
Universitat Politècnica de Catalunya

Ph.D. dissertation

AI/ML for multi-technology RAN
automation with full and limited

infrastructure support

Author:
Zoraze Ali

PhD Advisors:
Dr. Lorenza Giupponi

and
Dr. Josep Mangues-Bafalluy

Thesis Tutor:
Prof. Dr. Miguel Soriano



ii



Abstract

This thesis studies and proposes solutions to some of the most relevant challenges in the
Radio Access Network (RAN) management arising from its evolution beyond 5G and
towards 6G. The tackled problems are selected due to the increasing inherent complexity
with which these technologies come along in general 5G/6G scenarios, which justifies the
need for Artificial Intelligence and Machine Learning (AI/ML) techniques. In particular,
with the aim to generalize the applicability of our approach to 5G/6G scenarios, we
model a general 5G/6G scenario as a function of the complexity it can present in terms
of infrastructure and supported technologies. Based on this modelling, we identify two
axes of complexity. On the x-axis, lies the “infrastructure support complexity axis”, where
the complexity varies based on what support the infrastructure provides, i.e., networks
that operate with and without the support of Base Stations (BS) (yet, in the latter
case, limited support from a roadside-unit may be offered). On the other hand, on the
y-axis, lies the “Technology complexity axis”, which captures the complexity variation
based on the number of technologies to be operated in a coordinated way. It includes
single-technology RAN, which is comprised of only one access technology, e.g., Long
Term Evolution (LTE) or New Radio (NR), as well as multi-access technology RAN,
which also contains other technologies, such as WiFi. Then, based on these complexity
axes, we define three RAN scenarios: 1) infrastructure-based single-technology scenarios,
2) infrastructure-based multi-technology scenarios, and 3) limited infrastructure-based
single-technology scenarios. This thesis follows a systematic three-step approach to study
these scenarios in depth and identify a set of representative use cases along these axes,
which can be addressed with AI/ML solutions to automate RAN management and, at
the same time, improve the overall network performance.

In the first step, we focus our study on the infrastructure-based single-technology RAN
scenarios. In this category, we identify two use cases, 1) handover management and 2)
initial Modulation and Coding Scheme (MCS) selection. Enhancing handover efficiency
and optimizing MCS selection are persistent challenges in mobile networks, which further
get complicated by the introduction of newer technologies. Focusing on the traditional
handover schemes, they present the drawback of considering only the quality of signals
from the serving and the target cell to make a handover decision. Also, the initial MCS at
the start of the session is usually handled conservatively, i.e., the lowest MCS is assigned
to a mobile device that connects to a BS when it first switches on or connects to a new cell
after handover. To address these drawbacks, we propose AI/ML solutions that 1) consider
the Quality of Experience (QoE) resulting from past handover decisions as the driving
principle to select a new target BS to handover and 2) use the experience extracted from
the network data to make smarter initial MCS allocations. Specifically, the thesis first
presents the AI/ML models designed to address these use cases separately, labeled as
single-task solutions. However, we observe that such a technique can present challenges
in terms of training cost that increases linearly with respect to the number of use cases
to be addressed. Therefore, we propose a generalized AI/ML framework, called a multi-
task solution, capable of handling multiple use cases that can operate concurrently at
the same or different layers of a mobile protocol stack, e.g., the handover management at
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layer 3 and the initial MCS selection at layer 2. To train the proposed models (i.e., single-
task and multi-task) and evaluate their performance, we implement a realistic simulation
scenario in the ns-3 simulator that builds an extensive database. Results show that the
proposed AI/ML models outperform the 3GPP standardized handover and initial MCS
selection approaches by improving the QoE of users resulting from a handover and the
throughput obtained upon establishing a new connection with the network.

In the second step, we deal with the complexity of infrastructure-based multi-access
technology scenarios to handle the challenges arising from the simultaneous operation of
multiple technologies in RAN that share common resources. In particular, we focus on
the use case of coexistence in the unlicensed spectrum by studying the channel access
technologies known as License Assisted Access (LAA) and LTE- Unlicensed (LTE-U) and
their coexistence with WiFi. The main challenge for LAA and LTE-U in these scenar-
ios is that they cannot function without guaranteeing their fair coexistence with WiFi.
Therefore, to avoid collisions, the LAA channel access mechanism uses feedback(s) from
mobile devices to compute the time it must wait before transmitting to the channel.
However, this feedback has an inherent delay, which causes LAA to monopolize the chan-
nel. In the thesis, we show that such constraints of the LAA channel access procedure
could degrade the performance of neighboring Wi-Fi networks. To solve this problem,
we propose an AI/ML-based scheme that learns from experience and infers this feedback
under certain channel conditions without delay. Performance evaluation through simula-
tions shows that the proposed scheme provides the best trade-off between the fairness to
WiFi and the LAA performance in terms of throughput and latency when compared to
the benchmark approaches. We extend our study by proposing a statistical framework
to evaluate the fairness offered by LAA and LTE-U when they coexist with WiFi. The
comparative analysis confirms that LAA provides better fairness, and LTE-U introduces
more collisions.

Finally, in the third step, we direct our attention to the limited infrastructure-based
single-technology RAN scenarios. Since, in this case, the RAN does not include BS,
operations, such as radio resource selection and scheduling, are uncoordinated and un-
controlled. Mobile devices can communicate directly by selecting the resources au-
tonomously, leading to another level of complexity that needs to be addressed. In this
context, this thesis targets the use case of vehicle-to-vehicle communication with limited
infrastructure, i.e., besides the vehicles in the scenario, we also consider that there is a
roadside unit capable of broadcasting a basic set of information using the 3GPP NR-V2X
technology. Nevertheless, to avoid interference among vehicles, the resource selection by a
vehicle in NR-V2X is performed by continuously sensing the channel. However, it comes
at the cost of higher energy consumption. In contrast, if sensing is not employed with the
aim of saving energy, it can result in increased interference. Thus, an energy-performance
trade-off arises. To exploit this trade-off, we propose a partial sensing mechanism based on
AI/ML to dynamically achieve a balance between performance and energy consumption
of V2X users that cannot be obtained by manually configuring parameters of standard
sensing procedure.

As for the evaluation methodologies, this thesis also makes an important contribution
to the research community by actively contributing and supporting an open-source net-
work simulator. The aim is to foster the reproducibility of our research findings and
collaboration in our research community. To this end, all the simulation and data gener-
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ation activities are based on the ns-3 simulator. It offers full-stack, standard-compliant
models for major 3GPP cellular technologies (LTE/LAA/LTE-U/NR), which are mainly
developed and maintained at CTTC, along with support for WiFi. This guarantees the
ability to evaluate all the scenarios mentioned above realistically. In particular, the ns-
3 LTE and LAA models have been extended, and the 5G-LENA NR-V2X model has
been developed in the context of this thesis in collaboration with NIST (part of the U.S.
Department of Commerce). We integrate our proposed AI/ML frameworks with these
simulation models to conduct end-to-end performance evaluations.

In summary, through extensive evaluations conducted in large-scale representative sce-
narios that capture the evolving complexity of networks along the identified axes, this
thesis successfully demonstrates the potential of AI/ML techniques in addressing the
most significant challenges arising in current and future generation networks.
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Resumen

Esta tesis propone soluciones para algunos de los desafíos más relevantes en la gestión de
la Red de Acceso por Radio (RAN) que surgen de su evolución más allá del 5G y hacia
el 6G. Los problemas abordados han sido seleccionados en función de la complejidad
inherente que estas tecnologías conllevan en escenarios genéricos 5G/6G, lo cual justifica
la necesidad de técnicas de Inteligencia Artificial y Aprendizaje Automático (AI/ML).
Con el objetivo de generalizar la aplicabilidad de nuestro enfoque a escenarios de
5G/6G, modelamos un escenario genérico 5G/6G en función de la complejidad que
puede presentar en cuanto a infraestructura y tecnologías soportadas. Basándonos en
este modelo, identificamos dos ejes de complejidad. En el eje x se encuentra el “eje
de soporte de infraestructura”, en el que la complejidad varía según el tipo de soporte
ofrecido por la infraestructura desplegada, es decir, redes que operan con y sin el soporte
de Estaciones Base (BS) (aunque en este último caso, se puede ofrecer un soporte limitado
por parte de una unidad al borde de la calle, o road-side unit, en inglés). Por otro lado,
el eje y es el “eje de variedad de tecnologías”, que captura la variación de complejidad
según el número de tecnologías que operan de manera coordinada. En este sentido,
“single-technology” consta de una única tecnología de acceso, como Long Term Evolution
(LTE) o New Radio (NR), y “multi-technology” RAN incluye otras tecnologías, como
por ejemplo WiFi. A continución, basándonos en estos ejes de complejidad, definimos
tres escenarios de RAN: 1) infrastructure-based single-technology, 2) infrastructure-based
multi-access technology, and 3) limited infrastructure-based single-technology. Esta tesis
sigue un enfoque sistemático de tres pasos para estudiar estos escenarios en profundidad
e identificar un conjunto de casos de uso representativos definidos por estos ejes, que
pueden abordarse con soluciones de AI/ML para automatizar la gestión de RAN y, al
mismo tiempo, mejorar el rendimiento general de la red.

En el primer paso, enfocamos nuestro estudio en los escenarios de RAN infrastructure-
based single-technology. En esta categoría, identificamos dos casos de uso: 1) gestión de
handover y 2) selección inicial de Modulación y Esquema de Codificación (MCS). Mejorar
la eficiencia del handover y optimizar la selección de MCS son desafíos persistentes en las
redes móviles, que se vuelven más complicados con la introducción de nuevas tecnologías.
Al centrarnos en los esquemas tradicionales de handover, estos presentan la desventaja
de considerar solo la calidad de las señales de la celda de servicio y la celda objetivo
para tomar una decisión de handover. Además, el MCS inicial en el establecimiento de
la sesión se maneja generalmente de manera conservadora, es decir, se asigna el MCS
más bajo a un dispositivo móvil que se conecta a una estación base cuando se pone en
marcha por primera vez o se conecta a una nueva celda después de un handover. Para
abordar estas desventajas, proponemos soluciones de AI/ML que 1) consideran la Calidad
de Experiencia (QoE) de decisiones anteriores para seleccionar una nueva estación base
y 2) utilizan la experiencia extraída de los datos de la red para realizar asignaciones
más inteligentes de MCS iniciales. Específicamente, la tesis presenta primero los modelos
de AI/ML diseñados para abordar estos casos de uso por separado, etiquetados como
soluciones “single-task”. Sin embargo, observamos que esta técnica puede presentar
desventajas en términos de coste de entrenamiento, que aumenta linealmente con respecto
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al número de casos de uso que se deben abordar. Por lo tanto, proponemos un marco
generalizado de AI/ML, llamado solución “multi-task”, capaz de gestionar múltiples casos
de uso que pueden funcionar simultáneamente en la misma o en diferentes capas de la pila
de protocolos móvil, por ejemplo, la gestión de handover en la capa 3 y la selección inicial
de MCS en la capa 2. Para entrenar los modelos propuestos (es decir, de una sola tarea y
de múltiples tareas) y evaluar su rendimiento, implementamos un escenario de simulación
realista en el simulador ns-3 que crea una base de datos extensa. Los resultados muestran
que los modelos propuestos de AI/ML superan las soluciones/técnicas estandarizadas de
handover y selección inicial de MCS del 3GPP al mejorar la QoE resultante de los usuarios
de un handover y el rendimiento obtenido al establecer una nueva conexión con la red.

En el segundo paso, abordamos la complejidad de los escenarios “infrastructure-based
multi-access technology” para tratar los desafíos que surgen de la operación simultánea
de múltiples tecnologías RAN que comparten recursos. En particular, nos centramos
en el caso de uso de coexistencia en el espectro no licenciado mediante el estudio
de las tecnologías de acceso conocidas como License Assisted Access (LAA) y LTE-
Unlicensed (LTE-U) y su coexistencia con WiFi. El principal desafío para LAA y LTE-
U en estos escenarios es garantizar su coexistencia adecuada con WiFi. Por lo tanto,
para evitar colisiones, el mecanismo de acceso al canal de LAA utiliza feedback de los
dispositivos móviles para calcular el tiempo que debe esperar antes de transmitir al canal.
Sin embargo, estos feedback(s) tienen un retraso inherente, lo que provoca que LAA
monopolice el canal. En la tesis, mostramos que estas limitaciones del procedimiento de
acceso al canal de LAA podrían degradar el rendimiento de las redes WiFi próximas.
Para resolver este problema, proponemos un esquema basado en AI/ML que aprende de
la experiencia e infiere estos feedback(s) en ciertas condiciones del canal sin retraso. La
evaluación del rendimiento a través de simulaciones muestra que el esquema propuesto
proporciona el mejor equilibrio entre la equidad para WiFi y el rendimiento de LAA en
términos de throughput y latencia en comparación con los enfoques del estado de arte.
Extendemos nuestro estudio proponiendo un marco estadístico para evaluar la equidad
ofrecida por LAA y LTE-U cuando coexisten con WiFi. El análisis comparativo confirma
que LAA proporciona una mejor equidad y que LTE-U introduce más colisiones.

Finalmente, en el tercer paso, nos centramos en los escenarios de RAN “limited
infrastructure-based single-technology”. En este caso, la RAN no incluye estaciones
bases y las operaciones, p.ej., la selección y la repartición de recursos de radio, no son
coordinadas ni controladas. Los dispositivos móviles pueden comunicarse directamente
seleccionando los recursos de manera autónoma, lo que conlleva otro nivel de complejidad
que debe abordarse. En este contexto, esta tesis se centra en el caso de uso de
comunicación de vehículo a vehículo con soporte limitado por parte de la infraestructura.
Es decir, además de los vehículos en el escenario, también consideramos que hay una
unidad en el borde de la carretera (road-side unit) capaz de transmitir un conjunto básico
de información utilizando la tecnología NR-V2X del 3GPP. Sin embargo, para evitar
interferencias entre vehículos, la selección de recursos por parte de un vehículo en NR-V2X
se realiza mediante la detección (sensing) continua del canal. Sin embargo, esto conlleva
un mayor consumo de energía. En contraste, si no se emplea la detección con el objetivo
de ahorrar energía, puede haber un aumento de la interferencia. Por lo tanto, surge un
compromiso entre energía y rendimiento. Para aprovechar este compromiso, proponemos
un mecanismo de detección parcial basado en AI/ML para lograr dinámicamente un
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equilibrio entre el rendimiento y el consumo de energía de los usuarios V2X que no se
puede obtener mediante la configuración manual de los parámetros del procedimiento de
detección estándar.

En cuanto a las metodologías de evaluación, esta tesis también hace una importante
contribución a la comunidad de investigación aportando un simulador de red de código
abierto. El objetivo es fomentar la reproducibilidad de nuestros hallazgos de investigación
y la colaboración en nuestra comunidad de investigación. Con este fin, todas las
actividades de simulación y generación de datos se basan en el simulador ns-3 . Este
simulador ofrece modelos “full-stack” y compatibles con estándares para las principales
tecnologías celulares 3GPP (LTE/LAA/LTE-U/NR) así como el soporte para WiFi, que
se desarrollan y se mantienen principalmente en el CTTC. Esto garantiza la capacidad
de evaluar todos los escenarios mencionados anteriormente de manera realista. En
particular, los modelos de LTE y LAA de ns-3 se han ampliado y se ha desarrollado
el modelo 5G-LENA NR-V2X en el contexto de esta tesis, en colaboración con NIST
(Departamento de Comercio de los Estados Unidos). Integramos nuestros entornos
propuestos de AI/ML con estos modelos de simulación para realizar evaluaciones de
rendimiento extremo a extremo.

En resumen, a través de evaluaciones exhaustivas realizadas en escenarios representativos
a gran escala que capturan la complejidad de la evolución de las redes a lo largo de los
ejes de infraestructura y tecnología, esta tesis demuestra el potencial de las soluciones de
AI/ML para automatizar y mejorar la gestión de RAN más allá del 5G.
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Chapter 1

Introduction

1.1 Motivation

Mobile communications have experienced during the last decades an incredible evolution.
Since its inception, mobile device connections have surpassed the number of people
worldwide, making it the fastest growing technology ever [1]. Despite that, it is
well known that the revenue generated by Mobile Network Operators (MNOs) per
user (Average Revenue per User (ARPU)) has been steadily decreasing for the last
decade. The Capital Expenditures (CAPEX) of Fifth-generation wireless (5G) networks
are still not completely clear and include: 1) more spectrum, with expensive auction
fees, 2) deployment of new antennas and equipment upgrade, 3) large-scale small-cell
deployments, to pursue the Millimeter Wave (mmWave) vision. Therefore, the reduction
of Operational Expenditures (OPEX) is fundamental to the evolution of Beyond 5G
mobile communication systems. Another interesting data is that 70 % of the total cost
involving deployment, optimization, and operation of a network comes from the Radio
Access Network (RAN) segment [2]. It is the reason that there is a significant interest in
improving the efficiency of the RAN management, which consequently reduces its OPEX.
Currently, there are two main trends to achieve these objectives.

On the one hand, automation and self-organization of the RAN have become two
fundamental ingredients for optimal resource utilization and management. It has been
almost a decade since when Self-Organizing Network (SON) was defined and introduced
as a feature of Long Term Evolution (LTE), in 3rd Generation Partnership Project
(3GPP) Release 8 [3]. Since then, it has been evolving through the releases and into
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Chapter 1. Introduction

the concept of Next Generation Self-Organizing Network (NG-SON) for 5G and Sixth-
generation wireless (6G) networks [4]. These future cellular networks are characterized
by highly complex, dense, and heterogeneous deployments to increase network coverage
and capacity. Besides traditional sub-6 GHz and licensed bands, the access can span a
wide bandwidth range, including mmWave and unlicensed spectrum. The high diversity
of mobile devices and new applications further complicates the network architecture
and its management. In this context, mobile networks generate a massive amount of
measurements, control, and management information during their normal operation [5]
[6]. This huge amount of information could be efficiently utilized to address future mobile
network management challenges. With mobile networks being rolled out nowadays, it is
already necessary to feature SON solutions (e.g., for Inter-Cell Interference Coordination
(among others)) to operate properly. While narrowly focused SON solutions can still be
designed with traditional engineering approaches (design based on analytical modeling
of the problem, followed by successive empirical refinements), this strategy is not feasible
anymore as more parameters, protocols, and optimization objectives are taken into
the picture. To address this issue, several techniques recently developed in the fields
of ML appear promising to leverage the huge amount of information to optimize the
network [7] [8]. The key point is that this massive amount of data is overwhelming
for traditional engineering practices; hence only ML approaches are expected to be able
to exploit them successfully for network management and optimization purposes. In
this line, the recent evolution in computational capabilities, e.g., the availability of the
Graphical Processing Units (GPUs) to train neural networks at a relatively faster pace,
has allowed us to take advantage of ML and novel deep learning solutions to tackle
multiple problems in different disciplines. In 5G and its evolution, the possibilities now
available for ML and novel deep learning implementations are infinite and pave the way
to an evolved vision of NG-SON to be able to address end-to-end solutions.

On the other hand, the evolution towards 6G networks calls for further architectural trans-
formations required to support service heterogeneity, coordination of multi-connectivity,
on-demand service deployment, and network automation. Therefore, the telecommunica-
tion industry, through different consortiums, e.g., 3GPP, and the Open-RAN (O-RAN)
alliance, have acknowledged Artificial Intelligence (AI)/ML as one of the important com-
ponents of future mobile networks [9–11]. In 3GPP, the standardization laying the ground
for AI/ML studies in RAN started in 5G Phase 1, in Release 15, which continued in 3GPP
releases 16, 17 and 18, targeting 6G and beyond [12]. The studies in the 3GPP RAN
groups, i.e., RAN11 and RAN32, aim to standardize the use of AI/ML in specific use
cases [13, 14]. These studies cover network energy saving, load balancing, mobility opti-
mization, Channel State Information (CSI) feedback enhancement, beam management,
and position accuracy enhancement, as initial use cases. While 3GPP standards are
being adopted to deploy early 5G commercial networks [15], in Feb. 2018, a group of
mobile network operators founded the O-RAN Alliance to further enhance RAN perfor-
mance through virtualized network elements, openness, and intelligence. Openness aims
to eliminate proprietary hardware and software implementations by establishing open

1The RAN1 group is responsible for the standardization of the physical layer procedures of the
radio Interfaces for User Equipment (UE), Evolved UMTS Terrestrial Radio Access (UTRAN), Next
Generation RAN (NG-RAN), and beyond.

2The RAN3 group is responsible for the standardization of the UTRAN/Evolved UTRAN/NG-RAN
architecture and the protocols needed for network interfaces.
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standard interfaces, reducing operating costs. Intelligence is necessary for deploying, op-
timizing, and operating Beyond 5G networks. O-RAN introduces new Radio Intelligent
Controller (RIC) modules and enables them with AI/ML features to enhance traditional
network functions with intelligence. In one of its defining white papers [11], different
use cases are proposed, like traffic steering, Quality of Experience (QoE) optimization,
Quality of Service (QoS) based resource optimization, RAN Slice Service Level Agree-
ment (SLA) assurance, and context-based dynamic HO management for Vehicular-to-
everything (V2X) [16] [17].

Both these trends and visions converge to the already widely agreed need of AI/ML
as fundamental ingredients of Beyond 5G and 6G networks. Therefore, solutions
based on AI/ML have been lately intensively investigated in the literature of mobile
communications to solve a wide range of problems in various domains, including the
RAN [18]. For example, research has focused on augmenting the SON functionality
with AI/ML targeting various use cases such as, resource optimization [19, 20], mobility
management [21–25], and load balancing [26,27]. In the context of O-RAN, studies have
aimed on improving network’s energy efficiency [28], QoS [29], QoE [30], traffic steering
capability [31], and radio resource scheduling [32], among others, through AI/ML based
frameworks.

In this line, this thesis targets to study and exploit the possibilities of AI/ML for
improving the RAN operation. More details related to the identified RAN challenges
and applicability of AI/ML in RAN are given in the following section.

1.2 Problem statement

RAN operation presents many challenges due to its high complexity. For instance, it
requires the ability to continuously adapt to the environment’s ever-changing conditions
regarding propagation, diverse users’ needs, system load, high mobility, among others.
Taking one step further, the number of tasks that a Beyond 5G RAN has to execute is vast
and includes all traditional, as well as future envisioned SON use cases [9]. Specifically,
the heterogeneity of the RAN is not anymore only limited to the dense deployment of
different types of base stations (e.g., high, mid, and low-powered cells), which in its
own presents many issues, as mentioned before [33–35]. Future mobile RAN ecosystem
is evolving in many dimensions. Some examples include the support of co-existence in
the unlicensed spectrum, D2D, V2X, and now recently, Non-Terrestrial Networks (NTN)
communications. Moreover, the 3GPP standard TS 22.261 already contemplates the idea
of 5G and beyond cellular systems being capable of simultaneously supporting multiple
access technologies, e.g., LTE, New Radio (NR), Licensed-Assisted Access (LAA) for one
or more services active on a mobile station [36]. On the one hand, this evolution of RAN
is the enabler for mobile networks to accelerate towards 6G [37]. On the other hand, it
makes the management of RAN very complex. To handle such complexity, the academia
and the industry have already foreseen the benefits of applying AI/ML techniques to
improve the RAN performance, as presented in the previous section. In fact, AI/ML can
find its applicability in various use cases, while its efficiency can further be improved.
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Figure 1.1: A visual representation of scenarios based on the two identified complexity axes,
where I = Infrastructure, LI = Limited Infrastructure, ST = Single access Technology, MT =
Multi access Technology

With this in mind, this thesis leverages AI/ML to improve the RAN management and
network performance while reducing its OPEX. Our initial goal is to study different
RAN architectures comprised of multiple access technologies and to find unexplored use
cases where AI/ML can be applied to improve network performance. In particular, this
thesis identifies two complexity axes to target three representative RAN scenarios, as
shown in Fig. 1.1. Collectively, these three scenarios encompass various challenges that
may arise in a RAN. Among these challenges, we carefully choose a specific issue and
demonstrate that AI/ML can effectively tackle it. Furthermore, it would be valuable to
explore solutions enabling simultaneous learning and training of new use cases, as this
would address the feasibility of implementing the AI/ML vision. By utilizing these RAN
scenario categories, which are explained in detail in Sections 1.2.1, 1.2.2, and 1.2.3, this
thesis aims to answer the following High-level Question (HQ):

HQ: How can AI/ML be used to automate the increasing RAN management
complexity along two axes: 1. infrastructure- and limited infrastructure-based
RAN scenarios and 2. single- and multi-access technology RAN scenarios?

In order to answer this high-level question, we need to study each of the above three
identified RAN scenarios separately and target specific use cases within them. What
follows is a brief description of these use cases and the more specific research questions
that are embedded in the main question described above that this thesis aims to answer.
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1.2.1 Infrastructure-based single-technology RAN

This scenario corresponds to the infrastructure-based traditional RAN that is comprised
of base stations and devices operating in licensed spectrum, using a single access
technology, e.g., LTE or NR. More than a decade ago, when the LTE system requirements
were finalized, the “seamless mobility” was among one of the key features that mobile
networks has to offer [38]. The current deployments of the mobile networks are carried out
with the joint installation of densely deployed heterogenous cells. This by itself already
poses many challenges to the mobility management. The future mobile networks, such as
5G and 6G, target to serve even higher number of users by further densifying the network.
In these next-generation networks, when there is high mobility and the coverage gets
impacted, the UEs perform frequent handovers to maintain the connection. The user´s
QoE during mobility gets affected and might get highly sensitive to subtle movements
in the coverage area. The routine for handover is a challenge itself as it is a trial-
and-error based mechanism with chances of being impacted by unpredictable behaviors
caused by packet drop, longer delay because of speedy movements, and inconsistency and
randomness of the transmission environment, causing glitches in the feedback procedure
and thus leading to failures. Thus, the move towards beyond 5G networks would not
only increase the complexity of the RAN’s topology but also complicates its management,
imposing the need for more advanced techniques to handle mobility. Moreover, regardless
of the advancements introduced by new mobile generations, the issue of efficiently
managing mobility/handover persists, and in some cases, even gets worse. On this matter,
this thesis focuses on extensively studying the existing handover schemes, specifically the
target cell selection mechanism to choose the next base station to connect. The standard
approach for such functionality is that it selects the next cell solely based on the strongest
signal strength before the handover. Undoubtedly, this solution for target cell selection
is simple and easy to implement. However, the problem that arises is that this solution
does not consider the QoE of the user after the handover, which can get impacted due
to complex radio environments that may exist in current and future mobile networks. In
this line, by selecting mobility management as the first use case under the infrastructure-
based single-technology RAN scenario, we focus on answering the following Research
Question (RQ):

RQ1: How to use AI/ML in mobility management to achieve better QoE?

Following the introduction of the HO use case, which is the layer-3 problem and serves
as a highly representative element for existing and future mobile networks, our attention
shifts to different yet related issues. In the existing networks, when a UE is first turned
on in a specific cell or after a handover, the new base station has no information
about the radio conditions of that UE. Therefore, the base station takes a conservative
approach of selecting the lowest possible initial Modulation and Coding Scheme (MCS)
for transmission, which limits the data rate for the UE, impacting its throughput until
the base station receives the channel status report, which is used to update the MCS.
Given the importance of MCS selection on spectral efficiency and user experience, it
becomes crucial to enhance this functionality by leveraging the network’s experience to
determine an appropriate initial MCS for a specific network location. In this respect, the
thesis aims to answer the following research question:
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RQ2: How to use AI/ML to select the initial MCS for newly connected mobile
devices to achieve better throughput?

After formulating the above two research questions that tackle the layer-3 HO manage-
ment and the layer-2 initial MCS use cases separately, we turn towards exploring the
possibilities of finding a generalized AI/ML framework that can be used to handle mul-
tiple RAN use cases. The reason is that in AI/ML, we typically care about optimizing
for a particular metric. To do this, we generally train a model to perform a desired
task, or as in our case, the use case. We then fine-tune these models until the desired
accuracy is obtained. By doing so independently for all the different RAN use cases, we
may be ignoring information that might help us do even better on the metric of interest.
Specifically, this useful information may come from different and related tasks/RAN use
cases. By sharing relevant information between these tasks, for example, using a wide
feature space, which is not reduced only to a specific problem to solve, we can enable
our model to generalize better on our original task. Moreover, it can also help to reduce
the complexity in terms of the training cost of the AI/ML models, which can increase
linearly with the number of use cases a RAN has to handle. In this context, this thesis
aims to answer the following question:

RQ3: How to generalize an AI/ML solution to address diverse RAN use
cases?

1.2.2 Infrastructure-based multi-access technology RAN

Besides the approach of densifying the RAN with many cells to increase network
capacity, the mobile networks have evolved to also operate in unlicensed frequency bands,
overcoming the scarcity of expensive licensed spectrum. In this second scenario, we focus
on the use case of coexistence in unlicensed spectrum by highlighting the complexities
arising from the multi-access technology scenarios (i.e., the second complexity axis).
In these scenarios, base stations and mobile devices operate in both licensed and
unlicensed spectrum using the access technologies such as LAA or LTE Unlicensed (LTE-
U) (presented in Chapter 2). The complexity in the management of this type of mobile
network originates due to the fact that it has to coexist with other wireless technologies in
the unlicensed bands, e.g., widely used WiFi networks, which is not the case when using
licensed spectrum. Therefore, it is of utmost importance for LAA or LTE-U devices to
access the channel fairly so that they do not hamper the performance of other WiFi
devices in terms of throughput and latency. Between LAA and LTE-U, it is believed
that the LAA channel access mechanism could provide better fairness to coexisting WiFi
networks. However, its level of fairness depends on the configuration of the parameters
related to its channel access mechanism. To avoid collisions, the LAA channel access
procedure uses HARQ feedback(s) from mobile devices to compute the time it must
wait before transmitting to the channel. However, in LAA, the HARQ feedback suffers
a delay due to the inherent latencies in the mobile protocol stack. Additionally, the
feedback from multiple non-co-located users in a subframe is combined to increase the
probability of decoding a packet, which is different than WiFi. This thesis shows that
such characteristics of the LAA channel access procedure can lead to an unfair coexistence
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with WiFi. In this line, this thesis aims to address these drawbacks by answering the
following research question:

RQ4: How to use AI/ML to guarantee fair coexistence of LAA in the
unlicensed spectrum?

1.2.3 Limited infrastructure-based single-technology RAN

With the above two scenarios, this thesis targets the use cases originating from a RAN
network comprised of single or multiple access technologies. However, in such scenarios,
the communication between the devices and the network is always coordinated and
controlled by a base station. Based on this, we categorized them as infrastructure/full-
infrastructure-based scenarios. Nevertheless, as envisioned today, the future 5G and
6G networks will operate when needed or instructed by the network, without a base
station. This functionality is particularly useful when providing network support is not
possible, e.g., in case of natural disasters or where the latency incurred by the network
can be decreased by enabling direct communication between mobile devices. The 3GPP
technologies that enable such features include the D2D, Cellular V2X (C-V2X) (both
based on LTE), and recently the NR-V2X. This thesis focuses on the NR-V2X technology
to investigate the complexities in a RAN that has limited infrastructure support. Let us
notice that, the term “limited” implies that the scenario under study does not involve
the use of base stations; however, it does include a Road Side Unit (RSU)3 capable of
broadcasting a minimum set of information, such as, the total number of vehicles in a
specific area, that can help vehicles to have a broader view of the network. Nevertheless,
in such a scenario, radio resources for transmission are autonomously selected by the
vehicles, which can result in an increased level of interference among the vehicles within
range of each other. In turn, this non-coordinated transmissions lead to an elevated
level of complexity in the network that does not exist in the previously presented
infrastructure-based scenarios. To minimize interference, the 3GPP standard defines
the sensing procedure in which the vehicles need to continuously sense the surrounding
transmissions. Despite the fact that this type of resource selection reduces the interference
among vehicles, it consumes more energy. Moreover, depending on the scenario that could
vary in terms of number of vehicles or congestion level in the network, how much sensing
a vehicle must perform is an open discussion since there is a trade-off between the energy
consumption and the performance of a V2X UE. As such, a static configuration of the
sensing parameters can be suboptimal. With this in mind, this thesis aims to answer
the following research question to explore the possibilities of leveraging AI/ML in such
scenarios.

RQ5: How to achieve a balance between the energy consumption and the
performance of a NR V2X UE in limited infrastructure-based scenarios using
AI/ML?

3An RSU is a special node that is located at the roadside and is capable of wirelessly communicating
safety warnings and traffic information to passing vehicles.
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1.3 Research approach

Using AI/ML techniques across different disciplines, including wireless communication,
has yielded promising results, as highlighted at the beginning of this chapter. However,
its performance mainly relies upon training datasets that should be sufficiently large and
comprehensive [39]. Thus, obtaining such data is of paramount importance. While the
fields, such as computer vision, can leverage big data datasets, e.g., MNIST handwriting
dataset [40] or ImageNet [41], in mobile communications it is not the case, even though
there are some exceptions [42]. The reasons include 1) policies concerning user privacy and
security that make it difficult for MNO to release user´s data, 2) the openly available data
is aggregated, lacking the information about, e.g., the traffic type, the type of technology,
the protocol layer, etc. To circumvent these limitations, the research community has
turned towards using testbeds to generate datasets in close-to-real network setups [43,44].
These setups use commercial off-the-shelf equipment and devices to create a network
closely mimicking real network implementation. However, they also have a few drawbacks:
1) It isn’t easy to test complex RAN scenarios such as the one presented in chapters 3 and
4 of this thesis, 2) the lack of support for the new technologies in a timely manner, which
is very important in research, e.g., in the context of research work presented in chapter
5 to 8 that focuses on LAA, LTE-U (chapter 5 and 6) and NR-V2X (chapter 7 and 8)
technologies. Given these constraints, in this thesis, we decided to opt for a simulation
framework that can primarily fulfill our high-level requirements of 1) generating synthetic
datasets for the training and testing of the proposed machine learning models, 2)
implementing innovative and complex RAN scenarios, and 3) validating the performance
of the proposed solutions.

In academia and the industry, AI/ML-based data-driven research on wireless communi-
cation mainly uses two types of simulation tools, 1) Link-level and 2) System-level. The
question is: which one should be used to achieve the research objective? Answering this
question based on the above high-level requirements is not very straightforward. There-
fore, one needs to narrow down the requirements further based on the overall research
objective. On the one hand, the link-level simulators are developed to model detailed
physical layer functionalities (e.g., bit scrambling, precoder, IFFT/FFT, channel equal-
izer, etc.) to emulate the physical layer of real wireless networks. Because of such
detailed implementation, these simulators may be computationally demanding. There-
fore, it might not be suitable for multi-cell and multi-RAT scenarios, such as the ones
studied in this thesis. Moreover, as mentioned in the Subsection. 1.2, the RAN use cases
we plan to focus on encompass different protocol layers, i.e., layers 1, 2, and 3 of mobile
networks. In this context, a link-level simulator cannot fulfil our research objective.

On the other hand, the system-level simulators may model all the protocol layers,
multi-cell, multi-RAT scenarios, and other parts of the network, e.g., the core network.
These characteristics seem promising to achieve the goal of this thesis. Therefore, we
have selected a system-level simulation framework as our primary tool. However, the
completeness offered by a system-level simulator comes at the cost of a certain level of
abstraction [45]. For example, the physical layer abstraction is achieved using Link-to-
System mapping4. A high-level abstraction may cause the results to deviate too much

4A Link-to-System mapping is a technique to run simulations in a timely manner by accurately
predicting the performance of a link in a computationally efficient way [46].
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from the experimental results [47]. Therefore, extra attention is to be paid to the level
of abstraction used to model such a simulator. Other essential aspects which increase
the authenticity and acceptability of the simulator in the research community are its 1)
standard-compliant and validated simulation models, 2) simplicity in terms of extending
and implementing models, 3) extensive documentation, and most importantly, 4) open-
source availability to facilitate the reproducibility of the results, which is difficult to
achieve using proprietary simulators.

Currently, a handful of open-source system-level simulators are used in research, e.g.,
ns-2, ns-3 , SimuLTE based on OMNeT++, JiST, and SimPy. Among these simulators,
to the best of the author’s knowledge, ns-3 is the most cited, hence more trusted, system-
level simulator that contains all the essential aspects listed above [45]. More importantly,
it provides all the means to achieve the research objective of this thesis. Therefore, we
consider it the primary simulation tool in the thesis to implement case-specific scenarios,
extend existing simulation models, implement new models, generate synthetic data to
train and validate proposed AI/ML models and perform end-to-end full protocol stack
performance evaluations. What follows next is a brief overview of the ns-3 simulator,
highlighting its key features, and the approach used in this thesis to link ns-3 simulator
with the AI/ML framework.

1.3.1 ns-3 overview

ns-3 is a discrete event-based system-level simulator that has been openly available under
the GNU General Purpose License, version 2 (GPLv2) since 2006. The term “discrete
event” implies that the state of the simulation can only change upon an occurrence of
an “event”, at a particular time [47]. For example, an event can be a start/stop of an
application that transmits packets, an update of a node’s position that moves with a
certain speed, etc.

From a software organization standpoint, the ns-3 simulator is divided into C++ libraries
called “modules” [48]. These modules are built to simulate high-fidelity models of
a complete network protocol stack, i.e., application, transport, network, and specific
MAC, and PHY layers implementation of different communication technologies, such
as Ethernet, Wi-Fi, Low-Rate Wireless Personal Area Network (LR-WPAN), Wireless
Access in Vehicular Environments (WAVE)5, Worldwide Interoperability for Microwave
Access (WiMAX), LTE, etc. Additionally, there are modules that can be used to model
other important aspects of a simulation, e.g., the mobility of a node, wireless channel
propagation model, antenna model, placement of buildings (to simulate indoor/outdoor
scenarios), and the extraction of useful information during and after the simulation using
commonly used formats, e.g., Packet CAPture (PCAP)6, text, and Structured Query
Language (SQL) database. At the time of writing this thesis, the ns-3 simulator has 44
modules that provide comprehensive documentation on their modeling and usage. Details
of these modules are out of the scope of this thesis. Therefore, we refer the interested

5WAVE is the technology for wireless access in vehicular environments, which is also known as IEEE
802.11/p [49].

6PCAP is a standardized format used by network packet analysis tools such as tcpdump and
WireShark [47].
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reader to ns-3 manual, tutorial, and model library in [48], [50], and, [51]. However, in
the following, we do provide a brief overview of the LTE and the NR modules, which
are extensively used and extended for the studies conducted in this thesis. Lastly, in
Table 1.1, we summarize 1) the key features supported by these modules and their
extensions and 2) the contributions that the author of this thesis has made to these
modules.

The LTE module of ns-3 , also known as LENA [52], is a very commonly used LTE
network simulation platform that allows the simulation of end-to-end LTE heterogeneous
networks. This module is based on an industrial API (the small cell forum LTE MAC
Scheduler interface specification). Because of this, the protocol stack is very similar to
actual protocol implementations found in commercial products. This feature is important
in a data-driven AI/ML research work, like the one presented throughout this thesis. As
mentioned above, it is not easy for mobile network operators to openly provide network
traces due to several reasons, including network security and users´ privacy issues [42].
In this line, the ns-3 simulator, through its “Tracing System”, allows extracting useful
information from any protocol stack layer. One such example is presented in Chapter 4
of this thesis, in which we extract 84 measurements from the overall LTE protocol stack.
The LTE module of ns-3 was first released in 2013. It resulted from a collaboration
between a small-cell vendor, Ubiquisys Ltd. (now part of Cisco), and CTTC. Over time,
in the research, this module has been validated against a testbed and through calibration
studies in [53] and [54]. In [53], the authors conclude that an emulation setup based on
ns-3 LTE module can achieve comparable performance in terms of the Mean-Opinion-
Score (MOS) and latency for the voice application as an experimental testbed, consisting
of real LTE equipment over a range of Signal to Noise Ratios (SNRs). Finally, the
authors in [54] calibrated the LTE module using the parameters tested in 3GPP for
urban and rural macro cell scenarios [55]. The results show that the LTE module obtains
similar Signal to Interference plus Noise Ratio (SINR) distributions and users’ perceived
throughput as of the other 17 industrial simulators in 3GPP. Moreover, this module has
been under continuous development, either by introducing new features in the module
itself or extending its functionality by creating new independent modules that live outside
the ns-3 project code base, e.g., the NR module, which is also known as 5G-LENA (see
Table 1 for more details).

