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Abstract 

Hybrid or multi-sensor-based positioning has been a research topic actively 
investigated in the last decade. In this context, the possibility of using information 
extracted from imaging sensors, for positioning, is very appealing to mitigate the 
problems that GNSS or INS/GNSS-based trajectories have in terms of robustness 
and accuracy. On the other hand, different processing workflows, sensor positioning 
quality or system calibration errors, may also produce even in GNSS-friendly 
conditions, that multiple geospatial datasets are not properly co-registered. This 
thesis proposes the use of non-semantic information, this is, the use of a set of 
geometric entities or features, to improve the trajectory estimation in a multi-sensor-
based approach. This thesis covers the mathematical modelling of non-semantic 
information, implements several hybrid-based trajectory estimation approaches that 
use this kind of information with the appropriate modelling, and also explores the 
use of non-semantic features to model the trajectory error modelling. 
 
The implementation of combined models allowing to use of observations from 
camera or LiDAR sensors is the first contribution of this thesis. The proposed 
models have enabled improved trajectory determination in both urban post-
processing and airborne environments with good accuracy (cm level). The 
implemented INS/GNSS trajectory error models are relatively simple but proved to 
be efficient. The combined models have been tested, in post-processing, using a 
bundle adjustment approach, with real data from metric cameras and aerial laser 
mapping systems as well as in Terrestrial Mobile Mapping systems (TMM).  
 
The second contribution of this thesis is the characterization of trajectory errors that 
TMM may have in GNSS urban scenarios. The non-semantic information extracted 
from the images has allowed, using an integrated sensor orientation approach, to 
model these errors in an urban environment. This modelling opens the door to the 
development of new, more advanced trajectory error models that go beyond the 
deterministic models currently used.  
 
The determination of trajectories in real time, in GNSS unfriendly environments, is 
also explored in this thesis using non-semantic features. An approach has been 
implemented based on a tightly coupling sequential nonlinear least squares using 
GNSS positions, image coordinates and raw inertial measurements. The proposed 
approach exploits a sliding window bundle adjustment technique to use the image 
coordinates of tie points and the positions and attitudes derived from the last epochs 
to determine the position and attitude parameters of the most recent epoch. The 
approach has been evaluated using both real and simulated data from a mobile 
mapping campaign over an urban area with long GNSS outage periods, with 
promising results. 
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This thesis also presents an approach to improve the determination of Remotely 
Piloted Aircraft Systems (RPAS) trajectories using open aerial data obtained in the 
framework of a national mapping project (PNOA). The development of this 
methodology is another contribution aiming to ensure the geospatial coherence 
between the orthophotos, and digital elevation models obtained with an RPAS and 
the orthophotos and digital models of the PNOA. The results, applied in the context 
of a multi-temporal and multi-sensor high-resolution archaeological documentation, 
show that photogrammetric products can be generated with a similar accuracy (cm 
level accuracy) to the ones generated with more complex approaches.  
 
Last but not least, this thesis presents a seamless indoor-outdoor positioning 
approach with encouraging results (meter-level accuracy) in several scenarios. This 
contribution opens the door for enhanced tracking of members of civil protection 
and emergency teams. This is an open field of research with not widely accepted 
/adopted solution yet. 
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Resum 

El posicionament híbrid o multisensorial ha estat un tema de recerca molt estudiat 
durant la darrera dècada. En aquest context, la possibilitat d'utilitzar informació 
extreta de sensors d'imatge per al posicionament és molt prometedora per mitigar 
els problemes que presenten les trajectòries basades en GNSS o INS/GNSS en 
termes de robustesa i precisió. D'altra banda, els diferents fluxos de treball durant el 
processament, la qualitat dels sensors utilitzats per al posicionament o els errors de 
calibratge del sistema, també poden produir, fins i tot en condicions favorables de 
visibilitat de satèl·lits GNSS, que múltiples conjunts de dades geoespacials no 
estiguin correctament co-registrats. Aquesta tesi proposa l’ús d’informació no 
semàntica, és a dir, l’ús d’un conjunt d’entitats o característiques geomètriques, per 
millorar l’estimació de la trajectòria en un enfocament multisensorial. Aquesta tesi 
aborda el modelatge matemàtic de la informació no semàntica, implementa diverses 
aproximacions híbrides per a l'estimació de trajectòria basada en aquest tipus 
d'informació amb el modelatge apropiat i també explora l'ús de característiques no 
semàntiques per modelar l'error d'una trajectòria. 
 
La implementació de models combinats que permeten utilitzar observacions de 
càmeres o sensors LiDAR és la primera contribució d'aquesta tesi. Els models 
proposats han permès millorar la determinació de trajectòries tant en entorns urbans, 
en post processat, com en aerotransportats amb una bona precisió (nivell 
centimètric). La modelització de l’error de les trajectòries  INS/GNSS implementada 
és relativament senzilla, però ha demostrat ser eficient. Els models combinats s'han 
provat, en post procés, utilitzant un ajust de xarxes, amb dades reals de càmeres 
mètriques i de sistemes LiDAR tant aerotransportats com embarcats en sistemes de 
cartografia mòbil terrestre (TMM). 
 

La segona contribució d’aquesta tesi és la caracterització dels errors de les 
trajectòries TMM en escenaris urbans poc propicis per al GNSS. La informació no 
semàntica extreta de les imatges ha permès, utilitzant una orientació integrada, 
modelitzar aquests errors en aquest entorn. Aquesta modelització obre la porta al 
desenvolupament de nous models d’error més avançats que van més enllà dels 
models deterministes utilitzats actualment. 
 
La determinació de trajectòries en temps real fent servir característiques no 
semàntiques, en entorns poc propicis per a GNSS, també s'explora en aquesta tesi. 
Per a això s'ha implementat una aproximació basada en mínims quadrats seqüencials 
no lineals acoblats profundament, i que utilitza posicions GNSS, coordenades 
d'imatge i mesures inercials. L’enfocament proposat es basa en una tècnica d’ajust 
de xarxes utilitzant les coordenades imatge dels punts d’enllaç i les posicions i 
actituds derivades de les últimes èpoques, per determinar els paràmetres de posició 

i actitud de l’època més recent. L’aproximació s’ha avaluat utilitzant dades reals i 
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simulades d’una campanya de cartografia mòbil sobre una zona urbana amb llargs 

períodes d’interrupció del senyal GNSS, amb resultats prometedors. 
 
Aquesta tesi també presenta una aproximació per millorar la determinació de les 
trajectòries dels vehicles aeris no tripulats (RPAS) utilitzant dades aèries d'accés 
obert, obtingudes en el marc d'un projecte cartogràfic nacional (PNOA). El 

desenvolupament d’aquesta metodologia és una altra contribució destinada a 

garantir la coherència geoespacial entre les ortofotos i els models digitals d’elevació 
obtinguts amb un RPAS i les ortofotos i els models digitals del PNOA. Els resultats, 
utilitzats per la documentació arqueològica multitemporal i multisensorial d'alta 
resolució, mostren que es poden generar productes fotogramètrics amb una precisió 
similar (precisió a nivell de cm) als generats amb aproximacions més complexes. 
 
Finalment, però no menys important, aquesta tesi presenta un mètode de 
posicionament continu tant en interior com exterior amb resultats encoratjadors 
(precisió a nivell de metres) en diversos escenaris. Aquesta contribució obre la porta 
a la millora del seguiment dels membres dels equips de protecció civil i emergències. 
Es tracta d'un camp de recerca obert on encara no hi ha una solució àmpliament 
acceptada o adoptada 
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Resumen 

El posicionamiento híbrido o multisensorial ha sido un tema de investigación muy 
estudiado en la última década. En este contexto, la posibilidad de utilizar 
información extraída de sensores de imagen para el posicionamiento es muy 
prometedora para mitigar los problemas que presentan las trayectorias basadas en 
GNSS o INS/GNSS en términos de robustez y precisión. Por otra parte, los 
distintos flujos de trabajo durante el procesamiento, la calidad de los sensores 
utilizados para el posicionamiento o los errores de calibración del sistema, también 
pueden producir, incluso en condiciones favorables de visibilidad de satélites GNSS, 
que múltiples conjuntos de datos geoespaciales no estén correctamente co-
registrados. Esta tesis propone el uso de información no semántica, es decir, el uso 
de un conjunto de entidades o características geométricas, para mejorar la estimación 
de la trayectoria en un enfoque multisensorial. Esta tesis aborda el modelado 
matemático de la información no semántica, implementa diversas aproximaciones 
híbridas para la estimación de trayectoria basada en este tipo de información con el 
modelado apropiado y también explora el uso de características no semánticas para 
modelar el error de una trayectoria. 
 
La implementación de modelos combinados que permiten utilizar observaciones de 
cámaras o sensores LiDAR es la primera contribución de esta tesis. Los modelos 
propuestos han permitido mejorar la determinación de trayectorias tanto en 
entornos urbanos, en post procesado, como en aerotransportados con buena 
precisión (nivel centimétrico). La modelización del error de las trayectorias 
INS/GNSS implementada es relativamente sencilla, pero ha demostrado ser 
eficiente. Los modelos combinados se han probado, en postproceso, utilizando un 
ajuste de redes, con datos reales de cámaras métricas y de sistemas LiDAR tanto 
aerotransportados como embarcados en sistemas de cartografía móvil terrestre 
(TMM). 
 
La segunda contribución de esta tesis es la caracterización de los errores de las 
trayectorias TMM en escenarios urbanos poco propicios para el GNSS. La 
información no semántica extraída de las imágenes ha permitido, utilizando una 
orientación integrada, modelizar estos errores en ese entorno. Esta modelización 
abre la puerta al desarrollo de nuevos modelos de error más avanzados que van más 
allá de los modelos deterministas utilizados en la actualidad. 
 
La determinación de trayectorias en tiempo real utilizando características no 
semánticas, en entornos poco propicios para GNSS, también se explora en esta tesis. 
Para ello se ha implementado una aproximación basada en mínimos cuadrados 
secuenciales no lineales acoplados profundamente, utilizando posiciones GNSS, 
coordenadas de imagen y medidas inerciales. El enfoque propuesto se basa en una 
técnica de ajuste de redes utilizando las coordenadas imagen de los puntos de enlace 
y las posiciones y actitudes derivadas de las últimas épocas, para determinar los 
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parámetros de posición y actitud de la época más reciente. La aproximación se ha 
evaluado utilizando datos reales y simulados de una campaña de cartografía móvil 
sobre una zona urbana con largos períodos de interrupción de la señal GNSS, con 
resultados prometedores. 
 
Esta tesis también presenta una aproximación para mejorar la determinación de las 
trayectorias de los vehículos aéreos no tripulados (RPAS) utilizando datos aéreos de 
acceso abierto, obtenidos en el marco de un proyecto cartográfico nacional (PNOA). 
El desarrollo de esta metodología es otra contribución destinada a garantizar la 
coherencia geoespacial entre las ortofotos y los modelos digitales de elevación 
obtenidos con un RPAS y las ortofotos y modelos digitales del PNOA. Los 
resultados, utilizados por la documentación arqueológica multitemporal y 
multisensorial de alta resolución, muestran que pueden generarse productos 
fotogramétricos con una precisión similar (precisión a nivel de cm) a los generados 
con aproximaciones más complejas. 
 
Por último, pero no menos importante, esta tesis presenta un método de 
posicionamiento continuo tanto en interior como exterior con resultados 
alentadores (precisión a nivel de metros) en varios escenarios. Esta contribución abre 
la puerta a la mejora del seguimiento de los miembros de los equipos de protección 
civil y emergencias. Se trata de un campo de investigación abierto donde todavía no 
existe una solución ampliamente aceptada o adoptada. 
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Definitions 
 

Attitude is the orientation of a system in relation to a reference frame. 

 

A geodetic coordinate system is a coordinate system used to describe a position 

on or near the Earth's surface. 

 

A geodetic reference frame is a realization of a reference system through a set of 

points whose coordinates are monumented or otherwise observable in or near the 

Earth's surface. In other words, it is a ̀ `list'' of points with their position and velocity 

coordinates (e.g. ITRF96 of ITRS). 

 

A geodetic reference system is a reference system used to define at any time a 

triad of axes on or near the Earth's surface (e.g. ITRS). 

 

Global Navigation Satellite System (GNSS) is a system of satellites that are 

continuously transmitting (electromagnetic) signals that allow the users to determine 

their position over the Earth’s surface. 

 

Hybridization / Fusion. Sensor fusion is the process of merging data from 

multiple sensors to reduce the amount of uncertainty that may be involved in 

trajectory estimation. Several sensor fusion approaches have been proposed such as 

uncoupled, loosely, or tightly coupled approaches. An uncoupled algorithm 

considers VIO position, velocity and attitude plus GNSS computed position and 

determines position and velocity. A loosely coupled system also uses VIO position 

and velocity plus GNSS sensor computed position and velocity. It computes not 

only position and velocity but also VIO systematic errors (biases). A tightly 

coupled system uses VIO raw data (tie points, linear accelerations and angular 

velocities) and GNSS positions. It computes position and velocity and VIO 

systematic errors. 

 

An Inertial Measurement Unit (IMU) is a device composed of one clock, several 

angular rate sensors (usually three), several accelerometers (usually three) and a 

mechanical holding structure plus the needed electronics and communication 

systems to provide data. The data provided by an IMU are: time, angular rates (one 

for each angular rate sensor) and linear accelerations (one for each accelerometer). 

 

An Inertial Navigation System (INS) or Inertial Navigation Unit (INU) is a device 

composed of one IMU plus a navigation processor. The data provided by an INS is: 

time, position, velocity and attitude. 
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Inertial positioning/navigation is positioning/navigation based on inertial 

sensors. 

 

An inertial sensor is a device that reacts on the basis of Newton's laws of motion. 

There are two types of motion, translational and rotational motion, thus, there are 

two types of inertial sensors: accelerometers and angular rate sensors (such as 

gyroscopes.) The accelerometers measure the linear accelerations (forces) or the 

instantaneous rate of change of velocity suffered by the sensor (translational 

movement.) The angular rate sensors measure the instantaneous angular velocities 

suffered by the sensor (rotational movement). 

 

Measurement is the assignment of a number to a characteristic of an object. 

 

Model is a mathematical description of a system or a process. 

 

Navigation is real-time positioning. Sometimes navigation means the process of 

reading and controlling the movement of a craft or vehicle from one place to 

another. (Wikipedia) 

 

Observation is a numerical property of a physical system that can be determined by 

a sequence of physical or mathematical operations, 

 

Position is the place where something or someone is, often in relation to other 

things. 

 

Positioning is to know a system’s position, velocity, and attitude. 

 

The orientation parameters, orientation elements, transformation or transfer 

parameters are a set of values which define the relationship between two reference 

systems (or frames.) 

 

Real-Time Kinematics (RTK) is a differential GNSS technique which provides 

highly accurate and precise positioning by using carrier measurements and the 

transmission of corrections in real time from a base station (Adapted from 

Navipedia). 

 

A reference frame is a realization of a reference system through a set of points 

whose coordinates are observable. 

 

A reference system is a definition, a set of prescriptions and conventions together 

with the modelling required to define at any time a set of axes. 

 



 

 xix 

Velocity is a vector that denotes the change of position within a time rate with a 

directional component. 

 

Visual-Inertial odometry (VIO) is the process of estimating the trajectory 

(position, attitude, and velocity) of a platform (e.g., car, UAV) by using only the 

input of one or more cameras plus one or more Inertial Measurement Units (IMUs) 

attached to it. (Adapted from Scaramuzza and Zhang, 2019). 
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1.1. BACKGROUND AND RESEARCH JUSTIFICATION 

 

3D georeferenced data are widely used for many applications such as 3D city 
modelling, cadastral mapping, cultural heritage, facility management, and 
autonomous driving to mention a few examples. Technology progress, society’s 
needs and also a limited availability of funds to pay for them, have changed the way 
these data are collected, from the sensor point of view but also from the platform 
point of view. Nowadays, these data are collected using a wide range of imaging and 
positioning sensors, sometimes statically but mainly kinematically. Examples of 
these manned or unmanned platforms are planes, cars, bikes or more recently rovers, 
trolleys, backpacks, or even mobile phones (Figure 1). Moreover, robust, quick, and 
ideally automated data processing algorithms must be developed to derive useful 
information. In this context, getting precise and accurate trajectories, that is, a time 
series of positions, velocities and attitudes, is a key step to generate 3D 
georeferenced data.   

 

 

Figure 1. Examples of platforms for outdoor and indoor mapping. Commercial 

state‐of‐the‐art terrestrial mobile mapping system Leica Geosystems AG); (b) 
Google street view platforms (Google Inc.); (c) Commercial rotary wing RPAS 
(Parrot Drones SAS) (d) Vertical Take Off and Landing RPAS (CATUAV S.A). 
 
Terrestrial mobile mapping (TMM) is a relatively young technology, complementary 
to aerial and satellite mapping, that allows 3D georeferenced data generation from 
terrestrial moving platforms. TMM was born in the 1990s’ within a research context, 
and the first commercial integrated system appeared in 2007 (Fernández, 2012). 
TMM has gained popularity allowing easy access to geoinformation, although with 
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low accuracy, thanks to the Google Street view family systems (Figure 1 a)) and it 
has been boosted recently with experiences such as the Google Street view backpack 
(Figure 1 a) or the Leica backpack system for indoor mapping.  

Unmanned Aerial Vehicles (UAV) (Figure 1 c and d), also known as Remotely 
Piloted Aircraft Systems (RPAS), or drones, are a type of airborne platform that has 
emerged over the last 15 years (Colomina and Molina, 2014), (Nex et.al, 2022). 
Nowadays, UAVs represent one of the most prominent technologies for geospatial 
and remote sensing data generation thanks to their capability to carry out multiple 
miniaturized remote sensing (RGB, multispectral, LiDAR) and positioning (GNSS, 
IMU) sensors, keeping the platform and sensors’ costs moderate enough. Thanks to 
much lower cost than aerial (planes, helicopters) and satellite platforms, and their 
capability to fly close to ground, very high spatial but also high temporal (daily) 
resolution mapping products can be generated (Nex et.al, 2022).  

Common outputs from any TMM system are a set of oriented images, usually in the 
visible spectrum, or a point cloud. An oriented image is an image whose position 
and attitude are known. A point cloud is an unordered set of three-dimensional 
points expressed in a coordinate reference frame. In a mapping context, a point 
cloud is a 3D representation of a cartographic service, that is, a digital elevation 
model (DEM). Point clouds may also include some additional features such as laser 
return intensity or number of returns. They may also include RGB information if 
point clouds are generated from RGB camera images, also known as 
photogrammetric point clouds. This information can be also transferred from an 
RGB camera, in case of LiDAR-based point clouds, if the geometric information 
between LiDAR and RGB camera systems is known. Point clouds derived from 
TMM platforms, are denser than aerial or satellite point clouds due to object 
proximity, allowing improved or new applications, especially in urban environments 
(Figure 2).   Figure 2 shows a set of applications where TMM is a key technology as 
well as it suggests the required point cloud accuracy and point density for each of 
the applications (NCHRP, 2013). 

Primary outputs from RPAS or UAV mapping systems vary depending on the kind 
of imaging sensor included in the payload. UAVs that carry out RGB, multispectral 
or thermal cameras provide, after the processing of the raw imagery, very high-
resolution orthophotos, points clouds, Digital Surface Models (DSM) and DEMs.  
(Colomina and Molina, 2014), (Nex et al., 2022).  Point clouds derived from a RPAS 
camera, besides the 3D coordinates of the points, including for each point additional 
features such as RGB values, multiple band values or thermal information depending 
on the primary camera sensor. Orthophotos may also include multiple bands or 
channels depending as well of the primary sensors. For instance, RGB imagery 
includes 3 band or channels while thermal imagery has only band. The applications 
detailed in Figure 2, except for autonomous driving, are also valid for RPAS mapping 
and have been used in many studies in the literature. 
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Figure 2. Terrestrial mobile mapping applications and suggested point cloud 
accuracy(NCHRP, 2013). The colour of the frames in the figure conveys no meaning 
at all; they are used just to ease the identification of several groups of applications. 

