where

Ûvq ,K (X) =
2

K (2L−K − 1)

∑
0≤i≤L−1

∑
i<j≤Ji

kvq (x (i)− x (j)) , (5.159)

and Ji = min {K + i, L− 1}. In this case, the number of terms is K (2L−K − 1) /2, which is
much smaller than L (L− 1) /2 for K � L.

Figure 5.16 illustrates the different terms used in each one of the proposed estimators. While
in (5.156) the L (L− 1) /2 elements are computed (due to symmetry), which would correspond
to the upper-right block, here we propose to use only the K (2L−K − 1) /2 terms obtained by
subtracting the (L−K) (L−K − 1) /2 terms from the complete upper/lower triangular matrix.

Next, we proceed to analyze the behaviour of the SNR estimate with a given value of K. In
fact, the theoretical variance needs to be adjusted in terms of K for a precise kernel variance com-
putation. This is a consequence of reducing the terms used in the second-order Rényi entropy
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Figure 5.17: Weights associated to a, b and c of the variance of the incomplete U-statistics SNR
estimator in (5.160).

in a structured manner. Therefore, the weights associated to the terms a, b and c from (5.138)
must be corrected. By following a similar approach than in Appendix 7.4.3, one can determine
that now the number of elements of a, described in (5.139), is K (2L−K − 1) (K − 1), and
K (2L−K − 1) /2 in the case of b, described in (5.141). The theoretical variance of the IP esti-
mator is then

σ2
UK

{
q, q′

}
=

(a− c)K (2L−K − 1) (K − 1)

(K (2L−K − 1) /2)2
+

(b− c)K (2L−K − 1) /2

(K (2L−K − 1) /2)2
(5.160a)

=
4 (K − 1) (a− c) + 2 (b− c)

K (2L−K − 1)
. (5.160b)

It can be seen now that the difference between the weights of each term is now determined by K,
which should be appropriately computed. Additionally, note that for K = L − 1, hence using all
the available samples, then (5.160) and (5.138) are equal. Therefore, one can define (5.160) as the
general theoretical variance of the IP, and determine K depending on the scenario.

A relevant aspect from (5.160) is the relationship between K and L. To better ascertain the
behaviour of the associated weights in (5.160), Figure 5.17 shows how they behave with a fixed
value of K (except for K = L−1) and an increasing value of L. For the cases when K > L, a new
value forK is assigned that corresponds with the correspondingL−1, and that is why forK = 103,
for example, only appears for L > 103. First, it can be clearly seen that all weights decrease as L
increase. This means that (5.158) still benefits for an increasing value of L, even for small values
of K. Furthermore, for large values of L and small K one can attain similar performance than with
high K and low L. Secondly, the choice of K is more relevant for the weight associated to b than
the others (given that c is governed by both weights). The result is that by decreasing K the penalty
of the b terms increases, while the penalty of the a and c terms decrease, albeit not so much as with
b. In fact, for K = 1 the weights of a are not shown, since it is directly 0.

These observations constitute one of the main benefits of the semi-EVB approach. The ro-
bust entropy-based method succeeds in not being limited by the coherence time of the channel
by marginally sacrificing the potential performance achieved by fully coherent approaches. The
choice of K does not greatly detriment the performance of the estimator, showing that the compu-
tation of repeated samples is inherently redundant [VR22]. Once again, this is a consequence of
the processing of the absolute value of pair-wise differences of data instead of sample per sample.
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Figure 5.18: NMSE of the entropy-based SNR estimator as a function of L for multiple carrier
frequency offsets and K, with 15 dB of true SNR value.

Nevertheless, given that the carrier frequency errors may vary per application and symbol block,
one can determine a worst-case scenario by fixing a∆fmax such that |∆f | < ∆fmax , and measuring
the SNR with this assumption, relieving the estimator from the need of measuring ∆f .

In order to ascertain this behaviour, the NMSE of the SNR estimator is shown in Figure 5.18.
It can be seen that, even for a very restrictive choice of K, the estimator tends asymptotically to the
NMSE of the complete estimator without carrier frequency errors. Consequently, the algorithm is
capable of both handling synchronization errors and improving its performance as L increases as
happens with EVB methods, although up to a given L depending on the value of ∆f . For com-
pleteness, the NMSE for K = L is included, showing that the estimator from (5.121) is consistent
(at least for this constellation with the given SNR value).

5.4.5 Numerical results and conclusion

Finally, the performance of the proposed SNR estimator is shown by means of Monte Carlo simu-
lations. For comparison, the following methods are also exhibited. The M2M4 is shown as a basis
for the EVB estimators [ME94], jointly with the Kolmogorov-Smirnov test method [Fu+15]. The
method of moments up to the sixth-order statistics M6 [LM07] is also shown, as it is used as the
initialization of the entropy-based NLS problem and to measure the relative kernel variances, as
well as the method of moments up to the eight order, namely the M8 [ÁLM10]. The EM estimator
[Das08] is displayed for the comparison with a coherent method. The NMSE is then measured for
these estimators and, since the results show both EVB and coherent approaches, we also show the
NCRB of their respective methods obtained from [GLM09]. The data is composed of L = 500 ob-
servations for all simulations, the symbols are considered to be equiprobable with pm = 1/M , and
the QPSK, 16-APSK and 16-Quadrature Amplitude Modulation (QAM) constellations are exhib-
ited. Regarding the entropy-based estimator, the case Q = 2 is used, the relative kernel variances
are obtained through Algorithm 2, and the SNR is estimated through (5.121).

It is worth pointing out that equiprobable symbols are assumed as it is the common practice for
the analyses of SNR estimators. While other distributions could be considered, the entropy-based
approach performs similarly to the equiprobable case, provided that the probabilities of the symbols
are known. If unknown, these should be estimated or assumed to be equiprobable (maximum
entropy case), which would then contribute with an added bias in the overall estimation process.
Other estimators are more robust to this facet of SNR estimation. For instance, the EM estimator
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Figure 5.19: NMSE of different estimators as a function of the true SNR value for three constella-
tions. The parameters are L = 500, φ = 0, ∆f = 0 and K = L.
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computes the probabilities within the algorithm itself, although it is then another point of failure
if the initial guess of probabilities is not close enough to the true values. The moments-based
estimators require the probability of the constellation level, which is, in principle, more robust
in front of small errors of the symbol probabilities. The case of small deviations of the symbols
probabilities will not be considered here and left for future work.

First, we show the aforementioned estimators under the assumption of perfect synchroniza-
tion in Figure 5.19. As can be seen, the entropy-based estimator outperforms the EVB methods,
generally speaking. The tendency of the entropy-based method to the M2M4 for low SNR values
can also be appreciated, rendering the same results up to approximately ρ = 0 dB, depending on
the constellation. At higher SNR values, the proposed method improves with respect to the EVB
methods, surpassing the EVB CRB. It is only within a small interval of around the 5-10 dB SNR
range in the 16-APSK constellation that the entropy-based method is slightly outperformed by some
moments-based methods. It is also worth noting that the performance of the estimator degrades at
very high SNR values with the 16-QAM constellation, which is mainly caused by the poor initial-
ization of the M6 estimate. While other methods can be used as the first guess, such as the M8, the
performance is not much improved due to this constellation being of particular difficulty to EVB
methods, as can be appreciated in the figure. Regarding the Kolmogorov-Smirnov test, which is
particularly focused on multilevel constellations at high SNR, the entropy-based method provides
better performance and lacks the need for a computationally expensive comparison with predeter-
mined functions. On the other hand, the EM algorithm performs close to the coherent CRB, as is
expected by an iterative solution to the maximum likelihood estimation under standard conditions.
It is, nonetheless, a highly computationally complex method and very dependent on the lack of
synchronization errors, as it will be shown next.

