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Abstract

Digitalization has revolutionized many industries, including the power

generation sector. The availability of a vast amount of data from var-

ious systems has transformed decision-making processes in Industry.

Advances in artificial intelligence and machine learning have enabled

the development of sophisticated algorithms that can process large

datasets and uncover patterns and insights that were previously dif-

ficult to detect.

This thesis is part of a collaborative project between the Universitat

Politècnica de Catalunya (UPC) and Siemens Energy (SE), aimed at

creating digital tools for monitoring and improving the efficiency of

industrial gas turbines used in power generation. The focus of this

study is on developing maintenance-related support tools, as it is a

key factor in the equipment performance as well as the cost of it is

a significant expense for gas turbine operators.

Maintenance is a critical process for ensuring the reliability and avail-

ability of industrial systems. Key Performance Indicators (KPIs) and

soft sensors have become increasingly popular for monitoring indus-

trial processes and predicting variables that are difficult to measure.

Therefore, the main goal driving this thesis is to develop an AI-based

indicator that can help assess equipment performance and recom-

mend maintenance actions.

To achieve this goal, an autoencoder-based architecture is used, in-

corporating several different structures and two types of autoencoder.

These models are tested to determine which performs the best and

is most suited to the equipment requirements. A detailed study is
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presented, evaluating the performance of the models using two differ-

ent metrics: absolute error and Fréchet distance, combined with two

time-averaging calculations: moving average and incremental win-

dow average. The results of this analysis reveal a clear drift in the

model output. Moreover, further results are obtained by modifying

the autoencoder structure which lead to detect significant changes in

equipment performance associated with major maintenance events.

Time series decomposition, wavelet transform, and clustering meth-

ods are used to further analyze the findings and obtain additional

insights into gas turbine performance. The outcome derived from

this study strengthen the drift detection in gas turbine performance

and the identification of significant change in its behavior due to

major maintenance events. This research can serve as a foundation

for future studies and investigations in this area, as it has laid the

groundwork for the potential development of more sophisticated and

accurate models that can effectively monitor and diagnose potential

issues in Siemens Energy gas turbines.

This doctoral thesis contributes to reducing the gap between academia

and industry by applying novel technologies and algorithms to real

plant problems. It provides valuable insights and understanding of

gas turbine systems and presents a framework for developing more

accurate and targeted models. By leveraging the power of machine

learning and advanced analytics, researchers and industry profes-

sionals can work together to improve the efficiency, reliability, and

safety of gas turbines in a wide range of industrial applications.



Resum

La digitalització ha revolucionat el sector industrial. L’augment en

la captura de dades i el desenvolupament en els camps de la in-

tel·ligència artificial i l’aprenetatge automàtic han significat un canvi

transformador en la forma com es prenen decisions a la indústria.

Aquests avenços han permès el desenvolupament d’algorismes sofisti-

cats que poden processar grans quantitats de dades i descobrir pa-

trons i estructures que abans eren dif́ıcils de detectar

Aquesta tesi forma part d’un projecte de col·laboració entre la Uni-

versitat Politècnica de Catalunya (UPC) i Siemens Energy (SE), amb

la idea de crear eines digitals pel seguiment i la millora de l’eficiència

de les turbines de gas en aplicacions industrials. L’objectiu d’aquest

estudi es centra en el desenvolupament d’eines de suport relacionades

amb el manteniment, ja que és un dels factors clau en el rendiment de

l’equipament i el seu cost és una despesa important per als operadors

d’aquest sector.

El manteniment és un procés cŕıtic per garantir la fiabilitat i disponi-

bilitat dels sistemes industrials. Els indicadors (KPI) i els sensors

digitals s’han tornat cada cop més populars per monitoritzar pro-

cessos industrials i predir variables dif́ıcils de mesurar. Per tant,

l’objectiu principal d’aquesta tesi és desenvolupar un indicador basat

en IA que pugui ajudar a avaluar el rendiment dels equips i recoma-

nar accions de manteniment.

Per aconseguir aquest objectiu, s’utilitza una arquitectura basada

en autoencoder, que incorpora estructures i tipus diversos. Aque-

sts models s’han posat a prova per determinar quin ofereix un mil-

lor rendiment i s’adapta bé més als requisits de les màquines. Es
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presenta un estudi detallat, avaluant el rendiment dels models mit-

jançant dues mètriques diferents: l’error absolut i la distància de

Fréchet, combinats amb dos càlculs de mitjana temporal: mitjana

mòbil i mitjana incremental. Els resultats d’aquest anàlisis revelen

una clara desviació en els resultats del model. A més, s’obtenen re-

sultats addicionals modificant l’estructura de l’espai latent que per-

meten detectar canvis significatius en el rendiment de la màquina

associats a esdeveniments significatius de manteniment.

S’utilitzen mètodes de descomposició de sèries temporals, transfor-

mació de wavelet i d’agrupació de dades per analitzar més els resul-

tats i obtenir informació addicional sobre el rendiment de les turbines

de gas. El resultat derivat d’aquest estudi consisteix en la detecció

d’una desviació en el rendiment de la màquina i la identificació de

canvis significatius en el seu comportament a causa d’activitats sig-

nificatives de manteniment. Aquesta investigació pot servir de base

per a futurs estudis i investigacions en aquesta àrea, ja que ha as-

sentat les bases per al desenvolupament potencial de models més

sofisticats i precisos que puguin controlar i diagnosticar eficaçment

problemes potencials a les turbines de gas de Siemens Energy.

Aquesta tesi doctoral contribueix a reduir la diferència entre la in-

vestigació i la indústria mitjançant l’aplicació de noves tecnologies

i algorismes a problemes industrials reals. També pretén aportar

informació valuosa sobre el funcionament dels sistemes de turbines

de gas des d’un punt de vista de dades i presenta unes eines per

desenvolupar models més precisos i orientats a tasques espećıfiques

i necessàries de les turbines de gas. Aprofitant el desenvolupament

de l’aprenentatge automàtic i l’anàlisi avançada, es pretén millorar

l’eficiència, la fiabilitat i la seguretat d’aquestes màquines per ampli

rang d’usos en aplicacions industrials.
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Chapter 1

Introduction

This section presents a comprehensive overview of machine learning,

Gas Turbine (GT) systems, and key concepts like thermodynamics

and maintenance policies associated to this thesis. It underscores

the significance of maintaining optimal performance of GT systems

for achieving high reliability, system availability, environmental sus-

tainability, and human safety. Additionally, it highlights the usage

of major maintenance operations for restoring Industrial Gas Tur-

bines (IGTs) to a new operational point. Furthermore, the section

discuss the limitations of traditional maintenance methods and the

potential benefits of implementing artificial intelligence techniques

to improve maintenance decision-making. Finally, it emphasizes the

need of conducting research to explore the application of artificial

intelligence in GT maintenance for enhancing system reliability and

reducing maintenance expenses.

1.1 Artificial Intelligence

The precise definition and meaning of Artificial Intelligence (AI) is a

subject of much discussion and has caused a lot of confusion [1]. In

1
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the first half of the 20th century, the concept of AI began with some

fantasies and fiction writers however, it was not until 1950 that Alan

Turing suggested a logical framework called Computing Machinery

and Intelligence [2] in which he discussed how to build intelligent

machines and how to test it. The main idea behind the test was

that if a human interrogator, after posing some written questions,

cannot tell the difference amongst human and computer responses,

the machine was intelligent. The capabilities of the computer to

pass the test were natural language processing, knowledge represen-

tation, automated reasoning, machine learning, computer vision and

robotics [3]. In 1956, what is considered the first AI program was

presented at the Dartmouth Summer Research Project on Artificial

Intelligence (DSRPAI) hosted by John McCarthy and Marvin Min-

sky [4]. While the hype was too high, after some years of research,

the most ambitious goals were not met and expectations of AI did not

match the reality since the computers could not store enough infor-

mation or process it fast enough. It was during the 1900s that many

landmarks goals of AI were achieved and when machine learning al-

gorithms were successfully applied to many problems in academia

and industry with the use of powerful hardware, and immense col-

lections of data [5]. From then on, this has been a huge field of

research and new applications have flourished.

1.2 Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence which

is a rapidly growing area that is being applied across various indus-

tries to build automated analytical models. By utilizing algorithms

to analyze data, ML is able to automatically recognize patterns and
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learn valuable insights that are used to improve decision-making [6].

These sophisticated data analytic algorithms are capable of process-

ing large amounts of data, and provide significant improvement of

machine performance. ML methodologies are frequently employed

to extract knowledge from multidimensional time series data, iden-

tifying and revealing hidden structures [7].

The field of ML has grown significantly in recent years, thanks to

the development of powerful computing resources, sophisticated al-

gorithms, and the availability of large datasets [8]. These techniques

are being used in various fields, including image and speech recog-

nition, natural language processing, recommender systems, and au-

tonomous vehicles.

In today’s classification, four different types of ML can be described:

supervised learning, unsupervised learning, semi-supervised learning,

and reinforcement learning [9]. These are further explained next.

1.2.1 Supervised Learning

Supervised Learning (SL) is a subfield of ML in which the data used

to train the algorithm includes their desired solutions, called labels.

The goal is to create a model that can predict the correct output

for new input data. This is performed by tuning the parameters of

the model to minimize the difference between its predictions and the

true output values in the training data [10].

SL can be used for a variety of tasks, but the most common usage is

for classification purposes. Some popular algorithms for SL include

decision trees, random forests, support vector machines, and neural

networks.
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One example of the use of these methods is in predicting the energy

output of a wind turbine based on various environmental factors such

as wind speed and temperature. Researchers have used a variety of

supervised techniques, such as Artificial Neural Networks (ANNs)

and support vector regression, to create models that can accurately

predict wind turbine output with high accuracy [11].

Another application of SL in a completely different field is for medical

diagnosis. Researchers have used supervised learning algorithms to

analyze medical imaging data, such as X-rays and MRI scans, to

detect and diagnose diseases such as cancer, amongst others [12].

Finally, this last example proposes a decision tree model to analyse

the most important factor that will result in the improved education

level of India [13].

1.2.2 Unsupervised Learning

Unsupervised Learning (UL) is a subfield of ML in which the learning

algorithm operates with unlabelled data to discover data structures

and to identify hidden patterns. This approach is useful either when

there is not any prior knowledge about the composition of the data

or when different relationship must be drawn from a group of points,

also known as clusters [14].

The way how these algorithms learn is by defining a cost function

that constraint either the number of clusters or some prior metrics

threshold, usually some distance metrics. Then, an interative pro-

cess is started to optimize the cost function until its convergence [15].

Unlike SL methods, which are prone to minimizing error or misclas-

sifications of the pair input / output data, UL methods are devoted
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to maximizing the similarities between data items and cluster pro-

totypes.

Common applications of UL include clustering, dimensionality re-

duction, visualization, and anomaly detection.

1.2.3 Semi-Supervised Learning

Semi-Supervised Learning (SSL) is a subfield of ML that combines

labelled and unlabelled data to train a model. The availability of

large amounts of unlabelled data makes SSL particularly useful in

situations where labelled data is scarce or expensive to obtain [16].

In SSL, a small amount of labelled data is used to guide the learning

process, while the majority of the training data is unlabelled. Then,

the model attempts to generalize from the labelled data to make

predictions on the unlabelled data [17].

There are three main approaches to SSL, including generative mod-

els, graph based methods, and self-training. Generative models as-

sume that the labelled and unlabelled data share a common under-

lying distribution and use this assumption to infer the labels of the

unlabelled data. Graph based methods use the similarity between

data points to propagate labels from the labelled data to the unla-

belled data. Self-training involves using the model’s own predictions

on the unlabelled data to generate additional labelled data [18]. This

kind of learning has been successfully applied in various fields, such

as natural language processing, computer vision, and bioinformatics.

Overall, SSL provides a promising approach to training machine

learning models with limited labelled data, and it is an active area

of research in the field of ML [19].
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1.2.4 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of ML that involves an

agent interacting with an environment, taking actions and receiv-

ing feedback in the form of rewards or penalties, with the goal of

maximizing its long-term cumulative reward. The agent learns to

make decisions through trial and error, exploring different actions

and learning from the feedback it receives from the environment.

The agent’s goal is to learn a policy, a function that maps states to

actions, maximizing its expected cumulative reward over time. In

short, the basic idea of the algorithm is to learn through trial and

error to make decisions regarding the current state and maximize

rewards or minimize penalties [20].

One of the key challenges in RL is balancing both exploration, mean-

ing to favour new actions to learn more about the unknown part of th

environment, and exploitation, using the agent’s current knowledge

to take actions that maximize reward [21]. Various algorithms have

been developed to address this challenge, such as Q-learning [22],

SARSA [23], actor-critic [24], and deep reinforcement learning [25].

1.3 Gas Turbine Industry

The current energy crisis has exponentially increased concerns about

the vulnerability, fragility, and unsustainability of our existing en-

ergy system. As the demand for energy continues to increase, the

limitations of the current system have become more apparent. De-

spite the development of renewable energies, the share of fossil fuels

in the global energy mix has been stubbornly high, at around 80%

for decades [26]. The importance of reducing the world fossil fuel use
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and the emission produced by them are highlighted in by the research

ecosystem due to the uncertainty about their future availability and

to avoid the severe impact on the environment.

Concerns over the negative environmental impact of fossil fuels, par-

ticularly coal and oil, have led to increased calls to transition to

more sustainable energy sources [27]. Natural gas has been recom-

mended as it emits fewer pollutants than other fossil fuels and can

provide more flexibility in power generation [28]. Combined cycle

(CC) and combined heat and power (CHP) plants are increasingly

being used to harness the potential of natural gas in a more efficient

and cost-effective manner, resulting in lower fuel costs and emissions

per MWh [29].

Gas turbines (GTs) are the primary components of CC and CHP

power plants. In recent years, GT units have undergone significant

efficiency enhancements, with improvements in manufacturing pro-

cesses and the use of new materials contributing to efficiency gains

up to 45% in the simple cycle [30]. However, some of these improve-

ments, such as increasing the Turbine Inlet Temperature (TIT) to

improve turbine blade performance, can lead to higher degradation

and a reduction in reliability [31]. As a result, researchers are ex-

ploring new ways to optimize the performance of GT and enhance

their reliability, including through the use of advanced materials and

coatings [32].

GTs are widely used in various industries such as power generation,

aviation, oil and gas, marine, and industrial processing. The global

market is expected to grow in the coming years, driven by its stora-

bility, its ability to be delivered through pipelines or liquefied and

sent by ship. Moreover, the ability to provide a quick and reliable



Chapter 1. Introduction 8

source of energy, thanks to their efficiency and low emissions, regard-

ing other fossil fuels, allows natural gas to respond to both seasonal

and short-term demand fluctuations. It is one of the most optimal

choices available to provide back-up to the growing use of variable re-

newables such as wind and power. While GTs are not considered as

clean and sustainable as renewable energy sources such as wind and

solar power, they are still necessary to support the growing energy

demands of modern society. Still, as part of global efforts to reach

net zero emissions, natural gas use is expected to come under pres-

sure in some countries [33]. As a result, research and development

efforts are underway to improve the efficiency of GTs, reduce emis-

sions by deploying Carbon Capture, Utilisation and Storage (CCUS)

equipment, and explore the potential for using in combination with

cleaner fuels such as hydrogen.

Figure 1.1: SGT-800 Industrial Gas Turbine (courtesy of Siemens Energy AG)
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1.4 Industrial Gas Turbine System

IGTs are a versatile technology used for power generation in a variety

of industries including oil and gas, energy generation, and aviation.

They are internal combustion engines that convert the chemical en-

ergy of fuel into mechanical energy which is then converted into elec-

trical power. The three main components of an IGTs are compressor,

combustor, and power turbine.

Figure 1.2: The core engine of the Industrial Gas Turbine model used to perform the
current analysis (courtesy of Siemens Energy AG)

The compressor is responsible for compressing and providing suffi-

cient quantity of air to the system to ensure its proper operation.

Its main function is to increase the pressure and temperature of the

incoming air to facilitate efficient combustion in the combustor. It is

composed of a series of blades that rotate at high speed, drawing in

and compressing air. The compressor plays a crucial role in determin-

ing the overall efficiency and performance of the GT, as it directly

affects the power output and fuel consumption. Any degradation

or inefficiency in the compressor can lead to reduced performance,
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higher maintenance costs, and shorter service life. Therefore, the

proper maintenance and operation of the compressor is essential for

maximizing the efficiency and longevity of GTs [34].

The combustion chamber, which contains several combustors, is where

the combustion process takes place. The main function of the com-

bustion chamber is to mix fuel and air, and then ignite them by us-

ing the burners to produce high-temperature, high-pressure gas. The

heat produced from the exothermic reaction is then used to drive the

turbine and generate electricity. The combustion chamber must be

carefully designed to ensure it provides a complete combustion pro-

cess and avoid malfunctioning events. Moreover, a precise control

is required to ensure that temperature and pressure values within

the chamber are within safe operating limits, and to minimize the

emissions. Thereby, efficient and reliable combustion chambers are

essential for the overall performance and reliability of GT systems.

The turbine is the last component of the chain as it is the responsible

to convert the high-temperature and high-pressure gas generated in

the combustion chamber into mechanical energy to drive the gener-

ator and produce electricity. The gas expands as it passes through

the turbine blades, causing them to rotate at high speeds. The en-

ergy from the rotating blades is then transmitted to the generator

through a shaft, which converts the mechanical energy into electrical

energy. The design of the turbine is crucial to maximize the energy

conversion efficiency of the GT, as well as to ensure its reliability

and durability under harsh operating conditions.

GTs are suitable for a wide range of applications, from small mo-

bile power plants to large, stationary systems with high power pro-

duction. They are highly efficient and have a short startup time,
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making them ideal for supplying fast, flexible energy to meet peak

demands [35]. However, there are concerns about the environmental

impact of GTs, including toxic and noxious emissions. To address

these concerns, there is a need for ongoing monitoring, condition

control, system diagnosis and improvements in emission reduction

technologies.

GTs are also known for their ability to operate under extreme and

harsh conditions. These situations also lead to various types of dete-

rioration, which mainly cause malfunctioning events and decreased

performance. These include fouling, corrosion, erosion, abrasion, and

unexpected particles. Further description of each fault can be found

in Table 1.1.

Table 1.1: Main deterioration causes of a gas turbine

Name Cause Prevention Recoverable

Fouling
Adherence of particle to airfoils and
annulus surfaces. Increases surface
roughness and changes airfoils shape.

Filtration
system

By washing
components

Corrosion
Loss or deterioration of materials
caused by inlet air contaminants and
by derivative of fuel combustion.

Complete
combustion
process

No

Hot Corrosion
Loss or deterioration of materials
from flow path caused by chemical re-
actions at high temperature.

Filtration
system

No

Erosion
Material removal from the flow path
by hard or incompressible particles
impinging on flow surface.

Filtration
system

No

Abrasion
Material removal caused by a rotat-
ing surface rubbing a static surface
to establish the proper clearances.

– No

Foreign ob-
jects

Unexpected particles striking compo-
nents along the flow path: particles
in air or broken pieces.

Filtration
system

No

In addition, changes in the standard operational regime, such as the

number of starts and stops or modifications in the output power set
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point, can also cause fatigue and impact the system’s performance.

Therefore, reducing the operational and maintenance expenses, since

a huge amount of money is invested in operational and maintenance

actions [36], while increasing the reliability, availability, and safety

of equipment are key factors of profitability and competitiveness.

To address these issues, health-monitoring practices have become

mandatory in order to avoid economic, environmental and security

defects. Thanks to the development of new and more advanced tech-

nologies, more sophisticated intelligent tools for condition and fault

assessment have been emerged over the past decade. In this context,

data collectors have played an important role to improve health man-

agement strategies [37].

The big amount of data captured by industrial systems contains

information about components, events, and alarms related to indus-

trial processes. All these data can provide significant knowledge and

information about system processes and their dynamics. Thereby,

the condition assessment of the system can be improved leading to

maintenance cost and machine fault reduction. This can also be

translated as an increase in production and improvement of opera-

tor safety [38].

1.5 Condition Assessment

Condition assessment consists of a systematic inspection, review,

and report of the state of the equipment. Inspection procedures

have evolved as recent and more effective techniques have been de-

veloped, with the increase of data availability. Hence, they can be

distilled into three main components: Condition Monitoring (CM),

diagnostics, and prognosis [39].
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Firstly, CM involves periodically checking the status of the equip-

ment while keeping a record of observations and analyzing data from

various sensors located on the system. Monitoring can be developed

near the machine or remotely, depending on the setup. Data records

are collected and sent to engineering office where they are analyzed

and processed to identify any potential issues or unforeseen event.