These mobile mapping applications mentioned above can be grouped into three 
levels according to their point cloud accuracy requirements: high, medium and low 

(Fernández, 2012). Professional applications require high (𝜎<5cm, 1-sigma) and 

medium (𝜎<50cm-1m 1-sigma) (Fernández, 2012) accuracies. (NCHRP, 2013) 

suggests a similar point accuracy requirement expressed in 2‐sigma (Figure 2). In this 
figure, the term 3D accuracy is used to remark that expected accuracy corresponds 
to the norm of the error of the set of three coordinates, not to that of each individual 
component. Trajectory in TMM systems is mainly estimated by combining GNSS 
and inertial data (INS/GNSS). Point accuracies below 0.5 m can be translated to a 
few centimetres platform’s positions and to mili degrees for attitude.  

Trajectory estimation workflows in UAV/RPAS mapping vary significantly 
depending on the on-board imaging and positioning sensors (GNSS, INS/GNSS); 
on the capability to perform RTK or differential GNSS processing; on the ground 
control support and also it on budget constraints (Nex et.al, 2022). If the primary 
mapping sensor is a LiDAR, the trajectory is usually estimated using INS/GNSS 
and later the point cloud is generated using a direct georefencing approach. 
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Meanwhile, for UAS/RPAS camera-based systems, the approaches are similar to the 
ones used for trajectory estimation in aerial metric cameras, that is Indirect Sensor 
Orientation (ISO), Direct Sensor Orientation (DSO) (Blázquez and Colomina, 
2012), (Colomina and Molina, 2014), (Nex et.al, 2022) 

Robust and precise positioning with INS/GNSS‐based multi‐sensor systems in 

urban and/or non‐friendly environments, faces additional challenges than those in 
an open sky scenario, such as partial or total GNSS signal obstruction, GNSS signal 
multipath and low dynamics motion (Elhashash et. al, 2022). High-end TMM 
systems, with a cost in the range of several hundred dollars, cannot achieve the high 
and medium accuracy point cloud requirements in urban environments, mainly due 

to platform positioning errors. In post‐processing, several SW solutions have been 
proposed allowing to mitigate, to a certain degree, the positioning errors. However, 
achieving a high-performance positioning in urban scenarios, especially in multi-
temporal and long-term mapping ones is still challenging, motivating this PhD 
thesis.  

A key challenge for the RPAS mapping is the integration (i.e. the co-registration) of 
newly acquired RPAS imagery with aerial datasets, other geospatial datasets, or 
already generated RPAS orthophoto and Digital Elevation Maps. Due to platform 
positioning, system and sensor calibration errors, multi-temporal and multi-platform 
co-registration between the different geospatial datasets is complicated to achieve, 
also motivating this PhD thesis. 

In mobile mapping applications, modern systems can include one or several laser 
scanners and cameras. One of the aims of this thesis is to explore the benefits in 
terms of robustness, precision and accuracy that can be achieved thanks to using 

INS/GNSS-based positioning aided with non‐semantic image information from 

these sensors, especially in GNSS‐unfriendly environments. Moreover, this thesis 
aims to explore the benefits in terms of RPAS positioning that may be obtained 
thanks to using external positioning data to improve RPAS positioning and 
mapping, in a combined, network adjustment using common non-semantic 

geometric entities. In particular, non‐semantic information refers to the process of 
extracting relevant information or salient features from imaging sensors which can 
be useful for positioning, but useless for understanding what is depicted in the 
image. 

This thesis takes all steps necessary to derive useful observations from imaging 
sensors, to analyse them to detect and isolate outliers, and to model them 
appropriately to fuse them with inertial and GNSS observations or to fuse them with 
a derived trajectory from an auxiliary system. 

It is important to highlight and remark that this thesis is not focused on the 
development of algorithms for non-semantic information extraction. The topic is 
already being investigated by the Computer Vision community and it deserves by 
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itself a PhD thesis. In contrast, this thesis relies on and makes use of already available 
well-known algorithms and tools for this step.  

1.2. NON-SEMANTIC IMAGE INFORMATION  
 

Semantic information refers to the process of extracting relevant information or 
salient features from imaging sensors which can be useful for understanding what is 
in an image/s or a point cloud. Figure 3 a) and b) show two examples of semantic 
segmentation from an image and from a point cloud. Thanks to the semantic 
information, the reader can identify that the images or point clouds comprise a set 
of buildings, cars, a road and other elements. On the contrary, non-semantic image 
information refers to information that is present in an image but does not convey 
meaning or context. This can include things like geometric entities such as points, 
lines, planes, etc. Non-semantic information is not directly related to the content of 
the image and does not contribute to our understanding of what is depicted in the 
image but it can be very useful for positioning purposes. 

 

 

Figure 3. Examples of semantic segmentation. a) (Park et.al, 2018). b) (Hackel et.al, 
2017). 

The key point of the approximation lies in the fact that a geometric entity can be 
modelled in such a way that its defining parameters can be related to other spatial 
parameters, thus creating a relation that allows us to position ourselves. An example 
of this is the classic collinearity equations. 

For the sake of clarity, in this thesis, the meaning of the image feature term is 
restricted to a geometric entity, while, generally, an image feature is a characteristic 
or pattern that is present in an image. Image features can include things like lines, 
shapes, colours, textures, and other visual elements.  
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1.3. AIMS AND OBJECTIVES  
 

The general objective of this thesis is to explore the potential of hybrid positioning 
using non-semantic information. The achievement of this goal is subjected to the 
attainment of several specific objectives, which focus on different topics related to 
scientific and technical challenges, on multi-sensor-based trajectory estimation, and 
potential applications.  

 

O1. Develop and implement combined models allowing the use of 
observations from several imaging sensors from single and multiple platforms 
for hybrid positioning. 

 

O2. Post-processing trajectory improvement for TMM and RPAS mapping  

This includes, firstly, the modelling of the error of sensors or vehicle trajectories, 
using non-semantic image information in a combined, single network adjustment, 
using deterministic and stochastic errors. Secondly, the use of external positioning 
data to improve RPAS positioning and mapping, in a combined, network adjustment 
using common features/entities is also evaluated. 

 

O3. Trajectory estimation for GNSS-unfriendly environments 

This objective led to the following points: the exploration of the potential of hybrid 
positioning using non-semantic information for GNSS-denied or unfriendly 
environments; for efficient outlier detection and isolation capability using inertial 
data or the derived trajectory; and for modelling extracted information from visible 
camera images to be fused with inertial/GNSS measurements in a state-space 
approach (SSA) (real-time) and a tightly- coupled scheme. 

The proposed research seeks to contribute to the trajectory determination 
techniques in aerial and terrestrial mapping, by: 

 

1. Improving the image modelling (and so the estimated trajectory) by 

developing combined models allowing the use of observations from several 

imaging sensors mounted on one or more platforms (that is, images may 

originate in different sensors at the same time). 

2. Improving, in post-processing, the estimated trajectory using image 

observations with a deterministic and stochastic model. 
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3. Improving, in real-time, INS/GNSS trajectory estimation by means of 

aiding image observations through appropriate modelling and a tightly-

coupled approach. 

4. Providing tools for detecting indoor/outdoor transitions combining GNSS 

and Visual Inertial Odometry data. 

5. Reducing, in post-processing, the required ground control to achieve target 

performance. 

6. Improving the accuracy of the RPAS positioning (provided by low-cost 

GNSS sensors) by taking benefit from already existing aerial and reference 

datasets and high-accurate positioning sensors. 

 

1.4. DOCUMENT OVERVIEW 
 

This document is divided into eight chapters, starting with the current introductory 
part. The introductory chapter presented the background and motivation of the 
research, including an overview of the state of art and the scientific challenges 
tackled in the following chapters (from 2 to 7). These are composed of edited 
versions of international scientific publications and peer-reviewed conference 
papers. The research performed in the frame of this thesis covered different aspects 
of how and where the non-semantic image information can be used for multi-sensor 
positioning. This translates into four topics (Figure 4), namely mathematical 
modelling of non-semantic information to be used later in a hybrid-based trajectory 
estimation, trajectory error modelling, trajectory estimation in different 
environments and potential applications that can benefit from a hybrid-based 
positioning using non-semantic information. Each chapter starts with a preface that 
links the overall goal of the thesis with the topics covered in the specific chapter and 
its relationship with other chapters.  

Briefly, the research started in chapter 2 with the development of mathematical 
models to enable the use of non-semantic information extracted from LiDAR scenes 
and camera images and their application on hybrid multi-sensor trajectory estimation 
of aerial platforms (Objective O1). Chapter 3 explores the use of non-semantic 
image information for modelling trajectory errors in urban environments (Objective 
O2). Then, Chapter 4 combines the mathematical modelling already introduced in 
Chapter 2 and the knowledge about urban trajectory errors gained from Chapter 3 
to propose an approach to improve, in post-processing, the estimated trajectory of 
land vehicles in urban areas (Objective O2). This is done by adapting the 
mathematical models developed for an aerial case to use it for the urban case and by 
modelling the trajectory error of land vehicles as a linear positional and attitude shift. 
Chapter 5 is also devoted to the trajectory estimation of land vehicles in urban 
environments but explores additional modelling of non-semantic information and 
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analyses the feasibility of real-time hybrid trajectory using sequential non-linear least 
squares (Objective O3). The next two chapters (6,7) of the thesis present two 
examples of the potential of hybrid positioning using non-semantic image 
information, for applications that respond to technological progress and/or are 
driven by societal needs, which emerged during this PhD thesis. The first 
application, presented in Chapter 6, is the co-registration of multi-sensor and multi-
temporal RPAS and historical georeferenced datasets, and its application for the 
documentation and management of archaeological sites (Objective O2). The second 
application, covered in Chapter 7, is an affordable and robust seamless indoor and 
outdoor tracking of emergency staff (Objective O3). Finally, Chapter 8, presents the 
conclusions and the future lines of work. 

 

 

 

Figure 4. Diagram of the research topics included in this thesis and the relation 
between topics and chapters (framed numbers) 

 
 
 
 
  



 

 

 

 

 

 

Chapter 2 

 

POST PROCESSING TRAJECTORY 

IMPROVEMENT FOR AERIAL MAPPING  

  
A RIGOROUS MODELLING OF NON-SEMANTIC IMAGE 

INFORMATION FROM CAMERA AND LIDAR 

 
 

 

An edited version of:  
 
Angelats, E., Blázquez, M. and Colomina, I., 2012. Simultaneous orientation and 
calibration of images and laser point clouds with straight segments. In: International 
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 
39(B1), Melbourne, Australia, pp. 91–96. 
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This chapter sets out the starting point of the research done in the framework of 
this thesis. It presents a rigorous modelling to introduce the non-semantic 
information and its relation to the trajectory estimation in post-processing using a 
set of geometric entities or features (points, planes and lines) (Figure 5). The 
presented method is based on the use of straight lines as tie features for simultaneous 
orientation and calibration of Frame Camera (FC) and Airborne Laser Scanner 
(ALS) images. For the orientation and calibration of FC images, various methods 
have been investigated in the past. From those, FC Integrated Sensor Orientation 
(ISO) has been established as the most accurate and robust one. More recently, ISO 
block adjustment techniques have been successfully applied to ALS orientation and 
calibration. As of today, for the combined ALS and FC image data sets there are no 
well-defined procedures as compared to the other two scenarios. The proposed 
method essentially reduces to the use of straight-line segments as tie features 
between FC and ALS images. The concept is similar and compatible with the use of 
tie points in FC ISO and of planar surfaces in ALS ISO thus allowing for the 
simultaneous orientation and calibration of ALS and FC images that involve, point, 
lines, and planar surface tie features. In this chapter, the two observation equations 
that relate (1) FC image point measurements to straight lines and (2) distance-
parallelism measures between straight lines and planes, are described and derived. 
The concept and models are validated with a small FC and ALS block with real data.  

 

 

Figure 5. High-level workflow for post-processing trajectory improvement using 
non-semantic features extracted in a single, combined network adjustment. 

 

2.1. INTRODUCTION 
 

Orientation and calibration systems for photogrammetric and remote sensing 
instruments are fundamental components of modern mapping data processing 
systems. Orientation and calibration of frame and line cameras has been thoroughly 
investigated in the last decades. As a result, precise, accurate and reliable orientation 
and calibration procedures have been fielded and integrated into the 
photogrammetric and remote sensing production lines in companies and 
governmental agencies. With current INS, GNSS and image matching technologies, 
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the best results are obtained with the well-known Integrated Sensor Orientation 
(ISO) method. Typically, in addition to the ground and aerial control observations, 
in ISO, image measurements of ground points — the so-called tie points— are used. 
ISO, and in particular, sensor orientation and calibration with the bundle adjustment 
method using “tie straight lines” has also been proven to be feasible and efficient 
(Tommaselli, 1996, Habib et al., 2002). Analogously, though more recently, ISO has 
been proven to be the best — in terms of precision, accuracy, and reliability— 
method for the orientation and calibration of ALS scenes (Friess, 2006, Kager, 2004, 
Skaloud and Lichti, 2006). These three methods use planar surfaces as tie and control 
features. 

Today, many mapping projects combine photographic and laser scanner data. As an 
example, the Spanish “Plan Nacional de Ortofotograf´ıa Aerea” (PNOA) seeks to 
generate and/or update ´ orthophotos and digital elevation models for Spain with 
an update/revisit cycle of two years with airborne digital cameras and laser scanners. 
Usually, there are discrepancies between the point clouds derived from the 
photographs and those derived from the laser scanner data. The data may originate 
from the same or different missions, but even in the case of simultaneous 
photographic and laser data acquisition, discrepancies remain. Thus, it is usually the 
case that, in the same airplane, two different GNSS antenna-GNSS receiver-IMU 
setups, one for the camera and one for the laser scanner, coexist. The navigation 
data may later be processed with different software systems. This, together with the 
system and sensor calibration errors, ends up with inconsistent data sets that require 
manual editing and are suboptimal from the accuracy and productivity points of 
view. It is therefore necessary that methods be found, and procedures be fielded to 
guarantee the correctness and mutual consistency of data derived from the camera 
and laser scanner images. 

The feasibility of combined orientation and calibration of camera and laser scanner 
images by identifying features in the object space that can be “camera-to-laser 
scanner” tie features, are investigated. An ISO method where points, planar surfaces 
and straight-line segments link all types of images, from cameras and laser scanners, 
is envisioned. Co-registration between photographs and laser scanner point clouds 
using lines as common tie feature have already been investigated (Ronholm, 2011, 
Habib et al., 2005). (Habib et al., 2005) proposed two approaches for coregistration. 
The first approach uses the laser scanner straight lines as control lines in the 
photogrammetric ISO. The second approach derives a point cloud from 
photographs and then both point clouds are co-registered using straight lines. This 
chapter focuses on the orientation and calibration aspects rather than on the co-
registration ones and, consequently, on the use of raw laser scanner range-angular 
data rather than on the point clouds. In the rest of the chapter, the terms “FC 
images” and “ALS images” are used when referring to photographic images captured 
with frame cameras and to range-angle data sets captured with airborne laser 
scanners, respectively. 
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The chapter is organized as follows. Firstly, the main ideas behind the simultaneous 
network adjustment are introduced. Then, the proposed models as well as some 
mathematical concepts behind the uses of tie lines are explained in detail. The 
concept validation section presents the preliminary results of an adjustment obtained 
with real data. The last section summarizes the main conclusions of the proposed 
approach and discusses future improvements. 

 

2.2. PROPOSED APPROACH 
 

A method is proposed where a simultaneous FC, ALS and FC-ALS ISO is 
performed. In it, the imaging observations are image coordinates measured on FC 
data (the digital FC images) and selected measurements of the ALS images (ranges 
and scan-angles). The other observations are surveyed ground control points and 
aerial INS/GNSS-derived time-Position-Attitude (tPA) control. Ground control 
points can be used to derive indirect control observations like ground control lines 
and planes. The tie features are points (FC ISO), planar surfaces (ALS ISO) and 
straight-line segments (FC-ALS ISO). Points, planes and lines are defined by 3, 3 
and 4 independent parameters, respectively. 

The classical FC ISO approach is well known. From the observations mentioned 
above, estimates for the tie points (TP), for the exterior orientation parameters of 
the FC images (EO), for the self-calibration parameters of the camera, for the 
INS/GNSS shifts and possibly for other system calibration parameters are 
computed. In ALS ISO, the unknown parameters of the tie planar bounded surfaces 
—tie planes (TPL)— are estimated together with INS/GNSS shifts, ALS self-
calibration parameters and possibly other system calibration parameters. 

In the proposed FC-ALS ISO method, as mentioned, straight line segments —Tie 
Lines (TL)— are used as tie features between FC and ALS images. TLs tie FC and 

ALS images as follows. Assume that 𝑠 is a TL that can be recognized in the FC 

image 𝑐 and in the point cloud of an ALS image 𝑎, and also assume that 𝑠 is the 

intersection of two planar surfaces 𝑝1, 𝑝2 determined by points of the ALS image 

𝑎. Given 𝑠, 𝑐, 𝑎, 𝑝1 and  𝑝2, then three types of observation equations will be used. 
The first type of observation equation (a coplanarity equation) relates image 

measurements of the 𝑠 TL on the 𝑐 FC image with 𝑠 TL parameters, with the EO 

and self-calibration parameters of 𝑐. At least two of these observation equations are 
needed. The second type of observation equation (a line-in-plane relationship) 

compels 𝑠 to lie on planes. In general, there will be two observation equations of 

this type, for 𝑝1 and 𝑝2, although it is also possible to use just one TPL. The third 

type of observation equation relates TPLs — in this case 𝑝1 and 𝑝2— to the 
measured ALS points, i.e., relate the ALS range and scan-angle measurements, to 
the ALS self-calibration parameters, the INS/GNSS-derived tPA aerial control, the 
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INS/GNSS shift parameters and possibly other system calibration ones. There will 

be, for each 𝑝1 and 𝑝2, as many of these observation equations as ALS points that 
define the plane. Details of the models are given in the next section. 

In the combined FC-ALS ISO concept, ALS raw data instead of processed point 
clouds are used. 3D coordinates of point-cloud points are not explicitly computed: 
the ALS points that define the TPLs are parameterized with raw range and scan-
angle measurements. This is a key aspect of the concept as it allows for self-
calibration of ALS measurements. Self-calibration of FC and ALS image 
observations is the key to correct and consistent results.  

It is out of the scope of this research to discuss the measuring (TLs and TPLs 
extraction) and matching techniques that precede the ISO network adjustment stage. 
They are summarized for the sake of completeness. TLs are extracted from FC 
images by combining edge detectors and the Hough transform (Vosselman et al., 
2004). Once they are extracted, a matching procedure is performed to identify 
homologous TLs in different images. In the ALS ISO case, in this research, only 
planar surfaces belonging to building roofs are extracted. For this purpose, a region-
growing algorithm has been used. 

 

2.3. MATHEMATICAL MODELS 
 

In this section observation equations that are more relevant to the proposed 
approach are discussed and/or introduced. Ground control and INS/GNSS-derived 
aerial control observations will not be discussed as they do not change from what is 
already known and published (Blazquez and Colomina, 2012). Firstly, some notation 
conventions are presented and then the observation equations are developed. 