Next, Figure 5.20 portrays the same SNR estimators from the previous figure, but considering
synchronization errors. While EVB methods are invariant to phase and frequency offsets, the EM
algorithm is hindered as the SNR increases. The entropy-based method adopts an intermediate
solution by providing robustness thanks to limiting the pairwise differences. The cost of such
limitation is especially acute around 10 dB for multilevel constellations, and it accentuates the
problem with the 16-QAM at high SNR. From a more general point of view, although the NMSE
begins to increase at high SNR, it is due to the choice of K, and it can be alleviated by further
limiting the number of terms used in the entropy estimation. While it is dependent on ∆f , the
results encourage a conservative value of K to accommodate most SNR values, but it should be
fine-tuned if very high SNR is expected. In summary, the entropy-based estimator performance is
slightly worsened by choosing K < L, as expected, but it still outperforms the other methods for
a wide range of SNR values, thus providing an edge in front of unknown synchronization errors.

Finally, Figure 5.21 shows the number of average iterations that requires Algorithm 2 for de-
termining the kernel variances for each constellation shown in Figure 5.19. The number of average
iterations for the case of frequency errors (thus using the incomplete U-statistics approach) is not
shown for clarity of exposition, as it is roughly the same as the ones in Figure 5.21. Clearly, the al-
gorithms struggles around the intermediate values of SNR, which is in agreement with the regimes
observed in Subsection 5.4.3.1, corresponding to the one in which the signal is neither Gaussian nor
distinguishable GMM components. Other than that, the number of iterations are lower at low SNR
values, as it just needs to choose a sufficiently high value of kernel variance. The case of QPSK
is particularly interesting, given that it requires, in average, more iterations than the multi-level
constellations. This is mainly due to the fact that the variance of the estimator decreases slower
than with other constellations, which can actually be seen at Figure 5.15. Since the moments-based
estimators are optimal for this constellation and regime (QPSK and low SNR) in the sense of the
minimum variance estimator, the entropy-based estimator tries to behave as the moments-based
estimator by increasing the kernel variance indefinitely, which is only stopped when it fulfills the
stopping rule. Nonetheless, generally speaking, Algorithm 2 does not require many iterations,
being 6 the maximum number observed in average.
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Figure 5.20: NMSE of different estimators as a function of the true SNR value for three constel-
lations. The parameters are L = 500, ∆f = 10−4, K = L, and φ is selected randomly between
10−4 and 10−1.
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Figure 5.21: Average number of iterations for each measurement of the kernel variances in Algo-
rithm 2 as a function of the true value of SNR for each evaluated constellation.

In conclusion, we have shown that the classical SNR estimation problem can be conducted by an
information-theoretic approach. The resulting estimator is neither an EVB nor a coherent method,
but a hybrid between them. At low SNR, it behaves exactly as an EVB method by increasing the
kernel variance, while at high SNR it has the potential to achieve the performance of coherent
methods. On the one hand, thanks to utilizing an entropy measure as a basis for the problem, the
estimator is invariant in front of carrier phase errors. On the other hand, the entropy estimator itself
can be modified in order to gain robustness in front of carrier frequency errors thanks to its structure
based on pairwise differences. The results shown in this subsection support these statements by
showing that the performance is only slightly worsened by considering the incomplete U-statistics
approach, constituting an attractive option under synchronization errors. However, the method still
deteriorates for very high SNR values, either by a bad initialization or because the effect of the
carrier frequency error becomes severe. All these ideas and relations are portrayed in Figure 5.22.
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Figure 5.22: Complete Venn diagram of the entropy-based approach in relation to EVB and coher-
ent methods.
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5.5 Concluding remarks

This chapter has provided a unified rationale for solving three different problems: the estimation of
the variance, the MSC, and the SNR of a digital communications channel. The motif of this joint
rationale has been to substitute classical second-order signal processing techniques with a measure
of entropy. This exchange has allowed us to benefit from the properties given by information-
theoretic tools.

The second-order Rényi entropy has been considered for all the aforementioned estimators in
order to guarantee a set of desired properties. Not only it is a quadratic measure of uncertainty,
which may become simpler to estimate (Chapter 3), but the estimator used in this chapter has the
particular expression of a U-statistic. This allows us to intertwine the expected value with the pa-
rameters to be estimated in a straightforward fashion. Since the U-statistic employed in each section
becomes an unbiased estimate of a contaminated version of the second-order Rényi entropy, the
usually restrictive bias-variance trade-off provided by the kernel estimator is relaxed, and only the
variance becomes relevant. From an information-theoretic point of view, a measure of entropy
becomes only sensitive to the probabilities of events, rather than to their values. Consequently,
the estimators gain robustness in front of various typical adversarial effects. The sample pairwise
differences of the entropy estimator reinforce this vision by dropping the dependence on the mean
value of a given distribution, or by becoming invariant to fixed rotations. As a result, all the esti-
mators derived in this chapter are particularly useful not only under standard conditions but also
for scenarios where a robust estimate is required.

Furthermore, we have also shown that the entropy estimator is intrinsically related to second-
order statistics. In all three problems, the estimate resembles a second-order moment estimator by
just tweaking a shared parameter, the kernel bandwidth. The more the kernel bandwidth increases,
the more narrow-viewed the estimators become in the sense of statistical moments. On the contrary,
lower values of kernel bandwidth make the estimators more responsive to the particularities of
the data, gaining awareness of the intricacies of the underlying distribution. The problem is then
translated to finding the lowest possible kernel bandwidth such that the estimate becomes wary of
complex data descriptors without increasing the variance of the estimator too much.

With this chapter, the core contents of the thesis have been concluded. We then proceed to
finalize with the joint vision of all chapters, to analyze the contributions, and to determine possible
future research lines.
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Conclusions

This dissertation has addressed the engagement between information measures and second-order
statistics. The purpose has been to substitute variance and covariance with measures of information.
However, it is undeniable that the knowledge and tools developed for the former have a much more
solid trajectory. Therefore, classical second-order statistics tools have been leveraged to benefit
the measurement of information, with the objective of a posterior substitution of the second-order
approach itself. In the sequel, a short summary of each chapter is provided, focusing on the added
value to the rationale mentioned above.

First, Chapter 1 has provided an introduction to the research topic of estimating and employing
information measures, focusing on the most relevant aspects of it. Generally speaking, these are:
scalability, interpretability, learning rate, and universality. These key aspects are reviewed from
the perspective of the objective of the thesis.

Secondly, after some summary of required tools and known measures of linear information in
Sections 2.1 and 2.2, Chapter 2 has explored the surrogates of Shannon’s entropy, KL divergence,
and MI that are conducive to second-order moments in Section 2.3. In this regard, the second-order
Rényi entropy, the χ2-divergence, and the SMI (or mean square contingency) have shown to be the
desired surrogates for the purpose of estimation. All of these surrogates are either an upper-bound
or a lower-bound of the original measures, a useful property if minimizing/maximizing these mea-
sures is required in a given application, and besides, the SMI behaves as a local approximation
of the MI for close distributions. Subsection 2.3.4 explores other dependence measures or surro-
gates of the MI, but none of them are related to their original counterparts, nor define a proper
information measure beyond the concrete case of independent random variables.

Chapter 3 studies the applicability of kernel methods for the estimation of information mea-
sures. The identified surrogates may be expressed as the L2-norm of some functional, but are
nonlinear in nature, given that they are defined from probability distributions and not variances
and covariances. In view of this, nonlinear processing is required, but one that specifically allows
to translate nonlinear problems to linear ones. Kernels arise as a sought-after tool due to their
capability of solving problems on a higher-dimensional feature space, where the problem may lin-
earize itself. As a matter of fact, the unified rationale provided in Section 3.2 points out that the
kernel methods for measuring information promote the estimation of surrogates of information
measures that are related to second-order statistics. From the HGR coefficient, a dependence mea-
sure comprised of covariance and variances, to the SMI itself. This idea is summarized in Figure
3.1, demonstrating that the choice of surrogates from the previous chapter is aligned with the tool
presented in this one. The most prominent example of this relation is then given in Section 3.3,
where kernel methods are derived naturally from, and not for, an estimate of the second-order Rényi
entropy. Although this estimator is not particularly novel, we have bestowed the estimate with a
U-statistics point of view, which shows that the estimator is, indeed, measuring variance in the
high-dimensional feature space.

