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In the world of digital communication,
Where wireless signals fill the air,

There lies a field of innovation,
Where machine learning techniques repair.

Polynomial and neural network predistorters,
Adaptive and complex they may be,

But with machine learning as their supporters,
Their computational load is set free.

Reduced complexity and DPD training times,
Are the gifts that machine learning brings,
A boon for the engineers and their rhymes,

And the efficiency of wireless things.

Power amplifiers, the heart of wireless might,
Can suffer from distortion and nonlinearity,

But with digital predistortion as their guiding light,
Their efficiency and performance can reach clarity.

And for those who seek knowledge and insight,
In this field of beauty and innovation,
Thesis writing can bring great delight,

As they uncover new ways of predistortion.

So let us honor the beauty and the gains,
Of machine learning in the digital realm,
Where innovation and efficiency reigns,

And the future is at the helm.

white
Poem on the Beauty and Benefits of Machine Learning Techniques in Digital Predistorters, Generated by ChatGPT, a

large language model trained by OpenAI, based on the GPT-3.5 architecture.

The author declares this poem is strictly the only use of chatGPT made over the whole thesis manuscript. May 25th, 2023.
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Abstract
The power amplifier (PA) is a core element in the radio transmitters to support the required
mobile and fixed broadband communication link ranges. However, the PA is a power-hungry and
nonlinear by nature device. Under spectrally efficient wideband modulated waveforms with high
peak-to-average power ratio, the PA energy efficiency is significantly decreased since back-off
operation is needed to meet the transmission quality requirements. Moreover, when employ-
ing highly efficient amplification architectures, like Doherty, load modulated balanced amplifier
(LMBA) or envelope tracking (ET) PAs, the added distortion is left as an issue to be addressed
at system level by a linearizer. In this context, the closed-loop adaptive digital predistorter
(DPD) is a key component of the digital front-end (DFE) to counteract the PA nonlinear re-
sponse under varying conditions and to cope with the inherent trade-off between linearity and
efficiency.

According to the fifth generation (5G) and beyond communication technologies and the pro-
posed radio transmitter and PA architectures, the DPD may have to deal with strong nonlin-
earities and memory effects, in-phase and quadrature (IQ) modulator imbalances and dc offsets,
additional PA supply or load modulation distortion, and multi-antenna PA input and output
cross talk and beam-dependent effects. Such impairments degrade the radio access network
(RAN) energy efficiency, capacity, and the number of potential RAN users due to the increased
in-band and out-of-band distortion. The adaptive DPD can overcome such undesired effects but
faces relevant obstacles. At every new generation of mobile communication systems, the signal
bandwidth is increased and the DPD needs to be operated at higher speed. The DPD challenges
are twofold. On the one hand, combining massive bandwidth operation together with handling
complex multi-dimensional effects may increase exponentially the complexity of the DPD and
make it both commercially unaffordable and energy inefficient due to the increased cost and
power consumption at the DFE and data conversion stages. On the other hand, the adaptive
DPDs need significantly larger training periods to compensate for all the complex undesired
effects.

In line with the above-mentioned challenges, the research presented in this dissertation aims
at guaranteeing best DPD linearity versus efficiency trade-off in complex nonlinear scenarios,
by leveraging on efficiently deployed machine learning (ML) and artificial intelligence (AI) tech-
niques to reduce the computational complexity of DPD modeling and identification at the DFE,
guaranteeing well-conditioned and robust DPD estimation, and drastically reducing the DPD
training times while meeting performance requirements. To accomplish that, several newly ap-
plied and customized ML feature selection and feature extraction dimensionality reduction tech-
niques are combined with new training data length reduction schemes, to ensure both reduced
DPD behavioral modeling matrices and input datasets in single-antenna and multi-antenna
adaptive polynomial and neural network DPD architectures, respectively. To validate the ben-
efits of these contributions in accordance with the previous goals, all these techniques have
been deployed and thoroughly benchmarked under adverse conditions in realistic laboratory
test benches.
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Resum
L’amplificador de potència (PA) és un element central als radiotransmissors necessari per abastar
les distàncies d’enllaç a les comunicacions sense fils de banda ampla mòbil i fixa. No obstant, el
PA és un dispositiu d’elevat consum energètic i de comportament no lineal per naturalesa. Quan
s’utilitzen formes d’ona de banda ampla i gran eficiència espectral que presenten elevada relació
de potència de pic a potència mitjana, l’eficiència energètica del PA decreix significativament
atès que és necessari operar el dispositiu amb un marge de guarda per complir amb els requisits
de qualitat de transmissió. Addicionalment, quan s’utilitzen arquitectures d’amplificació alta-
ment eficients basades en PAs de tipus Doherty, modulació de càrrega d’amplificador balancejat
(LMBA) o modulació d’envoltant (ET), la distorsió afegida es deixa com un problema a resoldre
a nivell de sistema per un linealitzador. En aquest context, el predistorsionador digital (DPD)
adaptatiu de llaç tancat és un element clau del capçal digital de processament ràdio (DFE) per
contrarestar la resposta no lineal del PA en condicions variables i superar el compromı́s inherent
entre linealitat i eficiència.

D’acord amb les tecnologies de comunicació de cinquena generació (5G) i les arquitectures
de transmissor i PA proposades, el DPD pot haver de tractar amb fortes no linealitats i efectes
de memòria, desajustaments de modulador en fase i quadratura (IQ) i desviacions de nivell de
cont́ınua, distorsió addicional per modulació d’alimentació o càrrega del PA, efectes d’acoblament
creuat a l’entrada i sortida dels PAs en sistemes multiantena, aix́ı com efectes que poden de-
pendre de l’apuntament dels feixos de l’antena. Aquestes imperfeccions degraden l’eficiència de
la xarxa d’accés ràdio (RAN), la seva capacitat i el nombre d’usuaris a causa de l’augment
de distorsió generada dins de banda i fora de banda. El DPD adaptatiu pot combatre aquests
efectes no desitjats però s’enfronta a obstacles rellevants. A cada nova generació de sistemes de
comunicacions mòbils l’amplada de banda de senyal s’incrementa i el DPD necessita operar a
majors velocitats. Els reptes imposats al DPD són doblement exigents. D’una banda, combinar
amplades de banda de senyal massives amb haver de modelar efectes complexes multidimen-
sionals pot augmentar exponencialment la complexitat del DPD i fer-lo comercialment inviable i
energèticament ineficient donat l’increment en cost i consum al DFE i a les etapes de conversió de
senyal. D’altra banda, els DPD adaptatius necessiten peŕıodes d’entrenament significativament
més grans per compensar tots els efectes complexes no desitjats.

D’acord amb els reptes esmentats, la recerca presentada en aquesta dissertació té com a ob-
jectiu garantir el millor compromı́s entre linealització del DPD i eficiència assolida en escenaris
amb no linealitats complexes, mitjançant tècniques eficientment desplegades d’aprenentatge
màquina (ML) i d’intel-ligència artificial (AI) necessàries per reduir la complexitat computa-
cional del modelat i la identificació DPD al DFE, garantir una estimació DPD ben condicionada
i robusta, i reduir dràsticament els temps d’entrenament del DPD, sense deixar d’acomplir els
requisits de qualitat de transmissió. Per aconseguir-ho, en aquesta tesi s’apliquen de forma in-
novadora tècniques adaptades de reducció de dimensionalitat ML basades en selecció i extracció
de caracteŕıstiques (features), i es combinen amb nous esquemes de reducció de llargada de les
dades d’entrenament DPD, per garantir tant la reducció de les matrius de modelat comporta-
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mental DPD polinomial com els datasets d’entrada a predistorsionadors adaptatius basats en
xarxes neuronals, tant per arquitectures monoantena com multiantena. Per validar els benefi-
cis d’aquestes contribucions d’acord amb els objectius anteriors, totes aquestes tècniques s’han
desplegat i avaluat minuciosament sota condicions adverses en bancs de proves de laboratori
propers a condicions reals.
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què és l’amor incondicional. No puc expressar amb paraules el que sento per tu i quant feliç em
fas quan estic al teu costat. Aquesta tesi ha estat possible en part gràcies a tú també!
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Chapter 1

Introduction

1.1 Motivation and Scope

1.1.1 Context

The exponential growth of the mobile broadband data requirements since the irruption of new

mobile devices and applications has posed several technical and economic challenges to network

equipment providers and telecom operators. While the network infrastructure technology has

evolved to accommodate the higher capacity demanded by the users at an acceptable quality

of service, the revenue growth has no longer followed the data traffic expansion [Möl10]. Higher

investment in network deployment, increased operational costs, the decoupling between end user

application value and the bit volume and the business monetization sharing with third-party

service and application providers, are factors impacting into this reduced profitability.

Figure 1.1: Visual representation of the mobile data growth due to smartphone adoption and
the deployment and launch of fourth-generation (4G) mobile networks and services [Tay13].

Reference studies provided by the industry are showing that every five years the mobile

broadband data traffic scales by a factor of ten. The information and communication tech-

1
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nologies (ICT) power consumption also scales by a factor of two every five years and its CO2

emission is approximately equivalent to that of airplanes and 1/4 that of automobiles world-

wide [Kha14,Rit20], while the cost of producing the energy is also increasing on average. Spec-

trum efficiency is clearly no longer the only design criteria since energy efficiency represents a

significant opportunity to reduce the total cost of ownership (TCO) of network operators and

contribute to reduce the steadily increasing ICT carbon footprint [Fre21].

Figure 1.2: Global mobile network data traffic and year-on-year growth (EB per month, source:
[Eri22]).

To try to minimize the power consumption in mobile networks and its carbon footprint, while

having to increase their capacity, some general approaches are followed: The first consists in using

energy efficient hardware implementations either in the analog or the digital signal processing

domains targeting the best achievable trade-off between performance and power consumption,

plus additional control software to adapt power consumption to the traffic situation. The sec-

ond is based in intelligent network deployment strategies which typically place the radio access

network (RAN) closer to the end user through smaller cells (with either smaller base stations or

distributed base stations with remote radio head capability) to reduce the high transmit power

energy implications and increase the capacity at the expense of demanding effective spectrum

reuse and interference mitigation techniques and imposing further stringent backhaul equipment

requirements. This approach is shown in the heterogeneous cloud CRAN (H-CRAN) architec-

ture depicted in Fig. 1.3, which allows also distributing the classical base station or e/gNodeB
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(e/gNB) building blocks by flexibly grouping PHY layer, MAC and RLC functions into different

logical nodes or hardware (i.e., radio unit, distributed unit, centralized unit) according to the

network requirements [Mio18]. As seen in [Bar17b], by flexibly distributing the processing load

in reconfigurable splits it is possible to obtain energy savings in the radio unit. Finally, a third

approach gaining attraction is also the use of renewable energy sources for RAN infrastructure

both on-grid (powered from solar, wind and water sources) and off-grid deployments powered

through on-site photovoltaic panels. This approach is combined with smart litium batteries and

liquid cooling to reduce the need for air conditioning.

Figure 1.3: Resource sharing levels in H-CRAN architecture (source: [Mar15]).

In order to put the thesis research work in its technical context, the RAN and the radio equip-

ment building blocks need to be introduced. The RAN may be defined as the main infrastructure

used by the users in mobile broadband data networks covering the radio communication between

the user equipment (UE, i.e., smartphones, mobile broadband modems, customer premises equip-

ment, etc.) and the cellular base stations (BS), and the backhaul network connecting the base

stations to the core network deploying secure connectivity and communication services to end

users. Such basic components are shown in Fig. 1.4. The block diagram of a traditional 4G

frequency division duplexing (FDD) base station or base transceiver station (BTS) is shown in

Fig. 1.5 for illustrative purposes to introduce the most relevant radio equipment building blocks

related to the scope of this thesis (i.e., appearing within the figure’s yellow outline rectangles).

The 4G signals are modulated and demodulated in the ”Digital Baseband” block or baseband

unit (BBU) that in 4G is typically hosted in an equipment shelter beside the bottom of the base

station tower. These digital signals, compliant to the air interface standard requirements, are
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Figure 1.4: Components of a 4G/5G cellular network architecture (source: [Cro23]).

Figure 1.5: 4G FDD BTS building blocks (source: [NXP13]-left and [Wes19]-right).

interfaced to the digital front-end (DFE) which includes digital up and down converters (DUC

and DDC, respectively) that perform up and down sampling and digital frequency mixing (or

frequency translation) required by the digital-to-analog converters (DACs) and the analog-to-

digital converters (ADCs). The DFE is also equipped with digital linearization stages like crest

factor reduction (CFR) and digital predistortion (DPD) that maximize the transmitter energy

efficiency while preserving linearity requirements.

The signal conversion devices interface the radiofrequency (RF) transceiver enabling proper

transmission and reception over the base station antennas for a given signal bandwidth and RF

band of operation in accordance to the wireless standard requirements. In the transmit path,

right after the in-phase (I) and quadrature-phase (Q) DACs, these IQ signals are low-pass filtered

to get rid of aliasing signals. In homodyne or zero intermediate frequency (IF) architectures, an
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IQ modulator is mixing these signals with a local oscillator (LO) signal for up-conversion to

RF using by using a frequency synthesizer whose main building blocks are a phase-locked loop

(PLL) and a voltage controlled oscillator (VCO). It is well noted that the data conversion clocks

and the PLL reference signals are typically derived from a jitter-cleaned common reference clock

to have a synchronized system. Despite sharing a common clock reference, in an FDD radio the

LOs will operate at a different frequency for transmission and reception (two synthesizers will

be needed), while in a time-division duplexing (TDD) radio the same synthesizer can be used

for the transmitter and the receiver. After the IQ modulator, a digitally-controlled variable gain

amplifier (DVGA) adjusts the signal power level to compensate for the equipment ageing and

manage the variation in cell load, which is followed by a RF band-pass filter (BPF) to remove

out-of-band spurious signals generated by the synthesizer and the mixing process. This clean

signal is delivered to the power amplification (PA) stages (i.e., a driver or medium power amplifier

followed by a high power amplifier) where the signal achieves the desired level before antenna

transmission. The connection between the PA and the antenna is made through a circulator

(also called isolator or duplexer) in Fig. 1.5 to protect the PA against excessive power reflections

and have stabilized performance under varying output port loading conditions (note that in

TDD transceiver architectures the circulator is also used to isolate the transmit and receive

branches). At the output of the PA stage, a signal coupler takes a portion of the transmit RF

signal which is then attenuated, down-converter, power level adjusted and filtered before ADC

sampling. Such receive branch conforms the so-called DPD observation receiver that is used to

provide a digitized PA output baseband signal, that in conjunction with the transmit digital

baseband signal is required to calculate the DPD algorithm coefficients.

In an FDD transceiver the transmitter and receiver may share simultaneously the antenna

due to their operation at different RF frequencies. For such reason a diplexer, which is a three-

port combiner/splitter device operating at two separated RF bands of interest, will be driving

the signal to the tower-mounted amplifier that compensates for the cable losses of the long

coaxial cable between the base station shelter equipment and the antennas placed in the top

of the tower, and viceversa. In the receive path, if the received signal strength is high (i.e.,

mobile users in the vicinity of the base station) the tower mounted amplifier system will just

band-pass filter the RF signal to remove potential interfering signals. When a weak signal is

present at the receive antenna (i.e., distant users), the signal is not only filtered but amplified

by a low-noise amplifier (LNA) and its level adjusted to meet the optimal RF receiver and

ADC dynamic range. After such signal conditioning, typically a sharp response but higher-loss

RF surface acoustic wave filter is put after the low noise amplification stages to remove any

remaining out-of-band signal before the down conversion mixer (or IQ demodulator depending

on the transceiver architecture). In the receiver of Fig. 1.5 there is a dual RF mixer with two

channels down converting the signals from RF to IF, followed by an IF SAW filter, DVGA

stages and IF BPFs or LPF before signal conversion. Such amount of filtering is needed in the
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receive stages given the fact that a received weak signal could be in the neighbouring portion of

spectrum of a transmitter close to the base station that delivers a signal strength several orders

of magnitude higher at the receive antenna port. In this diagram two receivers are connected

to two different antennas to benefit from spatial diversity and work with the branch having the

best signal-to-noise ratio (SNR).

This radio architecture will not differ very significantly from that of a wireless backhauling

equipment in terms of the composing building blocks. The main differences will appear in the air

interface modulation, RF operating bands, signal bandwidth, power level and type of antenna,

where higher-directivity dish antennas are used in wireless backhauling in contrast to the lower-

directivity sector panel antennas used for radio access. The most relevant blocks that are relevant

to this thesis are the digital linearization stages at the DFE, the transmitter and PA, and finally

the DPD observation branch, all of which conform a closed-loop system able to adapt to changing

conditions. The importance of such blocks in 4G and 5G radio access and wireless backhauling,

their limitations or boundary conditions, and the most relevant technical challenges will be

described in the sections following and linked to the thesis goals.

1.1.2 Need for Power Amplifier Digital Linearization

Radio Access

The beyond 4G communication systems based on orthogonal frequency division multiplexing

(OFDM), and other backward compatible variants like filter-bank multi-carrier (FBMC) (a can-

didate 5G waveform that was not finally adopted in 5G due to its higher complexity), are based

on modulation techniques which allow significantly increased spectral efficiency and capacity to

mobile RANs. However, the use of these modulation techniques impacts the requirements of the

radio base stations and, in particular, the PA which is a critical building block in almost all

wireless communication systems. The PA is needed to strengthen the transmitted signal to com-

pensate for the wireless radio channel losses. To do this, the PA converts a low-power input signal

to a higher power one by transforming the supplied direct current (dc) power into RF power as

depicted in Fig. 1.6-left. The power efficiency of the PA, however, is usually low and most of the

energy is dissipated as heat thus limiting integration (i.e., requiring more complex dc supply cir-

cuits and both passive and active cooling systems) and the life-time of the devices. Non-constant

envelope-modulation techniques with high peak-to-average power ratios (PAPR) require highly

linear PA amplitude and phase responses to fulfill stringent spectral mask and modulation accu-

racy requirements to preserve the air interface performance. This is often achieved by operating

the PA with significant input power level back-off (IBO) as shown in Fig. 1.6-right. This consid-

erably reduces the PA efficiency since the PA maximum efficiency is achieved near the saturation

point and only the highest waveform peaks (with very low occurrence probability) will be close
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to that region.

Figure 1.6: General operating principles of a PA (left) and visualization of the linearity vs
efficiency trade-off (right) for different PAPR waveforms.

The PAs has been traditionally the most energy-consuming element in mobile networks

and given its moderate-to-low power efficiency, most of the energy consumed is wasted as heat

which in turn may require air conditioning in the equipment shelter (see Fig. 1.5) and increase

the overall energy and costs. Several studies conducted during the implantation of 4G showed

that the PA was typically consuming between 50% and 75% of the energy in macro-cell base

stations [Deb11]. Considering also that the base stations were accounting for more than 50% of

the cellular network power consumption, improving efficiency has been of high importance. The

further the PAs are pushed into saturation, however, the higher the nonlinearities introducing

distortion are (which in return degrades the communication quality and limit the data capacity).

Therefore, different type of tools have been needed to reach the best linearity vs efficiency trade-

off has been of high importance.

Figure 1.7: Power consumption in cellular networks (source: [Poi20]).

To overcome the previous constraints, the adoption of gallium nitride (GaN) PA technologies
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and PA linearization techniques have played a key role in building better radio access and

backhaul infrastructure equipment. GaN devices feature improved power-conversion efficiency,

allow for higher RF power densities, higher switching speeds and bandwidth, are smaller in

size than traditional devices, and relax the heat sink requirements. This translates in lower

infrastructure equipment capital/operating expenses (CAPEX/OPEX) due to reduced bill of

materials (BOM) and running costs which contribute in total cost of ownership (TCO) reduction.

The manufacturing cost structures, however, are still too high to reach the scale volume of the

silicon on insulator (SOI) or even the gallium arsenide (GaAs) industries. This has traditionally

prevented the implantation of GaN devices in mobile terminals, where it is used in high-capacity

and high-speed smartphone chargers, but this is something that could be changed over the next

decade.

By combining such advanced PA devices, mainly in Doherty PA architectures, with digi-

tal linearization techniques like crest factor reduction (CFR) and digital predistortion (DPD),

the best linearity versus power efficiency trade-off may be achieved for wireless infrastructure

equipment dealing with spectrally-efficient high-PAPR waveforms. Thanks to their higher perfor-

mance, flexibility and software reconfigurability (when compared to legacy analog linearization

solutions) the CFR and DPD digital linearizers have become essential building blocks embedded

in nowadays radio infrastructure modems.

Figure 1.8: Simplified diagram showing the CFR and DPD operating principles

CFR reduces the peaks of the modulated waveform to a satisfactory level to better enable the

use of the PA: due to in-band and out-of-band distortion, CFR does not introduce system gain;

but, thanks to reduction in the peaks, it is possible to operate the PA at higher average power and

therefore closer its saturation point, where it is most efficient as shown in Fig. 1.6. As indicated

in Fig. 1.8, CFR is combined with DPD that relies on digitally cascading a nonlinear system

before the PA, which provides an inverse response to the PA that provokes a linear response at
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the output of the cascaded system, including the PA [Gha13]. To accomplish that, complex non-

linear models are used to characterize the PA behavior taking into account bandwidth-related

memory effects usually present in wideband RF PAs that may change over time and temperature.

Given the need to compensate for both in-band and out-of-band distortion, the DPD digital

system needs to operate at an increased sample rate and so the DAC and ADC devices. Until

4G, the transmitter has demanded real-time DPD correction and non-real-time adaptivity to

changing operating conditions (i.e., temperature, ageing or even the signal configurations were

traditionally changing at a lower time scale) but 5G has challenged this, as further detailed in

Section 1.2.1. The operation of the CFR and DPD functions are further detailed in Chapter 2.

Figure 1.9: Digital linearization benefits and product level impact in radio access equipment.

As shown in Fig. 1.9, combining CFR and DPD techniques may have positive impact at

product level due to the following aspects:



10 1.1. Motivation and Scope

• The ability to combat PA nonlinearities and push forward the PA output power implies

some system gain. By increasing the PA output power, the energy efficiency will be higher

and the dissipated power in the form of heat will decrease. Better thermal management can

also impact in the equipment reliability and prevent the active parts from degrading faster

over time. Thanks to favoring the spectral containment and in-band distortion reduction,

the digital linearization techniques are also an enabler not only for enhanced cell size and

coverage scenarios, but new licensed/unlicensed intra-band or adjacent inter-band spectral

coexistence scenarios and multi-cell deployments.

• For a given PA output power level the system performance can be enhanced therefore ex-

tending the modulation order (i.e. increasing transmission capacity and spectral efficiency)

or increasing the reach and robustness against interference of radio access equipment, which

maximizes the energy efficiency in terms of capacity per Watt consumed.

• Since the transmit system linearity is improved, this technique allows using cost-effective

and lower power consuming PA solutions with less expensive board, enclosure and heat

sink designs and simplified dc power supply and cooling subsystems.

• Closed-loop DPDmay enable self-calibration and correction of the transmitter performance

and therefore reduce the product validation and yield costs, increase its operating stability

and minimize the number of maintenance operations.

• It is finally worth noting that the environmental impact of these solutions is twofold thanks

to 1) reducing the energy consumption and CO2 emission of the RAN equipment both in

production and operation, and 2) extending the product life and reducing the waste in

mechanical, electrical, and electronic parts.

Wireless Backhaul

The backhaul infrastructure for mobile networks plays a role of paramount importance in the

proper delivery of services requested by end users. Consequently, since the deployment of 4G

the network operators have invested a significant amount of the budget devoted to network

upgrades in backhaul improvement. Wireless backhauling, whose required infrastructure is sig-

nificantly small, emerges as a convenient cost-effective solution, especially in countries where the

deployment of wired backhauling faces economic and geographic struggles. By considering the

afore introduced exponential growth of mobile broadband traffic, the cross-sector requirements

aiming at increasing the overall energy efficiency of wireless networks, and the every time more

important share of small cells as an alternative to handle mobile traffic, the wireless backhauling

has been one of the enablers for the beyond 4G wireless communication systems, specially in

those scenarios where fiber has not been previously deployed.
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Figure 1.10: ’Macro launched’ and ’street launched’ small cell backhaul scenarios and deployment
emulation (source: [For15]).

The traditional line-of-sight (LoS) high distance and high availability 6-42 GHz point-to-point

(PtP) solutions have been kept employed for high-capacity aggregation, combined with lower

distance millimeter wave (60 GHz) and E-Band (70-80 GHz) LoS PtP high-capacity solutions,

and 6-GHz band LoS and NLoS PtP and PtMP medium capacity aggregation solutions.

In such a demanding scenario, reducing both CAPEX and OPEX plays a determinant role:

• Regarding the deployment costs of wireless backhaul solutions, a significant amount is due

to transportation fees from the factory. Not surprisingly, the biggest part of these fees is

due to the antenna size. Thus, in this scenario, reducing the size of the antennas is a key

enabler for CAPEX reduction.

• Minimizing the antenna size also brings OPEX reduction since it will diminish the space

occupied in the tower (and thus the rental costs) and will be less prone to pointing errors

and wind misalignment. From a technology perspective, in order to reduce the size of the

antennas while keeping the same link quality the output power yielded by the PA must be

maximized, which implies that it must be driven as close to saturation as possible.

• Moreover, energy consumption accounts for up to 60% of the OPEX for backhauling the

macro cell sites, and keeps increasing with the cost of fuel in remote sites that still rely on

diesel generators for their power supply. In long haul microwave radios that are deployed

on microwave towers, 90% of the power dissipation is encountered in the PA. Clearly, this

puts forth reaching the best trade-off between power efficiency and linearity, where CFR

and DPD play a key role.

• Increasing the output power allows operation under higher-order quadrature amplitude

modulations (QAM) which increases the spectral efficiency, throughput and RAN back-

hauling capacity.
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• The link range expansion due to having higher PA output power or the enhanced product

availability, without having to increase the antenna size, is important for operation under

adverse climate conditions, to deploy the backhaul system in emergency or disaster recovery

situations, or to enable sub-urban/rural scenarios.

• Finally, enhancing the energy efficiency impacts in reduction of CO2 emissions as well

as OPEX by simplifying enclosures, packaging and enhanced mean time between failures

(MTBF).

A visual representation of the previous benefits for an E-band backhaul application scenario

is provided in Fig. 1.11:

Figure 1.11: Potential benefits of combining linearization techniques in E-band backhaul radios.
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1.2 Thesis Objectives and Research Contribution

1.2.1 Objectives

5G Challenges and Problem Statement

Over the last seven years the mobile broadband endless traffic increase, not only due to tradi-

tional mobile users but to the vast deployment of the Internet of Things (IoT) and machine-

to-machine and human-to-machine communications (M2M and H2M), have required a more

ambitious approach to target the 5G mobile networks. In order to make feasible several 5G

requirements like achieving 10X increase (with respect to 4G) in terms of supported device con-

nection density, available spectrum and peak data rates, or reduce the latency and the power

consumption by 10X, clearly implies significant changes with respect to classical mobile network

architectures and the physical layer technologies involved. The many technology enablers be-

ing proposed like Cloud RAN, HetNets, small-cells densification, new versatile adaptations of

the physical layer schemes enabling wider bandwidths, massive multiple-input multiple-output

(MIMO) transceivers and operation in millimeter wave frequencies with hybrid beamforming

transceivers, deploying new licensed/unlicensed frequency bands usage paradigms, same fre-

quency full-duplex communications, multi-hop integrated access and backhauling (IAB), device-

to-device (D2D) links etc., have significantly diversified the number of different use cases and

requirements.

The traditional adaptive closed-loop DPD does well in macro and micro cell deployments and

typical RF and wireless backhauling radios up to 4G, where the application scenario conditions

are slower varying, and the PA output power and energy consumption are significant enough to

justify the increased digital signal processing complexity, DAC and ADC sampling frequency and

operating bandwidth at the Tx and DPD Rx paths of the radio equipment. The vast proliferation

of small cells in 5G with lower-end and lower-transmit power radios, however, makes the cost of

the DPD harder to justify since the PA contribution to the base station dc power consumption

breakdown becomes smaller (as depicted in Fig. 1.12) and so the potential DPD gains in terms

of energy efficiency. In small cells, the contribution of the data conversion stages (ADCs and

DACs) and the baseband digital signal processing (in the DFE) becomes more relevant to the

overall base station dc power consumption. This makes equipping DPD in the radio system a

more difficult design choice since its power cost must be reduced.

In addition, the need for new wireless communication technologies fulfilling the user mobile

broadband capacity requirements, reducing costs and CO2 emission, has boosted the research,

development and industrial release of advanced MIMO transceiver solutions with a high number

of elements. Thanks to focusing the energy where needed, improving spectral efficiency and

capacity, and strengthening the resistance to interferers and intentional jammers, technologies
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Figure 1.12: Base station power consumption breakdown for different cell sizes in 4G (source:
[Aue10]).

like massive MIMO (mMIMO) are being implanted both for macro base stations and for small

cells in ultra-dense deployments. The high number of RF transceiver chains in these solutions

makes integration, power consumption and cost-effectiveness prominent design requirements

which may play against employing the best RF performing solution. High-channel density radio

frequency integrated circuits (RFICs) integrating the data conversion stages, I/Q modulators

and demodulators, and LO signal synthesis and distribution are employed together with the

PAs. Separate multi-antenna PA system boards are typically employed for macro and micro

base stations featuring higher power, while in lower power small cell base stations (i.e., pico

and femto cells) highly integrated and low-cost PAs that belong to higher-volume markets and

allow integration into the RFIC transceiver are used to benefit from economies of scale. The 5G

radio infrastructure PA semiconductor technology is therefore ranging from highly-performing

GaN for macro cells to the cost-effective higher integration SOI complementary metal oxide

semiconductor (CMOS) technologies in femtocells. The latter, however, suffers from comparably

poor RF performance.

The application of DPD to 5G multi-antenna base stations is not only considered for the

macro base stations but also for small cell base stations. This is due to the fact that the larger
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Figure 1.13: 4G sector versus 5G MIMO beamforming antennas simplified coverage concept
representation (source: [MTA19]).

number of PA chains in 5G radios and the required smaller form factor and enclosures of the

radio infrastructure equipment, makes thermal control a relevant issue that can contribute to

justify the need for DPD despite the added complexity. In more detail, the massive MIMO radios

relax the linearity profiles for each individual PA element and RF chain (since what matters is

their combined action), but to be feasible the massive MIMO technology requires smaller form

factor economy of scale in manufacturing. In millimeter-wave (mm-wave) small cells, deep sub-

micron scale CMOS technology is vastly employed nowadays for the overall mMIMO transceiver

ICs including the PAs. The use of CMOS processes brings much lower linearity when compared

to other technologies like GaAs and GaN. A DPD solution with minimized resource usage may

therefore increase both the RF performance and the energy efficiency of the multi-antenna

small cell product that employs such cost-effective lower-end PAs by driving the PA closer to

saturation which dissipates less power in the form of heat. Less heat implies that the thermal

and mechanical design of the product is simplified, simpler dc power supplies can be equipped,

and the reliability not only of the PA itself but other components in the radio is enhanced. This

saves cost, size and weight which is a relevant requirement or enabler to 5G massive deployments.

Developing lower cost energy and hardware efficient DPD systems for multi-antenna 5G systems,

however, is a highly-demanding endeavor that requires several innovations going far beyond the

traditional closed-loop DPD.

As shown in Fig. 1.14, the many technical challenges of 5G applications increase the com-

plexity and power consumption of the DPD, and contravene the market need for cost-effective

highly performing and fast-adapting 5G DPD solutions:
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Figure 1.14: 5G DPD challenges, impact on DPD and opposite application requirements
dilemma.

• Burst-like waveforms and GaN technology: While in FDD systems the downlink and up-

link channel responses do not match exactly due to having different Tx and Rx frequencies,

in TDD these are the same for which the MIMO/beamforming channel estimation algo-

rithms perform better and faster. Faster channel estimation implies having more time for

data transmission and therefore increased spectral efficiency. TDD operation implies also

having burst-like waveforms in the transmitter, which prevents the PA noise to impact

negatively on the receiver. GaN technology is mainly used in macro and micro base sta-

tions and it is foreseen that once the manufacturing costs will be downscaled it will be

also vastly deployed in small cells.

When using TDD waveforms and GaN technology, the GaN transistors shows power de-

pendent gain variations and long-term memory effects due to trapping effects when the

gate is being switched on and off [Woo17]. Such power-dependent memory effects can-

not be optimally modeled with classic Volterra-based DPD models which need further

adaptations to this scenario.

• Flexible, frequency-agile, fast-changing physical layer (PHY): One key feature of 5G is its

PHY flexibility when compared to 4G. Despite sharing the same modulation, in 5G OFDM

has been adapted to support different numerologies (i.e., subcarrier spacings) that facili-

tate operation with wider signal bandwidths under controlled PAPR, and minimizes the

synthesizer phase noise impact in terms of intercarrier interference (ICI) when operating

at higher RF frequencies. In addition, 5G signal can be set up having different bandwidth
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parts, multi-band and multi-carrier configurations (i.e., with inter-band non-contiguous

and intra-band contiguous and non-contiguous carrier aggregation), and be operated un-

der digital MIMO and hybrid beamforming baseband modems that will drive uncorrelated

waveforms to the PAs or the same waveform affected by different attenuation and phase

variation weights, respectively.

In order to meet demanding dedicated backhauling requirements in dense deployments at

street level, 5G has introduced in the RAN architecture the self-backhauled or integrated

access and backhaul (IAB) radio concept. In this architecture, every IAB donor may be

connected to some IAB nodes sharing either frequency, time and spatial (beam) resources,

where the IAB node is a combination of a gNB (BS) and a UE and thus plays the role

of access node and backhaul relay node simultaneously. Operating efficiently the PAs in

such a versatile RAN architecture requires complex adaptive DPD models increasing the

hardware (HW) complexity to meet the required quality performance, robustness and

minimized radio interference. Short DPD training periods are also needed to support the

fast adaptivity requirement (i.e, up to millisecond-range level), which is in conflict with

having to train complex DPD models.

• Wider bandwidths: 5G has to support much wider signal bandwidths when compared to

4G. While up to 100 MHz bandwidth signals are managed in 5G NR frequency range 1

(FR1) sub-7 GHz radios, in FR2 mmwave Ka-bands the signal bandwidth per channel

may be of up to 400 MHz. When the radio is designed to support carrier-aggregation, the

intra-band contiguous and non-contiguous bandwidths may scale up to 400 MHz in FR1

and 1200 MHz in FR2. This challenges the DPD with respect to the following aspects:

The higher the signal bandwidth, the higher the memory effects of the PA and the more

complex the modeling techniques needed be to characterize and compensate for the PA

nonlinearities. In order to compensate for the out-of-band distortion in DPD, such wide

signals need to be oversampled to cover sufficient out-of-band compensation, since not

only the in-band error-vector magnitude (EVM) but also the adjacent channel power ratio

(ACPR) requirements must be fulfilled.

Operating the DFE logic and the data conversion circuits at such high speeds, not only

increases the digital implementation complexity and timing constraints and jeopardizes

cost-effectiveness, but the energy consumption of the DPD system building blocks, all of

which makes harder to justify the DPD. Moreover, when increasing the bandwidth of the

signal being observed in the DPD feedback path, the received noise will be higher and

will degrade the quality in DPD modeling unless averaging is applied to mitigate the SNR

reduction.

• Complex nonlinear effects multi-antenna transmitters: In 5G, both when operating with

digital MIMO (FR1) or hybrid beamforming (FR2) transceiver architectures, the PAs
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will not be receiving the same signal. In addition, despite the discrete PAs in a multi-

antenna system will share the same characteristics and manufacturing processes, they

will not behave exactly the same. If there are small differences, these will be aggravated

with temperature and supply variations or due to aging. The straight-forward approach

to design a high-end multi-antenna DPD, for a macro BS or RRH, is therefore to consider

one DPD system per PA branch. However, for large systems this is not economically viable

and the complexity and power consumption of such approach will be unaffordable.

When considering lower-power highly integrated approaches in multi-antenna small cells

having RFICs having numerous PA branches (and less manufacturing tolerances), there

are several impairments that can lead the previous approach to failure. This is due to the

cross-effects that may appear in these architectures, mainly PA input and output cross

couplings and PA loading effects in circulator-less architectures (i.e., in TDD). This scales

very significantly the dimensionality of the behavioral models that need to account for

such interactions, and can boost dramatically the DPD implementation complexity even

for a reduced number of antennas. Finally, while digital linearization techniques can help

to control thermal issues due to power dissipated as heat, the increased sample frequency

requirements at the data conversion devices can also provoke thermal issues when having

to consider compact format radios.

The previous challenges that have been presented mainly for 5G radio access are also applica-

ble to pure wireless backhauling systems. Given the fact that the emerging network deployments

demand higher capacity, spectral efficiency/containment/flexibility, energy efficiency and cost re-

duction, the operation at mm-wave frequencies is an enabler to provide 5G and B5G cellular

and backhaul communications thanks to its massive unlicensed and lightly licensed bandwidth.

To meet these requirements in the challenging mm-wave propagation environment poses sev-

eral threats which may impair the quality of service (QoS) in vertical applications like the high

pathloss and materials attenuation, or the limited transceiver performance (both in terms of

noise and linearity). At these frequencies, the most important limiting factors are the PA’s

linearity and power efficiency. These aspects become more critical when complex multi-level

modulation schemes presenting high PAPR are used to increase the bit rate without increasing

the bandwidth, such as 1024-QAM at E-band and up to 4096-QAM at lower frequency bands.

The mm-wave PAs must operate well below its full capacity, which results to poor power

efficiency (i.e., 5-10% values) and lower maximum output power and shorter radio hops or cell

coverage. Consequently, the radio equipment and components will have to innovatively address

the trade-off between bit rate (and overall linearity performance) and power efficiency (extremely

low at mm-wave frequencies) by enhancing the energy per bit efficiency with higher linear output

power and lower power consumption.
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Research Objectives

As previously detailed, the traditional DPD approach is no longer valid to handle a significant

number of 5G-like scenarios and higher complexity DPD systems are required to operate the

proposed radio architectures. The digital processing resources devoted to DPD need to fit ef-

ficiently the current field-programmable gate array (FPGA) logic clocking speed and capacity.

Very large or complex DPD algorithms with expanded HW requirements that go beyond using

any current cost-effective digital processing technology, or requiring training times going far

beyond the millisecond order, are unlikely to be widely adopted. To combat these threats, the

objectives of the thesis are those summarized in Fig. 1.15:

Figure 1.15: Thesis objectives addressing 5G DPD needs.