 

2.3.1. Some naming and notation conventions 
 

The Coordinate Reference Frames (CRFs) involved in the mathematical functional 

models of the chapter are detailed in Table 1. The CRF 𝑙 of a variable 𝑋 is denoted 

by a superscript symbol like 𝑋𝑙 . For a rotation matrix R𝑏
𝑙   , the subscript indicates 

the origin CRF while the superscript indicates the final CRF so it can be written 

𝑋𝑙 = 𝑅𝑏
𝑙 𝑋𝑏. For the sake of simplicity, 𝑋𝑒⃗⃗ ⃗⃗  = (𝑥, 𝑦, 𝑧)𝑒 is used instead of the formal 

𝑋𝑒⃗⃗ ⃗⃗  = [(𝑥, 𝑦, 𝑧)𝑒]𝑇 . 
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Table 1. Reference frames and coordinate systems. 

 

2.3.2. FC point collineartiy observation equations 

 
In FC ISO, the known collinearity observation equations are used to relate the FC 
image coordinate observations with the EO, tie point and self-calibration 
parameters. No modifications are required to use them in the current method. 

 

2.3.3. ALS plane observation equations 

 
Again, no modifications are required to use the also known ALS plane observation 
equation (Skaloud and Lichti, 2006) in the current method. In this equation, the 
observations are the two ALS image measurements (range and scan-angle) and the 
six tPA aerial control (position and attitude) ones. The ALS plane observation 
equation is 

                                                 𝑛𝑙⃗⃗  ⃗ ⋅ (𝑃𝑙⃗⃗  ⃗ − 𝑃0
𝑙⃗⃗⃗⃗ ) = 𝑑                                              (1)                     

where 

                                              𝑛𝑙⃗⃗  ⃗ = 𝑅𝑥(𝛿𝑙) ⋅ 𝑅𝑦(𝛿𝑝) ⋅ 𝑛0
𝑙⃗⃗⃗⃗⃗⃗                                   (2) 

                             𝑃𝑙⃗⃗  ⃗ = 𝑋𝑙⃗⃗⃗⃗ + 𝑅𝑎
𝑙 ⋅ [𝑅𝑥(𝑆𝜃 ⋅ 𝜃 + Δ𝜃) ⋅ (𝑟 + Δ𝑟⃗⃗⃗⃗ ) + 𝑎 ]

𝑎
              (3) 

and where 

                                    𝑅𝑎
𝑙 = 𝑅𝑒

𝑙 ⋅ 𝑅𝑙′
𝑒 ⋅ 𝑅𝑖

𝑙′(ℎ𝑒, 𝑝𝑖, 𝑟𝑜) ⋅ 𝑅𝑖′
𝑖 ⋅ 𝑅𝑎

𝑖′                                (4) 

 

For an ALS point, eq. 1 enforces it to belong to a planar surface through a direct 
georeferencing implicit step (eq. 3). The model extends the one proposed by 
(Skaloud and Lichti, 2006) with an additional scale factor self-calibration parameter 
for the scan-angle observation because our experience reveals its significance. The 
Hessian form of a plane is used to parametrize the planar surface. The plane is then 
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characterized by a unit normal vector 𝑛𝑙⃗⃗  ⃗ = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
𝑙
 (eq. 2) and 𝑑, the 

orthogonal distance between the plane and the CRF origin. Table 2 summarizes the 
mathematical symbols of eqs. 1 to 4. 

 

 

Table 2. Symbols in the ALS plane observation equation. 
 

 

2.3.4. 3D straight line parameterization 
 

Straight lines are elementary mathematical objects with many possible 
parameterizations. Yet another method is proposed which is convenient for 

numerical computations and whose four universal parameters (𝑝, 𝑞, α, β)can be 
used regardless of the line location and direction. This is achieved with the help of, 

for each line, some auxiliary values: an auxiliary CRF origin 𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ close to the straight 

line and rough approximations α0 and 𝛽0 of the straight-line director vector. With 
this simple strategy, numerical singularities are avoided, and a unique analytical 
formulation is used. 
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The point 𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ is taken, for instance as one of the points in the interest area, or the 

mean value of several points in this area. α0 and 𝛽0 are auxiliary constant angles so 
that the rotation. 

𝑅(α0, β0) = 𝑅𝑧(α0) ⋅ 𝑅𝑦(β0) 

brings the vector �⃗� = (1,0,0) to an approximation of the director vector of 𝐿 

(Figure 6). The intersection point γ⃗ = (0, 𝑝, 𝑞) between the plane {𝑋 = 0} and the 
line is obtained by applying the previous translation and the inverse of the rotation 

𝑅(α0, β0) to 𝐿. A point 𝑃𝐿
𝑙⃗⃗⃗⃗  of 𝐿 can thus be obtained, for some µ as  

 

                                      𝑃𝐿
𝑙⃗⃗⃗⃗ − 𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ = 𝑅(Λ) ⋅ γ⃗ + μ ⋅ 𝑅(Λ) ⋅ �⃗�                               (5) 

with  

𝑅(Λ) = 𝑅(α0, β0) ⋅ 𝑅𝑧(α) ⋅ 𝑅𝑦(β), 

 

where (𝑝, 𝑞, α, β) are the characteristic parameters of the straight line. The angles 𝛼, 

𝛽 use to be quite small by construction. 

 

Figure 6. Straight line characterization in object space. 

 

 

2.3.5. FC line coplanarity observation equation 
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This model relates the parameters (𝑝, 𝑞, 𝛼, 𝛽) of a 3D line, the EO parameters of 

an image, and the image observations (x, y) of a point of the line. It has been derived 
from the collinearity condition and the 3D straight line parameterization presented 
in the previous section 3.4. Eq. 6, and its equivalent eq. 7, are the coplanarity 
equations where the straight lines are used as tie features. Table 3 details the 
mathematical symbols of these equations that are not introduced in this subsection. 

 

Table 3. Symbols in the FC line coplanarity equations. 
 

 

For some λ, μ  

                             𝑋0
𝑙⃗⃗⃗⃗ + λ𝑅𝑐

𝑙(Γ)(𝑥 + 𝑓 )
𝑐
= 𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ + 𝑅(Λ)(μ ⋅ �⃗� + γ⃗ )                  (6) 

 

𝜆 and 𝜇 exists, if and only if  

 

                 det (𝑋0
𝑙⃗⃗⃗⃗ − 𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ − 𝑅(Λ)γ⃗ ,  𝑅𝑐
𝑙 (Γ)(𝑥 + 𝑓 )

𝑐
,   𝑅(Λ)�⃗� ) = 0                         (7) 

 

Eq 7 is the FC line coplanarity observation equation. In practice, for this model to 

be of any value, the FC self-calibration function 𝑠, 𝑠 = (𝑠𝑥 , 𝑠𝑦), has to be included 

to replace 𝑥𝑐⃗⃗⃗⃗  by its calibrated value (𝑠𝑥(𝑥, 𝑦), 𝑠𝑦(𝑥, 𝑦), 0)
𝑐
. 

 

2.3.6. Line-in-plane observation equations 
 

Given the parameterization of section 3.4, the observation equations that express 
that a straight line belongs to a plane can be easily deduced and result in the two 
following equations. 
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                                                 (𝑛𝑙⃗⃗  ⃗)
𝑇
⋅ (𝑅(Λ) ⋅ �⃗� ) = 0 + 𝑣𝑜                              

(8) 

                                      (𝑛𝑙⃗⃗  ⃗)
𝑇
⋅ (𝑃𝐿0

𝑙⃗⃗ ⃗⃗  ⃗ + 𝑅(Λ) ⋅ γ⃗ − 𝑃0
𝑙⃗⃗⃗⃗ ) = 0 + 𝑣𝑑                     (9) 

where the covariance matrix of the “observation” vector (0,0) and the residual 

vector (𝑣𝑜, 𝑣𝑑)  are a mechanism to respectively tune and assess the actual degree 
of coincidence of the actual line and plane. 

 

2.4. CONCEPT VALIDATION 

 
In order to validate the proposed concept, real data were collected, and software was 
developed. The data originate from two flight campaigns over an area near 
Castellbisbal (Catalonia, Spain). In these campaigns high-end airborne laser scanners 
and digital metric camera systems were flown. As for the software, an experimental 
“model toolbox” with the models discussed before was developed at the former 
Institute of Geomatics (currently CTTC) and run on the generic network adjustment 
platform GENA (Colomina et al., 2012). 

Since the aim of this chapter is not an exhaustive study, a small subset of the original 
data has been used to validate the feasibility of simultaneous block adjustment for 
calibration and orientation of FC and ALS images. The main characteristics of the 
camera and laser scanner systems as well as the test configurations, are detailed in 
Table 4.  

The precision of the observations can also be found in Table 4. Figure 7 shows the 
block layout. Notice that from the FC-derived data, 4 tie lines have been extracted. 
These tie lines correspond to building ridges. On the other hand, from the ALS-
derived data, 6 planes have been extracted: 4 of them are our tie planes and the other 
2 are ground control planes. The tie planes correspond to 2 building roofs and the 
ground control planes to a football field that was surveyed with standard differential 
GNSS techniques. The straight lines that result from the intersection of the ALS tie 
planes of the same building roof are FC tie lines. 
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Table 4. Castellbisbal block geometric configuration and precision of the 
observations. 
 

With the given data, the configurations described in Table 5 have been processed. 
Block configuration FC TP performs a classical FC ISO using all available tie points 
and ground control points (GCPs). Test FC TL adds 4 straight lines as tie lines. This 
configuration allows us to validate the coplanarity equation model with tie lines. As 
for the ALS tests, an ALS orientation and calibration adjustment without FC data is 
performed using planes as tie features with two ground control planes (GCPLs). The 
ALL configuration combines FC data with ALS data using tie points, ground control 
points for the FC ISO, tie planes and ground control planes for the ALS ISO and 
tie lines for the FC-ALS ISO. This test allows us to test simultaneously all developed 
models. Test ALL nc seeks to explore the simultaneous adjustment without using 
ground control planes in the ALS ISO adjustment. It also helps in understanding 
how laser scanning can benefit from photogrammetry in order to estimate the ALS 
self-calibration parameters. 
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Figure 7. Castellbisbal block layout. 

Besides the EO parameters, one INS/GNSS shift for the FC subblock is also 
estimated as well as corrections in the boresight matrix between the IMU and the 
camera (Table 6). In the FC ISO, self-calibration parameters are not estimated due 
to the small number of photographs. As for the ALS ISO calibration, note that the 
geometry of the sub-block is not strong enough with only one scan line. For the 
proposed test, self-calibration of ALS refers to the estimation of the self-calibration 
parameters ∆r, ∆θ and S. In this case, an INS/GNSS shift cannot be estimated 
because it is strongly correlated with ∆r as well as with the offset between the ALS 
scan mirror and the IMU. The boresight matrix cannot be estimated because there 
is only one scan line and the boresight matrix is strongly correlated with ALS self-
calibration parameters. 

 

 

Table 5. Observations of the block configurations. 
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Table 6. Estimated parameters of bloc configurations. 
 

The test results are shown in Table 7 and Table 8. As it was expected, due to the 
small data set and GCP configuration, FC TP and FC TL results show a similar 
performance in terms of accuracy (Figure 8) and precision (Table 7) for the EO 
parameters and tie points. The results of tests cases ALS and ALL show that the 
simultaneous block adjustment works and, apparently, allows for a slightly better 
determination of ALS self-calibration parameters in terms of precision although this 
result is inconclusive given the small differences and the small size of the experiment 
(Table 8). In general, the tests show the potential of using tie lines to link the camera 
and laser scanner images. In test ALL nc, the simultaneous adjustment is carried out 
without using ground control planes. The results indicate that it is possible to 
estimate ∆θ, S and ∆r, with the same performance as the ALS case. 

 

 

Figure 8. RMSE of ChP’s. 
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Table 7. Test results: FC. 
 

 

Table 8. Test results: ALS. 
 

2.5. CONCLUSIONS AND FURTHER RESEARCH 
 

The results presented in this chapter show that with this combined FC, ALS and 
FC-ALS ISO concept, the performance in terms of precision and accuracy is 
maintained. The results also suggest that the ALS self-calibration can benefit from a 
combination with photogrammetric data. Nevertheless, the results of this chapter 
are only a proof of concept because of the size of the data sets. Further work must 
be done to validate the presented concept and models with larger data sets and to 
understand the behaviour of FC and ALS self-calibration parameters in combined 
adjustments as well as the requirements in terms of ground control points and 
planes. 
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This chapter tackles a initial step of any strategy aiming to improve the trajectory of 

terrestrial mobile mapping systems in urban environments. An approach to model 

the error of terrestrial mobile mapping trajectories, combining deterministic and 

stochastic models is presented. Due to urban specific environment, the deterministic 

component is modelled with non-continuous functions composed of linear shifts, 

drifts or polynomial functions. In addition, a stochastic error component for 

modelling residual noise of the trajectory error function is introduced. The first step 

for error modelling requires knowing the actual trajectory error values for several 

representative environments. In order to determine as accurately as possible, the 

trajectories error, (almost) error less trajectories are estimated using extracted non-

semantic features from a sequence of images collected with the terrestrial mobile 

mapping system and from a full set of ground control points. Once the references 

are estimated, they have been used to determine the actual errors in terrestrial mobile 

mapping trajectory. The rigorous analysis of these data sets has allowed us to 

characterize the errors of a terrestrial mobile mapping system for a wide range of 

environments. The proposed approach has been evaluated using real data from a 

mobile mapping campaign over an urban and controlled area, with harmful GNSS 

conditions.  

 

3.1. INTRODUCTION 

 

Technology progress, society needs and also a limited availability of funds, have 

changed the way 3D data are collected, not only from the acquisition sensors’ point 

of view but also from the platforms’ point of view. Examples of these manned or 

unmanned platforms are satellites, planes, cars, bikes or more recently rovers, 

trolleys or even mobile phones. Terrestrial mobile mapping (TMM) is a technology, 

complementary to aerial and satellite mapping, that allows 3D georeferenced data 

generation from terrestrial moving platforms. TMM has gained popularity allowing 

easy access to geoinformation, although with low accuracy, thanks to the Google 

street view family systems and it might be boosted with experiences such as the 

Google tango project for indoor mapping. 

Nowadays, many applications such as 3D city modelling, cadastral mapping, cultural 

heritage, facility management, and autonomous driving take benefit of 3D 

georeferenced data, or point cloud (Kutterer, 2010). The applications mentioned 

above can be grouped into three levels according to their point cloud accuracy 

requirements: high (<5 cm, 1-sigma) and medium (<15 cm-50 cm, 1-sigma) 

professional applications and mass-market applications (<50 cm – 1 m, 1-sigma) 

(Fernández, 2012). 
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Getting precise and accurate trajectories, that is, a time series of positions, velocity 

and attitudes, is a key step to generate precise and accurate 3D georeferenced data. 

A point cloud is generated by combining the platform trajectory together with laser 

scanner measurements with direct georeferencing techniques or from a set of images 

with known position and attitude. Centimetric level discrepancies during trajectory 

determination can lead to differences between 10 and 50 cm between point clouds 

of overlapping areas in an urban scenario (Angelats and Colomina, 2014). 

Currently, the trajectory of high-end TMM systems is mainly estimated by 

combining GNSS, inertial and odometer data. Robust and precise positioning in an 

urban scenario, faces additional challenges than an open sky scenario as partial or 

total GNSS occlusions, or multipath, may occur. This causes an error in the platform 

or vehicle trajectory determination. Other sources of error can be Inertial 

Measurement Unit (IMU) modelling errors or system calibration errors. The system 

calibration error is an error in the determination of lever arm and boresight between 

IMU and camera or between IMU and laser scanner. The Integrated Sensor 

Orientation (ISO) method has been proven to be feasible and efficient for IMU-

camera boresight calibration of mobile mapping systems (Kersting et al., 2012), for 

the IMU-laser boresight calibration with single and multiple laser scanners (Skaloud 

and Lichti, 2006), (Chan et al., 2013). 

The need for high performance in terms of accuracy has made apparent the potential 

of using measurements derived from imaging sensors for improved trajectory 

estimation. In other words, imaging sensor measurements can be instrumental in 

estimating the parameters of error models that extend the trajectory models. In 

particular, cameras and laser scanners can help improve the trajectory at two 

different levels: sensor-level error modelling or trajectory-level error modelling. In 

the context of aiding at the sensor level, visual measurements can be used to correct 

the drifts of the primary navigation sensors such as an IMU. Depending on a number 

of factors, one error modelling strategy may be more appropriate than the other. In 

this research, aiding at trajectory level refers precisely to the modelling of trajectory 

errors (like error in position or attitude) for a given trajectory, previously estimated 

by other system, for instance, but not necessarily, an INS/GNSS system (Angelats 

and Colomina, 2014). The first approach is suitable for applications that require real-

time navigation. The second approach is intended for the aforementioned 

applications to refine the trajectory in post-processing. 

The first approach, usually known as visual aiding, refers to the computation of 

orientation parameters through consecutive, overlapping images by means of 

measurement of tie points, i.e., photogrammetric observations of the same object 

point in two or more images. Alternatively, planes or cylinders extracted from laser 

scanner images, can also be used as tie features, especially in urban or indoor areas, 

where they are very common. Feature extraction and matching algorithms are 
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commonly combined, with RANSAC procedures that aim to perform outlier 

detection and removal using solely image observations by means of position and 

attitude estimation (Nister, 2013), (Scaramuzza and Fraundorfer, 2011). More in 

detail, these algorithms estimate the relative orientation between two images, also 

known as relative pose, using n pairs of matched features, selected randomly among 

the full matched pairs. (Scaramuzza, 2011) proposes a method where the camera 

pose can be estimated with only one-point correspondence by exploiting 

nonholonomic constraints of wheeled vehicles and a histogram-based voting 

strategy. Other approaches combine derived trajectory or inertial data to predict 

where a point feature should appear in the second image (Veth, 2011), (Leutenegger 

et al., 2013). 

Once all outliers have been detected and isolated, the camera or vehicle trajectory 

can be recovered by concatenating the estimated relative positions and orientations 

using k inliers from overlapping images. Several methods to estimate the navigation 

states using only images or using image and object observations are reviewed in 

(Scaramuzza and Fraundorfer, 2011). These approaches are usually referred to visual 

odometry (VO) or Structure from Motion (SfM) in the robotics and computer vision 

community. Alternatively, (Taylor et al., 2011) presented two strategies to use an 

IMU as a primary positioning sensor and to control inertial drift with visual 

information during the filtering step. The two approaches are implemented using an 

Unscented Kalman Filter estimation method. The first approach imposes a 

geometric constraint using image coordinates, while the second one takes the benefit 

of jointly estimating a set of object coordinates together with navigation states. 

(Angelats et al., 2014) presents a method to robustly detect and isolate outliers in 

camera images using inertial-based trajectory in a first step to navigate in GNSS-

unfriendly environments, using corresponding tie points measurements together 

with inertial and GNSS measurements, when available, in a second step. (Schaer and 

Vallet, 2016) proposes to improve point cloud registration by recomputing the initial 

platform trajectory with position updates derived from ground control points 

identified in the point cloud. 

Alternatively, the trajectory can be refined, in a single network adjustment. In this 

approach, the complete trajectory is refined simultaneously for all epochs, using 

observations extracted from images or point clouds from multiple imaging sensors 

and also ground control points. The trajectory error can be modelled using simple 

error models such as linear or polynomial segments (Angelats and Colomina, 2014). 