Towards the end of 2017, the 3GPP, in release 15, standardized the NR technology
to operate in Non-Standalone (NSA) mode7. The introduction of NR access technology
started the 5G era, resulting in tremendous research interest from academia and industry.
Driven by this, CTTC and Interdigital started working on extending ns-3 to build a
5G simulator that is 1) open source, 2) able to support end-to-end full protocol stack
simulations, 3) capable of working in FR1 and FR2 frequency ranges, as defined in
3GPP, 4) able to support the research focused on coexistence studies, and 5) as much
as possible standard compliant. Building upon these objectives, in 2019, CTTC released
its NR module that is easily pluggable to ns-3 . It supports the NSA 5G architecture,
which uses the LTE core network, i.e, Evolved Packet Core (EPC), implementation of the
ns-3 LTE module. Currently, the module relies on the LTE module for the layers above
MAC. That is, it has a completely new MAC and PHY layers that support a flexible
frame structure and variable sub-carrier spacings (i.e., numerologies), the Bandwidth

7In NSA architecture, 5G RAN is anchored to the LTE core.
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Part (BWP) concept standardized in 5G, Low Density Parity Check (LDPC) coding
for data channels, MCSs up to 256-QAM, Time Division Duplex (TDD), beamforming,
among others (see Table 1). Similar to the LTE module, this module is also actively
been extended to provide new interesting features, e.g., the New Radio-based access
to Unlicensed spectrum (NR-U) to support the coexistence studies involving Wireless
Gigabit (WiGig) in 60 GHz band, the support of dual-polarized Multiple Input Multiple
Output (MIMO), and the NR V2X (contributed under this thesis framework). Moreover,
recently, this module has been calibrated according to the 3GPP NR reference scenarios
for outdoor deployments. Thus, validating the module’s capability to achieve comparable
performance to that of industrial proprietary simulators and real networks [56].

Table 1.1: ns-3 LTE/NR models

Modules Characteristics Thesis author´s contribution
LTE [52] Full LTE protocol stack for Evolved Node

B (eNB) and UE.

LTE core network, i.e., EPC with sin-
gle MME and multiple Service GateWay
(SGW) and Packet data network Gate-
Way (PGW) nodes.

Key features:

• Frequency Division Duplex (FDD)

• MIMO

• Hybrid Automatic Repeat Request
(HARQ)

• Uplink power control

• RLC-UM

• RLC-AM

• Handover

• Radio Link Failure (RLF)

• Carrier Aggregation

• Fractional frequency reuse

Added feature to simulate coverage holes
(see Chapter 3 and [57]).

Implemented deterministic handover algo-
rithm (see Chapter 3 and [57]).

Ported RLF functionality from ELENA.

LTE module maintainer from 2018 to
2021.

LAA/
LTE-U [58]

Extension of ns-3 LTE module.

Key features:

• LTE-U implementation based on
Carrier Sense Adaptive Transmis-
sion (CSAT)

• 3GPP LAA implementation

Helped to improve the code by performing
extensive testing.

One of the co-authors of the most cited
LAA and LTE-U paper based on ns-3 .

Continued on next page
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Table 1.1 – continued from previous page
Modules Characteristics Thesis author´s contribution
ELENA [59] Extension of ns-3 LTE module.

Key features:

• Paging

• Time alignment

• RLF

• Handover failure

• Idle mode cell reselection

• Improved random access

• Improved Radio Resource Control
(RRC) state machine

Reviewer of ELENA LTE module new
features.

Ported and documented ELENA RLF im-
plementation to the official ns-3 .

psc-ns3 [60] Extension of ns-3 LTE module to support
3GPP LTE D2D communication.

Key features:

• Out-of-coverage synchronization

• In and out of coverage D2D Discov-
ery

• In and out of coverage D2D Com-
munication

• Various 3GPP aligned propagation
models

• on-network and off-network
Mission Critical Push To Talk
(MCPTT) models

• Unmanned Aerial Vehicle (UAV)
mobility energy model

• Hypertext Transfer Protocol
(HTTP) application

• UE-to-Network Relay

• Video streaming model

Ported initial Public Safety Communica-
tions (PSC) module implementation to
ns-3.29.

Author of additional examples and test
scripts.

Author of initial PSC LTE model and user
documentation.

ns-3
mmwave [61]

Based on ns-3 LTE module.

Key features:

• Ray tracing

• NR-specific PHY and MAC layers

• Carrier Aggregation at the MAC
layer

• Enhanced RLC layer

• Dual connectivity

—

Continued on next page

12



1.3. Research approach

Table 1.1 – continued from previous page
Modules Characteristics Thesis author´s contribution
nr [62] Based on ns-3 LTE module to provide

3GPP compliant NR technology imple-
mentation.

Key features:

• FDD

• TDD (configurable pattern)

• Multiple NR numerologies

• Time-Division Multiple Access
(TDMA)

• Frequency-Division Multiple Ac-
cess (FDMA)

• 3GPP compliant buffer status re-
port

• 3GPP NR specific processing de-
lays and control timings

• BWP support

• LDPC codes

• NR MCS table 1 and table 2

• Radio Environment Map (REM),
Almost Blank Slots based

• Inter-Cell Interference Coordina-
tion (ICIC)

• Uplink power control

• Sounding Reference Signal (SRS)
scheduling

• Realistic beamforming

• MIMO

• NR V2X

Acted as one of the maintainers of the
module.

Lead developer for the NR V2X feature
(see Chapter 7 and [62]).

1.3.2 Linking ns-3 with machine learning

In this thesis, we have used two well-known AI/ML techniques, i.e., Neural Network (NN)
and Fuzzy Logic, to address the RAN use cases described in Sec 1.2. We have leveraged
the supervised learning paradigm for the NN based models. Following this paradigm,
the proposed models are trained offline using the synthetic dataset generated using ns-3
simulation(s). In the scope of this thesis, the term “offline” implies that there is no close
loop between the ns-3 simulator and the AI/ML framework during the training, testing,
and evaluation of the AI/ML model. Figure 1.2 presents the block diagram of the Offline-
Training procedure adopted to train the proposed NN-based models. The measurements
from a ns-3 simulation environment (single or multiple executions) are preprocessed to
form a labelled dataset. That is, besides containing the input parameters (also known
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Figure 1.2: Offline-Training

as input features) to an ML model, each sample8 in the dataset also contains an output.
This output serves as a ground truth in the training phase to adjust the weights of the
hidden layers of NN. This weight adjustment is needed to improve the inference capability
of the model under training, which in turn decreases the error between the prediction
and the expected output. Once the model is trained, its performance evaluation can
be conducted using the unseen data9 to assess the gain that can be achieved using the
AI/ML solution(s) over the State-of-the-Art (SOTA) or benchmark schemes.

In this regard, we have used two performance evaluation methods 1) Offline-Evaluation,
which is an approach most used in the simulation community for the AI/ML models based
on supervised learning [45, 63, 64], and 2) Semi-Online-Evaluation method, which to the
best of our knowledge is only used in [63], however, elaborated more comprehensively in
this thesis. These two performance evaluation methods are illustrated in Fig. 1.3 and
Fig. 1.4.

The Offline-Evaluation can be conducted using the following steps:

1. Conduct a simulation using the ns-3 SOTA model, and save the resulted Key
Performance Indicator (KPI) for the Evaluation stage.

2. Perform ns-3 simulations using a deterministic algorithm (one such algorithm is
explained in section 3.2.2) for the use case we intend to target using AI/ML solution.
From these simulations, we construct a dataset that contains 1) input samples for
the trained AI/ML model and 2) the output, i.e., the performance KPI, e.g., the
QoE of the users, corresponding to each input sample that is to be used at the
Evaluation stage.

3. Trigger the trained AI/ML model by providing one sample at a time from the
dataset constructed in Step 2.

4. Store the inferred KPI by the AI/ML model for each input sample.

5. Select a configuration from the sample that achieved the best performance based
on the inferred KPI.

6. Based on the selected configuration in Step 5, evaluate the performance by
comparing the KPI from Step 2 with the KPI of the ns-3 SOTA model as acquired
in Step 1.

8A sample is comprised of one or more input and output parameters.
9Unseen data comprises the measurements that were not part of the training dataset. In ns-3 , these

measurements are usually generated from the same simulation environment but using a different seed or
Run number.
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Figure 1.3: Offline-Evaluation

Figure 1.4: Semi-Online-Evaluation

In the Offline-Evaluation model, there is no interaction between the trained AI/ML model
and ns-3 simulation at the runtime. This is the key difference between the Offline-
Evaluation and the Semi-Online-Evaluation, as shown in Fig. 1.4. The term “Semi-
Online” refers to the fact that there is no retraining of the already trained AI/ML model
during the Execution-Cycle.

The Semi-Online-Evaluation is comprised of the following steps:

1. Conduct a simulation using the ns-3 SOTA model, and save the resulted KPI for
the Evaluation stage.
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2. In the Execution-Cycle, the process begins by starting a simulation that triggers
the trained AI/ML model using a Bash script10. Thanks to the ns-3 simulator,
which uses C++ as its primary language, the BASH script is triggered using the
C++ “System” function [65]. This function facilitates providing the inputs to the
Bash script, which then are passed to the trained AI/ML model.

3. Upon receiving the input features from the previous step, the AI/ML model infers
the desired KPI and writes it to a Text file.

4. The previous step’s AI/ML model output is fed into the running ns-3 simulation
to (re-)configure the parameter(s) under observation.

5. The Execution-Cycle, i.e., Step 2 – Step 4, continues until the simulation ends.

6. Evaluate the performance by comparing the KPI computed during or at the end of
the Execution-Cycle with the KPI of the ns-3 SOTA model as acquired in Step 1.

The Offline-Evaluation model described above is used for the AI/ML models proposed to
tackle the HO and initial MCS use-cases, whereas the Semi-Online-Evaluation is used for
the models proposed for coexistence in unlicensed spectrum and V2X use-cases. Further
details about the use-cases and the proposed AI/ML models are provided throughout
Chapters 3-8 of this thesis.

1.4 Thesis organization and publications

Figure 1.5 shows the organization of the thesis. At the top of the figure is Chapter 2 that
provides the fundamental knowledge of the RAN technologies and their functionalities
that can leverage AI/ML-based solutions. For the reader who is not familiar with these
RAN technologies, this chapter provides the knowledge to understand the details of each
forthcoming chapters. In particular, it covers the following:

• The HO procedure that 3GPP has standardized. Specifically, the details on the
different HO events based on which UE measurement reports get triggered and
target cell selection criterion.

• The specifics about the LAA and LTE-U technologies and their respective channel
access mechanisms.

• A comprehensive review of the history of V2X technology in 3GPP and its various
releases.

We conclude the chapter by highlighting the gaps in the above RAN technologies targeted
by the thesis. After Chapter 2, the Chapters 3-8 contain the technical contribution of the
thesis that focuses on the four RAN use cases mentioned in the Subsection. 1.2. Each of
these chapters first presents the “Related Work” section to review of the SOTA and then

10A Bash script is a set of UNIX commands written in a text file.
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Figure 1.5: Thesis organization

discusses the work done beyond the SOTA. Due to the versatility of thesis that touches
different RAN use cases, the choice of having dedicated “Related Work” section helps
the reader to easily spot the differences between the already conducted research and the
work done in this thesis. Hence, it improves the readability of the thesis.

The research work targeting the infrastructure-based single-technology RAN scenario is
covered in Chapters 3 and 4. In Chapter 3, we present a simple single-task machine
learning-based HO scheme to address the shortcoming of a standard HO algorithm.
Specifically, we provide some interesting results that prove that a handover decision
based only on the signal strength of the target Base Station (BS) is not enough in a
challenging propagation scenario. The contributions of this chapter are published in the
following two conference papers:

[C1] Zoraze Ali, Nicola Baldo, Josep Mangues-Bafalluy , Lorenza Giupponi, “Simulat-
ing LTE mobility management in presence of coverage holes with ns-3”, In Pro-
ceedings of the 8th International Conference on Simulation Tools and Techniques
(SIMUTools), Athens, Greece, 24-26, August 2015

[C2] Zoraze Ali, Nicola Baldo, Josep Mangues-Bafalluy , Lorenza Giupponi, “Machine
Learning Based Handover Management for Improved QoE in LTE”, In Proceedings
of the IEEE/IFIP Network Operations and Management Symposium (NOMS),
Istanbul, Turkey, 25-29, April 2016

Chapter 4 extends the simulation scenario presented in Chapter 2 to depict a more
realistic and complex deployment of multiple cells and more users. Using this scenario,
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we deeply investigate the Multi-Task Learning (MTL) paradigms, i.e., parallel learning
and incremental learning to address two different but related RAN use cases, i.e., HO
management and the initial MCS selection when a UE establishes a new connection with
the BS. The results presented in this chapter have been published in one conference paper
and one journal paper.

[C3] Zoraze Ali, Marco Miozzo, Lorenza Giupponi, Paolo Dini, Stojan Denic,
Stavroula Vassaki, “Recurrent Neural Networks for Handover Management in Next-
Generation Self-Organized Networks”, In Proceedings of the IEEE 31st Annual In-
ternational Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), London, UK, 31 August 2020 - 03 September 2020

[J1] Zoraze Ali, Lorenza Giupponi, Marco Miozzo, Paolo Dini “Multi-Task Learning for
Efficient Management of Beyond 5G Radio Access Network Architectures”, IEEE
Access, Vol.9, pp. 158892-158907, 2021

In Chapter 5 and Chapter 6, we focus on the infrastructure-based multi-technology
RAN scenario. In particular, we study the coexistence performance of cellular
technologies, i.e., LAA and LTE-U with WiFi in the unlicensed spectrum. In Chapter 5,
we analyze the channel access mechanism of the LAA technology. The study reveals that
LAA’s contention window size procedure could hamper its fair coexistence with WiFi,
which is essential for LAA to be deployed in an unlicensed spectrum. To address this
issue, the chapter presents a machine learning solution that helps LAA to manage, i.e.,
increase or decrease, its contention window size to achieve fair coexistence with WiFi. To
analyze the results, we have followed the 3GPP approach of comparing the throughput
and latency Cumulative Distribution Function (CDF) plots. However, this approach is
easy to employ when we have non-overlapping CDF curves, but it is hard to use with
overlapping curves. Therefore, in Chapter 6, we propose a statistical frame work to
evaluate better the fairness performance of the LAA and LTE-U technologies with WiFi.
The results of these chapters have been published in the following two conference papers:

[C4] Zoraze Ali, Lorenza Giupponi, Josep Mangues-Bafalluy, Biljana Bojovic, “Ma-
chine learning based scheme for contention window size adaptation in LTE-LAA”,
In Proceedings of the IEEE 28th Annual International Symposium on Personal, In-
door, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 08-13
October 2017

[C5] Zoraze Ali, Lorenza Giupponi, Josep Mangues-Bafalluy, “On fairness evaluation:
LTE-U vs. LAA”, in Proceedings of the 14th ACM International Symposium on
Mobility Management and Wireless Access (MOBIWAC), Malta 13-17 November
2016

Towards the end of the thesis, we aim to study the limited infrastructure-based single-
technology RAN scenario, involving NR V2X technology. However, at that time, to
the best of author’s knowledge, there was no open-source standard compliant simulation
tool to carry out our research. Therefore, the Chapter 7 of this thesis targets the
development of the first ns-3 based NR V2X simulator. In particular, we extend the
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ns-3 LTE and NR (also known as 5G-LENA) modules to perform full-stack and end-to-
end NR V2X simulations. The chapter covers in detail the 3GPP NR V2X technology,
specifically Mode 2 for autonomous resource selection. In addition, we also provide the
results of comprehensive simulation campaigns, studying the impact of key parameters
on the standardized KPIs, i.e., Packet Inter-reception Delay (PIR) and Packet Reception
Ratio (PRR). The contributions presented in this chapter have been published in one
conference and one journal paper.

[C6] Zoraze Ali, Sandra Lagén, Lorenza Giupponi, “On the impact of numerology in NR
V2X Mode 2 with sensing and random resource selection”, In the proceedings of the
IEEE Vehicular Networking Conference (VNC), Ulm, Germany, 10-12 November
2021

[J2] Zoraze Ali, Sandra Lagén, Lorenza Giupponi, “3GPP NR V2X Mode 2: Overview,
Models and System-Level Evaluation”, IEEE Access, Vol.9, pp. 89554-89579, 2021

In Chapter 8, we use our NR V2X simulator to study the energy-performance trade-
off when using sensing and random resource selection methods in NR V2X Mode 2. In
particular, we argue that the trade-off mentioned above can be exploited better using
a fuzzy inference system that dynamically adjusts the partial sensing duty cycle. The
results are to be submitted to the Institute of Electrical and Electronics Engineers (IEEE)
vehicular technology magazine.

[J3] Zoraze Ali, Sandra Lagén, Lorenza Giupponi, “NR V2X Mode 2 and the Energy-
Performance Trade-off”, to be submitted to the IEEE vehicular technology magazine

Lastly, Chapter 9 concludes the thesis by drawing out the key aspects of our research
and some future directions to help the research community advance in the areas tackled
in this thesis.

1.4.1 Other journal/conference papers

In this section, we list the other conference and journal paper contributions that are
related but are not included in this thesis.

[J4] Marco Miozzo, Zoraze Ali, Lorenza Giupponi, Paolo Dini “Distributed and Multi-
Task Learning at the Edge for Energy Efficient Radio Access Networks”, IEEE
Access, Vol.9, pp. 12491-12505, 2019

[J5] Biljana Bojovic, Lorenza Giupponi, Zoraze Ali, Marco Miozzo “Evaluating
Unlicensed LTE Technologies: LAA vs LTE-U”, IEEE Access, Vol.7, pp. 89714-
89751, 2019

[J6] Katerina Koutlia, Biljana Bojovic, Zoraze Ali, Sandra Lagén, “Calibration of
the 5G-LENA system level simulator in 3GPP reference scenarios”, ELSEVIER,
Simulation Modelling Practice and Theory, Vol.119, pp. 102580, 2022
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[C7] Tommaso Zugno, Matteo Drago, Sandra Lagén, Zoraze Ali, and Michele Zorzi,
“Extending the ns-3 spatial channel model for vehicular scenarios”, In Proceedings
of the Workshop on ns-3 (WNS3), New York, NY, USA, 21-25 June 2021

[C8] Biljana Bojovic, Zoraze Ali, Sandra Lagen, Katerina Koutlia, “ns-3 and 5G-LENA
extensions to support dual-polarized MIMO”, In Proceedings of the Workshop on
ns-3 (WNS3)), Virtual workshop, 20-24 June 2022
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Chapter 2

Fundamentals

This chapter provides the fundamental knowledge of the mechanisms and technologies
needed to understand the thesis better. Moreover, as mentioned in Chapter 1, this
thesis leverages ns-3 and AI/ML to address the identified RAN use cases. Specifically,
it proposes supervised learning-based solutions that use well-known Feed-forward Neural
Network (FFNN), Recurrent Neural Network (RNN), and Fuzzy-logic techniques. Given
the huge interest from academia in AI/ML, a comprehensive amount of literature is
already available surveying the aforementioned AI/ML techniques. Therefore, for the
sake of conciseness and focus, in this thesis, we do not cover such background and refer
the reader to the vast available literature on these techniques (for instance, [66], [67],
[45], [42], [63], [7], and [18]).

In this chapter, Section 2.1 presents the details of the HO procedure standardized by
3GPP. Section 2.2 gives a technical background of LTE LAA and LTE-U technologies.
Then, Section 2.3 summarizes the evolution of 3GPP V2X technologies. Lastly,
Section 2.4 concludes the chapter.

2.1 3GPP Handover

The handover procedure is an essential part of connected mode mobility management.
It guarantees the continuity of the services provided by a mobile network when a UE in
a connected state moves around. The 3GPP standards, since the inception of Wideband
Code Division Multiple Access (WCDMA) technology, support the HO functionality,
which is also part and parcel of the 4G, 5G, and, not yet fully defined, 6G technologies.
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These technologies encompass critical use case scenarios, e.g., Ultra-Reliable and Low-
Latency Communications (URLLC), which means high reliability and quick availability
for smart manufacturing, connected vehicles, electrical power distribution, and more, such
as drones controlled by the network [68]. This requires a fast, up to a few milliseconds,
and reliable HO procedure to maintain an adequate level of QoE.

As per the 3GPP standards, a base station controls the mobility of its UEs by configuring
one or more event-based measurements. As per this configuration, the UE conducts radio
measurements of its surrounding environment. When the event-triggering conditions are
met, the UE sends the measurement reports to the base station. The base station may
trigger a handover based on these measurements. Up to now, the 3GPP standard supports
the following two measurement quantities:

1. Reference Signal Receive Power (RSRP)

2. Reference Signal Received Quality (RSRQ)

There are five handover events, which get triggered based on either of the two
measurement quantities [38,69]. These handover events are listed below.

• Event A1. The source cell becomes better than a threshold.

• Event A2. The source cell becomes worse than a threshold.

• Event A3. The neighbour cell becomes better than an offset relative to the source
cell.

• Event A4. The neighbour cell becomes better than a threshold.

• Event A5. The source cell becomes worse than one threshold, and neighbour cell
becomes better than another threshold.

Fig 2.1 illustrates these events using RSRP as a measurement quantity. Moreover, it
shows different parameters, e.g., thresholds, offset, and hysteresis, that influence the
“entry condition” of these events, after which the UE sends the measurement reports.
A UE measurement report, among other useful information, includes the signal strength
(RSRP or RSRQ) of the source and the neighbour cells that fulfil the configured event
criterion. The source cell, upon receiving the measurement, chooses a neighbour that
has the strongest signal strength as the target cell and initiates the handover process
by sending it the “Handover Request” message. The target cell, if have enough radio
resources to serve the UE, accepts the handover request. After that, the UE is instructed
to terminate its radio link to the source cell and establish a new connection with the
target cell.
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Figure 2.1: Handover events

2.2 Unlicensed technologies background

The quest for increasing the network capacity and cost-effectively reducing the price
per megabyte is the main challenge of network operators; various solutions are being
considered, from the densification of small cells to the offload of traffic in the unlicensed
band. The network densification through deploying different types of small cells, e.g.,
pico and femto (also known as small cells), has undoubtedly increased the network
capacity [70]. However, it also introduces inter-cell-interference among these different
types of small cells since the mobile networks usually operate in full-frequency reuse
(i.e., reuse 1) manner. Therefore, the mechanisms such as ICIC and enhanced Inter-
Cell Interference Coordination (eICIC) must be employed to reap the real benefits of
such deployments [33]. However, the scarcity of the licensed spectrum, especially at low-
frequency ranges, e.g., 410 MHz – 7125 MHz (also known as Frequency Range 1 (FR1)),
is a bottleneck for such a solution. Thus, the complementary use of unlicensed spectrum
has been part of the 3GPP standard since its Release 6. These technologies can be
divided into two categories [45]:

• Technologies that provide access to the unlicensed band using inter-Radio Access
Technology (RAT). For example, Interworking WLAN (I-WLAN) (Release 6 and
8 [71,72]), RAN-controlled WLAN Interworking (Releases 12 and 13 [73,74]), LTE-
WLAN aggregation (LWA) (Releases 13 and 14 [74, 75]), and LTE-WLAN radio
level integration with IPsec tunnel (LWIP) (Release 13 [74]).

• Technologies that provide access to the unlicensed band using the same RAT. For
example, LTE-U [76], LAA (Release 13 and 14 [74, 75]), and NR-U (NR Release
16 [77]).

For the coexistence use case, this thesis focuses on the LAA and LTE-U technologies.
The choice is motivated by the innovative nature of these two technologies, which bring a
paradigm shift about how the network and devices based on the 3GPP technology coexist
in unlicensed bands, which inherently are built to operate in licensed spectrum. This
paradigm shift creates infinite opportunities for research to study the coexistence among
these and other technologies, e.g., WiFi. Therefore, we provide a technical background of
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Table 2.1: LAA channel access priority classes

Channel access
priority class mp CWmin CWmax Tmcot,p Allowed CW sizes

1 1 3 7 2 ms 3, 7
2 1 7 15 3 ms 7, 15
3 3 15 63 8 or 10 ms 15, 31, 63
4 7 15 1023 8 or 10 ms 15, 31, 63, 127, 255, 511, 1023

these two technologies in the following subsections. To know about the other unlicensed
technologies mentioned above, readers are referred to [45].

Through the principle of carrier aggregation, the LAA and LTE-U technologies aim
toward the deployment of LTE networks in the unlicensed spectrum, i.e., the 5 GHz
band. These technologies boost the performance of LTE networks by providing wider
bandwidth in high-traffic areas. One of the principles for their design is the different
regional regulatory regimes, which may or may not mandate the use of Listen-Before-
Talk (LBT) procedures to access the wireless channel. For example, in Europe and Japan,
access to the unlicensed spectrum is subject to LBT requirements. On the other hand,
there is no such requirement in the USA, China, India, and Korea.

Nevertheless, these technologies cannot be used without ensuring a fair and friendly
coexistence with other incumbent technologies in the unlicensed band [78]. Coexistence-
fairness with existing technologies, especially Wi-Fi, is the fundamental requirement for
deploying them in the unlicensed spectrum [79]. In what follows, we will explain in detail
the working of both technologies.

2.2.1 LAA

Third Generation Partnership Project (3GPP) in LTE releases 13 and 14 introduced
the LAA technology to meet ETSI’s Clear Channel Assessment (CCA)/LBT require-
ments [79]. And because of this, it is considered to be a global solution framework that
allows compliance with any regional regulatory requirements. In the beginning, 3GPP
analyzed different categories of LBT for LAA, and finally, the most similar to the Car-
rier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) of Wi-Fi
was selected. This is referred to as Category 4 LBT [79]. In LTE release 13, LAA was
standardized only to support the transmissions in the downlink channel, i.e., Physical
Downlink Shared Channel (PDSCH). After that, in release 14, in the context of En-
hanced LAA (eLAA), the support for the uplink channel, i.e., Physical Uplink Shared
Channel (PUSCH) was added. However, many efforts were made by academia and in-
dustry to evaluate the LAA performance in the downlink [45,79]. In this line, this thesis
also targets the LAA operation in the downlink, and here, we will explain how an LAA
eNB is enabled to access the unlicensed channel and how its Contention Window (CW)
evolves upon collision as specified by the standard [80].

Fig. 2.2, shows the complete algorithm for category 4 LBT. An eNB, which intends to
transmit the data in the downlink, first performs an Initial CCA during which it senses
the channel for a defer duration of Td. The defer duration Td is composed of duration
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Figure 2.2: LBT 3GPP Category 4 algorithm

Tf = 16 µs and mp CCA slots, where each slot duration is Tsl = 9 µs. The value of the
mp depends on the LBT priority class, as shown in Table 2.1 [80]. If the channel is idle
during Td, the eNB occupies the channel for maximum Tmcot,p duration, which is also
known as a Transmission Opportunity (TxOP). The duration of the TxOP depends on
the LBT priority class, which categorizes the type of traffic scheduled in the unlicensed
band [80]. An LAA eNB can occupy the channel up to 10 ms in case of Best Effort
(BE) and Background (BK) traffic, i.e., priority classes 3 and 4, respectively. For other
types of traffic requiring higher service quality, the length of the TxOP is shorter [80].
On the other hand, if the channel is busy during the Td period, the eNB performs an
Extended CCA. Under it, similar to Wi-Fi, the eNB draws a random counter N in the
range of [0,CW p], where CW p is the current CW size, which ranges between CW min and
CW max. If the eNB finds the channel idle for N CCA slots, it occupies the channel for
Tmcot,p duration. The CW size is increased exponentially upon collisions, which in LAA
are detected using HARQ feedbacks from a receiving node. In particular, the CW size
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Figure 2.3: HARQ feedback timing diagram (FDD mode)

at the eNB is increased if 80% of the HARQ feedbacks belonging to the first subframe in
the most recent TxOP are NACKs [80].

The rationale behind such a rule is twofold. On the one hand, the eNB may schedule
more than one UE in a single subframe. Thus, it will receive multiple HARQ feedbacks
that have to be translated into a single decision about if the collision has happened or
not. On the other hand, the rule considers only the feedbacks from the first subframe of
the TxOP to reduce the delay in updating the CW size. As shown in Fig. 2.3, the data
transmitted by the eNB in subframe n is acknowledged by the UE in subframe n+4, i.e.,
after 4 ms from the data transmission [38]. Therefore, to update the CW based on the
HARQ feedbacks from all the subframes in a TxOP, the eNB should wait till the HARQ
feedback of the last subframe. This introduces a further delay in deciding whether a
collision has occurred or not. It is worth mentioning that, while the LTE protocol stack
induces these high delays, in Wi-Fi, a receiving Station (STA) upon the correct reception
of a data frame transmits an acknowledgment (ACK) after Short Interframe Space (SIFS)
of 16 µs.

2.2.2 LTE-U

The LTE-U coexistence paradigm is specified by the LTE-U Forum [81, 82]. It is an
industry consortium formed in 2014 by Verizon, Ericsson, Alcatel-Lucent, Qualcomm
Technologies, Inc., and Samsung. The LTE-U forum has the following main objectives:

• To develop a proprietary solution that would enable the coexistence of LTE and
Wi-Fi networks in the 5 GHz unlicensed band.

• The solution would target the markets without the LBT requirements.

• The solution should be agile, i.e., it can be quickly deployed with minor changes to
the LTE Release 10/11/12 carrier-aggregation protocol.

• It would be used in a Supplemental DownLink (SDL) carrier (i.e., the secondary
carrier) in conjunction with a licensed carrier.

Based on the above objectives, the LTE-U technology does not use the LBT procedure
like LAA to access the channel. Instead, it follows a CSAT procedure specified by the
LTE-U Forum. Following the CSAT procedure, the LTE-U secondary cell duty cycles
its transmissions, i.e., alternates ON and OFF periods, as shown in Fig. 2.4. The duty
cycle length is the sum of TON and TOF F durations. During the TOF F period, an LTE-U
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Figure 2.4: LTE-U CSAT duty cycle period

secondary cell does not transmit, giving a chance to other coexisting technologies, e.g.,
Wi-Fi, to transmit. On the other hand, during the TON period, LTE-U start transmitting
without sensing the channel. During the TON period, there are a few subframes that are
periodically left blank, i.e., an LTE-U eNB does not schedule any transmission during
these subframes. As per the LTE-U standard, this process is referred to as puncturing.
It allows latency-sensitive applications that run over Wi-Fi to transmit. The quantity of
such punctured subframes, usually 1 or 2, depends on the length of the TON period and
the LTE-U traffic load. The CSAT duty cycle parameters, i.e., the TON and TOF F must be
configured such that a fair coexistence can be achieved with other technologies operating
in the same band [81]. Alternatively, these parameters can be configured adaptively, e.g.,
by estimating the most appropriate channel share it should occupy, depending on the
other networks´ activity. In this line, the LTE-U Forum does not specify any algorithm;
therefore, its implementation is vendor specific. The most representative algorithm of
such nature is the Qualcomm CSAT/eCSAT algorithm [83]. The details of this algorithm
are out of the scope of this thesis. Therefore, for a detailed overview of this algorithm,
the interested reader is referred to [45].

2.3 Evolution of 3GPP V2X technologies

The automotive industry is currently transitioning towards automated driving and
advanced driver assisted systems, where vehicles are able to react by themselves to
changes in the driving environment. In this context, V2X is seen as a key technology to
provide complete environmental awareness around the vehicle by exchanging messages
with other vehicles, roadside units, and pedestrians with low latency and high reliability.
V2X communications are expected to provide potentiality in different areas, like faster
alerts and notifications, law enforcement, better service on roadways, reduced world-
wide traffic load, reduced emissions, time savings, and increased automotive safety, thus
contributing to prevent crashes/injuries and save lives [84]. Additionally, V2X-capable
vehicles can assist in better traffic management also for non-safety applications. Several
advanced V2X use cases have been already proposed within the 3GPP Release 15 such
as vehicle platooning, extended sensors, advanced and remote driving, or cooperative
collision avoidance [85]. Also, industrial associations like the 5G Automotive Association
(5GAA) in Europe have been built to promote the vision of connected mobility, including
autonomous driving and intelligent transportation [86].
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As of today, the two key radio access technologies that enable vehicular communications
are 1) Dedicated Short Range Communications (DSRC), standardized by IEEE in
802.11p [87] and the more recent 802.11bd [88], and 2) LTE C-V2X, based on 3GPP
LTE Release 14 and Release 15 [89]. DSRC is designed to primarily operate in the
5.9 GHz band, while C-V2X is thought to operate in both 5.9 GHz and in cellular
licensed carriers at sub 6 GHz carrier frequencies. Differently from DSRC that focused
on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, C-V2X
encompasses V2V, Vehicle-to-Pedestrian (V2P), V2I and Vehicle-to-Network (V2N) [90].
C-V2X is designed to support basic safety message sharing among proximity users, such
as collision warning, emergency stop warning, and adaptive cruise control. A comparison
study in [91] shows that LTE C-V2X gets a superior reliability performance over DSRC,
due to the more efficient Physical Layer (PHY) layer of LTE C-V2X.

V2X requirements can be met using LTE C-V2X, as long as the vehicular density is not
too high [89]. However, as the quality of service requirements become more stringent,
which is the case in many V2X applications, LTE C-V2X falls short, and 5G NR is called
as a complementary solution [88]. Towards that goal, 3GPP Release 16 has included a
Study Item (SI) to support new applications with more stringent requirements, which has
resulted in Technical Report (TR) 38.885 [92]. Based on the study outcome captured in
this TR, 3GPP Release 16 has completed a Work Item (WI) in July 2020 to standardize
V2X on top of 5G NR standardized in Release 15 [93]. As a main design principle, NR is
not designed to be backward compatible with LTE. Similarly, NR V2X is not backward
compatible with LTE C-V2X. The NR V2X SI indicates that the design objective of
NR V2X is not to replace LTE C-V2X, but to supplement C-V2X in supporting those
use cases that cannot be supported by LTE C-V2X [92]. To ensure that NR V2X can
provide a unified support for all V2X applications in the future, NR V2X must be capable
of supporting not only advanced V2X applications but also basic safety applications that
are supported today by LTE C-V2X.

Such a wide applications and use cases’ support is possible in NR V2X because of the
flexible framework inherited by the NR technology and the recent progresses envisioned in
NR V2X standardization, which includes many enhancements over LTE C-V2X concepts.
The NR radio access technology provides wide bandwidth support in various frequency
ranges (including sub 6 GHz bands and mmWave bands), flexible frame structure with
reduced transmission time intervals (by means of multiple numerologies and sub-carrier
spacing (SCS) support), support for massive MIMO systems and high modulation orders,
and advanced channel coding [94]. All these new features and functionalities intrinsically
contribute to increase the data rate, reduce the latency, and improve the spectral efficiency
of V2X communication systems. In addition, new enhancements and key procedures
have been defined for NR V2X, specifically designed to improve the reliability of V2X
communications systems, such as new communication types (unicast and groupcast), a
new feedback channel, the support of feedback-based retransmissions, and new resource
allocation and scheduling mechanisms [92].

In the following subsection, we review the history of sidelink communications and the
NR V2X standard with particular emphasis on NR V2X Mode 2. Then, in Chapter 7,
we present the proposed simulation tool and provide the implementation details of the
developed NR V2X models, including the design choices and implementation changes
that affect all the layers of the protocol stack. Based on these models, we present a
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comprehensive set of simulation campaigns, in which we study the impact on the end-to-
end network performance of different key parameters of the NR V2X system when using
sensing-based resource selection in NR V2X Mode 2, as defined by 3GPP. In particular,
we study the impact of the numerology, the number of retransmissions, the length
of the resource selection window, the maximum number of resources per reservation,
the probability of keeping the same resource over multiple reservation periods, and the
MCS. Finally, we compare different resource selection procedures for NR V2X Mode 2
considered in 3GPP, including sensing-based and random resource selections. From these
detailed end-to-end campaigns, we derive interesting insights on the technology, which
are summarized at the end of the Chapter 7.

2.3.1 History of sidelink technology in 3GPP

The concept of sidelink was first introduced in Release 12, together with D2D communi-
cations extensions to the traditionally centralized paradigm of cellular communications
promoted by 3GPP. LTE C-V2X first and NR V2X later are all significantly based on
previous D2D efforts [95,96]. In this section we review the history of D2D and V2X tech-
nologies inside 3GPP, giving special emphasis to Releases 12, 14, and 16, which are those
starting the definition of the new D2D, C-V2X, and NR V2X technologies, respectively.

Tables 2.2 and 2.3 summarize the evolution of sidelink communications in 3GPP, since
its introduction with D2D (Release 12/13), through LTE C-V2X (Release 14/15) and up
to date in NR V2X (Release 16/17), including various SIs and WIs related to sidelink
communication studies and standardization. For each SI/WI, we specify the 3GPP
release, the working/leading group in charge of such SI/WI, the objective of the SI/WI,
the resulting TR for the case of SIs and the impacted Technical Specification (TS) for the
case of WIs. The history of sidelink is split into two tables. Table 2.2 covers from Release
12 until Release 15 and Table 2.3 covers the SIs/WIs from Release 16 until Release 17.

2.3.2 D2D (Release 12)

D2D has been defined as a support for Proximity Services (ProSe). D2D enables the quick
exchange of data over short distances via a direct link between nodes and introduces a
new interface, the PC5, between nodes. This offers an efficient way to bypass the LTE
base station (or eNB) and offload the eNB traffic. Besides content sharing, a D2D UE
can act as a relay for another device with a poor connection to the eNB and, therefore,
D2D can be used to extend cellular network coverage. Two modes have been defined for
centralized and distributed scheduling of UE transmissions, namely Mode 1 and Mode
2. Centralized scheduling occurs at the eNB (in-coverage mode), whereas distributed
scheduling is carried out by the D2D UEs themselves, with no need to be in the coverage
area of an eNB (out-of-coverage mode). In Mode 1, the UEs are scheduled by the eNB
over dedicated radio resources for data transmission. In Mode 2, a UE can autonomously
select a radio resource from a resource pool, which is either configured by the network or
pre-configured in the user device for its direct D2D communication over PC5 interface.

29



Chapter 2. Fundamentals

Both modes share the same resource allocation structure, in which the transmission of
data is scheduled within the so-called sidelink control period. Within this period, a set
of subframes are allocated for the PSCCH transmission and a different set of subframes
are allocated for the PSSCH. The corresponding PSCCH for a given PSSCH is always
sent before the PSSCH data. The PSCCH contains the Sidelink Control Information
(SCI), also called scheduling assignment, which is used by the receiver to identify the
occupation of the PSSCH radio resources. In both modes, the SCI is configured in format
0, and it is transmitted twice using two different subframes in which it occupies the same
Resource Block (RB). The second transmission is needed to improve the reliability of the
SCI message delivery at the receiver due to the lack of a feedback channel in sidelink
communication. The receiver blindly detects the SCI by monitoring all possible PSCCH
resources. The transport block is transmitted four times in four consecutive subframes
within the resource pool. This allows the receiver UE to implement open loop HARQ by
combining the four redundancy versions of the transport block.