• OBJECTIVE 1: Propose DPD modeling techniques able to handle the GaN PA tech-

nology strong nonlinearities, trapping and long-term memory effects for wideband

high-PAPR burst-like waveforms, and provide sufficient statistical representativity and

robustness, that combined with CFR reach the best linearity versus energy-efficiency

trade-offs and also minimize interference between homogeneous and heterogeneous

wireless communication systems. Demonstrate the benefits in terms of standard quality

and efficiency parameters like the normalized mean square error (NMSE) between the

nominal baseband Tx signals and those at the PA outputs, EVM, ACPR, drain efficiency,

robustness against adverse effects, or better/increased/ubiquitous coverage scenarios

with higher signal to interference and noise ratio (SINR), potentially enabling new

licensed/unlicensed intra-band or adjacent inter-band spectral coexistence scenarios.

• OBJECTIVE 2: Reduce the DPD hardware implementation complexity by using model

order reduction techniques, based on ML feature selection and feature extraction meth-

ods, to reduce the number of DPD coefficients in the forward application DPD Tx path

and/or the feedback Rx DPD path where model parameters or DPD coefficients are esti-

mated to minimize the error between the nominal DPD oversampled Tx baseband signal
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and the one obtained at the PA output (i.e., after down conversion, gain correction and

baseband time alignment). These techniques not only have to meet complexity reduction

but guarantee well-conditioned DPD estimation and meet the radio performance require-

ments. The current communication network technology trends aiming to deploy machine

learning (ML) and artificial intelligence (AI) in the RAN, not only to replace physical layer

building blocks but to manage the RAN radio and computational resources. In line with

this promising trend, the hardware-efficient DPD systems need to be supported by ML

techniques and be leveraged both for polynomial and artificial neural network (ANN) DPD

architectures, both for SISO and (more importantly) MIMO transceiver architectures.

• OBJECTIVE 3: Combine novel training data selection mechanisms with the proposed ML-

assisted DPD model order reduction techniques to dramatically reduce the polynomial

DPD and ANN DPD training times (extremely large in ANNs) for complex systems, and

to target 5G’s fast-adaptivity and performance requirements both for SISO and MIMO

DPD architectures.

Therefore, the thesis aims to research, design, combine and experimentally evaluate DPD

techniques that meet the previous objectives. While the thesis experimental validation of the

novel DPD algorithms will be conducted considering sub-7 GHz radio equipment, the proposed

techniques have also potential use in mm-wave radios since they have been applied to DPD

linearizers that operate at baseband and are independent on the final RF frequency band.

1.2.2 Contribution and Novelty

Prospective Works

The prospective works are those that leverage on previously existing techniques, or convenient

fine-grained adaptations, that are properly combined to address the needs of a specific chal-

lenging linearization scenario. At the end of every work description, both the targeted thesis

objectives and the publications that have been generated are mentioned.

Strategies to combat strong nonlinearities and long-term memory effects in GaN PAs un-

der burst-like waveforms: This contribution combines several strategies to deal with GaN PAs

power dependent gain variations and long-term memory effects due to trapping effects, when

burst-like waveforms that switch on and off the transistors gate are employed for 4G/5G. For

a given amplitude threshold, the solution proposed first includes already existing decomposed

piecewise curve-fitting DPD model considering the memory polynomial (MP) model for the

samples equal or above the threshold and the generalized memory polynomial (GMP) model

for the samples below the threshold. Second, an additional GMP model with no amplitude

discrimination is then multiplied by a finite sample size sliding average input power window to
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handle long-term memory effects. The low amplitude, high amplitude and long-term memory

modeling structures are then extended in number of observations after application of several

training data waveforms and third, a two-dimensional mesh-selecting mechanism is applied to

these data batches to reduce the number of observations by selecting the most statistically

representative ones. Finally, before the DPD system a peak-cancelation CFR technique is also

applied to partially get rid of low-probability waveform peaks and allow trading-off between

DPD complexity and performance.

Target: OBJECTIVE 1. Publications: Magazine article (P3) and conference paper (P4).

Evaluation of CFR and DPD for FBMC waveforms in spectrum-shared access: For the first

time, the use of digital linearization techniques in a radio DFE is evaluated not only in terms

of linearity and efficiency gains, but spectral coexistence between heterogeneous systems, in

terms of signal-to-interference-plus-noise ratio (SINR). This work is positioned in the context

of a broadband public protection and disaster relief (BB-PPDR) radio communication scenario,

where a spectrum sharing cognitive filter-bank multicarrier (FBMC) system is used as private

mobile radio (PMR) system that coexists with other legacy systems such as 4G in an emer-

gency deployment. The need for frequency-agile spectrally-contained waveforms, high spectral-

efficiency and data capacity in an energy-constrained scenario justifies the use of FBMC together

with CFR and adaptive DPD.

Target: OBJECTIVE 1. Publication: Book chapter (P9).

Feature selection and feature extraction early works: With regard to feature selection tech-

niques, a new variant of the orthogonal matching pursuit (OMP) algorithm for reducing the

computational complexity of the DPD behavioral model in the forward path is presented. The

proposed spectral weighting OMP (SW-OMP) algorithm focuses on selecting the most relevant

basis functions to compensate for the out-of-band residual distortion which may eventually be

masked by the dominant in-band residual error. This basis selection is carried out in an off-line

process that does not affect the computational complexity of the real-time closed-loop DPD

but, on the contrary, reduces its complexity while enhancing the robustness. Experimental re-

sults with 4G radio access intra-band non-contiguous carrier-aggregated waveforms show that

by selecting the DPD coefficients with SW-OMP, the inherent ACPR and NMSE degradation

suffered when reducing the number of coefficients is mitigated under strong nonlinear operation,

when compared to using the basis functions selected by the classical OMP algorithm. SW-OMP

is therefore a more appropriate dimensionality reduction technique for spectrum sharing sce-

narios. With respect to feature extraction techniques being applied to the DPD feedback path,

the PC-CFR scheme is combined with a principal components analysis (PCA) pruned DPD

algorithm. This approach allows to enhance the transmitted output power of a microwave back-

haul transmitter while reducing the complexity of the DPD estimation process, and meet the

performance required by the application.
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Target: OBJECTIVE 1 and OBJECTIVE 2. Publications: Conference papers (P1) and (P2),

and journal article (P6) (co-author).

Main Research Contributions

The main research contributions of the thesis consist in either coarse-grained adaptations of

existing algorithms, their novel application to solve challenges in complex linerization scenarios,

and newly proposed techniques to overcome limitations with respect to the SotA. These contri-

butions, which are further detailed in Section 3.2, Section 4.2 and in Chapter 5, are summarized

as follows:

• Independent DPD parameters estimation method for SISO adaptive polynomial DPD: In

order to optimize the resources employed for DPD estimation and reduce training time,

an estimation/adaptation method based on the (feature extraction) adaptive principal

components analysis (APCA), applied considering a convenient modification of the com-

plex domain generalized Hebbian algorithm (CGHA), is presented to guarantee the iden-

tification of the minimum necessary parameters of a digital predistorter. The proposed

estimation/adaptation technique is suitable for online FPGA or system on chip (SoC)

implementation. By exploiting the orthogonality of the resulting transformed matrix ob-

tained with the APCA technique, it is possible to reduce the number of coefficients to

be estimated which, at the same time, has a beneficial regularization effect by preventing

ill-conditioning or over-fitting problems. Therefore, this identification/adaptation method

enhances the robustness of the parameter estimation and simplifies the adaptation by re-

ducing the number of estimated coefficients. Due to the orthogonality of the new basis,

these parameters can be estimated independently, thus allowing for scalability which allows

to reach controlled trade-off the DPD adaptation time versus performance and hardware

complexity.

Target: OBJECTIVE 1 and OBJECTIVE 2. Publication: Journal article (P5).

• Training data selection and model order reduction techniques for SISO adaptive ANN

DPD: Despite the good approximation capabilities of ANNs for DPD modeling and their

enhanced performance over polynomial modeling, these typically have higher number of

DPD coefficients (i.e., weights and biases) and require significantly larger DPD training

times that cannot be supported in fast-changing 5G applications. To overcome such lim-

itations, the already existing doubly orthogonal matching pursuit (DOMP) algorithm is

applied for the first time to reduce the number of input dataset features or variables which

reduces the weights in the first hidden layer. The consecutive and sparse batch selection

mechanisms (CBS, SBS) are proposed to select training waveform data batches according



Chapter 1. Introduction 23

to performance metrics that can be adapted for a given scenario or targeted key per-

formance indicators, outperforming the existing multi-dimensional histogram-based tech-

niques in reduction factor and significantly reducing the DPD updating time.

Target: OBJECTIVE 1, OBJECTIVE 2 and OBJECTIVE 3. Publications: Conference

papers (P7) and (P10), and book chapter (P8) (co-author).

• Training data selection and model order reduction techniques for MIMO adaptive polyno-

mial and ANN DPD: In MIMO DPD architectures, given the large number of antennas

and having to consider cross-effects, both the polynomial behavioral modeling matrices

and MIMO ANN datasets may have unaffordable size leading to ill-conditioning, perfor-

mance instabilities and long training time periods that need to be drastically reduced for

challenging 5G and beyond scenarios. The combination of an efficient uncorrelated equa-

tion selection (UES) mechanism together with orthogonal least squares (OLS) is proposed

to reduce the training data length and the number of basis functions, respectively, at ev-

ery behavioral modeling matrix in the polynomial MIMO DPD scheme. For ANN MIMO

DPD architectures, applying UES and principal component analysis (PCA) is proposed to

reduce the input dataset length and features.

Combining training data selection methods and dimensionality reduction techniques was

not previously addressed in literature for MIMO transmitters with strong PA input and

output cross talk provoking complex nonlinear effects. The existing SotA histogram-based

sample or equation selection methods to select training data samples do not operate well

under such conditions and run slower than the proposed UES mechanism. With regards

to the art in dimensionality reduction techniques, the novel application of OLS and PCA

to MIMO DPD is formulated both for polynomial modeling basis or ANN dataset feature

selection. While in polynomial MIMO DPD, OLS is the best option, in ANN MIMO DPD,

PCA and OLS can be used to trade-off between ANN MIMO DPD performance and

reduced complexity (and faster adaptivity). The procedure to apply the methods is fully

detailed for one polynomial and two ANN MIMO-DPD architectures and their goodness

is experimentally validated against the SotA reference methods thus demonstrating the

benefits in terms of complexity and DPD update/training time reduction while reasonably

meeting the performance requirements at the base station side.

Target: OBJECTIVE 1, OBJECTIVE 2 and OBJECTIVE 3. Publication: Journal article

(P11).
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Publications resulting from the thesis research

The research reported in this thesis has generated publications in international and national

conferences, international indexed scientific journals, and book chapters. These publications are

listed in chronological order in the following.

(P1) D. López-Bueno, P. L. Gilabert, G. Montoro, N. Bartzoudis, ”Peak cancellation and

digital predistortion of high-order QAM wideband signals for next generation wireless

backhaul equipment,” in Proc. Int. Workshop Integr. Nonlinear Microw. Millimetre-w.

Circ., 2-4 April 2014, Leuven (Belgium).

(P2) D. López-Bueno, P. L. Gilabert, G. Montoro, N. Bartzoudis, M. Payaro, ”Reducción de

Factor de Cresta y Predistorsión Digital de Señales QAM de Banda Ancha para Equipos

Backhaul de Próxima Generación,” in Proc. XXX Simp. Nac. Unión Cient́ıf. Int. Radio,

2-4 September 2015, Pamplona (Spain).

(P3) D. López-Bueno, T. Wang, P. L. Gilabert, G. Montoro, ”Amping Up, Saving Power: Dig-

ital Predistortion Linearization Strategies for Power Amplifiers Under Wideband 4G/5G

Burst-Like Waveform Operation,” IEEE Microw. Mag., Vol. 17, No. 1, pp. 79 - 87, January

2016 (ranked Q1 2016 by JCR).

(P4) D. López-Bueno, P. L. Gilabert, G. Montoro, N. Bartzoudis, O. Font-Bach, ”SHAPER:

Demostrador Experimental de Técnicas de Linealización Digital de Amplificadores de Po-

tencia para Acceso y Backhaul Inalámbrico 4G/5G,”in Proc. XXXI Simp. Nac. Unión

Cient́ıf. Int. Radio, 5-7 September 2016, Madrid (Spain).

(P5) D. López-Bueno, Q. A. Pham, G. Montoro and P. L. Gilabert, ”Independent Digital

Predistortion Parameters Estimation Using Adaptive Principal Component Analysis,” in

IEEE Trans. Microw. Theory and Tech., vol. 66, no. 12, pp. 5771-5779 (ranked Q1 2018

by JCR).

(P6) P. L. Gilabert, D. López-Bueno, T. Wang, G. Montoro, ”Spectral Weighting Orthogonal

Matching Pursuit Algorithm for Enhanced Out-of-Band Digital Predistortion Lineariza-

tion,” in IEEE Trans. Circ. Systems II: Expr. Briefs, vol. 66, no. 7, pp. 1277-1281, July

2019 (ranked Q2 2019 by JCR).

(P7) D. López-Bueno, Q. A. Pham, G. Montoro and P. L. Gilabert, ”Linealización digital de

transmisores mediante redes neuronales no lineales,” in Proc. XXXIV Simp. Nac. Unión

Cient́ıf. Int. Radio, 5-7 September 2019, Sevilla (Spain).

(P8) P. L. Gilabert, D. López-Bueno, T. Quynh Anh Pham, and G. Montoro, ”Machine

learning for digital front-end,” in Machine Learning for Future Wireless Communications.

John Wiley & Sons, Ltd, 2020, ch. 17, pp. 327-381.
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(P9) D. López-Bueno, N. Bartzoudis, O. Font-Bach, M. Caus, P. L. Gilabert, G. Montoro,

”Technologies for emergency rollout of broadband public protection and disaster relief

(BB-PPDR) communications in humanitarian crisis zones,” Chapter in Information and

communication technologies for humanitarian services, published by The Institution of

Engineering and Technology, August 2020, pp. 215-246. ISBN 978-1-78561-996-0.

(P10) D. López-Bueno, P. L. Gilabert and G. Montoro, ”Dataset Reduction for Neural Network

Based Digital Predistorters under Strong Nonlinearities,” IEEE Topical Conf. RF/Microw.

Power Amplif. Radio Wireless Appl., 2021, pp. 8-11.

(P11) D. López-Bueno, G. Montoro, and P. L. Gilabert, ”Training Data Selection and Di-

mensionality Reduction for Polynomial and Artificial Neural Network MIMO Adaptive

Digital Predistortion,” IEEE Trans. Microw. Theory Techn. 2022 AI Spec. Issue, doi:

10.1109/TMTT.2022.3209214 (ranked in top Q2 2022 by JCR).

Other Publications on DPD as Co-Author

In the context of the thesis topics and R&D activities, the author has also contributed to the

following publications carried out by the Research Group:

(P12) P. L. Gilabert, G. Montoro, D. López-Bueno, N. Bartzoudis, E. Bertran, M. Payaro, A.

Hourtane, ”Order reduction of wideband digital predistorters using principal component

analysis,” in Proc. IEEE MTT-S Int. Microw. Symp., 2-7 June 2013, Seattle, WA (USA).

(P13) P. L. Gilabert, G. Montoro, D. López-Bueno, N. Bartzoudis, M. Payaro, A. Hourtane,

”Reducción de Orden en Predistorsión Digital para Aplicaciones de Banda Ancha,” in

Proc. XXVIII Simp. Nac. Unión Cient́ıf. Int. Radio, 2-4 September 2013, Santiago de

Compostela (Spain).

(P14) G. Montoro, T. Wang, D. López-Bueno, M. N. Ruiz, J. A. Garćıa, P. L. Gilabert,

”Reducción de la Frecuencia de Muestreo en los Conversores ADC y DAC usados en

Predistorsionadores Digitales,” in Proc. XXX Simp. Nac. Unión Cient́ıf. Int. Radio, 2-4

September 2015, Pamplona (Spain).

(P15) Q. A. Pham, D. López-Bueno, G. Montoro, and P. L. Gilabert, ”Adaptive principal

component analysis for online reduced order parameter extraction in PA behavioral mod-

eling and DPD linearization,” in Proc. IEEE MTT-S Int. Microw. Symp., June 2018, pp.

1-4.

(P16) Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ”Multi-

dimensional LUT-based digital predistorter for concurrent dual-band envelope tracking
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power amplifier linearization,” IEEE Topical Conf. RF/Microw. Power Amplif. Radio

Wireless Appl., Jan. 2018, pp. 1-4.

(P17) Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro and P. L. Gilabert, ”Partial Least

Squares Identification of Multi Look-Up Table Digital Predistorters for Concurrent Dual-

Band Envelope Tracking Power Amplifiers,” in IEEE Trans. Microw. Theory Techn., vol.

66, no. 12, pp. 5143-5150, Dec. 2018 (ranked Q1 2018 by JCR).

(P18) Q. A. Pham, D. López-Bueno, G. Montoro and P. L. Gilabert, ”Dynamic Selection

and Update of Digital Predistorter Coefficients for Power Amplifier Linearization,” IEEE

Topical Conf. RF/Microw. Power Amplif. Radio Wireless Appl., 20-23 Dec. 2019, pp. 1-4

(P19) Q. A. Pham, G. Montoro, D. López-Bueno and P. L. Gilabert, ”A method for selecting

online the coefficients to be updated in a DPD for PA linearization,” in Proc. XXXIV

Simp. Nac. Unión Cient́ıf. Int. Radio, 5-7 September 2019, Sevilla (Spain).

(P20) Q. A. Pham, G. Montoro, D. López-Bueno and P. L. Gilabert, ”Dynamic Selection and

Estimation of the Digital Predistorter Parameters for Power Amplifier Linearization,” in

IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 3996-4004, Oct. 2019 (ranked

top Q2 2019 by JCR).

(P21) W. Li, N. Bartzoudis, J. R. Fernández, D. López-Bueno, G. Montoro and P. Gilabert,

”Slow-Envelope Shaping Function FPGA Implementation for 5G NR Envelope Tracking

PA,” in Proc. Int. Workshop Integr. Nonlinear Microw. Millimetre-w. Circ., 2022, pp. 1-3

(P22) W. Li, N. Bartzoudis, J. R. Fernández, D. López-Bueno, G. Montoro and P. Gi-

labert, ”FPGA Implementation of a Linearization System for Wideband Envelope Track-

ing Power Amplifiers,” IEEE Trans. Microw. Theory Techn. INMMIC Spec. Issue, doi:

10.1109/TMTT.2022.3217842.(ranked top Q2 2022 by JCR).
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1.2.3 Other merits

Awards and Participation in Scientific Society Activities

(M1) Co-recipient of the First prize in the ”Power Amplifier Digital Pre-distortion Linearization

Design Competition” at the International Microwave Symposium in Phoenix (2015):

(a) (b)

Figure 1.16: (a) IMS15 Student Design Competition and (b) 1st prize award (source: LylePho-
tos.com, LLC).

The author teamed up with Teng Wang, also pursuing a PhD at Universitat Politècnica

de Catalunya (UPC), to obtain the highest score in the Power Amplifier Linearization Through

Digital Pre-distortion Linearization international competition. The event took place in the frame

of the Student Design Competitions organized by the IEEE Microwave Theory and Techniques

Society (MTT-S) during the International Microwave Symposium (IMS) held in Phoenix (AZ,

USA) on 17-22 May 2015. The winners at every edition of the competition can be found online

at dpdcompetition.com/sdc/winners/.

The author would like to thank Prof. Christian Fager, Prof. Thomas Eriksson, Dr. Koen

Buisman and Mr. Sebastian Gustafsson from Chalmers University of Technology, Dr. Per Landin

from Ericsson and Dr. Takao Inoue from National Instruments for their effort in preparing

the competition and building the Weblab, a wonderful initiative fostering research in digital

linearization and enabling worldwide access to state-of-the-art instrumentation.

https://dpdcompetition.com/sdc/winners/
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(M2) Co-organizer of the ”Power Amplifier Digital Pre-distortion Linearization Design Compe-

tition” at the International Microwave Symposium in Hawaii (2017):

(a) (b)

Figure 1.17: (a) IMS17 Student Design Competition (source: LylePhotos.com, LLC) and (b)
final ranking with all competing teams score.

Dr. Pere L. Gilabert and Dr. Gabriel Montoro, professors at Universitat Politècnica de

Catalunya (UPC), together with the author, organized the 2017 edition of the Power Amplifier

Linearization through Digital Pre-distortion Student Design Competition (SDC#6), sponsored

by Rohde & Schwarz and the IEEE MTT-S Digital Signal Processing (MTT-9) and Microwave

Measurements (MTT-11) Technical Committees. The competition was celebrated during the

International Microwave Symposium (IMS) by 4-9 June 2017 in Honolulu (HI, USA). The par-

ticipants were able to access via world wide web (www) the remoteUPCLab to interface the test

and measurement equipment. For the first time in the history of the DPD competition, in this

edition the participants were able to participate in two DPD competitions. Prior to the IMS

dates, an online competition was held. On that year’s edition, record participation was achieved

with eight student teams participating both in the online competition and in the IMS 2017

competition celebrated in Honolulu. Students and researchers of 27 countries were users of the

remoteUPCLAB during the period that was made available.

The author would like to thank the support from Rhode & Schwarz and Mr. Hermann Boss

in building the ET-DPD test setup and sponsoring the competitions.

https://dpdcompetition.com/sdc/wp-content/uploads/2017/05/Info_Signals_Scoring_Files_IMS2017_DPD_contest_v5.pdf
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(M3) The author also participated in an Invited talk and Poster session at the G-5 Energy-

Efficient Array Transmitters Session of the 2021 Asilomar Conference on Signals, Systems,

and Computers celebrated in Pacific Grove (CA, USA):

– D. López-Bueno, W. Li, P. L. Gilabert and G. Montoro, D. ”Computational Com-

plexity Reduction in Adaptive Digital Predistortion based on Learning Techniques for

High Efficient Power Amplifier Linearization,”: (Invited Talk),” 2021 55th Asilomar

Conference on Signals, Systems, and Computers, 2021

(a) (b)

Figure 1.18: ASILOMAR 2021 (a) Invited talk presentation (hybrid format) and (b) poster.

Student Supervision

(M4) Three students have been supervised or co-supervised in the field of digital linearization:

– G. Pojani, ”FPGA implementation of a digital pre-distorter for wideband mi-

crowave backhaul systems,” Master Thesis (UNIBO-UPC), Supervisors: N. Bart-

zoudis (CTTC), P. L. Gilabert (UPC), D. López-Bueno (CTTC). Advisor: R.

Verdone (UNIBO), October 2014.

– A. Mars and M. Cañal, ”Evaluation of Digital Linearization Techniques for PAs under

5G Waveform Operation in Spectrum Sharing Scenarios,” Bachelor Thesis (UPC-

EETAC), Supervisor: D. López-Bueno (CTTC), Advisor: P. L. Gilabert (UPC),

September 2016.
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Creation of the SHAPER modular digital linearization test bed

The strong applied component of this thesis made creating a test bed a necessary outcome to

provide both a simulation framework and a measurement infrastructure to program and evaluate

in end-application realistic conditions the performance of the novel algorithms being proposed.

The SHAPER (Solutions for wideband Highly lineAr and efficient PowER amplification) test

bed has therefore been used to build both the simulation and hardware test benches and thus

validate the research conducted in this thesis in a relevant environment.

SHAPER [LB22a] is a Software Defined HW demonstrator that provides rapid and cost-

effective prototyping and validation of RF and uW PA linearization techniques, such as DPD

and CFR. The demonstrator nowadays comprises several MATLAB test benches including the

baseband Tx PHY, Rx PHY, DPD & CFR blocks, which are able to interface both high-end

laboratory instruments for waveform generation and capture or performance evaluation, and

COTS boards (such as FPGA-based waveform capture and data generation, ADC and DAC

evaluation boards), as seen in Fig. 1.19. SHAPER can also enable HW/software co-simulation

and validation of DPD and CFR building block implementations in FPGA bridging the gap

between applied research and end-product prototyping and validation.

Figure 1.19: SHAPER digital linearization platform for a given test setup.

SHAPER can be used to:

• Extract and validate PA behavioral models or characterize the performance of PA designs.

• Design, simulate, validate and experimentally benchmark polynomial and neural network

DPD & CFR algorithms for multiple PA technologies and wireless standards with multi-

antenna ∥ channel ∥ band ∥ rate signal configurations.

• Emulate HW constraints (i.e., A/D and D/A bits, data precision) before implementation
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and experiment with techniques to reduce HW complexity and computational resources.

• Validate product-oriented FPGA prototyping through MATLAB HW/software cosimula-

tion

Figure 1.20: SHAPER demonstration platform functional block diagram.

SHAPER features:

• Multi-channel waveform synthesis and acquisition for different BB/BBIQ/IF/RF/mmW

DUT interfacing modes reaching up to 1 GHz DPD bandwidth for RF-to-mmWave

transceiver operation.

• Key parameter multi-dimensional analysis: i.e. NMSE, ACPR, EVM, raw BER versus

output power, crosstalk levels, DPD coefficients, PAPR reduction, complexity reduction,

CFR/DPD variants, or any combination of the previous.

• Design of statistically representative experiments and waveforms (Full PAPR statistical

characterization of modulated waveform and test waveforms design).

• Remote operation from anywhere in the World, by having a PC with MATLAB and

internet connection, thanks to a waveform upload/download file transfer protocol (FTP)

MATLAB server/client application.

• The modular MATLAB test bench (shown in Fig. 1.20) has been evolving since the thesis

started following a flexible and scalable approach in order to ease the integration of new

digital modems and linearization algorithms, and provide different complexity usage levels.

It is also featuring full setup and results traceability and high measurement repeatability.
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(M5) Since its conception and in parallel to the thesis period, the SHAPER test bed has been

used in 4 industrial projects, 4 competitive projects, about 20 publications, 2 PhD thesis,

one MSc and two BSc theses.

1.3 Outline

Chapter 1 introduces the mobile communication networks context and the application scenarios

considered in this thesis that demand digital linearization (radio access and wireless backhaul-

ing). The thesis objectives are then described together with the contributions and novelty linked

to these objectives, and other merits of interest.

Chapter 2 provides an insight on the principles behind the digital linearization of power

amplifiers. Starting with an overview of the PA operation classes, efficient architectures and

classical linearization schemes and linearization metrics, it then follows with describing the

adaptive closed-loop DPD and several implementation aspects both for the DPD forward and

feedback paths. The chapter ends by listing the most common CFR techniques and showcasing

the combined application of CFR and DPD into a spectrum-shared PMR access base station

transmitter.

Chapter 3 introduces the main machine learning techniques that are used for robust di-

mensionality reduction in polynomial SISO digital predistorters (thus reducing the number of

DPD coefficients), to prevent ill-conditioning, and to reduce the complexity and number of op-

erations at the DPD identification subsystem. These techniques are also linked to the thesis

early prospection and research works. First, histogram-based sample selection techniques that

reduce the number of samples to be processed by the DPD system, together with piecewise and

long term modeling techniques, are introduced and showcased to guarantee model identification

and DPD robustness when targeting a GaN PA operating under 4G-5G burst-like signals with

strong memory effects. Second, feature selection techniques like the orthogonal matching pursuit

(OMP), that is applied for basis reduction in the forward path, are described. The SW-OMP

algorithm that allows trading-off between EVM and ACPR in DPD is also introduced through

another use case example. Third, the theory behind feature extraction techniques like the prin-

cipal components analysis (PCA), that is applied for basis reduction in the feedback path, is

also deployed together with some notions on the combination of PCA and partial least squares

(PLS). A wireless backhauling use case combining CFR and DPD follows. The thesis builds

upon contributing to new and more beneficial variants of the previous techniques for which a

relevant contribution to the DPD feedback path is found in the last part of the chapter: A novel

independent DPD coefficient estimation technique supported by an adaptive PCA algorithm

variant is formulated for SISO polynomial predistorters. The design principles are fully detailed

and experimentally validated.
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Chapter 4 leverages on the neural network approaches that may be applied to the field of DPD

in contrast to the classical polynomial approach. Several general aspects on ANN topologies,

nomenclature and formulation are addressed together with more focused design considerations

for DPD correction. Specifics on the SISO ANN DPD training and parameter extraction pro-

cedures and recommended validation methodologies are also described and demonstrated in a

PA ANN behavioral modeling 4G-5G radio access use case involving measured input-output

data. Under changing conditions, the adaptive SISO ANN DPD may have strict training time

requirements that cannot be met. To address such threat while preserving the transmitter re-

quirements, the chapter ends with a new contribution towards reducing size of the ANN SISO

predistorter input dataset. Such technique is based on the combination of new waveform batch

selection mechanisms that support higher reduction of DPD training signals’ length and so the

dataset length (i.e., when compared to multidimensional histogram-based methods) together

with an already existing variant of the OMP algorithm that for the first time is applied to select

and reduce the number of the ANN input dataset features.

Chapter 5 goes a step forward by targeting both polynomial and neural network digital

MIMO predistorters that not only compensate for every transmitter branch RF impairments,

but the PA input and output cross talk. After review of the existing state-of-the-art, the MIMO

predistorter architectures are fully detailed and depicted. The procedures to combine length

reduction mechanisms and machine learning dimensionality reduction techniques are deployed

for the three MIMO DPD architectures (polynomial, MISO ANN and MIMO ANN) for any

potential combination of the techniques being reported. Three newly applied techniques are

considered on top of those described in Chapter 4. The first is UES that removes equations

that do not provide useful information for identification and thus reduces the data length. After

applying UES, for dimensionality reduction OLS and PCA are proposed for polynomial and

ANN MIMO predistorters, respectively. To finish this chapter, an exhaustive benchmark of the

proposed techniques demonstrates the gains in terms of performance, complexity and training

time.

Finally, Chapter 6 concludes not only discussing the main findings, contribution and benefits

of the research conducted, but stating potential limitations and tracing out the direction for

future lines of research, according to the evolution of beyond 5G communication networks.
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Chapter 2

Power Amplifier Digital linearization
Principles

2.1 Power Amplifier Basics and Linearization Overview

2.1.1 RF Power Amplifier Classes

The general input-output operating principles of the PA and the linearity versus efficiency trade-

off have been briefly introduced in Section 1.1.2. By choosing the bias point and load condition

of an RF PA, such trade-off can be tailored and be optimized either for higher gain, minimum

distortion and maximum output power, or to maximize efficiency. In general, the long-standing

alphabetical classification of PAs in classes represents the conduction angle of a full cycle of

a sinusoidal input signal where the transistor of the amplifier is active and drives current (or

conducts) [Wal12].

The most common amplifier classes controlled by the conduction angle are class A, B, AB

and C. In these classes the transistors behave as a transconductor. There is a second group

of operating classes that are the so-called switching amplifier classes (i.e., with the transistor

operating as a switch) where we find class D, E, F, G, S and T. These amplifiers employ digital

circuits and pulse width modulation (PWM) to switch between full ON and OFF states driving

the output signal harder into saturation to reach higher power efficiency. Assuming ideal input

waveform sinusoidal shape and transistors (and ideal biasing circuits and dc blocks), Figure

2.1 shows an ideal operation model for the transistor (upper right corner), how this transistor

conducts for a given sinusoidal input and bias point (left side) and which is the amplified version

of the input signal according to the loading conditions (right side). It is noted that Vgs stands

for gate-to-source voltage, Vds for drain-to-source voltage, Ids is the drain-to-source current and

RFin and RFout are the input modulated signal and the output amplified version, respectively.

The power amplifier classes are summarized in the following:

35
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Figure 2.1: RF power amplification mechanism for operation classes A, AB, B and C.

Class-A Amplifiers: As depicted in Figure 2.1-left, these power amplifiers operate in full

angle conduction (2π or 360◦) and thus drive current and power 100% of the time. The input

signal drive level is also kept low to avoid entering the pinch-off region. These are the highest

linearity and gain power amplifiers but their efficiency is low and reaches a maximum theoret-

ical value, obtained when operating with continuous-wave (CW) signals, of 50%. As previously

introduced, the higher the linearity the lower the efficiency is (and vice versa) and the higher

the amount of power dissipated in the form of heat. These amplifiers therefore need heat sinks

which add size, weight, volume and cost.

Class-B Amplifiers: These amplifiers were proposed to cope with the low-efficiency and

heating drawbacks of class-A amplifiers. Class B only operates at half of the full conduction angle

or 180◦ by biasing the transistor gate at the pinch-off point where the transistor turns off and

the quiescent drain current is zero. The efficiency of these power amplifiers, that conduct half of

the time than class A, is higher reaching a theoretical maximum of 78.5%. The linearity of these

amplifiers, however, is worse than that of class A when using a single transistor. The harmonic

distortion that will be presented by the PA, which produces half-wave rectified output sinusoidal
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waveforms, needs to be filtered out. Typically, an RF output network presenting resistive loading

at the fundamental component and short circuiting the even-harmonic components is employed

at the output of the PA. Class-B amplifiers require inputs signals twice as larger as class-A

amplifiers to maximize the usage of the linear region of the transistor (have lower gain). Another

typical configuration is the ”push-pull” amplifier that combines two transistors that are used to

supply current alternately during the positive and negative input signal half-cycles and combines

the two waveforms being generated at the output of the amplifier to reconstruct an amplified

version of the original input signal.

Class-AB Amplifiers: These amplifiers combine characteristics from both class-A and

class-B operation to gain the benefits from both. The transistor is biased to a quiescent point

between the pinch-off point and the class-A bias point. The conduction angle is now higher than

180◦ but less than 360◦ to minimize the class-B crossover distortion produced when shooting off

at 180◦. The efficiency can be traded off and be adjusted where needed between that of class B

and class A. The clipping of the RF voltage will be also producing odd-harmonic distortion for

which the use of harmonic loading may also be required to enhance linearity.

Class-C Amplifiers: These amplifiers are in the border between the transconductor and

the switching-mode amplifier groups. Class-C results from biasing the transistor below pinch

off and therefore it will be active or driving current for less than half of the cycle (i.e., below

180◦), conducting only for short pulse-like periods and requiring high input drive levels, and

limiting its usability to specialized applications. While class A, AB and B are considered linear

amplifiers since the output signals amplitude and phase is linearly related to the input signal

ones, class C is more of an improved efficiency class targeting beyond 80% efficiency with a

maximum theoretical level of 100%. However, the quest for the highest efficiency comes at the

expense of a much lower gain and nonlinear behavior for which typical traded-off efficiencies

are around 85%. In a class-C amplifier the harmonic levels escalate rapidly when going below

180◦ conduction, both for odd an even harmonics, which poses a much greater challenge to

fulfill the necessary harmonic loading conditions to have a sinusoidal output signal. Despite the

drawbacks and limited applicability, it is worth mentioning that class-C amplifiers have found a

relevant niche in the RF amplifiers employed in base stations by acting as the peaking amplifier

in Doherty PA architectures.

The switching-mode amplifier classes (i.e., from class C to S) are hardly suitable for lin-

ear application like that required by radio access or wireless backhaul infrastructure due to

introducing significant out-of-band distortion thus impairing the spectrum adjacent channels. A

comprehensive description of such operating modes can be found in [Wal12]. These amplifiers,

however, can be employed as building blocks of other efficient PA architectures like those that

are described in Section 2.1.2, or be used in conjunction with conveniently adapted versions of

the linearization schemes deployed in Section 2.1.3. While some class-AB amplifiers have been
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digitally linearized in the early research works, for the main contributions of the thesis a more

power efficient alternative based on the class-J power amplifier described in [Riz11] which can

be seen as a class AB using capacitive harmonic termination, has been combined for validation

of the ML-assisted DPD techniques being proposed. To describe the main operating principles

of class-J amplifiers it is convenient to introduce first how does class F operate. The two classes

are described as follows:

Class-F Amplifiers: Class F provides the means to boosting the maximum efficiency of

a class-B or deep class-AB amplifier by more than 10% by using properly tuned harmonic

resonators in the output network to shape the drain waveforms. This is first accomplished

by adding a third harmonic component (ideally, all higher-order odd harmonics) to the input

voltage signal, i.e., driving the transistors to saturation, which will contribute to flatten the

output voltage signal and convert it into a square-wave output signal. The presence of a third-

harmonic component allows in addition to have higher amplitude fundamental component at

the output signal. Second, the output matching or loading network will now i) transform the

fundamental load line resistance to the termination impedance (i.e., being typically 50 ohms),

ii) short-circuit the second harmonic (and ideally higher order even harmonics), iii) present

typically a high impedance to the odd harmonics. Despite Class-F amplifiers may reach 100%

efficiency in theory, about 88% when focusing only up to the third harmonic, in practice it will

be hard to have open circuit termination for higher frequencies and higher power devices because

of the escalation in the output capacitance of the active device.

Class-J Amplifiers: A class-J amplifier may be seen as a variant of a class-F amplifier

but now using the second harmonic (instead of the third one) to shape the output waveforms.

This operating mode was promoted by Cripps in [Cri06] following the works in [Raa01] and

[Rho03].The output class J voltage waveform requires i) a fundamental load consisting of the

regular load-line resistive component together with an equal reactive component to keep the

voltage wave above zero (complex loading is required at the fundamental to conveniently shape

the output wave voltage), ii) a second harmonic reactance load with comparable value to the

load-line resistance. While the efficiency may be similar to that of the class B amplifier, class

J has the advantage (over either class B or class AB counterparts) that the second harmonic is

not demanding a short-circuit termination but a capacitive reactance that, in some cases, may

be provided by the output capacitance of the transistor device. Class-F amplifiers may present

significant problems when the performance needs to be kept over a considerable bandwidth due

to having to short-circuit the even harmonics. This is not the case of the class-J amplifier which

may provide, over a broad frequency range, both enhanced efficiency and similar linearity as

class-AB or class B amplifiers when operating with high-PAPR input signals (i.e., due to the

absence of resonant impedance conditions).
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2.1.2 Efficient Power Amplifier Architectures

As outlined in the previous Chapter, the PA is not only one of the main power-hungry elements

in the transmitter but also one of the main sources responsible for introducing nonlinear dis-

tortion. The main drawback of modern communication signals (mainly OFDM-based) is that

the cost of a better use of the spectral resources is an increase of the PAPR of the signals.

Again, this constraint forces the system to operate the PA at a large output power back-off to

guarantee the required linearity level at the antenna port, leading to a serious degradation of av-

erage power efficiency. To minimize power dissipation, highly efficient amplification architectures

based on the dynamic load or dynamic supply modulation have been proposed in the literature.

Some of the most popular solutions are envelope tracking PAs [Pop17], Doherty PAs [Pen16b],

load-modulated balanced amplifiers (LMBAs) [Qua22], and linear amplification with nonlinear

components (LINC) or outphasing PAs [Bar16]. Typically, these amplification topologies are

designed targeting high average efficiency figures over bandwidth and power back-off, however,

the linearity is left as a problem to be addressed at system level by using some kind of linearizer.

