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Técnicas de imagen computacional con
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fluorescencia e imagen con luz difusa
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Armin Johannes Maxemilian Lenz
Doctor en Ciencias por la Escuela de Doctorado en Ciencias

Escola Superior de Tecnologia i Ciències Experimentals, ESTCE
Universitat Jaume I

Resumen
En las últimas décadas, la imagen computacional ha surgido como un nuevo para-
digma para superar los límites de los sistemas de imagen tradicionales. Este enfoque
implica el diseño integrado de hardware y software, en concreto la óptica y el proce-
samiento de señales posterior a la detección. Y muy recientemente, la cámara de un
solo píxel ha ganado una atención significativa entre las técnicas de imagen compu-
tacional. La capacidad de utilizar detectores especializados sin resolución espacial y
moduladores espaciales de luz rápidos permite obtener imágenes en rangos espec-
trales exóticos y en condiciones de poca luz, así como construir sistemas de imagen
multidimensionales compactos y eficientes.

En esta tesis, demostramos el uso de la cámara de un solo píxel en dos modalida-
des de imagen, la imagen de fluorescencia resuelta en el tiempo y la imagen óptica
difusa, técnicas cruciales en aplicaciones biomédicas que permiten la adquisición no
invasiva de información funcional y estructural.

En el ámbito de la imagen de fluorescencia, aplicamos una novedosa técnica basa-
da en fusionado de datos para adquirir hipercubos 4D de varios gigavóxeles midiendo
sólo una fracción muy pequeña del conjunto de datos. Los sistemas propuestos com-
binan cámaras convencionales con cámaras de un solo píxel multiespectrales y de
resolución temporal, y se emplea la fusión de datos para combinar las proyecciones
2D y 3D (o incluso 4D de baja resolución espacial) generadas por cada cámara in-
dividual en un hipercubo 4D de alta resolución. Este marco se aplica tanto a un
sistema óptico de imagen de objetos macroscópicos como a la microscopía e incluso
a la imagen de tiempo de vida de fluorescencia.

Por otro lado, una parte de la investigación realizada en esta tesis se centra en el
desarrollo de novedosas técnicas de imagen difusa. Los sistemas propuestos utilizan
técnicas de imagen de un solo píxel, lo que permite esquemas de detección simplifi-
cados utilizando esferas integradoras como detectores, permitiendo la obtención de
imágenes de las propiedades de absorción y dispersión de medios turbios. Se pro-
ponen dos sistemas, uno que utiliza una configuración experimental con dos esferas
integradoras para obtener imágenes de las propiedades ópticas mediante el modelo
Kubelka-Munk, y otro que utiliza un sistema de obtención de imágenes espaciales
en el dominio de frecuencias espaciales basado en una cámara de un solo píxel y con
iluminación estructurada para caracterizar medios turbios en geometría de reflexión.
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Abstract

In recent decades, computational imaging has emerged as a new paradigm for im-
proving and surpassing the limits of traditional imaging systems. This approach
involves the integrated design of hardware and software, specifically the optics and
post-detection signal processing. Very recently, the single-pixel camera has gained
significant attention among computational imaging techniques. The ability to use
specialized detectors without spatial resolution and fast spatial light modulators en-
ables imaging in novel spectral ranges and low light conditions, as well as building
compact and efficient multidimensional imaging systems.

In this dissertation, we demonstrate the use of single-pixel imaging methods
in two imaging modalities, time-resolved fluorescence imaging and diffuse optical
imaging, crucial techniques in biomedical applications that enable the non-invasive
acquisition of functional and structural information.

In fluorescence imaging we introduce a novel method based on data fusion tech-
niques to acquire giga-voxel 4D hypercubes by measuring only a very small fraction
of the dataset. The proposed systems combine conventional cameras with multispec-
tral and time-resolved single-pixel cameras, and data fusion is employed to merge
the 2D and 3D (or even low spatial resolution 4D) projections generated by each in-
dividual camera into a high-resolution 4D hypercube. This framework is applied to
macroscopic imaging as well as microscopy and even fluorescence lifetime imaging.

The second part of this thesis focuses on developing novel methods for perform-
ing diffuse optical imaging. The suggested systems utilize single-pixel imaging tech-
niques, which allows for simplified detection schemes utilizing integrating spheres
as bucket detectors, enabling the retrieval of images of the absorption and scatter-
ing properties of turbid media. Two systems are discussed, one utilizing a double
integrating sphere setup to image optical properties via the Kubelka-Munk light
transport model, and another utilizing a structured illumination single-pixel spatial
frequency domain imaging system to characterize turbid media in reflection geome-
try.
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Chapter 1

Introduction

Imaging systems allow us to observe, measure and understand the world. In the
beginning, we used our eyes to observe the world around us. However, our sight
is limited in both range and detail, as we neither can see very far, nor very small
objects. To overcome these limitations, humanity started to use optical instruments.
In the late 16th and early 17th century, the first optical microscopes and telescopes
were built. They consisted of simple combinations of lenses, and allowed us to
study both small and distant objects. Whereas the microscope has been a key de-
vice for the development of life sciences, telescopes laid the foundation for modern
astronomy. However, it was not until the development of photography that these
instruments ceased to rely on human vision. In early photography, images were
captured by exposing light-sensitive film and paper, which was processed in liquid
chemical solutions to develop and stabilize the photograph. This had the disadvan-
tage of limited and expensive editing (post-processing) of film-based images after
capture.

Nowadays, the use of digital image sensors replaced the use of photosensitive films
to record images. This allowed for an easy post-processing of images, and to make
imaging systems faster, cheaper, and smaller. However, digital cameras still suffer
from traditional imaging limitations and trade-offs, such as only measuring the light
intensity distribution, the necessity of the lenses to form a good quality image, and
bottlenecks in data acquisition speed, storage and transmission.

To gather more information for cutting edge applications in modern industry
and science, imaging systems started to manipulate the way this information was
encoded onto the sensor. This idea of indirectly encoding the information and
afterwards computationally decoding it gave raise to the paradigm of computational
imaging [1, 2]. In a nutshell, computational imaging is the co-design of hardware
and software to improve and overcome the traditional or native limits of imaging
systems. By designing algorithms in conjunction with the optics, we can encode
the most useful information for a specific task and then use clever algorithms to
extract the desired information from our measurements. While traditional cameras
are direct imagers (i.e. the image recorded is very close to the desired image and
little to no post-processing is required), a computational camera uses hardware to
encode information about the imaged scene into the measurements, and usually the
measured data has little resemblance to the image reconstructed with computational



algorithms.

The paradigm shift of computational imaging has led to many advances and
techniques, such as super-resolution microscopy (e.g., Fourier ptychography [3, 4],
structured illumination microscopy (SIM) [5], stimulated emission depletion (STED)
microscopy [6], etc.), multidimensional imaging (including phase imaging [7], mul-
tispectral imaging [8–10], polarization imaging [11], temporal information [12], and
light-field, 3D and tomography [13–16]), imaging through turbid media [17–20], non-
line-of-sight imaging [21], and lensless imaging [22–24].

An important challenge of computational imaging is the inverse problem, i.e.
how to reconstruct the unknown image from our encoded measurement. Often, the
encoding performed by computational cameras is not invertible, and the problem of
recovering the image may be ill-posed or underdetermined, posing the challenge of
finding a unique solution. Typically, these image inverse problems are solved using
optimization techniques that minimize a data fidelity term and a term based on
prior knowledge about the image to enforce the uniqueness of the solution.

The single-pixel camera (SPC) is one such computational imaging device that can
provide a competitive advantage over conventional cameras in some scenarios [25,26].
Single-pixel imaging (SPI) is characterized by the use of detectors without spatial
information (i.e., detectors with only one pixel, also called bucket detectors). To
obtain spatial information, typical SPCs use spatial light modulators (SLMs) to gen-
erate structured light patterns that are projected onto the scene. The light coming
from the scene is then measured by the bucket detector. Finally, the image is com-
putationally reconstructed from this measured signal by solving the corresponding
inverse problem.

It is precisely in the simplicity of the detector that the strength of the SPI tech-
nique lies. This single-pixel detector may provide improved performance, such as
a better efficiency, lower dark count, or faster timing response; or it can allow the
use of specialized detectors to build cameras sensitive to spectral, temporal, polar-
ization, 3D, or phase information. In addition, the SPC is able to compress data
directly at the acquisition step (known as compressive sensing, CS) to reduce data
storage and transfer requirements.

1.1 Contribution
The SPC and inverse problems are the core of all contributions in this dissertation.
These techniques were applied to two distinct imaging modalities.

On one hand, time-resolved multispectral fluorescence imaging has been per-
formed. SPCs can be easily specialized to obtain multidimensional images, such as
multispectral or time-resolved images, but they usually suffer from low spatial res-
olution, whereas traditional cameras provide high-resolution images, but normally
lack the sensitivity to that extra dimensions. In this contribution, multispectral
and time-resolved SPCs are merged with a conventional camera in order to obtain
high spatial resolution, time-resolved and multispectral images of fluorescence. The
merging of the different cameras is performed with a data fusion (DF) algorithm
formulated as an inverse problem.
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On the other hand, the SPC architecture has been applied to diffuse optical imag-
ing (DOI). The goal of DOI is to generate spatial maps or images of the distribution
of optical properties, namely absorption and scattering, of turbid media. DOI tech-
niques themselves can be classified as computational imaging, since these techniques
require the use of sophisticated hardware to interrogate the sample, and images of
the optical properties are recovered using inversion methods that incorporate not
only the measurements but also models of light propagation in turbid media.

By applying the SPI technique we were able to develop new simpler imaging sys-
tems by using integrating spheres (which integrate diffuse reflected or transmitted
light) as bucket detectors instead of pixelated sensors. One of the developed systems
makes use of a simple light propagation model (the Kubelka-Munk mode), which
originally does not allow for a spatially resolved characterization because the model
is not transversal spatially resolved, and due to the experimental requirements of
using integrating spheres to measure total diffuse reflected and transmitted light.
But imaging capabilities were enabled by using SPI techniques. The second de-
veloped system is implemented in reflection geometry only, and measurements are
performed by interrogating the sample in the spatial frequency domain (imaging in
this domain is referred to as spatial frequency domain imaging, or SFDI) by pro-
jecting sinusoidal light patterns onto the sample. Usually these SFDI systems use
conventional cameras, but once again the SPI technique is used to dispense of the
pixelated sensor.

1.2 Publications
The results of the work related to this dissertation have been presented to the scien-
tific community through several publications in scientific journals and conferences.
Below is a list of the main results:

• Journals

– A. J. M. Lenz, P. Clemente, V. Climent, J. Lancis, and E. Tajahuerce,
"Imaging the optical properties of turbid media with single-pixel detection
based on the Kubelka–Munk model," Opt. Lett. 44, 4797-4800 (2019).
https://doi.org/10.1364/OL.44.004797

– F. Soldevila, A. J. M. Lenz, A. Ghezzi, A. Farina, C. D’Andrea, and
E. Tajahuerce, "Giga-voxel multidimensional fluorescence imaging com-
bining single-pixel detection and data fusion," Opt. Lett. 46, 4312-4315
(2021). https://doi.org/10.1364/OL.434127

– A. Ghezzi, A. J. M. Lenz, F. Soldevila, E. Tajahuerce, V. Vurro, A.
Bassi, G. Valentini, A. Farina, C. D’Andrea, "Computational based time-
resolved multispectral fluorescence microscopy," APL Photonics 8 (4),
046110 (2023). https://doi.org/10.1063/5.0135452

• International conferences

– A. J. M. Lenz, K. Arao, Y. Jauregui-Sánchez, P. Clemente, V. Cli-
ment, J. Lancis, and E. Tajahuerce, "Imaging of the optical properties
of turbid media with integrated detection based on the Kubelka-Munk
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model", Proc. SPIE 11074, Diffuse Optical Spectroscopy and Imaging
VII, 110741Z (11 July 2019). https://doi.org/10.1117/12.2526731

– A. J. M. Lenz, P. Clemente, V. Climent, J. Lancis, and E. Tajahuerce,
"Imaging the optical properties of turbid media with single-pixel detec-
tion", Proc. SPIE 11351, Unconventional Optical Imaging II, 1135109
(30 March 2020). https://doi.org/10.1117/12.2554561

– A. J. M. Lenz, P. Clemente, V. Climent, J. Lancis, and E. Tajahuerce,
"Single-pixel spatial frequency domain imaging with integrating detec-
tion," in European Conferences on Biomedical Optics 2021 (ECBO), OSA
Technical Digest (Optica Publishing Group, 2021), paper ES2B.3.

– F. Soldevila, A. J. M. Lenz, A. Ghezzi, A. Farina, C. D’Andrea, and
E. Tajahuerce, "Multispectral Time-Resolved Fluorescence Imaging by
Single-Pixel Detection and Data Fusion," in European Conferences on
Biomedical Optics 2021 (ECBO), OSA Technical Digest (Optica Pub-
lishing Group, 2021), paper ETh3B.3.

– A. J. M. Lenz, P. Clemente, V. Climent, J. Lancis, and E. Tajahuerce,
"Spatial frequency domain imaging with a bucket detector," in OSA Imag-
ing and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP),
OSA Technical Digest (Optica Publishing Group, 2021), paper ITh1B.5.
https://doi.org/10.1364/ISA.2021.ITh1B.5

– F. Soldevila, A. J. M. Lenz, A. Ghezzi, A. Farina, C. D’Andrea, and E.
Tajahuerce, "Multispectral Fluorescence Lifetime Imaging with Single-
Pixel Cameras and Data Fusion," in OSA Imaging and Applied Optics
Congress 2021 (3D, COSI, DH, ISA, pcAOP), OSA Technical Digest (Op-
tica Publishing Group, 2021), paper CTu4B.7. https://doi.org/10.1
364/COSI.2021.CTu4B.7

– A. J. M. Lenz, P. Clemente, V. Climent, J. Lancis, and E. Tajahuerce,
"Spatial frequency domain imaging with a bucket detector", Proc. SPIE
12147, Tissue Optics and Photonics II, 121470A (19 May 2022). https:
//doi.org/10.1117/12.2622116

– A. J. M. Lenz, F. Soldevila, A. Ghezzi, A. Farina, C. D’Andrea, and E.
Tajahuerce, "Giga-voxel multispectral time-resolved imaging with single-
pixel detection and data fusion", Proc. SPIE 12136, Unconventional Op-
tical Imaging III, 121360D (20 May 2022). https://doi.org/10.111
7/12.2621587

– A. J. M. Lenz, F. Soldevila, A. Ghezzi, A. Farina, C. D’Andrea, and E.
Tajahuerce, "Multispectral Fluorescence Lifetime Imaging with Single-
Pixel Cameras and Data Fusion", Iberic Meeting of Optics Students 2022
(14 June 2022).

– A. J. M. Lenz, F. Soldevila, A. Ghezzi, A. Farina, C. D’Andrea, and
E. Tajahuerce, "Multispectral time-resolved fluorescence imaging with
single-pixel cameras and data fusion", 25th Congress of the International
Commission for optics (ICO) and 16th International Conference on Op-
tics Within Life Sciences (OWLS) (8 September 2022).
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– E. Ipus , A. J. M. Lenz, J. Lancis, A. M. Paniagua-Diaz, P. Artal, and
E. Tajahuerce "Single-pixel imaging through turbid media by combining
a programmable light source and a DMD", Proc. SPIE 12435, Emerging
Digital Micromirror Device Based Systems and Applications XV, 1243505
(15 March 2023). https://doi.org/10.1117/12.2650452

• National conferences

– A. J. M. Lenz, Er. Ipus, L. Martínez-León, P. Clemente, V. Climent,
J. Lancis, and E. Tajahuerce, "Spatial frequency domain imaging with a
bucket detector", XIII Reunión Nacional de Óptica (22 November 2021).

– A. J. M. Lenz, F. Soldevila, A. Ghezzi, A. Farina, C. D’Andrea, and E.
Tajahuerce, "Giga-voxel multidimensional imaging by single-pixel detec-
tion and data fusion", XIII Reunión Nacional de Óptica (22-23 November
2021).

– A. J. M. Lenz, "Multidimensional computational imaging with single-
pixel detection and data fusion", Reunión Fibras Ópticas y Procesado de
Señal 2022 (2 December 2022).

1.3 Outline
The remainder of this dissertation is organized in the following chapters:

Chapter 2: Computational imaging. In this chapter, we introduce a general
formulation of computational imaging, and we also discuss different ways to solve
imaging inverse problems. Also in this chapter we cover the concept of single-pixel
imaging, compressive sensing and data fusion.

Chapter 3: Time-resolved multispectral imaging for fluorescence imag-
ing. This chapter provides a background to fluorescence and fluorescence imaging.
Next, we present several works related to multispectral time-resolved fluorescence
imaging and microscopy, and fluorescence lifetime imaging; by merging information
from SPCs and a conventional camera by using DF.

Chapter 4: Imaging of scattering and absorption. This chapter provides
a background to the theory of light propagation in turbid media, including the KM
model, the radiative transport theory, the diffusion theory and the Monte-Carlo
model. Next we discuss the topic of imaging through the turbid media and imaging
the optical properties of turbid media (refereed to as DOI), with a special emphasis
on the SFDI technique. Lastly, we present the two developed single-pixel DOI
systems, one based on the KM model and the second on the SFDI technique.

Chapter 5: Conclusions. This chapter discusses the themes presented through-
out this dissertation and outlines several future directions.
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Chapter 2

Computational imaging

This chapter provides a practical background of computational imaging and solving
inverse problems. It does not intend to be mathematically rigorous, but rather a
practical overview of the different methods and algorithms. Therefore, part of the
bibliography cited in this chapter does not come from scientific articles published in
scientific journals, but from blog posts, lecture notes, online forums and Q&A sites.
In this chapter we will also introduce a special type of computational camera, the
single-pixel camera, and discuss the theory of compressive sensing and the framework
of data fusion.

2.1 Imaging as an inverse problem
First of all, we have to define how information is recorded by the imaging sensor.
This is the so-called forward model of the imaging system or camera, and models
the behavior of the optical system (optics, filters, sensor, modulators, etc). The
forward model of the imaging system basically describes the measurement process,
that is, how information about the image to be reconstructed, x, is encoded into
the measurements, y. Namely,

y = A(x) + ϵ, (2.1)

where A represents the forward model operator and ϵ is the noise present in the
measurement process. This forward operator includes all operations applied to x,
such as any geometric transformation, blurring, downsampling, etc. Here, even if
this forward model is a continuous process, it is represented by a discrete approxi-
mation, and so are the measurement and the image. In the notation used here bold
face variables represent a discretized and vectorized version of the corresponding
signal.

In many cases, the forward model is linear, and hence can be described as a
linear system of equations, where the measurement is the result of a matrix-vector
multiplication of the measurement matrix, A, and the image:

y = Ax + ϵ. (2.2)



In a conventional camera, where a perfect lens or a set of lenses (with a delta
PSF) projects an image of the scene onto the imaging sensor, the measurement
matrix becomes the identity operator, A = I. And in the ideal case of absence of
noise the measurement is directly the image, y = x (see Fig. 2.1a). Therefore, no
further computation is needed for recovering the image.

(a)

(b)

(c)

Figure 2.1: Measurement process of an imaging system with (a) identity measure-
ment matrix, the measurement is the image, (b) square and invertible measurement
matrix corresponding to a determined imaging process, and (c) non-square mea-
surement matrix describing an underdetermined imaging process. Note that the 2D
images are commonly represented as 1D arrays in digital image processing.

For this idealized camera in the presence of noise, the forward model yields:
y = x + ϵ. In this case, the image is corrupted by noise. The process of removing
the noise in order to extract the image is the well-known problem of image denoising
[27,28]. There is controversy over whether this should be considered computational
imaging. One argument in favor of this classification is the need of computation. On
the contrary, one may argue that image denoising falls into the category of image
(post-detection) processing or restoration because the goal is to process already
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human-recognizable images to improve the insufficient quality; while the aim of
computational imaging is to reconstruct human-recognizable images from measured
data which not necessarily is human-recognizable (a discussion about this can be
found in the blog entry from Ref. [29]). In any case, it is not my objective to define a
criterion to define whether a technique should be considered computational imaging
or not.

In the general case, where the measurement matrix is not the identity operator,
the naive approach to solve the inverse problem, retrieving x from y, would be to
attempt to invert the measurement matrix A to find:

x̂ = A−1y. (2.3)

This may be possible in some cases where A represents a square and invertible matrix
corresponding to a determined and well-posed problem and with low noise, like in
Fig. 2.1b. Unfortunately, this often does not work very well because of two possible
reasons. On one hand, for relatively large images the size of the A matrix makes the
matrix inversion unfeasible due to the extreme computational cost. The solution
to this problem is rather simple: instead of explicitly calculating the A matrix,
we can implicitly define the operations associated with A1. On the other hand,
frequently we acquire an undersampled measurement, or we aim to extract additional
information from our measurement, e.g. such as extra dimensional information from
an encoded lower dimensional measurement. This measurement process entails a
dimension reduction, given that the size of our measurement vector, y, is lower than
the size of the image, x. In this case, we must solve an underdetermined system
in which the number of unknowns, elements of x, is greater than the number of
measurements. This results in a non-square A matrix, with less rows than columns
(see Fig. 2.1c), which cannot be simply inverted. The problem now is ill-posed since
there are infinite possible solutions for the underdetermined system. To solve it we
need additional constraints.

To solve ill-posed or underdetermined inverse problems in imaging, often an op-
timization problem of the following form is formulated:

x̂ = arg minD(x; y) + αP(x), (2.4)

where D(x; y) is the data fidelity term, P(x) is the prior term, and α is the hy-
perparameter that regulates the contribution of the prior. The former ensures that
our image guess is consistent with the measurements through our forward model,
and the latter adds additional constraints by introducing a priori information of our
image 2. The function to be minimized, that is, the sum of the data fidelity and
the prior term, is often called the objective function denoted by F (x). For the data
fidelity term, a common approach is to minimize the least squares error between the
measurement and the estimated measurement given by applying the forward model
to the image guess. The optimization problem now reads as

x̂ = arg min 1
2∥y−Ax∥2

2 + αP(x), (2.5)

1For example, if the A operator samples the scene in spatial frequency or Fourier space, then
instead of computing the entire base change matrix, we can use the discrete Fourier transform.

2Adding a prior term to the optimization problem falls under the category of explicit regular-
ization. Regularization is a process that imposes a cost on the objective function to minimize to
make the optimal solution unique. Therefore it is often employed with ill-posed problems [30].
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where ∥a∥2 =
√∑

i a[i]2 represents the l2 norm or Euclidean norm of the vector
a = (a[1], a[2], ..., a[N ]). The chose of the prior depends on the specific problem.
Usually it is hand-picked from these three options: squared l2 norm ∥x∥2

2, sparsity
promoting l1 norm in some domain ∥Ψx∥1, or total-variation (TV) norm ∥x∥T V .
The definitions of l1 and the TV norm, and the discussion of the choice of each
prior, can be found at the end of the following section.

2.2 Solving the inverse problem
Once we have formulated the optimization problem in Eq.(2.5), we face the problem
of solving it. Although there are plenty of courses, notes and books about optimiza-
tion [31–35] (I recommend, for example, Simon R. Arridge’s notes [36]), here we
will give a brief look at the subject. Computational optimization is often done with
iterative methods that converge to the desired solution. One may recall from their
basic courses that to find the minimum value of a single-variable function, one has to
go in the opposite direction of the derivative at the starting point. The same holds
for multivariable functions, such as the objective functions of images, but where the
desired direction is given by the negative gradient. This gives raise to the gradient
descent algorithms.

In a nutshell, gradient descent is a way to minimize an objective function F (x)
parameterized by some variables x by updating them in the opposite direction of the
gradient of the objective function with reference to the variables, that is, in direction
of −∇F (x). The process is illustrated in Fig. 2.2. In this example, the objective
function is defined as a surface because the variable x is a two-dimensional vector.
The curves indicate the isolines, that is, the lines where F (x) is constant. And
the arrows originating at each position show the direction of the negative gradients.
Following the opposite direction of the gradient at each position leads us to follow
the direction of the slope of the surface created by F (x) downhill until we reach a
valley.

Let us consider the minimization of an objective function composed only by the
previous quadratic data fidelity term:

F (x) = D(x; y) = 1
2∥Ax− y∥2

2. (2.6)

Note that we first consider the linear forward operator and no prior term. The
nonlinear case and the prior will be discussed latter. The gradient of Eq. (2.6) is

∇F (x) = AT(Ax− y), (2.7)

where AT is the transpose of operator A. Given an approximation xk to the mini-
mum solution, the update

xk+1 = xk − τ∇F (xk), (2.8)

will give a smaller value of F (x), and the sequence of variables (xn) converges to
a minimum. The step size τ determines the size of the updates we make to reach
the minimum. Using a step size τ that is to small entails a slow convergence, and
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Figure 2.2: Gradient descent with constant step size for minimizing a quadratic
function associated with a linear system. The colormap represents the value of the
objective function.

a too large τ would lead to divergence. But, how to chose the correct step size?
Besides of using a fixed step size, a common approach is to perform a line search in
every iteration. The line search minimization consist in finding the optimal step size
on every iteration by solving another minimization problem based, for example, on
the Wolfe conditions [37,38]. In the particular case of quadratic objective functions
with linear operators, the line search minimization can be performed analytically
yielding an explicit formula for the optimal step size:

τk = ∥∇F (xk)∥2

∥A∇F (xk)∥2 , (2.9)

which is the step size for the steepest descent update [31, 34, 35] (a short and easy
explanation is found in [39]). However, in many practical cases an easy to compute
method that gives good results is backtracking line search [31]. This line search
method starts with a relatively large step size and shrinks it geometrically until
a certain stopping criterion based on the Armijo-Goldstein condition is met. An
example of the implementation of gradient descent with backtracking line search
method is shown in Algorithm 1.

