
 

 

Machine learning algorithms for 5G 

optical networks 

 

 

Doctoral Thesis By: 

Asmaa Ibrahim 

 

 

Thesis supervisor: 

Josep Prat 

 

 

A thesis submitted in fulfillment of the requirements for the 

degree of Doctor of Philosophy in the 

Department of Signal theory and communications 

Barcelona, Spain, March, 2023



  
 
 
 

                                                                             

 

 

 

 

 

 

 

 

 

 

 



  
 
 
 

                                                                             

 

 

Acknowledgment 
 

 

During the journey of this thesis many events and hard times passed, and finally all it 

ends up.  

First, I Would like to thank Allah for his guidance and all the blessing in every single 

moment and step in my life.   

I would like to thank Prof Josep Prat for his continuous support from the first day he 

accepted this supervision. Since then, he guides me patiently with his immense 

knowledge, and motivates me a lot as he gave me the opportunity to work on recent 

research topics in an amazing research environment. 

I would like to thank my husband, Amir, for his great support during this journey, his 

amazing support always pushes and motivates me. Although the struggled times we 

passed through, being with me is always a blessing. I am grateful to have him. 

I would like to acknowledge the help of Dr Tawfik Ismail, Ahmed El Sheikh and 

Ahmed Abdel Salam in this work as co-authors for the published papers. And to extend 

a special thanks for Dr Ahmed El Sheikh for his continuous help over fifteen years.  

As in every step forward in my life, I cannot forget that this achievement could not 

have been possible without the support of my family: my parents, Eman and Ibrahim, 

and my sisters, Engy and Arwa. They supported me spiritually throughout writing this 

thesis and my life in general. And extend these thanks to my husband Amir. 



  
 
 
 

Abstract 

     

                                                                             

 

 

 

Abstract 

5G networks have envisioned to support diverse services with different quality 

of service (QOS), this arises 5G network slicing as a key enabler for 5G network 

revolution, so network slicing has been proposed as a promising technique that enables 

multiple virtual networks to be established on top of a common shared infrastructure. 

Hence, the Cloud Radio Access Network (C-RAN)  has been proposed in 5G network 

to simply use SDN concept, as it is mainly based on fundamentals of decentralization 

the data plane. C-RAN consists of two main parts: Base Band Unit (BBU) and Remote 

Radio Heads (RRH). Moreover, 5G network mainly proposed two optical 

communication schemes for indoor and outdoor communication. The first scheme is 

the optical distribution network in C-RAN, as the transport network affects the 

capacity, latency, and level of intelligence of the network. Therefore, development of 

architectures, technologies, interfaces, and networks for 5G fronthaul has gained 

significant attention in the last few years. Optical Networks (ON) is considered as the 

best candidate for the 5G fronthaul network as it offers a reliable fronthaul network for 

many RRH in a cost and energy efficient manner and satisfies the capacity and delay 

requirements. The second scheme is Visible light communication (VLC) and it is 

proposed as a promising technology for wireless communication systems that promises 

to overcome the crowded radio spectrum and accommodates the increasing demand for 

data services in indoor areas. 

Based on comprehensive study of the research opportunities in 5G networks, 

this thesis provides contributions in overcoming challenges of 5G networks in three 

phases. Firstly, addressing the noncoherent optical modulation in 5G optical networks 

and deploying the artificial intelligence capabilities to enhance it. Secondly, proposing 

an interference management scheme for indoor optical networks. Finally, introducing 

BBU-RRH assignment and interference management scheme that targeting power 

enhancement and handover reduction. 

The first phase of this thesis introduces optical modulation schemes based on 

neural network architecture, regression decision tree and filter bank multicarrier 

technique. First, optical wireless and radio front-haul communication systems are 

deemed as potential technologies to the radio frequency wireless communications in 

several applications. Consequently, the clipped non-coherent optical modulation 
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techniques have gained significant attention. The trade-off between the spectral 

efficiency and the power efficiency of the benchmark techniques such as asymmetrical 

clipping optical OFDM (ACO-OFDM) and direct clipping optical OFDM (DCO-

OFDM), pose a challenge of maintaining enhanced spectral and power efficiency for 

the design of the optical modulation techniques. In this section, we propose a deep 

neural network (DNN) based optical transceiver. It uses simple but efficient DNN to 

predict the clipped negative parts of the transmitted signal at the receiver side. We 

evaluate and analyze several DNN-based optical transceiver architectures for different 

performance aspects. Then, we propose regression decision tree (RDT) based optical 

transceiver, that predicts the transmitted signal at the receiver side. The proposed 

transceiver compensates for the clipping noise produced by clipping the negative parts 

of the transmitted signal. We evaluated and analyzed the RDT based optical transceiver 

architectures for different performance aspects and compared the results with 

benchmarks techniques and alternative deep neural network (DNN) transceiver. The 

proposed optical OFDM transceiver enhances spectral and power efficiency compared 

to the latest works. Finally, Filter bank multi-carrier (FBMC) is considered a promising 

alternative to the Orthogonal Frequency Division Multiplexing (OFDM) scheme. It 

improves spectral efficiency by eliminating the need for cyclic prefix while attenuating 

interference due to the robustness of the out-of-band emission. In this work, we present 

a framework, and the performance evaluation of FBMC is a multi-carrier modulation 

scheme for the direct detection of optical communications. As the proposed model has 

higher spectral efficiency than the classical ACO-OFDM, removing the guard interval 

enhances the spectral efficiency. Furthermore, the perfect rectangular pulse shaping and 

eliminating the out of band emission of the filter bank enhances the ACO-FBMC the 

BER performance of the ACO-OFDM. We propose a transceiver model for 

Asymmetrical Clipped Optical FBMC (ACO-FBMC) based on Fast Fourier Transform 

(FFT) operations, analyze inter-frame interference, and offer an iterative receptive 

method to eliminate it. Finally, we compared the bit error rate (BER) performance of 

the ACO-FBMC using different overlapping factors with the ACO-OFDM. 

The second phase of this thesis addresses the problem of interference 

management in indoor optical modulation. In VLC systems, the coverage area is 

divided into multiple atto-cells. In each atto-cell, multiple LED arrays are used as 

access points (APs) serving the assigned users. The coverage area of APs might be 

overlapped to avoid service discontinuity for mobile users. The overlapped coverage 

zones result in co-channel interference (CCI). We  develop a shared frequency reuse 

(SFR) technique to minimize interference and maximize the system throughput. This 

technique divides the overall bandwidth into two parts: the shared and the reused bands. 

The shared band serves the users in the interference area while  the reused band serves 

users in the non-interfering area. Then we study and evaluate the system performance 
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in terms of the signal-to-interference and noise ratio (SINR), total throughput, and the 

outage probability. The proposed system achieved total throughput of up to 800 Mbps 

with 40 dB SINR at the cell edge. Furthermore, the outage probability can be optimized 

to its minimum value when the receiver field-of-view (FOV) is taken by 40𝑜 when the 

minimum SINR is 10 dB. 

In the final phase of this thesis, we address the RRH-BBU assignment and 

interference management in optical fronthaul network. In this section, we proposed 

RRH-BBU assignment based on clustering algorithm that targets minimizing the power 

consumption and the inter BBU handover. The proposed algorithm computes the 

required number of  installed BBUs to accommodate the maximum traffic load, deploys 

time series clustering as temporal clustering method, and applies DBSCAN algorithm 

to divide each temporal cluster into several spatial cluster based on the cell location. 

Then the problem of assigning RRH of each cluster is described as a bin packing 

optimization problem to find the optimum number of BBUs for each cluster. The 

proposed algorithm has been validated using real world CDR of Milan city and it is 

verified by the published Milan land use map. The inter BBU handover signals have 

been enhanced by assigning near RRHs to the same spatial cluster and same BBU, to 

avoid inter BBU handover. The accurate handover rate can be computed using the user 

mobility between different RRHs, as stated we provide the algorithm without 

computing the handover rate due to lake of user mobility data.  It is showed that the 

algorithm reduces the total power consumption of the current deployed network by 

28.8 %, by assigning all the active RRHs to certain BBUs based on the traffic load and 

switching off the unassigned BBUs.
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Chapter 1 : Introduction 

1.1 5G networks 

In this section, we present fundamental concepts and techniques of 5G networks as 5G 

approaches, features, software defined network (SDN), network function virtualization 

(NFV), cloud radio access network (CRAN). 5G network architecture has two main 

approaches. 

I. evolutionary approach  

As the 5G must scale up and improve the mobile network 

performance in terms of the number of served devices, traffic 

volume, the system throughput, heterogeneous networks (HetNet) 

have been proposed as a solution to achieve these enhancements. 

HetNets are basically composed of different cells in terms of the 

coverage area as (Macro cell, Pico cell, Femto cell,..) and radio 

access techniques as (mm wave, micro wave, ..) as shown in Fig. 1-

1. Deploying these small cells improves the capacity and the 

coverage of the cellular network by utilizing the spatial reuse of the 

spectrum [2]. 

 

II. Service oriented approach  

 
FIGURE 1-1. Network architecture of HetNets [13] 
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5G is planned as a multi service supporting different services with 

different quality of service (QOS), as shown in Fig. 1-2.  

a.  Enhanced Mobile Broad Band (eMBB) which requires huge 

enhancements in the throughput and user data rate supported by the 

current cellular network.  

b. Ultra Reliable Low Latency communications (URLLC) as 5G is 

envisioned to support new services require low latency and high 

reliability as the critical communications in health care sector, for 

example.  

c.  Massive Machine Type Communications (MMTC) as 5G has to 

serve massive number of Internet Of Things (IOT) devices with 

small payloads [2]. Different techniques and network architectures 

have been proposed to achieve 5G network requirements.  

 

In this section we will introduce several techniques and show its facilities to 

enable 5G networks, these techniques have been introduced as the basic partners for 

5G networks [12]. 

 
FIGURE 1-2: 5G Network Slicing [11] 
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1.1.1 Network slicing network 

 

  Network slicing has been proposed as a promising technique that enables 

multiple virtual networks to be established on top of a common shared infrastructure, 

so 5G network must have the ability to virtualize the underlying infrastructure and 

provide isolation among different services. Different organizations proposed different 

architectural visions that can accommodate the 5G network requirements as one fits all 

architecture can not support the 5G services. The Next Generation Mobile Network 

Alliance (NGMN) envisions the 5G architecture as flexible software network, that 

enables different virtual networks to be created on top of common physical 

infrastructure. Unlike initial proposals of network slicing which consider slicing for 

only core network (CN), NGMN defines the End- to- End (E2E) slicing that can be 

reached with slicing core network (CN) and radio access network (RAN). Its 

architecture is based on service management and orchestration (MANO) entity that 

plays the central role of orchestration [2], [3]. NGMN architecture mainly divided the 

5G network into three main layers as shown in Fig. 1-3.  

I. Infrastructure resources  

II. Business enablement 

III. Business application 

 The E2E MANO orchestrate the whole process in central manner, this architecture 

considered as a general architecture. 5G public private partnership (5G-PPP) shares the 

 
FIGURE 1-3: 5G Network layer architecture [11] 
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same architecture and offers more detailed functional layers as its architecture divided 

as  

I. Infrastructure  

II. Network function 

III. Orchestration  

IV. Business function  

V. Service function 

Unlike NGMN architecture, 5G-PPP propose the orchestration as separated layer not 

in central manner. Mapping 5G-PPP architecture to NGMN architecture shows that the 

NGMN business enablement layer is divided into network and orchestration layers, 

while business application layer is divided into business function and service function. 

Network slicing of the proposed general architecture is introduced as slicing for each 

layer by defining the main function of each layer and the slicing of it. 

1.1.2 NGMN architecture 

NGMN architecture mainly divided the 5G network into three main layers  

A. Infrastructure resources  

This layer responsible for deployment, control, management and 

allocation of physical network resources including CN and RAN. For 

CN slicing, due to different constraints and needs of different slices the 

central cloud infrastructure cannot be used . Some architectures propose 

a mix of central and edge cloud schemes where the resource can be 

allocated to either of them based on the slice requirements. As URLLC 

slice needs low latency links that can be provided by the edge cloud 

part. On the other hand, the RAN composed of different LTE and Wi-Fi 

base stations has to be flexible to offer different services to different 

slices. The cloud RAN has been proposed as a promising technology 

that provide the RAN with high flexibility as shown in Fig. 1-4. As it 

composed of central base band unit with multiple remote radio heads as 

will be discussed.  
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B. Network function  

This layer offers End-to-End slicing according to the requirements of 

each slice by layer performing all the operations that are related to the 

configuration and life cycle management of the network functions after 

assigning virtual resources to each slice. 

C.  Service function  

The main difference between slicing in 5G and other technologies is 

the End-to-End nature and need to express services through a high-level 

description and to map it to appropriate infrastructure elements and 

network function. This layer supports this service description to the 

network. There are two different approaches to describe the services, 

the first approach is simply a set of traffic characteristics and service 

level agreements (SLA) like network performance aspects as 

throughput and the latency. While the second approach is more detailed 

that identify specific function and the and RATs that are bundled 

together for the creation of slice. The first approach needs complicated 

orchestrator to identify the network slice from the available data, while 

the second description has simpler orchestrator, but it is less efficient as 

it allows less flexibility for the orchestrator [2]. 

 
FIGURE 1-4. Cloud Radio Access Network (CRAN) architecture [6] 
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1.1.3 5G network features  

To provide different services on common shared infrastructure, 5G network must have 

some features that enable the network slicing as 

I. Flexibility  

That enables on demand configuration of networks slicing without the 

need of fixed contractual agreements.  

II.  Isolation 

 That assures performance guarantees and security for each tenant even 

when different tenants use network slices.  

III. Customization 

 Assures that the allocated resource meets the service requirements.  

IV.  Elasticity  

 Resource elasticity can be realized by reshaping the use of resource by 

scaling up/ down, reallocation resources and reprogramming 

functionality.  

V. Programmability 

 By providing the network with programmable resource as software 

defined network architecture as will be discussed. 
 

1.1.4 Software Defined Network 

In dense 5G network with multiple small cells the Configuration and maintenance 

of servers and network nodes become a complex challenge. Software Design Network 

(SDN) simplifies this complexity by separating the control functions apart from the 

network nodes. SDN defined as the separation between the control and the data plane 

as shown in Fig. 1-5. The control plane constructs the Forwarding Table to forward the 

data, using routing tables produced by different routing protocols, such as the Open 

Shortest Path First (OSPF) protocol. The data plane forwards the data packets between 

different network nodes. In SDN, all the forwarding decisions are taken by the 

controller, so it reduces the computational load on various network devices. The 

network administrator has a global view of the network and can handle the real time 
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changes in the network. Separating network intelligence from physical devices in SDN 

allows parallel development of software and hardware and makes it easier to 

experiment with new ideas and protocols [4].  

 

The Open Systems Interconnection model (OSI model) modeled the data plane with 

a sensible layering, standardized by the International Organization for 

Standardization(ISO). The OSI model enables network applications and services to 

isolate the data operations to a single layer and provide interfaces between layers. Thus 

it seems, similar layering model is essentially needed for networks control and 

management plane, which was not available. This creates SDN architecture decouples 

control from data plane and provides it a new layering model. Open Networking 

Foundation (ONF) is a non-profit industry consortium which has taken the lead in 

standardizing critical elements for SDN architecture. One of these standards is Open 

Flow, which will be covered in the next section. SDN enables network slicing by 

providing the network with hyper-visor, while physically network is untouched). As, 

the hypervisor allows every individual controller to control only their own hosts 

(physical or virtual) on the network without affecting other parts of the network. 