Therefore, these topologies require the use of digital signal processing to generate additional

signals, including the supply or load modulated control signal, to maximize power efficiency, as

well as digital predistortion (DPD) linearization techniques to guarantee the stringent linearity

requirements of today’s systems, especially with the increasing signal bandwidth.

Doherty Power Amplifier

For base stations, for example, one popular solution is the use of Doherty PAs, proposed by

W. H. Doherty in early 1936 [Doh36]. The typical Doherty architecture consists of two PAs:

a class-AB carrier PA and a class-C peaking PA. The operating principle of Doherty PA is as

follows. At low input power level, the peaking PA is turned off, only the carrier PA amplifies

the input signal. When the input power level increases up to a threshold (i.e. the point where

the carrier PA starts to go into compression) the peaking PA is turned on to amplify the input

signal together with the carrier PA. The Doherty PA suffers from nonlinear distortion, mainly

due the gain compression that appear just before the peaking amplifier starts conducting. This

phenomenon of double gain compression can be compensated using DPD linearization [Kim06].

Load-Modulated Balanced Amplifier

The LMBA, proposed by Shepphard et al. in [She16], is based on a balanced PA where a control

signal power is injected at the isolated port of the output 90◦ coupler modulating the load

at each balanced device. Unlike in the Doherty PA, in the LMBA the control signal power

recovery is independent to the load modulation and it can be fully recovered at the output of
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Figure 2.2: Block diagram of the Doherty PA.

the LMBA. Another key property of the LMBA is its wider bandwidth of operation, since the

load modulation can be applied for the whole frequency band of the 90◦ coupler, that is normally

larger than the bandwidth of a Doherty combiner. The additional degrees of freedom offered by

a dual-input LMBA can be used to optimize the performance on the same or larger bandwidth,

or to improve other performance metrics such as average power efficiency and linearity [Wan21b,

Gui22], when properly combined with DPD linearization.

Figure 2.3: Block diagram of the LMBA PA.

Outphasing or LINC Power Amplifier

The outphasing PA, introduced by H. Chireix in [Chi35] circa 1935, consisted in using phase

control of two constituent branch PAs operated in saturation by enabling constant-output en-

velope signals that were summed at the output of the system to allow amplitude modulation.

Later in 1974, D.C. Cox [Cox74] generalized the LINC approach. The main difference is that,

unlike the non-isolating Chireix combiner (providing good efficiency but not-so-good linearity),

the LINC combiner isolates the two PA outputs, which improves the combining linearity at the

price of high-power dissipation at high outphasing angles. The performance of an outphasing

architecture is highly sensitive to frequency variations and thus there is a trade-off between

the achievable bandwidth and highly efficient power control range. To deal with the nonlin-
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Figure 2.4: Block diagram of the outphasing or LINC PA.

ear distortion introduced by the non-isolating Chireix combiner, hybrid modes of operation are

combined with DPD to guarantee the required linearity levels while trying to keep the average

power efficiency as high as possible [Gil20c].

Envelope Tracking Power Amplifier

In PAs with dynamic supply modulation, the supply voltage of the RF PA is adjusted according

to the envelope of the RF carrier. One of the precursors of dynamic supply modulation is the

envelope elimination and restoration (EE&R) technique introduced by L. R. Kahn in [Kah52]

circa 1952. Unlike current ET PAs, where the RF signal is amplitude and phase modulated, the

EE&R technique operates a high-efficiency switched-mode RF PA with a constant-amplitude

phase-modulated RF signal (the amplitude information of the RF signal at the output of the

EE&R is added through the dynamic supply of the RF PA). ET PAs have been commercially

exploited mainly for handset applications. Thanks to the dynamic supply, the RF PA (linear

current-source mode, Doherty, or even LINC PAs) can be forced to operate, all the time and

for any non constant envelope signal, close to saturation which increases the power efficiency

for high PAPR signals. Several strategies can be designed to shape the supply voltage signal to

achieve better linearity and efficiency or to meet the slew-rate and bandwidth restrictions of the

envelope tracker modulator. When considering the amplification of wide bandwidth signals, the

use of linearization approaches in the envelope supply path (to compensate for the non-ideal

behavior of the envelope tracker modulator) or in the I-Q signal path (e.g., DPD to compensate

for the distortion introduced by RF PA) results necessary [Gil12]. A combined linearization

strategy is proposed in [Li23] to compensate for the envelope tracker modulator leakage in the

supply path and the PA nonlinear distortion in the RF path, when considering signals up to 200

MHz.
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Figure 2.5: Block diagram of the ET PA.

2.1.3 Classical Linearization Schemes

Feedforward Linearization

The feedforward linearizer, that was proposed by Harold S. Black in 1923 at Bell Telephone

Laboratories, is considered to be the first linearization topology and, until the irruption of

digital predistortion, it was used in communications applications for operating with wideband

signals. Fig. 2.6 shows the block diagram of a general Feedforward linearizer.

Figure 2.6: Simplified feedforward block diagram and principles of operation [Gil07a].

The feedforward functioning is quite straight-forward. Considering a two-tone test, as de-

picted in Fig. 2.6, the input signal is first equally split and fed to the upper and lower paths,

respectively. The signal in the upper path is amplified by the PA. The output signal of the PA

shows intermodulation distortion products. An attenuated sample of the distorted PA output

signal is fed to the lower path and then subtracted with a delayed version of the input signal.

Therefore, considering an ideal match between the lower path delay (τ1) and the delay introduced
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by the PA (in the upper path), the resulting error signal consists only of the intermodulation

distortion products caused by the PA. Then, the error signal is linearly amplified by the error

amplifier and fed to the upper path. Contemporary, the PA output signal in the upper path is

delayed (τ2) by an amount equal to the delay introduced by the error amplifier. Finally, if the

cancellation has been perfectly done at the output of the error subtracter, the amplified version

of the desired original signal will be delivered.

One of the advantages of the feedforward linearizer is that, in contrast to the later feed-

back linearizer, it is unconditionally stable and can be used for wideband signals. However, its

open-loop nature makes it too sensitive to delay mismatches and tolerances of the components,

which ultimately may degrade the linearization performance [Pot99]. Black tried to combat

these effects but, after four years working on it, he could not maintain the required cancellation

over temperature, aging, and frequency with the vacuum tube amplifier technology available at

that time [Kat16] Over time, the concept was revived with the arrival of the solid-state power

amplifiers and the need for highly linear PAs for cellular telephone base stations in the 1980s.

With adaptive control, some reasonable cancellation could be guaranteed under temperature

variation and aging but, in practice, such cancellation could be only achieved up to about 6 dB

from saturation to allow the auxiliary amplifier in the lower path to operate in a linear regime

(so as not to introduce distortion on its own). The feedforward linearizer can take to significant

power efficiency degradation (even when linearity levels are maintained [Gil04]). The complexity

overhead and increased power consumption are relevant disadvantages that have been limiting

the deployment of feedforward linearization solutions.

Feedback Linearization

The rationale behind feedback linearization consists in feeding the output back to the input,

180◦ out of phase, reducing the distortion at the expense of gain. Harold S. Black demonstrated

the benefits of negative feedback [Bla34] already in 1927. Since then, feedback theory has been

developed and applied in many applications from control to communications. A general feedback

closed-loop block diagram including input and output additive disturbances is shown in Fig. 2.7.

Figure 2.7: General block diagram of feedback linearization technique [Gil07a].
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Considering the generic notation in Fig. 2.7, the output of the feedback system can be

expressed as

Y (ω) =
G(ω)

1 +G(ω)H(ω)
R(ω) +

G(ω)

1 +G(ω)H(ω)
D(ω) +

1

1 +G(ω)H(ω)
N(ω) (2.1)

Where R(ω) is the reference signal (input signal), Y (ω) the output signal, D(ω) the input

disturbance and N(ω) the output disturbance (noise), all of them defined in the frequency

domain. As described in (2.1), the bigger is H(ω), the more insensitive is the feedback system

to input disturbances. Moreover, the bigger is G(ω) or H(ω), the more insensitive the output

noise is. However, the price to reduce input disturbances is a loss in the overall system gain

(amplification).

Some feedback structures have been proposed for communications systems, such as Carte-

sian feedback linearizers [Boo11] , polar loop feedback [Sow04] or envelope feedback [Che02]

linearizers. The approach may provide relevant intermodulation distortion (IMD) rejection but

is limited in terms of high-frequency operation. Other feedback linearizer drawbacks, beyond the

loss of amplification gain and high-frequency operation, is that the linearization performance

is degraded when considering wideband signals (i.e., there is a practical difficulty in making

a feedback system responding to signal envelopes faster than several tens of MHz due to the

required delay for the PA and rest of the components), and that may suffer from stability issues.

Predistortion Linearization

The quest for simplicity and cost effectiveness, wideband operation and dynamic range and

has promoted the use of predistortion linearizers which neither have loop nor delay issues and

are operated before the PA meaning the process is less energy hungry. According to [Kat16],

the predistortion linearization technique was introduced by Adel A. M. Saleh and J. Salz from

Nokia Bell Labs in 1983 [Sal83]. The principle of predistortion, independently if it is analogue

or digital, is quite straightforward. As depicted in Fig. 2.8, it consists in preceding the PA with

a device called predistorter in order to counteract the nonlinear characteristic of the PA. The

objective of the predistorter is then to ideally reproduce the inverse PA nonlinear behavior and

as a result having linear amplification at the output of the PA.

Analog predistortion (APD) uses an analog circuit to predistort the input signal. One of

the advantages of ADP is that the bandwidth expansion is taking place in the analog domain,

which relaxes the clock rate requirements in the digital-to-analog converter (DAC) to generate

the analog transmitted signal. For the design of analog predistorters, the key point is to tune

a nonlinear circuit that has to show the exact inverse nonlinear characteristic as the targeted

PA. Several solutions have been proposed to generate the inverse characteristic using analog

circuitry [Gao18,Gum18].
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Figure 2.8: The concept of predistortion.

Since the 1980s, with the development of signal processing hardware (e.g. system-on-chip

(SoC) and field programmable gate arrays (FPGAs) with high-speed processing and memory

capabilities, digital predistortion (DPD) linearization has become the dominant linearization

technique [Kat16]. In DPD the predistortion of the transmitted signal is carried out at base-

band in a digital signal processor. By applying DPD to the complex digital base-band signal,

the predistorter signal to be transmitted suffers a bandwidth expansion (e.g., 3× to 5× the

original signal bandwidth) that has to be taken into account to determine the DAC clock rate.

In addition, a feedback or observation path is necessary to monitor the amplified signal and

estimate the coefficients of the DPD.

DPD linearizers are nowadays a fundamental building block vastly adopted by today’s base

station modems and user handsets since all its signal processing can be achieved in a DSP

simplifying the RF layout. Analog predistortion (APD) linearizers are more cost-effective but

since their performance is lower than DPD, their use is more limited to applications requiring

large bandwidth where DPD is technically unfeasible or too costly. The increasing PAPR and

the quest for efficiency, has made the combination of Doherty or ET/polar PAs and DPD a de

facto standard.

The increasing signal bandwidth evolution at every mobile communications technology gen-

eration (i.e. from a few kHz or hundreds of kHz to tens and hundreds of MHz) has also given

increasing importance to the mitigation of the memory effects being produced in the PA. Such

effects make the amplitude of the output signal not only be dependent on the actual input signal

amplitude but also on several past values. These memory effects are caused by different physical

mechanisms like the change of nonlinearities of the PA and the behavior of the impedance of

decoupling networks with frequency (the latter with respect to the envelope frequency), changes

in the active devices biasing due to the envelope variation, or the impact of electrothermal effects

in the device operation. Further detail on the basic principles of DPD linearization compensating
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for the memory effects is given in Section 2.2.

Linearization performance metrics

The most common metrics used to evaluate the linearization performance are listed in the

following. To quantify the out-of-band distortion, the adjacent channel power ratio (ACPR) is

commonly used. The ACPR is in this thesis defined as the ratio of the power delivered in the

adjacent channels (adj) to the total power over the channel bandwidth (ch).

ACPR (dB) = 10 log10


∫
adj

Pout (f) df∫
ch

Pout (f) df

 = 10 log10


∫
adj

| Y (f) |2 df∫
ch

| Y (f) |2 df

 (2.2)

where Y (f) is the Fourier transform of the measured PA output signal. Consequently, taking

into account the logarithmic scale, the more negative the ACPR is, the less spectral regrowth

and the more linear is the PA. The ACPR is calculated for both the upper sideband (US)

and the lower sideband (LS), and a common approach is to report the worst case ACPR, i.e.,

ACPRworst = max{ACPRLS,ACPRUS}.

The in-band distortion introduced by the PA can be observed in digital linear modulations

such as the quadrature amplitude modulation (QAM) schemes. It can be quantified with the

error vector magnitude (EVM) figure of merit. The EVM measures the effects of the distortion

on the amplitude and phase (or the In-phase and Quadrature components) of the modulated

output and it is defined as the square root of the ratio of the mean error vector power to the

reference (ref) power expressed as a percentage (%),

EVM (%) =

√√√√√√√√
L∑

n=1
(∆I2[n] + ∆Q2[n])

L∑
n=1

(
I2ref[n] +Q2

ref[n]
) · 100 (2.3)

where ∆I[n] = Iref[n] − Imeas[n], ∆Q[n] = Qref[n] − Qmeas[n], with Imeas[n] and Qmeas[n]

being the in-phase (Imeas[n] = Re{ydemod[n]}) and quadrature (Qmeas[n] = Im{ydemod[n]}) com-

ponents of the measured demodulated PA output signal (ydemod[n]), respectively. Finally, L is

the number of samples. The EVM includes information on the transmit filter accuracy, D/A-

converter, modulator imbalances, untracked phase noise, and power amplifier non-linearity. In a

similar manner to the spectral regrowth limitations, communications standards determine max-

imum levels of the EVM permitted at the transmitter antenna and at the receiver, depending

on the modulation scheme used and the use (or not) of any codification.
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One of the most commonly used PA or DPD modeling performance indicators is the normal-

ized mean squared error (NMSE). The NMSE, for example, can be used to indicate how well

the model is approximating the reality, i.e., it measures the resemblance of the discrete-time,

complex-valued estimated output (ŷ[n]) and the discrete-time, complex-valued measured output

of the PA (y[n]). It is therefore driven by the in-band channel error which has considerably more

power than that between out-of-band adjacent and alternate channel error).

NMSE (dB) = 10 log10


L∑

n=1
|y[n]− ŷ[n]|2

L∑
n=1
|y[n]|2

 (2.4)

Being inspired by the ACPR metric, and in contrast to the NMSE metric, the adjacent

channel error power ratio (ACEPR) is oriented at highlighting the modeling capabilities of

the nonlinear part (impacting in the out-of-band error power), most of the times masked by

the dominant linear part. Thus, the ACEPR calculates the error signal power in the adjacent

and/or alternate channels relative to the in-band channel power of the measured signal as

ACEPR (dB) = 10 log10


∫
adj

|E(f)|2 df∫
ch

|Y (f)|2 df

 = 10 log10


∫
adj

| Y (f)− Ŷ (f) |2 df∫
ch

| Y (f) |2 df

 (2.5)

where E(f) is the Fourier Transform of e(n) = y(n)− ŷ(n), being y(n) and ŷ(n) the measured

output signal and its modeled or estimated signal, and where Y (f) and Ŷ (f) are the Fourier

Transforms of such signals.

2.2 Digital Predistortion Linearization

2.2.1 Power Amplifier Behavioral Modeling

Power amplifier behavioral models are mathematical descriptors of the nonlinear behavior and

memory effects of PAs. Unlike physical models, where it is necessary to know the electronic

elements that comprise the PA, their constitutive relations and the theoretical rules describing

their interactions, the extraction of PA behavioral models relies only on a set of input-output

observations. Consequently, their accuracy is highly sensitive to the adopted model structure and

the parameter extraction procedure. In general, the same basis functions used for approximating

the response of the PA are also used to estimate its inverse response.

Several PA behavioral models can be found in the literature addressing not only the nonlin-

ear modeling of SISO systems but also MISO systems. For example, when having to characterize

concurrent multi-band transmissions or dynamic supply modulation strategies for the PA [Gil19].
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Figure 2.9: Identification of the power amplifier behavior.

Some of the most commonly used polynomial-based behavioral models can be seen as a sim-

plified approximations of the general Volterra series. Volterra series are aimed at describing

time-invariant nonlinear systems with fading memory. Following the notation in Fig. 2.9, the

discrete-time low-pass equivalent Volterra series formulation considering complex-valued signals

is described as follows,

ŷ[n] =

P∑
p=1

Q−1∑
q1=0

Q−1∑
q2=q1

· · ·
Q−1∑

qp=qp−1

· · ·

· · ·
Q−1∑

q2p−1=q2p−2

h2p−1(q1, q2 · · · , q2p−1)

p∏
i=1

x[n− qi]
2p−1∏
j=p+1

x∗[n− qj ]

(2.6)

where x[n] ∈ C and ŷ[n] ∈ C are the PA input and estimated PA output signals, respectively.

The series is composed by P kernels of increasing dimensional order. The main drawback of using

the full Volterra series is that the number of parameters grows exponentially when considering

higher order kernels and typical communication signals do not present enough richness to fully

excite these kernels, which ultimately may lead to an ill-conditioned problem.

Alternatively, one of the most widely used models in literature is the generalized memory

polynomial (GMP), proposed by Morgan et al. in [Mor06]. The estimated PA output using the

GMP is defined as follows,

ŷ[n] =

Na−1∑
i=0

Pa−1∑
p=0

αp,i · x[n− τai ]
∣∣x[n− τai ]∣∣p +

Mb∑
j=1

Nb−1∑
i=0

Pb∑
p=1

βp,i,j · x[n− τ bi ]
∣∣x[n− τ bi − τ bj ]∣∣p + (2.7)

Mc∑
j=1

Nc−1∑
i=0

Pc∑
p=1

γp,i,j · x[n− τ ci ]
∣∣x[n− τ ci + τ cj ]

∣∣p
where αpi, βpij and γpij are the complex coefficients describing the model, and τa, τ b and τ c

(with τ ∈ Z and τ0 = 0) are the most significant non-consecutive delays of the input signal
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x[n] that better contribute to characterize memory effects. The total number of coefficients is

O = PaNa+PbNbMb+PcNcMc. The GMP model is an evolved version of the memory polynomial

(MP) model in [Kim01] (appearing as the first summand in the previous equation and featuring

PaNa coefficients) that has bi-dimensional kernels considering cross-term products between the

complex signal and the lagging and leading envelope terms. This increases the accuracy of the

modeling at the price of increasing the number of parameters when compared to MP.

There are plenty of other behavioral models in literature used for DPD purposes in SISO

systems, just to mention a couple of examples, the NARMA model proposed in [Mon07] or the

Dynamic Deviation Reduction (DDR) Volterra series in [Zhu06]. Further information on PA

behavioral models for SISO systems can be found in [Sch09]. In addition, when considering con-

current multi-band transmissions such as in [Rob13], or even combined with PA dynamic supply

modulation strategies such as in [Gil15], or also in multi-antenna systems where each transmit

path has its own PA and antenna element such as in [Hau18], MISO behavioral models are re-

quired to characterize the different sources of nonlinear behavior. In addition, as an alternative

to polynomial-based behavioral models, ANN and SVR approaches have been used in literature

for PA behavioral modeling and DPD linearization purposes. Some of these behavioral models

will be presented and discussed in detail in the following Chapters of this Thesis.

In general, the estimated PA behavioral model output ŷ[n] (for n = 0, 1, · · · , L− 1), can be

defined following a matrix notation as

ŷ =Xw (2.8)

where w =
(
w1, · · · , wi, · · · , wN

)T
is the N × 1 vector of parameters (or PA modeling coef-

ficients) and X is the L × N data matrix (with L ≫ N) containing the basis functions or

components. The data matrix can be defined as

X =
(
ϕx[0],ϕx[1], · · · ,ϕx[L− 1]

)T
(2.9)

where ϕx[n] =
(
φx
1 [n], · · · , φx

i [n], · · · , φx
N [n]

)T
is the N ×1 vector of basis functions φx

i [n] (with

i = 1, · · ·N) at time n. Therefore,

ŷ[n] = ϕx
T [n]w[n]. (2.10)

The general equation in (2.8) can be particularized for any behavioral model or subset of

basis functions. In general, the problem has no exact solution since it is over-determined (i.e.

it has more equations than unknowns). To identify the vector of coefficients w we define a cost

function that takes into account the identification error e expressed, as depicted in Figure 2.9,

as

e = y − ŷ = y −Xw. (2.11)
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Taking the ℓ2-norm squared of the identification error, the least squares (LS) minimization

problem can be defined as

min
w
∥e∥22 = min

w
∥y −Xw∥22. (2.12)

Taking the derivative of the cost function J(w) = ∥e∥22 and setting it to zero, it can be proved

that the solution to the least squares (LS) minimization problem in (2.12) is given by

w = (XHX)−1XHy (2.13)

The most common numerical methods used to solve the LS problem are detailed in Section 2.2.3.

2.2.2 Closed-Loop Digital Predistortion

The block diagram in Fig 2.10 shows the DPD function and the closed-loop path for coefficients

adaptation following a direct learning approach. The input-output relationship at the DPD block

in the forward path is

x[n] = u[n]− d[n] (2.14)

where x[n] is the signal at the output of the DPD block, u[n] is the input signal, and d[n]

is the distortion signal which can described using a particular PA behavioral model as per (2.7)

for the GMP model. In such a case, the PA behavioral model or basis functions will be reused to

model the distortion signal since they will share the same nonlinear nature, now having different

coefficients to model distortion instead of overall PA response.

Figure 2.10: Block diagram of CFR and DPD with direct learning DPD adaptation.

Following a matrix notation, we can rewrite (2.14) as

x = u−Uw, (2.15)

where u is the L× 1 input vector and L is the number of samples (i.e., n = 0, 1, · · · , L− 1), x

is the L× 1 predistorted vector and w now is the N × 1 vector of DPD coefficients. The L×N
data matrix U containing the basis functions is defined as

U =
(
ϕu[0],ϕu[1], · · · ,ϕu[L− 1]

)T
(2.16)
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where ϕu[n] =
(
φu
1 [n], · · · , φu

i [n], · · · , φu
N [n]

)T
is the N × 1 vector of basis functions φu

j [n] , for

j = 1, · · · , N , at time n. Therefore,

x[n] = u[n]− ϕu
T [n]w[n]. (2.17)

Again, these basis functions can be particularized by considering any behavioral model, such as,

for example, the GMP model in (2.7).

A direct learning approach [Bra08] is considered (see Fig. 2.10) to identify the coefficients

of the DPD model. Applying an iterative learning approach, the DPD coefficients at the kth

training iteration can be calculated as follows,

wk+1 = wk + µ ∆w. (2.18)

with µ (0 < µ < 1) being a learning rate parameter. Now, the LS solution for ∆w is defined as

∆w =
(
UHU

)−1
UHe (2.19)

with e being the L× 1 vector of the residual error, defined as

e =
y

G0
− u (2.20)

where G0 is the desired linear gain.

2.2.3 DPD Implementation Aspects

Real-Time Predistortion at Forward Path

In a closed-loop adaptive predistorter system like that shown in Fig. 2.11, we can distinguish

between the DPD forward path, where the DPD model is applied real-time to the baseband

oversampled signal to compensate both for the in-band and out-of-band distortion, and the

DPD feedback or adaptation path that takes also the PA baseband oversampled output signal

(after proper time alignment and gain compensation) to update the DPD coefficients during

training that are being used in the forward path. The DPD training in the feedback path aims

at converging to the desired linearization algorithm performance and to adapt to different PA

and waveform operating conditions which vary over time. Until the advent of 5G, the speed of

such variations was typically several orders of magnitude slower when compared to the forward

path time scale (i.e., nanosecond-to-microsecond range) for which, while the digital process-

ing in the forward path is implemented in programmable or hard-wired real-time logic like

field-programmable gate arrays (FPGA) or application-specific integrated circuits (ASIC), the

feedback path operations are conducted in a processor system doing the LS signal processing

and delivering DPD updating speeds in the millisecond-to-second range.
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Figure 2.11: Block diagram of a closed-loop adaptive DPD linearization system [Gil20a].

When focusing on the forward path real-time implementation, we can take the distortion

signal in (2.14), being d[n] = ϕu
T [n]w[n]. At this stage it is important to consider that in order

to make the calculations to compute d different approaches can be followed. One consists in

mapping the polynomial model in the programmable logic operating real time, for example by

using the Horner’s rule as in [Mra12], and therefore implement a given dedicate DPD model.

This approach is highly resource consuming but may easily replicate the performance accounted

by simulation tools when using the same coefficients. Another approach which is more efficient

and features lower processing latency consists in deploying look-up-tables (LUT) that store

the values taken by a given polynomial nonlinear function [Gil07b,Mol17,Pha18b]. The input

samples are therefore used to index a specific position of the LUT table that gives the output

value taken by the function for that given input. In line with the latter approach, the authors

in [Ces07] propose combining basic predistortion cells (BPCs) that leverage on the use of LUTs

to build the overall DPD. Following an analogous principle, the GMP model in (2.7) can now

be applied as

d [n] =

Na−1∑
i=0

uBB [n− τai ] g
(a)
i,0

(∣∣uBB [n− τai ]
∣∣)

+

Nb−1∑
i=0

Mb∑
j=1

uBB

[
n− τ bi

]
g
(b)
i,j

(∣∣uBB

[
n− τ bi − τ bj

] ∣∣)

+

Nc−1∑
i=0

Mc∑
j=1

uBB [n− τ ci ] g
(c)
i,j

(∣∣uBB

[
n− τ ci + τ cj

] ∣∣)
(2.21)

where the memory depth and cross-memory products are determined by Na, Nb, Nc andMb,Mc,

while g
(k)
i,j (·) (with k = a, b, c) are the nonlinear functions that depend on the signal envelope

products. As explained in [Li21], these nonlinear functions can be described by polynomials
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or B-splines, for example, and be mapped to the different LUTs forming the above mentioned

BPCs. Now we define

g
(k)
i,j (r) =

Pk−1|0∑
p=0|1

w
(k)
i,j,p r

p (2.22)

where r is the envelope defined as r =
∣∣u[n−τki ±τkj ]∣∣, w(k)

i,j,p are the coefficients of the polynomial

basis functions, Pk is the degree of the polynomial. Each of the basis functions φu
j [n] (2.17)

constitute DPD kernels whose contribution will be weighted by the coefficients. As seen in [Li22],

a kernel map k can be formed with non-repeated kernels of the DPD behavioral model and be

indexed by vectors composing i) the delays taken by τki that are applied to the u, ii) the delays

taken by τki ± τkj that are applied to
∣∣u∣∣ (envelope term) and iii) the envelope power orders.

Considering a model order of O, such map may take the form of

k = (τu, τ e,p) =

τ
u
1 τ e1 p1
...

...
...

τuO τ eO pO

 (2.23)

and the GMP model be rewritten as

d [n] =
∑

τu,τe,p∈k
wτu,τe,pu [n− τu]

∣∣u [n− τ e] ∣∣p (2.24)

Once the kernel map is formed, the implementation scheme that is presented in [Li22], now

shown in Fig. 2.12, may be used to efficiently deploy the DPD forward path. In this figure,

Md is the total memory depth accounted as the memory range that need to be allocated to

accommodate the samples between the minimum leading and the maximum lagging GMP delay,

i.e., Md = (−min(τu, τ e, 0)+max(τu, τ e)+1). The HW will always operate at a system delay

or latency of D = −min(τu, τ e) samples (i.e., minimum leading delay) that will need to be

buffered to make the system causal.

When focusing on FPGA implementation, the LUTs that output the power terms will be

indexed by the absolute value of the input signal which can be calculated by using a high-

precision and high-speed coordinate rotation digital computer (CORDIC) algorithm. The LUTs

may be hosted in embedded high-speed grade block random-access memories (BRAMs), and

host any kind of precalculated nonlinear function. The resolution of the LUT is determined

by its length (number of values stored) and the precision is defined by the bit width used to

represent that value. All the LUT-retrieved values are accumulated in shifting memories until

the memory depth is filled in for every LUT output. The delay routing blocks in Fig. 2.12 will

typically be implemented with flip flops (FFs) to acquire the delayed version of the signals

of interest. In between the delay routing blocks, the circular-shaped blocks may be seen as

minimum computation units (MCU) that take as input a delayed power term, its corresponding

DPD coefficient and the delayed input and computes the product of these values which is added
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to the previous MCU. There are as many MCUs as the number of rows of the kernel map. These

operations can be handled by FPGA DSP slices. Finally, the predistorted signal is obtained by

subtracting the modeled distortion signal to the original signal as per (2.14). Full detail on the

Figure 2.12: DPD forward path GMP LUT-based real-time implementation architecture.

FPGA implementation for this scheme is provided in [Li22] for an advanced 5G ET-PA DPD

system running at 614.4 MHz, both considering high-level synthesis (HLS) and register transfer

level (RTL) implementation and providing the advantages and pitfalls of each methodology.

Finally, the DPD coefficients w will be updated during training in the DPD feedback path.

The numerical methods and calculations behind this process, which are typically computed by

an ARM processor embedded in the FPGA, are described in the next section.

Numerical Methods for DPD estimation at Feedback Path

In order to perform DPD coefficient estimation in the feedback path, the LS minimization prob-

lem can be solved via Cholesky factorization or normal equations method, QR factorization,

Gram-Schmidt methods, or by using the singular value decomposition (SVD). These measure-

ments are introduced as follows:
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• Normal Equations: This method converts the LS problem to the normal equations first

by operating (2.19) as

UHU∆w = UHe. (2.25)

The Cholesky factorization can be applied for a full-rank matrix. Being the covariance

matrix UHU positive definite, we can now apply a symmetric form of Gaussian elimination

as

UHU = RHR (2.26)

where R is an upper-triangular matrix and RH is lower triangular. Then, what we need

to do is solving two following upper-triangular systems

RHz = UHe, for z, (2.27)

RH∆w = z, for∆w. (2.28)

The operation count for the normal equations method will be O(NL2+
1

3
L3). The method

is not computational expensive and can run faster when compared to other LS solving

solutions. However, its main drawback is that it is sensitive to rounding errors when finite

precision arithmetic is deployed to implement the method which may lead to instabilities.

• QR factorization: QR is a method also working for full-rank matrices and is among the

most commonly approaches used to solve the LS problem. In this method,U is decomposed

as

U = QR, (2.29)

where Q = [q1, q2, · · ·, qN ] is an L×N unitary matrix (i.e., QHQ = QQH = I) and R is

an N ×N upper-triangular matrix where the diagonal entries rjj are nonzero. Therefore,

it can be said that each column of U is a linear combination of the columns in Q, that

can be expressed as

φu
1 = r11q1,

φu
2 = r12q1 + r22q2,

· · ·

φu
N = r1Nq1 + r2Nq2 + · · ·+ rNNqN . (2.30)

From (2.29), the problem in (2.19) has the form of

QR∆w = e, (2.31)
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where the left multiplication by QH gives

R∆w = QHe. (2.32)

The result is obtained by solving the upper-triangular system in (2.32) for ∆w with back

substitution. The QR approach is more stable than Cholesky and is considered the stan-

dard method for solving LS problems (e.g., is used for the MATLAB’s backslash operator).

The algorithms for computing the QR factorization include the Gram-Schmidt algorithm,

Household triangularization, Givens transformation method, Pivoting and Gaussian elim-

ination [Tre97]. In this section, the Gram-Schmidt algorithm and Household triangular-

ization methods for QR factorization are now presented.

Classical Gram-Schmidt algorithm:The classical Gram-Schmidt (CGS) algorithm

is a process that generates the orthonormal basis of a set of given linearly independent

vectors (in this case, the columns U). The Algorithm 1 expresses the CGS. In the j-th

step of CGS, the j-th columns of both Q (i.e., the orthonormal basis matrix) and R are

generated.

Algorithm 1 Classical Gram-Schmidt algorithm

1: procedure CGS (U)
2: for j = 1 to N do
3: vj = φ

u
j ;

4: for i = 1 to j − 1 do
5: rij = q

H
i φ

u
j ;

6: vj = vj − rijqi;
7: end for
8: rij = ||vj ||2;
9: qj =

vj
φu

j

;

10: end for
11: end procedure

The disadvantage of the CGS algorithm is its sensitivity to the cumulative effects of

rounding errors at the processing system. To overcome this problem, the modified

Gram-Schmidt (MGS) algorithm is proposed. In CGS, the lengths of the orthogonal

projections of vj = φu
j onto qi, i = 1, ..., j − 1 are computed and then these projec-

tions are subtracted from vj . Differently, in MGS the length of the projection of vj onto

each qi, i = 1, ..., j−1 is computed and then subtracted from vj as soon as the qi is known.
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Algorithm 2 Modified Gram-Schmidt algorithm

1: procedure MGS (U)
2: for i = 1 to N do
3: vi = φ

u
j ;

4: end for
5: for i = 1 to N do
6: rii = ||vi||2;
7: qi =

vi
rii

;

8: for j = i+ 1 to N do
9: rij = q

H
i vj ;

10: vj = vj − rijqi;
11: end for
12: end for
13: end procedure

In other words, while in CGS we take each vector, one at a time, and make it orthogonal to

all the previous vectors, in MGS we take each vector and modify all the forthcoming ones

to be orthogonal to it. Despite the two variants mathematically equivalent, MGS is more

immune to rounding error instability than CGS and features O(2LN2) operation count.

Householder triangularization: This is another well-known approach to calcu-

late the QR factorization. The stability of this method is equivalent to that of MGS

but features slightly lower computational cost. The Householder algorithm is a process

of triangularizing a matrix by a sequence of unitary matrix operations. The essence of

this method is at the i-th step, doing a left-multiplication U by a matrix Qi so that

the entries from the i+ 1-th one of the i-th column of U become zeros. The output of

the algorithm are the upper triangular matrix R, and the vectors v which can be used

to form the matrix Q so that U = QR. In the algorithm, the U i:i′,j:j′ is defined as

the (i′ − i + 1) × (j′ − j + 1) submatrix of U with the upper left corner φu
ij and the

lower right corner φu
i′j′ . In case of presenting the subvector of a single row or column,

we write U i,j:j′ or U i:i′,j . The operation count for the algorithm is of O(2NL2 +
2

3
L3).

Algorithm 3 Householder algorithm

1: procedure HHA (U)
2: for i = 1 to N do
3: ϕu = U i:N,i;
4: vi = sign(ϕu1)||ϕu||2e1 + ϕu;
5: vi = vi||vi||;
6: U i:L,i:N = U i:L,i:N − 2vi(v

H
i U i:L,i:N );

7: end for
8: end procedure
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• SVD: SVD is another matrix factorization method for either real or complex matrices.

This LS solving method can be applied when the matrix U is close to rank-deficient since

it has very good stability properties. The decomposition of U is formulated as

U = V ΣWH (2.33)

where each column of the N ×N matrixW (or right singular vector, please note that the

variable naming has nothing to do with neither DPD coefficient vectors nor DPD coefficient

increment vectors) is the unit vector of the unit sphere S (considering the 2-norm unit

sphere). Each column of the L × N matrix V (or left singular vector) is the unit vector

oriented in the direction of a principle semiaxis of US and, therefore, the matrices V and

W are unitary. Finally, Σ is an N × N diagonal matrix with positive entries. When full

SVD is performed, V is L× L, W is N ×N and Σ is L×N .

The LS problem in (2.19) is now seen as

V ΣWH∆w = e. (2.34)

Applying left multiplication by V H we have that

ΣWH∆w = V He, (2.35)

and by setting z =WH∆w, (2.35) becomes

Σz = V He. (2.36)

By solving the diagonal system in (2.36) for z, then we compute ∆w = Wz. The op-

eration count for the algorithm is typically O(2NL2 + 11L3). The SVD can be solved

via eigenvalue decomposition, Golub-Kahan bidiagonalization or Lawson–Hanson–Chan

(LHC) bidiagonalization [Tre97].

2.3 Crest Factor Reduction Techniques

CFR techniques are aimed at reducing the peaks of the modulated waveform to a satisfactory

level. Due to the potentially added in-band and out-of-band distortion, CFR does not necessarily

introduce system gain; but, thanks to the reduction in the peaks, it is possible to operate the PA

at higher average power and therefore closer to its saturation point, where it is most efficient.

As depicted in Fig. 2.10, CFR is usually combined with DPD. The positive impact on the radio

equipment when combining these two digital linearization techniques has been detailed in Section

1.1.2.

The PAPR reduction techniques may be divided in three groups according to the taxonomy

shown in [Rah13]:
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• In the first group, the signal distortion techniques reduce the PAPR by distorting the

OFDM signal before the PA at the expense of some tolerable increase in the in-band

and out-of-band distortion. Clipping techniques may be classified into hard-clipping, soft-

clipping and companding. In hard-clipping the output signal is strictly limited at the

established threshold, while in soft-clipping the output signal follows a piecewise law where

several threshold levels are defined. In the companding technique the dynamic range of the

signal is compressed at the transmitter side by means of a memoryless transformation (i.e.,

companding function). These clipping techniques require some kind of spectral shaping

procedure to mitigate the clipping noise that appears as spectral regrowth in the adjacent

channels. To cope with the spectral shaping of the clipping noise, several techniques have

been proposed, such as clipping pulses [Kim07a], pulse windowing [Vaa05] or noise shaping

[Sau04].

• The second group includes the multiple signaling and probabilistic techniques that either

modify the OFDM waveform (i.e. by introducing phase shifts, adding peak reduction sub-

carriers or changing the symbol constellation points) or generate multiple permutations

of the OFDM signal and transmit the one with the minimum PAPR. In this group we

find the selective mapping (SLM) [Bäu96], partial transmit sequences (PTS) [Mül97], tone

injection and tone reservation [TM99], active constellation extension (ACE) [Kro03] and

the interleaved OFDM [Hil00,Han05], among others.

• In the third group some coding schemes like linear block coding, turbo coding or Golay

Complementary Sequences are provided both for error detection and correction and to

perform PAPR reduction. The idea of the coding schemes is to reduce the occurrence

probability of the same phase of the signals by selecting the codewords that minimize the

PAPR (avoiding in-phase addition of signals) in the transmission. Several coding techniques

have been published in literature, such as for example the Simple Block Coding [Fra98],

Complement Block Coding [Jia05] or the Modified Complement Block Coding [Jia04],

among others.

The CFR solutions are typically analyzed in terms of implementation complexity, bit rate

loss, induced distortion and in terms of power increase. The signal distortion techniques are

good solutions in terms of implementation complexity, preserving the bit rate, and not requiring

a power increase but, on the contrary, the EVM and BER may increase. The multiple signaling

and probabilistic techniques are of higher complexity but do not provoke distortion. The bit

rate loss and power increase will depend on the specific technique. For instance, while in ACE

the symbol constellation modification requires higher power but does not imply bit rate loss,

PTS does not require power increase but does imply a bit rate loss due to the need of side

information (i.e. sent to inform the receiver of what modifications have been implemented at the

transmitter).
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In this thesis, the CFR technique used to reduce the PAPR of the modulated signals is the

peak cancellation (PC) scheme described in [Kim07b], due to the reasonable implementation

complexity and tuning capabilities. As shown in the block diagram in Fig. 2.13, it is based in

the clipping and filtering techniques:

Figure 2.13: Block diagram of the PC-CFR technique.

