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Abstract

Deep Neural Networks (DNNs) have become ubiquitous in a wide range of application do-
mains. Despite their success, training DNNs is an expensive task which has motivated the use
of reduced numerical precision formats to improve performance and reduce power consump-
tion. Emulation techniques are a good fit for understanding the properties of new numerical
formats on a particular workload. However, current state-of-the-art techniques cannot perform
these tasks quickly and accurately on a wide variety of workloads.

The usage of Mixed Precision (MP) arithmetic with floating-point 32-bit (FP32) and 16-bit
half-precision aims at improving memory and floating-point operations throughput, allowing
faster training of bigger models. This is one of the most used techniques, and has been suc-
cessfully applied to train DNNs. Despite its advantages in terms of reducing the need for key
resources like memory bandwidth or register file size, it has a limited capacity for diminishing
further computing costs, as it requires 32-bits to represent its output. On the other hand, full
half-precision arithmetic fails to deliver state-of-the-art training accuracy.

Several hardware companies are proposing native Brain Float 16-bit (BF16) support for
neural network training. Fused Multiply-Add (FMA) functional units constitute a fundamental
hardware component to train DNNs. Its silicon area grows quadratically with the mantissa
bit count of the computer number format, which has motivated the adoption of the BF16.
BF16 features 1 sign, 8 exponent and 7 explicit mantissa bits. Some approaches to train
DNNs achieve significant performance benefits by using the BF16 format. However, these
approaches must combine BF16 with the standard IEEE 754 FP32 format to achieve state-of-
the-art training accuracy, which limits the impact of adopting BF16.

To address all of the previous concerns with respect to different numerical formats, specific
training techniques, and how to increase the use of reduced precision approaches, this Thesis
proposes FASE, a Fast, Accurate, and Seamless Emulator that leverages dynamic binary trans-
lation to enable emulation of custom numerical formats. FASE is fast; allowing emulation of
large unmodified workloads, accurate; emulating at instruction operand level, and seamless;
as it does not require any code modifications and works on any application or DNN framework
without any language, compiler or source code access restrictions. We evaluate FASE using
a wide variety of DNN frameworks and large-scale workloads. Our evaluation demonstrates



2 Glossary

that FASE achieves better accuracy than coarser-grain state-of-the-art approaches, and shows
that it is able to evaluate the fidelity of multiple numerical formats and extract conclusions on
their applicability.

To show the advantages of FASE we test it in object classification, natural language pro-
cessing, and generative networks workloads. We use FASE to analyze BF16 usage in the
training phase of a 3D Generative Adversarial Network (3DGAN) simulating High Energy
Physics detectors. FASE allows us to confirm that BF16 can provide results with similar accu-
racy as the full-precision 3DGAN version and the costly reference numerical simulation using
double-precision arithmetic.

We use FASE to characterize and analyze computer arithmetic to propose a seamless ap-
proach to dynamically adapt floating point arithmetic. Our dynamically adaptive methodol-
ogy enables the use of full half-precision arithmetic for up to 96.4% of the computations when
training state-of-the-art neural networks; while delivering comparable accuracy to 32-bit float-
ing point arithmetic. Microarchitectural simulations indicate that our Dynamic approach ac-
celerates training deep convolutional and recurrent networks with respect to FP32 by 1.39×
and 1.26×, respectively.

Finally, we propose an approach able to train complex DNNs entirely using the BF16
format. Using FASE we introduce a new class of FMA operators, FMAbf16

n_m , that entirely
rely on BF16 FMA hardware instructions and deliver the same accuracy as FP32. FMAbf16

n_m

operators achieve performance improvements within the 1.28-1.35× range on ResNet101 with
respect to FP32. FMAbf16

n_m enables training complex DNNs on simple low-end hardware
devices without requiring expensive FP32 FMA functional units.

In summary, this work evaluates and proposes several reduced numerical approaches rang-
ing from BF16, MP, Dynamic, and compound data types to train different DNN networks. We
present FASE as a binary analysis tool to emulate custom numerical formats avoiding costly
hardware implementations while getting accurate emulation of large workloads without re-
quiring any source code modification.



Chapter 1

Introduction

Since AlexNet [55] was used to solve the ImageNet challenge the interest in Convolutional
Neural Networks (CNN) to manage image classification problems increased considerably.
Several CNNs had been used to solve this challenge; some examples of these models are
ZFNet [103], GoogLeNet/Inception [88], VGGNet [82] and Residual Networks (ResNet) [34].

In the same way, an increasing interest in other problems like object detection, image
segmentation, machine translation, or speech recognition has been studied in recent years
using Deep Neural Networks (DNN) to solve them.

However, employing DNNs is computationally intensive, especially in the quantity of
Fused Multiply Add (FMA) instructions used during the training and inference processes.
For this reason, during the last years there is an increasing interest in using reduced precision
numerical data representation formats to train DNNs [48, 86, 87, 99].

The idea behind all of these research approaches is to reduce the power consumption, the
number of operations, or the execution time, without losing accuracy. However, many methods
use complex hardware, software, or both to accomplish their goals. Ultimately, the original
DNN model must be changed entirely to keep accuracy, making its implementation difficult
for scientists who know little about numerical data representations.

Recent research about mixed precision training [51, 64] shows that these techniques can do
training and inference processes using 16-bit floating-point operations without accuracy loss
while keeping the original model almost unchanged. There are other approaches where even
lower precision schemes are used to check if a training process is possible without hurting
accuracy. Some implementations use 4 or 8 bits in specific training layers to represent floating
point numbers [25, 26].

An increasing number of custom numerical formats are becoming available to study and to
see how their properties could be used to train DNN models. However, their implementation
in real hardware is restrictive, and the cost becomes high if we implement them all to check
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their advantages and disadvantages. Here is where an emulation approach can alleviate the
effort required to understand the numerical properties of these numerical approaches without
having to rely on expensive, in time and cost, hardware implementations.

We propose a binary analysis tool called FASE (Fast, Accurate, and Seamless Emulator)
based on Intel PIN, which helps to emulate custom numerical formats and to test their numer-
ical properties during the training phase. FASE successfully emulates data types like Brain
Float 16 (BF16), Mixed Precision (MP), dynamic techniques, and a new set of custom FMA
operators. With FASE we can train several convolutional, generative, and sequential models
using Caffe, Tensorflow, and PyTorch.

1.1 Contributions and Thesis Organization

While completing this thesis, we developed a Fast, Accurate, and Seamless Emulation (FASE)
approach to emulate numerical datatypes without incurring complex changes in the source
code of frameworks for DNN training. FASE is designed to work seamlessly with models
implemented in multiple frameworks, such as Caffe, PyTorch, and TensorFlow. The contribu-
tions can be summarized as follows:

• A numerical datatype emulator based on a binary analysis tool.

• A mixed numerical precision approach to train generative adversarial networks.

• A dynamic precision datatype scheme to train DNNs.

• A new set of BF16 operators that rely exclusively on 16-bit arithmetic operations to
train DNNs.

The contributions are divided into two topics; the first is an emulator with several use
cases. The second one uses this emulator to study different numerical precision schemes to
train multiple state-of-the-art DNN models.

Below, we show the thesis organization and also complemented with the list of contribu-
tions covering Chapters 4 to 7:

• Chapter 1 - Introduction. Motivates our work from a general point of view. It mentions
the advantages of emulation to test numerical datatypes and gives some context about
the work we develop.

• Chapter 2 - Background and Related Work. Introduces some important topics about
each of the main chapters in this thesis. The idea is to give some context to the reader.
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• Chapter 3 - Experimental Setup. Details the hardware and software we use to do our
tests. Additionally, it covers the methodology followed to emulate each numerical data
type.

• Chapter 4 - FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical
Datatypes. Explains how we implement our custom numerical emulator and presents
how it performs with respect to native executions.

• Chapter 5 - Evaluating Mixed-Precision Arithmetic for 3D Generative Adversar-
ial Networks to Simulate High Energy Physics Detectors. It is the first use case to
present the advantages of FASE while emulating Mixed-Precision (MP) to simulate a
High Energy Physics Detector at CERN.

• Chapter 6 - Dynamically Adapting Floating-Point Precision to Accelerate DNN
Training. We develop a dynamic precision approach that changes between a higher
precision numerical scheme to a lower one following the evolution of the training loss.

• Chapter 7 - A BF16 FMA is All You Need for DNN Training. We present the first
full BF16 numerical approach to train several DNNs without using FP32. We emulate a
new family of FMA operators using FASE.

• Chapter 8 - Conclusions and Future Work. Concluding remarks about the work
done, we discuss future work to keep FASE updated with new families of floating point
precision schemes.

1.2 List of Publications

1.2.1 Conference Papers

• Evaluating Mixed-Precision Arithmetic for 3D Generative Adversarial Networks
to Simulate High Energy Physics Detectors.
John Osorio, Adrià Armejach, Gulrukh Khattak, Eric Petit, Sofia Vallecorsa and Marc
Casas.
In 19th IEEE International Conference on Machine Learning and Applications (ICMLA),
Dec 2020.

• Dynamically Adapting Floating-Point Precision to Accelerate Deep Neural Net-
work Training.
John Osorio, Adrià Armejach, Eric Petit, Greg Henry and Marc Casas.
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In 20th IEEE International Conference on Machine Learning and Applications (ICMLA),
Dec 2021.

• FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats.
John Osorio, Adrià Armejach, Eric Petit, Greg Henry and Marc Casas.
In European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECMLPKDD), Sep 2022.

1.2.2 Journal Papers

• A BF16 FMA is All You Need for DNN Training.
John Osorio, Adrià Armejach, Eric Petit, Greg Henry and Marc Casas.
In IEEE Transactions on Emerging Topics in Computing (TETC). Jul-Sep 2022

1.2.3 Posters

• FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats.
John Osorio, Adrià Armejach, Eric Petit, Greg Henry and Marc Casas.
In IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), May 2022.



Chapter 2

Background and Related Work

This section contains the background that helps to cover each of the main chapters in the
Thesis. It helps to understand what exists in the state-of-the-art and the main concerns when
using reduced precision approaches.

2.1 Importance of DNN Workloads

Following the progress made in image classification tasks [18, 58] by Khrizhevsky et al. [55],
Szegedy et al. [88] and He et al. [34], DNNs [57] have been successfully applied to domains
like biology [49], economy [3], chemistry [62], or sports management [47]. Many refined
techniques have emerged to tackle these new problems beyond image classification. Among
them, the Generative Adversarial Networks (GAN) proposed by Goodfellow et al. [29]. CERN
has recently proposed to drive High Energy Physics (HEP) simulations using GANs [13, 52,
53, 75, 80].

DNNs are becoming ubiquitous in different areas, as mentioned before. CNNs can ac-
curately detect and classify objects over large image data sets [55], and Recurrent Neural
Networks (RNNs) using encoder-decoder models are capable of solving tasks like Neural Ma-
chine Translation (NMT) [6]. However, to achieve the desired accuracy levels, many samples
must be exposed to the model tens or hundreds of times during training. This fact increases
training costs regarding power, memory storage, or compute time.

Due to DNN models increasing popularity and current trends on DNNs the training costs
will continue to grow as state-of-the-art DNNs feature increasingly large parameter counts [8,
9, 70]. Training process improvements became necessary to reduce costs. The fused Multiply-
Add (FMA) functional unit is a key hardware component to train DNNs since they support
most floating-point instructions required for DNN training [90].
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2.2 Machine Learning in Scientific Applications

2.2.1 High Energy Physics

The High Energy Physics (HEP) community has a long tradition of using Neural Networks and
Machine Learning methods (Random Forests, BDT, MLPs) to solve specific tasks, in particu-
lar, related to a more efficient selection of exciting events over the overwhelming background
produced at colliders such as the Large Hadron Collider (LHC). In recent years, several studies
have demonstrated the benefit of using Deep Learning (DL) to solve typical tasks related to
data taking and analysis. Building on these examples, many HEP experiments are now work-
ing on integrating DL into their workflows for many different applications: from data quality
assurance [5] to real-time selection of interesting collision events [27], to simulation [28] and
data analysis [78]. For example, generative models, from GAN to VAE, are being tested as
fast alternatives to Monte Carlo-based simulation. Anomaly detection algorithms are being ex-
plored to improve data quality monitoring, to design searches for rare new-physics processes,
or to analyze and prevent faults in complicated systems such as detectors and accelerator con-
trol systems.

Training of such models has been made tractable with the improvement of optimization
methods and the advent of dedicated hardware well adapted to tackle the highly-parallelizable
task of training neural networks. However, memory consumption still represents a limiting
factor in many applications: HEP detector output is represented by millions of read-out chan-
nels and is usually too large to be processed. The standard approach in these cases is segment-
ing and selecting regions of interest for further processing. Analyzing larger input samples
and processing deeper models represents an advantage in data processing efficiency, accuracy,
and exploitation of computing resources.

2.2.2 Generative Adversarial Networks and HEP

A Generative Adversarial Network (GAN) is a type of generative modeling that uses deep
learning methods, like CNN. The idea behind these GAN models is to generate new content
based on datasets used to train them [29]. A GAN comprises two networks competing against
each other during the training phase. One of the networks is called a Generator and the
other Discriminator. The Generator is trained to generate new data that becomes almost real.
The Discriminator is trained to discover which data from the Generator is real. When the
discriminator has a 50% of the probability of making a mistake, we could say that the model
is correctly trained. Once the GAN is trained, we could use the Generator at inference to
Generate new data.
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Variational Autoencoders (VAE) are also generative models that can help generate new
data based on a training dataset. The idea behind VAE, similar to GAN, is to have two net-
works. One of them is called the Encoder and is followed by a second one that is named
the Decoder [21]. The encoder takes the inputs to the VAE and creates an intermediate rep-
resentation with less information than the input but is efficient enough to contain its main
properties. Then, the decoder will try to recover the original input with this information. With
the encoder output, also known as latent space, we could take random points from it and then
feed the decoder to generate new data.

HEP simulations with detailed Monte Carlo methods are highly resource-intensive, con-
suming more than 50% of the Worldwide LHC grid (WLCG) resources [11]. In the past
few years, developing and optimizing generative models to speed up or entirely replace Monte
Carlo simulation has become a lively research field. CALOGAN [75] simulated particle show-
ers in a simplified calorimeter conditioned on the primary particle energy (1−100 GeV). DL
was used for fast simulation of the ATLAS calorimeter [80]. Showers with energies 1− 260
GeV and pseudorapidity |η | in the range of 0.2− 0.25 were generated using both VAE and
GAN. The showers were generated as a flattened array of pixels. The GAN-generated showers
were reported to have a better agreement with the Monte Carlo data than the VAE-generated
showers. DijetGAN [20] used GAN to simulate diject events, a background process for criti-
cal physics studies at LHC. WGAN simulated the LHC detector output collapsed into a two-
dimensional array of cells [13]. A pre-trained regressor network was incorporated into the
GAN setup. The results were reported to be promising, although more work was required for
practical implementation.

3DGAN [52] is one of the most realistic and accurate models for simulating a HEP detec-
tor. The showers are generated for particles within the 2−500 GeV energy range, with several
orders of magnitude speedup. Due to the generation of 3D images, large training data, and
a deeper model, the training can benefit significantly from reducing the data resolution. On
the other hand, scientific simulation is also a performance-critical task and must retain high
accuracy.

2.3 Mixed Precision Training

Exploring lower-precision numerical formats for DNN training has been an active research
topic in recent years. Some works propose non-standard data formats as an alternative to FP32.
For example, prior work indicates that dynamic fixed-point is effective in training DNN with
low-precision multipliers [15]. This approach obtains state-of-the-art results by uniformly
applying the dynamic fixed-point format with different scaling factors, which are driven by
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the overflow rate displayed by the fixed-point numbers. Gupta et al. [97] show the benefits of
applying stochastic rounding to 16-bit fixed-point multiply and add operators. This work relies
on FPGA emulation to show the benefits of stochastic rounding when applied to a custom fully
connected neural network dealing with the MNIST dataset. Wang et al. [96] propose to train
DNNs using 8-bit floating-point (FP8) numbers by relying on a combination of 8-bit and 16-
bit arithmetic and by using stochastic rounding to obtain state-of-the-art results. Additionally,
Sun et al. [84] present a novel approach similar to the previous one, but without stochastic
rounding; however, they require a quantization and two newly defined FP8 numerical data
types.

Recently released and announced hardware products support new numerical data types
to train DNNs. For instance, Nvidia GPUs support Mixed Precision (MP) training by lever-
aging their tensor cores, which combine FP16 and FP32 in their Volta architecture [64] and
more recently proposed the TF32 format using up to 19-bits [67]. Similarly, Kalamkar et
al. [51] propose an MP scheme using BF16 and FP32 formats. They emulate this approach
using library calls that must be integrated into the target DNN models. The conversion from
BF16 to single precision does not require a scaling factor, as both types cover the same range.
Conversion from 32 to 16 bits requires an RNE rounding operation.

FMA instructions implementing an MP approach bring significant benefits since they re-
quire less memory bandwidth and register storage than FP32 FMAs. Additionally, when us-
ing BF16, there are no substantial modifications or new hyperparameters for the targeted DNN
model. It operates on the same value ranges as FP32, allowing trivial adoption of this approach
by the community.

2.4 Dynamic Precision Training

Reducing training requirements via lower precision data types has been an active topic re-
cently. Numerous proposals use non-standard data formats with ad-hoc bit widths for expo-
nent and mantissa, which lack hardware support but enable going as low as 8-bits for some
computations. Using stochastic rounding (SR) techniques also proves effective but can be
costly to implement in hardware and software.