In Chapter 4, a framework for estimating measures of information is developed. The objective
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is to oppose the kernel method standpoint through two different notions. On one side, the feature
map is fully characterized, providing an explicit expression of the mapping function. Thanks to
this, the feature map can be managed, and the space can be regularized with physical meaning,
rather than blindly. On the other side, the dimension of the feature space itself is limited, not only
to improve the computational complexity of the estimate but also to address the question of whether
an infinite-dimensional space is truly required. Chapter 4 is then divided into three parts. First, in
Section 4.1, the analysis is provided for discrete sources. The implications of reducing the feature
space dimension are addressed here, resulting in an upper/lower-bound (entropy/dependence) of
the true information measure, jointly with the direct relationship of the information measures with
CCA, and partially to PCA. A key aspect of the mapping is encountered in the fact that both mapped
autocorrelation and autocovariance matrices are valid for estimating information, given that these
matrices are indirectly related to the probability simplex. Next, Section 4.2 provides an interlude
between discrete and analog sources, determining the necessary steps, requirements, and limita-
tions. The result is that, given that analog sources require a function space, any limitation of the
dimension of the space (sampling) ensues the bound examined in the previous section. As a matter
of fact, this is the price to pay for avoiding the kernel methodology, capable of spanning infinite-
dimensional feature spaces. Nevertheless, the kernel approach is turned around by considering
outer products instead of inner products, and the limitation of the space yields covariance and cor-
relation matrices, whose sample estimates are known to be consistent if the data size is higher than
the dimension of the feature space. Section 4.3 wraps up the previous sections by expressing the
desired estimators of information from the mapped matrices. The results show that the developed
estimators can compete with existing estimators while providing a low computational complexity.
Furthermore, the proposed uniform sampling, which is inspired by the Gaussian-Hermite quadra-
ture, entails a Toeplitz structure to the involved matrices, allowing both to analyze the asymptotic
behaviour of the estimators and to provide an even further reduction in the overall complexity.

Lastly, Chapter 5 tackles the last facet of the dissertation, which is to substitute second-order
statistics with information measures to perform a variety of tasks. Once the methodology for esti-
mating information with a covariance measure is displayed, the objective is steered in the opposite
direction. This chapter questions the advantage of considering an entropy measure for estimating
the determinant of the covariance matrix in Section 5.2 (particularized to univariate random vari-
ables), the coherence in Section 5.3 (particularized to bivariate random variables), and the SNR of a
digital communications channel in Section 5.4 (also particularized to univariate random variables).
The first two sections have dealt with the sensibility in front of outliers of the sample covariance
matrix, and the entropy-based counterpart has arisen as a robust approach to the respective prob-
lems. Entropy provides two advantages in front of second-order statistics. On the one hand, it does
depend on the probability of events, and not on their value. This translates to better handling of
outliers, since these are, by definition, events with low probability but with large magnitude. On the
other hand, entropy also captures higher-order moments, rendering this approach a better solution
for distributions that are far from the Gaussian shape. Nonetheless, the employed estimator still has
an asymptotic relation with second-order statistics, enforcing the idea that entropy is more general
in the sense of statistical moments. The entropy-based estimate is shown to be more effective not
only than the sample estimate case, but it also performs generally better than methods specifically
derived to gain robustness, such as Tyler’s method. Finally, Section 5.4 provides an entropy-based
SNR estimator that has desirable properties for this concrete problem. To this aim, the behaviour
of the second-order Rényi entropy estimator in front of a GMM with equal variance from com-
ponent to component is analyzed and subsequently employed to determine the best strategy for
the purpose of determining the signal power (intervariance) and the noise power (intravariance)
relationship. The resulting estimator gains invariance in front of constant rotations of the GMM,
which are translated as carrier phase errors in this case, and is capable of deriving a methodol-
ogy to gain robustness in front of varying rotations of the GMM, which are translated as carrier
frequency errors. This is due to the pairwise processing induced by the entropy estimator, which
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ends up allocating the entropy-based SNR estimator as a hybrid between moment-based (gener-
ally speaking) methods and other, more complex, approaches. Moreover, the intrinsic relationship
with second-order statistics is still relevant to this problem, showing that the estimate is, again, an
asymptotic estimate of just the intravariance, thus equivalent to the sample variance.

In summary, the key points are as follow:

• Proposal of a finite-dimensional feature space based on the CF and outer products instead of
inner products.

• Leveraging well-known signal processing techniques for improving the interpretability of
the feature space.

• Estimation of the second-order Rényi entropy and the squared-loss mutual information with
the previous tool.

• Interchange the Gaussian assumption to a later stage, after an entropic measure, to gain ro-
bustness.

• Take advantage of the entropy estimate based on pairwise differences of data to gain invari-
ance, and robustness, in the problem of estimating SNR.

6.1 Future research

In view of the conclusions of this dissertation, we next proceed to identify potential topics for
research and prospective extensions of the frameworks and topics developed. First, let us look to
Chapter 4:

• Regarding Section 4.2, the strategy for sampling the CF is inspired by the univariate Gaussian-
Hermite quadrature. Nonetheless, the required sampling is inherently bivariate (see (4.81)).
Under this setting, the quadrature rule is not necessarily approximately uniform. This effect
can be observed in [Jäc05]. To focus the sampling where the Gaussian distribution is con-
centrated can open the possibility of considering different contamination processes for each
source, or to consider an “importance” sampling, where it focuses on the relevant shapes of
the underlying CF. However, it should be noted that a nonuniform approach to the sampling
implies the loss of the Toeplitz structure, with all that this entails.

• Again in Section 4.2, the regularization technique is inspired by the Blackman-Tukey spectral
estimation and its strategy of tapering the spectral estimate, which reduces the variance of
the estimator at the expense of an increased bias. From here, two potential improvements are
formulated. On the one hand, a Gaussian window has used for its relation with the Gaussian
convolution side, but other windows can be considered with a potential improvement on the
overall estimation process. On the other hand, as rich as it is the topic of spectral estimation,
other spectral estimation strategies can also be considered. For the time being, the Blackman-
Tukey is rather observational than practical, being a result of the proposed regularization
technique. However, the approach can be inverted, and other techniques to improve the bias-
variance trade-off can be implemented. For example, Burg’s or Capon’s nonparametric high
resolution methods [Kay88] can be studied for the encountered problem in this thesis.

• In Section 4.3, a rationale for grouping the hyper-parameters introduced by the Gaussian
smoothing has been provided. However, the only parameter left p is still decoupled from
the problem of estimating information. While it provides more robustness than the required
choice of kernel bandwidth, the latter has a long history of rule of thumb goodness thanks
to Silverman’s rule. If a true data-driven model is required, a mechanism for choosing p
from the data itself is required. This could be done by following similar strategies than those
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in Algorithms 1 and 2, where an approximate correct value is chosen from prior estimates
based on the variance of the data.

• The choice of the feature space dimension is a particularly relevant issue for the framework
developed here. It does not only determine the computational complexity, but also the ac-
curacy of the estimate. In this regard, it is of utmost interest to develop strategies for its ap-
propriate choice. A first attempt was performed in [LCR20], with the objective of equating
the problem of estimating information as a CCA problem to the determination of “active”
canonical correlates. While only performed for Gaussian channels, it is an initiation to a
data-driven choice of the required intrinsic dimension of the problem.