In a first stage, a peak signal p[n] is generated as

p[n] = s[n]− s[n]c[n] (2.37)

being s[n] the input signal and c[n] the clipping signal defined as

c[n] =

{
A

|s[n]| if |s[n]| > A

1 if |s [n] |≤ A
(2.38)

with A being a clipping threshold. In a second stage, the peak signal p[n] is filtered (noise

shaping), obtaining pf [n]. Finally, the reduced PAPR output signal is calculated by subtracting

a weighted version of the filtered peak signal from the original input signal (after proper time

alignment),

u[n] = s[n−D]− αpf [n] (2.39)

with α being the subtraction parameter. In order to guarantee the PAPR reduction factor for

a given set of threshold and subtraction parameters, the output signal is fed back to the input

and the process is iterated four times more. By benchmarking in advance the PAPR reduction

factor and the quality of the signal for all the different combinations of threshold and subtraction

parameters, it is therefore possible to tune the PC-CFR trading-off between induced distortion

and PAPR reduction to meet the requirements imposed by the application scenario.

Finally, one must be aware that by using the PC-CFR technique as stand-alone digital

linearization scheme may not suffice to provide any relevant benefit to the system or meet the

required specification. The rationale to include it in the digital linarization system, however,

are listed as follows: i) The predistorter may be assisted by the CFR block as a protection

mechanism to minimize the effects of having signals with larger PAPR than those with the

highest probability of occurrence and that are typically used for training the DPD or calculating

a specific set of coefficients in non-adaptive DPD architectures. The low probability of occurrence
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but highest PAPR transmissions can feature, for example,2-to-3 dB higher PAPR than the mean

statistical value. ii) Preventing the peaks from going hard into compression allows keeping under

control the ACPR values and thus increasing the output power to have further system gain and

power efficiency. In adaptive DPD architectures, the CFR mechanism facilitates compensating

the response of a highly compressed PA (i.e. by the predistorter) by easing the parameter

identification and the convergence of the DPD engine. It helps to prevent excessive PAPR values

of the predistorted signal being produced (always some dBs higher than the nominal ones as the

compressed AM/AM curve needs to be inverted) which otherwise could affect the quantization

performance at DAC devices or impose hard restrictions on the mean power at the output of

such devices to avoid DAC saturation.

Combined CFR and DPD Use Case

Trading off Efficiency and Spectral Coexistence in Emergency Roll-Out Radio

This use case summarizes a highly detailed book chapter contribution in [LB20]. It highlights

the benefits of employing digital linearization in a not so common application scenario, where a

cognitive and agile broadband public protection and disaster relief (BB-PPDR) radio may need

to be deployed to replace compromised radio access and backhaul equipment or extending cov-

erage with temporary infrastructure equipment, and coexist with other wireless communication

or broadcasting technologies such as LTE or DVB-T. In the case of a cross-border problematic,

a rapid context-aware on-field assessment of the situation might also be necessary (i.e. scan the

spectrum of interest to identify interferers and jammers), in order to apply a coarse grain min-

imization of interference sources. The BB-PPDR radio transmission must satisfy the following

key performance indicators (KPI):

• A high degree of flexibility of the transmitted waveform, able to be reconfigured according

to the local spectrum landscape and coexist with adjacent or even in-band secondary or

co-primary transmissions (living in in-band spectral holes) [FB15].

• Given the previous requirement, the transmitted BB-PPDR waveform has to satisfy a

spectral mask where the out-of-band (OoB) emissions are minimized.

• BB-PPDR also require a high spectral efficiency considering for example the on-site oper-

ational needs for HD video transmission.

• The high peak-to-average power ratio (PAPR) of the wideband multicarrier waveforms

used in BB-PPDR limits the transmitter energy efficiency. The PA needs to be operated

with significant back-off avoid the waveform peaks falling in the non-linear region and

to meet the signal quality requirements. Such operation is extremely inefficient and not

convenient in an energy-constrained scenario (i.e. without electrical grid availability). The
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use of digital linearization techniques contributes to optimally handle the efficiency vs

linearity trade-off.

Special focus is therefore given on the last KPI related to the energy-efficient linearization

of the transmitters, which is critical for guarantying low OoB emissions, exploiting the inherent

spectral efficiency of the proposed transmitted waveform and avoid impairing the performance

of flexible waveforms. This use case leverages on the use of an OFDM alternative for the com-

munication system based on the filter-bank multi-carrier (FBMC) modulation that was one of

the candidate waveforms proposed initially for the 5G communication systems [Gue17], due to

their superior spectral efficiency and spectral shape characteristics (resulting in nearly optimal

OoB emissions). This waveform has been widely used to benchmark the main contributions of

the thesis.

Digital linearization architecture and test setup

In this work, we have considered the high-level digital linearization architecture shown in Fig.

2.14, which is based on combining a 5-stage PC-CFR and a GMP direct-learning DPD. To model

the non-linearities of the PA, the test bench in Fig. 2.15 is used to get the PA output waveforms

that will be compared to the originally sent ones after time alignment and gain compensation.

Figure 2.14: CFR and direct learning DPD architecture proposed for the BB-PPDR BS.

The chosen configuration for the GMP model in (2.7) leads to about 100 DPD coefficients

which is a considerable amount but also a reasonable figure considering a PA showing very

strong nonlinearities due to operating under hard compression (no CFR is applied yet), and that

this number can be then reduced significantly by using a feature selection technique (like that

proposed in Chapter 3). By considering the GMP structure in the predistorter, the coefficients

will be estimated iteratively according to the method shown in Fig. 2.14.

In the experiments that were conducted, the FBMC system was validated considering LTE-

like requirements, as specified in [TSIE14], regarding the ACPR and the EVM. The ACPR
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requirement is set at -45 dBc and the EVM requirement is set at 18.5 per cent, 13.5 per cent, 9

per cent and 4.5 per cent considering the QPSK, 16-QAM, 64-QAM and 256-QAM subcarrier

modulations, respectively. The test bench that was used to tune, fast prototype and evaluate the

digital linearization techniques, employs 20 MHz bandwidth downlink signals which are modu-

lated with fast convolution (FC) FBMC and that follow the structure described in [FB17]. In the

tests, 64-QAM modulated FBMC signals were employed. These waveforms feature one-by-one

subcarrier deactivation to optimise the spectrum occupation and allow in-band spectral coexis-

tence with co-primary systems operating. Two spectrum holes were created through subcarrier

deactivation at ±4.5 MHz (from center frequency) to allow coexistence with two LTE signals

with 5 MHz and 1.4 MHz bandwidth, respectively.

Figure 2.15: Digital linearization test bench.

The FBMC signals followed a frame and timing structure similar to that used in LTE (LTE

FDD Rel. 9) for which the original baseband sample rate for 20 MHz bandwidth is 30.72 MHz and

the signals are then oversampled by five at 153.6 MHz (maximum DPD signal bandwidth) to al-

low for OoB compensation when predistorting. These waveforms featured around 11.5-dB PAPR

at baseband. The MATLAB-controlled digital linearization test bench employed some commer-

cial boards for waveform playback and data capture, digital-to-analogue conversion (DAC),

in-phase and quadrature-phase (IQ) modulation, and analogue-to-digital conversion (ADC) for

direct RF sampling. The DPD signal is in these experiments IQ modulated to the RF frequency
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to feed a class-J PA based on a GaN high-electron-mobility transistor (HEMT) biased at 28 V

drain-to-source voltage and -3.3 V gate-to-source voltage. The RF operating frequency is located

at 875 MHz which is near the center of the 3GPP band 26 (downlink) also employed for PPDR.

The waveform at the PA output is then attenuated and RF sampled at 2457.6 MSa/s, to be

further decimated and time aligned with the signal that was originally sent.

Eight iterations (Tx-Rx and DPD processing loops) are used to reach the results found

for different output power experiments (considering no DPD, DPD and CFR+DPD) that are

shown in Table 2.1. At every experiment, the worst case IMD5, IMD3 and in-band channel power

rejection (IBPR) values are shown together with the EVM and the PA drain efficiency. Fig. 2.16

shows the spectra plots and constellation before and after linearization for the +33 dBm (top)

and +35 dBm (bottom) output power levels and the corresponding symbol constellations. The

results show the benefits of using the digital linearization techniques. If the same PA is kept and

only back-off was considered to meet the ACPR requirements, the mean output power would be

reduced by more than 13 dB and the PA would be operated very inefficiently.

Table 2.1: Digital linearization experimental results at different power levels.

Case
Pout
[dBm]

Worst
IMD5
[dBc]

Worst
IMD3
[dBc]

Worst
IBPR
[dBc]

EVM
[%]

Drain
Eff.
[%]

No DPD 20 -51.85 -45.74 -42.44 6.75 4

No DPD 33 -45.67 -30.83 -26.36 8.55 35

DPD 33 -55.57 -48.01 -44.98 1.12 35

No DPD 34 -46.72 -29.48 -24.38 11.41 41

DPD 34 -53.28 -43.16 -42.38 1.30 41

No DPD 35 -46.28 -28.35 -22.76 12.32 47

CFRa+DPD 35 -53.76 -45.06 -35.26 3.10 47

CFRb+DPD 35 -56.11 -53.13 -21.70 5.27 47
a 2.6 dB PAPR reduction
b 4.1 dB PAPR reduction

When considering a nominal operating output power of +33 dBm, the IMD3 and the IBPR

can be improved by about 18 dB and the EVM can be reduced more than 7 percent points, both

on account of the DPD. When the output power is increased to +34 dBm, when only applying

DPD the IMD3 (or ACPR) requirement of -45 dBc is no longer met since the predistorter cannot

compensate the PA hard compression when inverting its response. If CFR is applied before DPD,

the results show how that is feasible to reach at least a 2 dB higher output power level, while

meeting the ACPR and EVM requirements, by clipping the signal with some controlled in-band

distortion. Thanks to increasing the output power, when comparing back-off operation with the

nominal one at +33 dBm when applying DPD, the drain efficiency is enhanced by 31 percent

points. As a result of applying CFR+DPD the drain efficiency can be enhanced by at least 12

percent points more at the cost of increasing the in-band distortion. For this reason, the BS
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needs to be aware of the presence of co-primary signals and the interference received by the

UEs to trade-off between the FBMC transmitter efficiency and the allowable interference to the

co-primary system. A more detailed analysis in this regard is provided in the next section but

the results indicate that with CFR+DPD the PA drain efficiency could overpass the 50 per

cent mark; The PA output power could be increased beyond 36 dBm if the interference to the

in-band channels requirement was alleviated or the in-band co-primary channels were freed (in

which case the FBMC waveform could also occupy the whole 20 MHz channel).

Figure 2.16: Spectra plots and constellations of the linearization experiments at +33 dBm (top)
and +35 dBm (bottom) mean output power levels.

Impact of the digital linearization in spectral coexistence

Now we emulate a coexistence scenario where the 1.4 MHz bandwidth and 5 MHz band-

width LTE signals that coexist with the FBMC BB-PPDR transmission are received by different

users. These users will filter out the content of the FBMC signal but they will receive a certain

amount of FBMC to LTE interference in-band. The amount of interference is induced in these

experiments by sweeping the power difference between the LTE signals (i.e. appearing in the

deactivated subcarriers) and the broadband FBMC one from 0 dB to -25 dB. Fig. 2.17 (top)

illustrates this concept for a power difference swept between the LTE signals (which are set at

same output power level) and the FBMC one. In this evaluation, we have considered the FBMC

system experimental data taken with and without PA digital linearization to demonstrate its
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beneficial impact from the waveform coexistence point of view. The two LTE signals are 256-

QAM modulated and the EVM is evaluated under the different LTE vs FBMC power ratios. As

expected, the results for the 5 MHz bandwidth signal will be worse than those of the 1.4 MHz

bandwidth signal since the in-band noise level will be higher in the first case. In Fig. 2.17 (bot-

tom), the benefits of using digital linearization towards spectral coexistence are demonstrated. If

we observe the results for the 5 MHz bandwidth LTE signal (worst case EVM), when comparing

the traces with and without DPD and the LTE-FBMC power difference at which the 4.5 per

cent EVM threshold is met, about 18.5 dB of SINR are gained. Near 6 dB will be gained when

using CFR and DPD (i.e. for a 2.6 dB PAPR reduction setting). The 12.5 dB degradation in

terms of robustness against interference when applying CFR and DPD (compared to applying

only DPD) is coherent with the data shown in Table 2.1.

Figure 2.17: Waveform coexistence spectra plots (top) and EVM (bottom) for different LTE vs
FBMC power ratios and digital linearization experiments.

In this example, applying CFR may contribute to increase the FBMC transmitter output

power and PA drain efficiency by 2 dB and 12 percent points, respectively. Moreover, in a
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coordinated scenario the amount of FBMC in-band induced CFR distortion could be adaptively

controlled according to the LTE user’s SINR information being shared with the FBMC BS.

In such scenario, we would consider the LTE-compatible frame structure of the FBMC system

physical layer and assume that the rest of the protocol stack remains LTE both at the BS and

the UE sides of the BB-PPDR radio access network. By adapting the PAPR reduction value

accordingly, it is possible to meet both the FBMC EVM and ACPR requirements and tune the

in-band distortion level to a level that maximizes the FBMC transmitter efficiency and at the

same time allows the LTE signals meeting the most stringent EVM requirement at 256-QAM

subcarrier modulation.
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Chapter 3

Machine Learning Techniques for
Polynomial SISO Digital
Predistorters

3.1 Dimensionality Reduction and Machine Learning for DPD:
Early Works

3.1.1 Introduction to DPD Computational Complexity Reduction

As introduced in Section 1.1 and Section 2.2.3, the DPD adds complexity to the transmitter

analog and digital signal processing stages to handle the linearity versus efficiency trade-off. In

this chapter, we take advantage of machine learning techniques (ML) to reduce i) the length of

the DPD training signals to be processed in the feedback path to find or update the coefficients

and then ii) to reduce also the number of features (or basis functions, components, variables,

dimensions) in the DPD model in the forward and feedback paths, as shown in Fig. 3.1 for the

DPD modeling matrix U .

Figure 3.1: Training data and basis selection concepts applied to reducing the length and di-
mensionality of a behavioral modeling matrix.

69
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The goal is to save as many hardware logic resources and memory as possible (i.e., DSP

slices, configurable logic blocks, FFs, configurable logic block (CLB) LUTs, BRAM), speed-up

the time to train or update the DPD coefficients, and guarantee robust and well-conditioned

identification. When handling complex nonlinear wideband multi-antenna systems, every gain

in this regard may be very important. We can distinguish between feature selection techniques,

that are applied in the DPD forward path and take the most relevant variables from a random

set of original variables, and feature extraction techniques that transform the original set of

variables and create a new reduced set with variables that are linear or nonlinear combinations

of the original ones. In the feedback path the training data may be selected through either

sample, batch or equation selection depending on whether the selection is made taking sparse

samples (when operating directly with PA input and output waveforms, before building U), a

batch or several batches of data (also considering similar operation), or equations of the DPD

modeling matrix (the selection is made by operating with the whole U matrix).

A classification and description of feature selection techniques (filter, wrapper and embedded

methods) and feature extraction techniques (linear and nonlinear dimension reduction methods)

is provided in [Gil20b]. These techniques can also be properly combined by doing an a priori

off-line search to reduce the number of basis functions of the forward path DPD function (feature

selection) and then applying a feature extraction technique in the feedback path [Pha18c].

In the following, several sample selection, feature selection and feature extraction techniques

that have been used for DPD dimensionality reduction are detailed together with specific appli-

cation use cases that were deployed in the early research works of the thesis.

3.1.2 Sample Selection for Training Data Length Reduction and DPD ro-
bustness

In the DPD feedback path, in charge of the estimation and the update of the coefficients, the

iterative DPD training must be made with sufficient waveform statistical representativity in

terms of power dynamics. This frequently translates into having to process a huge amount of

samples from different training waveforms covering the PAPR statistical distribution for a given

set of conditions (bandwidth, modulation and subcarrier modulation), since the optimality of

the extracted DPD coefficients using LS strongly depends on the number of samples used in the

computation. The LS estimator may need a priori a large number of data samples (or equations)

to obtain the best approximation of the coefficients. From a computational complexity point of

view, we want the number of data samples be as small as possible. However, using short sequences

of data samples leads to [Gua12]: a) the ill-conditioning problem due to the rank deficiency of

LS matrices; and b) the statistical mismatch problem, because the short data sequence often

cannot fully represent (accuracy problem) the statistical property of the input domain.
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As noted in Section 2.3, by using CFR one can better condition the DPD training by suppress-

ing the lowest occurrence probability waveforms with highest PAPR and optimize its dynamic

range (i.e., by limiting the predistorted signal PAPR expansion required to compensate for the

PA behavior at saturation). This may also help to reduce the number of DPD training iterations

but, even within a given training iteration, the input-output waveform samples used in the DPD

feedback path are critical in order to capture the PA nonlinearities and memory effects. Not

only the length of the training set is important. If these samples are chosen randomly (either

in the form of contiguous sample batches or sample by sample), the DPD coefficients will not

be valid to cover the full set of nonlinear effects for a waveform configuration and PA operating

condition and the system will be ill conditioned. Thanks to conveniently capturing representa-

tive training data samples, the sample selection methods (SSM) can reduce the number of DPD

training operations and memory requirements, and speed up the overall DPD adaptation time

or even reduce the ADC sample rate requirements in the DPD observation path. In addition,

these methods can also contribute to uncorrelate the observation errors in adjacent samples to

get better performance.

Several SSMs have been reported in literature such as undersampling, sample selection upon

QR decomposition with column pivoting [Due17], gradient sampling or the histogram-based

methods. An comprehensive overview on these techniques and its application to DPD is found

in [Kra20]. The most commonly employed are summarized in the following:

• Undersampling: This scheme [Wan17b] relies on the fact that in order to estimate the

model coefficients it is not necessary to capture consecutive samples of the PA output signal

y if Lus >> N , being Lus the length of the undersampled signal. That is, the reduced un-

dersampled set must be significantly larger (i.e., more than two orders of magnitude larger)

than the model order (number of basis functions and of DPD coefficients) to minimize the

measurement noise effects. To undersample, 1 out of every RFl samples are selected, where

RFl ∈ N is the undersampling or length reduction factor (i.e., in the complexity reduction

context we will refer to the reduction factor as RF , and the l subscript will imply that the

reduction is applied to the length), and therefore Lus = L/RFl. This approach is typically

used in moderately nonlinear scenarios since, despite taking non-consecutive samples helps

to uncorrelate eventual errors, when the length reduction factor or undersampling factor

RFl is increased, there is higher probability of not capturing relevant information, when

compared to other SSMs. This is because, typically, the PA output waveform nonlinearities

are unevenly distributed all over the waveform.

• Gradient Sampling: In order to reduce the computation cost to solve least squares, an

adaptive importance gradient sampling method is proposed in [Zhu16] to handle large

sample size. This technique is applied to a direct learning DPD architecture in [Kra20].

Given the basis matrix U with L × N dimension, and all the samples of the measured
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distortion signal d = y − u, the gradient values ∇[n] for all the rows in matrix U are

calculated (for a given DPD training iteration) as

∇[n] =
∥∥ϕu

T [n]
(
d[n]− ϕu

T [n]w0

)∥∥ (3.1)

where ∥.∥ is the l2-norm, ϕu
T [n] is the n− th row of matrix U , d[n] is the n− th element

of vector d and w0 is considered an initial good guess for solving the coefficient increment

vector (as per equation 2.19), being a zero vector at the first training iteration, and the

calculated coefficients of the previous DPD training iteration otherwise. Then, the proba-

bility that the n-th row of matrix U is taken into account in the DPD adaptation is found

as

pn =
Lgs∇[n]∑L
n=1∇[n]

, (3.2)

where the reduced set of selected samples Lgs = L/RFl to be considered for the update

of new DPD coefficients will be built based on these probabilities (those with higher

probability will be considered first).

• Histogram based: These techniques are based on filling in with a specific number of

samples the bins of a histogram which covers the DPD oversampled baseband transmit-

ted signal amplitude statistics, to obtain a statistically representative DPD training set.

We can differentiate between methods considering the statistics of u and others targeting

the predistorted signal x which is present at the input of the PA and that will include

a priori knowledge of the PA characteristics. The selected samples may be allocated in

the histogram bins either randomly or sequentially processing the afore mentioned wave-

forms. To ensure the independence of selected samples, a minimum number of sample time

distance can be set [Kra20]. Regarding the distribution of samples within the histogram

bins, two options are typically considered. The first consists of evenly distributing the

samples in the histogram bins (all the bins will contain the same number of samples) to

cover the whole AM/AM characteristics of the PA. Such distribution is not optimized in

terms of providing more information for the points involving high probability of occurrence

and higher nonlinearities which are more important for PA/DPD modeling, since all the

regions are equally covered. To overcome such limitation, the second approach consists

of accounting both for the AM/AM characteristics of the PA and the statistics of the

transmitted signal, to select a variable number of samples at each bins. By following this

strategy, the regions with strong nonlinearity and/or high probability will contain more

histogram bin samples than those with lower probability of occurrence and more linear

behavior. One example of the latter is the genetically optimized histogram (GOH) which

is formulated for histogram sample selection in [Kra17]. Optimizing the histogram with
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GOH may consume significant computational cost and time for which if the PA operation,

or the transmitted waveform, vary significantly over time and such variations may be pro-

duced rapidly, this approach may be unfeasible unless GOH is applied in advance for a

set of known cases. Alternatively, the evenly distributed histogram sample selection may

provide similar performance by increasing the number of samples per bin (or decreasing

the training data length reduction factor RFl.

These two methods are depicted in Fig. 3.2 where an evenly distributed histogram is filled

with two samples per bin, and according to the AM/AM x − y characteristic of the PA

and the probability distribution function (pdf) of the u signal AM, a GOH algorithm

conveniently allocates a variable number of samples at each bin.

Figure 3.2: Histogram-based SSM concept for evenly distributed and genetically optimized sam-
ple capture.

Sample Selection Use Case

Enhancing GaN PA DPD robustness under burst-like 5G waveforms

This use case deploys DPD strategies to linearize a GaN PA scenario fitting 4G-5G radio

base stations that operate with high-PAPR OFDM-based burst-like waveforms. In particular,

such DPD strategies are combined with a 2D histogram-based SSM in order to guarantee robust

performance. Such scenario was proposed in the frame of the 2015 PA Linearization through
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Digital Predistortion Student Design Competition (SDC-8) [Shi16, LB16]. The PA, that was

operated with 40-MHz bandwidth signals (160 MHz accounting for the total DPD bandwidth),

was showing substantial memory effects due to trapping phenomena [Teh12] being provoked by

the gate on-off switching.

First, a statistical characterization block giving information about the waveform PAPR dis-

tribution and storing multiple test signals for the predefined PAPR ranges of interest, has been

created. The test signals showing a PAPR around 13.5 dB were the ones with the highest sta-

tistical significance. Once desirable test signals were made available, an initial characterization

of the PA through the measurement setup was done by observing the AM-AM and AM-PM

characteristics, the spectral shape (see Fig. 3.3) and measurement parameters like the NMSE

and the ACPR. To evaluate this data, proper time alignment between the transmit and receive

waveforms is required. To find the fractional time delay between them, the two waveforms were

upsampled by 100, time aligned by means of a circular cross-correlation, and downsampled by

100.

Figure 3.3: Evaluation of GaN PA linear performance (Tx versus Rx waveforms) with statistically
representative test signal: AM-AM (left) and AM-PM (center) conversion and Power Spectral
Density (right).

The MP, DDR-Volterra and GMP behavioral models were evaluated. GMP was chosen since

it outperformed MP and DDR-Volterra in this scenario. For parameter estimation our DPD

scheme followed the direct learning (DL) approach [Bra11], using the linear least squares (LS)

solution as estimation method since the DPD function is non-linear but it is nevertheless linear

in the parameters. DL was chosen instead of the simpler and widely used indirect learning (IL)

architecture due to being better performing [Bra15], [Paa08]. The initial MATLAB Testbench

and DPD architecture to combat the GaN PA non-linearities is shown in Fig. 3.4, where it

can be seen that the DL parameter extraction follows a closed-loop architecture employing the

feedback signal y[n]/G0 (being G0 the linear gain of the PA) together with the input signal u[n]

to extract the DPD coefficients. As per Section 2.2.2, the predistorted signal x[n] is derived from

subtracting the distortion signal dGMP [n] to the original signal u[n], both having L samples, in

the GMP behavioral modeling and DPD block.
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Figure 3.4: MATLAB test bench with Closed-loop adaptive DPD architecture.

With the previous architecture, multiple experiments with the Weblab test bed [Lan15] were

conducted in order to tune the best GMP parameters and have the best coefficients after training

the DPD for the statistically representative signals. The coefficients were stored and used against

different PAPR test signals to evaluate their stability for similar PAPR range signals and the

degradation suffered when signals with higher PAPR are employed. Fig. 3.5 displays the NMSE

and ACPR values after conducting such measurement campaign.

Figure 3.5: NMSE and ACPR (right) for 100 Weblab experiments with baseline DPD test bench.

Some further work was required to improve the NMSE by a few dB and push the ACPR to

values below -50 dBc to increase the performance and reduce its variance. For waveforms with

PAPR 13.5-14 dB, a slight degradation and increase in the variance of the performance was

noticed. Beyond 14 dB PAPR values, the NMSE and more importantly the ACPR decreased

significantly, all of which required the mitigation countermeasures proposed in this use case.
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Techniques Targeting Performance and Results Stability

• Decomposed piecewise GMP/MP DPD modeling

The AM-AM characteristic of the PA in Fig. 3.3 shows a different behavior according to

the amplitude (or alternatively, power) level. At low amplitude levels, some gain expansion can

be observed, while at high amplitude levels, gain compression occurs. Since high amplitude

values occur less frequently, a simplified (in terms of memory taps) behavioral model can be

considered, which favors the robustness of the extracted DPD coefficients. The input signal was

first decomposed into two sub-signals, as shown in Fig. 3.6 (left). Following the same principle

presented in [Zhu08], we introduced piecewise curve fitting, dividing the DPD function into

two segments for high and low input amplitude levels. The segment of low amplitude values

was modeled with the previously detailed GMP model, while for the high amplitude values we

relaxed the complexity by using a MP model. Both contributions can be accounted (i.e., since

the model is linear with respect to the parameters) as seen in (3.3).

dPW = U low
GMPwGMP +Uhigh

MP wMP (3.3)

• Long-term memory effects modeling

By considering the bursty nature of the test signal, we considered the possibility of also

modeling long-term memory effects. The memory effects make the output of a power amplifier

at a certain time not only depend on the on the present input value, but also previous output

and input values. Such bursty nature of the PA input signal may induce dynamic effects such as

bias circuit modulation, self-heating and charge trapping phenomena that feature time constants

much larger than the period of the RF carrier frequency, and that fall closer to the timescale

of the envelope or modulation signal [Woo14], that are not tracked by the DPD coefficients

unless a long term dependence function is introduced in the estimation process. Following a

similar principle as that presented in [Teh12], an estimate of the long-term variable was created

(s[n]) consisting of the average input power over a finite window with S samples. The number

of samples chosen to define the window determines the long-term memory depth. The resulting

vector (s) will also have L sample length.

s[n] =
1

S

S−1∑
i=0

|u[n− i]|2 (3.4)

Considering the previous decomposed piecewise modeling and the long-term memory effects

the non-linearities are modeled as follows:
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dPW,LT = U low
GMPwGMP +Uhigh

MP wMP + (sT ·UGMP )wGMP,LT

= U low
GMPwGMP +Uhigh

MP wMP +U long
GMPwGMP,LT

(3.5)
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Figure 3.6: Waveform decomposition into high and low values for 0.5 amplitude threshold (left)
and extraction of the long term variable (right) following the waveform power dynamics.

The number of coefficients required to obtain dPW,LT and generate the predistorted signal

as x = u − dPW,LT may grow significantly when taking into account all the features described

(e.g., requiring hundreds of coefficients). Model order reduction techniques like those deployed

later in this chapter may be very useful to simplify the computational complexity of the DPD.

• Waveform expansion and mesh selecting

Assuming that our data Matrix has no problems of rank deficiency, we can address the accu-

racy problem by extending the number of observations (i.e., extending the number of required

waveforms to K, see Fig. 3.8) before extracting the DPD coefficients with the LS algorithm, and

then by selecting those samples that are more statistically representative of the input domain

for each of the K observation waveforms.

With the histogram-based mesh-selecting (MeS) SSM in [Wan15], given a fixed length of data

(rows of the data matrix) we can extend the number of observations during training, store them,

and after proper selection of the most statistically representative data according to the PA AM-

AM distribution, build the data Matrix providing robustness to the DPD parameter extraction.

The rationale behind the MeS method consists in building a two-dimensional histogram of the

PA AM-AM characteristic in order to obtain the number of samples per bin according to the

probability of each segment of the mesh. Such procedure is shown in Fig. 3.7, only for illustrative

purposes (the plots do not reflect its application to the use case), for a single observation ET-

DPD example with 25600 training data samples and 10% selection factor (i.e., RFl = 10).
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Figure 3.7: MeS ET-PA AM-AM characteristic 2D histogram with captured samples (top), AM-
AM plots with initial consecutive sample selection (middle) and MeS sample selection (bottom),
at 10% selection factor [Wan15].

Despite the waveform expansion (i.e., after capturing typically 3-4 waveforms per DPD iter-

ation), since the mesh selecting sample selection technique applies a reduction factor typically

higher than the number of waveforms captured, the behavioral modeling matrix will have much

less rows. This will reduce the number of calculations at DPD identification and provide ro-

bust identification of coefficients since the 2D-histogram samples selected will be statistically

relevant and capture with higher probability those points being affected by memory effects or

strong nonlinearities, as depicted in the AM-AM plots in Fig. 3.7.
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• Peak cancellation crest factor reduction

CFR was used as protection to minimize the effects of having a signal with much larger

PAPR than the statistical mean value at which the predistorter has been previously trained

during final tests. The peak cancellation (PC) technique shown in Section 2.3 was chosen as

a clipping and filtering CFR method. The waveform statistical analysis and the NMSE versus

CFR reduction for different configuration parameters is further detailed in [LB16] for a five-stage

PC-CFR.

Advanced digital linearization architecture

The final DPD architecture to face the strong non-linear behavior and memory effects of a

GaN PA under high PAPR OFDM-like bursty waveforms is shown in Fig. 3.8:

Figure 3.8: Proposed advanced DPD MATLAB test bench architecture.

With this architecture, comparing Fig. 3.5 with the new measurements in Fig. 3.9-top (both

showing the results taken with 100 statistically representative test waveforms), one can see that

the results show now not only much better stability (the 6 dB variation in NMSE and 9 dB

variation in ACPR has been reduced to 3 dB and 2 dB, respectively), but improved performance

(3.5 dB in NMSE and 1 dB in ACPR for the most frequent PAPR values).
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Figure 3.9: NMSE and ACPR for 100 Weblab experiments after applying advanced architecture.

3.1.3 Feature Selection Techniques for Basis Reduction in the Forward Path

Greedy Feature Selection Algorithm: Orthogonal Matching Pursuit (OMP)

When considering wide bandwidth signals, carrier aggregation or multi-band configurations

[Jar18b] in high efficient transmitter architectures, such as Doherty PAs, envelope tracking PAs

or outphasing transmitters, the number of parameters required in the DPD model to compensate

for both static nonlinearities and dynamic memory effects can be unacceptably high. This has a

negative impact in the DPD model extraction/adaptation process, because it increases the com-

putational complexity which may provoke over-fitting and uncertainty in the DPD estimation

stages [CC17]. However, by applying regularization techniques [Bra17] we can both avoid the

numerical ill-conditioning of the estimation and reduce the number of coefficients of the DPD

function in the forward path, which ultimately impacts the baseband processing computational

complexity and power consumption. This process may be seen as a selection of the most rele-

vant variables from a random set of original variables to provide the best fit (as illustrated in

Fig. 3.10) and both make the DPD coefficients estimation less sensitive to missing data or to

modeling the measurement noise.

The objective of DPD regularization is to enforce the sparsity constraint on the vector of pa-

rameters by minimizing the number of active components (i.e., ℓ0-norm) subject to a constraint

on the ℓ2-norm squared of the identification error. Unfortunately, this is a non-deterministic

polynomial-time hard (NP-hard) combinatorial search problem. Therefore, in the field of DPD

linearization, several sub-optimal approaches have been proposed targeting both robust identi-

fication and model order reduction such as: the least absolute shrinkage and selection operator

(LASSO), used for example by Wisell et al. in [Wis08] and consisting in a ℓ1-norm regularization;

the Ridge regression, used for example by Guan et al. in [Gua12] and consisting in a ℓ2-norm
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Figure 3.10: Fitting performance in the least square identification of a power amplifier model
[Gil20b].

regularization; the sparse Bayesian learning (SBL) algorithm, used by Peng et al. in [Pen16a];

the orthogonal matching pursuit (OMP), a greedy algorithm for sparse approximation used

in [RT15] by Reina et al. to select the most relevant basis functions of the DPD function.; an

enhanced version called doubly OMP (DOMP) and a sparse model selection system based on

subspace pursuit, both by Becerra et al. [Bec18b,Bec18a]; or other approaches based on decision

trees such as Random Forest [Alv20]. An interesting comparison of the performance of these

feature selection methods (and others classified as heuristic local search, dynamic model siz-

ing, and global probabilistic optimization algorithms) is provided in [Bar21], where the greedy

pursuits have shown to provide the best trade-off between DPD training time and linearization

performance.

The OMP algorithm application procedure is shown in the digital linearizer found at Fig.

3.11. This machine learning algorithm can be used to conduct an a priori off-line study to select

the best basis functions contributing to better modeling the PA nonlinearities for a given set of

operating conditions (i.e., PA biasing point, input waveform PAPR and mean power, bandwidth

related to memory effects, or temperature range). Such study, consequently, may be performed

once to select the best basis in the forward path behavioral model with the goal to reduce the

number of DPD coefficients and improve the conditioning and robustness of the adaptive DPD

system. Such selection will remain stable if the previously mentioned operating conditions do

not vary significantly.

The whole process is also described in the following:

1. Collect the input-output data of the PA with a test signal having the same statistical

properties as the one that will be later used for the transmission.

2. Run off-line (e.g., in a PC running MATLAB) the OMP algorithm to obtain a sorted set

of the most relevant basis functions that better characterize the PA nonlinear distortion

with special emphasis on the out-of-band distortion. This search is done only once.

3. Build the closed-loop DPD taking into account the basis functions previously selected by
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Figure 3.11: Block diagram of the OMP off-line search process and DPD linearization architec-
ture.

the OMP algorithm. The identification of the DPD will be well-conditioned, robust and

may take only few iterations to converge.

A more specific definition of the OMP algorithm follows. Following the notation in Fig.

3.11 and accounting also for that introduced in Section 2.2, the estimated PA behavioral model

output ŷ can be defined as:

ŷ =Xw (3.6)

where w is the N ×1 vector with the estimated coefficients for PA modeling and X is the L×N
data matrix containing the basis functions or components.

As explained before, the objective is to minimize the number of active components (i.e.,
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ℓ0-norm) subject to a constraint on the ℓ2-norm squared of the identification error,

min
w
∥w∥0 (3.7)

subject to ∥y −Xw∥22 ≤ ε

where y is the L× 1 vector of measured data at the PA output.

In order to minimize the number of coefficients being required by the DPD function in the

forward path, we can assume that the optimal subset of selected basis functions of the DPD

function will be the same as that used for modeling the PA behavior. To overcome the NP-hard

combinatorial search problem of such coefficient minimization, OMP is operated as shown in

Algorithm 4:

Algorithm 4 Orthogonal Matching Pursuit

1: procedure OMP (y,X,RFd)
2: initialization:
3: e(0) = y − ŷ(0); with ŷ(0) = 0
4: Υ(0) ← {}
5: X(0) ←XL×N

6: for m = 1 to N/RFd do

7: X
(m−1)
{i} ←−

i/∈Υ(m−1)

X
(m−1)
{i}

∥X(m−1)
{i} ∥2

8: i(m) ← argmin
i/∈Υ(m−1)

min
wi

∥e(m−1) −X(m−1)
{i} wi∥22 ≈ argmax

i/∈Υ(m−1)

|X(m−1)
{i}

H
e(m−1)|

9: Υ(m) ← Υ(m−1) ∪ i(m)

10: w ←
(
XH

{Υ(m)}X{Υ(m)}
)−1
XH

Υ(m)}y

11: ŷ(m) ←X{Υ(m)}w

12: e(m) = y − ŷ(m)

13: end for
14: return Υ
15: return X{Υ}
16: end procedure

In Algorithm 4, Υ(m) is the support set that contains the indices of the basis functions

that better describe the PA behavioral model. Being N the total number of basis and RFd the

dimensionality reduction factor (the d subscript refers to dimensionality reduction) applied to

the basis selection, Υ will finally contain N/RFd indices that will be later applied to matrix U

when calculating the DPD coefficients. The basis functions better contributing to the residual

error minimization (between the measured output signal and its modeled version) are selected

and added to Υ(m) at every iteration of the OMP search. In order to simplify the index i(m)

calculation, the elements ofX{Υ(m)} are normalized in power. By maximizing the absolute value

of the correlation between the basis function X{i} and the residual error e(m−1) of the previous

iteration, such index calculation is attained. In Υ(m) these indices referring to basis functions or
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active components are sorted according to their contribution or relevance. If instead of defining

a basis reduction factor and a search for a finite number of iterations (N/RFd), the optimum

number of basis or coefficients is wanted (i.e., being smaller than N), then some information

criterion, such as the Akaike (AIC) or the Bayesian (BIC) [RT15] can be used to stop the index

search in Algorithm 4 at mopt < N . Finally, the subset of selected basis functions determined by

Υ and applied toX{Υ(m)} to either reduce complexity or improve conditioning, will then be used

as U{Υ(m)} (either for m = N/RFd or m = mopt ) to carry out the DPD processing as per shown

in Section 2.2.2 (i.e., assuming now that UOMP =
(
ϕu

OMP [0],ϕu
OMP [1], · · · ,ϕu

OMP [L−1]
)T

,

where ϕu
OMP = ϕu{Υ(m)}).