CM helps to detect and diagnose faults and deterioration in the

equipment allowing for preventive maintenance and avoiding costly

repairs or down times. With the advance in technologies, this pro-

cess has become more sophisticated and effective in identifying and

preventing equipment issues [40].

Secondly, diagnostic systems process the information gathered from

the equipment status to determine and identify risks that impact

its operational integrity. Experienced engineers typically provides

a report that outlines a plan or recommended actions to follow in

case it is not working as expected. The main purpose of this data

analytics process is to make the machine more reliable, available

all of the time, and safer, thereby improving its performance [41].

This complements the CM in such a way that one aims to capture

the performance of the system, while the other aims to improve it.

Thereby, both of the systems need to work in harmony to achieve

their goals.

Finally, prognosis can help on predicting when maintenance should

be performed, which components need to be replaced, and when the

equipment might fail. The objective of future condition forecast-

ing is usually defined in terms of the prevention of hard failures of

the components or reducing the performance degradation related to

the equipment’s operation. Failure prognosis puts the focus on fore-

casting the damage state or failure rate of a component or system
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of components in an engine, whereas degradation prognosis is asso-

ciated with the slower decrease of performance throughout its life.

This process is a step ahead of both CM and diagnostics, but at

the same time, there is some dependency on how the diagnosis is

performed [42]. The relationship among all these processes is repre-

sented in Figure 1.3.

Figure 1.3: Relationship representation between condition monitoring, diagnostic and
prognosis systems

1.6 Gas Turbine Thermodynamics

This section presents the basic principle that drive the function-

ing of GT. The main focus of this thesis is the enhancement of the

performance of a single GT, and more precisely, by analysing the

functioning of the compressor. Therefore, an overview of the air-

standard Brayton cycle for the whole system of gas turbines and

also specifically to each component is provided [43].

Before going in depth with the mentioned processes, some key con-

cepts must be introduced. The concepts explained below can be

further expanded in [44].
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1.6.1 First Thermodynamic Law

As any other thermal machine, GT is governed by the most essential

thermodynamics. Since the thermodynamics of these kind of system

is beyond this thesis, only a small intuition will be given in order to

understand some decisions taken during this study.

The first law of thermodynamics states that energy is conserved.

Thereby, it states that the change in the amount of energy con-

tained within a system during some time interval is equal to the

difference between the net amount of energy transferred in across

the system boundary during the time interval and the amount of

energy transferred out across the system boundary by work during

the time interval. This can be expressed as:

E2 − E1 = Q−W (1.1)

Where Ei is the system’s energy in/out, Q is the heat coming in the

system, and W is the work performed by the system.

An alternative form of this expression is:

∆K +∆P +∆U = Q−W = ∆E (1.2)

where ∆K is the temporal gradient of kinetic energy, ∆P is the tem-

poral gradient of potential energy and ∆U is the temporal gradient

of internal energy. Also note that the algebraic sign corresponds to

the direction of the transfer. If the energy is transferred from the

system to the surroundings it is negative sign, otherwise it is positive.
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1.6.2 Second Thermodynamic Law

The second law of thermodynamics introduce the meaning of en-

tropy (S). In short, the entropy is an extensive property like mass

and energy that measures the molecular disorder or randomness of

a system. The second law states that it cannot be destroyed but

instead it can be created. The entropy, just as mass and energy, ac-

counted for by an entropy balance. In open systems, it is expressed

as:

∆S = Stransfer + Sgen (1.3)

where ∆S is the change of entropy within the system, Stransfer is the

transferred entropy across the system boundary during time t, and

Sgen is the amount of entropy generated within the system during

time t.

This property allows to determine if a process is reversible (∆S =

0), meaning that the system and the surroundings can be returned

to their initial states, or irreversible (∆S > 0), meaning that they

cannot be recovered. This application is highly important in open

systems to compare the efficiency of thermodynamic processes.

1.6.3 Control Volume

A Control Volume (CV) is strictly defined as a delimited region of

space which mass may flow. This concept is the key to understand

open systems.
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Let A ∈ R3 be a volume:

A(R3) =

∫
R3

dV =

∫
R3

dx dy dz =

∫
R3

XR(x, y, z) dx dy dz (1.4)

where:

XR(x, y, z)

1, (x, y, z) ∈ V

0, otherwise
(1.5)

A graphical representation of A during the instant t is shown in

Figure 1.4.

Figure 1.4: Graphical representation of control volume definition

The energy rate balance for CV must follow the conservation of en-

ergy principle explained in the first thermodynamic law. The dif-

ference between the closed and open system is that now the energy

can be transferred into or out of a CV as a result of mass crossing

boundaries. Therefore, the conservation of energy principle must be

modified by taking into account these energy transfers. Thus, an

extra component must be added in the previous expression that is

the net rate of energy transfer into the system accompanying mass

flow. Thereby, the modified expression is defined as:

dEcv

dt = Q̇− Ẇ +ṁin

(
uin +

v2in
2 + g zin

)
−ṁout

(
uout +

v2out
2 + g zout

) (1.6)
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where Ecv denotes the energy of the CV at time t. The terms Q̇ and

Ẇ correspond to the net rate of energy transfer by heat and work

across the boundary of the system at time t, respectively. The last

two elements correspond to the rates of transfer of internal, kinetic

and potential energy of entering and exiting streams. These are the

added components regarding expression (1.1).

Since the work is always performed on or by CV, it is convenient to

separate it in two contributions: the first contribution regarding the

work associated to the fluid pressure as mass is introduced at inlets

and removed at exits. The other include all other works effect associ-

ated to rotating shafts, displacement of boundaries, electrical effects,

and so on. The first work can also be expressed as the required en-

ergy to push the fluid into or out the control volume. Thereby, the

normal force can be expressed as the pressure P of the fluid on the

enter / exit surface A, and the fluid displacement d. Thereby, the

work performed on CV can be expressed as:

Ẇ = Ẇvc + (PoutAout)dout − (PinAin)din (1.7)

where P , A, and d are the pressure, the area, and displacement of

fluid in control volume, and the index out and in means at exit and

inlet, respectively.

Expressing the A and d as a volume and in a unit basis, it remains:

Ẇ = Ẇvc + (Poutvout)− (Pinvin) (1.8)

where v refers to the volume per unit of mass.

Evaluating the rate of work in the energy in equation (1.1) and ap-

plying the definition of specific enthalpy (hi = ui+Pi vi), it concludes
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to:
dEcv

dt = Q̇− Ẇvc +ṁin

(
hin +

v2in
2 + g zin

)
−ṁout

(
hout +

v2out
2 + g zout

) (1.9)

In practice, there may be several locations on the boundary through

which the mass enters or exits and considering the same height, same

specific velocity and steady state conditions:

dEcv

dt
= 0 = Q̇− Ẇvc +

∑
ṁin hin −

∑
ṁout hout (1.10)

1.6.4 The Brayton Cycle

The Brayton cycle was proposed by George Brayton. It is a thermo-

dynamic cycle that describes the operation of gas turbine in its four

processes: compression, heating, expansion and recover.

In ideal conditions, both compression and expansion are treated as

isentropic processes, while heating and recover are considered iso-

baric, that means the pressure is considered constant along the pro-

cess. A schematic diagram of the most simple gas turbine power plan

system is shown in Figure 1.5.

Figure 1.5: Schematic of basic gas turbine components
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Figure 1.6 shows the two most common representations of Bryton

cycle considering either Pressure P and Volume V or Temperature

T and Entropy S on the axis.

Figure 1.6: Ideal Brayton cycle

The two most important thermodynamic processes in GT function-

ing are:

1. Compression. It takes place in compressors, pumps and dif-

fusers. The fluid pressure is increased by reducing its volume.

2. Expansion. It takes place in turbines, nozzles, etc. The fluid

pressure is reduced to extract the net work.

In real life, the ideal process for compression and expansion are isen-

tropic processes. This means that there is no heat transfer to or from

the working fluid and the work transfers of the system are frictionless

(Q = 0 and ∆S = 0), indeed adiabatic and reversible processes. The

differences between real and ideal processes are shown in Figure 1.7,

where s suffix correspond ideal values, also named isentropic values.

The way to compute the efficiency in this kind of processes is by

comparing the reversible and irreversible adiabatic process. In the

compression, the irreversible process (1 → 2) needs more work to



Chapter 1. Introduction 21

Figure 1.7: Graphical representation of the differences between real and ideal adiabatic
processes

drive the compressor than the reversible process (1 → 2s). This is

expressed as:

ηC =
Was

Wa
=
h2s − h1
h2 − h1

(1.11)

In the expansion, the adiabatic irreversible process (3 → 4) obtains

less net power than the reversible adiabatic process (3 → 4s). This

is expressed as:

ηT =
Wa

Was
=

h3 − h4
h3 − h4s

(1.12)

The above expressions can be rewritten for thermally and calorifically

perfect gas, i.e. the ideal gas law, in terms of total pressure and

temperature. Thereby, the compressor efficiency can be expressed

as:

ηC =

(
P2

P1

)γ−1
γ

− 1

T2

T1−1

(1.13)

The process between 1 and 2s can be defined by the following equa-

tion state:
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P

ρn
= constant (1.14)

where n defines the process from point 1 to point 2s in Figure 1.7.

Therefore, rewritting 1.13

ηC =

(
P2

P1

)γ−1
γ

− 1(
P2

P1

)n−1
n

− 1

(1.15)

The turbine efficiency can be expressed as:

ηT =
1− T4

T3

1−
(

P4

P3

)
γ−1
γ

(1.16)

Moving from the components efficiency, the overall gas turbine effi-

ciency is given by the ratio of the net energy output to the energy

input to the turbine.

ηcyc =
Wcyc

Qcc
(1.17)

where Wcyc is the work completed by the gas turbine, indeed the

net work produced by the turbine and the work consumed by the

compressor, and Qcc is the heat added by the combustor. Then,

according to the theory explained before and the standard Brayton

cycle shown in Figure 1.6, the expression (1.17) can be transformed

to:

ηcyc =
WT −WC

Qcc
=

(ṁa + ṁf) (h3 − h4)− ṁa (h2 − h1)

(ṁa + ṁf)h3 − ṁa h2
(1.18)
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where ṁa is the air mass flow, ṁf is the fuel mass flow, and hi is the

corresponding entropy. Assuming that ṁa ≫ ṁf , that there is not

mass losses, and defining the CV around the turbine and compressor

in one block, can be obtained:

ηGT =
Wnet

Qin
=
Qin −Qout

Qin
= 1− h4 − h1

h3 − h2
(1.19)

Considering the air an ideal gas and rewriting equation (1.19) using

isentropic performance of the compressor and turbine (ηT and ηC ,

respectively), it is easy to get:

ηGT =

ηT

(
1− r

1−γ
γ

p

)
−

T1
T3

ηC

(
r

1−γ
γ

p − 1

)
1− T1

T3
−

T1
T3

ηC

(
r

1−γ
γ

p − 1

) (1.20)

where rp is the pressure ratio of the compressor, indeed the ratio

between output and input pressure, γ is the specific heat rate Cp/Cv,

T1 is the compressor inlet temperature, and T3 is the turbine inlet

temperature.

From the expression above it can be drawn that increasing the pres-

sure ratio and the turbine firing temperature increases the Brayton

cycle’s adiabatic thermal efficiency. Moreover, there is an other im-

portant variable that can affect the thermal efficiency of the cycle

that is the inlet temperature in the compressor.

In this section, a brief intuition has been given about the analysis

of the most simple gas turbine operation. Further variations of gas

turbines configurations exists but these are beyond this thesis. Short

explanations about the gas turbines configurations can be found in

Appendix A.
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1.7 Maintenance Operation

In order to achieve profitability and competitiveness in industry, it is

crucial to maintain high reliability, constant system availability, and

prioritize human safety while minimizing environmental impact [45].

A real concerns in design and process engineering are the operational

changes related to challenging weather conditions, user decisions be-

yond the nominal operational regime, and, especially, non-reported

hash conditions [46]. The current trend of effective management

strategies from unexpected events has been sharpened to avoid ma-

jor economical, environmental, and security defects [47]. Thereby,

they are beyond the restoration of the system to a profitable opera-

tional point. A proper health management system as well as a good

condition assessment method are mandatory.

Maintenance is a critical activity that helps to maintain optimal

machine performance and prevent structural degradation, which can

result in system failures. While major maintenance operations can

restore IGTs to a functional state, they do not return the equipment

to its original condition. Instead, they bring the IGTs to a new

operational point that ensures smooth functioning and minimizes

further deterioration [48].

Maintenance strategies can be classified into three main categories, in

increasing order of complexity: corrective, preventive, and predictive

maintenance [49].

1.7.1 Corrective Maintenance

Corrective maintenance is the simplest approach to deal with system

conditions. It is performed only when a component of the system
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breaks down [50]. It is also known as unplanned, run-to-failure, or

reactive maintenance [51]. As well as being the simplest approach,

it is also the less effective one, as the cost of interventions and the

associated downtime are usually more substantial than those with

planned corrective actions taken in advance.

1.7.2 Preventive Maintenance

Preventive maintenance is regularly performed according to a plan

scheduled in advance, regardless of the health status of the equip-

ment. The plan is based on suggestions of experienced equipment

manufacturers, historic breakdowns or failure data, operating ex-

perience, and the judgement of maintenance staff and technicians.

Therefore, the goal of this strategy, also called planned maintenance,

is to increase the availability of the system by slowing down the de-

terioration processes leading to faults [52]. Maintenance actions are

planned on a time or usage trigger [53]: maintenance based on a time

trigger, also known as Time Based Maintenance (TBM), includes ac-

tions that are carried out periodically, whereas maintenance based

on a usage based trigger, named Usage Based Maintenance (UBM),

includes actions that are planned according to a process iteration

such as a certain amount of production cycles. Although preven-

tive maintenance can reduce the probability of system failures and

the frequency of unplanned emergency repairs, it cannot completely

eliminate the occurrences of random failures [54].
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1.7.3 Predictive Maintenance

This maintenance strategy aims at detecting possible defects, based

on estimate health of the equipment, and fixing them before they re-

sult in failure. It attempts to avoid unnecessary maintenance tasks

by taking actions reactively. Indeed, it is a proactive process which

requires the development of a system model that can trigger an alarm

for corresponding maintenance [55]. Several disciplines have been de-

veloped on this strategy along time, such as Condition Based Main-

tenance (CBM) [56], Structural Health Monitoring (SHM) [57], and

Prognostics and Health Management (PHM) [58]. The most com-

mon approaches that are used nowadays in industry are based on

ML and, more precisely, ANN techniques [59].

1.7.4 Maintenance Policy

The selection of the most suitable maintenance strategy for IGTs

should be based on the specific needs of the equipment and the or-

ganization, taking into account the cost-benefit analysis, which in-

volves comparing the costs of implementing the maintenance strat-

egy against the potential savings that can be achieved by avoiding

equipment failures and downtime [60]. For instance, a high-risk sys-

tem that is critical to the operation of the organization may require

a more proactive approach, such as preventive or even, predictive

maintenance, to minimize downtime and prevent catastrophic fail-

ure. On the other hand, a low-risk system that has a minimal impact

on the operation of the organization may be better suited for a more

reactive approach, such as corrective maintenance, to reduce main-

tenance costs



Chapter 1. Introduction 27

Several criteria can be used to determine the best maintenance policy

for an industrial system. In a failure based approach, it can be de-

cided by two factors: frequency and development time, as indicated

in Table 1.2.

Table 1.2: Maintenance policy can be decided by two factors: failure frequency and
failure development time

Frequency vs Dev. Time Monitored No Development Time

Regular Frequency Preventive / Predictive Preventive

Random Failures Predictive Corrective

For failures occurring in a reasonable regular frequency, preventive

maintenance in any method could be a proper policy. If failures can

be monitored in any way, either they have development time or not,

a predictive maintenance approach could be a proper choice. There-

fore, failures occurring randomly and having a development time

can be properly solved using a predictive maintenance. However, if

there is neither a development time nor a CM system, a corrective

maintenance approach must be employed [61]. With the increasing

availability of data and the development of intelligent tools for condi-

tion and fault assessment, it has become possible to apply advanced

data analytics techniques to industrial gas turbine maintenance op-

erations. The large volume of data obtained from IGTs provides

insights into the condition of components, malfunctions, and warn-

ings, which can be used to determine the state of the system and

identify potential issues before they lead to failures. ML algorithms

and other advanced analytical techniques can be applied to this data

to automatically learn insights and recognize hidden patterns, which

can help improve maintenance decision-making and optimize main-

tenance schedules. This can lead to more efficient and cost-effective
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maintenance operations, ultimately improving the reliability, avail-

ability, and safety of industrial gas turbines [62].

The current maintenance policy of SE gas turbines is preventive

maintenance. It consists on two main categories: operation and

periodic maintenance. The operation maintenance is a regular at-

tention given to the gas turbine where trends and abnormalities can

be determined at an early stage. It is usually done by the site person-

nel and basically, it consists of monitoring the drive train operation,

which includes lubrication, calibration, and function checks as well

as the required filter replacement and cleaning. The periodic main-

tenance is defined for a gas turbine regarding a Key Performance

Indicator (KPI). It determine approximately when the maintenance

must be performed according to the system working time combined

with several fatigue factors, for instance, the number of starts and

stops, the output power set point, and so on. This maintenance in-

cludes necessary services activities form many important functions

in the gas turbine system.

1.8 Objective and Research Questions

This study is part of a collaboration between SE and UPC in the

shared business-academic approach for project identification, imple-

mentation and management related to the digitalization on power

generation. SE gas turbines are equipped with a plethora of sensors

that collect vast amounts of data, which is sent back to the office.

The engineering perspective of this information can be limited but,

by leveraging the the potential of advanced machine learning tech-

niques, intelligent supporting tools for gas turbine assessment can be

developed to help engineers on this task.
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The gas turbine performance improvement can be driven from many

different perspective. The framework of this study will put the focus

on SE maintenance policy. With the current data acquisition system

in SE gas turbines, either unexpected events or unappropriated be-

haviors of the system can be captured. Then, Data Analytics (DA)

and ML algorithms can be employed in order to design and imple-

ment engineer’s supporting tools for IGT operation as well as for a

better understanding of the equipment condition.

Thereby, the present work addresses the following objective:

Main objective: Improve the assessment system of the IGT to

ensure more reliability and working time availability of the system by

building a proper diagnosis intelligent tool to implement a predictive

maintenance policy.

This goal has been breakdown in the following sub-objective:

1. Review the published scientific literature on the application of

AI algorithms to enhance IGT’s performance

2. Analyze the SE fleet to select similar and significant GTs to

work with

3. Study the thermodynamic performance of selected GTs for gain-

ing further insights about its operation

4. Define data-driven indicator to assess the GT performance

5. Validate the indicator using both curated and SE gas turbines

fleet data

6. Develop mathematical models to capture the GT behavior using

novel AI techniques
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7. Develop an analytical framework to assess models performance

8. Verify models using long-term data

To achieve these goals, the procedure has been breakdown in four

specific tasked to be performed:

Firstly, sets of sensor data will be analyzed from the same machine

in the same operation mode, indeed working on full load, to evaluate

how it works in steady state conditions.

Secondly, the degradation of machine elements and weather condi-

tions can cause the GT to operate outside its ideal operating point

over time. ML models will be developed to identify trends that ap-

propriately represents the behavior of the machine over the time.

Then, an algorithm will be designed to fine-tune and reproduce the

results for a set of IGTs. By analyzing the data obtained from each

machine sensors, ML algorithms will be applied to observe how the

machine’s behavior changes under similar conditions in the historical

data.

Finally, extra data regarding warnings and faults events will be used

to drawn insights about observed machine operation changes. This

will give a further understanding about the main reasons why the

machine operation changes over time.

The expected results are:

• Identify significant trends in the degradation of gas turbine per-

formance over time, which will serve as a starting point for the

development of an appropriate mathematical model to accu-

rately assess its behavior
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• An AI-based indicator to evaluate the performance of gas tur-

bine operation and provide decision-making support for mainte-

nance operations

• An advanced approach to evaluate and analyze the structure

of the model, as well as its performance giving further insights

about GT operation

1.9 Scope of the Study

The scope of this study is focused on developing and implement-

ing various DA and AI based algorithms to assess IGT performance

when operating at full load. The research seeks to evaluate the use of

various ML tools, including supervised and unsupervised algorithms,

as well as statistical process control techniques, to detect and diag-

nose issues related to GT operation. By utilizing these tools and

techniques, the research aims to provide a more comprehensive un-

derstanding of the complex behavior equipment when operating at

full load, offering insights and recommendations for improved GT

performance and maintenance strategies. The main SE maintenance

operation is done in the compressor, therefore the data used to per-

form all the analysis will be focused on this component. Overall,

the study provides a valuable contribution to have further under-

standing of SE gas turbine maintenance operation, more precisely

maintenance operation in the compressor, and new KPI to assess it.