• Regarding Chapter 4 as a whole, this dissertation has addressed only the univariate case.
The reason is that, by mapping from the data space to the feature space, the increase of di-
mensionality itself conduces to matrices. Therefore, if the input data is multivariate, the
mapping does not lead up to matrices, but to multidimensional arrays. However, the poste-
rior processing with these arrays is not trivial, more so if we take the dependence between
components into consideration. The same can be said about nonindependent data, where it is
not so clear how to map these dependencies into the feature space. Therefore, relevant future
research is encountered in the examination of strategies for addressing both cases, either by
detaching the multivariate case or data with memory so that it can be considered as virtual
univariate/independent data or by performing a conjoint study of the mapping process.

Next, we focus on research lines that follow from Chapter 5:

• Similarly to the previous final point, the most straightforward extension of most of this chap-
ter is to consider multivariate random variables. As a matter of fact, Section 2.1 is prepared
for such considerations. Both determinants of the covariance matrix and generalized co-
herence can be developed by considering the more general, albeit intricate, case. The SNR
estimator is also developed for single-input single-output channels, but most modern com-
munications processes consider multiple-input multiple-output schemes. The extension from
one to another is not trivial, since it must consider many more parameters to be estimated
(the power of each link and their respective noise level). The algorithm for determining the
kernel variance must compute much more values, and its scalability suffers in result. How
to address these changes is certainly the next step for the SNR estimator.

• The principle of interchanging the Gaussian assumption with the entropy-based processing
(Figure 5.1) is more general than the applications shown in this dissertation. The same frame-
work can be applied to different problems that require robust signal processing. A potential
research line is to explore other applications where this rationale can be useful, either in the
sense of robustness or as an estimator in general.

• The extension of the SNR estimate to a wider concept of statistical channel information is
also of great interest. Generally speaking, noncoherent communications can benefit from
the extraction of information at the receiver side. Blind approaches to this task, such as the
entropic measure, may help on the reduction of pilot contamination.

• Going into details, and considering the SNR estimator, the robustness in front of carrier
frequency errors is achieved, but the rule for deciding the internal parameter K is not deter-
mined. Similar to the choice of p for the estimation of information in the previous chapter, the
objective is to determine the required penalization introduced by the incomplete U-statistics
estimator to achieve robustness without compromising the performance. A potential topic
of research is how to optimally determine K, either directly from data observations, or by
comparing with the expected model, whose number of clusters and probabilities are known
under the context of the entropy-based estimator.
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• Lastly, while the choice of kernel variance for the estimation of SNR provides good results,
its implementation can be sometimes rather computationally heavy. Particularly, at high SNR
values, if the initial estimate is not as accurate as it is in low SNR values, then the proposed
algorithm tends to require more iterations, hindering the overall complexity of the estimate.
A further analysis of the algorithm are in order, which would increase the general appeal of
the entropy-based estimator.
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Appendices

7.1 Appendices of Chapter 2

7.1.1 Proof of (2.10)

First, we need to express the CF as
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We begin by first expressing the integral by means of the Maclaurin series of the exponential for
n = {1, ..., N}. The decomposition is as follows:
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At this point, we can split the summation between the terms whose k = kn and the ones that
k 6= kn. The reason behind is to separate those terms that will prevail after the kn-th derivative of
the k-th random variable at the origin, and those that will become zero. Let us express it as follows:∫
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Then, the integral can be solved as follows:∫
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Note that the equality is maintained for kn ∈ N0. If kn = 0, then the expectation over the n-th is
not computed. Finally, we can compute the derivative by integrating the previous expression into
(7.1), which results in
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where from (7.6b) to (7.6d) one has to solve the partial derivatives in succession until it becomes
1. The terms that correspond to k = kn are can be either directly zero or have a proper derivative,
although in the latter case they become zero for ω = 0.

7.1.2 Derivation of (2.67)

In order to properly move from (2.66) to (2.67), we need to make use of the constant−1 to complete
the square in the numerator. Then, we can manipulate the expression as follows:
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as it appears in (2.67).

7.1.3 Derivation of (2.69)

Consider that fX (x) and fY (y) = fX (x) + ε∆(x) for some small ε. The function ∆(x) is
also defined on the set X and has null area. Using the Maclaurin series of ln (1 + a) up to the
second-order such that ln (1 + a) ∼= −a+ a2/2 +O

(
a3
)
, we can write the KL divergence (2.60)

as follows:
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)2
}

+O
(
ε3
)
. (7.8d)

Given that the first term becomes zero due to the null area of ∆(x), then we have

D (fX ‖ fX + ε∆) ∼=
ε2

2
EfX

{(
∆(x)

fX (x)

)2
}

+O
(
ε3
)
. (7.9)

Let us now proceed with the same approach but with the χ2-divergence. Consider now the
Maclaurin series expansion of (1− a)−1 up to the second order, i.e. 1 + a + O

(
a2
)

. Then, we
can write (2.67) as

Dχ2 (fX ‖ fX + ε∆) = EfX

{
(fX (x)− (fX (x) + ε∆(x)))2

fX (x) (fX (x) + ε∆(x))

}
(7.10a)

= EfX

{
ε2∆2 (x)

fX (x) (fX (x) + ε∆(x))

}
(7.10b)

= EfX

{(
ε∆(x)

fX (x)

)2(
1 +

ε∆(x)

fX (x)

)−1
}

(7.10c)

= EfX

{(
ε∆(x)

fX (x)

)2(
1−

(
−ε∆(x)

fX (x)

))2
}

(7.10d)

= EfX

{(
ε∆(x)

fX (x)

)2(
1− ε∆(x)

fX (x)
+O

(
ε2
))}

(7.10e)

= ε2EfX

{(
ε∆(x)

fX (x)

)2
}

+O
(
ε3
)
. (7.10f)

By joining the results of (7.9) and (7.10), we can state the following result:

D (fX ||fX + ε∆) =
1

2
Dχ2 (fX ||fX + ε∆) +O(ε3), (7.11)

as it is expressed in (2.69).

7.2 Appendices of Chapter 3

7.2.1 Integral of the product of two Gaussian functions

Let us define the general Gaussian functions

gσ1 (x− µ1) =
1√
2πσ2

1

exp

(
−(x+ µ1)

2

2σ2
1

)
, (7.12)

gσ2 (x− µ2) =
1√
2πσ2

2

exp

(
−(x+ µ2)

2

2σ2
2

)
. (7.13)

We want to solve

I =

∫ ∞

−∞
gσ1 (x+ µ1) gσ2 (x+ µ2) dx =

1

2πσ1σ2

∫ ∞

−∞
exp

(
−(x+ µ1)

2

2σ2
1

− (x+ µ2)
2

2σ2
2

)
dx

(7.14a)
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=
1

2πσ1σ2

∫ ∞

−∞
exp

(
−σ2

2 (x+ µ1)
2 + σ2

1 (x+ µ2)
2

2σ2
1σ

2
2

)
dx. (7.14b)

Let us take the denominator of the argument of the exponential and complete the square:

−a (x− b)2 + c = −σ2
2 (x+ µ1)

2 − σ2
1 (x+ µ2)

2 , (7.15)

a =
(
σ2
1 + σ2

2

)
, b = −σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

, c =
σ2
1σ

2
2 (µ2 − µ2)

2

σ2
1 + σ2

2

. (7.16)

We then have

I =
1

2πσ1σ2

∫ ∞

−∞
exp

(
−
(
σ2
1 + σ2

2

)
2σ2

1σ
2
2

(x− b)2 − (µ2 − µ1)
2

2
(
σ2
1 + σ2

2

)) dx (7.17a)

=
1

2πσ1σ2
exp

(
− (µ2 − µ1)

2

2
(
σ2
1 + σ2

2

))∫ ∞

−∞
exp

(
−
(
σ2
1 + σ2

2

)
2σ2

1σ
2
2

(x− b)2
)

dx. (7.17b)

The remaining Gaussian integral is now solvable with
∫∞
−∞ exp

(
−a (x− b)2

)
dx =

√
π/a,

which results in

I =
1

2πσ1σ2
exp

(
− (µ2 − µ1)

2

2
(
σ2
1 + σ2

2

))√π
2σ2

1σ
2
2

σ2
1 + σ2

2

=
1√

2π
(
σ2
1 + σ2

2

) exp
(
− (µ2 − µ1)

2

2
(
σ2
1 + σ2

2

))
(7.18a)

= gσ (µ2 − µ1) , (7.18b)

with σ =
√(

σ2
1 + σ2

2

)
. In order to obtain (3.73), we juts need to fix σ1 = σ2 = h, µ1 = xi and

µ2 = xj .