 
FIGURE 1-5. Control Plane and User Plane Separation [6] 
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 As mentioned in the previous section, the communication between network 

devices and the controller is handled through the southbound API of the controller. As 

the most dominant networking technology is the Ethernet, the first standard for SDN 

was created to manage the controlling of Ethernet switches. Open Flow is a 

standardized (by ONF) protocol for SDN supported networks to handle the 

communication between Ethernet switches and the SDN controller as shown in          

Fig. 1-6. Open Flow was derived from SANE and Ethane, which were one of the first 

projects to decouple control and data plane. Open Flow shortly started to become more 

popular and as an open standard, it developed quickly to support more and more 

functionalities. 

1.1.5 Network function virtualization 

Network function virtualization (NFV) provides a new network architecture concept 

that depends on the virtualization of the network functions of a typical server by 

separating this locked-in functions from the hardware components and then gathering 

this separated functions to create communication services. The NFV architecture 

depends on three main components as shown in Fig. 1-7. 

 
FIGURE 1-6.  ONF SDN network slicing architecture [10] 
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I. Virtualized Network Functions (VNFs) VNF are software network 

functions used to manage the network traffic based on specific network 

protocol and network topology on both virtual and physical resources. 

Moreover, the management functions for a specific VNF such as monitoring 

and configuring are performed by Element Management (EM) 

II. NFV Infrastructure (NFVI) includes the hardware resources and the 

software components to manages access to physical resources. By 

producing a virtualization layer to create virtual resources on the available 

hardware.  

III. Management and orchestration (MANO) The MANO is the main part of the 

NFV architecture as it manages the entire life-cycle of the architecture 

infrastructure by releasing and reallocating the resources using the 

virtualized infrastructure manager (VIM). and manages the legacy network 

management tools, interface and interact with the OSS and BSS by VNF 

managers. Moreover, it controls NFV Orchestrator and VNF Managers to 

manage physical and virtual resources in the NFVI using the Virtualized 

Infrastructure Managers (VIMs) [5]. 

 
FIGURE 1-7.  NFV architecture [10] 
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1.1.6 Cloud Radio Access Network (C-RAN) 

As mentioned before increasing the number of the network nodes complicates the 

control operations so the SDN and NFV are introduced to resolve some of the major 

problem associated with 5G network requirements. C-RAN architecture enables the 5G 

network to simply use SDN concept as it mainly based on fundamentals of 

decentralizing the data plane and virtualization. C-RAN consists of two main parts 

Base Band Unit (BBU) and Remote Radio Heads (RRH) as shown in Fig. 1-8. The 

base band resources are pooled at the BBU and allocated at a remote office which 

results in statistical multiplexing gains, energy efficient operations and cost reduction, 

while the RRH representing the transceiver components are distributed along the cell 

and connected to the BBU pool by different access technologies. C-RAN offers to 

improve system architecture by adding more flexibility to the system while reducing 

the cost of network deployment and operation [15].Moreover, the concept C-RAN is 

applied to the heterogeneous networks architecture producing heterogeneous Cloud 

Radio Access Network networks (HCRAN) architecture. In HCRAN we have HetNets 

composed of small cells and macro cells representing the RRH distributed among the 

cell area and connected to the BBU pool which performs the base band operations as 

shown in       Fig. 1-8. 

 

 
FIGURE 1-8.  Heterogeneous Cloud Radio Access Network networks (HCRAN) architecture [13] 
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1.2 Scope and Structure of the Thesis 

Throughout this thesis, we address optical modulation schemes, resource allocation 

and interference management for indoor (VLC) and outdoor (fronthaul) optical 

networks proposed by the 5G networks. 

1.2.1 Optical Multicarrier Modulation 

Firstly, bandwidth requirements, system cost, propagation delay and the 

computational complexity of the RRH, impose trade off to the design of the fronthaul 

transport network. This rises the development of the fronthaul transport network as a 

major challenge in 5G CRAN. Much research considered the optical network, amongst 

many wired and wireless technologies, as the best transport network for the 5G 

fronthaul transport network. As it offers good compromise between low latency and 

the high capacity, even though the compatibility between the optical fronthaul as a 

transport network and the radio networks must be carefully considered. On the physical 

layer level, the multi carrier modulation (MCM) techniques have been proved to have 

best spectral efficiency than the single carrier (SC) techniques. Among MCM 

techniques OFDM dominates the current 4G network, which enables the convergence 

of the optical infrastructure with existing wireless networks. These aspects proposed 

OFDM as a best candidate for 5G optical transport network. Nevertheless, it suffers 

from inter-symbol interference (ISI) and high peak to average to power ratio (PAPR). 

This motivates researchers to investigate alternative MCM technique addresses the 

drawbacks of the classical OFDM. Mainly MCM schemes can be classified on the 

structure level onto orthogonal, bi-orthogonal, and non-orthogonal.  

A. Orthogonal schemes  

They follow the matched filter techniques with orthogonal basis 

function which decreases spectral efficiency as in zero padding (ZP) 

OFDM which eliminates multipath effect by imposing guard interval 

between the OFDM symbols with rectangular basis function. We 

proposed an OFDM modulation scheme that deploys the artificial 

intelligence techniques (Deep Neural Networks, and Decision trees), 

that predict the clipped parts of the optical OFDM and overcome the 

tradeoff between the spectral and the power efficiency of the optical 

OFDM schemes . 
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B. Non orthogonal schemes (FBMC) 

 In the fronthaul network, optical transport network as stated above, 

optical direct detection OFDM/OQAM with RF sub bands split per user 

is an interesting scheme, with the interference reduction, and efficient 

bandwidth allocation per user. We proposed OFDM/OQAM (Filter 

Bank Multicarrier FBMC) on the front haul, which is compatible with 

optical OFDM benchmarks. The proposed algorithm overcomes the 

OFDM challenges as the high peak to average power ratio (PAPR) and 

the CP in the optical networks with high spectral efficiency. 

1.2.2 Interference management schemes 

A. Machine learning algorithms and energy saving scheme for 

transport optical fronthaul network (outdoor optical network) 

Mainly 5G network topology is divided into two sub-networks the 

fronthaul and backhaul network as shown in Fig. 1-9 . The fronthaul 

network is defined as the transport network that communicating between 

the BBU and the RRH, while the backhaul network refers to portion of the 

network comprising the communication links between the core network 

and BBUs. Throughout this study we consider the fronthaul network and 

address its challenges as 5G fronthaul have high latency requirements for 

the transport network. Currently, the fronthaul latency budget does not 

exceed 30µs. We consider the modulation technique (as mentioned) and 

resource management schemes of the fronthaul 5G network as will be 

shown later. We applied orthogonal and non-orthogonal optical 

modulation for optical transport network that enhances the spectrum 

efficiency with reduced processing delay, efficiently assigns 

computational resources for each RRH with machine learning algorithm 

and finally proposes a power saving algorithm by switching off the 

underutilized RRH and BBU. 

We will focus on the CRAN architecture challenges as the functional 

split between the RRH and BBU pool and the resource allocation between 

them. Different typologies of the function split, as providing the RRH 

more capabilities and increases its functionality, adds a challenge as it 

dramatically increases the data traffic between the RRH and BBU. Thus, 

it increases the complexity of the transport fronthaul network. On the other 
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hand, performing more functions in BBU, increase the latency of the 

network as it consumes much more time to support the end user. This adds 

a tradeoff that needs to be studied and handled. As more intelligence need 

to be added to the 5G network we are concerned about applying machine 

learning algorithm, that can adapt the allocation between the BBU pool 

and the RRH according to the network state. Such algorithm needs flexible 

network architecture. 

 

 

The problem of the power arises as a new challenge in the last few 

years, the 5G network must be a green network that saves power and 

consumes clean power sources. Switching off the RRH is proposed as a 

partner for saving network power. We are concerned about the energy 

efficiency challenge, as the proposed architecture supports sleep mode 

for some underutilized RRH and BBU that enables the green network. 

B.  Interference management for indoor visible light communication 

(Indoor optical network)  

 

 
FIGURE 1-9.  5G fronthaul/backhaul network [16] 
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Secondly ,  visible light communication system (VLC) is an emerging 

optical wireless communication technology that is introduced to improve 

indoor coverage and provide high data rates. VLC is preferred over the 

radio frequency (RF) communications due to several benefits, including 

the broad unlicensed bandwidth, low-cost electronic devices, and the 

interference-less connections with the existing technologies. 

For standalone VLC systems, the coverage areas of access points (AP) 

are  overlapped to avoid dead zones, which causes co channel interference 

(CCI) at the user  in the interference area (overlapping area). Hence, 

interference arises as a challenging  problem in the VLC systems, so many 

interference management techniques have been investigated. We 

addressed the interference management in indoor optical network 

proposed by 5G networks (visible light communication scheme VLC). We 

propose an interference management technique that assigns different 

frequency band to the cell edge users to enhance the signal to interference 

plus noise ratio (SINR).  

In VLC systems, the coverage area is divided into multiple atto-cells. 

In each atto-cell, multiple LED arrays are used as access points (APs) 

serving its assigned users. The coverage area of these APs might be 

overlapped to avoid the service discontinuity for mobile users. The 

overlapped zone causes co-channel interference (CCI). Hence, the 

 
 FIGURE 1-10.  5G fronthaul/backhaul network [16] 



  
 
 
 

Chapter 1: Introduction 

     

                                                                             

 

 

interference issue is raised in VLC systems. However, several 

interference management techniques are developed to overcome this 

issue. 

A new shared frequency reuse (SFR) scheme combined with two 

resource allocation (RA) algorithms is proposed to minimize the 

interference and maximize the system throughput in the VLC system. 

The proposed  static resource portioning  technique that shows better 

performance than the unit frequency reuse (UFR) and the static fraction 

frequency reuse (FFR), although some dynamic FFR schemes shows 

better spectral efficiency it  adds some complexities as frequent 

handover and computational complexity. 

1.3 Dissemination of Results  

The novel proposed techniques and schemes presented in this thesis have been 

disseminated through several research contributions.  

The publication list includes: • [T]: Transaction paper • [J]: 2 journal papers. • [C]: 2 

conference papers. 

Also, we achieved the best paper award in OPJU International  Technology 

Conference on Emerging Technologies for Sustainable Development (OTCON) , 2022. 

 

PHASE I : 

Implement the 

OFDM/OQAM with 

different techniques for 

optical communication. 

Published paper: 

Journal paper 

A. A. Ibrahim, J. Prat & T. Ismail “Asymmetrical 

clipping optical filter bank multi-carrier modulation 

scheme,” Opt Quant Electron 53, 230 (2021). 

Conference paper  

B. A. Ibrahim, A. Elsheikh, A. Abdelsalam, J. Prat, 

“Neural Network based Transceiver for Non-

Coherent OFDM Optical Modulation ”, 25th 

International Conference on Advanced 

Communication Technology Transactions 

(ICACT-TACT),  2022. 

C. A. Ibrahim, A. Elsheikh and J. Prat “Non-Coherent 

Optical OFDM Transceiver based Machine 

learning : Regression Tree,” OPJU International  
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Technology Conference on Emerging Technologies 

for Sustainable Development (OTCON) , 2022.  

(Best Paper Award) 
 

PHASE II : 
Develop a resource 

allocation algorithm and 
interference management 

to be used in green CRAN 

based on Machine 
learning algorithms 

Submitted Paper (Transactions paper): 

A. Ibrahim, A. Elsheikh and J. Prat “Big data analysis and 

clustering based RRH-BBU Assignment for Green 

Communication Network,”. IEEE Transactions on 

Cognitive Communication and Networks. 

PHASE III : 
Indoor communication 
techniques 

Published paper (Journal paper):  

A. Ibrahim, T. Ismail, K. F. Elsayed, S. M. Darweesh, and 

J. Prat, "Resource Allocation and Interference 

Management Techniques for OFDM-Based VLC Atto-

Cells", IEEE access, vol. 8: IEEE, pp. 127431–127439, 

2020. 

 

The thesis is organized as follows. In Chapter 2, the proposed orthogonal optical 

modulation using artificial intelligence techniques are introduced. The proposed  non 

orthogonal optical modulation using FBMC are presented in chapter 3. Chapter 4 

presents the interference management of indoor VLC network. The proposed resource 

allocation based big data analytics for green fronthaul network is introduced in Chapter 

5. Finally, conclusions and future work are included in chapter 6. 

https://scholar.cu.edu.eg/?q=tawfik/publications/resource-allocation-and-interference-management-techniques-ofdm-based-vlc-atto-c
https://scholar.cu.edu.eg/?q=tawfik/publications/resource-allocation-and-interference-management-techniques-ofdm-based-vlc-atto-c
https://scholar.cu.edu.eg/?q=tawfik/publications/resource-allocation-and-interference-management-techniques-ofdm-based-vlc-atto-c
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Chapter 2 : Indoor Communication 

schemes in 5G networks : Artificial 

intelligent based Transceiver for Non-

Coherent OFDM Optical Modulation 

2.1 State of the art 

2.1.1 Deep neural network-based scheme 

Among many different access technologies, coherent and non-coherent optical 

communications are considered a perfect partner that bids unlicensed frequency, 

secured communications, and interfered less with the existing technologies [17]. 

Although non-coherent optical communication gained much attention in the last few 

years due to the simplicity in sending data using intensity modulation with direct 

detection (IM/DD), on the other hand, IM/DD imposes more requirements on the 

transmitted signal to have positive and real values [18]. Much research presented 

asymmetrical clipping optical OFDM (ACO-OFDM) and direct clipping optical 

OFDM (DCO-OFDM) as benchmarks techniques that accommodate real positive 

signal transmission.  

Machine learning (ML) can play an essential role in 5G network as it has the potential 

to learn experienced scenarios and predict future scenarios with adaptation to the 

environmental fluctuations. The ML algorithms are mainly classified into three 

approaches, supervised, unsupervised, and reinforcement learning. As the understudy 

case is demonstrated as a prediction problem, the supervised learning algorithms are 

proposed as it can predict and classify outputs based on labelled data while generating 

a rule that maps the inputs to outputs. As supervised algorithms based on regression 

method estimate the relation between the response and the regressor values to predict 

one or more outputs. Recently Artificial intelligence (AI) has been deployed to provide 

solutions that face 5G challenges. In [19], the author proposes analytical and active ML 

techniques that can manage cell fault, where the fault management aims to optimize 

the error in the network as the cell outage. In the optical communications domain [20] 
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proposes a method of training and applying neural network that adaptively decode the 

modulation scheme of the optical camera communication. In [21] the author proposes 

an artificial neural network (ANN) that compensate the effect of linear and nonlinear 

impairments as Gaussian white noise, laser phase noise and nonlinear phase of coherent 

optical communication. In [22] an end-to-end optical modulation design based on deep 

learning is proposed, the proposed model considers pulse amplitude modulation (PAM) 

as base band single carrier modulation.  

In this chapter we addressed the problem of predicting the clipped signal in multi-

channel optical modulation (OOFDM), we describe the problem as a supervised 

regression problem in which the learner predicts the regressor clipped negative signal 

values using the response and the regressor values map obtained in the training phase. 

Our contribution can be concluded as We propose a deep neural network (DNN) with 

multiple hidden layer, and nonlinear activation function that fits the nonlinearity of the 

Fourier series clipping operation, The proposed model combines the power efficiency 

of the ACO-OFDM technique and the spectral efficiency of the DCO-OFDM. 