The operational principle of Modes 1 and 2 is battery life improvement of mobile
devices. Vehicular communications have, however, other constraints that cannot be
accommodated with D2D ProSe. Specifically, the high latencies of D2D are not suitable
for vehicular communications, where packet delays or packet losses can have severe and
life-threatening consequences. In terms of requirements, the maximum allowed latency
varies between 20 ms and 100 ms, depending on the application, with reliability from
80 % to 95 % [90].

Table 2.2: Evolution of sidelink in 3GPP (part 1: Release 12 till Release 15).

Release WI/SI Group Objective TR/TS
Release 12 SI: Study on LTE D2D

Proximity Services - Ra-
dio Aspects

RAN1,
RAN2,
RAN3,
RAN4

To define the methodology to
evaluate LTE D2D proximity
services, identify PHY layer
options and enhancements

TR 36.843

Release 12 WI: Proximity-based
Services

SA1,
SA2,
SA3

To specify service require-
ments for ProSe discovery
and ProSe communication
over E-UTRA

TS 21.905,
22.115, 22.278,
23.002, 23.122,
23.303, 23.401,
23.402, 24.301,
33.220, 33.303,
33.833, 36.413,
36.423

Release 13 WI: Enhanced LTE D2D
Proximity Services

RAN2,
RAN1,
RAN3,
RAN4

To define enhancements to
LTE D2D communications
and discovery meeting re-
quirements for public safety
applications

TS 36.101,
36.104, 36.133,
36.141, 36.211,
36.213, 36.214,
36.300, 36.301,
36.304, 36.306,
36.321 36.331,
36.413, 36.423

Continued on next page
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Table 2.2 – continued from previous page
Release WI/SI Group Objective TR/TS
Release 13 WI: Enhancements to

Proximity-based Services
SA1 To support stage 2/3 de-

velopment during Release 13
and support end of Release
12 maintenance to review
and ensure that Release 13
TS 22.278 and TS 22.115 con-
tain all agreed ProSe Stage 1
requirements

TS 23.303,
33.303

Release 14 SI: Study on LTE sup-
port for V2X services

SA1 To study service require-
ments for V2P, V2P,
V2N/V2I

TR 22.885

Release 14 WI: LTE support for
V2X services

SA1 To specify service re-
quirements for V2P, V2P,
V2N/V2I

TS 22.185

Release 14 WI: Support for V2V
services based on LTE
sidelink

RAN1,
RAN2,
RAN3,
RAN4

To specify LTE sidelink en-
hancements for V2V services
defined in TR 22.885

TS 36.101,
36.104, 36.133,
36.141, 36.201,
36.211, 36.212,
36.213, 36.214,
36.300, 36.302,
36.304, 36.306,
36.307, 36.321,
36.323, 36.331,
36.413, 36.423

Release 15 WI: ProSe Support for
Band 72 in LTE

RAN5 To update the 3GPP RAN
WG5 RF, RRM and Proto-
col conformance test specifi-
cation with the support of
ProSe for Band 72

TS 36.508,
36.521

Release 15 WI: Remote UE access
via relay UE

SA1 To specify service require-
ments for a UE with UICC
to connect with network via
an Evolved ProSe UE-to-
Network Relay

TS 22.011,
22.115, 22.278,

Release 15 SI: Study on Enhance-
ment of 3GPP support
for V2X services

SA1 To identify use cases and po-
tential service requirements
to enhance 3GPP support for
V2X service in safety and
non-safety V2X scenarios

TR 22.886

Release 15 WI: Enhancement of
3GPP support for V2X
scenarios

SA1 To specify service require-
ments to enhance 3GPP
support for V2X scenarios
valid for the 3GPP systems
(i.e., 5G, EPS), including the
transport layer support for
safety and non-safety V2X
scenarios

TS 22.186

Continued on next page
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Table 2.2 – continued from previous page
Release WI/SI Group Objective TR/TS
Release 15 WI: V2X new band com-

binations for LTE
RAN4 To specify RAN4 RF require-

ments for the concurrent op-
eration of additional LTE Uu
frequency bands and PC5 op-
eration on Band 47 and for
concurrent operation of LTE
Uu Carrier Aggregation and
PC5 operation on Band 47

TS 36.101,
36.307

Release 15 WI: Enhancements on
LTE-based V2X services

RAN1,
RAN2,
RAN3

To define enhancements on
LTE-based V2X Services

TS 23.285,
23.303, 24.334,
24.385, 24.386,
36.101, 36.133,
36.201, 36.211,
36.212, 36.213,
36.300, 36.302,
36.304, 36.306,
36.321, 36.323,
36.331

Release 15 SI: Study on security as-
pects for LTE support of
V2X services

SA2 To identify and evalu-
ate potential architecture
enhancements needed to op-
erate LTE-based V2X (V2V,
V2I/N, and V2P), based on
vehicular services require-
ments defined in SA1 V2X
LTE and determine which of
the solutions can proceed to
normative specification

TR 33.885

Release 15 SI: Study on evaluation
methodology of new V2X
use cases for LTE and
NR

RAN1 To establish the evaluation
methodology to evaluate
technical solutions support-
ing the full set of 5G V2X
use cases as identified in TR
22.886 and the full set of 5G
RAN requirements in TR
38.913

TR 37.885

Release 15 SI: Study on further en-
hancements to LTE De-
vice to Device (D2D),
UE to network relays for
IoT (Internet of Things)
and wearables

RAN2,
RAN1,
RAN3,
RAN4

To study enhancements to
Prose UE-to-network relay-
ing and to the LTE D2D
framework for commercial
and public safety applica-
tions such as wearable de-
vices

TR 36.746

2.3.3 LTE C-V2X (Release 14)

3GPP Release 14 extended the D2D ProSe functionality by adding two new modes, Modes
3 and 4, for LTE C-V2X connectivity. Basic safety messages and event-triggered messages
are transmitted for collision avoidance. V2V mainly enables cooperative automated
driving. V2P establishes the communications protocol between vehicles and pedestrians
for pedestrian safety. V2I implies the communications with roadside units and allows
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to make information about local road and traffic conditions readily available to vehicles.
V2N enables commercial services by providing access to data stored in the Cloud.
Modes 3 and 4 have been designed to satisfy the latency requirements and accommodate
high Doppler spreads and high density of vehicles for LTE C-V2X communications.
Similarly to Mode 1, Mode 3 uses the centralized eNB scheduler. The vehicular UE
and eNB use the Uu interface to communicate. This transmission mode is only available
when the vehicles are under cellular coverage. UE context information in terms of traffic
patterns, for example, can be reported to the eNBs in order to assist in the resource
allocation procedure. Mode 4 employs distributed UE scheduling, as Mode 2. In contrast
to Mode 3, Mode 4 can operate without cellular coverage. However, these modes share
a completely different structure than Modes 1 and 2 described above, when it comes to
the allocation of the PSCCH and PSSCH. First, PSCCH and PSSCH channels are not
separated in the temporal domain, but in the frequency domain. The resource grid is
divided into sub-bands or sub-channels in which the first RBs of these sub-channels form
the PSCCH pool and, the other RBs, the PSSCH pool.

Table 2.3: Evolution of sidelink in 3GPP (part 2: Release 16 till Release 17).

Release WI/SI Group Objective TR/TS
Release 16 SI: Study on Improve-

ment of V2X Service
Handling

SA1 To identify use cases and po-
tential service requirements
to enhance 3GPP support for
V2X

TR 22.886

Release 16 WI: Improvement of
V2X Service Handling

SA1 To define use cases and po-
tential service requirements
to enhance 3GPP support for
V2X, based on the studies in
TR 22.886

TS 22.186

Release 16 SI: Study on application
layer support for V2X
services

SA6 To develop key issues, cor-
responding architecture re-
quirements and solution rec-
ommendations to enable the
application layer support for
V2X services over 3GPP sys-
tems

TR 23.795

Release 16 WI: Application layer
support for V2X services

SA6 To define architecture re-
quirements, functional archi-
tecture, procedure and infor-
mation flows, based on solu-
tions and conclusions reached
in TR 23.795

TS 23.286,
23.795, 24.486,
24.587, 27.007,
29.486

Release 16 SI: Study on architec-
ture enhancements for
the Evolved Packet Sys-
tem (EPS) and the 5G
System (5GS) to support
advanced V2X services

SA2 To identify and evaluate po-
tential architecture enhance-
ments of EPS and 5G System
design needed to support ad-
vanced V2X services identi-
fied in TR 22.886

TR 23.786

Continued on next page
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Table 2.3 – continued from previous page
Release WI/SI Group Objective TR/TS
Release 16 WI: Architecture en-

hancements for 3GPP
support of advanced
V2X services

SA2 To specify architecture en-
hancements of 5G system
to support advanced V2X
services as per conclusions
reached within TR 23.786

TS 23.008,
23.122, 23.285,
23.287, 23.501,
23.502, 23.503,
24.007, 24.301,
24.385, 24.386,
24.501, 24.587,
24.588, 27.007,
29.122, 29.230,
29.272, 29.274,
29.388, 29.502,
29.503, 29.504,
29.505, 29.510,
29.512, 29.513,
29.514, 29.518,
29.519, 29.520,
29.522, 29.525,
29.571, 31.102,
33.185, 33.535,
33.536, 38.413,
TS 38.423

Release 16 SI: Study on NR Vehicle-
to-Everything (V2X)

RAN1,
RAN2,
RAN3

To study sidelink design,
Uu enhancements for ad-
vanced V2X use cases,
Uu-based sidelink resource
allocation/configuration,
RAT/Interface selection for
operation, QoS management,
and coexistence

TR 38.885

Release 16 SI: Study on V2X Media
Handling and Interaction

SA4 To study use cases relevant
to transmission of multime-
dia over 3GPP and detail the
requirements and procedures
for media capturing, com-
pression, and transmission

TR 26.985

Release 16 SI: Study on Security As-
pects of 3GPP support
for Advanced V2X Ser-
vices

SA3 To provide security and pri-
vacy analysis of eV2X system
architecture, derive potential
security and privacy require-
ments, and evaluate security
and privacy solutions for pro-
tection of it

TR 33.836

Continued on next page
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Table 2.3 – continued from previous page
Release WI/SI Group Objective TR/TS
Release 16 WI: 5G V2X with NR

sidelink
RAN1,
RAN2,
RAN3,
RAN4

To specify radio solutions
that are necessary for NR to
support advanced V2X ser-
vices (except the remote driv-
ing use case which was stud-
ied in TR 38.824) based on
the study outcome captured
in TR 38.885

TS 36.133,
36.300, 36.304,
36.306, 36.321,
36.331, 36.413,
36.423, 37.324,
37.340, 38.101,
38.104, 38.133,
38.201, 38.202,
38.211, 38.212,
38.213, 38.214,
38.215, 38.300,
38.304, 38.306,
38.321, 38.323,
38.331, 38.413,
38.423, 38.460,
38.463, 38.470,
38.473, 38.886

Release 17 WI: NR Sidelink en-
hancement

RAN1,
RAN2,
RAN4

To specify radio solutions
that can enhance NR sidelink
for the V2X, public safety
and commercial use cases,
with special focus on power
saving, enhanced reliability
and reduced latency

[none yet]

Release 17 SI: Study on NR Sidelink
relay

RAN2 To study single-hop NR
sidelink-based relay

TR 38.836

Release 17 SI: Study on enhance-
ments to application
layer support for V2X
services

SA6 To study enhancements to
the application architecture
to support V2X services spec-
ified in 3GPP TS 23.286

TR 23.764

Release 17 WI: Enhanced applica-
tion layer support for
V2X services

SA6 To define enhancements to
the application architecture
to support V2X services spec-
ified in 3GPP TS 23.286

TS 23.286,
23.434, 27.007

Release 17 WI: Band combinations
for concurrent opera-
tion of NR/LTE Uu
bands/band combina-
tions and one NR/LTE
V2X PC5 band

RAN4 To specify band specific RF
requirements for the concur-
rent operation of NR Uu and
NR PC5, LTE Uu and NR
PC5, NR Uu and LTE PC5

TR 37.875, TS
38.101

Release 17 SI: Study on V2X ser-
vices - Phase 2

SA2 To study procedures for V2X
authorization and V2X com-
munication

TR 23.776

A new SCI format, format 1, is employed. In Modes 3 and 4, a transport block can be sent
either once or twice. In case of two transmitting attempts, the information is sent over
another subframe, with the same structure: two SCIs and their corresponding PSSCH
transport block. In this case, the receiver also implements HARQ combining. Vehicles
select their sub-channels in Mode 4 using the sensing-based Semi-Persistent Scheduling
(SPS) scheme specified in Release 14. Thanks to the semi-persistent reservation of
resources and the inclusion of the reselection counter and packet transmission interval in
the SCI, other vehicles can estimate which subchannels/subframes are free when making
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Table 2.4: Sub 6 GHz NR V2X bands

V2X operating
bands

Sidelink (SL)
Tx/Rx operating band

Flow - Fhigh [MHz]
Duplex Mode Sub carrier

spacing [kHz]
Supported

bandwidth [MHz]

n38 (Licensed) 2570 – 2620 TDD 15, 30, 60 10, 20, 30, 40
n47 (Unlicensed) 5855 – 5925 TDD 15, 30, 60 10, 20, 30, 40

their own reservation, which reduces packet collisions. However, it comes at a cost of
higher energy consumption due to continuous sensing.

2.3.4 NR V2X (Release 16)

To support a wide range of V2X applications with different quality of service requirements
and support scenarios with high vehicular density, 3GPP has continued the standardiza-
tion efforts on V2X communications through NR V2X in Release 16 and 17.

The requirements agreed for 5G V2X services and to be met by 3GPP standards are
described in [85], where design requirements for 25 different 5G V2X use cases are
presented. Thanks to the flexibility provided by 5G NR and the recent progresses
envisioned in NR V2X, the support for a wide range of applications is feasible with
NR V2X technology. The initial NR V2X design was developed in NR Release 16 SI [92],
and was then included in the NR Release 16 specification based on the NR V2X WI [93].
Like IEEE 802.11bd and 5G NR, NR V2X also considers the use of mmWave bands for
V2X applications, particularly for applications that require a short range and high to very
high throughputs. However, considering the limited timeline of 3GPP Release 16, NR
V2X mmWave operations were deprioritized in the 3GPP WI [93]. In this line, TR 38.885
conducted a limited study on beam management and concluded that it is beneficial for
sidelink, but also that in sub 6 GHz bands it is feasible to support V2X use cases without
sidelink beam management. Table 2.4 presents the sub 6 GHz operating bands for NR
V2X, which is obtained from tables in [97] and [98].

The services specified for NR V2X range between 25 Mbit/s and 1 Gbit/s for data
rate, 90 % to 99.99 % for reliability, and 5 ms to 100 ms for latency, depending on the
use case [90]. Those latency requirements can not be met by Release 14 LTE C-V2X,
but they can be improved considering higher numerologies in NR. Also, the reliability
requirement of 99.99 % requires that NR V2X standardizes new enhancements at both
resource allocation and scheduling. Extensive details of NR V2X will be given in the
Chapter 7, Section 7.2.

2.4 Conclusions

In this chapter, we have discussed the technical background of the RAN technologies and
the procedures that are the main focus of this thesis. In Section 2.1, we have provided
an overview of the intra-LTE handover procedure, highlighting different handover events,
measurement quantities, and the parameters that control the handover initiation. We
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have shown that irrespective of the handover event type that triggers UE handover
measurements, the criterion to select the next eNB is solely based on the strongest signal
strength. This approach is maybe easy to implement in actual products. Still, it is not
enough to handle challenging propagation scenarios, e.g., the one presented and deeply
investigated in Chapters 3 and 4 of this thesis.

Then, Section 2.2 has covered the background of the unlicensed technologies, specifically,
the LAA and LTE-U. Between them, LAA is believed to be a technology whose channel
access mechanism is like WiFi; therefore, it could provide better fairness. However, based
on the details of the LBT procedure of LAA provided in this chapter, one could easily
spot the differences between the LAA and WiFi LBT procedures. For example, LAA’s
method to increase its contention window size could hamper its fair coexistence with
WiFi, as this thesis explains in detail in chapter 5.

Lastly, Section 2.3 has introduced V2X technologies, emphasizing mainly those based
on the 3GPP Sidelink/PC5 interface. We have highlighted that a V2X UE, based on
release 14 and onwards, continuously senses the medium to perform sensing-based semi-
persistence scheduling. However, it consumes more energy than random resource selection
that does not perform sensing. Moreover, given real-world dynamic scenarios, where the
traffic density may vary over time, a UE might not always need to sense the medium
continuously. Therefore, it leaves space for a solution that could dynamically regulate the
sensing based on the surrounding environment of the UE. One such solution is presented
in Chapter 8 of this thesis.
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Chapter 3

Machine Learning Based Handover
Management

This chapter serves as an initial proof of concept for the wider research conducted on
the HO management in chapter 4 of this thesis. In particular, in this chapter, we focus
on the HO management problem in cellular networks, and we argue that an ML-based
solution would be a beneficial approach to follow, since in this kind of problem, the
experience of other users in similar propagation conditions, could be highly useful to
make the right decision. We address the validation of the concept first in a simple
scenario with 3 cells, and when this is tuned and validated, we extend the solution to a
wider multi-cell more realistic cellular network. We also extend the neural network model
to address scalability problems in wider scenarios. The more general solution is discussed
in chapter 4. In this chapter, we focus on the simple scenario, providing some interesting
simulation results, which makes it evident that the SOTA handover algorithms are not
sufficient to tackle challenging propagation scenarios. To solve this problem, we present
a smart handover management solution, which could enhance the target cell selection
capability of a handover algorithm, taking into account the user’s perceived QoE. In
particular, the handover algorithm learns from its past experience, by using machine
learning techniques, how the handover decision to a specific cell influences the QoE of the
user. According to our approach, the serving eNB gathers some measurements reported
by the UE, which provide information about the radio link conditions of the serving and
neighbour eNBs, as well as the QoE of the UE resulting from the past handover decisions.
We use a supervised learning approach based on a simple neural network to predict the
most appropriate cell for handover. After training has been accomplished, the handover
algorithm is able to select a target cell for handover that could provide a better QoE
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despite an initially weaker signal upon handover decision. As already mentioned, it is
worth repeating that the results presented in this chapter serve as the basis for our final
and more complete HO scheme detailed in the next chapter.

The rest of this chapter is organized as follows: In Section. 3.1 we discuss the related work.
Section. 3.2 presents the details of the new features developed in ns-3 and the simulation
scenario built using these features. Section. 3.3, presents the system description and the
technical specification of the proposed scheme. Then, Section. 3.4, provides the details of
the neural network setup and the results of the performance evaluation of the proposed
scheme. Finally, Section. 3.5 concludes the chapter.

3.1 Related work

Recent surveys on the application of ML learning in mobile networks [99] and their
self-organization [100] show that the ML-based solutions would play an essential role in
the management of 5G and beyond networks. In the context of HO management, we
identify three high-level potential ways to optimize its functionality. The first approach
to optimize the HO process is to use model-based solutions based on Markov Decision
Process (MDP). The objective, in this case, is to find the probability distribution of taking
optimal HO decisions given the input state, which corresponds to a UE state before the
HO. In [101], the authors proposed a Viterbi algorithm to find an optimal HO policy
to maximize the UE average capacity. The algorithm works under the assumption that
the position of the eNBs, the UE trajectory, and the channel characteristics are known
a priori. The work in [102] proposes a cell selection procedure based on the Partially
Observable Markov Decision Process (POMDP). Specifically, the POMDP predicts the
neighboring cells’ loading information to optimize the HO rate while maintaining the
system throughput. Authors in [103], similarly to [101], proposed a context-aware HO
policy, which optimizes the Time-to-Trigger parameter for HO by assuming the knowledge
about the UE trajectory. These proposed solutions are based on the assumptions of
having strong knowledge about network dynamics, which in turn are hard to capture in
real networks. Therefore, model-free solutions which optimize the HO process without
this previous and complete information are worth investigating.

The second approach considers then model-free solutions for HO parameter tuning. The
idea is to adaptively fine tune the HO parameters defined in the standard to identify the
strongest target cell, e.g., Hysteresis, Time-to-Trigger, HO Margin, and Cell individual
Offset, by employing ML algorithms. In [21], a Q-learning approach is proposed to
optimize the HO parameters. In particular, the model finds the optimal values of
Hysteresis and Time-to-Trigger parameters to reduce the radio link failure and ping pong
effects. In [22], a method to adaptively select a Hysteresis value to reduce the number of
unnecessary HO is proposed. Specifically, it uses a predefined threshold value of RSRQ
to adapt the Hysteresis value as per the UE measurements. Authors in [23], proposed
a fuzzy logic controller, which finds an optimal value of the HO Margin parameter to
reduce the signaling cost caused by HO.

These approaches that aim to select the strongest cell, based on the optimal tuning of
HO parameters, have the shortcoming of considering the strongest signal for target cell
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selection before the HO. Furthermore, these schemes do not consider a long-term vision
of performance indicators in the decision, in terms of, e.g., the perceived QoE, after the
HO. For example, in urban scenarios where the HO to the strongest neighbour cell is
successful, but shortly after the transmission is deeply affected by the presence of an
outage, these HO approaches could fail to provide a satisfactory solution. Thus, they are
likely to severely degrade QoE performance, due to the unpredicted cell outage.

As a result, the third approach to HO management, which is also the one considered in
this thesis, is a data-driven approach. It aims at using experience extracted from network
data to include the vision of long-term optimization in the HO management decision.
In [24], the authors proposed a hybrid HO controller based on deep reinforcement learning
to minimize the HO rate while maintaining a certain level of system throughput. In
particular, the work uses a Deep Neural Network (DNN), composed of LSTM units,
which are trained following the supervised learning approach to predict the probability of
selecting a target cell. It uses a dataset consisting of RSRQ measurements by simulating a
standard compliant HO algorithm before executing the reinforcement learning approach.
Similarly, in [25], a DNN is trained to solve the multiclass classification problem. In
particular, it uses the RSRP measurements reported by the UEs to their serving next-
Generation Node B (gNB). Then, using the softmax activation function for the output
layer of the trained model, it computes the probability for a neighbouring gNB to become
the next serving gNB. The smart HO approach to select the next serving eNB presented
in this thesis, is different from what is proposed in [24], [25]. Specifically, it uses the
regression to predict the perceived QoE (i.e., file download time) for each potential target
eNB, and it handovers to the one, which could provide a better QoE. Moreover, the inputs
to our model, thanks to deep ML architecture, include not only RSRP and RSRQ, but
also many other measurements from the whole protocol stack, as it will be discussed in
the next chapter.

3.2 Simulation scenario implementation

To support the design of these advanced mobility management solutions, it is important
to be able to simulate handover scenarios with the complex propagation conditions to
explore better the limitations of SOTA HO algorithms and to evaluate the performance
of alternative candidate algorithms. We base this study on the LTE module of ns-
3 . It includes key aspects such as handover, fractional frequency reuse and support for
simulating the buildings in a scenario. However, when conducting our research, it was not
possible to use LENA to simulate coverage holes. Additionally, the preliminary evaluation
of a machine learning approach to mobility management would be more easily performed
by evaluating offline a large set of different alternative handover decisions; unfortunately,
this is not possible with the handover algorithms currently implemented in LENA, which
always select the same target base station when facing the same handover conditions. To
overcome these limitations, in this thesis, we propose the following contributions:

1. A model for the simulation of obstacles potentially blocking the propagation of
radio signals.
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Figure 3.1: Sequence diagram for calculating obstacle Path Loss

2. A deterministic handover algorithm that can be used for the Offline-Evaluation of
learning-based handover algorithms.

3. Two simulation scenarios for handover in the presence of a coverage hole due to an
obstacle.

The source code of this module and simulation is publicly available at1 for use and
reproduction of results.

3.2.1 New Developed Features in ns-3

This section describes the newly implemented features in ns-3 for this study.

3.2.1.1 Obstacle Model

Our approach to implement the obstacle model and to achieve the desired behavior of
coverage holes is to use the existing “Buildings” module of ns-3 [104]. The structure of
these buildings is defined by a 3D axis-aligned box defined by the “Box” class. By doing
so, we take advantage of their current functionalities, e.g., maintaining the list of all the
obstacles in a simulation, assigning the unique id to an obstacle and using the function
“IsInside”, provided by the Box class, which indicates whether a node is inside the box
or not.

The coverage holes are simulated as follows: if the line segment between the two nodes
intersects the box, or any node is located inside the box, then the transmission is
attenuated by adding a significant propagation path loss value. To implement this

1https://github.com/ZorazeAli/ns-3-dev-obstacle
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Figure 3.2: Logic to trigger deterministic handover
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Figure 3.3: REM for simple scenario

approach, we need to check whether the signal between the two nodes is blocked by
building or not, but ns-3 did not provide any function for this. Therefore, we extend the
functionality of the “Box” class to check the intersection of a line segment between two
nodes and the box, based on [105], considering a 3D box. Based on this new feature,
we implemented an obstacle path loss model in this thesis that is inherited from the
“propagation-loss-model” class to chain our path loss model with existing path loss
models. This new path loss model iterates through the list of all the obstacles created
during the simulation to check for an intersection between the line segment and the box.
Upon the intersection, it adds the path loss and returns the received power, as shown in
Fig. 3.1.

3.2.2 Deterministic Handover Algorithm

In this thesis, we have implemented the A2 event-triggered deterministic handover
algorithm. The purpose of this deterministic handover algorithm is to allow the offline
evaluation of the performance of different handover algorithms for each possible target
eNBs. The important point while implementing any handover algorithm in ns-3 is the
configuration of the UE measurement report for the handover. Our handover algorithm is
based on the Reference Signal Received Power (RSRP), which is configurable by setting
the triggerQuantity attribute of the UE measurement report. The RSRP threshold value,
for which the A2 event is triggered, is also configured through this report. When the
algorithm receives the A2 event-based measurement report from the UE, it calls the
function EvaluateHandover. This function first checks the availability of neighbor cells
for handover. If it finds any neighbor and its information e.g. the cell id and RSRP, it
checks if the TargetCellId is assigned by the user or not. If it is, the BestNeighborCellId
is set equal to the user-defined target cell id, and the handover is triggered. In case the
user does not define the target cell id, it triggers the handover in a non-deterministic way
toward the strongest neighbor, as shown in Fig. 3.2.
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Table 3.1: Simulation network parameters for the simple scenario.

Parameter Value
System bandwidth 5 MHz
Inter-site distance 500 m
Handover algorithm A2-RSRP
Adaptive Modulation & Coding Scheme

Vienna [106]
SINR computation for DL CQI Control method [106]
eNBs antenna type Isotropic
Number of macro eNBs 3
eNBs Tx Power 46 dBm
Number of UEs in the system 3

Mobility model
RandomWalk2dMobilityModel
Mode: Time,
Time: 100 sec,
Distance: 4000 m

Path loss model Cost231
eNB Antenna height 30 m
Obstacle height 35 m
Traffic TCP Bulk File Transfer
File size 15 MB
Simulation time 100 sec

3.2.3 Simulation scenarios

This section provides the details to configure the essential parts of our simulation to
achieve the desired scenario topologies. Specifically, we build two scenarios, 1) a simple
scenario that is used for a proof of concept study related to the HO management,
presented in the next section, and 2) an extensive simulation scenario that is used to
build a wide and complete database, which we consider the basis of the experience that a
smart network management solution able to construct to take smart HO decisions in such
a scenario. As mentioned above, in this chapter, we focus on the research work performed
using the simple scenario; therefore, in the following, we present only the details about
this scenario and leave the extensive scenario to be discussed in the next chapter.

3.2.3.1 Simple scenario

The simple scenario topology consists of three macro eNBs, 3 UEs and an obstacle
partially obstructing the coverage by eNB2, as shown in the REM in Fig. 3.3. Each
eNB is serving one UE performing TCP file download from the remote host, where
UE1 (initially attached to eNB1) is moving around, and the other 2 UEs are stationary.
The mobility of UE1 is generated by tuning the parameters (see Table. 3.1) of the
RandomWalk2dMobilityModel in ns-3 in such a way that it picks a fixed starting point
close to eNB1 and a random angle to move away from the source eNB following the
straight line. The simulation consists of 200 runs of a deterministic handover. Each run
is repeated twice, first targeting eNB2 and then eNB3 to measure the QoE. For every
simulation run, UE1 picks a fixed starting point close to eNB1, and a random angle in the
range of [+X,−2X] to move away from the source eNB following the straight line, where
X is the angle from eNB1 to eNB3. The rationale behind selecting TCP file download is
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Figure 3.4: The proposed two level Neural Network Scheme

that TCP is the widely used transport protocol for many interactive internet applications,
e.g., the Web. Secondly, investigating the QoE of the user under challenging handover
scenarios while introducing a significant load to the network through file download could
yield true insights of the mobility management capabilities of the network. The complete
set of simulation parameters is described in Table. 3.1.

3.3 FFNN based HO management

3.3.1 System description

As we stated above, our primary objective is to design a scheme which can enable the
handover algorithm to understand whether the target eNB for handover would be able to
provide a consistent QoE to the user or not. As a result, the handover algorithm could
identify those eNBs which are affected by the undesirable radio propagation scenarios in
the network, e.g, coverage unavailability of an eNB caused by an obstacle.

Our proposed scheme, which is depicted in Fig. 3.4, consists in the following: the source
eNB gathers the time series of UE measurement reports before the handover, which
contains the RSRP and RSRQ of the source and neighbour eNBs. The eNB also collects
the information on the QoE of the user as a result of past handover decisions. In
our scheme, this QoE is quantified by two metrics, 1) the probability of successfully
downloading a file and 2) the file download time for completed downloads. Therefore,
we propose to use a two level neural network model to estimate these metrics, as shown
in Fig 3.4. At level 1, the first neural network (NN1) is trained using UE measurements
as input, and the past QoE in terms of download complete/not complete as output. On
the other hand, at level 2, the second neural network (NN2) is trained using as input
only those UE measurements for which the file download was completed. Finally, the file
download time is the output of the NN2. We propose to use two single-output neural
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networks instead of one multiple output neural network, as it is proven that this leads
to better results [107]. Moreover, to train both the models , i.e., NN1 and NN2, we use
the offline-training approach explained in Section. 1.3.2. Once the training is completed,
the handover algorithm of the source eNB uses these two trained NNs to determine
the expected QoE to be achieved through all the potential target eNBs. The handover
algorithm then triggers the handover to the target eNB for which the file download is
expected to finish successfully, and in case, there are two or more potential target eNBs, it
handovers to the eNB with the lowest value of the estimated file download time. Related
to the selection of time to download as a QoE metric, it is motivated by the fact that
it is one of the standardized Key Quality Indicator (KQI) for the file transfer service
in mobile networks [108] [109]. In the literature, some models are based on subjective
Mean Opinion Score (MOS) to derive the QoE; however, all of them depend on end-
to-end throughput perceived by the users [110]. On the other hand, following a similar
methodology taken in [111], we take a more generalized approach, i.e., instead of using
a specific MOS model for file transfer service, time to download has been used as an
indicator of the QoE perceived by the users.

3.3.2 FFNN design

In this subsection, we provide a brief overview on important technical specifications of
our neural network. For a more detailed description, the reader is referred to the vast
available literature on neural networks (for instance, [107], [67], [66]).

For the implementation of our proposed scheme we use a FFNN with single-hidden
layer [67], also known as two-layer FFNN, where the number of layers refers to the
number of layers with adaptive weights. We choose FFNN because of its ability to
model both linear and non-linear functions between inputs and outputs. Additionally,
the model obtained with FFNN is more compact and fast to evaluate than other machine
learning techniques such as, support vector machines, with the same generalization
performance [66]. In general, when working with FFNN with supervised learning [67],
such as in our case, one has to build a training database of input and output vectors
stored in rows and columns, also known as dataset. This dataset can be represented as,

D = {(X1, Y1), . . . , (XM , YM)} (3.1)
where X and Y are the input and output vectors of FFNN and M is the total number of
rows in a dataset. Let the index r denote the row number of our dataset and let t denote
the time at which the UE measurement report was received. The input vector X can be
written as,

Xr=1 = [x1(t), x1(t− 1), . . . , x1(t− L + 1)]
...

Xr=M = [xM(t), xM(t− 1), . . . , xM(t− L + 1)] (3.2)

where L is the memory of the Neural Network. In Eq. 3.2, xr(t) is one UE measurement
report received at time t, which can be formulated as follows,

xr(t) = [P1(t), Q1(t), P2(t), Q2(t) . . . , PN(t), QN(t)] (3.3)
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Figure 3.5: Architecture of Neural Network with 12 inputs, 1 hidden layer, 2 bias and 1 output

Pi(t) and Qi(t) are the RSRP and RSRQ of cell i, respectively, and i = 1, . . . ,N, where
N is the total number of cells (i.e, serving cell plus the number of neighbour cells).
Finally, the output vector Y for NN1 and NN2 contain the values of the QoE metric. For
NN1, these values are stored in the form of logical values of 0 and 1, where 0 indicates
“download not complete” and 1 indicates “download complete”. On the other hand, for
NN2, these values are the download time in seconds for the completed downloads. The
task faced by NN1 is a classification problem where the FFNN estimates to which class
(0 or 1) the given input belongs. Therefore, we choose the softmax function [66], as an
activation function of the output layer of NN1. By using softmax activation function, we
force the coupled output of the FFNN to sum to 1, so that they represent a probability
distribution across discrete mutually exclusive alternatives. On the other hand, the task
faced by NN2 is a regression problem, to estimate the file download time. In this case,
we use a logistic function also known as logistic sigmoid activation function [66].

The purpose of using the UE measurements as input is due to the fact that, these timely
reported UE measurements change according to the UE position. So, if the UE is moving
towards any of the available target eNBs they can provide the information about the
possible UE trajectory. Therefore, by training the FFNN with these measurements as
input and the QoE metric as output, the FFNN will learn about those mobility patterns
which caused the degradation of QoE after the handover is executed. We note that 3GPP
standards already contemplate the upload of these UE measurements, as specified for the
Minimization of Drive Test (MDT) [69].
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Figure 3.6: Average Download Time for Completed Downloads (a), Number of Completed
and Uncompleted Download Attempts(b) vs Range of Angles.

3.4 Performance Evaluation

3.4.1 Implementation of the Neural Network

For the implementation of FFNN, we used a publicly available nnet package of R [112],
which is a single hidden layer FFNN. The dataset D, containing the UE measurements,
is randomly divided into a training set (containing 75 % of the data) and a testing set
(containing 25% of the data). All the input and output values are normalized in the
range [0,1]. This normalization allows for a faster training process and more accurate
estimations [113]. Fig. 3.5 shows the implemented FFNN. The structure is based on a
single hidden layer of 4 neurons and 12 neurons in the input layer. Referring to Eq. 3.2
and 3.3, here we consider N=3 and L=2. We fix the maximum number of iterations to
1000 for the training phase. We note that, depending on the complexity of the FFNN
one should choose a maximum number of iterations to avoid the early stop of the training
process before the algorithm converges. Moreover, we fix the weight decay parameter to
0.0001 and perform a 3-fold cross-validation test that uses Normalize Root Mean Square
Error (NRMSE) to select the final FFNN model. It prevents over-fitting, i.e., when
FFNN achieves the ideal minimization of the error between the estimated and the actual
output of the training set. In this situation, the FFNN loses its generalization property
and fails to predict the output of the testing dataset. Another important factor to keep
in mind while using FFNN with R is the randomness. For every new seed, the weights
of the FFNN take random initial values, so the performances may vary. Additionally,
every seed results in different partitions of the dataset into training and testing sets.
To account for this randomness, we average the results over 100 seed values to attain a
statistically significant evaluation.
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Figure 3.7: Performance comparison of FFNN vs. SOTA and an optimum scheme for
[−60◦, 30◦]

3.4.2 Results

We first present some preliminary quantitative results from the deterministic handover
campaign as described in subsection 3.2.3.1. The reason for providing these results is
to support our argument for the need of a smarter handover algorithm with respect to
SOTA approaches in challenging propagation scenarios. To evaluate the performance of
the handover algorithm, as a function of the angle with which the UE crosses the affected
outage region, the simulation area is divided into three ranges of angles, as shown in
Fig. 3.3. Fig. 3.6 (a) and (b), respectively, show the results of the average download
time for completed downloads and the number of completed/uncompleted downloads for
the complete range of angles. Here we assume that the download time of incomplete
downloads is equal to the maximum simulation time, i.e., 100 sec. From Fig. 3.6(a),
it can be observed that for the range [+30◦, 0◦], none of the downloads get completed
when the handover is done to eNB2, as the UE experiences poor channel quality due
to its distance from the source cell and the high exposure to the affected coverage zone.
On the other hand, in the range of [−30◦, −60◦], none of the downloads is completed
when handover is done to eNB3, as in this case as well, the UE experiences poor channel
quality due to its distance from the source cell and the small coverage outage area due to
the obstacle between eNB3 and UE. As we can notice, the angle range [0◦, −30◦] is the
range where the handover decision has a very high impact, as SOTA handover algorithms
based on the A3 event would provide eNB2 as the strongest candidate for handover, and
doing so may cause an increase in average download time and the number of incomplete
downloads. On the other hand, a handover to eNB3 would not only decrease the average
download time but would also decrease the number of incomplete downloads.

We present the performance evaluation of our machine learning-based handover scheme,
compared to the SOTA approach and to an optimal handover scheme, which always
selects the best eNB to download the file successfully, with the lowest possible delay. In
this way, we can see how close our handover algorithm’s performance is to the optimal
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Table 3.2: Comparison of handover schemes for [−30◦, 0◦]

Handover Scheme Completed Downloads(%) Avg.Download Time(Sec)
SOTA 54.48% 50.51

Proposed 95.37% 42.51
Optimum 100% 42.39

one and how much improvement has been achieved by our scheme over SOTA handover
algorithm. We note that, here we follow the Offline-Evaluation procedure described in
Section. 1.3.2. As shown in Fig. 3.7, the performance of all the schemes in terms of file
download time follows the same trend till angle −24◦. After this angle, the download
time for the SOTA handover scheme starts increasing, as it keeps seeing eNB2 as the
strongest neighbour. The UE, though, gets more exposed to the affected coverage zone
and experiences loss of data and huge delays due to long TCP timeouts, which finally
leads to a high percentage of incomplete downloads. On the other hand, the machine
learning-based scheme performs very well in the same range of angles, with similar trends
to those shown by the optimal handover scheme. We only appreciate sporadic incomplete
downloads due to some loss in accuracy of the FFNN. From Fig. 3.7, we can also observe
that the divergence in the performance between the handover schemes occurs in the range
of [−30◦, 0◦]. Therefore, in Table 3.2, we show results in terms of completed downloads
and average download time only for this range of angles. From the results, we can observe
that using the ML-based handover scheme, we achieve a 75% increment in the number
of completed downloads and a decrease of 15.84% in file download time, with respect to
the SOTA handover scheme. To summarize, the performance of our handover scheme is
better than the SOTA handover scheme in the challenging propagation scenario presented
in this study, thanks to its ability to learn all the UE mobility patterns that affect the
QoE of the user.