The iterative minimization process ends when the stopping criterion is met. Some
examples of stopping criteria are the objective function decreases by a sufficient
amount with respect to its initial value (F (x̂i) ≤ ϵF (x̂0)), the relative change of the
objective function falls below some threshold ((F (x̂i−1) − F (x̂i))/F (x̂i−1) ≤ ϵ), or
the norm of the gradient is less than some threshold (∥∇F (x̂i)∥ ≤ ϵ).

There are three variants of gradient descent, which differ in how many of the
variables are used to compute the gradient of the objective function and to update
the position. The previously presented variant, Eq. (2.8), is called batch or vanilla
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Algorithm 1: Gradient descent algorithm with backtracking line search
Result: Returns the estimated x̂ by minimizing the objective function F (x)

after a number numIter of gradient descent steps. In each step an
appropriate step size is calculated with a backtracking line search
algorithm based on the Armijo-Goldstein condition.

Set value of initial step size τinit (e.g., τinit = 1)
Set values of backtracking line search parameters ε ∈ ( 0 , 1) , and γ ∈ ( 0 , 1)
(e.g., 1

2 for both)
Initialize i = 0 and first estimation x̂0
while stopping criterion unfulfilled do

Calculate gradient: gi = ∇F (x̂i)
Calculate new step size with a backtracking line search algorithm based
on the Armijo-Goldstein condition:

Initialize step size: τi = τinit

while F (x̂i)− F (x̂i − τi gi) < ε τi ∥gi∥2 do
Set τi ← γτi

end
Update object estimation in the direction provided by the gradient:
x̂i+1 = x̂i − τigi

i = i + 1;
end

gradient descent. Here the gradient is computed with regards to all the variables.
In stochastic gradient descent (SGD), the gradient is computed at a single variable
of x:

xk+1 = xk − τ∇F (xk[i]). (2.10)

This is repeated for the total of variables of x. This leads to updates that are
less expensive to compute but also less accurate. SGD performs frequent updates
with a high variance that cause the objective function to fluctuate heavily. This
hinders convergence close to the minimum, but also can help to overcome getting
stuck in a local minimum. However, the greatest benefit lies in not needing to use
all the variables to compute the gradient which makes it suitable for cases where
the number of variables is extremely large. Finally, there is a variant that tries
to achieve a trade off between batch and stochastic gradient descent: mini-batch
gradient descent. In mini-batch gradient descent, for every iteration, the gradient
of the objective function is computed for a small number n of variables, called mini-
batches, of x:

xk+1 = xk − τ∇F (xk[i : i + n]). (2.11)

This way variance of the updates is reduced, leading to a better convergence, and
yet still the computation of the gradient can be faster.

Gradient descent is generally a slow method. Therefore, there are several algo-
rithm implementations to optimize gradient descent. Here we will only address some
of them, such as momentum, Nesterov’s accelerated gradient or conjugate gradients.
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For a review of these, and more gradient descent optimization algorithms, I recom-
mend the blog or article of Refs. [40, 41]. Mainly these optimizations of gradient
descent are based on choosing a better update direction, denoted by p, than the one
given by the gradient.

Momentum is a method that accelerates gradient descent by adding a fraction
m ∈ [0, 1] of the update direction of the previous step to the current update direction:

pk = mpk−1 +∇F (xk)
xk+1 = xk − τpk.

(2.12)

The way momentum works in gradient descent is the same as in the example of
a ball rolling down a hill, the ball gets faster as it accumulates momentum as it
rolls downhill. The momentum term increases if successive gradients point in the
same directions, accelerating the descent; and decreases if they change directions,
reducing or damping oscillations in the descent direction. This results in a faster
convergence, less variance in the updates and more likelihood to avoid (roll over)
local minima [42,43].

Another gradient descent acceleration method is Nesterov’s accelerated gradient
(NAG) [44]. In the example of a ball running downhill, with momentum this ball
rolls blindly following the slope. Wouldn’t it be better to have a smarter ball that
looks ahead to get a sense of where it is going? This idea of looking ahead is the
intuition behind NAG. NAG gives our momentum term this kind of prescience by
computing it the following way:

pk = mpk−1 +∇F (xk −mpk−1)
xk+1 = xk − τpk.

(2.13)

The explanation is as follows: as we know that we will use our momentum term
mpk−1 to update our variable, xk −mpk−1 thus gives an approximation to the new
position, and we can now look ahead by computing the gradient with respect to
the approximated new position. While gradient descent with standard momentum
first computes the gradient at the current location and then takes a big jump in
the direction of the updated accumulated gradient. In contrast, with Nesterov’s
momentum we first take a big jump in the direction of the previous accumulated
gradient, calculate the gradient at this updated position and then make a correction.
NAG reduces oscillations and avoids in some extent overshooting when approaching
the minima of the objective function.

In conjugate gradients the update is computed as follows [36,45,46]:

γk = ⟨∇F (xk), ATApk−1⟩
⟨pk−1, ATApk−1⟩

or ∥∇F (xk)∥2

∥∇F (xk−1)∥2

pk = γkpk−1 +∇F (xk)

τk = ∥∇F (xk)∥2

⟨∇F (xk), ATApk⟩
or ∥∇F (xk)∥2

⟨pk, ATApk⟩
xk+1 = xk − τkpk,

(2.14)

where ⟨ , ⟩ denotes the dot product. This update rule is similar to momentum but
instead of adding a fixed fraction of the previous direction to the current gradient,
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a variable fraction is added. This results in a search direction, that after a few
steps, points in the direction of the minimum rather than in the normal direction
of the isolines, as it happens in standard gradient descent (see Fig. 2.3). Therefore,
conjugate gradients needs less steps to converge, theoretically the same number of
steps as the dimensionality of our problem.

Figure 2.3: Comparison of the steepest descent (gradient descent with optimal step
size, in red) and conjugate gradients (in green) for minimizing a quadratic function
associated with a linear system. The update directions in gradient descent are always
normal to the isolines defined at that point, creating a zigzag trajectory. While in
the case of conjugate gradients, after the first step, the update directions point in
the direction of the center of the ellipsoid. Note also that conjugate gradients needs
less steps to converge than steepest descent.

In the case of an objective function with a least squares data fidelity term with a
nonlinear forward operator, namely

F (x) = 1
2∥A(x)− y∥2

2, (2.15)

the gradient is given by

∇F (x) = JT(A(x)− y), (2.16)

where J is the Jacobian matrix of A(x). In this case gradient descent and conjugate
gradients can still be used, but the step size needs to be determined by a line search
method, like the backtracking line search algorithm. Also, for conjugate gradients
the parameter γ is usually calculated with one of the following expressions which
are named after their developers:

γk = ∥∇F (xk)∥2

∥∇F (xk−1)∥2 (2.17)

is the Fletcher-Reeves formula [36,47],

γk = ⟨∇F (xk),∇F (xk)−∇F (xk−1)⟩
∥∇F (xk−1)∥2 (2.18)
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is the Polak-Ribière formula [36,48], and

γk = ⟨∇F (xk),∇F (xk)−∇F (xk−1)⟩
⟨pk−1, (∇F (xk)−∇F (xk−1)⟩

(2.19)

is the Hestenes-Stiefel expression [45]. The choice of one or the other is mainly a
heuristic matter [36,46].

In the nonlinear case one could also linearize the minimization problem. This is
done by linearizing A(x) in the vicinity of the current guess xk:

Ã(∆xk; xk) ≈ A(xk) + J∆xk, (2.20)

where ∆xk = x− xk and J is again the Jacobian matrix calculated with respect to
A(xk). Then by substituting A(x) by its affine approximation Ã(∆xk; xk), and by
multiplying both summands by JT in eq. (2.15), the following objective function is
obtained:

F̃ (∆xk; xk) = 1
2∥J

TJ∆xk − JT(y−A(xk))∥2
2. (2.21)

The nonlinear optimization problem is solved by iteratively taking small linear steps
given by the update

xk+1 = xk + ∆xk, (2.22)

where ∆xk is obtained by solving the linear least squares problem

ˆ∆xk = arg min F̃ (∆xk; xk), (2.23)

which is solved with one of the methods for linear systems. This method is known
as the Gauss-Newton method [31,36].

Adding a regularization or "damping" term of the form

αP(∆xk) = α∥Γ∆xk∥2
2 (2.24)

to objective function (2.21) yields

F̃ (∆xk; xk) = 1
2∥(J

TJ + αΓTΓ)∆xk − JT(y−A(xk))∥2
2, (2.25)

with Γ being a regularization matrix. For example, it can be chosen to be the identity
matrix (Γ = I), prioritizing solutions with smaller norms (known as l2 regulariza-
tion), or an operator performing the Fourier transform, to enforce smoothness. This
regularization improves the conditioning of the problem, and is what differentiates
the Levenberg-Marquardt algorithm from the Gauss-Newton algorithm [36,49,50].

Next we will consider the minimization of an objective function that involves not
only a data fidelity term but also a prior. First we consider the case of the l2 norm
term, as in the case of the Levenberg-Marquardt algorithm:

P(x) = 1
2∥Γx∥2

2. (2.26)
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Regularization with this kind of terms is also commonly known as Tikhonov regu-
larization, Ridge regression or weight decay [51, 52]. Here the prior term is divided
by two for the sake of convenience and weighted by the hyperparameter α. The
gradient of this term yields:

∇P(x) = ΓTΓx, (2.27)

thus the update is

xk+1 = xk − τ(∇D(xk) + α∇P(xk)) = (1− ταΓTΓ)xk − τ∇D(xk), (2.28)

which is similar to the update during gradient descent without regularization, but
with the difference that we introduce an additional subtraction from the current
guess. If the regularization matrix is chosen to be orthogonal ΓTΓ = I, or the
identity matrix, then the contribution of the regularization consists in reducing our
image vector in a fraction τα. Adding a prior term like this encourages the image
values to be small (towards zero, but not exactly zero).

Another commonly used prior is the l1 norm, defined as the sum of the absolute
values of the elements of a vector:

P(x) = ∥Ψx∥1 =
∑

i

|(Ψx)[i]|. (2.29)

where Ψ is some regularization matrix chosen in a way that the transformed image
vector is sparse. Therefore the l1-norm prior promotes sparsity (having relatively
few nonzero components) of our vector under some transformation. This kind of l1
regularization is also known as Lasso regression [30, 52]. The derivative or gradient
of this prior term leads to the following expression:

∇P(x) = ΨTsign(Ψx), (2.30)

where sign(·) is the sign function. The update rule is

xk+1 = xk − τ (∇D(xk) +∇P(xk)) = xk − τ
(
∇D(xk) + αΨTsign(Ψx)

)
. (2.31)

The effect of this prior is best understood with the example of an identity regu-
larization matrix Ψ = I. In this case a constant fraction α is added or subtracted
from every element of vector x depending on whether it is positive or negative,
respectively, therefore encouraging the image values to be zero.

Another option for the prior is to minimize the TV-norm of the image:

P(x) = ∥x∥T V , (2.32)

where the TV-norm is defined for a two-dimensional signal or image as:

∥x∥T V =
∑
i,j

√
(x[i, j]− x[i− 1, j])2 + (x[i, j]− x[i, j − 1])2. (2.33)

which can be interpreted as l2-norm minimization but where the regularization ma-
trix is defined as the two-dimensional gradient. Taking the derivative of the TV-
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norm with respect to each pixel results in the following expression [53,54]:

∇P(x)[i, j] =2
 (x[i, j]− x[i− 1, j]) + (x[i, j]− x[i, j − 1])√

(x[i, j]− x[i− 1, j])2 + (x[i, j]− x[i, j − 1])2
+

− (x[i + 1, j]− x[i, j])√
(x[i + 1, j]− x[i, j])2 + (x[i + 1, j]− x[i + 1, j − 1])2

+

− (x[i, j + 1]− x[i, j])√
(x[i, j + 1]− x[i− 1, j + 1])2 + (x[i, j + 1]− x[i, j])2

 .

(2.34)

Note that this expression is not valid for border pixels. In essence, this TV-norm
regularization or prior term has a denoising effect on the image as it tries to minimize
the derivative (differences) between adjacent pixels, promoting piecewise constant
images.

It is worth mentioning that the l1 and TV-norm are non differentiable (non-
smooth) functions, and therefore the previously presented gradients are in fact sub-
gradients. Subgradient methods tend to have poor convergence rates [55]. Proximal
gradient methods, such as FISTA3 [56] or ADMM4 [57] for imaging inverse prob-
lems, provide better convergence by formulating a smooth approximation to the non
differentiable prior function by applying a proximal method [58]. For example, the
proximal operator for the l1-norm is soft-thresholding, proxα∥·∥1(ui) = soft(ui, α) =
sign(ui) max(|ui| − α, 0). In fixed point iterative schemes, like in the FISTA algo-
rithm, the contributions of the smooth data fidelity function and the non-smooth
prior function are decoupled by alternating a gradient descent step with respect to
the data fidelity term and a soft thresholding step to enforce sparsity from the l1
prior [58, 59]. That is, the update is written as:

uk = xk − τ∇D(xk)
xk+1 = proxαP(uk) = soft(uk, τα).

(2.35)

2.3 Single-pixel imaging
The single-pixel camera (SPC) [60,61] is a perfect example of computational imaging
formulated with equations (2.2) and (2.3). Single-pixel imaging (SPI) is based on
sampling the object (x) with a sequence of masks (rows of measurement matrix A)
and the corresponding measurement of the total intensity coming from the overlap
of these masks and the object (stored in the vector y). The most remarkable fact is
that the detector does not need to have a pixelated structure. It is a so-called single-
pixel detector5 And opposed to a conventional camera, that captures the image in
a single exposure by mapping one-to-one the regions of the scene onto the pixelated
sensor plane, the measurements of the SPC are acquired in a sequential manner
by scanning the scene with the masks. We can construct our measurement matrix
with any orthonormal set of functions. Given an object of dimension N (where N

3Fast iterative shrinkage-thresholding algorithm.
4Alternating direction method of multipliers.
5Sometimes, single-pixel detectors are also called bucket detectors because of their ability to

recollect all the light coming from the overlapping of the object and the sampling masks.
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is the number of pixels), we just need to chose a mathematical basis of this N -
dimensional space as our measurement basis. This basis can be the canonical basis
(where A = I6), Hadamard, Fourier, discrete cosine, or wavelet, among many other.
Except for the canonical basis, all of these bases share two features. First, each
of the measurements with these bases takes information about several pixels of the
image at the same time, instead of taking information from one single pixel. This
usually increases the SNR of the measurements [62,63]. Second, while the inverse of
the measurement matrix can be computed for recovering the object via Eq. (2.3),
this entails memory and speed limitations as inverting matrices with a large number
of entries is quite inefficient. However, these bases are associated with fast and
efficient digital transformation algorithms, that make the inversion feasible even for
larger image sizes.

From an experimental point of view, the SPC consists of two main parts: the
spatial light modulator (SLM) and the single-pixel detector. Many different SLM
technologies are used for single-pixel imaging, such as LED arrays or liquid-crystal
devices (LCD), however the most convenient and commonly used choice are digital
light projectors (DLP) based on digital micromirror devices (DMDs)7. Thus, for the
remainder of this section we will consider the use of DMDs only. A DMD consist
of an array of several hundred thousand of individually addressable micromirrors
(with size in the order of ten microns). Each micromirror can be tilted at ±12◦ with
respect to the normal plane of the array. This way we can either reflect or block light
in one direction depending on the state of the micromirror. Therefore the DMD can
be used as a programmable binary reflective SLM. One advantage of DMDs is their
working principle based on semiconductor technologies, providing high modulation
rates (around 22kHz, but also up to 50kHz [64], or even 100kHz [65]), compared to
LCDs. Another advantage is that the micromirrors are made from metal (usually
aluminium) with low losses over the visible (and even the IR) spectrum. The masks
and the sample need to physically overlap before measuring the intensity value.
But this overlap can be done in different planes. This gives rise to two slightly
different experimental SPC configurations [60, 61]. In the former, the DMD is used
to modulate the light projected onto the scene, whereby the overlap occurs on the
scene plane. This is also referred to as structured illumination. The latter scheme
does not project structured patterns onto the scene, but does project an image of
the scene onto the plane of the SLM. This configuration is referred to as structured
detection. During this thesis both configurations have been used in different works.

The relative low number of pixels and refresh rate of current SLMs create the
bottleneck in resolution and acquisition speed of the SPC. While this problem can be
partially overcome by using advanced signal processing techniques such as adaptive
sensing strategies [66,67] or compressive sensing (CS, which will be discussed in the
next section), the SPC still offers modest resolution compared to conventional CCD
or CMOS sensors which have millions of pixels, and are cheap and fast. One might
be asking "what is the point in using a SPC?". The answer is the following: for

6This seems identical to the case of a conventional camera but where the measurement of the
intensity of each pixel is sequential in time and no pixelated sensor is needed. This is also known
as raster scanning.

7Even if DMD refers to the chip containing the micromirrors, it is commonly used to refer to
the whole light modulating device which includes the DMD chip but also the control electronics.
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conditions or tasks where pixelated sensors are neither cheap nor fast, where they
are not good enough and their single-pixel counterparts outperform them, or, in
the worst case, where array detectors are not even available. Single-pixel detectors
can be build in a broad range of spectral ranges, whereas pixelated sensors outside
the visible range tend to have relatively high costs (like in the infrared [25, 26, 68],
UV [69], and X and gamma rays [70–73] region of the electromagnetic spectrum,
or even for electrons [74] and neutrons [75, 76]) or are nonexistent (like in the ter-
ahertz regions [77–79]). Also high sensitivity pixelated sensors are more expensive
than single-pixel detectors such as avalanche photodiodes (APDs) or single-photon
avalanche diodes (SPAD) [67, 80, 81]. However, the area where the SPC stands out
the most is probably in multidimensional imaging, where specialized single-pixel
detectors allow to easily build cameras sensitive to spectral [82–87], time [83], po-
larization [85, 88, 89], depth or 3D [86, 90, 91], and holographic or phase [87, 92–94]
information.

Besides from the limited refresh rate and number of micromirrors, DMD technol-
ogy has another limitation: they are binary intensity-only modulators. That does
not mean that we are restricted to using basis functions that are binary and positive
valued. Almost any function can be generated with the DMD8. However implement-
ing such functions comes at a cost. The binary limitation can be by-passed using
spatial or temporal multiplexing. By using temporal multiplexing, grayscale values
are achieved by changing the amount of time each micromirror spends in the bright
and dark state. By using spatial multiplexing, instead of trading temporal reso-
lution for gray levels, spatial resolution is traded. This works by grouping several
micromirrors into a macropixel whose grayscale value is determined by the ratio of
micromirrors that are in the bright and dark state [96, 97]. In order to generate
negative-valued functions, temporal multiplexing can also be used.

These are some of the reasons why the Hadamard basis is a popular choice for
single-pixel imaging. The use of this basis for SPI was first demonstrated in [98].
The functions of the Hadamard basis are orthogonal with binary values of +1 or
−1, thus allowing to take advantage of the full refresh rate of the DMD. Hadamard
matrices are orthogonal and symmetric, that is, their transpose is equal to its inverse
(HT = H−1) and they are their own transpose (H = HT) such that HHT = NI.
This means that the inverse problem of image reconstruction (Eq. (2.3))can be
performed without matrix inversion. Also a fast digital transform is available for the
Hadamard basis: the fast Walsh-Hadamard transform (FWHT) [99]. The sampling
masks for imaging a N pixel image (of size

√
N ×
√

N) are created by reshaping the
rows9 of the Hadamard matrix (of size N × N) to be the same size as the image.
Examples of a Hadamard matrix and the sampling masks are shown in Fig. 2.4.

We can codify negative values by taking into account that the measurement
8Even complex-valued functions can be generated by a DMD by means of computer generated

holograms [92,95].
9The one-dimensional functions represented by the rows of the Hadamard matrix are called

Walsh functions, and the reshaped two-dimensional functions are called Walsh-Hadamard func-
tions.
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Figure 2.4: Example of the Hadamard matrix of order N = 64 (the matrix size
is N × N = 64 × 64), and some of the corresponding masks (Walsh-Hadamard
functions) of size

√
N ×

√
N = 8× 8 used to sample the scene with a SPC.

process of Eq. (2.2) is linear and that the Hadamard matrix can be expressed as

H =H+ −H−,

H+ =1
2 (1 + H) ,

H− =1
2 (1−H) ,

(2.36)

which is a linear combination of two positive valued matrices H+ and H−, and where
1 is a matrix where every entry is equal to one. H+ is the Hadamard matrix where
all the entries with value -1 are set to 0, and H− is its complementary. With these
properties the measurement can be expressed as a two step process:

y = y+ − y− = H+x−H−x, (2.37)

where in order to measure a single coefficient of y, first we have to project the cor-
responding function of H+, then its complementary function, and finally subtract
the measured values. This differential measurement process removes parasite signals
such as ambient light, or slow fluctuations of the light source. However, it comes
at the cost of doubling the number of patterns to be displayed on the DMD. In
the structured detection configuration, one can exploit both reflection directions of
the DMD (one arising from the micromirrors in the on state and another from the
micromirrors in the off state which display the complementary pattern) to measure
simultaneously the projections of H+ and H−. Furthermore, instead of using two
photodetectors, a single balanced detector, which subtracts the two signals in the
electrical domain, can be used to increase the dynamic range of the detection [100].
The two reflection arms of the DMD can also be used to measure simultaneously
with two different detectors. For example, this allows to acquire two different mul-
tidimensional images at the same time. Information from these two images could
be joined by using some data fusion algorithm as discussed in section 2.5.

It is interesting to note that a random permutation of the columns of the Hadamard
matrix H does change its symmetry but not its orthogonality. Therefore this ran-
dom alteration of the order of the columns generates a set of basis functions that
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resemble random or noise-like masks with all the advantages of a complete and
deterministic base. This is known as scrambled Hadamard [101]. Examples of a
scrambled Hadamard matrix and Walsh-Hadamard sampling masks are shown in
Fig. 2.5. The FWHT can still be used with scrambled Hadamard by taking into
account that sampling an image with disordered masks is the same as sampling a
disordered image with standard Hadamard functions.

Figure 2.5: Example of an scrambled Hadamard matrix of order N = 64 (the matrix
size is N ×N = 64× 64), and some of the corresponding masks (Walsh-Hadamard
functions) of size

√
N ×

√
N = 8× 8 used to sample the scene with a SPC.

Also we are not restricted to square masks. They can be tailored to the specific
problem. For example, the rows of H could be reshaped into rectangular masks
rather than square ones. In optics, a circular field of view is quite common, so
it is not surprising that masks that fill a circular area are desirable. In the work
described in Ref. [102], circular Hadamard masks are created by sequentially filling a
circular shaped area with the values of the Walsh-Hadamard functions. In Ref. [103],
circular Fourier patterns for SPI are used. In the work in Ref. [104], we created
circular (and scrambled) Walsh-Hadamard masks for SPI. In this work the bucket
detector was an integrating sphere with round apertures, and in order to image the
largest possible area we had to project circular masks. The work in question is
discussed in detail in the section 4.4. In Fig. 2.6, we show the schematics of the
proposed circular Walsh-Hadamard masks. The values along the rows of the Walsh-
Hadamard matrix are used for encoding equiangular segments, while the values along
the columns are used for encoding disks that scale with the squared radius. Basically
we assume that the Walsh-Hadamard matrices are represented in the (ρ2, ϕ) space,
and then we cast them to the (x, y) space. A similar strategy for encoding circular
Hadamard matrices can be found in [105,106], although without application in SPI.
The resulting patterns are orthogonal and have a constant pixel area.

2.4 Compressive sensing
Compressive sensing (CS) is a novel sampling theory that aims to reconstruct signals
from under-sampled measurements by combining sampling and compression into a
single measurement step [107–110]. SPI usually goes in conjunction with CS due
to the coded nature of acquisition, and the fact that most images are compressible
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Figure 2.6: Schematic of the implementation of circular and scrambled Walsh-
Hadamard masks for SPI. On the left we have a standard Walsh-Hadamard matrix
which is assumed to be represented in the (ρ2, ϕ). In the middle we have the same
matrix but with a random permutation of the matrix entries. And on the right we
have the projection of this matrix in the (x, y) space. The position of two specific
entries have been remarked in blue and red.

[60, 61, 98]. Here CS aims to reduce the number of masks to scan the scene (and
therefore acquisition time) by acquiring fewer measurements, lets say a number M ,
than the number of pixels, N , of the final reconstructed image. It relies on the fact
that images typically have a sparse representation in some basis, such as Fourier,
discrete cosine, Hadamard, or wavelet bases. This means that most elements of the
vector representing the transformed image are zero (or almost zero), and only a few
are nonzero. This fact is also exploited in conventional image compression such as
JPEG [111]. First, you acquire the full image. Then, you choose a mathematical
basis in which your image is sparse, and only store the most relevant elements of
the transformed image. With this approach, in order to compress an image, first
you need to measure all the information, and then you throw away most of it. It
seems more clever to measure the relevant data in the first place. And this is what
is accomplished with CS.

The mathematical formulation of the measurement process is, again, given by
Eq. (2.2), where the measurement matrix A is non-square (of size M ×N). Also we
suppose that our image, x, can be expressed in a different basis, R (usually called
recovery basis), where it has a K-sparse representation s, that is

s = Rx. (2.38)

This means that only K elements of s will be nonzero, and N −K elements will be
zero or very close to zero. However, the nonzero elements are not known in advance
and therefore we cannot measure directly with the sparse basis because most of the
relevant information would be omitted. Therefore, the measurement basis, that is
physically modulated with the DMD, has to be chosen to be maximally incoherent
with R [107, 110, 112, 113]. This incoherence can be understood as a measure of
dissimilarity between the elements of each basis. That is, every function represented
by a row of A should have a non-sparse representation in the recovery basis R. This
assures that each measurement contains information about many of the elements of
the sparse representation.