(Gressin et al., 2012) proposes a method where the Iterative Closest Point algorithm 

(ICP) is an initial step for trajectory improvement. The overall registration is 

performed improving the original platform trajectory. (Elseberg et al., 2013) deals 

also with laser-to-laser registration by improving the platform trajectory. The 

trajectory is improved using semi-rigid Simultaneous Localization and Mapping. 
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The previous techniques rely heavily on the capability to extract and match visual 

features or on having a dense network of ground control points. In addition, they 

make the assumption that visual measurements can be extracted and matched 

properly and that they can be extracted and matched continuously along the image 

sequence or point cloud. Apart from that, the trajectory error model using in the 

network-based approach, may model locally well the error but not globally. 

Regarding the sequential-based approach, a not proper stochastic characterization 

of observations derived from imaging sensors, might produce a filter divergence, 

and, so, an estimated trajectory worse than the original one.  

For that reason, understanding how the behaviour of TMM trajectory in an urban 

environment is needed. This chapter is focused on the modelling aspects rather than 

overall trajectory refinement, that is, to study how is the trajectory error of a TMM 

in an urban environment. The final goal of this research is to provide knowledge to 

improve a trajectory of TMM system by rigorous modelling its error in two weak 

scenarios: when the available ground control points are limited and in scenarios with 

a weak geometry or non-continuous capability to extract and match non-semantic 

features.  

The chapter is organized as follows. Firstly, the main ideas of the proposed approach 

are presented. Then, the definition of non-semantic features and their role in 

trajectory error modelling are introduced. The next subsection describes each of the 

error components of the trajectory. The experimental results section presents the 

results using real data from a terrestrial mobile mapping campaign with long GNSS 

outages. The last section summarizes the conclusions of the proposed approach and 

discusses future improvements. 

 

3.2. PROPOSED APPROACH 

 

In this chapter, an approach to model trajectory errors of TMM in an urban 

environment is presetedn. A real vehicle trajectory is a continuous function but the 

estimated one will probably be a discontinuous one. The error might be caused by 

GNSS multipath, IMU mismodelling or GNSS satellites occlusions. An approach to 

model the trajectory error with a hybrid model, that includes a non-continuous 

deterministic component and a stochastic one, is proposed. 

To face this approach, the proposed workflow is presented in Figure 9. Reference 

trajectories are estimated using the initial platform trajectories estimation together 

with all raw observations from imaging sensors and all available ground control 

information. These references will be estimated using block adjustments including 

observations from multiple imaging sensors. In order to have useful observations 
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from imaging sensors, non-semantic features from a sequence of images or from 

point clouds will be used. These non-semantic features describe certain attributes or 

properties of geometric objects or entities. These features allow us to identify and 

match common objects between images, between point clouds, or for instance 

between images and point clouds. These common or tie entities can be related 

through image, object coordinates or both, with the trajectory components using 

well-known models such as the collinearity equations.  

 

 

Figure 9. Proposed workflow. 

 

Given the reference trajectories for several environments, the trajectories errors are 

obtained by subtracting TMM estimated trajectories from reference once.  

Finally, for each environment, the trajectory error will be modelled as a non-

continuous function. The analysis of the residuals of this identification will provide 

the stochastic characterization of the error. 

3.3. TRAJECTORY ERROR MODELLING 

 

3.3.1. Non-semantic image features 
 

In this research, the capability of identifying common or tie features between images 

and/or between point clouds is exploited. Instead of exploiting the semantic 

content, the use of non-semantic features is proposed. By non-semantic features are 

understood as those that provide useful data to solve a certain task, such as 
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positioning, but without understanding the image or scene content. Examples of 

common tie features, used in our approach, are basic geometric primitives such as 

straight-line segments, points, planes and ellipses.  

In the last years, extensive research for extracting and matching primitives such as 

points and lines from a sequence of camera images has been done. Usually, these 

features are referred to as visual features (Weinmann, 2012). However, different 

features can be extracted and matched also from point clouds such as planes, 

cylinders, toroids, to mention a few. Moreover, new models combining different and 

joint camera-laser features can be exploited (Angelats and Colomina, 2014). For that 

reason, the use of the term non-semantic features is preferred instead of visual 

features to refer to features extracted directly or indirectly from imaging sensors.  

These primitives are usually described with a set of attributes such as intensity, 

colour, the spatial relation with their local neighbours, but such attributes can also 

describe the aforementioned primitives’ response to a certain frequency band or 

temporal stability. These sets of attributes are used to identify, and match 

homologous features in a sequence of images, or between overlapping point clouds. 

Nevertheless, these features themselves cannot provide any relevant information to 

describe or understand the scene. 

3.3.2. Reference trajectory generation 
 

A reference trajectory is generated using the Integrated Sensor Orientation 

approach. In it, all observations from non-semantic features, coming from single or 

multiple sensors, are processed together with trajectory (tPA) and ground control 

observations, in a network adjustment. It is referred to as camera-ISO when the 

imaging observations are tie points extracted from camera images. Alternatively, the 

reference trajectory can be estimated using laser only (ranges and scan angles) or 

combined camera-laser observations (ranges, scan angles and image coordinates).  

These observations belong to the following tie features, planar surfaces for the laser 

ISO, and planar surfaces and straight-line segments for the camera-laser ISO. In 

laser-ISO and camera-laser ISO, ground control points can be used to derive indirect 

control observations like ground control lines and planes. The ISO might also 

provide corrections in the boresight and lever arm between the IMU and the camera 

or between the IMU and the laser scanner and also correction on camera self-

calibration parameters. Not proper geometric calibration of imaging sensors and also 

erroneous system calibration values might also introduce a systematic error 

component. 
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3.3.3. Deterministic model 
 

Temporal geometric variation of the GPS and other GNSS constellations, produces 

a shift of the estimated positions from overlapping strips. Besides the temporal 

geometric variation of GNSS, in an urban scenario, GNSS signals may be affected 

in several ways. For example, some of the signals can be completely blocked in 

several epochs, causing a GNSS receiver cannot compute a solution and so 

introducing a drift in the platform trajectory. On the other hand, the GNSS receiver 

can receive direct or non-line-of sight multipath introducing an additional error into 

the trajectory.  

In order to mitigate the impact of these factors, as part of the trajectory error model, 

a non-continuous function that minimizes the residuals when fitted with the error 

data is introduced. Typically, this function will be built upon linear shifts, drifts or 

polynomial functions (Figure 9, blue and red). The discontinuities of the function 

will be mainly due to significant changes in constellation or problems with the 

odometer sensor. 

 

Figure 10. Examples of deterministic and stochastic model. Linear shift (blue), three 

order polynomio (red), white-noise (green). 

 

3.3.4. Stochastic model 
 

The stochastic model will be determined after the analysis of the residuals generated 

when fitting the previous non-continuous function to error measurements. It is 
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expected that these residuals (Figure 9, green) behave as white noise or Gauss-

Markov stochastic process. 

 

 

3.4. CONCEPT VALIDATION 

 

3.4.1. Data set description 
 

The proposed concept was tested and validated using real data from a professional 

mobile mapping system campaign over a controlled area of Dortmund (Germany). 

The surveyed area was an urban and GNSS-challenging scenario, with variable and 

degraded GNSS conditions. However, it was an excellent dataset from the imaging 

sensors’ point of view with many structured buildings and a large variety of features. 

The mobile mapping system was an Optech Lynx system, from TopScan GmbH, 

that included two laser scanners and two cameras. The cameras were mounted 

looking to each side of the street. The system was mounted on a van, and it was 

driven over a controlled area for three hours, resulting in 11 overlapping strips. The 

areas of interest were additionally surveyed to provide a dense network of ground 

control points. After the survey, the system trajectory was computed using a tightly 

coupled approach combining differential GNSS, IMU and odometer measurements. 

The areas used for testing the approach are shown in Figure 11. Two different 

sections or blocks, marked with blue and orange ellipses, were identified. Each block 

configuration was selected to represent different situations/configurations that can 

occur in urban environments with TMM platforms. In an urban environment, a 

TMM vehicle can survey the area of interest several times with the same vehicle 

driving direction (orange case) or it can survey an area in opposite driving directions, 

and thus, exploiting and taking benefit from geometric diversity (blue). 

Table 9 provides the main characteristics for each of the sections, in terms of used 

equipment, number of strips, ground control support and number of tie points. 

Images from four different strips have been used to generate the reference trajectory 

for the blue section. The vehicle surveyed the area in the same direction three times 

and the last one in the opposite direction. The surveyed street in the orange block is 

a one-way street; thus, camera images were acquired two times in the same driving 

direction. 

The test areas had a dense network of ground control points and their distribution 

also varied between sections. For the blue section, 13 points provided ground 

control, 7 of them placed on the left side of the street. Regarding the orange block, 
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8 ground control points were used, 5 placed on the right side of the street and 3 of 

them on the left side. The number of GNSS satellites changed considerably within 

and between overlapping strips. The number of satellites ranged from one to seven 

for the blue section, with 70% of the epochs with equal or less than 3 satellites 

(Figure 12). The GNSS geometry for the orange section was a bit worse than the 

blue one with all epochs with three or less satellites. Note that in Figure 4, the tracked 

satellites for a blue strip with elevation angles higher than 15 degrees are shown in 

blue, cyan and green. The remaining colours show visible satellites below 15 degrees 

and are not recommended to be used for position estimation. In addition, several 

GNSS satellites came in or out within a few epochs in the same strip. 

 

 

Figure 11. Dortmund test areas. 
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Figure 12. Example of tracked GPS L1 satellites for one strip of the blue section. 

 

 

 

Table 9. Dortmund block geometric configuration. 

 

The reference trajectory was estimated by processing the collected information with 

the Agisoft Photoscan software (Agisoft, 2022). From both camera images, a dense 

set of points was extracted to be used as a non-semantic feature in the adjustment. 

The use of both cameras allowed us to work with a stronger geometry. In order to 

improve the adjustment, the system trajectory was also used as observation.  
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The geometric calibration values, as well as the lever arm and boresight between the 

cameras, and the IMU, were previously estimated with Agisoft Photoscan using a 

good GNSS conditions data set. The estimated geometric calibration values are the 

focal length, principal point, radial and tangential distortion coefficients. That subset 

included several strips in different directions to help to decorrelate internal camera 

parameters from the system calibration and from the exterior orientation 

parameters. In-house software was developed for estimating trajectory error 

components, this is, to compare system and reference trajectories. 

 

3.4.2. Experimental results 
 

Using the reference trajectory and the system trajectory, a set of trajectory error 

values were computed. Figure 13 shows the error of the cross-track axis 

corresponding to four overlapping strips (blue, red, magenta and green). A position 

mean bias between strips can be clearly identified due to temporal changes in GNSS 

constellation. It is important to note here that this bias is smaller between the third 

and the fourth street because of their time difference (less than 5 minutes). Between 

the first and the second strip there is a difference of 38 minutes, and between the 

second and the third it is 12 minutes. Besides the bias, short drift periods broken by 

several peaks in the trajectory error can also be identified. These peaks are mainly 

caused by discontinuities in the number of visible GNSS satellites. Moreover, the 

entrance of a GNSS satellite can produce several epochs of instability during 

platform trajectory estimation. This effect can be clearly identified in the magenta 

strip where two big peaks are present. 
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Figure 13. Error component for the heading from the four overlapping strips of 

blue section. 

 

The error of the heading component of the blue section is shown in Figure 14, 

following the strip colour scheme of Figure 13. In contrast to the position error, a 

significant bias between strips cannot be observed. This is because the platform 

attitude estimation step relies mainly on IMU observations. However, a new GNSS 

position after several epochs of inertial-based trajectory might introduce also 

changes in the attitude. This might explain the relevant peak that can be observed in 

the magenta part of Figure 14. 

 

Figure 14. Error component for the heading from the four overlapping strips of 

blue section. 
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The analysis of the error leads us to model it as a discontinuous third-order 

polynomial. The discontinuities within this function were defined regarding changes 

in strips and also changes in the number of available satellites in each section within 

a strip. On the other hand, a single stochastic component for each component per 

strip is computed. Figures 15 and 16 show errors in the track axis marked with blue 

dots for one strip of the blue and one of the orange block.  

 

 

Figure 15. Trajectory error and deterministic part decomposition for the track-axis 

component of a strip of the blue section. 

 

Figure 16. Trajectory error and deterministic part decomposition for the track-axis 

component of a strip of the orange section. 
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The figures also show the different segments of the error function. In the examples, 

the deterministic component was split, within a single strip, into three different 

segments (red, green, cyan) for the blue section and two (red and green) for the 

orange section. The comparison of both figures reveals that, at least for the selected 

sections, the error behaviour is similar, with short drift periods and several 

discontinuities. The plots for the remaining components are not shown because of 

their similarity with the presented one. 

After the analysis of the residuals generated when fitting the previous deterministic 

segments to error measurements, the stochastic model was determined. Figures 17 

and 18 show the residuals for each of the error components, corresponding to a 

single strip for both blue and orange sections. The stochastic component of the 

along-track axis component is shown in red, the cross-track in blue while height is 

shown in green.  

In Table 10 the number of selected continuous segments for each test is presented 

together with the standard deviation values of the stochastic part, for each strip and 

each component. The figures reveal the presence of a stochastic component that can 

be modelled, in a first approximation, as a white noise process. It can be observed 

that the stochastic component is lower for the height than for the planimetric 

components. This can be explained by the use of non-holonomic constraints to 

reduce the height variation during the initial platform trajectory estimation. In 

addition, it can be observed that stochastic components are similar in terms of 

standard deviation for the two sections.  

 

 

Figure 17. Stochastic components of a single strip of blue section. 
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Figure 18. Stochastic components of a single strip of orange section. 

 

 

Table 10. Stocastic component characterization. 

As it was expected, the stochastic component is independent of the street or area 

orientation. Besides the comparison between streets, the magnitude of stochastic 

components, both for position and attitude, remains similar within strips of the same 

section. The results presented in Table 9 indicate the driving direction has not a 

significant impact. 

 

3.5. CONCLUSION AND FURTHER RESEARCH 

 

The rigorous analysis of a set of reference trajectories against the TMM estimated 

trajectories allowed us to characterize the errors of a TMM system for a wide range 

of environments, and allows exploring in the near term, new and innovative methods 

for improving TMM trajectory. 
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The reference trajectory is obtained using extracted non-semantic features from a 

sequence of images and from a full set of ground control points. The trajectory error 

is modelled using hybrid, that is, combining deterministic and stochastic 

components. The deterministic component can be modelled as a non-continuous 

function composed by linear shifts, drifts or polynomial functions. In addition, a 

stochastic error component for modelling residual noise of the trajectory error 

function is introduced.  

The proposed approach has been evaluated using real data. The data came from a 

mobile mapping campaign over an urban and controlled area of Dortmund 

(Germany), with harmful GNSS conditions. The results show the suitability to 

decompose trajectory error with non-continuous deterministic and stochastic 

components. The work presented in this chapter sets the basis for exploring new 

methods to improve the trajectory of TMM in urban environments.  

Further research includes the exploration of methods aiming to improve trajectory 

in urban scenarios independently of the density and type of non-semantic features 

(chapter 4) and/or to reduce the number of required ground control points (chapter 

5). In addition, the use of vehicle dynamic constraints for trajectory estimation could 

be explored. Last but not least, the feasibility of applying the same ideas to other 

mobile mapping platforms that might incorporate consumer-grade sensors, could 

also be studied. 
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IMPROVEMENT FOR TERRESTRIAL MOBILE 

MAPPING IN URBAN ENVIRONMENTS  
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INFORMATION IN TMM TRAJECTORY DETERMINATION 
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https://doi.org/10.5194/isprsarchives-XL-3-W1-15-2014, 2014. 
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This chapter presents a first strategy to improve, in post-processing, the trajectory 

of terrestrial mobile mapping systems in urban environments by adapting the error 

modelling learned in Chapter 3 and by extending and validating the mathematical 

modelling presented in Chapter 2 for the urban case. The trajectory error modelling 

proposed in Chapter 2 is simplified by selecting a linear shift function instead of a 

more complex polynomial one. The models initially developed in Chapter 2 have 

been modified to be used also for urban environments. These models allowed us to 

estimate multiple linear shifts in a bundle adjustment approach, and thus improving 

the estimated trajectory, thanks to identifying common tie features between camera 

images and LiDAR point clouds and their use in a combined adjustment. These 

common tie features are straight line segments. The proposed approach has been 

evaluated using the same dataset used in Chapter 3 coming from a mobile mapping 

campaign over an urban and controlled area, with harmful GNSS conditions.  

 

4.1. INTRODUCTION 
 

Nowadays, 3D georeferenced data are widely used as the primary data, for many 

applications such as 3D city modelling, cadastral mapping, cultural heritage, facility 

management, traffic accident investigation, to mention a few examples. Dense 3D 

point clouds are the direct output of a mobile mapping system (MMS). An MMS is 

a particular case of a terrestrial laser scanner, where the sensor is mounted on a 

moving platform. The point clouds are generated kinematically, with a variable 

scanner position and orientation during the scanning time (Kutterer, 2010). 

High-end mobile mapping systems integrate several laser scanners and several 

individual cameras or 360◦cameras. A mobile mapping campaign may include several 

overlapping areas, leading to overlapping point clouds. Partial or total GNSS 

occlusions, or multipath, may occur, especially in urban areas. This causes an error 

in the platform or vehicle trajectory determination. Other sources of error can be 

Inertial Measurement Unit (IMU) modelling errors and eventually system calibration 

errors. 

All these errors produced that overlapping point clouds are not properly registered 

(Figure 19). To solve this, a laser-laser registration must be performed. Also, some 

applications might require having coloured point clouds. Then, the coloured point 

cloud is usually derived from another registration process between camera and laser 

scanner. 
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Figure 19. Point cloud of two different strips from overlapping area. 

 

The standard procedure for laser-to-laser and camera-to-laser co-registration 

includes several steps. The first one is the system calibration where the lever arm 

and boresight between laser and IMU, and between camera and IMU must be 

determined. With current INS, GNSS and image matching technologies, the best 

results are obtained with the well-known Integrated Sensor Orientation (ISO) 

method. In ISO, tie points measurements are used in combination with ground and 

platform control observation. The ISO method has been proven to be feasible and 

efficient for IMU-camera boresight calibration of mobile mapping systems (Kersting 

et al., 2012). For aerial laser and mobile mapping data, ISO has also been proven to 

be effective for the IMU-laser boresight calibration with single and multiple laser 

scanners (Skaloud and Lichti, 2006), (Chan et al., 2013). 

After the calibration steps, a camera and LiDAR point cloud can be derived. Then, 

a co-registration between LIDAR points clouds and between camera point cloud 

and LiDAR point cloud is computed. Alternatively, the LiDAR point cloud can be 

projected onto 2D image space, and then several image-to-image registration 

algorithms can be applied. The Iterative Closest Point algorithm (ICP) (Chen and 

Medioni, 1992), is widely used for registration of point clouds, enabling many 

improved variants (Novák and Schindler, 2013). 

The ICP has been used for the registration of pairs of point clouds generated from 

laser, from pairs of overlapping images, or a combination of them. The ICP has been 

proven to be effective with point clouds that were initially aligned (Novák and 

Schindler, 2013). (Gressin et al., 2012) propose a method that uses ICP as the initial 

step for trajectory improvement. The overall registration is performed, improving 

the original platform trajectory. (Elseberg et al., 2013) deals also with laser-to-laser 

registration by improving the platform trajectory. The trajectory is improved using 

semi-rigid Simultaneous Localization and Mapping. 
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In contrast to the standard approach, in this chapter, we propose to solve the 

orientation and calibration of laser and camera data in a single, combined 

adjustment. Solving the orientation and calibration allows us to implicitly deal with 

the co-registration problem, because in our approach, we do not model the error 

symptoms but the error sources. The proposed method is based on the identification 

of common tie features between images and point clouds and their use in a 

combined adjustment. These common tie features are straight-line segments. 