7.3 Appendices of Chapter 4

7.3.1 Proof of Proposition 4.1

From (4.10) we have:∥∥∥∥ 1LXXH

∥∥∥∥2
F
= tr

(
1

L2
XXHXXH

)
= tr

(
1

L2
FHFDDTFHFDDT

)
(7.19a)

= tr
(

1

L2
FHFP̂FHFP̂

)
, (7.19b)

where P̂ = DDT /L from (4.6). We define the projection matrix A = FHF ∈ CN×N , which is
an idempotent matrix whose singular values σn (A) are composed by rank (A) = N ′ ones, and
N −N ′ zeros. Then we have∥∥∥∥ 1LXXH

∥∥∥∥2
F
= tr

(
1

L2
ADDTADDT

)
= tr (APAP) = tr (BB) , (7.20)

where B = AP is a square, but not necessarily Hermitian, matrix.
From the Cauchy-Schwarz inequality we can gather that

tr (BB) ≤
∥∥BH

∥∥
F ‖B‖F = ‖B‖2F = tr

(
BHB

)
, (7.21)
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where the equality is held for Hermitian matrices. Therefore, from (7.20) we have∥∥∥∥ 1LXXH

∥∥∥∥2
F
≤ tr

(
BHB

)
= tr

(
PAHAP

)
= tr (PPA) = tr

(
P2A

)
, (7.22)

where P2 = PP denotes a diagonal matrix whose elements are squared. The Von Neumann trace
inequality, provided that the involved matrices are positive semi-definite, states the following:

tr
(
P2A

)
≤

N∑
n=1

σn
(
P2
)
σn (A) =

N∑
n=1

p2nσn (A) ≤
N∑

n=1

p2n, (7.23)

given that σn (A) ≤ 1. By gathering all the previous inequalities we can finally express∥∥∥∥ 1LXXH

∥∥∥∥2
F
≤ tr

(
P2FHF

)
≤

N∑
n=1

σn
(
P2
)
σn (A) ≤

N∑
n=1

p2n. (7.24)

Clearly, for N ′ = N , then F is a unitary matrix with FHF = A = IN , and all the equalities are
met. Otherwise, for N ′ < N , the inequalities are strict. In the case of the collision entropy

Ĥ2 (X) = − ln

∥∥∥∥ 1LXXH

∥∥∥∥2
F

(7.25)

the logarithm is a monotonic function that preserves the inequalities, while the reverse sign turns
around the inequalities, finally proving (4.11) with

Ĥ2 (X) ≥ − ln

N∑
n=1

p2n = ˆ̃H2 (X) . (7.26)

7.3.2 Proof of Lemma 4.2

From (4.32) we have

||Ĉ||2F = tr
(
R̂−1/2

x ĈxyR̂
−1/2
y R̂−H/2

y ĈH
xyR̂

−H/2
x

)
= tr

(
ĈxyR̂

−1
y ĈH

xyR̂
−1
x

)
. (7.27)

The correlation and covariance matrices are as follows:

R̂x =
1

L
XXH = F [p̂]FH , (7.28a)

R̂y =
1

L
YYH = G [q̂]GH , (7.28b)

Ĉxy =
1

L
XP⊥

1Y
H = F

(
Ĵ− p̂q̂T

)
GH . (7.28c)

Then, we have

||Ĉ||2F = tr
(
F
(
Ĵ− p̂q̂T

)
GH

(
G [q̂]GH

)−1
G
(
Ĵ− p̂q̂T

)T
FH

(
F [p̂]FH

)−1
)
. (7.29)

Given that the mapping matrices F and G are nonsingular, we can directly express

||Ĉ||2F = tr
(
F
(
Ĵ− p̂q̂T

)
[q̂]−1

(
Ĵ− p̂q̂T

)T
[p̂]−1F−1

)
, (7.30)

which, from the circularity of the trace, it directly follows that

||Ĉ||2F = tr
(
F−1F

(
Ĵ− p̂q̂T

)
[q̂]−1

(
Ĵ− p̂q̂T

)T
[p̂]−1

)
, (7.31a)

= tr
((

Ĵ− p̂q̂T
)
[q̂]−1

(
Ĵ− p̂q̂T

)T
[p̂]−1

)
. (7.31b)

Therefore, it is the same estimator as in (4.30), as we wanted to show.
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7.3.3 Proof of Theorem 4.1

Consider the following properties, which will be used along the proof:

p̂T1N = q̂T1M = 1, [p̂]1N = p̂, [q̂]1M = q̂, (7.32)

Ĵ1M = p̂, 1TN Ĵ = q̂T . (7.33)

Since 1N and 1M are the left and right singular vectors of matrix Ĵ − p̂q̂T associated to its null
singular value, then (

Ĵ− p̂q̂T
)
1M = 0N , (7.34a)

1TN

(
Ĵ− p̂q̂T

)
= 0TM . (7.34b)

Consequently, from (7.31), we can write

||Ĉ||2F = tr
((

Ĵ− p̂q̂T
)(

[q̂]−1 +
β

1− β
1M1TM

)(
Ĵ− p̂q̂T

)T (
[p̂]−1 +

β

1− β
1N1TN

))
∀β ∈ R. (7.35)

From the Woodbury matrix identity, we have(
[p̂]−1 +

β

1− β
1N1TN

)−1

= [p̂]−
[p̂]1N1TN [p̂]

β + 1TN [p̂]1N
= [p̂]− βp̂p̂T , (7.36a)(

[q̂]−1 +
β

1− β
1M1TM

)−1

= [q̂]−
[q̂]1M1TM [q̂]

β + 1TM [q̂]1M
= [q̂]− βq̂q̂T . (7.36b)

In the asymptotic case these matrices become

lim
β→1

(
[p̂]− βp̂p̂T

)
1N = 0N , (7.37a)

lim
β→1

(
[q̂]− βq̂q̂T

)
1M = 0M . (7.37b)

As a result, both matrices in (7.36) share with matrix Ĵ− p̂q̂T the same singular vectors associated
to the null singular value. For β → 1 these matrices also become sample covariance matrices, such
that

lim
β→1

[p̂]− βp̂p̂T = P̂− p̂p̂T , (7.38a)

lim
β→1

[q̂]− βq̂q̂T = Q̂− q̂q̂T , (7.38b)

which yield

lim
β→1
||Ĉ||2F = tr

((
Ĵ− p̂q̂T

)(
P̂− p̂p̂T

)−1 (
Ĵ− p̂q̂T

)T (
Q̂− q̂q̂T

)−1
)
. (7.39)

Therefore, the equality with the SMI in (4.38) can be achieved by computing autocovariance ma-
trices instead of autocorrelation matrices, and using N ′ = N −1 and M ′ = M −1 for the limiting
case of β = 1. Regarding the mapping matrices F and G, one can follow a similar procedure to
Appendix 7.3.2.