For example, prior work indicates that dynamic fixed-point is sufficient to train DNNs with
low precision multipliers [15]. This approach obtains state-of-the-art results by uniformly
applying the dynamic fixed-point format with different scaling factors driven by the overflow
rate displayed by the fixed-point numbers. Applying SR to 16-bit fixed-point multiply and
add operators has been beneficial [31]. Other proposals train DNNs using 8-bit floating point
(FP8) numbers by relying on a combination of 8-bit and 16-bit arithmetic and using SR to
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obtain state-of-the-art results [96] or propose a multi-precision approach also using SR to
keep DNN training accuracy [77]. Finally, there is a newer approach that does not require
SR [84]; however, a quantization step and two newly defined FP8 numerical data types are
needed.

Other proposals focus on leveraging available hardware support to achieve the same ob-
jectives. This is the case of the MP proposals that employ half-precision representation such
as FP16 and BF16 for tensors [51, 64]. The BF16 numerical format has been used in specific-
purpose hardware targeting DNNs [97] and will soon be supported by off-the-shelf hardware
from Intel and Arm. Our dynamic training approach falls under this category. As we demon-
strate, it can be applied on top of FP32 or MP training to reduce memory bandwidth and
computational requirements while delivering comparable accuracy. Furthermore, FASE and
the Dynamic approach we proposed can be adapted and used to explore and validate other
existing and future encodings.

2.5 Reduced Precision Floating-Point Formats

As the complexity of new DNN models increases [9], training these models translates into
large computational and environmental costs [25], valued at millions of dollars. Multiple
proposals try to reduce these costs by using reduced precision strategies to take advantage of
the favorable area and power trade-offs associated with narrower hardware units [91].

Several studies show that reduced precision techniques [85, 91] diminish computing time
and energy consumption when training DNNs. Micikevicius et al. [64] proposes an MP tech-
nique using FP16 on Nvidia GPUs, while Kalamkar et al. [51] use BF16; however, both require
FP32 arithmetic to compute critical sections such as WU and BN layers. Additionally, Graph-
core [92] presents a hardware accelerator that targets MP training with FP16 datatypes. They
also define a new numerical datatype called AI-Float, which uses stochastic-rounding hard-
ware to maintain accuracy across models. While these methods achieve comparable accuracy
concerning FP32 training in their evaluations, they rely on FP32 computations in critical layers
and accumulators to aid training convergence on deep networks.

Sun et al. [85] propose a complex methodology for ultra-low precision training using a
4-bits numerical format. This proposal delivers worse precision than the state-of-the-art. It
requires additional steps, such as (i) a new GradScale technique to adjust the gradients to the
FP4 range on a layer-by-layer basis and (ii) a hybrid approach to change to FP8 in some cases
where FP4 fails to converge. While the gains can be large, this approach requires significant
hardware and software modifications to existing platforms and frameworks and does not avoid
the need for 32-bit accumulations. Moreover, this approach requires an ad-hoc recipe to train
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each network, severely undermining its generality and applicability.
Fu et al. [25, 26] propose a dynamic precision training approach that cyclically employs

between three and eight bits of precision. Again, such a methodology requires ad-hoc hard-
ware and additional steps, such as: (i) computing the lower bound of precision at the beginning
of the training and (ii) a scheduling method used during the training process to select the nu-
merical formats. This approach requires WU calculations to use full FP32 FMAs during DNN
training, and all FMA accumulators use FP32. Moreover, these works do not compare directly
against FP32 but to other low precision schemes as [101, 105].

In contrast, our FMAbf16
n_m proposal (see section 7) relies on the already well-known

and widely adopted BF16 datatype to offer different precision tiers. Additionally, applying
FMAbf16

n_m does not require additional ad-hoc steps that vary depending on the DNN model.
FMAbf16

n_m can be deployed in low-end computing systems as it requires a small and cheap
BF16 FMA unit. FMAbf16

n_m provides different accuracy levels, and FMAbf16
1_2 or FMAbf16

2_2

arithmetic can be used when FMAbf16
1_1 is insufficient, thereby lowering training costs concern-

ing conventional FP32 arithmetic while delivering state-of-the-art accuracy.



Chapter 3

Experimental Setup

In this chapter, we talk about the methodology we follow. We also cover the standard hardware
setup followed during the thesis and the software used to implement each test to get the results
we analyze in each chapter.

3.1 Methodology

We decided to follow an incremental methodological approach. To adapt different floating-
point methods, we created a standard tool called FASE (Fast, Accurate, and Seamless Emu-
lator); check Chapter 4. FASE uses Intel PIN [44] to analyze each of the instructions to be
computed in the processor during the Deep Neural Network process.

We did several tests, training different state-of-the-art DNNs. This chapter explains the
main models with the hyperparameters we used throughout the thesis development. In the
following chapters, we describe any additional studied workload if needed.

3.2 Experimental Setup

To train and test the CNN implementations that use ImageNet [18] dataset, we use the Intel-
Caffe [38] framework (version 1.1.6a). We use the Intel MKLDNN [39] (version 0.18.0) Deep
Neural Network library and the Intel MKL library [43] (version 2019.0.3) to run numerical
kernels since both libraries are optimized to run on our testing infrastructure. We use the py-
Caffe python interface to define and run the experiments, which loads the data and orchestrates
the execution.

Finally, to perform the Natural Language Processing (NLP) models and CIFAR [54] datasets
experiments, we use PyTorch [76] (version 1.4.0), Intel MKLDNN (version 0.21.1) and the



14 Experimental Setup

Intel MKL library (version 2019.4). We use torchtext to manage the pre-processing steps
needed in the seq2seq model.

3.2.1 Neural Network Models

Object Classification Models

To evaluate our proposals, we consider three representative state-of-the-art CNN models:
AlexNet [55], Inception V2 [45, 88] and ResNet-50 [34]. These models are the backbone
of recently published highly successful models [100].

We use the ImageNet database [18] as training input. To keep execution times manageable
when using FASE, we run the experiments using a reduced ImageNet Database, similar to the
Tiny ImageNet Visual Recognition challenge data set [24]. Therefore, we use 256,000 images
divided into 200 categories for training and 10,000 images for validation. The images have no
modifications in terms of size. All the evaluated CNN models remain unmodified.

AlexNet is selected due to its simplicity in structure and amount of required computations.
To train AlexNet, we consider a batch size of 256 and a base learning rate of 0.01, adjusted
every 20 epochs considering a weight decay of 0.0005 and a momentum of 0.9. This model is
trained for 32 epochs.

Inception V2 is a model conceived to reduce computational costs via cheap 1× 1 convo-
lutions. We train it with a batch size of 64 and a base learning rate of 0.045, updated every
427 steps (0.11 epochs). The gamma, momentum, and weight decay are set to 0.96, 0.9, and
0.0002, respectively. The training process is executed for 16 epochs.

ResNet50 is a network that delivers good accuracy and avoids the vanishing gradients issue
using residual blocks. We train it using a multi-step approach. The batch size is 64, and the
base learning rate is 0.05, updated every 30 epochs. The gamma hyperparameter, momentum
value, and weight decay are set to 0.1, 0.9, and 0.0001, respectively. The training process runs
for a total of 32 epochs.

Additionally, we consider ResNet18, ResNet34, ResNet50, ResNet101 [34], and Mo-
bilenetV2 [81] on both CIFAR10 and CIFAR100 datasets [54]. We use the hyperparameter
setup recommended by the state-of-the-art [85]. We train all networks for 160 epochs using
the SGD Optimizer. We use a batch size of 128 and an initial learning rate of 0.1, dividing by
10 at epochs 82 and 122. We use momentum equal to 0.9 and a weight decay of 10−4. For
ResNet18, we do not use the weight decay value.
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Natural Language Processing Models

To test the performance of our approach over RNNs, we selected a seq2seq model to solve
the NMT task [6]. This model is trained using the Multi30K dataset [23]. This dataset has
30,000 multilingual English-German sentences. We take 29,000 sentences as the training set
and 1,000 for validation purposes. The model has 20,000,000 parameters in total; we use a
batch size of 256 and the Adam Optimizer to do the training process. The model was built
using Gated Recurrent Units (GRU). Training is done over ten epochs.

The LSTMx2 model [102] applied to the PTB dataset is also used. We follow the details
in [102] to train the medium-size model; our test uses the source code available in [22]. We
train it for a total of 39 epochs and use a batch size of 20, an initial learning rate equal to 1,
two LSTM layers, a hidden size of 650, and a sequence length of 35, and a dropout equal to
0.5.

A transformer-based model [94] was applied to the IWSLT16 dataset to translate between
Dutch and English. We train the model termed base for 20 epochs using the Adam Optimizer
with β1 = 0.9, β2 = 0.98, and ε = 10−9. We use a batch size of 12000 and 4000 warm-up
steps. We use the source code available in [30]. All additional details are in [30, 94].

Finally, we train a simple transformer-based model on the Multi30k dataset [23] to trans-
late between English and Dutch. This implementation uses the source code available in [7].
We train this model for ten epochs using the Adam optimizer with a fixed learning rate of
5 ·10−4 and a batch size of 128.

3DGAN Model

A custom test was done using 3DGAN [53] with Tensorflow [1] 1.15 and Keras 2 [14]. We
use the same MKL and MKLDNN libraries as in the ResNet50 case. The 3DGAN network is
trained for 60 epochs using the Adam optimizer and a batch size of 128. The training dataset
consists of 180,000 25x25x25 three-dimensional images generated using HPC simulation for
high-energy particles [53].

Recommender System

We consider a recommender system based on Graph Neural Networks (GNN), the Neural
Graph Collaborative Filtering (NGCF) [98]. This model is trained using the MovieLens ML-
100k dataset [33]. We train it for 400 epochs with a batch size of 1024 and a learning rate
of 0.0001. The number of embeddings is 64. Additional details regarding this model are
described in the literature [63].
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3.3 Hardware Setup

We used Marenostrum4 hosted at Barcelona Supercomputing Center, a supercomputer based
on Intel Xeon Platinum processors from the Skylake generation. It is a Lenovo system com-
posed of SD530 Compute Racks, an Intel Omni-Path high-performance network interconnect,
and running SuSE Linux Enterprise Server as the operating system. Its current Linpack Rmax
Performance is 6.2272 Petaflops.

This general-purpose block consists of 48 racks housing 3456 nodes with 165,888 pro-
cessor cores and 390 Terabytes of main memory. Our experiments use one full node of this
system. Compute nodes are equipped with the following:

• 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz for 48 cores
per node.

• L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K

• 96 GB of main memory 1.880 GB/core, 12x 8GB 2667Mhz DIMM (216 nodes high
memory, 10368 cores with 7.928 GB/core).

• 200 GB local SSD available as temporary storage during jobs
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FASE: A Fast, Accurate and Seamless
Emulator for Custom Numerical Formats

4.1 Introduction

As mentioned in Section 2.1 state-of-the-art DNNs are using huge training parameter counts.
There are already approaches to reducing the training computation costs via mechanisms that
incur accuracy degradations [37, 65, 81]. Additionally, there are approaches able to reduce
training costs without reducing DNNs accuracy. These approaches rely on reduced computer
number formats [25, 26, 84, 85]. To decide among all potential format designs which ones dis-
play the best opportunities for efficient and accurate DNN training, it is critical to empirically
evaluate them with as much fidelity as possible and on as many real neural net topologies and
real input datasets as possible. The emulation of these reduced precision approaches becomes
one of the most important and costly phases to evaluate the reliability of new numerical data
types. The emulation helps to avoid cost overrun, by avoiding costly hardware implementa-
tions.

TensorQuant [59], proposes two source-level approaches, intrinsic and extrinsic, to emu-
late low precision using Tensorflow. The extrinsic approach is an approximation where the
rounding process is done just on high-level operators like convolutions. This is the mode
implemented in QPyTorch [104] to address the PyTorch framework. The intrinsic approach
rounds each individual floating point operation and displays a latency of 50× with respect to
native executions. It is a source-level approach that can be used to evaluate all implementations
of neural networks based on Tensorflow. All of these approaches are designed to target specific
DNN frameworks and require changes to the framework and model source code. Other tools
like Verificarlo [12] work at the compiler level, and can be applied to any Python framework;
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but, they do require complex recompilation.

To overcome these issues we propose FASE: a fast, accurate, and seamless tool that en-
ables the emulation of custom numerical formats on any application. FASE relies on dynamic
binary instrumentation using PIN [60] to perform fine-grain instruction-level instrumentation.
In addition, FASE seamlessly works on any application or DNN framework without any lan-
guage, compiler, or source access restrictions. Since no code modification or recompilation
steps are necessary, FASE guarantees that the instrumented binary matches the original one.
Therefore, FASE works on all DNN frameworks, such as Caffe [38], Tensorflow [1], and Py-
Torch [76]. While fine-grain instrumentation can inject large latencies, we propose a set of
optimizations that enable FASE to emulate unmodified applications on large input sets with la-
tencies that range from 17× to 39×, which are comparable to other fine-grain state-of-the-art
techniques. As a result, FASE enables hardware architects to understand numerical behavior
before committing to costly hardware implementations. This chapter makes the following
contributions:

• We propose FASE1, an emulation tool for custom numerical formats that enables accu-
rate emulation of large workloads without requiring any source code modifications or
access to third-party dynamically linked libraries.

• We design performance optimizations that enable accurate emulation with low overhead
to support large-scale experimentation.

• An exhaustive evaluation campaign that demonstrates that FASE achieves better accu-
racy with respect to other state-of-the-art coarser-grain approaches, as well as large-
scale experiments using multiple numerical formats that demonstrate that FASE is able
to evaluate the fidelity of numerical formats.

4.2 Background and Motivation

The increasing demand for computing power in machine learning training motivates the use of
reduced numerical precision formats. It has lead to a myriad of proposals for custom reduced
precision numerical formats, both floating-point and integer, to improve the large computa-
tional and energy costs of training DNN. These workloads can tolerate well low-precision
formats in certain computations, with proposals that go as low as 4-bit numerical representa-
tions [25, 26, 85].

1Source code is publicly available at https://gitlab.bsc.es/josorio/fase
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Table 4.1 Comparison of state-of-the-art proposals.

Features Emulators
RPE [17] QPyTorch [104] TensorQuant [59] Verificarlo [12] FASE

Fast ✗ ✓✓ ✓ ✓✓ ✓

Accurate ✓ ✗ ✓ ✓ ✓

Seamless ✗ ✗ ✗ ✗(recompilation) ✓

Dynamic Libraries ✗ ✗ ✗ ✗(Lib. recompilation) ✓

Independent ✗ ✗ ✓ ✗(compiler dep.) ✓

Machine learning and DNN workloads in particular heavily rely on linear algebra kernels
that can greatly benefit from low-precision formats in order to reduce memory bandwidth
and storage usage, as well as improve compute throughput by leveraging vectorisation or
accelerators that can fit more elements per instruction. An example is the adoption of the new
Brain Float 16-bit (BF16) numerical format, extensively used in DNN workloads, by most
hardware vendors [2, 64, 79]; which may be used to substitute the IEEE 754 32-bit floating-
point typically employed.

In order to evaluate new numerical formats without available hardware support, several
tools and methodologies to emulate low-precision numerical formats have been proposed. Ta-
ble 4.1 qualitatively compares multiple state-of-the-art proposals on a number of key features.
We consider a proposal is fast if it is feasible to emulate unmodified applications on large input
sets, i.e., if the workload does not need to be scaled down to have feasible emulation times.
Accurate means that the emulation is done at a fine-grain granularity (e.g., per instruction),
rather than at coarse-grain granularity (e.g., per function) which may lead to results that are
more accurate than actual computations at low precision. Seamless means that the emulated
code does not need to be modified while dynamic libraries means that the tool is able to em-
ulate code from dynamically linked libraries which may not always be open source. Finally,
Independent is for tools that can work on any programming language and are also compiler
independent.

The Reduced Precision Emulator (rpe) [17] is an emulator which supports reduced preci-
sion that can be computed on the available hardware format and rounding. The tool operates
in a fine-grain manner. They report overheads from 10-70× on small emulated workloads.
However, like all other source level approaches, code modification interfere with compiler
optimizations impacting numerical accuracy [19]. Furthermore, it is currently restricted to
Fortran applications. Verificarlo-Vprec [12, 19] propose an LLVM compiler pass, at the
end of the optimization passes, replacing all floating-point operations by user defined ones.
Vprec enables emulating reduced precision formats like BF16. It allows accurate per opera-
tion rounding, with a latency from 3 to 17× according to their experiments [12]. It handles all
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programming languages supported by LLVM. However it does require the recompilation of
all the application and its static and dynamic dependencies. Which is a tedious process, and
not always possible for closed source libraries. However, they support Python environment by
proposing a prebuild linux docker image.

There are two main tools that focus specifically on DNN workloads, TensorQuant [59] and
QPyTorch [104]. TensorQuant is a quantization toolbox for the Tensorflow framework that
provides multiple methods to apply reduced precision formats. They propose a coarse-grain
method that applies the rounding processes at the end of each DNN layer, all intermediate
computations inside a layer are not altered. TensorQuant also has a fine-grain operation-by-
operation method that enables accurate emulation with a reported latency increase of around
20×. Using the fine-grain method is complex, as the user needs to re-implement each com-
posite operation using C++ calls. It only works on Tensorflow, requires code modifications
on each workload and does not instrument dynamically linked libraries. Some low-precision
DNN training schemes like [25, 26] use QPyTorch [104] as reduced precision framework.
QPyTorch is a fast reduced-precision emulation framework for PyTorch. QPyTorch first rep-
resents the low precision numbers as their corresponding floating point number, then operates
using single-precision floating point computation and then removes the extra precision through
a final quantization step. While it is a fast methodology, the reduced-precision transformations
are done at coarse-grain level; it may not capture the real effects of using reduced precision;
it requires code modifications on each workload; it does not instrument dynamically linked
libraries.