Finally, it is noted that in the DPD domain just a few works have been proposed as enhance-

ments or adaptations made over the OMP algorithm. One example outperforming OMP both in

in-band and out-of-band modeling and DPD performance is the previously introduced DOMP

algorithm. This algorithm is detailed in Section 4.2.2, and is applied for the first time to reduce

the input dataset features of a SISO neural network predistorter. Another example focusing

only on providing enhanced out-of-band modeling performance is the spectral weighting OMP

(SW-OMP) [Gil18] which is further detailed in the use case that follows.

Feature Selection Use Case

Spectral Weighting OMP algorithm for trading off EVM vs ACPR in DPD

This use case is aimed at providing an alternative approach to the classical OMP algorithm

which is based on a spectral weighting strategy. This new approach is oriented to select the most

relevant DPD basis functions by paying special attention to the out-of-band distortion compen-

sation. When the mean squared error is mainly dominated by the linear part, by adding spectral

weighting (through in-band notching of the reference signal and the DPD basis functions) the

OMP algorithm can focus on the subset of parameters that better contribute to minimize the

mean squared error which is dominated by the out-of-band distortion.

The objective is to build a robust and accurate DPD linearizer that meets the linearity

levels specified in communications standards making use of the minimum necessary number of

coefficients. Reducing the number of coefficients has a beneficial impact on the amount of FPGA

resources [Woo17] (e.g., less DSP48 slices and RAM memory blocks in Xilinx FPGAs) required

for the implementation of the DPD in the forward path. An off-line study of the most relevant

basis functions involved in the characterization of the PA nonlinear distortion is conducted in

advance in order to be later used for DPD purposes as previously described. The search of

the most relevant components, given a general behavioral model descriptor (e.g., full Volterra

series, generalized memory polynomial, etc.), is carried out only once in an off-line process. To

further enhance the DPD linearization performance obtained with the subset of the selected

components, the SW-OMP algorithm is oriented toward emphasizing the out-of-band distortion



Chapter 3. Machine Learning Techniques for Polynomial SISO Digital Predistorters 85

-30 -20 -10 0 10 20 30

Frequency (MHz)

-130

-120

-110

-100

-90

-80

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

alpha=0

alpha=104

alpha=105

alpha=5·105

Figure 3.12: Spectra of the filtered PA outputs for different alpha values.

part of the mean squared error.

Description of the SW-OMP algorithm

The PA behavioral modeling identification is conducted as per described in Section 2.2.1

for the GMP model. The SW-OMP algorithm capable is described in order to find the most

relevant basis functions from matrix X =
(
ϕx[0],ϕx[1], · · · ,ϕx[L − 1]

)T
where ϕx[n] =(

φx
1 [n], · · · , φx

i [n], · · · , φx
O[n]

)T
is now the O×1 vector of basis functions φx

i [n] (with i = 1, · · ·O)

at time n. This basis selection will be then applied to matrix U in the DPD linearizer.

In order to select the most relevant basis functions by paying special attention to the out-of-

band distortion compensation, the proposed SW-OMP targets the minimization of an in-band

notched version of the mean square error. Consequently, the PA output and all the basis functions

will be notched in-band. Therefore, as described in [Bra12], the PA output signal is filtered in

the frequency domain as follows,

Yf [k] = Γ{Y [k]} = Y [k]

1 + α|Y [k]|2
(3.8)

with α being a parameter to control the notching level (see Fig. 3.12) and with Y [k] being the

discrete Fourier transform (DFT) of y[n],

Y [k] = DFTN{y[n]} =
N−1∑
n=0

y[n]e−j 2π
N

kn (3.9)

where k = 0, · · ·N − 1 with N ≥ L (note that the total number of basis goes now from 1 to

O to avoid confusion with the classical DFT formulation). Similarly, each basis function in the

frequency domain is filtered as follows,

Zx,f [k] = Γ{Zx[k]} =
(
Γ{ζx1 [k]}, · · · ,Γ{ζxi [k]}, · · · ,Γ{ζxO[k]}

)T
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with ζxi [k] (i = 1, · · · , O) being the DFT of φx
i [n] and Γ{·} the filtering operator. In the frequency

domain, the N ×O matrix of filtered basis functions is defined as

Ψx,f =
(
Zx,f [0], · · · ,Zx,f [k], · · · ,Zx,f [N − 1]

)T
. (3.10)

Now, Υ(m) is again defined as the support set containing the indices of the basis functions

building the model. Considering that mmax is the number of basis functions under study (i.e.,

mmax = O), the proposed SW-OMP algorithm is defined in Algorithm 5.

At every iteration, the basis function that better contributes to minimize the filtered residual

error is selected and added to the support set Υ(m). Again, the elements of Ψx,f {Υ(m)} have

been normalized in power to simplify the index i(m) calculation in line 6 of the algorithm, which

can be obtained by maximizing the absolute value of the correlation between the filtered basis

function Ψx,f,{i}
(
i.e, Ψx,f,{i} = Γ

{
DFTN{X{i}}

})
and the filtered residual error E(m−1) of the

previous iteration. After a complete SW-OMP search, we obtain a vector Υ(m) with the indices

of all the original basis functions (active components) sorted according to their relevance. Again,

by using some information criterion, such as AIC or BIC, it is possible to determine the optimum

number of coefficients (mopt), where mopt < mmax. Finally, the subset of selected basis functions

for model identification X{Υ(mopt)}, will be also used as U{Υ(mopt)} used to carry out the DPD

as previously explained for the OMP algorithm.

Algorithm 5 Spectral Weighting Orthogonal Matching Pursuit

1: procedure SW-OMP (Y f ,Ψx,f ,mmax)
2: initialization:
3: E

(0)
f = Y f − Ŷ

(0)
f ; with Ŷ

(0)
f = 0

4: Υ(0) ← {}
5: Ψ

(0)
x,f ← Ψx,fN×O

6: for m = 1 to mmax do

7: Ψx,f
(m−1)
{i} ←−

i/∈Υ(m−1)

Ψx,f
(m−1)
{i}

∥Ψx,f
(m−1)
{i} ∥2

8: i(m) ← argmin
i/∈Υ(m−1)

min
wi

∥E(m−1)
f −Ψx,f

(m−1)
{i} wi∥22 ≈ argmax

i/∈Υ(m−1)

|Ψx,f
(m−1)
{i}

H
E

(m−1)
f |

9: Υ(m) ← Υ(m−1) ∪ i(m)

10: w ←
(
Ψx,f

H
{Υ(m)}Ψx,f {Υ(m)}

)−1
Ψx,f

H
{Υ(m)}Y f

11: Ŷ
(m)
f ← Ψx,f {Υ(m)}w

12: E
(m)
f = Y f − Ŷ

(m)
f ;

13: end for
14: return Υ
15: return Ψx,f {Υ}
16: end procedure

The benefit of using the SW-OMP is to reduce the computational complexity of the DPD

behavioral model in the forward path. The SW-OMP algorithm is inherently stable and the
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index search is repeated until the upper-bound mmax on the number of active coefficients is

reached, or until the norm of the filtered residual error
∥∥E(m)

∥∥
2
falls below the noise tolerance

threshold. The running time depends on both the number of coefficients considered in the search

and on the digital signal processor used for running the algorithm. However, by comparing

the SW-OMP algorithm with the Less Relevant Basis Removal (LRBR) brute-force technique

presented in [Gil16] in terms of computational time, the OMP is 21 times faster, while the

accuracy of the search is similar to that obtained with OMP. The computational complexity of

the SW-OMP in comparison to the OMP is slightly higher due to the FFT transformations and

filtering operations. However, when running an off-line SW-OMP search (e.g., in a PC running

MATLAB instead of in a FPGA) considering a high number of coefficients (e.g., > 300 coeff.),

the computational time devoted to calculating the Fourier transforms and filtering operations is

negligible.

Instead, thanks to the SW-OMP search, some benefits in the DPD forward path are obtained

in terms of robustness (e.g., fast convergence in just 3 iterations when considering the use of

different input data featuring different PAPR), flexibility (e.g., trade-off between the number

of selected coefficients and the DPD linearization performance) and reliability (by selecting the

most relevant basis the over-parametrization is avoided which yields to a properly conditioned

and accurate coefficient estimation).

Experimental Results

The test bench shown in Fig. 3.13 was used to conduct experimental validation of the SW-

OMP technique. To emulate a LTE carrier-aggregation transmission, two 20 MHz bandwidth

channels and one 10 MHz channel were grouped as shown in Fig. 3.12. The PAPR of the

waveform has been limited to 9.5 dB by using the peak cancellation crest factor reduction

technique. The DPD processing blocks run in a PC with MATLAB, which is also employed

to interface the waveform generation and acquisition instruments. The direct RF generation

of the LTE carrier-aggregated signal was carried out through the arbitrary waveform generator

M8190A from Keysight, considering a clock rate of 7.968 GHz and 14 bits. The device under test

was a class AB-biased GaN pHEMT 6 W PA delivering 28.6 dBm mean output power at 2140

MHz (downlink base-station LTE band). The gate bias was chosen to maximize efficiency at the

price of showing severe nonlinear behavior. Finally, a digital storage oscilloscope (DSO Keysight

90404A) was used to acquire the RF output signal with 8-bit resolution and at sampling rate of

20 GS/s.

For the experimental results, we considered a GMP behavioral model with a configuration

of polynomial orders and memory terms that resulted in an initial dictionary of mmax = 596

basis functions. The use of 596 coefficients in the GMP model resulted in an ill-conditioned

estimation. By using the Moore-Penrose inverse (i.e., (UHU)−1UH) the coefficients estimation
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Figure 3.13: Experimental test bench employed for SW-OMP DPD profiling.

was inaccurate and some regularization was required. With the SW-OMP we addressed the over-

parametrization problem by properly selecting the most relevant basis functions that minimize

the out-of-band distortion.

After applying the SW-OMP search and the BIC approximation, we obtained a reduced

set (being sorted according to their relevance) of around mopt = 350 active components, which

resulted in a perfectly well-conditioned estimation. In addition, as shown in Fig. 3.14, further

pruning was considered by selecting some of the most relevant components of Υ(mopt) and by

considering different notching levels (i.e., different α values in (3.8) as shown in Fig. 3.12). We

empirically found that α = 5 · 105 is the maximum notching level that guarantees the minimum

in-band level required for accurate selection of the most relevant basis. The DPD linearization

performance was evaluated in terms of ACPR and NMSE. As expected (see Fig. 3.14), under

severe nonlinear behavior of the PA, the selection made by using the SW-OMP with the highest

α outperforms the classical OMP approach and is more robust against the inherent ACPR

degradation suffered when reducing the number of coefficients of the DPD function.
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Figure 3.14: ACPR and NMSE versus number of DPD selected coefficients (using SW-OMP)
for different alpha values of the notch filter.

In addition, to show the convergence speed and robustness of the closed-loop DPD when
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Figure 3.15: PAPR and ACPR vs # of iterations, with 50 coeff. SW-OMP DPD.
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Figure 3.16: PAPR and ACPR vs # of iterations, with 150 coeff. SW-OMP DPD.

considering different data bursts with different PAPR values at each iteration, Fig. 3.15 and

Fig. 3.16 show, respectively, the linearization performance of the DPD operating with 50 and

150 properly selected coefficients and considering different notching levels. By taking into account

this particular PA nonlinear behavior, the target of −45 dBc of ACPR is only met when using

a minimum of 150 coefficients of the GMP behavioral model (see Fig. 3.16). Fig. 3.17 shows

the output power spectra before and after DPD linearization when considering 150 coefficients

being properly selected with the SW-OMP algorithm and when considering the highest notching

level (i.e., α = 5 · 105). Nevertheless, the advantage given by conducting a previous SW-OMP

search in comparison to the classical OMP search, is more evident when fewer coefficients are

considered in the DPD (e.g., only 50 coefficients in Fig. 3.15) to compensate for the PA severe

nonlinear behavior.
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Figure 3.17: PA output power spectra before and after SW-OMP DPD.

To conclude this Feature Selection Use Case, the proposed SW-OMP algorithm emphasizes

the importance of the out-of-band distortion in the OMP residual error, forcing the selection

of the DPD components that better compensate for the adjacent channel spectral regrowth.

Experimental results showed that, thanks to the proposed SW-OMP technique, the inherent

ACPR and NMSE degradation suffered when significantly reducing the number of coefficients

can be mitigated (and improved in comparison to the classical OMP under severe PA nonlinear

behavior), while the robustness of the DPD is enhanced, since no further adaptation is required

after 3 iterations.

3.1.4 Feature Extraction Techniques for Basis Reduction in the Feedback
Path

Principal Component Analysis (PCA)

Section 3.1.3 has shown that when targeting a field-programmable gate array (FPGA) imple-

mentation, the DPD function in the forward path should be designed as simple as possible (i.e.,

including the minimum and most relevant basis functions) to save as many hardware logic re-

sources and memory as possible. A lot of effort has been dedicated in the literature to propose

efficient digital predistortion (DPD) architectures, either polynomial-based or LUT based , in

order to implement the forward path of the digital predistorter in a real-time digital signal pro-

cessor. The processing capabilities and the memory of FPGAs have increased dramatically over

time. Despite this fact, having to deal with parametric models with a huge number of coefficients

is not desirable, not only because of its negative impact on the FPGA resources utilization, but

also because of its extraction/adaptation may derive to overfitting and uncertainty. By applying

regularization, it is possible to both avoid the numerical ill-conditioning of the estimation and

reduce the number of coefficients of the DPD function which ultimately impacts the baseband

processing computational complexity and power consumption. Little attention, however, is paid

to the identification/adaptation subsystem that most of the time is addressed in the literature by
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simply solving the least squares (LS) regression applying the Moore-Penrose inverse to extract

the DPD parameters as per (2.19).

In the latter specific domain, the principal component analysis (PCA) theory [S.01,Hot33]

can also be applied to transform the original matrix with the DPD basis functions U in order

to reduce the computational complexity at the DPD feedback or update path or prevent ill-

conditioning in complex nonlinear systems where the complexity scales exponentially. PCA is a

statistical learning technique used to convert an original basis of eventually correlated features

or components into a new basis set of uncorrelated orthogonal components called principal

components. These are linear combinations of the original variables that target capturing the

maximum variance in the data. As explained in [Gil13] and [LB18], this is obtained through a

change of basis using a transformation matrix, now defined as V , which is originally an N ×N
dimensional matrix since it contains the eigenvectors of the covariance matrix of U , where

cov(U) =
1

L− 1

(
(U − E{U})H(U − E{U})

)
≈ UHU (3.11)

and E{·} is the expected value. The columns of the L×N -dimensional matrix U contain the

DPD basis functions φi with i = 1, · · · , N . The principal components of the basis functions

in U are defined as the eigenvectors of UUH . Nevertheless, as proved in [Jol02], UHU and

UUH have the same eigenvalues and, moreover, their eigenvectors are related as described in

the following,

(UHU)vi = λivi → (UUH)Uvi = λiUvi (3.12)

with vi being the ith eigenvector of UHU . For each i,

(UHU)V = λV → (UUH)UV = λUV (3.13)

where V =
(
v1, · · · ,vi, · · · ,vN

)
is the N ×N transformation matrix. The linear combination

UV , corresponds to the eigenvectors of UUH , which are therefore the desired principal com-

ponents of the DPD basis functions (i.e., columns) in U . Moreover, λ is the diagonal matrix

containing the eigenvalues of both the UUH and the UHU matrices.

Û is defined as the PCA-transformed matrix which is therefore obtained as

Û = UV , (3.14)

where Û =
(
Φ[0], · · · ,Φ[n], · · · ,Φ[L− 1]

)T
will be an L×N data matrix, and where ΦT [n] =(

ψ1[n], · · · , ψj [n], · · · , ψN [n]
)

is the 1 × N data vector containing the new orthogonal basis

functions or principal components ψj [n] (with j = 1, · · · , N) at time n.

PCA model order reduction

A graphical representation of the PCA transformation applied to DPD is shown in Fig. 3.18:
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Figure 3.18: PCA transformation considering three-dimensional data (adapted from [Bar17a]).

Considering now three-dimensional data, the original coordinate axes are formed by the φi

basis functions, with i = 1, · · · , 3, that belong to the U behavioral modeling matrix and that

will be applied to the L data samples. The new coordinate axes, belonging to the Û PCA-

transformed matrix, are now ψj with j = 1, · · · , 3, corresponding to the three eigenvectors or

directions of highest variance of the original data. As it can be seen in Fig. 3.18 (upper-left

corner) the first eigenvector ψ1 has a significantly larger variance than the second and third

eigenvectors (ψ2 and ψ3, respectively), whereas in the original coordinate axes, the differences

in the variances of the data on the three axes was not so significantly different. For geometrical

illustration purposes, the transformation matrix V may be thought of as a linear rotation matrix

providing new basis where the correlated data is made orthogonal and thus removable. If we

now removed the ψ2 and ψ3 eigenvectors (or principal components) and project the data on the

dimension of ψ1, the loss of information would be considerably shortened compared to the loss

that would be obtained with the original coordinates.

Given the orthogonality of the new transformed basis functions in Û and the fact that these

components sorted according to their relevance (i.e., the most relevant components showing

higher eigenvalue are the ones appearing first and so on), it is possible to apply DPD model

order reduction in the feedback path by just removing the components (or columns of Û) which

have the smallest eigenvalue. Sample applies to matrix V since the eigenvalues of UHU and
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UUH are the same, and their eigenvectors are related as per (3.13).

Therefore, what makes sense is to apply the reduction to matrix V accounting for the

properly sorted relevant eigenvalue contributions and now account for a reduced transformation

matrix Vrdx =
(
v1, · · · ,vi, · · ·vNrdx

)
, where Nrdx < N (Vrdx will be N × Nrdx dimensional)

can define the last component or column being considered from V , or be linked to a specific

dimensionality reduction factor RFd as Nrdx = N
RFd

. The resulting PCA-transformed matrix will

be now UPCA = Û = UVrdx, and feature L×Nrdx dimensionality.

Following the equations in Section 2.2.2 for the closed-loop adaptive DPD, the new reduced

set of transformed DPD coefficients ŵ at the kth training iteration will be calculated as

ŵk+1 = ŵk + µ
(
Û

H
Û
)−1

Û
H
e (3.15)

and the (full-length) forward path DPD coefficients will be obtained through back transformation

of the feedback path coefficient set as

w = Vrdxŵ. (3.16)

One important remark is that the PCA transformation matrix needs only to be calculated

once (i.e., can be pre-calculated offline) and will be valid as long as the statistical properties

of the input data or the PA operating conditions do not vary significantly. Such robustness is

demonstrated in [Pha19a]. Nevertheless, if the recalculation of the PCA transformation matrix

is required due to highly diversified PA operating conditions and input waveforms, the compu-

tational cost would not be negligible, as it would imply 1) calculating the covariance matrix

with computational O
(
LN2

)
and 2) generating the eigenvalue decomposition of the covariance

matrix with computational cost O
(
N3
)
. Thus, the total computational cost of the PCA is

O
(
LN2 +N3

)
[Sha07]. If the basis functions in matrix U needed to be frequently updated,

the corresponding update in the PCA transformation matrix could be impractical in embedded

processors with limited capabilities. To handle such challenge, an independent DPD parameter

estimation method based on the adaptive PCA (APCA) algorithm is presented in Section 3.2.

Partial Least Squares (PLS)

The partial least squares (PLS) technique is another statistical method used to build a new basis

of components from linear combinations of the original basis functions. While PCA obtains new

components maximizing their ow variance, PLS creates its composite variables by maximizing

the covariance between such new components and a reference signal (i.e., the PA output signal

y) within the context of linear regression. Thanks to this, PLS is able to outperform PCA

when reducing the order of PA behavioral modeling or DPD linearization. As demonstrated

in [Gil16,Pha18c], PLS can guarantee well-conditioned identification when reducing the number
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of estimated parameters without loss of accuracy, in contrast to PCA, and the complexity of the

Moore-Penrose matrix inversion operation when applying LS is remarkably reduced.

Proposed in [Jon93], the iterative SIMPLS algorithm can be used to get a new basis of

orthonormal components with PLS. Considering the same variables notation deployed for the

PCA algorithm and (3.15), for PLS we have that the transformed coefficients at the kth training

iteration will now be calculated as

ŵk+1 = ŵk + µÛ
H
e, (3.17)

due to the orthonormal property of the transformed matrix Û , where Û
H
Û = I. There-

fore, the updating of the transformed coefficients is considerably simplified. As per (3.16),

the anti-transformed forward path DPD coefficients w will be calculated multiplying the PLS-

transformed coefficients ŵ by the N ×Nrdx dimensional transformation matrix Vrdx. Thanks to

considering the PA output signal y when creating the transformation matrix, PLS will be more

robust than PCA in terms of performance degradation when the number of transformed basis

and thus transformed DPD coefficients are reduced during identification (at feedback path).

Another more computationally efficient variant of the PLS algorithm for DPD application is

presented in [Pha19a]. While in PLS the number of transformed basis is kept constant over the

DPD training process, in this approach a dynamic PLS (DPLS) algorithm is employed to apply

variable basis reduction depending on the residual linearization error metric (i.e., difference

between the desired PA output signal and the one that is measured). Therefore, the DPLS

technique allows efficiently adjusting the number of coefficients required to meet the linearity

goal. Such DPLS DPD adaptation procedure is summarized in the flowchart shown in Fig. 3.19:

To generate the reduced transformation matrix, now a SIMPLS modification called dy-

namic orthonormal transformation matrix (DOTM) algorithm is proposed . As fully detailed

in [Pha19a], in the DOTM algorithm the number of columns of Vrdx is iteratively increased and

calculated until the power of the estimated error is close enough to a desired threshold which

is a percentage δ defined over the power of the error signal e. At every DPD training iteration

k, the number of columns Nrdx (with Nrdx < N) of the reduced transformed matrix varies to

account for the minimum number of columns that meet the previous optimization goal. Again,

the transformed coefficients increment at every iteration will be calculated as ∆ŵ = µÛ
H
e

according to (3.17), and the forward path full set of DPD coefficients will be obtained by anti-

transforming the DPLS transformed reduced set of DPD coefficients over as many DPD training

iterations as needed to meet, for instance, an ACPR level goal.

Finally, in [Pha19b] the authors combine PCA and DPLS, which is equivalent to the canon-

ical correlation analysis (CCA) updating solution, that goes beyond DPLS towards further

reducing the amount of transformed DPD coefficients during estimation while meeting the same

linearization performance.
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Figure 3.19: Flowchart of the DPD estimation/adaptation using dynamic basis matrix [Pha19a].

Feature Extraction Use Case

Combining CFR and PCA-assisted DPD for efficient Wireless Backhauling

This Use Case shows the application of the previously introduced PCA technique, as DPD

order reduction method in the feedback path, and evaluates the linearity performance in a wide-

band wireless backhaul transmitter when applying a five-stage PC-CFR (as per Section 2.3)

and a direct learning DPD with memory effects compensation (combined as shown in Section

2.2). The goal is to enhance the transmitted output power, and thus the power efficiency of the

overall system, while fulfilling the communications system quality requirements and regulations.

The experimental testbed that was deployed for evaluating the PC and DPD linearization per-

formance is illustrated in Fig. 3.20 [LB14]. A four contiguous channel aggregation configuration

was deployed considering 28-MHz bandwidth and 1024-QAM modulation signals (4CH1011 -one

channel is off), featuring 112 MHz bandwidth and 12-dB PAPR in total. The generated waveform

passes through the PC and DPD blocks implemented in MATLAB and is downloaded for play-

back in the Texas Instruments boards (TSW1400EVM pattern generator and TSW30H84EVM

DACs and IQ modulators) that output the signal that will be fed into the GaN PA (DUT) with

16-bit resolution at 625 Msa/s after upconversion with an IQ modulator to the 2 GHz DUT

input IF. The DUT is a 6 GHz RF Unit used for microwave backhaul applications with a PA

based in a 15 Watts GaN transistor. The output of the PA is digitized using a DSO at 20 Gsa/s.
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Figure 3.20: Wideband CFR and DPD test bench.

Fig. 3.21-left shows the linearity performance in terms of NMSE (worst case channel), ACPR

and EVM (worst channel case), when considering different PAPR reduction factors and with

DPD. By combining the PC technique and DPD, and considering an EVM threshold of 3%,

we can observe that the maximum allowed PAPR reduction is around 2.75 dB (without DPD

would be around 2 dB). Moreover, with PC and keeping the same DPD gain, the ACPR is

slightly improved (around 1 dB) since we have prevented the signal peaks from going into hard

compression.

Figure 3.21: NMSE, EVM and ACPR vs PAPR reduction with DPD at nominal output power
(left), and at +2 dB output power (right).

Alternatively, thanks to the PAPR reduction the mean output power could be increased

without excessively compromising the ACPR and EVM figures. Fig. 3.21-right shows again

the linearity performance for different PAPR reduction factors but now at 2 dB higher output

power (thus driving the PA further into compression). Severe PAPR reductions imply that the

switched-off channel will be more interfered by the neighboring channels. However, there are

PAPR reduction values that, when applying PC+DPD, can keep the EVM below 2% despite

the 2 dB power increase. In addition, in comparison to the previous nominal power case with

DPD, the ACPR is degraded less than 2 dB (see Fig. 3.21-right and Fig. 3.23).
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Figure 3.22: NMSE, EVM and ACPR vs number of DPD coefficients.

Fig. 3.22 shows the DPD linearity performance for different memory lengths and thus number

of coefficients. As it can be observed, after a certain value of coefficients (e.g., 75) there is no

further improvement and, moreover, increasing the number of coefficients could only lead to

worsen the linearity figures due to producing an ill-conditioned system. As listed in Table 3.1,

thanks to the PCA technique it is possible to apply model order reduction and, with the same

number of coefficients, obtaining better in-band linearity figures. However, as shown in Fig. 7,

the out-of-band linearity is degraded when increasing the model order reduction factors. As

expected, there is a trade-off between the ACPR performance and the DPD complexity in terms

of number of coefficients.

Figure 3.23: Spectrum plots of a 112 MHz BW multi-channel 1024-QAM.

The use of the PC technique combined with DPD with model order reduction, helps to

mitigate the trade-off between linearity, efficiency and computational complexity. We have ex-

perimentally demonstrated that gaining near 2 dB of output power thanks to the use of DPD
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Table 3.1: DPD linearization performance.

ACPR (dBc)
Configuration IMD3

L
IMD3

U
IMD5

L
IMD5

U

Worst
Channel
EVM (%)

Worst
Channel

NMSE (dB)

No.
Coeff.

No DPD -36.4 -37.1 -43.3 -49.6 2.75 -19.05 -
DPD 3 taps -37.9 -46.2 -48.0 -50.5 2.26 -25.57 15
DPD 21 taps -44.6 -47.2 -49.6 -52.0 0.85 -28.44 105
DPD 21 taps
RDF=2

-41.8 -45.6 -44.7 -50.2 0.99 -28.11 53

DPD 21 taps
RDF=3

-39.9 -44.4 -43.6 -49.6 0.92 -28.09 35

DPD 21 taps
RDF=7

-37.2 -41.4 -42.6 -49.9 1.24 -27.21 15

and CFR techniques can be achieved minimizing the computational resources with the PCA

technique and still keeping reasonable performance.

3.2 Independent Parameter Estimation for SISO Polynomial
Digital Predistorters

3.2.1 Introduction to implementation-friendly DPD estimation

While the forward path of the DPD must operate in real-time in the FPGA programmable

logic (PL), the adaptation of the DPD coefficients in 4G radios could be done typically in a

processing system (PS) in a much slower time scale than in the forward path (i.e., not in real

time). When looking at the feedback path, in order to deal with an overdetermined system or

an ill-conditioned covariance matrix, most of the times the straightforward solution found in

literature consists in using MATLAB’s backslash operator (otherwise known as the ”mldivide”

function) that employs a QR solver for dense non-square matrices like those typically found in

DPD. Either in commercial products or in publications addressing FPGA implementation, one

of the most common solutions to avoid calculating the inverse of the covariance matrix in (2.19)

is extracting the parameters through QR factorization combined with recursive least squares

(QR-RLS) [Mur06]. In [Wan17a], the authors present a method to reduce the computational

complexity of the direct learning architecture by making use of the constant covariance matrix

to avoid recalculating the time-varying matrix for OFDM-like input signals seen as stationary

ergodic random processes. The approach and the complexity versus convergence benchmarking

are worth considering but, in this contribution, we take benefit from the independence of the

transformed basis in the feedback path to propose an online scalable solution to meet the re-

quirements at the lowest usable complexity by using a conveniently modified PCA variant able

to overcome the drawbacks in terms of computational complexity and training time stated in

Section 3.1.4 for limited capacity processors.



Chapter 3. Machine Learning Techniques for Polynomial SISO Digital Predistorters 99

In [Pha18a], we proposed the parameter extraction of the DPD behavioral models using a

new method based on the adaptive principal component analysis (APCA) technique. The APCA

approach resembles the SVD method but the main difference relies on the fact that APCA is

able to continuously track and adapt to the evolution of the eigenvectors required for doing

DPD [Hay09]. The proposed block deflated APCA (BD-APCA) technique is a modification of

the complex domain generalized Hebbian algorithm (CGHA) [Zha97]. In this section, it will be

proven that, thanks to the APCA technique, we can iteratively find a new orthogonal basis that

will solve the covariance matrix inversion problem by converting the original least squares re-

gression into a set of independent adaptive least mean square (LMS) identifications. This process

can run online in an FPGA for not only ensuring a proper well-conditioned estimation, but also

allowing to reduce the number of parameters in the identification process. Unlike in [Gil13], we

do not assume that the transformation matrix is calculated only once, offline, and then used for

all the data having the same statistical properties as the one used to extract the transformation

matrix. Instead, a step further is taken towards a possible online implementation of the APCA

by demonstrating (both theoretically and experimentally) the benefits of the independent calcu-

lation of the DPD coefficients. Alleviating the data processing implementation bottlenecks of the

PCA technique, the scalable APCA method is in this section further experimentally validated

for DPD application by employing an increasing transformation matrix which produces an in-

creasing set of independently calculated coefficients only if the system performance requirements

are not yet met (i.e., starting with one coefficient, and increasing the number of coefficients by

one at every iteration).

In Section 3.2.2, the independent identification/adaptation subsystem based on the APCA

method to further reduce the number of the parameters required for a robust identification

is presented. Section 3.2.3 describes the experimental test bench and shows the experimental

results proving the advantages of the proposed independent DPD estimation method using the

APCA algorithm.

3.2.2 Independent DPD parameter estimation based on the APCA algorithm

As discussed previously, there are several order reduction techniques published in literature

targeting a simplified implementation of the DPD function in the forward path. In this section

instead, we will focus on how to address the LS matrix inversion of the covariance matrix to

extract the DPD model parameters in order to enable implementation in an FPGA (containing

a programmable logic device and a processing system).

Following with the mathematical developments detailed for PCA in Section 3.1.4, by taking

into account the orthogonal basis functions in Û , we have that(
Û

H
Û
)−1

=
(
λ−1
1 , · · · , λ−1

j · · · , λ
−1
Nrdx

)
I (3.18)
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with λj being the eigenvalues of UHU and UUH (with j = 1, · · ·Nrdx). The coefficients can be

now estimated independently in an LMS fashion at every sample iteration n, and thus (3.15)

becomes 
ŵ1[n+ 1]

...
ŵj [n+ 1]

...
ŵNrdx

[n+ 1]

 =


ŵ1[n]

...
ŵj [n]
...

ŵNrdx
[n]

+ µ



λ−1
1 ψ1[n]

...

λ−1
j ψj [n]

...

λ−1
Nrdx

ψNrdx
[n]

 e[n] (3.19)

By exploiting the orthogonality of the resulting transformed basis functions, the coefficient

adaptation can therefore be carried out independently as follows,

ŵj [n+ 1] = ŵj [n] + µλ−1
j ψj [n]e[n] (3.20)

with j = 1, · · · , Nrdx and where ψj [n] is the jth transformed basis function at time n. A

schematic flowchart describing the independent DPD extraction is depicted in Fig. 3.24.

Figure 3.24: Flowchart of the independent DPD identification process using APCA.

The goal is to estimate the minimum necessary number of transformed coefficients ŵj nec-

essary to meet the target linearity levels, specified in terms of ACPR and NMSE. As explained

in [Pha18a], with the proposed block deflated adaptive principal component (BD-APCA) algo-

rithm, the columns rj (j = 1, 2, ···, Nrdx) of the transformation matrixR are iteratively found one

by one. Therefore, the next column is estimated by using the values of the previously extracted
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components. Eventually, the N ×Nrdx transformation matrix R = (r1, · · · , rj , · · · , rNrdx
) will

converge to V . The BD-APCA algorithm is detailed as follows:

BD-APCA procedure

Input : The N×1 vector containing the basis functions ϕT [n] =
(
φ1[n], · · · , φi[n], · · · , φN [n]

)
from matrix U .

Output : The transformation matrix R = (r1, r2, · · · , rNrdx
).

1. Set j = 1, initialize small random values to the matrix R and assign bj [n] = ϕ∗[n], with

n = 0, 1, · · · , L− 1.

where ∗ denotes the complex conjugate.

2. Set k = 1, Bj = (bj [0], bj [1], · · · , bj [L− 1])T .

2.1) For n = 0, 1, . . . , L− 1, update the vector rj as follows,

rj,k[n+ 1] = rj,k[n] + ηj,k(dj,k[n])
∗(bj [n]− dj,k[n]rj,k[n]) (3.21)

where dj,k[n] = r
H
j,k[n]bj [n] and the learning-rate parameter is

ηj,k = σ · trace(BH
j Bj)/k (3.22)

with σ being a constant factor. The trace can be calculated as the sum of the vector’s

squared modulus, thus avoiding the need to calculate the full correlation matrix.

2.2) Increment k by 1, go back to step 2.1, and continue until the values of rj,k

become steady. Store the estimated eigenvector rj = rj,k[L]. Go to step 3.

3. Deflat the data vectors bj+1[n], with n = 0, 1, · · ·, L− 1.

bj+1[n] = bj [n]−
(
rHj bj [n]

)
rj (3.23)

4. Increment j by 1 and go back to step 2, continue until the last rj is obtained.

Therefore, as shown in Fig. 3.24, until the desired linearity levels are met, the algorithm in-

creases the number of transformed coefficients to be estimated. After several APCA iterations, a

new transformation vector rj is first obtained. This vector, together with the other j − 1 previ-

ously calculated vectors (i.e., j − 1, j − 2, · · · , 1), define the j components of the transformation

matrix R(j). Then, each one of the j transformed coefficients ŵj [n] can be estimated/updated

independently (e.g., in parallel) by following an LMS approach,

ŵj [n+ 1] = ŵj [n] + µλ−1
j ϕ

T [n]rj [n]e[n] (3.24)
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Consequently, the input-output relationship of the DPD function in the forward path described

in (2.17) can be rewritten as

x[n] = u[n]−ΦT [n]ŵ[n] (3.25)

or, alternatively, be expressed in terms of the original basis functions φ[n] and the transformation

matrix R.

x[n] = u[n]− ϕT [n]Rŵ[n] (3.26)

In the following section, experimental results proving the robustness of the independent DPD

algorithm described in Fig. 3.24 will be shown.

3.2.3 Experimental Results

The proposed independent DPD parameter extraction using the APCA technique was experi-

mentally evaluated with a 5G-like communication system. Given the unavailability of 5G-NR

waveforms at the time of testing, we employed a carrier-aggregated fast-convolution filter bank

multi-carrier (FC-FBCM) signal with 80 MHz bandwidth built with four 64-QAM modulated

20 MHz FC-FBMC channels that were carrier aggregated. Each channel follows an OFDM-like

waveform configuration and a frame structure similar to that used for LTE FDD (Rel. 9) and

enables spectral coexistence with LTE primary systems through subcarrier group deactivation.

These complex waveforms feature around 13 dB PAPR. In our experiments, we used a MATLAB-

controlled digital linearization test bench (shown in Fig. 3.25) interfacing some commercial

boards for waveform playback and data capture, digital-to-analog conversion (DAC), IQ modu-

lation and analog-to-digital conversion (ADC) for direct RF sampling (i.e., TI TSW1400EVM

and TSW30H84EVM at Tx side and TI ADC32RF45EVM and TSW14J56EVM at Rx side).

In order to account for the out-of-band distortion, a 368.64 MSa/s DPD signal with 240 MHz

bandwidth was up-converted to the 875 MHz RF frequency to feed a class-J PA based on the

Cree CGH35030F GaN HEMT. The PA output signal (with +28 dBm mean output power) was

attenuated, RF sampled at 2457.6 MSa/s, and further downsampled to the DPD signal sam-

ple rate for time-alignment and DPD processing. An Agilent E4440A spectrum analyzer was

used to characterize the spectrum and ACPR at the output of the PA, three Agilent E4438C

signal generators were used as data converter clocks and IQ modulator local oscillator source

(all sharing the 10 MHz clock reference), and an Agilent N6710B modular dc power system was

employed to supply the active RF elements of the test setup.

The independent DPD closed-loop adaptation described in Fig. 3.24 has been validated in

a MATLAB-controlled hardware test bench. Thus, instead of running the algorithm sample by

sample (as it would be done in an FPGA) we considered the use of input-output data vectors for

faster evaluation of the proposed algorithms. At every iteration a different set of data was used,
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Figure 3.25: (a) Block diagram of the test setup employed for experimental validation. The
digital linearization test bench combines (b) waveform generation and capture boards, RF ana-
log control parts including the PA and (c) laboratory instrumentation. TX: transmitted; RX:
received; WFM: waveform; CH: channel; MOD: modulator; AMP: amplifier; ADC: analog-to-
digital converter; DAC: digital-to-analog converter; CLK: clock; LO: local oscillator; DC PWR:
dc power; Vdd: drain-to-drain voltage ; Vgs: gate-to-source voltage; Vds: drain-to-source volt-
age.

presenting different PAPR values (around 13 ± 1 dB) to prove the robustness of the proposed

DPD linearization algorithm.

As shown in (2.19), typically, the Moore-Penrose inverse i.e., (UHU)−1UH , is used to solve

the LS identification. However, when the covariance matrix (UHU) is ill-conditioned, the values

of the estimated coefficients are no longer reliable. Table 3.2 shows the linearization achieved (in

terms of ACPR, NMSE and EVM in the worst-case channel) when considering two cases: a) the

direct estimation of the best performing 322 coefficients found by brute force using MATLAB’s

backslash operator (since using the Moore-Penrose inverse the coefficient estimation diverges)

and b) the independent DPD adaptation of 60 coefficients using APCA.