3.5 Conclusions

This chapter presented a proof-of-concept study targeting the complexity encompassing
infrastructure-based single-technology axes. Specifically, we have presented a simple
machine learning-based handover scheme for improved QoE in LTE scenarios with
challenging propagation conditions, e.g., in the presence of obstacles in the coverage
area of eNB. Although using a simpler scenario compared to the one presented in the
next chapter, this scheme was proposed to answer our first research question (RQ1):
“How to use AI/ML in mobility management to achieve better QoE?”. The proposed
solution uses a two-level FFNN for the implementation of learning capabilities. Using
our scheme, the handover algorithm can select the eNB that is expected to yield better
QoE, based on the experience gained from past handover decisions. Our performance
study showed that our scheme could achieve performance close to the optimal one in
challenging scenarios. Therefore, it substantially improves QoE in terms of the number
of successful downloads and average download time with respect to SOTA handover
schemes, which make decisions based on signal strength, e.g., A3 event-based handover
algorithms.
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Chapter 4

Multi-Task Learning for Efficient
Management of Beyond 5G Radio
Access Network Architectures

In the previous chapter, we focused only on the single task HO management use case,
and used a simple FFNN to solve the regression problem and estimate the QoE of a
user. The obtained results proved that the learning approach outperforms traditional HO
solutions. This chapter further extends our research horizon, in which we use the multi-
task learning paradigm. To this extent, the ML-based models proposed in this chapter
address the HO management use case and also tackle the second use case of the initial
MCS, targeting a more realistic and heterogeneous simulation scenario. In particular,
our objective is to prove the potentiality of MTL to address RAN automation of multiple
tasks, which have to function in parallel during the regular operation of the RAN. We
propose different deep architectures to address a set of tasks through individual or shared
models. Among them, we study the effectiveness of Auto Encoder (AE) [114] to reuse the
compressed representation of the data for multiple heterogeneous use cases [115] [116].
This approach can significantly reduce the implementation and computational complexity
of the learning architectures. To prove this concept, we propose to target, without loss
of generality, two RAN use cases: 1) HO management and 2) the selection of the optimal
initial MCS.

We address both use cases, first through single-task individual and then through multi-
task shared models for the sake of complete comparative study. To address the use cases
individually, we use an LSTM RNN to take advantage of the temporal characteristic
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of the data extracted from several and extensive simulation campaigns using the LTE
module of ns-3 [52]. The LSTM is designed to solve a regression problem to estimate the
QoE of the users. We obtain excellent prediction errors, and with these results, we can
prove that the learning approach outperforms traditional HO solutions and conservative
approaches to select the initial MCS. Successively, we build a different architecture where
the two RAN tasks share and train a common AE, based on MTL principles. The same
compressed data output of the AE is used as input to two different MLPs, implementing
the regression of the particular parameter that we want to estimate for the two use
cases (i.e., the HO management and initial MCS). Both MLPs offer excellent regression
results similar to the one obtained using LSTM. This means that the AE successfully
reduces the dimensionality of the data without losing meaningful information and network
performance, which consequently facilitates the sharing of knowledge between different
tasks. Therefore, the same architecture can be used to address multiple parallel RAN
uses cases.

In addition to that, we go more deeply into the study by comparing two different ways
of learning. In the first case, the parallel MTL case, we learn the shared model by
building a shared database for all the use cases we plan to address. This type of
database is viable when we know the needed use cases beforehand. However, RAN
management problems can be more complex and continuously require adding new use
cases and on-demand tasks to the design without retraining previous tasks from scratch,
or compromising their performance. As a result, there is a need for the MTL shared
model to be flexible and be able to gradually add more tasks to its knowledge without
forgetting previously known tasks. For that, we also propose a second incremental MTL
scheme, based on the continual learning paradigm [117], where the training database
is not built beforehand, but a new task can be incorporated separately while previous
task knowledge is preserved. This approach is much more flexible and adequate for real
networks and provides clear implementation advantages [118]. Finally, the contributions
of this chapter are the following:

• Design of ML models based on single-task and multi-task paradigms to address
two RAN use cases1. In particular, we propose two models based on two different
multi-task techniques, i.e., parallel and incremental learning.

• Performance evaluation of the proposed solutions by comparing the results with
3GPP standardized HO and initial MCS selection schemes.

• To encourage the reproducibility of the proposed models and results, we provide
in-depth details of the simulation scenario and steps to create the databases using
an open-source simulator ns-3.

Last but not least, building upon the above contributions, we are advancing the SOTA
and related work in the following aspects:

1In this study, we select the two RAN use cases to demonstrate the applicability of the proposed ML
models in a concise manner. Therefore, these models can be used to address other or more than two
RAN use cases.
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• We present a holistic solution to handover based on download time that is not
limited to adjusting typical HO parameters but considers previous experience to
select a target eNB to improve users’ QoE.

• Extending our previous work in chapter 3, we introduce an additional RAN use
case, i.e., initial MCS selection. Compared to the studies in the literature that
lean towards treating these two use cases separately, in this chapter, we study the
solutions that allow learning concurrently these RAN tasks based on the MTL
learning paradigm.

• We study two possible solutions for MTL in the context of solving RAN problems,
one based on parallel learning and another based on incremental MTL, which
increases the learning pace and minimizes the delay to deploy RAN solutions.

• We study the performance based on the proposed solutions in comparison to 3GPP
standard aligned baselines.

The rest of this chapter is organized as follows. In Section 4.1 we discuss the related work.
Section 4.2 introduces the system overview and the scenario that we use for synthetic data
generation. Section 4.3, presents the procedure we adopted to generate the synthetic data.
Section 4.4 proposes the RNN models for single-task and multi-task learning. Section
4.5 discusses the training of the proposed architectures and the system level performance
results. Finally, Section 4.6 concludes the chapter.

4.1 Related Work

In Section 3.1 of the previous chapter, we already extensively reviewed the literature
on HO management and classified it into three categories. On the other hand, to the
best of our knowledge, related work for the initial MCS selection is limited to the usage
of reinforcement learning. For example, [119] proposed a solution, that learns the best
MCS given the SNR at a specific channel state. Differently from [119], the authors
in [120] present a solution that uses Channel Quality Indicator (CQI) as a metric for
the state representation. In this case, the authors argue that fine discretization of SNR
with discrete MDP leads to a higher state space, which increases the convergence and
exploration time. The authors in [121] proposed a deep reinforcement learning approach
to overcome the issue of a large state space highlighted by [120]. They used SNR, SINR,
the previous action, and its immediate reward for the state representation.

In this thesis, differently from the above presented solutions in [21–23] and [24, 25, 101–
103, 119–121], we aim to demonstrate that different RAN use cases, such as HO and
initial MCS selection, can be considered as related tasks. Therefore, these tasks can be
jointly trained through shared models so that each task can benefit from other auxiliary
tasks. Such an approach offers multiple implementations and learning advantages like
reduced training effort, improved data efficiency, reduced overfitting through shared
representations, and fast learning by leveraging auxiliary information. MTL has already
been recently considered in mobile communications literature. In [122], multi-task Sparse
Bayesian Learning (SBL) is applied for learning time-varying sparse channels in the uplink
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for multi-user massive MIMO systems. Results show that it is possible to considerably
reduce the complexity and the required time for the convergence with a negligible sacrifice
of the estimation accuracy. In [123], MTL is used to train a shared model for both
traffic classification and prediction at the edge of the network. Classification accuracy
and prediction error benefit from the shared model and return better performance with
respect to single-task neural network architectures. In [124] multi-task DNN framework
for Non-Orthogonal Multiple Access (NOMA), namely DeepNOMA, has been proposed
to treat non-orthogonal transmissions as multiple distinctive but correlated tasks. To the
best of the authors’ knowledge, this work is the first one in literature deeply discussing
and proving the concept of MTL for the efficient automation of the RAN in future mobile
networks, improving so the ability to make connections between facts, observations,
patterns, and other tasks from which they learn.

4.2 System Overview

This section first describes the RAN use cases that we handle using deep learning
solutions. Then, we introduce the target simulation scenario, which is depicted in
Fig. 4.1 [125].

4.2.1 Target RAN use cases

Considering the high-level objectives, we have selected two RAN use cases to be addressed
using a supervised learning approach: 1) HO management and 2) initial MCS selection.
In a traditional network, these use cases are handled at Layers 3 and 2 and are treated
separately. For this reason, one of the motivations behind selecting the second RAN use
case (i.e., initial MCS selection) is to evaluate the efficiency of MTL-based models that
effectively use our proposed dataset, spanning multiple layers, to learn these tasks jointly.

• HO management: We propose a HO management approach, which allows HO
to the cell suggested by a supervised learning algorithm capable of predicting a
QoE indicator through a regression procedure. The supervised learning algorithm
exploits the experience extracted by data already available in the network (e.g.,
the Minimization Drive Test database [69]). Based on this, it detects the most
appropriate cell to HO, as a function of the future expected QoE perceived by the
user, instead of the RSRP or the RSRQ as the standard suggests. We model the
problem as a regression problem, where we aim to estimate the necessary time to
download a file transmitted over a Transmission Control Protocol (TCP) transport,
while the users move around in a realistic multi-cell scenario challenged by deep
outage zones. Finally, it is to be noted that this solution has to be considered a
component of a more sophisticated HO algorithm that also includes other aspects,
e.g., load balancing, QoS requirement of a UE. However, we think that including
these additional components is out of the scope of this thesis and, undoubtedly,
would be interesting for future work.
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Figure 4.1: REM for extensive scenario

• Intial MCS selection: A standard approach in cellular networks is that when the
UE first switches to the CONNECTED RRC state, the initial selected MCS follows
a conservative approach that guarantees that the initial transmissions go through.
As a result, the lower MCS is usually selected (i.e., 0). We propose using knowledge
from data reported by the users to choose an initial MCS in an optimal and non-
conservative way to avoid wasting radio resources in the initial data exchange.

4.2.2 Simulation Scenario

Generally, a more realistic outdoor cellular scenario is more complex because it consists of
several eNBs and UEs, and maybe, more than one obstacle when compared to the simple
scenario that we presented in the previous chapter (Subsection. 3.2.3.1). However, an
extensive simulation scenario can help build the ground to justify the use of AI/ML-
based RAN solutions in real networks. Therefore, in this chapter, we consider a complex
and realistic simulation scenario.

In this scenario, we consider a macro cell outdoor scenario, but different from the simple
scenario, it is a network consisting of three-sectorial eNBs. A cluster of UEs is placed in
each sector at a fixed distance from the centre of a cell, in which the UEs are dropped
at random positions. Since, in this scenario, we use TCP as the transport protocol, such
deployment of the UEs guarantees to establish a TCP connection between the remote host
and the UEs. The UEs start moving after receiving the first packet, following a mobility
pattern resulting from configuring the parameters of the RandomWalk2dMobilityModel
in ns-3, as we did in the simple scenario. In particular, for every simulation run, a
UE picks a random starting position in the cluster and a random angle in the range of
[0◦ to 360◦] to move away from the source eNB following a straight line. To increase
the communication challenges in the scenario and to generate more random coverage
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Table 4.1: Simulation network parameters for the extensive scenario.

Parameter Value
System bandwidth 5 MHz
Inter-site distance 500 m
Handover algorithm A2-RSRP
Adaptive Modulation & Coding Scheme

Vienna [52]
SINR computation for DL CQI Control method [52]
gNBs antenna type Parabolic
gNBs antenna Beamwidth 70 degrees
gNBs antenna max attenuation 20 dB
Number of macro gNBs 21 (7 cells)
gNBs Tx Power 46 dBm
Numerology 0
Distance between the center points of the
UEs cluster and the cell 100 m
UEs Cluster diameter 50 m
Number of UEs in the system 210 (30 per sector)

Mobility model
RandomWalk2dMobilityModel
Mode: Time, Speed: 10 m/s
Time: 40 sec, Distance: 4000 m

Path loss model Cost231
gNB Antenna height 30 m
Obstacle height 35 m
Traffic TCP Bulk File Transfer
File size 1.5 MB
Simulation time 40 sec

patterns, we introduce obstacles in the scenario, which create multiple coverage holes,
as shown in Fig. 4.1 [126]. Each UE performs a TCP file transfer to a remote host in
Downlink (DL) and Uplink (UL) direction. The complete set of simulation parameters
is described in Table. 4.1 [125]. The above simulation scenario is then used to conduct
three extensive simulation campaigns, two for the single-task approaches, i.e., the HO
management and the initial MCS, and one for the multi-task approach jointly targeting
both use cases. Each of them is repeated a specific number of times, which depend on the
values of the parameters, i.e., the number of independent simulation runs, the maximum
number of neighbours to HO, and the number of initial MCS values evaluated. The data
obtained from these campaigns for each UE are stored in the form of a dataset, according
to the format described in the next section (Section 4.3). We will explain in detail the
use of this simulation scenario to build the databases for single and multi-task learning,
targeting the two use cases.

4.3 Data Generation

This section describes the characteristics of the collected dataset that we use as input
to our proposed deep learning solutions. We constructed this dataset by conducting
extensive simulation campaigns in the scenario presented in Subsection 4.2.2. As
mentioned at the beginning of this chapter, we model the HO management and initial
MCS problems as regression problems, where we need to estimate, respectively, the QoE
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Table 4.2: List of input and output features used to create the training and testing dataset.

Input feature
Layer Measurements
APP 1. Throughput UL

4. Throughput DL
2. Avg. number of rcvd packets UL
5. Avg. number of rcvd packets DL

3. Avg. number of rcvd bytes UL
6. Avg. number of rcvd bytes DL

RRC
7. Cell ID of serving cell
10. Cell ID of neighbour 1

.

.
31. Cell ID of neighbour 8
34. Total number of radio link failures

8. RSRP from serving cell
11. RSRP from neighbour 1

.

.
32. RSRP from neighbour 8
35. Total number of handovers

9. RSRQ from serving cell
12. RSRQ from neighbour 1

.

.
33. RSRQ from neighbour 8
36. First target cell ID to handover

PDCP
37. Total number of txed PDCP PDUs DL
40. Avg. PDCP PDU delay DL
43. Min. PDCP PDU size DL
46. Total number of rcvd PDCP PDUs UL
49. Min. value of the PDCP PDU delay UL
52. Max. PDCP PDU size UL

38. Total number of rcvd PDCP PDUs DL
41. Min. value of the PDCP PDU delay DL
44. Max. PDCP PDU size DL
47. Total bytes txed UL
50. Max. value of the PDCP PDU delay UL

39. Total bytes txed DL
42. Max. value of the PDCP PDU delay DL
45. Total number of txed PDCP PDUs UL
48. Avg. PDCP PDU delay UL
51. Min. PDCP PDU size UL

RLC
53. Total number of txed RLC PDUs DL
56. Total number of bytes rcvd DL
59. Max. value of the RLC PDU delay DL
62. Total number of txed RLC PDUs UL
65. Total bytes rcvd RLC PDUs UL
68. Max. value of the RLC PDU delay UL

54. Total number of rcvd RLC PDUs DL
57. Avg. RLC PDU delay DL
60. Min. RLC PDU size DL
63. Total number of rcvd RLC PDUs UL
66. Avg. RLC PDU delay UL
69. Minimum RLC PDU size UL

55. Total number of bytes txed DL
58. Min. value of the RLC PDU delay DL
61. Max. RLC PDU size DL
64. Total bytes txed RLC PDUs UL
67. Min. value of the RLC PDU delay UL
70. Maximum RLC PDU size UL

MAC
71. Initial MCS
74. Avg. MCS UL
77. Avg. RB occupied DL
80. UL CQI

72 Avg. TB size UL
75. Avg. MCS DL
78. DL CQI inband

73. Avg. TB size DL
76. Avg. RB occupied UL
79. DL CQI wideband

PHY 81. Avg. SINR DL
84. Avg. number of UL HARQ NACKs

82. AVG. SINR UL 83. Avg. number of DL HARQ NACKs

Output feature

APP 1. File download time [sec] 2. Initial DL throughput over 100 msec when a new RRC connection is established
after the second handover

expected from performing HO to a certain target cell, and the initial throughput obtained
by the UEs over a certain window. In general, when working with supervised learning,
such as in our case, one has to build a DataBase (DB) with enough data to train, test,
and evaluate the model. This dataset consists of input and output features stored in rows
and columns. For this purpose, we have identified features at the multiple layers of the
simulator protocol stack. These features can bring information to address not only the
targeted RAN use case, but also other RAN use cases that could be later considered. In
particular, we have organized these features per layer of the 3GPP protocol stack, and
presented them in Table 4.2 [125]. 3GPP already contemplates uploading a part of these
measurements, e.g., UE measurements, under the Minimization of Drive Test (MDT)
functionality [69]. All these measurements are gathered in the simulator, by leveraging
the ns-3 “tracing system”, which enables us to write them in text files as an output of
the simulation program.

Successively, we run multiple independent runs of the simulation scenario and then post-
process all the generated text files to build a unique DB in csv format. The rest of this
section describes the procedures to construct the DB for training and testing.

4.3.1 Procedure to build the database

For the purpose of evaluating and comparing single-task versus multi-task learning
performances, we build four databases, two for the single-task approaches, i.e., targeting
the two use cases individually, and two for the multi-task approach, considering the
parallel and incremental MTL possibilities. In the following, we explain the pseudocode
procedure to generate these databases.
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4.3.1.1 Single-task HO management database (DB1)

In a real-world scenario, a UE served by a gNB could HO to different potential neighbor
gNBs. It depends on the HO criterion. Examples of such criteria are the signal strength
before the HO, reported using UE measurements, as traditionally proposed in standards,
or the QoE after the HO, as proposed in this thesis. This decision is usually affected by
the UE’s mobility pattern. However, it may also happen that different mobility patterns
lead to the selection of the same target neighbour, because it is in all the cases identified
as the most suitable neighbour to HO to. A QoE oriented HO algorithm must take these
aspects into account. Therefore, the simulation campaigns to build the first DB (DB1)
consists of several deterministic HOs to learn the QoE, i.e., a file download time for each
UE, for the possible mobility patterns. The procedure to generate DB1 is illustrated
with the help of Pseudocode 1. Specifically, to consider both aspects discussed above,
the number of deterministic HOs to be performed by a UE of a gNB would depend on the
number of independent runs used to generate different mobility patterns of this UE for
each HO (first “for” loop of Pseudocode 1), and on the maximum number of neighbours
this UE manages to see (last “for” loop of Pseudocode 1). Then, these deterministic HOs
have to be simulated for every gNB (second “for” loop of Pseudocode 1) and every UE
attached to a gNB (third “for” loop of Pseudocode 1) in our simulation scenario. The
measurements resulting from these HOs will assist the proposed architecture in learning
the most reasonable neighbour to HO to. For this DB, we collect the data focusing only
on the HO management use case.

It is also worth mentioning that we engineered this deterministic HO procedure to collect
a synthetic DB in a reasonable time. However, in a real network, it would be possible to
collect real online measurements based on the realistic mobility of the UEs during their
lifetime while the network is normally operating.

4.3.1.2 Single-task initial MCS database (DB2)

The second DB (DB2), targets the initial MCS (i.e., DL) use case. The logic to construct
DB2 is somewhat similar to DB1. The steps to generate this DB are presented in
Pseudocode 2. In particular, in this case, we have to evaluate all, or a set of initial MCS
values a gNB could use for a newly connected UE. Moreover, since the MCS depends
on the SINR, which depends on the mobility of a UE, this DB should also consider this
aspect. Therefore, a simulation for each MCS value (second “for” loop of Pseudocode 2)
should be repeated for a number of independent runs (first “for” loop of Pseudocode 2) to
record the QoE resulting from different mobility patterns of a UE. Similar to DB1, this
has to be simulated for all the gNBs and their UEs in our simulation scenario (see, third
and fourth “for” loop of Pseudocode 2). For this use case, the selected QoE indicator is
the throughput achieved over a certain time window after a successful RRC connection
establishment. This window’s duration should be smaller than the configured DL CQI
reporting interval of a UE, which is typically 200 ms, after which a gNB adapts the MCS
based on the reported CQI.
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Table 4.3: Database parameters.

Parameter Value
Total number of input features 84
Maximum neighbours 8
UE measurement periodicity 200 ms
MCS values considered 0 (QPSK), 14 (16 QAM), 28 (64

QAM)

Total simulation runs
HO use case : 20
Initial MCS use case : 63
Multi-Task use case : 8

4.3.1.3 Parallel MTL database (DB3)

The procedure to generate the third DB (DB3) is the combination of the HO use case
(see Pseudocode to generate DB1), which is then extended to repeat for all the potential
initial MCSs for each gNB. This DB is generated using Pseudocode 3.

4.3.1.4 Incremental MTL database (DB4)

For the evaluation of MTL, we also consider a fourth alternative DB (DB4). This
DB is built incrementally based on the previous availability of DB1 and DB2. In
particular, it starts from DB1, and it incrementally adds data from DB2. With this
DB we aim to evaluate the capability of the proposed architecture to incrementally learn
a new task, once it has already been trained for other tasks. It would allow scalability
in the RAN management, since new RAN tasks could be incrementally added to the
architecture without additional implementation costs. All these databases could be
intuitively expressed in the form of a dataset, as detailed in the next subsection.

4.3.2 Resulting database

A DB generated using any of the aforementioned pseudocode can be expressed as a matrix
X.

X =


x1,1 x1,2 · · · x1,m

x2,1
. . . · · · x2,m

... ... xi,j
...

xn,1 xn,2 · · · xn,m

 (4.1)

where the feature vector of size 84 (i.e., the total number of input feature for our proposed
model) is xi,j ∈ X, 1 ≤ i ≤ n, and 1 ≤ j ≤ m.

The parameter m defines the duration of the time series to be analyzed (i.e., the number
of samples in the total simulation time, sampled with UE measurement periodicity),
which corresponds to the number of time steps that the LSTM processes to perform the
prediction. This number of time steps is the same for all the databases since we used the
same periodicity to collect the measurements. On the other hand, the upper limit of n,
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i.e., the total number of entries in each database is different for all the 4 databases, and
can be computed by multiplying the total number of UEs with the maximum neighbor
BSs and/or the initial MCS to explore, and the total number of simulation runs. During
the simulations, it may happen that some of the data are not available or are not valid.
For example, in the simulations used to build DB1 UEs might experience a RLF when
forced to HO to a BS with poor channel conditions. When this happens, we do not have
data since the user is not connected. On the other hand, for DB2 it might happen that
the initial throughput is not available due to the fact that the download is concluded
before the measurement could be taken (see Section 4.5.1.1 for more details). In these
cases, after removing the affected entries from the databases for the overall simulation
scenario, the total number of entries, i.e., the parameter n, are: 33,500 for DB1, 29,648
for DB2, 33,662 for DB3, and 31856 for DB4. Moreover, the total number of simulation
runs for each database are selected such that each database contains approximately equal
number of entries. The parameters, which dimension these databases are listed in Table
4.3.

Each simulation, where by one simulation we mean the individual run considered for 1
HO to a deterministic target cell and 1 initial MCS, lasts approximately 4,5 hours on
an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz platform. We have parallel processing
capabilities with 40 cores. The raw ns-3 traces occupy 250 MB per simulation. ns-3
traces have been merged in a unique file, where 1 row corresponds to 1 UE data, and the
columns are the features previously introduced. Each simulation, once post-processed,
occupies 11 MB.

4.4 RNN models for Single-Task and Multi-Task
learning

In this section, we discuss the RNN models to solve the proposed RAN use cases through
individual and joined deep learning models, following a traditional single-task learning or
an MTL approach. A RAN efficient management involves several RAN use cases, which
are usually handled by ML independent control loops. It means that a separate model
is optimized for each task, which results in several task-specific models. However, the
single-task approach presents many limitations in terms of coordination of the different
tasks, negatively interfering among them, and is challenging from the implementation
and computational perspectives. Specifically, we need models to perform multiple tasks
in parallel without significantly compromising each tasks’ performance. When it comes
to learning multiple tasks under a single model, MTL techniques have been proposed in
the literature as the solutions.

As mentioned in Section 4.3, the dataset consists of the measurements and traces
extracted with a certain periodicity from each layer of the 3GPP protocol stack, which
generates a time series of multivariate features. We believe that, by exploiting the
temporal characteristic of this data one could understand the impact of HO decisions
or select an appropriate initial MCS. Therefore, we propose different architectures,
employing RNN with LSTM units [127]. LSTM is a special kind of RNN, which
outperforms other ML approaches for time series analysis [128] [129], and solves the
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Figure 4.2: Single-Task: Many to one LSTM architecture.

problem of long-term dependency issue found in vanilla RNN [130]. Specifically, we
propose to model both target use cases as regression problems using LSTM-based
architectures where we aim to estimate, respectively, the time to download the file, and
the initial throughput over a certain time window.

4.4.1 Single-Task Learning

Fig. 4.2, shows the proposed multi-layer many-to-one LSTM architecture for single-task
solutions, which is individually designed and trained to address the two selected use cases
for study [125]. This model takes all the 84 features as input to infer the time to download
for the HO management and the throughput for the initial MCS selection use cases. It
processes them in a lag of 16800 data (i.e., 84 features x 200 time steps) samples with
multiple batches of fixed size. Moreover, during the course of this study we found this
single-task architecture to be very effective in handling the HO management use case, in
comparison to other options. Therefore, in this study, we leverage the same model for
the initial MCS selection use case but after fine-tuning its hyperparameters, as discussed
in the next Section 4.5.1.

4.4.2 Multi-task Learning

In MTL, multiple tasks, each of which can be a general learning task, i.e., supervised,
unsupervised, semi-supervised, or reinforcement learning tasks, are simultaneously
learned through a shared model. It is found that concurrently learning these tasks
can lead to performance and/or computational improvement compared to learning them
individually. MTL is inspired by human learning activities where people often apply the
knowledge learned from previous tasks to help learn a new task. It helps alleviating
well-known weaknesses of deep learning, like the large-scale data requirements and
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computational demand. We believe that it also brings an added value to the design
of an intelligent RAN, where multiple correlated tasks have to be executed concurrently.
The setting of multi-task learning is similar to transfer learning. The main difference,
though, lies in the fact that in MTL, there is no distinction among different tasks, and
the objective is to improve the performance of all the tasks, or reduce the computational
component of all the joined tasks together. On the other hand, in transfer learning, the
objective is to improve a target task with the support of source tasks. Learning separately
multiple tasks brings difficulties that are not present in multi-task learning. It may
happen that different tasks have conflicting needs. This may easily happen during the
optimization of the RAN, where different tasks may intervene over the same parameters
to optimize their functions independently. When the increasing performance of a model
of one task hurts the performance of another task with different needs, we talk about
negative transfer. There are many different factors to consider when creating a shared
architecture, such as the portion of the model’s parameters that will be shared between
tasks. Many of the proposed architectures for MTL play a balancing game with the degree
of information sharing between tasks: Too much sharing will lead to negative transfer
and can cause the worse performance of the multi-task than the single-task model. At the
same time, too little sharing does not allow the model to leverage information between
tasks effectively. One commonly used multi-task architecture in computer vision follows
the general vision of a global feature extractor made of convolutional layers shared by all
tasks, followed by an individual output branch for each task. This architectural approach
is usually referred to as shared trunk. Other architectures can follow alternative methods,
for example, based on having a separate network for each task, with information flows
between parallel layers in the different task networks. In the rest of this section, we discuss
the architecture and the different options for learning that we propose to implement the
MTL vision for efficient RAN management. In particular, we propose an architecture
that follows a shared trunk architecture with hard parameter sharing [131] to enhance
parameters estimation; however, in our study, we are more interested in its computational
efficiency, since it allows us to share the AE training phase among the different tasks [132].

The architecture is based on a multi-layer LSTM AE [133], in charge of performing
the shared feature extraction in conjunction with a task specific MultiLayer Perceptron
(MLP) neural network, as shown in Fig. 4.3. An AE is an unsupervised ML algorithm,
which learns a function to approximate an output identical to the input. Since it is based
on the encoder-decoder paradigm, the input is transformed into a lower-dimensional space,
also known as codeword, to more efficiently model highly non-linear dependencies in the
inputs. The compression operation manages to extract more general and useful features,
which retain essential aspects of a dataset [134]. Our goal is to smartly reduce the data
to be used for inferring the time to download and the initial throughput. We use a single
AE whose codeword is shared among the tasks but independent MLPs to estimate the
specific QoE indicator of interest for each RAN use case. We opt for this LSTM based
architecture, for the same reason already discussed for the single-task case, which is to
take the best advantage of the temporal characteristic of the collected data.

In this line, using the model shown in Fig. 4.3 we propose the following two different
methods for MTL learning:
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Figure 4.3: Multi-Task: A combined HO management and initial MCS architecture consist
of AE + MLP neural network.

• Parallel MTL: We explore learning behaviour when no task is given priority with
respect to the others, but all tasks are concurrently learned. The reference database
for training, in this case, is DB3.

• Incremental MTL: In this case, we analyze the learning behaviour when the learning
is inherently incremental, meaning we first learn for one task and then incorporate
information from new tasks. The advantage of this approach is that once we have
trained the shared trunk architecture, we can progressively introduce more tasks
to the design of the intelligent RAN, without further implementation costs. The
risk, on the other hand, is that of the catastrophic forgetting [135], while we aim to
incorporate information from new tasks without forgetting the previously learned.
The reference databases to train in this case is DB4.

All in all, in this section, we proposed different RNN models for single-task, and multi-
task approaches that address two RAN use cases, i.e., HO management and initial MCS
selection, as shown in Table 4.4.
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Table 4.4: Proposed approaches and RNN models.

RNN models Approach RAN use case DB type
HO DB1Multi-layer many-to-one-LSTM Single-Task learning Initial MCS DB2
HO DB3Parallel multi-task learning Initial MCS DB3
HO DB4

Auto Encoder
+

MLP neural network Incremental multi-task learning Initial MCS DB4

4.5 Performance evaluation

This section discusses training and system-level performance evaluation using the
proposed models for the single, and the two multi-task approaches.

4.5.1 Training the proposed architectures

The implementation of the models is done in Python, using Keras and Tensorflow as
backend. In particular, to speed up the training, testing, and evaluation of these models,
we use fast LSTM implementation with Nvidia CUDA Deep Neural Network (CuDNN)
library for GPUs [136]. The DBs for each of the proposed approaches have been randomly
divided into training and validation sets, using a split ratio of 0.75 and 0.25, respectively.
We train and validate the models using the training and validation sets to minimize
the reconstruction error over 200 epochs, in case of the AE, or prediction error, in
case of the single-task LSTM and MLP. The loss function used to train the models
is the Mean Square Error (MSE), and the RMSProp algorithm is used to optimize the
learning process. Moreover, a linear activation function is used for the output layer of
the LSTM (see Fig. 4.2) and MLP, while the Leaky ReLU activation function is used
for the hidden layers of MLP. We discuss in the following the details of the training and
selected architecture for the single task and multi-task architectures.

4.5.1.1 Single-task architectures

We have trained the LSTM architecture shown in Fig. 4.2 for the single task learning
based on DB1. To select the hyperparameters of this model, i.e., the number of layers
(i.e., the values of K and L) and the number of LSTM units (blue LSTM blocks in Fig. 4.2)
in each hidden layer, we have tested nine different combinations. Then, we have selected
the hyperparameters resulting in the lowest average MSE (over 200 epochs). Fig. 4.4.(a)
shows the MSE per epoch of the selected single-task model trained to address the HO
management task, using 3 (i.e., K = 2 and L = 1) layers of LSTM nodes, where the
numbers, i.e., [84x62x42] separated by “x” in the legend represent the number of hidden
LSTM units in each layer. We observe that, after 140 epochs, this model is able to achieve
and maintain very low testing loss independently from the number of layers and cells per
layer.

We follow a similar approach to train another model based on the single-task architecture
in Fig. 4.2, to tackle the initial MCS use case using DB2. As shown in Table 4.3, we focus
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Figure 4.4: Single-task training MSE per epoch. (a) HO management use case LSTM
84×62×42 (b) Initial MCS use case LSTM 84×42×22.

on three MCSs (0, 14, and 28), representative of the three main available modulations
(e.g., QPSK, 16QAM, 64QAM). The output to be estimated in the regression problem is
the initial throughput computed over a window of 100 ms when a new RRC connection is
established. The initial throughput at the beginning of the session cannot be considered
because, during the initial window of a TCP connection, we are only able to capture
messages from its initial handshake, which results in the same initial throughput for all
UEs. Moreover, we also avoid taking the measurement after the first HO because the
first HO is deterministic as for the HO management use case. The reason is that the
DB2 should be of similar nature as of DB1 to be combined to construct DB4, which is
later used for MTL. As a result, we focus on the initial throughput after the second HO.
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4.5.1.2 Multi-task architecture trained with parallel MTL

For the multi-task architectures, we use a similar approach to the single-task one. The
architecture now is based on a shared trunk approach, which first considers a multi-layer
LSTM AE in charge of performing the shared feature extraction, and then a per task
MLP is used to perform the regression. To train and validate these models, we used
DB3, obtained to target both initial MCS and HO management use cases. It is also
worth mentioning that we consider 8 runs to build DB3, in order to maintain a similar
dimension for DB1 and DB2. In this training process, first we select the code-word
length of the AE, among five different code-word lengths of 50, 100, 200, and 300. In
particular, we select a code-word equal to 100 to take into the account the trade-off
between the length of the code-word and the MSE of the decoder. Fig. 4.5 (a) shows the
AE reconstruction error, i.e., the MSE between original data and the one after decoding,
common to the two use cases, using code-word length of 100. Then, using this selected
code-word as an input to the MLP neural network, one set of hyperparameters, among 7
(based of the lowest average MSE), is chosen for the two MLPs (see Fig. 4.3). Similarly,
Fig. 4.5 (b)-(c) show the regression loss of the AE plus MLP structure for the chosen
MLP structure of three layers [80x40x20], to estimate the time to download and the
initial throughput, for the HO use case, and for the initial MCS use case, respectively.

4.5.1.3 Multi-task architecture trained with incremental MTL

Fig. 4.6 (a), shows the loss of the AE, considering incrementally increasing databases
for training (DB4). We start from the AE trained with DB1, which is indicated in
the figure with “0 runs”. Then, we progressively add runs from DB2, and observe the
behavior of the loss of the AE. We consider that the loss is comparable in all cases.
Furthermore, Fig. 4.6.(b)-(c) show the loss of the regressors to estimate respectively the
time to download the file for the HO use case, and the initial throughput for the initial
MCS use case, as a function of the different number of runs. Different behaviours can be
observed in the loss of the two regressors. It depends on whether the architecture is first
trained for one task, or another task is incrementally learned after the first one, by adding
training data to the training DB. In the HO use case, for which the architecture is initially
individually trained, we observe that the loss increases when 8 runs are introduced from
DB2. It is because the architecture has to suddenly adapt to new data coming from
a DB built for a different purpose. However, as we add more runs from DB2, the loss
trend is to get reduced.

On the other hand, the loss in the estimation of the initial throughput for the initial
MCS use case, which is the new use case we aim to learn by adding the new data,
linearly decreases with the number of runs that we add from DB2. This behaviour of
the loss is reasonable, since the architecture gradually improves its learning performance,
as we add more information related to the MCS use case. We select the combination of
AE code-word length of 100 and the MLP of [64x32], which provides us with the lowest
average MSE for all the tested run values.
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Figure 4.5: Multi-task parallel MTL training MSE per epoch. (a) MSE between original data
and decoder for the AE trained with DB3 for codeword length 100 (b) HO management use
case AE + MLP 80×40×20 (c) Initial MCS use case AE + MLP 80×40×20.

4.5.2 System level performance

The performance evaluation of these models is performed in an offline manner using the
Offline-Evaluation procedure described in Section. 1.3.2. In particular, to perform this
evaluation, we consider two extra simulation campaigns using a Run value which was
not used to build the training dataset (i.e., Run 21 for the HO use case and Run 65 for
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Figure 4.6: Multi-task incremental MTL training average MSE over 200 epochs. (a) Average
MSE between original data and decoder as a function of the incremental runs for the AE of
codeword length 100 (b) HO management use case AE + MLP 64×32 (c) Initial MCS use case
AE + MLP 64×32.

the initial MCS use case). This approach allows us to evaluate the generalization of the
models. In the following, we analyse the results obtained using the trained models for
the two use cases.
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Figure 4.7: ECDF of the difference of download time obtained by the benchmark A2-based
HO benchmark and the ML-based architectures.

4.5.2.1 HO use case

For the HO management, we compare the time to download for each UE, obtained after
selecting the target cell providing the lowest predicted time to download, to the one
achieved by using a benchmark approach, i.e., A2-RSRP-based HO algorithm. The first
campaign aims at gathering the file download time using the benchmark HO algorithm
(e.g., A2-RSRP). The second simulation campaign is conducted in a similar way as the
one to build the training dataset, i.e., it consists of 8 deterministic HOs. Following this
approach, we construct 8 input strings for each neighbour of a UE, which consists of 1 row
and 16800 columns (i.e, 84 features x 200 time steps). These strings are used individually
as their input to obtain a predicted time to download for all the architectures, i.e., single
task and multi-task (parallel and incremental learning). Finally, for each UE, we select
the gNB with the minimum predicted time to download for the HO. We compare results
of the ML-based and the benchmark approaches for the UEs that successfully finalize the
download. In particular, we compare the number of UEs completing the download and
the time needed to download the file.

We first compare the performance of the benchmark HO algorithm with the single-task
and the parallel MTL architectures. Fig. 4.7 shows the Empirical Cumulative Distribution
Function (ECDF) of the difference between the download time observed by these UEs
using the benchmark and the proposed models. The results obtained using the benchmark
HO algorithm show that there are 63 (i.e., 30%) UEs out of 210, which are able to finalize
the download. On the other hand, 77 (i.e., ≈37%) UEs are able to successfully download
the file using the single-task and parallel MTL models. It means that the ML approach
manages to increase by 18% the number of UEs able to finalize the download during
the simulation time. Moreover, there are 62 common UEs, which were always able to
download the file, irrespective of the tested HO solution, i.e., benchmark or ML-based.
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Figure 4.8: Example of reduction in the duration of radio link failure with proposed ML
models.

Out of these 62 UEs, the ECDF trend in Fig. 4.7 on the positive x-axis shows that we
can reduce the file download time for 56 UEs compared to the benchmark case using the
single-task or the parallel MTL architectures. However, there are 6 UEs that experience
marginally higher download time than the benchmark (see the trend on –ve x-axis). We
believe that their performance can be improved by increasing the size of the database
used to train the models and by further fine tuning their hyper-parameters. Moreover,
this evaluation shows that the MLP, fed with the AE code-word of 100 performs similarly
to the LSTM. This proves that the AE has efficiently transformed the inputs into a lower-
dimensional space without losing the meaningful information of the dataset for the use
case of the HO.

We now evaluate the capabilities of incremental MTL offered by the AE-based architec-
ture. In particular, we want to prove that an AE that is trained for a specific use case
(e.g., the HO) can be reused for another use case. As mentioned in Section 4.5.1.3, we first
consider the AE and MLP model trained with DB1. In this DB we removed the entries
where the initial throughput is not available for the reasons described earlier, e.g., when
the file download finishes before the second HO. We observe that the HO performance
based on this architecture is similar to the one obtained with the single-task learning. It
is reasonable since with “0 runs” the DB is still purely built to handle the HO use case
only. However, using the other four incrementally trained models, we notice that the
performance of the HO algorithm is the same for all of them. The reason is that, even
while observing some difference, the regression losses of these models are comparable and
low enough to provide comparable system performance. This result is further validated
when compared to the results achieved using single-task and parallel MTL, as shown in
Fig. 4.7. In this figure, to simplify the representation, we only present the results using
the incremental MTL model trained with “8 runs” from DB2.
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Table 4.5: Summary of HO use case results.

Approach % of UEs finalizing
the download

% of UEs decreasing the
time to download

A2-based benchmark 30% (out of 210) -
ML-based 37% (out of 210) 90% (out of 62)

The offline evaluation performance for the HO use case reaches exactly the same results
for all the approaches. It allows us to conclude that incrementally introducing runs
from a different database adding new information to the system, does not jeopardize the
previously learned information, in our case, where the features of the two databases are
the same. For our case and the nature of the database, we do not observe any phenomenon
of catastrophic forgetting, i.e., the tendency of an artificial neural network to entirely
and abruptly forget previously learned information upon learning new information. More
research should be conducted to evaluate how different DB1 and DB2 can be to maintain
the same conclusion that we reach here.