In contrast, FASE seamlessly works on any ML framework and is able to emulate code
in dynamically linked libraries. This is crucial in DNN training workloads as most low level
compute kernels are implemented in highly optimized external libraries. In addition, we make
FASE accurate by operating at fine-grain. To reduce the latency of having accurate emulation
we implement multiple optimizations that enable FASE to emulate large workloads with over-
heads that are competitive with other state-of-the-art proposals. We detail our design choices
in Section 4.3, the implementation and performance optimization in Section 4.4, the strategy
we apply to evaluate the tool on machine learning frameworks in Section 4.5 and evaluate
accuracy and performance in Section 4.6.

4.3 FASE Design

Our goal is to design FASE with simplicity in mind by enabling fast, accurate and seamless
emulation of reduced precision formats. In addition, we want our tool to be able to emu-
late code of external dynamically linked libraries, as many applications rely on such libraries
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Fig. 4.1 Steps for coarse-grain emulation on a convolutional layer.

which contain key optimized routines.

Figure 4.1 shows a forward pass example to demonstrate the operations of extrinsic coarse-
grain reduced precision emulation. In this example, a convolution layer performs a dot product
using a 3x3 filter to compute each element of the output layer L+1. These low level com-
pute kernel implementations are typically found in optimized external libraries such as Intel
oneDNN [40]. On the left side, the application needs to be modified to indicate where the con-
version (quantization) takes place prior to the kernel. After the output layer L+1 computation,
a quantization and rounding step is performed over each element to obtain the desired reduced
precision representation. This is a simple and fast methodology that allows to use well-known
optimized libraries to compute the convolution. However, this method is not accurate as all
operations within the layer employ the original single-precision format, leading to optimistic
results not as accurate as using a fine-grain approach or real hardware.

FASE aims to provide an accurate and seamless method. To achieve this fine grain em-
ulation, we propose to leave the target application unmodified and operate at binary level
intercepting the executed machine instruction. By identifying key floating-point instructions,
for which we can modify the input and output operands, FASE can seamlessly work on any
application and DNN framework including dynamically linked external libraries.
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Fig. 4.2 FASE Implementation Overview

4.4 FASE Implementation

4.4.1 Overview

In order to provide a fast, accurate and seamless experience; FASE relies on Dynamic Bi-
nary Translation (DBT). DBT enables modifications in the dynamic instruction flow of any
application binary, as well as on any dynamically linked libraries the binary invokes. These
modifications are done during the instrumentation step, which is executed only once.

Figure 4.2 shows an overview of the DBT instrumentation step on FASE. FASE can be
attached to any binary, and is configured through a simple configuration file that specifies the
desired instrumentation parameters in terms of routines and instructions to be instrumented as
well as the emulated reduced precision format and rounding method. The DBT step which
performs the instrumentation goes through each statically defined basic block once, and for
each instruction it can insert instrumentation code. In our context, for each instruction of
interest, we want to perform up to three code insertions:

1. Before: Insert code that converts the source registers of the instruction to the desired
reduced precision format and applies the desired rounding.

2. Instruction: In most cases the instruction can be executed as is with the modified source
registers. In some cases, when the numerical format will not execute as expected on
the existing instruction or available hardware, the instruction needs to be replaced by
equivalent code that emulates the intended behaviour. For example, when employing
compound data types or custom formats that cannot be represented with the original
numeric representation.

3. After: Insert code that converts the output to the desired reduced precision format and
applies the rounding mechanism.
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Listing 4.1 Basic block optimization on a ResNet50 basic block. Only operands in bold need
to be converted. Underlined operands are source and destination and need to be converted
twice.
vfmadd213ps zmm4, zmm2, zmmword ptr [rax+r9*4]
vfmadd231ps zmm5 , zmm4 , zmm3
vfmadd231ps zmm6 , zmm5 , zmm0
vfmadd213ps zmm7 , zmm2 , zmmword ptr [rax+r9*4+0x20]
vfmadd231ps zmm8 , zmm7 , zmm3
vfmadd231ps zmm9 , zmm8 , zmm0

Once the code has been instrumented at the basic block level, the next step is analysis.
During the analysis step the instrumented dynamic instruction flow, which includes any ex-
ternal libraries, is executed. The analysis is the most computationally expensive step as the
modified instruction flow with code insertions is executed.

4.4.2 Features and Configuration Options

FASE has a number of built-in features and configuration options that simplify the use of the
tool and enable fine tuning of the emulation process.

1. Filters: There are two main types of filters: routine names and instruction types. Users
can specify routines that should not be instrumented, i.e., routines that require high
precision or that are not of interest for the target application. In terms of instruction
types, FASE provides easy tags to identify most types, for example, all floating-point
instructions or just specific instruction types like FMAs. Different instruction types can
be defined to use different reduced precision numerical formats or rounding methods.

2. Dynamically changing precision during analysis step: FASE supports an inter-process
communication (IPC) method that enables signaling FASE from the emulated applica-
tion to dynamically change emulation behaviour. This does require modifications to the
emulated application, in the form of simple function calls, to signal FASE to change its
operation mode.

3. Numerical formats and rounding methods: FASE can support any custom low pre-
cision numerical format and rounding method. If the format is compatible with the
original instruction binary size of exponent and mantissa, then the inserted code in the
instrumentation phase is simpler, as it just has to convert the source and destination reg-
isters. If the format cannot be operated by the original instruction, it is replaced by code
that can perform the operation.
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Listing 4.2 Vectorized BF16 with RNE conversion
1 inline __m512 ToBFloatRNEVec (__m512* input)
2 {
3 __m512i MSB_mask = _mm512_set1_epi32 (0 x80000000 );
4 __m512i LSB_mask = _mm512_set1_epi32 (1);
5 __m512i mask = _mm512_set1_epi32 (0 xFFFF0000 );
6 __m512i qnan_mask = _mm512_set1_epi32 (0 x7FC00000 );
7 __m512i rounding_mask = _mm512_set1_epi32 (0 x7FFF);
8

9 __m512i tmp = _mm512_srli_epi32 (*( __m512i *)input , 16);
10 tmp = _mm512_and_si512(tmp , LSB_mask );
11 __m512i rounding_bias = _mm512_add_epi32(tmp , rounding_mask );
12

13 __m512i MSB_set = _mm512_and_si512 (*( __m512i *)input , MSB_mask );
14

15 tmp = _mm512_xor_si512 (*( __m512i *)input , MSB_set );
16 tmp = _mm512_add_epi32(tmp , rounding_bias );
17 tmp = _mm512_or_si512(tmp , MSB_set );
18

19 __mmask16 not_nan_mask = _mm512_cmp_ps_mask (*input , *input , _CMP_EQ_OQ );
20

21 tmp = _mm512_mask_and_epi32(qnan_mask , not_nan_mask , tmp , mask);
22

23 *input = *( __m512 *)& tmp;
24

25 return *input;
26 }

4.4.3 Optimizations

In this section, we explain the different optimizations we apply to FASE to match state-of-
the-art proposals while achieving high emulation accuracy. For all optimizations, FASE is
performing as much work as possible in the instrumentation step to lower analysis overheads,
as instrumentation is performed only once statically per basic block. Therefore, we apply all
the filters during the instrumentation step and only insert the necessary code for the selected
instructions and routines, which will run in the analysis step.

We started from a straight forward implementation where each FP instruction is instru-
mented and the computation in the analysis phase in FASE is not optimized. This unopt
version will be our upper bound for performance against which the following optimization
will be evaluated in Section 4.6. On the other end, the fully optimized version will be referred
as full opt.

1. Basic-block level optimization: During the instrumentation step we perform a basic-
block level optimization that enables a substantial reduction of inserted code. We keep
track of all source and destination register names that will be converted and rounded, if
one of these registers is used as source in a subsequent instruction within the basic-block,
it is safe to skip the conversion and rounding of that register as it is already in the desired
target numerical format. Since it is quite common for destination and source registers
to be reused in subsequent instructions, this optimization is very effective at reducing
the overheads during the analysis step, as no work needs to be done for many source
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operands. Listing 4.1 shows an example of the traces generated by DNN frameworks.
Only the highlighted operands need to be converted (underlined need to be converted
twice as they are source and destination registers), saving 29.2% of the time in this
particular basic block. In Figure 4.2 and Section 4.6.2 we refer to this optimization as
Opt1.

2. Vectorization: When instrumenting vectorized code, which is common in HPC and
DNN low-level optimized kernels, FASE has support to do the numerical conversions
and rounding methods also in a vectorized manner. This optimization greatly reduces
the latency of instrumented vector instructions. Listing 4.2 presents the vectorized op-
timization FASE implements to boost the performance, reducing the emulation latency
as Section 4.6.2 shows. In this example, we implement the rounding process using
AVX512 Intel Intrinsics, but 256bit, 128bit and scalar implementations are also avail-
able. This allows us to round the elements in the AVX vector register in a data parallel
manner. Lines 3-7 define the whole set of masks we need to do the rounding. Lines 9-11
compute the rounding bias. Then, we need to do an unsigned integer addition between
the rounding bias and the input, however AVX512 does not support it. Due to this issue
FASE uses a few additional instructions to achieve it: we save the MSB bits of each
element of the AVX512 vector (line 13), then we set all MSB of the input to zero in
line 15, then compute a signed integer addition (line 16) and finally reset the MSB bits
to its original value in line 17. Finally, FASE just needs to check for NaN values and
return the AVX512 vector. In Figure 4.2 and 4.6.2 section we refer to this optimization
as Opt2.

4.5 Applying FASE to DNN Training Workloads

The main use case for FASE in this chapter is its applicability to DNN training workloads.
These workloads have high computational cost while tolerating reduced precision formats
that FASE can emulate accurately. Multiple proposals to employ reduced precision training
methodologies for DNN workloads exist. Some are based on emulation [51], while others
target existing hardware [64].

4.5.1 Reduced precision formats

The need for reduced precision formats for DNN training has lead to numerous proposals.
The most prominent to date, which is being adopted by most hardware vendors, BF16 format.
BF16 retains the same dynamic range as FP32 as it has the same number of exponent bits
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(8), but has a shorter mantissa of just 7 bits. The use of a 16-bit format can alleviate memory
storage and bandwidth requirements as well as increase computational throughput.

With FASE we can emulate multiple numerical formats to understand the behaviour of
DNN training. For example:

• Floating-point and integer formats: FASE can easily support emulation of BF16,
FP8, or other FP layouts by converting the necessary source and destination registers
of floating-point instructions to these formats. Similarly, integer formats such as INT8
can also be emulated.

• Compound numerical formats: Compound datatypes based on the BF16 format have
been proposed recently [35]. These formats link several (two or three) BF16 literals to
increase precision while just operating using BF16 arithmetic. With FASE we can also
emulate the use of these compound datatypes, as it is possible to change the semantics of
the instrumented instruction to perform the necessary computation required. However,
the final result cannot always be stored in memory with the compound datatype and must
be converted to the original type. This could be alleviated by using a shadow memory
mechanism in future works [16].

4.5.2 DNN training strategies

FASE enables the implementation of popular DNN training approaches as well as experiment-
ing with new methodologies.

1. Static strategies: For example, one can test the accuracy of a DNN model training when
using BF16, FP8, or any other FP representation on the entire workload. Or emulate the
already proposed mixed precision [51, 64] training technique, which is similar to using
BF16 but uses the FP32 representation to do the accumulation step on FMA instructions.

2. Using routine filters: Certain functions (or DNN layers) require higher accuracy than
others. For this reason, FASE enables applying different numerical format conversions
or avoiding emulation altogether of certain routines. In DNN training, the weight up-
dates and batch normalization layers are known to require FP32 precision to ensure
network convergence. FASE enables this behavior via simple configuration options.

3. Dynamic precision schemes and compound datatypes: FASE also enables to use of
dynamic precision schemes that dynamically adapt to workload state at runtime. For
example, it enables to adapt the numerical precision of the emulated format depending
on how training convergence progresses in order to achieve the desired result.
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4.6 FASE Evaluation

Our experimental methodology considers the evaluation of FASE on several DNN frameworks
as explained in Chapter 3.

4.6.1 Emulation accuracy

Methodology

We use a single precision matrix multiply (SGEMM) present in DNN training processes to
evaluate emulation accuracy. We implement this benchmark that multiplies two matrices using
the Intel Math Kernel Library (oneMKL) [43]. We compiled the source code using GCC 8.1
with all the AVX512 optimizations active on our platform. We use as input two matrices:
A = 20000×2000 and B = 2000×10000.

We execute this benchmark with regular FP32 precision to get the reference output. We
then emulate the use of BF16 with RNE rounding using two approaches. Firstly, we apply
quantization for each output matrix element to represent the numbers using BF16 and RNE
rounding (coarse-grain quantization label) over the reference result. This is akin to the coarse-
grain methods used by QPyTorch [104] and TensorQuant [59]. Secondly, we attach FASE to
the benchmark binary, which instruments the code from the dynamically linked Intel MKL
library. This enables the execution of the workload using FASE fine-grain emulation at the
instruction level, representing both the input and output numbers in BF16 with RNE rounding
(FASE label). Finally, we compare the relative error with respect to the FP32 reference of the
two emulation strategies.

Results

The following results illustrate that the fine-grain approach is much more accurate in emulating
reduced precision numerical formats. Figure 4.3 compares the relative error when employing
fine-grain and coarse-grain emulation on the Intel MKL SGEMM kernel. The x-axis repre-
sents 20000 samples (elements) of the result matrix, sorted in terms of the absolute numerical
error for the fine-grain and coarse-grain techniques. The y-axis displays the magnitude of the
relative error with respect to the reference FP32 result. As can be seen in the figure, the relative
error with FASE, which is close to what would be observed on a real hardware implementation,
is consistently one order of magnitude higher than with the coarse-grain approach. Therefore,
using the coarse-grain approach may lead to wrong assumptions about a particular reduced
precision numerical format, as it delivers results that are more accurate than they should. A
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Fig. 4.3 Relative error of fine-grain and coarse-grain emulation methodologies (for BF16 and
RNE rounding) with respect to native FP32 execution.

coarse-grain method cannot capture the errors that accumulate per instruction; however, FASE

can track these errors and deliver a result that is much closer to reality.
In Section 4.6.3, we demonstrate FASE on full DNN training workloads and show that

using BF16 exclusively fails to deliver state-of-the-art training accuracy for certain neural
networks, demonstrating the importance of fine-grain accurate emulation of reduced precision
formats.

4.6.2 FASE Emulation Overhead Measurement

Methodology

To evaluate FASE latency overheads and the impact of our optimizations, we propose an in-
cremental evaluation process using the different FASE versions described in section 4.4.3. We
compare each version for all benchmarks against a reference native FP32 execution without
instrumentation. Additionally, we report FASE’s instrumentation overhead, which increments
a counter per instruction of interest, i.e., without computing any of the conversions or rounding
processes. This instrumentation overhead allows us to get a lower bound of the tool overhead
and estimate the cost of the conversion and rounding process in the fully optimized full opt
version.

We evaluate each FASE version on several benchmarks. First, we evaluate the SGEMM
computation described in Section 4.6.1. Then we evaluate FASE on the following machine
learning workloads:

• ResNet50 for one batch of size 64, on ImageNet, as explained in Chapter 3

• CERN 3DGAN [53] for one batch of size 128, as explained in Section 3.2.1
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Table 4.2 FASE instrumentation latency and latencies for FASE unoptimized, after applying
each optimization and fully optimized.

Workload
(framework)

FASE
Instr.

Latency

Unopt
Opt1

Basic block
Opt2

Vectorization Full Opt

SGEMM (MKL) 15× 1809× 880× 82× 39×
ResNet50 (Caffe) 11× 1131× 553× 76× 30×
3DGan (Tensorflow) 7× 714× 340× 66× 28×
LSTM (PyTorch) 18× 1096× 551× 70× 29×
Transformer (PyTorch) 8× 818× 423× 36× 17×

Finally, we consider two Natural Language Processing models:

• LSTMx2 model [102] on the PTB dataset. We train one batch of the medium-sized
model with a batch size of 20, check Section 3.2.1

• A transformer-based model [94] applied to the IWSLT16 dataset, details are in Sec-
tion 3.2.1

Results

Table 4.2 shows the emulation latencies introduced by FASE when converting in a fine-grain
manner the input and output operands to BF16 with RNE rounding. We show the latency
introduced by the instrumentation step of FASE in the "FASE Instrum." column, which on
average is of 12×. This is the latency introduced just by counting the number of instructions
of interest, and is therefore a lower bound of the overhead imposed by Intel Pin dynamic
binary translation in FASE.

Regarding the latencies that include emulating the reduced precision format, we first show
the latencies for an unoptimized version of FASE (Unopt.). This approach leads to latencies
of up-to 1809×, which may deem the execution of large workloads unfeasible in a reasonable
amount of time.

The Basic-block optimization, which refers to the Opt1 version that avoids redundant
rounding of registers, reduces FASE overhead by around half ranging from 340× to 880×.
The observed latency reductions are inline with the amount of operands that need to be mod-
ified, as this optimization reduces by 50.89% the number of operands that FASE needs to
convert in ResNet50.
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The Opt2 version in the Vectorization column measures the improvement we propose with
custom AVX512 conversion and rounding process at analysis level using Intel Intrinsics. It
results in a substantial speed up reducing FASE overhead latencies to the 36× to 82× range,
emphasizing the importance of vectorizing the code on modern wide vector architectures.

Finally, we apply both the basic block Opt1 and vectorization Opt2 optimizations to our
final Full Opt FASE version. It further reduces the final overhead down to 17× to 39×. It
makes our fine-grain approaches very competitive to the state-of-the-art without any language,
compiler or source access restrictions and the guarantee that the instrumented binary matches
the original one.