CS theory states that, with a number of measurements that satisfies the condition
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M ≥ O(K log (N/K)), the image in the sparse domain can be exactly, or at least
approximately, recovered by solving an optimization problem, commonly expressed
as

ŝ = arg min ∥s∥1 subject to ∥AR−1s− y∥2 ≤ ϵ, (2.39)
where ϵ quantifies the uncertainty in the measurement y due to noise. Whereupon
the image in the canonical (or pixel) domain can be recovered by

x = R−1s. (2.40)

The optimization problem of Eq. (2.39) is known as the basis pursuit problem
(with inequality constraints). Another approach considers solving the problem in
Lagrangian form, i.e.,

ŝ = arg min 1
2∥AR−1s− y∥2

2 + α∥s∥1, (2.41)

which is the same formulation as the inverse problem of Eq. (2.4) but where A has
been changed for AR−1. And although standard optimization theory states that
these two problems are theoretically equivalent, in practice they are not equally easy
to solve [114,115].

The role of the l1-norm regularization term in Eq. (2.39) or (2.41) is to ensure the
sparsest solution. Although the correct norm minimization that promotes sparsity is
the l0-norm, solving Eq. (2.39) or (2.41) with this norm is both numerically unstable
and a NP-hard problem, whereas l1-minimization can closely recover compressible
signal while being a linear problem without to much complexity [98,108,109,112,116].

To obtain the best results, the recovery basis should be chosen so that s is very
sparse, and to measure using functions that are as incoherent as possible with re-
spect to the recovery basis. The former condition is easily meet by using common
mathematical bases, such as discrete cosines, Fourier, Hadamard, or wavelets; in
which natural images tend to be sparse. Regarding the latter condition, for exam-
ple, we can use a random subset of a basis matrix (which of course should be different
than the recovery basis). This enables faster computations through fast transform
algorithms. However, these subsets of basis functions are far from being the optimal
choice regarding incoherence. A better option is to use random functions, as they
are maximally incoherent with most of the recovery bases. An even better choice
in some cases is to use a standard orthonormal basis whose functions have ran-
domly permuted entries, e.g. scrambled Hadamard, which has similar incoherence
properties to random functions and associated fast transforms.

Alternatively, a regularization consisting in minimizing the total variation (TV)
and reconstructing directly in the canonical domain in chosen. The optimization
problem in this case is written as

x̂ = arg min ∥x∥TV subject to ∥Ax− y∥2 ≤ ϵ. (2.42)

In this case only one basis, the measurement basis, has to be chosen.

There are several (off-the-shelf) implementations of the CS algorithm available,
such as Gradient Projection for Sparse Reconstruction (GPSR) [117], Spectral Pro-
jected Gradient for L1 minimization (SPGL1) [118,119], L1 Magic [120,121], TVAL3
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[122], or NESTA [115, 123], among several more. Of the algorithms mentioned
above, the only ones capable of minimizing the TV norm are L1 Magic, NESTA and
TVAL3 [124]. The L1 Magic package is not a single algorithm, but several; devel-
oped as a educational tool for CS. However, it is not suited for large scale problems
or difficult ill-posed problems as it lacks optimization and robustness. Faster and
more robust options are given by the TVAL3 and NESTA algorithms. The TVAL3
algorithm is based on an augmented Lagrangrian multiplier approach. NESTA in
short stands for Nestorov’s algorithm, and as the name may suggest, it is based on
two of Yurii Nestorov’s ideas. The first idea is the accelerated gradient as described
in section 2.2 The second idea is a smoothing technique based on a proximal method
to replace the non-smooth l1 or TV-norm with smoothed versions [125].

2.5 Data Fusion
Data fusion (DF) techniques aim to combine any number of individual datasets into
one single dataset that provides more consistent, accurate, and useful information
than that provided by any of the individual datasets. Similar to the ability of animals
and humans to combine information from multiple senses to improve their ability to
survive and to thrive, i.e. combining information from sight, smell, taste, our touch
to determine if it is safe to eat some food [126]; multidimensional data fusion systems
are capable of providing new insights into sample characteristics from a combined
view of multispectral, time-resolved, or polarimetric views of the scene [127–130].

Historically, some of the main fields of applications of DF have been remote
sensing and satellite imaging, where high spatial and high spectral resolution in a
single image is required, and where satellite design imposes severe constraints on the
energy consumption, bandwidth, number, size and weight of detectors [131–133].
Given these limitations, usually a single detector is not capable of providing the
desired data convincingly. Therefore it is quite normal to have multiple sensors,
each one with different spatial resolution and sensitive to a different spectral range
or to the polarization state of light. Usually two types of images are available,
high spatial resolution grayscale images (panchromatic images) and multispectral
images with coarser spatial resolution. After capturing the different images the DF
procedure helps to obtain rich chemical and morphological information about the
imaged surface.

Another important area of application for DF is life sciences, where the fu-
sion of information from different imaging modalities, such as ultrasound, mag-
netic resonance image (MRI), computed tomography (CT), or positron emission
tomography (PET), has been shown to offer insights that individual sources can-
not provide [134–140]. Another fields that benefit from DF are traffic state de-
termination [141], robotics [142], mobile phone cameras [143] or autonomous vehi-
cles [142, 144]. In the latter case, data fusion is used to combine information from
many different sensors, such as visible cameras for high spatial resolution, stereo
depth cameras, radar, lidar and ultrasonic sensors to provide a cloud of points in
the 3D space, and inertial measurement units providing information about the kine-
matics and dynamics of the car.

Fusion of images from any number of different cameras can be formulated similarly
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to the general computational imaging problem. We suppose that the forward model
for each of this cameras is given by the matrix Ai, that is, the i-th camera performs
a measurement yi on the object x given by

yi = Aix. (2.43)

Please note that the object x can be of any dimension. For example, if we wanted
to combine information from a multispectral camera with low spatial resolution
and a monochrome high resolution camera, then the merged image x would be a
high resolution multispectral image. As the measurements usually entail a size or
dimension reduction, Eq. (2.43) can be understood as the projection of the full
image over some subspace. With the previous example, the measurement of the
monochrome camera is a projection over the full 2D space, while the multispectral
camera provides a projection of x into the low spatial resolution and spectral space.

Given the datasets or set of mesurements (yi), the problem of finding an estima-
tion of the merged image x, that is compatible with all the individual measurements,
is formulated as the following minimization problem:

x̂ = arg min F (x), (2.44)

where the objective function is defined as the weighted sum of the quadratic differ-
ences between the projected x and the corresponding measurements, that is

F (x) =
∑

i

αiFi(x) + βP(x),

Fi(x) =1
2∥Aix− yi∥2

2,
(2.45)

where the hyperparameters αi tune the weight or contribution of the penalty function
associated to each individual camera, and also a prior term has been added for
completeness. The gradient of objective function (2.45) is defined as the sum of the
individual gradients

∇F (x) =
∑

i

αi∇Fi(x) + β∇P(x). (2.46)

Therefore the application of gradient descent for minimizing this kind of objective
functions is straightforward, with the only inconvenience of having to tune the dif-
ferent hyperparameters.
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Chapter 3

Time-resolved multispectral
imaging for fluorescence imaging

This chapter discusses the physical basis of fluorescence and fluorescence imaging,
including fluorescence lifetime imaging (FLIM). Also in this chapter, we present our
contributions to perform time-resolved multispectral fluorescence imaging and fluo-
rescence lifetime imaging by combining pixelated sensors with single-pixel cameras
using data fusion.

3.1 Fluorescence
One of the fundamental mechanisms of light interaction with matter in general, and
biological matter in particular, is luminescence [145–147]. The processes involved
behind luminescence are shown in the Jablonski diagram of Fig. 3.1. Absorption of a
photon can elevate an electron of a molecule from the ground state, S0, to an excited
state, Sn, in a process called excitation. Note that this excitation is not only caused
by interaction with light, but can also be caused by mechanical or chemical mecha-
nisms. The electron in the excited state can relax to the ground state by emitting
another photon, heat, or both of them. If another photon is produced, the emission
process is referred to as luminescence, which can be subdivided into fluorescence and
phosphorescence, depending on the electronic states accessed and on the lifetime of
the excited electron; otherwise, it is referred to as nonradiative relaxation. The
lifetime is the average time the electron spends in the exited state before returning
to the ground state. Once excited, the electron in the excited state Sn decays to
the lowest vibrational energy level in the excited state S1 via vibrational relaxation
(also referred to as internal conversion). The timescale of this event is in the order
of femtoseconds to picoseconds, and does not result in the emission of a photon as
it is a nonradiative transition. From S1, various transitions can be distinguished:
internal conversion to S0, fluorescence emision to S0 (also including its vibrational
states) with a lifetime in the order of nanoseconds, and intersystem crossing from
the singlet to a triplet state T1 with the subsequent phosphorescence emission to
S0. The transition to the metastable state, T1, by intersystem crossing alters the
electron spin. And as radiative de-excitation from T1 to S0 is spin-forbiden, emission
occurs only when thermal energy raises the electron to a state where relaxation is



allowed. This fact makes phosphorescence temperature-dependent and exhibit very
long lifetimes (in the order of miliseconds or longer).

Figure 3.1: Jablonski energy diagram showing excitation and various possible relax-
ation mechanisms, including fluorescence and phosphorescence emission. An exam-
ple spectra is shown to point out the shifts in wavelengths.

There are several characteristics to be pointed out from fluorescence emission.
Due to energy loss between the absorbed photon and the emitted one after inter-
nal conversions, fluorescence is red-shifted relative to the excitation light, that is,
fluorescence emission wavelength is usually higher than that of absorption. This is
known as the Stokes shift [145–148]. Even if the initial excited state is related to the
excitation wavelength, the transition to the lowest vibrational level of S1 before flu-
orescence emission takes place makes the fluorescence emission spectrum show very
little dependence on the excitation wavelength [146, 149]. For many fluorophores,
the fluorescence spectrum is a mirror image of the absorption spectrum [146, 150].
Finally, fluorescence light is incoherent even if the excitation light is coherent be-
cause uncertain delays in the vibrational relaxations cause photons to be emitted at
different times, usually spread over more than one period of the light wave [146].

After introducing several properties of fluorescence emission spectra and coher-
ence, the next important characteristic to be understood is the temporal evolution of
the emission, that is, how long after excitation does the emission process take place.
Here we use a rate law for a first-order reaction to derive the temporal dependence
of fluorescence excited by a very short light pulse. Assume we have a concentra-
tion C of molecules (measured in units of molecules/cm3), and manage to excite a
concentration C∗

0 of them to an excited state with our pulse. Then by ignoring any
intersystem conversion (and thus ignoring phosphorescence emission), and given the
constant rates kr and knr for radiative and non-radiative de-excitation, respectively,
the concentration of molecules in the excited state C∗ will vary in time according
to:

dC∗

dt
= −(kr + knr)C∗, (3.1)
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which can be solved to yield:

C∗(t) = C∗
0 exp (−t/τ), (3.2)

where we used the initial condition C∗(t = 0) = C∗
0 and where we defined the lifetime

τ of the excited state as:
τ = 1

kr + knr

. (3.3)

The total radiated energy from these molecules during de-excitation will be propor-
tional to the number of molecules inside the irradiated volume V and the radiative
rate kr:

Pfluo(t) = EemkrV C∗
0 exp (−t/τ), (3.4)

where Eem denotes the energy of the radiative transition. Thus fluorescence emission
from excitation by a pulse follows an exponential decay in time, with a lifetime
related to the radiative and non-radiative decay rates. The ratio of the number of
photons emitted to the number of photons absorbed is referred to as quantum yield.

In single-point measurements, i.e., non-spatially resolved, fluorescence is a power-
ful tool to achieve information concerning molecular cell biology. Although the en-
dogenous fluorescence (autofluorescence) properties of specific target molecules can
be exploited to provide label-free molecular contrast in cell biology, the molecules of
interest are typically tagged with exogenous labels such as fluorophores (fluorescent
molecules) or nanoparticles for both detection of diseased tissue and therapeutic
intervention [145,151–154].

3.2 Fluorescence imaging
Imaging of fluorescence is mainly used to obtain information about localization, that
is, to provide a mapping of fluorophore distribution and therefore of labelled proteins.
But by using multiple fluorophores with different spectral properties, fluorescence
imaging can also be used for co-localization of proteins within the spatial resolution
of the imaging system. Also, as fluororescence is extremely sensitive to the local
environment surroundings of the fluorophore, imaging can perform a sensing role.

Since the fluorescence process can be studied respect to the fluorescence inten-
sity, excitation and emission spectra, quantum efficiency, polarization response, and
fluorescence temporal trace or lifetime; fluorescence imaging is inherently a multi-
dimensional imaging domain. These parameters depend on the properties of the
fluorophores itself but are also affected by factors dependent on its local environ-
ment, such as local viscosity, temperature, refractive index, pH, calcium and oxygen
concentration, electric field, etc., which change the molecular electronic configura-
tion or the excitation and de-excitation pathways.

Fluorescence intensity imaging is probably the most straightforward technique. It
allows to determine the spatial localization of fluorophores. However, merely spatial
imaging of structures is not sufficient, and this information needs to be combined
with spectral, time or polarization related information in order to probe structure
and dynamics that provide useful information on biological functions.

Spectral information has always been valuable in fluorescence imaging as it allows
the simultaneous use of more than one fluorescent marker and map their distribution
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in different biological sites (tissue locations, organelles, etc.). Furthermore, one can
probe information about the local environment by monitoring the spectral shift in
the emission maximum or the change in the spectral profile of a fluorescent marker
[145,154].

Polarization is another dimension to take into account. It can readily be measured
using polarized excitation sources and detectors sensitive to the state of polarization,
and gives information about the rotational diffusion of molecules during the lifetime
of the excited state, which is dependent on the size and shape of the molecules, and
on the viscosity of the local environment. Usually, the sample is excited by a short
(ps) polarized light pulse, and fluorescence intensities are measured parallel (I||)
and perpendicular (I⊥) to the plane of incident polarized light. Then the anisotropy
function is determined as

r(t) = I||(t)− I⊥(t)
I||(t) + 2I⊥(t) . (3.5)

This anisotropy decreases exponentially from an initial value r0 with the rotational
diffusion time constant tr according to r(t) = r0 exp (−t/tr), with tr being in the
order of picoseconds [155]. And as tr is proportional to the viscosity of the envi-
ronment, fluorescence polarization can be used to study viscosity of cells or their
membranes [150,154].

In addition to fluorescence intensity and spectra, fluorescence lifetime reveled to
be an important parameter characterizing the interaction of a fluorescent molecule
with its molecular and cellular environment. Fluorescence lifetime imaging mi-
croscopy, often abbreviated as FLIM, provides a spatial lifetime map of a fluorophore
within a cell or a tissue. The use of fluorescence lifetime as an image contrast
mechanism offers a great number of advantages over steady-state or intensity only
fluorescence imaging [154,156]:

• The fluorescence lifetime is a highly sensitive probe of the local environment.

• Fluorescence lifetimes are independent of the fluorescence intensity, concen-
tration, and photobleaching of the fluorophore.

• Lifetime can be used to distinguish spectrally overlapping fluorophores, or
to help distinguish a fluorophore that exhibits similar spectra but different
lifetimes in different environments.

Generally, the time-resolved fluorescence intensity profile following instantaneous
excitation will exhibit a mono- or an N-component multi-exponential decay that
may be modelled as:

I(t) =
N∑

i=1
Ai exp(−t/τi) + const, (3.6)

where each pre-exponential amplitude is the intensity at time zero for the i-th com-
ponent. A mono-exponential (N = 1) describes the emission of a large ensemble of
identical molecules (or a large number of excitations of the same molecule). And
a multi-exponential describes the presence of multiple fluorophores species or dif-
ferent states of the same fluorophore arising from interaction with the local envi-
ronment. There is a general rule stating that as more parameters (Ai and τi) are
used to describe the fluorescent signal, a higher number of photons need to be de-
tected to achieve an accurate measurement of them [154, 157, 158]. Thus, fitting
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the fluorescent decay profile to a multi-exponential decay model requires increased
measurement times, which is a problem in terms of temporal resolution for imaging
dynamic samples, photobleaching or photodamage. Therefore in some applications
it is preferable to approximate the multi-exponential profile with a single exponen-
tial decay model. And even though the resulting average lifetime does not provide
the same information it can still be useful as it reflects changes in the decay times.
The number of photons required to determine the parameters of a multi-exponential
decay model can also be reduced by assuming a priori that some parameters, e.g.
τi, take the same value in all the pixels of the image. This is widely known as global
analysis [159].

FLIM techniques, and in general fluorescence lifetime measurement methods, can
be categorized as time- or frequency-domain techniques, according to whether the
fluorescence signal is measured as a function of time delay after a pulsed excitation or
whether lifetime information is obtained from measurements of phase (attenuation
and delay) between the fluorescent signal and a periodically modulated excitation
source.

In the frequency domain, the simplest approach is to use a sinusoidally modu-
lated excitation source (with frequencies of around 100MHz to provide ns lifetime
resolution, or up to several GHz for ps resolution). This excitation will produce a
fluorescent signal also with a sinusoidal modulation but with a different modulation
depth and a relative phase delay. For a mono-exponential decay, by measuring the
relative modulation, m, and the delay, ϕ, the lifetime can be determined using one
of the following equations (or an average of both):

τϕ = 1
ω

tan (ϕ),

τm = 1
ω

( 1
m2 − 1

)1/2 (3.7)

where ω is the angular frequency [154]. In the case of multi-exponential decay, the
lifetime values from Eqs. (3.7) will differ, and excitation with a sum of sinusoidally
modulated signal with different frequencies are needed to untangle the different
lifetime values [154,160,161] Also the use of non-purely sinusoidal modulation allows
to use all the harmonic Fourier frequencies that make up the signal to retrieve more
information [154, 162]. The idea behind the time domain method is rather simple,
is consists in using an ultrashort pulsed excitation source and to directly measure
the temporal decay of the fluorescence signal.

Another categorization for time-resolved or fluorescence lifetime determination
can be made according to the nature of detection. Here we can distinguish time-
gated and photon counting detection. Gated detection determines the relative tim-
ing of the fluorescence compared to the excitation signal. In the case of time-domain
measurements and a single-exponential decay model with known or zero background,
the lifetime can be determined with only two time-gated measurements with the fol-
lowing analytical expression:

τ = (t2 − t1)/ ln (I1/I2), (3.8)

where I1 and I2 are the accumulated photons for a duration of ∆T at times t1
and t2, respectively. This expression is referred to as rapid lifetime determination
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(RLD) [154, 163, 164]. There are also analytical RLD expressions for the case of
unknown background, which requires three gates, and bi-exponential decays, which
require four gated measurements [154, 165, 166]. For more complex decay profiles,
the fluorescence signal has to be obtained at a higher number of delays to obtain
the full temporal profile and fit the curve to the multi-exponential model.

In photon counting techniques, detected photons are assigned to different time
bins to build up histograms of the decay profile. They can further subdivided into
single-photon counting techniques, such as time-correlated single-photon counting
(TCSPC), and techniques that count more than one photon per excitation pulse,
like high speed analog to digital converters (ADCs) or time-binning based techniques
[150,154,167]. In TCSPC a detector converts a single photon to an electronic pulse
and the TCSPC electronics records it arrival time with respect to the excitation
pulse. This process is repeated many thousand times to create a histogram of photon
arrival, showing their statistical intensity as a function of time. TCSPC is one of
the most accurate methods of lifetime determination due to the shot noise-limited
detection, a high photon economy, low temporal jitter, a high temporal precision
(presenting a large number of temporal bins), and a high dynamic range. The major
drawback is a low acquisition rate due to the necessity to operate at sufficiently low
florescence flux levels to ensure single photon detection and avoid pulse pile up1

[168]. In photon time-binning techniques, a histogram is build up by accumulating
the photoelectrons arising from the detected photons in a number of different time
bins [154, 169]. To obtain lifetime information, the histogram (representing the
temporal decay profile) is fitted to the mono- or multi-exponential decay model, e.g.
with a nonlinear least-squares Levenberg-Marquardt algorithm (similar to the one
explained in section 2.2, but in this case not applied to images).

A further categorization of FLIM techniques can be made attending the exten-
sion of the excitation source. This way we can distinguish between wide-field and
single-point scanning techniques. In wide-field imaging techniques a broad region of
the sample is illuminated and detection is performed with a spatially resolved detec-
tor. On the other hand, single-point scanning imaging techniques use single-channel
detection systems, i.e., without spatial resolution, and scan the sample point-to-
point. Usually, wide-field FLIM is implemented with gated imaging detectors, such
as streak cameras2 , while point-scanning FLIM techniques make use of photon
counting detectors to sample the fluorescence signal. Recently, development of ar-
rays of single-photon avalanche diodes (SPADs) with TCSPC electronics for each
individual pixel has made possible wide field imaging with photon counting detec-
tion. However these SPAD arrays suffer from a low pixel count and are therefore
unsuitable for high resolution FLIM [171–174].

In the time domain, the scanning FLIM approach with TCSPC detection provides
high-temporal resolution and the best lifetime estimation. However, due to the
prolonged exposure time to achieve a sufficient photon count, a considerable light
exposure is needed, which is undesirable due to photobleaching, photodamage or

1Pulse pile up refers to the problem of more than one photon arriving in a single-photon detec-
tion period, which results in inaccurate lifetime estimations.

2A streak camera is a device that measures very fast light phenomena by providing spatial and
temporal (and even spectral) information. It works by accelerating and deflecting photoelectrons
to separate them according to their arrival time [170]
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phototoxicity. Light dose can be reduced, or at least spread over the whole image
area, in the wide-field imaging approach by using sensitive imaging detectors.

The SPI technique described in the previous chapter enables imaging with a
single-point detector without scanning the sample point-by-point by using structured
wide-field illumination. Therefore, a SPC for time-resolved fluorescence imaging or
FLIM combines advantages offered by wide-field illumination with the advantages
of photon counting technologies (such as TCSPC): reduced light exposure per unit
area and good temporal resolution for accurate lifetime estimation. Such systems
have been recently developed by different groups [83, 175]. However, SPI is still
bounded by a trade-off between acquisition speed and spatial resolution. Because
SPI systems are sequential in nature, to achieve higher spatial resolution more masks
need to be generated on the SLM to sample the scene, thus increasing light exposure
time. This problem, together with the inherent high amount of data generated by
a multidimensional imaging system such as time-resolved multispectral fluorescence
imaging, tends to generate bottlenecks in acquisition, transmission, storage, and
computational power, which limit the capability of such systems to perform in real
time [176]. Signal processing techniques, such as compressive sensing, help alleviate
the aforementioned data processing hurdles.

In this chapter, we describe a different and novel approach that combines the
SPI and DF paradigms. The capture process is achieved using detectors that in-
dividually gather information about a reduced number of dimensions (space, time,
and spectra). The system relies on the use of two different kind of cameras: low
spatial resolution SPCs capturing multispectral and time-resolved information, and
a conventional array detector capturing high spatial resolution images. After the
measurement process, the individual 2D, 3D or even (low spatial resolution) 4D
projections are merged in the final 4D hypercube. By doing so, it allows to capture
high spatial resolution, multispectral, and time-resolved fluorescence images. This
approach provides an efficient multidimensional imaging system that is not affected
by bottlenecks in data transmission or storage limitations, as each individual sensor
measures only a small fraction of the whole information.

Three different works based on the same idea will be presented in the next sec-
tions. All three of them share a similar experimental setup, based on the combined
use of SPCs and conventional cameras. They differ based on whether they are imple-
mented for macroscopic imaging or microscopy, structured illumination or detection,
or on the number of different imaging devices that are fused. In the first one a sys-
tem for multispectral and time-resolved macroscopic imaging is presented [177]. The
second one implements the same idea to microscopy and exploits the additional use
of CS to reduce the amount of measurements [178]. In the last one we introduce
our idea to perform FLIM by introducing the multi-exponential decay model fitting
into the DF process.

It is important to point out that while we developed our work on DF of SPCs
and conventional cameras for multispectral and time-resolved fluorescence imaging,
other groups have used similar DF-based approaches to create high-spatial-resolution
time-resolved fluorescence imaging systems by combining SPAD arrays, which have
inherently low spatial resolution, and conventional cameras [174,179].
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3.3 Time-resolved multispectral macroscopic flu-
orescence imaging

The system described in this work combines the images obtained with two SPCs
with the image obtained with a CMOS cameras following the framework depicted
in Fig. 3.2. Individually, each SPC provides multispectral or time-resolved images
with low spatial resolution, while the CMOS sensor captures a high spatial resolution
image of the sample, but neither spectral nor time-resolved. The aim is to use DF
to combine these three images to acquire full 4D reconstructions (with two spatial
dimensions, x and y, together with the spectral, λ, and temporal, t, dimensions) of
a fluorescent sample with different fluorophore species.

Figure 3.2: Spatiotemporal–spectral data fusion framework. A CMOS camera ac-
quires a high spatial resolution image with neither temporal nor spectral resolution.
A multispectral SPC acquires a low spatial, but high spectral resolution datacube,
using a spectrometer as its detector. Last, an additional SPC measures a low spa-
tial, but high temporal resolution datacube, using a fast bucket detector. All three
datasets are combined via regularization to obtain a 4D high-resolution spatial, tem-
poral, and spectral hypercube.