Any other data or activity beyond compressor maintenance perfor-

mance is out of scope of this thesis.
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1.10 Limitations and Assumptions

One of the limitations of using real plant data to analyze gas turbine

performance is the potential privacy concerns surrounding the data

used. Many IGTs are owned and operated by different customers,

and the data collected from these systems may contain sensitive in-

formation that needs to be protected. While anonymizing the data

can help to mitigate privacy concerns, there is still a risk of data

breaches or unauthorized access to the data. Therefore, it is impor-

tant to understand that part of the data will not be delivered from

SE and thus, some gaps on the research will be considered regarding

the components types.

On the other hand, it must be noted that the company’s objective

of obtaining simple models to maintain human interpretability of

the results may also pose a limitation in finding the optimal model

that can fit the data using fewer parameters while maintaining high

accuracy and providing meaningful insights into the reasoning behind

the model. Balancing the trade-off between model complexity and

interpretability has been a crucial aspect of this research, as it seeks

to develop models that are not only effective but also understandable

for practical applications and customer implementation

Two main assumption lead the focus of this study. Firstly, the SE

gas turbine operation is limited by the TIT. It is limited because if

it exceeds a certain point, it can cause serious damage to the system.

In this study, it is assumed that when the machine is operating at

it full load, indeed at its maximum capacity, it is using most of

its available resource. Thereby, it is when is easy to capture and

visualize the degradation of the system. This hypothesis will lead

the way how the data is treated in this research.
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Secondly, the operation of SE IGT during the first year is considered

that is working at its optimal regime. This will help on properly

create a fresh model as a reference to study the deviation of the IGT

performance in long-term.

1.11 Significance of the Study

The proposed study aims to significant impact on the field of gas

turbine performance analysis and enhancement. First, by bridging

the gap between academia and industry, the study promotes a bet-

ter understanding and collaboration between these two important

sectors. Second, by using state-of-the-art ML algorithms, the study

offers a more accurate and efficient way of analyzing and enhancing

IGT performance. Finally, by improving the tools used to assess GT

behavior, the study provides a more comprehensive understanding

of these complex systems, leading to better decisions and actions

that can optimize performance and reduce downtime. Overall, the

study offers a valuable contribution to the field of IGT technology,

opening up new possibilities for enhanced maintenance operation

performance and more sustainable energy production.

1.12 Implication for Industry and Academia

The benefits of conducting research in the area of gas turbine per-

formance analysis and enhancement are significant for both indus-

try and academia. For industry, such research can lead to more

efficient and cost-effective GT operation, improving competitiveness

and profitability. By using advanced ML algorithms and tools to

assess IGT behavior, industry can identify potential issues and take
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corrective action more quickly, reducing downtime and maintenance

costs. In addition, a better understanding of GT performance can

lead to the development of more efficient and sustainable energy

systems, reducing environmental impact and improving public per-

ception of the industry.

For academia, research in this area provides an opportunity to ad-

vance scientific knowledge and develop new technologies, contribut-

ing to a better understanding of complex systems and enhancing the

field of energy engineering. By collaborating with industry, academia

can also contribute to the development of real-world solutions to

practical problems, leading to more impactful research outcomes and

new avenues for research and innovation. In conclusion, research in

the area of IGT performance analysis and enhancement has signifi-

cant benefits for both industry and academia, offering opportunities

for technological advancement, cost reduction, and sustainability im-

provements.

1.13 Structure of this Document

The structure of the dissertations is as follows.

In Chapter 1, a comprehensive overview of AI and its various types

is presented. Furthermore, the chapter provides an extensive intro-

duction to IGTs, encompassing the power generation industry, the

equipment with its constituent components, the fundamental ther-

modynamic cycles, and the diverse types of maintenance. Finally,

an explanation is offered regarding the limitations of conventional

maintenance techniques and the potential benefits of incorporating

ML methodologies to enhance maintenance decision-making.
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In Chapter 2, the primary components necessary for the successful

implementation and evaluation of digitalization in IGTs, basically

focusing on maintenance policies, are mentioned. These components

encompass data acquisition systems, which involve the mechanism

of capturing and returning data to the engineering office for per-

forming specific analyses, data processing, involving the application

of algorithms to process the data for machine health status analy-

sis and anomaly detection, and maintenance decision support, which

entails the evaluation of machine operations based on diagnosis and

prognosis techniques.

Chapter 3 delineates the methodology employed in this study, along

with the algorithms utilized for modeling and analyzing the IGT sys-

tem. A comprehensive explanation of the data treatment method-

ology, including the filtering methods and the partitioning of the

dataset, is provided. Additionally, the main ANN based architec-

ture to model the equipment, indeed an Autoencoder (AE) based

architecture, including their architecture, types, and structure, are

elaborately explicated. A detailed examination of the key parame-

ters of the proposed model is also presented. Finally, the DA and

ML methodologies utilized in this study to analyze the performance

of the proposed model are discussed.

Chapter 4 showcases the outcomes obtained by implementing the

aforementioned methodologies to IGT data. Firstly, the primary re-

sults pertaining to the thermodynamics are presented. Subsequently,

the performance of the AE models based on their various types and

structures is explicated in detail. Finally, the results of applying

significant ML methods with the objective of analyzing the model

performance are also presented.
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In Chapter 5, an in-depth discussion regarding the data treatment

methods utilized in the study are presented. The thermodynamic

evaluation and the performance of the AE concerning IGT data are

also analyzed and discussed in detail. Furthermore, the ML model

architectures proposed in the study are thoroughly denoted.

Chapter 6 offers the conclusion of the study, elucidating the key pro-

cesses and findings derived from this research. Additionally, based

on the outcomes obtained, some recommendations and potential ar-

eas for future research are presented. Furthermore, the publications

resulting from this study are also presented.

Appendix A and Appendix B serve to clarify or expand over im-

portant concepts presented in this study. Appendix A provides an

elaboration on the various enhancements of the basic Brayton cycle

that can be employed to enhance the accuracy of gas turbines. On

the other hand, Appendix B offers a more in-depth explanation of

significant ANN processes, specifically the learning process involved

in ANN.

1.14 Main Outputs of the Ph.D. Thesis

The dissemination of the research findings has been conducted through

multiple channels to ensure that relevant stakeholders both within

the company and the academic sector have been reached.

Primarily, the research has been presented in several internal sessions

at Siemens Energy company, which were attended by managers and

experts in the field. The purpose of these sessions was to increase the

visibility of the research within the company and propose potential

applications for custom solutions to customers.
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In addition, the research results have been presented at various in-

dustry conferences, such as the Advanced Factories Expo & Congress

[63], and academic workshops, such as the VI Conference of the Pre-

doctoral Researchers of Universitat de Girona (UdG) [64]. These

conferences provided an opportunity to disseminate the findings to

a broader audience and engage in discussions with other experts in

the field.

Furthermore, the research has been published in several peer-reviewed

journals that are highly regarded in the field. These publications

have helped to disseminate the research findings to a wider audience

and contribute to the academic discourse on the topic.

1. Mart́ı de Castro-Cros, Stefano Rosso, Edgar Bahilo, Manel Ve-

lasco, and Cecilio Angulo. Condition assessment of industrial

gas turbine compressor using a drift soft sensor based in au-

toencoder. Sensors, 21(8):2708, 2021.

– Journal: MDPI Sensors (ISSN: 1424-8220)

– Impact Factor: 3847

– 5-Year Impact Factor: 4050

– Quartile: Q2

– Visualizations: 1398

– Cites: 8

2. Mart́ı de Castro-Cros, Manel Velasco, and Cecilio Angulo. Machine-

learning-based condition assessment of gas turbines—a review.

Energies, 14(24):8468, 2021.

– Journal: MDPI Sensors (ISSN: 1996-1073)
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– Impact Factor: 3252

– 5-Year Impact Factor: 3333

– Quartile: Q3

– Visualizations: 2394

– Cites: 8

3. Mart́ı de Castro-Cros, Manel Velasco, and Cecilio Angulo. Anal-

ysis of gas turbine compressor performance after a major main-

tenance operation using an autoencoder architecture. Sensors,

23(3):1236, 2023

– Journal: MDPI Sensors (ISSN: 1424-8220)

– Impact Factor: 3847

– 5-Year Impact Factor: 4050

– Quartile: Q2

– Visualizations: 451

– Cites: 0

Overall, the dissemination efforts have ensured that the research find-

ings have been widely disseminated and are accessible to a variety

of stakeholders in both the industry and academic sectors.
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State of the Art

The literature about maintenance policy is huge and diverse basi-

cally for its wide variety of systems, components and parts. Sig-

nificant papers appear every year in academic journals, conference

proceedings and technical reports that includes theories and prac-

tical applications. The strategy to follow for a proper maintenance

policy may vary according to the equipment type and the customers

needs. Therefore, the maintenance strategy must be carefully se-

lected taking into account all possible requirements. When a proper

maintenance program is established and effectively implemented, it

can significantly reduce maintenance cost by reducing the number of

unnecessary scheduled maintenance operations leading to a reduc-

tion in the cost [65].

The main components to define, implement and evaluate mainte-

nance policies are: (i) data acquisition, indeed digitalization, (ii)

data processing, and (iii) maintenance decision support, which in-

cludes diagnosis and prognosis.

39
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2.1 Data Acquisition

Data acquisition is the process of collecting and storing useful data

from the equipment. This process is an essential step to assess the

maintenance policy and to implement new maintenance programs

for machinery failure diagnostics and prognostics. Data collected

can be categorized into two main types: event data and condition

monitoring data.

Event data include useful information of the maintenance actions

performed to the targeted equipment such as equipment installation

time, performed last maintenance time, components change, and so

on, where the main data source are from operators and maintenance

personnel.

Condition maintenance (CM) data is about measurements that are

related to determining the condition of the IGT or any of its com-

ponents, i.e., its health status. Main data source are sensors placed

strategically in the IGT system. This information is relevant because

it can capture significant changes in the behavior of the system to

detect and identify potential failures. Specifically in IGT, CM sys-

tems can be implemented using various methods and technologies

with varying levels of fidelity and unique advantages [66]. This step

is quite important because is when the component information is

captured and this is the data that is going to be used for the next

algorithms.

Another important issue that these techniques must face are the

detection of anomalies in the captured data in order to avoid false

alarms and to improve the reliability. Both of the processes, health

status monitoring and anomaly detection, can use similar data to
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achieve their goal. However, for each case data is processed in dif-

ferent ways. This data processing phase is explained in the next

section.

2.2 Data Processing

Before going in depth in data treatment for health status and anomaly

detection processes, it is important to point out that the first step

for data processing is data cleaning. It is mandatory since data al-

ways contains errors. Data cleaning ensures, or at least increases

the chance, that good data is used for further analysis and model-

ing. Data errors are caused by many factors including the human

factor as long as some event data is generate manually. For CM,

data errors may be caused by sensor faults. In this case, sensor fault

isolation must be performed. In general, however, there is no simple

way to clean data. Usually it requires manual examination of data

and sometimes graphical tools can be very helpful to finding and

removing data errors. Data cleaning is, indeed, a big area.

2.2.1 Health Status

The process of going from observed data to a mathematical model

has become fundamental in industry in order to properly identify

the optimal operation. This issue has been faced from several points

of view. Some authors have shown promising results by using the

information of the entire system, while some others have broken down

the machine into its components and assessed the condition locally.

When considering the entire system, as explained in Section 1.4, one

of the main feature to identify and evaluate the performance of a
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GT is the exhaust temperature [67]. Several methods together with

various metrics have been used to proper determine the condition

of the system as well as to design its own self-learning features [68].

Moreover, with the enhancement of novel advanced technologies, it

have been easy to generalize the solutions for varying working con-

ditions [69]. In all the cases, promising results are showed in oper-

ationally changing context and showed that it is possible to train

accurate models.

From the component point of view, the main considerations are fo-

cused on the combustion chamber and exhaust gas temperature, as

well. The most common issue to tackle is that the way how the

combustor operates may vary and can considerably affect the GT

performance. Therefore, having proper methods to identify the com-

bustion stability as well as to optimze the operating conditions can

be crucial [70]. Moreover, capturing the transition from the stable

to unstable regime can also be differential in understanding the op-

erational mode of GT [71]. Regarding other main components, there

is not much literature that aims to extrapolate the enhancement of

the local performance to the whole system.

Finally, more complex frameworks exist aiming to tackle condition

monitoring and to handle some extra issues such as anomaly de-

tection, diagnosis and prognosis all in one and for several compo-

nents [72]. This kind of frameworks needs a practical investigation

through strategic, tactical, and operational levels [73], but although

some integrative proposals demonstrate huge potential in this kind

of frameworks, a lot of research needs to be done in order to have a

proper implementation in industry [56].
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2.2.2 Anomaly Detection

Access to reliable data captured from GT sensors is essential to ob-

tain good monitoring practices. Anomaly detection has been widely

applied to monitor asset operation status, as well as to provide

its health status. However, due to the evolution to extreme com-

plex industrial systems, many challenges have arisen for the clas-

sical anomaly detection approaches. Therefore, having ML models

that are able to automate the construction of anomaly detection ap-

proaches from available data ease the concern about having a proper

model.

Several approaches are proposed for this kind of solutions regarding

ML types. The most evident and more understandable methods are

the supervised and semi-supervised learning, where faulty data is

added in the training of the models to properly detect the anoma-

lies [74].

Unsupervised learning has also shown satisfactory applications in the

field of anomaly detection where some clustering based methods are

proposed to detect and filter outliers [75]. Moreover, more advanced

methods are presented regarding the feature extraction capabilities

of certain ANN models [76], indeed Convolutional Neural Network

(CNN), or the ability of finding hidden patterns in input data [77],

indeed autoencoder (AE) models.

Finally, some other systems are proposed to tackle with anomaly de-

tection solutions that also proposes future possibilities for including

diagnostics and health management methods to the system [78].
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2.3 Maintenance Decision Support Process

In order to make informed decisions regarding maintenance tasks, it

is crucial to provide maintenance personnel with effective and com-

prehensive tools to evaluate the condition of the system [79]. These

are divided in two categories: diagnostics and prognostics [80]. Di-

agnostics consists of three main steps: fault detection, isolation and

identification. The objective of fault detection is to identify any

deviations from the expected behavior of a system using the CM

approach. On the other hand, fault isolation involves the task of

pinpointing the specific component or subsystem responsible for the

detected anomaly. Lastly, fault identification entails determining the

root cause of the fault. Prognostics is a more advanced diagnosis that

aims to detect future faults before it occurs. Fault prediction is a

task to determine whether a fault is impending and estimate when a

fault will occur. Diagnostics is posterior event analysis and prognos-

tics is prior event analysis. Prognosis is a much more efficient task

than diagnosis to achieve zero-downtime performance but it can be

treated as an improvement in the maintenance decision support pro-

cess. However, diagnosis is required to determine the nature of an

unexpected failure. Next, some review according to this two types

of conditioning are provided.

2.3.1 Diagnosis

The primary objective of diagnosis is to determine the underlying

cause of a failure, which needs the use of an effective CM system.

The two main characteristics that differentiate diagnostic methods

are the parameters used and the methodology employed for analysis.
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Typically, three categories of performance monitoring approaches are

used: model based, data-driven, and experience based methods.

Model based methods involve analytical modelling of system oper-

ation and are quite promising for real-time condition monitoring.

Model based approaches have proven their ability to detect both

abrupt and more notably, gradual degradation in engine performance

in real-time online implementations. However, as the modeling un-

certainties and system complexity increase, the monitoring accuracy

decreases. Kamboukos and Mathioudakis [81] compare linear and

non-linear GTs diagnostic approaches and present an overall assess-

ment of their merits and weakness with the conclusion that the use

of linear methods might lead to substantial inaccuracies in estima-

tion of degradation. The inadequacy of the linearity assumption has

led to the development of non-linear alternatives. Although all data-

driven approaches are non-linear, model based methods involve both

linear and non-linear methods.

The most common method is Gas Path Analysis (GPA), which by

monitoring the deviation of engine health variables or independent

parameters aims to detect the deterioration of the equipment. Health

components are not directly measurable however there is a thermo-

dynamics correlation with these parameters such as the pressure and

temperature. Therefore, the gas-path faults have an observable ef-

fect on the measurements. The first GPA method was introduced by

Urban [82], which is now referred to as linear GPA, using a Influence

Coefficient Matrix (ICM). Nevertheless, the engine operates under

a non-linear thermodynamics behavior, thus the linear performance

was not able to deliver an accurate estimation of the deviation. A

promising tool was developed using this method by David L. Doel

named TEMPER [83]. Escher and Singh [84] present an approach



Chapter 2. Literature Review 46

using a Newton-Raphson iterative method to solve the non-linearity

relationship between the health parameters and the sensor measure-

ments. This solution obtain better results and multiple fault diag-

noses were able to be performed. However, the limitation is that

degradation is only detected in small scale. Moreover, the accuracy

is highly affected by an inaccurate ICM, a high measurement uncer-

tainty and correlated measurements. Another approach is studied

by Doel [85] and implemented in the General Electrics GPA tool.

This method is based on the weighted least square technique, where

a parametric model is fitted by minimizing the sum of weighted

squared deviation between the actual and predicted measurements.

In addition, the measurement uncertainties associated with the gas-

path measurement are also considered using a weighting matrix with

their respective sample variances. In a similar way, this technique

was before used by Rolls-Royce in the COMPASS diagnostic system

presented in the Barweli study [86].

Another method is the state variable estimation of dynamic systems

using the Kalman Filter (KF) technique. It is an optimal recur-

sive data processing algorithm used to estimate the health of the

engine components in the presence of measurements noise and bias.

KF evaluates all available measurements data and prior knowledge

about the system to produce an estimate of desired variables with

the statistically minimized error. The most common variant for en-

gine diagnostics is the Linear Kalman Filter (LKF) [87]. This kind

of technique can be either used to diagnose the whole system as

well as detect specific component, sensor or actuator fault [88]. To

treat with the non-linearities using the KF technique, two variants

were also developed: the Extended Kalman Filter (EKF) and the

Unscented Kalman Filter (UKF). EKF uses Taylor series to linearly
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approximate a non-linear function around the mean and covariance.

UKF is a step forward of the EKF, which uses deterministic sampling

to form a new mean and covariance estimation. Both algorithms

have been used in GT’s diagnosis as presented in [89] and [90], re-

spectively.

Finally, a last method present in model based performance is Ge-

netic Algorithm (GA). It is an optimization approach based on an

heuristic search that follows the procedure of Darwin’s natural se-

lection theory. The goal in applications for IGT fault diagnosis is

to obtain a set of component parameters that after mutation pro-

duce a non-linear model by creating a set of predicted dependent

parameters that fits the measurements. This method was first in-

troduced by Stamantis et al [91]. By detecting the shift between

the real measurements and the model, the fault can be identified.

It shows promising results in comparison with linear and non-liner

GPA models [92], also working in presence of uncertainties [93], and

in combination with other methods such as neural networks [94].

The main advantage of model based approaches is that they incorpo-

rate physical understanding of the monitored system. In many situ-

ations, the changes in features vector are closely related to model pa-

rameters, thus a functional mapping between the drifting parameters

and the selected prognostic features can be established. Moreover,

if the understanding of the system degradation improves, the model

can be adapted to increase its accuracy and to address subtle per-

formance problems. Consequently, they can significantly outperform

data-driven approaches. However, this closed relation with a math-

ematical model may also be a strong weakness: it can be difficult,

even impossible to catch the system’s behavior.
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The second group refers to data-driven models such as ANN systems

that ‘learn’ from examination of real data containing nominal and

known faulty conditions. Research results have shown that these

methods offer a flexible tool for addressing the complex and non-

linear characteristics of dynamical systems. Therefore, they have

been extensively exploited and used in diagnosis and prognosis of

GTs systems [95]. Moreover, ANN works well with measurements

uncertainty and rapid computational speed, hence a wide range of

techniques and various ANN architecture types have been developed,

mostly for fault detection. This kind of methods, indeed ANN, are

further explained in the next chapter.

To perform the analysis of a IGT, prior data is needed to train the

model. A common procedure for this analysis is to develop a model

that capture the healthy behavior of the equipment in order to accu-

rately detect a shift in the output values according to the real IGT

performance. This model can be built by using several types of ANN

architecture which can lead to different results [96].