4.6.3 Large-Scale Experiments

Methodology

We perform large-scale experiments to show that FASE supports real workloads. These tests
consider using several DNN models, datasets, and numerical datatypes. We report the valida-
tion accuracy after training, BLEU Score, or perplexity depending on the workload type. We
compare the obtained accuracies against the reference implementation using FP32. We use
FASE to emulate three different numerical formats to demonstrate the versatility of our tool:

• BF16 with RNE rounding used until now.

• The mixed-precision (MP) [51, 64] approach that employs FP32 precision in batch
normalization and weight update layers. And performs FMA instructions using BF16
source inputs for the multiplication and an FP32 input for the accumulator, returning an
FP32 value as output.

• A compound datatype [35] that represents FP32 values using a tuple of BF16 values
(BF16x2). Note that this format requires changing the original instruction with ad-hoc
code that uses BF16x2.

We consider the following object classification models: ResNet18, ResNet34, ResNet50,
ResNet101 [34], and MobilenetV2 [81] on CIFAR100 datasets [54]. FASE attaches to the
Caffe framework to train AlexNet [55], InceptionV2 [88], and ResNet50 as explained in Chap-
ter 3. Finally, we consider a full test on the same two natural language processing models as in
Section 4.6.2. The whole set of hyper-parameters to train all models is detailed in Chapter 3.
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Table 4.3 Large-scale experiments using FASE

Model Dataset Accuracy
FP32 BF16 MP BF16x2

ResNet18 CIFAR100 71.91% 71.46% 71.89% 71.95%
ResNet34 CIFAR100 73.21% 72.83% 73.86% 72.66%
ResNet50 CIFAR100 74.78% 69.24% 74.25% 72.57%

ResNet101 CIFAR100 75.93% 67.10% 75.65% 76.00%
MobileNetV2 CIFAR100 75.04% 73.92% 75.16% 74.82%

AlexNet ImageNet 60.79% 57.80% 60.18% N/A
Inception ImageNet 74.01% 72.03% 73.73% N/A

LSTMx2 (Perplexity) PTB 86.86 137.69 87.09 86.90
Transformers (BLEU) IWSLT16 34.53 34.86 34.66 34.65

Results

Table 4.3 shows the results of using FASE for several full DNN training workloads. We com-
pare the accuracy of each network using our tool emulating different numerical formats (BF16,
MP, and BF16x2) and FP32.

With FASE we can determine if a reduced precision format is able to achieve the desired
level of accuracy. When training object classification models on CIFAR100 with the BF16
numerical datatype, we observe significant drops in accuracy because the reduced number
of mantissa bits in the BF16 numerical format fails to capture important information, espe-
cially on accumulations between distant numbers [36]. These drops are even higher on deeper
models, for example, in ResNet101 there is an accuracy loss of 8.82% with respect to FP32.
However, when FASE emulates MP using BF16 inputs and FP32 accumulators, these drops
disappear, keeping the same levels of accuracy as FP32. The column BF16x2 shows results
for a new compound datatype proposed by Henry et al. [35] that we emulate using FASE,
it enables computing using BF16 arithmetic exclusively. In this case, we also observe good
accuracy, on par with FP32.

Additionally, we emulate AlexNet and Inception training processes, and BAT’s results
again show that using the BF16 numerical datatype is not enough to achieve comparable ac-
curacy with respect to FP32. For AlexNet we measure an accuracy drop of 2.99%, while
the Inception model loses 1.98%. When emulating MP using FASE, we measure a boost on
the accuracy reaching similar levels as FP32 for AlexNet and Inception, having drops of just
0.61% and 0.2% respectively.

Finally, FASE emulates the training of two natural language processing models. For the
Transformer model, we measure the BLEU score, higher is better. We observe that all the emu-
lated numerical formats lead to accurate BLEU scores when compared to FP32. Transformer-
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based models are known to display robust numerical properties and are resilient to numerical
noise [89]; therefore, we can obtain state-of-the-art results using BF16. For the LSTMx2
model we measure perplexity (lower is better); the BF16 approach stops converging after 13
epochs giving NaN as result, we register the last perplexity value of 137.69, this confirms that
LSTM models are not good candidates to use BF16 exclusively.

However, when we emulate approaches such as MP or BF16x2, we again obtain results
comparable with FP32. This set of results on large-scale workloads illustrates the potential of
FASE to emulate different numerical formats and to extract conclusions on their applicability.
FASE can also be employed to study scenarios where numerical precision is changed at runtime
depending on application progress, and to study other custom floating-point representations;
making it a compelling fast, accurate, and seamless tool.

4.7 Conclusions

The use of reduced precision numerical formats to lower computational costs and increase
compute throughput has shown good results in the context of HPC workloads. More recently,
the same principle is leading to a myriad of proposals for custom reduced precision numerical
formats, both floating-point, and integer, to improve the large computational and energy costs
of training DNN.

Prior tools and methodologies to emulate reduced precision formats cannot deliver a fast,
accurate, and seamless experience when training DNN workloads. In this section, we propose
FASE, an emulation tool for custom numerical formats [74]. FASE is: (i) accurate by lever-
aging DBT techniques to emulate formats at instruction operand level; (ii) fast as it enables
emulation of unmodified applications on large input sets thanks to a set of optimizations that
lower its overheads significantly; and (iii) seamless as it works on any application or DNN
framework without any language, compiler or source access restrictions and the guarantee
that the instrumented binary matches the original one.

Our evaluation demonstrates that FASE is more accurate than other state-of-the-art pro-
posals that employ coarse-grain emulation, uncovering relative errors that appear only in fine-
grain emulation. We demonstrate that by applying both the basic block and vectorization
optimizations, FASE latency overheads are manageable, ranging between 17× to 39× for a
wide variety of workloads. These latencies enable the evaluation of large-scale unmodified
workloads, which illustrate the potential of FASE to emulate different numerical formats and
to extract conclusions on their applicability.



Chapter 5

Evaluating Mixed-Precision Arithmetic
for 3D Generative Adversarial Networks
to Simulate High Energy Physics
Detectors

5.1 Introduction

Models based on DNNs must be trained on large sets of data to reach acceptable accuracy lev-
els. Training incurs huge computational and memory training costs. Several novel techniques
are aimed at decreasing the training costs by avoiding the use of FP32 numerical datatype and
replacing it with non-standard low precision data representation formats [15, 31, 96].

Recent hardware products support 16-bit half-precision to accelerate training. Micikevi-
cius et al. [64] and Kalamkar et al. [51], show how to train DNNs using MP approaches.
A combination of FP32 and half-precision representations using either the floating-point 16
(FP16) or the BF16 datatypes, which we display in Figure 5.1, reaches the same accuracy
levels as FP32 arithmetic for many DNN applications. A strong emphasis is given to Fused
Multiply-Add (FMA) instructions computing A ·B+C, representing the most significant part
of the computational time. The MP approach for FMAs uses FP32 precision to accumulate
the contributions of A ·B and C, while the multiplication uses half-precision inputs, as seen in
Figure 5.2.

In this chapter, we adapt and demonstrate the capacity of MP arithmetic to train GANs
driving HEP simulations. In particular, we focus on MP FMAs combining BF16 and FP32,
which Figure 5.2b represents.
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Fig. 5.1 Floating-point Formats. S sign bit, E exponent bits, M mantissa bits.

(a) MP FMA with FP16 and FP32 (b) MP FMA with BF16 and FP32

(c) BF16 FMA

Fig. 5.2 Different alternatives when computing a Fused Multiply-Add (FMA) instruction.

We use FASE to emulate lower precision numerical formats without the need for native
hardware support. FASE intercepts FMA instructions and modifies its operands at the register
level to emulate low-precision arithmetic. In particular, we use the RNE to convert FP32
values to the BF16 format. Once the conversion is done, FASE tool gives the control back to
the training process, which implies that the FMA instruction is natively executed with some of
its operands rounded to 16-bit representation. FASE can be applied to either the PyTorch [76],
the Caffe [46], or the Tensorflow [1] frameworks.

Our evaluation shows that 98% of floating-point instructions are FMAs and that we just
need to compute in full FP32 the 0.001% of them, as Section 5.4 indicates. In addition, we
empirically validate that MP FMAs using BF16 are able to train GAN models with similar
accuracy as full FP32, and a real physical Monte Carlo reference simulation. Section 5.5
contains this evaluation. To the best of our knowledge, this is the first proposal that trains
GAN models using MP and applies them to HEP simulation problems.
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5.2 Mixed Precision Training

BF16 is a numerical datatype created by Google used in their Google Brain group [97]. It
was initially created to reduce the amount of data shared by different computing nodes dur-
ing distributed DNN training, and used specifically on their Tensor Processing Units (TPU).
However, since BF16 has the same dynamic range as FP32, as both have the same number
of exponent bits (see Figure 5.1), the conversion between these two formats is very simple
and it shows great robustness while training DNNs. On the other hand, the floating-point 16
(FP16) data type requires scaling factors to perform the conversion from/to FP32. For these
reasons, BF16 has become a reference datatype with hardware support announced for multiple
upcoming computer architectures from vendors like Nvidia [67], Intel [42], and Arm [83].

However, training with BF16 requires careful attention to arithmetic sensitive parts of
the algorithm such as weights updates, batch normalization, and gradients summation. This
leads to the usage of a MP approach, where a combination of FP32 and BF16 is used in
different places and flavors. When employing MP, FMA instructions (MP FMA) combine
half-precision and FP32 input values and usually accumulate in FP32 as shown in Figure 5.2.

Figure 5.2a details the type of FMA instruction employed in Nvidia’s MP training [64]. An
FMA instruction computes D = A ·B+C. Input parameters A and B are represented in FP16,
the result is added to the third input C, typically a weight of the master copy represented in
FP32. The final output D is also represented in FP32. This approach requires additional steps
to enforce that FP32 values that are converted into FP16 fall into the representative range of
the latter by applying a scaling factor.

Figure 5.2b shows the FMA implementation used by Kalamkar et al. in [51], which is
similar to the one previously described. The only difference is about the low precision data-
type used to do the calculations which is BF16, simplifying the conversion from/to FP32.
Since the BF16 data type is only available on the proprietary Google TPU, this study of MP
employing BF16 was performed without hardware support, by modifying the evaluated neural
networks to perform library calls to do the conversion from FP32 to BF16 in software, using
truncation and RNE rounding. In this regard, Intel’s next generation family of Intel Xeon
processors, code-named Cooper Lake, will incorporate BF16 hardware support to use MP
approaches in the training processes of DNN [42].

Additionally, there is another possible FMA instruction implementation, as shown in Fig-
ure 5.2c, where all inputs and outputs are represented using BF16. However, using this ap-
proach during training does not provide good converge properties for the most popular DNNs.
This is caused by the absorption issue during the add step in the FMA instruction. That is,
when right-shifting the smaller of the two operands to align bits with the same exponents,
the lowest bit cannot be represented in the rounded result. The smaller number can even be
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entirely absorbed due to the limited number of mantissa bits, this issue is known as swamp-
ing [96] or absorption in the computer arithmetic field, and leads to information loss when the
magnitudes of the added operands have a difference > 2mantissa+1 bits. In the case of BF16
with 7 mantissa bits, the swamping threshold is 256.

Regardless of the MP FMA implementation used, some phases of the training process
require FP32 precision to keep the same accuracy when training the DNN models. This is the
case of the weight updates (WU), batch normalization (BN), and soft-max layers.

We demonstrate the feasibility to apply MP training to GAN models for HEP simulations.
The following section introduces a three-dimensional GAN model and outlines the computa-
tional challenges it presents, which can be mitigated by applying MP. Therefore, the use of
MP can help advance this field by enabling larger input datasets or models with additional
complexity that can be trained in a sensitive amount of time, with the objective to achieve
better simulation results.

5.3 MP Emulation Tool

Without available hardware implementing the BF16 numerical format, several approaches
have been used to emulate the behavior of reduced floating-point representations. Most no-
tably, these efforts have focused on libraries that perform transformations like truncation and
rounding [12, 51]. However, such an approach requires a significant effort to port every new
target neural network to use these libraries, leading to a tedious process that needs to be re-
peated for each network. To solve these issues, we use FASE.

FASE performs the following steps:

• Checks the current execution routine to determine if we are executing routines that be-
long to weight update or batch normalization layers. In that case, computation proceeds
in FP32.

• The tool intercepts all floating-point instructions of the workload, including FMAs. For
each FMA instruction, operands that need to be rounded to BF16, depending on the
current routine, are rounded using the RNE algorithm.

• The tool can dynamically change its operation mode via a simple inter-process commu-
nication method that can be invoked from the python high-level interface; this is useful
to test some additional scenarios or to avoid instrumenting all the preprocessing steps
involved during the training process of DNN.

Figure 4.2 shows an overview of the steps done by FASE. FASE seamlessly converts the
FMA inputs A and B to BF16 using RNE rounding on all forward pass computations. As
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Fig. 5.3 Instruction Breakdown for multiple neural network models.

defined in MP training, these are then accumulated in FP32 (see Figure 5.2b). Similarly, in
the backward step, the FMA inputs A and B are again converted to BF16, and the final result
in FP32 contains the weight gradients. Finally, the weight gradients will be used to update
the weights using FP32 arithmetic, which is crucial [51, 64, 96] to obtain the same accuracy
as state-of-the-art FP32 training methods. These steps are repeated for each batch during the
training process of the 3DGAN model. Note that the amount of computation (FMAs) done
during the forward and backward passes is orders of magnitude larger than the computation
done in the layers that employ FP32 arithmetic. More details about this are in Section 5.4.1.

5.4 Evaluation Methodology

To train and test the 3DGAN implementation, we consider the information in Section 3.2.1.

5.4.1 Use case characterization

Figure 5.3 shows the percentage of instructions processed by several DNN models. While
training DNNs, the compute units (GPU, CPU) perform substantial additions and multipli-
cations due to the nature of neural network architectures. Ultimately, these are calculated
using specialized hardware instructions inside the computing units called FMAs. As shown
in Figure 5.3, FMA instructions represent a large portion of the overall instruction mix. The
Other FP32 category are floating-point instructions that are not FMA, and No FP are integer,
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Fig. 5.4 Sampling Fraction (SF) vs. particle energy profile histograms for simulation using
Monte Carlo (MC) (red), GAN FP32 (blue), and GAN MP (magenta).

memory, and branch instructions.
In the figure, well-known DNN models such as AlexNet [55], Inception [88], ResNet [34]

and seq2seq [6, 93] are shown to stress the importance FMA instructions have on any DNN
training process. The percentage of FMA instructions for these models is 57.42%, 60.93%,
62.95%, and 56.44%, respectively. In 3DGAN, our use case, 374 ∗ 109 instructions are ex-
ecuted during one training batch, the percentage of FMAs is 48.80%, which is a significant
portion, opening an opportunity to apply a technique such as MP to improve throughput and
reduce bandwidth requirements. Note that, as mentioned before, certain layers or routines
still need to be computed using FP32 (weight updates, batch normalization, and soft-max);
however, the number of FMAs attributed to these layers or routines is not significant, less than
0.001% of the total number of FMAs for the 3DGAN model.

5.5 Results

The 3DGAN aspires to generate scientific data leveraging an approach borrowed from the
domain of visual images. It is therefore highly crucial to understand if these techniques can
retain the high level of accuracy required for a scientific simulation. Each simulated image
represents the pattern of energy depositions in a HEP detector when a primary particle enters
the detector volume. This pattern of energy depositions also known as “shower” has distinct
physical features. These features are important information pertaining to a certain type of
particle, the energy with which it strikes the detector, as well as the geometry of the detector.

The 3DGAN performance is validated by comparing GAN images to the Monte Carlo data
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Fig. 5.5 Shower shapes (energy distribution) for Monte Carlo (red), GAN FP32 (blue), and
GAN MP (magenta) along X , Y , and Z axis. In linear scale(top row); and in log scale (bottom
row).

in terms of several relevant physics distributions. Here we further compare features from im-
ages generated by networks trained using FP32 and the MP data types. The Monte Carlo data
set used in this experiment represents the geometry of a sampling calorimeter. In a sampling
calorimeter there are alternate arrays of passive and active layers. Energy is only recorded in
the active layers and thus is a fraction of the energy of the incident particle. The sampling
fraction (SF) is the ratio of the energy recorded in the detector to the energy of the incoming
particle (Ep): it represents the detector response. Figure 5.4 presents the sampling fraction
calculated from images simulated using Monte Carlo and 3DGAN. There is a high level of
agreement for most of the Ep range for the GAN generated images using both the FP32 and
MP approaches.

The geometry of the generated shower is often used in particle identification. There can
be a number of ways to quantify geometrical features. The shower shapes are the distribution
of the deposited energy along a certain detector axis. The Z axis is along the depth of the
calorimeter, while X and Y axes are the transverse directions. Figure 5.5 compares the shower
shapes for Monte Carlo images with images generated by the models trained using the FP32
and MP approaches. The top row shows the shower shapes on linear scale. The log scale plots
in the bottom row are added to better appreciate the agreement at the tails of the showers.
The training with the MP approach is able to achieve a similar level of accuracy as the higher
precision 32-bit approach.

As explained in Chapter 4, we created FASE to emulate MP training, since the real hard-
ware to perform the tests was not available at the time of the experiment. By using FASE, we
have been able to demonstrate that MP training can be used for HEP simulations. MP delivers
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the same level of accuracy as higher precision approaches implemented using FP32. Further-
more, using real hardware implementations, this approach would reduce memory storage and
bandwidth requirements by nearly 50% compared to full FP32 implementations, and increase
the FMA throughput by at least twice for the same hardware vector register size. Performance
improvements can be even better with dedicated wider units targeting BF16, such as the one
available on the recently released Intel Cooper Lake, Nvidia Tensor Core or Google TPU.