Furthermore, in Fig. 4.8, we present, as an example, 2 UEs out of 56 UEs for which ML
reduced the time spent in RLF and, consequently, the time to download the file (there
are more UEs in the scenario experiencing the same performance advantage when using
the ML technique). We notice that these UEs experience an RLF just before the first
HO irrespective of the scheme used, i.e., benchmark or ML. In fact, once the UE is inside
a coverage hole generated by an obstacle, all gNBs are unable to offer any service, and
there is no coverage from any of the surrounding gNBs. As a result, an obstacle impairs
the coverage of all gNBs equally. However, in those challenging situations, with the
help of ML models, we can reduce the RLF duration for these UEs by 400 ms (i.e., 400
Transmission Time Intervals (TTIs)), which also improves their time to download. The
reason is that ML models, thanks to their capability of learning from past experience, can
identify a more appropriate neighbour gNB to HO to provide more extended service than
the benchmark, and doing so reduces the RLF duration. Finally, Table 4.5 summarizes
the comparative results between the different approaches for the HO use case.

4.5.2.2 Initial MCS use case

We evaluate the initial MCS performance, following an offline strategy, as we did
previously for the HO use case, using an extra run, “Run 65”. First we consider traces
for the three evaluated MCSs, which provide three different input strings for each UE to
get the predicted initial throughput for the selected MCS values. Then, for each UE, we
choose the MCS, which results in higher initial throughput. At this point, we further filter
out some UEs for those cases when the proposed ML models select MCS 0. In particular,
the throughput achieved by the UEs using the benchmark scheme, which always selects
MCS 0, is the same that we get when the ML-based solutions also consider the same
MCS. Therefore, we consider only those UEs for the performance evaluation for which
the ML-based models select MCS values different from 0, i.e., 14 and 28.

We observe similar trends for the initial MCS use case to those previously observed
for the HO management case. In particular, the gain in the performance is the same
when using any of the proposed ML-based models. In total, we obtain 86 UEs out of
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Figure 4.9: ECDF of the difference between initial throughput obtained with benchmark MCS
selection and the ML-based architectures.

210 for which we were able to record the initial throughput after the second HO, and the
proposed approaches select a different MCS from 0. Out of these 86 UEs, 44 (i.e., 51.16%)
select MCS 28 and 42 (i.e., 48.83%) select MCS 14. From the analysis of the results in
Fig. 4.9, we conclude that all the 86 UEs that obtained a initial throughput get better
initial throughput than the benchmark, when considering the ML-based approaches. The
average initial throughput per UE considering the benchmark with MCS 0 is 0,051 Mbit/s,
while the average initial throughput attained using the ML-based models is 0,1944 Mbps.
Thus, on average, we obtain a 73.75% increment of initial throughput per UE. Moreover,
for the incremental MTL approach we observe no difference in the performance of the
selection of the appropriate initial MCS, when using 8, 16, 32, or 48 runs from DB2,
to train the AE and MLP. In this case, we also believe that the average MSE using the
traces only from 8 runs is already low enough (see Fig. 4.6.(c)) to provide the performance
similar to the one using the single-task or parallel MTL approaches. Therefore, in Fig. 4.9
we plot only the results obtained using the incrementally trained model using 8 runs.

It is also worth mentioning that in case of incremental MTL, we are able to obtain
already acceptable results for both use cases by using the joined DB, which has a similar
dimension as of the individual DB1 or DB2. On the other hand, to target the use
cases with single-task approaches, we should train two independent architectures with a
database of a dimension twice as big as the one we need with the incremental MTL use
case. The advantage that we get with the incremental MTL, with respect to the parallel
MTL or the separated single-task approaches, is at the implementation level since, at any
moment, we are able to add a new use case to our learning architecture by incrementally
training the model. It guarantees scalability concerning all the RAN use cases we wish to
add to the design. Finally, Table 4.6 summarizes the gains obtained using ML approaches
over the benchmark scheme for the initial MCS use case.
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Table 4.6: Summary of initial MCS use case results.

Approach % of UEs selecting
MCS 28

% of UEs selecting
MCS 14

Initial throughput
increase per UE

ML-based 51.16% 48.83% 73.75%

4.6 Conclusions

In this chapter, we tackled the complexities along infrastructure-based single-technology
axes using two RAN use cases, 1) the HO management and 2) the selection of an initial
MCS when UEs establish a new connection with a eNB. In particular, to exploit the
network data’s temporal characteristics, we proposed an RNN based on LSTM for single-
task learning to address the aforementioned two use cases separately. This was done to
answer our two research questions, (RQ1): “How to use AI/ML in mobility management
to achieve better QoE?” and (RQ2): “How to use AI/ML to select the initial MCS
for newly connected mobile devices to achieve better throughput?”. For the single-task
approach used for HO management, the results proved that the proposed AI/ML models
outperform the A2 event-based benchmark HO algorithm in terms of the number of
successful downloads and time to download statistics. Additionally, a similar model
proposed for initial MCS selection also provided the gain in terms of the increased initial
throughput by selecting a better MCS than a benchmark scheme, which always selects
MCS 0 upon establishing a new RRC connection.

After the single-task learning solutions, we proposed an AI/ML framework to answer our
third research question (RQ3) “How to generalize an AI/ML solution to address diverse
RAN use cases?” To do so, we proposed an AI/ML model based on LSTM AE along with
an MLP for the MTL approach. The results show that the models based on AE, used for
the MTL parallel and incremental learning, perform similarly to the single-task model
using only the LSTM. It is proven that the AE could efficiently compress the inputs
into a lower-dimensional space without losing the dataset’s meaningful information. The
MTL solution, which allows sharing training models among RAN tasks, provides then a
series of advantages at implementation, coordination, and training levels. Additionally,
the model trained by employing the incremental learning approach did not suffer from
the phenomenon of catastrophic forgetting.
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Chapter 5

Contention Window Size Adaptation
in LTE-LAA

As mentioned in Chapter 2, Section 2.2.1, 3GPP has standardized LBT as the default
channel access scheme for LAA. However, in spite of adopting LBT, the performance
of Wi-Fi when coexisting with LAA is highly dependent on how the LBT parameters
are configured by LAA. In this chapter, we focus on the adaptation of the CW size
parameter of LBT in LAA. This parameter is of key importance to avoiding collisions or
to resolve the contention among the colliding stations. Specifically, we propose a CW size
adaptation scheme, which could infer the collisions in all the subframes of a TxOP by
combining the HARQ feedbacks from LAA UE and the sensing data gathered at the eNB.
In particular, the proposed scheme learns from its past experience, through a machine
learning approach, how many Negative Acknowledgements (NACKs) per subframe of a
TxOP will be received under certain channel conditions.

Similar to Chapter 2, we based our model on FFNN due to its capability of provid-
ing a compact and easy to evaluate model as compared to other machine learning ap-
proaches [66]. According to our scheme, the eNB gathers the HARQ NACKs reported
by the UEs resulting from past TxOPs and the sensing data by using a Wi-Fi listener at
the eNB. This provides the information about the radio activity of other Wi-Fi Access
Points (APs) and STAs. We note that, already different LTE-U/LAA products include
a Wi-Fi listener for similar purposes in their implementation [137] [138].

The proposed scheme is able to predict the number of NACKs for all the subframes of
a TxOP, without waiting for any delayed HARQ feedback after the TxOP ends. To
summarize, the proposed scheme overcomes the limitations faced by the 3GPP or other
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options found in the literature, by predicting the collisions in all the subframes of a TxOP
in a timely manner. Furthermore, unlike the schemes discussed in the literature, the CW
size is exponentially increased upon the reception of a NACK for each subframe of a
TxOP and is not dependent on the information exchange between the LAA nodes or only
on the sensing performed at the eNB.

This chapter is organized as follows. The related work around the CW update of LAA
is presented in Section 5.1. Section 5.2, presents in detail the limitations of the CW
size adaptation scheme proposed by 3GPP. We discuss the proposed scheme and the
design of our FFNN in Section 5.3. In Section 5.4, we present a brief explanation of
the simulation scenario and the benchmark schemes to which we compare our scheme.
Finally, Section 5.5 presents the achieved results and Section 5.6 summarizes the main
conclusion.

5.1 Related work

According to 3GPP, the CW size is proposed to be increased if 80% of the HARQ
feedbacks belonging to the first subframe of the most recent TxOP are NACKs [80].
This scheme has two potential drawbacks. First, since LTE is capable of scheduling
multiple users in a single subframe, the 80% threshold may be hard to meet. If a collision
happens, but less than 80% of the scheduled users suffer from the collision, the LAA
eNB will not increase its CW, and the collision will remain undetected. Second, due
to the inherent latencies introduced by the LTE protocol stack, the HARQ feedback
associated with a certain subframe is received at least 4 ms after its transmission time
(see Fig. 2.3). Therefore, 3GPP proposes only to consider the collisions detected during
the first subframe of a TxOP to update the CW with a minimum delay. As a result, the
collisions from the rest of the subframes are ignored. Besides what is proposed by the
standard, the literature also proposes some other techniques to adapt the CW size of LAA.
For example, in [139] an analytical model based on a Markov chain is proposed to find an
optimal fixed CW size for the LAA eNBs in the scenario. However, a fixed CW size may
increase the chances for an LAA eNB to access the medium at similar times, and the CW
size is not updated upon collisions. Similarly, authors in [140] built a model based on the
Markov chain to investigate the LAA and Wi-Fi coexistence performance analytically.
Furthermore, the authors also propose an updated LBT process for LAA by introducing a
Maximum Contention Window Timer Mechanism (MCWTM). The MCWTM mimics the
Wi-Fi Retry Limit Mechanism [141] by regulating the count with which the maximum
contention window can be consecutively used. Although it is analytically shown that
MCWTM reduces the system waiting time under poor channel conditions, the model
assumes an ideal HARQ feedback scheme. An enhanced LBT algorithm is proposed
in [142] for adapting the CW size in LAA according to the information exchanged among
the neighboring nodes. However, the performance of this scheme is dependent on the
information exchange among the LAA nodes, and this requires extra signalling to be
defined and transmitted. In [143], a sensing-based scheme for LAA eNB is proposed to
adjust the CW size by comparing the ratio of busy slots between two backoff periods.
This scheme overcomes the limitation of the previously discussed schemes. Still, the CW
size is updated only based on sensing performed at the eNB, without considering the
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feedback from the user. Therefore, this scheme will easily be vulnerable to hidden node
problems.

5.2 Limitation of 3GPP approach

As we have highlighted in the previous section, the LAA channel access procedure is
very similar to the Wi-Fi’s one. However, it still presents some dissimilarities due to the
inherent differences in LTE and Wi-Fi technologies. We discuss here the main limitations
that we see in the LAA channel access procedure, which may generate issues at the time
of fulfilling a fair coexistence with Wi-Fi.

• 80% threshold may be hard to meet even in case of collisions. Various UEs
that are scheduled in the same subframe may experience in general different levels
of interference due to the different channel conditions. In order to receive 80% of
NACKs, to update the CW in LAA, it is necessary that more than 80% of UEs,
which are scheduled in the same subframe suffer from the high level of interference
by neighboring Wi-Fi or LAA nodes. However, due to the random nature of the
radio propagation environment and different geolocations of the users, it might
not always be the case. This limits the application of CW update only to the
scenarios with high interference, while in other scenarios this condition might never
be met. In such a case, collisions at many UEs may be ignored and the LAA backoff
mechanism may not be properly exploited.

• Length of the TXOP in LAA may happen to be higher than Wi-Fi.
The Wi-Fi STAs in all the coexistence studies of LAA and Wi-Fi comply with the
new Wi-Fi standards, such as, IEEE 802.11n or 802.11ac. In this study the Wi-Fi
network is composed of IEEE 802.11n complying STAs. According to the MAC
layer enhancement proposed under this standard, multiple MAC layer frames are
aggregated to form one big Physical Service Data Unit (PSDU). The maximum
length of a PSDU or an Aggregated MAC Layer Protocol Data Unit (A-MPDU)
is 65535 bytes [144]. Now, let us consider a scenario where both LAA and Wi-Fi
have BE traffic in the downlink, since the main use case for LAA was proposed to
be the offload of BE and BK traffic [79]. In Wi-Fi (802.11n), the default TXOP
for BE traffic Access Category (AC) is equal to 0. The TXOP value of 0 means
that only one Physical Protocol Data Unit (PPDU) can be transmitted at a time
before competing again for access to the channel, with the maximum CW size of
1023 [145]. The maximum allowed time in which a PPDU containing an A-MPDU
can be transmitted is up to 5.484 ms in the Mixed mode, and up to 10 ms if the
Greenfield mode is used [144]. For a more detailed description of these modes, the
reader is referred to the vast available literature on IEEE 802.11n enhancements (for
instance, [145] [146] [147]). The Greenfield mode is not a widely adopted feature and
is especially avoided in large-scale networks [146]. Therefore, all the Wi-Fi nodes
in this study are configured to use the Mixed mode. Even if the Greenfield mode is
used, the transmission time for a PPDU can be short when a Wi-Fi transmitter uses
a higher Modulation and Coding Scheme (MCS) and its A-MPDU size is limited
to 65535 bytes. Contrarily, according to the LAA LBT priority class 3 [80], LAA is
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Figure 5.1: Contention window update comparison

allowed to occupy the channel up to 8 ms (or even 10 ms), regardless of the MCS
and channel conditions. This could lead to an unfair behavior to Wi-Fi, since LAA
after winning the channel may occupy it for a longer time than Wi-Fi. Moreover,
in case of collisions, Wi-Fi will spend more time in backoff as compared to the LAA
LBT priority class 3. This is due to the difference in Wi-Fi and LAA maximum
allowed CW size, which is 63.

• Collisions in LAA are not always detected. The HARQ procedure in LTE uses
one of the soft combining techniques, i.e., Incremental Redundancy (IR) and Chase
Combining (CC), in which the failed transmissions are not wasted, but combined
with the retransmissions. Thus, it may happen that an unsuccessful retransmission,
due to a collision, does not result in a NACK, because the combined information is
enough for the UE to decode the data successfully. On the other hand, Wi-Fi uses
the Automatic Repeat Request (ARQ) with an ACK. Unlike HARQ, ARQ always
discards the data with errors and asks for a new transmission. Therefore, due to
the efficiency of a soft combining technique used in the LTE HARQ procedure, it
may happen that for the same collision, Wi-Fi detects more collisions than LAA. In
this case, it would be beneficial for LAA to also consider the feedbacks from other
subframes of a TXOP to detect collisions.

As a result of the above observations, even if the LAA and Wi-Fi channel access
mechanisms are similar, the CW of LAA will not evolve in the same way as Wi-Fi CW,
and most of the CW updates will be concentrated around the lower CW values. This
behavior is demonstrated in Fig.5.1, where the results are obtained from a simulation of
LAA and Wi-Fi coexisting nodes in an indoor scenario described in Sec.5.4.1, and we
observe the evolution of the contention window upon collisions. Therefore, the LAA eNB
will not only backoff less, but may also take the channel for a longer time compared to
Wi-Fi, if it has a longer TXOP. This may cause degradation in Wi-Fi performance when
coexisting with LAA.
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5.3 Proposed scheme

5.3.1 CW size adaptation algorithm for LBT-LAA

As discussed in Sec.5.2, if the state-of-the-art (SOTA) LAA CW size adaptation scheme
is unable to meet the 80% collision requirement in the first subframe, and also ignores
the collisions after the first subframe, this could result in an unfair behavior in terms of
channel occupancy towards a coexisting Wi-Fi network.

To tackle this unfair behavior of LAA, we propose to consider the HARQ feedback from
all the subframes of a TxOP. However, due to the inherent protocol latency in LTE, all the
HARQ feedbacks belonging to the subframes of a TxOP will not be available on time, i.e.,
when the grant time out occurs, as it is shown in Fig. 2.3. To overcome this limitation, we
propose a supervised Neural Network (NN)-based CW size adaptation scheme. Details
on the specifications of the NN used, and the reasons for making these design choices
are given in the following subsection. This learning scheme infers the possible number of
NACKs which could be received during a TxOP. We note that, we increase the NACK
counter only once for each subframe due to the possibility of receiving multiple NACKs
per subframe. This means, that the maximum number of NACKs the NN can predict
is less than or equal to the number of subframes in a TxOP. The eNB builds a profile
of each TxOP by storing the number of NACKs received for all the subframes and the
additional sensing data belonging to a TxOP, as defined in the Eq.5.2 of the following
subsection. We note that, since we use a Wi-Fi listener at the eNB, the sensing data
related to the Wi-Fi transmissions can be stored even when the eNB is transmitting.
The NN is trained by using this sensing data as input, and the total number of NACKs
received for all the subframes as output. Once the training is completed, the eNB, after
the grant timeout, uses this NN to predict the expected number of NACKs to be received,
without waiting for any pending HARQ feedbacks. This predicted number of NACKs
corresponds to the number of CW updates to be performed at the end of a TxOP. For
example, if the predicted number of NACKs is 2, the CW size of LAA is increased twice.
Then, if the eNB has more data to transmit, it initially senses the channel for Td period
and chooses a random backoff value between 0 and the updated CW value. Once the
backoff counter reaches zero and the eNB is allowed to transmit, i.e., before the start of
the next TxOP, we reset the CW size to CWmin. With the help of the NN, our scheme
is able to predict all the collisions happening in each subframe of the TxOP, so that the
CW of LAA can expand at a faster pace than the other SOTA approaches. We consider
that this approach is reasonable, given the fact that in general LAA, due to its longer
TxOP, will occupy more channel as compared to Wi-Fi.

However, it would be unfair for LAA to keep the same CW size also for the following
TxOP, for which it has already performed the backoff at the end of the previous TxOP.
The proposed scheme is further illustrated with the help of Algorithm.1.
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Algorithm 1 LAA NN-based CW size adaptation scheme
1: PN − Predicted NACKs by NN
2: BC − Backoff counter
3: CI − Channel idle time
4: GT − Grant timeout
5: ▷ Initialization
6: CWp ← CWmin

7: if PN > 0 && GT == 1 then ▷ End of current TxOP
8: for i← 1 to PN do
9: if CWp == CWmax then

10: break
11: else
12: CWp ← (2 ∗ CWp)
13: end if
14: end for
15: BC ← rand(0, CWp)
16: function Defer() ▷ Sense the channel for Td

17: while BC ̸= 0 do ▷ Start Backoff
18: if CI == 9 µs then ▷ Channel idle for slot duration
19: BC ← BC − 1
20: else
21: go to 16
22: end if
23: end while
24: if BC == 0 then ▷ Before next TxOP
25: CWp ← CWmin

26: end if
27: else
28: CWp ← CWmin ▷ No NACKs
29: end if

5.3.2 Implementation of the proposed scheme

To implement our aforementioned scheme, once again, we choose a two-layer FFNN
because of its ability to model both linear and non-linear functions between inputs and
outputs [67]. Moreover, the model obtained with FFNN is more compact and faster
to evaluate than other machine learning techniques such as, Support Vector Machine
(SVM), with the same generalization performance [66]. And, since we are employing
supervised learning using offline-Training procedure explained in Section. 1.3.2 to build
the FFNN model, we need to build a training and testing dataset [67]. This dataset can
be represented as,

D =


(X1, Y1)

...

...
(XN , YN)

 (5.1)
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where X and Y are the input and output vectors of FFNN and N is the total number
of rows in a dataset. Each row in the dataset corresponds to a single TxOP, such that,
N is equal to the total number of TxOPs, observed during the simulation campaign for
building the database. Let the term k denote the TxOP ID of each TxOP in our dataset.
The input vector X can be written as,

Xk=1 = [w1, u1, c1, d1]
Xk=2 = [w2, u2, c2, d2, p1]

Xk=3 = [w3, u3, c3, d3, p2, p1]
Xk=N = [wN , uN , cN , dN , .., pN−1, ..pN−L+1]

(5.2)

where L is the memory of the NN and,

• wk = Wi-Fi transmissions observed during k-th TxOP

• uk = Number of UE scheduled during k-th TxOP

• ck = NACKs received in k-th TxOP, before its grant timeouts

• dk = Duration of the k-th TxOP

• pk−1 = NACKs received in k − 1 TxOP

Finally, the output vector Y contains the total number of NACKs belonging to all the
subframes of a TxOP. For the implementation of FFNN, we use the publicly available nnet
package of R [67], which is a single hidden layer FFNN. To obtain the above mentioned
data for each LAA eNB, we run a simulation campaign with a SOTA CW size scheme for
2000 sec. The details of the simulation scenario are presented in the next section. During
this simulation campaign, on average, for every LAA base station, 9000 data samples
are stored in the form of the dataset D. Then, this dataset is randomly divided into a
training set (containing 75% of the data) and a testing set (containing 25% of the data).

Referring to Eq. 5.2, we consider N to be equal to the total number of TxOPs observed
during the simulation campaign for each eNB and L = 3 in our case. The value of
parameter L is selected by experimenting with a range of values, i.e., 1 ≤ L ≥ 20, where
L = 3 resulted in prediction accuracy as obtained using higher values. Then, all the
input and output values are normalized in the range [0,1]. This normalization allows
for a faster training process and more accurate estimations [113]. After performing the
3-fold cross-validation test, the final FFNN model for each eNB is selected based on the
lowest NRMSE. On average, the selected FFNN model for each eNB converges after 830
iterations and gives us more than 85% prediction accuracy. The cross-validation test is
performed to prevent overfitting, i.e., when FFNN achieves the ideal minimization of the
error between the estimated and the actual output of the training set. If the overfitting
happens, the FFNN loses its generalization property and fails to predict the output of
the testing dataset.

83



Chapter 5. Contention Window Size Adaptation in LTE-LAA

Figure 5.2: BS Corner indoor scenario layout

5.4 Performance evaluation setup

5.4.1 Simulation Scenario

The simulation scenario implementation has been done using the LAA and Wi-Fi
coexistence module of ns-3 simulator [148]. As shown in Fig. 5.2, we consider an indoor
simulation scenario with the base stations placed on the corners of a building with the
dimension 120 × 50 meters with no walls. This scenario is based on the 3GPP indoor
scenario used for evaluation studies presented in [79], but the base stations are placed
at the corners of a building to get closer to a real world implementation. Moreover,
this deployment helps us better evaluate the performance of our scheme by increasing
the number of collisions generated by hidden nodes. We evaluate the fairness according
to the methodology used by 3GPP, in which there are two operators, i.e., operator A
and operator B. In step 1, both operators deploy Wi-Fi, while in step 2, operator A
substitutes Wi-Fi with LAA. There are four base stations with the fixed location and 20
UEs/STAs per operator, which are randomly dropped inside the building. We consider
that both LAA nodes and Wi-Fi nodes use the same channel 36 of 20 MHz. Moreover,
The Wi-Fi nodes in our simulations are configured with MIMO 2× 2 TX/RX antennas,
supporting the rates up to MCS 15 with a long guard interval. Similarly, for LAA nodes
we use the ns-3 MIMO model supporting up to MCS 28.

As for the traffic model, we consider the File Transfer Protocol (FTP) 1 model proposed
by 3GPP in [79]. We choose LBT priority class 3 [80] with TxOP of 8 ms and λ=5 to
simulate a level of load that allows both LAA and Wi-Fi to always have data available
to fill their TxOPs. We note that, for the purpose of fair evaluation, the maximum CW
size of both LAA and Wi-Fi is set to 1023, instead of 63 and 1023. Moreover, for the
propagation model, we use 802.11ax indoor model for all the small cells in the scenario.
Simulations are run for 2000 sec for all scenarios.

5.4.2 Benchmark Schemes

In this subsection, we provide a brief explanation of our benchmark CW size adaptation
schemes, implemented to evaluate the performance of our proposed scheme.
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5.4.2.1 3GPP Sensing scheme

This scheme is implemented as per the proposal submitted in 3GPP by different
vendors [149]. According to this proposal, the adaptation of LAA CW size is based
on the observation of busy and idle slots at the eNB in an observation window. The
observation window is the time between the random backoff counter is drawn and the
time when the counter reaches zero. The CW size of LAA is increased if the following
condition is met,

Number of busy slots

Number of CCA slots
> Initial backoff counter (5.3)

Otherwise, the CW size is reset to CWmin.

5.4.2.2 Preamble detection scheme

This scheme leverages the Wi-Fi listener at the eNB to detect the collisions between
the eNB transmissions and the captured Wi-Fi signals. Specifically, the Wi-Fi listener
calculates the Signal-to-Interference-plus-Noise Ratio (SINR) based on the preamble of
the captured Wi-Fi signal. This SINR value is internally passed to the eNB. The eNB
marks a collision and increases its CW, if the SINR falls below 0 dB and the current eNB
state is in transmission. The CW size is reset to CWmin, once the eNB is allowed to take
the channel for the next TxOP, i.e., after performing the channel access procedure.

5.4.2.3 Ideal HARQ scheme

As indicated by its name, it is an ideal CW size adaptation scheme in which the HARQ
feedbacks from UEs are available to the eNB without any delay, i.e., at the end of each
subframe of a TxOP. The eNB increases the CW once per subframe, if any of the HARQ
feedback belonging to a subframe is a NACK. Similar to the preamble detection scheme,
once the eNB has performed the random backoff on the basis of updated CW size, the
CW size is reset before the next TxOP.

5.5 Results

We use user perceived “throughput” and “latency” as our main performance metrics to
evaluate the performance of all the schemes presented in this chapter. In ns-3, these
metrics can be calculated by using the built-in FlowMonitor tool that tracks per-flow
statistics at the IP layer including throughput and latency. We note that, the Wi-Fi
performance of operator B in step 1 is the baseline performance for a Wi-Fi network,
when it coexists with LAA, under all the CW size adaptation schemes. Let us first
discuss the performance of SOTA-HARQ and 3GPP sensing-based schemes. Fig. 5.3
(b) and Fig. 5.4 (b), show that Wi-Fi experiences the lowest throughput and latency
performance when LAA uses these schemes. This performance degradation in Wi-Fi is
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Figure 5.3: Throughput (Mbps) performance comparison. (a) LAA, (b) Wi-Fi.

mainly caused by two reasons. First, as mentioned in Sec.5.2, we observe that Wi-Fi
experiences shorter TxOP than LAA, and consequently on average it spends more time
in contention as compared to what it spends in step 1, i.e., when it coexists with other
Wi-Fi networks. As a result, Wi-Fi flows experience higher latencies as compared to the
baseline latencies. Second, in case of collisions caused by hidden nodes, the CW size of
Wi-Fi is increased to its maximum value more often than the LAA, as shown in Fig. 5.1.
This increases the backoff time for the Wi-Fi transmission for the next channel access,
which results again in a higher latency and a lower throughput for Wi-Fi.

On the contrary, with the SOTA HARQ scheme the CW size of LAA does not reach its
higher values because of not meeting the 80% threshold in the first subframe and also
due to the fact that collisions in other subframes of the TxOP, except the first subframe,
are ignored. Similarly, for the 3GPP sensing-based scheme, the threshold for increasing
the CW size in Eq. 5.3 is not often met, because it depends on the random activity of
other nodes during the backoff period of LAA. Moreover, it does not consider the real
collisions happening during the TxOP of the LAA node. Therefore, LAA flows with any
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Figure 5.4: Latency (msec) performance comparison. (a) LAA, (b) Wi-Fi.

of these two schemes experience lower latencies and higher throughput due to its lower
backoff time and longer TxOP, as shown in Fig. 5.4 (a) and Fig. 5.3 (a).

With the preamble detection-based scheme, LAA is enabled to guarantee a fair
coexistence to Wi-Fi in terms of both throughput and latency. However, this scheme
results not being fair to LAA, since it increases the CW size of LAA without evaluating
if the overlapping Wi-Fi signal is actually causing a corruption of the UE data.

As a result, LAA backoffs more than necessary, which eventually limits its channel
occupancy and result in its low throughput and higher latency.

We now discuss the performance of our NN-based CW size adaptation scheme, in
comparison to the proposed benchmark schemes (i.e., SOTA-HARQ, 3GPP sensing
and Preamble detection) and an ideal HARQ scheme. We note that, here, the
performance evaluation of the proposed NN-based model is performed using the Semi-
Online-Evaluation approach explained in Section. 1.3.2. The ideal HARQ scheme serves
the purpose of an optimal scheme which detects all the collisions in a TxOP of LAA
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on the basis of timely received HARQ feedbacks. In this way, we can see how close the
performance of our NN-based scheme is to the optimal one, and how much improvement
has been achieved by our scheme over SOTA and other benchmark schemes. As shown
in Fig. 5.3 (b) and Fig. 5.4 (b), the NN-based scheme enables LAA to better coexist
with Wi-Fi by improving its coexistence performance as compared to SOTA-HARQ and
3GPP sensing-based schemes. The reason is that, the NN-based scheme on the basis of
its learning capability can predict the number of NACKs for all the subframes of a TxOP
when the grant timeout occurs. Thus, it overcomes the limitations of SOTA-HARQ and
3GPP sensing-based scheme discussed earlier. On the other hand, the preamble-based
scheme provides better coexistence performance to Wi-Fi as compared to the NN-based
scheme. However, this performance gain is achieved at the cost of extreme degradation
in LAA performance, since as already explained, this scheme is unfair to LAA. The NN-
based scheme achieves a better trade-off between the degradation in LAA performance
and the improvement in Wi-Fi ones, which ensures a better coexistence. Moreover, its
performance trends are very similar to those shown by the ideal HARQ scheme.

5.6 Conclusions

This chapter focused on the complexity bounded by the infrastructure-based multi-
technologies axes. Specifically, we have studied the LAA CW size adaptation approach
proposed by 3GPP. Based on the simulation results obtained through a 3GPP aligned
LAA module developed in ns-3, we show that due to the limitations of this approach,
the evolution of the CW in LAA is very different from the Wi-Fi CW. Following this
approach, it is complicated to combine HARQ feedbacks from multiple UEs, which may be
experiencing different channel conditions, and then extract a decision over the occurrence
of a collision based on those combined HARQ feedbacks. Furthermore, due to the inherent
latencies in the LTE protocol stack, this approach only considers the HARQ feedbacks
from one subframe of a TxOP to reduce the delay between the transmission and the
detection of the collision. To overcome these limitations, we propose a solution based on
supervised machine learning using a FFNN, which answers our fourth research question
(RQ4): “How to use AI/ML to guarantee fair coexistence of LAA in the unlicensed
spectrum?” Using our scheme, the LAA eNB is able to predict the collisions for all the
subframes of a TxOP, and increases the CW size at the end of a TxOP without waiting
for delayed HARQ feedbacks. Our performance evaluation shows that the FFNN-based
scheme provides a better coexistence performance to Wi-Fi as compared to the 3GPP
approach. Moreover, when compared to the schemes which provide better coexistence
to Wi-Fi by degrading the LAA performance, the FFNN-based scheme provides a better
trade-off by achieving a similar Wi-Fi performance with minimum degradation in LAA
performance.

The fairness evaluation conducted in this chapter strictly follows the 3GPP methodol-
ogy [79]. That is, we drew the above conclusions with the help of the throughput and
latency CDF curves in Fig 5.3 and Fig 5.4. However, interpreting those curves by just
looking at them is not so straightforward when they overlap in a particular region of
the plot and for others not, e.g., see the curves of “WiFi (Preamble Detection)”, “WiFi
(NN)”, and “WiFi (Baseline)” in Fig 5.3 (b). Therefore, in the next chapter, we present
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a statistical framework to understand better the fairness evaluation of LAA and LTE-U
towards Wi-Fi.
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Chapter 6

On Fairness Evaluation: LTE-U vs.
LAA

In this chapter, we propose a statistical framework to systematically evaluate the fairness
offered by different LTE technologies when they coexist with Wi-Fi in the unlicensed
band. In particular, we study the coexistence performance of both 3GPP LAA and LTE-
U, as specified by LTE-U forum. As mentioned in Chapter 2, the 5G NR technology, the
NR-U, is also based on the 3GPP LAA methodology, hence, follows the same fairness
evaluation procedure as in LTE [45]. Therefore, the proposed framework, though applied
to LTE based unlicensed technologies in this thesis, can be easily used to evaluate the
fairness of 5G and beyond technologies, e.g., NR-U. In the rest of the chapter, when we
refer to ULTE, we will refer to both LAA and LTE-U unless explicitly specified.

We map the generally accepted 3GPP definition of fairness onto the stochastic dominance
concept. Specifically, we use the two-sample one-sided Kolmogorov-Smirnov test (KS-
test) to test the specific hypothesis of fairness defined through throughput and latency
performance, as proposed by 3GPP. We evaluate throughput and latency using the ns-3
simulator for LTE and Wi-Fi coexistence. Particularly, a desired hypothesis regarding
throughput fairness is that when coexisting with ULTE, Wi-Fi throughput distribution
curves should stochastically dominate those throughput curves when coexisting with
another Wi-Fi. That is, a Wi-Fi that coexists with ULTE must achieve an equivalent
or higher throughput when it coexists with another Wi-Fi. For latency, the hypothesis
is exactly the contrary, i.e., the CDF of the latency when Wi-Fi coexists with ULTE,
should not stochastically dominate the one, when Wi-Fi coexists with another Wi-Fi,
as low latencies are desirable for a fair coexistence. We test these hypotheses through
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KS-test because it is a useful tool to test the first-order stochastic dominance, especially
with our data, since it does not require any hypothesis on the distribution of the data.

The rest of the chapter is organized as follows. In section 6.1, we present the related work.
Next, the statistical framework we propose to use for the fairness evaluation is presented
in section 6.2. Section 6.3 discusses the simulation results and the data analysis campaign.
Finally, section 6.4 concludes the work with final thoughts on the fairness evaluation and
suggestions for future works.

6.1 Related work

The use of LTE in unlicensed spectrum generates multiple challenges, since LTE has been
designed to work in licensed spectrum on the basis of uninterrupted and synchronous
operation. Consequently, the efficient use of unlicensed bands to offload LTE traffic
is of main concern for both ULTE and widely deployed Wi-Fi networks. According
to 3GPP, for a fair co-existence with Wi-Fi, LAA must not harm a Wi-Fi network
more than an additional Wi-Fi network on the same band. Based on this definition,
in the literature different contributions try to evaluate the coexistence performance of
ULTE and Wi-Fi. In [150], the impact on the fairness of two LAA-LBT-based channel
access schemes with the Wi-Fi network has been studied. The performance analysis is
done by comparing the mean and the CDFs of latency and throughput under different
signal/energy detection thresholds by LAA-LBT procedure. In [151], the authors have
proposed two channel sensing schemes for LTE in unlicensed band, and the fairness of
both schemes is established on the basis of mean user throughput of the Wi-Fi network.
In [152], the performance of various co-existence methods based on LBT and Duty Cycle
(DC) have been evaluated using the Monte-Carlo simulations. The fairness of these
methods is evaluated on the basis of average number of collisions and average latency
experienced by the coexisting Wi-Fi network. We observe that the conclusion on the
fairness in these works are mainly driven by qualitative comparisons of average values
and CDFs.

Differently, in this work, we focus on statistically evaluating the fairness offered by both
LTE-U and LAA paradigms to a coexisting Wi-Fi network. We perform a simulation
study of the coexistence behavior by following the 3GPP methodology presented in [79],
when Wi-Fi coexists with both technologies. We discuss in detail the behavior of the
throughput and latency curves and we try to draw conclusion in terms of fairness. We
observe, however, that the coexistence curves may converge in some areas and diverge in
others, and it is not so intuitive to claim if ULTE is actually fair to Wi-Fi, or not.
In particular, this qualitative approach leaves much space to partial interpretations.
Therefore, in this study, our main focus is towards the use of more rigorous approach
which allows us to statistically evaluate the concept of fairness and not just only the
comparison of the two ULTE paradigms, which has already been discussed in many works
in the literature. In this context, statistical analysis offers interesting tools and concepts
which can serve the purpose. In the following section, we employ these concepts to
propose a statistical framework that maps the 3GPP fairness definition onto the concept
of stochastic dominance.
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6.2 Statistical framework

The fairness as defined by 3GPP [79], is the capability of an LAA network not to impact
Wi-Fi networks active on a carrier more than an additional Wi-Fi network operating on
the same carrier, in terms of both throughput and latency. The same fairness concept also
has been proposed to evaluate fairness for LTE-U [137]. We evaluate fairness according
to the scenarios defined by 3GPP, in which there are two operators, i.e., operator A
and operator B. In the first step, both operators deploy Wi-Fi, while in the second step,
operator A substitutes Wi-Fi with ULTE. We claim ULTE is fair to Wi-Fi if, when
switching from Wi-Fi to ULTE the performance of operator B is not negatively affected.

However, based on this qualitative definition provided by 3GPP, we choose to compare
fairness by comparing the CDFs distributions of throughput and latency. If the curves
overlap or the Wi-Fi performance after substitution is improved, we can safely say that
ULTE is coexisting fairly with Wi-Fi. Contrarily, if these curves partially overlap or
diverge in some areas (this is what we observe in our results), one cannot do much
beyond explaining the reasons for the divergence and it is still debatable if the ULTE
behavior should be considered as fair or not. Therefore, we believe that there is a need
of a more detailed analysis of the data, which can systematically tell us whether, up to
a certain tolerable extent, ULTE behavior is fair or not. Statistical data analysis offers
tools to compare the statistical behavior of data, and we believe that it could add value
to the evaluation of fairness in ULTE and Wi-Fi coexistence. In particular, we rely on
the concept of first order stochastic dominance, which assumes that a distribution X
stochastically dominates a distribution Y, if the CDF of X lies on the right side of CDF
of Y. One way for 3GPP definition of fairness to be quantified is to leverage the concept
of stochastic dominance. We obtain empirical CDFs (ECDFs) of the key performance
parameters and we measure the extent to which one CDF dominates the other CDF,
which could be expressed as follows [153]:

Twl(x) ≤ Tww(x) ∀x ∈ [0,∞) (6.1)

Where Twl(x) is the CDF of the throughput of a Wi-Fi network when it coexists with
an ULTE network and Tww(x) is the CDF of the same Wi-Fi network, when it coexists
with another Wi-Fi network. In practice this means that, for ULTE to be fair, the
same or higher throughput must be obtained by operator B, after the substitution. So,
when operator A substitutes Wi-Fi with ULTE, the throughput CDF of operator B must
stochastically dominate the one, obtained before the substitution of ULTE. In terms of
latency, the fairness could be achieved if the CDF of the latency distribution of a Wi-
Fi network, when coexisting with ULTE network, does not stochastically dominate the
baseline Wi-Fi distribution, since improved latency means smaller latency values. In
other words,

Lwl(x) ≥ Lww(x) ∀x ∈ [0,∞) (6.2)

Where Lwl(x) is the CDF of the latency in the ULTE-Wi-Fi coexistence scenario and
Lww(x) is the CDF of the latency in the baseline scenario.
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Statistical hypothesis testing is a procedure in which sampled data are employed to test a
hypothesis about a single population or the correlation between two or more populations.
This hypothesis is either a null hypothesis H0, i.e., a statement about the distribution
of observations we want to test, or an alternative hypothesis H1, i.e., an alternative
statement in the case a null hypothesis is failed [154]. In the following, we will establish
these two types of hypotheses for throughput and latency. There are many statistical
techniques which could be applied to test the hypothesis under study and they are mainly
divided into parametric and non-parametric statistical tests. Following the method
presented in [155], we use a non-parametric two-sample one-sided Kolmogorov–Smirnov
test (KS-test) to test the first order stochastic dominance of two Wi-Fi distributions.
This kind of tool is particularly useful in our problem, because it does not require any
hypothesis on the underlying distribution of the data (e.g. many methods require normal
distribution), and it offers no restrictions on the size of samples [156]. Following the steps
of hypothesis testing, we state our H0 and H1 hypothesis for throughput and latency as
follows,

1. Throughput:

H0: The throughput distribution of Wi-Fi when coexisting with ULTE stochasti-
cally dominates the baseline throughput distribution.