This approach presents several advantages. The use of laser raw and 

photogrammetric measurements, related through common tie features, allows us to 

avoid point cloud-based camera to LiDAR registration. In addition, the redundancy 

of the adjustment is increased, and the geometry is improved by means of including 

photogrammetric data into a LiDAR adjustment. The overall accuracy can also be 

improved by adding photogrammetric and LiDAR ground control information. 

The chapter is organized as follows. Firstly, the main ideas behind the simultaneous 

network adjustment are introduced. Then, the proposed models as well as some 

mathematical concepts behind the use of tie lines are explained in detail. The concept 

validation section presents the preliminary results of an adjustment obtained with 

real data. The last section summarizes the conclusions of the proposed approach 

and discusses future improvements. 

 

4.2. PROPOSED APPROACH 
 

We propose a method where camera, laser and camera-laser ISO are performed in a 

single, combined adjustment. In it, the imaging observations are image coordinates 

measured on camera data (the digital camera images) and selected measurements of 

the laser images (ranges and scan-angles). The other observations are surveyed 

ground control points and platform time-Position-Attitude (tPA). In state-of-the-art 

mobile mapping systems, the tPA is previously estimated using INS, GNSS and 

odometer observations using a Kalman Filter approach. Ground control points can 

be used to derive indirect control observations like ground control lines and planes. 

The tie features are points (camera ISO), planar surfaces (laser ISO) and straight-

line segments (camera-laser ISO). Points, planes and lines are defined by 3, 3 and 4 

independent parameters, respectively. 

The classical camera ISO approach is well known. From the observations mentioned 

above, estimates for the tie points (TP), for the exterior orientation parameters of 

the camera images (EO), for the self-calibration parameters of the camera, for the 

tPA shifts and possibly for other system calibration parameters are computed. In 

laser ISO, the unknown parameters of the tie planar bounded surfaces —tie planes 
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(TPL)— are estimated together with tPA shifts, laser self-calibration parameters and 

possibly other system calibration parameters. 

In the proposed camera-laser ISO method, as mentioned, straight line segments ---

Tie Lines (TL)--- are used as tie features between camera and laser images. TLs tie 

camera and laser images as follows. Assume that 𝑠 is a TL that can be recognized in 

the camera image 𝑐 and in the point cloud of a laser image 𝑎, and also assume that 

𝑠 is the intersection of two planar surfaces 𝑝1, 𝑝2 determined by points of the laser 

image 𝑎. Given 𝑠, 𝑐, 𝑎, 𝑝_1 and 𝑝_2 we will then use three types of observation 

equations. The first type of observation equation (a coplanarity equation) relates 

image measurements of the 𝑠 TL on the 𝑐 camera image with 𝑠 TL parameters, with 

the EO and self-calibration parameters of 𝑐. At least two of these observation 

equations are needed. The second type of observation equation (a line-in-plane 

relationship) compels 𝑐 to lie on planes. In general, there will be two observation 

equations of this type, for 𝑝_1 and 𝑝_2, although it is also possible to use just one 

TPL. The third type of observation equation relates TPLs ---in this case 𝑝_1  and 

𝑝_2 --- to the measured laser points, i.e., relate the laser range and scan-angle 

measurements, to the laser self-calibration parameters, the derived tPA, the tPA shift 

parameters and possibly other system calibration ones. There will be, for each 𝑝_1  

and 𝑝_2, as many of these observation equations as laser points that define the plane. 

Details of the models are given in the next section. 

 

4.3. MATHEMATICAL MODELS 
 

The mathematical models needed to perform a single, combined camera-laser ISO 

were introduced for the first time in (Angelats et al., 2012). In this work, airborne 

laser scanner and photogrammetric camera data were simultaneously adjusted using 

straight lines as tie segments. In order to expand this concept to mobile mapping 

systems, the presented models are still valid without modifications except for the 

MMS plane observations equations. In this section, we present in detail this model 

and the remaining models are briefly introduced. The interested reader may refer to 

(Angelats et al., 2012) for extended details of mathematical modelling. 

We begin by presenting some notation conventions and then develop the 

observation equations. 
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4.3.1. Some naming and convention 
 

 

Table 11. Reference frames and coordinate systems. 

 

4.3.2. Camera point collinearity observation equations 
 

In camera ISO, the known collinearity observation equations are used to relate the 

camera image coordinate observations with the EO, tie point and self-calibration 

parameters. No modifications are required to use them in our method. 

4.3.3. MMS plane observation equation 
 

The model extends the one proposed by (Angelats et al., 2012) to be used in mobile 

mapping systems. The observations are the two MMS laser measurements (range 

and scan-angle) and the tPA (position and attitude) ones. The MMS plane 

observation equation is 

                                                        𝑛𝑙⃗⃗  ⃗ ⋅ (𝑃𝑙⃗⃗  ⃗ − 𝑃0
𝑙⃗⃗⃗⃗ ) = 𝑑                                                 (1) 

where 

                                       𝑛𝑙⃗⃗  ⃗ = 𝑅(λ0, ϕ0) ⋅ 𝑅𝑦(δ𝑝) ⋅ 𝑅𝑥(δ𝑙) ⋅ 𝑛0
𝑙⃗⃗⃗⃗⃗⃗  𝑑                            (2) 

 

                                                     𝑃𝑙⃗⃗  ⃗ = 𝑋𝑙⃗⃗⃗⃗ + 𝐴 𝑋𝑙 + 𝑅𝑖
𝑙 ⋅ 𝑃𝑖                                        (3) 

and where 

                                   𝑃𝑖 = 𝑅𝑠
𝑖 ⋅ 𝑅𝑦(𝑆θ ⋅ θ + Δθ) ⋅ (𝑟 + Δ𝑟⃗⃗⃗⃗ ) + 𝑎𝑖⃗⃗  ⃗                          (4) 

 

                              𝑅𝑖
𝑙 = 𝑅𝑒

𝑙 ⋅ 𝑅𝑙′
𝑒 ⋅ 𝑅𝑖

𝑙′(ℎ𝑒 + Δℎ𝑒 , 𝑝𝑖 + Δ𝑝𝑖, 𝑟𝑜 + Δ𝑟𝑜)                         (5) 
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The model includes an additional scale factor self-calibration parameter for the scan-

angle observation because our experience reveals its significance. The Hessian form 

of a plane is used to parametrize the planar surface. The plane is then characterized 

by a unit normal vector 𝑛𝑙⃗⃗  ⃗ = (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧)
𝑙
 (equation 5) and 𝑑, the orthogonal 

distance between the plane and the CRF origin. 𝜆0 and 𝜙0 are auxiliary vectors that 

bring an orthogonal vector 𝑛0
𝑙⃗⃗⃗⃗  close to the normal vector. Then, the parameters of 

the plane are the orthogonal distance 𝑑 and two rotation angles 𝛿𝑙, 𝛿𝑝. These 

rotation angles use to be quite small and are used to avoid numerical singularities.  

The model has additional parameters to model tPA errors. These parameters are 

tPA position and orientation linear shifts. Table 12 summarizes the mathematical 

symbols of eqs. 1 to 5. 

 

 

Table 12. Symbols in the MMS plane observation equation. 
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4.3.4. 3D straight line parameterization 
 

Straight lines are elementary mathematical objects with many possible 

parameterizations. We propose yet another one which is convenient for numerical 

computations and whose four universal parameters (𝑝, 𝑞, 𝛼, 𝛽) can be used 

regardless of the line location and direction. 

4.3.5. FC line coplanarity observation equation 
 

This model relates the parameters (𝑝, 𝑞, 𝛼, 𝛽) of a 3D line, the EO parameters of 

an image, and the image observations (𝑥, 𝑦) of a point of the line. It has been derived 

from the collinearity condition and the 3D straight line parameterization presented 

in the previous subsection. 

4.3.6. Line-in-plane observation equations 
 

This model relates lines and planes in a 3D space. From a geometrical point of view, 

a line belongs to a plane if two conditions are satisfied. The first condition is related 

to the orthogonality, that is, plane’s normal vector and line’s director vector must be 

orthogonal. The second condition is related to the distance between line and plane. 

This distance must be 0 and it is equivalent that the line’s point belongs also to the 

plane. 

4.4. CONCEPT VALIDATION 

 

The proposed concept was tested and validated using real data from a high-end 

mobile mapping system. The data originate from a mobile mapping campaign over 

a controlled area of Dortmund (Germany). The mobile mapping system was an 

Optech Lynx system, from TopScan GmbH, that included two laser scanners and 

two cameras. As for the software, an experimental “model toolbox” with the models 

discussed before was developed at CTTC that runs on the generic network 

adjustment platform GENA (Colomina et al., 2012). 

The mobile mapping system was mounted on a van, and it was driven over a 

controlled area for around three hours, resulting in 11 overlapping strips. The 

controlled area was additionally surveyed to provide ground control points. The 

points clouds were generated, combining the laser raw measurements, the system 

calibration and the platform trajectory. The platform trajectory was computed, using 

a tightly coupled approach, combining differential GNSS, IMU and odometer 

measurements. The points clouds, for both laser scanners within the same strip, and 
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also between strips, were not co-registered. Photographs for each of the cameras, 

were also acquired. The platform trajectory was also used to provide an initial 

orientation of the photographs. The camera was previously calibrated, and the lens 

distortion was removed from the photographs. 

Since the aim of this work is not an exhaustive study, a small subset of the original 

data has been used to validate the feasibility of the one step orientation and 

calibration of laser and camera data from mobile mapping systems. For that reason, 

only data from one laser scanner and one camera have been used. The main 

characteristics of the camera and laser scanner systems as well as the test 

configurations, are detailed in Table 13. The precision of the observations can be 

found in Table 14. Notice that from the camera-derived data, 4 tie lines have been 

extracted. These tie lines correspond to some straight elements located on building 

walls such as cables, window edges, i.e. On the other hand, from the MMS-derived 

data, 12 planes have been used. 11 of them are present in 3 strips while the remaining 

plane is only in 1. 4 planes of the first strip are used as ground control planes while 

the remaining planes are used as tie planes. Tie planes are vertical planes, 

corresponding to building walls, or horizontal planes, corresponding to street 

pavement. In this work, the straight lines used as a common feature, belong to the 

tie planes, but are not breaklines, that is, the ones resulting from the intersection of 

two tie planes. 

 

Table 13. Dortmund block geometric configuration. 
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Table 14. Precision of the observations. 

 

With the given data, the configurations described in Table 15 have been processed. 

Block configuration cam_TP performs a classical camera ISO using all available tie 

points and a ground control point (GCPs) and EOs. Test cam_TL adds 4 straight 

lines as tie lines. This configuration allows us to validate the coplanarity equation 

model with tie lines. As for the MMS tests, an MMS orientation and calibration 

adjustment without camera data is performed using planes as tie features with four 

ground control planes (GCPLs). The ALL configuration combines camera data with 

MMS data using tie points, ground control points for the camera ISO, tie planes and 

ground control planes for the MMS ISO and tie lines for the camera-ALS ISO. This 

test allows us to test simultaneously all developed models.  

 

 

Table 15. Observations and block configurations. 

 

The EO parameters are estimated for all proposed tests. The proposed approach 

includes additional parameters, such as a tPA shift, corrections in the boresight 

matrix between the IMU and the camera (Table 16) and self-calibration parameters. 

However, in this preliminary study, they are not estimated due to the small number 

of photographs and weak camera geometry, with only photographs from one strip 

and parallel to the vehicle movement direction. 
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For the MMS subblock, a tPA shift for each strip, can be estimated. Vertical tie 

planes allow us to estimate the e,n component while horizontal planes allow us to 

estimate the h component. Self-calibration parameters of the MMS, that is  Δ𝑟,  Δθ 

and 𝑆, cannot be estimated, neither the boresight matrix between IMU and laser 

scanner. These parameters cannot be estimated because they are strongly correlated 

between them, and the geometry of the sub-block does not allow decorrelating them.  

  

Table 16. Estimated parameters of block configurations. 

 

The test results are shown in Table 17 and Table 18. As expected, due to the small 

data set and GCP configuration, FC_TP and FC_TL results show similar 

performance in terms of accuracy and precision (Table 17) for the EO parameters 

and tie points. 

 

Table 17. Camera test results. 

 

The result of tests case ALL shows that the simultaneous block adjustment works, 

although this result in terms of precision is inconclusive given the small differences 

and the small size of the experiment. The results indicate that it is possible to 

estimate a tPA shift for each strip (Table 18), for MMS and ALL tests. From the 

results, it can be observed that the h component has a higher Cxx than e, n 

component. This result was expected because more vertical planes than horizontal 

ones were used as tie planes.  
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Table 18. MMS test results. 

 

The co-registration of point clouds is implicitly done by improving the orientation 

and calibration. In order to evaluate the quality of the co-registration, a new point 

cloud for each strip has been generated, adding the tPA shift to the original tPA. 

The point cloud differences, between pairs of strips, before and after the registration 

has been computed using the point cloud distance tool of Cloud Compare SW 

(Giradeau-Montaut et al., 2014). The differences, before and after the registration, 

are shown in Figure 20. 

The differences are also computed for each component. We use this SW, only to 

show the potential of the approach and give a coarse point cloud difference. Further 

research must be done to compute accurately the distance between point clouds, 

eventually leading to better results. 

 

 

Figure 20. Point cloud differences from overlapping strips. 
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4.5. CONCLUSIONS AND FURTHER RESEARCH 
 

The mathematical models: 3D straight line parameterization, a coplanarity 

observation equation and a line-belongs-to-plane, presented in (Angelats et al., 2012) 

have been proven to be effective, with real data from a high-end mobile mapping 

system. A new MMS model has been successfully developed and tested. In the MMS 

model, laser raw measurements are used to allow for system and sensor calibration. 

In addition, also includes a tPA shift to model platform tPA errors due to GNSS 

occlusions, multipath. 

The results of this chapter are only preliminary because of the small size of the data 

sets. Photogrammetry results show that with this combined camera, MMS, and 

camera-MMS, concept, the performance in terms of precision, is at least maintained. 

The results also suggest that the platform trajectory can be improved with a linear 

shift. With this trajectory improvement, the co-registration between overlapping 

point clouds, is improved. The MMS self-calibration has not been performed due to 

weak geometry and a small dataset. Further research must be done to explore how 

the combination of photogrammetric data can benefit the MMS the system 

calibration, and so, the co-registration. 

With this approach, a single or several camera and laser data from different systems 

or from the same system with different acquisition, can be integrated and so, co-

registered. The next step is to validate the presented concept and models with larger 

datasets and to understand the behaviour of camera and MMS self-calibration 

parameters in combined adjustments. For larger datasets, alternative models than a 

linear shift to tPA correction, must be explored. Additionally, not only the precision, 

but also the accuracy of the one step approach must be measured. Further research 

must be done to explore the number of required ground control points and planes, 

since previous experience suggests that the combined adjustment could reduce the 

required ground control information. 
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This chapter explores the potential of using non-semantic information (points) for 

trajectory estimation in real time. To do so, a two steps methodology has been 

developed. The first step includes a method to remove outliers in photogrammetric 

measurements extracted from overlapping images, using relative orientation derived 

from inertial-based trajectory. By means of relative orientation, the inter-distance 

between rays traced from corresponding tie points, named parallax, is used for 

outlier detection and isolation. Once outliers are removed, tie point measurements 

are used in a second step to improve the trajectory estimation. Image and object 

space coordinates of the corresponding tie points contribute, through appropriate 

modelling, as position and attitude updates to the filtering step of a non-linear 

sequential least square multi-sensor positioning software. The proposed approach 

has been evaluated using both real and simulated data from a mobile mapping 

campaign over an urban area with long GNSS outage periods.  

 

5.1. INTRODUCTION 

 
Navigation or real-time positioning is the process of estimating a time series of 

position, velocity and attitude states for a particular sensor or platform. The quality 

of navigation in general and, in particular, of hybrid or multisensor navigation 

depends on the quality of measurements and models among other factors. For 

convenience, sensors producing measurements for navigation are classified as 

primary such as an Inertial Measurement Unit (IMU), and aiding sensors such as 

GNSS receivers, RGB cameras and/or laser scanners. In recent times, the need and 

complexity of ubiquitous and seamless outdoor/indoor navigation and navigation 

in GNSS unfriendly environments, have made apparent the potential of 

measurements derived from aiding sensors. When aiding sensors are cameras and 

laser scanners, we will refer to these as visual measurements (or observations). 

In the context described above, visual measurements can be used to correct the drifts 

of the primary navigation sensors such as an IMU. However, aiding can be easily 

turned into “unaiding” if sensors’ random, systematic and/or gross errors are too 

large or too many. When designing a navigation system and/or mission, the time-

dependent behaviour of the mentioned errors has to be understood: the propagation 

of random and systematic errors and the impact of outliers have to be quantified, as 

well as the means to mitigate or eliminate them. Potential systematic error sources 

are mainly due to coarse camera calibration or a lever arm and boresight between 

camera and IMU misalignments. 

As previously mentioned, the focus of this work is robust inertial visual-aided 

navigation. Visual aiding refers to the computation of orientation parameters 

through consecutive, overlapping images by means of measurement of tie points –
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i.e., photogrammetric observations of the same object point in two or more images-

. Robustness refers to the insensitivity of the resulting orientation parameters to 

outliers in the photogrammetric measurements. Alternatively, planes or cylinders 

extracted from laser scanner images, can also be used as tie features, especially in 

urban or indoor areas, where they are very common. Yet, the work presented in this 

chapter does not entail the use of features extracted from laser scanner data.  

Extensive research and many algorithms have been proposed to robustly extract, 

describe, and match common points, ideally invariant to orientation, scale and 

illumination changes. However, urban or indoor areas, especially buildings, contain 

repetitive or similar structures, causing a high number of matching outliers even if 

one of state-of-the-art point extraction, description and matching algorithms are 

used. Examples of these are the well-known SIFT, SURF algorithms or the more 

recently BRISK (Lowe, 1999), (Bay et. al, 2008), (Leutenegger et. al, 2013). 

Feature extraction and matching algorithms are commonly combined, with 

RANSAC procedures that aim to perform outlier detection and removal using solely 

image observations by means of position and attitude estimation. More in detail, 

these algorithms estimate the relative orientation between two images, also known 

as pose, using n pairs of matched features, selected randomly among the full  

matched pairs ( ). By doing so, outliers are detected and isolated by checking 

inconsistencies in the process of relative orientation estimation. The 5-point 

algorithm proposed by (Nister, 2003) is widely used but other approaches use n = 7 

or 8 to deal with uncalibrated cameras (Scaramuzza and Fraundorfer, 2011). 

(Scaramuzza, 2011) proposes a method where the camera pose can be estimated 

with only one point correspondence by exploiting nonholonomic constraints of 

wheeled vehicles and a histogram-based voting strategy. Other approaches combine 

derived trajectory or inertial data to predict where a point feature should appear in 

the second image (Veth, 2011), (Leutenegger, 2013). 

Once all outliers have been detected and isolated, the camera or vehicle trajectory 

can be recovered by concatenating the estimated relative positions and orientations 

using k inliers from overlapping images. Several methods to estimate the navigation 

states using only image or using image and object observations are reviewed in 

(Scaramuzza and Fraundorfer, 2011). These approaches are usually referred to as 

Structure from Motion (SfM) or visual odometry among the robotics and computer 

vision community. Alternatively, (Taylor et.al, 2011) presents two strategies to use 

an IMU as a primary positioning sensor and to control inertial drift with visual 

information during the filtering step. The two approaches are implemented using an 

Unscented Kalman Filter estimation method. The first approach imposes a 

geometric constraint using image coordinates while the second one takes the benefit 

of jointly estimating a set of object coordinates together with navigation states. 
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In contrast to the previous approaches, we propose a strategy to robustly detect and 

isolate outliers in camera images using inertial-based trajectory in a first step and to 

navigate in GNSS-unfriendly environments, using corresponding tie points 

measurements together with inertial and GNSS measurements, when available, in a 

second step. The filtering step is based initially on the computation of an inter-

distance between rays traced from corresponding tie points, named parallax, (Figure 

21). Then, a robust statistical analysis based on median and median variance 

estimators is applied to the inlier set to clean few ‘transparent’ outliers.  