For each camera, we can formulate a forward model that represents the acquisi-
tion of a projection of the high-resolution 4D hypercube, denoted by x, over several
dimensions. The measurement for the CMOS camera is expressed as ycmos = S Tx,
where S and T represent the spectral and temporal integration operators, respec-
tively. S and T, in combination, project x over the 2D space. The forward models
for the two SPCs are formulated in a similar way. For the spectral SPC the forward
model is given by yspec = RL Tx, where RL is the spatial downsampling operator.
RL projects a high spatial resolution image into the low resolution space, i.e., per-
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forms a spatial downsizing to match the low spatial resolution of the SPC. Lastly,
for the time-resolved SPC we have ytemp = RL Sx. Some insight about these op-
erators is provided in Appendix A. Once we have formulated the different forward
models, the problem then resides on finding an estimation of the hypercube, x̂, that
is compatible with the three measurements. This is done by solving the problem of
Eq. (2.44), where the objective function given by Eq. (2.45) is

F (x) =1
2∥S Tx− ycmos∥2

2 + 1
2α∥RL Sx− ytemp∥2

2+
1
2β∥RL Tx− yspec∥2

2.
(3.9)

The first term in Eq. (3.9) minimizes the quadratic difference between the projec-
tion of the 4D hypercube over the full resolution 2D space and the image obtained
with the CMOS camera. The second term minimizes the difference between the
projection of the 4D hypercube over a low-resolution 3D space (x, y, t) and the mea-
surement of the time-resolved SPC. The last term minimizes the difference between
the projection of the 4D hypercube over a low-resolution 3D space (x, y, λ) and the
multispectral SPC measurement. The hyperparameters α and β tune the relative
weight of each data data fidelity term, and have been tuned to yield the best results.
Note that no prior term was added3. Given the gradient of the objective function
of Eq. (3.9),

∇F (x) =TT ST(S Tx− ycmos) + αST RT
L(RL Sx− ytemp)+

βTT RT
L(RL Sx− yspec),

(3.10)

minimization is performed with a standard gradient descent algorithm with back-
tracking line search. The code is implemented in MATLAB and publicly available
together with an example dataset [180].

The experimental implementation of the system is shown in Fig. 3.3. The ex-
citation light source is a 40 MHz mode-locked supercontinuum fiber laser (Fian-
ium, SC450, 6 ps pulsewidth) spectrally filtered thought a bandpass filter centered
at 480 nm with 10 nm FWHM. The illumination area is 2.5 × 2.5 cm2. On the
detection side, we have the three detectors working simultaneously. The CMOS
camera (Grasshopper GS3-U3-23S6M, Point Grey Research) is used to acquire an
512 × 512 px monochrome image of the sample (ycmos). In parallel, the sample is
imaged onto the surface of a DMD (Discovery Kit 4100, Vialux), corresponding to
a structured detection configuration. This DMD sequentially codifies a set of 2048
Walsh-Hadamard masks for SPI acquisition, to reconstruct 32 × 32 px images. In
order to image simultaneously with both SPCs and speed-up acquisition, we use
both reflection arms of the DMD in parallel. This also improves light efficiency as
both reflection paths are used. In one reflection path, we place a time-resolved de-
tector: a hybrid-PMT (HPM-100-50, Becker & Hickl) connected to a TCSPC board

3No prior was added because it was not needed in this experiment. Initially, we tried several
priors, but we found that the algorithm converged to the same solution even without a prior. This
is probably due to the well-behaved measurement, with little noise and with fluorophore species
that are spatially separated.
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(SPC-130-EM, Becker & Hickl), which provides photon time-of-arrival histograms
on a temporal window of about 25ns, with up to 4096 time bins. Nonetheless, to
reduce noise, binning of 16 time bins of the temporal trace is performed. The image
provided by this time-resolved SPC (ytemp) is a 32 × 32 × 256 datacube (32 × 32
pixels with 256 time bins of 97.7 ps each). In the other reflection direction, we
have a multispectral detector consisting in a spectrometer (Acton, sp-2151i, Prince-
ton Instruments). The spectrometer includes a difraction grating (600 lines/mm)
that disperses the light onto a 16-channel photo-multiplier tube (PMT, PML-16-C,
Becker & Hickl). This multispectral SPC produced an image (yspec) consisting in a
32 × 32 × 16 datacube (32 × 32 pixels with 16 spectral channels covering a range
between 510 and 650 nm).

Figure 3.3: Experimental implementation of the multispectral time-resolved fluores-
cence imaging system that merges a conventional camera and two SPCs with DF.
The object is illuminated in reflection geometry with a laser beam. The conven-
tional camera records a high-resolution 2D image of the object. The object is also
imaged on the DMD. A sequence of Hadamard patterns is codified on the DMD at
a high frame rate. For each pattern, the light reflected by the DMD is collected
in parallel by a time-resolved bucket detector and a spectrometer coupled with a
detector array.

Both images from the multispectral and time-resolved SPCs share the same point
view of the scene. Nonetheless, the CMOS camera sees the scene from another
perspective. To overcome this problem, the CMOS image was aligned with the SPC
images by means of image registration [181].

The imaged object is a macroscopic fluorescent sample with multiple fluorophore
species. More specifically, it consists of a plaque with three letters (U,J, and I) form-
ing a minimalist version of our university’s statutory logo. The U character con-
tains the 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM)
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laser dye painted on white paper, while the J and I characters are made of fluo-
rescent plastic slides, respectively emitting in the green and orange regions of the
spectra.

The image acquired by the CMOS camera and the spatial projections of the
multispectral and time-resolved images can be seen in Fig. 3.4. Insets show the
spatial resolution at different points of the letters.

Figure 3.4: Representation of the three measured datasets. On the left the high-
resolution image from the CMOS camera. In the middle the spatial projection of
the multispectral SPC image. And on the right the spatial projection of the time-
resolved SPC image. The three insets at different point of the characters show the
spatial resolution of the SPC images.

After the acquisition, the three datasets were feed to the DF algorithm, where
they were merged to generate a 4D hypercube of size 512× 512 × 16 × 256 (which
is approximately one giga-voxel). In fact, the measurements are only a very small
fraction of the information contained by the reconstructed data. Considering the
number of measured (M) versus the reconstructed (N) voxels, we can define a mea-
surement ratio as M.R. = M/N = 512×512+32×32×16+32×32×256

512×512×16×256 ≈ 0.0005. Visualizing
this 4D information on a 2D medium such as this manuscript is tricky. Anyway, Fig.
3.5 shows our best attempt on visualizing the DF recovery provided by merging the
three individual datasets. Here we have the spatial projection of the hypercube with
the same insets as in Fig. 3.4 to highlight the increase in spatial resolution of the
images when compared to the SPC images. In Fig. 3.5, we also show the temporal-
spectral traces for different regions of the sample. With these 2D maps of time versus
wavelength we can identify that the regions with the J and I characters present very
similar temporal traces, but different spectral signatures; while the regions with the
U and I characters have similar spectral signatures, but different temporal decays.
Thus, by exploiting both spectral and temporal information, we can distinguish the
three fluorescent species present in the sample. From the individual datasets alone,
which lack combined spectral and temporal information, this classification could not
be made. A visualization of the full reconstructed dataset can be done with a movie
showing the temporal evolution of the 16 different spectral channels. This can be
found in the visualization published together with the article [182].
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Figure 3.5: Results from the DF process. Spatial projection of the DF-recovered 4D
hypercube and temporal-spectral traces for the different characters (averaged over
multiple pixels for the U, J, and I characters) present in the sample. The insets
show the increased spatial resolution when compared to the SPC datasets.
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Although the improvement in spatial resolution might not seem so high, ac-
quiring 512x512 pixel hypercubes solely with the SPCs would result in acquisition
times that are 256 times longer due to the sequential nature of SPI (because more
masks have to be scanned to obtain higher resolution). Also, DF between the two
high-resolution 3D datasets would be needed to merge the temporal and spectral
information. Finally, the measurement and reconstruction voxel ratio would also be
higher: M.R. = M/N = 512×512×16+512×512×256

512×512×16×256 ≈ 0.07.

To further test the quality of the results, we compared the recovered spectra
and fluorescence decay with reference measurements of the species present in the
sample. The reference temporal traces were measured with a fast detector (1024
temporal bins of 24.4 ps each). The normalized data from the DF reconstruction
and the reference measurements are shown in the top of Fig. 3.6. Each temporal
trace is fitted to a mono-exponential decay. The lifetime values obtained from the
DF reconstruction for the U, J, and I characters are τU = 2.07 ns, τJ = 9.07 ns, and
τI = 10.8 ns, respectively, which show very good agreement with the reference values
for the three fluorophores. The spectral reference measurements were performed
with a high-resolution spectrometer (Hamamatsu TM-VIS/NIR C10083CA-2100).
The comparison with the spectral signatures of each of the three characters is shown
in the lower half of Fig. 3.6, showing good agreement with the results from the DF.

3.4 Time-resolved multispectral fluorescence mi-
croscopy

Once we demonstrated the feasibility of the DF approach for macroscopic imaging,
the next logical step was to use it to perform multi-dimensional fluorescence mi-
croscopy. While the main framework is the same, the application to microscopy,
and specially to biological samples such as cells, entails obviously some changes in
the experimental setup but also some challenges to overcome such as, for example,
the greater complexity of the samples and measurements with lower SNRs. Unlike
the sample used for our macroscopic imaging system, biological samples present
more complex shapes, both in the spatial distribution of the fluorescence emission
and in the shape of the spectro-temporal signal. Usually fluorophores with different
decay times and different spectral signatures coincide at the same spatial position,
resulting in complex spectro-temporal traces. On the other hand, lower excitation
intensities have to be used to avoid photobleaching or photodamage, even more in
microscopy where the light is concentrated in a smaller area. This results in weaker
signals and therefore images degraded by noise.

Contrary to the previously described system for macroscopic fluorescence imag-
ing, with a structured detection scheme and where two SPCs were employed, in this
work, a single SPC in structured illumination configuration was employed to provide
the spectral and temporal information in a 4D low-spatial-resolution dataset. The
experimental setup is shown in Fig. 3.7. The excitation is performed with the same
pulsed laser as in the previous experiment, but in this situation filtered by a band-
pass filter centered at 520 nm (FB520-10, Thorlabs, 10 nm FWHM). Next, light is
projected on a DMD (V-7000, Vialux). This scheme corresponds to a structured il-
lumination configuration. The light modulated by the DMD is sent to the specimen
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Figure 3.6: Temporal and spectral traces quality estimation. Temporal (top) and
spectral (bottom) traces for the three species present in the sample (U, J, and I
characters). Solid lines correspond to the reference temporal traces and spectral sig-
natures present in the sample, while the markers correspond to the values extracted
from our 4D reconstruction. To ease visualization, we show only one of every two
intensity values recovered by the DF algorithm in the temporal traces. The legend of
the top figure shows two lifetime values for each region or fluorophore, corresponding
to the fit of the reconstructed and reference temporal traces.
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by a tube lens (f = 200 mm, AC508-200-A, Thorlabs) and a microscope objective
(Plan N 40× NA=0.65 infinity corrected, Olympus). With the choice of this objec-
tive, and for modulations involving 512× 512 DMD mirrors, the illuminated area of
the sample, and thus the field-of-view (FOV), is about 150× 150 µm2.

In the detection path, the fluorescence signal is selected with a long-pass filter at
550 nm (FELH0550, Thorlabs), and addressed to the same imaging spectrometer,
coupled to the 16-channel PMT detector, as in the macroscopic setup. The signal
from this detector is processed with the TCSPC board. By combining the structured
illumination with this detector we are able to obtain a low spatial-resolution 4D
dataset (denoted by yspc) of size 32×32×16×256 (32×32 pixels, 16 spectral channels
which are tuneable to some extent over the 550-720 nm range, and 256 temporal bins
of about 100 ps each). Nevertheless, to further reduce the number of measurements,
CS with the TVAL3 algorithm is used to reconstruct a low-resolution image for
each time bin and each spectral channel from an undersampled measurement with
a scrambled Hadamard basis. Since the regularization is performed by minimizing
the TV norm, no second basis is needed, i.e., the recovery basis is the canonical
basis. A second purpose of using CS with TV-norm minimization is the reduction
of noise in the images. As this SPC already provides full 4D information, but in
low spatial-resolution, the forward model is formulated as yspc = RLx. Also, the
SPC features a non-mechanical zoom capability, which allows to reconstruct images
in a region of interest (ROI) smaller than the FOV, and hence increasing spatial
resolution, without changes in the optical setup. This works by codifying the same
32 x 32 pixel patterns with different numbers of micrromirrors in the DMD. For
example, instead of using 512 x 512 micromirrors (16 x 16 micromirrors for each of
the 32 x 32 pixels) we can use 256 x 256 micromirrors (involving 8 x 8 mirrors for
each pixel) thus increasing lateral resolution in a factor of two.

Also in the detection path, with the help of a flip mirror, the scene is imaged
on a 16-bit 512× 512 cooled CCD camera (VersArray 512, Princeton Instruments).
This camera is used to acquire the high-resolution image (256 × 256 pixels) of the
sample, denoted by yccd. The forward model for this camera is the same as in the
previous system. This image is also used to create a mask in the spatial dimensions
for yspc, based on a fixed threshold, to exclude noisy background pixels where no
signal is expected based on the information provided by the high-resolution camera.

From the mathematical point of view, the fusion process of yspc with yccd, to
reconstruct a high-resolution 4D hypercube, can be expressed as the minimization
of the following objective function:

F (x) = 1
2∥S Tx− yccd∥2

2 + 1
2α∥RLx− yspc∥2

2 + 1
2β∥RGx−Rgyspc∥2

2, (3.11)

where the third least-squares term enforces a global fidelity of the time-spectra
map by applying the operators RG and Rg, which perform a spatial integration
over the high-resolution and low-resolution data cubes, respectively, to get a time-
spectra map. The goal of this last term is to enforce the fidelity of the spectro-
temporal information without additional enforcement of spatial similarity. A similar
term was included in the objective function for DF in Ref. [174]. α and β are two
hyperparameters that are manually tuned to find the best estimation. No prior was
added to the objective function as the reconstruction of the images of SPC already
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Figure 3.7: Optical scheme of the DF-based multispectral time-resolved fluorescence
microscope. Structured illumination from a pulsed laser and a DMD is projected
onto the sample with a tube lens and a microscope objective. The reflected light
by the sample is either imaged by a CCD camera or integrated by a time-resolved
multispectral single-pixel detector. This detector consists an imaging spectrometer
coupled to a 16-channel PMT detector conected to a TCSPC board.

includes a TV-norm regularization. The gradient of this objective function is

∇F (x) = TT ST(S Tx− yccd) + αRT
L(RL x− yspc) + βRT

G(RGx−Rgyspc). (3.12)

And minimization is performed through conjugate gradients with line-search.

Two different samples have been imaged with this system. The first one contains
fluorescent beads (of 4 µm of diameter) deposited on a microscope slide (FocalCheck
F36909, Invitrogen). The beads are stained with four different fluorophores; al-
though only two of them emit within the detection spectral window4. The second is
a sample of fixed human embryonic kidney 293 (HEK-293, ATCC) cells. The cells
are treated with poly (3-hexylthiophene-2,5-diyl) nanoparticles (P3HT NPs) (ab-
sorption at 500 nm and emission at 650nm), and their actin5 filaments are stained
with phalloidin conjugated to Alexa-Fluor 488 (ALF, absorption at 490 nm and
emission at 520 nm, Sigma-Aldrich). The relevance of such samples resides in the
nanoparticles’s role at interfacing with living cell, as they can be used, for example,
for cell stimulation, biosensing, and drug delivery [183–185].

For the sample with the beads, the image acquired by the CCD camera is shown
on the left of Fig. 3.8(a). The figure on the right of 3.8(a) shows the spatial projec-
tion, i.e., integrated over the entire recorded spectra (550-690nm) and a temporal
window of 10 ns from the temporal emission peak, of the SPC dataset. The image
from the SPC shares the same FOV as the CCD camera. This dataset is recon-
structed with the TVAL3 CS algorithm by using 307 of the 1024 patterns, which
gives a compression ratio (CR = 1−M/N) of 70%.

4It may appear illogical to use four different fluorophores for staining when only the emission
of two of them can be measured, but the reason for this is that the sample was not specifically
prepared for this imaging system.

5Actin is a family of proteins that form microfilaments in the cytoskeleton.
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Figure 3.8: Datasets and results for the sample with the beads. (a) Left: Image
from the CCD camera. Right: spatial projection of the SPC dataset acquired with
CR=70%. (b) Left: Images from the ROI in red in (a) at different intermediate
steps of the DF process. Right: Spectral and temporal traces from the blue and
orange spots, before and after the DF process.
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The results from the DF are shown in Fig. 3.8(b). On the left we have the
reconstructed images at intermediate iterations of the DF process, which shows the
increase in spatial resolution of the 4D hypercube. The shown images are from
within the small area indicated by the red square in Fig. 3.8(a). On the right side
of Fig. 3.8(b) we have the temporal traces and spectra of the two highlighted spots
(blue and orange). Initially, the two spots contain the same spectral and temporal
information as they belong to the same pixel of the low-resolution dataset. However,
after the DF, these two spots correspond to different areas of the image. The orange
spot lies in the background, while the blue one corresponds to a bead. Therefore,
the temporal and spectral traces have changed: the temporal trace and spectral
signature of the orange spot is flat, while the blue spot shows a defined spectrum
and a temporal decay.

Figure 3.9: Study of the effect of compression on the quality of the reconstruction.
(a) Images obtained with the SPC with the zoom feature within the red square of
Fig. 3.8(a) for different levels of compression: CR = 0%, 60%, 80%, 90%, and 95%.
(b) and (c) show the impact of compression on the quality of of the reconstructed
spectra and temporal trace, respectively, from the area indicated by the yellow arrow
in Fig. 3.9(a). (d) Analysis of the PSNR image quality metric for increasing CR.

Since temporal and spectral information is solely provided by the SPC, it is
crucial to test how this information deteriorates with increasing compression. Figure
3.9(a) shows the images obtained with the zoom feature over a group of three beads
within the read square of Fig. 3.8(a) for different levels of compression: CR =
0%, 60%, 80%, 90%, and 95%, respectively. The size of the zoomed area is about
20 × 20 µm2 by using only 64 × 64 micromirrors of the DMD (2 × 2 mirrors for
each pixel). Hence, the pixel size of the zoomed image is about 0.6 µm, which is
comparable to the spatial resolution achievable with the CCD camera. Obviously,
the resolved spatial details decrease with increased CR, however, up to CR = 90%
is is still possible to recognize the shape of the three beads. An analysis of the image
similarity with the PSNR metric, with respect to the corresponding area of the CCD
camera image as ground truth, is shown in Fig. 3.9(d). Here we can see that image
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quality decreases drastically for CRs above 80−90%. The impact of compression on
the quality of the reconstructed spectral and temporal information is analysed in Fig.
3.9(b) and (c). In these graphs we show the spectra and temporal trace from a ROI
of 5×5 pixels centered around the bead indicated with a yellow arrow in Fig. 3.9(a),
integrated over a 10 ns temporal window from the emission peak and integrated over
the 560-600 nm spectral band, respectively. The solid lines represent the traces for
the case of no compression, while the orange dots represent the traces at CR = 90%.
The semi-transparent thick blue line represents the maximum fluctuations in the
spectral and temporal traces for CRs from 10% to 80%. Also quantitative analysis
of the similarity of the spectra for different CRs with respect to the uncompressed
case were made with the mean squared error (MSE) metric. The results show that
until CR = 90%, the MSE is less than 0.3%. Quantitative analysis of the temporal
traces was performed by comparing lifetimes obtained from a mono-exponential
fitting. Until CR = 80% the relative error in lifetime value with respect to the
uncompressed case is less than 9%, and at CR = 90%, it is 11%. This analysis of
the PSNR, MSE of the spectra, and estimated lifetime indicates that CR = 90% is
the highest acceptable compression level for this dataset.

Next we imaged the sample with ALF-stained and P3HT treated HEK cells. The
wide FOV CCD camera image is shown in Fig. 3.10(a). The SPC dataset (of 32×32
spatial pixels) is acquired over the same FOV, over a spectral range from 580 to 720
nm, and with CR = 80% (205 masks). The dataset integrated over the spectral
dimension and 10 ns from the temporal fluorescence peak is shown in Fig. 3.10(b).
These datasets are fed into the DF algorithm to obtain a high-resolution hypercube.

The spectra and lifetime of the ALF fluorophore and the P3HT nanoparticles
were previously characterized. ALF, when described by a mono-exponential, has a
lifetime of about 3.14 ns and P3HT presents a lifetime shorter than 200 ps. Therefore,
as a result of this preliminary characterization, ALF can be highlighted by selecting
a spectral band between 580 and 595 nm and a time gate of 7 ns. Likewise, P3HT
nanoparticles can be underlined with a spectral band between 650 and 700nm and
a shorter time gate of 1 ns. Applying these time gates and spectral filters we
can separate the emission from the ALF stained actin filaments and the P3HT
nanoparticles. Representation of this information in a single synthetic RGB rendered
image is reported in Fig. 3.10(c). This image allows us to localize the parts with
actin filaments (yellow areas) and the aggregates of P3HT nanoparticles (red spots)
within the cell.

Even if the spatial resolution is increased by DF of the 4D SPC dataset with
the CCD camera image, the low resolution of the SPC dataset still limits the final
achievable resolution. Therefore, to increase the spatial resolution and to discrim-
inate smaller structures within the cell, e.g., smaller P3HT nanoparticle clusters,
SPC was repeated in a smaller FOV (shown in the inset of Fig. 3.10(b)) by using
the zoom feature. This new FOV is of size 40×40 µm2, and was measured with only
77 masks of 16× 16 pixels (CR = 70%). This new SPC dataset is merged with the
corresponding area of the CCD camera. The resulting time- and spectra-integrated
image is shown in Fig. 3.10(d). Two regions were selected (orange and blue circles),
two show the spatially averaged spectral (Fig. 3.10(e)) and temporal (Fig. 3.10(f))
traces. While the emission spectrum of the blue circled area clearly shows a strong
emission towards the lower end of the measured range, compatible with ALF, the
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emission spectra of the orange circled area does not allow us to deduct the content.
However, the temporal profile shows the presence of a short lifetime, corresponding
to the presence of P3HT. Therefore, this set of measurements demonstrated the
capability of the setup to discriminate between fluorophores based on the spectral
and temporal information.

Figure 3.10: Datasets and results for the HEK cell sample. (a) High-resolution
image from the CCD camera. (b) Low-resolution image from the spatial projection
of the SPC dataset acquired with CR=80%. (c) RGB rendering of the selectively
filtered hypercube to distinguish the emission from the ALF stain from the emission
from the P3HT NPs. (d) Fusion of a SPC dataset acquired in the ROI marked
by the red square in (b) with the zoom feature and the corresponding area of the
CCD camera image. (e) and (f) show the spectral signatures and temporal traces,
respectively, of the regions highlighted with orange and blue circles in (d).

In this section we have shown the application of DF and SPI for fluorescence mi-
croscopy. Instead of employing two SPCs, one for the time-resolved images and an-
other one for the spectral images, in this work a single SPC acquiring low-resolution
4D information was used. The fusion with the high-resolution image from the con-
ventional camera therefore serves to increase the spatial resolution. In addition, CS
has been used to reduce the acquisition time of this camera, which was the most
limiting factor regarding acquisition speed, by up to 90%. This approach is crucial
when a short measurement time is needed to avoid photobleaching and cell damage,
or to capture dynamic phenomena.

3.5 Multispectral fluorescence lifetime imaging
Fluorescence lifetime imaging consists in obtaining images of the fluorescent life-
time distribution, rather than the temporal evolution of fluorescence intensity. The
classical approach is to obtain the full temporal information (which can be as low
as only two time gates for a mono-exponential behaviour) and then to retrieve the
lifetimes, usually by a fitting operation. In this sense, in both previous presented
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works, this could have been performed after obtaining the high-resolution, multi-
spectral, and time-resolved 4D hypercube. This process would entail reconstructing
the whole temporal information for every pixel of the high-resolution space, and for
every spectral channel; and afterwards fitting all these temporal profiles to a mono-
or multi-exponential decay model. But one might ask if it is really necessary to
reconstruct the whole temporal trace for the high number of pixels. Usually the
number of different fluorophores is limited, and so is the number of different life-
times. Let’s take the hypercube of the macroscopic fluorescence imaging system as
an example. In this case we have 512×512 pixels, 16 spectral channels and 256 tem-
poral bins. This results in a hypercube with 512× 512× 16× 256 ≈ 1.07 · 109 voxels
and roughly 8.5 gigabytes (and exactly 8 gibibytes) of data. However, the number
of different lifetimes is three. As such, and supposing that different fluorophores can
spatially overlap, each temporal trace can be modeled with a tri-exponential decay,
that is, with 7 parameters (the three lifetimes with their amplitudes and a constant);
and the whole hypercube can be described by 512× 512× 16× 7 ≈ 29.4 · 106 voxels
(roughly 234.9 megabytes).

As a result, by adding a multi-exponential decay model fitting to the DF recon-
struction process, we can achieve a great reduction of the size of the reconstructed
hypercube. Also a desirable side effect of this fitting procedure is that, instead of
reconstructing a noisy temporal trace, it finds the parameters that best suit the
trace; which can be seen as having a denoising effect on the temporal information.
However, it should be recalled that the multi-exponential fitting is not very ro-
bust to noise, in the sense that as noise increases the estimated lifetimes fluctuate
drastically.

This new procedure only changes the algorithmic part, and not the acquisition
step. Therefore, we will use this DF procedure with multi-exponential decay model
fitting with the same or similar acquired datasets as in the two previous experiments.
As these datasets are acquired either with three or two detectors the mathematical
formulation of the procedure is slightly different in both cases (similarly as in the
standard DF process).