The last group, indeed experience based models, includes systems

that embody ‘rules of thumb’ that have been developed and refined

by human maintenance experts. Examples of these systems are rule

based expert systems and fuzzy logic approaches [97]. Although

these methods are capable of offering explanations and methods that

reach a particular solution, it is highly complex to find a proper set

of rules, functions, and tuning that can obtain a satisfactory solution

as the system complexity increases.
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2.3.2 Prognosis

Until approximately a decade ago, the focus of engine performance-

based health monitoring technologies has been on diagnosis of critical

faults. Moving towards an improved insight into engine health, the

IGT research community has recently decided to incorporate time

evolution into monitoring systems by adding prognostic capabilities.

Both model based and data-driven systems are used. Model based

approach relies on an analytical analysis of the system whereas data-

driven models rely only on previously observed data to predict the

projection of a system state or to match similar patterns in the his-

tory to infer the Remaining Useful Life (RUL). Because sensors are

sources of considerable noise, pre-processing smoothing algorithms

can be applied to extract information from historically acquired data.

Physical model based approaches usually employ mathematical mod-

els that are directly tied to physical processes which have direct or

indirect effects on health of related components. Physical models

are usually developed by domain experts, and the parameters in the

model are validated by large sets of data. Physical model based ap-

proaches used for prognostics require specific mechanistic knowledge

and theories relevant to the monitored systems [98].

Physical models are useful in accounting for different operating con-

ditions. With an intelligent monitoring system, most often, they

work well under any load profile, including steady-state and tran-

sient performance and unanticipated conditions, loads, and opera-

tional regimes. Since they incorporate physical understanding of the

system for monitoring, in many situations, the changes in feature vec-

tors are closely related to model parameters. Therefore, a functional

mapping between drifting parameters and selected prognosis features
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can be established [99]. Moreover, if the understanding of system

degradation improves, these models can be adapted to increase their

accuracy and address subtle performance problems. The limitations

are their higher costs and component speciality, which means that

they cannot be generalized to other types of components. Further-

more, it is very difficult to build a good physical system. Generally, a

combination of various methods must be used to improve the system

performance and accuracy [100].

Data-driven prognostic methodology is based upon statistical and

self-learning techniques, most of which originated from the theory

of pattern recognition. Data-driven methods can be classified into

two categories: statistical approaches and ML approaches. Statisti-

cal approaches include multivariate statistical methods, state space

models and regressive models. Now most of the existing data-driven

ML approaches for prognosis have employed ANN and its variants.

Data-driven models are usually developed from collected input/out-

put data. These models can process a wide variety of data types and

exploit the nuances in the data that cannot be discovered by rule

based systems [98].

From a statistical point of view, using the probability density func-

tions of prior observations, the future is forecasted and by detect-

ing the shift between distributions, the fault is predicted [101]. Of

course, a proper historical data is needed to model the operating stat

and obtain data trends [102].

From a ML point of view, much more applications have been recently

developed using a similar approach that statistics. The aim is to

proper model the condition of the equipment and by runnning it in

future steps, compare the values with real output data [103]. Since
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the treatment of data is mainly completed by using time series, RNN

based architectures are one of the most tested methods for this kind

of job [104].

Finally, some hybrid methods are also developed from the combina-

tion of physical and data-driven models [105] as well as, statistics

and ML approaches [106].

The field of maintenance policy research is expanding rapidly as tech-

nology continues to improve its performance. This applies to each

component of the GT as well as the entire system. Promising re-

sults have been shown, but there remains a lack of optimal solutions

for maintenance strategies. Each solution is custom and specific to

a simple task, but not necessarily applicable to the entire system.

With the use of ML, some improvements in certain areas are pre-

sented leading to a promising research path. However, there remains

a pressing need for additional investigation to establish a compre-

hensive approach to maintenance policy that can be implemented

throughout the entire GT system.





Chapter 3

Methodology

In previous chapters most of the relevant theory that is applied to

this study has been described. This chapter deals about the data

pipeline the global model follows and about the methods that have

been carried out in this research. Firstly, insights about the data re-

sources will be presented, as well as the data treatment procedures,

and the whole pipeline created around it. Then, the features and

the models computed for monitoring the current used IGT system

will be exposed. Finally, the last part of this chapter will refer to

the methods developed to properly analyse the system performance.

Figure 3.1 illustrates a diagram summarizing the employed method-

ology.

Figure 3.1: Schematic diagram of the methodology

53
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3.1 Data Sources

A significant amount of data is generated continuously in various

ways for systems composing industrial gas turbines (IGTs). The

maintenance reports database provides valuable information about

unexpected events, component repairs, and operation history. Multi-

ple sensors located throughout the turbine gather data on thermody-

namic parameters (e.g., compressor inlet temperature, outlet turbine

temperature, and emissions) and production parameters (e.g., out-

put power and fuel usage). Despite potential noise and measurement

errors, this data reflects the turbine’s current state and situation.

Therefore, collecting and maintaining this information in a database

format for knowledge discovery has become a subject of great in-

terest. Data has always been essential for organizations, but the

evolution of data generation and acquisition is transforming indus-

tries’ working methods. Some experts even suggest that data-driven

industries will become commonplace in the future [107].

IGT’s data sets consist of a list of multiple multivariate time series.

These time series are obtained from sensors placed strategically on

the IGT to properly capture the most important features, indeed

temperature and pressure, of the system. In this research study, two

different data sets are used. On the one hand, a public data set

for asset degradation modeling from NASA is used to validate the

proposed ML model. On the other hand, a huge database is provided

by Siemens Energy that contains hundreds of time series from real

IGTs operation.
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3.1.1 NASA Turbofan Jet Engine Data Set

The NASA Ames Intelligent System Division with external partners

released a Turbofan Engine Degradation Simulation Data set for

research purposes [108]. The data set was generated with the Com-

mercial Modular Aero-Propulsion System Simulation (C-MAPSS)

dynamic model where real flight conditions recorded onboard a com-

mercial jet were given as input.

The data is composed by normal and faulty operation modes. The

training data contains normal operation information of the engine,

indeed normal operation mode, until it develops a fault at some

point and the system fails, indeed faulty operation mode. The test

data contains the same time series but these ends some time prior

to system failure. The data is provided with 26 columns of different

feature where each row corresponds to a single operational cycle.

The structure of this data is prepared to predict the RUL of each

engine in the test dataset. However, in this study, this data will

only be used to validate that the proposed ML based models can

properly run in already curated data. The results of this validation

is presented in the Results chapter.

3.1.2 SE Gas Turbines Data Set

As it was mentioned in Section 1, this thesis is related with a research

project developed jointly with Siemens Energy (SE). The company

provides us with anonymized data obtained from hundreds of sensors

placed in different IGTs all over the world. Access to original data

is limited to a table view and two descriptive tables.
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Snowflake (cloud database) is the main resource which contains all

the useful information for all turbines’ operations. SQL statements

are used to access to the database as well as to query information.

The most used features for the table view are: sensor timestamp,

when the sensor value was captured; sensor key, from what sensor

the data is retrieved; sensor value, the captured value strictly; unit

key, the GT where retrieved data come from; and, good industrial

quality, a reliability index for the captured value.

Moreover, the other two tables contain the description for each sen-

sor and each IGT. The sensor descriptive table match the sensor key

value with the a proper description of it and, IGT descriptive table

match the unit key value with its nameable type. SE build up dif-

ferent types of equipment regarding various parameters such as the

power generation capacity, building components, dimensions, and

so on. This is confidential information thus the exact name of the

model is not provided. Instead, a nameable type is used to identify

the common systems’ type.

To better understand the nature of data two different analysis were

performed. The first one was a metadata analysis and the second

was a sensor analysis. A metadata analysis is an structural analysis

about how data is organized. It consists of analyzing the number of

turbines’ types, the number of sensors in each IGT and find patterns

between them, before going in-depth in sensor value data. Sensor

data analysis is a more accurate analysis considering value ranges

captured by the sensor. This information could lead to some similar

working conditions between different machines and even, between

different types of families of IGTs.
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3.1.2.1 Metadata Analysis

The aim of the metadata analysis is to determine the most interesting

IGT type according to the amount of data stored. Moreover, a set of

systems to start working with will be decided by defining a similarity

index, that give a way of classifying the turbine inside each type.

As mentioned above, the different types of IGTs are confidential

information, therefore identification labels are defined, called package

types.

The first approach is computed by counting the number of instances

in each package type and also, the number of sensors in each instance.

Instances from the same package type could have different number

of sensors, thus the average of whole equipment that belongs to the

same package type is considered. This indicator determines which

is the package type with larger data, and the one to start working

with.

Figure 3.2: Summary of the amount of gas turbines and sensors per package type
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Figure 3.2 shows an overview of the distribution of gas turbine units

according to their respective package types. The blue bars represent

the number of units available for each package type, while the orange

stars denote the corresponding count of available sensors. Notably,

Package Type 11 emerges as the most prevalent type, boasting the

highest number of both gas turbine units and available sensors.

The first criterion to select the most interesting package type has

been conducted only using metadata. Next, a more restrictive crite-

rion is introduced considering sensor values to select specific units.

3.1.2.2 Sensor Data Analysis

In this section a criterion is defined regarding the values captured by

the sensors. This will lead to a set of similar machines regarding its

performance and its working conditions.

An important concern in IGTs systems are ambient/weather condi-

tions because they can considerably modify its performance. There-

fore, a clustering criterion is defined related with similar working

ambient conditions for equipment. The working mode for the IGT

changes considering the inlet temperature. For inlet temperature

values lower than 5◦C, an anti-freezing mode is selected. In this

situation, ice formation is very plausible and the machine could get

damaged. Conversely, when the inlet temperature is above 30◦C the

operation mode is changed to grid code regulation mode. In these

both cases the machine operation differs from the normal conditions

mode in order to avoid harmful events. Hence, machines that are

working beyond the normal conditions boundaries are rejected (ex-

clusion criteria). Figure 3.3 presents the machine selection among

GTs in Package Type 11.
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Figure 3.3: Gas turbines’ distribution according to the minima and maxima values of
the inlet temperature. The blue dot represents the excluded machines, whereas the red

dots represent the included gas turbines

For current selection, boundaries are specified between 5 and 30◦C

for its minimum value and lower than 45◦C for its maximum value.

Even though the maximum value could enable the grid code regu-

lation mode, using a more restrictive condition, the number of ma-

chines is heavily reduced. Moreover, after a in-depth study, the

number of points that exceed this limit is not a representative set

in the whole time series. Thus, all of the points above this limit are

filtered in the pre-processing step. At the end, nineteen (19) IGTs

are selected according to this sensor value criterion.

3.2 Features Set

The features set refers to the measurements selected to train and

test the model. As mentioned in the scope section, the main focus of

this study is the compressor component, therefore only compressors’

features are used. The main characteristics of the compressor are in-

let and outlet pressure and temperature. As previously highlighted,

also ambient conditions can considerably affect IGTs performance,

and indeed compressor performance. Hence, ambient temperature
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and humidity are also selected, leading to six (6) raw features to

start working with:

• Inlet Pressure, Pc,i. Input air pressure into the compressor.

• Outlet Pressure, Pc,o. Output air pressure from the compressor.

• Inlet Temperature, Tc,i. Input air temperature into the compres-

sor.

• Outlet Temperature, Tc,o. Output air temperature from the com-

pressor.

• Ambient Temperature, Ta. Air temperature in the external.

• Ambient Humidity, Ha. Air humidity in the external.

From a machine learning point of view, the number of variables in

the feature’s subset is very small, so it will be increased to capture

not evident information. Exploring in the field of thermodynamics

and dynamic systems, a few more features are proposed based on

proportionality and derivative states. The ratio features are defined

as the proportion between the outlet and inlet; inverse features are

included based on the ideal gas law relationship; differential features

are obtained from the subtraction of two consecutive points in the

corresponding time-series.

Thereby, the subset will also include inlet pressure and temperature,

differential inlet and outlet pressure and temperature, ambient hu-

midity, pressure and temperature ratio, and inverse inlet and outlet

temperature, that is eleven (11) variables in total,

• Inlet pressure/temperature, Pc,i, Tc,i

• Ambient humidity, Ha
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• Differential inlet/outlet pressure/temperature, ∆Pc,i, ∆Pc,o, ∆Tc,i,

∆Tc,o. Values obtained from the subtraction of two consecutive

points in the inlet pressure measurement as well as in inlet tem-

perature and outlet pressure and temperature.

• Pressure/temperature ratio, rPc, rTc. Defined as the proportion

between outlet and inlet pressure as well as outlet and inlet

temperature.

• Inverse inlet/outlet temperature, T−1
c,i , T

−1
c,o . They are its inverse

value.

This list of features is considered individually into the subset, indeed

assuming that there is no correlation among them. Therefore, a

correlation test is computed to check whether the information given

from each feature is actually independent.

Figure 3.4: Graphical matrix representation for the values obtained from the correlation
test between the 11 features considered for the data set. Each label corresponds to a

single feature in an abbreviate form



Chapter 3. Materials and Methods 62

Figure 3.4 shows graphically the results of this correlation test. Two

features would be considered dependants whether they exceed a

threshold in the correlation test, thus one of them is obviated. The

threshold of the correlation value is usually fixed to 0.95. Nine fea-

tures remain after passing the correlation test, where the tempera-

ture ratio rTc and the inverse inlet temperature T−1
c,i are discarded

because their correlation factor is up to 0.956 and 0.957, respectively,

with the inlet temperature time series. Therefore, the model input

is reduced to nine (9) features, x = (x(1), . . . , x(9)).

The selected features set is not a static variables selection/definition,

instead it is the beginning set point to start working with. Along the

research project, this variables selection can be modified according

to the accuracy and analysis of the models.

3.3 Data Curation

Data quality is an important aspect which should be considered be-

fore any actual analysis. After features selection processing, the

values of the features are preprocessed before the model training

procedure. Ranges for the values in the features are large and di-

verse from each other. For instance, outlet pressure values can be

2000 times higher than the differential inlet pressure values. This

relative variation could lead to model error because the highest val-

ues may get more influence than the smallest ones. Thus, standard

scaling is used to normalize the range of independent variables or

features of data with mean zero and standard deviation one.

Moreover, a filtering method is also applied for data cleaning to erase

the most evident outlier elements. It is carefully defined to avoid
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finding out anomalies inside data. The filtering method consists of

computing the median for each feature and adding or subtracting k-

times the Median Absolute Deviation (MAD) to define both upper

and lower boundaries. The median is the value separating the half

of a probability distribution, while the MAD is a measure of the

variability of a univariate sample of quantitative data. They can be

related with the mean and the Standard Deviation (STD) measures;

however, MAD is considered a more robust estimator in presence of

outliers than STD as well as the median in front of the mean. The k-

times constant is heuristically determined by comparing IGT’s sensor

graphs. It has been set to seven (7). Therefore, the upper boundary

is set to 7 times greater than the median, whereas the lower boundary

is set to 7 times lower than the median.

Next, data are also filtered by the full load working regime. Full load

is an operation mode such that the machine is working at its limit

condition, where degradation becomes apparent. Therefore, data

are filtered at full load mode under the assumption that machine

degradation can be clearly captured.

Finally, as explained in Section 3.1.2.2, the grid code regulation must

be considered. Therefore, this event is also filtered by applying a

threshold in the Variable Guide Vane (V GV ) aperture. The thresh-

old has been defined using the median of the V GV aperture in full

load conditions for each equipment.

Following the process of data curation, the number of IGTs available

for analysis was reduced from nineteen (19) to twelve (12) due to the

limited amount of available data. Consequently, the ensuing analysis

and subsequent results will be based on these 12 equipment.
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3.3.1 Data Set

Data are collected from sensors at different locations in IGT’s com-

pressor for its real operation. Data are curated to ensure adequate

quality for developing the ML models, and afterwards, it is divided

in three different subsets to train, validate and test these ML models.

3.3.1.1 Training Set

The training set is composed by the first year of IGT data,

M = {x(t(m)
k )}Nm

k=1 = {xk}nm+Nm

k=nm
= {mk}Nm

k=1 ⊂ D ⊂ X , (3.1)

with inputs x ∈ X as training features, and t
(m)
k notes (m) to refer

to the time where the model is trained, that is the first year of the

fresh machine. The aim when selecting this time period for training

the model is to capture the behavior of the fresh machine at the

beginning of its life. This model will serve as a behavioral baseline

to be compared with the performance in the long-term. In case

discrepancies are found, it allows one to assess that a drift exists

between the model behavior and the real IGT plant. Sampling time

Ts to generate the training dataset is 1 min. Therefore, note that

xk = x(tk) and xk+1 = x(tk+1) = x(tk + Ts).

A histogram of both the training data set and the whole data set

is computed to assess fairness of data, i.e If the training data is

sufficiently representative of the entire dataset. The bounds of the

histogram (its maxima and minima values), and its shape determine

whether the training set is significant enough. In Figure 3.5, an ex-

ample is shown. On the left column, the whole system histograms are

represented, whereas on the right column, only histograms from the
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training data are displayed. Both are thoroughly analyzed and com-

pared before training any model. This analysis determines whether

data used in the training and the number of instances are significant

enough. If so, the model would be treated as a representative plant

for short-term performance.

Figure 3.5: Representation of instances in the training data relative to the entire oper-
ational dataset

Regarding the distribution of training data, it was determined that

two additional machines could not be considered due to inadequate

representation. As a result, these systems were deprecated since the

available data points were deemed insufficient to effectively train the

model.
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3.3.1.2 Validation Set

In this study, the validation set is the same as the training set, as

expressed in Equation (3.1). The model is constructed under the

assumption that the equipment is working under fresh conditions for

the first working year. It means that the working mode during this

period of time is assumed as the correct one. Therefore, to validate

the model, the density plot of each feature is used to ensure an entire

instance representation in the training set.

3.3.1.3 Testing Set

Test data, defined as

T = {x(t(t)k )}Nt

k=1 = {xk}nt+Nt

k=nt
= {tk}Nt

k=1 ⊂ D ⊂ X , (3.2)

with nt = 1 and nt +Nt = N , represent the whole data set, i.e., the

entire available data for the assessed IGT is used to test the model

of the compressor to its long-term performance. t
(t)
k notes (t) to refer

to the time where the model is tested, that is the entire available

data in our case.

3.3.1.4 Post-Maintenance Set

Maintenance events can be classified as inspections I and replace-

ments R. I refers to a periodic revision performed in the compressor

to ensure the minimum quality component conditions, whereas R
corresponds to a more complex operation, during which some com-

ponents are changed and, therefore, the performance of the IGT is

altered. Hence, post-maintenace sets are part of the testing set, but
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we are taken into account the moment a maintenance, inspection or

replacement, has been produced.

3.4 Model Description

It is crucial to have a clear understanding of the basic concepts and

techniques used to construct and define the structure of the models in

the field of data analysis and modeling. The purpose of this section is

to provide a comprehensive overview of these fundamental concepts

and methods. Therefore, the key concepts behind the models as well

as the way how these are constructed to both analyze complex data

sets and obtain the study results are introduced.

3.4.1 Artificial Neural Network

Artificial neural network (ANN) is a black-box model of non-linear,

multivariable static and dynamic system which can be treated us-

ing input-output information measured from the system. The basic

element is a neuron, each one performing a weighted sum of its in-

puts and, the output is then passed through, usually, a non-linear

function, the so called activation function. This can be expressed as,

fW,b(x) = σ(W T · x+ b) (3.3)

where f ∈ Rn×R maps the output of the neuron, indeed the activa-

tion function σ(·), and x ∈ Rn is the input to the neuron. Thereby,

the output of a single neuron corresponds to the input-output map-

ping defined by the activation function. This can be described in

many different ways, which the most common ones will be shown in

Section 3.4.2.3.
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Neurons are grouped by layers according to the type of architec-

ture and the learning algorithm. Then, each neuron is connected

by links known as synapses to all the other neurons in the forward

layer characterized by weights which store the knowledge of the net-

work acquired through the learning process. A normal structure of

ANN is formed by an input layer, one or more hidden layers and

an output layer. The configuration of the number of neurons and

layers is determined arbitrary based on a specific application and

previous experience. An illustration of a single neuron and more

complex neural network is shown in Figure 3.6. Each square refers

to a neuron, also known as node, of the ANN model. The leftmost

layer, which is colored green, is referred to as the input layer. On the

other hand, the rightmost layer, which is colored orange, is known

as the output layer. The layers between the input and output layers

are called hidden layers, as their values are not observable during

training. In this particular example, the neural network comprises

7 input nodes, 4 and 3 hidden nodes in the first and second hidden

layers respectively, and a single output unit.

Figure 3.6: (Left) Representation of a single neuron. (Right) more complex Artificial
Neural Network

To train this kind of models, a cost function J must be defined,

which is then expressed as a function of weights W and bias b. Re-

formulating to J(W, b), the network coefficients are updated follow-

ing the iterations of gradient descent. These are expressed as partial
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derivatives and, to efficiently compute them, the backpropagation

algorithm is computed.