H1: The throughput distribution of Wi-Fi when coexisting with ULTE does not
stochastically dominate the baseline throughput distribution.

2. Latency:

H0: The latency distribution of Wi-Fi when coexisting with ULTE does not
stochastically dominate the baseline latency distribution.

H1: The latency distribution of Wi-Fi when coexisting with ULTE stochastically
dominates the baseline latency distribution.

As a result of this test, two values are obtained:

• Dmax: It is the maximum measured distance between the two ECDFs.

In the literature, Dmax is mentioned as the test statistic value for the KS test. Generally,
to test the hypothesis in the test, the calculated Dmax value is compared with a critical
D value (Dcrit) obtained from the KS table, at a certain significance level α1. The null
hypothesis is rejected, if the value of Dmax is greater than Dcrit value [154]. Following a
common statistical practice in the literature, we use α = 0.05. In our case, by using the
Table G in [154], for m=60 and n=62, the value of Dcrit is 0.22. Where m and n are the
number of IP level flows in our simulation.

• P-value: It is the probability of a null hypothesis being true (with a certain
significance level α).

1The significance level α is the error probability for the Type I error in which H0 is rejected when
in fact H0 is true. The term confidence interval and α are related such that: confidence interval = 1 -
α [154].
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Figure 6.1: Indoor scenario layout
The interesting point about the P-value is that it quantifies the dominance of the whole
distribution and not simply how close/distant they are at a certain reference point or how
similar the obtained average values are. If the P-value obtained in the test is less than α,
it indicates that we have less evidence for our null hypothesis to be true and vice versa.
Specifically, if the P-value is below the significance level α we reject the null hypothesis
and claim that the results obtained show unfairness to Wi-Fi. Therefore, the lower the
P-value the more likely the technology evaluated is unfair to Wi-Fi. On the other hand,
for values higher than the significance level α, the more likely it is that the technology
evaluated is fair to Wi-Fi. To summarize, in this study we propose the following steps to
systematically evaluate the fairness:

1. Build throughput and latency ECDFs of the different flows crossing the Wi-Fi
network of operator B, when it coexists with Wi-Fi network of operator A, and use
it as baseline.

2. Repeat the procedure in step 1, when Wi-Fi network of operator B coexists with
ULTE network of operator A.

3. Apply one-sided two-sample KS-test.

4. Use the P-value to accept or reject the null hypothesis.

6.3 Results

In this section, after discussing the simulation scenario, we first present LAA, LTE-U and
Wi-Fi performance by analyzing the CDF plots of their throughput and latency, when
they coexist with another Wi-Fi network in the indoor scenario as defined by 3GPP in [79].
In ns-3, we are calculating throughput and latency by using the built-in FlowMonitor
tool that tracks per-flow statistics at the IP layer. We then post-process these results to
obtain the CDFs. Later, on the basis of the statistical approach discussed in Section 6.2,
we perform a statistical analysis on the throughput and latency distributions to evaluate
the fairness of LAA and LTE-U networks towards Wi-Fi.

6.3.1 Simulation Scenario

As shown in Fig. 6.1, we consider the indoor simulation scenario proposed for coexistence
evaluations by 3GPP [79]. In the indoor scenario, two operators deploy four small cells
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Figure 6.2: Throughput performance: FTP(λ=2.5) over UDP

in a building with the dimension 120x50 meters with no walls. The four base stations
for each operator are equally spaced, while the base stations from the two operators are
placed with an offset on the X axis. There are 20 UEs/STAs per operator which are
randomly dropped inside the building. The unlicensed 20 MHz band at 5.180 GHz is
shared by both operators. The licensed band for ULTE networks is not simulated here.

As for the traffic model, we consider the FTP 1 model proposed by 3GPP in [79]. We
consider the maximum allowed λ=2.5. Moreover, for the propagation model, we use
802.11ax indoor model for all the small cells in the scenario. Simulations are run for
52 sec for all scenarios, which is enough to generate ideally over 6000 TxOP of 8ms for
ULTE operator to access the level of fairness it could offer to Wi-Fi.

6.3.2 LAA vs LTE-U performance analysis

Fig. 6.2 plots the CDF of the throughput achieved in the following scenarios,

1. Wi-Fi over Wi-Fi: Wi-Fi network of operator A coexists with Wi-Fi network of
operator B. We present the throughput of Wi-Fi network of operator B, the trend
is very similar to the one of operator A, which is not shown to simplify the figure.

2. LTE-U over Wi-Fi: LTE-U network of operator A coexists with Wi-Fi network of
operator B. In this scenario, operator A network is substituted by LTE-U and we
present the throughput of both LTE-U and Wi-Fi networks.

3. LAA over Wi-Fi: LAA network of operator A coexists with Wi-Fi network of
operator B. In contrast to previous scenario, operator A network is substituted by
LAA and the throughput of both LAA network of operator A and Wi-Fi network
of operator B are presented.

Let us start by analyzing the LAA coexistence behavior. When Wi-Fi coexists with LAA,
we observe that in most of the cases the LAA network is coexisting fairly with the Wi-Fi
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Figure 6.3: Latency performance: FTP(λ=2.5) over UDP

network, allowing it to achieve the same throughput as it has achieved in Wi-Fi over
Wi-Fi scenario. However, in some cases Wi-Fi experiences medium and low throughput
flows mainly due to:
1) Transmission of reservation and control signals, i.e., periodic transmissions of discovery
reference signals (DRS) which occupy one subframe (1 msec), in case they have to be
transmitted without data. These control signals occupy more channel than Wi-Fi beacons
and interrupt Wi-Fi flows, causing more contention, and increase in latency as shown in
Fig. 6.3. This prevents these flows from reaching the maximum throughput.
2) Collisions due to hidden terminals. We observe that 1.27% of signals experience
collisions caused by nodes below the Wi-Fi CCA-ED threshold (-62dBm) and LAA ED
threshold (-72dBm). These low throughput flows would benefit from further lowering the
LAA and Wi-Fi ED thresholds to -82dBm or from LAA supporting CTS2Self [144]. This
would enable the Wi-Fi nodes to backoff upon detecting the CTS2Self messages, which
happens at -82dBm or below.
As per LAA throughput, the great majority of the flows achieve the maximum
throughput, while three very low throughput flows are observed due to the hidden
terminal problem, as mentioned above. In terms of latency, the same three flows suffer
from high latency, as shown in Fig. 6.3. As discussed above for Wi-Fi, these low
throughput flows can also be recovered by implementing CTS2Self functionality in LAA.

When co-existing with LTE-U, Wi-Fi throughput is mainly affected by the fact that LTE-
U starts transmitting without first listening to the medium, as explained in chapter 1.
This increases the chances to collide with ongoing Wi-Fi transmissions. In particular,
we observe 1.27% of collisions in case of LAA and 2.83% of collisions in LTE-U, which
represents a 55% increment. On the other hand, LTE-U performance as compared to
LAA, is mainly degraded due to three reasons:
1) Increased number of possible collisions with the ongoing Wi-Fi transmissions due to
the duty cycle transition from OFF period (T-OFF) to ON period (T-ON), as mentioned
earlier.
2) The lack of LBT capability makes LTE-U nodes not backoff to each other and so they
may happen to coexist with frequency reuse 1. This increases the spectral efficiency of
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Table 6.1: KS-test results

Indoor
P-value D-Max

LAA Throughput 0.00273 0.342
Latency 0.00573 0.303

LTE-U Throughput P≪0.05 0.543
Latency P≪0.05 0.479

LTE-U network at the the cost of increased inter-cell interference. As a result, we observe
lower MCS values and an increased number of Hybrid-ARQ (HARQ) retransmissions.
3) High latency experienced by the flows which are interrupted by LTE-U OFF periods.
In our simulation, with the maximum achievable throughput, one file transfer of 0.5
MB takes ∼30 msec to complete. Consequently, the flows which are unable to complete
during one T-ON period, i.e., 40 msec in our case with 50% duty cycle, have to wait
for additional T-OFF time of 40 msec to resume. Therefore, these flows experience high
latencies as compared to LAA, as it is shown in Fig. 6.3. Contrarily, those flows which in
turn are able to complete their transmission during one T-ON period are able to achieve
high throughput values comparable to those offered by LAA.

From this analysis of results, we observe that Wi-Fi curves when coexisting with LAA
and LTE-U are similar, but they both show some divergence. We intuitively can say that
LAA seems more fair, but we are unable to state up to which extent LTE is fair with
Wi-Fi. As a result, in the following subsection we proceed to statistically analyzing and
comparing the throughput and latency distribution to get more insights on the fairness
of the coexistence performance.

6.3.3 Statistical analysis of fairness

As per our discussion in Section 6.2, we use a single-sided two sample KS-test to
systematically estimate the fairness achieved in both LAA and LTE-U scenarios. In
particular, we use the Stats package of R [157], which is a widely used open source tool
in statistical studies. As shown in Table 6.1, the obtained P-values for throughput and
latency are less than α (i.e., 0.05 in our case). This indicates that at significance level of
0.05, KS-test rejects the null hypothesis, i.e., the throughput distributions obtained from
Wi-Fi over LAA do not stochastically dominate the throughput distribution of Wi-Fi
over Wi-Fi, and the latency distributions obtained in the same scenario do stochastically
dominate the throughput distribution of Wi-Fi over Wi-Fi. Similarly, for the KS-test of
Wi-Fi over LTE-U, the resulting P-values for throughput and latency are much less than
the significant level of α, indicating that we have no evidence for H0 to be true. The
P-values which were very low and statistically insignificant are represented by P≪0.05
in Table 6.1. We reach the same conclusion when analyzing the Dmax in Table 6.1. We
observe that in all cases Dmax is higher than the Dcrit value.

On the basis of these statistical results, we can conclude that for the indoor scenario
defined by 3GPP that we evaluated, neither LAA, nor LTE-U pass the fairness test.
However, we also conclude that LAA behaves more fairly than LTE-U.
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6.4 Conclusions

In this chapter, we have presented the comparative study of the coexistence performance
of the ULTE (i.e., LTE-U and LAA) network, when coexisting with the Wi-Fi network.
We have started from the 3GPP definition of fairness and methodology for evaluating
fairness. Specifically, we have followed the same methodology and evaluated the
coexistence performance in terms of the throughput and latency in the indoor scenario
that is implemented using the ns-3 LTE-WiFi coexistence models of ULTE. These models
allow for full protocol stack, and 3GPP and LTE-U forum-compliant evaluations. After
analyzing the results, we conclude that it is not easy to claim in a quantitative way that
the behavior of the ULTE network is actually fair/unfair towards the Wi-Fi network.
Therefore, we have proposed a formal framework based on statistical data analysis to
evaluate the concept of fairness. In particular, we have mapped the 3GPP fairness concept
onto the first-order stochastic dominance concept. We have tested the hypothesis of such
defined fairness through the KS-test.

Based on the results, ULTE behavior when 3GPP or LTE-U forum specs are followed,
needs the support of proprietary solutions, e.g., the one presented in chapter 5, on top
to allow a fair coexistence with WiFi technology. As a result, further work is required to
improve the management of spectrum resources, and solutions strictly complying with the
specifications are not enough to guarantee fairness. On the other hand, from the analysis
conducted, it emerges that LAA, which provides access to the channel much similar to Wi-
Fi, appears as a preferred technology for fair coexistence compared to LTE-U. This result
should be further confirmed after considering different traffic models, and other scenario
configurations, in the context of full protocol stack evaluations. Finally, the interesting
future works in the area of fairness could be the ones that deal with generalizing the
proposed framework by also considering second-order stochastic dominance concepts,
which would allow concluding on the fairness even in cases of non-monotonic curves
intersecting between each other.
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Chapter 7

NR V2X Technology and
Implementation

Following the successful use of sidelink in LTE for Proximity Services (ProSe) and C-V2X,
the 3GPP has standardized its evolution in NR systems in the context of the so-called NR
V2X. This new technology is expected to complement LTE C-V2X for advanced services
by offering low latency, high reliability, and high throughput V2X services for advanced
driving use cases. To do this, NR V2X is equipped with new features, such as the support
for groupcast and unicast communication, a novel feedback channel, and a new control
channel design. In this chapter, we provide detailed overview of NR V2X technology,
with special emphasis on Mode 2 for out of coverage operation and autonomous resource
selection. Furthermore, this chapter presents a system-level NR V2X standard-compliant
simulator, as an extension of the popular and open-source NR network simulator 5G-
LENA, based on ns-3. In particular, we focus on the design, implementation, and
evaluation of the sensing-based resource selection in NR V2X Mode 2, in a highway
scenario. Through several and extensive simulation campaigns, we test the impact of
different NR V2X parameters, such as the numerology, the resource selection window
size, the number of retransmissions, the maximum number of resources per reservation,
and the probability of keeping the same resources during reselection, in a sensing-based
resource selection. Finally, we provide a comparison campaign that shows the gains
attained by the sensing-based resource selection, proposed during 3GPP Release 16, over
the random selection strategy, considered in 3GPP Release 17 for power saving purposes.

The rest of the chapter is organized as follows. In Section 7.1, we provide a literature
review of NR V2X and the existing open source simulators to simulate sidelink
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communications. Section 7.2 presents 3GPP NR V2X specifications and reviews in detail
NR V2X Mode 2 transmissions. Section 7.3 presents the simulation models and the
implementation details. Section 7.4 discusses multiple simulation campaigns. Finally,
Section 7.5 concludes the chapter.

7.1 Related work

While LTE C-V2X has been widely studied analytically and through simulations by
academia and industry [89, 91, 158–160], the studies on NR V2X are comparatively new
and growing in numbers day by day. Authors in [161] provide an overview of the
standardization activities for vehicular communications at mmWave bands, including
IEEE 802.11bd and 3GPP NR V2X specifications. Authors in [162] review the NR
V2X design in 3GPP Release 16, with respect to the network architecture, security, and
protocol enhancements. Authors in [163] provide a comprehensive overview of 3GPP NR
sidelink transmissions, including physical layer structure, resource allocation mechanisms,
and synchronization procedures. A more in-depth tutorial of 3GPP Release 16 NR V2X
standard is presented in [164], including overview of the PHY layer, resource allocation,
quality of service management, mobility management for V2N communications, and
coexistence mechanisms between NR V2X and LTE C-V2X. In [165], the impact of the
NR numerology on the V2X autonomous sidelink mode (similar to NR V2X Mode 2) is
assessed. However, in [165], the evaluation is done over an LTE C-V2X simulator.

As it can be observed from the above review, most of the publicly available papers
about NR V2X deal with a 3GPP standard overview, but few of these works discuss
simulation studies. In addition, a key challenge to evaluate performance of NR V2X is
that, despite the set of simulation results by industry and in literature, the simulators are
not publicly available. Normally, simulators used in 3GPP are required to pass through a
calibration procedure, but they are private, and not available to the research community.
Consequently, the obtained results are neither reproducible, nor comparable, and system
performance metrics are presented without much details revealed about the underlying
models and assumptions. There are then private commercial simulators that are available
after paying an annual license fee for using them. Often, if not in all cases, the license is
very restrictive and does not allow modifications or inspection of the source code, which
is a clear limitation for the research and the potential innovation. To the best of our
knowledge, open source end-to-end simulators for 5G V2X communications compliant
with NR V2X Release 16 specifications are not yet available to the research community.

There are five main open source and end-to-end simulators that have been developed to
simulate sidelink communications. First, an LTE D2D communication simulation model
based on ns-3 was introduced and validated in [166]. Models are currently available
through the ns-3 App store. Authors in [167] presented the first open-source simulator for
LTE C-V2X Mode 4 communications, based on ns-3. An open-source 802.11p and LTE
C-V2X simulation/emulation tool for ns-3, called ms-van3t, has been recently released
in [168], which provides integration of ns-3 with the open-source Simulation of Urban
MObility (SUMO) simulator for mobility management and mobility tracking. The work
in [169] presents LTEV2Vsim, a simulator for LTE C-V2X Mode 3 and Mode 4 that is
written in Matlab, freely available, and which focuses on Medium Access Control (MAC)
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and PHY layers procedures. Finally, authors in [170] introduced an ns-3 simulator for
NR V2X at mmWave carrier frequencies. The model in [170] is compliant with 3GPP
antenna and channel modeling for NR V2X, but not with NR V2X specifications at RRC
and MAC layers. In particular, the model was developed before the finalization of NR
V2X specifications. Therefore, at MAC layer it follows Mode 2 (c) for resource allocation,
which was proposed as one of the options for study in 3GPP TR 38.885 [92]. Specifically,
it uses TDMA to assign resources using the slots in a subframe, i.e., UEs scheduled in a
subframe have orthogonal resources to transmit on; hence, they do not collide. Moreover,
the error model used at the PHY layer is more suited for LTE but not for NR. All these
limitations have been addressed by our model as described below and throughout this
chapter.

7.2 NR V2X Technology Review

This section presents the main highlights of NR V2X technology in 3GPP, with special
emphasis to NR V2X Mode 2 transmissions.

7.2.1 NR V2X

7.2.1.1 Communication types

Differently from LTE C-V2X that focused on periodic basic safety messages, NR V2X has
been designed to support various use cases, including the transmission of periodic traffic
as well as reliable delivery of aperiodic messages. To support a wide range of different
new applications, NR V2X goes beyond the only broadcast communications proposed by
LTE C-V2X, and provides support for three types of transmissions: broadcast, groupcast,
and unicast [85,92]. In NR V2X unicast transmissions, the transmitting UE has a single
receiver UE associated with it. The groupcast mode is used when the transmitting UE
wishes to communicate with a specific sub-set of UEs in its vicinity. Finally, broadcast
transmissions enable a UE to communicate with all UE within its transmission range.
In NR V2X, a single UE can establish communications of multiple types simultaneously.
For example, a platoon leader UE can communicate with its platoon member UEs using
the groupcast mode, while using the broadcast mode to transmit other periodic messages
to UE that are not part of the platoon.

7.2.1.2 Sidelink physical channels and reference signals

Sidelink communications in NR V2X use the following physical channels [171]: 1) the
Physical Sidelink Broadcast Channel (PSBCH) for sending broadcast information (like
synchronization of the sidelink), 2) the PSCCH for sending control information (1st-stage-
SCI), 3) the PSSCH for sending control (2nd-stage-SCI), data and CSI in case of unicast,
4) and the PSFCH for sending HARQ feedback in case of unicast and groupcast modes.
The PSFCH is a new channel, which was not previously considered in LTE C-V2X. For
these channels, numerologies 0 (SCS=15 kHz), 1 (SCS=30 kHz), and 2 (SCS=60 kHz) are
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Figure 7.1: Time/frequency frame structure and definition of sidelink resource pool for
NR V2X TDD. Example with 2 subchannels of 10 RBs each, using TDD pattern of
[D D D F U U U U U U] and sidelink bitmap of [1 1 1 1 1 1 0 0 0 1 1 1].

supported at sub 6 GHz bands, and numerologies 2 (SCS=60 kHz) and 3 (SCS=120 kHz)
can be used at mmWave bands [172]. For PSSCH, the supported modulation schemes
include QPSK, 16-QAM, 64-QAM, and 256-QAM. Instead, for PSCCH, only QPSK
transmission is supported.

Regarding the reference signals, NR V2X uses [163] 1) the Sidelink Primary/Secondary
Synchronization Signal (S-PSS/S-SSS) for synchronization. S-PSS/S-SSS are transmitted
together with the PSBCH in the so-called synchronization signal/PSBCH block (SSB).
The SSB uses the same numerology as the PSCCH/PSSCH on that carrier. 2)
Demodulation Reference Signals (DMRS) to estimate the channel and perform data
decoding. 3) Phase Tracking Reference Signal (PT-RS) to compensate for phase noise.
4) Channel State Information Reference Signal (CSI-RS) to estimate the channel and
report channel quality information, similarly to NR.

7.2.1.3 Sidelink resource pool

An important aspect of sidelink communications is the definition of sidelink resource
pools. In NR V2X, a UE can be configured by higher layers with one or more sidelink
resource pools. A sidelink resource pool can be used for transmission and reception of
PSCCH/PSSCH, and can be associated with either sidelink resource allocation Mode 1
or Mode 2 [92]. In the frequency domain, a sidelink resource pool consists of a number
of contiguous subchannels [173]. The size of each subchannel is fixed and it is composed
of N contiguous RBs. Both the number of subchannels and the subchannel size are
higher layer pre-configured, by RRC. NR V2X supports N = 10, 15, 20, 25, 50, 75, and
100 RBs for possible sub-channel sizes [174]. In the time domain, the resources (i.e.,
slots) available for sidelink are determined by repeating sidelink bitmaps. The bitmap
is pre-configured and characterized by a certain size. The resource pool parameter from
RRC, sl-TimeResource, defines the bitmap size and takes values 10, 11, 12, ..., 160 [175].
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In particular, in case of TDD, the resources available for sidelink are given by the
combination of the TDD pattern and the sidelink bitmap. We also note that, unlike LTE
sidelink specification related to the TDD pattern and the size of sidelink bitmap [176],
NR sidelink specification is flexible and any valid NR TDD pattern can be used with any
structure of a sidelink bitmap, which has a size specified by the standard [177]. Since
NR V2X may be developed both in a carrier dedicated to Intelligent Transport System
(ITS) or to cellular services, the standards support both the cases where all the symbols
in a slot are available for sidelink, or only a consecutive subset of them [92]. In ITS
spectrum, all the symbols are always allocated to sidelink. Within the slots available for
sidelink, the specific Orthogonal Frequency Division Modulation (OFDM) symbols used
for sidelink transmission/reception are fixed and pre-configured. Two RRC parameters
pre-configure the symbol index of the first symbol and the set of consecutive symbols in
a slot available for sidelink [173].

In Fig. 7.1 we illustrate the time/frequency frame structure of NR V2X and the definition
of sidelink resource pools for TDD systems. The example is shown for the case of 10 MHz
bandwidth using numerology 1 (i.e., SCS 30 kHz), and 2 subchannels, each composed
of 10 RBs where RB 1 is the starting RB of the first sidelink subchannel. In time, we
consider a TDD pattern of [D D D F U U U U U U] (i.e., one downlink slot, followed by
a flexible slot1, and three uplink slots), and a sidelink bitmap of [1 1 1 1 1 1 0 0 0 1 1 1].
As it can be observed, the TDD pattern is repeated in time, and each index of the sidelink
bitmap applies to the uplink slots (U) in the TDD pattern, repeatedly, thus indicating
the slots available for sidelink. In the frequency domain, a sidelink resource pool consists
of a number of contiguous subchannels [173], therefore, as per [175], the last 4 RBs are
not available for sidelink. As a result, in the figure we illustrate in green which slots/RBs
are available for sidelink communications in the mentioned configuration example. This
structure is typically used by an out-of-coverage NR V2X UE using Mode 2 operating in
any of the V2X bands listed in Table 2.4. On the other hand, an in-coverage NR V2X
UE operating in either Mode 1 or Mode 2, will tailor its time/frequency structure as per
the gNB provided TDD pattern, sidelink bitmap, and subchannels.

7.2.1.4 Retransmissions and new sidelink feedback channel

Differently from LTE C-V2X, which uses fixed MCS and only provides support for blind
retransmissions, i.e., the source UE, automatically retransmits without knowing if the
initial transmission has been correctly received, NR V2X provides different enhancements
to improve reliability of communications, by introducing a feedback channel, the PSFCH.
In particular, for unicast and groupcast communications considered by NR V2X, but not
by LTE C-V2X, reliability can be improved if the source UE can retransmit the packet
once the reception fails at the receiving UE and if the MCS can be adjusted to the actual
channel conditions. NR-V2X introduces both blind and feedback-based retransmissions,
for unicast and groupcast communications, while for broadcast communications only
blind retransmissions are supported. With blind retransmissions, HARQ is implemented
only at the receiver for retransmission combining. The transmitting UE chooses the
resources within a resource reservation interval to retransmit. In particular the UE

1The flexible slot is used to provide the necessary guard time for downlink to uplink switching in
TDD systems.
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retransmits based on the configured value, which can be up to 31. Blind retransmissions
are resource inefficient if the initial transmission is successful. On the other hand,
feedback-based retransmissions are more resource efficient because the transmitting
UE only retransmits if the original transmission is NACKed. In this case, HARQ is
implemented both at the transmitter for efficient retransmissions and at the receiver
for retransmission combining. In both cases, NR V2X Mode 2 supports a maximum
number of PSSCH transmissions of the same MAC Packet Data Unit (PDU), which
is pre-configured and whose maximum value is equal to 32. Even if feedback-based
retransmissions are more resource efficient, blind retransmissions allow to minimize the
latency of the feedback-based retransmissions, as the transmitting UE does not need to
wait for a HARQ feedback before sending a retransmission [163]. To enable feedback-
based retransmissions, NR V2X introduces the PSFCH.

7.2.1.5 Multiplexing of PSCCH, PSSCH, and PSFCH

In LTE C-V2X, PSCCH and PSSCH channels are multiplexed in the frequency domain.
The drawback of this approach is that a receiver must buffer the message for the entire
sub-frame and can decode the message only at the end of the sub-frame. This may be
inefficient in NR V2X due to tight latency constraints of certain messages. To address
this problem, different multiplexing options are considered in NR V2X for PSCCH and
PSSCH [92]. Among the different options, two out of four consider time multiplexing
in NR V2X, i.e., the PSCCH will be transmitted first, followed by the transmission of
PSSCH. In time domain, within the symbols available for sidelink in a slot (see description
in Section 7.2.1.3), the PSCCH can span over two or three symbols at the beginning of
the pre-configured symbols and the PSSCH spans over the remaining number of pre-
configured symbols. Finally, both PSCCH and PSSCH are multiplexed in time with
the PSFCH. Specifically, every one, two, or four slots available for sidelink, the last two
symbols among the pre-configured ones for sidelink, excluding the guard period symbol,
are reserved for the PSFCH. In the frequency domain, the PSSCH can occupy up to the
maximum number of available subchannels for sidelink, depending on the amount of data
to transmit. However, the PSCCH spans over a pre-configured number of consecutive RBs
(i.e., K RBs) in the first subchannel in which PSSCH is transmitted, where K ≤ N RBs
and N is the subchannel size, described in Section 7.2.1.3. NR V2X supports K = 10,
12, 15, 20, and 25. Finally, the candidate resources, i.e., RBs for PSFCH are determined
as per the PSSCH transmission(s) for which the feedback is generated. For more details,
the reader is referred to very comprehensive tutorial of the NR V2X standard in [163]
and [178].

The time multiplexing of the PSCCH, PSSCH, and PSFCH in NR V2X is shown in
Fig. 7.2, assuming a typical NR slot structure composed of 14 OFDM symbols. As
previously mentioned, the number of OFDM symbols used for sidelink is pre-configured.
In the example in Fig. 7.2, 14 symbols are available for sidelink, the length of PSCCH
is pre-configured to 2 symbols, PSSCH starts at the 3rd symbol with a duration of 8
symbols, N = 20 RBs is the subchannel size, and K = 12 RBs are used for the PSCCH.
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Figure 7.2: Slot structure of a slot available for sidelink, with time multiplexing of PSCCH,
PSSCH, and PSFCH in NR V2X.

7.2.1.6 Resource allocation

NR V2X defines two resource allocation modes for sidelink communications, one
centralized and one distributed [92]:

• Mode 1 (A centralized scheduling approach): The NR base station (gNB) schedules
sidelink resources to be used by in-coverage UEs for sidelink transmissions.

• Mode 2 (A distributed scheduling approach): The UE autonomously determines
sidelink transmission resources within sidelink resources configured by the gNB or
pre-configured by the network.

In this thesis, we focus on NR V2X Mode 2 with periodic traffic. Resource reservation
for NR V2X Mode 2 under periodic traffic mostly reuses the LTE C-V2X sidelink Mode 4
long-term sensing-based algorithm. It exploits the periodicity and fixed-size assumption
of basic safety messages. In addition to the long-term sensing-based resource selection,
NR V2X Mode 2 also supports a random resource selection [179]. The difference between
sensing-based and random resource selections is that, before selecting the resources from
the total available ones, the sensing-based procedure filters those slots which are in use
by other UEs, using sensing information. On the other hand, the random selection
procedure does not use the sensing information, and directly selects the resources from
the total available ones. The random resource selection approach is considered to reduce
the complexity of the UE and the power consumption, since the sensing procedure adds
complexity and has an energy cost at the transmitting UE that has to continuously
sense the channel for resource selection. This random procedure was later approved by
3GPP in NR Release 17 WI [180], as a power saving mechanism. On the other hand,
in case of aperiodic traffic, LTE C-V2X Mode 4 resource selection mechanism has been
re-engineered for NR V2X Mode 2, since the arrival of future packets cannot be inferred
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Figure 7.3: Illustration of the SCI split and resource reservation concept in NR V2X.

by sensing previous transmissions from surrounding UEs. For these cases, the use of
short-term sensing and dynamic reservation is envisioned in 3GPP [92].

7.2.1.7 Sidelink control information

Another key improvement of NR V2X is the split of the SCI. Two SCI formats have
been defined [181]: SCI Format 0-1 and SCI Format 0-2, which are sent through
different channels, the PSCCH and the PSSCH, respectively. SCI carried on PSCCH
is a 1st-stage SCI (SCI Format 0-1), which transports sidelink scheduling information of
PSSCH and 2nd-stage-SCI on PSSCH. This sidelink scheduling information includes the
priority, time/frequency resource assignment, 2nd-stage-SCI format, MCS, and resource
reservation period. The SCI carried on PSSCH is a 2nd-stage-SCI (SCI Format 0-2),
which transports information used for the decoding of PSSCH. This includes the HARQ
process ID, new data indicator (NDI), redundancy version, source ID, and destination
ID.

1st-stage-SCI indicates the reservation of Nmax _reserve (pre-configured) number of sidelink
resources within the resource selection window [182]. Nmax _reserve can be 2 or 3 [175]. The
resource reservation is indicated in the time resource assignment field of the 1st-stage-
SCI. This means that not all the slots in a resource reservation period of a UE carry
1st-stage SCI in the PSCCH; some slots have empty PSCCH and only carry information
in the PSSCH, as indicated by a 1st-stage-SCI in a previous slot.

An illustration of the SCI split and the resource reservation mechanism is shown in
Fig. 7.3, for the case of Nmax _reserve = 3 (i.e., each 1st-stage SCI can indicate up to three
sidelink PSSCH resources) and Nselected = 5. Nselected indicates the number of resources
that are selected within a selection window, as per [182]. As an example, in NR V2X
Mode 2, upon a resource selection trigger, the UE MAC can select various resources for
an initial transmission (NDI = 1) and various retransmissions (NDI = 0). According
to NR V2X specification, Nsci = min(Nmax _reserve, Nselected) is the number of resources
indicated by a 1st-stage-SCI [173]. In Fig. 7.3, Nsci = 3 for the first 1st-stage-SCI and
Nsci = 2 for the second 1st-stage SCI (since here, only two remaining slots are left to be
indicated after the resources indicated by the first 1st-stage-SCI).
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Figure 7.4: NR V2X Mode 2 resource selection procedure. Example with T0 = 20 slots,
Tproc,0 = 2 slots, T1 = 2 slots, and T2 = 16 slots.

7.2.2 NR V2X Mode 2

NR V2X Mode 2 considers sensing-based SPS for periodic traffic. This is defined as
a distributed scheduling protocol to autonomously select radio resources, in a similar
way to what is already considered for LTE C-V2X Mode 4. The sensing procedure
takes advantage of the periodic and predictable nature of V2X basic service messages.
In particular, sensing-based SPS UEs reserve subchannels in the frequency domain for
a random number of consecutive periodic transmissions in time domain. The number
of slots for transmission and retransmissions within each periodic resource reservation
period depends on the number of blind retransmissions (if any) and the resource selection
procedure. The number of reserved subchannels per slot depends on the size of data to
be transmitted.

7.2.2.1 Resource selection procedure

The sensing-based resource selection procedure is composed of two stages: 1) a sensing
procedure and 2) a resource selection procedure [179].

The sensing procedure is in charge of identifying the resources which are candidate for
resource selection and is based on the decoding of the 1st-stage-SCI received from the
surrounding UEs and on sidelink power measurements in terms of RSRP [173]. The
sensing procedure is performed during the so-called sensing window, defined by the pre-
configured parameter T0 and a UE-specific parameter Tproc,0 that accounts for the time
required to complete SCIs decoding and possibly perform measurements on DMRS for
the sensing procedure. Specifically, if at time n the sensing-based resource selection is
triggered, the UE will consider the sidelink measurements performed during the interval
[n − T0, n − Tproc,0). Sidelink RSRP measurements can be computed using the power
spectral density of the signal received in the PSCCH or in the PSSCH, for which the UE
has successfully decoded the 1st-stage-SCI. PSCCH RSRP and PSSCH RSRP are defined
as the linear average over the power contributions (in Watts) of the resource elements
that carry DMRS associated with PSCCH and PSSCH [183], respectively.

Based on the information extracted from the sensing, the resource selection procedure
determines the resource(s) for sidelink transmissions [179]. For that, another window is
defined, the resource selection window. The resource selection window is defined by the
interval [n + T1, n + T2], where T1 and T2 are two parameters that are determined by
the UE implementation [173]. T2 depends on the packet delay budget (PDB) and on an
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Figure 7.5: NR V2X Mode 2 semi-persistent scheduling.

RRC pre-configured parameter called T2,min. In case PDB > T2,min, T2 is determined by
the UE implementation and must meet the following condition: T2,min <= T2 <= PDB.
In case PDB ≤ T2,min, T2 = PDB. T1 is selected so that Tproc,1 <= T1, where Tproc,1 is
the time required to identify the candidate resources and select a subset of resources for
sidelink transmission. The resource selection procedure is composed of two steps. First,
the candidate resources within the resource selection window are identified. A resource
is indicated as non-candidate if an SCI is received on that slot or the corresponding slot
is reserved by a previous SCI, and the associated sidelink RSRP measurement is above
a sidelink RSRP threshold [173]. The resulting set of candidate resources within the
resource selection window should be at least a X % of the total resources within the
resource selection window to proceed with the second step of the resource selection. The
value of X is configured by RRC and can be 20 %, 35 % or 50 %. If this condition is not
met, the RSRP threshold is increased by 3 dB and the procedure is repeated. Second, the
transmitting UE performs the resource selection from the identified candidate resources
(which may include initial transmissions and retransmissions). For that, a randomized
resource selection from the identified candidate resources in the resource selection window
is supported.

To exclude resources from the candidate pool based on sidelink measurements in previous
slots, the resource reservation period (which is transmitted by the UEs in the 1st-stage-
SCI) is introduced. As only the periodicity of transmissions can be extracted from the
SCI, the UE that performs the resource selection uses this periodicity (if included in
the decoded SCI) and assumes that the UE(s) that transmitted the SCI will do periodic
transmissions with such a periodicity, during Q periods. This allows to identify and
exclude the non-candidate resources of the resource selection window. According to [173],
Q = ⌈ Tscal

Prsvp
⌉, where Prsvp refers to the resource reservation period decoded from the SCI,

and Tscal corresponds to T2 converted to units of ms [173].

As previously mentioned, NR V2X also supports a random resource selection [179]. In this
case, the sensing procedure is omitted, and all the resources within the selection window
that are part of the resource pool for sidelink are candidates for random selection.

Fig. 7.4 shows the resource selection procedure in NR V2X Mode 2. The figure illustrates
the sensing window and resource selection window, with an example that uses T0 = 20
slots, Tproc,0 = 2 slots, T1 = 2 slots, and T2 = 16 slots. Once the resource selection
is triggered at time n, based on the measurements in the sensing window, the MAC
scheduler determines the transmission resources within the resource selection window,
which can be used for different MAC PDUs or to perform blind retransmissions.
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Figure 7.6: NR Sidelink UE control plane.

7.2.2.2 Semi-persistent scheduling

Once one or multiple resources are selected, the UE will consider periodic transmissions,
using SPS. The transmission interval is defined by the Resource Reservation Period
(Prsvp), which is pre-configured by RRC and can take predefined values between 1
ms and 1000 ms [179]. Prsvp value is included in the 1st-stage-SCI, to allow other
UEs to estimate which resources are reserved in the future based on SCI decoding.
After using the resource for the number of transmissions equal to the Sidelink Resource
Reselection Counter (SLRRC), a resource reselection is triggered. Whether to reselect
or not, depends on the configured probability of keeping the current resources, hereafter
referred as “probability of resource keep”. In particular, once SLRRC reaches zero, the UE
either keeps the previous selection or selects new resources based on the pre-configured
probability value. The value of SLRRC is randomly selected from the interval [5, 15] for
Prsvp ≥ 100 ms. For Prsvp < 100 ms, the value of SLRRC is randomly selected from the
interval ⌈5× 100

max(20,Prsvp) , 15× 100
max(20,Prsvp)⌉ [179]. The standard also defines the maximum

number of times that the same resource can be used for SPS through Cresel = 10×SLRRC,
after which the resource reselection has to be triggered, independently of the probability
of resource keep.

An illustration of the SPS procedure for NR V2X Mode 2 is shown in Fig. 7.5. In the
example, three resources are selected within the resource selection window (m in the
figure is the slot index of the first selected resource), and these allocations are repeated
every Prsvp for SLRRC times. Once the three transmissions in the interval starting at
m + (SLRRC − 1) × Prsvp have been carried out, either the same selection is kept or a
new resource selection procedure is triggered, based on the probability of resource keep.

7.3 NR V2X Simulation Models

This section describes the ns-3 -based NR V2X simulator that we have built, as an
extension of the NR 5G-LENA open source network simulator [184], and the V2X models
that we have developed, including the design choices and implementation details.
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Figure 7.7: NR Sidelink UE data plane.

In our implementation, the data and control plane architectures of 5G-LENA UE
nodes [184], shown in Fig. 7.6 and Fig. 7.7, have not been changed. Specifically, the
implementation does not add or remove any of the protocol layers in the simulator.
However, the extension to support NR V2X functionalities, e.g, sensing, SPS, autonomous
resource selection, which are not part of a conventional UE design, involved some
modifications at all layers of the protocol stack2, from the Non-Access Stratum (NAS) and
down to the PHY layer. One of the most important changes towards the implementation
of NR V2X communications, compared to the typical cellular communications available
in 5G-LENA simulator, is the introduction of sidelink, i.e., direct vehicle-to-vehicle
communications. For that, the bearer establishment and RRC layer have been fully
updated according to NR V2X RRC specification in TS 38.331 [175]. Also, MAC and
PHY layers have been redesigned to implement NR V2X Mode 2 procedures using sensing-
based SPS, as described in Section 7.2.2, according to TS 38.321 for the MAC layer [179],
and TS 38.211 and TS 38.212 for the PHY layer [172,181]. In the simulator, as previously
mentioned, we focus on NR V2X Mode 2 for out-of-coverage scenarios with broadcast
communications and therefore, for the moment only blind retransmissions are considered.

2The NR 5G-LENA simulator reuses the upper layers, i.e., RLC and above, of LENA ns-3 LTE
module.
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Table 7.1: Comparison of D2D, LTE C-V2X, and NR V2X in the standard and ns-3.