In both cases the reconstructed hypercube is divided in two parts: x = [xA, xK ],
where xA and xK are the multispectral images for the decay amplitudes and decay
rates, respectively. The decay rate is defined as the reciprocal of the lifetime k = 1/τ .
The number of lifetimes or decay rates, denoted by Nτ , is estimated by performing
the singular value decomposition (SVD) of the temporal dataset rearranged in a
matrix so that the temporal trace of each spatial position (and, if applicable, for
each spectral bin) is a row of this matrix. An example of such matrix is shown in
Fig.3.11(a), which is the rearranged temporal SPC dataset from the macroscopic
imaging system. What is interesting of the SVD, is that we can clearly see that
the singular values decay rapidly (see Fig. 3.11(b)). The physical meaning of this
distribution is that there is a limited number of different temporal traces, and there-
fore a limited number of different lifetimes. In the example we have about three, so
for each spatial position (and each spectral bin, if applicable) we have either one of
the lifetimes or a combination of them. A coarse estimation of the lifetimes, used
to create the initial guess for the algorithm, is made by assuming a global analysis
approach, that is assuming the same lifetimes in all spatial positions and for all
wavelengths, and performing a fitting of the temporal SPC dataset.
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Figure 3.11: Example of the SVD-based procedure to estimate the number of differ-
ent lifetimes present in the sample, in this case with the time-resolved SPC dataset
from the macroscopic fluorescence imaging system (the UJI dataset). (a) Temporal
dataset expressed in matrix form. Each spatial position corresponds to a row of the
matrix, and the columns contain the temporal trace for each pixel. (b) Plot of the
singular values obtained with the SVD of the matrix despicted in (a). The singular
values after the thrid one are almost negligible, indicating that there are basically
just three different temporal traces in the sample.

The DF problem with multi-exponential decay fitting for the first sample, the
one with three measured datasets, is formulated as minimization of the following
objective function:

F (x) =F (xA, xK) =
1
2∥S T M(xA, xK)− ycmos∥2

2 + 1
2α∥RL S M(xA, xK)− ytemp∥2

2+
1
2β∥RL T M(xA, xK)− yspec∥2

2,

(3.13)

where S, T and RL are the linear operators that have already been introduced,
and where M is a non-linear operator that creates the temporal traces from the
decay rates and their amplitudes assuming a multi-exponential decay model. That
is, given a set of parameters {Ai, ki}Nτ

i for a certain pixel and spectral bin, this
operator creates the trace ∑Nτ

i Ai exp(−kit).

Because of the non-linearity of this latter operator, the whole inversion process is
implemented as a non-linear least squares problem. However, solving this minimiza-
tion problem for the complete space of parameters x, i.e., simultaneously for both
the amplitudes and decay rates, is very inefficient and presents a high probability
of getting stuck in a local minimum instead of finding the global one. Therefore, in
order to tackle these problems, the separability of operator M into a linear and a
non-linear operator is exploited, similar to the variable projection method [186–188].
Following this premise, we have that M(xA, xK) = (AxA) E(xK), where A is the
linear operator associated to the amplitude space, and E is the non-linear operator
in the decay rate space that constructs the exponential decay for every entry of xK .

The separability of operator M and the partitioning of the parameters (x) in
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a linear (xA) and a non-linear (xK) part allows the minimization problem to be
separable. That is, we can perform optimization in each reduced space separately.
In this sense, we can solve

x̂A = arg min
xA

F (xA, xK), (3.14)

for fixed xK , and
x̂K = arg min

xK

F (xA, xK), (3.15)

for fixed xA. This gives rise to the double gradient descent approach presented in
Algorithm 2. In this iterative minimization process we alternate between steps that
minimize the objective function with respect to xA and xK . Further gradient descent
acceleration and step size computations are omitted in Algorithm 2 for simplicity.
An appropriate stopping criteria for both the outermost loop and the nested loops for
the reduced spaces is a change in the objective function smaller than some threshold.
Obviously the threshold should be different on each loop.

Algorithm 2: Double gradient descent algorithm for minimizing an objec-
tive function with alternating steps in the reduced parameter spaces.

Result: Returns the estimated x̂ = [x̂A, x̂K ] by minimizing a two variable
objective function F (x) = F (xA, xK) by taking alternating steps in
each reduced parameter space.

Initialize x̂A,0 and x̂K,0
Set i = 0 and j = 0
while global stopping criterion unfulfilled do

while A-subspace stopping criterion unfulfilled do
Calculate gradient: gA,i = ∇xA

F (x̂A,i, x̂K,j)
Update x̂A,i in the direction provided by gA,i:
x̂A,i+1 = x̂A,i − τA gA,i

i = i + 1
end
while K-subspace stopping criterion unfulfilled do

Calculate gradient: gK,j = ∇xK
F (x̂A,i, x̂K,j)

Update x̂K,j in the direction provided by gK,j:
x̂K,j+1 = x̂K,j − τK gK,j

j = j + 1
end

end

The operator M creates a n × n × Nλ × Nt hypercube, where n is the num-
ber of pixels of the rows and columns (N is used to denote the total number of
pixels N = n2), Nλ is the number of spectral channels and Nt is the number of
time bins in the measured dataset. This is highly inefficient and slows down the
calculations. Therefore, in the two terms that minimize the quadratic differences
with the conventional camera and the spectral SPC, the combination of operators
T M(xA, xK) is substituted by another operator D(xA, xK). This new operator per-
forms the integration over the temporal dimension of the temporal trace for each
pixel. That is, on a set of parameters {Ai, ki}Nτ

i , the operator D performs the opera-
tion ∑Nt

j

∑Nτ
i Ai exp(−kitj) = ∑Nτ

i Ai[1− exp (−kitf )]/∆t ki, where ∆t is the width
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of each time bin, and tf is the total length of the integrated time window. This way
we avoid calculating the whole temporal hypercube.

For the remaining term of the objective function, the data fidelity term with the
temporal SPC, another trick can be applied to reduce computational cost. Even if
the linear operators (RL and S) do not strictly commute with the non-linear one
(M), they can be applied directly to xA and xK to produce low spatial resolution
spectral-integrated images of the fluorescence amplitudes and decay rates. Then ap-
plying the operator M afterwards is less computationally demanding. However, this
trick comes at the expense of a less accurate reconstruction because the operators
do not actually commute.

On one hand, the gradient of the linear part, ∇xA
F (x̂A, x̂K), can be calculated

with its analytic expression. On the other hand, the gradient of the non-linear
part, ∇xK

F (x̂A, x̂K) could be calculated by computing the Jacobian. However, we
exploited another approach where the non-linear gradient is calculated numerically
using automatic differentiation (AD, for more information see Appendix B).

For the case of the macroscopic UJI dataset, the CMOS camera image was resized
to 128×128 pixels (shown in Fig. 3.12(a)) for convenience. The number of different
lifetimes was estimated with the SVD (see Fig. 3.11) to be around three, which also
agrees with the knowledge we have about the sample. Therefore a total number
of three decay rates and four amplitudes (one for each decay rate and one for the
constant background) were retrieved for every pixel and spectral channel. Conse-
quently the reconstructed hypercubes, xA and xK , are of size 128×128×16×4 and
128× 128× 16× 3, respectively.

Fidelity of reconstructed data with respect to the measured datasets is depicted
in Fig. 3.12(b)-(d). Figure 3.12(b) shows the spatial projection of the reconstructed
hypercubes obtained by the operation S D(xA, xK). Figure 3.12(c), shows the tem-
poral traces from the U, J and I characters, and from the background, both from
the temporal SPC dataset and from the time-resolved reconstruction, obtained by
S M(xA, xK). Finally, in Fig. 3.12(d) we have the spectral signatures of the char-
acters and the background, both from the measured spectral SPC and the time-
integrated reconstruction obtained by D(xA, xK). While there is an almost perfect
spatial and spectral reconstruction, the temporal part shows some discrepancy. More
specifically the temporal trace for the I character shows greater differences at early
times, resulting in an underestimation of the corresponding lifetime. This behavior
is caused by the flattened peak of the measured temporal trace due to experimental
conditions, which cannot be modeled by a multi-exponential decay.

The reconstructed lifetime image for every spectral channel is presented in Fig.
3.13. These images are obtained by applying a binary mask, resulting from thresh-
olding the corresponding amplitudes (xA), onto the reciprocal decay rate hyper-
cube (x−1

K ), and superimposing (adding) all the lifetime channels. The J character
presents a lifetime value of around 9-10 ns, and is mostly present in the lower half of
the measured spectral window, vanishing as its amplitude decreases for higher wave-
lengths. The U character displays a lifetime value of around 2 ns, and is present
for the whole spectral window as it presents a flatter spectral signature. Lastly, the
I character presents a lifetime value of approximately 10 ns, and is mostly present
at wavelengths between 566 and 629 nm. In summary, the three characters with
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Figure 3.12: (a) CMOS camera image resized to 128 × 128. (b) Projection over
the spatial dimension of the reconstructed hypercubes obtained by the operation
S D(xA, xK). (c) Comparison of the temporal traces for the different characters
from the SPC dataset and from the reconstructed hypercubes. (d) Comparison of
the spectral signatures for the different characters from the SPC dataset and from
the reconstructed hypercubes.

different fluorophore species show lifetime values consistent with the previous char-
acterization presented in section 3.3. Also the spectral behaviours agrees with the
measured spectra.

Next, we tried to apply the same idea to a dataset acquired with the microscopy
system. The two main differences between this case and the previous one lies in the
number of datasets and the SNR of the measurements. While in the UJI macro-
scopic dataset there are three datasets (one for high spatial resolution, one for the
temporal information, and one for the spectral information), with the microscopy
system there are only two dataset to be fused (one for the spectro-temporal infor-
mation and one for the increase in spatial resolution). Also, the level of noise in the
temporal dimension is much higher for the SPC dataset of the microscopy system
(e.g., compare the temporal traces from Figs. 3.6 or 3.12 with the traces from Figs.
3.8, 3.9, or 3.10). The presence of noise in the temporal traces hinders the task of
finding the correct lifetime values of a multi-exponential decay model.

The imaged sample consists of a prepared microscope slide containing bovine
pulmonary artery endothelial (BPAE) cells (FluoCells Prepared Slide #1 BPAE
cells, F36924, Invitrogen). In this sample MitoTracker Red CMXRos (excitation
at 579 nm and emission at 600 nm) was used to stain the mitochondria, actin was
stained with Alexa Fluor 488 phalloidin, and the nuclei were counterstained with the
blue-fluorescent DNA stain DAPI (excitation at 358 nm and emission at 461 nm).

The measured two datasets are represented in Fig. 3.14. Figure 3.14(a) shows the
256×256 pixel CCD camera image. Figure 3.14(b) shows the spatial projection, i.e.
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Figure 3.13: Lifetime images for every spectral channel of the UJI datasets.

integrated over the entire temporal spectral dimension, of the 4D (32×32×16×128)
SPC image. Figures 3.14(c) and 3.14(d) show the same SPC image integrated over
the entire temporal dimension, but integrated for λ < 575 nm and λ > 575 nm,
respectively. The detected spectral window is in the range 547−685 nm. Due to the
excitation wavelength centered at 520 nm, the DAPI fluorophore is not excited in
this experiment, but the position of the nucleus is revealed by the absence of signal
in the center of the cell. Figure 3.14(c), which is integrated for the lower end of the
measured spectrum, reveals the position of the actin filaments of the cytoskeleton,
while Fig. 3.14(d) reveals the areas with the presence of mitochondria due to the
reddish emission of the MitoTracker Red CMXRos fluorophore.

Note that the SPC image (Fig. 3.14(b)) has a noisy background, so a binary
mask calculated from thresholding the high-resolution image (Fig. 3.14(a)) is su-
perimposed on the SPC image to avoid reconstruction artifacts. The SVD analysis
of the rearranged SPC dataset yields the value Nτ = 4. Therefore, three decay rates
and four amplitudes were retrieved for each pixel and spectral bin, and the resulting
hypercubes, xA and xK , are of size 256 × 256 × 16 × 4 and 256 × 256 × 16 × 3,
respectively.

The gradient descent optimization process is the same as in the previous case,
but in this case, where we have only two datasets to combine, the objective function
is composed of only two data fidelity terms:

F (xA, xK) =
1
2∥S D(xA, xK)− yccd∥2

2 + 1
2α∥RL M(xA, xK)− yspc∥2

2.
(3.16)
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Figure 3.14: Representation of the BPAE cell dataset used for FLIM. (a) CCD
camera image. (b) Projection over the spatial dimension of the SPC dataset by
integrating over the full temporal and spectral dimension. (c) Projection over the
spatial dimension of the SPC dataset by integration over the whole temporal di-
mension and for λ < 575 nm. (d) Projection over the spatial dimension of the SPC
dataset by integration over the entire temporal dimension and for λ > 575 nm. All
images are normalized in the range [0, 1].

The fidelity of the reconstructed data with respect to the measured datasets is
shown in Fig. 3.15. The spatially projected hypercubes by the operation D(xA, xK)
and integrated for the lower half (λ < 575 nm) and the upper half of the spectrum
(λ < 575 nm), are shown in Figs. 3.15(a) and 3.15(b), respectively. These high-
resolution images match the qualitative spectral behavior of the SPC dataset (Figs.
3.14(a)-(b)). Figure 3.15(c) shows the temporal traces of a region of the cytoskele-
ton, mitochondria, and the background (as deduced from the spectral images), both
from the temporal SPC dataset and from the time-resolved reconstruction obtained
by S M(xA, xK). And in Fig. 3.15(d) we have the spectral signatures of the same
areas, both from the measured spectral SPC and from the time-integrated recon-
struction obtained by D(xA, xK). While the spectral part shows a good agreement,
the two temporal traces, one from the cytoskeleton and the one from the areas with
mitochondria, show an almost identical decay due to the noisy measurements.

The reconstructed lifetime image for every spectral channel is presented in Fig.
3.16. There is no clear difference in lifetime between the areas where mitochondria
are expected to be (lifetime images for λ = 557 and 566 nm) and the areas where
the cytoskeleton is expected to be (lifetime images for λ ∈ 593 − 621 nm). While
these two cell parts can be distinguished by the different spectral emission of their
stains, lifetime analysis doesn’t allow differentiation. This is due to the noise in
the temporal dimension, but also to the spatial overlap of different fluorophores in
cellular samples (for example, the actin filaments of the cytoskeleton can be found
throughout the cell, including the areas where we have a mitochondrion), which
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Figure 3.15: Spatial projections of the reconstructed hypercubes by integrating over
time (operation D(xA, xK)) for λ < 575 nm (a) and for λ > 575 nm (b) to highlight
the different spectral emission of the different areas of the BPAE cell. The emission
for λ < 575 nm corresponds to the Alexa Fluor 488-stained actin filaments of the
cytoskeleton, and the emission for λ > 575 nm corresponds mainly to MitoTracker
Red CMXRos-stained mitochondria. (c) Comparison of the temporal traces for
the different parts of the cell from the SPC dataset and from the reconstructed
hypercubes. (d) Comparison of the spectral signatures for the different parts of the
cell from the SPC dataset and from the reconstructed hypercubes.
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complicates the task of finding the correct lifetime values. To mitigate the former,
we need to ensure that the measured SPC data set has the best achievable SNR or
perform a denoising on the temporal dimension of the SPC dataset before feeding
it to the DF algorithm. Also, as a future approach to this problem, we propose to
reformulate the objective functions as:

F (xA, xK) =
1
2∥S D(xA, xK)− yccd∥2

2 + 1
2α∥RL M(xA, xK)− yspc∥2

2+

βP(xA, xK),

(3.17)

to hold an additional generic data prior term. This prior term is included because
the problem is now much less well conditioned due to the noisy temporal trace and
the spatial overlap of different fluorophores. The prior term can act on xA, xK ,
both, or even be a combination of several terms. Here is a list of some possible
options for the prior term:

• l1 norm of the amplitudes (xA) over the different lifetime channels enforcing
a solution where the signal of each pixel is described with the least amount of
different fluorophores.

• TV norm over the spatial dimension of xA, xK , or both, enforcing neighbouring
pixels to have similar amplitudes or lifetime values.

• l1, l2 or TV norm of the whole datasets (xA, xK , or M(xA, xK)), which are
known priors for regularizing inversion problems.

This experiment is expected to produce convincing results by ensuring the best SNR
in the measured SPC dataset, which of course implies longer integration times with
the TCSPC system and therefore generally longer acquisition times; and by finding
the appropriate prior (or priors) to disentangle the correct lifetime values.

3.6 General remarks for the chapter
While the DF of different detectors for multispectral time-resolved fluorescence imag-
ing has been proven to work (at least in most of the experiments described), there is
still room for improvement. For example, and following the motto of Four eyes see
more than two6, when the data sets to be merged share more than one dimension,
with different resolutions, the fusion process would be less prone to errors in the
measurements. Let’s take the example of the macroscopic imaging system. Here
there are three data sets, and the only dimension they share is space. Thus, the
temporal or spectral information is only provided by the respective SPC. A better
fusion would be achieved by replacing the high-resolution monochrome camera with
a time-gated camera (with only a few time-gates) or an RGB color camera that
shares more dimensions with the SPC than just the space. In addition, while the
DF framework presented here is used to perform multispectral and time-resolved
imaging, it can be applied to imaging any other dimension, such as polarization,
phase, depth, or any other parameter.

6This is the literal translation of a proverb used in German (Vier Augen sehen mehr als zwei)
or Spanish (Más ven cuatro ojos que dos) whose semantic translation in English is Two heads are
better than one. Given the context of this thesis, the literal translation seemed more appropriate.
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Figure 3.16: Lifetime images for every spectral channel for the BPAE cell dataset.

58



Chapter 4

Imaging of scattering and
absorption

In this chapter, we will give some insights into the theory of light propagation in
turbid media, presenting different models such as the radiative transport theory, the
diffusion theory, the Monte-Carlo model or even the Kubelka-Munk (KM) model.
We will also address the problem of imaging in turbid media, specifically the imag-
ing or spatial characterization of the absorption and scattering properties of turbid
media (called diffuse optical imaging or DOI), with special emphasis on the spa-
tial frequency domain imaging (SFDI) technique. The contributions presented in
this chapter include two DOI systems based on the concept of the SPC with an
integrating sphere as a bucket detector. The first one uses reflectance and transmit-
tance measurements and the KM model. And the other one uses only reflectance
measurements while the theoretical framework is provided by SFDI.

4.1 Light propagation in turbid media
Many materials and most biological tissues are characterized by strong optical scat-
tering. They are therefore referred to as scattering or turbid media. In this kind
of media, the propagation of light is dominated by multiple scattering so that most
photons undergo several scattering events before being re-emitted. In this chapter,
we assume that light-matter interaction can be modeled by elastic scattering and
absorption. In this case, scattering may change the direction of photon propaga-
tion, but it does not shift its wavelength. On the other hand, we will also consider
that scatterers are sparsely distributed, i.e., the average distance between scattering
centers is much greater than the size of the scatterer and the wavelength of the
photons. This implies that successive scattering events are independent, and thus a
single-scattering theory applies to each event1 [145,146,189].

Light-matter interaction due to absorption is described with the absorption co-
efficient µa, which is defined as the probability of photon absorption in a medium

1Otherwise, in a densely packed medium, scattering events are coupled and a multiple scattering
theory applies.



per unit path length2. The reciprocal of µa is referred to as the mean absorption
length, which represents the average distance a photon propagates in the medium
before being absorbed.

Interaction due to scattering is modeled by the scattering coefficient µs, and by
the scattering phase function p(ŝ, ŝ0). The scattering coefficient is defined as the
probability of photon scattering per unit path length. Its reciprocal represents the
distance a photons travels before getting scattered and is referred to as the scattering
mean free path (scattering MFP).

The phase function describes the probability of light incident on the scattering
center from direction ŝ0 to be scattered in direction ŝ. Being a probability function,
it is normalized so that the probability of suffering a scattering at any angle is unity:∫

p(ŝ, ŝ0) dΩ = 1. (4.1)

For large collections of scattering centers, approximations for the phase function are
usually used. For example, an approximation can be given by Rayleigh’s theory, but
the most common phase function used in biomedical optics is Henyey-Greenstein’s
phase function [145,146,190]:

p(ŝ, ŝ0) = p(ŝ · ŝ0) = 1
4π

1− g2

(1 + g2 − 2gŝ · ŝ0)3/2 , (4.2)

which is a function of two variables: the angle θ subtended by the vectors ŝ and
ŝ0 (because ŝ · ŝ0 = cos (θ)), and the anisotropy factor of the phase function, g,
defined as g = ⟨ŝ · ŝ0⟩ = ⟨cos (θ)⟩ = 2π

∫ π
0 cos (θ)p(θ) sin (θ)dθ. The anisotropy

factor has a value between −1 and 1, and tells us how much scattering occurs in
the forward direction compared to the backward direction. A value of zero indicates
isotropic scattering, a value close to 1 represents dominantly forward scattering, and
a negative value indicates that more light is back-scattered (see Fig. 4.1). Typical
values for g in biological tissues is in the range g ≃ 0.8− 0.9 [145–147].

The extinction coefficient is defined as

µt = µa + µs, (4.3)

and its reciprocal defines the MFP, ltr, between two interaction events. The albedo
a is defined as

a = µs

µt

. (4.4)

The variation in intensity of a light beam propagating in the direction of the
z-axis is given by

dI(z)
I(z) = −µtdz. (4.5)

Assuming that µt is constant over z (valid for homogeneous media), and by inte-
grating Eq. 4.5 we obtain Beer-Lambert’s law:

I(z) = I0 exp (−µtz), (4.6)
2The absorption coefficient, as well as the scattering coefficient, are usually expressed in units

of reciprocal centimeters cm−1
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Figure 4.1: Polar plot of the Henyey-Greenstein phase function for anisotropy values
of g = −0.8, −0.5, 0, 0.5, and 0.8. The inset on the right upper corner shows in
greater detail the differences for the different anisotropy values. The red arrow
indicates the light’s direction of incidence.
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where I0 is the intensity of incident light. This expression predicts the attenuation
of ballistic light, i.e., photons that travel in a straight line (see Fig. 4.2), due to
propagation in the turbid media. Accordingly, the ballistic regime is defined to cover
a depth given by z ≤ ltr. The number of unscattered photons decays exponentially,
and after one MFP, the probability of no scattering is about 37%. Accordingly we
define a quasi-ballistic regime, where photons have sustained a few scattering events
but retain a strong memory of the original direction. Those kind of photons are
also called snake photons due to their snake-like trajectory [191]. Intensity of snake
photons also decays exponentially according to the following expression:

I(z) = I0 exp (−µ′
tz), (4.7)

but where we replaced µt by the reduced extinction coefficient, µ′
t defined as

µ′
t =µa + µ′

s,

µ′
s =µs(1− g),

(4.8)

where µ′
s is referred to as the reduced scattering coefficient, which takes into account

the average angular distribution of radiance through the inclusion of the anisotropy
factor. The reciprocal of µ′

t is referred to as the transport mean free path (TMFP),
l′
tr, and as for most turbid media g > 0 the TMFP is larger than the MFP. This

means that snake photons penetrate deeper into the media than ballistic photons.
Consequently, the quasi-ballistic regime is defined to cover the range ltr < z ≤ l′

tr.
After a few TMFPs, practically all photons have undergone many scattering events
and thus have almost completely lost their memory of original direction. This is
known as the diffusive regime [146, 147, 191]. The reduced scattering coefficient
allows us to define the transport albedo

a′ = µ′
s

µ′
t

. (4.9)

For biological tissues, representative values for the absorption and scattering
coefficients, and the anisotropy factor are µa ≃ 0.1cm−1, µs ≃ 100cm−1, and
g ≃ 0.9. Thus extending the ballistic regimen to approximately 0.01cm, and the
quasi-ballistic regime to approximately 0.1cm [146].

4.1.1 The Kubelka-Munk model and method
Before proceeding to more advanced models, such as the one provided by the
radiate transport equation (RTE) or the diffusion theory, I would like to men-
tion that there are simpler models available, such as the adding-doubling method
[145, 192], the δ-Eddington approximation [145, 193], or the Kubelka-Munk (KM)
model [145, 194–196]. These models predict fluence rates as well as the amount of
light reflected or transmitted by turbid media, and are used to estimate absorp-
tion and scattering properties of the media. Although the first two are methods
for solving or approximating the RTE, the latter is a separate model with its own
parameters. The KM model is a one-dimensional model that is still widely used
because of its relative simplicity, as it allows to express the scattering and absorp-
tion coefficients directly in terms of the measured reflection and transmission, and
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Figure 4.2: Schematic of the different components of light propagating in turbid
media.

its acceptable prediction accuracy. It assumes that light propagation in turbid me-
dia can be modeled by two fluxes, which counter-propagate in the turbid media
(see Fig. 4.3). The first flux i travels in the direction of the incident light and
is decreased by absorption and scattering, while it is increased by back-scattering
of the counter-propagating flux j. An analogous balance is made for the second or
counter-propagating flux (j). The spatial evolution of those fluxes is described by
the following system of differential equations:

−di =− (S + K)idz + Sjdz,

dj =− (S + K)jdz + Sidz,
(4.10)

where S and K are the KM scattering and absorption coefficients, respectively, and
where the direction of propagation is assumed to be in the z-axis. The KM model
is based on several assumptions: the turbid medium is isotropic and homogeneous
(S and K are constant throughout the medium), light loss at the edges is neglected
as infinite lateral extension is assumed, there is no reflection at the boundaries, and
illumination incident on the surface is completely diffuse [195,197,198].

Figure 4.3: Schematic of the two-flux Kubelka-Munk model. The i flux travels
in the direction of incident light and contributes to the transmittance, while the j
flux travels in the opposite direction, is enhanced by scattering of the i flux, and
contributes to the reflectance.