153



7.3. APPENDICES OF CHAPTER 4

7.3.4 Taylor expansion of the cross-covariance in the feature space

Consider

Cov
{
z̃x′ (ω1) , z̃y′ (ω2)

}
= G (ω1)G (−ω2) (ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2)) . (7.40)

Consider the window functions G (ω1) and G (−ω2) to have a bandwidth ν that define a finite
support of the CFs. For ν close to 0, we can consider delta-like CF, which yields the following
second-order Taylor expansion of the CFs around the origin:

Cov
{
z̃x′ (ω1) , z̃y′ (−ω2)

}
≈ ϕX,Y (0, 0)− ϕX (0)ϕY (0)

+
[
ω1 −ω2

]
∇ϕ+

1

2

[
ω1 −ω2

]
Hϕ

[
ω1

−ω2

]
(7.41)

The gradient ∇ϕ corresponds to

∇ϕ =

 ∂
∂ω1

(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))
∣∣∣
ω1,ω2=0

∂
∂ω2

(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))
∣∣∣
ω1,ω2=0

 , (7.42)

which, following (2.13), we have

∇ϕ =

[
jEfX {X} − ϕY (−ω2) jEfX {X}|ω2=0

jEfY {Y } − ϕX (ω1) jEfY {Y }|ω1=0

]
=

[
0
0

]
. (7.43)

Similarly, the elements of the Hessian matrix correspond to

[Hϕ]1,2 =
∂2

∂ω1ω2
(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))

∣∣∣∣
ω1,ω2=0

(44a)

= −EfX,Y
{XY } − (−jEfX {X} jEfY {Y }) (44b)

= −EfX,Y
{XY } − EfX {X}EfY {Y } (44c)

[Hϕ]2,1 =
∂2

∂ω2ω1
(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))

∣∣∣∣
ω1,ω2=0

= [Hϕ]1,2 (45a)

[Hϕ]1,1 =
∂2

∂ω2
1

(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))

∣∣∣∣
ω1,ω2=0

(46a)

= −EfX

{
X2
}
−
(
−EfX

{
X2
}
ϕY (−ω2)

)∣∣
ω2=0

= 0 (46b)

[Hϕ]2,2 =
∂2

∂ω2
2

(ϕX,Y (ω1,−ω2)− ϕX (ω1)ϕY (−ω2))

∣∣∣∣
ω1,ω2=0

(47a)

= −EfY

{
Y 2
}
−
(
−EfY

{
Y 2
}
ϕX (ω1)

)∣∣
ω1=0

= 0. (47b)

By gathering the previous expressions with (7.41), we then have

Cov
{
z̃x′ (ω1) , z̃y′ (ω2)

}
≈ ω1ω2

(
EfX,Y

{XY }+ EfX {X}EfY {Y }
)
, (7.48)

as it is written in (4.71).

7.3.5 Second-order Rényi entropy of a GMM

Consider the PDF

fX (x) =

M−1∑
m=0

pm√
2πσ2

m

exp

(
−(x− µm)2

2σ2
m

)
. (7.49)
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The IP is then expressed as

V (X) =

∫ ∞

−∞
f2
X (x) dx =

∫ ∞

−∞

(
M−1∑
m=0

pm√
2πσ2

m

exp

(
−(x− µm)2

2σ2
m

))2

dx (7.50a)

=

∫ ∞

−∞

M−1∑
m′=0

M−1∑
m=0

pm′pm

2π
√

σ2
m′σ2

m

exp

(
−(x− µm)2

2σ2
m

− (x− µm′)2

2σ2
m′

)
dx. (7.50b)

Due to the separability of the integrals, we just need to compute

Am,m′ =

∫ ∞

−∞
exp

(
−(x− µm)2

2σ2
m

− (x− µm′)2

2σ2
m′

)
dx (7.51a)

=

∫ ∞

−∞
exp

(
−x2

(
σ2
m′ + σ2

m

)
+ 2x

(
µmσ2

m′ + µm′σ2
m

)
− µ2

mσ2
m′ − µ2

m′σ2
m

2σ2
m′σ2

m

)
dx

(7.51b)

=

∫ ∞

−∞
exp

(
−
(
σ2
m′ + σ2

m

)
(x− a)2 − σ2

m′σ2
m (µm − µm′)2

(
σ2
m′ + σ2

m

)−1

2σ2
m′σ2

m

)
dx

(7.51c)

= exp

(
− (µm − µm′)2

2
(
σ2
m′ + σ2

m

) )∫ ∞

−∞
exp

(
−
(
σ2
m′ + σ2

m

)
(x− a)2

2σ2
m′σ2

m

)
dx, (7.51d)

where the last steps are obtained by completing the square, similar to (7.15), and

a =

(
µmσ2

m′ + µm′σ2
m

)
σ2
m′ + σ2

m

. (7.52)

The remaining integral term can be solved by the Gaussian integral such that

∫ ∞

−∞
exp

(
−
(
σ2
m′ + σ2

m

)
(x− a)2

2σ2
m′σ2

m

)
dx =

√
2πσ2

m′σ2
m(

σ2
m′ + σ2

m

) . (7.53)

By gathering (7.51) and (7.53) we have

Am,m′ =

√
2πσ2

m′σ2
m(

σ2
m′ + σ2

m

) exp(− (µm − µm′)2

2
(
σ2
m′ + σ2

m

) ) , (7.54)

which leads up to

V (X) =
M−1∑
m′=0

M−1∑
m=0

pm′pm

2π
√

σ2
m′σ2

m

Am,m′ (7.55a)

=

M−1∑
m′=0

M−1∑
m=0

pm′pm

2π
√

σ2
m′σ2

m

√
2πσ2

m′σ2
m(

σ2
m′ + σ2

m

) exp(− (µm − µm′)2

2
(
σ2
m′ + σ2

m

) ) (7.55b)

=
M−1∑
m′=0

M−1∑
m=0

pm′pm√
2π
(
σ2
m′ + σ2

m

) exp
(
− (µm − µm′)2

2
(
σ2
m′ + σ2

m

) ) , (7.55c)

concluding the computation.
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7.3.6 Proof of Lemma 4.3

From Theorem 2.5, the weak condition of Szegö’s theorem establishes that a Hermitian-Toeplitz
matrix behaves asymptotically as a circulant matrix if the Hermitian sequence tn is square-integrable
for N →∞. Consequently, following (2.22) and the diagonalization in (2.17), T is asymptotically
diagonalizable by WTWH , whose diagonal is then composed by the discrete Fourier transform
of tn. In addition, the discrete Fourier transform of a Hermitian sequence gn can be written as

F {gn} =
N−1∑

n=−(N−1)

gne
−j2πfn = g0 + 2Re

{
N−1∑
n=1

gne
−j2πfn

}
= 2Re

{
N−1∑
n=0

gne
−j2πfn

}
− g0,

(7.56)
where gn = tn (1− n/N) and g0 = 1. We can then write

g = t� va
N

, (7.57)

where [g]n = gn. Given that [W]n,n′ = 1√
N
e−j2πnn′/N , and sampling f = n′/N for n′ =

0, ..., N − 1, then the column vector constructed from (7.56) is as follows:

2Re
(√

NW
(
t� va

N

))
− 1N =

2√
N

Re (W (t� va))− 1N , (7.58)

where
√
N is added to compensate the normalization factor from W, as written (4.135).