The original data matrix containing 322 basis functions could have been reduced by applying

some model order reduction such as OMP. Nevertheless, this is not the scope of this contribution

and, more important, by assuming an initial data matrix with 322 basis functions we can prove
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Table 3.2: DPD Performance Comparison

Configuration Coeff. NMSE ACPR EVM

80 MHz FC-FBMC No. [dB] [dBc] [%]

No DPD - -18.5 -36.25 5.75

Full DPD w/ MATLAB’s ’\’ 322 -41.1 -50.7 1.05

Indep. DPD w/ APCA 60 -38.7 -45.3 1.35

the regularization and coefficient reduction capabilities of the proposed approach. Having said

this, and just to have some order reduction assessment, we have applied OMP to reduce the

original data matrix in the forward path and found that by using 227 coefficients the performance

being attained is very similar to that featured by the 322 coefficients found by brute force.

Therefore, the order reduction factor in the feedback path would be around 3.5 if we consider

that, to meet the target ACPR ≤ −45 dBc and NMSE ≤ −38 dB, only 60 coefficients of

the new transformed basis were required. This number is consistent with the experiment results

shown in Fig. 3.26 which are further detailed in the next paragraph.

Figure 3.26: NMSE and ACPR vs. coefficients reduction.

Before applying APCA to iteratively build the 60 coefficients, several tests were conducted

to characterize the performance of PCA versus the number of transformed coefficients. In order

to have good measurement resolution and better exploit the eigenvalue information the following

procedure was used: First, the eigenvectors and eigenvalues of the matrix UHU were calculated
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to build the transformation matrix for the full set of 322 coefficients. Secondly, the ratio in dB

between the absolute value of the last diagonal element (having the lowest value for a certain

number of transformed coefficients) and the absolute value of the first diagonal element (having

the maximum value) was characterized in MATLAB as in Fig. 3.26 (black trace). Thirdly, every

measurement point defined a maximum number of consecutive transformation matrix columns

(i.e., comprising a specific eigenvalue dB reduction factor) and thus DPD coefficients that were

employed in every PCA DPD experiment. A total of 25 experiments of 21 iterations each were

conducted (different PAPR statistically representative waveforms were applied to check the

robustness). After a training period of 10 iterations (by using a decreasing µ weighting factor),

the NMSE and ACPR values for every experiment became stabilized and the worst-case value

was recorded and annotated in Fig. 3.26. Finally, this information is later used to validate the

APCA operation by comparing the number of coefficients progressively obtained by APCA to

reach the required performance versus that offered by the original PCA DPD approach taking

the whole coefficient set from the first iteration.

By considering the 60 coefficients being required to meet the NMSE and ACPR thresholds

and before experimenting with the BD-APCA method, another set of PCA experiments was

set to demonstrate the independent estimation of coefficients. In these experiments, at each

DPD iteration only a portion of the overall transformed coefficients was updated while the

rest was left unaltered. The results in Fig. 3.27 satisfactorily show that similar performance is

reached when comparing full update with partial update at different independent update ratios.

As expected, a lower number of coefficients being updated takes more iterations to reach the

required performance. However, by properly tuning the µ weighting factor being applied at every

DPD iteration the delay can be minimized so that the desired performance is reached during

the aforementioned 10-iteration training period. It is also worth noting that the order at which

we add a new set of independent coefficients will impact on the DPD training time, since each

coefficient contributes differently to the linearization performance, but not on the performance

itself thanks to the independence of the coefficients.

In the following, we will discuss the APCA experimental validation. Fig. 3.28 shows the

NMSE and ACPR evolution when considering that at each iteration a new component is included

in the estimation set and thus a new coefficient is estimated. By following the algorithm described

in Fig. 3.24, we can see that thanks to the orthogonal property even if at every iteration a new

coefficient is included this can be estimated independently and each one contributes to the

linearization. After a certain number of coefficients (in our case, 60) the targeted NMSE and

ACPR are reached and then we can stop adding components and coefficients to the estimation

set. In our experiment we have considered up to 75 iterations to check the method performance

stability once the number of coefficients is no longer increased.

Fig. 3.29 shows the evolution of the absolute value of the estimated coefficients. The estima-
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Figure 3.27: Independent partial identification of DPD coefficients per iteration.

Figure 3.28: Evolution of the NMSE and the ACPR considering up to 60 components and 75
iterations.

tion is perfectly regularized, the absolute value of the coefficients is below 1, and every time a

new coefficient is added it converges in few iterations and, because of their independence, the
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Figure 3.29: Evolution of the absolute value of the 60 DPD coefficients.

value of the already existing coefficients is kept unaltered despite the addition of new coefficients

to the estimation set. This cannot be done with the original basis, since the basis functions are

not orthogonal and thus the value of the coefficients is dependent on the number of selected basis.

This solution is very versatile because thanks to the independent estimation several strategies

to reduce the computational complexity can be considered. For example, we could adapt only

one coefficient at each iteration following a round robin scheduling and thus leaving the others

unadapted until their turn arrives. Fig. 3.29 also depicts the µ DPD weighting factor strategy

applied at each experiment iteration. This factor accounts for the first iteration at which such co-

efficient was generated and the following updates being applied to that coefficient as if there was

a specifically bounded training period for it. The rationale behind such strategy is to contribute

to guarantee the convergence time and to a shorter extent to help preserving the regularization.

Finally, Fig. 3.30 and Fig. 3.31 show the unlinearized and linearized spectra taken from

the spectrum analyzer and the amplitude modulation to amplitude modulation (AM–AM) and

amplitude modulation to phase modulation (AM–PM) characteristics respectively, when con-

sidering independent DPD adaptation with 60 coefficients.

This contribution has shown the versatility of the independent DPD identification method

using the PCA theory to find a transformed matrix with new orthogonal components. With the

independent DPD identification, it is possible to tradeoff updating or identification convergence

time versus computational complexity. That is, updating in parallel at every iteration (in a more

relaxed time scale than the real-time digital predistorter in the forward path), following an LMS
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Figure 3.30: Spectra of the PA output before and after DPD linearization.

(a) (b)

Figure 3.31: AM-AM (a) and AM-PM (b) characteristics before and after DPD linearization.

gradient technique, as many components as you want (tradeoff convergence time vs. FPGA

resources). The technique allows guaranteeing robust independent DPD identification using the

minimum necessary coefficients in the adaptation subsystem to meet specific linearity levels.



Chapter 4

Machine Learning Techniques for
Neural Network SISO Predistorters

4.1 Nonlinear Neural Networks Approaches

4.1.1 Introduction to ANN Topologies and dynamic nonlinear modeling

An artificial neural network (ANN) is a modeling technique, originally inspired by some par-

tial knowledge on the behavior of the neurons in the human brain, that can be trained to

learn the structure of the data and model complex nonlinear functions. Essentially, the neu-

rons are distributed between different layers and communicate with each other through neuron

output-to-input weighted interconnections (or synapses). Based on the interconnection pattern

or architecture we can distinguish between feedforward networks (FFNNs) and recurrent (or

feedback) networks (RNNs).

FFNNs, which are among the most used ANN, have unidirectional interconnections between

the neurons of every layer since the flow of data is from input to outputs, without feedback

(one input pattern produces one output). The most common FFNN is called multilayer percep-

tron (MLP) which is composed of fully connected layers where all the output activations are

composed of a weighted sum of input activations (the neurons of a specific layer are fed by the

outputs of all the neurons of the preceding layer). The larger the weight, the more influential the

corresponding input will be. Enabling full connection in a densely populated NN may require

significant hardware resources but in many applications the weight of some interconnections can

be set to zero without loss of accuracy which results in sparsely connected layers. In a RNN, the

inputs of the neurons of a specific layer may be fed by the output of the neurons either in the

same layer or at any of the following layers which senses time and memory of previous states.

The above concepts are shown in Fig. 4.1(a) where a modified MLP-based FFNN is displayed

(a classic MLP would have full connection between at all layers).

109
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Figure 4.1: (a) FFNN and RRN architectures exemplification and (b) single-layer perceptron
(SLP) model.

In more detail, Fig. 4.1(b) shows a single-layer perceptron model and the operation of this

fundamental building block of an MLP NN. The jth neuron, of the kth layer receives as input

each xi from the previous layer. Each xi, with i = 1, 2, · · ·, N , is then multiplied by a weight wji

and the resulting values are all summed together. A single bias or offset value θj is added to the

summation and, finally, an activation or transfer function φk(·) (different activation functions

can be applied to different layers) is applied to provide the output of the jth neuron found in

the kth layer, as shown in (4.1):

ykj (n) = φk(
N∑
i=1

wk
jix

k−1
i (n) + θkj ) (4.1)

Some historical brief review follows. When the single-layer perceptron was defined in the late

50’s by [Ros58] the activation function being used was the step or threshold function and the

concept of hidden layers was not yet exploited. This model was a first practical implementation

that could be used for simple linearly-separable binary classification problems but was not valid

for more complicated modeling requiring nonlinear outputs. The solution to this limitation came

in the mid and late 80’s thanks to a few works, such as [Rum86], that considered MLP with

hidden layers to enable the NN learning more complicated features, proposed backpropagation

algorithms to adjust the weights and minimize the difference between the actual output and the

desired output, and employed nonlinear activation functions such as the sigmoid function that

could enable gradually changing the weights of the NN and introduce nonlinearity. The universal

approximation theorem in [Cyb89] proved that a feedforward ANN with a single hidden layer (a

three-layer network considering the input and output layers) and non-constant, bounded, and

monotone-increasing continuous activation function can approximate any nonlinear function

with any desired error. Fig. 4.2 shows a summary of the main activation functions.
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Figure 4.2: ANN activation or transfer functions.

In the past, and generally speaking, FFNs were considered static and memoryless in the

sense that the response of an input was independent of the previous network state, while RNNs

were considered dynamic systems because of the feedback connections. Nowadays, and given

the highest complexity of RNNs versus FFNNs, the RNN architectures are frequently unrolled

in a way that are re-drawn and re-formulated similarly as a FFNN to simplify the processing

complexity. In addition, the need for modeling nonlinear system dynamics considering memory

effects has grown over the last decades in multiple applications. For instance, the ever-increasing

signal bandwidth at each wireless communication standard generation makes the modeling of

PA memory effects, which are more evident when this component is excited by higher bandwidth
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signals, a relevant topic to be accounted to enhance the performance of the physical layer. In

order to solve time series prediction and thus enable dynamic nonlinear system identification,

the focused time-delayed neural networks (FTDNNs), which include tapped delay lines to gen-

erate delayed samples of the input variables, have been proposed. The FTDNN can be seen as

combining a linear time invariant (LTI) system such as a finite impulse response (FIR) filter,

which enables performing dynamic mappings depending on past input values, and a nonlinear

memoryless MLP network that can be trained using static backpropagation algorithms. The

memory depth of the system being modeled will be reflected on the length of the taps imposed

by the required bandwidth accuracy. A FTDNN structure could be seen as a special case of the

Wiener model (i.e., a linear time-invariant system followed by a memoryless nonlinear system).

Fig. 4.3 shows a four-layer architecture (with two hidden layers) of a fully connected FTDNN

whose input-output relation is defined in (4.2) according to the notation of the aforementioned

SLP concept.

Figure 4.3: Four-layer FTDNN architecture.

y(n) =
S∑

k=1

φ2

 F∑
j=1

w2
kjy

1
j (n) + θ2k

 =

S∑
k=1

φ2

 F∑
j=1

w2
kjφ

1

(
N∑
i=0

w1
jixi(n− τi) + θ1j

)
+ θ2k

 (4.2)
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In this example, the input layer contains N+1 neurons (including the input signal and all the

delayed versions, z−1 is the unit delay operator), the first hidden layer has F neurons, the second

hidden layer has S neurons and there is a final output layer with a single neuron. For the sake

of simplicity, the output layer in this example is considered as a unitary weighted summation

(w3
1l = 1 for l = 1, 2, · · ·, S) of the signals coming from the previous layer, just followed by a

pure linear activation function. The total amount of coefficients to be tuned in backpropagation

would be the sum of the number of weights (F (N + 1 + S)) and biases (F + S). For example,

when considering four memory taps (5 neurons in the input layer), 8 neurons in the first hidden

layer and 6 neurons in the second hidden layer, 88 weights and 14 biases totaling 102 parameters

need to be tuned.

Generally speaking, and when comparing the ANN approach with the polynomial one (dis-

cussed in previous sections), the polynomials have inherent local approximating properties in

contrast to the global approximation capability of ANNs, when modeling strongly nonlinear

systems. In addition, when compared to classical models the ANN may adapt better to extrap-

olating beyond the zone exploited for parameter extraction [Gil07a].

There is not a universal recipe to set up the best ANN architecture, learning algorithm or

activation function given a specific problem. Trial and error is frequently employed but some

physical knowledge of the phenomena to be modeled can be important when optimizing the

resources and aiming to reach the best modeling performance. However, some design consid-

erations (architectures, activation functions, backpropagation detail and learning algorithms,

metrics, etc.) found in literature and being experimentally validated and benchmarked will be

given in Section 4.1.2 to assist in the modeling and compensation of RF transceiver impairments.

4.1.2 Design Considerations for Digital Linearization and RF Impairment
Correction

The ANNs are considered as an alternative to complex Volterra-based nonlinear models that

require an unaffordable complexity to characterize the RF impairments in highly demanding

transceiver architectures such as massive MIMO. The FTDNN architecture, combined with a

back propagation learning algorithm (BPLA), has been over the last ten years one of the most

attractive approaches for dynamic nonlinear modeling. Another frequent type of FFNN being

widely exploited to predict the behavior of the PA is the radial basis function neural network

(RBFFNN) which can progressively keep increasing the number of neurons in the hidden layer

until the desired performance is met as shown in [Isa05]. The RNNs, that have been preferred

to model dynamic nonlinear systems with feedback paths or frequency-dependent phenomena,

allow for better characterization of the interaction between input and output samples and the

cross terms. However, these networks have traditionally employed lengthy training algorithms

making difficult their implementation in real-time systems. While MLPNN variations are pre-
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dominantly employed for PA modeling and DPD, the RNN are found in works dealing with I/Q

modulator gain and phase imbalances or to apply CFR. When all the impairments, including

strong PA nonlinearities, have to be solved with a common architecture, the RNN may be hardly

implementable or will be outperformed by the MLPNN-based approaches as will be shown in the

next subsections. The better the dynamic nonlinearities are modeled, the better the linearization

performance will be.

ANN Architectures for Single-Antenna DPD

In order to extract amplitude and phase information from modulated complex waveforms, the

ANNs need to consider operating with either complex-valued (CV) input signals, weights and

activation outputs or real-valued (RV) double-inputs double-outputs (and real weights and ac-

tivation outputs), i.e. in the form of multiple I and Q components. Complex-valued operation

leads to heavy calculations and a longer training phase. In addition, the architectures that

employ independent NN to separately model the AM/AM and AM/PM behavior may fail in

the synchronous convergence of the two NN and thus tend to overtrain the fastest converging

one [Raw10]. The RV FTDNNs, which combine I/Q RV processing with input time delay lines

(TDLs) to handle memory effects (but not output-to-input TDLs as it would happen in a RNN),

can offer better superior performance and easy baseband implementation when used for inverse

modeling of PAs with strong nonlinearities and memory effects. As seen in [Raw10], these ANN

utilize a similar structure to that shown in Fig. 4.3, but instead of a single input single output

NN now we are having double-input double-output (I/Q inputs and outputs). In this case, the

weighted summation at each first hidden layer neuron will include a sequence of input samples

both for the I and Q components (this information will propagate throughout the NN according

to the activation functions) and the output layer may have a non-unitary weighted summation at

each I and Q output accounting for the contributions of each neuron output in the second hidden

layer. This ANN has therefore a maximum of 2F (N+1)+SF +2S weights and F +M+2 biases

(considering the notation in Fig. 4.3) that will be adjusted using feedforward backpropagation.

As previously introduced, the RNNs can be modified or unrolled in most of the cases in

such a way so as to emulate a FFNN scheme where consolidated BPLAs are applied. A relevant

design consideration is that choosing an ANN architecture without taking into account which

are the sources that generate the nonlinearities may impact negatively on the performance or

be highly resource inefficient. For instance, when modeling the PA nonlinear dynamic effects, it

can be worth paying attention to the PA physical model to reflect output-to-input interactions

or account for memory effects given a signal bandwidth. One example of the previous design

considerations is found in [Mka11] and is displayed in Fig. 4.4.

In this example, nonlinear activation functions are used to model static PA nonlinearities

(typically, the stronger the nonlinearities the more neurons that are required) while linear acti-
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Figure 4.4: PA physics-aware CV RNN reformulated as a modified RV FTDNN.

vation functions will be used to model the feedback mechanism FIR filter (with memory depth

K). The input FIR (input signal) models the memory effects which result from combining a

wideband modulated signal with a non-flat response input matching network (N is the mem-

ory depth of the input signal). For FFN deployment, the connection between the initial input

samples and the neurons is 1 (at first hidden layer). To train this NN, only measured past data

from the PA output will be used at the input (not during validation since the delayed output

data will be fed back once the necessary outputs are produced).

Moreover, some recent works have shown the benefits brought by adding envelope dependent

terms as inputs to the ANN. [Jue17] propose a two-hidden layer RV FTDNN that includes one

additional input based on the calculation of the modulus of the I and Q samples. This input is not

only fed to the first hidden layer but directly to the output layer, all of which helps to improve

the numerical stability and training convergence. [Wan19] inject additional envelope-dependent

term combinations (i.e. between the modulus raised to the power of two, three, four and five) as

inputs of a single hidden layer neural network (no direct connection between envelope related

inputs and the output layer is enabled in this case). This obtains better modeling performance

since these new terms are able of generating some desired even-order intermodulation terms

throughout the neural network that cannot be obtained if only I and Q components are used as

inputs.
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ANN Training and Parameter Extraction Procedure

The ANN structure is typically trained with relevant I and Q baseband signals with expanded

bandwidth and sample rate to allow for the DPD out-of-band compensation to fulfill ACPR

requirements, and some additional envelope-dependent terms that can contribute to enhance

the performance and the training speed and numerical stability. These ANN excitations lead

to output signals which are typically compared with those taken from measurements at the PA

output after RF-to-baseband downconversion, time alignment and gain compensation. In this

batch-trained supervised learning environment, the BPLA is applied to tune the weights and

biases given the selected parameter subset of layers, neurons and activation functions.

The previous works that have been highlighted to provide procedural indications mainly refer

to the indirect learning (IL) architecture shown in Fig. 4.5 (left) that models the inverse response

of the PA during the NN training and replicates the coefficients calculated in the forward path

(NN inference). The better performing direct learning architecture (DL) that is shown in Fig.

4.5 (right), models the counteracting distortion signal to be added to the original input signal

to compensate for the PA distortion.

Figure 4.5: ANN-based DPD IL (left) and DL (right) architectures.

As introduced when comparing the CV- and RV-data operation in ANNs, using I and Q

components features a significantly faster training by using real weights instead of using complex

weights. The real-valued time delayed feedforward NN in Fig. 4.6 is now considered. According to

the DL scheme, the input IQ pair is defined as the real and imaginary part of the NN input vector

u[n], and the output IQ pair will be an estimation of the real part and imaginary part of the NN

expected output (target goal signal) x′[n]. The input IQ pair is further processed by a group of

data functions (DF in Fig. 4.6) to provide richer basis to the ANN and improve the nonlinear

modeling. The ANN DPD can benefit from the injection of envelope dependent terms (i.e.,

|Iin + jQin|k with k ∈ N) [Wan19], angle dependent terms (i.e. atan 2
(
Qin/Iin)

k with k ∈ N),
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or long-term memory effects modeling components like those described in [Teh12] (i.e., s[n] =
1
K

∑K−1
k=0 |Iin[n−k]+ jQin[n−k]|2, where s[n] is a sample-by-sample sliding integration window

with K-sample length, where K determines the long-term memory depth). To enable dynamic

nonlinear system identification, the LTI system built with tapped delay lines is added. In this

architecture therefore, the ANN input signal u contributes to generate the N = (2+ V )(M +1)

input dataset basis functions that result from applying the LTI system (with M memory depth)

to the IQ input signals and to the V DF outputs with the exception of the long-term memory

effect modeling DF (in such case, N = (2+ V − 1)(M + 1)+ 1). The input dataset length relies

on the length L of the IQ data being considered for modeling. The ANN features one input layer

(with N inputs), two hidden layers with F and S neurons, and an output layer with 2 neurons.

The neurons in the hidden layers employ the ϑ1(·) and ϑ2(·) nonlinear activation functions

and a pure linear activation function is used for the output layer. This NN architecture has

NF +FS +2S weights and F +S +2 biases. In Fig. 4.6, wk
i,j is the j

th weight belonging to the

ith neuron in the kth layer. Similarly, θki is the bias belonging to the ith neuron in the kth layer.

Figure 4.6: Two-hidden layer real-valued feed forward shallow ANN architecture.
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Î ′out[n] =
S∑
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Q̂′
out[n] =

S∑
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2

(
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w2
k,jϑ

1
( N∑

i=1

w1
j,i φi[n] + θ1j

)
+ θ2k

)
+ θ32 (4.4)

Selecting convenient initial weight and bias values for the ANN can be crucial to avoid

training divergence or long training periods which do not learn significantly and thus deliver

underperforming models. A general rule to be followed is to avoid extreme values (either the

smallest or the largest) and symmetrical distribution of weights which make the neurons to per-

form similarly and thus provoke unnecessary redundancy and lower performance. If no initial

knowledge is considered, the weights are chosen in a way that the input to the next activation

function lies typically in the region between linear and saturated (see Fig. 4.2). Random initial-

ization between -0.8 to +0.8 leads to a reasonably good starting point while the values below -1

and above +1 are avoided since the neuron learning will be very slow or will be stopped.

At every training epoch (or iteration) there are both a forward pass, where the error cost

function is calculated with the outputs of the ANN and the desired outputs, and a backward

pass that calculates the increment to be applied to the NN weights and biases to minimize that

cost function. Having an adaptive digitally-assisted linearization or RF impairment compensa-

tion technique in the baseband modem puts some constraints on the number of epochs used for

learning to reach the desired modeling performance. A categorization of the fast BPLA tech-

niques is found in [Raw10]. In the first category, we can find the heuristic techniques (more detail

is provided in [Hay09]) which are derivations from the analysis of the standard steepest descent

algorithm. The gradient descent with momentum (GDM), which prevents from falling into bad

local minima, can be included in this category together with variants such as the variable learning

rate (GDA), the momentum and adaptive learning rule (GDX) and the resilient back-propagation

(RP). The standard numerical optimization techniques are in the second category (the informa-

tion is expanded in [Hag96]). This category includes; 1) the conjugate gradient-based techniques

such as the Polak-Ribiere (CGP), the Fletcher-Powell (CGF), the Powell-Beale (CGB) and the

scaled conjugate gradient (SGC), 2) quasi-Newton algorithms such as the Broyden-Fletcher-

Goldfarb-Shanno (BFG) and the one step secant (OSS), and 3) the Levenberg-Marquardt (LM)

algorithm. The LM combines the gradient descent and the Gauss-Newton methods, and is vastly

used in ANN to minimize the cost function in DPD-related applications given its fast conver-

gence properties which are paired with good modeling performance and fair implementation

complexity [Hay09].
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If the Levenberg-Marquardt (LM) BPLA is used in this ANN to calculate the NN coefficients,

a cost function J , where

J =
1

2Lb

Lb∑
n=1

(
I ′goal[n]− Î ′out[n]

)2
+
(
Q′

goal[n]− Q̂′
out[n]

)2
=

1

2Lb

Lb∑
n=1

(
eI [n]− êI [n]

)2
+
(
eQ[n]− êQ[n]

)2
(4.5)

=
1

2Lb

Lb∑
n=1

∣∣∆e[n]∣∣2
is minimized for every training input data batch of length Lb samples. This forward-backward

process is repeated until the desired modeling performance is achieved or the NN fails in gen-

eralization. When going backward, the LM modification to the Gauss-Newton method [Hag94]

minimizes J with respect to a parameter c with the weights and biases, which is updated as

cn+1 = cn −
[
JTJ + βI

]−1
JT∆e (4.6)

where

c =
[
w1
1,1 . . . w

1
F,Nθ

1
1 . . . θ

1
F . . . . . . w

3
1,1 . . . w

3
2,Sθ

3
1θ

3
2

]
(4.7)

where I is the identity matrix, β is a learning rate parameter and J is the Jacobian matrix

calculated over the error vector e with respect to c as

J =
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whose elements can be computed as described in [Jar18a].

The learning rate parameter is introduced to guarantee the convergence of the BPLA. Both

learning rate and momentum terms can be introduced in the algorithms minimizing the estima-

tion error. As found in classical DPD learning schemes, the learning rate controls the convergence

speed. If it is too small, the convergence is very slow and reaching the desired modeling perfor-

mance requires more epochs, while if it is too high it can make the algorithm diverge. In [Ber96],

the best learning rate is found from the Hessian matrix of the input signal that, however, changes

significantly with time and is computationally complex to track. In [Mka11], the authors propose

applying to the learning factor either an increasing or decreasing rate at every epoch depend-

ing on whether the error between the network outputs and the desired output is respectively

meeting the desired performance or not. Given the fact that even with an appropriate choice

of the learning rate the BPLA may suffer from convergence to a local optimum, in order to
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better approach a global optimum the authors follow the procedure by [Pla86] and include the

momentum term into to the BPLA. This factor adds relative contribution of the current and

past errors to the current change of the estimated parameters in the shape of an oscillatory

descent solution. Therefore, the ANN modeling performance can be benchmarked choosing first

between a static or a dynamic learning rate and then between a static or a dynamic momentum

term. For example, one could start employing a low value learning rate (e.g., one or two orders

of magnitude below 1) and depending on whether the cost function or performance index J

in Eq. 4.5 had increased or decreased, the learning rate could either be multiplied or divided,

respectively, by an additional factor set to 10.

Procedures and Validation Methodologies

To achieve a better trade-off between the modelling performance and processing complexity, the

following procedures should be followed in finding an ANN based solution while no universal

rule exists now.

• Input data memory depth: The memory depth of the input signals is chosen typically by

benchmarking different depth values in terms of modeling performance or NMSE (char-

acterizing the error between the expected output and that obtained by the ANN) and

complexity. For instance, a setting of memory taps which is 2 dB below the best NMSE

attained could be the optimal one if the number of taps could be significantly reduced and

the NMSE obtained was sufficient according to the application requirements. The knowl-

edge of the PA physics and the designer expertise evaluating the PA response under a

wideband modulated signal can be of help to reduce the number of cases to be evaluated.

• Number of hidden layers and neurons: The universal approximation theorem by [Cyb89]

has been previously introduced in this chapter to justify the capacity of a single hidden

layer ANN to approximate any nonlinear function with any desired error with a convenient

activation function. However, the theorem does not specify the best solution in terms

of learning time (or epochs), implementation complexity, number of hidden neurons or

generalization capability with non-trained data, and assumes noise-free training data which

is not always met in practice when the data is taken from measurements. Several works

analyzing the performance of two-hidden layer versus single hidden layer ANN schemes

concluded that the two-hidden layer ANNs provide better generalization and stability

against the training data noise. [Che90] proved that adding the second hidden layer filters

out the measurement noise that the single hidden layer operation does not (since it models

the noise instead of filtering it out). [Hus93] proved that a two-hidden layer network may

require a lower overall number of neurons than a single hidden layer scheme to approximate

a modeling function. In general, it is hard to find generalized deterministic approaches to
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choose the number of hidden layers since they would need to be validated under a massive

amount of different data sets. Therefore, the final empirical selection of hidden layers may

be driven in the end by trading-off the overall size of the ANN or the complexity, the

learning time and the modeling accuracy [Tho16].

There is not a specific rule in selecting the optimal number of neurons at each hidden layers

despite the fact that the stronger the PA nonlinearities, the higher the number of neurons

in hidden layers (with nonlinear activation functions) will be. However, the complexity of

the ANN can be set by evaluating the generalization error obtained when combining the

bias-variance dilemma [Gem92] and the cross-validation technique [Sto78], [Hay09]. The

bias error can be seen as how far from the expected data is the output data of the ANN

model when using the training or estimation data set. A high bias error is indicative of

underfitting. The variance error comes from the sensitivity to small variations over the

training data set when the output of the ANN is evaluated with the validation data set.

A high variance error is an indicator showing that the ANN is modeling the random noise

in the training data instead of the intended outputs and thus it is overfitting. When the

number of hidden neurons increases, the bias error typically decreases and the variance

error increases. These parameters are taken into account in a back-propagation algorithm

that learns in stages moving from the realization of simpler to more complex mapping

functions as the training session progresses and the iteration or epoch number increases.

By using this procedure, the training session is stopped periodically (i.e. every five epochs)

and, given the obtained ANN weight and bias values, the model is tested on the validation

subset at each of these periods. The MSE of the estimation during training decreases

monotonically for an increasing number of epochs while in validation the MSE curve first

decreases to a minimum and then increases (the learning algorithm starts modeling the

noise given the training data set). An early MSE minimum could define the stopping point

at which the ANN parameters are selected but, however, the number of epochs is typically

increased beyond this stopping point to check whether the early MSE minimum is local or

not and then choose the most convenient stopping point. A few improved versions of the

cross-validation method and pruning procedures are found in [Hay09].

• Activation functions: Regarding the type of activation functions, there is neither a sys-

tematic approach to set the suitable function in the hidden layers. As shown in previous

examples, for the output layer a pure linear function is typically used summing up the out-

puts of hidden neurons and linearly mapping them at the output. According to [Kar06],

the linear activation functions are used typically for regression while nonlinear activation

functions are used for input-output modeling. It is well-known that faster training can be

achieved by using antisymmetrical activation functions such as the antisymmetric hyper-

bolic tangent. Again, the benchmarking of different activation functions for the hidden

layers can help to determine which is the best option. Some information in this regard is
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provided in the next subsection.

Some further quantitative analyses and evaluation results about the usability and perfor-

mance of the ANN in behavioral modeling, DPD and RF impairment compensation applications

are also given in [Gil20b]. Not only the impact of the ANN architecture parameter selection is

assessed but also a comparison between ANN architectures with respect to classical polynomial-

based approaches. The works in [Raw10] and [Mka11] are used to compare the RV FTDNN, RV

RNN and polynomial-based architectures in terms of DPD modeling performance and stability,

and compare the performance and training time with different BPLA algorithms, and also con-

sidering different learning and momentum rates, training signal data length or ANN activation

functions. In terms of complexity of the network, these works also show that for multiple-layer

ANNs the combination in number of neurons at the first hidden layer and the second hidden

layer can be benchmarked in terms of NMSE (once the optimal number of neurons at the first

hidden layer is set at a fixed number, the number of neurons in the second is then evaluated).

The memory depth is also another parameter that is benchmarked. Different number of memory

taps can be assessed where, typically, for RV inputs the same configuration will be employed

while in RV RNN different taps configurations between input and feedback signals can be used

depending on the physics to be modeled.

Finally, [Gil20b] also shows several ANN approaches that have been proposed over the last

15 years to overcome several limitations of the classical PAPR reduction schemes. An overview

of ANN CFR applications constituting a more convenient alternative to signal scrambling-based

probabilistic schemes requiring explicit side information such as SLM, PTS, tone injection or

ACE, and to signal distortion techniques such as peak cancellation or clipping and filtering, is

also reported including architectural detail and the advantages in terms of either PAPR reduction

performance or implementation complexity (or both).white

Neural Network Modeling Use Case

Evaluating ANN design considerations for GaN PA behavioral modeling and
DPD

By having in mind the aforementioned procedures, validation methodologies and the bench-

marks found in literature, it is easier to find the ANN structure and parameters that can lead

to achieve better results than random selection of the parameters. Non-optimized parameters

will lead to finding many constant response saturated nonlinear neurons that do not contribute

to the modeling of the dynamic nonlinear behavior while the contrary happens in optimized

designs. In this section, an experimental validation of the design principles is provided. With

the test setup described in Section 3.2.3, multiple PA input-output measurements have been

conducted to characterize the nonlinear behavior of the test setup GaN class-J PA operating at
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875 MHz center frequency with high-PAPR (12-14 dB) FBMC waveforms both having 20 MHz

and 80 MHz signal bandwidth.

white

Table 4.1 shows the number of coefficients and PA behavioral modeling performance benchmark

when considering different parameter configurations of a RVFTDNN in terms of memory terms,

number of neurons in single or dual hidden layer configuration, envelope dependent terms. The

activation functions and different BPLAs have also been accounted. The measurements have

been processed in the MATLAB environment where the RVFTDNN has been trained by setting

up a maximum of 100 training epochs and where, after verifying results generalization with

different waveforms, the worst case NMSE has been annotated.

Table 4.1: GaN PA Nonlinear Modeling With RVFTDNN.

MEM.
TERMS

NEURONS
IN HL

|I + jQ|T
TERMS

WEIGHTS
+ BIASES

ACTIVATION
FUNCTION

IN HLa
BPLA

NMSE
(dB)

2 10 - 72 tansig LM -25.35

4 10 - 112 ” ” -31.91

6 10 - 152 ” ” -33.69

10 10 - 232 ” ” -34.16

18 10 - 392 ” ” -35.07

6 4 - 62 tansig LM -26.39

6 8 - 122 ” ” -32.74

6 16 - 242 ” ” -35.52

6 28 - 422 ” ” -36.47

6 10 T=1 212 tansig LM -37.48

6 10 T=1,2,3 332 ” ” -37.66

6 10 T=1,2,3,4,5 452 ” ” -40.10

6 10 T=1,3,5 332 ” ” -36.77

6 10 T=2,4 272 ” ” -35.04

6 10 T=1 212 logsig LM -37.75

6 10 ” 212 radbas ” -36.90

6 10 ” 212 satlins ” -31.80

6 10 T=1 212 tansig BFGb -24.02

6 10 ” 212 ” CGBb -24.30

6 10 ” 212 ” RPb -23.73

3 5-10 (2HL) T=1 132 satlins+tansig LM -37.38

3 5-10 (2HL) T=1 132 satlins+tansig LMc -21.42

6 12-24 (2HL) ” 590 satlins+tansig LMc -36.70

20 20 T=1 1262 tansig LMc -39.43
a Activations functions that have been considered (in order of appearance in the table): Hyperbolic
Tangent Sigmoid, Log-Sigmoid, Radial Basis, Symmetric Saturating Linear.

b Epoch limit increased to explore performance. BFG: Broyden, Fletcher, Goldfarb, and Shanno,
CGB: Conjugated Gradient with Powell/Beale restarts, RP: resilient backpropagation.

c Results for 80 MHz bandwidth signal.
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Figure 4.7: PA and DPD behavioral modeling for a GaN PA with strong nonlinearities and
operated with 20 MHz (left) and 80 MHz (right) bandwidth signals.
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white
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The effectiveness of several design considerations that have been reported is demonstrated in

Table 4.1. For instance, it highlights the importance of considering complex envelope dependent

terms, the convenience of using two hidden layers instead of only one, the suitability of em-

ploying nonlinear antisymmetric activation functions or the performance of the LM algorithm

when compared with other options. Fig. 4.7 also demonstrates the suitability of the best fitting

configurations for 20 MHz and 80 MHz bandwidth signals.

When the DPD oversampled versions of the original 20 MHz and 80 MHz bandwidth signals

are compared (with 153.6 MHz and 368.64 MHz DPD baseband sample rates after oversampling

by 5 and 3, respectively), it can be seen that the DPD complexity (i.e., number of NN weights

and biases) can increase significantly for the latter configuration when similar nonlinear modeling

performance is targeted. On top of the added measurement noise due to increasing the signal

bandwidth, the PA can also show stronger (long term) memory effects, some effects may be better

defined or identified with the higher measurement acquisition rates, and the DPD receiver is also

more susceptible to capture spurious signals falling within the DPD measurement bandwidth.

white

white

white

white

white

white

white
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white

4.2 Dataset Reduction Techniques for SISO Neural Network
Digital Predistorters

4.2.1 Introduction to ANN Input Dataset Reduction

Section 4.1 has shown how the artificial neural networks (ANN) are gaining momentum in the

digital predistorters (DPD) thanks to their inherently good approximation capabilities. Under

strong or complex power amplifier nonlinearities, however, both the size of the input dataset

and the complexity of the ANN topology can increase and lead to long training periods which

are unaffordable in fast-changing waveform scenarios like those proposed for 5G or 6G. In this

section, combining training data length reduction mechanisms together with feature selection

and feature extraction techniques is proposed to significantly reduce the ANN dataset size, the

number of coefficients at the first hidden layer, and to significantly shorten the ANN DPD

coefficients update time.

By considering the ANN presented in Section 4.1.2 and Fig. 4.6, we can now de-

fine the LxN input dataset matrix U =
(
ϕ[0], · · · ,ϕ[n], · · · ,ϕ[L − 1]

)T
, where ϕT [n] =(

φu
1 [n], · · · , φu

j [n], · · · , φu
(2+V )(M+1)[n]

)
can be seen as a vector containing all the specific dataset

features (or basis functions) φu
j [n] linked to the ANN input signal u in Figure 4.5-right after

applying also the data functions and LTI system in Figure 4.6. The techniques that are pre-

sented aim at reducing the two U matrix dimensions. By reducing the number of basis or dataset

features N , both the number of coefficients at the first hidden layer and the training time are

reduced. The latter will be much further impacted when applying dataset length reduction

techniques in advance as shown in Section 4.2.4.

4.2.2 Dataset Basis Reduction with Feature Selection Technique

The Orthogonal matching pursuit (OMP) technique has been presented in Section 3.1.3 as an

a priori offline study to determine the best basis functions to linearize the PA. This process is

applied once and the basis selection will be kept for a given scenario (i.e. fixed PA output power,

waveform and bandwidth). Now we could consider applying OMP to the ANN input dataset

U , which has N features after considering the IQ signals and data function augmentations and

applying the LTI system to account for memory effects. But instead of accounting for the PA

output signal y, in the algorithm we could now use the expected ANN output signal x′. Seeking

to maximize the selection modeling performance (or to maximize the reduction factor for a given

modeling performance goal) another feature selection algorithm has been considered.
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In [Bec18b], the authors proposed the doubly OMP (DOMP) scheme that adds a Gram-

Schmidt orthogonalization step into the basis selection procedure which contributes to better

NMSE performance. The procedure detailed in Algorithm 6 highlights the differences with re-

spect to the OMP algorithm detailed in Section 3.1.3, and shows how to apply DOMP to reduce

the ANN input dataset features or variables by a factor of RFd. Unlike OMP, DOMP adds

deflation to the chosen columns so when a basis function is chosen, those still to be selected

are orthogonal with respect to the chosen ones. Gram-Schmidt is performed by first obtaining a

projection vector ρ of the selected regressor into each one of previously orthogonalized regressors

in Z. This projection is then used to decorrelate the basis functions with the selected regressor

as per step 14 in Algorithm 6, where ⊗ is the Kronecker product operator. The selection step

used in DOMP is different from that used in OMP, since it accounts for the minimum residual

error after orthogonalization.