2.1.2 Decision tree -based scheme 

Scaling up and enhancing the network performance are suggested by the 5G 

evolutionary approach, as  the 5G network must fit the massive number of served 

devices, increasing traffic volume and immense system throughput. The auspicious 

ultra-dense heterogeneous network (HetNet) architecture considered as the best 

candidate for the 5G network architecture, due to its heterogeneity in coverage areas 

along with the access technologies. HetNet proposed different cell sizes as Macro, 

Femto and Pico cells, that support different radio access technologies as infrared radio 

frequency, and optical transmission communication.    For fronthaul connections, 

coherent and non-coherent optical communications have been recognized as promising 

partner among many different access technologies, as optical communications afford 

costless frequency, secured communications, and less interference with the existing 

technologies [24]. Over the last few years, much research acknowledges the non-

coherent optical communication techniques due to its simplicity in transmitting data 

using intensity modulation with direct detection (IM/DD), although the IM/DD obliges 

the transmitted signal to have positive and real values [25]. Principally direct clipping 

optical OFDM (DCO-OFDM) adds DC component to diminish the negative values 

before clipping it; the added DC component significantly influences the bit error rate 

(BER) performance and the power efficiency of the DCO-OFDM. While asymmetrical 

clipping optical OFDM (ACO-OFDM) carries out hard clipping of the odd subcarriers’ 
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negative values to zero whereas it leaves the even subcarriers unloaded to eliminate the 

clipping distortion, the unused subcarriers significantly reduce the spectral efficiency 

of the system [26],[27]. The multi-channel optical modulation problem has been 

proposed in much research, as in [26] the author proposed modulation technique based 

on separating the value and the sign by sending the absolute values and for indicating 

signs it merges labels in a cost-effective manner While, [28] presented a Mach–Zehnder 

modulator (MZM) for non-coherent optical OFDM over BPSK modulation, the 

proposed modulator uses to transmit Hermitian symmetry OFDM signals. Massive non 

coherent optical modulation techniques based on signal processing proposed in 

literature over the few last years. Different non coherent multi modulation techniques 

have been proposed to overcome the tradeoff between spectral and power efficiency as 

[27] presented power OFDM modulation, while we have proposed filter bank 

multicarrier (FBMC) as an alternative to the OOFDM [29] . 

Over the past few years, the machine learning (ML) algorithms have been 

proposed to learn the experienced scenarios of the 5G networks and use environmental 

fluctuations to predict different scenarios [30]. Based on labeled data the ML 

algorithms proposed different classification and regression methods, that can predict 

binary and continuous outputs, respectively. As the understudy case is demonstrated as 

a multi output regression problem, we proposed different multi output regression 

methods that predicts the desired output based on supervised ML concept. As multi 

output regression methods based on supervised algorithms to predict the outputs map 

the relation between the response and the regressor values [25]. 

Recently Artificial intelligence (AI) has been deployed to overcome 5G 

challenges, as managing cell fault, analyzing real time mobile traffic data, etc. [30], 

[31] manages, collects, and analyzes real-time data, the author proposes ML algorithm 

that captures the traffic using the cellular provider's detail records. In [33] the author 

addressed the problem of the linear and nonlinear impairments in coherent optical 

modulation, as artificial neural network (ANN) is proposed to compensate the effect of 

nonlinear phase of coherent optical communication Gaussian white noise and the laser 

phase noise. The authors proposed an equalizer based on NN architecture for coherent 

OFDM optical modulation that shows robustness to DSP non linearities for up to 80 

Gb/s system. In this paper, we propose an AI based optical non-coherent transceiver, 

that over comes the challenges of transmitting real positive values over optical 

transmitters. The AI module presented in this work depends on decision tree models, 

that predicts the clipped received signal to compensate and eliminate the clipping noise. 
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2.2 System model 

 

In the section, we propose our system model that consists of three main modules 

transmitter, receiver, and the AI module. The block diagram of the proposed transceiver 

is shown in Fig. 2-1. The transmitter of the multi-channel optical modulation (MCM) 

technique is represented as the first block. The transmitter functionality is split into 

three parts. First, the transmitted bits are gathered as symbols using an arbitrary 

quadrature amplitude modulation technique (QAM). Then, these symbols are loaded to 

subcarriers with inverse Fourier transform operation. Finally, clipping the negative parts 

of the transmitted signal is performed to transmit it via an optical device. On the receiver 

side, the clipped received signal must be reconstructed as a bipolar signal by predicting 

the clipped part via AI module, that produces a bipolar signal from the transmitted 

unipolar signal. The predicted signal is then forwarded to the Fourier transform block 

to extract the data symbols from the received subcarriers and finally to the QAM 

demodulator to extract the received bitstream.  

 
FIGURE 2-1. A- Noncoherent optical transmitter, B- Noncoherent optical receiver 
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2.2.1 AI module: Deep neural network 

The problem of predicting the clipped parts of the received signal is described 

as a multivariate regression model that involves multiple data variables for analysis. 

Multivariate regression identifies the relation between dependent and independent 

variables using the training data set. Linear, polynomial, and logistic regression models 

are commonly used models under supervised learning algorithms. According to 

Bussgang’s theory clipping the negative parts of the Fourier series at the transmitter 

side is described as nonlinear operation at the receiver side. For the described problem, 

of predicting the clipped parts of the received subcarriers, the hard clipping of negative 

parts represents the nonlinear relationship between the clipped and unclipped 

subcarriers. According to this, we apply and compare the performance of polynomial 

regression model and neural network, representing logistic regression, to fit the 

nonlinear relation between the clipped signal representing the independent variables 

and the unclipped signal representing the dependent variable. Single-layer neural 

network (NN) with nonlinear activation function is considered a direct representation 

of the nonlinear regression model. As fully connected NN with single hidden layer 

applies a nonlinear operation to the weighted sum of the inputs according to Eq. (2.1). 

Where 𝑤𝑖,𝑗 is the weight of each input i with neuron j, 𝑥𝑖 is the activation inputs, 𝑦𝑗 is the 

activation output, and b is the biasing of the hidden layer [20]. Deep neural network 

(DNN) with multiple hidden layers, are commonly used recently due to their learning 

capabilities and enhanced extraction, as DNN offers received signal learning hierarchy 

by forwarding the extracted signal from the first layers to preceding layers, and finally 

combines the highest-level signal to single object at the output layer. 

2.2.2 AI module: Decision regression tree  

We described the prediction of the received subcarriers values as multi output 

regression problem. Multi output regression, also known as multi variate regression, 

aims to identify the relation between multiple dependent and independent variables 

using the labeled data set for training. Multi output regression methods also utilize the 

prediction operation with simpler models in terms of the computational complexity. In 

 

𝑦𝑗 = 𝑓 (∑ 𝑤𝑖,𝑗

𝑛

𝑖=1

𝑥𝑖 + 𝑏) 

                  

(2.1) 
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literature multi output regression can be classified into three main categories problem 

transformation methods, algorithm adaptation methods and multitask learning. 

A. Problem transformation methods 

Problem transformation methods depend on dividing the multi output 

regression problem into independent single output problems, each is 

solved separately using traditional regression solutions. The algorithm 

builds different model for each target to map the relation of each output 

(independent variables) and the inputs. Different methods have been 

proposed to solve multi output regressors as regressor chain [36] and 

multi output support vector machine [37]. The main drawback of these 

methods is ignoring the relations between multiple regressors during the 

prediction process.  

B. Algorithm Adaptation Method 

In these methods all the regressor values are determined using single 

model, this model maps the relation between all the inputs and every 

output. Moreover, it maps the relation between all the outputs 

themselves. The most popular algorithm adaptation methods are the 

SVM and multi target regression tree. Adapted versions of SVM have 

been proposed in literature to add the relation between all the outputs to 

the problem transformation model. While multi target regression tree 

model (MRT) is type of regression trees that can predict continuous 

multiple outputs.  

C. Multitask Learning Method 

Multitask learning methods are special type of the multioutput 

regression problem, as it models different tasks and identifies 

similarities between jointly trained tasks. Unlike the traditional 

multivariate regression methods, the MTL use different data sets for the 

training phase. 

The MRT dominates other algorithm adaptation methods as it offers better 

identification for the dependencies between the different targets. The predictive 

performance of the regression trees can be improved based on the tree ensemble 

algorithm. The ensemble methods create different learners, the consequence ensembled 

multiple learner system enhances the base learner by defining the behavior of the local 

differences.  Enormous methods have been proposed for the multiple learner 

construction, based on varying the training data subset, varying the training parameter, 
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or using totally different learning algorithms. The common approaches depend on 

different training sets are the boosting and bagging. Where, bagging generates multiple 

bootstrapped training sets with different stochastic distributions and performs equal 

weight  voting over single learner.  While, boosting changes the training sets based on 

the performance of the previously trained learner and uses the  weighted voting 

algorithm [35]. The problem of predicting the unclipped subcarriers is  formulated as 

in Equ. (2.1). We previously proposed the neural network architecture [38] to predict 

the clipped subcarriers as shown in Fig. 2-1. Hardware limitations on implementing the 

complex NN motivated this research to find simpler AI architecture in terms of 

hardware implementation and provide good predictivity performance. We propose the 

multioutput regression trees to predict the received subcarriers with accepted hardware 

framework.  

𝑁𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = 𝐹({𝑌1 , … … 𝑌𝑛|𝑋1 , … … 𝑋𝑛}) 

[𝑌^
1 , … … 𝑌^

𝑛] =  𝑁𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑌1 , … … 𝑌𝑛) 

  (2.2) 

  (2.3) 

were 𝑌^
𝑖represent the multi target predicted N received subcarriers, 𝑌𝑖 represent the N 

clipped subcarriers and 𝑋1 unclipped subcarriers for training phase. During the training 

phase the AI module maps the relation between the clipped and the target unclipped 

subcarriers. The mapped function 𝑁𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑒𝑑  , described in Equ. (2.2), is then called to 

predict the received clipped subcarriers during the transmission. 

2.3 Design aspects and experimental configuration 

2.3.1 Deep neural network 

A. Neural network hyper parameters  

The parameters of NN have a tremendous influence on the network 

performance as network size in terms of number of hidden layers and 

the size of each layer influences the network prediction efficiency. This 

adds tradeoff between the network design and the performance, as small  

networks do not bid good performance and large networks may have 

redundant connections on the other hand. [39], [40], [41] proposed 

different optimization algorithms for tuning NN hyper parameter in 

terms of number of hidden layers and the size of each. 

I. Hidden layer size 
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The size of each hidden layer is defined by the number neurons 

in each layer, much research studied the effect of the hidden 

layer size on the NN performance [42],[43]. The hidden layer 

size has a tremendous influence on the NN performance. Using 

few numbers of neurons in each hidden layer causes 

underfitting, while increasing the number of neurons cause 

overfitting for the training data. As shown in Fig. 2-2, the BER 

and the MSE are enhanced with increasing the number of neural 

nodes in the hidden layer till the optimum point and it decreases 

again. However, the curve turning point of the proposed model 

is 256 neural nodes in each hidden layer, we considered 128 

neural nodes as our optimum point as it bids near optimum 

performance with much less complexity. As 128 neural node 

architecture has BER of 6*10-3 and 256 architectures have BER 

of 4*10-3. 

II. Number of hidden layers  

Generally, NN architecture with input and output layers and no 

hidden layer solves linear regression problems, while single 

hidden layer NN architecture can fit any Boolean function 

regardless the input space [44]. Increasing the number of hidden 

layers to one and two layers offers good fitting to the nonlinear, 

additional layer can be added based on the complexity of the 

proposed regression model [45]. We tested the proposed model 

over multiple hidden layer architecture, due to the complexity of 

the understudy problem the architecture of three hidden layers 

shows the better performance over single and double hidden 

layers architecture in terms of BER and MSE. Increasing the 

number of hidden layers decrease the performance due to the 

overfitting problem, as shown in Fig. 2-3. 
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III. Activation function 

 
FIGURE 2-2. BER and MSE with different number of hidden layers, all the hidden layers have the 

same number of neural nodes. The proposed architecture has 128 Neural nodes in each layer, 

PRELU activation function, 4 QAM modulation and 16 subcarriers. 

 

 

 

 
FIGURE 2-3. BER and MSE with different number of neural nodes in each hidden layer, all the hidden 

layers have the same number of neural nodes. The proposed architecture has 3 hidden layers, PReLU 

activation function, 4 QAM modulation and 16 subcarriers. 
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Various nonlinear activation functions add nonlinearity to the 

DNN, as the conventional nonlinear functions sigmoid, hyperbolic 

tangent (tanh), rectified linear unit (ReLU). Recently variate 

versions of ReLU have been proposed as leaky ReLU (LReLU) 

[46] and parametric ReLU (PReLU) [47]. Although tanh and 

sigmoid activation functions are the most popular for nonlinear 

applications, they show poor performance in our study. On the 

other hand, the PReLU shows good performance as it satisfies the 

linearity for positive input parts and nonlinearity for negative 

parts, as shown in Fig. 2-4. 

 

B. Communication system Parameters 

In this section we proposed the effect of the communication system 

parameters on the system performance. We studied the effect of the 

modulation order, subcarrier spacing. 

I. Modulation order 

As increasing the modulation order decreases the decision 

boundaries between each pair of symbols on the constellation 

diagram, consequently increasing the inter symbol interference. 

Although the modulation order does not effect on the NN mean 

 
FIGURE 2-4. BER and MSE with different linear and nonlinear activation functions. The proposed 

architecture has 3 hidden layers, 128 neural nodes in each hidden layer, 4 QAM modulation and 16 

subcarriers.  

. 
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square error, as it is an end-to-end transmission aspect, it effects 

on the received symbol BER. Fig. 2-5 shows the BER 

performance of the proposed architecture under 4 ,8 ,16, and 32 

QAM. As shown, increasing the modulation order decrease the 

system BER as discussed, although it increases the system 

spectral efficiency on the other hand. 

 

II. Subcarrier spacing  

In multi-channel modulation scheme, as OFDM, the channel is 

divided into multiple subcarriers. The subcarrier spacing 

represents the reciprocal of the symbol time, so narrow subcarrier 

spacing causes better channel equalization and robustness. 

Although decreasing subcarrier spacing increases the number of 

subchannels. This imposes more complexity to the NN 

architecture as it increases the number of dependent and 

independent regressors represent the received clipped signal and 

the predicted clipped signals, respectively. This tradeoff in 

choosing the subcarrier spacing adds challenge to designing the 

transceiver system. We tested our system over different subcarrier 

spacing. Fig. 2-6 shows the BER performance and MSE of the NN 

respectively, we run this simulation over the same NN architecture 

 
FIGURE 2-5. BER and MSE with BER performance with 3 hidden layers, 128 neural nodes in each 

hidden layer, 4 QAM modulation and 16 subcarriers. 

. 
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in terms of activation function, number of hidden layers and 

neurons in each layer. Decreasing the subcarrier will increase the 

size of the input and output layer, this requires increasing the size 

of the hidden layers to efficiently extract features in each layer and 

forward it to higher layers. As shown Increasing the input layer 

size over constant hidden layer size will dramatically impact on 

the performance of the NN and the end-to-end performance. 

Consequently, the MSE and the BER performance decreases with 

decreasing the subcarrier spacing. 
 

 

C. Training processing time 

In this section we analyze the training processing time of different 

DNN architecture. The DNN architecture aspects as the number of 

hidden layers and the number of neural nodes. We compared the training 

processing time on AMD PRO A10-8700B R6, 10 compute cores 

4C+6G 1.8 GHZ processor with 16 GB RAM and 64-bit operating 

system. As shown in Fig. 2-7 increasing the number of hidden layers 

and the neural node in each layer increases the complexity of the 

network and increases the training phase processing time. 

 
FIGURE 2-6.  BER and MSE with different subcarrier spacing. 