7.3.7 Proof of Theorem 4.2

Given that the Frobenius norm is invariant in front of unitary transformations, we have

Îs (X;Y ) =
∥∥∥R̂−1/2

x′ Ĉx′y′R̂
−1/2
y′

∥∥∥2
F

(7.59a)

=

∥∥∥∥(WR̂x′WH
)−1/2

WĈx′y′W
H
(
WR̂y′W

H
)−1/2

∥∥∥∥2
F
. (7.59b)

Following Lemma 4.3, we can state that

lim
N→∞

√√√√ 1

N

N−1∑
n=0

N−1∑
n′=0

∣∣∣∣∣[WR̂x′WH
]
n,n′
−
[
diag

{
2√
N

Re (W (p̂a � va))− 1N

}]
n,n′

∣∣∣∣∣
2

= 0

(7.60a)

lim
N→∞

√√√√ 1

N

N−1∑
n=0

N−1∑
n′=0

∣∣∣∣∣[WR̂y′WH
]
n,n′
−
[
diag

{
2√
N

Re (W (q̂a � va))− 1N

}]
n,n′

∣∣∣∣∣
2

= 0,

(7.60b)

given that [q̂a]0 = [p̂a]0 = 1. Let

Â =
(
WR̂x′WH

)−1/2
E
(
WR̂y′W

H
)−1/2

(7.61)

as in (4.139), and
B̂ = P̂′−1/2EQ̂′−1/2 (7.62)

as in (4.140), where E = WĈx′y′W
H . Given (7.60), we can write

lim
N→∞

1√
N

∥∥∥∥(WR̂x′WH
)−1/2

E
(
WR̂y′W

H
)−1/2

− P̂′−1/2EQ̂′−1/2

∥∥∥∥
F
= 0, (7.63)
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which simplifies to
lim

N→∞

1√
N

∥∥∥Â− B̂
∥∥∥

F
= 0 (7.64)

as written in (4.141).
Finally, (4.142) is a direct consequence of (4.141) and Corollary 2.5.1, which at the same time,

also follow from Theorem 2.5. Specifically, given

Îs (X;Y ) = ||Â||2F =

N−1∑
n=0

σ2
n

(
Â
)
, Îas (X;Y ) = ||B̂||2F =

N−1∑
n=0

σ2
n

(
B̂
)
, (7.65)

we can write

lim
N→∞

1

N

N−1∑
n=0

(
σ2
n

(
Â
)
− σ2

n

(
B̂
))

= lim
N→∞

1

N

(
N−1∑
n=0

σ2
n

(
Â
)
−

N−1∑
n=0

σ2
n

(
B̂
))

= 0, (7.66)

which yields
lim

N→∞
Îs (X;Y ) = lim

N→∞
Îas (X;Y ) . (7.67)

7.4 Appendices of Chapter 5

7.4.1 Information potential of a multivariate complex GMM

Consider the PDF

fX (x) =

M−1∑
m=0

pm
πN |Σm|

exp
(
− (x− µm)H Σ−1

m (x− µm)
)
. (7.68)

The IP is then expressed as

V (X) =

∫
X

(
M−1∑
m=0

pm
πN |Σm|

exp
(
− (x− µm)H Σ−1

m (x− µm)
))2

dx (7.69a)

=
M−1∑
m=0

M−1∑
m′=0

pmpm′

π2N |Σm| |Σm′ |∫
X
exp

(
− (x− µm)H Σ−1

m (x− µm)− (x− µm′)H Σ−1
m′ (x− µm′)

)
dx

(7.69b)

=

M−1∑
m,m′=0

pmpm′

π2N |Σm| |Σm′ |
exp

(
− (µm − µm′)H (Σm +Σm′)−1 (µm − µm′)

)
Am,m′ ,

(7.69c)

where
Am,m′ =

∫
X
exp

(
−
(
x− am,m′

)H (
Σ−1

m +Σ−1
m′
) (

x− am,m′
))

dx (7.70)

and
am,m′ = Σm′ (Σm +Σm′)−1µm +Σm (Σm +Σm′)−1µm′ . (7.71)

The integral of Am,m′ yields the following result for any am,m′ :

Am,m′ =

∫
X
exp

(
−
(
x− am,m′

)H (
Σ−1

m +Σ−1
m′
) (

x− am,m′
))

dx (7.72a)
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=

∫
X

πN
∣∣(Σ−1

m +Σ−1
m′
)∣∣−1

πN
∣∣(Σ−1

m +Σ−1
m′
)∣∣−1 exp

(
−
(
x− am,m′

)H
Γ−1

(
x− am,m′

))
dx (7.72b)

= πN
∣∣(Σ−1

m +Σ−1
m′
)∣∣−1

=
πN∣∣(Σ−1

m +Σ−1
m′
)∣∣ . (7.72c)

By gathering (7.69) and (7.72) we finally have

V (X) =

M−1∑
m,m′=0

pmpm′

π2N |Σm| |Σm′ |
πN∣∣(Σ−1

m +Σ−1
m′
)∣∣

exp
(
− (µm − µm′)H (Σm +Σm′)−1 (µm − µm′)

)
(7.73a)

M−1∑
m,m′=0

pmpm′

πN |(Σm +Σm′)|
exp

(
− (µm − µm′)H (Σm +Σm′)−1 (µm − µm′)

)
.

(7.73b)

7.4.2 Proof of Proposition 5.1

This proof actually follows closely the derivations from Appendix 7.4.1. However, here we par-
ticularize by letting Z to be a distribution that will latter encompass the difference between two
samples.

The distribution of Z is

fZ (z) =

Q−1∑
q=0

1

πN |Wq|
pq exp

(
− (z− aq)

H W−1
q (z− aq)

)
. (7.74)

We want to compute

EfZ {gV (z)} =
∫
Z

Q−1∑
q=0

1

πN |V|
1

πN |Wq|
(7.75a)

pq exp
(
− (z− aq)

H W−1
q (z− aq)

)
exp

(
−zHV−1z

)
dz. (7.75b)

Due to the separability of the integrals we just need to solve the following integral:

Aq =

∫
Z
pq exp

(
− (z− aq)

H W−1
q (z− aq)− zHV−1z

)
dz (7.76a)

= pq

∫
Z
exp

(
− (z− bq)

H (V−1 +W−1
q

)
(z− bq)− aHq (V +Wq)

−1 aq

)
dz (7.76b)

= pq exp
(
−aHq (V +Wq)

−1 aq

)∫
Z
exp

(
− (z− bq)

H (V−1 +W−1
q

)
(z− bq) dz

)
z,

(7.76c)

where bq =
(
V (V +Wq)

−1
)
aq. The integral yields the following result for any bq:

Bq =

∫
Z
exp

(
− (z− bq)

H (V−1 +W−1
q

)
(z− bq)

)
dz (7.77a)

=
πN
∣∣V−1 +W−1

q

∣∣−1

πN
∣∣V−1 +W−1

q

∣∣−1

∫
Z
exp

(
− (z− bq)

H (V−1 +W−1
q

)
(z− bq)

)
dz (7.77b)

= πN
∣∣V−1 +W−1

q

∣∣−1
=

πN∣∣V−1 +W−1
q

∣∣ . (7.77c)
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By grouping the constants that we left outside the integrals we lastly have

EfZ {gV (z)} =
Q−1∑
q=0

1

πN |V|
1

πN |Wq|
Aq (7.78a)

=

Q−1∑
q=0

1

πN |V|
1

πN |Wq|
pq exp

(
−aHq (V +Wq)

−1 aq

)
Bq (7.78b)

=

Q−1∑
q=0

1

πN |V|
1

πN |Wq|
πN∣∣V−1 +W−1

q

∣∣pq exp(−aHq (V +Wq)
−1 aq

)
(7.78c)

=

Q−1∑
q=0

1

πN |V +Wq|
pq exp

(
−aHq (V +Wq)

−1 aq

)
(7.78d)

as it appears in (5.6).