D2D
standard

D2D ns-3
[166]

LTE
C-V2X
standard

C-V2X
ns-3
[167]

NR V2X
standard

NR V2X
ns-3
[this thesis]

Communication
types groupcast broadcast broadcast broadcast

broadcast,
groupcast,
unicast

broadcast

MCS QPSK,
16QAM

QPSK,
16QAM

QPSK,
16QAM,
64QAM

QPSK,
16QAM,
64QAM

QPSK,
16QAM,
64QAM,
256QAM

QPSK,
16QAM,
64QAM,
256QAM

Waveform SC-FDMA SC-FDMA SC-FDMA SC-FDMA OFDMA OFDMA
Frequency
range sub 6 GHz sub 6 GHz sub 6 GHz sub 6 GHz sub-6 GHz,

mmWave
sub-6 GHz,
mmWave

Subcarrier
spacing 15 kHz 15 kHz 15 kHz 15 kHz

sub-6 GHz:
15, 30,
60 kHz,
mmWave:
60, 120 kHz

sub-6 GHz:
15, 30,
60 kHz,
mmWave:
60, 120 kHz

Duplexing
modes

FDD,
TDD FDD FDD,

TDD FDD FDD, TDD TDD

Retransmissions blind blind blind blind

broadcast:
blind,
group-
cast: blind,
feedback-
based, uni-
cast: blind,
feedback-
based

broadcast:
blind

PHY channels

PSCCH,
PSSCH,
PSDCH,
PSBCH

PSCCH,
PSSCH,
PSDCH,
PSBCH

PSCCH,
PSSCH,
PSBCH

PSCCH,
PSSCH,
PSBCH

PSCCH,
PSSCH,
PSBCH,
PSFCH

PSCCH,
PSSCH

Control and
data multiplex-
ing

frequency,
time time frequency frequency frequency,

time time

Scheduling in-
terval 1 subframe 1 subframe 1 subframe 1 subframe 1 slot 1 slot

Sidelink modes 1 and 2 1 and 2 3 and 4 4 1 and 2 2

Table 7.1 compares the main features of D2D, LTE C-V2X and NR V2X, as defined
in the standard. Also, we compare the ns-3 -based system level simulators available for
D2D [166] and C-V2X [167], with the ns-3 NR V2X simulator presented in this thesis.
In Table 7.2, we detail the features and functionalities that are available in the developed
NR V2X system-level simulator. The features listed for our simulator are those included
in the first release, which allow the evaluation of a full NR V2X system with a subset
of NR V2X features, but we plan to further progress with the module’s development to
support more extensions and functionalities.
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Table 7.2: NR V2X models.

NR V2X

Frame structure

TDD NR-compliant frame structure with slots and OFDM symbols of
numerology-dependent length [184,185]:
- frame: 10 ms, subframe: 1 ms
- each subframe has 2µ slots (associated to 15×2µ kHz SCS)
- numerologies µ=0, 1, 2, 3, 4 are supported
- each slot is composed of 14 OFDM symbols
Support for multiple bandwidth parts [184]:
- more than one BWP can be configured for sidelink
- each BWP can have pre-configured multiple sidelink resource pools, but only
one pool can be active at a time

Duplexing mode

TDD
- the TDD pattern is flexible in length and composition, and can include
downlink-only slots, uplink-only slots, or flexible slots (in which downlink and
uplink transmissions can occur). An example of TDD pattern is [D F U U U].

Sidelink resource
pool

- sidelink transmission is only allowed in uplink-only slots, and whether an
uplink slot is available for sidelink or not is specified through the SL bitmap.
An example of the SL bitmap is [1 1 1 1 1 1 0 0 0].
- within the uplink slots available for sidelink, the symbols available for sidelink
are RRC pre-configured and our default structure is as follows: PSCCH can
occupy 1 or 2 starting symbols, and depending on the PSCCH allocation, 2nd
to 13th or 3rd to 13th symbols are available for PSSCH, and the 14th symbol
is left empty as a guard period
- in frequency domain, RRC pre-configures the subchannel size (in number of
RBs), and as per this configured size, divides the available bandwidth in
number of available subchannels.

SL data/control
channels

- PSSCH and PSCCH are multiplexed in time
- PSSCH and PSCCH are sent and received quasi-omnidirectionally at the UEs

Error models
NR PHY abstraction for PSSCH and PSCCH channels [186] including support
for MCS Table1 and Table2 [173], MCS LDPC coding and block segmentation
[181]

Modulation OFDM
Channel Coding LDPC
MCS QPSK, 16-QAM, 64-QAM, 256-QAM
HARQ NR PHY abstraction for HARQ includes support for HARQ-IR and HARQ-CC

Retransmissions Blind retransmissions, including up to a pre-configured number with
retransmission combining

Resource allocation sensing-based and random resource selections are supported
Link adaptation Fixed MCS

Antenna models

3GPP-compliant [187]:
- Antenna arrays: 1 uniform planar array per UE, M×N antenna elements, no
polarization
- Antenna elements: isotropical and directional radiation are supported

Channel models 3GPP-compliant [188], supporting Urban grid and Highway scenarios, in both
sub 6 GHz and mmWave bands

7.3.1 NAS

The establishment and management of sessions occur at the highest layer on the control
plane, the NAS. The current functionalities of the NAS layer in ns-3 involve establishment
of Evolved Packet System (EPS) bearers, multiplexing uplink data packets coming from
the upper layers into the appropriate EPS bearer by using the Traffic Flow Templates
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(TFTs) classifier. A TFT defines the rules for mapping IP packets to the right bearer
based on IP addresses, ports, and type of service parameters.

For sidelink, the modifications are similar to the ones introduced in [166]. Specifically,
NAS now supports the activation of sidelink bearers, mapping of Internet Protocol (IP)
packets to the sidelink bearers based only on the IP destination address of the packets,
and the transmission/reception of packets in NAS OFF state to support out-of-coverage
scenarios.

7.3.2 RRC

The RRC is the control plane protocol in charge of setting important parameters for
the session. The modifications in the RRC include the creation of the sidelink bearers
upon receiving a notification from NAS, and the pre-configuration of UEs in an out-of-
coverage scenario. As mentioned earlier, the model currently focuses on the broadcast
communication, therefore, as per the standard, it supports the creation of uni-directional
sidelink radio bearers [189].

Regarding the UEs’ pre-configuration, the model implements all RRC Information
Elements (IEs) needed to configure a UE [175]. This configuration is of key importance to
perform sidelink communication when the gNB is absent. These IEs are mainly used for
two purposes. The first is to configure the UE’s PHY layer parameters, e.g., numerology,
symbols per slot, bandwidth, and TDD pattern. The second is to provide the sidelink
resource pool(s) information to MAC and PHY layers. It is also worth mentioning
that the model allows the configuration of multiple BWPs for sidelink, where for each
BWP, more than one resource pool can be configured through RRC. We note that, in
spite of supporting multiple resource pools per BWP, only one pool could be active at
one time [179]. Moreover, differently from the standard, which uses separate pools for
transmission and reception [175], our model uses the same active pool for both.

7.3.3 PDCP

The changes introduced in Packet Data Convergence Protocol (PDCP) layer are in line
with LTE sidelink [166]. In particular, when it comes to sidelink, it is no longer possible
to uniquely identify a logical channel only based on its Logical Channel Identifier (LCID).
With sidelink communications, UEs independently assign the LCIDs to logical channels
for each destination (i.e., Layer 2 group ID) to which they are transmitting. Thus, it is
impossible for UEs to identify the packets if multiple transmitting UEs select the same
LCID for the same group. To solve this, two more identifiers, i.e., source Layer-2 ID and
destination Layer-2 ID, are included to identify the transmitting UE [185].

7.3.4 RLC

The LTE Radio Link Control (RLC) layer in the simulator already supports the so
called Unacknowledged Mode (UM), which is the RLC mode used for sidelink broadcast
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communications. The only modifications made to the RLC layer are identical to the
PDCP layer.

7.3.5 MAC

The UE’s MAC layer has been extensively modified to transmit and receive sidelink
transmissions. In the following, we explain these procedures in detail.

7.3.5.1 MAC transmitting procedure

In out-of-coverage scenarios, UEs are required to perform the autonomous resource
selection following Mode 2, which could be based on sensing-based or random selection
procedures, as explained in Section 7.2.2 and Section 7.2.1.6, respectively. The first
significant modification introduced in this respect is the new MAC scheduler interface.
This interface allows the implementation of sidelink UE-specific schedulers, which could
assign resources following specific strategies, e.g., fixed MCS, adaptive MCS based on
CSI, etc. The UE MAC layer is extended to provide all the information needed by
a scheduler to perform resource selection. For example, the information related to all
the Logical Channels (LCs) of destinations the UE is interested in transmitting to, the
total number of available subchannels, Nmax _reserve, the maximum number of PSSCH
transmissions, and most importantly, the RLC sidelink Buffer Status Reports (BSRs) of
each LC that indicate how much sidelink traffic needs to be transmitted. The second
important addition is the buffering of the sensing data reported by the UE’s PHY layer.
This buffer behaves like a sensing window at the time of a sensing-based resource selection.
It contains the sensing information for the interval [n − T0, n − Tproc,0), where n is the
slot at which the resource selection is triggered, and T0 is configured by the RRC while
Tproc,0 is a MAC layer parameter. In what follows we will dive into the details of UE’s
MAC layer operation to perform sensing-based resource selection.

At slot n, when a resource selection is triggered for a destination, the MAC layer draws
a random counter (SLRRC) based on the user configured Prsvp value, which is used
to compute Cresel. Then, for an active pool configured by the RRC, it computes the
candidate resources (i.e., available slots) for sidelink transmission based on the selection
window parameters, T1, T2,min, and T2. Since the final resources must be selected based
on sensing information, the MAC follows the procedure described in Section 7.2.2.1,
to filter out the resources from the total available ones, which could be occupied by
the other transmitting UEs. Once the filtered candidate resources’ list is ready, the
MAC layer forwards it to the scheduler. Our model provides a sample scheduler, which
as per the standard [175], first randomly selects a number of slots, i.e., Nselected, for
sidelink transmissions. The number of Nselected slots depends on the number of slots
that are available in the filtered list and the maximum number of configured PSSCH
transmissions. If K denotes the total number of available slots, and NPSSCH,maxTx is the
maximum number of PSSCH configured transmissions, then:

Nselected =
NPSSCH,maxTx, if K ≥ NPSSCH,maxTx

K, otherwise
(7.1)
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After randomly selecting the required number of slots, it randomly the selects the required
number of contiguous subchannels computed using a fixed MCS strategy.3After selecting
the Nselected number of slots, the scheduler computes the Transport Block Size (TBS)
using the fixed MCS by taking into account the BSR of a LC, and the 5 bytes overhead
of 2nd-stage-SCI, which needs to be multiplexed with data. Finally, it prepares a sidelink
allocation valid for the first resource reservation period deciding also aspects like which
slots from the Nselected have to carry the 1st-stage-SCI, the New Data Indicator (NDI), and
the Redundancy Version (RV) number of each slot. The UE MAC layer, upon receiving
this allocation, creates the SPS grants based on the configured value of Prsvp and the
already drawn counters, i.e., SLRRC and Cresel. After using these grants for a number
of transmissions equal to the SLRRC, a resource reselection is triggered. That is, once
SLRRC reaches zero, the UE either keeps the previous selection or selects new resources
based on the pre-configured probability of resource keep. Finally, if Cresel reaches zero, the
resource reselection is triggered, independently of this probability. As already discussed in
Section 7.2.1.6, our model also supports a random resource selection. The only difference
between the two approaches is that the random resource selection procedure does not
filter the slots from the available ones before giving the list to the scheduler, so that the
sensing information is not used.

Before forwarding the sidelink packets to the PHY layer, a check is performed at the
beginning of each slot to ensure the availability of a valid grant for that slot. If there
is, the MAC layer prepares two packet bursts, one for the 1st-stage-SCI and the second
for the 2nd-stage-SCI plus data, and assigns a HARQ process ID to the data packet. It
also saves this data packet into a HARQ buffer if blind retransmissions are configured.
We note that the model allows to configure multiple (no limit for research purposes)
sidelink/HARQ processes to allow continuous flow of data. After this, both packet bursts
are forwarded to the lower layer. Upon receiving these packet bursts, the PHY, places
them in a queue to be transmitted on the configured PSCCH and PSSCH symbols.

7.3.5.2 MAC receiving procedure

The UE’s MAC layer, upon receiving the PSSCH packet burst from the PHY, first
retrieves the 2nd-stage-SCI to read the source Layer-2 ID and the destination Layer-
2 ID of the received packet. As mentioned in section 7.3.3, these identifiers are used
to map the received packet to its logical channel. If a bearer for the received packet is
already established, the data packet is forwarded to the upper layers. Otherwise, the
MAC asks the RRC to establish the bearer for the reception. Once this is done, the
packet is forwarded to the upper layers.

3Note that adaptive MCS strategy makes sense in unicast and groupcast communications when the
CSI from the receiving UE can be acquired through the PSSCH. As in this implementation we have
focused on broadcast communications, without PSFCH, the fixed MCS strategy is the adequate one.
However, the implemented scheduler interface is general enough to accommodate more sophisticated
schedulers.
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7.3.6 PHY

Similarly to the MAC layer, the PHY functionality can also be divided into transmitting
and receiving procedures. In the following, we describe them in detail.

7.3.6.1 PHY transmitting procedure

The 5G-LENA simulator accurately models (as per the standard) the numerology-
dependent slot and OFDM symbol granularity. The state-machine of the PHY layer
is mainly determined by the definition of the concept of start slot event and variable
TTI [62]. When the start slot event is triggered, the processing follows a logical order
that involves the MAC and then the scheduler, before returning the control to the PHY.
For sidelink, once the control gets back to the PHY, the PHY checks if the MAC has
provided an allocation for the current slot. This allocation further consists of variable
TTI allocations. The variable TTI means that the number of allocated symbols to
physical sidelink channels (i.e., PSCCH and PSSCH) is variable, based on the sidelink
configuration. Upon finding the allocation for the slot, the PHY layer transmits PSCCH
and PSSCH PDUs on their respective symbols whose duration depend on the configured
numerology and Cyclic Prefix (CP).

7.3.6.2 PHY receiving procedure

To receive the sidelink transmissions, one of the key enhancements of the PHY is the
introduction of the ability to handle collisions/interference, also introduced in [166]. The
interference model available in the 5G-LENA simulator was designed for a typical cellular
communication. Its design assumes that a UE is interested in transmitting or receiving
only from its serving gNB, and assumes no interference from the UEs served by the same
gNB. Transmissions from other gNBs/UEs are simply considered as interference. In case
of sidelink, especially in broadcast or groupcast, a UE is interested in transmitting to
or receiving from multiple surrounding UEs. In this context, UEs in out-of-coverage
scenarios or “UE-selected” mode can select the same (or overlapping) resources because
the allocation is uncoordinated. Therefore, to determine which packet will be successfully
decoded, the new implementation keeps track of the SINR values for each sidelink
transmission.

As described earlier, currently our model supports the transmission and reception of
timely multiplexed PSCCH and PSSCH. Thus, the PHY first receives signal(s) (i.e.,
1st-stage-SCI) transmitted over PSCCH. This signal is used for two purposes: 1) to
measure the RSRP required for the sensing-based resource selection, 2) to retrieve the
information about the possible PSSCH transmission and retransmissions. The RSRP is
computed using the 3 Resource Elements (REs) per RBs, carrying the 1st-stage-SCI, since
the simulator does not explicitly include PSCCH DMRS. Moreover, for the sensing-based
resource selection, the PHY measures the RSRP of each correctly decoded 1st-stage-SCI,
from all the surrounding UEs. On the other hand, after computing the RSRP, if it is
from the transmitter of interest, it reads the information encoded in the 1st-stage-SCI to
receive the PSSCH transmission and its possible retransmissions.
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Concerning the error model used for the reception of PSCCH and PSSCH transmission,
we use the existing data plane error model in 5G-LENA [186], since the MCSs defined
for PSSCH are the same as the ones defined for PDSCH/PUSCH. Also, we adopt such
an error model for the PSCCH, using MCS0.

7.3.7 Channel Models

TR 37.885 [188] defines the system-level evaluation methodology for 5G V2X use cases,
including the description and modeling of scenarios, deployment, mobility, antenna,
traffic, and channel models. For channel modeling, TR 37.885 extends the geometry-
based stochastic channel modeling framework introduced in TR 38.901 [190] for typical
cellular communications, by adding the possibility to model wireless channel in vehicular
environments and sidelink communications in which both the transmitter and the receiver
are in motion. Two key scenarios are used for NR V2X evaluation [188]:

• Urban grid, which targets urban environments with a grid of buildings and roads
with four lanes (two in each direction) between the buildings, and

• Highway, which targets highway environments with a highway composed of a total
of six lanes, considering three lanes in each opposite direction.

For each scenario, TR 37.885 specifies new channel condition models, propagation models,
and fast fading parameters capturing the characteristics of each environment.

The developed ns-3 NR V2X module includes the channel and antenna models for both
V2X Urban grid and Highway scenarios, as defined in [188].

7.4 NR V2X Evaluation Campaigns

This section presents the simulation scenario that we have used to assess NR V2X
performance. Then, we present multiple simulation campaigns and discuss the obtained
end-to-end results.

7.4.1 Scenario and Definition of Neighbor

We consider a V2X Highway scenario, as defined in 3GPP TR 37.885 [188]. The
deployment is composed of multiple lanes in a 3.9 km highway road, with an inter-lane
distance of 4 m. Within each lane, the inter-vehicle distance is 78 m, which is computed
using the formula max(2, 2 × average speed m/s) defined in [188]. The UE dropping is
implemented according to [188] Option A, in which all vehicles (100 %) are of Type 2
(i.e., passenger vehicle with an antenna height of 1.6 m), clustered dropping is not used,
and the vehicle speed is set to 140 km/h in all the lanes. We consider 3 lanes with vehicles
moving in the same direction, and 50 vehicles per lane. We focus on an out-of-coverage
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Figure 7.8: Highway scenario with 3 lanes and 50 vehicular UEs per lane moving at a speed
of 140 km/h and spanning over 3.9 km.

scenario, so that gNBs are disabled in the evaluation [188]. The considered deployment
scenario is shown in Fig. 7.8.

We focus on a use case that targets the broadcast of basic service messages and by
taking the inspiration from [191] we assume that all vehicular UEs are half duplex4

transceivers, which have the same packet size, generated at the same rate, and using a
fixed MCS. Transmission is done over the 5.9 GHz band, assuming a channel bandwidth
of 10 MHz [92]. The traffic model is characterized by periodic packet transmissions, with
a packet size of 300 bytes, which are transmitted every 100 ms. This leads to a data rate
of 24 kbit/s.

Moreover, in the considered scenario, each vehicular UE is a potential receiver. However,
as per 3GPP [188], for the broadcast scenario, the KPIs, e.g., Packet Inter-reception
Delay (PIR) and Packet Reception Ratio (PRR), for each UE must be computed by
considering only those UEs that are located within a specific range of a certain distance
from it, which is known as the “awareness range”. We consider an awareness range of 200
m, and we characterize as neighbors all those vehicular UEs located within such range
from the source UE [191]. We also consider a throughput KPI, which according to its
definition in 3GPP standard is computed without considering any awareness range, and
is defined in the next subsection [188].

Table 7.3 reports the simulation parameters and functionalities, for NR V2X end-to-end
evaluations. Through the simulation campaigns, we study the impact of specific NR V2X
parameters, which are listed in Table 7.3 as variations of the baseline configuration (last
column).

7.4.2 Simulation campaigns

The simulation campaigns are classified into two main blocks. Firstly, in Section 7.4.3
we study the impact of various NR V2X parameters on the performance of the sensing-
based resource selection, which by the 3GPP standard, is the default mode of operation
for V2X UEs. In particular, we discuss a set of simulation campaigns where we study
the impact of the following parameters:

4In the simulations presented in this chapter, we use sidelink V2X operating band n47, which is a TDD
band, therefore, all the UEs in our simulation use half duplex as specified by the 3GPP standard [97].
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Table 7.3: Main scenario simulation parameters (baseline configuration and its variations).

Parameter Value (baseline) Value (variations)
Deployment and propaga-
tion parameters:
Channel model 3GPP Highway
Deployment 3 lanes, 5 vehicles per lane
Carrier frequency 5.89 GHz
Channel bandwidth 10 MHz
Noise power spectral density -174 dBm/Hz
UE antenna height 1.6 m
UE speed 140 km/h
Traffic parameters:
Application packet size 300 Bytes
Inter-packet arrival time 100 ms
Application load 24 kbit/s
Device parameters:
UE antennas uniform planar array 1x2
UE transmit power 23 dBm
UE noise figure 5 dB
NR V2X parameters and
functionalities:

Frame structure µ=0 (SCS=15 kHz) µ=1 (SCS=30 kHz), µ=2
(SCS=60 kHz)

TDD pattern [D D D F U U U U U U]
Sidelink bitmap [1 1 1 1 1 1 0 0 0 1 1 1]
Subchannel size (N) 10 RBs
PSCCH symbols 1
PSSCH symbols 12
Link adaptation fixed MCS

MCS PSSCH MCS 14 (MCS Table1) MCS 4, MCS 7, MCS 20,
MCS 28

MCS PSCCH MCS 0 (MCS Table1)

Error model
NR PHY abstraction based on
EESM [186] for PSSCH and
PSCCH

Number of PSSCH transmissions
(NPSSCH,maxTx) 5 2, 10

HARQ combining method HARQ incremental redundancy
MAC resource selection sensing-based resource selection random resource selection
RLC mode RLC-UM
RLC buffer size 999999999 Bytes
NR V2X Mode 2 parame-
ters:
Sensing window (T0) 100 ms
T2 33 slots 17 slots, 65 slots
T1 2 slots
Tproc,0 2 slots
Percentage of resources must be
selected in a selection window 20 %

Max num per reserve
(Nmax _reserve) 3 2

Probability of resource keep 0 0.5, 0.8
Resource reservation period
(Prsvp) 100 ms

RSRP threshold -128 dBm
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• NR V2X numerology (µ),

• NR V2X number of PSSCH transmissions of the same MAC PDU (including initial
transmission and blind retransmissions) (NPSSCH,maxTx),

• NR V2X Mode 2 selection window length (T2)

• NR V2X maximum number of resources per reservation (Nmax _reserve),

• NR V2X Mode 2 probability of resource keep, and

• NR V2X MCS index for PSSCH.

Secondly, in Section 7.4.4, we focus on comparing the performance of the sensing-based
and random resource selection procedures (both considered in 3GPP for NR V2X Mode
2). This evaluation will demonstrate the simulator’s capability to support both the
standardized resource selection procedures and the performance gain that the sensing-
based resource selection can provide over the random resource selection. In this case,
we consider a concrete system configuration corresponding to the baseline configuration
shown in Table 7.3.

For each simulation campaign, 20 random channel realizations are performed, to get
statistical significance. A single simulation has the duration of 10 simulated seconds.
The constant bit rate applications start randomly within an interval of 100 ms, and run
without interruption for 10 seconds.

As output statistics, we focus on the three KPIs defined for V2X evaluations in
3GPP [188], measured at the application layer:

• PIR: interval of time elapsed between two successful packet receptions of packets
transmitted by a specific neighbouring UE. We consider the average PIR, averaging
over the different successful receptions for each transmit-receive UE pair in the
reception range. PIR is a range-based KPI, as per [188].

• PRR: for each packet transmitted by a UE, a ratio of the number of neighboring
UEs that successfully receive that packet over the total number of neighboring UEs.
We consider the average PRR, averaging over the different packets transmitted by
a transmitting UE. PRR is a range-based KPI, as per [188].

• Throughput: total number of correctly received bytes over the simulation time,
measured at the application layer, for each transmit-receive UE pair. As per [188],
throughput is not range-based, so we consider all throughput values for those UEs
that received some data bytes.

For each of the output statistics, we represent the CDF, over the different simulation
runs. For each simulation campaign, we show three figures, one for each of the above
mentioned output statistics, i.e., (a) PIR, (b) PRR, (c) throughput.
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7.4.3 Simulation results: Sensing-base resource allocation

7.4.3.1 Impact of numerology

In the first simulation campaign, we evaluate the impact of different NR numerologies.
In these tests, we consider three different numerologies: µ = 0 (15 kHz SCS), µ = 1
(30 kHz SCS), and µ = 2 (60 kHz SCS), which are the three numerologies supported in
NR standard for sub 6 GHz bands. Our comparison assumes that the same bandwidth
is available for all the tested numerologies, which is also the common assumption in
3GPP evaluations. The numerologies are displayed in the legends of the figures as mu-0,
mu-1, and mu-2, respectively. Fig. 7.9 shows the CDF statistics of the PIR, PRR, and
throughput.

In Fig. 7.9.(a)-(b), we observe that the curves of PIR and PRR for the tested numerologies
cross each other in different regions of the plot. The reason is a type of flexibility
introduced by each numerology in terms of the number of available subchannels in the
frequency domain, and different slot duration in the time domain. In NR, the processing
times and the transmission durations are inversely proportional to the SCS, i.e., for a
given bandwidth a lower SCS provides higher number of RBs while a higher SCS implies
lower timings (i.e., shorter slot duration). For example, in our scenario with 10 MHz
bandwidth and a subchannel size of 10 RBs, there are 5, 2, and 1 subchannel(s) available
when using µ = 0, µ = 1, and µ = 2, respectively5. Therefore, with the considered packet
size of 300 bytes, which occupies only one subchannel6 a lower numerology, e.g., µ = 0
provides the maximum flexibility in the frequency domain, i.e., at a given time 5 UEs
can occupy a single slot, which could reduce the collisions in the scenario. On the other
hand, increasing the numerology, comes at the cost of a lower number of subchannels, so
that we achieve a shorter slot length (as it is inversely proportional to the SCS), which
makes that the resulting resource selection window length (set to 32 slots) results in a
lower resource selection window in ms. For example, a 32 slots selection window results
in 32 ms with µ = 0, 16 ms with µ = 1, and 8 ms with µ = 2. Interestingly, this
reduction in terms of ms of the selection window, results in a reduced probability of
overlapping of the resource selection windows of different transmitting UEs, because the
resource reservation period is defined in ms and so it remains fixed independently of the
numerology. This increases the gap in slots/time between the end of the selection window
and the beginning of the following reservation period and consequently it helps reduce
the probability of collisions between UE’s selection windows. However, when increasing
the numerology from µ = 0 to µ = 1 we do reduce the number of available subchannels
from 5 to 2 but we are also halving the selection window from 32 ms to 16 ms, which
results in a very similar performance. In fact, having more subchannels with µ = 0
increases the PRR for some UEs thanks to the fact that UEs can better exploit diversity
in frequency domain (see the tail of the PRR in Fig. 7.9.(b)). In this sense, we observe
that for the tested scenario reducing the selection window length to half is not enough
to achieve an appreciable performance gain. Differently, when the numerology is further
increased to µ = 2, we can observe a performance gain achieved as a consequence of a

5Number of available RBs for a given bandwidth and 12 subcarriers per RB can be computed as:
(BW (Hz)− overhead(Hz))/SCS(Hz)× 12. Here, we considered an overhead of 4% of the bandwidth,
which is a typical value used in NR.

6MCS 14 of NR MCS Table 1 and 10 RB long subchannel give a TBS of 348 bytes.
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(a)

(b)

(c)

Figure 7.9: Impact of NR V2X numerology (µ). (a) PIR (ms), (b) PRR, (c) throughput
(kbps).
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lower selection window of 8 ms (i.e., 4 times lower than µ = 0) as it is clearly shown in
Fig. 7.9.(b)-(c). It is important to note that, even if the resource selection is based on
sensing, the procedure requires that 20 % of the resources available for SL are candidates
to perform a resource selection. If this requirement is not fulfilled, the RSRP threshold is
increased by 3 dB until this condition is met. Because of that, collisions can still occur.
Ultimately, the number of incorrect PSSCH receptions may imply packet losses, if they
can not be recovered by HARQ. This is effectively observed in the PRR and PIR statistics
(see Fig. 7.9.(a)-(b)), for which, again, µ = 2 is observed to offer better performance, as
it allows reduced packet collisions and a larger number of successfully decoded packets,
as a consequence of the shorter slot duration.

All in all, the trade-off of having more subchannels with a lower numerology versus a
lower resource selection window length with higher numerology results in comparable
performance when using the three numerologies. However, using µ = 2 results in a lower
slot duration and helps more UEs to achieve higher PRR, higher throughput, and lower
PIR (which appears due to a lower probability of overlapping resource selection windows
of different transmitting UEs) compared to µ = 0 and µ = 1.

7.4.3.2 Impact of number of PSSCH transmissions

In the second simulation campaign, we assess the impact of using different numbers
of PSSCH transmissions of the same MAC PDU. This parameter is also known as
NPSSCH,maxTx and, in case of SPS with blind retransmissions, it corresponds to the
maximum possible number of resources that can be selected by the resource selection
procedure. In our tests, we use NPSSCH,maxTx = 2, 5, and 10. This includes one initial
transmission and NPSSCH,maxTx − 1 blind retransmissions. They are displayed in the
legends of the figures as retx-2, retx-5, and retx-10, respectively. Fig. 7.10 shows the
CDF statistics of the PIR, PRR, and throughput.

As shown in Fig. 7.10, a lower number of PSSCH transmissions is beneficial in terms of all
the performance indicators. The reason is that in the considered scenario, characterized
by good propagation conditions, a lower NPSSCH,maxTx does not saturate the resources,
which helps the sensing-based procedure at the transmitting UEs to fully exploit the
flexibility in terms of the number of subchannels, i.e., 5 subchannels to choose from at each
slot. After properly filtering the resources based on sensing, a lower NPSSCH,maxTx, offers
an improvement in PIR, PRR, and throughput compared to higher values of NPSSCH,maxTx,
which is due to the fact that the sensing procedure is properly avoiding collisions and
a small number of PSSCH transmissions is enough to decode the packets because of
the good propagation conditions. This definitely demonstrates the effectiveness of the
sensing-based resource selection in vehicular scenarios.

In summary, in a scenario with good propagation conditions where it is likely that UEs are
able to sense each other, a low number of PSSCH transmissions shows better performance
for all the indicators when using sensing-based resource selection. The result changes
when sensing is not activated. A similar campaign has also been conducted to study the
impact of NPSSCH,maxTx for the non sensing case. The results are not shown here for the
sake of brevity, but demonstrate that with a random resource selection, more PSSCH
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(a)

(b)

(c)

Figure 7.10: Impact of NR V2X number of PSSCH transmissions of the same MAC PDU
(NPSSCH,maxTx). (a) PIR (ms), (b) PRR, (c) throughput (kbps).
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retransmissions of the same MAC PDU are needed to properly decode the packets and
improve the throughput, PRR, and PIR performances.

7.4.3.3 Impact of resource selection window length

In the third simulation campaign, we evaluate the impact of different selection window
lengths. To do so, we select T1 = 2 slots and vary T2 values. These two parameters,
determine the start and the end point of the resource selection window. For T2, we
consider three different values: T2 = 17 slots, T2 = 33 slots, and T2 = 65 slots, which
result into a selection window length (T2 − T1 + 1) of 16 slots, 32 slots, and 64 slots,
respectively. Fig. 7.11 shows the results in terms of the PIR, PRR, and throughput.

In terms of PIR and PRR, the impact of different selection window length is not linear
and different effects can be highlighted from the analysis of the results. On the one hand,
a lower T2 causes PRR to decrease for almost 50% of the UEs, as observed in Fig. 7.11.(b),
which is also reflected by higher PIR values in some cases in Fig. 7.11.(a). The reason
is that a lower T2 generates more collisions due to the reduced number of slots in the
resource selection procedure to select from. On the other hand, a higher T2 improves the
performance, both in terms of PIR and PRR because a larger selection window provides
more freedom to better randomize the resources among the various UEs. However, in
some cases, the performance is very similar to what is observed with a lower T2. This is
because by increasing the resource selection window length in ms, we also increase the
probability of overlapping of the resource selection windows of different transmitting UEs,
which ultimately results in more collisions. Due to the combination of these divergent
effects, we observe that the curves of different T2 cross showing that in some cases a lower
T2 can be beneficial, while in others it is not. In particular, we observe that high-PRR
UEs benefit from T2 = 17 slots, while low-PRR UEs from T2 = 65 slots.

In general, a larger resource selection window shows benefits in terms of throughput,
PIR, and PRR metrics, at the cost of a slight increase of the PIR of some UEs. As a
result, it may be better to have more resources to select, even if for some specific cases,
more collisions may appear because of the longer resource selection window length.

7.4.3.4 Impact of maximum number of resources per reservation

In the fourth simulation campaign, we vary the maximum number of resources per
reservation (Nmax _reserve). We consider the two values permitted in the NR V2X standard:
Nmax _reserve = 2 and Nmax _reserve = 3. They are displayed in the legends of the figures
as maxReserve-2 and maxReserve-3, respectively. Fig. 7.12 shows the results in terms of
the PIR, PRR, and throughput.

The end-to-end performance obtained using the two values are very similar, but when
considering Nmax _reserve = 3 the UEs experiences slightly higher PIR and slightly lower
throughput, compared to Nmax _reserve = 2, as shown in Fig. 7.12.(a) and Fig. 7.12.(c),
respectively. Also, the achieved PRR is higher with Nmax _reserve = 2 than with
Nmax _reserve = 3 (see Fig. 7.12.(b)). The reason is that when there is a loss in the
PSCCH channel, the UE has more opportunities to correctly receive and decode the
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(a)

(b)

(c)

Figure 7.11: Impact of NR V2X selection window (T2 − T1 + 1). (a) PIR (ms), (b) PRR, (c)
throughput (kbps).
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(a)

(b)

(c)

Figure 7.12: Impact of NR V2X maximum number of resources per reserve (Nmax _reserve).
(a) PIR (ms), (b) PRR, (c) throughput (kbps).
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1st-stage-SCI using a retransmission with Nmax _reserve = 2, compared to the case of
Nmax _reserve = 3, because with a lower Nmax _reserve there are more slots that carry
1st-stage-SCI messages in a resource reservation period. For example, in a simulation
with NPSSCH,maxTx = 5 and Nmax _reserve = 3, there are only two 1st-stage-SCI messages
transmitted in a resource reservation period (see Fig. 7.4), while with Nmax _reserve = 2,
there are three 1st-stage-SCI messages. Specifically, if a UE fails to decode two 1st-
stage-SCIs, it has no more opportunities to decode the data with Nmax _reserve = 2.
However, in the same situation, with Nmax _reserve = 2, the receiving UE has another
opportunity to decode the third 1st-stage-SCI and, potentially, the associated sidelink
data. In addition, a larger Nmax _reserve value may cause the loss of sensing information
because of the inherent characteristic of the sensing-based procedure, and, hence, more
collisions. This is why, we observe a slightly better performance in terms of PIR, PRR,
and throughput, when using Nmax _reserve = 2. However, let us note that said situation
does not happen very often in our scenario, and that is why the difference between the
performance is not much significant.

Consequently, the sensing-based resource selection is shown to be slightly more efficient
when using a lower number of Nmax _reserve, from all the metrics, because it allows for a
more accurate sensing procedure. Particularly, it allows to detect more 1st-stage-SCIs
from neighbor UEs, and so perform a better resource selection by excluding a larger set
of slots that are being occupied by neighbor UEs. Also, for the receiving UEs, it provides
more opportunities to decode the data.

7.4.3.5 Impact of probability of resource keep

In the fifth simulation campaign, we study the impact of the probability of keeping the
resources during reselection, by testing different values. As explained in Section 7.2.2.2,
once SLRRC reaches zero, the UE either keeps the previous selection or selects new
resources based on the pre-configured probability value. We consider three values, 0, 0.5,
and 0.8. We note that, 0 and 0.8 are the standard minimum and the maximum values
for the probability of keeping the resources [175]. They are identified in the legends
of the figures as ProbResKeep-0, ProbResKeep-0.5, and ProbResKeep-0.8, respectively.
Fig. 7.13 shows the results in terms of the PIR, PRR, and throughput. Let us note that
for a transmitting UE, ProbResKeep-0 triggers the resource reselection procedure more
often, as compared to ProbResKeep-0.5 and ProbResKeep-0.8.

Interestingly, we can see a trade-off in the obtained PIR and PRR performance when
using different probabilities of keeping the resources. On the one hand, UEs that have
correctly selected the resources (meaning their selection is not colliding with other UEs
and its obtained KPIs are good enough) are benefited by not switching the selection, i.e.,
higher values of probability of resource keep are better. On the other hand, the UEs that
did a wrong resource selection at the beginning (i.e., selected resources that may collide
with other UEs’ selections) can benefit by reselecting the resources more often, i.e., by
using lower values of probability of resource keep. For this reason, we see the crossing of
the curves for PIR, PRR, and throughput curves.
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(a)

(b)

(c)

Figure 7.13: Impact of NR V2X probability of resource keep. (a) PIR (ms), (b) PRR, (c)
throughput (kbps).
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(a)

(b)

(c)

Figure 7.14: Impact of NR V2X MCS. (a) PIR (ms), (b) PRR, (c) throughput (kbps).
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7.4.3.6 Impact of MCS

In the sixth simulation campaign, we evaluate the impact of different MCSs. We have
used three MCS indexes adequate for V2X scenarios: MCS4, MCS7, and MCS14. Also,
we include two more MCSs, just for comparison purposes: MCS20 and MCS28, even
though, these two MCSs may be high for the considered reception range of 200 m. All
the considered MCSs are displayed in the legends of the figures as mcs-4, mcs-7, mcs-14,
mcs-20, and mcs-28, respectively. Fig. 7.14 shows the statistics of the PIR, PRR, and
throughput.

Simulation results confirm that MCS14 is adequate for the considered simulation scenario
with 200 m reception range. As expected, if a higher MCS is used (e.g., MCS20 and
MCS28), the end-to-end performance in terms of PIR, PRR and throughput is degraded
as compared to MCS14 (see Fig. 7.14.(a)-(c)). This is because a higher MCS is not
suitable for large distances and leads to incorrect PHY receptions and packet losses that
cannot be recovered even with HARQ combining. On the other hand, if an MCS lower
than MCS14 is used, we also observe a performance degradation in all the considered
KPIs (PIR, PRR, throughput), as shown in Fig. 7.14 for MCS4 and MCS7. In this
case, even though lower MCS are more robust to packet losses and large distances, the
reason of degradation is that the amount of data that fits in one subchannel gets reduced
with a lower MCS, because of the reduced modulation order and the lower effective code
rate. In particular, for the considered configuration and traffic pattern, with MCS14,
one data packet can fit in one subchannel, as explained in Sec. 7.4.3.1. On the other
hand, two subchannels are needed with MCS7 and three subchannels are required for
MCS4. As more subchannels are needed with lower MCSs, the frequency diversity gain
gets reduced. That is, less UEs can be multiplexed in frequency domain within the
same slot, without interference. Accordingly, lower MCSs experience also PIR, PRR and
throughput degradation as compared to MCS14.

All in all, an intermediate MCS (i.e., MCS14 in our case) is shown to be beneficial for
V2X scenarios with a reception range of 200 m and the broadcast use cases, because
it allows exploiting the frequency multiplexing gain and overcoming propagation losses,
simultaneously.

7.4.4 Simulation results: Sensing-based vs Random resource
selection

In the last campaign, we consider the baseline configuration (i.e., numerology 0, number
of PSSCH transmissions = 5, T2 = 32 slots, and Nmax _reserve = 3) and we focus on
comparing sensing-based and random resource selection procedures for NR V2X. Notice
that the sensing-based resource selection is defined by 3GPP Release 16, but Release 17
is also considering the random resource selection for power saving purposes, as previously
discussed in Section 7.2.2.1. The two techniques are labeled in the legends of the figures
as sensing and random, respectively. Fig. 7.15 shows the CDF of the PIR, PRR, and
throughput.
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(a)

(b)

(c)

Figure 7.15: Impact of NR V2X resource selection procedure: sensing vs random. (a) PIR
(ms), (b) PRR, (c) throughput (kbps).
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7.5. Conclusions

Simulation results confirm that the sensing procedure ends up in a reduced PIR
(see Fig. 7.15.(a)), an increased PRR (see Fig. 7.15.(b)), and a larger throughput
(see Fig. 7.15.(c)). This is because sensing-based resource selection allows reducing
the number of simultaneous PSSCH transmissions and incorrect PSSCH receptions in
the reception range, as compared to the random resource selection procedure. As
a consequence, due to the effectiveness of the sensing, we observe the PIR, PRR,
and throughput improvement of sensing over the random selection procedure, in all
the percentiles of the output statistics. So, these results confirm the expectations
about the improvements given by sensing and show its performance gains in an end-
to-end system-level simulator. The question that remains open though is whether the
improvements provided by the sensing procedure are considerable enough to compensate
for the increased complexity and power consumption that sensing involves. The answer
to this question is however out of the scope of this study and is left for a future work.