5.6 Conclusions

The use of DNN to lower the computational requirements of Monte Carlo based HEP simula-
tions has received a lot of attention in recent years. In particular, GAN models stand out as the
most accurate solutions to simulate HEP detectors. However, as models in the HEP field be-
come more complex, requirements for memory bandwidth and capacity increase. Moreover,
in a production-ready GAN algorithm capable of generating data for full-scale detectors these
memory-related challenges would be exacerbated.

The use of lower-precision numerical formats can help alleviate these constraints. How-
ever, HEP simulations require a high level of accuracy in order to minimize uncertainty in
the final physics measurements. In this chapter, we undertake a study to determine if reduced
precision training based on MP attains similar levels of accuracy as the default FP32 reference
training.

To accomplish this, we propose FASE that enables the emulation of lower precision nu-
merical formats without the need for hardware support. Using this tool we show that FMA
instructions are responsible for a significant chunk of the total computational workload when
training well-known DNN models, as well as our 3DGAN use case, for which FMAs account
for 48.80% of the total instruction count. By training the 3DGAN network for 60 epochs us-
ing a representative dataset, we have been able to show that MP training employing the BF16
numerical format is able to deliver the same level of accuracy as higher-precision approaches
implemented using FP32 [71].



Chapter 6

Dynamically Adapting Floating-Point
Precision to Accelerate DNN Training

6.1 Introduction

As Section 2.1 stands, DNNs are widely used across different tasks, while their training costs
are exponentially growing. Several proposals successfully mitigate training costs by replacing
the use of standard FP32 arithmetic with alternative approaches that employ non-standard
low precision data representation formats [15, 31, 96]; reducing memory storage, bandwidth
requirements, and compute costs. Hardware vendors have incorporated half-precision data
formats [51, 64] like the BF16 format [51] and have implemented MP instructions, which aim
at reducing memory bandwidth and storage consumption.

MP relies on FMA instructions that involve 16-bit inputs for the multiplier, and an FP32
accumulator that generates an FP32 output. Therefore, MP does not fully deliver the poten-
tial benefits of reduced precision arithmetic since it requires writing back to memory a 32-bit
output, limiting the computational throughput of data-level parallelism techniques like vec-
torization, heavily used in mathematical and DNN libraries. MP is an intermediate approach
between the widely used 32-bit arithmetic and a complete 16-bit approach. The latter can
deliver more considerable performance improvements but suffers from significant accuracy
degradation when training state-of-the-art neural networks.

We use FASE to characterize and analyze computer arithmetic usage in machine learning
frameworks (e.g., PyTorch, Caffe, and Tensorflow) and emulate different floating point for-
mats. We analyze multiple state-of-the-art CNN and RNN models and find that over 98,15%
of the total floating point instructions are FMAs. To better analyze network behavior from
a computer arithmetic perspective, we observe the network’s requirements regarding floating
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Table 6.1 state-of-the-art FMAs for training.

Training Inputs Output Multiply Accum.
A,B C D

Tensor cores FP16/BF16 FP32 FP32 FP16/BF16 FP32
Google TPU v3 BF16 FP32 FP32 BF16 FP32
AVX512-BF16 BF16 FP32 FP32 FP32 FP32

Full BF16 BF16 BF16 BF16 BF16 BF16

point precision in various phases of the training algorithm and learning epochs.

Based on our empirical observations about precision needs in representative DNNs, this
chapter proposes a seamless approach that dynamically adapts floating point precision arith-
metic. Our Dynamic approach enables true half-precision arithmetic for most of the training
process, achieving performance improvements and comparable training accuracy with respect
to FP32 and MP. Our proposal employs simple heuristics based on the evolution of the training
loss function to decide the adequate precision to use for several batches.

Our evaluation with FASE shows that the Dynamic approach can obtain comparable accu-
racy w.r.t FP32 and MP training for CNN and RNN models over the same number of epochs.
For all evaluated CNNs, over 94.6% of the FMAs are performed entirely in half-precision
(BF16), demonstrating that it is possible to use half-precision computations for a large por-
tion of the training process without incurring any accuracy degradation. In addition, we show
that our heuristics are sensitive to the network requirements, increasing the amount of MP (or
FP32) computations when half-precision is not enough in terms of accuracy. Finally, we use
the Sniper [10] architectural simulator to evaluate the performance benefits of our approach
since there is no real hardware supporting full BF16 FMA instructions. Our evaluation shows
that the Dynamic approach accelerates training by 1.39× and 1.26× over FP32 for CNN and
RNN, respectively, while keeping the same accuracy levels.

6.2 Background in Mixed-Precision Training and Motiva-
tion

MP diminishes training costs by reducing the data representation size of certain network com-
ponents. Weights, activations, and gradients are stored in half-precision. Importantly, some
phases of the training process like computing weight updates (WU) and batch normalization
(BN) layers require full FP32 precision, which requires representing the weights in 32-bits.
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Fig. 6.1 Analysis for evaluated DNNs

Nvidia GPUs support MP training by leveraging their tensor cores, which combine the
floating point 16-bit (FP16) and FP32 [64] formats in FMA instructions. Figure 5.2a displays
an MP FMA instruction, which computes D = A ·B+C. Input parameters A and B are repre-
sented in FP16 and the result is added to the third input C, typically a 32-bit weight. The final
output D is also represented in FP32. This approach requires applying a scaling factor when
converting FP32 values to FP16 to avoid range representation issues.

Similarly, hardware vendors [51, 66] propose combining the BF16 and FP32 formats in a
single FMA instruction, which Figure 5.2b shows. Conversion from FP32 to BF16 does not
require a scaling factor as both types have the same representation range and, therefore, the
conversion just requires applying Round to Nearest Even (RNE) rounding.

MP FMA instructions bring significant benefits since they require less memory bandwidth
and register storage than FP32 FMAs. However, using a full BF16 FMA like the one rep-
resented in Figure 5.2c provides even larger benefits. In terms of memory bandwidth, BF16
FMAs require moving 50% and 33% less data than FP32 and MP FMAs, respectively. Sim-
ilarly, BF16 FMAs require one-half and two-thirds of FP32 and MP FMAs register storage,
respectively.

Table 6.1 summarizes the input/output data types and the precision employed during the
arithmetic operations in three state-of-the-art MP approaches. Both Nvidia GPUs (tensor
cores) and Google TPUs [50] take multiplication inputs in the half-precision format while
the accumulator and accumulation arithmetic use FP32, producing an FP32 output. Recent
Intel Xeon CPUs implement the new AVX512-BF16 extensions [41], which also feature half-
precision multiply inputs but convert them to FP32 before the arithmetic operations, i.e., the
FMA is entirely performed using FP32. Finally, we propose to use full BF16 FMA operations
to train DNNs, which can provide significant savings in register storage, bandwidth, func-
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tional unit logic, and performance improvements by better leveraging data-level parallelism
via vectorization.

To date, the implementation of full BF16 FMAs has not been adopted by hardware ven-
dors, as training DNNs using BF16 FMAs does not provide state-of-the-art convergence prop-
erties, leading to lower accuracy with respect to MP and FP32 training. In this section, we
describe a Dynamic approach that enables using BF16 FMAs for almost the entire training
process while keeping the same convergence properties as FP32 and MP training. We apply
all state-of-the-art FMA approaches to train four relevant models in Section 6.3, and we ana-
lyze the reasons why a full 16-bit approach does not provide enough accuracy. Based on these
observations, we describe our Dynamic precision approach in Section 6.4.

6.3 Analysis of State-of-the-Art Approaches

We analyze the different state-of-the-art approaches to perform FMA instructions on three
CNN models: AlexNet [55], Inception V2 [45, 88], and ResNet-50 [34]; and an RNN model [6,
93] that solves the NMT task, referred in this work as sequence to sequence (seq2seq) model.
Section 7.6 contains the details regarding the configuration of each evaluated model and the
methodology we follow.

6.3.1 Instruction Counts

Figure 5.3 shows the instruction mix for one batch on each network. We observe that floating
point instructions constitute a large portion of these workloads. For example, they represent
58.44%, 60.93%, 62.95% and 56.44% of the total count for AlexNet, Inception V2, ResNet-
50, and seq2seq, respectively. The amount of non-FMA FP instructions remains below 1.10%
for the four networks. Therefore, FMA instructions constitute a large portion of the whole
training workload. These measurements justify the focus on FMA instructions.

Prior research [51, 64] describes the need to use FP32 arithmetic in WU routines and
BN layers when using training approaches based on MP arithmetic. We run an experimental
campaign to confirm their observations and to measure the number of instructions devoted to
WU and BN. In the case of ResNet-50, this instruction count is around 30 million instructions
per batch, that is, just 0.04% of the total FP instructions. AlexNet and Inception V2 present
similar results. In the case of the seq2seq model, this instruction count remains low, 1.60%
of the total FP instructions. In conclusion, this data motivates our efforts to reduce the cost
of FMA instructions for DNN training, since WU calculations and BN layers, which must be
computed using FP32 arithmetic, represent a negligible portion of the training workload.
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6.3.2 Static Approaches for Training

State-of-the-art training methods [51] employ the same data representation format for a cer-
tain variable throughout the whole training process, hence the term static. Similarly, we also
evaluate a static approach that performs all FMA instructions in full BF16 except for WU cal-
culations and BN layers, which are performed in FP32. Figure 6.1a shows the three different
static training techniques on ResNet-50. The methodology we use to generate Figure 6.1a is
described in Section 6.6. We observe that MP achieves very similar accuracy as FP32. In con-
trast, the BF16 approach does not deliver the desired level of accuracy with a significant drop,
around 3%, w.r.t FP32 and MP. Figure 6.1b shows the same three techniques on the seq2seq
model. Further details on the model appear in Section 6.6. Again, FP32 and MP present
similar validation loss curves, while the BF16 approach fails to deliver comparable results.

An FMA entirely relying on BF16 precision can potentially provide large performance
improvements. However, as Figures 6.1a and 6.1b illustrate, full BF16 training fails to deliver
competitive levels of accuracy.

6.3.3 FMAs Data Representation Requirements

We analyze FMA data representation requirements using ResNet-50 training in order to ex-
plain the accuracy drop of full BF16 in Figures 6.1a and 6.1b.

Since the addition step of FMA instructions requires right-shifting the smaller of the two
operands by the difference of the exponents, it is possible to completely eliminate the smallest
number if the exponent difference is larger than the amount of mantissa bits. In the case of
BF16, there are 7 mantissa bits. This issue is called swamping [96].

Figure 6.2 shows the exponent differences for all FMA instructions involved in ResNet-50
training on different epochs. It represents the percentage of FMAs (y-axis) that avoid entirely
losing one of the two operands in the addition for a determined number of mantissa bits (x-
axis). During the first epoch, just around 60% of the FMA instructions would not entirely lose
one of the two addition operands when using the BF16 data representation. For epochs 8, 16,
and 32, this percentage is slightly lower. In contrast, 23 mantissa bits, i.e., the standard FP32
representation, allows to keep the two addition operands of near 100% of the FMAs.

This analysis clearly shows the reasons behind the lower accuracy observed when using
BF16 FMA instructions. Consequently, blindly applying BF16 FMA across the training pro-
cess of DNNs is not a viable training strategy, as it leads to widespread swamping issues.
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Fig. 6.3 BF16 training process for a layer.

6.4 Dynamic Precision Training

We propose to dynamically switch floating point precision during training to obtain the same
accuracy as FP32 or MP while reducing training costs by employing full BF16 FMAs for as
many batches as possible. Our strategy for DNN training uses BF16 FMAs as long as the
training loss improves. When we detect training loss stagnation, we switch to a higher preci-
sion approach such as MP or FP32 for a number of batches, until training loss improves again.
The use of reduced precision helps with the generalization capabilities of the model [31]. To
detect training loss stagnation we calculate its Exponential Moving Average (EMA) [56] for
a moving window of batches. We compare this EMA value with a threshold parameter to
determine if training is progressing with the currently employed FMA format. The EMA is
updated throughout the training process, guiding the decisions to switch between full BF16
and MP precision.

Algorithm 1 shows the high-level pseudo-code of our Dynamic precision training strat-
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Algorithm 1 Dynamic Precision Training
1: numBatchesMP← 10 // Number of consecutive MP batches
2: numBatchesBF16← 1000 // Number of consecutive BF16 batches
3: emaT hreshold← 0.04 // Defines EMA reduction threshold
4:

5: precisionModeBF16← False // Indicates current precision mode, True means BF16
6: countBatchesBF16← 0 // Counts how many numBatchesBF16 have been executed
7: numBatchesTrain← numBatchesMP // Number of batches per training loop iteration
8:

9: for i = 0 to niter do
10: train.step(numBatchesTrain) // numBatchesTrain batches precisionModeBF16
11: trainingLoss[i]← train.trainingLoss
12: if i = 5 then // Initial history to calculate EMA
13: EMA← average(trainingLoss)
14: if i > 5 then
15: EMAprev← EMA
16: EMA← emaCalculation(trainingLoss,EMAprev) // Each numBatchesMP
17: if (precisionModeBF16! = True) then
18: if ((EMAprev−EMA)> emaT hreshold) then // If training loss goes down
19: precisionModeBF16← True
20: changeToBF16() // Switch precision to BF16
21: else
22: countBatchesBF16← countBatchesBF16+numBatchesTrain
23: if (countBatchesBF16 = numBatchesBF16) then
24: if ((EMAprev−EMA)> emaT hreshold) then // If training loss goes down
25: countBatchesBF16← 0 // Stay in BF16 precision
26: else // If training loss stagnates
27: precisionModeBF16← False
28: changeToMP() // Switch precision to MP
29: countBatchesBF16← 0

egy. The algorithm starts the training process using the state-of-the-art MP training [51] for
several batches, defined by numBatchesMP parameter. Then, it computes the EMA of the
training loss and, if its reduction is above a certain threshold (emaT hreshold parameter), it
computes the next numBatchesBF16 using BF16 training. Once training has processed these
numBatchesBF16 batches, our algorithm updates the EMA value and compares it against the
emaT hreshold parameter again. If the EMA reduction is not large enough, the algorithm
switches back to MP training. Otherwise, it keeps using BF16 training for numBatchesBF16
batches before updating the EMA value and comparing against it once again.

This method is applied during the entire training and it is able to dynamically adapt the
way each batch handles its FMA instructions depending on the training loss progress. If
such progress stagnates, the FMAs are computed using a more expensive higher-precision
method like the MP or FP32 techniques. If training progresses well, the algorithm dynami-
cally switches the way FMAs are computed and chooses the full BF16 approach. Figure 6.3
illustrates the implications of processing one batch using BF16 FMAs. Similar to MP: (i)
weights, activations, and gradients are stored in BF16 format; (ii) an FP32 master copy of the
weights is maintained and updated with the weight gradients during the optimizer step (e.g.,
in the Stochastic Gradient Descent solver); and (iii) reduction operations present in BN layers
use FP32 arithmetic. In contrast, all arithmetic operations within the forward and backward
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passes are performed using full BF16 arithmetic. Section 6.7 demonstrates that dynamically
switching the precision of batch execution between full BF16 and MP FMAs provides the
same training convergence as FP32 or MP FMAs during the whole training achieving perfor-
mance gains.

6.5 FASE: Fast, Accurate and Seamless Emulator

Due to the lack of available hardware implementing full BF16 FMAs, software emulation is
required to study their numerical behavior. Several approaches have been used to emulate
BF16 arithmetic, most notably via highly-tuned low-level libraries that truncate floating point
operands [12, 51]. However, such approaches require access to the mathematical library upon
which the training relies. And this should be done for all potentially different implementa-
tion frameworks such as Tensorflow, PyTorch, or Caffe. With the aforementioned approaches,
these arithmetic modifications must be done on the source code or at compile time. Besides the
effort that code modifications or recompilation of complex frameworks require, this methodol-
ogy is not applicable to closed-source mathematical libraries, like Intel MKL. Since computer
arithmetic is highly sensitive to the implementation, not instrumenting the true executed binary
sequence of instruction can lead to wrong interpretation [19].

To overcome these limitations we used FASE. FASE performs the following steps: First,
it checks the current FMA operation mode, which for the purposes of this chapter can be
FP32, MP, or BF16 (see Figure 5.2). Additional numerical formats can be easily emulated.
Second, it determines whether we are executing routines that belong to WU calculations or
BN layers. If yes, computation proceeds in FP32. Third, the tool intercepts all floating point
instructions of the workload, including FMAs. For each FMA instruction, FASE rounds off all
operands that need to be converted to BF16 using an accurate round to nearest even algorithm.
Finally, FASE can dynamically change its FMA operation mode via a simple inter-process
communication method that can be invoked from the Python high-level DNN framework code
were Algorithm 1 is implemented.

6.6 Experimental Methodology

Chapter 3 contains detailed information regarding the software and hardware used to train the
different DNN models used in this chapter with the whole set of hyperparameters. Addition-
ally, we explain here a specific approach we take into account to test this implementation.
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Fig. 6.4 Test accuracy of evaluated training strategies.

6.6.1 Static and Dynamic Schemes

We consider two training techniques: static schemes and dynamic schemes. When using
static schemes, training uses the same data representation form for a given parameter during
its complete execution. For example, Figures 6.1a and 6.1b display results obtained using
static schemes. We employ the following schemes:

• MP: This scheme replicates prior work on MP. FMA instructions that belong to WU
calculations and BN layers always use FP32 precision. The remaining FMA instructions
use the MP approach represented in Figure 5.2b.