 

. 
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2.3.2 Decision tree 

In this section, first we introduce comparison between the proposed trained 

algorithm and the benchmarks optical OFDM in terms of BER performance over 

additive white Gaussian noise (AWGN). Then, we discuss the hardware 

implementation possibilities of the proposed transceiver. 

A. Simulation parameters  

All the simulations were done with 10,000 training validation 

samples, with 90 percent as training samples. While 100,000 samples 

were used for testing the system. Over TensorFlow [48] as project 

interpreter with Keras library [49] for machine learning algorithms, 

Pandas library [50] for representing data frames analysis and Scikit - 

Commpy library [51] for representing digital communication techniques. 

B. Communication system parameters 

As mentioned in [34] the subcarrier spacing, and the modulation order 

highly influence the performance of the optical transceiver. Fig. 2-8 

shows the BER performance of the proposed architecture under 4 ,8 ,16, 

 

 
 

FIGURE 2-7. Training processing time with different number of hidden layers and neural nodes. 
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and 32 QAM. As shown, increasing the modulation order decrease the 

system BER as discussed, on the other hand it increases the system 

spectral efficiency. In the proposed transceiver the prediction operation 

adds another dimension of increasing the inter symbol interference, as 

the prediction error increases the added noise. As a result, the BER of 

the proposed transceiver is dramatically affected by increasing the 

modulation order as shown in Fig. 2-8. As shown for low modulation 

order as BPSK and 4 QAM the RDT shows excellent prediction, while 

increasing the modulation order increases the noise and decreases the 

BER. 

Fig. 2-9 shows the BER performance of the NN and DT respectively, 

we run this simulation over the same NN architecture in terms of 

activation function, number of hidden layers and neurons in each layer. 

Decreasing the subcarrier increases the size of the input and output 

layer, this requires increasing the size of the hidden layers to efficiently 

extract features in each layer and forward it to higher layers. For the 

RDT, decreasing the subcarrier spacing increases the number of the 

subchannels, regressors and the responses of the regression operation, 

this increases the computational complexity due to increasing the 

number of inputs and the outputs. The number of the DT increases as 

the number of the predicted targets increases. Moreover, the arithmetic 

operation in each tree increases as the number of the regressors 

increases with low predictivity. As shown in Fig. 2-9 the BER of NN 

shows better performance than the DT for high subcarrier spacing. 
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C. ACO, DCO- OFDM versus DNN and RDT algorithm  

ACO and DCO-OFDM introduce a tradeoff between the spectral 

efficiency and the power efficiency of the optical transmission. The 

ACO_OFDM interleaves the even subcarriers to compensate the 

clipping noise, whereas the DCO-OFDM dramatically increases the 

BER of the received signal due to adding DC component to the 

transmitted signal. On the other hand, the proposed model depends on 

predicting the clipped negative parts by the trained DNN. The trained 

network shows better performance in terms of spectral and power 

efficiency of the optical transmission. Although it adds computational 

and hardware complexity due to the training phase and the AI module 

in the transceiver.  

As shown in Fig. 2-10 the proposed model enhances the BER of the 

DCO-OFDM. Moreover, it compensates the clipping noise by loading 

the data on all the subcarriers and predicting the clipped parts via AI 

module. This results on doubling the spectral efficiency of the ACO-

OFDM. While the regression tree perfectly eliminates the clipping noise 

 

 
FIGURE 2-8. BER performance with different modulation order of neural network has 3 hidden 

layers, 128 neural nodes in each hidden layer, and decision tree. 
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the used modulation scheme as shown in Fig. 2-10, as it shows perfect 

symbol detection with no BER.  

 

D. Hardware implementation  

As the concept of SDN raised in 5G network, the software defined 

network (SDR) implementation of the system transceiver is highly 

motivated. The SDR of the communication systems have three 

approaches field programmable gate array (FPGA), embedded digital 

signal processor (DSP), and general-purpose processor (GPP). 

Traditionally the OFDM transceiver is implemented on FPGA as a 

programmable hardware module, as it offers cost efficient , and high 

flexibility. On the other side, the AI module hardware implementation 

on FPGA has been recently proposed as it offers parallel and high-speed 

designs [52], [53], [54]. Despite these features more research need to be 

investigated to offer various implementation of different AI architecture 

as neural networks and regression decision tree. We propose GPP 

architecture as it provides easier and flexible programmable platform, 

that implements both the AI and the communication transceiver 

efficiently. Raspberry pi 4 board is deployed in the workstation as GPP 

 

 
FIGURE 2-9. BER performance with different subcarrier spacing 4QAM modulation of neural network has 3 

hidden layers, 128 neural nodes in each hidden layer, and decision tree. 

 

 

 

 

 

FIGURE 2-10. BER of DCO, ACO-OFDM and the proposed modulation scheme over additive white 

Gaussian noise channel (AWGN). The proposed architecture has 3 hidden layers, 128 neural nodes 

in each hidden layer, PReLU activation function and 16 subcarriers. 
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to implement the proposed transceiver. As the RPI module is based on 

ARM processor with relatively low capabilities CPU and very capable 

GPU that enhances the processing speed. The proposed transceiver is 

implemented considering wired communications to eliminate wireless 

communication noise, as the RDT is trained in noiseless environment.  

 

 
 

 

 

 

 

 

 

 

FIGURE 2-10. BER of DCO, ACO-OFDM and the proposed modulation scheme over additive white 

Gaussian noise channel (AWGN). The proposed architecture has 3 hidden layers, 128 neural nodes in 

each hidden layer, PReLU activation function and 16 subcarriers. 
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Chapter 3 : Indoor Communication 

schemes in 5G networks  
( Asymmetrical Clipping Optical Filter Bank Multi-Carrier 

Modulation Scheme ) 

3.1 State of the art 

In this chapter, we investigate the physical layer of 5G networks challenges, such 

as bandwidth requirements, system costs, spread delay, and computational complexity 

of the remote radio heads (RRHs) that become trade-offs on the design process of the 

front-line transport network. To achieve this network flexibility, the cloud radio access 

network (CRAN) has been introduced, as it offers a solution by decentralizing the data 

plane and virtualize the network function. In CRAN architecture, the baseband function 

is pooled at the baseband unit (BBU) and allocated at the remote central office. 

Simultaneously, RRH, which represents the transceiver components, is distributed 

along with the cell, and connected to the BBU pool. In C-RAN, the fronthaul links such 

as optical fibers, free-space optic or mmWave that connect the BBU and RRH suffer 

from the capacity, latency, and level of intelligence of the network. This increases the 

development of wireless transport as a significant challenge for 5G network design. 

Many research types have identified the optical network as the best transport network 

for the 5G front-haul transport network, among many wired and wireless technologies. 

It offers a good compromise between low latency and high capacity even though the 

compatibility between the optical fronthaul as a transport network and the radio 

networks has to be carefully considered [56][57]. 

The multi-carrier modulation (MCM) techniques have been proved to have 

better spectral efficiency than the single carrier (SC) techniques on the physical layer 

level. Among MCM techniques, Orthogonal frequency division multiplexing (OFDM) 

dominates the current 4G network, enabling the convergence of the optical 

infrastructure with existing wireless networks [58]. These aspects proposed OFDM as 

the best candidate for the 5G optical transport network. Nevertheless, it suffers from 

inter-symbol interference (ISI) and a high peak to the average to power ratio (PAPR). 

This motivates researchers to investigate alternative MCM technique addresses the 

drawbacks of the classical OFDM. Mainly MCM schemes can be classified at the 

structure level as MCM schemes can be categorized at the structural level into 

”orthogonal,” ”biorthogonal,” and ”non-orthogonal structures.” Orthogonal patterns 



  
 
 
 

Chapter 3: Indoor Communication schemes in 5G networks 

     

                                                                             

 

 

that adopt matched filter techniques with orthogonal base functions reduce spectral 

efficiency in OFDM zero padding (ZP). This eliminates the multipath effect by 

imposing a guard interval between OFDM symbols with a rectangular base function. 

Bi-orthogonal patterns are represented by an orthogonal base function on both sides, 

which contradicts the matched filter approach as the Cyclic Prefix (CP) OFDM. It 

causes a more extended rectangular shape base function on the transmitter of the 

attached data. Finally, this analysis will incorporate non-orthogonal schemes that will 

be introduced throughout this chapter. 

In the front-haul network, the optical transport network, as mentioned above, the 

optical detection of OFDM/OQAM with RF sub bands separated by the user is a 

promising scheme. It reduces interference and efficiently allocates bandwidth per user 

[59]. In the subject matter, presently, we are looking into OFDM/OQAM (Filter Bank 

Multi-carrier (FBMC)) for the front haul and studying its compatibility with the optical 

OFDM benchmarks. Our goal is to address the challenges of OFDM, including the high 

peak-to-average power ratio (PAPR) and the CP that occurs within optical networks 

with high spectral efficiency. The main contribution of this work is the first 

development, to the best of our knowledge, of the asymmetric clipping optical 

transceiver FBMC based on the Fast Fourier Transform (FFT). However, the authors 

use DC optical filter bank multi-carrier (DCO-FBMC in [60]. Their system is affected 

by the computational complexity of the corresponding filtering scheme and the high 

clipping noise. We also introduced an orthogonal dimension other than FBMC for RF 

systems. We then proposed spatial orthogonality between adjacent frames using odd 

indexed and even indexed asymmetrical optical clipping (ACO-FBMC). We modelled 

and eliminated the interframe clipping distortion using the iterative method on the 

receiver side. 

3.2 System model 

In this section, we illustrate the ACO-FBMC system model, as the transmitter 

and the design of the receiver are precisely proposed.  



  
 
 
 

Chapter 3: Indoor Communication schemes in 5G networks 

     

                                                                             

 

 

3.2.1 OQAM-FBMC 

 

The general form of the OQAM-FBMC frames is shown in Fig. 3-1. The 

discrete baseband time OQAM signal can be written as 

 

(3.1) 

 

where Xl,k is the transmitted M-ary QAM signal at subcarrier l and time k, pl,k is the 

transmitted basis function where 

 

  

(3.2) 

 

  

FIGURE 3-1.: OQAM-FBMC frames with 2 and 4 overlap factors. 
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where F is the frequency and time k, unlike the OFDM, the OQAM system loses the 

complex orthogonality. Hence, the complex symbol’s real and imaginary parts have to 

be separated into two frames [62]. 

 

 IFFT Implementation of the FBMC system has been proposed in recent 

research as an efficient implementation. In [61], the author proposed an IFFT 

implementation based on the overlap and add the scheme to shape each subcarrier of 

the OFDM symbol. In this technique the phase θl,k is chosen to be (π/2)(l + k). Based 

on this implementation, the FBMC procedure will first perform IFFT for the QAM 

modulated symbols. Secondly, this frame will be repeated based on an arbitrary overlap 

factor O, representing the number of multicarrier symbols that overlap in the time 

domain, as shown in Fig. 3-2. Finally, the prototype filter is modified in combination 

with the repeated filter to reshape the FBMC frame subcarriers.  

In OQAM-FBMC, multiple frames separated by the T/2- time shift send 

simultaneously. Implicitly, the first frame is carried by the real component, whereas the 

second frame is carried by the imaginary component of the transmitted signal, 

representing the phase orthogonality between the concurrently transmitted frames. 

3.2.2 Transmitter design 

The block diagram of the ACO-FBMC transmitter is shown in Fig. 3-3, where 

the quadrature and in-phase components are processed separately and combined into 

 

 

Figure 3-2: OQAM-FBMC subcarriers 
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an OQAM-FBMC symbol. The transmitter functionality is broken down into three 

main parts. First, OQAM is pre-processed, then combines the FBMC with the ACO 

scheme and, finally, clips the two components and transmits the shifted versions. 

 

The typical bipolar OFDM signal modifies to be sent over intensity modulation 

with direct detection (IM/DD) optical system in the optical domain. As in IM/DD 

systems, the transmitted signal is modulated and carried by the optical carrier’s 

intensity. Accordingly, this requires the optically transmitted signal to be pure real and 

positive valued. Many types of research over the past decade addressed this challenge 

and introduced the unipolar OFDM schemes. Several optical OFDM techniques have 

been developed as the direct current (DC) biased optical OFDM (DCO-OFDM) 

[63][65], the asymmetrically clipped optical OFDM (ACO-OFDM) [64][65]. These 

schemes are based on generating real baseband OFDM signal by enforcing the input 

signal to have Hermitian symmetry. In the DCO system, a DC component is appended 

to the real signal to produce a real positive valued signal, and then it is clipped to 

eliminate the negative parts. The added DC value is a challenge in the DCO system as 

it highly reduces the power efficiency of the DCO-OFDM scheme. In [60], DCO-

FBMC has been proposed along with FBMC transceiver based on the matched filtering 

  

 
FIGURE 3-3. OQAM-FBMC Transmitter 
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process. This system with a complex FBMC transmitter suffers from computational 

complexity and high clipping noise from eliminating negative parts. On the other hand, 

the ACO schemes are based on utilizing only the odd subcarriers and adding zeros on 

the even subcarriers. It has been shown that even subcarriers carry the clipping 

distortion [63]. The ACO-OFDM has high power efficiency and low spectral efficiency 

as only the odd subcarriers carry the data. Therefore, its spectral efficiency is half of 

the DCO-OFDM. The ACO-FBMC, dissimilar to the OQAM-FBMC, carries all the 

data on the only real component of the transmitted data. The clipping distortion affects 

the imaginary component of all transmitted subcarriers. Alternatively, another 

dimension of orthogonality must be added to send multiple shifted frames 

simultaneously. We propose a subcarrier orthogonality scheme to be implemented to 

ensure the orthogonality between the two components of the OQAM signal transmitted. 

In each frame sequence, the first frame will be sent over an odd indexed ACO according 

to (3), as shown in Fig. 3-4. 

 

 

(3.3) 

 

Furthermore, the second frame will be sent over even indexed ACO according to Equ. 

3.4 as shown in Fig. 3-5. 

 

 (3.4) 

 

Mapping the ACO scheme to the FBMC system discussed above produces the 

frames structures shown in Fig. 3-6. This structure verifies Hermitian symmetry, real 

output signal as both Frames are pure imaginary, and finally, it satisfies the OQAM-

FBMC frame structure. Negative parts of the OFDM output frame will be clipped and 

transmitted over the optical device. 
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FIGURE 3-4. Odd Indexed ACO frames. 

   

 
FIGURE 3-5. Even Indexed ACO frames. 

 

 

FIGURE 3-6. ACO-FBMC frames. 
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3.2.3 Receiver design 

At the receiver shown in Fig. 3-7, the received signal is divided into windows, 

each of which is multiplied by a filter and reshaped to multiple segments with the size 

T × O, where T is the symbol duration, and O is the overlapping factor then FFT on the 

first window to produce the first received frame. Partially eliminating inter-frame 

interference is represented by regenerating the transmitted signal by performing IFFT 

on the first received frame to be subtracted from the total received frame. This process 

is repeated until the last frame has been detected. These received frames are used in 

iterative manner to eliminate all the clipping distortion. Fig. 3-8 shows the receiver 

procedure. 
 

 

 

FIGURE 3-7. OQAM-FBMC Receiver 
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3.3 Simulations and results 

This section shows the simulation results of the ACO-FBMC signal transmission. 

The total number of subcarriers is set at L = 32. All simulations were performed on 

Matlab based on Monte Carlo simulations with 10, 000 in iterations. In each iteration, 

the system transmits 8 frames, each separated by T2 , where T is the duration of the 

frame. In the first place, the clipping distorted by the receiver is measured by 

transmitting and detecting signals over the flat channel. As shown in Fig. 3-9, the signal 

 

 

FIGURE 3-8.: The receiver procedure flow chart 
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received after the second iteration of the distortion cancelation has better performance 

than the signal obtained after the first iteration.  