Integrating the KM equations for a finite turbid media slab of thickness d yields
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the following expressions for the diffuse reflectance and transmittance:

Rd = sinh (bSd)
a sinh (bSd) + b cosh (bSd) ,

Td = b

a sinh (bSd) + b cosh (bSd) ,

(4.11)

where we defined the secondary constants a and b as

a =S + K

S
= 1 + R2

d − T 2
d

2Rd

,

b =
√

a2 − 1.

(4.12)

The measurement of Rd and Td yields the KM parameters, S and K, via the inversion
of Eqs. (4.11):

S = 1
bd

ln
[

Rd(b− a) + 1
Td

]
,

K =S(a− 1).
(4.13)

When scattering prevails on absorption, S and K can be related to the light
transport theory coefficients (µa and µ′

s) with the following general relations [199–
201]:

S =ηµ′
s − ϑµa,

K =ξµa.
(4.14)

For an isotropic medium the values ξ ∈ [1, 2], ϑ = 0,and η ∈ [0.3, 3/4] have shown
to be valid [199, 202]. For an anisotropic medium good results have been obtained
with the values ξ = 2, ϑ = 1/4,and η = 3/4 [145,199,203,204].

Nevertheless, in many experimental cases the condition of diffuse incident beam is
not met. To extend the relations to include collimated incident light, and to extend
the validity to the non-diffusive regime (µ′

s ≳ µa), the following empirical non-linear
relations can be used [199]:

S =0.408µ′
s,

K =µa + 0.882(µaµ′
s)0.72.

(4.15)

where S, K, µa, and µ′
s are expressed in units of cm−1. The relations in Eqs. (4.15)

can be inverted to obtain the coefficients µ′
s and µa from the KM parameters.

Additionally, by measuring the collimated transmittance (Tc) and applying Beer’s
law (Eq. (4.6)), the extinction coefficient can be obtained via

µt = 1
d

ln
[

(1−RF )2

Tc

]
, (4.16)

where RF = [(n − 1)/(n + 1)]2 is the Fresnel coefficient of reflection for normal
incidence, and n is the relative refraction index of the sample and surrounding
media. The additional determination of µt allows µs and g to be calculated in a
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Figure 4.4: Flowchart of the process of calculating the optical properties of turbid
media with the Kubelka-Munk (KM) model. Measurements of diffuse reflectance
and transmittance lead to KM coefficients, which are then converted to transport
coefficients. Additional measurement of the collimated transmittance permits sepa-
rate estimation of all three transport coefficients (µa, µ′

s, and g).

straightforward manner with Eqs. (4.3) and (4.8). Thus, all three radiative transfer
parameters (µs, µ′

s, and g) can be determined from experimental measurements of
diffuse transmittance (Td), diffuse reflectance (Rd), and collimated transmittance
(Tc). The steps of this measurement process are represented in Fig. 4.4.

Experimental implementation of the KM method for measuring the optical prop-
erties of turbid media is performed using a collimated transmission method for mea-
suring ballistic transmittance (Fig. 4.5(a)), and an integrating sphere technique for
measuring diffuse reflectance and transmittance [145]. By using a double-integrating
sphere configuration where the sample is "sandwiched" between two integrating
spheres (see Fig. 4.5(b)), both reflectance and transmission can be measured si-
multaneously [145, 205]. In Fig. 4.5(b), the exit port of the second integrating
sphere is intentionally left open, otherwise this integrating sphere would measure
total transmittance (Tt = Tc +Td) instead of diffuse transmittance. Also, in the case
of a double-integrating sphere arrangement, corrections for multiple light exchange
between the spheres should be considered [145, 206]. For the arrangement in Fig.
4.5(b), the following two coupled equations relate the measured transmittance (TIS)
and reflectance (RIS) through the integrating spheres to the real reflectance (Rd)
and transmittance (Td):

RIS =[1−m(α + s/A)] [RdA2(1− αm−Rds/A) + AsT 2
d ]

m [A2(1− αm−Rds/A)2 − s2T 2
d ] ,

TIS =[1−m(α + s/A)] [TdA2(1− αm−Rds/A) + AsTdRd]
m [A2(1− αm−Rds/A)2 − s2T 2

d ] , .

(4.17)

where m is the reflection factor of the sphere wall, s is the area of the sample, A
is the total sphere area, and α = 1 − (δ + s + h)/A is the area of the sphere wall
relative to the total sphere area, e.g., excluding the area of the sample, the area of
the entry or exit holes (h) and the area of the detector (δ).

Despite the use of a simple and less accurate model, the KM method is still widely
used to measure the optical properties of turbid media. While some of the initial
assumptions of the model, such as an isotropic medium and a diffuse incident beam,
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Figure 4.5: Experimental configurations for measuring (a) ballistic transmittance
with a collimated transmission method and (b) diffuse reflectance and transmittance
with two integrating spheres.

can be overcome with the correct choice of relations between the KM and transport
theory coefficients, the method is still limited to the remaining assumptions and also
to relatively thin samples due to the requirement of transmittance measurement.
Often this model is used as a first guess in an inverse algorithm to estimate the
optical properties based on a more accurate model.

4.1.2 Radiative transport equation
A more accurate modeling of photon transport in turbid media can be achieved
with the Radiative Transport Equation (RTE). This model does not treat light as a
wave, and therefore does not account for properties such as coherence, polarization,
and nonlinearity [146, 147, 207, 208]. Applying the conservation of radiance to a
differential volume element around position r⃗ over a differential solid angle element
dΩ around direction ŝ at time t yields the following equation:

1
v

∂L(r⃗, ŝ, t)
∂t

=− ŝ · ∇L(r⃗, ŝ, t)− µtL(r⃗, ŝ, t)+

µs

∫
4π

L(r⃗, ŝ′, t)p(ŝ′ · ŝ) dΩ′ + S(r⃗, ŝ, t),
(4.18)

which is known as the RTE (also called Boltzmann transport equation), and where
L(r⃗, ŝ, t) is the radiance (power per unit area per unit solid angle) at position r⃗ in
the direction ŝ at time t, v is the speed of light in the medium, p(ŝ′ · ŝ) is the phase
function, dΩ′ is the differential solid angle element around ŝ′, and S(r⃗, ŝ, t) is the
radiant source function.

The term on the left-hand side of Eq. (4.18) is the time derivative of the radiance
(the net number of photons entering or leaving the differential volume element)
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which equals the sum of different contributions: radiance diverging out of the volume
element (first term on the right-hand side of Eq. (4.18)), the extinction (photon or
energy loss due to scattering and absorption) within the volume element (second
term on the right-hand side), the energy scattered from the differential solid angle
element dΩ′ into the solid angle element dΩ (third term on the right-hand side), and
the energy radiated by a source into the volume element (last term).

4.1.3 Diffusion theory
The RTE is difficult to solve due to its integro-differential structure and its depen-
dence on space, angle, and time (thus having six independent variables). As a result,
analytical solutions are only available for simple scenarios, and numerical solutions
are computationally intensive [146,207–209].

Usually, approximations to the RTE are made, like in the δ-Eddington method
or the diffusion theory. The diffusion approximation assumes that the radiance is
nearly isotropic in a high-albedo scattering medium, i.e., in a medium where the
scattering probability is much larger than the absorption probability (µ′

s ≫ µa). To
obtain the diffusion equation, the basic idea is to perform a first-order expansion of
the radiance on the basis of spherical harmonics:

L(r⃗, ŝ, t) ≈ 1
4π

Φ(r⃗, t) + 3
4π

J⃗(r⃗, t) · ŝ, (4.19)

where Φ(r⃗, t) is the fluence rate, defined as the energy flux per unit area per unit
time regardless of the flux direction, expressed as the integral of the radiance over
the entire solid angle; and J⃗(r⃗, t) is the current density or energy flux, defined as the
net energy flux per unit area per unit time, expressed as the integral of the directed
radiance over the entire solid angle. The first term on the right side of Eq. (4.19)
represents the isotropic component of the radiance, while the second term represents
the anisotropic or directional component of the radiance.

By assuming a isotropic source function, i.e., independent of the direction ŝ
(S(r⃗, ŝ, t) = S(r⃗, t)/4π), substituting Eq. (4.19) into the RTE, and integrating
over the entire solid angle we obtain the following scalar differential equation:

1
v

∂Φ(r⃗, t)
∂t

+ µaΦ(r⃗, t) +∇ · J⃗(r⃗, t) = S(r⃗, t). (4.20)

With the same procedure, but multiplying both sides of the RTE by ŝ before inte-
grating, we obtain the following vector differential equation:

1
v

∂J⃗(r⃗, t)
∂t

+ (µa + µ′
s)J⃗(r⃗, t) + 1

3∇Φ(r⃗, t) = 0. (4.21)

Equations (4.20) and (4.21) do not contain ŝ, but do have two physical variables:
Φ(r⃗, t) and J⃗(r⃗, t). To obtain a single differential equation containing Φ(r⃗, t) only
we have to assume that

1
v

∣∣∣∣∣∣∂J⃗(r⃗, t)
∂t

∣∣∣∣∣∣≪ (µa + µ′
s)
∣∣∣J⃗(r⃗, t)

∣∣∣ , (4.22)
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and therefore the time-dependent term in Eq. (4.21) vanishes, leading to Fick’s law:

J⃗(r⃗, t) = −D∇Φ(r⃗, t), (4.23)

where the diffusion coefficient D is defined as

D = 1
3(µa + µ′

s)
. (4.24)

In general, Fick’s law states that the diffusive flux is inversely proportional to the
concentration gradient and describes not only the diffusion of photons in turbid
media, but also diffusion in other forms, such as particles suspended in liquids or
gases, or heat in a metal [146].

Finally, by substituting Eq. (4.23) into Eq. (4.20), we obtain the diffusion equa-
tion:

1
v

∂Φ(r⃗, t)
∂t

+ µaΦ(r⃗, t)−∇ · [D∇Φ(r⃗, t)] = S(r⃗, t). (4.25)

Additionally, if D is space-invariant we obtain the following equation:

1
v

∂Φ(r⃗, t)
∂t

+ µaΦ(r⃗, t)−D∇2Φ(r⃗, t) = S(r⃗, t), (4.26)

which is the diffusion equation for homogeneous media. The diffusion equation
does not depend on the direction ŝ, and thus has only four instead of six degrees
of freedom. It also does not depend on µs or g, but on their combination in the
reduced scattering coefficient. This is known as the similarity relation.

Three approximations were made in the derivation of the diffusion equation (Eq.
(4.26)):

• The gradient of the diffusion coefficient (D) is zero or close to zero, which
is valid for homogeneous turbid media or media without drastic changes in
optical properties.

• A first-order expansion of the radiance on the basis of spherical harmonics
is made. This approximation is valid when the radiance is nearly angularly
uniform and shows only a relatively small flux in a given direction, i.e., the
radiance is nearly isotropic.

• The fractional change in the current density in one TMFP is much less than
unity. This means that the photon current is temporally broadened because
of multiple scattering events.

Both conditions, the isotropic radiance and the temporal broadening, can be con-
densed into a single condition: the reduced scattering coefficient has to be much
larger than the absorption coefficient (µ′

s ≫ µa), because for photons to be com-
pletely diffuse, they must undergo a sufficient number of scattering events before
being absorbed. In addition, the observation point must be sufficiently distant from
sources and boundaries.

In a stationary, that is, time-independent state, Eq. (4.26) becomes:

∇2Φ(r⃗)− µ2
effΦ(r⃗) = −3µ′

tS(r⃗), (4.27)
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where
µeff =

√
µa

D
=
√

3µa(µa + µ′
s) (4.28)

is the effective attenuation coefficient. Equation (4.27) is referred to as the time-
independent diffusion equation for homogeneous media.

Impulse responses and boundary conditions

Equation (4.27) is a inhomogeneous Helmholtz equation. It can be solved for any
source function S(r⃗) using the method of Green’s function. The Green function in
an infinite turbid media, Φ∞(r⃗; r⃗′), is obtained by solving

∇2Φ∞(r⃗; r⃗′)− µ2
effΦ∞(r⃗; r⃗′) = −3µ′

tS0δ(r⃗ − r⃗′), (4.29)

which corresponds to the Eq. (4.27) with a point source located at r⃗′ (S(r⃗) =
S0δ(r⃗−r⃗′)). Therefore the Green functions is also referred to as the impulse response.
The solution to Eq. (4.29) is

Φ∞(r⃗; r⃗′) = S0

4πD∥r⃗ − r⃗′∥
exp (−µeff∥r⃗ − r⃗′∥). (4.30)

With the appropriate boundary condition (fluence rate vanishing at infinity), the
general solution to the time-independent diffusion equation (Eq. (4.27)) is

Φ(r⃗) =
∫

V ′
Φ∞(r⃗; r⃗′)S(r⃗′) dr⃗′, (4.31)

which represents a convolution because the Green function is translation-invariant.

In the case of non-infinite turbid media, boundary conditions must be introduced
to account for the interface between the turbid medium and the ambient medium. In
a refractive index mismatched boundary, the radiance propagating from the ambient
medium into the scattering medium comes from radiance inside the turbid medium
that is reflected at the interface. This imposes the following boundary condition for
the fluence rate [146]:

Φ(r⃗)− 2CRD∇Φ(r⃗) · n̂ = Φ(r⃗)− 2CRD
∂Φ(r⃗, t)

∂z
= 0, (4.32)

where CR is defined as
CR = 1 + Reff

1−Reff
, (4.33)

with Reff being an effective reflection coefficient that represents the fraction of out-
going radiance integrated over the solid angle that is reflected at the interface and
converted to incoming radiance integrated over the solid angle. Commonly the fol-
lowing empirical formula is used [146,210]:

Reff ≃ 0.0636 n + 0.668 + 0.710
n
− 1.440

n2 . (4.34)

By using the Maclaurin series expansion to the first order of the fluence rate in
the z dimension, we obtain

Φ(r⃗) = Φ(ρ⃗, z) ≃ Φ(ρ⃗, z = 0)− ∂Φ(r⃗)
∂z

∣∣∣∣∣
z=0

z, (4.35)
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where ρ⃗ = xx̂ + yŷ = ρρ̂ are the coordinates in the xy-plane3. We can see that
the boundary condition (Eq. (4.32)) is fulfilled, and therefore the fluence rate is
approximately zero, on an extrapolated boundary at a distance z = −zb given by:

zb = 2CRD. (4.36)

Equation (4.30) describes the response of an infinite turbid medium to an isotropic
point source. To model the response of an infinitely narrow beam, normally incident
on a semi-infinite medium, with diffusion theory, the boundary conditions must be
taken into account along with some approximations. First, the anisotropic medium
(g ̸= 0) is converted into an isotropic medium (g = 0) based on the similarity
relation (keeping µ′

s constant). Second, the infinitely narrow beam is converted into
an isotropic point source located one TMFP inside the scattering medium, with its
power reduced by a factor given by the transport albedo a′. Lastly, the interface
with the ambient medium is removed, and an image source is added at a distance
z = −(l′

tr + 2zb) to satisfy the boundary condition.

The image point source is symmetrical to the original under reflection at the
extrapolated boundary, but with opposite polarity (i.e. opposite sign). By adding
this image source, the single point source in a semi-infinite medium is converted into
two point sources in an infinite medium. The impulse response in a semi-infinite
medium is therefore approximated by a superposition of the responses to the two
sources in an infinite medium, that is,

Φ∞/2(ρ⃗, z; ρ⃗′, z′) = a′ [Φ∞(ρ⃗, z; ρ⃗′, z′)− Φ∞(ρ⃗, z; ρ⃗′,−z′ − 2zb)] , (4.37)

where z′ = l′
tr, but z′ has been retained in order to generalize this result to an

isotropic point source at an arbitrary distance z′ that is not strictly the TMFP. The
approach of replicating the boundary conditions by replacing the physical boundaries
with image sources is similar to the method of image charges used in electrostatic
problems.

Diffuse reflectance is calculated as the current density projected to the surface
normal [189]:

Rd(ρ⃗) = −
(
n̂ · J⃗(r⃗)

)∣∣∣
z=0

= D
∂Φ(r⃗)

∂z

∣∣∣∣∣
z=0

, (4.38)

where Fick’s law has been used to write this expression as a function of the fluence
rate. Using Eq. (4.38) to compute the reflectance impulse response in a semi-infinite
turbid medium yields:

Rd,∞/2(ρ⃗; ρ⃗′, z′) = a′ [R∞(ρ⃗; ρ⃗′, z′)−R∞(ρ⃗; ρ⃗′,−z′ − 2zb)] , (4.39)

where

R∞(ρ⃗; ρ⃗′, z′) = S0z
′(1 + µeff∥ρ⃗− ρ⃗′ − z′ẑ∥) exp (−µeff∥ρ⃗− ρ⃗′ − z′ẑ∥)

4π∥ρ⃗− ρ⃗′ − z′ẑ∥3 . (4.40)

3Note that r⃗ = xx̂ + yŷ + zẑ = ρ⃗ + zẑ = ρρ̂ + zẑ, where x̂, ŷ and ẑ are the unit vectors in
Cartesian coordinates, and ρ̂ is the radial unit vector along the axis of symmetry in cylindrical
coordinates.
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In a finite turbid medium such as a slab, an infinite number of image sources cor-
responding to the successive reflections at the extrapolated boundaries are required
to completely describe the fluence rate. However, the series of image sources can be
truncated after several pairs of sources, depending on the required accuracy [146].

4.1.4 Monte Carlo method
Photon transport in turbid media can also be modeled with a numerical simulation
based on the Monte Carlo (MC) method [145, 146, 211]. The MC light transport
model (hereafter MC model) consists of generating random photon trajectories based
on probability distributions derived from Beer’s law and the phase function. By
tracking a large number of photon trajectories, the spatial distribution of various
physical quantities (such as reflectance, transmittance, absorption, internal fluence
rates, etc.) can be estimated. Here we describe the method for computing the
reflectance impulse response for an infinitely narrow and normally incident beam
on a semi-infinite medium. The response to a broadbeam source in a homogeneous
medium can be obtained by convolution of the impulse response with the intensity
profile of the beam [146].

The steps followed by the MC simulation are shown in the flowchart of Fig. 4.6.
A photon packet of unit weight (W = 1) is launched perpendicularly onto the turbid
medium. Because of Fresnel reflection only a fraction of the weight ((1 − RF )W )
is transmitted into the medium. Next, the photon packets propagates a distance s,
which is statistically distributed around the MFP based on Beer’s law, calculated
as

s = − ln ξ

µt

, (4.41)

where ξ is a random variable uniformly distributed between 0 and 1. After moving
the distance s, the photon packet loses a fraction 1−a of its weight due to absorption.
If the weight of the photon packet falls below some predefined threshold then the
Russian roulette is activated. This technique terminates low-weight photon packets
early in order to save computation time. However, in order to conserve the total
energy, the Russian roulette gives the photon packet one chance in m (where m is a
parameter of the Russian Roulette and can be taken as m = 10) of surviving with
an increased weight of mW . Mathematically this technique is expressed as

W →


mW if ξ ≤ 1

m

0 if ξ > 1
m

,
(4.42)

where ξ is once again a random number between 0 and 1. Next, the photon packet is
scattered in a new direction, which is determined statistically based on the Henyey-
Greenstein phase function. These steps are repeated until the photon packet is ter-
minated or re-emitted to the ambient medium, in which case its weight is stored in a
radial grid representing the radially-resolved reflectance impulse response RMC [ρi]4.
And the whole process is repeated and averaged over a large number (N) of photon
packets.

4The reflectance is written as a function of the radial coordinate only because of the angular
rotation simetry. Also, the computed distribution is discrete and not continuous.
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Figure 4.6: Flowchart of the Monte Carlo light propagation model for computing
the diffuse reflectance of a semi-infinite medium. Y and N represent yes and no,
respectively.

Unlike diffusion theory, the MC model is accurate even outside the diffuse regime
and close to sources and boundaries. However, it is computationally inefficient due
to the need to simulate large numbers of photon packets traveling large trajectories
before being absorbed or reflected, whereas the impulse response of diffusion theory
can be computed very efficiently. A combination of these two approaches, a hybrid
model of Monte Carlo and diffusion theory, or hybrid Monte Carlo (HMC), would
combine the best of both: the accuracy and flexibility of the MC method, yet be
faster to compute than a pure MC simulation.

The HMC model has two steps, in the first one the conventional MC method
is used to track the trajectory of photons until they are re-emitted to the ambient
medium (in which case they would be part of RMC [ρi]), absorbed, or until they reach
a critical depth zc. If a photon packet scatters beyond zc, a new direction is com-
puted. And if by moving a TMFP along this new direction the photon packet does
not leave the critical depth, it is converted to an isotropic point source, otherwise
its path is followed with the MC part.

Conversion of the photon packet to an isotropic point source is based on the simi-
larity relation and the previously explained steps of approximation. The anisotropic
turbid medium is converted to an isotropic medium while maintaining µ′

s. After
moving one TMFP, the weight of the photon packet is reduced by a factor 1−a′ due
to absorption. Next the photon packet is converted into an isotropic point source,
and its weight is recorded into a source function S[ρi, zj]. This MC step is repeated
for a large number (N) of photon packets. Consequently, the radially distributed
diffuse reflectance RMC , and the distribution of isotropic sources S are averaged
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over the N photon packets.

Next, in the diffusion step, the contribution of S to the diffuse reflectance is
computed with the diffusion theory:

RDT [ρi] = ρi∆ρ
∑
j,k

S[ρ′
j, z′

k] I[ρi; ρ′
j, z′

k], (4.43)

where ∆ρ is the width of the radial grid element, and I[ρi; ρ′
j, z′

k] is the discretization
of the following integral:

I(ρ; ρ′, z′) =
∫ 2π

0
Rd,∞/2(ρ, ϕ = 0; ρ′, ϕ′, z′) dϕ′, (4.44)

where we used the impulse response in a semi-infinite turbid medium (Eq. (4.37))
and cylindrical coordinates so that ρ⃗ = (ρ, ϕ) with ϕ being the azimuthal angle.
This integral over ϕ′ can be evaluated with numerical methods. The derivation of
Eq. (4.43) can be found in Appendix C.

The final diffuse reflectance Rd provided by the HMC model is the sum of the
contributions of the MC step and the diffusion theory step:

Rd[ρi] = RMC [ρi] + RDT [ρi]. (4.45)

4.2 Imaging in turbid media
The imaging of structures and objects through dense turbid media is a challenge for
research in the technological field, but especially in the biomedical field. Some of
the imaging modalities traditionally used in these fields are X-ray radiography and
tomography, magnetic resonance imaging (MRI), ultrasound, and positron emission
tomography (PET) [146, 212–214]. As an alternative, optical imaging techniques
have been postulated, which are non-invasive, fast, economical and harmless since
they do not use ionizing radiation. These characteristics make these techniques
particularly interesting for in vivo imaging.

Optical imaging techniques in turbid media can be classified into three classes
according to the light propagation regimes defined in section 4.1: ballistic, quasi-
ballistic (or snake), or diffuse light imaging techniques [191]. A more or less sim-
ilar classification based on the depth of operation has been made into microscopy,
macroscopy, and mesoscopy [212]].

Ballistic imaging techniques provide the best resolution (generally only limited
by the diffraction of the optical system) but can only be used for thin samples
as the ballistic signal attenuates rapidly as it passes through the turbid medium.
They are based on filtering or discriminating the scattered light. Examples of
ballistic techniques are time-gated imaging [146, 191, 215], spatiofrequency-filtered
imaging5 [17,146,191,216], polarization-difference imaging6 [146,191,217,218], holo-
graphic imaging techniques [191,219], confocal microscopy [191,212,220], two-photon
microscopy [212,221] and optical coherence tomography (OCT) [145,146,191,212].

5Also called Fourier space-gated or Fourier filtering imaging.
6Also called polarization-gated imaging.
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Imaging with snake light is an intermediate regime between ballistic and dif-
fuse. Traditionally is has received the least attention. However, recent advances in
techniques based on wavefront control with SLMs have made it possible to develop
imaging methods in this regime, increasing the depth range down to the mesoscopic
level while maintaining good resolution [19, 20]. These methods are based on the
measurement of the transfer matrix of the turbid medium [222], on the use of it-
erative techniques [223] or on phase conjugation techniques [224]. Methods that
use speckle scanning microscopy (SSM) exploiting the memory effect have also been
proposed [18].

Finally, we have the imaging techniques that operate in the diffuse regime, and
which are called diffuse optical imaging (DOI) techniques. When imaging in thick
scattering media, all detected photons are diffuse, and images must be formed with
highly scattered photons. In this modality, it is not an object embedded in the turbid
medium that we want to image, but the inhomogeneities of the scattering medium
itself are the structures we want to image [207,208,225,226]. An object in this sense
would be, for example, tumor tissue, which has different scattering and absorption
properties than the surrounding healthy tissue due to its greater vascularization.
It is also necessary to use a model of light transport in turbid media to set up an
inversion method to extract information about scattering and absorption properties.

DOI has the already mentioned advantages of optical imaging techniques (non-
invasive, non-ionizing and economical), in addition to others such as the possibility
of examining samples of high thickness and high optical density, due to their great
penetration power (up to several centimeters into biological tissue for light in the
red and infrared parts of the spectrum) [146, 191, 207]. Disadvantages include the
low spatial resolution of these techniques [146, 191], on the order of 20% of the
penetration depth, and the need to use approximate models along with inversion
methods, which limits accuracy.

The main applications of DOI are found in the biomedical field for optical mam-
mography, detection of tumors, hemorrhage, embolism and stroke, imaging and
monitoring of brain activity and visualization of muscle tissue [207, 226, 227]. In
addition to the important applications in biomedicine, it also has applications in
the chemical, food and agricultural industries [209,228].