7.5 Conclusions

In this chapter, we have presented an open source, full-stack, end-to-end, standard-
compliant network simulator for NR V2X, based on an extension of the already available
ns-3 NR 5G-LENA simulator. We have started by reviewing the history of the different
radio access technologies developed by 3GPP for sidelink communications and we have
provided an exhaustive overview of NR V2X technology, currently under development
in 3GPP, with special emphasis on NR V2X Mode 2 for autonomous resource selection,
which is the main focus of this work. Successively, we have described with details the
design and implementation of the developed simulator, which provides a useful and
readable introduction to the module for a prospective and interested user. We have
focused our work on broadcast communications for out-of-coverage scenarios, following
the specifications of NR V2X Mode 2. For that, we have described the RRC pre-
configuration and the NR V2X-compliant procedures at PHY and MAC layers, using
UE autonomous resource selection based on sensing and semi-persistent scheduling.

Finally, we have presented a complete set of simulation campaigns, including the
impact assessment of key NR V2X parameters, such as the numerology, the resource
selection window, the number of retransmissions, the maximum number of resources per
reservation, the probability of resource keep, and the MCS, as well as a comparison of
sensing and random based resource selection procedures. The seven simulation campaigns
that we have conducted have highlighted the following:

1. Only µ = 2 exhibits clear benefit to improve PIR, PRR, and throughput
performance metrics.

2. A low number of blind retransmissions is already optimal in scenarios with good
propagation conditions, because of the effectiveness of the sensing-based resource
selection.

3. A dependency between the resource selection window length and the number of
collisions is observed.
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4. The maximum number of resources per reservation does not have a noticeable
impact on the end-to-end performance.

5. A trade-off is observed between the probability of resource keep and the performance
KPIs for NR V2X with periodic traffic.

6. An intermediate MCS is shown to be optimal for V2X scenarios and broadcast use
cases.

7. Appreciable but not significant gains are obtained by using sensing-based resource
selection, in comparison to the random resource selection strategy, which is
considered in 3GPP Release 17.

With these campaigns, we have only touched the tip of the iceberg, and many more
studies can be conducted by the research community, considering the proposed open-
source platform as a basis for analysis. In this line, in the next chapter, we leverage
this simulator to explore the energy-performance trade-off offered by different resource
allocation procedures in MODE 2. Based on this, we propose a solution that dynamically
balances the mentioned trade-off.
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Chapter 8

Exploiting Energy-Performance
trade-off in 3GPP NR V2X using
Fuzzy Logic

The 3GPP’s NR V2X technology is based on sidelink communication. It enables a UE to
communicate directly with other UE(s) without sending packets first to its base station
(gNB in NR). As explained in the previous chapter, based on the resource allocation
method, sidelink communication is classified into two categories, i.e., Mode 1 and Mode
2 [92]. In Mode 1, the resource allocation is managed by the base station (i.e., centralized).
It thus applies to scenarios where the various UEs are inside the coverage of the base
station (i.e., in-coverage scenarios). On the other hand, Mode 2 is a distributed scheduling
approach in which the UEs themselves carry out the resource allocation, with no need to
be in the coverage area, i.e., it supports out-of-coverage communications.

Resource reservation for NR V2X Mode 2 under periodic traffic uses a long-term sensing-
based algorithm, which exploits the periodicity and fixed-size assumption of basic safety
messages. Thanks to the sensing, a more accurate and collision-preventing resource
selection mechanism can be achieved. However, it comes at the cost of increased energy
consumption due to continuous sensing. To reduce the energy consumption at V2X
devices, random and partial sensing mechanisms are standardized by 3GPP for NR V2X
Mode 2 but the performance is hampered due to collisions resulting from less accurate
resource selection [173, 180]. Therefore, it creates an energy-performance trade-off that
leads us to the problem: how much sensing should be performed by each vehicle in the
network so that energy-performance is balanced depending on each vehicle’s environment
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(e.g., the density of surrounding transmitting vehicles) and situation (e.g., battery level
or energy consumption)?

In this chapter, we present a fuzzy logic-based partial sensing duty cycle mechanism for
NR V2X Mode 2 that exploits the energy-performance trade-off in vehicular scenarios.
In particular, we use fuzzy logic to harness its capabilities of handling uncertainty,
vagueness, and dissimilar inputs to make decisions. Uncertainty and vagueness are the
two characteristics of typical heterogeneous scenarios, such as vehicular scenarios, where
exact traffic situations cannot be predicted with certainty. In such conditions, we might
have to make a decision about the amount of sensing to be performed based on dissimilar
inputs, which are not directly comparable but can be processed in a homogeneous manner
using fuzzy sets. This study considers one set of such inputs and explains them in detail in
Sec 8.3. Furthermore, we take advantage of fuzzy logic interpretability and explainability
characteristics by proposing different fuzzy rules based on different objectives, which
are particularly valuable in integrating user or operator preference about sensing and
performance in complex decision-making scenarios. In this line, to validate the models,
we have interfaced Matlab (for the fuzzy logic system) with an extension of the open-
source, end-to-end, ns-3 5G-LENA simulator [184], developed to support NR V2X
capabilities [192]. Specifically, we used the Semi-Online-Evaluation approach, explained
in Chapter 1 to evaluate the performance of the proposed models.

The chapter is structured as follows. In Section. 8.1 we discuss the related work. Sec. 8.2
reviews NR V2X Mode 2 resource allocation, introduces the energy-performance trade-off
and derives the energy consumption for different resource selection mechanisms, including
random, sensing and partial sensing. Sec. 8.3 describes the proposed fuzzy logic-based
partial sensing duty cycle mechanism. Sec.8.4 presents the simulation results using ns-3 .
Finally, Sec. 8.5 concludes the chapter.

8.1 Related work

The authors in [193] proposed a frequency-selective partial sensing mechanism that
uses a reduced number of subchannels for sensing to decrease the energy consumption
of V2X UEs. However, the question about how to select those reduced number of
subchannels still needs to be answered. Authors in [194] also acknowledge a trade-
off between energy consumption and the performance of V2X UEs. To address this, the
authors formulate an energy efficiency maximization problem analytically, considering
the latency and reliability constraints. However, it is suboptimal if the number of UEs is
high. Alternatively, they proposed a heuristic algorithm to select the sensing or random
resource selection procedure and the corresponding dedicated pool of resources to serve
periodic and aperiodic traffic. Specifically, it is assumed that a central control or roadside
unit provides traffic-related information to the UE. If the density of periodic traffic flow
is greater than 70%, UE uses the sensing-based procedure to select resources from a
dedicated resource pool for periodic traffic. Otherwise, the UE performs random resource
selection on the corresponding pool of resources. The result shows that splitting the
resource pools to serve the dedicated traffic and using an appropriate resource selection
procedure for the UEs with aperiodic traffic improves the overall energy consumption by
maintaining the same PRR achieved by employing sensing. However, the performance
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gains achieved by the algorithm are dependent on the availability of enough bandwidth
to have a dedicated resource pool for each traffic type. Therefore, it could be challenging
to maintain the same performance when such a split is not possible, e.g., under low
bandwidth situations. Moreover, as per the algorithm, the UE either uses sensing or
does not sense, i.e., random resource selection. This indicates that it might not be able
to identify medium-density scenarios in which employing partial sensing could benefit
energy efficiency, given the performance constraints. To tackle these dynamic situations,
the use of machine learning in V2X communication has shown promising results. For
example, the authors in [195] proposed a fuzzy logic-based resource allocation algorithm
for LTE V2X Mode 3, which is similar to the NR V2X Mode 1. The algorithm maximizes
the resource reusability and satisfies the V2X service requirements, i.e., the latency, by
self-adopting to the changes such as interference level in the network. In this thesis,
different from the solutions presented in [193,194], we propose a solution to regulate the
sensing period dynamically instead of operating at extremes, i.e., sensing or no-sensing,
and without modifying the standard sensing procedure. Furthermore, compared to the
fuzzy logic-based solution in [195], which is designed to maximize the spectrum efficiency
in MODE 1, we focus on achieving a balanced trade-off between the energy consumption
and the performance of a V2X UE in MODE 2.

8.2 NR V2X Mode 2 and the Energy-Performance
Trade-off

Towards the end of release 17, besides sensing and random resource selection, the 3GPP
has also standardized a partial sensing mechanism [173]. Both mechanisms, random and
partial sensing, are considered as power saving mechanisms, especially relevant for the use
cases of public safety, pedestrian UEs in V2X scenarios, and electric vehicles where UEs
have battery limited capacity and must operate efficiently [194]. In the partial sensing,
the sensing information considers decoding only of a part of the entire data. Thus, when
partial sensing is used, the power consumption is reduced as much as the decoding time
of information data is reduced.

Accordingly, sensing-based resource reservation is the mechanism that can achieve a more
accurate resource selection (and so higher throughput and lower probability of collision)
at the cost of a higher power consumption. The partial sensing reduces the power
consumption but also gets a reduced performance, because of the less accurate resource
selection. Finally, the random resource selection is the mechanism entailing lower power
consumption, but, at the same time, higher performance degradation. Therefore, there is
a clear energy-performance trade-off when using different resource allocation methods for
NR V2X. Let us note that the trade-off is more pronounced in scenarios where there are
nodes that act only as transmitters, which need to do additional decoding and processing
in case of using sensing or partial sensing-based resource selections.

In what follows, we derive the energy consumption of NR V2X under different resource
selection methods. In general, the time to transmit/receive PSCCH and PSSCH trans-
missions are proportional to the number of PSCCH/PSSCH transmissions/receptions and
their time duration. In this work, based on the NR UE power model presented in [196],
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we model the power and the energy consumption of a NR V2X UE when it acts as only
a transmitter, using random, sensing, and partial sensing-based resource selection proce-
dures. We also note that, all the powers and the energies mentioned in the following are
in the units of milliwatt (mW) and Joule (J), respectively.

Random resource selection: When using random based resource selection, a UE
will not receive any transmission from other surrounding UE(s) but only transmits
PSCCH (i.e., 1st stage SCI) and PSSCH (i.e., 2nd stage SCI + Data). Since we are
only transmitting, no power/energy would be consumed for reception and a UE would
consume its power only when performing transmission(s). In this case, the transmit
energy consumption results:

Ernd = Ptx,pscch × Ttx,pscch + Ptx,pssch × Ttx,pssch (8.1)

where Ttx,pscch and Ttx,pssch are the total time spent to transmit PSCCH and PSSCH,
respectively, and Ptx,pscch and Ptx,pssch are the power consumed to transmit PSCCH and
PSSCH, respectively. As per [197], for UE total available transmit power of 23 dBm, its
PSCCH/PSSCH transmit power consumption is: Ptx,pscch = Ptx,pssch = 700 mW.

Sensing resource selection: In this case, in addition to transmitting PSCCH and
PSSCH, a UE would receive PSCCH (i.e., 1st stage SCI) messages and buffer them
as sensing information to perform the resource selection. Therefore, the total energy
consumption is:

Esens = Ernd + Prx,pscch × Trx,pscch (8.2)
where Trx,pscch is the total time spent to receive PSCCH and Prx,pscch is the power
consumed to receive PSCCH. Thus, the term Prx,pscch×Trx,pscch reflects the energy spent to
decode the SCI messages. Table 1 in [196] details a power consumption of Prx,pscch = 100
mW to monitor and process PSCCH for the case of 4 receive RF chains and 100 MHz
bandwidth. These power levels must be scaled appropriately, depending on the number
of used RF chains and bandwidth at the UEs. For example, for 1 RF chain and 40 MHz
bandwidth, by using the scaling factors provided in [196], the PSCCH receive power
results: Prx,pscch = 100× 1.4× 0.325 = 45.5 mW.

The UEs that perform sensing-based resource selection can achieve a better selection
and a better performance as compared to random resource selection, at the cost of an
additional energy consumption, as shown in (8.2). For that reason, to address the trade-
off, partial sensing mechanisms are being envisioned by 3GPP.

Partial sensing resource selection: In partial sensing, the UEs switch between sensing
and random resource selections based on a partial sensing window. In this case, the total
energy consumption can be modelled as:

Epart = αEsens + (1− α)Ernd (8.3)

where α ∈ [0, 1] is the relation of the partial sensing window over the sensing window used
for typical sensing. Note that the extreme cases result into the sensing-based resource
selection (for α = 1) and the random resource selection (for α = 0).
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(a) (b)

(c) (d)

Figure 8.1: Input and output fuzzy membership functions. (a) The fuzzy set for vehicle
density per km: “Low” and “High”: “Low” and “High”, (b) The fuzzy set for the percentage
of simultaneous PSSCH Tx over total TX: “Low” and “High”, (c) The fuzzy set for the energy
consumption, (d) The fuzzy set for partial sensing duty cycle ratio during 1 second period:
“Low” and “High”.

8.3 Partial Sensing Mechanism using FL

In our implementation of the partial sensing mechanism, UEs are configured with a
sensing duty cycle. This duty cycle has two parameters that define an on-off behaviour
for sensing, the duty-cycle period and the duty cycle ratio. Specifically, the period defines
how often the on-off pattern repeats (defined in time, e.g., every 1 sec), and the ratio is
the fraction of the period a UE performs the sensing. To exploit the energy performance
trade-off under specific network objectives, e.g., improving the performance or reducing
the energy consumption, the duty-cycle ratio could be configured statically between 0%,
i.e., no-sensing, and 100%, i.e., full-sensing. However, the dynamicity of the NR V2X
scenarios can make it challenging to select an appropriate duty cycle. Therefore, it should
be configured based on some key metrics that may change dynamically and reflect the
change in a network, specific locations, and its performance. This section proposes a
distributed partial sensing mechanism using Fuzzy Logic (FL) that resides inside a UE
and can adaptively configure the duty-cycle ratio over a fixed period.

In this line, three fuzzy input variables are identified: the energy consumption of a UE,
the percentage of simultaneous Physical Sidelink Shared Channel (PSSCH) transmissions
over total transmissions by all the UEs in a coverage area, and the density of the
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transmitting (TX) vehicles per km inside a coverage area. Following the NR V2X
energy model derived in Sec. 8.2, the energy consumption to transmit and receive sidelink
transmissions can be computed locally by a UE. For the other two fuzzy input variables,
we assume that those are broadcast by a RSU since it has a global view of the local
network that can improve the accuracy of these variables. Alternatively, a UE can also
compute them locally at the cost of accuracy. For example, the vehicle density in the
coverage area can be discovered by a UE performing full-sensing during which it decodes
the first stage SCI and can count unique layer-2 source identifiers. However, its accuracy
may be affected when some of the first stage SCI messages are not decoded, either due
to the half-duplex nature of the NR V2X UE or under partial sensing where a reduced
number of slots are decoded. Nevertheless, the objective of this work is to manifest an
idea of dynamically adjusting the duty cycle ratio using these parameters. Therefore,
obtaining them locally or globally is implementation-specific and is out of the scope of
this study.

Two input fuzzy sets, “High” and “Low” are defined for each of the fuzzy input variables.
As shown in Fig. 8.1, their membership functions are complimentary in nature, i.e., if
f(x) and g(x) denote the membership function of “High” and “Low”, respectively, then,
f(x) + g(x) = 1 ∀ x. We note that, given the novelty of the problem discussed in
this chapter, as per the knowledge of the authors, currently there is no experimental or
simulation-based data available that could be used to decide the thresholds for “High”
or “Low” for all these fuzzy variables. Therefore, these thresholds were selected based on
our expert knowledge by simulating several vehicle densities under sensing and random
resource selection procedures, which are the two extreme cases to understand the energy
and performance trade-off. Fig. 8.1(a) shows the membership function of fuzzy input
variable “the density of the transmitting vehicles per km inside a lane”. Here, the
transmitter density per km is computed as [198]:

D = Ntx × 1000
L

(8.4)

where D is the density of the transmitting UEs per km, Ntx is the number of transmitting
UEs occupying a length of the lane, and L is the length of the lane occupied by the vehicles
(in m). It is assumed that if D is above or equal to 125, its membership in “High” is unity,
and if it is lower than or equal to 50, its membership in “Low” is unity. The threshold
for the “Low” fuzzy set for this membership function is based on the assumption that
using any of the resource selection procedures the percentage of simultaneous PSSCH
transmissions should be lower or equal to 30 %, which in our experimental campaigns
resulted from 50 transmitting vehicles per km. On the other hand, if this percentage is
above or equal to 60 %, the vehicle density is considered as high, i.e., 125 transmitting
vehicles per km, in this case. Based on this assumption, Fig. 8.1(b) shows the membership
function for the second fuzzy input variable “the percentage of simultaneous PSSCH
transmissions over total transmissions by all the UEs in a coverage area”, its membership
function in “High” is unity if it’s above or equal to 60 %. On the other hand, if it is less
than or equal to 30 % its membership in “Low” is unity. Finally, Fig. 8.1(c) shows the
membership function of “the energy consumption of a UE”, where it is assumed that if
the energy consumption is above or equal to 10 mJoules/s, its membership in “High” is
unity, and if it is less than or equal to 7 mJoules/s, its membership in “Low” is unity. In
our case, using random resource selection, a UE, irrespective of the transmitter vehicle
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Table 8.1: Proposed Fuzzy Rules

Rule prerequisite
Objective 1
(energy

+
performance)

Objective 2
(energy)

Objective 3
(performance)

1

IF the energy consumed is
High and the number of
simultaneous transmissions
are High and the density of
the vehicles is High,

THEN duty cycle
is High

THEN duty cycle
is Low

THEN duty cycle
is High

2

IF the energy consumed is
Low and the number of
simultaneous transmissions
are High and the density of
the vehicles is High,

THEN duty cycle
is High

THEN duty cycle
is High

THEN duty cycle
is High

3

IF the energy is High and
the number of simultaneous
transmissions are Low and
the density of the vehicles is
High,

THEN duty cycle
is Low

THEN duty cycle
is Low

THEN duty cycle
is Low

4

IF the energy consumed is
Low and the number of
simultaneous transmissions
are Low and the density of
the vehicles is High,

THEN duty cycle
is Low

THEN duty cycle
is Low

THEN duty cycle
is High

5

IF the energy consumed is
High and the number of
simultaneous transmissions
are High and the density of
the vehicles is Low,

THEN duty cycle
is Low

THEN duty cycle
is Low

THEN duty cycle
is High

6

IF the energy consumed is
Low and the number of
simultaneous transmissions
are High and the density of
the vehicles is Low,

THEN duty cycle
is High

THEN duty cycle
is High

THEN duty cycle
is High

7

IF the energy consumed is
High and the number of
simultaneous transmissions
are Low and the density of
the vehicles is Low,

THEN duty cycle
is Low

THEN duty cycle
is Low

THEN duty cycle
is Low

8

IF the energy consumed is
Low and the number of
simultaneous transmissions
are Low and the density of
the vehicles is Low,

THEN duty cycle
is Low

THEN duty cycle
is High

THEN duty cycle
is High

density, at maximum consumes 7 mJoules/s; thus, any value of the energy consumption
equal to or below this value is considered as low. Now, to select the threshold for
“High”, we observed that with the lowest transmitter vehicle density, i.e., 50, a UE using
sensing-based resource selection may consume, at maximum, 10 mJoules/s. Therefore,
the consumption higher than this value is considered as high. At last, along with the
above three fuzzy input variables, one fuzzy output variable is identified: the partial
sensing duty cycle ratio. Fig. 8.1(d) shows the membership functions of the two fuzzy
sets, “High” and “Low”, assigned to this variable. For the “High” fuzzy set, if the duty
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Figure 8.2: Block diagram of fuzzy inference system for NR V2X partial sensing

cycle ratio is above or equal to 0.6, its membership is unity. On the other hand, if it is
lower or equal to 0.3, its membership in “Low” is unity.

Based on the values of the fuzzy input variables, we define a set of rules to achieve the
desired behaviour. In particular, we designed three different set of rules, depending on
the objective. The first objective focuses on improving both the energy and performance
(PRR or throughput) simultaneously. The second objective is designed to prioritize
energy, i.e., reducing energy consumption is prioritized over improving the PRR or
throughput. The third objective prioritizes performance (PRR or throughput) over
energy. Table 8.1 shows the proposed fuzzy rules, depending on the fuzzy input variables’
condition, for the three different objectives. When energy is prioritized (Objective 2),
the duty cycle is in more cases “Low” (i.e., tending to no sensing) to reduce the energy
consumption, except for the cases in which the energy consumed is already “Low” and
sensing can help improving the performance (i.e., rule prerequisites 2, 6 and 8). On the
other hand, when performance is prioritized (Objective 3), the duty cycle is “High” in
major part of the conditions or rule prerequisites. There are two exceptions (prerequisites
3 and 7), in which the number of collisions is “Low” and energy consumed is “High”, and
thus we can try to balance energy because the number of collisions in the system is
already controlled, and sensing may not be so much needed. Finally, Objective 1 follows
intermediate rule conditions between Objectives 2 and 3, trying to balance between energy
and performance under each condition.

The block diagram of the proposed Fuzzy Inference System (FIS) for adaptive selection
of the duty-cycle ratio is shown in Fig 8.2. The proposed FIS is built using the fuzzy logic
toolbox of MATLAB that uses the Mamdani inference system [199]. At first, for each
input to the model, the “Fuzzifier” block finds the degree of membership (also known as
membership value) with which a particular input belongs to the fuzzy set, i.e., “High”
and “Low” using their respective membership functions in Fig 8.1 (a) to (c). Then, the
“Fuzzy inference engine” generates a single output fuzzy set using those input membership
values and the “Fuzzy rule base (i.e., 8 rules in Table 8.1)”. To do so, the engine uses
the well-known “And” based fuzzy implication method and combines the output of each
rule using the “Sum” aggregation procedure. After that, the final aggregated fuzzy set
is defuzzified using the “Defuzzifier” block. Specifically, it uses the MATLAB built-in
“centroid” method to generate a single value of the sensing duty cycle ratio [200].
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8.4 Simulation Results

For the evaluation, ns-3 5G-LENA system-level simulator extension for NR V2X is used.
The implementation details of the ns-3 NR V2X module are summarized in [62].

8.4.1 Scenario

We consider a typical V2X highway scenario, as defined in 3GPP TR 37.885 [188]. The
deployment is composed of three lanes with an inter-lane and inter-vehicle distance of
4 m, and we deploy 50 vehicles per lane. In the considered scenario, each vehicular UE is
a potential receiver, but only a subset of them do transmit data. The reason of selecting
the above scenario parameters is because the evaluation methodology proposed by the
3GPP standard, mainly considers range-based KPIs. For example, the Packet Reception
Ratio (PRR) is defined as the ratio of vehicles that successfully receive a given packet,
considering only those UEs that are located within a specific range, called, the “awareness
range”. Therefore, in this work we limit the awareness range to 200 m (hence 4 m inter-
vehicle distance), and study the energy-performance trade-off by varying the number of
transmitting vehicles within this range. In particular, we consider two different vehicle
TX densities; either 10 or 25 TX vehicles per lane.

The UE dropping is implemented according to [188] Option A, in which all vehicles
(100 %) are of Type 2 (i.e., passenger vehicle with an antenna height of 1.6 m), clustered
dropping is not used, and the vehicle speed is set to 140 km/h in all the lanes. We focus
on an out-of-coverage scenario, so that gNBs are disabled in the evaluation [188].

As key performance indicators, we consider the PRR and the energy consumption. For
the energy consumption, the model presented in Sec. 8.2 is used. The rest of deployment
and configuration parameters are detailed in Table 8.2.

8.4.2 Results

Fig. 8.3 and Fig. 8.4 show the CDF statistics of the PRR and energy consumption,
respectively, for the case of (a) 10 TX vehicles per lane and (b) 25 TX vehicles per
lane. In each figure, we compare the three fuzzy logic objectives proposed in Sec. 8.3
for partial sensing duty cycling (obj-1: energy+performance, obj-2: energy, and obj-
3: performance). Also, we consider three baseline strategies: sensing-based resource
selection (fixedDc-1), random resource selection (fixedDc-0), and a partial sensing using
a fixed duty cycle of 50% (fixedDc-0.5).

We can observe that the proposed fuzzy logic approach allows to trade-off in terms of
energy and PRR among the baselines sensing and random resource selection strategies.
Among the various proposed objectives and rules for the fuzzy inference system, we can
see that, in both scenarios, obj-2 prioritizes the energy, while obj-3 prioritizes PRR
performance at the cost of a higher energy consumption. For the low TX density
scenario (see Fig. 8.3.(a) and Fig. 8.4.(a)), obj-1 is similar to obj-2, since energy is primed
because of the low collision probability. Instead, for the higher TX density scenario (see
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Table 8.2: Simulation Parameters

Parameter Value
Number of vehicles 150 (50 per lane)
Number of TX vehicles 30 or 75 (10 or 25 TX per lane)
Propagation scenario 3GPP V2X Highway
UE antenna height 1.6 m
UE antenna 1x2 antenna array
UE transmit power 23 dBm
UE speed 140 km/h
UE noise figure 5 dB
Carrier frequency 5.9 GHz
Bandwidth 10 MHz
Numerology 0 (15 kHz subcarrier spacing)
RB overhead 0.04
Duplexing mode TDD
TDD pattern [D D D F U U U U U U]
Sidelink bitmap [1 1 1 1 1 1 0 0 0 1 1 1]

PSSCH and PSCCH multiplexing
Time based
PSCCH symbols: 1
PSSCH symbols: 12

MCS PSSCH MCS14
MCS PSCCH MCS0
Subchannel size 10 RBs
Sensing window 100 ms
T2 33 slots
T1 2 slots
Tproc,0 2 slots
Probability of resource keep 0
Resource reservation window 100 ms
RLC Unacknowledged Mode
Transport protocol UDP

Traffic
Periodic packet transmissions, with a packet
size of 300 bytes, transmitted every 100 ms,
leading to a data rate of 24 kbits/s.

Simulation duration 10 s

Fig. 8.3.(b) and Fig. 8.4.(b)), obj-1 nearly matches obj-3 KPIs, because PRR performance
is prioritized owing to the higher interference conditions.

All in all, the proposed fuzzy logic-based partial sensing duty cycle allows handling the
energy-performance trade-off in an independent manner at each vehicle and, depending
on the pre-defined fuzzy logic rules, different KPIs can be prioritized while balancing all
of them simultaneously. The benefit as compared to a fixed partial sensing duty cycle
is the adaptability to each vehicles’ observations. This has shown the applicability and
suitability of AI/ML to choose a balanced resource allocation strategy in complex and
dense vehicular scenarios.
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(a)

(b)

Figure 8.3: Fixed partial sensing duty cycle vs Fuzzy logic-based partial sensing duty cycle.
(a) PRR with 10 TX per lane, (b) PRR with 25 TX per lane.
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(a)

(b)

Figure 8.4: Fixed partial sensing duty cycle vs Fuzzy logic-based partial sensing duty cycle.
(a) energy consumption with 10 TX per lane, (b) energy consumption with 25 TX per lane.
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8.5 Conclusions

In this chapter, we address the complexity that encompasses the limited infrastructure-
based single-technology axes. In particular, we investigate the energy-performance trade-
off offered by the sensing and random resource selection methods of the 3GPP NR V2X
Mode 2. Specifically, to address this energy-performance trade-off, we propose a fuzzy
logic-based partial sensing resource selection procedure. This solution answers our fifth
research question (RQ5): “How to achieve a balance between the energy consumption
and the performance of a NR V2X UE in limited infrastructure-based scenarios using
AI/ML?”. The proposed scheme dynamically adjusts the partial sensing duty cycle ratio
over a fixed sensing window by using a fuzzy inference system. The fuzzy inference
system takes as inputs the energy consumption at the UE, the number of simultaneous
transmissions, and the vehicle’s density, and considers various target objectives (or fuzzy
rules). The results show that the proposed scheme achieves a good balance between
the energy consumption and the performance of a UE under three different objectives,
i.e., simultaneously improving both the energy and PRR or prioritizing the energy
consumption or improving the PRR. Through a simple but effective fuzzy logic-based
model, our work has motivated the use of an AI/ML-based resource selection method
that not only focuses on improving the performance but also the energy consumption,
which has always been one of the key objectives in mobile networks.

Specifically, to address this energy-performance trade-off, we propose a fuzzy logic-based
partial sensing resource selection procedure. Our scheme dynamically adjusts the partial
sensing duty cycle ratio over a fixed sensing window by using a fuzzy inference system.
The fuzzy inference system takes as inputs the energy consumption at the UE, the
number of simultaneous transmissions and the vehicle’s density, and considers various
target objectives (or fuzzy rules). The results show that the proposed scheme achieves
a good balance between the energy consumption and the performance of a UE under
three different objectives, i.e., simultaneously improving both the energy and PRR or
prioritizing the energy consumption or improving the PRR. Through a simple but effective
fuzzy logic-based model, our work has motivated the use of AI/ML-based resource
selection method that not only focuses on improving the performance but also the energy
consumption, which has always been one of the key objectives in mobile networks.
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Chapter 9

Conclusions and future work

New generation networks, such as 5G and 6G, are envisioned to improve network
performance and user experience by supporting innovative technologies and applications.
However, as technology evolves and demands increase, the network operation and
management become more complex, especially the RAN being the most challenging to
deploy, manage and operate. In this respect, AI/ML-based techniques have attracted
much attention from academia and industry to automate RAN management. In
literature, various solutions have been proposed in the context of SON and AI/ML.
However, as RAN evolves to meet the ever-growing needs of future mobile users, various
new challenges arise that must be addressed to prevent potential issues related to network
performance and user experience. In this line, this thesis has deeply investigated some
of the most relevant challenges and provided novel solutions to prove the applicability of
AI/ML in tackling those issues. This chapter first presents the conclusion of this thesis
while highlighting its main contributions along the way. Finally, the chapter ends by
giving pointers for potential research directions for future work.

9.1 Concluding Remarks

In Chapter 1, we provided the motivation, the problem statement, and the research
approach we adopted to conduct the research in this thesis. Then, in Chapter 2, for
the reader´s convenience, we provided the fundamental knowledge of all the relevant
functionalities and mobile technologies we discussed throughout the thesis. Based on the
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motivation and problem statement presented in Chapter 1, in there, we formulated the
following high-level (HQ) question:

HQ: How can AI/ML be used to automate the increasing RAN management complexity
along two axes: 1. infrastructure- and limited infrastructure-based RAN scenarios and 2.
single- and multi-access technology RAN scenarios?

The two complexity axes mentioned above reflect the level of heterogeneity in which RAN
is evolving. The first axis captured the complexities that arise due to the infrastructure of
a network, i.e., the RAN operating with or without BSs. We labeled them infrastructure-
and limited (because of the presence of a roadside unit) infrastructure-based RAN.
Whereas the second axis covered the challenges due to the number of technologies that
need to coexist, i.e., single-access technology RAN using only LTE or NR technology, and
the multi-access technology RAN that also contains other technologies, such as WiFi. The
main contributions that helped us to answer the above high-level question based on these
axes are distributed from chapters 3 to 8. In the following, we present the most important
conclusions and contributions that resulted from each of these chapters.

In Chapter 3, we focused on the complexity of the HO management use case under
the infrastructure-based single-technology scenarios. We targeted this use case because
seamless mobility is one of the most important features that all generations of mobile
networks have promised to deliver. In this chapter, using a simplified simulation scenario
comprised of three BS and three UEs, we showed that the QoE resulting from a HO
becomes crucial when there exists an obstacle partially blocking the coverage of the
target cell. Therefore, relying on the simple target cell selection, such as the quality of
the received signal of the serving and target cell, becomes too shortsighted and can affect
users’ QoE in the long run.

To tackle the above issue, as the main contribution of this chapter, we proposed an
AI/ML solution based on FFNN using supervised learning. This solution can select
the next target cell that is expected to provide an improved QoE by leveraging the
knowledge acquired from past HO decisions. The results extracted from an Offline-
Evaluation showed that the proposed scheme improved 1) the number of completed
downloads and 2) the users´ QoE based on the time to download a file, outperforming
the benchmark HO scheme. Based on the results, we can confidently conclude about the
effectiveness and useability of AI/ML solutions such as FFNN to handle the complexity
of HO management use case in unpredictable radio conditions such as the one presented
in this thesis. Additionally, in this chapter, we presented the open-source ns-3 models
to simulate obstacles and the deterministic HO algorithm that can be used to create a
database for supervised learning in such studies.

In Chapter 4, we continued with the infrastructure-based single-technology scenarios. We
addressed two RAN use cases, i.e., the HO management and initial the MCS selection
targeting a realistic and complex multicell simulation scenario. Here, we chose the initial
MCS selection use case for two main reasons. First, the MCS selection directly impacts
spectrum resource utilization and perceived quality of service, which become critical with
the growing number of devices that the future mobile networks have to serve. Second,
to advocate using MTL approaches to handle multiple RAN use cases that can function
at the same or different layers of the mobile protocol stack. We argued that RAN is
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more rapidly evolving, which indicates the emergence of a vast amount of use cases that
the RAN might have to handle. Therefore, having AI/ML models for each use case will
exhaust the network resources, e.g., the computation cost to train these models, which
increases linearly with the number of use cases.

In this respect, the main contributions of Chapter 4 are:

• we proposed a shared database of measurements extracted from ns-3 standard-
compliant BS and UE protocol stacks. This database, which we believe can be
used to target multiple use cases, was used to train and evaluate the single-task
and multitask AI/ML models based on supervised learning for the two targeted use
cases.

• we presented two single-task learning models based on LSTM for HO and initial
MCS use cases. The offline performance evaluation of the HO solution showed that
the proposed model outperforms the benchmark HO algorithm by increasing the
number of UEs able to download a file and decreasing the time to download the
file. Similarly, the LSTM model for the MCS use case learned the dynamics of the
radio environment using the proposed database. Then, based on this knowledge,
it assigned an appropriate initial MCS that is not limited to MCS 0. This is
an improvement over the benchmark approach that always assigns MCS 0 due
to the lack of channel status report from a newly connected UE. The results
obtained showed a significant increase in the achieved initial throughput for UEs
that established a connection with a new BS.

• lastly, we proposed the MTL models based on LSTM AE and an MLP. The thesis
demonstrated the use of this architecture using parallel and incremental MTL
paradigms to address the HO management at layer 3 and initial MCS use cases
at layer 2, jointly. The results of the extensive Offline-Evaluation showed that the
MTL models achieved similar performance as those achieved using dedicated single-
task models. This proved the efficiency of the AE in compressing the inputs without
losing important information. It enabled us to use this compressed representation
of the input feature space in a shared manner to address HO and the initial MCS
use case jointly. Thus, lifting the burden of the network to train a model from
scratch when a new use case is added to the setup.

After tackling the issues characterized by the infrastructure-based single-access technol-
ogy scenarios, we moved into a higher level of complexity by switching the second axis
to multi-access technology. In particular, Chapters 5 and 6 dealt with the fairness is-
sues due to the coexistence of LAA, and LTE-U with WiFi, since, without guaranteeing
their fairness, these mobile technologies cannot function in the unlicensed spectrum. In
Chapter 5, after deeply studying LAA´s channel access mechanism, we identified some
significant differences between the LAA and WiFi CW adaptation procedures. These
differences pose challenges in achieving fairness for LAA in the unlicensed spectrum.

The main contribution of Chapter 5 is the AI/ML solution that improved the CW
adaptation procedure of LAA by inferring the number of NACKs that can be received
in a TxOP. The proposed solution achieved a good trade-off between WiFi fairness and
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LAA performance, overcoming the schemes that sacrificed LAA performance in terms
of throughput and latency for better coexistence with WiFi. Connected to this, the
contribution in Chapter 6 aimed to quantify the fairness in coexistence scenarios instead
of making qualitative comparisons of throughput and latency CDFs. In particular, we
proposed a framework based on the KS-test that statistically quantified the fairness of
LAA and LTE-U when they coexist with WiFi. The evaluation study based on this
framework revealed that LAA provides better fairness, while LTE-U introduces more
collisions. Such framework and its possible extension can benefit the fairness evaluations
where CDF curves intertwine, making it challenging to conclude fairness.

Finally, in Chapters 7 and 8, our attention shifted to address the complexity that exists
in the limited infrastructure and single-access technology scenarios. We learned that
in such scenarios, due to the absence of BSs, the mobile devices operate autonomously,
making decisions based on their perspective of the channel. This introduces challenges for
mobile devices to operate without BS support. This thesis identified one such challenge
of energy-performance trade-off due to continuous sensing in NR-V2X technology.

In this respect, the main contribution in Chapter 7 is the first ns-3 open-source and
standard-compliant simulator for NR-V2X. This chapter included the results of the deep
simulation study that, among other findings, revealed the energy-performance trade-off
in NR-V2X. This trade-off is then studied to propose a novel fuzzy logic-based partial
sensing resource selection mechanism in Chapter 8. The proposed scheme automatically
balanced the energy consumption and the UE performance, allowing improvements in
both energy efficiency and PRR. The main contribution of our scheme is that it can
automatically adjust the sensing duty cycle of the NR-V2X UE based on the dynamics
of the V2X scenarios. Hence, it exploits the energy-performance trade-off automatically,
which is impossible by employing a static configuration.

In a nutshell, the main contributions of this Ph.D. thesis are twofold. On the one hand,
using the two identified complexity axes, it has presented an in-depth research on some
of the most relevant use cases in the RAN and their inherent complexities impacting
the RAN management. Building on that, the thesis proposed novel AI/ML solutions
and demonstrated their effectiveness in automating the increasing complexity of the
RAN management over the benchmark schemes in realistic simulation scenarios. On
the other hand, the thesis also contributed to the open-source community by extending
and implementing new open-source simulation models in ns-3 and 5G-LENA simulators.
We hope that our contribution can help the research community to perform wide-scaled
studies, such as ours, by coupling these models with different AI/ML frameworks.

9.2 Future work

The AI/ML technologies are expected to play a vital role in achieving zero-touch 6G
networks. By leveraging these technologies, mobile networks can benefit in terms of cost,
energy consumption, reliability, and operational efficiency. In 6G, AI/ML will augment
networks to react quickly and efficiently to unpredictable situations and traffic needs
through predictive orchestration mechanisms. To ensure effective network orchestration,
decisions should be based on a holistic end-to-end perspective of the network and enforce
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actions from devices to RAN disaggregated functions, edge computing, core elements,
and cloud components [201].

In this context, the work that we have proposed can be extended in future works
considering: 1) not only the RAN but an end-to-end perspective where network
orchestration is achieved through AI/ML; 2) more use cases can be analyzed taking into
account this end-to-end vision; 3) AI/ML training costs, which can become huge, pose an
issue that has to be addressed considering the computational complexity and the energy
efficiency during the design process. In this line, the framework we have proposed based
on multi-task methodologies can also be extended beyond the RAN; 4) other AI/ML
training approaches can also be employed. We have focused on AI/ML in a centralized
manner, and we believe this approach should be continued; however, we also consider that
distributed AI/ML allowing distributed training among nodes in the network should be
considered to explore new horizons and evaluate benefits and advantages compared to
centralized solutions; 5) by also taking into account the recent development in the ns-3
simulator to perform AI/ML studies. When conducting our research, the ns-3 simulator
did not support any specialized module to link ns-3 with external AI/ML frameworks.
However, Hao Yin et al. recently contributed the “ns3-ai” module to connect Python-
based AI/ML frameworks with ns-3 using the shared memory concept [202]. This module
can facilitate future studies extending our proposed AI/ML solutions.
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