• BF16: FMA instructions that belong to WU calculations and BN layers always use
FP32 precision. The remaining FMA instructions use BF16 operands to multiply and to
accumulate (Figure 5.2c).

The Dynamic scheme we propose in this paper switches between the MP and BF16 static
techniques during training, as explained in Section 6.4 and detailed in Algorithm 1. This
dynamic method aims to retain MP’s favorable training convergence properties while relying
on BF16 FMAs for much of the execution.

To generate the results we show in Sections 6.7.1, 6.7.2, and 6.7.4 we set parameters
emaT hreshold, numBatchesBF16, and numBatchesMP to 0.04, 1000, and 10, respectively,
when training AlexNet, Inception V2, and ResNet-50. The seq2seq model employs a dif-
ferent data set, Multi30K, which requires adapting emaT hreshold, numBatchesBF16 and
numBatchesMP to the number of batches per epoch of the Multi30K training process. We
set them to 0.06, 15 and 1, respectively. In addition, we run an experimental campaign con-
sidering different parameter configurations in Section 6.7.3.

6.6.2 Emulating BF16

There is no real hardware supporting full BF16 FMAs, which Figure 5.2c represents. To
evaluate the numerical behavior of BF16 FMAs, we use our FASE tool, described in Chapter 4.
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Table 6.2 Sniper Parameters

Component Description

CPU 2.1 GHz, Out-of-Order
ITLB 128-entries, 4-associativity
DTLB 64-entries, 4-associativity
STLB 512-entries 4-associativity

L1 ICache 32 KB, 4-associativity, 1-shared cores
L1 DCache 32 KB, 8-associativity, 1-shared cores
L2 Cache 1 MB, 8-associativity, 1-shared cores
L3 Cache 32 MB, 16-associativity, 24-shared cores

Bandwidth 30 GB/s per core

Table 6.3 Accuracy and percentage of FMAs executed in BF16 precision.

Model Epoch FP32 MP Dynamic BF16

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 BF16FMA Top-1 Top-5 BF16FMA

AlexNet 32 60.79% 84.50% 60.18% 84.43% 60.32% 84.02% 94.60% 57.80% 82.56% 99.93%
Inception 16 74.01% 92.36% 73.73% 92.67% 72.80% 92.02% 95.55% 72.03% 92.05% 99.90%

ResNet-50 32 75.96% 93.37% 75.70% 93.20% 74.20% 92.70% 96.40% 72.97% 92.30% 99.91%

To assess performance improvement when using Dynamic, we attach the Sniper simulator [10]
to FASE. Since both tools are based on Pin, combining them is natural.

Sniper is a high-speed and accurate x86 computer architecture simulator. We extend Sniper
to support the AVX512 ISA, including its FMA instructions.

We simulate a standard Xeon processor by considering the hardware parameters displayed
by Table 6.2. We simulate with Sniper the execution of one training batch of ResNet-50 and
seq2seq using FP32, MP, and BF16 FMAs. Since FASE provides the percentage of batches
computed in BF16 and MP during the whole training, we extrapolate the overall performance
using the performance metrics that Sniper provides. This approach is equivalent to the widely
used SimPoints method [32] and makes it possible to estimate the performance of the whole
training workload.

6.7 Evaluation

6.7.1 Convolutional Neural Networks

Figure 6.5 shows the validation accuracy of the three considered CNN models for the dif-
ferent training strategies. The x-axis represents the epochs of the training process while the
y-axis shows the accuracy reached by the model over the validation set. In addition, Table 6.3
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shows the Top-1 and Top-5 validation accuracies reached on the three network models for each
training strategy, along with the percentage of FMA instructions fully computed with BF16
operands. We consider the FP32, MP, and BF16 static strategies and our Dynamic.

Figure 6.4a shows that BF16 displays worse accuracy than Dynamic or MP. Table 6.3
shows that FP32, MP, Dynamic, and BF16 reach Top-5 accuracies of 84.50%, 84.43%, 84.02%
and 82.56% respectively after 32 epochs. Importantly, Dynamic reaches comparable accuracy
with respect to FP32 and MP while performing 94.60% of the FMA instructions in full BF16
precision. In contrast, BF16 training does 99.93% of the FMAs in full BF16 precision (0.07%
are in WU and BN layers), but the accuracy drops by almost 3% in Top-1 and 2% in Top-5.
This significant drop in accuracy takes place by performing an additional 5% of BF16 FMAs
compared to Dynamic. This shows that our proposal successfully achieves SoA accuracy
levels while still relying mostly on BF16 FMAs.

Figure 6.4b shows validation accuracy over 16 epochs for the Inception V2 model. Ac-
curacy fluctuates initially due to its structure and recommended hyperparameters. Dynamic
responds in a robust way to these changes, which highlights its general applicability. Ta-
ble 6.3 shows that FP32, MP, Dynamic, and BF16 reach Top-5 accuracies of 92.36%, 92.67%,
92.02%, and 92.05% respectively after 16 epochs. BF16 training is able to achieve SoA accu-
racy since this network is designed to be robust to noise and tolerates lower precision.

The evaluation on ResNet-50 (Figure 6.4c) demonstrates that Dynamic training is effective
when applied to deeper CNNs. In this case, the accuracy of the model reaches SoA levels while
using BF16 for 96.40% of the FMA instructions. Table 6.3 displays the accuracy numbers
we obtain from our evaluation after 32 epochs. BF16 training fails to deliver SoA Top-1
accuracy with a drop of 2.99% with respect to FP32. Dynamic is able to close the accuracy
gap between FP32 and BF16 training by performing a large percentage of FMA instructions
in BF16 precision.

In summary, Dynamic is able to achieve comparable accuracy with respect to FP32 and
MP training while performing ≥ 94.60% of the FMA instructions in BF16 precision.

6.7.2 Sequence to Sequence RNN Model

Figure 6.5a shows the seq2seq validation loss achieved over 10 epochs for all the consid-
ered strategies. Table 6.4 contains the final numbers for training and validation loss, and the
percentage of BF16 precision FMAs.

While FP32, MP, and Dynamic perform similarly for seq2seq, BF16 is not able to yield
comparable validation loss. Table 6.4 shows that Dynamic achieves SoA accuracy in terms
of both validation loss (Val-Loss) and training loss (Tr-Loss) while performing 66.0% of the
FMA instructions fully using BF16. In addition, the loss function values for validation data
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slightly improve in MP and Dynamic with respect to FP32. This behavior has been studied [4].

6.7.3 Sensitivity Analysis for Dynamic Precision Algorithm

We perform a sensitivity analysis of the parameters employed in Algorithm 1. We consider
numBatchesBF16 = {500, 1000, 2000}, and emaThreshold = {0.02, 0.04, 0.08}, while num-
BatchesMP is set to 10. Figure 6.7 shows, for a number of ResNet-50 epochs, the accuracy
obtained for each of the 9 tested configurations. In addition, we include the accuracy values of
BF16, MP, and FP32. The accuracy of all Dynamic configurations is above BF16. The most
relevant parameter is emaThreshold, as it decides when to switch between different FMA ap-
proaches. As long as this parameter is reasonably set to detect training loss improvement or
degradation, Dynamic achieves SoA accuracy.

Figure 6.6 shows the sensitivity analysis for the seq2seq model. We consider numBatch-
esBF16 = {10, 15, 20}, and emaThreshold = {0.04, 0.06, 0.08}, while numBatchesMP is set
to 1. Bars show the percentage of FMAs run using BF16 format per each parameter config-
uration, and the line represents its corresponding validation loss. We find that validation loss
improves the FP32 value for some configurations. This is due to the numerical noise injected
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Table 6.4 Loss and FMAs executed in BF16 precision for seq2seq

Model Epoch FP32 MP Dynamic BF16

Tr-Loss Val-Loss Tr-Loss Val-loss Tr-Loss Val-Loss BF16FMA Tr-Loss Val-Loss BF16FMA

seq2seq 10 2.019 3.290 2.008 3.235 2.122 3.285 66.0% 2.392 3.410 99.5%

Table 6.5 Performance results

Model Batch execution time (s) Training Speed-up w.r.t FP32

FP32 MP BF16 FP32-BF16 MP-BF16

ResNet-50 23.80 22.15 17.11 1.38× 1.39×
seq2seq 45.73 41.17 34.40 1.22× 1.26×

by reduced data representation formats, which may help the training processes in some scenar-
ios. Previous work has also observed this effect [4]. Multiple Dynamic training configurations
obtain SoA validation loss with up to 66% BF16 FMAs.

6.7.4 Dynamically Switching Between FP32 and BF16

The evaluation of Sections 6.7.1, 6.7.2, and 6.7.3 considers a Dynamic approach that switches
between MP and BF16 FMAs. However, the Dynamic technique can also switch between
FP32 and BF16. Figure 6.5b shows validation loss evolution while training seq2seq consid-
ering a Dyn_FP32 approach, which switches between FP32 and BF16. Results obtained with
Dyn_FP32 do not present any noticeable deviation to the ones obtained with Dynamic in terms
of accuracy and percentage of BF16 FMA instructions. Similar behavior is observed with the
CNN models. This certifies that our proposal can be applied in machines that support FP32
and BF16 FMAs, without needing MP.

6.7.5 Sniper Results

We evaluate the performance of BF16 training by attaching the FASE tool to the Sniper sim-
ulator. Table 7.5 shows the training time of one batch using FP32, MP, and full BF16 FMAs.
In addition, we show the speed-up of Dynamic (MP-BF16) and Dyn_FP32 (FP32-BF16) w.r.t
FP32 training. We use ResNet-50 and seq2seq as example models.

As can be seen in the table, the execution time of one batch using BF16 is significantly
faster than FP32 or MP. This is due to lower memory bandwidth requirements and doubling
the FMA vectorization (AVX512) throughput, as having all input and output operands in 16
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bits enables more data level parallelism. The speed-ups achieved for the entire training process
with the Dynamic approach reach 1.39× and 1.26× for ResNet-50 and seq2seq, respectively.

6.8 Conclusions

We analyze the instruction mix of DNN training workloads. We show that FMA instructions
represent 60% of these workloads. While MP training can deliver SoA accuracy, training
schemes that rely on half-precision FMAs, like BF16 training, fail to deliver comparable ac-
curacy levels. We propose a Dynamic training technique that can perform a large portion of
FMAs in full half-precision, lowering training requirements without hurting accuracy. We
achieve this by training in BF16 mode and identifying when training convergence stagnates,
at which point we switch to a higher precision strategy like MP or FP32 until stagnation dis-
sipates [72].

We evaluate our proposal considering three SoA CNNs and one RNN model. We use FASE

to instrument all FMA instructions and modify operands to the targeted numerical data type.
We demonstrate that half-precision BF16 can be used extensively on ≥ 94.6% of all FMAs
during the training of deep CNN models, and on 66.0% of FMAs in our evaluated seq2seq
model while reaching comparable accuracy levels with respect to FP32 and MP training. Fi-
nally, our performance evaluation shows that the Dynamic approach can achieve speed-ups of
up to 1.39× with respect to FP32.



Chapter 7

A BF16 FMA is All You Need for DNN
Training

7.1 Introduction

Fused Multiply-Add (FMA) functional units compute the operation D = A ·B+C and con-
stitute a key hardware component to train Deep Neural Networks (DNNs), since they support
the vast majority of floating-point instructions required for DNN training [90]. FMA input
datatypes and, in particular, their mantissa bit counts drive the performance and the hardware
cost of FMA units. Indeed, the silicon area of FMA units features a quadratic growth with
respect to the number of mantissa bits. For example, a 16-bit multiplier using 8 mantissa bits
requires 82 = 64 units of area, while a 32-bit multiplier considering 24 mantissa bits employs
242 = 576 units [35, 91, 96]. This advantage in terms of area budget has motivated the adop-
tion of the BF16 format, which features 1 sign, 8 exponent, and 7 explicit mantissa bits, by
many hardware vendors [35, 68]. Specialized hardware units targeting FMA computations
based on the BF16 format deliver more floating point throughput than FP32 units while using
the same silicon area [35, 68].

Despite these advantages, any proposal does not fully exploit the potential of using BF16
during the entire training process. Previous work has described the numerical issues of BF16,
which are caused by its reduced mantissa bits budget [51, 64]. To overcome them, previous
approaches combine the BF16 format with the standard IEEE 754 FP32 format when comput-
ing FMA instructions. The accumulation step uses FP32 arithmetic to combine A ·B with C,
and represent the final output D. In addition, some frequently used routines like WU opera-
tions or BN must entirely rely on the FP32 format to achieve state-of-the-art accuracy [51, 64].

There are more aggressive proposals that use 4-bit (FP4) datatypes for ultra-low precision
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training [85] or that dynamically employ between 3 and 8 bits of precision [25, 26]. However,
these proposals require tailored hardware, extensive modifications to software frameworks,
and very complex ad-hoc steps to guarantee training convergence. In addition, these tech-
niques require 32-bit precision floating-point arithmetic for WU or FMA accumulators. In
addition, these proposals do not achieve FP32 training accuracy.

We propose the first approach to train state-of-the-art DNNs entirely using the BF16 for-
mat, without code and hyper-parameters tuning, while delivering the same accuracy as FP32.
We propose a new class of FMA operators, FMAbf16

n_m , that entirely rely on BF16-based
datatypes for its inputs and outputs. When computing an FMA operation, FMAbf16

n_m repre-
sents input operands A and B using N BF16 literals, which we call BF16XN representations,
while input C and output D use M BF16 literals, i.e. BF16XM types. FMAbf16

n_m operators
can be used for the entire training process of DNNs, effectively removing the need for FP32
architectural support at the hardware and ISA levels.

We use FASE to evaluate the numerical behavior of FMAbf16
n_m . FASE uses Intel Pin [61]

to intercept FMA instructions and modify its floating-point operands. Using FASE we eval-
uate 7 FMAbf16

n_m variants on a wide range of DNNs: ResNet (18, 34, 50, 101) [34] and
MobileNetV2 [81] on the CIFAR10 and CIFAR100 datasets, LSTMx2 model on Penn Tree-
bank (PTB) dataset [102], two transformer-based models using IWSLT16 [94] and Multi30K
dataset [23, 93], and the Neural Graph Collaborative Filtering (NGCF) [98] a recommender
system applied to the MovieLens: ML-100k dataset [33]. We demonstrate that FMAbf16

n_m

achieves the same accuracy as FP32 training, while never resorting to FP32 FMA compu-
tations.

In addition, we perform micro-architectural simulations using Snipersim [10] to evaluate
the performance of FMAbf16

n_m operators when replacing 32-bit FMA functional units on a
Skylake-like processor. Our evaluation shows that FMAbf16

1_2 and FMAbf16
2_2 reach 1.34× and

1.28× speed-up on ResNet101, respectively, with respect to FP32 at equivalent area.

To the best of our knowledge, FMAbf16
n_m is the first proposal enabling the exclusive use

of BF16 arithmetic while achieving the same accuracy properties as FP32 for a large variety
of networks, while providing performance improvements within the 1.28-1.34× range with
respect to FP32. Thereby, enabling training of complex DNNs on simple low-end hardware
devices by lifting the requirement of having FP32 hardware support and expensive FP32 FMA
units.
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Fig. 7.1 BF16XN Data Formats.

7.2 The BF16XN Data Representation

The BF16XN data representation format is a compound datatype composed of N BF16 lit-
erals. It is a generalization of BF16X3, which was proposed by Henry et al. [35] to replace
FP32 in High-Performance Computing (HPC) workloads. The BF16X1 format uses 1-bit and
8-bits storage for sign and exponent, like FP32, and 7 explicit mantissa bits. As shown in
Figure 7.1, by concatenating three BF16 numbers we have 24 bits to represent the mantissa, 7
explicit bits and 1 implicit bit per BF16 literal, which is equivalent to the FP32 mantissa (23
explicit and 1 implicit bits). In this chapter, we consider BF16X3 and two more computer
number formats based on the BF16XN compound datatypes: BF16X1 and BF16X2.

To describe the conversion from FP32 to BF16XN, we define the conversion operand
BF(·) as the rounding process of an FP32 expression to BF16 via the Rounding to Nearest
Even (RNE) algorithm. The BF(·) operand converts a generic FP32 value to its BF16X2
representation via the first two equations of Formula 7.1, or to its BF16X3 compound datatype
representation using the three equations of Formula 7.1 [35]. The BF16 expression a0 contains
the same sign and exponent bits as the FP32 number a plus its top 7 mantissa bits. The 8th
mantissa bit of a0 is defined by RNE. Similarly, a1 contains in its mantissa the second set of 8
bits of the BF16XN expression, which is at least 8 bits away of a0 least significant bit. Finally,
a2 contains in its mantissa the third set of 8 bits which are at least 8 and 16 bits away of a0

and a1 least significant bit, respectively. BF16XN expressions are trivially converted back to
FP32 by accumulating the ai values on a FP32 register.

a0 = BF(a)

a1 = BF(a−a0)

a2 = BF(a− (a0−a1))

(7.1)

These equations are still valid for FP32 number a = 0, in that case all ai terms will be
zeros. However we need a special case for +/− In f . In this case, to avoid NaN we will set all
ai to the corresponding infinity. We cannot use a1 = a2 = 0 since it will lead to NaN values in
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later Mul/FMA operations while the FP32 value would have produced the expected +/− In f .