With this intuition, it can be noted that the structure, which includes

the number of layers, neurons, and the chosen activation function,

and the definition of the cost function determines the complexity of

the ANN, which can vary significantly.

3.4.2 Autoencoder Architecture

An autoencoder (AE) architecture based on ANNs is proposed to

identify significant hidden patterns to determine operational changes

in IGT performance based on compressor data. Autoencoder is a

type of unsupervised learning architecture that is widely used across

various fields. Its main objective is to reconstruct the original input

data by effectively encoding it as input vectors. This is achieved

using a two-faced ANN structure consisting of an encoder and a

decoder, as illustrated in Figure 3.7. The encoder network G(·), or
simply the encoder, is defined as an encoding function,

z = G(x) (3.4)

where x is the model input and z is a set of latent variables. The

decoder network F (·), i.e., the decoder, is defined to reconstruct the

encoded signal,

x′ = F (z) = F (G(x)) (3.5)

where x′ refers to the reconstructed input signals.

Therefore, the model to be trained in our research on fresh training

data can defined as

AEM = (GM, HM), (3.6)
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Figure 3.7: General example of an autoencoder with a three-dimensional latent space.
Network G is an encoding function z = G(x), where x is the model input, and z are
named latent variables. The decoder F is defined to reconstruct the encoded signal,
x′ = F (z). The set of weights for both networks is simultaneously learned by minimising

a loss function ϵ = d(x, x′) according to some distance metric

where M ⊂ X is the training data defined in Equation (3.1).

To build an AE, several hyperparameters must be set, including the

number of hidden layers, the number of nodes per layer, the acti-

vation function, and the loss function used to measure the match

between input and recovered data, indeed the cost function. In ad-

dition, an extra parameter that needs to be set is the code size in

the latent space.

The set of weights for both ANNs are simultaneously learned by

minimising a loss function ϵ = d(x,x′) according to some distance

metric [109]. The output layer of the encoder (input layer of the de-

coder) represents the compressed/transformation of the input data,

which is of interest because this latent space captures all the relevant

information of the input data in a reduced dimensionality. This layer

is also referred to as the code.
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In our research path, the validation set is the same that the training

test, hence the loss metric can be defined as,

ϵM(x) = d(xM, AEM(x)) (3.7)

As far as the reconstruction distance refers to the AE model that has

been trained with modeling data M = {mk}Nm

k=1, it is expected that

ϵM(mk) ≈ 0, formk ∈ M, as data are validated in similar conditions

that the model was trained, indeed in short-term performance.

In the other side, it is expected that our AE trained on new first-year

data should be able to identify changes in the operational point in

data after major maintenance (post-maintenance data) by showing

a certain degree of discrepancy between the original data and the re-

constructed data. By contrast, no abrupt changes in the operational

point are expected after inspections; that is, the discrepancy should

remain almost stable after inspections.

In this research study, two different type of AE are used, several

structures are also tested, and a further analysis of activation func-

tions are done in order to determine the one that performs the best.

Next, a more detailed information about each aspect is presented.

3.4.2.1 Autoencoder Types

AE can be defined in various ways depending on the problem at

hand. In this thesis, two approximations based on the structure

and cost function are used: a Fully Connected (FC) and a sparse

autoencoder. FC models are the simplest ones since all neurons in

the ANN are connected amongst layers without any constraints. The
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cost function is defined as:

J(x) = min
1

N

N∑
k=1

||xk − x′
k||2 (3.8)

where xk are the input features, and x′
k are the reconstructed input

signals.

The sparse version impose a sparsity constraint by reducing node

activation at all network levels, which is controlled by a sparsity

parameter, ρ. This parameter is included in the cost function as:

Jsparse(x) = min J(x) + β
l∑

j=1

KL(ρ||ρ′j) (3.9)

where KL(ρ||ρ′j) = ρ log ρ
ρ′j
+ (1− ρ) log 1−ρ

1−ρ′j
is the Kullback-Leibler

(KL) divergence between a Bernoulli random variable with mean ρ

and ρ′j is the average activation of hidden units j, and β is the weight

of the sparse penalty term. This penalty function has the property

that KL(ρ||ρ′) = 0 if ρ = ρ′. Therefore, by defining an small value

for ρ, the optimization constrict that the average activation of hidden

units j must be close to it. Thereby, high value in activation units

can be avoid.

It becomes particularly intriguing to apply a sparse constraint to

avoid a mere replication of the existing inputs when expanding the

number of features beyond the input layer. Such a constraint pro-

motes the creation of new and informative features while suppressing

the irrelevant ones, leading to a more concise and effective represen-

tation of the data.
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3.4.2.2 Autoencoder Structures

The AE structure is defined as the number of layers in the model

and the number of neurons per layer. Two main different structures

are proposed based on the features used. The number of layers is

fixed to one hidden layer in each network, indeed the encoder and

decoder. Therefore, the structure variation is based on the number

of neurons per layer. This design choice strikes a balance between

added computational complexity and interpretability of the results.

On the one hand, the first model structure is developed by consider-

ing all features explained in Section 3.2. Thereby, the AE structure

is set to 9 − 6 − 4 − 6 − 9, as shown in Figure 3.8. This structure

presents a compressed model having a middle step of compression,

as well. From now on, it will be called Differential Model (DM).

Figure 3.8: Representation of the Differential Model DM employed to capture gas
turbine’s compressor performance

On the other hand, the features used are the raw values of the most

important compressor features, which include inlet pressure and tem-

perature, pressure ratio, outlet temperature, and ambient humidity.

Moreover, the structure presents an expansion after the input layer,

indeed the hidden layer is set to eight (8). Finally, the code size
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is evaluated in two different values to perform a model analysis.

Therefore, the two proposed models for this structure are set to

5 − 8 − 3 − 8 − 5 and 5 − 8 − 2 − 8 − 5, respectively, as depicted

in Figure 3.9a and Figure 3.9b. From now one, these will be called

Expansion Model (EM).

Figure 3.9: Representation of the Expansion Model EM employed to capture gas tur-
bine’s compressor performance

The second approach, as well as some dimensionality reduction meth-

ods explained later, were intentionally developed because our indus-

trial data owner partner was interested in further research about

explainability using the information from the latent space. The cri-

terion that determined the latent space dimension was defined by

the lowest possible values with maximum model performance based

on experimental results.

The models presented in this study have been extensively utilized;

however, additional significant analyses were conducted to accurately

determine the proposed structure. The complementary models em-

ployed to identify the most effective models are stated in each specific

section
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3.4.2.3 Activation Function Analysis

Activation functions are a set of mathematical operations used to

compute the output of each layer in an ANN based model, in partic-

ular when an autoencoder architecture is composed. The choice of

the activation function have a significant impact on the outcome of

the code section, that is the latent space. This area is of particular

interest and will be subjected to further analysis and investigation

in the section devoted to presenting the results. Therefore, selecting

the appropriate activation function can lead to significant improve-

ments in the performance of the ANN. Hence, a series of tests are

conducted to evaluate the effectiveness of different activation func-

tions as well as the representation of the code in each case. To assess

the activation functions the Expansion Model for a Fully Connected

autoencoder with three nodes in the latent space, EMFC3D is used.

The presented results uses lineal time, meaning that the each point

is treated as a time unit. In Section 4.7, time samples are placed

in the timeline, thus the visualization is slightly different. Moreover,

units used to perform the following analysis and the one presented in

the results section are different, this is why it can present differences

in the y-axis values.

The first activation function analyzed is the Rectified Linear Unit

(ReLU). It is defined as

ReLU(x) = max(0, x) (3.10)

where x is the real output of each node in the layer. Figure 3.10

shows its representation on the left. The code behaviour (z1, z2, z3)
⊺

is depicted on the right in the same figure, when using ReLU as



Chapter 3. Materials and Methods 76

activation function in the encoder and decoder elements of the au-

toencoder.

(a) ReLU function representa-
tion

(b) Code time-series representa-
tion

Figure 3.10: Auto-encoder code performance using ReLU as activation function

The second activation function is the Leaky Rectified Linear Unit

(LeakyReLU). It is defined as

LeakyReLU(x) =

x ifx ≥ 0

α · x otherwise
(3.11)

where x is the output of each node in the layer. Figure 3.11 shows

its representation and the code performance using it as activation

function.

(a) Leaky ReLU function repre-
sentation

(b) Code time-series representa-
tion

Figure 3.11: Auto-encoder code performance using Leaky ReLU as activation function
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The third activation function is the Hyperbolic Tangent (tanh). It

is defined as

tanh(x) =
exp(x)− exp(−x))
exp(x) + exp(−x)

(3.12)

where x is the output of each node in the layer. Figure 3.12 shows

its representation and the code performance using it as activation

function.

(a) tanh function representation (b) Code time-series representa-
tion

Figure 3.12: Auto-encoder code performance using Tanh as activation function

The fourth function under inspection is the Exponential Linear Unit

(ELU). It is defined as

ELU(x) =

x ifx ≥ 0

α (exp(x)− 1) ifx ≤ 0
(3.13)

where x is the output of each node in the layer. Figure 3.13 shows

its representation and the code performance using it as activation

function.

Finally, the sigmoid activation function is analyzed. It is defined as

sigmoid(x) =
1

1 + exp(−x)
(3.14)

where x is the output of each node in the layer. Figure 3.14 shows

its representation and the code performance using it as activation
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(a) ELU function representation (b) Code time-series representa-
tion

Figure 3.13: Auto-encoder code performance using ELU as activation function

function.

(a) sigmoid function representa-
tion

(b) Code time-series representa-
tion

Figure 3.14: Auto-encoder code performance using Sigmoid as activation function

Even though the evaluation of the code value to each activation

function are quite different, the patterns obtained in the training of

the models are quite similar, except for the sigmoid function which

presents flat lines. So, rejecting this last activation function, any of

the other ones can be considered. The ReLU activation function has

been selected, wherein one of its dimensions is constrained to zero.

This noteworthy attribute highlights that a variable may be deemed

superfluous, however, the performance of the model is adversely af-

fected if a single dimension in the latent space is discarded. Hence, it

can be inferred that although the variable may present a zero value
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result, it remains essential for the interconnections within the neural

network.

3.5 Model Analysis

Several strategies were employed to gain a deeper understanding of

the nature and patterns arising from the model’s performance. The

first strategy, referred to as Model Distance, involved comparing the

model output to the actual plant performance. The second strategy

involved a temporal analysis of the time-series data. Then, a topo-

logical analysis of the deviation was conducted. Finally, some clus-

tering methods were also applied together on the post-maintenance

set. Next, some valuable insights are presented about the methods

and metrics utilized.

3.5.1 Model Distance

Model distance aims to measure the deviation between the model

and the real machine performance. This calculation is computed us-

ing two measurements and two time-window samples processing. In-

deed, the measurements are the Absolute Difference (AD), the Mean

Squared Error (MSE), and Fréchet Distance (FD), while the time-

window samples are the Moving Average (MA) and the Incremental

Window Average (IWA).

• AD is the absolute difference between the real plant values x

and the inferred values of the AE model x’ at each time step.

Therefore,

ADi = ||xi − x’i||1 (3.15)
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• MSE is an estimator measure of the average of square difference

of the magnitudes of vectors in a space. It is expressed as:

MSE =
1

N

N∑
i=1

||xi − x’i||22 (3.16)

• The Fréchet distance FD is defined as a measurement of simi-

larity between two curves. Moreover, it can be used to measure

the similarity of two distributions. In this case, the comparison

is performed between two multivariate distributions —the real

plant distribution and the inferred one— and is composed by

the same number of features each and a specific time window.

Assuming them as two multivariate Gaussian distributions, the

distance is calculated as

FD = |µX − µY |2+tr(ΣX + ΣY − 2(ΣXΣY )
1/2) (3.17)

where µX and µY are the means of both distributions, and ΣX

and ΣY are their covariance matrices, respectively.

• Moving average, MA is the calculation of the average of consec-

utive subsets of data obtained by sliding a fixed time window

along the whole data set. It is defined as

MA =
1

n

n−1∑
i=0

xm−i (3.18)

where m is the current time step, and n is the moving time

window size.

• Incremental window average, IWA is a calculation of the average

of cumulative subsets of data obtained by adding a fixed time
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window of the whole data set at each step. It is defined as

IWAn =
1

n

(
t∑

i=0

xt + (n− t)IWAm−1

)
(3.19)

where m is the current time step of the grouping subset, n is

the length of the cumulative subsets, x are the instances of the

current subset, and t is the length of the current subset.

The results obtained from the absolute difference, AD, and from the

Mean squared error, MSE, were very similar. Thereby, regarding

this two metrics, only the AD is used in the combination of the

measurements with the time window samples. Therefore, this lead

to four indicators as it is illustrated in Table 3.1.

Table 3.1: The combinations of the two considered distances and the two smoothing
time window calculations

Moving Average Incremental Window Average

Absolute Error ADMA FDMA
Fréchet distance ADIWA FDIWA

3.5.2 Temporal Analysis

The data used to perform the analysis is temporal data, meaning

that there is a representation of the state of the system at each

timestamp. In order to investigate the variability of the parameters,

two methods are proposed: the decomposition of time series and

Wavelet Transform (WT).

3.5.2.1 Decomposition of Time Series

The decomposition of time series is a method used to analyze a

time series by separating it into its underlying components. These
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components typically include trend, seasonality, and residuals [110].

Trend Tt refers to the gradual deviation of a time series to higher or

lower values over time. The time series is considered stationary

if the trend does not exist.

Cyclic Ct is defined as a repeated pattern, but non-periodic fluctu-

ations. The period of these fluctuations depends on the nature

of the time series.

Seasonality St corresponds to a repeating pattern over a succes-

sive period of time. The pattern must be stable over time in

magnitude and direction.

Residuals Rt is the unexplained or random variation of the time

series. It refers to the remainder of the time series after the

other components have been removed.

Once the components are identified, they can be analyzed separately

to gain a better understanding of the underlying patterns and trends

in the data. For example, the trend component can be used to iden-

tify whether the time series is increasing, decreasing, or staying con-

stant over time. The seasonality component can be used to identify

whether there are any regular patterns or cycles in the data, such as

monthly or yearly fluctuations.

The decomposition can be perform using two different models, addi-

tive and multiplicative models. The additive model can be expressed

as:

yt = Tt + Ct + St +Rt (3.20)

whereas the multiplicative models is expressed as:

yt = Tt · Ct · St ·Rt (3.21)
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The additive model would be used when the variations on the trend

do not vary with the level of the time series, while a multiplicative

models is appropriate whether the trend is proportional to the level

of the time series [111].

3.5.2.2 Wavelet Transform

Wavelet transform, WT is a mathematical technique used to analyze

temporal data by decomposing them into different frequency com-

ponents. It is based on a family of functions called wavelets that are

well-localized in both time and frequency domains. A wavelet is a

mathematical function that can be scaled and translated to analyze

different frequency components of a signal. The wavelet function has

a finite duration, which makes it suitable for analyzing signals with

localized features.

The WT works by breaking down a signal into a set of wavelet func-

tions at different scales and positions. These wavelets are generated

by dilating and translating a mother wavelet function. The dilation

and translation parameters are referred to as the scale and posi-

tion, respectively. By adjusting the scale and position of the wavelet

function, different frequency components of the signal can be ana-

lyzed [112]. The wavelet function can be represented as,

ψa,b =
1√
a
ψ

(
t− b

a

)
(3.22)

where a determines the scale parameter, and b refers to the location

of the wavelet.

Several representations of WT exist. In this study, the Discrete

Wavelet Transform (DWT) is used [113]. This one is chosen since
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this type of wavelet is specially adaptable for sampled values. The

DWT employs a dyadic grid where the wavelet is scaled by power of

two, indeed a = 2j and translated by an integer, indeed b = k · 2j,
where j runs from 0 to J being J the total number of scales, and k is

the location index running from 1 to 2j ·N being N the total number

of observations. Therefore, the DWT is expressed by the following

equation:

ψj,k = 2−j/2ψ(2−jt− k) (3.23)

DWT components are obtained from the following expression:

WCj,k = WC(2j, k2j) = 2−j/2

∫ ∞

−∞
f(t)ψ(2−jt− k) dt (3.24)

where f(t) is the time-frequency representation of the signal.

3.5.3 Topological Analysis

The motivation of this analysis is to study the shape of data. This

approach uses techniques from topology, which include analyzing the

data in a way that is insensitive to the particular metric chosen, and

provides dimensionality reduction and robustness to noise [114]. The

analysis is performed using two methods: t-distributed Stochastic

Neighbor Embedding (t-SNE) and Uniform Manifold Approximation

and Projection (UMAP).

3.5.3.1 T-distributed Stochastic Neighbor Embedding

This method consists of visualizing the resulting similarity data from

mapping the high-dimensional state-vectors onto a pairwise similar-

ities matrix. t-SNE is capable of capturing much of the local struc-

ture of the high-dimensional data such as the presence of clusters at
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several scales [115].

t-SNE comprises two main stages. On the one hand, the method

computes a probability distribution over pairs of high-dimensional

objects in a manner that similar points are assigned with higher

probability, and vice versa. The probability pij ∈ P that are propor-

tional to the similarity of two objects xi and xj is computed as,

pj|i =
exp(−||xi − xj||2/2σ2i )∑
k ̸=i exp(−||xi − xk||2/2σ2i )

(3.25)

where xi and xi ̸= xj.

The remaining parameter to select is the variance σi of the Gaussian

distribution that is centered over each high-dimensional point xi.

To determine this parameter, a value search of σi is performed that

produces a probability distribution Pi over all other data points. This

distribution is produced with a fixed perplexity that is specified by

the user. The perplexity can be interpreted as a measure of effective

number of neighbor. It is expressed as:

Perp(Pi) = 2H(Pi) (3.26)

where H(Pi) is the Shannon entropy. It is defined as:

H(Pi) = −
∑
j

pj|i log2pj|i (3.27)

Typical values of perplexity are comprises between 5 and 50.

On the other hand, t-SNE aims to reflect the similarities pij over the

points in the low-dimensional map y1, . . . ,yN , with yi ∈ Rd, and d

usually chose as 2 or 3, strictly. The similarities between two points
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in low-dimensional map uses the T-Student distribution with a single

degree of freedom to allow dissimilar object to be modelled far apart

in the map. Therefore, the measure similarities qij ∈ Q is expressed

as

qij =
(1 + ||yi − yj||2)−1∑

k

∑
l ̸=k(1 + ||yk − yl||2)−1)

(3.28)

The locations of the points yi are determined by minimizing the

distance of the two distributions, indeed P andQ, the KL divergence,

that is:

KL (P||Q) =
∑
i̸=j

pij log
pij
qij

(3.29)

The Gradient Descent (GD) method is used to minize the KL diver-

gence according to the points yi.

3.5.3.2 Uniform Manifold Approximation and Projection

UMAP is a non-linear dimensionality reduction technique that uses

local manifold approximations and patches together their fuzzy sim-

plicial set representations to construct a topological representation

of the high dimensional data. A similar process can be used to iden-

tify an equivalent topological representation given low dimensional

representation of the data. This methods was presented in [116].

Similarly as t-SNE, it mainly consists of two stages. Firstly, a graph

is built in a high dimensional data representation where the expo-

nential probability using binary search and the number of nearest

neighbors to consider are computed. And secondly, an optimization

is perform to build a low-dimensional representation.

Even though the processes concept is quite similar, the way how they

are computed is very different.



Chapter 3. Materials and Methods 87

• UMAP does not necessary use Eucliden distance to compute the

exponential probability distribution in high dimensional repre-

sentation. Otherwise it uses:

pj|i = exp

(
−d(xi, xj)− ρi

σi

)
(3.30)

where d(xi, xj) is a user defined distance metric, ρi represents

the distance from each i-th data point to its first neigbor, and

σi corresponds to a normalization factor to the point xi

• The k-nearest neighbors algorithm is used instead of perplexity.

This is defined as:

k = 2
∑

j pij (3.31)

• Instead of using the t-Student distribution for modelling dis-

tance probabilities in low dimensional manifold, UMAP uses:

qij = (1 + a(yi − yj)
2b)−1 (3.32)

where a and b are determined from non-linear least squares fit-

ting against the curve Ψ : RdxRd → [0, 1] where

Ψ(x, y) =

1 if ||yi − yj||2≤ min dist

exp(−(||yi − yj||2−min dist otherwise

(3.33)

where min dist is the desired separation between close points

hyperparameter.
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• UMAP uses binary-Cross Entropy (CE) as a cost function in-

stead of KL-divergence.