Algorithm 6 Doubly Orthogonal Matching Pursuit

1: procedure DOMP (x′,U ,RFd)
2: initialization:

3: e(0) = x′ − x̂′(0); with x̂′(0) = 0
4: Υ(0) ← {}
5: Z(0) ← UL×N

6: for m = 1 to N/RFd do

7: Z
(m−1)
{i} ←−

i/∈Υ(m−1)

Z
(m−1)
{i}

∥Z(m−1)
{i} ∥2

8: i(m) ← argmin
i/∈Υ(m−1)

min
wi

∥e(m−1) −Z(m−1)
{i} wi∥22 ≈ argmax

i/∈Υ(m−1)

|Z(m−1)
{i}

H
e(m−1)|

9: Υ(m) ← Υ(m−1) ∪ i(m)

10: w ←
(
UH

{Υ(m)}U{Υ(m)}
)−1
UH

Υ(m)}x
′

11: x̂′(m)
← U{Υ(m)}w

12: e(m) ← x′ − x̂′(m)

13: ρ(m) ← Z
(m−1)

{i(m)}
H
Z(m−1)

14: Z(m) ← Z(m−1) − ρ(m) ⊗Z(m−1)

{i(m)}
15: end for
16: return Υ
17: return U{Υ}
18: end procedure

4.2.3 Dataset Length Reduction with Batch Selection Methods

Several sample selection methods (SSM) that reduce the computational complexity of DPDs have

been introduced in Section 3.1.2. A new data batch selection (BS) method is now presented.

The BS method takes the relevant waveform data batches in u depending on the characteristics

of the PA output y. Two variants of the BS method are considered: consecutive BS (CBS) and
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sparse BS (SBS). The procedure has the following steps:

1. u and y are divided into a number of data batches Nb which is an integer multiple number

of the waveform length reduction factor RFl to be applied. The number of batches to be

selected is Ns = Nb/RFl.

2. With CBS, a sliding window of consecutive samples with length Ls = L/RFl is shifted over

u and y, with Lb = L/Nb shifting step, to calculate both the NMSE, the ACEPR and the

u signal mean power score metrics. When using SBS, a single batch sliding window moves

with Lb shifting step and all the metrics are calculated individually for every consecutive

batch (Nb in total). The BS algorithm is in charge of sorting the expanded batch indices

(CBS) or the single batch indices (SBS) in order of importance according to featuring

simultaneously the worst NMSE and ACEPR values, and the highest mean power to avoid

the impact of the noise in the nonlinear modelling. The maximum score in a given metric

will be equivalent to the overall number of either expanded (CBS) or single (SBS) score

calculations.

3. With CBS there will be just a single batch selection according to the highest batch score

metric while in SBS the indices are sorted descending according to their batch score and

the selection is done with the highest scoring ones. After selection the batch indices are

sorted ascending to facilitate having more consecutive batches (which favors better char-

acterization of memory effects).

4. The last step is to conform the index vector β that will include the indices of all the samples

contained at every batch selected. For illustration purposes the application of CBS and

SBS to single channel DPD input-output data is exemplified in Fig. 4.8. The reduced NN

input waveform will be thus populated with either a consecutive portion of u in CBS or a

sparse number of portions in SBS, as shown in Fig. 4.9.

CBS SBS
Batch calc-> 1 2 3

NMSE score 3 2 1

ACEPR score 1 3 2

PWRu score 2 3 1

Batch score 6 8 4

Batch calc-> 1 2 3 4

NMSE score 3 2 1 4

ACEPR score 1 4 2 3

PWRu score 1 3 2 4

Batch score 5 9 5 11

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑅𝐹𝑙 = 2, 𝑁𝑏 = 4, 𝑁𝑠 = 4,

𝐿= 40 → 𝐿𝑠 =20, 𝐿𝑏 = 10

max_score → index=[2]

𝜷=((index-1)* 𝐿𝑏 + 1: (index−1)∗𝐿𝑏 + 𝐿𝑠)=

=(11:30)

[4,2,1,3] -> [4,2] → indices=[2,4]

𝜷𝒌=((indices(𝑘)-1)* 𝐿𝑏 + 1: indices(𝑘)∗𝐿𝑏) 

for 𝑘=1,2 → 𝜷=[𝜷𝟏 𝜷𝟐]=[(11:20) (31:40)]

Figure 4.8: CBS and SBS batch selection procedure [LB21].
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Figure 4.9: MeS, CBS and SBS input dataset length reduction methods (i.e. for RFl = 20).

In the next section, the BS methods are compared to the evolved version of the histogram-

based mesh selecting (MeS) method with multidimensional IQ mapping (i.e., to better account

for wideband PA memory effects) presented in [Wan21a].

4.2.4 Experimental Results

The dataset reduction techniques have been benchmarked and validated with the MATLAB

controlled hardware test bench shown in Fig. 4.10. A GaN HEMT class J PA which is operated

at 875 MHz RF frequency and 28 dBm mean output power with 80 MHz bandwidth signals

featuring 13-14 dB PAPR. The DPD neural network has been implemented in MATLAB. The

dataset has 105 inputs/basis each with 737280 samples. These 105 inputs belong to the I and Q

components and the augmented products until the sixth power, considering up to 12 consecutive

delays, and a single long-term memory effects modeling component averaging the IQ input signal

power over a finite window. The hidden layers have 20 neurons each and use hyperbolic tangent

sigmoid activation functions.

The OMP and the length reduction techniques are evaluated independently in 4.11 and 4.12.

The combined use is validated in Table 4.2. Both in 4.11 and Table 4.2 the reduction factors being

considered are displayed after the dataset reduction technique acronyms. Fig. 4.11 shows how

the complex ANN DPD performs better than the generalized memory polynomial (GMP) DPD

when using the DPD coefficients that provide the maximum (MAX) performance. The ANN

DOMP is better than the ANN OMP in 1-1.5 dB of NMSE but features similar ACPR, when
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Figure 4.10: Remotely accessible digital linearization test setup.

using a reduction factor of 8. Using ANN DOMP with this reduction factor also outperforms

the GMP DPD.

Figure 4.11: NMSE and ACPR vs DPD iteration under dataset basis reduction.

In 4.12, for lower reduction factors CBS is a good choice while in large reduction factors SBS is

the best choice. The plot shows that even considering a reduction factor of 320 the NN still fulfills

reasonable NMSE and ACPR. Finally, Table 4.2 shows how combining the two types of dataset

reduction techniques can be beneficial. Combining basis reduction and length reduction in the

NN implies an equivalent reduction both in terms of coefficients and training time (measured

with MATLAB’s tictoc and involving 8 DPD iterations), and better performance than only using

the best BS dataset length reduction method (i.e. see SBS160 vs CBS40+DOMP4 in Table 4.2).

These results indicate that by using the input dataset reduction techniques the NN training
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Figure 4.12: NMSE and ACPR vs dataset length reduction factor and method.

Table 4.2: Complexity, Timing and Performance Benchmark

Method
Performance Benchmark

DPD coeffs.
8-Iteration DPD
Update Time (s)

NMSE
(dB)

ACPR
(dBc)

NN MAX 2582 8e4 -42.6 -52.5

NN DOMP4 1002 25e3 -41.4 -51.4

NN CBS40 2582 660 -40.5 -49.6

NN SBS160 2582 230 -38.1 -47.5

NN CBS40+DOMP4 1002 104 -39.2 -48.2

GMP MAX 322 320 -40.7 -50.6

time can be dramatically reduced and potentially be in the order of magnitude of the classical

polynomial DPD adaptation time.



Chapter 5

Machine Learning Techniques for
MIMO Digital Predistorters

5.1 Introduction: Overview and Challenges of ML application
to MIMO DPD

In 5G and beyond radios, the increased bandwidth, the fast-changing waveform scenarios, and

the operation of large array multiple-input multiple-output (MIMO) transmitter architectures

have challenged both the polynomial and the artificial neural network (ANN) MIMO adaptive

digital predistortion (DPD) schemes. This section proposes training data selection methods and

dimensionality reduction techniques that can be combined to enable relevant reductions of the

DPD training time and the implementation complexity for MIMO transmitter architectures.

The advent of 5G has brought deploying flexible waveform, numerology and frame design

strategies together with increased bandwidth signals that operate in large-array transmitter

architectures with RF impairments that cannot be handled properly by classical digital predis-

tortion (DPD) linearizers [Fag19]. While in previous generation systems the DPD adaptation

time was not a very limiting parameter, nowadays 5G multi-antenna transmitters may deliver

fast-changing waveform configurations, either in terms of modulation, bandwidth occupation or

power statistics, that require faster DPD coefficient adaptation. Such transmitters need also to

handle complex linearization scenarios involving multiple PA input and output cross coupling

effects and beam dependent PA loading effects (i.e., in high power circulator-less time division

duplexing RF front ends), which aggravate the overall PA distortion [Hau17]. Fig. 5.1 shows the

block diagram of one MIMO transmitter architecture for sub-7 GHz and depicts some undesired

effects that may appear like cross couplings, I/Q gain and phase imbalances, DC offsets, in-band

LO couplings and PA nonlinear distortion [Hän20b,Hän20a].

Several MIMO DPD behavioral models accounting for cross couplings have been presented

over the last decade [Bas09, Saf11, Abd16], some of them capable to mitigate I/Q modulator

131
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imbalances and dc offsets added to the crosstalk effects [Ant10,Ami14,Kha17]. The main concern

of all the previous multivariate polynomial-based models is that a multi-input DPD is required

in every transmit path and cannot be properly implemented for large-array MIMO transmitters.

To overcome the requirement of including a multi-input DPD in every transmit path, a DPD

system combining a single linear crosstalk and mismatch model block for the whole array and

dual-input DPD models at each Tx path is proposed in [Hau18]. In addition, artificial neural

networks (ANN) have been proposed in literature over the last years as an alternative to such

higher complexity polynomial models for MIMO DPD [Zay10, Jar18a,Wan19]. Such schemes

benefit from having only one ANN MIMO DPD block with as many inputs and outputs as

transmitter baseband channels and PAs, which reduces the overall count of DPD coefficients

for large arrays. The single DPD block approach is also adopted in [Yu19, Bri20b, Bri20c] for

addressing the linearization of hybrid beamforming transmitter architectures at mm-waves.

The adaptive multi-antenna DPDs can become key building blocks in nowadays radio

modems building massive digital MIMO or hybrid beamforming transmitter architectures, but

only if designed to be computationally and power efficient. The increased signal bandwidth of

5G and B5G technologies (i.e., a few hundred MHz) together with the growth in computational

complexity when accounting for multidimensional digital linearization, and the higher-speed

DPD processing requirements of the new agile radio systems, challenges more than ever the

implementation of multi-antenna DPDs in the digital front-end silicon devices. The combination

of training data selection methods and behavioral modeling dimensionality reduction techniques
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is a design strategy that may allow fast-adaptive well-conditioned MIMO DPD systems with

optimized DPD processing complexity.

As seen in Section 3.1.2 the training data reduction methods reduce the memory require-

ments, the number of operations and the overall DPD adaptation time, by selecting convenient

statistically representative training data samples. Several sample selection methods (SSM) have

been reported in literature to reduce the computational complexity of polynomial- or piecewise-

based DPD and to uncorrelate the observation errors in adjacent samples to get better per-

formance [Wan17b, Zhu16, Kra20,Wan21a]. For ANN DPD, consecutive and sparse waveform

batch selection mechanisms were proposed in [LB21] to reduce the training dataset length. It

is worth noting that taking samples or batches of the waveform for DPD training cannot be

done randomly when the waveform power statistics are unevenly distributed. These works tar-

get single-antenna transmitters but none is addressing the MIMO DPD training data selection

considering the potential channel interplay. In MIMO DPD, only the dimensionality reduction

(i.e., through basis selection) has been addressed.

Among the different dimensionality reduction techniques used for polynomial- or piecewise-

based DPD, Chapter 3.1 has introduced some of the most commonly used feature selection

techniques [Bar21] which are typically employed to reduce the number of DPD basis functions

(and thus coefficients) in the real-time forward path. Instead, the feature extraction techniques

are typically used in the observation path to ensure well-conditioned estimation and reduce the

number of parameters required for DPD identification or adaptation [Pha19b]. In ANN-based,

feature selection techniques have been used to reduce the input dataset and ANN complexity

[Bar02], to tune the center of radial basis function neural networks [Che91] and to incrementally

set the optimal number of hidden layer neurons [Hua12], but there are no works applying feature

selection to reducing ANN DPD datasets.

Most of DPD complexity reduction works in literature apply to single channel transmit

architectures and only a few combine training data selection and basis reduction techniques

[LB21, Yan21]. Regarding multi-antenna DPD, the authors in [Zen14] use sparse estimation

techniques to reduce the basis of MIMO Volterra-based polynomial models for moderate input-

output crosstalk conditions. In [Bri20a], a piecewise closed-loop DPD including a pruning al-

gorithm for faster adaptation is introduced, while in [Wan21c] singular vector decomposition

(SVD) is applied for dimensionality reduction of multiuser MIMO arrays.

The combination of training data selection methods and dimensionality reduction techniques

has not been holistically addressed in the literature for multi-antenna transmitter architectures

with PA input and output cross couplings provoking strong nonlinear effects. Typically, such

techniques have been evaluated in single-antenna systems or multi-antenna systems with neg-

ligible cross couplings that allow treating each PA independently. In this contribution, several

training data selection methods and dimensionality reduction techniques are combined for use
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in different polynomial and neural network direct learning MIMO DPD architectures to combat

strong nonlinear effects and cross couplings. In previous works, the performance of the poly-

nomial MIMO-DPD based on multiple input single output (MISO) polynomial DPD blocks is

typically compared with that of the MIMO-DPD ANN based on a single MIMO ANN to pre-

distort all the transmitter channels at once. The use of multiple MISO ANN blocks (imitating

the MISO-DPD polynomial scheme with ANNs), whose use can be beneficial for a low number

of antennas as demonstrated in this chapter, is also considered.

As proved in Section 5.6, the histogram-based sample or equation selection methods [Kra20,

Wan21a] fail to deliver the expected performance in MIMO transmitter architectures when the

channel of interest is contaminated by adjacent channels due to PA input and output cross talk.

In this work, the waveform batch selection methods in [LB21], whose selection is based in batch

performance metrics, is evaluated. More importantly, the more efficient uncorrelated equation

selection (UES) method is proposed. Its novel application to data selection for least squares (LS)

fitting, in this case applied to DPD, outperforms the previous techniques, supports operation

under channel or antenna cross couplings, and runs faster.

Regarding the art in dimensionality reduction techniques, leveraging on the novel application

of the orthogonal least squares (OLS) and PCA to MIMO DPD is proposed. The original OLS

technique by Chen and Billings [Che89] is deployed for DPD basis selection. This technique has

inspired similar approaches validated for single-antenna DPDs. The application procedure for use

of the original OLS technique to reduce the polynomial model basis functions and ANN dataset

features in MIMO DPD is detailed. OLS is able to outperform OMP in DPD basis selection

and perform as well as other OMP later variants like the DOMP [Bec18b]. In polynomial-based

DPD, PCA is commonly used in the identification subsystem to reduce the number of basis and

avoid an ill-conditioned estimation while reducing the complexity of the LS calculation [Gil20b].

The PCA technique is proposed to reduce the number of features in large ANN MIMO DPD

datasets. PCA is able to extract the hidden structure in high-dimensionality datasets, produce

linear combinations of dataset features that help the ANN to reach the desired results for a

given structure, and reduce the complexity both in training and inference thanks to reducing

the number of weights needed in the ANN first hidden layer. As demonstrated in Section 5.6,

PCA and OLS can be used to trade-off between ANN performance and reduced complexity (and

faster adaptivity), respectively.

This chapter formulates and gives full visibility on how the methods for faster MIMO DPD

adaptivity are applied to each of the three direct learning architectures considered, which is a

contribution frequently obviated in the literature but necessary to allow reproducibility. The

DPD adaptivity or some training aspects in ANN-based digital predistorters are commonly

not addressed in the literature, and their limitations in comparison to polynomial DPDs are

sometimes omitted. The techniques are combined and experimentally validated in a 2×2 MIMO
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Figure 5.2: MIMO DPD direct learning architecture with independent polynomial MISO DPD
blocks.

laboratory test bench for the three MIMO DPD schemes under the presence of strong cross

couplings and nonlinear effects.

5.2 Direct Learning Multi-Antenna DPD Schemes

5.2.1 Polynomial-Based MIMO DPD Scheme

The block diagram of the polynomial MIMO DPD closed-loop adaptive architecture is shown in

Fig. 5.2. The direct learning approach is again chosen since it is more robust against noisy PA

output observations and can better avoid the offset of the coefficient vector from optimal values,

when compared to the indirect learning approach which models the inverse PA response [Bra15].

In the forward path of this direct learning MIMO DPD scheme, we have one multiple input single

output (MISO) DPD block per PA or antenna, whose input-output relationship can be described

as

xi[n] = ui[n]− di[n] (5.1)

where xi[n] is the predistorted signal at the output of the ith MISO DPD block, with i = 1, · · · , P ,
P is the number of PAs or antennas (or MIMO baseband signals in a digital MIMO transmitter),
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ui[n] is the i
th MIMO baseband signal (it is noted that the MIMO input signals are uncorrelated),

and di[n] is the PA distortion signal to be modeled. The polynomial model will not only account

for the ith MIMO baseband signal but all the rest to deal with any PA input and output cross

coupling and nonlinear effect. The expansion of the generalized memory polynomial (GMP)

model for MIMO scenarios with nonlinear crosstalk (GMPNLC) in [Ami14] is used in this

section to model the PA distortion. For the sake of simplicity, d1[n] is defined for a 2× 2 MIMO

scenario as

d1[n] =

O1∑
o=1

O1−o+1∑
h=1

M11∑
m1=1

M21∑
m2=1

α1o,h,m1,m2 u1[n−m1]∣∣u1[n−m1 −m2]
∣∣2(o−1)∣∣u2[n−m1 −m2]

∣∣2(h−1)
(5.2)

+

O1∑
o=1

O1−o+1∑
h=1

M11∑
m1=1

M21∑
m2=1

α2o,h,m1,m2 u2[n−m1]∣∣u2[n−m1 −m2]
∣∣2(o−1)∣∣u1[n−m1 −m2]

∣∣2(h−1)
,

where O1 is a polynomial order, M11 and M21 are memory depths. The distortion signal for

the second PA, d2[n], could consider different polynomial orders and memory depths O2, M12,

M22 if deemed necessary but it is equivalently defined (i.e., by swapping indices between the

ui[n] input signals).

It is possible to rewrite (5.1) in matrix notation as

xi = ui −Uiwi, (5.3)

where xi =
(
xi[0], · · · , xi[n], · · · , xi[L − 1]

)T
and ui =

(
ui[0], · · · , ui[n], · · · , ui[L − 1]

)T
, with

n = 0, · · · , L − 1, are the MISO DPD block output predistorted signal and the ith MIMO

channel baseband signal input, respectively, and Ui =
(
ϕi[0], · · · ,ϕi[n], · · · ,ϕi[L − 1]

)T
is

the L × Ni behavioral modeling data matrix, with L being the number of samples and Ni

being the number of basis functions or the order of the ith MISO DPD model, and where

ϕi
T [n] =

(
φi1[n], · · · , φij [n], · · · , φiNi [n]

)
is the vector containing the specific basis functions

φij [n] with j = 1, · · · , Ni that will be applied to the input data to constitute Ui. The vector

of DPD coefficients with dimensions Ni × 1 is wi = (wi1, · · · , wij , · · · , wiNi)
T . The mapping

between the GMPNLC coefficients in (5.2) and the general DPD coefficients wij is direct for all

the MIMO transmit channels. The total number of coefficients in the polynomial MIMO DPD

will be Nt =
∑P

i=1Ni.

In the MISO DPD update paths, the coefficients can be extracted iteratively finding the LS

solution. At the kth iteration the coefficients are obtained as

wi
k+1 = wi

k + µ
(
Ui

HUi

)−1
Ui

Hei (5.4)
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where µ (0 ≤ µ ≤ 1) is a weighting factor and ei =
(
ei[0], · · · , ei[n], · · · , ei[L− 1]

)T
is the L× 1

DPD error vector defined as

ei =
yi
Gi
− ui (5.5)

where Gi is the desired linear gain of the ith PA, yi is the signal at its output, and ui is the i
th

MIMO baseband signal. Considering the 2×2 GMPNLC model in (5.2), and assuming the same

structure at each MISO DPD block (O1 = O2 = O,M11 =M12 =M1,M21 =M22 =M2), the

order of the behavioral model after removing redundant products will be N = P (P + 1)(M1 +

1)(M2+1) and the overall number of the 2× 2 MIMO DPD coefficients considering w1 and w2

will be 2N .

Despite the number of necessary basis functions to model the distortion at every PA and

account for cross couplings and other inter-branch nonlinear effects could be different (i.e., due to

PA operation tolerances and non-symmetrical cross-effects between channels), the MIMO DPD

models typically consider an initial common selection of sufficiently relevant basis functions

at each MISO DPD block and therefore such blocks feature the same number of coefficients.

The dimensionality reduction techniques presented in this work can contribute to reduce the

final number of basis and preserve the relevant ones at every individual predistorter. Another

aspect to be considered is that typically the MISO DPD models are defined having into account

the input of every transmit channel. While this approach can be applied to small arrays, it is

extremely inefficient for massive arrays given the fact that there will be elements that will be

physically isolated and with no cross-effect interaction. Depending on the MIMO digital and

analog front-end hardware, the number of different MIMO baseband signals to be routed into

each MISO DPD block can be evaluated and optimized in factory for a given multi-antenna

transceiver architecture layout.

5.2.2 Artificial Neural Network MIMO DPD Schemes

As shown in Fig. 5.3, the ANN-based MIMO DPD can either be built with P independent MISO

DPD blocks, each with P inputs and a single output and producing a coefficient vector ci (as in

the polynomial approach), or with a more resource-efficient single MIMO DPD processing block

with P inputs and P outputs and a unique coefficients vector c.

In the MIMO DPD built with independent ANN MISO DPD blocks, every block is fed with

all the baseband channel inputs ui (in practice, only those with cross-effect interaction should

be accounted) and every set of coefficients ci is calculated to produce the ANN expected output

(target signal) x′
i = ui − ei that precompensates for the distortion added by the corresponding

PA and accounts for linear and nonlinear cross couplings from other MIMO channels. Therefore,

following the notation in Fig. 5.3-top, the P sets of ci coefficients are calculated independently

to minimize every error increment ∆ei = ei − êi, where ei is the residual linearization error
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Figure 5.3: MIMO DPD direct learning architecture with independent ANN MISO DPD blocks
(top) and with a single ANN MIMO DPD block (bottom).

vector at the ith PA output as defined in (5.5) and êi = x
′
i− x̂′

i is the ANN estimated residual

linearization error vector between the target signal and the estimated signal x̂′
i.
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The MIMO DPD built with the single ANN MIMO DPD block in Fig. 5.3-bottom jointly

generates all the precompensation signals minimizing the error between every (ei, êi) pair, and

thus c is now calculated to minimize the sum of all the error increments ∆ei. The topology

shown in Fig. 5.4 is proposed for this architecture. It is an augmented version of the feedforward

fully connected MIMO-RVTDNN in [Jar18a]. This ANN has real-valued input IQ pairs defined

as the real and imaginary part of the input ui[n], where Iin,i[n] = Re{ui[n]} and Qin,i[n] =

Im{ui[n]}, with i = 1, · · · , P (one input IQ pair per antenna), and real-valued output IQ pairs

with Î ′out,i[n] = Re{x̂′i[n]} and Q̂′
out,i[n] = Im{x̂′[n]}, where x̂′[n] is the ANN estimation of the

targeted output x′[n] with I ′goal,i[n] = Re{x′i[n]} and Q′
goal,i[n] = Im{x′i[n]} components. Every

input IQ pair is augmented by several data functions (DF in Fig. 5.4) that enrich the ANN

basis functions to improve nonlinear modeling. One of the augmentations that favor nonlinear

modeling is using DFs that generate envelope dependent terms (i.e.,
∣∣Iin,i+ jQin,i

∣∣k with k ∈ N)
[Wan19]. Other DFs to be potentially considered provide powers of the IQ data (i.e.,

∣∣Iin,i∣∣k
and

∣∣Qin,i

∣∣k) or angle dependent terms (i.e.,
(
arctan(Qin,i/Iin,i)

)k
). It is well noted that such

augmented products help the ANN to elevate the reachable modeling nonlinear order without

having to increase the number of hidden layers using nonlinear activation functions. For proper

dynamic nonlinear system identification, tapped-delay lines are added and applied to the input

IQ pairs and to the DF outputs (M is the memory depth), delivering the N ANN inputs shown

in Fig. 5.4. Long-term memory effect modeling components (i.e., s[n] = 1
K

∑K−1
k=0 |Iini[n − k] +

jQini[n− k]|2) can also be introduced by the data functions but these inputs do not need to be

replicated and delayed by the tapped-delay system.

All the previous ANN inputs constitute the input dataset features. Considering the input

IQ data length L, the input dataset will have L × N size. The size of the dataset will be

impacted by the complexity of the dynamic nonlinear effects to be modeled. As observed in Fig.

5.4, the input dataset U = (D1, · · · ,Di, · · · ,DP ) is built with the contributions from every

input IQ pair or MIMO baseband channel routed into the MIMO DPD ANN. Considering P

antennas, V data functions and M sample memory depth, after augmentation and delaying,

every MIMO channel contributes with (2 + V )(M + 1) dataset variables, totaling N = P (2 +

V )(M + 1) ANN inputs. We can now define Di =
(
ϕi[0], · · · ,ϕi[n], · · · ,ϕi[L − 1]

)T
, where

ϕi
T [n] =

(
φui
1 [n], · · · , φui

j [n], · · · , φui

(2+V )(M+1)[n]
)
can be seen as a vector containing all the

specific dataset features (or basis functions) φui
j [n] linked to a given MIMO input signal ui, for

i = 1, · · · , P and j = 1, · · · , (2 + V )(M + 1).

The proposed MIMO DPD ANN is therefore created with one input layer with N inputs, a

first and a second hidden layer with F and S neurons, respectively, and an output layer with R

neurons and outputs, with R = 2P . In the first and second hidden layer we have the ϑ1(·) and
ϑ2(·) activation functions which are typically nonlinear functions such as the hyperbolic tangent

sigmoid (well suited for nonlinear modeling), while a pure linear activation function is used at
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Figure 5.4: Two-hidden layer data function augmented fully connected RVTDNN for MIMO
DPD application.
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the output layer. The total number of ANN DPD coefficients in c is divided into FN+SF +RS

weights and F + S +R biases.

In the approach with independent ANN MISO DPD blocks, the sum of all the ci sets totals

P (FN+SF+2S) coefficients. While the complexity in terms of coefficients will be higher and the

training of all the independent ANNs can take longer without hardware (HW) parallelization,

the calculation of coefficients at each MISO DPD block will run faster and the performance

will be also better due to dividing the problem into smaller ones (i.e., the coefficients at every

independent ANN are tuned to minimize a single channel increment error vector and not the

sum of potentially unbalanced different channel increment error vectors). In the notation used

in Fig. 5.4, wk
i,j is the jth weight belonging to the ith neuron in the kth layer. Similarly, θki is

the bias belonging to the ith neuron in the kth layer. The MIMO DPD ANN output IQ pairs

Î ′out,i[n] and Q̂
′
out,i[n] are calculated during training in the forward pass as

Î ′out,i[n] =

S∑
k=1

w3
2i−1,k ϑ

2

(
F∑

j=1

w2
k,jϑ

1
( N∑

l=1

w1
j,l φl[n] + θ1j

)
+ θ2k

)
+ θ32i−1 (5.6)

Q̂′
out,i[n] =

S∑
k=1

w3
2i,k ϑ

2

(
F∑

j=1

w2
k,jϑ

1
( N∑

l=1

w1
j,l φl[n] + θ1j

)
+ θ2k

)
+ θ32i. (5.7)

The MIMO DPD ANN output IQ pairs Î ′out,i[n] and Q̂
′
out,i[n] are calculated during training

in the forward pass. The MIMO-RVTDNN coefficients c (ANN weights and biases) are then

calculated with a backpropagation algorithm. Taking as reference the Levenberg-Marquardt

(LM) [Hag94] algorithm and the fully integrated MIMO DPD ANN, the coefficients are calcu-

lated by minimizing the mean square error (MSE) cost function J in (5.8) for each training data

batch of length Lb samples.

J =
1

2Lb

P∑
i=1

Lb∑
n=1

(
I ′goal,i[n]− Î ′out,i[n]

)2
+
(
Q′

goal,i[n]− Q̂′
out,i[n]

)2
=

1

2Lb

P∑
i=1

Lb∑
n=1

(
eIi[n]− êIi[n]

)2
+
(
eQi[n]− êQi[n]

)2
(5.8)

=
1

2Lb

P∑
i=1

Lb∑
n=1

∣∣∆ei[n]∣∣2 = 1

2Lb

Lb∑
n=1

∣∣∆e[n]∣∣2
It is also noted that, as shown in Fig. 5.3-bottom,∆ei = ei−êi, where ei is the residual lineariza-
tion error vector at the ith PA output as defined in (5.5) and êi = x

′
i− x̂′

i is the ANN estimated

residual linearization error. When going backward, the cost function J is minimized with respect

to the vector of coefficients c =
(
w1
1,1, · · · , w1

F,N , θ
1
1, · · · , θ1F , · · · , w3

1,1, · · · , w3
R,S , θ

3
1, · · · , θ3R

)
that
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contains all the weights and biases of the MIMO RVTDNN. In contrast to the approach fol-

lowed to calculate the coefficients in (5.4), to solve now a nonlinear least squares problem the

LM algorithm updates c at every epoch k as

ck+1 = ck −
[
JTJ + βI

]−1
JT∆e (5.9)

where I is the identity matrix, β is a damping factor, and J is the Jacobian matrix calculated

over the increment error vector ∆e with respect to c as

J =



∂∆e[1]
∂w1

11

∂∆e[1]
∂w1

12
· · · ∂∆e[1]

∂θ3R−1

∂∆e[1]
∂θ3R

∂∆e[2]
∂w1

11

∂∆e[2]
∂w1

12
· · · ∂∆e[2]

∂θ3R−1

∂∆e[2]
∂θ3R

...
...

...
...

...
∂∆e[Lb]
∂w1

11

∂∆e[Lb]
∂w1

12
· · · ∂∆e[Lb]

∂θ3R−1

∂∆e[Lb]
∂θ3R

 (5.10)

The forward-backward procedure is iterated until the required linearization performance is

achieved or the ANN fails in generalization. This procedure is equivalently applied P times

for the MISO ANN DPD. The U input dataset will be shared between all these independent

ANNs but now the single target goals x′
i will be different according to the baseband channel of

interest and the effects to be counteracted at each of the corresponding transmit chains. The

cost function will not minimize the sum of error increments but the error increment ∆ei for a

given channel instead (see Fig. 5.3-top).

5.3 Training Data Length Reduction

5.3.1 Batch and Equation Selection Methods

In Section 4.2 two batch selection methods named consecutive batch selection (CBS) and sparse

batch selection (SBS) were presented. These methods were used to reduce the length of the

ANN input dataset for nonlinear DPD modeling. These methods were compared with the SSM-

inspired multidimensional IQ memory mesh selecting (MeS) method found in [Wan21a] that

can be applied to the equations (or rows) of either polynomial behavioral modeling matrices or

ANN input datasets. Compared to MeS, CBS and SBS could also achieve high reduction factors,

similar NMSE performance but better ACPR thanks to employing batch selection score metrics

linked to the out-of-band performance such as the ACEPR. One advantage of the batch selection

methods is the versatility to adapt to different scenarios and properly balance the in-band and

out-of-band distortion according to the requirements.

When these batch and equation selection techniques are applied to ANN MIMO DPD the

following modifications can be applied to guarantee suitable time coexistence of the selected

training data samples between every MIMO channel dataset contribution Di in U :
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• For CBS and SBS, when the scores are calculated for every (ui,yi) pair, these are then

summed, and a unique global batch index selection vector β is obtained for all the MIMO

channel input dataset contributions. Given a length reduction factor RFl, β will store

the relevant L/RFl training data indices that will be applied to the input-output data.

This strategy can also be applied to the polynomial MIMO DPD case allowing for higher

reduction factors. Under dominant strong cross couplings, only the mean power of the ui

signal batches is needed to select the right indices, which reduces the number of operations.

• With MeS the desired reduction factor RFl is expanded by 50% and more equation indices

than those initially required are selected. Once these indices are selected for all channels

independently, only those appearing at all channels are taken and stored in the vector Θ.

Finally, the number of coincident indices is reduced to provide the desired L/RFl equation

selection indices. This strategy is not required for the polynomial MIMO DPD.

These MIMO adaptations applied to the CBS, SBS and MeS techniques are also deployed

in Section 5.5. From now onward, it will be assumed that the same length reduction factor

is applied to any MISO polynomial or MISO ANN block (i.e., RFli = RFl, for i = 1, ..., P ).

As shown in the experimental results in Section 5.6, the traditional histogram-based methods

can be underperforming for MIMO DPD application since the baseband sample selection made

according to the histogram distribution of the baseband signal is no longer representative of

what happens at PA level due to having uncorrelated couplings at the MIMO transmitter both

before and after the PA. SBS and CBS, however, can be more suitable to select appropriate

waveform segments thanks to tuning the performance scoring method to reflect, for instance,

the batches where the waveforms are more impacted by the crosstalk effects.

5.3.2 Uncorrelated Equations Selection Method

A simple and computationally efficient equation selection method is proposed in this work for

application to both the Ui polynomial behavioral modeling matrices and the U ANN input

dataset. The procedure is detailed in Algorithm 7. It starts storing the first equation (i.e.,

matrix row) in U as the original master equation r, and index one is stored in the equation

selection index vector Θ. The scalar product between the master equation and the forthcoming

equations is then applied. When one of such products is below the correlation factor (CF )

threshold, the new master equation is stored together with its index. The process is repeated

until all the equations are evaluated, the equation selection index vector Θ is completed and it

is then applied to U to reduce the number of equation or rows. The CF value to be set depends

on the desired length reduction factor RFl, i.e., the higher RFl is, the smaller CF will be.

This method shows a good trade-off between implementation complexity and reduction per-

formance. Such a procedure not only reduces the number of correlated equations, and thus
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Algorithm 7 Uncorrelated equations selection (UES) method

1: procedure UES (U , CF )
2: initialization:
3: r ← U(1, :)
4: Θ(0) ← {1}
5: for m = 2 to L do
6: if |U(m, :) rH | < CF then
7: r ← U(m, :)
8: i(m) ← m
9: Θ(m) ← Θ(m−1)∪i(m)

10: end if
11: end for
12: return Θ
13: return U{Θ}
14: end procedure

Figure 5.5: Training data length reduction methods application.

provides better system conditioning but it is also able to identify samples that are impacted

by cross couplings. This is because the correlation between adjacent OFDM waveform samples

for a given MIMO channel would be higher without crosstalk effects, and thus by sequentially

selecting uncorrelated equations those highly impacted by crosstalk effects are stored. Fig. 5.5

shows an example on how the equation and batch selection methods look like when applied to
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one input baseband signal with RFl = 40. While MeS fills in most of the histogram bins with

the samples or equations appearing initially in the training data, UES takes them in a more

uniform fashion.

5.4 DPD Model Order Reduction

5.4.1 Orthogonal Least Squares

Several feature selection techniques have been proposed for DPD linearization to keep the

most representative basis functions (or regressors) and thus reduce the modeling dimensional-

ity [Bar21]. From the matching pursuit family, the orthogonal matching pursuit (OMP) [RT15]

and the doubly OMP (DOMP) [Bec18b] have proved to be suitable approaches to trade-off

linearity performance and model order reduction. In this work, the original orthogonal least

squares (OLS) technique shown in Algorithm 8 was considered because it outperforms OMP

and a challenging nonlinear scenario is being faced.

Algorithm 8 is defined generically. The cumulative modeling error e relies on a target signal

t. This target signal will be the PA output yi when using the polynomial MIMO DPD scheme

in Fig. 5.2 and x′
i when using ANN-based schemes like those in Fig. 5.3. As in OMP, in OLS it

is possible to define a support vector (Υ) containing the indices of the best basis functions of

a generic polynomial behavioral modeling matrix or ANN input dataset U . At every iteration

of the Algorithm 8 search, Υ will be fed with the indices corresponding to the basis functions

that better contribute to minimize the residual modeling error, which are sorted according to

their relevance. For a given dimensionality reduction factor RFd, the algorithm iterates N/RFd

times to fill Υ with the required number of indices. This support set will be finally applied to

the U matrix to obtain a reduced version having only the selected basis. Unlike OMP, OLS adds

deflation to the chosen columns so when a basis function is chosen, those still to be selected

are orthogonal with respect to the chosen ones. Gram-Schmidt is performed by first obtaining a

projection vector ρ of the selected regressor into each one of previously orthogonalized regressors

in Z (step 11). This projection is then used to decorrelate the basis functions with the selected

regressor as per step 12 in Algorithm 8, where ⊗ is the Kronecker product operator. The selection

step used in OLS is different from that used in OMP, since it accounts for the minimum residual

error after orthogonalization [Blu07]. When comparing the OLS and DOMP algorithms, in order

to update the residual error e(m) in OLS, it is not necessary to calculate the values of the w

coefficients as DOMP does (i.e., lines 10 to 12 in Algorithm 6 versus line 10 in Algorithm 8).

The specific usage of OLS both for the polynomial and the ANN-based MIMO DPD is

detailed as follows. For polynomial MIMO DPD schemes, OLS will be applied at every MISO

DPD block as UOLS
i = OLS(yi,Ui, RFd) with i = 1, · · · , P (being P the total number of
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Algorithm 8 Orthogonal Least Squares

1: procedure OLS (t,U , RFd)
2: initialization:
3: e(0) ← tL×1

4: Υ(0) ← {}
5: Z(0) ← UL×N

6: for m = 1 to N/RFd do

7: Z
(m−1)
{i} ←−

i/∈Υ(m−1)

Z
(m−1)
{i}

∥Z(m−1)
{i} ∥2

8: i(m) ← argmin
i/∈Υ(m−1)

min
wi

∥e(m−1) −Z(m−1)
{i} wi∥22 ≈ argmax

i/∈Υ(m−1)

|Z(m−1)
{i}

H
e(m−1)|

9: Υ(m) ← Υ(m−1) ∪ i(m)

10: e(m) ← e(m−1) − (Z
(m−1)

{i(m)}
H
e(m−1))Z

(m−1)

{i(m)}

11: ρ(m) ← Z
(m−1)

{i(m)}
H
Z(m−1)

12: Z(m) ← Z(m−1) − ρ(m) ⊗Z(m−1)

{i(m)}
13: end for
14: return Υ
15: return U{Υ}
16: end procedure

PAs, antennas or MIMO channels). For the ANN approach built with independent MISO DPD

blocks, OLS is applied at every MISO DPD block as UOLS
i = OLS(x′

i,U , RFd), where U =

(D1, · · · ,Di, · · · ,DP ) is the common MISO ANN’s input dataset (i.e., for a small number of

antennas all the MIMO baseband channels are routed into any MISO DPD ANN and therefore

there is a single U dataset shared between all the MISO DPD ANNs before applying reduction.