7.2.1 Computing FMA instructions with BF16XN

An FMA with BF16XN datatypes for the a · b product can be reduced to a set of partial
products using BF16X1. Equation 7.2 shows the FMA operation c := c+a ·b where a and b
are represented as BF16X3, i.e., a := a0 +a1 +a2 and b := b0 +b1 +b2; and c in FP32. The
FMA is expressed as nine partial products and the addition of c [35].

c := c+a ·b = c+a0 ·b0 +a0 ·b1 +a0 ·b2

+a1 ·b0 +a1 ·b1 +a2 ·b0

+a1 ·b2 +a2 ·b1 +a2 ·b2

(7.2)

Henry et al. [35] analyze the error of the BF16X3 format and demonstrate that accumu-
lating the six most significant partial products is enough to keep FP32 precision for a wide
range of values. Indeed, the a1 ·b2 and a2 ·b1 products most significant bits are at least 24 bits
behind the result’s most significant bits. For the same reasons, the a2 ·b2 product is at least 32
bits behind. Their sum is therefore 23 bits behind the result’s most significant bits. Therefore,
the maximum level of error of a BF16X3 FMA compared to a FP32 FMA is in the same order
of magnitude as round-off effects.

Based on these observations, the three least significant multiplications (see Equation 7.3)
can be avoided, while providing accuracy within the [23,24] bit range.

c := c+a ·b≈ c+a0 ·b0 +a0 ·b1 +a0 ·b2

+a1 ·b0 +a1 ·b1 +a2 ·b0
(7.3)

BF16X2 decomposes an FP32 number into two BF16 literals, which provides an inter-
mediate format between BF16X1 and FP32 with significantly lower compute cost than FP32
and similar bandwidth requirements. When multiplying two BF16X2 numbers, we have to
compute four partial multiplications, as Equation 7.4 shows.

a ·b = (a0 +a1) · (b0 +b1)

a ·b = a0 ·b0 +a0 ·b1

a1 ·b0 +a1 ·b1

(7.4)

Following a similar reasoning as Henry et al. [35] with BF16X3, we can drop the last



7.3 Suitability of BF16XN for DNN Training 59

0 219 220 221 222 223

Samples

0

10−8

10−7

10−6

10−5

10−4

10−3
E

rr
or

w
.r

.t
F

P
32

re
p

re
se

nt
at

io
n

BF16

BF16x2

BF16x3

Fig. 7.2 Error with respect to FP32 representation for different BF16XN formats for all pos-
sible mantissa combinations over a fixed exponent (223 samples).

term, a1 ·b1 while still keeping [15,16] bits of mantissa accuracy for a wide range of values.
Henry et al. [35] require FP32 support for the accumulator input c, and for the conversion

between FP32 and BF16XN. Our proposed FMAbf16
n_m operators, introduced in Section 7.4,

do not require FP32 support as all input and output operands are expressed as BF16 literals.

7.3 Suitability of BF16XN for DNN Training

This section illustrates how BF16XN delivers the required accuracy to enable DNN training
using BF16 arithmetic exclusively, including critical routines like WU or BN.

7.3.1 BF16XN Representation Errors

Figure 7.2 shows numerical errors of BF16X1, BF16X2, and BF16X3 FMAs when repre-
senting all the 223 possible representations of FP32 explicit mantissa bits. Without loss of
generality, we consider the exponent value to be fixed at 2. The x-axis represents the 223 sam-
ples sorted in terms of the absolute numerical error of BF16X1, BF16X2, and BF16X3 when
representing them. The y-axis displays the magnitude of such error.

When using BF16X1, only 3.84% of the samples experience an error below 10−4. This
representation error has been shown in prior works to prevent DNN training convergence
when applied to the entire training process [51, 64]. When employing BF16X2, 41.95% of
the samples display errors below 10−6. The remaining 58.05% present errors between 10−6

and 10−5. Figure 7.2 shows how the BF16X2 error is consistently 3 orders of magnitude
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lower than BF16X1. As Section 7.7 demonstrates, this low error enables full DNN training
with the BF16X2 datatype. Finally, the BF16X3 format has no significant error compared to
FP32. Indeed, it has enough mantissa bits to exactly represent all FP32 samples.

7.3.2 Swamping Issues in DNN Training

During the accumulation phase of FMA instructions, the mantissa of the smallest value shifts
according to the exponent difference between the operands. This shift brings the possibility
to eliminate the smallest operand when the exponent difference is bigger than the number
of mantissa bits. This full absorption issue is known as swamping [96] in the deep learning
community. In Section 6.3.3 we use ResNet50 model to explain this issue.

Figure 7.3 shows the percentage of FMAs without swamping issues on the y-axis for a
given number of accumulator mantissa bits, represented in the x-axis. We collect this data
when training ResNet101 on CIFAR100 across different epochs. Section 7.6 describes in
detail our experimental setup. We show that swamping would appear on 40% of the FMA
operations when using BF16X1 on the accumulator input, on 12% with BF16X2, and nearly
0% with BF16X3. Our experiments evaluate the impact of swamping and reveal a correlation
between swamping prevalence and the applicability of BF16XN data types.

Diminishing the number of mantissa bits makes DNNs more sensitive to swamping and
may lead to critical information loss. In fact, the use of BF16X1 leads to a substantial amount
of swamping that prevents reaching state-of-the-art training accuracy levels [96]. The BF16X2
and BF16X3 data formats entirely rely on BF16 arithmetic functional units and do not suffer
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from the common numerical issues of BF16X1 that Figures 7.2 and 7.3 display.
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Fig. 7.4 FMAbf16
n_m Operators

Table 7.1 FMAbf16
n_m characterization in terms of mantissa bits, bitwidth, number of BF16

multiplications, area units required to implement the entire operator, and expected speed-up
over FP32 FMAs at the equivalent area.

FMAbf16
n_m FMAbf16

1_1 FMAbf16
1_2 FMAbf16

1_3 FMAbf16
2_2 {3} FMAbf16

2_2 {4} FMAbf16
3_3 {6} FMAbf16

3_3 {9} FP32

Multiplier mantissa bits 8 8 8 [15,16∗] 16 [23,24∗∗] 24 24
Maximum input bitwidth 16 32 48 32 32 48 48 32
# BF16 multiplications 1 1 1 3 4 6 9 N/A

# Area Units 64 64 64 192 256 384 576 576
Speed-up wrt FP32 (equivalent area) 9.0× 9.0× 9.0× 3.0× 2.3× 1.5× 1.0× 1.0×

∗ For a number > 2−111; ∗∗ For a number > 2−103

7.4 FMA Operators Based on BF16 Arithmetic

This section introduces a new class of FMA operators, FMAbf16
n_m , that entirely rely on BF16-

based operands. When performing an FMA operation D = A ·B+C, FMAbf16
n_m represents

operands A and B via the BF16XN format, while it uses a representation with a potentially
different number of BF16 literals, BF16XM, for C and D.

7.4.1 The FMAbf16
n_m operators

We propose and evaluate four new FMAbf16
n_m operators: FMAbf16

1_2 , FMAbf16
1_3 , FMAbf16

2_2 ,
and FMAbf16

3_3 . The first two operators, which are represented in Figures 7.4b and 7.4c, use



62 A BF16 FMA is All You Need for DNN Training

the BF16X1 representation for inputs A and B. The FMAbf16
1_2 operator uses the BF16X2

number format for parameters C and D, while FMAbf16
1_3 uses BF16X3 to represent them. The

other two FMAbf16
n_m operators use compound data types in all of their inputs. We term these

two operators FMAbf16
2_2 (Figure 7.4d) and FMAbf16

3_3 (Figure 7.4e). As Section 7.2 describes,
the FMAbf16

2_2 operator can be implemented using three or four partial products. We denote
these two variants as FMAbf16

2_2 {3} and FMAbf16
2_2 {4}, respectively. Equation 7.5 defines

FMAbf16
2_2 with four products. In addition, FMAbf16

3_3 can consider six or nine partial products,
as Equations 7.3 and 7.2 indicate. We call these operators FMAbf16

3_3 {6} and FMAbf16
3_3 {9}.

c = c+a ·b≈ (c0 + c1)+a0 ·b0 +a0 ·b1

a1 ·b0 +a1 ·b1
(7.5)

Figure 7.4 defines the semantics of the operators in terms of input and output datatypes.
The internal implementation of the operators can be done in different ways, and it is orthogonal
to the underlying hardware and ISA definitions. For example, a possible implementation
for the FMAbf16

2_2 operator is to perform the four partial products, as shown in Equation 7.4,
and then perform an intermediate accumulation step to reduce the number of BF16 literals
from four to two, which matches the data type of the other input of the accumulator (C), as
depicted in Figure 7.4. This internal accumulation step does not require FP32 arithmetic as it
exclusively involves BF16 literals. Finally, the last accumulation step can be done by adding
BF16 literals of each input in pairs, where each literal addition produces an output literal of
D.

Our experimental campaign in Section 7.7 demonstrates that FMAbf16
n_m operators achieve

comparable accuracy with respect to FP32 executions on large and complex DNNs. Our
FMAbf16

n_m operators entirely use BF16 arithmetic, that is, they do not employ FP32 com-
putations on any layer, including BN, Softmax, and WU routines.

7.4.2 Characterization of FMAbf16
n_m units

To characterize our FMAbf16
n_m units we use the observation that the area of an FMA is domi-

nated by the multiplier as it grows quadratically with mantissa bits [91] [96]. An FP32 FMA
requires 242 = 576 area units, while an FMA with BF16 multiplier inputs would require just
82 = 64 units. Therefore, BF16 FMAs are 9.0× smaller than FP32 FMAs. Moreover, the
use of dense hardware units (e.g., NVIDIA’s tensor cores [69] or Google’s TPU [97]) leads to
efficient matrix compute engines that can deliver 8-32× more FLOP/S than equivalent FP32
hardware [35]. For example, NVIDIA A100’s can deliver up to 19.5 TFLOP/S in FP32, but



7.5 FASE: An FMAbf16
n_m Emulation Tool 63

when using BF16 tensor cores they reach 312 TFLOP/S peak throughput, i.e., 16.0× more
FLOP/S.

Table 7.1 characterizes FMAbf16
n_m operators in terms of: the number of multiplier mantissa

bits, the maximum bitwidth of input parameters, the number of BF16 partial multiplications
required by the corresponding FMAbf16

n_m unit, the number of area units required to implement
the operator, and the attainable theoretical speed-up in compute throughput at equivalent area
with respect to FP32. In the case of FMAbf16

1_1 , FMAbf16
1_2 and FMAbf16

1_3 the peak floating-
point throughput gain with respect to FP32 hardware is 9.0× since we can accommodate 9
FMA BF16 functional units in the area of a single FP32 FMA unit. In the case of FMAbf16

2_2

{3} and FMAbf16
2_2 {4} three and four BF16 products are required, respectively. Therefore,

their maximum theoretical throughput is 3.0× and 2.3× larger than FP32 FMAs, respectively.
When considering FMAbf16

3_3 {6} and FMAbf16
3_3 {9}, six and nine BF16 products are required,

which means these units deliver 1.5× and 1.0× more floating-point throughput than a single
FP32 unit, respectively, with the same area.

While Table 7.1 characterizes FMAbf16
n_m units in terms of their maximum floating-point

throughput, the performance they reach when training DNNs depends on many other factors.
For example, operators employing BF16X3 will require more memory traffic and register
storage than those using BF16X2. Section 7.7 provides performance in terms of total elapsed
time with respect to FP32 using an accurate micro-architectural simulator.

7.5 FASE: An FMAbf16
n_m Emulation Tool

To assess the numerical properties of DNN training workloads when they are exposed to the
FMAbf16

n_m units, we rely on FASE. There is no hardware supporting FMA units relying entirely
on the BF16 format. Indeed, hardware products that support the BF16 format use mixed-
precision FMA units that combine BF16 with higher precision inputs (e.g., FP32) [41, 66,
97]. Alternatively, [12] and [51] use highly-tuned low-level implementations applied at the
source code level to modify floating-point instructions. However, these approaches require
extensive modifications of the complex mathematical libraries supporting DNN frameworks
like Tensorflow, PyTorch, or Caffe. Besides these difficulties, the modification of proprietary
mathematical libraries like Intel MKL [43] is not possible for most users as the code is not
publicly available.

FASE can detect, intercept, and instrument any instruction appearing in the program control
flow, including those coming from dynamically linked libraries.

In particular, FASE dynamically changes the value of each FMA input and output operand
to implement our custom FMAbf16

n_m arithmetic. When the BF16X3 datatype is used as output,
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converting the output back to the native type (FP32) to store the result in the destination
register can introduce rounding noise; however, the resulting relative error is below 2−24 and
it does not impact the accuracy of FMAbf16

n_m arithmetic. Operands that do not use BF16X3
type are not affected by this rounding error. An advantage of FASE is its precise computer
arithmetic emulation at the register level. In contrast, other approaches based on software
modifications might suffer from numerical artifacts and wrong interpretations due to compiler
optimizations [19].

FASE performs the following steps to emulate FMAbf16
n_m operators when computing the

FMA instruction D = A ·B+C:

• To intercept each FMA instruction during execution.

• To convert each FMA FP32 input operand to the appropriate representation using Equa-
tion 7.1, i.e., BF16X1, BF16X2 or BF16X3, depending on the currently evaluated FMAbf16

n_m

operator.

• To perform the FMA multiplication step. We employ partial products described in Equa-
tions 7.2, 7.3 and 7.4, depending on the specific FMAbf16

n_m operator.

• To accumulate the output of A ·B with input C.

• To update the destination register. The output is converted back to FP32 to match the register
type.

FASE seamlessly works on frameworks such as Tensorflow, PyTorch or Caffe without
requiring any source code modification.

7.6 Experimental Methodology

Our experimental methodology considers the FMAbf16
1_1 , FMAbf16

1_2 , FMAbf16
1_3 , FMAbf16

2_2 {3},
FMAbf16

2_2 {4}, FMAbf16
3_3 {6}, and FMAbf16

3_3 {9} operators. In contrast with prior proposals
[51, 64], we do not employ FP32 precision on any routines to improve training convergence.
Therefore, when using FMAbf16

n_m operators, all FMA instructions use BF16 arithmetic for the
whole training process. We compare the training accuracy of FMAbf16

n_m approaches against
two baselines: A full FP32 training and an approach that uses mixed-precision FMAs, de-
scribed in Section 7.6.3. The latter uses FP32 accumulators during the whole training process,
and full FP32 FMAs to process batch normalization (BN) layers and compute weight updates
(WU).

We test our approaches taking into account the models explained in Chapter 3
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7.6.1 Training Accuracy of FMAbf16
n_m Operators

To train and validate ResNet, LSTMx2, the transformer-based models, and the recommender
system we use a source code compiled version of PyTorch [76] (version 1.8.0), Intel MKLDNN
[39] (version 1.22.0) and the Intel MKL library [43] (version 2019.4).

7.6.2 Performance of FMAbf16
n_m

We evaluate the impact of using FMAbf16
n_m operators in terms of performance using the Sniper-

sim micro-architectural simulator [10]. While FASE enables highly accurate analysis of the
ability of FMAbf16

n_m operators to successfully train state-of-the-art DNN networks, it does not
provide any information in terms of performance. Sniper implements a realistic processor
model from which we can estimate the performance benefits of using FMAbf16

n_m . Both Sniper
and FASE use Intel Pin 3.7 [61], which enables easy interaction between them.

We extend Sniper to support the AVX512 ISA, including its FMA instructions. We simu-
late a standard Xeon processor by considering the hardware setup that Table 7.2 details. We
consider the execution of one training batch of ResNet101 on CIFAR10; a Transformer based
model on the Multi30K dataset and a LSTMx2 model on the PTB dataset. We use the FP32
baseline and the FMAbf16

1_1 , FMAbf16
1_2 , and FMAbf16

2_2 {4} operators.

Since all FMAbf16
n_m operators rely on BF16 arithmetic, our AVX512 model assumes

BF16 support per each 16-bit lane. To simulate the additional throughput achievable for
each FMAbf16

n_m operator at equivalent FP32 area, we model wider functional units using the
numbers from Table 7.1 and the explanation in Section 7.4.2. Architectural implications, e.g.
memory bandwidth requirements, of having such wider functional units are taken into account.
We coalesce up to 32 16-bit FMA instructions into a single 512-bit FMA instruction, which
we send to the out-of-order core pipeline. These coalesced instructions fetch the required
amount of data from memory, and go through the pipeline fulfilling all the dependencies of
the original individual FMA instructions.

(BF16x1)

(BF16x1)

A

B C

D
(FP32)

(FP32)

* +

Fig. 7.5 Mixed Precision Fused Multiply-Add (FMA).
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Table 7.2 Simulation parameters

Component Simulated parameter

Core 2.1 GHz out-of-order, 192 entries
reorder buffer, 2 x AVX512 FP32 FMAs

L1 ICache 32KB, 4-way associative, private
L1 DCache 32KB, 8-way associative, private
L2 Cache 1MB, 8-way associative, private
L3 Cache 32MB, 16-way associative, shared (24 cores)
Bandwidth 30 GB/s per core

7.6.3 Mixed-Precision FMA

Our evaluation considers the Mixed-Precision (MP) FMA instruction used by the Intel Ad-
vanced Matrix Extensions (Intel AMX) [42] or the Nvidia Ampere architecture [68]. Fig-
ure 7.5 illustrates an MP FMA. It considers the BF16 format for inputs A and B, and FP32 for
input C and output D. Having a 32-bit output to store the accumulation of A ·B and C reduces
the risk of numerical hazards related to swamping [96]. MP training also employs full FP32
FMAs to process BN and WU layers.

7.7 Evaluation

We evaluate the training accuracy of the FMAbf16
1_1 , FMAbf16

1_2 , FMAbf16
1_3 , FMAbf16

2_2 {3},
FMAbf16

2_2 {4}, FMAbf16
3_3 {6}, and FMAbf16

3_3 {9} operators when training object classification
and natural language processing models in Sections 7.7.1 and 7.7.2, respectively. We also con-
sider FP32 and MP, which we describe in Section 7.6. Section 7.7.4 evaluates the performance
improvements of FMAbf16

n_m operators with respect to FP32.