Typically, measuring the optical properties of a turbid medium relies on a tech-
nique that resolves either the spatial or temporal response of light propagation
within the medium. Therefore, the measurements and instrumentation for DOI
can be classified into two domains: the time-independent (also known as spatial
domain) and the time-dependent (also known as time-resolved, or simply time do-
main). Similar to fluorescence imaging measurements (Section 3.2), both domains
(spatial and temporal) can be divided into two subdomains: the real and the fre-
quency domain. In the real domain, the response to a point in space or a pulse in
time (the point-spread function (PSF) or impulse response) is measured. On the
other hand, the frequency domain measures the amplitude modulation or phase shift
(related to the modulation transfer function (MTF)) of a periodic illumination in
space or time [208, 210, 229, 230]. Thus, measurements in one of these domains, in
conjunction with an appropriate light propagation model, allow the scattering and
absorption properties of the sample to be distinguished and quantified.
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The real and frequency domains, whether temporal or spatial, are related via the
Fourier transform: the measurement of the PSF in response to a infinitely narrow
point or infinitely short pulsed source is equivalent to a frequency domain sweep of
the MTF. However, measurements in each domain have their respective advantages
and disadvantages in terms of accuracy, instrumentation cost, resolution, imaging
speed, computational cost, etc.

In time-domain techniques, the sample is illuminated with light pulses (of the
order of a few picoseconds) and the temporal PSF (t-PSF) is measured using time-
gated or single photon counting detection. The rich information provided by tempo-
ral light propagation allows the best decoupling of optical absorption and scattering
properties from the analysis of the attenuation and broadening of the t-PSF with
respect to the source pulse. However, extracting information from the temporal
measurements requires the use of more complex models and more expensive instru-
mentation [146,207,208,229].

In the temporal frequency domain (this technique is also referred to as tempo-
ral frequency domain migration (FDPM)), an intensity-modulated source is used
instead of a pulsed source [146, 191, 207, 208, 230]. The modulation frequency is on
the order of a few hundred MHz. The propagation of light causes the response to
be modulated at the same frequency, but amplitude-attenuated and time-delayed.
With the proper model of photon transport, the measured relative phase and am-
plitude provide an accurate estimate of the optical properties. This method can
be performed at single or multiple modulation frequencies. Sweeping over many
frequencies yields the temporal MTF (t-MTF), which is the Fourier equivalent of
the t-PSF.

The real spatial domain (often referred to as continuous wave (CW)) measures
the intensity response to a time-invariant light source. The spatial PSF (s-PSF) is
typically characterized by multi-distance measurements to track the spatial response
to a point-like source. This can be done by scanning with a single point detector,
by using multiple point detectors, or by using spatially resolved detectors. And
the spatial resolution to obtain an image is usually achieved by using multiple point
sources. Typically, CW instrumentation is fast and inexpensive, but provides limited
absorption and scattering separability. [146,208,210,229,231,232].

Lastly we have the spatial frequency-domain imaging (SFDI), which would be
the spatial analog to FDPM, but with spatial instead of temporal modulation. The
general procedure in this modality is to project spatially structured light patterns
(e.g. sinusoidal fringes) at multiple spatial frequencies and phases onto the sam-
ple and to capture the diffuse reflected light distribution with a camera. These
measurements of diffuse reflectance are processed to obtain information about the
spatial MTF (s-MTF) in order to spatially map the optical properties of the sam-
ple [208,210,229,233,234].

Methods that operate in the real domain can provide high SNR, but are usu-
ally implemented with point source and point detector pairs or in point scanning
geometries, which is a problem for capturing larger FOVs. It should be noted that
wide-field imaging in the time domain can be achieved by using ultrafast cameras
such as SPAD arrays or streak cameras, but this suffers from high complexity and
cost. On the other hand, due to the nature of the instrumentation used, mea-
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surements in the frequency domain can be easily multiplexed over multiple pixels,
allowing for wide field imaging. In this sense, SFDI is particularly advantageous
in terms of spatial multiplexing, imaging a large FOV, and the relative simplicity
and cost of the instrumentation. However, because SFDI is a non-contact method
and is typically used in a reflectance geometry, it provides limited depth sensitivity
(limited to around a few mm) [208,210,229,233,234].

4.2.1 Spatial frequency domain imaging
In this section, we present the theory and experimental methods for performing
SFDI. First, we will derive the analytical expression for the fluence rate and diffuse
reflectance in response to a sinusoidally modulated source. We assume a semi-infinite
medium and a normally incident plane wave source with periodic modulation along
the x-axis:

S(r⃗) = S0(z) cos (2πfx + α), (4.46)
where f is the spatial frequency of the sinusoidal modulation, and α is an arbitrary
spatial phase. S0(z) describes the depth dependence of the source.

Assuming a linear medium, the sinusoidally modulated source will yield a fluence
rate modulated at the same frequency and phase

Φ(r⃗) = Φ0(z) cos (2πfx + α). (4.47)

Inserting Eqs. (4.46) and (4.47) into the time-independent diffusion equation for a
homogeneous media (Eq. (4.27)) yields the following one-dimensional second-order
Helmholtz equation for the z-dependent part of the fluence rate:

d2

dz2 Φ0(z)− µ′
effΦ0(z) = −3µ′

tS0(z), (4.48)

where
µ′

eff =
√

µ2
eff + (2πfx)2 ≡ 1

δ′
eff

. (4.49)

The Eq. (4.48) can be understood as a time-independent wave equation with an
effective attenuation coefficient µ′

eff , which depends on the optical properties of
the medium, but also on the spatial frequency of the modulation. In other words,
the periodically modulated plane wave source gives rise to a periodically modulated
wave that propagates in the medium with an effective penetration depth δ′

eff . This
penetration depth decreases for higher frequencies and increases for lower frequen-
cies, with the maximum penetration depth at zero frequency (f = 0). This feature
enables depth sensing and tomography [233,234].

Next, we model an extended and isotropic source created by scattering of a col-
limated beam of power P0 [210, 235]. Therefore, the z dependence of the source
function is written as

S0(z) = P0µ
′
s exp (−µ′

tz), (4.50)
with which the general solution to Eq. (4.48) can be expressed as a combination of
the solution to the associated homogeneous differential equation, and a particular
solution:

Φ0(z) = Φ0,h(z) + Φ0,p(z). (4.51)
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The particular solution is given by:

Φ0,p(z) = A exp (−µ′
tz), (4.52)

where
A = 3µ′

tµ
′
sP0

µ′2
eff − µ′2

t

. (4.53)

The homogeneous solution is given by:

Φ0,h(z) = B exp (µ′
effz) + C exp (−µ′

effz), (4.54)

where B = 0 because the fluence rate has to vanish in the limit z → ∞, and
where C is a constant determined by substituting the general solution Φ0(z) into
the boundary condition given by Eq. (4.32):

C = −3P0 a′(2CR + 3)
(µ2

eff/µ′2
t − 1)(2CRµ′

eff/µ′
t + 3) . (4.55)

The derived fluence rate Φ(r⃗) yields, trough Eq. (4.38), the following diffuse
reflectance:

Rd(ρ⃗; f) = MTF (f) cos (2πfx + α), (4.56)

which follows the same periodic modulation but with an amplitude given by:

MTF (f) = 3a′

(µ′
eff/µ′

t + 1)(2CRµ′
eff/µ′

t + 3) , (4.57)

which can be shown (Appendix D) to be the s-MTF evaluated at the spatial fre-
quency f . The frequency dependence of MTF (f) describes the low-pass spatial
filtering properties of turbid media. Also, at low spatial frequencies (µeff >> 2πf)
the absorption has maximal effect on the MTF, and at high spatial frequencies
(µeff << 2πf) the MTF becomes more sensitive to changes of µ′

s [210]. It is im-
portant to note that since Eq. (4.57) is derived with diffusion theory, its validity
is limited to spatial frequencies much lower than the reduced transport coefficient
f << µ′

t = 1/l′
tr [210,229,233].

Measurements of the amplitude modulation of the diffuse reflected sinewave can
be related to the s-MTF, and by solving an inversion problem, the optical coef-
ficients, µa and µ′

s can be extracted. The simplest implementation requires the
projection of sinusoidal patterns at different spatial frequencies (at least two) each
with three different spatial phase offsets (α = 0, 2π/3 and 4π/3) onto the tur-
bid medium. Typically, to best decouple absorption from scattering, two spatial
frequencies are used, a low or zero frequency (fDC ≈0) and a relatively high fre-
quency (fAC). In practice, the projection is usually done with a SLM based on
DMD technology, and the illumination must be a superposition of an AC (carrying
the modulation) and a DC (planar or constant illumination) term, since we cannot
illuminate with negative intensity. Therefore, by exploiting the fact that a zero spa-
tial frequency component is always present when projecting intensity light patterns,
single AC frequency patterns can be used. In the latter case, three reflectance im-
ages (I[xi, yj; fAC , α = 0], I[xi, yj; fAC , α = 2π/3], and I[xi, yj; fAC , α = 4π/3]) are
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captured by a camera. Each reflectance image is a superposition of the AC and DC
components:

I[xi, yj; fAC , α] = IAC [xi, yj; fAC , α] + IDC [xi, yj]. (4.58)

The AC component of the image can be modeled by a sinewave with an amplitude
envelope MAC [xi, yj; fAC ]:

IAC [xi, yj; fAC , α] = MAC [xi, yj; fAC ] cos (2πfACxi + α), (4.59)

and the DC contribution is given by the DC amplitude modulation (IDC [xi, yj] =
MDC [xi, yj]). The images of the AC and DC amplitude modulation are obtained
from the camera images with the following three-step demodulation method:

MAC [xi, yj; fAC ] =
√

2
3
{
(I[xi, yj; fAC , α = 0]− I[xi, yj; fAC , α = 2π/3])2

+ (I[xi, yj; fAC , α = 2π/3]− I[xi, yj; fAC , α = 4π/3])2

+ (I[xi, yj; fAC , α = 4π/3]− I[xi, yj; fAC , α = 0])2
}1/2

,

MDC [xi, yj] =MAC [xi, yj; fDC = 0] = 1
3 (I[xi, yj; fAC , α = 0]

+I[xi, yj; fAC , α = 2π/3] + I[xi, yj; fAC , α = 4π/3]) .

(4.60)

The measured amplitude modulations are not only affected by the MTF of the
turbid medium, but also by the optical imaging system’s MTF (MTFOIS), and are
therefore expressed as a product of the source intensity (I0), the MTF of the imaging
system, and the MTF of the turbid medium:

MAC [xi, yj; fAC ] = I0 MTFOIS[xi, yj; fAC ] MTF [xi, yj; fAC ]. (4.61)

Next, a calibration step is performed to remove the contribution of the imaging
system’s MTF. This step consists of measuring the same three reflectance images,
but from a homogeneous reference turbid media phantom with known optical proper-
ties. These images are also demodulated to obtain reference images of the amplitude
modulations, MAC,ref [xi, yj; fAC ] and MDC,ref [xi, yj]. Using a model, such as diffu-
sion theory, the MC or HMC method, the MTF is predicted at the AC frequency
(MTFref (fAC)) and the DC frequency (MTFref (fDC)). The calibration is performed
as a direct division correction:

MTF [xi, yj; fAC ] = MAC [xi, yj; fAC ]
MAC,ref [xi, yj; fAC ]MTFref (fAC),

MTF [xi, yj; fDC ] = MDC [xi, yj]
MDC,ref [xi, yj]

MTFref (fDC).
(4.62)

This calibration avoids the need to perform deconvolution with the system’s PSF in
the real spatial domain (or division by the system’s MTF in the spatial frequency
domain) [210], and also corrects for illumination inhomogeneities.

The values of MTFref (fAC) and MTFref (fDC) can be calculated directly with Eq.
(4.57), or with the MC or HMC model. In the former case, the inversion method
(the procedure to extract µ′

s and µa) is usually set up as a nonlinear fitting of Eq.
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(4.57) for each pixel of the retrieved images. To improve the accuracy, more than two
frequencies can be used to perform a multi-frequency fitting [210]. In the latter case,
the MC or HMC simulation is used to compute the reflectance PSF (Rd[ρi]) for a
given set of values of optical properties. The MTF is found by Fourier transforming
Rd[ρi]. Since Rd[ρi] is radially symmetric, its two-dimensional Fourier transform
is also radially symmetric and can be computed with the one-dimensional Hankel
transform of zero order. The discretized version of the Hankel transform is:

MTF [fj] = 2π
∑

i

ρiJ0[2πfjρi]Rd[ρi]∆ρ. (4.63)

where J0 is the zero order Bessel function of the first kind. The inversion method
is often implemented as an interpolation with lookup tables (LUTs) computed with
a forward model like the MC (or HMC) model. This involves calculating the MTFs
for a large ensemble of different values of µ′

s and µa. Interpolation is performed for
each pixel independently. An example of such a LUT is shown in Fig. 4.7. The
strong orthogonality between the absorption and scattering contour lines is due to
the different sensitivity of the MTF at the low and high frequencies, and allows the
optical coefficients to be accurately decoupled.

Figure 4.7: Example of a lookup table for interpolation of µ′
s and µa from the values

of the s-MTF at two frequencies (0 and 4 cm−1), generated from HMC model for-
ward predictions. Dashed contour lines indicate constant µ′

s, dash-dotted countour
lines indicate constant µa, and the red dotted line shows the lookup method, which
translates MTF [fDC ] and MTF [fAC ] values into µ′

s and µa coefficients. MTF values
were calculated with the HMC using an average of 5 simulations, each with 106

photon packets. The values of the refractive index (n), anisotropy factor (g), and
the critical depth (zc) were 1.33, 0.71, and 0.5l′

tr.
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4.3 Imaging with the Kubelka-Munk method
The KM model does not predict spatially resolved reflectance or transmittance.
In addition, the method requires the use of integrating spheres to measure those
quantities. This makes imaging with conventional array-based cameras impossible.
In this section we present a DOI system based on the KM model, where we use
structured illumination and integrated detection for the spatial characterization of
the scattering and absorption properties, i.e. µa, µ′

s and g, of inhomogeneous turbid
media [236]. The ability to obtain images of the optical properties despite the use
of integrating spheres with photodiodes as detectors is due to the use of the SPI
technique, which allows imaging without the use of array detectors, and in particular
to the tolerance of an active SPC to the presence of diffusers between the object to
be characterized and the bucket detector 7 (as demonstrated in Ref. [237])).

The experimental setup is shown schematically in Fig. 4.8. Illumination is pro-
vided by a collimated deep red (λ = 660 nm) LED source (M660L4, Thorlabs). This
beam is structured by a DMD (V-7000, Vialux) and projected by a 4−f system
through an integrating sphere onto the turbid media slab. The detection stage of
this system consists of two integrating spheres (IS236A, Thorlabs) equipped with
their respective photodiode (SM05PD1B, Thorlabs). By using a double integrating
sphere arrangement with the turbid media slab sandwiched between them, we are
able to measure reflectance and transmittance simultaneously. The use of integrat-
ing spheres together with the SPI technique allows us to obtain images of the spatial
distributions of forward (ITd

[xi, yj]) and backward scattered light (IRd
[xi, yj]) at all

angles, which are computationally reconstructed from the measured signals. To re-
construct absolute transmittance and reflectance images, reference measurements
were made without any sample and the transmittance integrating sphere. Taking
into account this reference image (I0[xi, yj]), we can obtain absolute transmittance
and reflectance maps with the operations:

Td[xi, yj] = ITd
[xi, yj]

I0[xi, yj]
, Rd[xi, yj] = IRd

[xi, yj]
I0[xi, yj]

, (4.64)

which also corrects for any unevenness in the illumination beam. Double integrating
sphere corrections for multiple light exchanges between the spheres were performed
based on Eqs. (4.17).

The additional measurement of ballistic light with the collimated transmission
method (see Fig. 4.5(a)) allows to reconstruct an image of collimated transmitted
light (ITC

[xi, yi]), which with a reference image without the sample (ITc,0[xi, yj])
allows us to calculate the map of absolute collimated transmittance:

Tc[xi, yj] = ITc [xi, yj]
ITc,0[xi, yj]

. (4.65)

This measurement is performed with a third photodiode (DET36A, Thorlabs) and
allows the spatial distribution of the three transport parameters (µa, µs and g) to
be determined pixel by pixel by performing the calculations of the KM method (see

7In the work described here, the diffuser between the object and the detector is not the turbid
medium, but the integrating sphere, whose walls reflect light diffusely.
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Figure 4.8: Schematic of the experimental setup for imaging the scattering and
aborption properties of turbid media with integrating spheres and the Kubelka-
Munk model.

Fig. 4.4). However, the acquisition of collimated transmittance limits the sample
thickness to a few MFPs (depending on detector sensitivity). The signals from all
three photodiodes are acquired simultaneously, amplified (PDA200C, Thorlabs) and
digitized by a multichannel data acquisition system (NI6251, National Instruments).
The control of the hardware (projection of the SPI patterns and data acquisition)
is done with LabView software, while the computations are done with Matlab.

The patterns for imaging with the SPI technique are the Walsh-Hadamard func-
tions of order N = 128, so a set of 2 × 16384 patterns was used (the factor 2
comes from using complementary functions). These patterns were modulated with
768 × 768 micromirrors of the DMD (6 × 6 micromirrors for each pixel of our pat-
terns). A circular pupil was superimposed on the patterns to adjust the sampled
area to a size slightly smaller than the circular apertures of the integrating spheres.
This avoids artifact errors in the periphery of the measured images caused by light
scattered too close to the port edges. Together with the unity magnification of the
4− f system, this results in a circular imaged area of about 3.5 cm2. For the DMD
operating at 20 kHz, the acquisition time for all three images is about 1.6 s.

In a first set of experiments, and in order to validate the imaging system, the sam-
ple to be characterized (Fig. 4.9) is a phantom consisting of a slab of epoxy resin
(diameter ∅ = 52.45 mm, thickness d = 7.55 mm, and refractive index n = 1.56) as
matrix material, with TiO2 nanoparticles (titanium(IV) oxide, rutile nanopowder,
< 100 nm, Sigma Aldrich) as a scattering agent [238, 239]. As shown in the lower
part of Fig. 4.9, two inclusions were introduced into the otherwise homogeneous
slab. The first one is a lower absorption and higher scattering heterogeneity, con-
sisting of a hole of diameter 5.4 mm filled with an epoxy resin mixture with a higher
concentration of nanoparticles. The second inclusion is a 1.1 mm thick fragment
of an absorbing neutral density filter which was placed inside the sample serving
as an absorbing object. The bulk optical properties were measured by oblique in-
cidence reflectometry (OIR) [146, 240] and yielded values of µa ≈ 0.6 cm−1 and
µ′

s ≈ 2.6 cm−1 for the background, and µa ≈ 0.1 cm−1 and µ′
s ≈ 10.5 cm−1 for the

scattering inclusion.
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Figure 4.9: Heterogeneous turbid media phantom. (Top) Photograph of the slab
and (bottom) schematic diagram of the heterogeneities of the sample. The yellow
dashed line indicates the orientation of the absorption inclusion.

For this first sample, the diffuse reflectance, diffuse transmittance, and colli-
mated transmittance images are shown in Figs. 4.10(a)-(c), respectively, while the
computed maps of the corresponding reduced scattering coefficient, absorption co-
efficient, and scattering anisotropy are shown in Figs. 4.10(d)-(f), respectively. For
this sample, the reduced scattering coefficient map is shown instead of the scattering
coefficient map for better comparison with the values previously provided by OIR.
For comparison with the known bulk properties, the properties of the different re-
gions of the sample are discussed. A qualitative distinction of the absorption object
can be made in the absorption coefficient map (Fig. 4.10(d)). The absorption object
shows a higher absorption coefficient value (µa ≈ 0.65 cm−1) in contrast to the back-
ground medium. As expected the absorbing fragment does not produce a significant
variation in the scattering properties due to its thinness. For the scattering object,
the average value of the reduced scattering coefficient of about 10.1 cm−1, and the
absorption coefficient of about 0.09 cm−1, show good agreement with the measured
OIR values. The anisotropy parameter of about 0.31 also shows that the higher
nanoparticle concentration not only leads to a higher scattering coefficient, but also
to a more isotropic scattering. In the background turbid medium, the absorption
and scattering parameters are µa ≈ 0.42 cm−1 and µ′

s ≈ 2.2 cm−1. Note that these
results reproduce the qualitative behavior, but do not match the OIR values. How-
ever, since OIR is based on the diffusion theory (which assumes µ′

s ≫ µa), the
OIR values for the background turbid medium are not expected to be completely
accurate.

In a second set of experiments, we imaged a 0.85 cm thick slice of a cherry. The
area imaged in Figs. 4.11(a)-(c) corresponds to the mesocarp layer, i.e., the central
part of the fruit. In this layer, and due to the contrast of the optical parameters,
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Figure 4.10: (a) Diffuse reflectance, (b) diffuse transmittance, (c) collimated trans-
mittance, (d) absorption coefficient, (e) reduced scattering coefficient, and (f)
anisotropy factor maps of the heterogeneous turbid media phantom. Each image
is plotted within the minimum and maximum pixel value to highlight the spatial
variations of the measured parameters.
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two different tissues or parts can be distinguished. On the one hand, we have
the parenchyma, which is the bulk or ground tissue of the fruit. This tissue is
made of larger cells with a relatively thin cell wall. The computed optical property
maps (Figs. 4.11(d)-(f)) show average values of µa ≈ 0.5 cm−1, µ′

s ≈ 7.2 cm−1, and
g ≈ 0.92 for this tissue. On the other hand, we have the vascular tissue, which
is responsible for transporting fluids and nutrients to the cells of the parenchyma.
This tissue has a higher scattering coefficient (µ′

s ≈ 9.1 cm−1) and a lower absorption
coefficient (µa ≈ 0.26 cm−1) and anisotropy (g ≈ 0.76).

Figure 4.11: (a) Diffuse reflectance, (b) diffuse transmittance, (c) collimated trans-
mittance, (d) absorption coefficient, (e) scattering coefficient, and (f) anisotropy
factor maps for the slice of a cherry. Each image is plotted within the minimum and
maximum pixel value to highlight the spatial variations of the measured parameters.

In this section we have presented a DOI system that allows us to image the scat-
tering coefficient, absorption coefficient, and the scattering anisotropy. The imaging
system uses a singe-pixel detection approach where the bucket detectors are com-
posed by integrating spheres and photodiodes. The system in question was tested
with a heterogeneous turbid media phantom, and latter used to distinguish and
characterize different tissues in a slice of an organic sample (a cherry). To compute
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the optical parameters we used a relatively simple light transport model, the KM
model. By using this model it was not our aim to provide a completely accurate
characterization, but rather to separate absorption from scattering optical proper-
ties, and to demonstrate imaging with integrating spheres. Besides, the KM provides
no depth information and, therefore, the determined properties are averaged over
the whole depth of the sample. Depth information could be provided via a multiple
view approach. Additionally, a multispectral characterization could be performed
by simply swapping the photodiodes for spectrometers.

The method based on the KM model is limited to thin samples that allow the
measurement of transmitted light, and the results have limited accuracy due to the
limited accuracy of the model itself. To overcome these two limitations, i.e. to
measure thick samples in a reflection geometry and to perform a more accurate
quantitative characterization, an SPI-based SFDI system is developed in the next
section.

4.4 Single-pixel spatial frequency domain imag-
ing

In this section we want to develop an SFDI system based on the SPI technique, i.e.
the imaging function is achieved by using an DMD and a bucket detector. This would
make it easy to perform multispectral imaging, use CS [241,242], or even use time-
resolved detectors to image the optical properties through measurements in both the
spatial frequency and temporal domains [208,243]. In SFDI, sinusoidal light patterns
are projected onto the turbid medium and the diffuse reflected light distribution is
imaged with a conventional camera. The simplest way to implement SPI in SFDI
is to replace the conventional camera by a structured detection SPC, i.e., to replace
the camera by a DMD and a bucket detector [233,241,242,244,245]. This results in
the need to use two DMDs, one for projecting the sinusoidal patterns and another
for sampling the space [244, 245], or to use a single DMD in the detection stage
while using a preprinted sinusoidal patterned mask in the illumination [242]. The
first case results in a more complex and expensive hardware configuration. And the
latter case results in a less flexible setup because the printed pattern has to be chosen
in advance. While the SPI technique can be advantageous in these configurations,
for example to perform multispectral imaging or to reduce measurement data by CS,
a smarter idea would be to use the DMD already present in the optical system to
project the sinusoidal patterns for frequency domain sampling and also to perform
the base scan for SPI. This eliminates the need for a second DMD, truly reducing
hardware requirements. The aim of the work explained in this section is to develop
a single-pixel SFDI (SP-SFDI) system where a single DMD is used to modulate
simultaneously the sinusoidal pattern for the spatial frequency sampling and the
spatial sampling patterns in order to achieve spatial resolution throught the SPI
technique. This simplifies detection to the point where it is simply replaced by a
bucket detector.

In the case of the KM model-based imaging system, the use of integrating spheres
was justified by the need to collect all diffusely reflected and transmitted light. In
this case, the use of the integrating sphere as a detector was to achieve a higher NA
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and therefore to detect a higher percentage of the total diffusely reflected light. This
idea is illustrated in Fig. 4.12, where the percentage of total diffusely reflected light
is plotted against the NA of the detection system. Detection with an integrating
sphere (which ideally has NA = 1) detects 100% of the diffusely reflected light, while
a detection system with NA = 0.22 would detect less than 9% of the reflected light.

Figure 4.12: Plot of the percentage of diffuse reflected light as a function of the
numerical aperture (NA) of the detection system. The total amount of diffuse
reflected light and its angular distribution is computed with a MC simulation for
a semi-infinite medium (µs = 100 cm−1, µa = 0.1 cm−1, g = 0.9, and n = 1.3)
for 100000 photon packets. Note the saturation of the curve at NA = 0.8, which
corresponds to the critical angle of total reflection of light inside the medium.