CE(X, Y ) =
∑

i

∑
j

[
pij(X)log

(
pij(X)
qij(Y )

)
+(1− pij(X))log

(
1−pij(X)
1−qij(Y )

)] (3.34)

• UMAP uses the Stochastic Gradient Descent (SGD), which speeds

up the computations and consumes less memory, instead of Gra-

dient Descent (GD).

These kind of methods are constructed based on many significant

definitions and assumptions that are beyond this thesis. However, a

short explanation is given in this section to have an intuition how

these models work.

3.5.4 Clustering Methods

The goal of clustering is to identify significant patterns and relation-

ships that exist within a given dataset, which can help to shed light

on the underlying processes, descriptive characteristics, and group-

ings that are present. Depending on the nature of the data and the

desired outcomes, there are various techniques and algorithms that

can be used to categorize the data into meaningful groups. In this

study mainly two well-known clustering alogirhtms are used, which

are k-Means and Density Based Spatial Clustering of Applications

with Noise (DBSCAN).
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3.5.4.1 K-Means

It is a method of vector quantization that aims to divide a given set

of points into k clusters, so that the within-cluster sum of squares is

minimized [117]. The number of cluster are set at the beginning as

a parameter. Formally, given (x1,x2, . . . ,xn) observations of dimen-

sion d, it is defined by

arg min
S

k∑
i=0

∑
xi∈Si

||xi − µi||2 (3.35)

where µi is the mean of points in Si.

3.5.4.2 Density Based Spatial Clustering of Applications with Noise

DBSCAN aims to discover clusters in a database of arbitrary shape

based on its density [118]. Given certain number of points B in some

space, the closest are packed together making as noise points the ones

that lie apart in small-density region. Two parameters are used to

compute the cluster, ε and the minimum number of points required

to shape the cluster, m. ε is a common parameter in density based

clustering methods that derive from the ε-neighbourhood of a point

(Nε). Given a database D, Nε is defined as,

Nε(pi) = {q ∈ D|dist(q, p) ≤ ε} (3.36)





Chapter 4

Results

The main goal in this research is to develop support tools to cap-

ture the condition of an industrial gas turbine by using only a spe-

cific component, indeed the compressor data. Several data set were

create to properly assess the equipment behavior from sensor to op-

erational data that are presented in the last chapter. The main

strategy followed, as explained in Section 1.10 is to create a model

that is able to capture the optimal behavior of a IGT and perform

an extensive analysis on understanding the nature of its operation

as well as seeking for hidden patterns using the presented methods.

In the following, the most relevant results obtained during the re-

search are presented. These are organized as follows. Firstly, a brief

study on the thermodynamics behavior is presented in order to gain

further insights of IGT operation. Next, from the starting theoret-

ical study, validation results supporting our main assumptions are

obtained. Then, results using the differential model DM for the

autoencoder with its corresponding analysis are presented. Finally,

results associated to the expansion model EM are also shown.

91
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4.1 Thermodynamic based Analysis

The first research line in our study corresponds to search for relevant

patterns in the system using the thermodynamic theory. Firstly,

an study is conducted looking for visual patterns when comparing

the power generated and the consumed fuel, as well as considering

an isentropic exploration. These analysis uses SE data set and the

results are presented next.

4.1.1 Power Generation Exploration

The first research approach is a general IGT’s analysis to look for pat-

terns relating the amount of fuel usage versus the amount of power

generated, also known as active load. When equipment degrades, the

generated power should decrease along time for the same amount of

consumed fuel. Ambient conditions could also affect this result be-

cause air flow is altered according to air temperature and pressure,

so directly impacting power generation. Therefore, these parameters

are considered in the analysis. This is the only study in our research

where variables that do not belongs exclusively to the compressor,

amount of power and fuel, are used.

Figure 4.1(up) shows the output power per fuel mass flow measured

in kg/s. A clear decreasing tendency would be expected along time,

however no significant pattern is shown. As mentioned before, also

the ambient conditions could have an important impact in the power

generation. Figure 4.1(down) shows the influence of ambient condi-

tions in power generation. It seems that with lower inlet temper-

ature, higher is the amount of power. However, similarly to the

previous case, no clear pattern is defined.
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Figure 4.1: (Up) Time series for the active load variable normalized by fuel, coloured
according to pressure ratio rPc. (Down) Time series of the active load variable normal-

ized by fuel, coloured according to inlet temperature Tc,i

Different deterioration causes for IGTs were introduced in Table 1.1,

as well as its prevention methods, whether it is recoverable. The

only recoverable deterioration without a major maintenance is foul-

ing, recovered by cleaning the equipment. Thus, IGT performance

could be affected whether any compressor washing maintenance is

completed for the period of time shown in both figures. This infor-

mation could provide some insights about how was the performance

before the maintenance, in between and after washing. However,

washing information does not give either any clue about any devia-

tion pattern.
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4.1.2 Isentropic Exploration

A second attempt to discover patterns from a theoretical perspec-

tive was tried. This second approach is focused on an important

measure of the compressor, indeed the isentropic efficiency. It is

a measurement that provides the degree of degradation of energy

in steady flow. It is computed according to the pressure ratio in-

fluenced by the temperature. Therefore, a general behavior of the

compressor can be captured by controlling these parameters. Due to

the deterioration factors, the efficiency would decrease along time.

Consequently, a decreasing trend in the pressure ratio normalized by

the temperature factor would also be expected.

Figure 4.2: Time Series of the pressure ratio rPc normalized by inlet temperature Tc,i,
coloured according to active load

Figure 4.2 shows the pressure ratio evolution normalized by the inlet

temperature with the corresponding washing maintenance actions.

As in the previous case, no clear interpretation can be drawn. The

plot verifies the relationship between either the pressure ratio or the
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inlet temperature with the active load. Higher is the pressure ratio,

higher is the amount of power as well as lower are temperature values.

These two physical based approaches have given some insights about

the behavior of the machine and make us to understand better the

problem in hands. Thus, they help to focus more precisely when

moving to data-driven approaches.

4.2 Fresh Reconstruction Discrepancy

As mentioned in Section 1.10, the main data-driven research strat-

egy is to generate a model using fresh operational data, indeed the

first year of data, as a reference to compare the IGT short-term

performance with long-term. The goal of this model is to capture

the optimal operation of IGT and assess if there is any drift along

its life. Drift is defined as a continuous slow movement from one

working condition to another, mainly due to machine life deteriora-

tion, unexpected events, workload or maintenance interventions, like

washing, to alleviate the fouling deterioration [119].

An indicator is defined, named Fresh Reconstruction discrepancy

(RD), based on the deviation between the model output and the

real plant values. It is defined as,

RD(x) = d(xF , AEM(x)) (4.1)

It refers to the reconstruction distance when the autoencoder is

trained with modeling data M = {mk}Nm

k=1, AEM = (GM, HM). In

this situation, it is expected that a drift ϵM(xk) appear for xk not in

the training set, as data are reconstructed in long-term performance

conditions.
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This indicator is evaluated using the AE models mentioned before,

trained using features sets presented in Section 3.2, and further anal-

ysed using the techniques explained in Section 3.5. In the following

sections, a thoroughly explanation is given.

4.3 Nasa Turbofan Jet Engine Data Set Experimentation

Firstly, a set of experiments are performed using the NASA Turbofan

Jet Engine Data Set, where the data is already curated and well-

prepared. Assuming that the Turbofan Jet Engine was working at

fresh conditions during its first period of operation, a simple AE

model is developed to capture its behavior. The proposed model was

set to 6 compressor’s input features, 4 units in single hidden layer for

encoder and decoder, and a code size of 2, leading to a 6−4−2−4−6

structure. The AE representation is shown in Figure 4.3

Figure 4.3: Representation of the autoencoder used to validate the drift detection in
Nasa Turbojet Data Set

In Figure 4.4, the presented results show positive validation. The

initial period of operation is accurately captured with a small error

performance, while long-term performance exhibits a clear drift when

the GT operates outside normal conditions. These favorable initial

results led to further experimentation with data sets provided by

Siemens Energy.
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Figure 4.4: Deviation of multiple Turbofan Jet Engine operation using AE architecture
based model

4.4 Fresh Reconstruction Discrepancy with a Differential

Model Autoencoder

Several autoencoder models were used to proves the drift in fresh

reconstruction discrepancy, RD. In this section, the RDDM for the

Differential Model is presented, the Expansion Models being pre-

sented in the next section. The first autoencoder model that was

created was the differential model, DM. For assessing it, the combi-

nation of two mentioned distances in Section 3.5.1, indeed absolute

distance, AD and Fréchet distance, FD, and the two smoothing time

window calculations, indeed moving average, MA and incremental

window average, IWA, are computed for the deviation between the

output for the autoencoder and the real plant values. The results

are grouped according to the employed distances to make the results

more understandable and easier to be compared. Therefore, AD on

MA sampling, ADMA and AD on IWA sampling, ADIWA are first

presented. Afterwards, using the Fréchet distance, the FDMA and

FDIWA are introduced.

Moving average is computed over several time windows, namely

daily, weekly, monthly, and yearly. These multiple representations of
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the error reveal various events and trends, with the shape of the dis-

crepancy appearing smoother when evaluated over longer time win-

dows, such as the yearly window. In contrast, shorter time frames,

such as the daily and weekly windows, display significant changes in

the data. This enables the analysis to be approached from multiple

perspectives, providing a more comprehensive understanding of the

data.

In Figure 4.5, ADMA values for a single IGT’s compressor are pre-

sented, with multiple time windows displayed. The plot highlights

that the larger the time window, the smoother the representation

of the data. Additionally, the same IGT component is displayed

using the IWA calculation, resulting in a smoother function for all

time windows compared to the ADMA plots. Figure 4.6 showcases

the FD represented using both averaging calculations, i.e., MA and

IWA.

Both figures contain five subfigures using the time-window moving

average, which are ordered from less to more granularity, plus a last

subfigure with the IWA time-window. Therefore, in the top, raw data

are displayed (1 minute sampled data); next, several time windows

linked to the moving average are considered until the largest time

window (yearly); finally, a last sixth subfigure plots several IWA

results together.

Based on Figure 4.5, a clear ascending trend (drift) can be observed

in the reconstruction error along time. There are two main points of

interest due to a shift in the reconstruction error: the end of 2015

and between 2017 and 2018. The incremental slope in these two

periods is clearly visible in the yearly time window and the ADIWA

representations. However, these increments are also observable in the
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Figure 4.5: Absolute difference, AD metrics of a single IGT using a DM autoencoder
model with multiple time window representations of segmented moving average on the

top and grouped incremental window on the bottom
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Figure 4.6: Fréchet distance, FD metrics of a single IGT using a DM autoencoder
model with multiple time window representations of segmented moving average on the

top and grouped incremental window on the bottom
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other representations as a slight shift. For daily, weekly, and monthly

time windows, the increments are from 0.0 to 0.2 and from 0.2 to 0.4,

respectively. For the yearly time window, the increments are from 0.0

to 0.4 and from 0.4 to 0.8, respectively. The ADIWA representation

shows the same shift location in all figures, with increments from 0.0

to 0.2 and from 0.4 to 1.0, respectively.

In Figure 4.6, it can be seen that most of the time-series exhibit

an ascending trend, which is similar to those observed in the AD

distance. However, the moving average calculation for daily, weekly,

and monthly time windows only displays a few significant shifts.

Upon closer inspection, the most significant shifts are observed at

the end of 2017 and the beginning of 2018, with a small shift also

seen at the end of 2016. These shifts can be ordered chronologically

as follows: from 0.0 to 0.2, from 0.2 to 0.5, reaching a maximum

of 1.0, and then from 0.3 to 0.6. When looking at the yearly time

window for FDIWA, the increase is gradual but higher slopes are

observed during the same periods of time as those seen for FDMA.

As shown in both figures, shifts have different slopes as well as am-

plitude; indeed, shift increments do not have the same dimension,

but the drift is observed in all representations.

A further observation was performed by mapping the current ob-

tained indicator with the one used in the company to assess the

IGT. Figure 4.7 illustrates visually the correlation between the fea-

ture in a pair grid plot. The desired features are presented in the

right-most column and the row at the bottom. These shown the

correlation between the thermodynamic indicators together with the

RDMD.
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Figure 4.7: Representation of correlations amongst thermodynamic indicators and the
Fresh Reconstruction Discrepancy

Considering each plot individually, any pair grid representation of

thermodynamics indicators does not exhibit a distinct correlation.

Thereby, this observation provides additional insights into the be-

havior and performance of IGTs.

4.5 Topological Analysis

At this stage, the first results were obtained showing a drift on IGTs

performance. Then, an enhancement of the model was proposed by

reducing the input features to raw features as,
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• Inlet Pressure, Pc,i. Input air pressure into the compressor.

• Pressure Ratio, rPc. Pressure Ratio.

• Inlet Temperature, Tc,i. Input air temperature into the compres-

sor.

• Outlet Temperature, Tc,o. Output air temperature from the com-

pressor.

• Ambient Humidity, Ha. Air humidity in the external.

Furthermore, an additional enhancement was suggested by imposing

sparsity constraints on the hidden and latent space neurons. This

approach enabled the formulation of an expanded model structure,

resulting in an increased number of variables in both components.

As a consequence, the structure was established as 5 - 8 - 8 - 8 - 5

and an illustrations is presented in Figure 4.8.

Figure 4.8: Representation of the autoencoder used to perform latent space topological
analysis

The perspective of the investigation was also shifted to concentrate

on scrutinizing the latent space of the model. In order to gain a
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better comprehension and visualization of the code variables, dimen-

sionality reduction techniques, i.e. t-SNE and UMAP, were proposed

to acquire further insights.

Figure 4.9 illustrates the results of t-SNE in 3D as well as in the three

perspectives. It did not present any discernible results. It presents a

huge mass where neither a perturbation nor any identifiable pattern

can be observed.

(a) 3D representation

(b) Perspective representations

Figure 4.9: DM latent space using t-SNE technique

Similarly, Figure 4.10 depicts the UMAP results displayed in the

same manner than previously. It reveals a clear drift in the data as a

separate section in the data points appeard. This drift was identified
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as the “ghost shape” and, after some analysis, it is observed to have

correlation with major maintenance. Therefore, the drift that was

previously observed in the RD indicator, is also observable in the

latent space of the new expanded model. This finding is significant

as it changes the drift perspective to a new indicator where the major

maintenance can be properly captured. Additionally, it also shows

the potential of UMAP to identify subtle patterns in the data that

may not be apparent through other techniques. Further analysis was

also conducted to determine the significance of any particular part of

the ghost shape concerning a specific operation, but unsatisfactory

results were obtained.

4.6 Fresh Reconstruction Discrepancy with an Expanding

Model Autoencoder

In this phase, the model was adapted to prioritize explainability

and reproducibility. The aim was to design a model that could be

robustly applied to multiple IGTs, only using raw features. Once

the impact of major maintenance on IGT performance was identi-

fied, these new criteria were imposed, which needed changes in the

model. As a result, the focus shifted towards a low-dimensional code,

utilizing raw features as input.

Four different kinds of autoencoders were used to perform the con-

dition analysis, which differed in their structure and latent dimen-

sions. In terms of structure, both a FC and sparse structures were

selected. Table 4.1 presents the model combinations of EM and its

corresponding latent space dimension.
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(a) 3D representation

(b) Perspective representations

Figure 4.10: DM latent space using UMAP technique

Table 4.1: The combinations of the two considered autoencoder types and the two
possible latent dimensions

Latent Dimension
2D 3D

AE structure
Fully Connected RDFC2D

EM RDFC3D
EM

Sparse RDSparse2D
EM RDSparse3D

EM
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After several attempts, it was determined that MSE was the most

suitable metric for computing the RDEM in these methods, in con-

trast to the metric used for drift evaluation in the DM evaluation.

Similarly, the smoothing time window calculations were no longer

utilized, and instead, a grouping frequency of hourly data points

(i.e., N = 60 1-minute samples) was used. These changes resulted

in markedly different outcomes.

Furthermore, to gain additional insights into the RDEM indicator,

both maintenance replacement events and inspections are mapped

alongside it. As described in Section 3.3.1, three distinct datasets are

utilized to create and evaluate the IGT model. The first dataset con-

sists of 1 year of data, spanning from January 3rd, 2017 to January

3rd, 2018, and is used for training purposes. The second dataset,

which covers the period from January 4th, 2018 to January 1st,

2019, is utilized for testing, before the occurrence of major main-

tenance. Finally, the post-maintenance dataset, which runs from

January 22nd, 2019, after completion of the replacement tasks (rep-

resented by the wider green line in Figure 4.11), to January 1st, 2020,

is used. In addition, minor maintenance and inspection events are

also taken into account (and marked with a green line), in order to

determine their impact on equipment operation.

Figure 4.11 displays the RDFC3D
EM model performance. From the

results, it is evident that inspections (represented by thicker green

lines) did not result in any changes to the operation of the IGT.

However, significant maintenance work (represented by the widest

green line) produced a significant deviation. Based on these initial

findings, the inspections were deemed unnecessary for this study, as

they did not contribute meaningfully to the results.
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Figure 4.11: Maintenance dataset together with Fresh Reconstruction Discrepancy of
EMFC3D model

Next, several experiments were conducted focused on major mainte-

nance events and their impact on the performance of its operation.

These experiments provided valuable insights into the system’s be-

havior under different conditions.

Figure 4.12 and Figure 4.13 summarise the effect of the replace-

ments R during major maintenance in RDEM for the four tested

autoencoder structures. R is displayed as a dashed vertical green

line, while the RDEM values are displayed in blue. Furthermore, the

centroid of each distribution, i.e., before and after maintenance, is

displayed as a red cross. According to the obtained results, the fully

connected, FC models showed a clearer distinction before and after

maintenance operation than sparse ones (see Figure 4.12). More-

over, the best results were obtained using the RDFC3D
EM autoencoder

model, in which a clear shift can be observed when a replacement

procedure was carried out.
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(a) RDFC2D
EM performance

(b) RDFC3D
EM performance

Figure 4.12: Major maintenance visualization through Fresh Reconstruction Discrep-
ancy in combination with fully connected EM autoencoder structures
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(a) RDSparse2D
EM performance

(b) RDSparse3D
EM performance

Figure 4.13: Major maintenance visualization through Fresh Reconstruction Discrep-
ancy in combination with sparse EM autoencoder structures
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4.7 Latent Space in an Expanding Model Autoencoder

Latent space refers to the central part of the autoencoder, also named

code. It is defined as the most characteristic part of these kind of

models. Code aims to compress data in order to store the most

relevant features. Therefore, it can be defined as a compressed rep-

resentation of all significant data distribution. Moreover, it allows

to get rid of any irrelevant information, indeed noise, to only put

the focus on the most important characteristics. This part of the

algorithms is crucial in the learning step because it is responsible

to feed the decoder with significant data and therefore, to ensure a

proper reconstruction.

EM autoencoders were constructed to clear visualize the code for

time series. Results can be observed in Figure 4.14 and Figure 4.15.

A similar analysis like the one developed in the previous section is

completed by using the latent space of the time series together with

the replacements, R events.

For the latent representations, the slope become more evident in the

EMSparse representations (see Figure 4.15) while it is not differen-

tiated in the EMFC autoencoders (see Figure 4.14). Delving into

representations, a flat line is presented in almost every model. This

can be attributed to the use of the ReLU activation function, as ex-

plained in Section 3.4.2.3. ReLU only activates when positive num-

bers are passed, and produces 0 for negative numbers. Despite this

flattening effect, the dimension cannot be removed, as the computa-

tion of the cells before and after compression is necessary for pattern

learning. Tests were also conducted using 1D representations in the

latent space, but unsatisfactory results were obtained.
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(a) EMFC2D Latent space representation

(b) EMFC3D Latent space representation

Figure 4.14: Major maintenance together with latent space representation in combina-
tion with fully connected EM autoencoder structures

4.8 Clustering Analysis

Clustering methods are a powerful tool that can be applied to differ-

ent types of data to identify internal patterns and structures. In this

case, two popular clustering algorithms, k-means and DBSCAN, are

used to both, RDEM models and their latent representations. The

aim is to find an automatic way to identify when major mainte-

nance is performed, without human visual inspection, as well as to

discover other potential patterns that may provide insights into the

performance of the IGTs.
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(a) EMSparse2D Latent space representation

(b) EMSparse3D Latent space representation

Figure 4.15: Major maintenance together with latent space representation in combina-
tion with sparse EM autoencoder structures

4.8.1 Clustering Evaluation of Expanding Model Autoencoders

The combination of the RD applied in the EM models together with

the two clustering measurements presented in Section 3.5.4 provides

as results those visualized in Figure 4.16 and Figure 4.17, where clus-

ters aim to better describe the consequence of a major maintenance

in the IGT operation.