7.7.1 Training Accuracy: Object Classification

Figure 7.6 shows the MobileNetV2 validation accuracy on CIFAR100 when using FP32, MP
and seven FMAbf16

n_m operators. The x-axis represents the epoch count while the y-axis shows
the top1 accuracy achieved by the model over the validation set. FP32, MP, FMAbf16

1_2 and
FMAbf16

1_1 obtain accuracies of 75.04%, 75.16%, 74.85% and 73.92%, respectively. The
FMAbf16

1_1 approach fails to deliver similar accuracy as FP32. In contrast, FMAbf16
1_2 out-

performs FMAbf16
1_1 and reaches similar accuracy as FP32 and MP. Higher precision operators

like FMAbf16
2_2 {3} or FMAbf16

3_3 {6} reach 74.82% and 75.31% accuracy, respectively. They
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obtain similar or better accuracy than FMAbf16
1_2 .

Figure 7.7 shows our evaluation results considering the ResNet18 model using the CI-
FAR100 dataset. FMAbf16

1_1 displays similar accuracy as FP32, it is just a 0.45% lower in
validation accuracy. The other approaches also match FP32 accuracy. These results indicate
that not very deep networks do not require the most accurate FMAbf16

n_m versions to be trained.
Figure 7.8 shows results for ResNet34. In this case, the FMAbf16

1_1 approach loses almost 1.0%
compared to FP32, while FMAbf16

1_2 outperforms the FP32 approach by 0.73%. As networks
become deeper, a half-precision (BF16) accumulator fails to deliver state-of-the-art accuracy,
while FMAbf16

n_m operators using at least BF16X2 to store accumulations obtain the same ac-
curacy levels as FP32. This can be clearly observed when considering the validation accuracy
that FMAbf16

n_m approaches achieve when training the ResNet50 and ResNet101 models, which
are displayed in Figures 7.9 and 7.10, respectively. FMAbf16

1_1 accuracy is significantly lower
than FP32.
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Fig. 7.6 MobilenetV2 Accuracy on CIFAR100 Validation Set.
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Fig. 7.7 ResNet18 Accuracy on CIFAR100 Validation Set.
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Fig. 7.8 ResNet34 Accuracy on CIFAR100 Validation Set.
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Fig. 7.9 ResNet50 Accuracy on CIFAR100 Validation Set.

In ResNet50 FMAbf16
1_2 already achieves similar accuracy when compared to FP32 and MP.

In contrast, ResNet101 FMAbf16
1_2 does have a slight drop with respect to FP32, from 75.93%

to 73.75%, respectively. However, the use of FMAbf16
2_2 {3} leads to a training accuracy of

76.00%, which is again on par with that obtained with FP32.

Additionally, using CIFAR10 we obtain similar results. We again observe that as networks
become deeper, more precision is needed to obtain the same levels of accuracy as FP32 or MP.
Figure 7.11 shows the results of training ResNet34 using the CIFAR10 dataset, again the trend
is that operators using more accumulator bits obtain better accuracy results. In this specific
case, FMAbf16

1_2 attains a validation accuracy of 93.86%, which is comparable to that achieved
by FP32 (94.30%). In ResNet50 with CIFAR10, Figure 7.12, FMAbf16

1_3 obtains the best accu-
racy results, 94.10%, being on par with respect to FP32. However, this operator needs to use
48 bits to save the result, which consumes additional storage and bandwidth. The FMAbf16

2_2 op-
erator displays the same levels of accuracy (94.05%) with better trade-offs in terms of storage
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Fig. 7.10 ResNet101 Accuracy on CIFAR100 Validation Set.
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Fig. 7.11 ResNet34 Accuracy on CIFAR10 Validation Set.

and bandwidth requirements. Finally, similar results are obtained in ResNet101 (Figure 7.13),
where the FMAbf16

1_2 operator gives an accuracy result of 94.31% while FP32 obtains a 94.71%.
Tables 7.3 and 7.4 summarize the maximum top1 validation accuracy achieved by FP32,

MP, and the 7 FMAbf16
n_m approaches on the 4 ResNet models and MobileNetV2 for the CI-

FAR10 and CIFAR100 datasets, respectively. We observe that FMAbf16
1_1 fails to deliver the

same accuracy as FP32 for the deepest models, i.e., ResNet34, ResNet50, and ResNet101.
FMAbf16

1_2 also achieves worse accuracy than FP32, particularly for the case of ResNet101 and
the CIFAR100 data set. In contrast, the two FMAbf16

2_2 variants behave very similarly as FP32
and MP. The very deep nature of ResNet101 requires an operator like FMAbf16

2_2 {3}, which
increases the representation accuracy of some FMA input parameters.

Some high-precision FMAbf16
n_m operators sometimes behave worse than others even if they

have larger numerical precision. Audhkhasi et al. [4] explain this effect where noise can speed-
up convergence during backpropagation. This can be observed in ResNet50 with CIFAR100
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Fig. 7.12 ResNet50 Accuracy on CIFAR10 Validation Set.
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Fig. 7.13 ResNet101 Accuracy on CIFAR10 Validation Set.

where FMAbf16
2_2 {4} has lower accuracy than FP32 and FMAbf16

1_2 ; however, in ResNet101
FMAbf16

2_2 {3} achieves the highest accuracy.

In conclusion, FMAbf16
n_m operators, which are entirely based on BF16 FMA units, have

the capacity to deliver comparable training accuracy with respect to FP32. In particular, the
2 FMAbf16

2_2 variants deliver comparable state-of-the-art accuracy with respect to FP32 while
potentially providing better performance. Section 7.7.4 evaluates FMAbf16

2_2 {4} in terms of
performance.

7.7.2 Training Accuracy: Natural Language Processing

We consider three natural language processing models in this section. Figure 7.14 shows the
LSTMx2 model training process on the PTB data set. The y-axis represents test perplexity
and the x-axis displays epoch count. The FMAbf16

1_1 operator fails to converge, giving a NaN
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Table 7.3 Accuracy on Validation Set for CIFAR10

Model FP32 MP FMAbf16
1_1 FMAbf16

1_2 FMAbf16
1_3 FMAbf16

2_2 {3} FMAbf16
2_2 {4} FMAbf16

3_3 {6} FMAbf16
3_3 {9}

ResNet18 92.62% 92.99% 92.22% 92.31% 92.01% 92.86% 92.55% 92.16% 92.58%
ResNet34 94.30% 94.28% 92.39% 93.86% 94.00% 92.92% 93.24% 94.60% 94.29%
ResNet50 94.03% 94.00% 90.28% 93.77% 94.10% 93.66% 94.05% 93.07% 93.51%

ResNet101 94.71% 94.73% 91.19% 94.31% 94.30% 93.68% 94.07% 93.49% 93.31%
MobileNetV2 93.58% 93.91% 93.11% 93.93% 94.09% 93.70% 94.06% 93.95% 93.94%

Table 7.4 Accuracy on Validation Set for CIFAR100

Model FP32 MP FMAbf16
1_1 FMAbf16

1_2 FMAbf16
1_3 FMAbf16

2_2 {3} FMAbf16
2_2 {4} FMAbf16

3_3 {6} FMAbf16
3_3 {9}

ResNet18 71.91% 71.89% 71.46% 72.31% 71.30% 71.95% 72.06% 71.67% 71.36%
ResNet34 73.21% 73.86% 72.83% 73.94% 74.59% 72.66% 73.87% 73.68% 73.94%
ResNet50 74.78% 74.25% 69.24% 73.93% 74.24% 72.57% 72.91% 71.32% 72.35%

ResNet101 75.93% 75.65% 67.10% 73.76% 74.65% 76.00% 74.75% 75.19% 74.98%
MobileNetV2 75.04% 75.16% 73.92% 74.85% 75.08% 74.82% 75.04% 75.31% 74.99%

output after epoch thirteen. However, the other techniques obtain similar test perplexities as
FP32, which is equal to 83.17.

We run an additional experiment to explain the low accuracy of the FMAbf16
1_1 operator. We

compute the portion of FMA operations that do not suffer from numerical swamping effects
at different epochs during the training of the LSTMx2 model. Figure 7.15 shows in the y-axis
the percentage of FMA operations not suffering from swamping and in the x-axis the number
of mantissa bits of the FMA accumulator input operand. We display results considering 4 dif-
ferent epochs. With the FMAbf16

1_1 format (8 mantissa bits) only around 55% of the FMAs have
no swamping for epochs 10, 12, and 13. This leads to a catastrophic loss of information after
epoch 13, as we see in the test perplexity metric of Figure 7.14. However, with an operator
like FMAbf16

1_2 (16 mantissa bits in the accumulator), 85% of FMAs present no swamping at
epoch 12, which allows training to complete successfully as shown before.

The second NLP model we consider is a transformer-based DNN trained to solve a Neu-
ral Machine Translation Task (NMT) using the IWSLT16 dataset. Figure 7.16 has the BLEU
Score evolution doing the translation from Dutch to English. For this network, all of the ap-
proaches produce comparable results with respect to FP32. Transformer-based models display
robust numerical properties, as FMAbf16

1_1 produces state-of-the-art results [89].

We consider an additional experiment involving NMT on Multi30K dataset using a transformer-
based model. Again, all approaches obtain state-of-the-art levels of accuracy. Figure 7.17
shows that the models converge reaching the same training perplexity. We also compute the
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Fig. 7.14 LSTMx2 Test Perplexity on PTB dataset
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Fig. 7.15 Swamping analysis on LSTMx2 Model.

final BLEU Scores, which are 35.67, 36.05, 36.33 and 36.08 for FP32, FMAbf16
1_1 , FMAbf16

2_2

{4} and FMAbf16
3_3 {6}, respectively. Another example that transformer-based models display

robust numerical properties with BF16 low precision operators.

To explain the good performance of FMAbf16
1_1 with transformer models, we carry out

the swamping analysis on several epochs when training IWSLT16. Figure 7.18 shows how
FMAbf16

1_1 is enough to represent at least 70% of all FMA calculations without swamping. In
comparison, for the LSTMx2 network this number is just 55%.

In conclusion, FMAbf16
n_m operators match the accuracy of FP32 when training NLP models

without the need of FP32 arithmetic. The best suited operators are FMAbf16
1_2 and the two

FMAbf16
2_2 variants, as FMAbf16

1_1 fails to converge on the LSTMx2 model.
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Fig. 7.16 Transformer BLEU Score on IWSLT16.
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Fig. 7.17 Transformer Training Perplexity on Multi30k.

7.7.3 Training Accuracy: Recommender Systems

Figure 7.19 shows the training process of the recommender system introduced in Section 3.2.1.
The y-axis shows the Normal Discounted Cumulative Gain (NDCG), which is a metric to
quantify the accuracy of the recommender system. As in most previous models, FMAbf16

1_1

fails to deliver competitive results. FP32 and MP obtain the same score of 66.76%, and the
rest of the approaches deliver similar results that are within±0.2%. The best result is obtained
by FMAbf16

2_2 {4} with 66.95%. We can again conclude that FMAbf16
n_m operators can deliver

state-of-the-art accuracy.



74 A BF16 FMA is All You Need for DNN Training

0 5 10 15 20 25 30 35 40
mantissa bits

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

B
F

16

B
F

16
x2

B
F

16
x3 Epoch1

Epoch5

Epoch10

Epoch20

Fig. 7.18 Swamping analysis on Transformer model using IWSLT16 dataset.

100 150 200 250 300 350 400
Epochs

55.0%

57.5%

60.0%

62.5%

65.0%

67.5%

N
D

C
G

FP32
MP

FMABF16
1 1

FMABF16
1 2

FMABF16
1 3

FMABF16
2 2 {3}

FMABF16
2 2 {4}

FMABF16
3 3 {6}

FMABF16
3 3 {9}
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7.7.4 Performance Evaluation

We use the Sniper simulator to evaluate the performance benefits of the FMAbf16
1_1 , FMAbf16

1_2 ,
and FMAbf16

2_2 {4} operators. Table 7.5 shows the performance gains we have when training
ResNet101 (CIFAR10), the transformer model (Multi30k), and LSTMx2 (PTB) with respect
to an FP32 baseline. The obtained speed-ups in ResNet101 are 1.35×, 1.34× and 1.28×
for FMAbf16

1_1 , FMAbf16
1_2 , and FMAbf16

2_2 {4} respectively. The transformer model presents
similar results, while LSTMx2 shows a slight reduction in performance improvements due to
an instruction mix with a lower FMA instruction count.

Performance gains stem from the additional throughput provided by the wider FMA func-
tional units. However, our micro-architectural simulations consider all executed instructions,
not just FMAs. The larger the percentage of FMA instructions with respect to the total in-
struction count, the more potential FMAbf16

n_m operators have in terms of performance improve-
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Table 7.5 Performance speed-up estimations using the Sniper Simulator

Model One Batch
FP32 FMAbf16

1_1 FMAbf16
1_2 FMAbf16

2_2 {4}

ResNet101 1.00× 1.35× 1.34× 1.28×
Transformer (Multi30k) 1.00× 1.37× 1.35× 1.29×

LSTMx2 1.00× 1.31× 1.30× 1.22×

ments. For example, the instruction mix of ResNet101 has 57.6% non-floating point instruc-
tions (i. e. 42.4% are FP), and 39.5% of the total instruction count are FMAs. The FMAbf16

1_2

operator accelerates FMA instructions by 2.80× with respect to FP32, which leads to the re-
ported 1.34× for the whole execution. FMAbf16

n_m provides larger floating-point throughput
than FP32 units. Therefore, memory- or software-level optimizations to feed these compute
units more efficiently could provide additional benefits.

These results demonstrate that FMAbf16
n_m operators not only achieve state-of-the-art accu-

racy but also deliver substantial performance improvements with respect to FP32 functional
units for the same area budgets.

7.8 Conclusion and Future Work

We propose a new class of FMA operators, FMAbf16
n_m , that rely entirely on BF16 arithmetic

but can achieve FP32 accuracy through compound datatypes (BF16XN) [73]. We analyze
the suitability of these BF16XN datatypes for DNN training and find that they are able to
significantly mitigate the representation errors and swamping issues commonly observed when
using a single BF16 literal. We then define and characterize seven FMAbf16

n_m operators that
feature different levels of accuracy and theoretical throughput improvements at iso-area with
respect to an FP32 FMA unit.

To evaluate the training accuracy of the proposed operators on a wide range of DNN
workloads we develop FASE, a binary analysis tool that enables FMAbf16

n_m emulation and
seamlessly works with PyTorch, Caffe, or TensorFlow. For all the evaluated networks, the
proposed FMAbf16

2_2 {4} or FMAbf16
1_2 operators obtain comparable FP32 state-of-the-art accu-

racy. Demonstrating that it is possible to train DNNs exclusively with BF16 arithmetic for all
layers.

In addition, we evaluate FMAbf16
n_m in terms of performance speed-ups using micro-architectural

simulations. We show that FMAbf16
1_1 , FMAbf16

1_2 , and FMAbf16
2_2 {4} operators achieve speed-

ups of 1.35×, 1.34× and 1.28× on ResNet101, respectively when compared to FP32 at the
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equivalent area.
In future work, we plan to exploit the different FMAbf16

n_m accuracy levels by mapping
the different formats to layers depending on the precision demands of each layer. Finally, a
dynamic approach that switches between two or more FMAbf16

n_m operators can help increase
precision while using the cheapest FMA operator (FMAbf16

1_1 ) for a large portion of the com-
putations.



Chapter 8

Conclusions

During this thesis’s development, we performed a series of contributions that helped to have
a reliable tool to emulate reduced precision formats and works on several DNN frameworks
without additional effort. Our tool enables the evaluation and verification of different use
cases.

8.1 FASE: A Fast, Accurate and Seamless Emulator

FASE enables the emulation of any numerical formats and works using DNN training frame-
works like Tensorflow, PyTorch, or Caffe. Its main strength is to be easy to use, without
changes on top of the original DNN training code. FASE uses Intel PIN and currently supports
MP, BF16, Dynamic, and FMAbf16

n_m operators. It could be used as a starting point for research
about reduced precision approaches to train DNN.

8.2 Use cases

We studied three use cases of FASE and tested them on ResNets, AlexNet, and Inception
to solve object classification tasks using ImageNet and CIFAR datasets. GAN, RNN, and
Transformer were also used to test the versatility of FASE of different DNN types.

• The first use case helps to evaluate the MP method to train 3DGAN to simulate High
Energy Physics Detectors.

• The second use case is a dynamic training approach that automatically changes between
reduced numerical strategies to reduce power consumption and execution time while
training state-of-the-art DNNs.
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• The last use case proposes a new set of FMAbf16
n_m operators relying completely on

BF16 computation to train DNN, enabling fully compliant BF16 hardware without FP32
support.

8.3 Future Work

With the development of FASE, we can study different reduced precision approaches to train
DNNs. We provide new researchers in this area with a tool that can be used to test custom nu-
merical datatypes before their implementation in real hardware, reducing costs and increasing
their reliability. These approaches can be added to the currently supported strategies in FASE.
The new family of incoming DNN models is open to be done as future work; the GPT family
of models is an example of them.

Additionally, FASE works on Intel hardware up to AVX512 instruction set extension. The
new family of Intel processors is not supported (Sapphire Rapids); enabling FASE to use it and
intercept AMX instructions is currently in process and will be added.

Finally, the implementation of FASE to support GPU, other than Intel hardware, should be
included in consequent FASE releases. In this last case, we would need any Binary Analysis
Tool that works as PIN but on GPU hardware [95].
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