7.4.3 Proof of Proposition 5.2

The expression to be determined is

Cov
{
ÛV1 (X) ÛV2 (X)

}
=

1

(L (L− 1) /2)2

∑
0≤i≤L−1

∑
i<j≤Ji

d
(
i, i′, j, j′

)
− c

(
i, i′, j, j′

)
,

(7.79)

where

d
(
i, i′, j, j′

)
= EfX

{
gV1

(
x (i)− x

(
i′
))

gV2

(
x (j)− x

(
j′
))}

, (7.80)
c
(
i, i′, j, j′

)
= EfX

{
gV1

(
x (i)− x

(
i′
))}

EfX

{
gV2

(
x (j)− x

(
j′
))}

. (7.81)

Under this setting, we can identify three different cases:

1. L (L− 1) (L− 2) (L− 3) /4 terms such that i 6= j and i′ 6= j′ that do not contribute to the
variance analysis due to the i.i.d. assumption. In these cases, we directly have d (i, i′, j, j′)−
c (i, i′, j, j′) = 0.

2. L (L− 1) (L− 2) /2 terms with i = j and i′ 6= j′, and L (L− 1) (L− 2) /2 terms with
i 6= j and i′ = j′. Both of these cases yield the same result and we need to solve

d
(
i, i′, j, i′

)
= a = EfX

{
gV1

(
x (i)− x

(
i′
))

gV2

(
x (j)− x

(
i′
))}

(7.82)

and

c
(
i, i′, j, i′

)
= c = EfX

{
gV1

(
x (i)− x

(
i′
))}

EfX

{
gV2

(
x (j)− x

(
i′
))}

. (7.83)

Clearly, c is known from Corollary 5.1.1, which results in

c =V (X | pm,µm,Σ +V1/2)V (X | pm,µm,Σ +V2/2) =

M−1∑
m,m′=0

pmpm′

πN |2Σ +V1|
exp

(
− (µm − µm′)H (2Σ +V1)

−1 (µm − µm′)
)

(7.84a)

M−1∑
m,m′=0

pmpm′

πN |2Σ +V2|
exp

(
− (µm − µm′)H (2Σ +V2)

−1 (µm − µm′)
)

(7.84b)
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On the other hand, a can be obtained through Lemma 5.1 with γ = 0.5, R = R′ = M2,
W = 2Σ, ar = µm − µm′ ,ar′ = µn − µn′ and n′ = m′, which resolves into

a =
1

π2N

∣∣∣∣[ 2Σ+V1 Σ
Σ 2Σ+V2

]∣∣∣∣
M−1∑
m=0

M−1∑
m′=0

M−1∑
n=0

M−1∑
n′=0

pmpm′pnpn′ exp

(
−
[
µm − µm′

µn − µm′

]H [
2Σ+V1 Σ

Σ 2Σ+V2

]−1 [
µm − µm′

µn − µm′

])
.

(7.85)

Since there are M duplicate terms given n′ = m′, a is then simplified as it appears in (5.13).

3. Lastly, we have L (L− 1) /2 terms with i = j and i′ = j′. For these, we have c (i, i′, i, i′) =
c, which is the same as in in (7.84), and

b =
1

π2N

∣∣∣∣[ 2Σ+V1 2Σ
2Σ 2Σ+V2

]∣∣∣∣
M−1∑
m=0

M−1∑
m′=0

pmpn exp

(
−
[
µm − µm′

µm − µm′

]H [
2Σ+V1 Σ

Σ 2Σ+V2

]−1 [
µm − µm′

µm − µm′

])
, (7.86)

which is again obtained through Lemma 5.1 with γ = 1, R = R′ = M , W = 2Σ,
ar = µm − µm′ and ar′ = µm − µm′ .

Finally, by gathering all previous terms we have

Cov
{
ÛV1 (X) ÛV2 (X)

}
= 2

L (L− 1) (L− 2) /2

(L (L− 1) /2)2
(a− c) +

L (L− 1) /2

(L (L− 1) /2)2
(b− c)

(7.87a)

=
4 (L− 2)

L (L− 1)
(a− c) +

2

L (L− 1)
(b− c) (7.87b)

=
4 (L− 2)

L (L− 1)
a+

2

L (L− 1)
b− 4 (L− 2) + 2

L (L− 1)
c, (7.87c)

as it appears in (5.12).

7.4.4 Derivation of (5.49)

For real-valued data, the distribution is the following:

fX (x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (7.88)

whose MIP estimator becomes

Ŵ (X) =
2

L(L− 1)

∑
0≤i<j≤L−1

κv (x(i), x(j)) , (7.89)

where

κv (x(i), x(j)) = exp

(
−(x(i)− x(j))2

2v2

)
. (7.90)
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By following similar steps to the ones in Corollary 5.1.1, the following expectation can be obtained:

EfX {κv (x(i), x(j))} =
√

v2

2σ2 + v2
. (7.91)

By following Proposition 5.2 and (5.22) the variance of this estimator corresponds to

Var
{
Ŵ (X)

}
=

4 (L− 2) a+ 2b− (4 (L− 2) + 2) c

L (L− 1)
, (7.92)

where
a =

w√
(w + 1) (w + 3)

, b =
w√

(w + 4)w
, c =

w

w + 2
. (7.93)

Consequently, the difference between the complex and the real-valued cases is encountered in the
values of a, b and c.

From (7.91), the variance estimator is now defined as

σ̂2 = ξv

(
Ŵ (X)

)
=

v2

2

(
1

Ŵ 2 (X)
− 1

)
, (7.94)

which yields the following approximate estimator variance by following similar steps than those in
(5.34) and (5.36):

Ṽar
{
σ̂2
}
≈ Var

{
Ŵ (X)

} (w + 2)3

w
. (7.95)

Regarding the asymptotic performance, we have from (5.40) that the corresponding large data
size behaviour of the relative variance for the real case is

lim
L→∞

LṼar
{
σ̂2
}
= 4 (a− c)

(w + 2)3

w
= 4 (w + 2)2

(
w + 2√

(w + 1) (w + 3)
− 1

)
, (7.96)

whose limits are
2 ≤ lim

L→∞
LṼar

{
σ̂2
}
≤ 2.4752. (7.97)

The inequality that needs to be fulfilled for the asymptotic case to hold is the same, which is

(b− c) <
1

α
2 (L− 2) (a− c) . (7.98)

By isolating L, the minimum data size now becomes

L >
α

2

((
w + 2−

√
w
√
w + 2

)√
w + 3

√
w + 1(

w + 2−
√
w + 1

√
w + 3

)√
w + 4

√
w

)
+ 2, (7.99)

which, by assuming a sufficiently low value of w it yields the following simplification:

√
w >

α

L

( √
3

2
(
2−
√
3
)) , (7.100)

as we wanted to show.
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7.4.5 Expectation of the sample variance under the contaminated model

The sample variance estimator, under the U-statistics standpoint in Example 10.2, is written as
follows:

σ̂2
S =

2

L(L− 1)

∑
0≤i<j≤L−1

1

2
|xε (i)− xε (j)|2 . (7.101)

Given that every term within the summation is i.i.d., the expectation of the estimate is:

EfXε

{
σ̂2

S
}
=

1

2
EfXε

{
|xε (i)− xε (j)|2

}
. (7.102)

From the model in (5.50), and given that the additive outlier process is independent from X , we
then have the following:

EfXε

{
σ̂2

S
}
=

1

2

(
EfX

{
|x (i)− x (j)|2

}
+ EpYε

{
|z (i) y (i)− z (j) y (j)|2

})
(7.103a)

= σ2 +
1

2

(
EpYε

{
|z (i) y (i)|2

}
− 2Real

{
EpYε {z (i) z (j) y (i) y

∗ (j)}
})

(7.103b)

= σ2 + EpY

{
|y (i)|2

}
EpZ

{
|z (i)|2

}
− |EpY {y (i)}|

2 |EpZ {z (i)}|
2 (7.103c)

= σ2 + ε
(
σ2
y + µ2

y

)
− ε2µ2

y = σ2 + ε
(
σ2
y + µ2

y (1− ε)
)
, (7.103d)

as it is written in (5.52).
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