These figures show that clustering is clearly identifying a major main-

tenance, for k-means and DBSCAN algorithms, for the EMFC3D rep-

resentation. After several attempts and hyperparameter tuning, k-

means method present several data clusters which do not correspond

to any operation changes for the rest of representations; whereas,
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(a) RDFC2D
EM k-means representation of

the latent space

(b) RDFC3D
EM k-means representation of

the latent space

(c) RDSparse2D
EM k-means representation of

the latent space

(d) RDSparse3D
EM k-means representation of

the latent space

Figure 4.16: k-means method applied to Reconstruction Discrepancy metric using the
EM autoencoder structure and the two latent space dimensions
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(a) RDFC2D
EM DBSCAN representation of

the latent space

(b) RDFC3D
EM DBSCAN representation of

the latent space

(c) RDSparse2D
EM DBSCAN representation

of the latent space

(d) RDSparse3D
EM DBSCAN representation

of the latent space

Figure 4.17: DBSCAN method applied to Reconstruction Discrepancy metric using the
EM autoencoder structure and the two latent space dimensions
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DBSCAN representations only detected a unique density based clus-

ter.

4.8.2 Clustering Evaluation for Latent Space of Expanding Model Au-

toencoders

Next, the use of clustering methods in the EM autoencoders’ latent

space representations lead to the results visualized in Figure 4.18

and Figure 4.19, where the clustering results, indeed k-means and

DBSCAN results, are displayed respectively.

(a) EMFC2D k-means latent space repre-
sentation

(b) EMFC3D k-means latent space repre-
sentation

(c) EMSparse2D k-means latent space rep-
resentation

(d) EMSparse3D k-means latent space rep-
resentation

Figure 4.18: k-means method applied to latent space representation using the EM
structure and the two latent space dimensions

Figure 4.18 and Figure 4.19 display the clusters in the latent rep-

resentation where more obvious patterns are found in comparison

with RDEM grouping. In this case, k-Mean method present more

accurate clusters even though some false positive can still be seen,

where the most reliable results are in 3D latent representations, in-

deed EMFC3D and EMSparse3D models. Regarding the DBSCAN

methods, a clear distinction is shown in the sparse models while any
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(a) EMFC2D DBSCAN latent space rep-
resentation

(b) EMFC3D DBSCAN latent space rep-
resentation

(c) EMSparse2D DBSCAN latent space
representation

(d) EMSparse3D DBSCAN latent space
representation

Figure 4.19: DBSCAN method applied to latent space representation using the EM
structure and the two latent space dimensions

clear pattern is not shown in the FC models. It is due to the nature

of latent space construction and the sparsity constraint in neurons.

4.9 Temporal analysis

A temporal analysis is conducted by deconstructing the values in

RDEM looking for new hidden patterns or fluctuations in data. The

methods proposed to decompose the indicator are tDWT and Time

Series Decomposition, which were further explained in Section 3.5.2.

4.9.1 Time Series Decomposition

The decomposition process involves separating time series into un-

derlying systematic components, which include trend and seasonal-

ity, and random or irregular component, which represents the noise

or fluctuations in data. By isolating these individual components,

analysts can gain a better understanding of the underlying patterns

and make more informed decisions based on data. Overall, time
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series decomposition provides a useful tool for understanding the

behavior of the system and identifying potential issues that may im-

pact its performance. Figure 4.20 illustrates the decomposition with

daily period of decomposition.

Figure 4.20: (First) Raw values of the RD time-series. (Second) Trend of RD after
deleting seasonality and residuals. (Third) Seasonality component. (Fourth) Residuals

component.

The decomposition analysis indicates a distinct trend shift caused

by a significant maintenance operation. Additionally, an unidenti-

fiable perturbation is observed. The examination of the seasonal

component exposes the cyclical pattern of daily operation, while the

residual component of the time series indicates the existence of un-

explained variability in the data, which implies the presence of other

factors that could impact the performance of the IGT. However, due

to an inadequate comprehension of fault events, this analysis cannot

yield further insights.
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4.9.2 Discrete Wavelet Transform

DWT are mathematical tools for analyzing data where feature vary

over different scales. These features can be frequencies, transients

or slowly varying trends. In this case, the transformation is used

to further analyse the RDEM autoencoder using the symlet wavelet

function.

Figure 4.21 presents the results when applying the discrete wavelet

transformation. The coefficients display unexplained variability, in-

dicating the possibility of various factors that could potentially im-

pact IGT performance. However, this analysis does not yield any

additional insights beyond the primary maintenance shift. Similarly,

the perturbations evident in the coefficients could not be thoroughly

analyzed due to insufficient data at this stage of the study.

4.10 Long-term Performance of Fresh Reconstruction Dis-

crepancy

Finally, at the end of the thesis, a last analysis is conducted to

demonstrate the robustness and consistency of both, methodology

and models. These experiments consist of using all available data, in-

deed five years of data, to evaluate the RDEM performance. Firstly,

the long-term RDEM is illustrated in Figure 4.22, then the applica-

tion of clustering method is presented in Figure 4.23.

The results of the study indicate the presence of two consecutive

slopes observed at the beginning of the year 2019 and 2021, re-

spectively. As previously defined, these shifts correspond to ma-

jor maintenance events that have impacted the performance of the

equipment. In order to provide a clear visualization of the results,
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Figure 4.21: (Up) The form of the used wavelet, Symlets function. (Down - left) The
fifth harmonics filtered using the Symlets function. (Down - right) The filtered signal

using the Symlets function.

the DBSCAN clustering method was employed to identify and cap-

ture the shifts more accurately. However, the information regarding

the second major maintenance event was not available to the re-

searchers, needing the verification of the results with the company.

The obtained results were consistent with the anticipated outcomes,
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Figure 4.22: Long-term performance of RDEM indicator using five years of data

Figure 4.23: Long-term performance of RDEM indicator using the DBSCAN clustering
method

confirming that the second shift also corresponded to a major mainte-

nance event. This verification step helped to strengthen the validity

and reliability of the study findings.
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Discussion

This research study presents several methods for assessing indus-

trial gas turbines performance using solely compressor data and ML

based algorithms. This section provides a detailed account of the

entire process, from data analysis to the presentation of final results.

Each stage of the process has played a significant role in achieving

the desired outcomes, and therefore, the methodology used to obtain

the results is equally important. The section is structured to begin

with a discussion of data treatment, including the selection of IGTs

and data preprocessing techniques. Next, a detailed examination of

the model architecture and its variants is offered. Finally, two main

sections are derived from the results section: IGT drift evaluation

and IGT model analysis. Within each section, a more in-depth ex-

planation is provided, focusing on the various techniques employed

in the study.

123
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5.1 Data Evaluation

The evaluation of the model’s performance relied on two different

data sources. Firstly, the NASA Turbofan Jet Engine data was uti-

lized to assess the efficacy of the proposed model in analyzing the SE

equipment. Secondly, the Siemens Energy’s provided data was em-

ployed to evaluate the performance of the selected equipment. The

utilization of the NASA Turbofan Jet data allowed for preliminary

insights into the potential outcomes of implementing the model in

the analysis of IGT equipment. Unlike NASA Turbofan Jet Engine

dataset, which had already undergone curation for research purposes,

significant efforts were required to properly curate the data provided

by Siemens Energy in order to yield optimal results. By employing

both datasets, the study aimed to provide a comprehensive evalua-

tion of the model’s performance in analyzing IGT equipment

Before proceeding with data curation, the selection of the most ap-

propriate IGTs based on the data from SE repositories was necessary.

The primary objective was to ensure that the chosen equipment pack-

age type was the most useful for the analysis since different machine

types may conduct to different types of operations, thus making

it challenging to reproduce the results for other IGTs. The meta-

analysis was conducted to determine the package type that had the

most instances and total IGT and sensor data available. The results

revealed that the most significant IGT type to use was the ‘Package

Type 11’, which enclosed the highest number of instances and all

the required sensors. It was also found that GTs operate differently

based on ambient conditions, mostly the inlet temperature. Hence,

analyzing sensor data could help refine the comprehension of which
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the equipment is suitable to work with under similar ambient con-

ditions while avoiding uncommon operational modes. Additionally,

the analysis confirmed that all the necessary sensors were available in

the working IGTs. Consequently, out of the 58 studied instances, 19

were identified to be suitable for the analysis under proper ambient

conditions.

Extensive data curation was carried out to ensure that the sensor

data were appropriate for analysis under the selected assumptions.

The operating conditions of the equipment were determined to op-

erate under full load conditions to enable the detection of malfunc-

tioning points. Multiple studies were conducted to determine the

most suitable filtering method, and it was established that setting

thresholds using the median absolute deviation (MAD) instead of

standard deviation (STD) metrics was the most effective approach.

Moreover, the grid regulation code was taken into account to deter-

mine whether some of the IGTs were operating at their limit. The

VGV sensor was also utilized to confirm that the operation points

were included in normal operating conditions. As a result of the

filtering process, a significant amount of data was removed, and in

some instances, certain IGTs had to be excluded due to insufficient

data. As a consequence, the number of useful IGTs was ultimately

reduced to twelve (12).

To assess the performance of the proposed model, three different

datasets were utilized: Training/Validation set, Testing set, and

Post-Maintenance set. The Training/Validation set was used to train

the model. It was essential to determine whether the available data

was sufficient to capture the GT’s behavior in its first year of op-

eration and included enough representative points. This assessment

was performed using distribution plots, which were used to determine
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the suitability of the feature for training a reliable model that could

generate accurate results. Based on this analysis, it was found that

two pieces of equipment lacked the minimum representation points

across all distributions, which could result in training bias. There-

fore, the number of IGTs was reduced from 12 to 10. Additionally,

a further analysis was conducted to evaluate the correlation between

the proposed input features for the initial model. As a result, it was

discovered that two of the suggested features were highly correlated

with others and were subsequently removed.

Next, a Testing data set was defined using all available data to evalu-

ate the model. Additionally, the Post-Maintenance set was proposed

based on the results obtained from the RDEM model. The mainte-

nance events provided by the company during the mid-stage of the

thesis were considered from that point forward.

The principal concern regarding the data pertained to the impera-

tive of procuring high-quality data for the thorough training of the

model. Additionally, it was essential to guarantee an adequate repre-

sentation of instances to mitigate the potential introduction of bias

during the training process. This task was the primary endeavor,

and its successful accomplishment was greatly facilitated by several

trial-and-error tasks and Siemens’ specialists assessment.

5.2 Autoencoder Based Architecture Evaluation

The main goal of this thesis is to apply advanced data analytic and

machine learning techniques to evaluate the operational status of

IGTs. Several alternatives were contemplated, and an autoencoder
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model was ultimately chosen due to its versatility in a range of ap-

plications such as anomaly detection, dimensionality reduction, and

system performance modeling [120]. The model’s effectiveness was

initially evaluated on an appropriate dataset to gauge its perfor-

mance in achieving the research objectives. However, the employ-

ment of such a model poses certain challenges needing special atten-

tion and exploration, leading to valuable insights into the operation

of IGTs.

The first challenge is to select appropriate training data for autoen-

coder models. As previously mentioned, autoencoders are designed

to learn and represent a manifold based on the training data. It

is crucial to ensure that the training data accurately represents the

testing data to prevent the model from concealing rather than reveal-

ing useful information. Thus, it is a keypoint to establish effective

validation techniques to identify representative data for training pur-

poses

An additional obstacle involves the considerable amount of data that

is necessary to train an autoencoder. Training requires a significant

amount of time for processing, tuning hyperparameters, and validat-

ing the model before constructing the actual model. Additionally, it

is essential to identify an appropriate feature set that can effectively

capture the desired behavior. Autoencoders are designed to acquire

significant representations that are effective for reconstruction pur-

poses. Hence, if the input data consists of only a small portion of

relevant information for IGT condition assessment, the autoencoder

may lose a substantial amount of data.

The selection of the autoencoder structure and type can significantly

impact both the results and the internal analysis. Consequently, this
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aspect has required substantial effort, necessitating a delicate bal-

ance between achieving a streamlined and comprehensible model for

ease of study and understanding, while simultaneously maintaining

robust results and accuracy. The process of arriving at the desired

autoencoder structure and type has entailed a protracted period of

trial-and-error.

Despite the challenges associated with using this type of model, the

benefits of using an AE for IGT analysis outweigh the challenges.

It provides a comprehensive framework for further analysis and in-

sight generation from the data. Additionally, the two main results

obtained from the model, namely the reconstruction error and the

latent space, provide a foundation for further studies aimed at im-

proving the understanding of the nature of the IGT based on com-

pressed input features and model reconstruction performance. The

reconstruction error allowed the capture of a comparable representa-

tion of the equipment based on the most noteworthy patterns in the

data. The latent space, on the other hand, offered insight into the

data’s structure and the existence of any hidden patterns. Further-

more, given that the study involved real operational data, a robust

model was required to handle non-linearities.

Furthermore, it is worth noting that there exist several useful vari-

ants of this type of model that could be employed in the study. In

this particular case, only the sparse autoencoder was utilized, which

enables the utilization of more hidden layers than the input. The

inclusion of hidden layer constraints enables further investigation of

the model’s performance and provides an opportunity to identify new

patterns in the data

In summary, it can be concluded that autoencoders are powerful
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models with the essential capabilities to learn a meaningful represen-

tation of the input and model processes, providing a basis for further

analysis to gain insights into the nature of system performance and

significant data pattern representations.

5.3 Thermodynamic Evaluation

Prior to delving into the details of DA and ML tools, a thermo-

dynamic analysis was conducted as the initial step. This analysis

aimed to provide insights into the IGT’s performance from a ther-

modynamic perspective, and to examine whether any patterns could

be identified based on factors such as fuel consumption and pressure

ratio. The pressure ratio, which is a key characteristic that directly

impacts the isentropic efficiency, was given significant importance in

this analysis.

Figure 4.1 on page 93 presented an analysis of the fuel consumption

and the total power generated by the IGT. As it is well known, the

ambient temperature can also affect the performance of the system.

Therefore, both the pressure ratio and the inlet temperature are

also included in the analysis to draw further insights from the data.

However, the results of the analysis do not reveal any clear trend

that could be linked to either the inlet temperature or the pressure

ratio.

Another approach was taken in an attempt to gain insight into com-

pressor performance by focusing on the pressure ratio. However, like

the previous analysis, no significant results were obtained beyond

confirming the expected thermodynamic process: a higher pressure
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ratio corresponds to a higher amount of power generated and lower

temperature values.

This lack of a clear trend could be due to the filtering methods used

to ensure a high-quality dataset. These filtering methods may have

been too restrictive, leading to a reduction in the number of instances

in the dataset, and consequently, it may be difficult to obtain any

visual pattern that could give some insights about the IGT’s perfor-

mance degradation, faults, and so on. Despite this limitation, the

analysis provides a baseline understanding of the IGT’s thermody-

namic performance, which can serve as a starting point for more

advanced analyses using DA and ML tools.

5.4 Topological Analysis

The purpose of the topological analysis went beyond the RD metrics

and aimed to uncover any latent space patterns that could prove use-

ful for examination, as well as to provide initial insights into reducing

the number of variables in the code. This analysis was conducted

using two well-known dimensionality reduction algorithms, namely t-

SNE and UMAP. The primary goal of these algorithms is to reduce

the number of features in a given set while preserving its internal

structure.

Based on the analysis conducted in this study, several insights can be

derived regarding both the methodology and the distribution in the

latent space. Firstly, UMAP reveals a structured latent space where

a distinct drift can be observed in the form of a ‘ghost-like’ shape.

Upon further analysis, it was discovered that this drift corresponds

to a major maintenance performed on the compressor. This suggests
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that hidden patterns still exist in the latent space and by reducing

the number of variables in the model, we could potentially obtain

further insights.

Furthermore to the previous analysis, it should be noted that the

UMAP algorithm has shown a higher capability to detect hidden

patterns in the data compared to t-SNE. While t-SNE only pro-

duced a dense mass without any clear structure, UMAP was able

to identify the ghost-like shape in the structured latent space. This

suggests that UMAP may have a potential to identify subtle patterns

in the data that may not be apparent through other dimensionality

reduction techniques.

The topological analysis served as an intermediate step towards mod-

ifying the autoencoder model and gaining deeper insights into the

hidden patterns within the data, as well as comprehensively exam-

ining the manifold of the autoencoder’s latent space. In summary,

it played a crucial role in advancing the study of the data and the

model.

5.5 Model Evaluation

The primary contribution of this thesis is the development of an AI

based tool that provides valuable insights into the performance of

IGTs, particularly in relation to major maintenance scenarios. This

tool is based on ML models that are capable of addressing issues

such as drift in IGT operation and identifying changes in opera-

tional behavior resulting from major maintenance operations. The
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effectiveness of the models is demonstrated by analyzing the recon-

struction error and latent manifold generated by the autoencoder

based model.

The principal challenge encountered during the comprehensive eval-

uation was the necessity for additional data to thoroughly assess

certain trends within the results. While efforts were made to ad-

dress this limitation to the fullest extent possible, the inclusion of

more Siemens indicators would have facilitated a more seamless cor-

relation of our findings with valuable insights into these trends. To

mitigate this limitation, we approached the evaluation in a more

qualitative manner, refraining from categorizing changes as either

positive or negative events.

The results obtained from these analyses are presented and discussed

in detail, highlighting the capabilities of each method. The signif-

icance of the findings lies in the fact that they provide a deeper

understanding of the GT performance, allowing for more informed

decision-making regarding maintenance and operations.

5.5.1 Drift Evaluation

Main practical result of this thesis is the identification of a drift in

IGT operation from two distinct perspectives that resulted in two

different outcomes. These outcomes are referred to as the RD met-

rics and are derived from two distinct models, namely the Differ-

ential Model and the Expanding Model, which have 9 and 5 input

features, respectively. The initial outcome aims to detect the GT’s

behavior during its operation, utilizing the features described in the

Section 3.2. A clear drift is revealed by combining two different

metrics, namely absolute difference and Fréchet distance, along with
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two calculations based on time-windows, namely moving average and

incremental window average.

The second outcome detects a significant shift in the GT’s operation

following a major maintenance event. In this case, the deviation is

detected using raw features and has a completely different model

structure than the first outcome. Further outcomes are derived from

this structure, which will be presented in this chapter.

Next, the two models, DM and EM, are meticulously analyzed.

The DM model is presented first, followed by the EM model.

5.5.1.1 Autoencoder Differential Model Insights

The autoencoder model adopts a compression based architecture to

monitor significant changes in the condition of the compressor within

an IGT. As previously stated, changes have been examined by uti-

lizing a combination of two distinct distances and time-window cal-

culations, while also analyzing the graphical progression over time.

The analysis using the absolute distance AD, as shown in Figure 4.5

on page 99, reveals significant drifts in the moving average represen-

tation in November 2015 and May 2017. In addition, a significant

drift jump is observed in March 2018. The yearly time window cap-

tures a general shift in the compressor performance.

Next, in the incremental representation, similar patterns are detected

where events are revealed as a change of slope. Furthermore, the

compressor’s overall behavior can also be assessed as in the yearly

time window, thanks to the nature of its calculation, the cumula-

tive function shown in Equation (3.19). The same ascending trend
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is displayed, thus indicating the drift in the compressor’s behavior

compared to its initial performance.

The Fréchet distance, as presented in Figure 4.6 on page 100, reveals

the most significant changes in the IGT’s operation. Notably, the

moving average representation indicates substantial drifts in 2016/10,

2017/08, 2017/10, and 2018/03. However, the shifts are slightly

shifted when considering multiple time windows, likely due to the

number of instances used to compute the distance for each case. The

primary shift occurs in 2017/10, but the deviations in 2016/10 and

2018/03 are also noteworthy. Additionally, the yearly time window

displays changes in the general behavior of the equipment.

Unlike AD, the incremental representation does not exhibit the same

pattern. Only one notable change of slope is detected in 2017/08,

but a general drift in behavior is still evident.

The only event that can be observed using both distances is the one

that occurred in 2018/03. This is because the AE distance calcu-

lates the average error in a single time step, while the FD compares

two multivariate distributions over a fixed time window, resulting in

different representations. However, both distances exhibit an ascend-

ing trend over time, indicating a drift in the compressor’s behavior

relative to its initial performance.

5.5.1.2 Autoencoder Expanding Model Insights

At this stage of the study, there is a shift in the approach, where a

different set of input features are utilized to evaluate the behavior

of the compressor, and a novel model structure is proposed using

expansion in hidden layers. When considering the training period,
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it was found that for the first-year data, the fully connected FC

architecture outperformed the sparse autoencoder, as evidenced by

the lower values in RDEM, as shown in Figure 4.12 on page 109

and Figure 4.13 on page 110. Additionally, among the models, the

RDFC3D
EM had the best performance, with the training and validation

data exhibiting the least amount of variability.