This work is organized as follows. Firstly, the main ideas and some mathematical 

concepts behind the proposed outlier detection and isolation method are 

introduced. Then, the proposed model for visual-aided navigation is explained in 

detail. The experimental results section presents the results for outlier filtering as 

well as multisensor navigation using real data from a terrestrial mobile mapping 

campaign with long GNSS outages. The last section summarizes the conclusions of 

the proposed approach and discusses future improvements. 

5.2. NAMING AND CONVENTION 

 
We begin by presenting some notation conventions used in this section and also for 

the visual aiding modelling.  The Coordinate Reference Frames (CRFs) involved in 

outlier filtering and in visual aiding are detailed in Table 19. The CRF  of a variable 

 is denoted by a superscript symbol like . For a rotation matrix , the subscript 

indicates the origin CRF while the superscript indicates the final CRF so it can be 

written . For the sake of simplicity,  is used instead of 

the formally correct . 

 Local-level terrestrial frame 

 Earth centered Earth fixed frame 

 IMU instrumental frame 

 Camera instrumental frame 

 

Table 19. Notation convention in visual aiding model. 

5.3. OUTLIER DETECTION AND ISOLATION 
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Given a pair of images with a certain overlap over the same scene, N pairs of 

corresponding points, called tie points, can be found and matched using one point 

extractor, description and matching algorithm. These are written as: 

. 

Note that taking  or  depends on the selected camera reference frame. 

The proposed algorithm uses the image coordinates and the exterior orientation 

(EO) of both images that is, its position and attitude, to detect and isolate outliers. 

The EO of the first image is known, corresponding to a processing epoch in the 

past, while the second EO is predicted using inertial data, corresponding to the 

current processing epoch. This approach uses directly absolute inertial-based EO in 

contrast to other approaches based on the estimation of fundamental or essential 

matrix to retrieve the relative orientation of an image pair (Hartley and Zisserman, 

2000). 

For each matched pair, using the EOs ,  and  

expressed in a local frame and the image coordinates, two projecting lines (Figure 

20) are constructed using the normalized director vectors . 

 

                                                                          (1)                                         

                                                                          (2)    

                                                            

Where: 

                                                                            (3)             

                                                               (4) 

 

The following equations express the relation between the IMU instrumental frame 

and the camera instrumental frame: 

 

                                                            (5) 

                                                                                                          (6) 
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Where  is the vehicle position,  is the lever arm between 

IMU and camera,  is the boresight matrix between the camera frame and the IMU 

frame while  is a rotation matrix from body frame to local frame. 

Vector magnitude  is estimated by searching for a point in  that minimizes the 

distance to line   using the ‘point-to-line’ distance formula: 

 

                                                (7) 

Analogously, knowing ,  can be found using the same formula. Then, we analyze 

the function: 

                                                                  (8) 

Which corresponds to the minimum distance between the lines (1) (2). This distance 

is referred to as parallax. Pair of points with a parallax below a certain threshold are 

considered to be a correct matching. Alternatively, (Hartley and Schaffalitzky, 2004) 

propose a method to minimize this distance involving the solution of a sixth-degree 

polynomial for the case of two views and a  minimization for the case of  views. 

 

 

Figure 21. Geometric view of pair of images and the parallax of a pair of given 

points. 

Some ‘transparent’ outliers may still be present in the inlier set after the parallax-

based filtering. Thus, an additional filtering step is applied in order to detect and 

isolate them from the inlier set. To do that, a ratio value between   and  is 

calculated for all pair of points and a median and median variance are computed. All 
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points with a distance from median value below a certain threshold are kept as 

inliers. 

5.4. VISUAL AIDING MODELLING 
 

The proposed model relates, object coordinates of a tie point with its image 

coordinates in an overlapping image pair. To do so, the platform position and 

attitude of the two images are used, as well as the boresight and lever arm between 

and the IMU and camera. This model is intended to be used during the filtering step, 

in a generic non-linear sequential least squares solver together with inertial and 

GNSS data or with inertial data during GNSS outages. The model contributes with 

position and attitude updates to the vehicle trajectory estimation but relies on the 

use of static points only. Note that an object moving between epoch 1 and 2, does 

not fit within the model assumptions, and thus can significantly degrade the quality 

of the estimated trajectory. 

The observation equations are the well-known photogrammetric collinearity 

equations (Luhmann et.al, 2006) extended with an additional correction each tie 

point object coordinates (eq 9 and 10).  

 

                                                                      (9) 

                                                                (10) 

Where: 

                                                                                                             (11) 

                                                                                                              (12) 

In the above observation equations, the platform position and attitude are estimated, 

in the second image epoch. In addition, for each point, corrections for object 

coordinates will also be estimated using observations presented in Table 20. Note 

that, as we use corrections for the estimation of object tie points coordinates, we 

introduce a constant value for the tie point object coordinates. These constant values 

are obtained, as an intermediate step of the parallax-based filtering. The units of tie 

points image and object coordinates as well as the focal length are in meters. 
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Observations 

 

 Tie point image coordinates of 1st  image 

 Tie point image coordinates of 2nd image 

 Platform position for 1st  image 

 Platform attitude for 1st image  

 Camera to IMU boresight matrix 

 Camera to IMU lever arm 

Parameters / states  

 Platform position for 2nd  image 

 Platform attitude for 2nd  image 

 
Correction of tie point object coordinates 

Constants  

 Focal length 

 Tie point object coordinates 

Table 20. Symbols in visual aiding model. 

 

The use of image coordinates during the filtering step presents some advantages in 

front of alternative models that provide position and attitude updates derived from 

solely camera images. Firstly, the image coordinates residuals are available and 

therefore, one has the capability to detect any remaining outliers with statistical 

methods. Secondly, there is no need to estimate an uncertainty for the position and 

attitude derived from camera images which may be unrealistic. Yet, there is a need 

to estimate an uncertainty for image coordinates that might not be straightforward.  

It is important to remark that in order to estimate the EO of a given image, image 

measurements can be used from any other past other epoch as long as it has overlap 

with the current image. Therefore, the images may not necessarily be consecutive. 

Note also that in Table 2, the scale factor   is not included with the parameters 

because it can be eliminated dividing 1st and 2nd equation by the 3rd (Luhmann 

et.al, 2006). The same procedure can be applied for , dividing 4th and 5th 

equations by the 6th. In fact, equations (9) and (10) are a system of six equations. 
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This model does not include camera calibration parameters and assumes that camera 

has been previously calibrated and lens distortions from images have been removed. 

The proposed model also assumes that geometry between the camera and the IMU 

is known. 

5.5. EXPERIMENTAL RESULTS 
 

The proposed concept was tested and validated using real and simulated data from 

a high-end mobile mapping system. The data originate from a mobile mapping 

campaign over a controlled urban area of Dortmund (Germany). The mobile 

mapping system was an Optech Lynx system, from TopScan GmbH, that includes 

two laser scanners and two cameras. The system also incorporates a navigation 

component, an Applanix POS-LV with two GNSS receivers, odometer and a tactical 

grade IMU, used in this work as reference trajectory. 

The mobile mapping system was mounted on a van and it was driven over a 

controlled area experiencing long GNSS outages around three hours, resulting in 11 

overlapping strips, that is, repeating twice the same street driving in the same 

direction. Photographs of the two cameras were also acquired. The cameras were 

previously calibrated and the lens distortion was removed from the photographs. 

The geometry between the IMU and the cameras was also provided. 

A small subset of the original data has been used to validate the feasibility of the 

proposed point matching filtering method and the hybrid trajectory estimation using 

GNSS, inertial and photogrammetric data over an urban canyon area. An ideal 

GNSS trajectory was extracted at 1Hz from the reference INS/differential GNSS 

trajectory and some outages of 32 and 12 seconds were manually introduced to test 

the potential of the approach in front of long/moderate GNSS outages (Figure 22). 

In addition, to evaluate the performance of the approach for various IMU grades, 

two configurations were studied. Firstly, real data from the Lynx’s system IMU was 

used, consisting of tactical grade IMU. Secondly, simulated data from a tactical grade 

and from a MEMS grade IMU have been obtained with CTTC’s IMU simulator 

(Parés et.al, 2010). Although the odometer data were available for this mobile 

mapping campaign, they have not been used for trajectory estimation. 

As for the software, for all pairs of consecutive images, tie points were extracted and 

matched using the OpenCV library implementation (Bradski, 2000) of SURF 

operator (Bay et.al, 2008). Then, image point matches were filtered using the 

proposed algorithm (Figure 23).  
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Figure 22. Controlled area used for testing the approach.  The platform trajectory 

is shown in red while GNSS outage areas are marked with blue ellipses. Orange lines 

correspond to areas where tie points have been extracted, matched and filtered from 

overlapping, consecutive images. 

 

The proposed visual aiding model has been implemented, validated and tested, using 

an in-house trajectory estimation SW, named NAVEGA. The platform trajectory 

has been estimated in post-processing, only in forward mode, emulating a real-time 

scenario, to evaluate the potential of the approach. NAVEGA provides the 

estimated trajectory to the matching component, in a close loop (Figure 24). Recall 

that trajectory is a necessary input for the outlier detection and isolation algorithm. 

The estimated precision of a trajectory determined with simulated IMU can be seen 

in Figure 25. The blue line corresponds to the standard deviation of a trajectory 

using GNSS/INS while the green line corresponds to camera/GNSS/INS. 
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Figure 23. Example of the outlier detection and isolation method for a pair of 

overlapping images.  Initial point matches (top image). Detected and isolated outliers 

(middle). Final matches or inliers set using for trajectory estimation (bottom). 

 

Figure 24. Multisensor navigation architecture. 
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From the results, the GNSS outages periods can be identified by looking the 

longitude and latitude standard deviation plot (top and middle plot, blue line). GNSS 

outages imply an increase in standard deviation from the previous epoch. 

The camera was mounted looking to a lateral view. Due to this, we can expect an 

improvement in the trajectory estimation in the across-track component of the 

position.  The results using image observations (green line) confirm this behaviour. 

The standard deviation of the across-track component is kept under control even if 

GNSS outages are present (Figure 25, green line, top and middle). In contrast, it can 

be seen that image observations have no relevant impact in the attitude standard 

deviation (Figure 25, bottom), mainly dominated by the IMU.  In order to keep the 

along-track component under control during GNSS outages, odometer data might 

be also used. 

Note that an EKF or non-linear sequential least squares tend to provide optimistic 

standard deviation values. For that reason, one must take the estimated values only 

as a way to evaluate the potential of using camera observations during GNSS outages 

and not as way to evaluate the absolute performance. 

The results of the position performance using real data from a tactical grade IMU 

are shown in Figure 26. The figure shows the difference, for each component, 

between the estimated position and the reference one. The red line shows the results 

using inertial and GNSS, when available, observations. The green line also 

incorporates the image observations to the trajectory estimation. From the results, 

two different things can be highlighted. Firstly, the visual-aided model significantly 

improves the height component estimation allowing cm level differences with the 

reference trajectory during GNSS outages (Figure 26, bottom plot). Secondly, the 

use of image observations, together with the IMU real data, does not improve yet as 

expected the across-track component of trajectory.   

This could be due to a weak camera geometry configuration. The camera images 

come from the predefined camera configuration of a mobile mapping system. Their 

main purpose was to add color to laser point clouds, not to be used for trajectory 

estimation. For that reason, the camera was not mounted completely perpendicular 

to the vehicle forward direction, that is looking directly to the building walls. This 

mounting configuration, together with the fact that the vehicle was driving in narrow 

streets, led to a non-uniform distribution of tie points. Moreover, the vehicle was 

driving slowly, producing a short baseline between consecutive, overlapped images. 
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Figure 25. Covariance estimation of three estimated trajectory components using 

the simulated IMU data. Longitude (top), latitude (middle) and heading (bottom). 

The figure shows the results with (green line) and without camera observations (blue 

line). 

 

 

Figure 26. Position performance using real IMU data.  The figure shows the 

difference between the estimated position and the reference position, for each 
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component using (green line) and without using image observations (red line). 

Longitude (top), latitude (middle) and height (bottom). 

5.6. CONCLUSIONS AND FURTHER RESEARCH 

 
A strategy to robustly detect and isolate outliers in camera images using inertial-

based trajectory has been developed and tested. Imaging measurements of tie points 

are used to improve the trajectory estimation in a second step. The proposed outlier 

detection algorithm is also a mechanism to provide initial values of the tie point 

object coordinates, used later for trajectory estimation. 

The performance results with simulated data show the potential of visual-aiding 

navigation during GNSS outages over urban areas. The performance results with 

real data are still preliminary and must be refined. However, these preliminary results 

suggest us several improvements that can be carried out in the near future. 

Among them, we are planning to test additional camera mounting configurations 

and to explore additional models for using measurements from more than two 

overlapping images. These two ideas would eventually improve the camera 

geometry. In addition, we would explore the potential of using a second camera and 

the benefits for trajectory estimation purposes. The use of measurements from a 

wheel odometer will be incorporated into the trajectory estimation step to improve 

the along-track component of the position. Last but not least, we will analyze the 

potential of the approach in multipath environments, not only with full GNSS 

outages. 
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This chapter introduces a first application of hybrid positioning. This is application 

is the co-registration of multi-sensor and multi-temporal RPAS and historical 

georeferenced datasets, and its use in the archaeological domain. This georeferencing 

consistency is achieved by an enhanced RPAS positioning linking high-accurate 

aerial reference trajectories, aerial and RPAS mapping using non-semantic image 

ground features. Two characteristics of this approach can be highlighted. The first 

is the use of ground control support derived from aerial and publicly accessible aerial 

data instead of organizing a specific surveying campaign.  The second is the 

capability to implement the proposed approach without modifying the state-of-the-

art RPAS photogrammetric workflows and by using RPAS photogrammetric 

software tools. The approach has been experimentally tested and validated in the 

Roman city of Pollentia (Alcúdia, Mallorca, Spain). 

6.1. INTRODUCTION 
 

Latest advances in Remotely Piloted Aircraft System (RPAS) technology, 

Commercial-of-the-self miniaturized cameras, and photogrammetric software have 

allowed the archaeological community the access to this technology beyond research 

and experimental projects (Campana, 2017), (Nex and Remondino, 2013), (Opitz 

and Herrmann, 2018). Recent works have shown the potential and utility of the 

outputs of these technologies (orthophoto, point clouds and Digital Surface Model 

(DSM) for the management of archaeological sites, both for documenting and a 3D 

modelling perspective (Campana, 2017), (Cowley et.al, 2018), (Lo Brutto, 2014). 

Thanks to the capability of flying at low altitudes, dense point clouds and 

orthophotos with a high-level ground sampling distance (GSD) can be generated. 

With that, the GSD is increased from meter (satellite imagery) or decimeter (aerial 

imagery) to few centimeters (Nikolakopoulos, 2016). This improved resolution may 

allow digitalizing an archaeological site at a level where stones may be clearly 

distinguished [1,6] or provide a detailed scale of the structures (Figure 27).  

These outputs provide a suitable alternative to total stations by relaxing requirements 

in terms of metric accuracy. Moreover, these technologies may also help to detect 

potential buried archaeological remains when multispectral orthophotos are 

generated. The advantage in this case is the capability to acquire data in the optimal 

time window for detecting soil or cropmarks anomalies (Masini et.al, 2018), (Stek 

et.al, 2016).  

 

 

 

 



On hybrid positioning using non-semantic image information 
_______________________________________________________________________ 

  

 98 

 

 

Figure 27. Comparison of aerial orthophoto (25 cm GSD) and RPAS orthophoto 

(1 cm GSD) resolutions showing some structures in the Roman city of Pollentia. 

 

From an archaeological perspective it is important to have historical data, acquired 

over many years, properly georeferenced and co-registered. It is essential to have 

high-resolution orthophoto and DSM, but they might be meaningless if such data, 

obtained in different time frames, are not properly registered or aligned with aerial 

orthophotos. An example of these archives are those provided by the Spanish Plan 

Nacional Ortofotografía Aérea (PNOA) program. The PNOA is a national program 

led by the Spanish National Geographic Institute. The goal of this program is to 

generate and make publicly available high-resolution orthophotos and Digital 

Terrain and Surface Models. These products are generated for the entire country 

and updated every 2-3 years. The program also provides access to raw imagery and 

auxiliary data used to generate the aforementioned products. The auxiliary data 

includes the position and attitude of the raw imagery as well as the camera 

calibration. 

The standard workflow for orthophoto and DSM generation includes the following 

steps: aerial triangulation, point cloud and digital surface model generation and 

finally orthophoto generation. The aerial triangulation step involves the estimation 

of exterior orientation (position and orientation) parameters as well as camera 

calibration parameters. These parameters are usually estimated using homologous, 

exterior orientation observations provided by onboard Global Navigation Satellite 

System (GNSS) receivers and Ground Control Points (GCP). These points are 

usually surveyed with differential or Real Time Kinematics (RTK) GNSS techniques 

(Lo Brutto et.al, 2017). However, it may happen that the resulting orthophoto and 

DSM are non-proper registered with the aerial cartographic archives. Thus, an 

additional step may be required to register multi-temporal and multi-resolution 
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orthophotos using an affine or projective model. Registering the DSM may be more 

difficult or even impossible due to the difficulty of identifying common points. 

Alternatively, several solutions have been proposed to deal with the co-registration 

of multi-temporal datasets during the orientation step, prior to orthophotos and 

DSM generation (Aicardi et.al, 2016), (Zhuo et.al, 2017). Both solutions focus on 

the automatic detection of common points between RPAS datasets (Aicardi, et.al, 

2016) or between RPAS and aerial datasets (Zhuo et.al, 2017), but differ in the way 

in which the ground control information is generated. The first solution generates 

the ground control information by performing initially the image orientation step 

for one of the dataset (Aicardi et.al, 2016). Then some images in such dataset are 

used as anchor images to constrain the orientation step of the remaining dataset (or 

datasets) without using ground coordinates of common points. (Zhuo et.al, 2017) 

uses planimetric coordinates of common points extracted from available 

orthophotos and elevations rom Digital Surface or Digital Terrain Models (DTM). 

The main limitation of the aforementioned solutions is that it relies on the capability 
to automatically identify common points between datasets. This cannot be 
straightforward for datasets with different GSD, long temporal gaps where few 
common points can be detected. In this context, the reliability of the previous 
approaches depends of the number of detected points and their distribution.  

In this chapter, an approach to generate high-resolution orthophotos from RPAS 
imagery and DSM is presented avoiding the use of GCPs measured with GNSS 
techniques. Nevertheless, it is still being possible to co-register orthophotos from 
aerial archives and RPAS imagery. The innovation of the approach is to avoid the 
use of GNSS-based ground control points. They are replaced by GCP derived from 
aerial imagery and exterior orientation data. Note also that these data were used to 
generate open and broadly accessible aerial orthophoto archives (PNOA). The key 
point of the approach is the capability to use reliable ground control points 
triangulated from aerial images that were already used to generate aerial orthophotos. 
Thanks to this point, the RPAS orthophotos, as well as the DSM, will be co-
registered with the PNOA orthophotos avoiding extra co-registration steps. 
Additionally, the proposed approach may help to potentially reduce the surveying 
cost by avoiding the use of coordinates of GCP surveyed with GNSS RTK 
techniques.  