 

Secondly, the BER performance of the ACO-FBMC scheme over additive white 

Gaussian noise (AWGN) is studied using Hermit [66], [67] and PHYDYAS [68] filter, 

as shown in Fig. 3-10. The hermit filter shows better BER performance by only 0.5 db. 

Fig. 3-11 shows the bit error rate (BER) of ACO-FBMC frames with an overlapping 

factor of 8 and the ACO-OFDM. As shown, the FBMC enhances the BER performance 

by 4 dB over the ACO-OFDM scheme as the filter bank shapes the transmitted signal 

as perfectly rectangular and eliminates the out of band emission. Furthermore, it 

enhances spectral efficiency due to CP cancellation.  

 

FIGURE 3-9. Average transmitted and received signals. 
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FIGURE 3-10. BER of ACO-FBMC Hermit and PHYDYAS filter 

 

 

FIGURE 3-11. : BER of ACO-FBMC with 8 overlapping factor and ACO- OFDM 
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Fig. 3-12 shows the overlapping factor on the BER performance as the 

overlapping factor of 8 presents the BER performance, as the overlapping factor O 

characterizes the filter bank and gives different filter windows [69]. Increasing the 

overlapping factor narrows the filter window and increases the robustness to the inter-

frame interference, enhancing the BER performance. On the other hand, it increases 

system complexity. 
 

 

 

 

 

 

FIGURE 3-12.  BER of ACO-FBMC with 2,4,8 overlapping factor 
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Chapter 4 : Resource Allocation and 

Interference Management Techniques 

for OFDM-Based VLC Atto-Cells 

4.1 State of the art 

A visible light communication system (VLC) is an emerging optical wireless 

communication technology that is introduced to improve indoor coverage and provide 

high data rates. VLC has preferred over the radio frequency (RF) communications due 

to several benefits, including the broad unlicensed bandwidth, low-cost electronic 

devices, and the interference-less connections with the existing technologies [71]. In 

the VLC system, the transmitted signal is modulated on the intensity or the phase of 

the optical transmitter. However, intensity modulation (IM) is considered as the most 

suitable technique for the VLC system due to its simplicity. On the receiver side, the 

received intensity-modulated signal is demodulated by the optical detector using direct 

detection (DD) technique. The optical detector generates an electrical signal 

proportional to the intensity of the received signal [70]. 

Optical wireless communication using LED as a transmitter, known as VLC, 

have been deployed for intelligent transport system and smart home networks [72]. 

VLC using LED offers low cost optical wireless communications [73]. Orthogonal 

frequency division multiplexing (OFDM) has been proposed as the most spectrally 

efficient technique that provides a high data rate and significantly improves the system 

capacity due to its robustness to the multipath fading [74]. A VLC system using a white 

LED as a communication source requires a real unipolar signal, so optical OFDM 

techniques have been introduced as asymmetrically clipped optical OFDM (ACO-

OFDM), DC-biased optical OFDM (DCO-OFDM) [75], asymmetrically clipped DC-

biased optical OFDM (ADO-OFDM) [76] and odd clipped optical OFDM (OCO-

OFDM) [77]. In DCO-OFDM, Hermitian symmetry is imposed on all the subcarriers 

that carry the data, which produces a real bipolar signal, then DC offset is added to get 

the unipolar signal. While in ACO-OFDM and ADO-OFDM, only the odd subcarriers 

carry the data to satisfy Hermitian symmetry. However, ADO-OFDM is more optically 

power-efficient than conventional ACO-OFDM and DCO-OFDM [75][78]. In OCO‐

OFDM, Hermitian symmetry is replaced by odd symmetry of Fourier transform, which 

enhances its spectral efficiency for the real‐modulation technique as OCO‐OFDM uses 
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pure imaginary odd input signal to produce pure real odd output. The oddness of the 

output signal adds an advantage to the clipped signal, such that clipping odd real signals 

do not affect its amplitude, and the distortion is added on the imaginary part of the 

subcarrier only. 

In VLC systems, the coverage area is divided into multiple atto-cells. In each 

atto-cell, multiple LED arrays are used as access points (APs) serving its assigned 

users. The coverage area of these APs might be overlapped to avoid the service 

discontinuity for mobile users. The overlapped zone causes co-channel interference 

(CCI). Hence, the interference issue is raised in VLC systems. However, several 

interference management techniques are developed to overcome this issue. In [79], 

traditional unity-frequency-reuse (UFR) is proposed, and the interference is mitigated 

using RF technology in the overlapped area. In [80], the authors introduce a static-

resource-partitioning technique, which uses different frequencies in the adjacent cells 

to eliminate the interference. The static resource partitioning technique effectively 

eliminates the CCI at the cost of reducing the spectral efficiency. Furthermore, the 

interference-aware resource partitioning is investigated in [81], which depends on 

broadcasting a busy burst (BB) from the user intending to receive data in the next time 

slot. The BB adds extra complexity, but it enhances spectral efficiency. In [82], 

different approach of FFR is introduced as a cost-effective technique that achieves 

reasonable spectral efficiency with low complexity. This technique depends on 

assigning different frequency bands to the cell-edge users to mitigate the CCI and using 

the full frequency band for the cell-center user. However, frequent handovers are the 

main drawback of this technique. 

In contrast,  [83] suggested dynamic FFR splitting the cell region into two 

virtual classes rather than separating the users of the cells. Each cell had a supergroup 

covering all cell areas and a regular group covering the cell area by dividing it into 

three sectors. The Radio Network Controller (RNC) dynamically assigns different 

subcarriers to each group and its users based on the SINR of that subcarrier and based 

on the fairness between its users. Super and regular subcarrier groups serve both center 

and edge users in the entire area and the sector. In [84], the authors suggested that the 

dynamic strict FFR would depend on the spatial scheduling of channels that would 

eliminate interference. The cell is dynamically divided into sectors, unlike the strict 

static FFR, which divides it into three static sectors. The Joint Scheduler is used to 

assign channels, divide the cells into sectors, and select the best modulation and coding 

regime. The authors in [85] suggested FFR optical dynamics that interact with the 

interference graph in neighboring cells. This interference graph links all interfered 

access points and used dynamic FFR to increase spectral efficiency in each subgraph. 
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Alternative optical dynamic FFR based on bidirectional double tabu list tabu search 

and interference graph that analyzes the potential interference between users is 

proposed in [86] .The author reached the optimal dynamic scheme by combining the 

interference graph and the bidirectional search.  A static and dynamic multicolor 

scheduler was proposed in [87]. The authors presented a static scheduler that assigns a 

different color to each cell edge to mitigate ICI and dynamic color assignment based 

on linear programming and greedy color assignment to improve cell-edge throughput. 

Also, the authors in [88] proposed interference mitigation in the colored VLC cell, 

which assigns users to each AP based on the minimum distance principle and assigns a 

channel based on the weighted user graph to mitigate the ICI and improve the network 

throughput.  

In this chapter, a new shared frequency reuse (SFR) scheme combined with two 

resource allocation (RA) algorithms is proposed to minimize the interference and 

maximize the system throughput in the VLC system. The proposed scheme and 

resource allocation algorithms are applied over different OFDM techniques in a VLC 

system. The simulation results show that the proposed scheme and algorithms 

improved the signal-to-interference and noise ratio (SINR), total system throughput, 

and the outage probability. Furthermore, the resource allocation algorithms satisfy the 

demand rates with small computational complexity compared to the fixed-rate and 

max-min fairness algorithm, which are proposed in [89] and [90], respectively. 

The contributions are listed as follows : We proposed a static resource 

portioning technique that shows better performance than the UFR and the static FFR, 

although some dynamic FFR schemes show better spectral efficiency it adds some 

complexities as frequent handover and computational complexity. We adapted our 

optimized resource allocation algorithm proposed in [89] and the max min fair 

algorithm [90] to suit the multi cell optical OFDM system in both interference area and 

the cell area. Finally, we compared the proposed interference management under 

different modulation and resource allocation schemes. 

4.2 System model 

 In this section, a system model of the optical atto-cell is presented. This model 

represents the downlink, which consists of one AP acting as a transmitter and multiple 

receivers. The AP could serve several users according to its power, available capacity, 

and coverage area. 



  
 
 
 

Chapter 4: Resource Allocation and Interference Management Techniques for 

OFDM-Based VLC Atto-Cells 

     

                                                                             

 

 

4.2.1 Indoor channel gain 

The downlink channel between the AP and the user equipment (UE) is 

considered as a flat channel like a DC channel gain with considering the line-of-sight 

(LOS) path only and neglects the shadowing and non-line of sight (NLOS) 

transmission [89]. 

𝐺 =
(𝑚 + 1)𝐴𝑝𝑑

2𝜋𝑑2
cos(𝜑)𝑚𝑇𝑆(𝜔)𝑔𝑐(𝜔)cos(𝜔) 

(4.1) 

 

where 𝑚 denotes the Lambertian emission order which is given by: 

𝑚 =
−ln(2)

ln (cos(𝜑1 2⁄ ))
 

(4.2) 

 

where 𝜑1/2 is the angle at which the radiated power reduces to half its value. 𝑇𝑆 is the 

optical filter gain, and 𝑔𝑐 is the concentrator gain, it is given by: 

𝑔𝑐(𝜔) = {
𝑛2

sin(𝐹𝑂𝑉)2
           0 < 𝜔 < 𝐹𝑂𝑉

      0                        𝜔 > 𝐹𝑂𝑉

                 

(4.3) 

 

 

The FOV of the receiver can be adjusted to control the coverage area of each 

AP. The proposed model uses several AP to cover an entire region.  A user can 

communicate with at least one AP, as shown in Fig. 4-1, where 𝜓 is the receiver angle 

of UE at the cell edge, 𝑟 is the cell radius, 𝑅 is the distance between AP and UE, and ℎ 

is the distance between the plane containing the UE and the ceiling. We introduce a 

condition on the receiver’s FOV that minimizes the interference area between the cells 

while keeping no dead zones. Thus, the FOV should be higher than the receiver angle 

of UE at the cell edge 𝜓, where 𝜓 is given by: 

                          𝝍 = 𝐭𝐚𝐧−𝟏 (
𝑹

𝒉
) 

(4.4) 
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4.2.2 Optical OFDM Modulation and Multiple Access 

Intensity modulation with direct detection (IM/DD) technique has been proved 

to be the most suitable technique for indoor VLC systems due to its simplicity and the 

low-cost end devices since the IM/DD technique is a real value unipolar signal.   

In the DCO-OFDM shown in Fig. 4-2 (a), Hermitian symmetry is applied on 

the frequency domain OFDM frame X[k] before the inverse fast Fourier transform 

(IFFT) operation [75]. The Hermitian symmetry requires: 

𝑋[𝑘] = 𝑋  [𝑁 − 𝑘] 

𝑋[0] = 𝑋 [
𝑁

2
] = 0 

(4.5) 

(4.6) 

 

FIGURE 4-1. AP deployment in the simulated room 
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In the DCO-OFDM shown in Fig. 4-2 (a), Hermitian symmetry is applied on 

the frequency domain OFDM frame X[k] before the inverse fast Fourier transform 

(IFFT) operation [75]. The Hermitian symmetry requires: 

𝑋[𝑘] = 𝑋  [𝑁 − 𝑘] 

𝑋[0] = 𝑋 [
𝑁

2
] = 0 

(4.5) 

(4.6) 

 

 

(a) 

 

(b) 
FIGURE 4-2.  (a) DCO (b) OCO Modulation Techniques 
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The DCO-OFDM signal is made positive by adding a DC bias and after the IFFT is 

given by: 

         𝑋′(𝑡) = 𝑋(𝑡) + 𝐷𝐶offset (4.7) 

The DCO-OFDM has relatively high spectral efficiency as all subcarriers carry 

information. However, it has a low power efficiency as the optical (𝑃opt) to electrical 

(𝑃elec) power conversion 𝛾 is affected by the 𝐷𝐶offset  and given by [91][92]: 

𝑃elec =
𝑃opt

2

𝛾2
 

(4.8) 

 

In OCO-OFDM technique shown in Fig. 4-2 (b), a real unipolar signal is produced by 

applying odd symmetry on the frequency domain OFDM frame before the IFFT 

operation [77]. The odd symmetry requires that: 

                   𝑿[𝒌] = −𝑿[𝑵 − 𝒌]                                        (4.9) 

After the IFFT and clipping circuit, the unipolar signal can be generated which is 

represented as: 

                          𝑿𝑪(𝒏) = {
𝑿(𝒏)           𝑿(𝒏) > 𝟎
𝟎                𝑿(𝒏) < 𝟎

                             
(4.10) 

 

 

FIGURE 4-3.   (a) unclipped signal (b) OCO clipped signal 
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As can be seen, the clipping distortion does not affect the unipolar real information 

carried by the subcarrier [92]. 

                                               𝑷𝒆𝒍𝒆𝒄 = 𝝅 ∗ 𝑷𝐨𝐩𝐭
𝟐                                                        (4.11) 

 

4.2.3 Performance Metrics 

A. Signal to Interference and Noise Ratio (SINR) 

SINR for user 𝑘 in AP 𝑢 is given by: 

   SINR𝑘,𝑢

=
𝑅𝑝𝑑

2  
 𝐺𝑘.𝑢

2𝑃elec

∑ 𝑅𝑝𝑑
2  

𝐺𝑘.𝑖
2𝑃elec + 𝑁𝑜

𝑖=𝐴𝑃
𝑖=1.𝑖!=𝑢 𝐵𝑇

                                                           

(4.12) 

where 𝑁𝑜  is the noise spectral density,  𝑅𝑝𝑑
   is the photodector and 𝐵𝑇 is 

the system bandwidth. 

B. System Throughput 

A system throughput is defined as the sum of all rates that are required 

by the users. These required rates are computed bounded by the 

Shannon-Hartley formula. The total rate (𝑅) is defined as the sum of the 

𝐾 user’s rates and it is given by [81]. 

𝑹 = 𝝆 ∗ ∑  
𝑲

𝒌=𝟏
𝑵𝑲 ∗ 𝑩 ∗ 𝐥𝐨𝐠𝟐(𝟏 + 𝑷𝑲𝒏 ∗ 𝒈𝒌)           

(4.13) 

 

where 𝐵  is the bandwidth of a sub-carrier, 𝜌 is the capacity utilization, 𝑔𝑘 

is the DC optical channel gain for user 𝑘 and 𝑃𝐾𝑛 is the power assigned for 

user 𝑘 on subcarrier 𝑛. 

C. The Outage Probability of the System 

The outage probability of a system is the likelihood of the SNR being 

below the threshold SINR𝑡ℎ  and it denoted as: 

                                   𝑷𝐨𝐮𝐭𝐚𝐠𝐞 =  𝑷𝒓(𝐒𝐈𝐍𝐑 < 𝐒𝐈𝐍𝐑𝒕𝒉)                                    (4.14) 
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4.3 Resource allocation and interference management 

In this section, we introduce a radio resource allocation algorithm that provides 

reasonable high capacity while satisfying the user rate requirements for the indoor VLC 

system. Then, we propose a shared-band interference management algorithm that 

compromises the performance of the UFR and the PFR algorithms. 