Although sparse architecture did not benefit from feature extrac-

tion, the study produced a clear result: a deviation in the operation

point after maintenance performance was observed, even though the

performance could still be maintained. In terms of RDEM, all four

tested models showed a positive slope after the maintenance opera-

tion regarding the data distribution centroid. The most evident dis-

tinction was found in theRDFC
EM models, particularly in theRDFC3D

EM

model, where a clear shift was present. A more subtle shift was also

observed in sparse models. Detecting this deviation is key to un-

derstanding how maintenance affects IGT performance and when an

update of the internal operating models is necessary.

Furthermore, the modified model structure allows for a deeper anal-

ysis of the latent space distribution. As mentioned earlier, one of

the primary objectives of altering the model architecture was to en-

hance interpretability using raw features and enable visualization

of the code feature. Consequently, it becomes possible to conduct

a more detailed assessment of how the data is distributed in the

model’s latent space.

As depicted in Figure 4.14 on page 112 and Figure 4.15 on page 113,

a distinct slope can be observed, similar to the one observed in the

RD metrics, indicating a major maintenance event. This same phe-

nomenon can be observed in both the reconstruction discrepancy
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and the latent distribution. Moreover, it is evident that the slope

observed in the sparse representations is steeper than in the fully

connected FC models. The FC model is designed based on the inter-

action of all cells, without any restrictions, which results in a chaotic

distribution in the center of the model, i.e., the code. In contrast,

the sparse model incorporates a sparsity constraint during training,

leading to the construction of a structured latent space.

In summary, this type of model provides additional insights about

how the operation of the GT shifts in response to maintenance events

and how it is represented in each model. The RD metric shows a

higher deviation in the fully-connected models, while the latent dis-

tribution analysis reveals that the sparse based architecture has a

more structured manifold and better distinguishes operating condi-

tions before and after maintenance.

The final result obtained using this methodology is related to the

long-term performance. Despite the limited maintenance data, the

model was able to detect the major maintenance event and the sub-

sequent change in the operation. This outcome serves as evidence of

the efficacy of the developed methodology and the indicator.

5.5.2 Temporal Analysis

Further analysis was conducted to delve deeper into the RDEM met-

rics proposed in this study and the nature of the autoencoder based

structures. As the primary resource utilized in this study was time-

series data, a temporal analysis was the initial approach taken to

gain further insights into the results. This temporal analysis in-

volved two distinct methodologies to extract more information from

the data. Firstly, a decomposition analysis was carried out on the
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proposed metrics to identify possible new insights. This method

aimed to break down the metrics into simpler components, with the

goal of revealing previously unseen patterns or trends in the data.

Secondly, a wavelet transform analysis was conducted, owing to its

ability to represent data across multiple scales and suitability in de-

tecting transient behavior, changing frequencies, and slowly varying

behaviors. This approach is particularly useful when investigating

time-varying signals with both short-term and long-term patterns

that may be difficult to capture through other methods.

The results of both, the decomposition analysis and the wavelet

transform analysis reveal similar behaviors, primarily detecting a

shift after major maintenance operations, as well as some other per-

turbations and noisy features that cannot be identified. It is worth

notint that the nature of the provided data used for this analysis is

non-structured data with natural language derived from customers

and operation workers. Most of the data belongs to punctual fault

events occurring along the IGT that could not be linked to any oper-

ational defects, but rather were malfunctioning events resulting from

setup errors. Consequently, it has been difficult to process this data

and no correlation can be found that matches with the perturbations

or noisy features obtained from either the decomposition process or

the wavelet transform.

5.5.3 Clustering Analysis

The final analysis was conducted in order to assess the performance

of the RD metric as well as the latent manifold. It involved a clus-

tering analysis. The primary objective of the clustering analysis was

to identify the different operational points using an unsupervised
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method, while also attempting to derive additional insights from

this classification. By leveraging clustering techniques, the aims was

to uncover any underlying patterns in the data that may not be

immediately apparent through other methods.

The clustering analysis performed to evaluate the performance of

the RD metric involved two main methods: k-means and DBSCAN.

These methods differ in nature, with k-means being a centroid based

clustering algorithm and DBSCAN being a density based algorithm.

The k-means method aims to group data into k clusters based on

their similarity, while DBSCAN creates a neighborhood of each point

in a cluster based on a given radius and a minimum number of points.

The analysis was performed on both the reconstruction discrepancy

and the latent space time-series, with the goal of identifying different

operational points using an unsupervised method and gaining further

insights from the resulting classifications.

In regard to the RDEM metric, the analysis presented in Figure 4.16

on page 114 and Figure 4.17 on page 115 indicate that the distinctive

operation is solely evident in the RDFC3D
EM representation. The k-

means method reveals several data clusters that do not correspond

to any operation changes, whereas the DBSCAN representation only

identifies a single density based cluster. As with the visual inspection

of the RDEM discussed earlier, the most evident shift is detected

in the same metrics. Thereby, although the centroid is displaced,

it is not distinct enough to be automatically separated using these

clustering methods.

Figure 4.18 on page 116 and Figure 4.19 on page 117 illustrate the

clusters obtained in the latent space, which exhibit more discernible

patterns compared to the RDEM grouping. In this case, the k-means



Chapter 5. Discussion 139

method produces more precise clusters, although some false positives

are still apparent. The most reliable results are observed in 3D latent

representations, specifically in EMFC3D and EMSparse3D models. On

the other hand, the DBSCAN methods reveal a clear distinction in

the sparse models, while no distinct pattern is evident in the FC

models. The constraints imposed by the nature of the sparse model

provide a more structured way of representing the latent space and

make the shift after the major maintenance more apparent than in

the Reconstruction Discrepancy metrics.

In conclusion, the clustering techniques were used to evaluate the

performance of the RD metric in detecting the two different opera-

tions before and after maintenance. The analysis indicates that while

these operations can be detected in most cases, only a few instances

show that they can be automatically identified using the clustering

methods. Furthermore, it is worth noting that the false positive or

noise detected by the DBSCAN clustering method do not yield any

significant results when compared with the available inspections and

fault information. Hence, no other noteworthy insights can be drawn

from these results.





Chapter 6

Conclusions and Future Work

The digitalization and the use of machine learning techniques in in-

dustrial gas turbines has enhanced the accuracy and effectiveness

of algorithms, ultimately improving system performance. The field

has made significant strides due to increased data availability and

emerging techniques. This thesis was developed in collaboration

with Siemens Energy A.G. to design and develop DA&AI tools for

evaluating IGT performance using data solely from the compressor

component. The data used for analysis was entirely from real plants

with strategically placed sensors capturing equipment behavior. This

study provides novel and custom-developed techniques for assessing

IGT performance, specifically focusing on the compressor compo-

nent, which is one of the main components of the IGT. By studying

the best methods for this assessment, the thesis offers insights on

IGT performance using real plant data.

One interesting point to note from this analysis is that the data used

in the study was obtained from real plants operating under various

modes for several years. This situation needed a thorough exam-

ination of the data to determine the most appropriate filters and

data points to properly train each model. A comprehensive study

141
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was conducted to establish a framework that could meet the data

quality requirements for the ML method’s training. Sufficient repre-

sentative data points for the training process and the development of

a more useful feature set based on the raw data were also critical to

achieving the suggested outcomes. However, the restrictive methods

applied to filter the data also resulted in the removal of some of the

proposed IGTs from the initial analysis.

The main outcome of the study is the development of a discrepancy

indicator that can evaluate the equipment’s performance based on

its operation. Two different distance measurements and two distinct

calculation methods supported the findings. Using the reconstruc-

tion discrepancy indicator on a differential model of autoencoder,

RDDM, it clearly shows how drift appears in the IGT’s operation.

However, analyzing this metric, it did not provide any additional

results beyond identifying a drift in the equipment’s operation. At-

tempts were made to obtain insights using some thermodynamic

indicators used in the company, but no significant outcomes were

achieved. The causes of the drift may vary, but possible explana-

tions include the degradation of the machine, maintenance activities

carried out on the system, or equipment malfunction events.

A new indicator was developed by modifying the model to enhance

explainability and visualization. In this case, a new type of autoen-

coder called sparse autoencoder was introduced, and further results

were obtained using replacement events in conjunction with the fully-

connected autoencoder. The primary outcome is a clear slope in the

reconstruction discrepancy resulting from a significant maintenance

operation. Further analysis was conducted using temporal analysis

and clustering analysis to obtain additional insights. In temporal
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analysis, a steeper detection was observed after significant main-

tenance, and some other perturbations were identified, but could

not be further analyzed. Concerning clustering methods, one of the

studied structures, specifically the RDFC3D
EM , demonstrated clear out-

comes using both, k-means and DBSCAN methods. However, the

other structures did not show any significant results beyond centroid

differentiation. The latent space analysis yielded better results, with

clear insights obtained primarily from the 3D latent manifold of the

sparse autoencoder.

Throughout the thesis, several gas turbine units were utilized to

conduct several analyses, and the most notable results have been

presented. In some cases, the outcomes may not correspond with

the prior analysis due to this reason. However, it has been observed

that the results are reproducible for any of the units used. Conse-

quently, the methodology and procedures presented for curating the

data, developing the models, and evaluating their performance are

sufficiently robust to be implemented across a broad range of IGTs.

This thesis is a part of a broader project within the company, aimed

at developing a general approach for IGT condition monitoring. It

offers a solution for detecting changes in operational modes of IGTs

and creates future possibilities for diagnosis systems and health man-

agement systems, with multiple exports for downstream systems to

use. The tool developed in this thesis serves as a valuable aid and

starting point for the company in ensuring optimal performance and

longevity of IGTs. This comprehensive study can pave the way for

future research by highlighting common faults, algorithms, and pa-

rameters considered in previous studies. Therefore, it simplifies iden-

tifying other vital areas for further investigation in respective studies.
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6.1 Key Development Processes and Findings

This section describes the key processes that lead to the develop-

ment of the whole study, as well as the key findings derived from

the development section. Firstly, the key development processes are

listed and then the findings are mentioned.

1. The study of the thermodynamic system of IGTs led to the de-

velopment of a strategy for gaining further insights into their

operation, which could aid in the development of effective con-

dition monitoring systems.

2. The verification of the model developed in the study using cu-

rated data from NASA Turbojet Engines, which allowed for the

identification of key assumptions and potential areas for im-

provement.

3. The use of updated data to assess the performance of the GTs in

real-time enabled long-term performance monitoring, even with

limited maintenance data.

4. The utilization of autoencoder models provided a powerful tool

for assessing the performance of GTs by encapsulating the most

important hidden patterns of data.

5. The experimentation with several model structures, utilizing

both the reconstruction error and the latent manifold gener-

ated from the autoencoder models, allowed for the optimization

of the models and the identification of critical features for GT

performance monitoring.

From there, the following findings are derived:
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1. An AI based indicator named RDDM that is able to capture the

drift during the GT operation. It provides a means to monitor

the equipment operation and detect any deviations from the

expected performance. TheRDDM model is designed to capture

any changes or drifts in the system, which could be indicative of

an impending failure or a change in operating conditions. This

model was developed using a vast study of the thermodynamic

system of GTs, and it has been shown to be effective in detecting

drifts in equipment operation.

2. An AI based indicator named RDEM that is able to capture the

slope after a major maintenance operation, indeed a replace-

ment. This indicator provides a way to monitor the performance

of IGTs after a major maintenance operation.

3. An automatic way to detect the maintenance operation based

on clustering methods. The clustering methods were used to

analyze the data and identify any patterns that might indicate

a maintenance operation or malfunctioning events. Therefore,

it provides a baseline to detect maintenance operations without

manual intervention and the implications of it. This can be de-

rived to reduce downtime and increase the efficiency of machine

maintenance.

4. A baseline to develop a prognostic indicator for GT assessment

based on compressor data. The compressor data was used to

monitor the performance of the system, and the findings provide

a foundation for developing a prognostic indicator that could

predict the remaining useful life of the GT. This has significant

implications for the maintenance of IGTs as it could help to
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identify potential issues before they become critical and cause

downtime.

5. A monitoring system of the GT performance based on the com-

pressor data. The monitoring system uses autoencoder models

to monitor the performance of the IGT and detect any devia-

tions from expected performance. The use of the two models

together could lead to monitor the performance in real-time and

detect any anomalies or deviations from expected performance.

6.2 Future Research Lines

The framework presented in this thesis provides a comprehensive

analysis of the operation of IGT and can serve as a foundation for

several different future research directions.

While the proposed indicator provides valuable insights into the de-

viation of GT performance during operation and after a compressor

replacement, it does not take into account the ratio of change. This

limitation may result in different interpretations of the data. A pos-

sible avenue for future research is to develop a quantitative indicator

that incorporates fault and maintenance data to gain a deeper un-

derstanding of their nature. Such an indicator could enhance the

accuracy and usefulness of the proposed framework.

Another potential avenue for future research is to expand the pro-

posed framework beyond solely using compressor data to assess the

performance of the IGT. Including data from other components, such

as the combustor or turbine, could provide additional information

and potentially improve the accuracy of the performance assessment.

Additionally, integrating data from multiple components with the
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compressor data could enable a more comprehensive understanding

of fault events and other anomalies in the IGT system. This could

lead to the development of more robust condition monitoring and

prognostic systems for IGTs.

This study proposes a baseline for monitoring and diagnosing faults

and maintenance events in IGTs. By building on this work, it is

possible to develop a prognostic indicator that predicts how the sys-

tem will modify its operation based on its current behavior. To gain

a more complete understanding of the IGT’s components, it is nec-

essary to incorporate information from other parts of the system,

such as the combustion chamber and turbine. By doing so, addi-

tional insights into maintenance, faults, and unexpected events can

be obtained.

The thermodynamic analysis conducted in this study provided valu-

able insights into the performance of the IGT. However, it was ob-

served that the restrictive filtering methods employed may have led

to the loss of some critical information. Hence, there is a potential

research avenue to investigate alternative filtering methods or to ad-

just the thresholds of the current filtering methods to minimize the

loss of relevant data. This could further enhance the accuracy and

reliability of the performance analysis of the IGT.

The dataset used for model evaluation contains sensitive information

that has been anonymized to protect company confidentiality. How-

ever, it is worth exploring whether there are any potentially sensitive

data that could be related to the proposed indicators, such as the

core-type of compressor. Further analysis within the company could

shed light on this issue and further insights can be drawn from it.
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Finally, the field of ML is constantly evolving and advancing at a

rapid pace. As such, it would be valuable to continue exploring the

potential of self-learning algorithms to develop more sophisticated

models for predicting and diagnosing potential issues with IGTs.

By leveraging the latest developments in ML, researchers can de-

velop more accurate and targeted models that can identify potential

issues earlier and more effectively than traditional monitoring and

diagnostic techniques. This could ultimately lead to significant im-

provements in the reliability, efficiency, and safety of GTs across a

wide range of industrial applications. Keeping up to date with the

latest advancements in ML could be crucial for improving IGT per-

formance and reducing maintenance costs.
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[38] Thyago P Carvalho, Fabŕızzio AAMN Soares, Roberto Vita,

Roberto da P Francisco, João P Basto, and Symone GS Alcalá.
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Appendix A

Gas Turbine Configurations

GT equipment can adopt several configurations according to the dif-

ferent performance of the brayton cycle in order to improve its oper-

ation. Next, the most common configurations based on the brayton

cycle enhancements are presented.

A.1 Regenerative Gas Turbines

Regenerative Gas Turbines utilize the high-temperature exhaust gas

of the turbine to elevate the temperature of the compressed air that

enters the turbine. Typically, the exhaust gas from the turbine is

hotter than the surrounding environment. To optimize this thermo-

dynamic resource, known as exergy, a regenerator is situated before

the air enters the combustor. This technique reduces the amount of

energy, i.e. fuel, required to achieve the desired turbine inlet tem-

perature. The Brayton cycle, incorporating the regenerator under

ideal conditions, is thereby modified in the following manner:

Figure A.1 presents a representation of the GT configuration as well

as the modified brayton cycle. The exhaust turbine temperature is

167
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(a) Gas turbine Configuration (b) Regenerative Brayton cycle

Figure A.1: Regenerative Gas Turbine Representation

cooled from state 4 to state 4’, while the compressor outlet temper-

ature is increased from 2 to 2’. Hence, the heat added per unit of

mass is given by
Q̇in

ṁ
= h3 − h2′ (A.1)

In this configuration, the net work developed per unit of mass flow is

not altered by the addition of a regenerator. Thus, thermal efficiency

increases because of the heat need to increase the temperature to the

working point is reduced.

A.2 Gas Turbines with Reheat

Controlling the temperature during combustion is critical to prevent

any detrimental effects on the constituent materials. One approach

to regulate the temperature involves supplying an excess amount of

air to facilitate the combustion of fuel. As a result, the turbine’s

exhaust gases contain a sufficient amount of air to sustain an ad-

ditional combustion stage, which is the opportune moment for the
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(a) Gas turbine with Reheat Configuration (b) Brayton cycle with Reheat

Figure A.2: Gas Turbine with Reheat Representation

reheat process to occur. By leveraging this available air, a multi-

stage turbine process can be executed. Figure A.2 depicts the GT

configuration along with the modified Brayton cycle.

As it is illustrated, the reheat cycle exhibits a larger area beneath

its curve, resulting in a greater net specific work output. This en-

hancement, however, does not necessarily lead to a corresponding

improvement in thermal efficiency, since an additional heat energy is

required for the second combustion process. Nonetheless, the tem-

perature at the outlet of the second-stage turbine, state 6, exceeds

that of the corresponding state, state 4’, in the cycle that lacks re-

heat. Consequently, the utilization of reheat amplifies the potential

for regeneration. When both reheat and regeneration are imple-

mented together, the thermal efficiency can increase considerably.

A.3 Gas Turbines with Intercooling

The intercooler aims to reduce the temperature in between the com-

pression work. The goal behind this configuration is to reduce the
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(a) Gas turbine with Intercooler Configuration
(b) Brayton cycle with Inter-

cooler

Figure A.3: Gas Turbine with Intercooler Representation

work done by the compressor in order to increase the net work. Fig-

ure A.3 show the configuration of the GT and the specific Brayton

cycle.

In order to make it more understandable, Figure A.4 illustrates the

work done by the compressor using the pressure - volume diagram.

Figure A.4: P - V diagram of the Brayton Cycle with Intercooler

Without intercooling, the gas would be compressed isentropically in

a single stage from state 1 to state 2’. This work is represented by

states 1–2’–5–6 in T-s diagram and by the area generated amongst



Appendix A. Gas Turbine Configurations 171

1-2’-a-b in the P-V diagram. The same work done with intercool-

ing it represented by states 1-2-3-4-5-6 in T-s diagram and by the

area generated between 1-2-3-4-a-a in the P-V diagram. The work

reduction effect of the cooling is showed in the P-V diagram with

the crosshatched area.

The implementation of multi-stage compression with intercooling in

a GT power plant elevates the net work output by diminishing the

compression work. Nevertheless, compression with intercooling does

not inevitably heighten the thermal efficiency of an equipment due

to the corresponding reduction in the temperature of the air enter-

ing the combustor. Consequently, additional heat transfer would be

necessary to attain the desired turbine inlet temperature. The lower

temperature at the compressor exit, however, augments the poten-

tial for regeneration. Hence, when intercooling is employed together

with regeneration, a significant improvement in thermal efficiency

can be achieved.

A.4 Combined Cycle

One of the most prevalent approaches for using the exhaust heat in

the regenerative cycle involves a CC power plant. In a CC power

plant, two power cycles are integrated in such a way that the heat

generated by heat transfer from one cycle, the Brayton cycle, is em-

ployed partially or entirely as the heat input for the other cycle, the

Rankine cycle. The interconnection of the cycles is facilitated by a

heat-recovery steam generator that acts as the boiler for the steam

power cycle. The CC harnesses the high average temperature of heat
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addition of the GT and the low average temperature of heat rejec-

tion of the steam power cycle. Thus, the thermal efficiency surpasses

that of each cycle operating individually.

Figure A.5: Combined cycle representation

Figure A.5 shows an schematic of GT-vapor power plant. According

to the thermodynamics, the efficiency of the power plant is expressed

as:

ηCC =
WGT +WST

Qin
(A.2)

Where WGT is the net power generated by the machine, WST is the

net power generated by the steam (vapor) turbine, and Qin is the

total rate of heat transfer to the CC.

These power plants are capable of achieving around 60% of ther-

mal efficiency, thus being an interesting option for the power plant

owner. Additionally, they offer the ability to generate further net

output power while significantly saving fuel, reducing carbon diox-

ide emissions, and complying with low nitric oxide standards.
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