6.2. PROPOSED APPROACH 
 

The proposed workflow includes several steps (Figure 28). The first one is the 

generation of ground points, that is GCP and Checkpoints (CHP). The GCP are 

used in the triangulation step while the CHP are used only for validation purposes. 

In this approach, the ground points are observed both in aerial and RPAS imagery. 
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The coordinates of these points are obtained using image triangulation techniques 

instead of deriving the ground coordinates of these points from the planimetric 

coordinates of the orthophoto and the height from the DSM. This can be done in 

this way because the exterior orientation of the aerial images in the archives as well 

as camera calibration data are already open and available to anyone upon request.  

The planimetric coordinates of the points derived directly from the orthophotos are 

very good (25 cm resolution GSD in the PNOA program). However, this approach 

is used because it provides better estimates of the height component than the ones 

provided in the DTM. Open and available DTM (also from PNOA) provides height 

in a grid of 5x5 m although it can be slightly improved by interpolating height from 

nearby cells. 

 

 

Figure 28. Proposed workflow for processing of RPAS imagery using GCP 

extracted from aerial and open archives. 

 

The selection of the number and type of GCP is made taking into account two 

considerations: spatial distribution and temporal stability of points. Regarding the 

first point, GCP should be distributed covering all the area surveyed by the RPAS 

imagery. The selected points should be easily recognizable in both aerial and RPAS 

imagery and invariable in time. Examples of potential candidates are points 

belonging to fixed structures, and permanent road markings. Examples to avoid are 

points belonging to vegetation or temporal road marking. 
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The next step is the aerial triangulation of RPAS imagery involving the following 

observations: image coordinates of homologous points between images, initial 

orientation provided by a GNSS receiver and image and ground coordinates from 

GCP. The exterior orientation of every image as well as the camera calibration 

parameters are estimated using a bundle adjustment approach. This step is validated 

using root mean square error (RMSE) between the estimated coordinates of set of 

checkpoints from aerial triangulation process and the ground coordinates of these 

points. The final steps, common in many photogrammetric software tools, involve 

the dense point cloud, DSM and orthophoto generation. 

The proposed approach has several advantages: first, the capability to fuse multi-

temporal and multi-resolution datasets to obtain a historical perspective of the 

archaeological excavations. This is done thanks to integrating all data available in a 

common georeferencing frame. The second advantage is that the structure-from-

motion software pipelines may be used with no modification by this approach. The 

third advantage is the capability to have centimetric precision (less than 10 cm), 

allowing the clear identification of the different elements composing an 

archaeological structure, instead of the general form that can be observed from aerial 

orthophotos. Another advantage is that with the proposed approach, the 

georeferencing accuracy of the PNOA orthophotos is kept while the resolution 

might be increased to few centimetres depending on the camera used and the flight 

altitude. The main limitation of the approach is the lack of automation in the 

detection of GCP. It relies on the manual identification of GCP and their image 

coordinates. 

The methodology has been tested and validated in the Roman city of Pollentia with 

the aim of being extended to other archaeological sites. 

 

6.3. CASE STUDY: POLLENTIA 

 

Pollentia is located at the city of Alcudia, in the island of Mallorca (Spain). The ancient 

city was identified in the 19th century and continuous excavations have been carried 

out since 1923. Excavations have uncovered a residential area (Sa Portella), a theatre, 

part of the forum, several necropolises, and other remains of the city (Figure 29). 

Nevertheless, several areas are still covered, and potential buried remains might be 

located also in the nearby fields beyond the current limits of the Roman city (Cau-

Ontiveros et.al, 2017), (Ranieri et.al, 2016).  
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6.3.1. Datasets 
 

The datasets include PNOA aerial archives and RPAS imagery. Regarding the aerial 

archives, three different overlapped aerial images, used to generate the 2015 PNOA 

orthophoto of the area together with the exterior orientation and camera calibration 

values, were available. The 4-band images acquired with a high-performance metric 

aerial camera (Vexcel UltracamXP) were taken providing a GSD of 21 cm. The 

RPAS imagery (5-band images) were acquired with a Micasense RedEdge 

multispectral camera that was flown in a fixed-wing RPAS over the Roman city of 

Pollentia and nearby fields. 150 images were collected corresponding to a GSD of 

10 cm. No laboratory camera calibration was available beyond the information 

provided in the EXIF file. 

 

Figure 29. Map of the Roman city of Pollentia (Source: (Ranieri et.al, 2016)). 

 

6.3.2. Experimental results 
 

From the aerial archives, 33 points covering Pollentia and its surroundings were 

selected and their coordinates were triangulated. The triangulation was performed 

using the image coordinates of these points, the position and attitude of the aerial 
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images and the aerial camera calibration (Figure 30). 11 of them were selected as 

GCP while the remaining have been selected as checkpoints (CHP) to evaluate the 

quality of the RPAS imagery aerial triangulation step. 

The typology of the selected ground points was diverse. Most of them belonged to 

edges or clear visible elements from structures of the Roman city or structures from 

nearby fields. In addition, some points belonging to structures such as edges of 

swimming pools, road markings were also selected. Points susceptible to vary such 

as vegetation were avoided. 

The Agisoft Photoscan (Agisoft, 2022) software was used for performing the aerial 

triangulation step using the ground and image coordinates of the GCP, image 

coordinates from homologous points together with initial orientation of the images 

provided by the on-board GNSS receiver of the camera. The image coordinates of 

the GCP and CHP were manually identified in the RPAS imagery. The ground 

coordinates of the GCP were input with a very low standard deviation (0.001 m) to 

constrain the bundle adjustment. Camera calibration parameters (focal length, 

principal point, radial and tangential distortions) were also estimated by the 

adjustment. 

 

 

Figure 30. Distribution of ground control (blue dots) and check points (red 

triangles) around the Roman city of Pollentia (green area) and nearby fields. 

The final step involves the generation of georeferenced maps. Orthophoto and DSM 

were also generated with the same photogrammetric software. The generated 

products have a GSD of 10 cm. 

In order to evaluate the quality of the results, three different strategies have been 

used: relative precision evaluation, accuracy evaluation and visual analysis.  
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The aim of the first strategy is to evaluate the quality of the aerial triangulation, and 

so, assure the geometric consistency between the aerial and RPAS datasets. To do 

so, the analysis of the CHP residuals was the tool to evaluate the relative precision 

quality. The residuals of these points show a planimetric error better than 1 (aerial) 

GSD (0.1 m and 0.15 m) and slightly higher than 1 GSD for the height component 

(0.3 m). The residual for the height is worse than the planimetric components and 

(slightly) higher than 1 GSD. A possible explanation is that the ground points were 

estimated using only three aerial images belonging to the same flight strip. The use 

of images from different flight strips would improve the precision of the ground 

points height component. And thus, it would help to decrease the height component 

residual below 1 GSD.    

These results suggest that aerial triangulation was not only able to estimate the 

orientation of the images and camera calibration parameters but to provide reliable 

estimates. In addition, it is also a way to assure that both aerial and RPAS datasets 

are geometrically consistent.  

The proposed methodology relies on the accuracy provided by the Aerial (PNOA) 

imagery. According to specifications (PNOA, 2022), the planimetric accuracy of the 

PNOA orthophoto should be better than 0.5 m (RMSE) and 1 m for the height 

component. However, for the sake of completeness, an assessment of the global 

accuracy was done. To do so,  5 different points were surveyed with differential 

GNSS techniques in the area of Forum (Figure 31). The residuals between the 

triangulated coordinates and the differential GNSS coordinates were computed. The 

results show residuals of 0.07 and 0.13 m for the planimetric coordinates. The RMSE 

for X, Y coordinates 0.45, within the expected accuracy of the PNOA program.  

The last procedure for the quality checking of results was visual testing. This visual 

checking seeks to assess the co-registration between PNOA and generated RPAS 

orthophoto. After the RPAS orthophoto generation, some structures belonging to 

Sa Portella area were manually digitalized into a vectorial layer. The overlapping of 

this vectorial layer with the aerial ortophoto was the tool to check visually the co-

registration between both orthophotos. Figures 32 and 33 show the geometric 

consistency of both datasets. 
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Figure 31. Detail of Forum area from with GNSS surveyed points (red). 

 

 

Figure 32. Detail of Sa Portella area from most recent PNOA orthophoto and 

digitilized structures (red) from RPAS orthophoto. 
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Figure 33. Detail of Sa Portella area from RPAS orthophoto and digitalized 

structures (red). 

6.4. CONCLUSIONS AND FURTHER RESEARCH 
 

An approach to assess not only the proper geoferencing of high-resolution 

cartography generated with RPAS imagery but also the multi-temporal co-

registration using available aerial georeferenced imagery has been presented. The 

approach has been tested and validated with RPAS and aerial imagery of the Roman 

city of Pollentia. The aim of this work was not to assess the potential of RPAS 

imagery, for monitoring and documenting the site, already known by archaeological 

excavations or remains, but to assess the proper integration/fusion with the available 

historical georeferenced data.  

The approach relies on the use of ground control support derived from aerial and 

publicly accessible data instead of organizing a specific surveying campaign. The 

preliminary results show that a relative precision, between aerial and RPAS 

orthophotos, better than 1 GSD is achieved for the Roman city of Pollentia and 

their surrounding area. The results also show an absolute accuracy better than 0.5 m 

(RMSE) for the planimetric coordinates. 

Further research will take care of a complete validation to prove the reliability of the 

approach. This validation will include a comparison of the results obtained with the 

proposed methodology and the ones obtained using GCP coordinates measured 

from a specific surveying campaign. Besides this, the same methodology will be 

applied to additional RPAS imagery from Pollentia as well as other archaeological 

sites.  
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This chapter explores a second application of hybrid positioning: the tracking of 

members of civil protection and emergency teams. This is an open field of research 

with not widely accepted /adopted solution. Although outdoors tracking is routinely 

performed using well-seasoned techniques such as GNSS, this same problem must 

still be solved for indoors situations. There exist several approaches for indoor 

positioning, but these are not appropriate for tracking emergency staff in real time: 

some of these approaches rely on existing infrastructures; others have not been 

tested in light devices in real-time; none offers a combined solution. Moreover, the 

transition from outdoor to indoor areas and vice versa is not usually tackled. This 

chapter briefly presents a portable, unobtrusive, lightweight device combining 

GNSS for outdoor positioning and visual-inertial odometry / SLAM for the indoors 

case, developed in the frame of the IOPES project. This chapter highlights the main 

steps of the implemented strategy to fuse GNSS and visual-inertial odometry or 

SLAM-based trajectories. The operational aspects of the prototype, the real-life 

scenarios where the tests took place and the actual results thus obtained are also 

described. 

 

7.1. INTRODUCTION 

 

Deciding is a very important component of the management of emergencies: events 

happen unexpectedly and must be faced promptly; resources, either material or 

human, must be distributed – hopefully in an efficient manner – throughout the 

emergency scenario. Deciding means reasoning when, how and what to do, and this 

reasoning must be backed by information describing the situation in the field. Since 

situations change constantly, information must follow this very same path, being 

updated in such a way that the global picture seen by the emergency managers is the 

right one, at least for as long as possible. Moreover, such information must be as 

accurate as possible too, to avoid wrong decisions and thus inappropriate responses. 

In short, information must be both timely and reliable. 

Information must be therefore somehow collected, transmitted, and appropriately 

presented to the emergency managers in order to make their decision process not 

only possible but also effective. Several systems must be thus distributed throughout 

the field to perform the aforesaid tasks, which translate to activities such as the 

deployment of sensors and communication systems, the mapping of the emergency 

scenario, the processing of data using various types of algorithms to make them 

easily understandable by humans when they are presented on the appropriate 

visualization equipment. These systems comprehend Geomatics technologies such 

as positioning and mapping, either aerial or satellite-based, and advanced 

information and communication technologies.  
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As stated above, the collection, transmission and transformation of the relevant 

information must happen as fast as the situation changes; it should happen, in fact, 

in real time or in near real time to improve the monitoring, which is crucial (Giordan, 

2018) to perform a better risk assessment of the emergency. 

Continuous tracking of civil protection and emergency teams working in disaster 

and post-disaster emergency scenarios is still an open issue. While GNSS is a 

established solution for outdoors tracking, there is still no suitable solution for the 

indoors equivalent. Team managers know the building where their teams are 

working but not in which part of the building they are. The authors are working on 

developing a full system able to improve this situation. This chapter presents the 

first results of a low-cost, lightweight positioning system developed in the frame of 

a project, co-financed by the European commission - Directorate-General 

Humanitarian Aid and Civil Protection.  

Outdoors positioning is routinely performed nowadays by means of Global 

Navigation Satellite Systems (GNSS) receivers optionally hybridized with Inertial 

Measuring Unit (IMU) sensors. Despite its reliability, GNSS has some drawbacks 

such as the need for good environmental conditions. When these are not met (as, 

for instance, in deep canyons) GNSS is no longer the best technology for precise 

positioning. Indoor navigation solutions also exist, usually relying on ad-hoc, pre-

deployed infrastructures such as Wi-Fi, ultra-wideband or even visual beacons 

(Mautz and Tilch, 2011; Dardari, 2015), which will not be available (at least, 

everywhere) in post-disaster scenarios. Alternatively, techniques that combine visual 

and inertial measurements also exist (Scaramuzza, 2019). (Ramezani et al, 2017) 

suggest and proposes a visual-inertial odometry approach to improve conventional 

approaches by using visual measurements derived from omnidirectional cameras 

and multi-state constraint Kalman filter-based methods.  

Solutions already exist for both outdoor and indoor positioning, but these are not 

appropriate to fulfil the requirements set for the IOPES (Indoor-Outdoor 

Positioning for Emergency Staff) project. Firstly, some of the indoor technologies 

rely on complementary infrastructures deployed in advance in the area where the 

positioning must take place.  In the context of IOPES, indoor-outdoor seamless 

positioning must be available no matter what the situation is, that is, it must be self-

sufficient, not depending on pre-existing resources. Secondly, other indoor 

techniques, based on visual-inertial odometry / SLAM (Ramezani et al, 2017), have 

not been tested in portable devices and real-time, like the one that this project 

intends to build. Last, but not least, no combined solution, providing seamless 

indoor-outdoor positioning, exists for such kind of light devices. 

The IOPES concept seeks to fill this gap, building a lightweight, low-cost device for 

the emergency and civil protection teams working in areas affected by a disaster, 
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during or after the emergency. Said device, already presented in (Angelats and 

Navarro, 2017) and (Angelats et al, 2020), combines the well-seasoned GNSS for 

outdoor positioning and the advances already available in visual-inertial odometry / 

SLAM materialized in devices such as the T265 tracking device to provide positions 

indoors. The result is a solution providing seamless indoors-outdoor positioning, 

suitable for civil protection and emergency teams. 

At this point it is worth remarking that the requirements that the IOPES device must 

match are not as strict as in other situations requiring positioning. This is due to the 

type of application it is targeted at. Members of civil protection and emergency teams 

stated, during the phase of requirements collection, that being aware of the room 

and floor where the members of the team were enough for their purposes. This 

translates to an accuracy of about 1-2 meters and precision in the range 30-50 cm. 

The concept was first introduced in (Angelats and Navarro, 2017). In (Angelats et 

al, 2020) the proposed methodology to provide seamless outdoor and indoor 

positioning, detailing hardware, software, and operational aspects, was presented 

together with the preliminary experimental results. This work presents the results of 

the performance analysis as well as the conclusions for the first operating prototype 

performance in real scenarios.  

To do so the work has been organized as follows. Firstly, a short introduction to the 

IOPES project and technologies, together with the hardware, software, and 

operational aspects of the system, are presented. Then, in section 3, a description of 

the different real scenarios used to collect the data to estimate the performance of 

the system together with the experimental results, are presented. Finally, section 4 

summarizes the conclusions of the proposed approach and discusses future 

improvements. 

7.2. THE IOPES INDOOR/OUTDOOR POSITIONING SYSTEM 

 

7.2.1. IOPES project 
 

IOPES is a two-year project co-funded by the European Commission involving 7 

partners from 5 different European countries.  IOPES targets at strengthening the 

preparedness of emergency personnel by making them more responsive to disasters. 

IOPES seeks to improve an already operational Emergency Management System 

(EMS) – software tool targeted at the handling of emergencies – by providing real-

time updates on the position of the teams in the field. Nonetheless, IOPES is not 

targeted exclusively at improving this specific system but has been designed to 

interface to any other one by means of a standardized Application Programming 

Interface (API). 
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The ability to collect time-tagged positioning information – that may later be related 

to specific, significant events – facilitates the post-even analysis of the disaster, 

opening a door to derive new strategies or procedures or the enhancement of these. 

The project is funded by the Union Civil Protection Mechanism (UCPM) whose 

goal is to “improve the quality of EU response capacities” as stated in its Annual 

Work Programme (2019). Besides that, the IOPES is also fully aligned with priority 

4 of the Sendai framework for disaster risk reduction 2015-2030, “Enhancing 

disaster preparedness for effective response”. The project involves the combination 

of several technologies (Figure 34) including RPAS-based fast mapping, emergency 

management, portable communications, and positioning technologies. IOPES aims 

to provide continuous, time-tagged information about the location of Civil 

Protection Emergency Teams (CPET), either indoors or outdoors. 

This chapter does not cover all the technologies involved in IOPES but only those 

related to the reliable indoor/outdoor positioning of emergency staff.  

 

Figure 34. IOPES project technologies. 

 

7.2.2. Hardware 
 

The already developed prototype is a portable, low weight positioning device made 

of Commercial Off-The-Shelf (COTS) hardware components, mounted on a helmet 

but also able to be boarded as a drone payload. The positioning sensors used to 

build the IOPES solution are a GNSS receiver (Drotek DP0803 GNSS module 

(Drotek, 2021) that includes the U-BLOX NEO-M9N chip (ublox, 2021)), a 

stereo camera (Intel RealSense T265), (Intel, 2021), which also includes an IMU and 

a magnetometer (STMicroelectronics LIS3MDL) (ST, 2021). The GNSS receiver 

has been selected because it is able to provide meter-level accuracy and receive 
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signals from up to four different single-band GNSS constellations. With this GNSS 

receiver the system has reliable GNSS position coordinates even in weak GNSS 

conditions such as urban canyons, exploiting its capability to select the best signals.  

The T265 includes a built-in tracking proprietary algorithm running on board. 

It combines the measurements coming from the IMU and the images produced by 

the stereo fisheye cameras to provide, by means of visual-inertial 

odometry/SLAM, a seamless indoor/outdoor solution (Tsykunov, 2020); it 

provides the current position and orientation with an output rate of 200Hz. The 

magnetometer delivers raw magnetometer measurements with an output rate of 40 

Hz, used to derive absolute heading.  

The output frequency of the fused data (GNSS+camera) is 1 Hz. All these 

components (both hardware and software) are running on a lightweight 

computer (Raspberry Pi 4 Model B) (Raspberry, 2021), mounted on a helmet 

designed for work at height and rescue (Petzl Vertex), and powered with a 10 

Ah power bank (Anker PowerCore Slim).  

The Raspberry Pi is a system on a chip (SOC) with low power requirements that 

complete and integrate the set of components making the system. Its light weight 

ensures that it is not a nuisance for its wearers. Its task is to provide the necessary 

computing resources and storage capacity. Obviously, the low consumption 

requirements lead to longer operational times, thus reducing the need to replace 

batteries so often.  

From the computing power standpoint, a powerful Graphical Processing Unit 

(GPU) is not needed, since the computations involved in the visual-inertial 

odometry solution are performed by the camera device itself. The system also 

includes a communications module, and a 4G USB dongle with a SIM card (Huawei 

E3372). Additional features such as a headlamp can easily be attached to the 

prototype. All the components mounted on the helmet have been installed without 

modifying its structure to keep the helmet’s safety standards (Figure 35).  