4.3.1 Resource Partitioning Technique 

A resource partitioning technique is proposed to resolve the inter-carrier 

interference (ICI) problem at the cell edge. In this technique, the covered area is 

partitioned into two regions, non-overlapped and overlapped. The whole band is 

distributed between the two regions. The reused band (𝑁reused) is assigned to the non-

overlapped region and the shared band (𝑁shared) is reserved for overlapped region as 

shown in Fig. 4-4. The shared band is separated to small, dedicated bands 𝑁1, 𝑁2, 𝑁3 

and 𝑁4 and distributed on 𝐴𝑃1, 𝐴𝑃2, 𝐴𝑃3 and 𝐴𝑃4, respectively. In this design, the 

maximum capacity of the system is given by: 

           𝑪𝐦𝐚𝐱 = 𝑩𝑻 [
𝑴𝑵𝐫𝐞𝐮𝐬𝐞𝐝 + 𝑵𝐬𝐡𝐚𝐫𝐞𝐝

𝑵𝐭𝐨𝐭𝐚𝐥

]                                                    
(4.15) 

where 𝑀 is the number of APs. The shared band affects the outage probability as well 

as the overall system throughput. When this band is increased, the outage probability 

and the system throughput are decreased, and vice versa. Thus, a radio resource 

allocation algorithm is proposed to determine the optimal value of the shared band to 

provide better system efficiency. 
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4.3.2 Resource Allocation Algorithms 

Several resource allocation techniques are used to optimally assign the 

subcarriers of the OFDM frame to differentiate users in a multi-user environment. Fig. 

4-5 shows the common resource allocation techniques that can be used with different 

OFDM modulation schemes. 

 

FIGURE 4-4, Resource partitioning of 4 APs 
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Margin adaptive and rate-adaptive algorithms are the two major classes of 

dynamic resource allocation schemes. The margin adaptive schemes focus on 

minimizing the total transmission power and provisioning each user with the desired 

data rate [93]. The rate-adaptive schemes concentrate on maximizing the overall data 

rate and on satisfying the power constraints [94]. The adaptive rate schemes are 

classified into fairness or fixed rate requirements algorithms [95]. Resource allocation 

with fairness algorithms attempts to maximize the total data rate while satisfying 

fairness among the users. For example, proportional-fair [96] and the max-min fair [90] 

algorithms have been introduced to allocate the radio resources. The proportional fair 

resource scheduling technique provides an efficient resource to most users and 

improves the cell-edge user throughputs. While the max-min fairness maximizes the 

minimum rate of the users subject to the link-capacity constraint. In [93], the proposed 

scheme assigns a single carrier to each user and increases the assigned resources to the 

user that has the least rate in each iteration. In contrast, resource allocation with fixed-

rate algorithms maximizes the total data rate while providing each user with its rate 

requirements as in [97].  

We assume that the users are uniformly distributed over the VLC area, and they 

are requesting different rates in the downlink transmission. Accordingly, we modified 

the previous resource allocation algorithms, where each cell assigns its radio resources 

to the attached users in the non-interference area. While in the interference area, the 

 

FIGURE 4-5. Resource Allocation Techniques 
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radio resources are assigned by a central unit. As mentioned before each cell 

contributes with a portion of the total subcarriers 𝑵𝒔𝒉𝒂𝒓𝒆𝒅 and portion of the total power 

𝑷𝒔𝒉𝒂𝒓𝒆𝒅 to serve the users in the interference area and  𝑵𝒓𝒆𝒖𝒔𝒆𝒅, 𝑷𝒓𝒆𝒖𝒔𝒆𝒅 to serve the 

users in the cell area. 

4.4 Simulation and results 

 ITABLE I: Interference management simulation parameters 

 

Parameter  Value  

Room size 5 x 5 x 3 

𝑃𝑜𝑝𝑡  8 watts 

Transmitter semi angle  60o 

Receiver field of view (FOV)  40o 

PD Responsivity   0.28 A/W 

Number of subcarriers  512 

PD area 1 cm2 

Threshold 𝑆𝐼𝑁𝑅𝑡ℎ  10 dB 

Refractive Index of a PD  1.5 

Noise power spectral density  10−21 A2/Hz 

Bandwidth 20 MHz 

Data subcarriers 255 

FFT size 512 

Cyclic prefix 16 

Modulation technique  64 QAM 
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In this section, we present the simulation results of the resource allocation 

algorithms 1 and 2. We consider a 𝟓 ×  𝟓 ×  𝟑 cubic meters room with 𝟒 APs. The 

users are distributed uniformly in the area. In the downlink scenario, the 

communication channels are assumed to be a flat time-invariant channel. We use DCO-

OFDM or OCO-OFDM with 𝟓𝟏𝟐 subcarriers. The maximum acceptable signal 

electrical power of 𝟕 dB DC offset is calculated according to [10, Eq. 5]. Each cell 

contributes 𝟏𝟎% of the total bandwidth in the interference area. Simulation results are 

collected from random positions of 12 users over 10,000 iterations. The parameters that 

are used in this simulation are presented in Table I. 

 
 

 

FIGURE 4-6, Spatial distributions of the received SINR with OCO, ACO, ADO-OFDM 
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. Fig. 4-7 shows the spatial distribution of the SINR with DCO-OFDM. As can 

be seen, the FOV highly affects the SINR. The proposed system is successful in 

achieving an optimum value of the FOV equals 40o, which depends on the room 

geometry and the APs location. 
 

 

 

 

FIGURE 4-7. Spatial distributions of the received SINR with DCO-OFDM 



  
 
 
 

Chapter 4: Resource Allocation and Interference Management Techniques for 

OFDM-Based VLC Atto-Cells 

     

                                                                             

 

 

 

Fig. 4-8 and Fig. 4-9 compare the total system throughput that is achieved while 

applying the different resource partitioning algorithms in the DCO-OFDM and the 

OCO-OFDM techniques, respectively. It can be shown that the UFR and SFR enhance 

the overall system throughput at  𝐅𝐎𝐕 ≤ 𝟓𝟎𝒐. However, the PFR enhances system 

throughput when the 𝐅𝐎𝐕 > 𝟓𝟎𝒐. From figures 4-6, 4-7, 4-8, and 4-9, we conclude 

that it is better to use the proposed UFR and SFR algorithms in the DCO-OFDM and 

OCO-OFDM systems with FOV equal to 𝟒𝟎𝒐. This configuration provides a system 

throughput of 650 Mbps in the DCO-OFDM and 800 Mbps in the OCO-OFDM. 
 

 

 
FIGURE 4-8. Total system throughput with DCO-OFDM 
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Fig. 4-10 shows the effect of different resource allocation algorithms by using OCO-

OFDM with shared interference band, on the total system throughput. As can be seen, 

the overall system throughput is increased with the max-min fairness algorithm while 

the proposed algorithm decreases the overall system throughput due to that some users 

have rate constraints which cannot be satisfied, then the users will be blocked, and the 

capacity utilization 𝝆 ≠ 𝟏. 
 

 
FIGURE 4-9. Total system throughput with OCO, ACO, ADO-OFDM 
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Fig. 4-11, and Fig. 4-12 show the effect of FOV and frequency reuse techniques 

on the outage probability in the DCO-OFDM and the OCO-OFDM schemes, 

respectively. As it can be seen, the outage probability of the PFR and SFR is better than 

the UFR in all modulation techniques as well as, at the optimum FOV (𝟒𝟎𝒐) the PFR 

and SFR provide a zero-outage probability. 

Finally, we can conclude that the PFR, which proposed in this paper with two 

different resource allocation schemes, can achieve a throughput of up to 800 Mbps with 

around zero outage probability at an optimum FOV. 

 
FIGURE 4-10.. Total system throughput with different resource allocation and shared band 
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FIGURE 4-11.. Outage probability with DCO-OFDM 

 
FIGURE 4-12. Outage probability with OCO, ACO, ADO-OFDM 
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Chapter 5 : Big Data Analytics and 

Clustering - Based RRH-BBU 

Assignment for Green Communication 

Network  

5.1 Introduction  

Network architecture is envisioned to support diverse services with low latency 

and high reliability. This arises the concept of the software defined network (SDN) that 

is based on the concept of decentralizing the data plane that allows supporting different 

quality of service over the common shared infrastructure [98]. Heterogeneous 

centralized radio access network (HCRAN) presents the fundamentals of 

decentralizing the data plane by providing base band unit (BBU) pool and remote radio 

heads (RRH), that cover different cell sizes [99]. The CRAN architecture poses 

different challenges as the functionality is split between the RRH and the BBU, the 

fronthaul network and the RRH to BBU mapping. The RRH to the BBU assignment is 

proposed as an optimization problem, as it significantly influence the CRAN network 

efficiency. Many researchers proposed ways of association based on maximizing 

certain objective function. In this paper we present the problem of RRH-BBU 

association with targeting the network power consumption minimization, as a way for 

green communication network in 5G architecture. Power saving constraint is reached 

by switching off the underutilized RRH and BBU. We introduce an RRH to BBU 

assignment that reduces the power and the handover rates between the BBU, the 

problem is formulated as NLP hard optimization problem. The proposed algorithm 

firstly, deployed time series-based clustering technique on the CDR data to study the 

network utilization over the time. Secondly, it provides second level spatial clustering 

that divides each temporal cluster into geographical zones to enhance the inter BBU 

handover rate. Finally, it computes the required number of BBUs for each temporal- 

spatial cluster and efficiently optimize the number of active BBUs using bin packing 

optimization algorithm. The proposed algorithm simplifies the problem by dividing it 

into clusters of joint RRH and BBU.  Parallel processing, enabled by dividing the 

resource allocation for each cluster, divides the optimization problem into multiple 

simplified optimization problems. The problem is divided into two levels, in the first 
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level the RRH are clustered based on real collected call detailed records (CDR) of real 

network. In the second level, based on the clustered RRH, the BBUs are assigned to 

each clustered group of RRH.  

5.2 Literature review and contribution 

5.2.1 Related work  

In this section, we propose the previous work that consider the RRH-BBU association 

problem. The problem is divided into two parts. First, we discuss the proposed research 

of the  BBU RHH assignment problem, then the proposed research of clustering the 

BBU and RRH. 

A. RRH to BBU assignment  

The problem of the RRH-BBU mapping has been proposed in much 

research recently targeting maximizing objective function, as energy 

saving, and fulfil certain constraints, as quality of service (QOS). In 

[105] the author proposed CRAN architecture with separated 

computational resources from the RRH, as the RRH are deployed as 

small cells with only transmission functionalities. The allocation 

problem is described as two-level scheduling algorithm. In the first level 

the resources are assigned from cells to each user, while satisfying 

quality of service (QOS) and continuity of the service. In the second 

level, the problem of assigning resource from each BBU to RRH is 

proposed as an optimization problem, that maintains the power 

consumption and minimizing the computing resources.  The mapping 

of each BBU to RRH depends on assigning physical machine (set of 

BBUs) to all the RRH in its coverage area. The author of [106] proposed 

two stage dynamic resource allocation for CRAN, that assign user 

equipment (UE) to each RRH with power transmission constraint 

jointly with RRH- BBU real time association. The problem of RRH-UE 

assignment is described as Mixed Integer Non-Linear Program 

(MINLP) with signal to interference noise ratio constraints. Based on 

the UE-RRH assignment, the optimal number of the BBU is computed 

in the second phase and the RRH-BBU association is described as 

Multiple Knapsack Problem (MKP) solved by linear solvers. In the 

work of [107] the author proposed BBU assignment that optimizes the 
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efficiency of the BBU pool, the problem is described as a bin packing. 

The assignment of RRH to BBU considers the resource requirements 

and the communication between the RRH by representing the network 

as weighted graph. The algorithm improves the power consumption up 

to 20% and 30% handover reduction by decreasing the communication 

overhead. In [113] the author proposed spatial based clustering 

technique by grouping neighbors RRH, the proposed model minimizes 

the number of active BBU and reduces the number of handovers. The 

problem is formulated as bin packing with Np hard optimal solution, the 

author proposed heuristic algorithm to drive the optimal solution in 

large networks. In [114] the author proposed dynamic BBU 

virtualization scheme that packs the dynamics of traffic load as bins 

with finite computing resources in the BBU. The proposed scheme 

targets minimizing the power consumption of the BBU. While, the 

author of [115] proposed joint activation and clustering scheme that 

maximizes the network coverage with QOS constraints.  

Based on traffic analysis, in [116] the author proposed traffic aware 

RRH-BBU assignment algorithm, the study divided the problem into 

two parts. First, clustering the RHH based on spatio-temporal variation 

model, as the author modeled the traffic load of RRH as an exponential 

function with time varying rate parameter. Then, the clustered RRH 

association with the BBU is described as bin packing optimization 

problem with BBU as bin and RRH as item set. The author proposed a 

dynamic RRH assignment algorithm that offloads RRH from an 

overloaded BBU to a less loaded BBU.  

B. Clustering algorithms  

In this section we propose the related work of different clustering 

algorithms that have been recently used in literature to analyze the 

targeted problem, as the spatial, temporal and spatio-temporal 

clustering. For the perspective of clustering the RRH problem predictive 

data analysis, data mining and AI for decision making based CDR have 

been proposed in different studies recently. [108], [109], [110] propose 

supervised mobile traffic signature trained by prior knowledge of 

ground truth information for specific areas. Whereas in [111] the author 

proposed unsupervised cell classification based on mobile signature 

algorithm that classifies the mobile loads in efficient manner verified by 

ground-truth information, the proposed technique has been applied on 
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real mobile data collected from ten cities. While, in [112] the author 

proposed heat map drawings of the significant human activities based 

on mobile signature characterization without prior knowledge of the 

ground truth information. As geographical mobile signatures are mainly 

driven by the land use, this produces common pattern of user traffic in 

different cities and countries [109] and motivates the spatial clustering 

of the CDR. Accordingly, different research proposed dynamic RRH-

BBU association based on longitude and latitude of the RRH using 

spatial clustering [117]. Residential, entertainment and work zones 

show different traffic load during the week. As residential zones have 

highest during the night hours, while the peak traffic load of work zones 

is during day hour and on weekends for entertainment zones.  

On other side, the temporal clustering of the CDR has been proposed 

in literature, as the human behavior under stationary and normal 

circumstances is periodically repeated and this influences the 

aggregated network load over certain period. The real collected CDR 

shows similar behaviors over certain period. The CDR supported by the 

mobile operator describe the traffic load at specific time stamps, usually 

the network traffic load is captured every ten minutes. The CDR is 

stored as time series at specific time and date. Clustering this complex 

temporal data is a challenge, as the massive data points of CDR 

represents single object. The network load temporal clustering has been 

proposed recently in research considering certain events as planned 

[118] and unplanned events [119]. The author of [120] extended this 

work to include the fine-tuned clustering of snapshots of the traffic 

demand over multiple periods.  The clustering of the times series is 

utilized to discover frequent and rare patterns of the time series. Time 

series clustering propose different tasks as recognizing dynamic 

changes caused by planned and unplanned events as in [118,119], 

predicting future patterns and discovering and classify different patterns 

[121]. In literature the time series clustering methods are classified into 

three types of the whole time series clustering and, the other two 

categories target clustering single long time series based on either 

subsequence clustering or time point clustering [122].   

Different research extended the clustering to include the spatial-

temporal clustering. As we described the CDR of each cell over a week 

as a time series, this data is described as geo-referenced time series with 
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spatial temporal data as it records time changing values at fixed 

locations. The traditional temporal and spatial clustering methods 

represent one way clustering methods, we focus mainly on co-clustering 

that clusters the data in two dimensions. The concept of data matrix 

clustering has been first proposed in [123], later this concept has 

become used in data analysis of different fields as bioinformatics data 

mining and weather temperature records. More researchers extended the 

co clustering algorithms to tri-clustering that considers all the values of 

the recorded data at certain time and fixed location represented by 3D 

data matrix. In [124] the author proposed 2D clustering algorithm 

(BBAC_I) that deals with an average of the data recorded over a year at 

fixed position in a 2D matrix. And extended the work to 3D clustering 

algorithm (BACT_I) that considers the recorded data at each time stamp 

over the total considered time interval at a fixed position represented by 

a 3D matrix.   