It is noted that every MISO DPD ANN would have different input datasets otherwise, depending

on the physical coupling between channels at every PA or antenna. Note also that, for the sake

of simplicity, it has been assumed that the same dimensionality reduction factor is applied to

any polynomial or ANN MISO DPD block, i.e., RFdi = RFd for i = 1, ..., P . In the single-

ANN MIMO DPD scheme, OLS is applied independently to every MIMO baseband channel

input dataset contribution as UOLS =
(
OLS(x′

1,D1, RFd), · · · , OLS(x′
P ,DP , RFd)

)
, since we

have a single dataset U but we need to handle simultaneously the P different target signals

x′
i. Finally, it is also important to remark that OLS can also be used for basis function or

feature preselection to speed-up the UES method, as shown in Section 5.5, thanks to reducing

the number of elements per equation and so the number of operations.

5.4.2 Principal Components Analysis

As shown in Section 3.1.4, this feature extraction technique is suitable for converting an orig-

inal set of eventually correlated basis functions into a new uncorrelated orthogonal basis set
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called principal components. For DPD purposes, PCA is typically used to reduce the number

of parameters to be estimated in the feedback path and avoid ill-conditioning or over-fitting

problems [Gil13]. In polynomial-based MIMO DPD architectures, a new transformed matrix for

each MISO DPD block, Ûi (with dimensions L×Mi) is defined as,

Ûi = UiVi (5.11)

which corresponds to the eigenvectors of the matrix UiUi
H . The Ni×Mi transformation matrix

Vi = (vi1, · · · ,viMi) is composed of the eigenvectors of the covariance matrix Ui
HUi, where Ni

is the number of original basis (or DPD coefficients) of the ith MISO DPD block (i = 1, · · · , P ),
andMi is the number of transformed basis after reduction (i.e,Mi < Ni). When the transformed

matrix Ûi is applied to (5.4), a new reduced set of transformed coefficients ŵi with dimension

Mi×1 is obtained. The originalNi×1 vector of coefficients is obtained through the transformation

matrix as

wi = Viŵi. (5.12)

Both the original number of basis Ni and the pruning or reduction factor RFdi=Ni/Mi could

be different at each MISO DPD block if every PA showed different distortion characteristics.

However, when the operating conditions of the PAs are similar the same parameters and re-

duction factor RFd can be applied to all the MIMO branches. The transformation matrices Vi

are calculated only once and will be valid irrespective of the changing transmitted waveforms

when the PA operating conditions do not change very significantly over time. This process can

be done a priori offline (i.e., factory profiling) to avoid HW resource utilization and extending

the DPD adaptation time, for a given set of representative PA operating conditions. Thanks to

the orthogonality of the resulting transformed matrices, the polynomial MISO DPD coefficients’

extraction can be carried out with simple dot products (i.e., avoiding matrix inversions), and

one-by-one increasing the number of independent components until the desired performance is

reached, as shown in Chapter 3.2.

Unlike in polynomial-based approaches, where PCA is not used to directly reduce the num-

ber of the original basis functions in the DPD function, in the case of the ANN DPD, PCA

does contribute to reduce the size of the ANN. When applied to the input dataset, the ANN

will directly operate with the feature-reduced transformed dataset both during training and

inference (or feedback and forward paths, respectively). By reducing the input dataset features

and so the MIMO ANN inputs and the total amount of data to be processed by the ANN, the

number of weights in the first hidden layer FN will be decreased and the overall DPD training

or update time will be also reduced. Given the ANN architecture in Fig. 5.4, PCA can be ap-

plied to every MIMO baseband channel input dataset contribution Di. Therefore, considering a

MIMO or MISO ANN generic input dataset U = (D1, · · · ,Di, · · · ,DP ) with i = 1, · · · , P , each
transformation matrix Vi can be calculated and then be applied to obtain every D̂i transformed
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matrix, by using the same procedure as for the polynomial MISO-DPD architecture. After ap-

plying PCA as UPCA =
(
PCA(D1, RFd), · · · ,PCA(DP , RFd)

)
, the resulting transformed input

dataset will be Û = UPCA =
(
D̂1, · · · , D̂P

)
, both for the MISO (i.e., when all channels are

routed into every MISO-ANN DPD block) and the MIMO ANN architectures. Applying PCA

to every MIMO channel input dataset contribution works better than applying PCA to the

overall multi-channel dataset since it helps to better preserve the most relevant variables of

features provided by every channel. One advantage of PCA over OLS when applied to the input

dataset, is that PCA is used as an unsupervised learning technique that helps extracting the

hidden structure from the high dimensional dataset. PCA can produce linear combinations of

the dataset features which helps the ANN reaching the desired results for a given structure.

5.5 MIMO Scenario Combined Application Procedure

This section details how the training data length reduction methods and the dimensionality

reduction techniques are sequentially combined. To do that, Fig. 5.6 shows the application

procedure for the MIMO DPD based on independent polynomial MISO DPD blocks (abbreviated

as MISO POLY), while Fig. 5.7 and Fig. 5.8 show the procedure for the MIMO DPD with a

single ANN MIMO DPD block (MIMO ANN), and the variant with independent ANN MISO

DPD blocks (MISO ANN), respectively.

The flowcharts show how the PA’s input-output data is employed for each architecture

defined in Section 5.2, and how the polynomial behavioral modeling matrices and the ANN

input datasets (also defined in Section 5.2) are processed according to the length reduction and

dimensionality reduction methods deployed in Section 5.3 and Section 5.4, respectively. To reduce

the complexity and processing time of the dimensionality reduction techniques the training data

length reduction is first applied. In the notation being used, when a length reduction technique is

applied to a variable the lr superscript is added to the variable name, while the lr dr superscript

is used when the dimensionality reduction techniques are applied to the length reduced variables.

In a first stage, if data batch selection is chosen then either SBS or CBS is applied to every

(ui,yi) pair. The indices selection in β is then applied to such variables, and also to x′
i for

ANN training, before building the reduced behavioral modeling and dataset matrices U lr
i and

U lr, respectively. These contain basis functions that will be a length reduced version of the

original ones with L/RFl samples each. If, otherwise, an equation selection method is chosen,

the full behavioral modeling and dataset matrices, Ui and U , are first created. With MeS, the

method is applied P times to the Ui MISO DPD polynomial blocks or directly to the channel

dataset contributions Di in the ANNs. In either case, P equation selection index vectors Θi

are generated. The polynomial MIMO DPD will employ each one at its corresponding MISO-

DPD block, while for the ANN dataset these index vectors will be merged into a single one by
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MIMO BB

WAVEFORMS

(𝒖𝒊, 𝒚𝒊) pairs

for 𝑖 = 1,… , 𝑃

SBS | CBS

1. SBS/CBS(𝒖𝒊, 𝒚𝒊, 𝑅𝐹𝑙), for 𝑖 = 1,… , 𝑃
2. Summation of the 𝑃 scores for global 
batch index 𝜷 selection  

𝒖𝒊
𝒍𝒓 = 𝒖𝒊(𝜷)

𝒚𝒊
𝒍𝒓 = 𝒚𝒊(𝜷)

MISO POLY DPD BM MATRICES 

𝑼𝒊 = (𝝓𝒊 0 ,… ,𝝓𝒊 𝐿 − 1 )𝑇

for 𝑖 = 1,… , 𝑃

MeS

𝑼𝒊
𝒍𝒓 = MeS(𝑼𝒊, 𝑅𝐹𝑙), 𝒚𝒊

𝒍𝒓 = 𝒚𝒊 𝚯𝒊

𝑼𝒊
𝒍𝒓 = (𝝓𝒊 𝛩𝑖(1) , … ,𝝓𝒊 𝛩𝑖(

𝐿

𝑅𝐹𝑙
) )𝑇

for 𝑖 = 1,… , 𝑃

UES
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Figure 5.6: MISO POLY combined application flowchart.

following the procedure described in Section 5.3.1. As seen in Section 5.3.2, UES is applied to

every MISO DPD behavioral modeling matrix Ui, and just once to the U ANN dataset. An

exception to the latter case is in the MISO ANN architecture when, in order to speed up UES,

OLS is applied in advance to reduce the number of columns. Since OLS will be applied to U at

every MISO ANN DPD block considering different target signals x′
i, we can have different OLS

Υi support sets leading to different equation selections vectors Θi at each of the P MISO ANN

blocks. The columns selection can just be used to calculate the equation selection and not be

propagated to the next stages. The reduction factor (RF
′
d) at the preOLS step before UES may

be different to the one used for effective dimensionality reduction at the later OLS stage (RFd).
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Figure 5.7: MIMO ANN combined application flowchart.

In a second stage the modeling basis or dataset variable reduction techniques OLS and

PCA are applied as described in Section 5.4.1 and Section 5.4.2, respectively. The final reduced

polynomial or ANN input modeling data is then obtained. As previously mentioned, both the

preOLS and the OLS column indices may be calculated for every MIMO channel in advance for

a given set of operating conditions to avoid increasing the MIMO DPD training/update times.

Same applies to the PCA transformation matrices. Finally, it is noted that when a factor RFd

is applied in OLS or PCA to reduce all the polynomial MIMO DPD basis functions, the total

number of coefficients is also reduced by this factor. In ANNs, however, this is no longer valid
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since the OLS/PCA reduction is applied to the input dataset features and thus only the number

of weights in the first hidden layer are reduced proportionally.
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Figure 5.8: MISO ANN combined application flowchart.
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5.6 Experimental Results

The proposed schemes have been benchmarked and validated with the MATLAB controlled

HW test bench shown in Fig. 5.9. To launch in parallel multiple DPD experiments a MATLAB

client-server waveform upload/download architecture has been enabled. The MATLAB server

communicates both with the remote clients running the DPD algorithms and the laboratory

HW composed of FPGA boards for waveform playback (TI TSW14J56EVM) and recording (TI

TSW14J57EVM), data converters (TI DAC38RF82EVM and TI ADC12DJ5200EVM), two ADI

ADL5605 PA drivers, two GaN HEMT class J PAs based on the Cree CGH35030F transistor, and

a tunable bidirectional passive network to infer controlled couplings between the PA outputs and

potential loading effects, (by manually setting the attenuation step of the mechanical variable

attenuator shown in Fig. 5.9). The PA input cross talk effects are digitally introduced into the

predistorted baseband signals, in the MATLAB Laboratory server before transmission through

the test setup, according to the PA input cross talk level set by the remote user.
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Figure 5.9: Remotely accessible multi-antenna digital linearization test setup block diagram
(left) and demonstration test bench picture (right). EXTL: external; DRV: driver; CX CTRL:
cross talk control; MECH VAR ATT: mechanical variable attenuator.

The PAs are operated at 875 MHz RF frequency and about 27 dBm mean output power (28V
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drain-to-source voltage and around 3.1V gate-to-source voltage) with 2x2 MIMO 80 MHz band-

width carrier-aggregated fast convolution filter bank multi-carrier (FC-FBMC) signals featuring

13-14 dB PAPR. The waveform length is 737280 samples, after oversampling 2 ms signals by a

factor of 3 to accommodate for the DPD bandwidth expansion (368.64 MHz baseband sample

rate). Each of the two FC-FBMC signals generated are uncorrelated and feature changing PAPR

values at every training iteration and at post-training validation iterations.

The two discrete PAs need some initial adjustment to reach similar operation point due to

transistor pinch-off voltage dispersion or having different parasitic effects in the two prototyped

boards. The differences in linearity performance imply that there will be some common DPD

modeling basis valid for the two models but to reach the maximum performance there will be

basis that are needed for one of the PAs but not necessarily the other. Since the general approach

is to apply the same overall DPDmodel to the two PAs, to reduce the DPD complexity and ensure

well-conditioned identification the dimensionality reduction techniques are highly convenient.

The proposed techniques have been experimentally benchmarked and validated in Table 5.1

and Table 5.2. The parameters of the three MIMO DPD architectures evaluated are as follows:

1. MISO POLY. The MISO DPD block for every PA is based on the GMPNLC model with

nonlinear degree 7 and up to 10-tap memory depth (O = 4,M1 = 5,M2 = 5). Nonlinear

degree 9 and up to 12-tap memory depth was also evaluated (i.e., O = 5,M1 = 6,M2 = 6)

but the improvement in performance was not relevant despite nearly doubling the number

of coefficients.

2. MISO ANN. The MISO DPD blocks are based on two-hidden layer ANNs, with 20

neurons per hidden layer and hyperbolic tangent sigmoid activation functions. The follow-

ing data augmentation functions are considered for every MIMO channel input dataset

(Iini, Qini) contribution: |Iini + jQini|k with k = 1, · · · , 6, |Iini|k and |Qini|k for k = 3,

and a long-term component considering a sliding window of K = 1000 samples. Except for

the long-term component, 12-tap consecutive memory delays are also applied to all these

contributions to enable dynamic nonlinear modeling.

3. MIMO ANN. The single MIMO DPD block is based on a two-hidden layer ANN, with

20 neurons per hidden layer and hyperbolic tangent sigmoid activation functions. The

following data augmentation functions are added to every MIMO channel input dataset

(Iini, Qini) contribution: |Iini+jQini|k with k = 1, · · · , 6, |Iini|k and |Qini|k for k = 7, · · · , 9
and a long-term component considering a sliding window of K = 1000 samples. Again,

12-tap consecutive memory delays are applied.
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Figure 5.10: CH1 and CH2 NMSE and ACPR versus input and output cross coupling level.

These three MIMO DPD architectures and the researched techniques have been evaluated

considering -15 dB PA input and -15 dB PA output cross couplings. Fig. 5.10 shows the degra-

dation in the NMSE and ACPR figures with increasing equal input and output cross coupling

values, when no MIMO DPD is applied. At -15 dB cross coupling level additional nonlinear

effects appear due to changes in the input signal power statistics and the class-J PA loading

conditions. At such coupling level, and considering the highest PAPR MIMO baseband signals,

the PA input signal peaks are compressed about 3 dB at the PA output. No crest factor re-

duction techniques were applied to the MIMO waveforms. Such challenging scenario requires

handling complex MIMO DPD models.

Table 5.1 and Table 5.2 show complexity, performance and timing results (i.e., overall number

of MIMO DPD coefficients, NMSE and worst upper/lower ACPR, and time measured with

MATLAB’s tic toc functions) for a representative set of both dimensionality reduction test cases

and the combination of data length and dimensionality reduction test cases, respectively [LB22b].

These techniques are evaluated with the MIMO 2x2 test setup detailed in Fig. 5.9 for the three

MIMO DPD architectures. A number of test case labels are included in the tables and in the

text to facilitate the tracking of the results.

Table 5.1: Dimensionality Reduction Benchmark for MIMO DPD.

CASE.
METHOD

RED.
FACT.

DPD
COEFF.

NMSE
CH2 [dB]

NMSE
CH1 [dB]

ACPR
CH2 [dBc]

ACPR
CH1 [dBc]

TOTAL
DPD UPD.
TIME [s]

C1. GMP 1-D N/Aa 644 -11.3 -12.5 -36.7 -38.7 615

C2. NONE N/Aa 1440 -36.3 -37.4 -46.1 -46.3 2862

C3. OLS 4 360 -36.4 -37.4 -45.4 -45.8 232

C4. OLS 8 180 -36.5 -37.5 -45 -45.4 74

MISO
POLY
GMPNLC

C5. PCA 8 180 -35.5 -36 -42.4 -43 72
1ST ITER.
DPD TT [s]

REMAINING
ITER. TT [s]

C6. OLS 6 2724 -36.3 -38.6 -46.9 -47.5 2.81E+04 1.42E+04 1.40E+04

C7. OLS 16 1604 -36.3 -36.8 -47.8 -48 1.75E+04 1.08E+04 6.68E+03
MISO
ANNs

C8. PCA 4 3604 -36.8 -38.8 -48 -48.7 3.84E+04 2.45E+04 1.38E+04

C9. OLS 6 1764 -35.1 -37.4 -44 -45.7 4.01E+04 3.03E+04 9.82E+03

C10. OLS 16 964 -36.5 -37.6 -45.3 -46 1.90E+04 1.22E+04 6.83E+03
MIMO
ANN

C11. PCA 6 1764 -36.4 -38.3 -47.2 -47.7 5.21E+04 2.64E+04 2.58E+04

a Not applicable.
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Regarding Table 5.1, when the best classical GMP DPD linearization configuration is applied

independently to every MIMO channel (C1), since no crosstalk is accounted in the modelling,

the resulting NMSE figures are equivalent to those found in Fig. 5.10 when DPD is not ap-

plied (i.e., the crosstalk is a dominant in-band effect which is not corrected, only the ACPR is

enhanced by about 3-4 dB at C1). The best GMPNLC configuration (with reasonable number

of coefficients) is able to overcome the previous limitations but considering the demanding test

setup scenario the NMSE values reach near -37 dB NMSE and -46.2 dB ACPR on average (C2).

When using the polynomial MIMO DPD scheme, OLS is the most effective technique to reduce

the complexity and the total DPD update time while preserving performance. When a coefficient

reduction factor of 8 is applied, OLS features about 1.5 dB and 2.5 dB better NMSE and ACPR,

respectively, than PCA (C4 vs. C5). The DPD update time is reduced by a factor circa 40 when

compared to the nominal case (C4 vs. C1).

When comparing the performance of the polynomial and the ANN linearization schemes,

the MISO ANN is the better performing. The results for the nominal ANN-based MIMO DPD

schemes without dimensionality reduction are not provided due to the huge amount of time

required to obtain them. When considering the MISO ANN scheme after applying PCA dataset

reduction by 4, the NMSE is improved by 0.5-1.5 dB but, more importantly, the ACPR is also

improved by 2-2.5 dB, in comparison with the GMPNLC MISO POLY scheme (C4 vs. C1).

Table 5.1 also shows that both for the MISO and MIMO ANNs, for lower basis reduction factors

PCA delivers the best attainable performance, but OLS is a better choice for higher reduction

factors (C7 vs. C8).

When comparing the number of coefficients, for small arrays the MISO POLY scheme may

feature much less coefficients than the ANN schemes (C4 vs. C10) but, however, when the best

performance is pursued, they may feature similar number of coefficients. For example, the MISO

ANN scheme with OLS reduction by 16 outperforms GMPNLC in terms of spectral contention

as seen in Table 5.1 (C2 vs. C7) and the linearized spectra plots in Fig. 5.11. The AM-AM and

the AM-PM characteristics for this case are also shown in Fig. 5.12.

The main drawback of the ANN schemes is that the DPD update time is significantly larger

than the polynomial ones (i.e., 2.5 orders of magnitude higher, see C3-C4 vs C6-C11). This is

clearly an obstacle for the adoption of ANN-based MIMO DPD schemes unless dimensionality

reduction is combined with significant training data length reduction factors (and together with

efficiently parallelized ANN-specific processing HW). The time taken to train the ANN at the

first MIMO DPD iteration is in the order of magnitude (between 1 and 3 times higher) of the

time needed to train the MIMO DPD in the remaining iterations with different data and PAPR

statistics MIMO waveforms until the desired performance is reached (i.e., typically 7-8 iterations

are needed). This is due to the fact that in the first iteration the DPD coefficients are trained

from scratch, and it takes longer to find the coefficients that minimize the ANN cost function,
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(a)

(b)

Figure 5.11: Power spectral density plots for (a) CH1 and (b) CH2 before and after DPD lin-
earization, considering the GMPNLC polynomial architecture (C2), the MISO ANN architecture
with OLS reduction by 16 (C7), and the MIMO ANN architecture with UES reduction by 40
and PCA reduction by 6 (C23).
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(a) (b)

(c) (d)

Figure 5.12: AM-AM plots for (a) CH1 and (b) CH2 and AM-PM plots for (c) CH1 and (d)
CH2 before and after DPD linearization, considering the MISO ANN architecture with OLS
reduction by 16 (C7).

and the following training iterations benefit from using the previously calculated and updated

coefficients when training with new data. Having pre-trained ANNs can also contribute to reduce

the overall MIMO DPD training time (TT in Table 5.1).

In Table 5.2, the dimensionality reduction techniques are preceded by the training data

length reduction techniques as per Section 5.5, and the length reduction processing time is both

identified and further added to the total DPD update time count. In the MISO POLY scheme,

the best data length reduction techniques are SBS and UES, but when combined with OLS, UES

performs about 1.5 dB NMSE and 1.2 dB ACPR better and is slightly faster (C14 vs. C13). MeS

does not provide acceptable ACPR performance when having strong cross couplings for any of

the DPD architectures (the better performing case is shown for the MISO POLY architecture

in C12). In the MISO POLY case, applying OLS reduction by 8 is already a powerful tool to
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Table 5.2: Training Data Length Reduction Combined with Dimensionality Reduction Bench-
mark for MIMO DPD.

CASE.
METHOD

RED.
FACT.

DPD
COEFF.

NMSE
CH2 [dB]

NMSE
CH1 [dB]

ACPR
CH2 [dBc]

ACPR
CH1 [dBc]

LENGTH
REDUX
TIME [s]

DPD
TRAIN.
TIME [s]

TOT.
DPD UPD.
TIME [s]

C12. MeS-OLS 10 8 180 -32.6 -33.6 -39.7 -40.5 238.6 6.7 245.3
C13. SBS-OLS 20 8 180 -35.2 -35.7 -43.1 -43.2 50 3.3 53.3MISO

POLY C14. UES-OLS 10 8 180 -36.8 -36.9 -44.4 -44.5 42.7 7.1 49.8

C15. CBS-PCA 80 4 3604 -36.2 -36.8 -43.5 -43.6 68.3 146.4 214.7
C16. UES-PCA 80 4 3604 -36.2 -37.2 -45 -44.8 12.9 92 104.9
C17. UES-PCA 40 4 3604 -36.8 -37.7 -45.4 -45.7 13 170.6 183.6

MISO
ANN
1st iter

pretrained C18. UES-OLS 80 16 1604 -33.5 -35.3 -43.8 -44.5 12.9 67.5 80.4

C19. UES-PCA 80 4 3604 -35.5 -35.7 -43.1 -42.1 15.1 211.9 227MISO
ANN C20. UES-PCA 40 4 3604 -36.2 -37.1 -44.6 -44.6 13.3 242.3 255.6

C21. CBS-PCA 60 6 1764 -36.4 -37.6 -45.4 -45.8 45 265 310
C22. UES-PCA 60 6 1764 -36.2 -37.3 -44.9 -44.7 15.5 93.5 109
C23. UES-PCA 40 6 1764 -36.4 -37.6 -45.6 -45.9 15.2 200.3 215.5

MIMO
ANN
1st iter

pretrained C24. UES-OLS 40 16 964 -36.1 -36.6 -43.1 -43.8 15.3 87.8 103.1

C25. UES-PCA 60 6 1764 -35.2 -36 -43 -43.1 17.7 258 275.7MIMO
ANN C26. UES-PCA 40 6 1764 -35.9 -36.8 -45 -44.4 17.6 534.2 551.8

significantly shorten the training time. When applying UES-OLS additional 35% DPD update

time reduction can be obtained paying very little performance cost with regards to applying

only OLS (C4 vs. C14).

With the ANN-based schemes, when having very strong cross couplings it is hard to reach

the desirable performance when applying data length reduction right at the first DPD training

iteration where the ANN coefficients are calculated from scratch. To avoid NMSE and ACPR

losses of about 1-1.5 dB and 2-2.5 dB (C16-C17 vs. C19-C20 and C22-23 vs. C25-C26), re-

spectively, pretrained first iteration coefficients that have been calculated without training data

length reduction can be loaded, and the length reduction be applied starting at the second it-

eration. This is clearly what better works for such strong crosstalk conditions but, if pretrained

ANN coefficients are not available, UES can be also applied from the first DPD iteration by

decreasing the UES training data length reduction factor before calculating a new set of coef-

ficients (C16 vs. C20 and C22 vs. C26). When compared to the optimal pretrained case, the

performance will be similar and the training time will be kept in the same order of magnitude

(i.e., 2-4 times higher). With ANNs, and when precombined with PCA, CBS works better than

SBS. While in the MISO ANN UES shows 1-1.5 dB better ACPR performance and is about 1.5

times faster than CBS (C15 vs. C16), in the MIMO ANN scheme CBS may perform similarly or

even better than UES, but the DPD updating time of the former can be 2-3 times larger (C21

vs. C22). Finally, while combining UES and OLS with a high dimensionality reduction factor

can be about 2 times faster than using UES-PCA with a lower dimensionality reduction factor

(i.e., comparing 1st iteration pretrained schemes), such advantage is not enough to compensate

for the performance loss (C17 vs. C18 and C23 vs. C24).

At this point, it is important to remark that with the UES-PCA method being applied to the

ANN-based MIMO DPD schemes, the polynomial MIMO DPD training times can be approached

and we also have some degrees of freedom to overcome the linearization performance of the

polynomial. One example may be found in Table 5.2 by comparing the MISO POLY case when
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applying OLS reduction by 4 with either the MISO ANN or the MIMO ANN cases applying

UES-PCA (C4 vs. C17 and C23). The linearized spectra plots obtained when using the MIMO

ANN scheme after applying UES-PCA in C23 are also added to Fig. 5.11 to show similar

spectral contention when compared to the MISO POLY case without basis reduction in C2 (i.e.,

the comparison is done here for a similar number of coefficients, but featuring the MIMO-ANN

scheme lower training time). The total DPD update time of the MISO/MIMO ANN schemes is

reduced about 2 orders of magnitude when comparing the use of PCA or OLS with either UES-

PCA or UES-OLS (C6-C11 vs. C15-C26). The gain with respect to the nominal ANNs without

dimensionality reduction would be above three orders of magnitude. Applying dimensionality

reduction to the herein ANN topologies (for 2x2 MIMO DPD) with factors between 6 and 16

deliver reductions in the number of ANN coefficients between the 55% and the 75%, respectively.

Note that the higher the number of antennas, the more impact that the dimensionality reduction

will have over the total number of ANN coefficients (the weights at the first hidden layer will

increase far more significantly than the weights and biases at others).

The most representative results combining different MIMO DPD architectures with the pro-

posed techniques are also summarized in Fig. 5.13. In general terms, it is evident that according

to our 2x2 test scenario the ANN-based DPD schemes may feature higher complexity than the

polynomial ones, but also similar adaptivity speed and better performance. Such benefits could

even be more evident when considering larger arrays where the number of MIMO DPD coeffi-

cients may increase with the number of antennas much faster in the polynomial approach than

in ANNs (i.e., MIMO ANN scheme).

The experimental benchmarking also highlights the advantages and disadvantages of ap-

plying each of the three MIMO DPD architectures. Despite the reach of the measurements is

limited in number of antennas, several projections regarding the application of the MIMO DPD

Figure 5.13: Bubble plot with time versus worst case channel ACPR and number of coefficients
(i.e., proportional to bubble size) considering the three presented MIMO DPD architectures.
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architectures to large arrays can be envisaged from the results obtained. For a small number of

antennas, the polynomial architecture is valid if the nonlinear scenario is not very complex. The

implementation is the most affordable with dimensionality reduction and the adaptation will be

the fastest. For large arrays the polynomial MISO DPD approach may be hard to implement

unless other schemes considering dual-input DPD architectures [Hau18] are exploited. When

either the performance or the DPD updating time are prominent requirements, using multiple

MISO DPD ANNs is the best choice. This scheme will have more coefficients than the fully

MIMO neural network but dividing the problem into smaller ones contributes to both featuring

better performance and improve the adaptation time of the latter. Replicating such networks for

large arrays, however, could be resource consuming. Thus, a fully MIMO ANN architecture may

be a more affordable choice for scenarios with PAs offering similar distortion and not having the

worst nonlinear effects since in this scheme the cost function being minimized accounts for the

sum of the errors at each transmitter channel. Finally, another option that must be considered,

on top of the ones evaluated in this section, is the use of independent MIMO DPD ANNs having

more inputs than outputs and being aware of the radio HW and antennas spatial arrangement

to get optimal MIMO DPD block input baseband channel routings (i.e., it is an hybrid approach

between the single-ANN MIMO DPD scheme and the one built with independent MISO DPD

ANNs).



Chapter 6

Conclusion

6.1 Main Findings

The main research work conducted in the thesis can be seen as a ML toolkit of techniques able to

reduce complexity and speed up DPD training, while guaranteeing robustness and performance

requirements like the NMSE, EVM or ACPR. These techniques are versatile enough for use in

SISO and MIMO polynomial and ANN DPD systems, and can be applied to sub-7 GHz systems

and, potentially, to mm-wave systems given the baseband operation of the adaptive DPD system.

Every contribution has been experimentally validated and the benefits are summarized in Figure

6.1, according to the application scenarios. The findings linked to the main research contributions

are detailed as follows:

In polynomial SISO-DPD, the independent PCA-DPD identification method

leverages on using the PCA theory to find a transformed matrix with new orthogonal com-

ponents. With the independent DPD identification it is possible to trade-off updating or iden-

tification convergence time versus computational complexity. That is, updating in parallel at

every iteration (in a more relaxed timescale than the real-time DPD in the forward path), fol-

lowing a LMS gradient technique, as many components as desired (trade-off convergence time

vs. FPGA resources). The independent DPD relies on the need to find a transformation matrix,

which thanks to the APCA algorithm can be iteratively found and, moreover, it is suitable to be

implemented online in an FPGA. Therefore, it has been proved a new identification algorithm

by merging the APCA technique with the closed-loop DPD adaptive estimation. This way, a

robust independent DPD identification is obtained by using the minimum necessary coefficients

in the adaptation subsystem to meet specific linearity levels.

As an alternative to polynomial SISO-DPD based models, some design guidelines for ANN

SISO-DPD approaches to model and compensate for the nonlinear distortion introduced by

the PA or other unwanted distortion effects such as IQ imbalances and dc offset, have been

161
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Figure 6.1: Summary of the benefits brought by the techniques researched in the thesis (light
and dark grey colors for early works and main contributions, respectively).

presented. Some pros and cons that need to be taken into account in order to decide whether to

use the solutions based on ANNs are discussed in the following. While ANN-based models permit

a compact representation of a multidimensional function, they suffer from two main weaknesses:

a) ANNs often converge on local minima rather than global minima and b) can suffer from

the over-fitting problem due to the traditional empirical risk minimization principle employed

by ANNs. Regarding the dimensions, ANNs are parametric models whose size is fixed and

depends on their specific architecture. Under the current practical circumstance, ANNs have been

successfully employed in several applications in the DFE for their capability to approximate any

continuous function. It is strongly believed that ANN based solutions will play a very important

role in future DFE implementation and deployment including intelligent vector processors and
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functional intellectual property (IP) blocks. With respect to SISO ANN DPD, it has been

shown that the direct learning ANN DPD can outperform the classical DPD schemes at the cost

of a potentially unaffordable training time for adaptive scenarios. The DOMP algorithm can

be combined with batch selection input dataset length reduction strategies. The CBS/SBS-

DOMP scheme is effective for reducing the number of ANN coefficients and to greatly cut the

ANN training time for SISO DPD adaptation while fulfilling signal quality requirements.

The polynomial and ANN MIMO-DPD work has provided an insight on training data

selection and dimensionality reduction techniques for faster adaptivity and more efficient MIMO

predistorters. The MIMO ANN DPD schemes can outperform the polynomial ones in complex

scenarios but show unaffordable training times. The number of parameters required for DPD

or PA behavioral modeling in MIMO systems based on parametric approaches can easily grow

exponentially, which increases the computational complexity and may provoke over-fitting and

uncertainty in the estimation. Feature selection and feature extraction dimensionality reduction

techniques oriented at reducing the number of required parameters and guaranteeing a well-

conditioned extraction have been adopted into such scenarios. OLS and PCA allow reducing

the number of DPD coefficients and training time but need to be combined with data length

reduction techniques for fast adaptivity. The batch selection techniques and the UES method

contribute to significantly reduce the ANN DPD training time and overcome the limitations of

histogram-based data selection mechanisms under strong cross couplings. This work contributes

with two novel MIMO-DPD strategies: the first applies UES-OLS for polynomial predistorters,

and the second UES-PCA for ANN predistorters.

6.2 Future Work

There are several considerations to keep in mind as a continuation of the thesis work and for

implementation of the DPD techniques researched in either forthcoming 5G radio equipment or

its evolution towards 6G. These are listed as follows:

• MIMO DPD: The UES-OLS and UES-PCA techniques need to be experimentally eval-

uated for sub-7 GHz massive MIMO and mm-wave hybrid beamforming transceivers with

larger number of antennas and be properly quantified in terms of digital implementation

resource occupation both for polynomial and ANN predistorters. When thinking in imple-

mentation, more effective algorithmic versions of OLS and PCA need to be considered to

support the plethora of different fast-changing scenarios that may occur in 5G and beyond

systems. Also, either piece-wise or decision-tree based model switching could be integrated

into the proposed MIMO-DPD schemes to fasten DPD adaptation. Finally, when targeting

mm-wave hybrid beamformers with higher signal bandwidth than sub-7 GHz systems, and

where having a dedicated DPD observation receiver is a harder design decision, the thesis
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MIMO-DPD work needs also to be applied to systems with either a switched single con-

ducted DPD receiver, a local over-the-air (OTA) DPD receiver o a remote DPD receiver at

user equipment, where also the radio channel needs to be accounted and feedback between

the UE and the BS is required.

• ANN DPD: Nowadays, the ANN are seen as a potential enhancer for polynomial DPDs

but hardly seen as a replacement due to their complexity and training times. There are

still many unknowns with regard to the replacement of classical PHY functions by AI

blocks or even new end-to-end Tx-Rx AI-native systems, but very likely the ANNs will be

gaining momentum over the following years. So, depending on the application scenario,

other ANN architectures like convolutional neural networks (CNN) or long short-term

memory (LSTM) architectures (i.e., for long term memory modeling) may be required. In

both cases, the outcomes of this work are fully applicable to shorten the training time and

complexity of the current and future MIMO DPD systems. But additionally, it will be

convenient to continue exploring techniques to adaptively prune not only the dataset but

the inner ANN architecture depending on the current radio scenario. Finally, continual

learning ANN models accounting for the waveform or PA operation conditions as ANN

inputs, or federated learning models to leverage on the learning of physically distributed

radios and cover a higher number of different waveform and PA operation cases in shorter

time by utilizing a centralized model. The latter can be an interesting approach when a

vast deployment of multi-antenna small cells radios is done with similar radios (i.e., same

radio equipment manufacturer).

• HYBRID DPD: The incessant user capacity demands can only be met in next genera-

tion communication equipment by shifting its operation to mm-wave and beyond mm-wave

frequencies with higher bandwidth availability. When thinking of transmitter arrays with

massive bandwidths and moderate or low PA power levels, and relaxed ACPR require-

ments (as in 5G mm-wave operation) the DPD approach can hardly fit into such scenario.

Very likely, hybrid DPD approaches (HPD) will be needed: The idea is to linearize the

PA’s static nonlinear behavior using a digitally-controlled analog predistorter (APD) be-

fore the PA together with an adaptive DPD operating cooperatively in a concurrent way.

The APD will be responsible for cancelling the static in-band and out-of-band nonlin-

earities. Furthermore, the DPD will cope with the cancellation of the in-band dynamic

nonlinearities due to the PA memory effects, thus avoiding the need for a higher sampling

rate at baseband.

• C-RAN MEC DPD: The beyond 5G networks will combine high capacity and flexible

cloud radio access network architectures (C-RAN) with mobile edge computing (MEC)

to enable lower end-to-end latencies. Such approach potentially allows for new intelligent

DPD processing paradigms distributing the processing load between the radio unit (RU)
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and the MEC platform that equips higher-end dedicated hardware and more energy sus-

tainable power supply. This may contribute to i) reducing the DPD adaptation time by

one additional order of magnitude and thus shorten the gap to reach millisecond-level DPD

update in highly demanding systems, ii) to significantly reduce the RU DPD processing re-

sources in the digital front-end, iii) enhance the overall radio sustainability. Another option

to be considered is the use of radio-as-a-service function deployment splitting the DPD

computation among heterogeneous edge-to-radio HW, or replacing the whole DPD sys-

tem in the FPGA through partial reconfiguration techniques, considering higher or lower

complexity models according to the KPIs that need to be met at every time. Such recon-

figuration can be based on the traffic information, number of users, etc., but also based on

different sensors accounting for environmental factors or visualizing in more detail which

is the radio communication scenario according to the users’ physical distribution. Finally,

the use of HPD systems could be seen as one of the enablers of the C-RAN MEC MIMO-

DPD approach by combining the in-band distributed DPD processing (with significantly

less information to be shared between RAN entities) and AI techniques able to set the

optimal digitally tuned parameters of the analog predistorter focusing on the out-of-band

distortion.

The years to come will be more challenging than ever for the DPD system but, at the same

time, the multidisciplinary approach that has been manifested in this partial future work vision

makes also the challenge more exciting than ever.
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footprint reduction in 5g reconfigurable hotspots via function partitioning and band-

width adaptation”, 5th Int. Workshop Cloud Technol. Energy Efficiency in Mobile

Commun. Netw., pp. 1–6, 2017.

[Bar21] A. Barry, W. Li, J. A. Becerra, and P. L. Gilabert, “Comparison of feature selection

techniques for power amplifier behavioral modeling and digital predistortion lineariza-

tion”, Sensors, vol. 21, no. 17, pp. 5772, Aug. 2021.

[Bas09] S.A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for

the compensation of crosstalk and nonlinearity in MIMO transmitters”, IEEE Trans.

Microw. Theory Techn., vol. 57, no. 5, pp. 1119–1128, May 2009.
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[Gil18] P. L. Gilabert, D. López-Bueno, and G. Montoro, “Spectral weighting orthogonal

matching pursuit algorithm for enhanced out-of-band digital predistortion lineariza-

tion”, IEEE Trans. Circuits Syst. II, Exp. Briefs, pp. 1–1, 2018.

[Gil19] P. L. Gilabert, G. Montoro, D. Vegas, N. Ruiz, and J. A. Garćıa, “Digital predistorters
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[Hän20b] P. Händel, and D. Rönnow, “MIMO and massive MIMO transmitter crosstalk”, IEEE

Trans. Wireless Commun., vol. 19, no. 3, pp. 1882–1893, Mar. 2020.

[Hau17] K. Hausmair, S. Gustafsson, C. Sánchez-Pérez, Per N. Landin, U. Gustavsson, T. Eriks-
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