 

https://arxiv.org/search/cs?searchtype=author&query=Tsykunov%2C+E
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Figure 35. IOPES positioning system mounted on a Helmet. 

 

7.2.3. Sensor fusion SW approach 
 

The cornerstone of the approach presented is a data fusion algorithm that relates 

GNSS and camera-based positions providing a single trajectory, regardless of 

whether it originated indoors, outdoors, or both. The flowchart of the algorithm is 

detailed in Figure 36. The flowchart is an updated version of the one presented in 

(Angelats et al, 2020) including additional details on how to derive a combined 

trajectory.  

In areas with low or denied GNSS availability the camera-based tracking system is 

the main source to provide the positioning solution; conversely, the GNSS positions 

are used when it is available. A common temporal reference frame is necessary to 

deal with data coming from these two sources - the internal clock of the SOC is 

enough for the purposes of the project. The GNSS solution, in friendly GNSS areas, 

is also used to convert the positions provided by the visual-inertial odometry (VIO) 

from local to global coordinates.  
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Figure 36. Flowchart for the sensor fusion approach. 

 

If the portable positioning device starts to acquire data in an indoor area, the system 

is designed to store the VIO positions (in local coordinates) and the three attitude 

angles in the internal disk till absolute positioning is available. When the positioning 

device moves to an outdoor area and the number of GNSS satellites allow us to 

provide a set of reliable GNSS-based positions, a local to global transformation can 

be estimated, and, consequently, VIO positions in global coordinates can be 

provided from this moment. The criterion to consider a GNSS position as valid is 

that the horizontal and vertical errors provided by the GNSS receiver are below a 

pre-defined threshold (such as 10 m), thus indicating a good GNSS satellite 

geometry and a good position estimation. The horizontal and vertical errors are the 

receiver's estimation of one-sigma horizontal and vertical errors. 

To estimate the local to global transformation, at least two valid consecutive GNSS 

positions in different locations are needed to have not only the transformed 

positions themselves but also to estimate the heading angle derived from GNSS. 

Alternatively, the absolute heading can be derived from the raw measurements 

provided by the magnetometer. The criterion to select either heading source is 

defined by the user. In our approach pitch and roll angles are assumed to be close 

to zero although this may introduce some positioning errors. Then, a rotation matrix 

can be computed; afterwards, a global VIO position, the lever arm offset between 

the GNSS and VIO devices and the local VIO coordinates can be estimated using 

this rotation matrix. 

Although not currently implemented, the GNSS-based positions will be used to 

model the temporal drift of the VIO data. This action mitigates the drift of the VIO-

based solution in indoor environments if the rotation matrix between GNSS and 
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VIO devices is known and consequently global VIO positions are available.  This is 

done by comparing the coordinates of the global GNSS position and the global VIO 

estimates for a temporal window of n seconds. After these n seconds, a linear drift 

is estimated for each positioning component. The positional drift is then applied to 

the newer global VIO positions till a new positional drift is computed. If no valid 

GNSS positions are available for the new window (transition from outdoor to 

indoor), the older positional drift is maintained until new GNSS positions become 

available (transition from indoor to outdoor). The n number is a parameter that must 

be set up prior to the use of the system. 

Finally, the stored local VIO positions are also converted to global coordinates to 

keep the historical track of global positions. This track can be used during the 

management of the emergency or once it is over to perform a post-mortem analysis. 

7.2.4. Operational aspects 
 

Ergonomics rules the operational aspects of the IOPES portable device. This means 

there must be no noticeable difference from the user’s standpoint concerning how 

the system is operated in either indoors or outdoors environment. 

Positions and time tags are computed according to the procedure described in 

section 2.3 and sent to the Emergency Management System so the managers may 

track the team working in the field – note that the components in the IOPES device 

as well as the remaining infrastructure required to make communications possible 

are not described in this chapter, although these are an integral part of the project. 

Under some environmental conditions, however, it will not be possible to compute 

any positions at all – examples of such adverse situations are dust or no lightning; 

these are limitations of the technology used for indoor positioning and thus affect 

the performance of the IOPES portable device. 

 

7.3. FIRST RESULTS AND SYSTEM PERFORMANCE 

 

7.3.1. Dataset description 
 

A series of campaigns were carried out to validate the performance of the positioning 

sensors (visual-inertial odometry and GNSS sensors) and that of the overall system. 

The campaigns were done at the premises of CTTC in the Parc Mediterrani de la 

Tecnologia (Castelldefels, Spain) and their surroundings (Figures 37 and 38) and at 

Garraf town and surroundings (Figure 39). Both scenarios are characterized by 
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including indoor spaces, clear-sky spaces, and areas with strong multipath 

conditions.  

The performance analysis of the system has been carried out considering several 

environmental conditions: distance to closest targets (outdoor-clear sky/ outdoor-

low GNSS availability/indoor), system dynamics (kinematic/almost static/ static), 

environmental texture (no texture/texture) and lightning conditions (bright / dark). 

Four different routes (two per location) were defined and carried out combining the 

different parameters stated above. The first route, “Sa Falconera”, took place in the 

surroundings of Garraf including a walk near a cliff, and a tunnel. The second route, 

“Garraf Town”, is a walk inside the Garraf town, with narrow streets and ending 

inside a house with four different rooms on the same floor.  Third route, “PMT-

LAB”, is a walk through the campus including an area with strong multipath and a 

walk inside the positioning lab of CTTC. The last route “PMT-buildings” is an 

extension of the previous one but covering all the corridors and main spaces of three 

floors of the CTTC-B4 building and also two different floors in CTTC-B6 building. 

7.3.2. Performance analysis methodology 
 

In order to assess the performance of the system, the estimated positions in the most 

relevant areas were analysed. Performance indicators are computed using predicted 

positions from equivalent environments like outdoor clear-sky, indoor or urban 

corridors. Then, for each of those subsets the mean accuracy and precision were 

computed; the references were the coordinates provided by PNOA (Plan Nacional 

Ortofotografía Aérea) maps (outdoors) and plans of the building (indoors). 

According to specifications (PNOA, 2021), the planimetric accuracy of the PNOA 

orthophoto should be better than 0.5 m (Root Mean Square Error) and 1 m for the 

height component.  

For the specific case of the “CTTC positioning lab” (indoors), the coordinates of an 

easily identifiable set of points on the floor were computed by means of other 

reliable positioning techniques. Such coordinates constituted the reference for this 

use case.  Later, a walk using the IOPES portable device was recorded, and its output 

coordinates were compared with the aforesaid reference data set. 
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Figure 37. Parc Mediterrani de la Tecnología where CTTC buildings are located.  In 

red, area with strong multipath conditions. In orange, indoor/outdoor transition 

areas. 

 

 

Figure 38. CTTC premises. Positioning lab (left) and corridors (right). 

 

 

Figure 39. Garraf town and surroundings. 
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This research does not consider the error estimation provided by the GNSS as a 

performance indicator since it has been observed that these values are too 

pessimistic in all trajectories.  

7.3.3. Results and discussion 
 

The system output for the “Sa Falconera” route is shown in Figure 40. The system 

estimates a set of global positions (depicted as dots), and just for clarification, each 

global position has been coloured red or green depending on the sensor used for its 

generation (green dots for GNSS estimated positions, red dots for camera-based 

ones). The summarized performance results for “Sa Falconera” test site are shown 

in Table 20. The results confirm the good performance of the system under 

“outdoor clear sky” conditions. Performance gets slightly worse when the system is 

outdoors surrounded by thick vegetation. When the results are produced by the 

camera-based sensor the precision is good while the accuracy goes to 3 m. 

The system output for the “Garraf Town” route is shown in Figure 41. The 

summarized performance results for the “Garraf Town” test site are shown in Table 

21. In this case the use of the camera-based sensor is higher due to the bad quality 

of the GNSS signal inside the narrow streets of the village. As in “Sa Falconera” the 

results under “outdoor clear sky” conditions are good. For most of the outdoor 

urban section of the route and for the indoor section the camera-based sensor has 

performed with good precision and 3 meters of accuracy. 

The system output for the “CTTC-LAB” route is shown in Figure 42. The 

summarized performance results for the “CTTC-LAB” test site are shown in Table 

22. The most critical section of this route is the ~50 meters walk in a zone where 

the GNSS receiver suffers from multipath effects. In this zone the performance of 

the system gets worse, with a mean precision of 1 meter and a mean accuracy of 4 

meters. The rest of the route is estimated with the same precision and accuracy 

performance as “Sa Falconera” and “Garraf Town”. 

The system output for the “PMT-Buildings” route is shown in Figure 43. The 

summarized performance results for the “PMT-Buildings” test site are shown in 

Table 23. In this route the system is tested extensively indoors, under different 

lighting and space conditions. The outdoor results are similar to the previous study 

cases. The indoor results show no differences in terms of performance when the 

lightning conditions are changed. However, it can be observed an important 

worsening of the performance when the system is tested in big diaphanous spaces 

(due to the lack of features to be tracked by the camera). In these conditions, the 

mean precision goes to 2 meters and the mean accuracy to 5 meters. 
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Figure 40. Estimated “Sa Falconera” trajectory.  Green dots indicate positions 

provided by the GNSS while red dots are the ones provided by camera-based 

tracking system. 

 

 Main sensor Mean precision Mean Accuracy 

Outdoor clear sky GNSS <0.5m 1m 

Outdoor vegetation GNSS 1m 2m 

Tunnel Camera <0.5m 3m 

Table 21. IOPES system horizontal performance at “Sa Falconera” test site. 

 

 

Figure 41. Estimated “Garraf -Town” trajectory.  Green dots indicate positions 

provided by the GNSS while red dots are the ones provided by camera-based 

tracking system. 
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 Main sensor Mean precision Mean Accuracy 

Outdoor clear sky GNSS <0.5m 1m 

Outdoor urban corridor Camera ~0.5m 3m 

House Camera <0.5m 3m 

          Table 22. IOPES system horizontal performance at “Garraf-town” test site. 

 

                      

 

Figure 42. Estimated “CTTC-LAB” trajectory.  Green dots indicate positions 

provided by the GNSS while red dots are the ones provided by camera-based 

tracking system. 

 

 Main sensor Mean precision Mean Accuracy 

Outdoor clear sky GNSS <0.5m 1m 

Outdoor multipath GNSS 1m 4m 

CTTC lab Camera <0.5m 3m 

Table 23. IOPES system horizontal performance at “CTTC-lab” test site. 
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Figure 43. Estimated “PMT-Buildings” trajectory.  Green dots indicate positions 

provided by the GNSS while red dots are the ones provided by camera-based 

tracking system. 

 

 Main sensor Mean precision Mean Accuracy 

Outdoor clear sky  GNSS <0.5m 1m 

Outdoor multipath GNSS ~0.5m 3m 

Indoor small spaces Camera <0.5m 3m 

Indoor big spaces Camera 2m 5m 

Indoor dark rooms Camera <0.5m 3m 

Table 24. IOPES system horizontal performance at “PMT-buildings” test site. 

 

The results obtained in the different scenarios demonstrate the operability of the 

idea of the IOPES project. The precision and accuracy obtained for the different 

scenarios partially cover the user requirements of the IOPES project. However, the 

authors strongly believe that the user requirements for the outdoors can be easily 

achieved by improving the quality of the GNSS receiver (for example using a 

multipath-rejecting GNSS antenna and receiver). The indoor performance can be 

trickier to improve; the bad quality of the results in indoor big spaces seems to be 

due to the technology used and hardly improvable; however, the authors have found 

that the accuracy of the indoor solution in the rest of the cases can be improved by 

selecting properly the point where the solution changes from outdoor (and thus 

from the GNSS sensor) to indoor. Taking this point into account, more complex 
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algorithms for detecting the outdoor/indoor transition could lead to an 

improvement in the indoor system performance. 

7.4. CONCLUSIONS AND FURTHER RESEARCH 
 

This chapter presents the first results for a new, portable, lightweight, unobtrusive 

positioning device which, combining GNSS and VIO, is offering seamless indoor 

and outdoor positioning in the context of emergency and disaster management 

applications and the monitoring of the teams involved in these events. 

Such a device is expected to operate in many different scenarios – such as open sky, 

tunnels, rooms inside building – under different environmental conditions – such as 

lack of lightning or texture – and subject to changes concerning the elements making 

the scenarios themselves – as, for instance, due to the presence of moving objects 

such as people or vehicles. 

The expectations concerning the positioning parameters defining the performance 

of the IOPES device were, literally, “to be able to tell apart both the room and floor 

where the individual being tracked was”. This was a requirement specific to indoor 

positioning, which the authors translated to more measurable magnitudes, that is, 

expecting an accuracy of about 1-2 meters and precision in the range 30-50 cm (see 

section 7.1). 

The results commented in section 7.3 show that the requirement concerning 

accuracy has not been achieved, going up to 4 meters in one of the use cases. The 

reason explaining this result is directly related to the accuracy obtained by the GNSS 

receiver itself in the aforesaid scenarios; the overall accuracy of the IOPES device 

directly depends on this magnitude. It is reasonable to expect, therefore, that this 

accuracy will be improved when working in more favourable situations. Precision, 

on its side, meets the expectations stated in section 7.1. 

Nonetheless, accuracy and precision are either suitable or not depending on the 

target application and, especially, on the users involved in the exploitation of such 

application. It is worth noting that at least one of the users involved in the IOPES 

project finds these results very interesting, and, consequently, the IOPES device is 

useful for their purposes. The opinion of the rest of the users is still unknown to us, 

but they will have the opportunity to express it soon, during the first demonstration 

of the project.  

At any rate, the work on the IOPES device is not yet over. The results presented in 

this work correspond to the very first assembled prototype. The work to come will 

concentrate on making the prototype more robust and performant. The foreseen 

lines of work are the implementation of the correction of the drift when working in 
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VIO mode and a better mechanism to detect indoors-outdoors (and vice-versa) 

transitions to reduce the time to switch between two positioning technologies – and 

thus, reduce errors. Both lines of work will serve to improve the accuracy of the 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

Chapter 8 
 

CONCLUSIONS AND OUTLOOK  
 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

  



Chapter 8  

 

 127 

Hybrid or multi-sensor-based positioning has been a research topic actively 

investigated and is still being actively studied by the Geomatics community but also 

by the Robotics and Computer vision community in the last decade. In this context 

the possibility of using information, extracted from single or multiple image sensors, 

for positioning is very appealing to mitigate the problems that GNSS or INS/GNSS-

based trajectories have in GNSS-unfriendly environments in terms of robustness 

and accuracy. Moreover, different processing workflows, sensor positioning quality 

or system calibration errors, may also produce even in GNSS-friendly conditions, 

multiple geospatial datasets that are not properly co-registered. 

This thesis has proposed the use of non-semantic information, that is the use of a 

set of geometric entities or features, to improve the trajectory estimation in a multi-

sensor-based approach. This thesis has covered the mathematical modelling of non-

semantic information, several hybrid-based trajectory estimation approaches that 

use this kind of information with the appropriate modelling, as well as exploring the 

use of non-semantic features to model the trajectory error modelling. 

The proposed models have enabled improved trajectory determination in both 

urban post-processing and airborne environments with good accuracy. The 

implemented INS/GNSS trajectory error models have been relatively simple but 

still proved to be efficient. The combined models have been tested, in post-

processing using a bundle adjustment approach, with real data from metric cameras 

and aerial laser mapping systems as well as in TMM systems. The simultaneous 

orientation of LiDAR and optical imagery is a research topic that is not closed, and 

it has been investigated recently (Glira et.al, 2019, Brun et.al, 2021, Mouzakidou et.al, 

2022). These works share some similarities with the aforementioned models but 

focused on datasets acquired with a different type of platform (RPAS) and the latter 

two also incorporated the use of Dynamic networks (Colomina and Blázquez, 2004, 

Cucci et.al, 2017) to study the benefit of using GNSS and raw inertial observations 

within a single network adjustment instead of introducing INS/GNS derived 

trajectories plus a trajectory error model. The use of dynamic networks is fully 

compatible with the proposed combined models, and it should also be part of any 

forthcoming work. Future works should also evaluate the feasibility of using the 

previous models for simultaneous orientation of aerial and TMM imagery, and 

compare them with existing approaches (Jende et.al, 2018), (Molina et.al, 2017).   

The non-semantic information extracted from the images has allowed, using an 

integrated sensor orientation approach, to model the current errors in an urban 

environment. This modelling is another contribution of the thesis that opens the 

door to the development of new, more advanced trajectory error models that go 

beyond the deterministic models currently used. The characterization of errors in 

urban environments has opened a new line of research to be considered in future 

work: understanding which context conditions produce higher trajectory error in 
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urban environments. The determination of the context could be done through 

semantic segmentation and classification of the acquired imagery and/or considering 

a temporal window of GNSS raw measurements. 

This thesis has also presented an approach to improve the determination of RPAS 

trajectories using open aerial data obtained in the framework of a national mapping 

project (PNOA). The development of this methodology is a contribution aiming to 

ensure the geospatial coherence between the orthophotos, and digital elevation 

models obtained with an RPAS and the orthophotos and digital models of the 

PNOA. The proposed approach takes advantage of a technology (in terms of 

positioning systems) with a much higher cost than the ones used to derive 

photogrammetric products with RPAS platforms. The results show that 

photogrammetric products can be generated with similar accuracy to the ones 

generated with more complex approaches.  In this context, future work should 

investigate the possibility to automatically detecting homologous points between 

aerial images and RPAS images, not only between pairs of images but also between 

all existing PNOA images. This would allow the detection of points that persist over 

time, as the motivation is to generate orthophotos from RPAS images co-registered 

also with the most recent one but also with historical orthophotos of the PNOA. 

The approach that has been proposed in this thesis for the determination of 
trajectories in real time based on a tightly coupling sequential nonlinear least squares 
using GNSS positions, image coordinates and raw inertial measurements, does not 
allow us to derive definitive conclusions beyond demonstrating the potential of the 
approach in non-friendly GNSS environment. The proposed approach exploited a 
sliding window bundle adjustment technique to use the image coordinates of tie 
points and the positions and attitudes derived from the last epochs to determine the 
position and attitude parameters of the most recent epoch. This concept has evolved 
a lot in recent years, with many and more robust and reliable approaches proposed 
by the Robotics and Computer Vision communities. In the last two years, several 
publications have appeared improving state-of-the-art VIO/SLAM approaches 
(Campos et.al, 2021) or fusing VIO and GNSS data (Cioffi and Scaramuzza, 2020, 
Lee et.al, 2020, Boche et.al, 2022, Cao et.al, 2022). These approaches aim to provide 
(1) trajectory estimation in a global reference frame and (3) to reduce long-term drift 
of VIO-based trajectories, exploiting loop closing techniques, that is, the detection 
of already visited areas to reduce accumulated positional drift. These techniques 
share some similarities also with the already mentioned dynamic network approach. 
Any further work on that topic should consider including the advances proposed in 
the previous works.  
 

This thesis has tried to take benefit also of the latest technological advancements, 

especially in terms of COTS devices such as miniaturized VIO-based trajectory 

systems. To do so, a seamless indoor-outdoor positioning approach has been 
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presented with encouraging results in several scenarios. Nevertheless, the results 

pointed out at the same time the importance of detecting transition areas between 

indoor and outdoor areas. As for the urban mapping case, the context information 

should have to be considered to improve the fusion strategy in forthcoming works 

as well as characterize the features of these transition areas. Moreover, hybrid 

methods merging the current approach with a trajectory forecasting approach based 

on Artificial Intelligence (Gupta et.al, 2018) should be considered. 
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