5.2.2 Contribution    

Our contributions are concluded as: We propose a novel RRH-BBU assignment 

technique, as we proved that dividing the BBU into two level clusters, based on the 

same clustering algorithm of RRH, reduces the system power consumption and 

decreases the inter BBU handover rate. To the best of our knowledge this is the first 

research extended the RRH clusters to be applied on the BBU in the RRH-BBU 

assignment phase. We propose RRH clustering based on real collected CDR. The RRH 

clustering algorithm is described as time series clustering algorithm that classify RRH 

based on its temporal activity. To the best of our knowledge this is the first research 

describes the CDR as time series. We propose space- time series clustering that 

represents two nested clustering levels based on the CDR and the latitude and longitude 

of each cell. We compute the optimum number of the BBU to accommodate the 

maximum real traffic load for each cluster. And finally we enhanced the system power 

consumption as we extended the sleep mode to be applied on also the BBU based on 

the assignment technique. As we reduce the power consumption by 28.8 %, while in 

literature the author of [107] proposed 20% power saving based on weighted graph that 

depends on user mobilities and neglects the traffic loads. 
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5.3 System model and problem formulation 

In this section, we describe the suggested CRAN architecture for large cities 

and we study the effect of different clustering algorithms for the CRAN architecture on 

the network performance. We propose BBU to RRH mapping scheme based on 

different clustering algorithms and compare their influences on the power consumption 

and the backbone handover rate.  

5.3.1 CRAN based network architecture 

. Optical transport network is considered as the best candidate for the fronthaul 

network, as it connects the BBU and the RRH with reliable and energy efficient 

network that provide low latency, high capacity as it connects massive number of 

RRHs, and scalability [100,101]. On the other side, the functionality split highly 

influence the system performance and the fronthaul network capacity. As the BBU 

performs base band functionalities and located at a remote office while the RRH, 

provides the radio functionalities to the end user scheme increases the rate of the 

fronthaul links [102]. Whereas, in the flexible functional split scheme, which loads the 

RRH with more base band functionalities, enhances the capacity loaded on the 

fronthaul network and the power consumption [104,105]. In CRAN architecture with 

separated BBU pool and RRH and optical fronthaul transport network, we consider 

decentralization scheme of all base band operations at the BBU pool, as the RRH 

performs only the radio operations for the attached user equipment (UE). Based on the 

traffic analysis and user requests the resources of the BBU pool must be allocated to 

each RRH. Mainly the allocation algorithms aim to reducing the network power 

consumption and meeting the quality of service.  

The proposed HCRAN architecture, the radio operations in the coverage area 

of the Femto cells are supported by the distributed RRH, while Macro base stations 

serve the cells with offloaded RRH during sleep modes. As turning off the underutilized 

units highly improves the power consumption, so Macro base stations introduced to 

maintain the radio operations in dead zones during low traffic loads as shown in Fig. 

5-1.  The proposed clustering algorithms aim to grouping some RRH based on specific 

feature and assign resources from the connected BBU to this cluster.  
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5.3.2 Problem formulation 

In the proposed model, we assume M BBUs in the BBU pool with equal 

physical resources and computing capabilities, measured by million operations per time 

slot (MOPTS). The assigned BBU performs all the baseband operations for the attached 

RRHs. The required resources for baseband operations of RRH I depends on the traffic 

load and noted as Ri. Assuming each BBU have C MOPTS and up to N RRHs can be 

attached to each. 

𝐶𝑗 ≥ ∑ µ𝑖,𝑗  𝑅𝑖,𝑗

𝑁

𝑖=1

 
(5.1) 

 

 

FIGURE 5-1.  HCRAN (femto and micro base stations) architecture connected via optical transport 

network to BBU pool 
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Where µ𝑖,𝑗 is the assignment coefficient of RRH i to BBU j 

µ𝑖,𝑗 = {
1     𝑅𝑅𝐻 𝑖 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑡𝑜 𝐵𝐵𝑈 𝑗
0                               𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒  

 
(5.2) 

The power consumption of each BBU represents the base band power, 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐  

represents the dynamic power incurred by the traffic load and can be expressed as a 

linear function of it. 
 𝑃𝐵𝐵 = 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 (5.3) 

                        𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑓𝑖𝑙𝑡𝑒𝑟 +   𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐷𝑃𝐷 + 𝑃𝐹𝐸𝐶 + 𝑃𝐶𝑃𝑈 +

𝑃𝐶𝑅𝑃𝐼  

(5.4) 

 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛽 𝑅 (5.5) 

β is the load–power coefficient and R is the traffic load. 

   

  

FIGURE 5-2. The proposed clustering model for temporal and spatial clusters in CRAN (TS11: spatial 

cluster 1 of temporal cluster 1 ) 
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Where 𝑃𝑓𝑖𝑙𝑡𝑒𝑟 , 𝑃𝑂𝐹𝐷𝑀  , 𝑃𝐷𝑃𝐷, 𝑃𝐹𝐸𝐶 , 𝑃𝐶𝑃𝑈 , 𝑃𝐶𝑅𝑃𝐼 are  the consumed power of the 

filtering, the OFDM transceivers, digital pre-distortion, CPU, encoder,  serial link to 

backbone network, respectively. 

The problem of assigning RRH to each BBU is described as a Bin Packing 

Problem (BPP). That can be solved using Knapsack algorithm, with the RRH as objects 

and BBU capacity as knapsack. Clustering the BBU pool divides this single problem 

into multiple joint optimization problem. The algorithm assigns one item (object) to 

each bin (knapsack) such that the total weights of all objects do not exceed the capacity 

of the knapsack and minimize the number of the used knapsacks (BBUs). 

The proposed network architecture has N RRHs and M BBUs, each RRH can 

be only associated to a single BBU. The mathematical formulation of this problem, 

described by equ. (5.6),(5.9), represents an optimization problem that minimizes the 

number of active BBU with capacity constraint. 

 

                                     𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒           ∑ 𝐵𝑖

𝐾

𝑖=1

 

                  

(5.6) 

  

Subject to        ∑ 𝑤𝑗µ𝑖,𝑗
𝑘
𝑗=1 ≤ 𝐶𝑖𝐵𝑖     i є {1,..,n} 

 

(5.7) 

                         ∑ µ𝑖,𝑗
𝑁
𝑖=1 = 1             j є {1,..,k} (5.8) 

 

 

     where        𝐵𝑖 = {
1    𝑖𝑓 𝐵𝐵𝑈 𝑖 𝑖𝑠 𝑢𝑠𝑒𝑑
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(5.9) 

                                 𝑤𝑗 ≤ 𝐶           (5.10) 

Where Ci represents the resources of the BBU i and 𝑤𝑗 represents the weight of the 

resources assigned from each BBU to all attached RRHs. The first constraint  in ensures 

that the  total assigned resources for all RRH attached to the BBU i are less than the 

total available resources at this BBU. While the second constraint  verifies that each 

RRH must be served and attached to single BBU. 

5.4 The proposed algorithm  

The proposed problem described as multi objective optimization problem, that 

targets minimizing the network power consumption and the handover between the 

BBUs. The algorithm depends on first temporally clustering the BBUs and the RRHs 
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based on the CDR, which enables switching off the BBUs and RRHs of each cluster 

during the low traffic periods and minimizing the power. Secondly, spatial clustering 

is performed for each temporal cluster to ensure serving all nearby RRH by certain 

BBUs to minimize the handovers between the BBUs. Finally, the assignment process 

is performed for each cluster individually with reduced computational complexity as 

shown in the algorithm.  

5.4.1 Clustering the BBU & RRH 

In literature the tri-clustering algorithms have been proposed to deal with geo-

referenced time series, these algorithms analyze the CDR at certain instant over the 

time interval at each RRH position. Although for the proposed application the  RRH 

needs to be clustered based on its total activity. Based on this we proposed a two-level 

clustering algorithm that first clusters the CDR of the RRH as a temporal clustering 

then clusters temporal cluster based on the location of the attached RRH. We describe 

the CDR as multi variant time series and refer to the network temporal clustering as 

time series clustering. In which, the whole series clustering is considered as a single 

object and classified based on its similarities. These similarities are measured based on 

different distance measurements as discrete time Wrapping (DTW) and Euclidean 

distance. 
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Algorithm 1 Clustering algorithm 

RHi    :   ith RRH where i є {1,…,n} 

BUj    :     jth RRH where j є {1,…,k} 

TCu    :    uth temporal clustering 

SCt     :     tth spatial clustering 

Riw     :  The traffic load of ith RRH over week w 

NT     :   Number of temporal clusters 

NSP  :  Number of temporal clusters 

No_BBUij     :   Number of BBUs of temporal cluster i and spatial cluster j 

 BBU_RRHij   :  RRH to BBU assignment of temporal cluster i and spatial clusterj 

Begin:  

data processing Riw to define: 

 Cell idi 

 Time intervali 

     Riw =Total activity 

For 3<= n_clusters <8 

 Apply DTW time series clustering (Riw). 

Compute the distortion of each cluster. 

End 

NSP=min (distortion) 

For 1<i< NT 

 NSP= DBscan(cluster(i)) 

End 

For 1<i< NT 

 For 1<j< NSP 

  No_BBUij=max (sum (Riw  )) 

  BBU_RRHij=Bin_packing (Riw  ) 

End  

End 
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 Agglomerative time series clustering algorithm, up-bottom approach, is 

proposed for clustering the CDR of RRH as a temporal clustering. Temporal clustering 

is applied first on the CDR of each RRH, we propose K-means discrete time wrapping 

(DTW) time series clustering. First the dataset is divided into K clusters and randomly 

select k centroids, then apply DTW to assign each time series to the nearest cluster 

centroid and update the centroid based on the new assigned time series. Where the 

DTW clustering finds all possible paths between two time series to provide a distance 

matrix with cumulative minimum distance of the three neighbors. Then it selects the 

minimum distance between two series [126]. In the proposed algorithm the number of 

the clusters is determined by measuring the distortion factors of each clusters number 

to find the optimum number of clusters. 

The proposed spatial clustering algorithm divides the RRH of the CRAN 

architecture into clusters based on the longitude and latitude of each RRH. DBSCAN, 

K-means and many different clustering algorithms are defined to cluster geographical 

data based on the longitude and latitude. DBSCAN is a dense based clustering 

technique that forms a cluster based on dense connectivity analysis. BDSCAN is based 

on identifying a radius of connected area with minimum number of objects for each 

object in a cluster. There are two main parameters for the DBSCAN, as for each point 

of a cluster the neighborhood of a distance (R) must contain at least number of points 

equals (Minpts) [126].  

5.4.2  RRH to BBU assignment  

As mentioned, various RRH to BBU assignment techniques with different 

objectives have been proposed in literature. The objective of power reduction in the 

communication network rises as an application for the green networks with reduced 

power consumption. We introduce an RRH to BBU assignment with power reduction 

and reducing handovers between the BBUs. The problem is formulated as bin packing 

optimization problem that is considered as NP hard problem. The proposed algorithm 

simplifies the problem by dividing it into clusters of joint RRH and BBU.  Parallel 

processing, enabled by dividing the resource allocation for each cluster, divides the 

optimization problem into multiple simplified problems. The best fit bin packing 

optimization is proposed, in which the item is packed into a bin by leaving smallest 

residual space.  

The complexity order of the optimization problem is 𝑂(𝑛 𝑙𝑜𝑔𝑛), where n is the 

number of the available bins (BBUs). The complexity order of the optimization 
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problem based on clustered model with M temporal clusters, Pj spatial clusters in 

temporal cluster j and njk BBU in temporal cluster j and spatial cluster k is given by 

(5.11). 

                                            𝑂(∑ ∑ 𝑛𝑗𝑘 log 𝑛𝑗𝑘
𝑃𝑗

𝑘=1
𝑀
𝑗=1 ) (5.11) 

 

5.5 Results and analysis using real traffic: Milan city 

In this section we present simulation results of the proposed RRH-BBU 

assignment based on clustering algorithm.  

5.5.1 Data 

The CDR of Milan city is used as a case study area to simulate the proposed 

algorithm using big data analytics of collected real mobile traffic. The Italian telecom 

operator shared a CDR record for 10,000 cells with 235×235 m spatial resolution 

covers the area of Milan city [26]. The data records mobile activities sample each 10 

minutes over 2 months from the first of November till the end of December 2013. The 

recorded activities are divided into call activities, SMS activities, and internet 

activities. The data has been processed and stored as data frames with multiple columns 

represent the square id, time interval, and the total activity (aggregated call, SMS, and 

internet activity). Each RRH is served with only BBU and multiple RRHs can share 

the same BBU based on the aggregated traffic load. Each cell is served by multiple 

RRHs, and the proposed CDR is considered as load of single RRH. 

5.5.2 Simulation results  

The procedure of the applied algorithm on the CDR is shown in Algorithm 1, the 

data is processed using big data analytics as Dask data frames [124]. The total activity 

of the cellular mobile user is studied to classify and study the nature of the geographical 

area. First the data is grouped by the square id and time intervals to analyze the traffic 

of each cell over the total period. We propose the observations of a week from Monday 

(4th November) to Sunday (10th November) as a first training set, the time samples 

representing this period are 1008 sample. The samples of each cell are treated as a time 

series producing 10,000 time series to be clustered. The values of the traffic are 
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normalized to ensure accurate measurements, as the cells show records with enormous 

variations. The time series clustering is based on K-Means algorithm that uses DTW 

as similarity metric between different time series. As stated in the algorithm,  the 

number of clusters is determined in iterative manner, and the best number of clusters is 

chosen based on the first minimal distortion level among different number of clusters. 

For the proposed data the cells are clustered into 7 clusters, as at 7 clusters the distortion 

level begins to be constant as shown in Fig.5-3.  

 

Fig. 5-4 shows the cluster centers of the seven clusters and the activity of the 

cells belong to each one. Each cluster center can indicate the nature of the geographical 

area, as clusters 2, and 6 show pure workspace area with low traffic during the week 

ends and high traffic during the weekdays. Whereas cluster 3 represents residential area 

with high traffic load during night hours. Some clusters show different behaviors 

composed of the basic classifications (residential, entertainment, transportation, and 

work area). These different combinations produce different clusters as shown in 

clusters 5, and 7. As cluster 5 shows moderate activities during all the hours of day and 

night, that shows mixed area of workspace and entertainment area. Moreover, it is 

noticed that some cells show low traffic records comparing with other cells as in cluster 

1, and 4. The low traffic  load cells are distributed over the total area of Milan and  

representing areas with low population ratio and transportations. 

  

 
FIGURE 5-3. Distortion of different clustering number 
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The results of the clustering system have been verified by comparing the results of 

the clustering algorithm and the land use of the Milan city. Fig. 5-5.A shows the 

published land use map of Milan city, while Fig. 5-5.B shows the proposed simulated 

temporally clustered cells of Milan using the cell location given in Fig. 5-6. As shown 

in Fig. 5-5, the agriculture area and the green areas represented by cluster1 with low 

normalized traffic at the city edges. Whereas the city center has highest traffic load 

represented by cluster 3 as residential area and cluster 2 as workspaces. Moreover, 

various clusters are shown at the city center representing entertainment and other 

activities as clusters 4, 5, and 7. 

The second phase of clustering represents a spatial clustering for each temporal 

cluster, this cluster phase reduces the handover between different BBUs by assigning 

near RRHs to the same BBU. The accurate handover rate can be computed using the 

mobility of each user between different RRHs, in this work, we proposed the algorithm 

without computing the handover rate due to lake of user mobility data. The DBSCAN 

proposes a spatial clustering based on connectivity with minimum distance between 

different objects. In Milan CDR data the square id represents the cell position as 

telecom Italy shared a map for the distribution of the cell over the covered area as in 

Fig. 5-6.  DBSCAN algorithm is applied on  each temporal cluster individually to 

produce inner spatial clusters. Changing the radius highly affects the number of the 

produced spatial clusters, so this radius must be carefully studied and picked according 

to the case. 
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FIGURE 5-4. Normalized traffic load of different clusters and cluster centers over week (Monday - Sunday) 
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 FIGURE 5-5. A. published Milan land use map /  B. The land use map based on the time series clustering. 
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The cell id is translated into cartesian coordinates based on the published cell 

map given in Fig. 5-6, as shown the distance between two adjacent cells in the vertical 

axis is 100 and 1 in the horizontal axis. According to the Euclidian distance, the radius 

of the connected area, for the used data, adjusted to √2 after normalizing the vertical 

distance to 1. Minimum number of points of each cluster (Minpts) parameter of 

DBSCAN needs to be computed carefully, as it highly influences the number of 

formulated clusters and causes some random points represent the un-clustered points.  

 

Figure 5-6. Milan cell Grid  
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As shown in Fig. 5-7, increasing the Minpts decreases the number of the used 

BBUs. As increasing the Minpts increases the random points, which will be ignored in 

the BBU assignment process. This tradeoff, between neglecting some points and 

increasing the installed BBUs, is resolved by measuring the required BBUs for the 

traffic of the neglected point and compare it with the corresponding number of saved 

BBUs from the neglection.  

As shown in Fig. 5-8, for 3 Minpts the neglected random points save 42 BBUs 

, while it can be served by assigning 21 BBUs. The optimum point is at 3 as  it verifies 

the tradeoff between saving the number of BBU, while serving all the cells. On the 

other side, at 3 Minpts the additional BBUs cannot be included in the turning off BBU 

algorithm, as they serve random points with different temporal behavior. Consequently, 

this scheme decreases the power efficiency of the network, so the performance metrics 

have been studied at 1 Minpts. Fig. 5-9 shows the spatial clustering for single temporal 

cluster (cluster 1), all the near connected cells are grouped in single spatial cluster.  

 

FIGURE 5-7.. The effect of the Minpts of the DBSCAN algorithm on the number of the spatial 

clusters. 
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FIGURE 5-8. The effect of the Minpts of the DBSCAN algorithm on the number of the added and reduced 

BBUs to serve the neglected. 
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 FIGURE 5-9. A. published Milan land use map /  B. The land use map based on the time series clustering. 

 



  
 
 
 

Chapter 5: Big Data Analytics and Clustering - Based RRH-BBU Assignment for 

Green Communication Network 

     

                                                                             

 

 

Table II shows the number of the inner spatial cluster, number of RRHs, and 

number of required BBUs of each temporal cluster. The number of the required BBUs 

is computed based on the normalized traffic required by computing and ceiling the 

traffic of each spatial cluster TRk, according to (5.12). 

 

                   BBU= £ ∑ ⌈∑ 𝑇
𝑃𝑗

𝑘=1
𝑅𝑘⌉𝑀

𝑗=1   (5.12) 

where £ is the mapping ratio between the traffic load and the number of the required 

BBUs.  

 
TABLE II:  Number of spatial clusters and RRHs in each temporal cluster 

Temporal 

Clusters 

No. of BBU Spatial  Cluster No. of RRHs 

1 3 1       3 1 3 

Cluster 1 51 31 24 16 6657  

Cluster 2 15 9 13 5 36  

Cluster 3 56 49 66 27 613  

Cluster 4 75 71 64 32 2319  

Cluster 5 40 31 43 14 249  

Cluster 6 7 2 5 2 10  

Cluster 7 32 22 26 10 116  

Random 

Cells 

- 21 - -   - 168 

 

Table III shows the total number of BBUs and the power consumption of 1, 3 

Minpts clustered system and the un-clustered system. The required BBUs for un-

clustered system using the traffic load of all the RRHs by adding the traffic load and 

ceiling it according to (5.13). 

 

                                       BBU=  £ ⌈∑ 𝑇𝑅𝑢
𝑉
𝑢=1 ⌉ 

 

(5.13) 
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where V is number of the RRHs in the system. As expected, the number of the clustered 

system is higher than the un-clustered system due to the multiple ceiling function used 

in the clustered system, as the assigned number of each temporal cluster must be 

integer. 

TABLE III. Number of BBU in each cluster 

 Clustered system UN- Clustered system 

1 3 

No. of BBU 276 255 226 

Power savings 28.8% 26.89% 0% 

 

The proposed algorithm computes the required number of BBUs for each 

cluster based on the maximum value of the RRHs total traffic. Then, as mentioned, the 

algorithm performs nested loops over the temporal and the inner spatial clusters to 

assign the RRHs to the proposed BBUs. For the study case of Milan, we propose the 

number of the active BBUs over the time. The proposed bin packing assignment is 

performed every one hour based on the maximum traffic load over this time interval, 

as the maximum traffic load is computed and the required number of BBUs to serve 

the required traffic load using bin packing algorithm. Fig. 5-10 shows the number of 

required active BBUs to serve the load demand based on DBSCAN with 1 Minpts, the 

required objectives are achieved on two phases. First, each spatial cluster is treated as 

a single entity to ensure the objective of minimizing inter BBUs handover. The accurate 

handover enhancement rate is computed with user movement scheme between different 

cells. As this data is not shared from the operator, we depend on decreasing the total 

handover rate with grouping all the nearby cells. Then,  the algorithm is performed 

separately on each temporal cluster to decrease the power consumption by turning off 

the under-utilized BBUs over the monitoring time interval (1 week). The power saving 

of DBSCAN algorithm with 1 and 3 Minpts are compared using the average power 

saving in each scheme according to (5.14). 

 

                 Power_saving= 
 𝐵𝐵𝑈𝑢𝑛−∑ 𝐵𝐵𝑈_𝐶𝐿𝑈𝑡

𝑡𝑖𝑚𝑒_𝑝𝑜𝑖𝑛𝑡𝑠(168)
𝑡=1

 𝐵𝐵𝑈𝑢𝑛
 

(5.14) 
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Where BBUUN represents the total BBUs of the un-clustered system, and 

BBU_CLUt represents the total active BBU of clustered system at time t. As shown in 

Table II, DBSCAN with 1 Minpts saves 28.8% of the total power consumption of the 

un-clustered system, while 3 Minpts scheme saves 26.89%. taking into consideration, 

the higher number of installed BBUS in the 1 Minpts scheme. 

Finally, the RRH-BBU assignment as a bin packing problem assignment. The 

assignment problem is divided into multiple problems based on the number of temporal 

and spatial clusters. 

 

 

FIGURE 5-10. . The number of active BBUs over one hour using clustering and traditional schemes 
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Chapter 6 : Conclusion and Future 

Work 
 

Throughout this thesis we addressed 5G network challenges. The non-coherent optical 

modulation tradeoff has been addressed, as we proposed FBMC and artificial 

intelligence-based schemes. The proposed schemes are proved to solve the spectral and 

the power efficiency trade off in non-coherent optical modulation schemes. Then we 

addressed the problem of interference management for indoor and outdoor networks. 

We evaluated the proposed scheme for VLC network and for the fronthaul optical 

network. The proposed schemes show significant enhancement in the network behavior 

regarding the power saving and network management. 

 

6.1 Non-coherent optical modulation schemes 

6.1.1 Artificial intelligent based schemes  

A. Neural network 

Chapter 1 presented non-coherent optical modulation transceiver 

based on artificial neural network. . It is shown that nonlinear regression 

provides the best system performance, over linear and polynomial 

regression, as it offers better feature extraction. Among different 

nonlinear regression activation function the PReLU shows the best 

performance as it offers linearity for positive received signal and 

nonlinearity for the negative parts. Evaluating the communication 

system parameters shows that increasing the subcarrier spacing and 

decreasing the modulation order highly influence the NN size and the 

system complexity.  
 

B. Decision tree 

In chapter 1, we presented non-coherent optical modulation 

transceiver based on decision regression tree, that eliminates the 
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clipping distortion produced by clipping the transmitted signal over 

optical channel. The proposed transceiver overcomes the tradeoff 

between the spectral and the power efficiency of the noncoherent optical 

modulation, by transmitting the symbols over all the subcarriers without 

DC component. The proposed RDT reduces the complexity of the NN 

architecture , moreover it shows better performance and enhanced BER 

for high subcarrier spacing. On the other side, reducing the subcarrier 

spacing highly influences the RDT scheme, as it increases the BER and 

the complexity of the scheme. It is shown that the AI based transceiver 

enhances the BER of the DCO-OFDM, as the BER reaches 10^-3 at 5 

db SNR with the same spectral efficiency. 
 

6.1.2 ACO-FBMC  

While in chapter 2, the optical ACO-FBMC scheme for direct detection 

modulation was presented. We have shown that the proposed scheme eliminates self-

frame interference and suffers from inter-frame interference. Interframe interference is 

eliminated using the proposed iterative receiver. Our transceiver model is based on an 

FFT operation and an iterative receptive method to reduce the clipping distortion. The 

proposed ACO-OFDM removed the guard interval, which increased spectral efficiency. 

Also, the ACO-FBMC enhances the BER performance of the ACO-OFDM with the 

perfect rectangular pulse shaping and eliminating the emission of the filter bank out of 

the band. Our system model has higher spectral efficiency than the classic ACO-

OFDM, as FBMC shows better spectral efficiency by removing the guard interval. 

Moreover, it has been shown that the ACO-FBMC with 8 overlapping factors improves 

the BER performance of the ACO-OFDM by 4 dB due to the perfect rectangular pulse 

shaping and the elimination of the out-band emission of the filter bank. 
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6.2 Interference management schemes 

6.2.1 Indoor VLC interference management  

This section is proposed in chapter 4, we addressed the problem of interference 

management in a VLC indoor system with multi-user access. The performance of the 

system applying the SRF technique compared to UFR and PFR. The results showed 

that the proposed approach improves system performance in terms of total system 

throughput, outage probability, and SINR. It solved the problem of high SINR at the 

cell edge as experienced by UFR and improved the overall system throughput as 

compared with PFR. Moreover, the proposed technique combined with OCO-OFDM 

achieved total system throughput up to 800 Mbps with 12 users, and zero outage 

probability as it enhanced the SINR at the cell edge to 40 dB. 

6.2.2 Interference management for green fronthaul network 

In chapter 5, we proposed RRH-BBU assignment based on clustering algorithm 

that targets minimizing the power consumption and the inter BBU handover. The 

proposed algorithm computes the required number of  installed BBUs to accommodate 

the maximum traffic load, deploys time series clustering as temporal clustering method, 

and applies DBSCAN algorithm to divide each temporal cluster into several spatial 

cluster based on the cell location. Then the problem of assigning RRH of each cluster 

is described as a bin packing optimization problem to find the optimum number of 

BBUs for each cluster. The proposed algorithm has been validated using real world 

CDR of Milan city and it is verified the published Milan land use map. The inter BBU 

handover signals have been enhanced by assigning near RRHs to the same spatial 

cluster and same BBU, to avoid inter BBU handover. The accurate handover rate can 

be computed using the user mobility between different RRHs, as stated we provide the 

algorithm without computing the handover rate due to lake of user mobility data.  It is 

showed that the algorithm reduces the total power consumption of the current deployed 

network by 28.8 %, by assigning all the active RRHs to certain BBUs based on the 

traffic load and switching off the unassigned BBUs.  
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6.3 Future work  

Throughout this work, we addressed major challenges of indoor and outdoor optical 

networks introduced by the 5G network architecture. Firstly, this work can be extended 

to propose more RRH-BBU assignment with different objectives, as we mainly focused 

in our proposed scheme on the power savings and the hand over rate. This has to be 

extended to propose different assignment schemes based on different objectives. 

Secondly, the optical modulation schemes need more research activities to cover 

coherent optical modulation and more studies must be proposed to manipulate more AI 

capabilities. Thirdly, the AI capabilities need to be strongly used in the 5G network to 

enhance the network performance and overcome major challenges, as increasing the 

data transfer rate, and eliminating the system noise.





  
 
 
 

Appendix A 

     

                                                                             

 

 

Appendix A 

In this Appendix, we present the interference analysis derivation of the ACO-FBMC to 

prove that ACO-FBMC frames have distortion at the even subcarriers components and 

the real part of the odd subcarriers, Whereas the imaginary part of the odd subcarriers 

(loaded by the data) are not affected by the clipping distortion. 

The ACO-FBMC performance affected by the two sources of distortion inter frame 

interference and self-frame interference. Hard clipping of transmitted signal causes 

distortion on specific sub-carriers. The clipping distortion interfere with the data carried 

by the same frame and the data carried by the adjacent frames. In this section the 

clipping distortion and its effect on the data carried by the same frame is proposed. The 

FBMC-OQAM transmitted signal is introduced in (1) and 𝜃𝑙,𝑘is the phase to shift the 

interference to the imaginary domain and given by 

 

    (A.1) 

For simplicity the clipping distortion is studied at k=0 for the odd ACO-FBMC frame  

 

    (A.2) 

For discrete time signal x(n) = x(nT) 

Reference to the Bussgang's theorem, the non linear effect of the clipping negative parts 

on the transmitted signal is represented as an additional distortion to the original signal 

[14]. So that, the received signal can be expressed as 

 

    (A.3) 

 

      

   (A.4) 

where D(l) is the clipping distortion and N is the total number of the subcarriers 
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(A.5) 

  

 

   

First, by using the odd ACO-OFDM property x(n + N2 ) = x(N2 − n) and changing the 

variables. It can be shown that 

 

 

  

 

   (A.6) 

Where  

 

      

   (A.7) 

TABLE IV Even and Odd subcarriers 
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(A.8) 

  

So real part of the distortion equals 

 

 

(A.9) 

  

Substituting using values in table 1 for even subcarriers l 

 

 

 

(A.10) 

  

similarly for odd subcarriers l 

 

 

 

(A.11) 

  

 

and imaginary part of the distortion equals 
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(A.12) 

  

Substituting using values in table 1 for even subcarriers l 

 

 

(A.13) 

  

similarly for odd subcarriers l 

 

 

(A.14) 

  
where 

 

 

(A.15) 

for even subcarriers X(l)=0 

 

 

(A.16) 

for odd subcarriers Re(X(l))=0 

 

 

(A.17) 

And 

 

 

(A.18) 

substituting in equ.10 
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(A.19) 

From equ. 16 and equ.20 

 

 

(A.20) 

as (−1)
𝑙−1

2 = −1 for odd l 

 

 

(A.21) 

As proved odd ACO-FBMC frames have distortion at the even subcarriers components 

and the real part of the odd subcarriers, Whereas the imaginary part of the odd 

subcarriers (loaded by the data) are not affected by the clipping distortion. So the 

clipping distortion causes only inter-frame interference as it has distortion on the 

imaginary component of the even subcarriers of the even adjacent ACO-FBMC. 

Similarly, it can be proved that for even ACO- FBMC frames, the clipping causes inter-

frame interference on the imaginary component of the odd subcarriers of the odd 

adjacent ACO-FBMC. 
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