The proposed experimental system is shown schematically in Fig. 4.13. A broad
beam from a collimated deep red (660 nm) LED light source (M660L4, Thorlabs)
impinges onto the DMD (V-7000, Vialux). The DMD simultaneously displays the
sine pattern and samples the scene with the set of sampling patterns. The spa-
tial sampling patterns implemented on the DMD are the circular two-dimensional
scrambled Walsh-Hadamard basis functions, as explained in section 2.3. The circu-
lar area of these patterns allows us to image the largest area through the circular
ports of the integrating sphere. The final masks are constructed by overlapping these
circular scrambled Walsh-Hadamard patterns with the binarized sinusoidal pattern.
An example of these doubly modulated masks is shown in Fig. 4.14. These masks
are projected through a 4−f unit magnification optical system onto the turbid me-
dia sample located at the exit port of an integrating sphere (IS236A, Thorlabs). A
wide-core multimode fiber attached to the sphere directs the light to an avalanche
photodetector (APD440A, Thorlabs), which measures the intensity signal for the
set of sampling patterns.

The digital processing step consists of image reconstruction via inverse trans-
form, demodulation, reference sample calibration, and interpolation using a LUT
computed with the HMC model described in section 4.1.4. This LUT is computed
with MTF values determined for a wide range of optical properties (µ′

s ∈ [1, 30] cm−1,
µa ∈ [0, 2] cm−1, and g = 0.9), and cubic interpolation using the griddata method is
used in Matlab to interpolate between table values.

To test absorption and scattering separability, we characterized the same het-
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Figure 4.13: Schematic of the experimental setup of the SP-SFDI system. A light
source illuminates the SLM (in this case a DMD). The SLM modulates both, the
sinusoidal spatial frequency sampling pattern and the set of spatial sampling pat-
terns. The doubly modulated light is projected by means of a 4−f relay system
onto the sample located at the exit port of the integrating sphere. A bucket detec-
tor, like a photodiode, is attached to the integrating sphere and measures a signal
proportional to the diffuse light reflected by the sample.

Figure 4.14: Example of the construction of a mask for our SP-SFDI system: (a)
grayscale sinusoidal function of spatial frequency f = 5 cm−1, (b) binarized version
of the sinusoidal pattern by dithering based on the Floyd-Steinberg algorithm, (c)
example of a scrambled and circular Walsh-Hadamard function, and (d) final mask
obtained by overlaying (b) and (c).
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Figure 4.15: Representation as surface plots of the LUTs for interpolation of the
absorption (a) and reduced scattering coefficient (b) in the SP-SFDI experiment.

erogeneous epoxy slab as in the previous section. We used the standard procedure
of illuminating with only a single frequency sinusoidal pattern (f = 5 cm−1 in this
case) with three different phase offsets, and used 2×4096 scrambled circular Walsh-
Hadamard patterns (again the factor 2 comes from using complementary patterns)
to reconstruct images of 64×64 radial and angular section pixels of the reduced scat-
tering and absorption coefficients. These results are shown in Fig. 4.16. The imaged
area is centered on the absorption inclusion (the piece of neutral density filter). For
the background, the approximate values of the absorption and reduced scattering
coefficients are 0.45 cm−1 and 5 cm−1, respectively. The high scattering inclusion is
characterized by µa ≈ 0.1 cm−1 and µ′

s ≈ 11 cm−1. Finally, the absorption inclusion
region has the values µa ≈ 0.6 cm−1 and µ′

s ≈ 3 cm−1.

It is noticeable that the absorption map follows the same qualitative and quanti-
tative behavior as determined with the system based on the KM model. However,
the largest discrepancies are found in the scattering map. While the reduced scat-
tering coefficient seems to be slightly overestimated in the background and in the
region of the scattering inclusion, in the region of the absorption inclusion its value
is much lower than the background, which differs from the characterization with the
KM method. It can be argued that this effect is caused by the choice of a transport
model for a semi-infinite medium for determining the LUT, while the sample being
imaged is relatively thin; or by the fact that the volume occupied by the neutral
density filter reduces the depth averaged value of the scattering coefficient. How-
ever, the most reasonable explanation seems to be an imperfect decoupling of the
scattering coefficient from the absorption coefficient. The latter idea is supported
by the fact that the reduced scattering map is similar to the absorption map but
inverted, i.e. high scattering where the absorption is low and vice versa, and that
this effect also occurred with other samples.

The explanation for this is that since we are not projecting a pure sinusoidal
function, but its superposition with our Walsh-Hadamard functions, the physical
convolution operation with the PSF of the turbid medium does not properly extract
the amplitude modulation at the AC frequency (MAC), while the DC amplitude
modulation appears to be unaffected. Therefore, by not having the correct value of
the MTF at the AC frequency, the scattering contribution is not properly decoupled
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Figure 4.16: Scheme showing the orientation of the inclusions (a) and maps of the
reduced scattering coefficient (b) and absorption coefficient (c) of the heterogeneous
turbid media phantom obtained with the proposed SP-SFDI system.
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from the absorption. This can be visualized by a horizontal line in the LUT shown
in Figure 4.7. The height of this line is given by MTF (fDC), and since MTF (fAC)
is not properly determined, it can lie anywhere along this horizontal line. Since the
absorption coefficient contour lines are practically horizontal, this uncertainty in
MTF (fAC) has almost no effect on the value of the absorption coefficient. However,
this uncertainty prevents the correct estimation of µ′

s. A solution to this problem has
not yet been found. However, current work is devoted to finding another approach
to perform DOI or SFDI with structured illumination and bucket detection. The
two most promising ideas are briefly presented below.

The first idea is to exploit the rich spatial frequency information that is obtained
by interrogating the turbid medium with square wave functions that exhibit many
Fourier frequencies, such as the Walsh-Hadamard functions, and that is encoded in
the spatially integrated intensity of the diffuse reflected light. In this sense, a set
of patterns is projected onto the turbid medium and an intensity value is obtained
for each one of these patterns. This set of patterns does not necessarily have to
be a basis of functions. The formulation of the problem is based on the general
procedure of image reconstruction in diffuse optical tomography (DOT) [146, 246].
The forward model is generated by applying a perturbation method to the time-
independent diffusion equation for inhomogeneous media. Essentially, the spatially
resolved optical properties (µa(r⃗) and µ′

s(r⃗), or equivalently µa(r⃗) and D(r⃗)), are
expressed as a constant background value (µa,0, and µ′

s,0 or D0) and a small spatially
varying perturbation due to the heterogeneities relative to the background (δµa(r⃗)
and δµ′

s(r⃗) or δD(r⃗)). That is

µa(r⃗) = µa,0 + δµa(r⃗),
µ′

s(r⃗) = µ′
s,0 + δµ′

s(r⃗) or D(r⃗) = D0 + δD(r⃗).
(4.66)

Also the fluence rate can be expressed as

Φ(r⃗; r⃗′) = Φ0(r⃗; r⃗′) + ΦSC(r⃗; r⃗′), (4.67)

where Φ0(r⃗; r⃗′) represents the unperturbed fluence rate in a homogeneous medium
that has the background optical properties, and ΦSC(r⃗; r⃗′) represents the differential
fluence rate due to the heterogeneities.

With the relations given by Eqs. (4.66) and (4.67) and some approximation (like
the Born or Rytov approximation), the diffusion equation can be separated into
two differential equations, one for the homogeneous part and another one for the
perturbation. These differential equations can be solved using the Green’s function
method for any source function S(r⃗, r⃗′) defined by the projected pattern. This
yields the fluence rate in response to any perturbation δµa(r⃗) and δµ′

s(r⃗) or δD(r⃗)
and constitutes the forward model. The inversion method can be implemented as
minimization of the quadratic differences between the estimated fluence rates with
the forward model and the measured reflectance values for the set of sampling masks
using one of the gradient descent methods described in section 2.2.

The other idea is inspired by motionless optical scanning holography (MOSH)
[247–249]. MOSH can be seen as a SPI technique in which the illumination patterns
are Fresnel zone plates (FZPs). By measuring the integrated reflected or transmit-
ted light from a three-dimensional object when illuminated by FZPs with different
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displacements, an image or hologram of the object’s convolution with the FZP is
reconstructed. The object at any axial distance is obtained by deconvolution, which
is equivalent to backpropagation since the FZP is equivalent to the free space prop-
agation impulse response.

This idea can be applied to SP-SFDI by using some kind of pattern that has cir-
cular symmetry and whose convolution with the PSF of the scattering medium ex-
tracts its MTF evaluated at a single frequency. The equivalent of a single frequency
sine function in polar coordinates is the zero-order Bessel function J0(2πfρ)8. Con-
volving J0(2πfρ) with the PSF of a homogeneous medium (PSF (ρ)) yields a light
distribution with the same modulation but with an amplitude given by the medium’s
MTF at frequency f , i.e., PSF (ρ)⊗ J0(2πfρ) = MTF (f)J0(2πfρ).

The procedure in the MOSH-inspired SP-SFDI system consists in projecting onto
the turbid medium a zero-order Bessel function modulated light pattern with a
lateral displacement ρ⃗′, and to measure the integrated intensity, which is given by

I(ρ⃗′) =
∫

S
PSF (ρ)⊗ J0(2πf∥ρ⃗− ρ⃗′∥)dρ⃗

=
∫

S
MTF (f)J0(2πf∥ρ⃗− ρ⃗′∥)dρ⃗.

(4.68)

If we now assume that the MTF has some degree of spatial variation9 (MTF (f)→
MTF (ρ⃗; f)), then I(ρ⃗′) can be interpreted as the image of the convolution of the
MTF map and J0(2πfρ), i.e.,

I(ρ⃗) = MTF (ρ⃗; f)⊗ J0(2πfρ). (4.69)

Although this result seems promising, it is not very useful because the convolution
with the zero-order Bessel function contains information about only one ring in the
spectra of the MTF map, and a single ring in its spectra is generally not sufficient
to reconstruct the image. A radial frequency sweep could possibly be the answer
to sampling the whole spatial frequency space of the MTF map. Once the image
of the MTF is reconstructed, the rest of the data processing follows the same steps
(calibration and LUT interpolation) as in the standard SFDI procedure.

4.5 General remarks for the chapter
Two DOI systems have been described in this chapter. The first is based on a rather
simple idea, which is to use the SPI technique to reconstruct images of reflectance
and transmittance from integrating sphere measurements. The KM model is then
used to obtain values of the three transport parameters for each pixel. Because of
the transmittance measurements, this imaging system is limited to thin samples.
Therefore, efforts were made to find a system in reflection geometry, resulting in
the second DOI system described in this chapter. This imaging system is based on
SFDI and a structured illumination SPC, rather than simply replacing the conven-
tional camera used in standard SFDI setups with a structured detection SPC. This

8The two-dimensional Fourier transform of the zero-order Bessel function J0(2πfρ) yields a ring
in the spectra corresponding to a single radial frequency f .

9This is similar to the standard SFDI, which makes the theoretical assumption of a homogeneous
medium, but then considers a spatially varying MTF value.
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reduces the hardware requirements, since the SLM was already needed to project
the sinusoidal patterns. An LUT interpolation method is used to extract the optical
properties. These LUTs were calculated using a custom HMC simulation.

Both of these systems measure light with integrating spheres. In the case of the
KM model-based imaging system, this is a requirement of the model, since the total
diffuse reflectance and transmittance must be measured. In the case of the SP-
SFDI system, the use of the integrating sphere allows a higher fraction of diffusely
reflected light to be collected. Although its use converts the system to a contact
method, it has the advantage of being insensitive to ambient light, since it is blocked
by the integrating sphere. Possible applications of this setup could be imaging of
skin lesions, moles, etc.

Although this originally proposed SP-SFDI system did not provide accurate val-
ues for the scattering coefficient map, two possible alternative solutions have been
proposed. However, it is important to note that the two proposed ideas must be
taken with a grain of salt, as they have not yet been experimentally verified.
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Chapter 5

Conclusion

In recent years, the joint design of optical hardware and software for imaging appli-
cations, namely computational imaging, has enabled new imaging systems that are
faster, cheaper, smarter, and not bound by the limitations of traditional cameras.
Among these computational imaging techniques, SPI systems stand out as perfect
candidates for imaging under special conditions or for obtaining multidimensional
information. This is due to the simple detectors used in SPI, which make it possible
to work in low-light conditions, in almost the entire electromagnetic spectrum, or to
measure additional information such as spectra and time. However, this technique is
not without its drawbacks, namely the sequential nature of the measurement, which
creates a trade-off between acquisition speed and spatial resolution. Typically, a
longer acquisition is required for relatively high-resolution images, while a faster
acquisition results in low-resolution images. There are several ways to approach this
problem. For example, an adaptive approach samples at high resolution only those
regions of the scene where there is relevant information, CS techniques reduce the
measurements (and thus the acquisition time) by playing with the sparsity and com-
pressibility of the images in some function bases, and recently DF has also been used
to increase the resolution of SPI systems by merging them with conventional high-
resolution cameras. The last two are discussed and applied in several experiments
in this dissertation.

Throughout this dissertation, we investigated the implementation of SPI tech-
niques in two major biomedical imaging modalities: fluorescence imaging and DOI.
The goal is to develop systems that are faster, more compact, simpler, and capable
of measuring multidimensional information.

In the field of fluorescence imaging, we performed multispectral time-resolved
imaging by combining different multidimensional SPCs and conventional cameras
with gradient descent minimization based DF algorithms. Three contributions re-
sulted from this idea. In the first one, two low spatial resolution (32 × 32 pixels)
images from a multispectral (with 16 spectral channels) and a time-resolved SPC
(with 256 time bins) were fused with a high resolution (512 × 512 pixels) CMOS
camera image. The DF approach allowed to reconstruct a 4D hypercube of size
512× 512× 16× 256 (512× 512 pixels with 16 spectral bands and 256 time bins),
which is about 8.5 Gb of data, from only about 4 Mb of the three acquired data sets
combined. This gives us a measurement to reconstruction ratio of only 0.0005 (which



corresponds to a compression ratio of about 99.95%). In addition, the improvement
could also be seen in terms of acquisition speed, as a SPC-only imaging system, i.e.
without the conventional camera, could also provide a 512 × 512 pixel image, but
would ultimately take 256 times longer to acquire the measurements. This system
was used to image a macroscopic sample and to distinguish different fluorophores
based on their spectral and temporal signature.

In the second contribution, DF was applied in a microscopy setup to merge low
spatial resolution 4D datasets (of size 32×32×16×256) from a SPC with 256×256
pixel images from a CCD camera. Two samples were imaged with this setup: some
fluorescent beads and HEK cells stained with fluorescent dye and treated with P3HT
nanoparticles. SPC datasets were acquired with CS, and the results indicate that
the SPC 4D dataset can be compressed up to compression ratios of 80−90% without
much loss in the quality of the final reconstructed hypercube with DF.

Both systems mentioned above generate very large reconstructed datasets (up to
several giga-voxels). Therefore, in the last contribution on fluorescence imaging, a
multi-exponential model-driven DF algorithm was developed to perform FLIM with
the aforementioned experimental systems. By directly retrieving the concentrations
and decay rates (or lifetimes) of the fluorophores, we were able to drastically reduce
the size of the reconstructed hypercubes, instead of reconstructing all the temporal
information and then performing a fit. For example, the temporal dimension of the
macroscopic fluorescence imaging system sample can be described by a combination
of only three different fluorophores. Thus, by directly reconstructing the lifetime im-
ages in high spatial resolution, we were able to reduce the size of the reconstructed
hypercube by a factor of 36.6 compared to a 128 × 128 × 16 × 256 hypercube. We
have shown that the proposed approach works well for samples such as those from
the macroscopy system (with good SNR and with spatially separated fluorophores).
However, the multi-exponential decay fitting does not succeed to separate the contri-
bution of different fluorophores for microscopy samples with lower SNRs and where
different fluorophores overlap spatially.

Two contributions are presented in the area of DOI. In the first one, we demon-
strate for the first time imaging with integrating spheres and perform reconstruction
of the three transport parameters µa, µs and g with the non-spatially resolved KM
model. This system takes advantage of the ability of SPI systems to perform imag-
ing with simple detectors, such as the integrating spheres with photodiodes. This
system is useful for relatively thin samples that can be sandwiched between the two
integrating spheres used to measure reflectance and transmittance simultaneously,
and has been validated by imaging the absorption and scattering properties of turbid
media phantom and a slice of an organic sample (a cherry).

To overcome the limitations of the previous system due to the accuracy of the KM
model and the experimental requirement of thin samples, in the second contribution
we developed a reflection geometry imaging system based on the SFDI technique.
By building this system on a structured illumination SPC, we were able to simplify
the optical setup by replacing the camera used in standard SFDI or the second
DMD used in structured detection SPI-based SFDI systems. The detection system is
simplified to the point where it is replaced by an integrating sphere with a photodiode
as a bucket detector. Spatial resolution is achieved by using a single DMD to
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simultaneously modulate the sine pattern for spatial frequency sampling and the
spatial sampling masks for spatial resolution. Circular scrambled Walsh-Hadamard
functions were used to match the circular apertures of our integrating sphere and
to ensure minimal spatial frequency interference between the SPI masks and the
sinusoidal pattern. This system was used to characterize the turbid media phantom
slab, and the results indicate that while the spatially resolved absorption coefficient
is well estimated, the reduced scattering coefficient image suffers from incomplete
decoupling from the absorption image.

Beyond the work presented in this dissertation, the next few lines outline several
future ideas, improvements and modifications to the fluorescence imaging systems
and the SP-SFDI system.

As mentioned in section 3.6, the fusion of the different datasets could be optimized
by merging datasets that do not only share the spatial dimension, but perhaps also
the temporal and spectral dimension, e.g. by using RGB or few time-framed images.

While DF is applied in this work to combine 2D spatial-spectral-temporal infor-
mation, the technique can be applied to any system consisting of multiple specialized
cameras, and thus the addition of polarization, phase or depth information could be
useful for bioimaging.

In the FLIM approach, the DF algorithm with the multi-exponential decay fitting
could be refined by adding prior terms to the objective function to impose additional
constraints on the solutions. Also, in the case of the noisy temporal trace of the
microscopy dataset, denoising could be applied to the dataset before it is fed into
the DF algorithm.

Regarding the SP-SFDI, two possible alternative solutions have been introduced:
one based on sampling the scene with square wave patterns and then using a per-
turbation method approach to set up the inversion method, and another idea based
on scanning the turbid medium with a zero order Bessel function modulated light
pattern. In addition, the developed system is the first step to develop a multi-
spectral system, which is achieved by using a spectrally resolved detector, such as
a spectrometer; and to perform tomography by exploiting the penetration depth
dependence on the spatial frequency of spatially modulated illumination.

Finally, seemingly unrelated, the two directions of work (fluorescence imaging
and DOI) could be combined to obtain an imaging system that characterizes both
the optical properties (absorption and scattering) of a sample and the signal of flu-
orescent markers. Such a system could be used to assess the metabolic state (oxy-
genation, blood oxygen saturation, hemoglobin concentration, etc.) and perfusion
of a biological tissue and therefore be of great clinical interest.
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Appendix A

Insights about the integration
operators used in the data fusion
algorithm

While the different operators (S, T, and RL) defined for our data fusion algorithm
operate on different dimensions, they share a common feature: they integrate com-
pletely (or partially, in the case of the spatial downsampling operator) over a given
dimension. Next, we will show some examples of these operators. For simplicity, we
assume a one-dimensional image with only four entries or pixels:

x =


x1
x2
x3
x4

 . (A.1)

A spatial downsampling operator in matrix form A, that integrates over two
adjacent pixels, is written as:

A =
(

1 1 0 0
0 0 1 1

)
, (A.2)

so that

Ax =
(

1 1 0 0
0 0 1 1

)
x1
x2
x3
x4

 =
(

x1 + x2
x3 + x4

)
(A.3)

An operator B, that integrates over the whole space of x is simply written as

B =
(
1 1 1 1

)
, (A.4)

so that

Bx =
(
1 1 1 1

)
x1
x2
x3
x4

 = x1 + x2 + x3 + x4. (A.5)



Although they perform simple operations, these matrices become quite large and
therefore computationally infeasible for the sizes of images handled in our applica-
tion. For example, consider an image of 512×512 spatial pixels with no temporal or
spectral dimension. To downsample this image to a 32×32 image, the downsampling
matrix must have 322 × 5122 entries.

For this reason, it is almost always better to work with functions that perform
the same operations as the operator in matrix form. For example, in Matlab, the
downsampling operation can be performed with the imresize function [250], while
any of the integration operations can be performed with a sum over all elements in
the specified dimension with the sum function [251].
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Appendix B

Automatic differentiation

Automatic differentiation (AD, also called auto-differentiation, autodiff, algorithmic
differentiation or computational differentiation) is a set of techniques to numerically
compute the derivative or gradients of a function [252–254]. AD exploits the fact that
every calculation performed by a computer, no matter how complicated, executes a
sequence of elementary arithmetic operations (summation, subtraction, multiplica-
tion or division) and elementary functions (exponentials, logarithms, cosines, etc.).
Therefore, derivatives of any order can be computed automatically by applying the
chain rule repeatedly to these operations and functions.

It differs from symbolic differentiation and numerical differentiation (the method
of finite differences) in the sense that it uses symbolic rules for differentiation (which
are more accurate than finite difference approximations because they do not intro-
duce round-off errors due to the discretization) but, unlike a purely symbolic ap-
proach, it evaluates those symbolic expressions at particular numeric values, rather
than carrying out large symbolic expressions. Also, both of these classical methods
(symbolic and numerical differentiation) are slow at computing derivatives of func-
tions of many variables, which is the case for gradient-based optimization problems.
Therefore it is widely used in deep learning, particularly for training deep learning
models without needing to compute derivatives analytically (and especially for the
case of non-differentiable or non-linear activation functions).



Appendix C

Diffusion theory contribution to
the reflectance computed with the
hybrid Monte Carlo method

The diffuse reflectance response to any source function S(ρ⃗, z) in a homogeneous
semi-infinite turbid medium can be computed as the convolution with the impulse
response given by Eq. (4.37):

RDT (ρ, ϕ) =
∫ ∞

0

∫ 2π

0

∫ ∞

0
S(ρ′, ϕ′, z′) Rd,∞/2(ρ, ϕ; ρ′, ϕ′, z′)ρ′ dρ′dϕ′dz′, (C.1)

where cylindrical coordinates were used so that ρ⃗ = (ρ, ϕ), and dr⃗ = dρ⃗dz =
ρdρdϕdz, with ϕ being the azimuthal angle.

Since S(ρ⃗, z) is an isotropic source distribution generated by an infinitely narrow
beam normally incident at the origin of the coordinates, it has rotational symmetry
about the z-axis, and thus so does RDT (ρ, ϕ). Therefore RDT (ρ, ϕ) can be expressed
as a function of the radial variable by integrating over the entire azimuthal angle:

RDT (ρ) =
∫ 2π

0
RDT (ρ, ϕ)dϕ = 2πRDT (ρ, ϕ = 0) =

=
∫ ∞

0

∫ ∞

0
S(ρ′, z′) I(ρ; ρ′, z′)ρ′ dρ′dz′,

(C.2)

where we also took S(ρ′, ϕ′, z′) out of the integral over the azimuthal angle and
substituted it by its radial-only dependent function (S(ρ, z) = 2πS(ρ, ϕ = 0, z)),
and where we defined I(ρ; ρ′, z′) as the following integral:

I(ρ; ρ′, z′) =
∫ 2π

0
Rd,∞/2(ρ, ϕ = 0; ρ′, ϕ′, z′) dϕ′, (C.3)

Next, we discretize Eq. (C.2) to obtain the contribution of S to diffuse reflectance
computed by the hybrid Monte Carlo model:

RDT [ρi] = ρi∆ρ
∑
j,k

S[ρ′
j, z′

k] I[ρi; ρ′
j, z′

k], (C.4)

where we divided S[ρ′
j, z′

k] by the volume element ∆V [ρ′
j] = 2πρ′

j∆ρ∆z to obtain
a source density function, and multiplied the entire expression by the surface area



element ∆S[ρi] = 2πρi∆ρ to obtain absolute reflectance, rather than reflectance per
unit area.
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Appendix D

Deriving the MTF from the
amplitude modulation of the
response of a linear and
translation invariant system to a
sinusoidal input

Assume we have a one-dimensional system, which is linear and translation invariant,
characterized by a PSF or impulse-response, PSF (x). The response of this system
to any input function is given by the convolution with the impulse response. The
response to a sinusoidal function of frequency f is

F (x; f) = PSF (x)⊗ cos (2πfx). (D.1)

Next we rewrite the PSF as the inverse Fourier transform of the MTF

PSF (x) =
+∞∫

−∞

MTF (u) exp (i2πux) du, (D.2)

and the cosine as

cos (2πfx) = 1
2 [exp (i2πfx) + exp (−i2πfx)] . (D.3)

Substituting Eqs. (D.2) and (D.3) into Eq. (D.1) yields:

F (x; f) = 1
2 [MTF (f) exp (i2πfx) + MTF (−f) exp (−i2πfx)] . (D.4)

Finally, as the PSF is an even function its Fourier transform will also be an even
function (MTF (−f) = MTF (f)), and hence:

F (x; f) = MTF (f) cos (2πfx). (D.5)

This completes the proof that the convolution of a sinusoidal function with the
PSF yields a sinusoidal response with an amplitude given by the value of the MTF
evaluated at the frequency of modulation.



Appendix E

List of most used acronyms

BPAE bovine pulmonary artery endothelial
CCD charge-coupled device
CMOS complementary metal-oxide-semiconductor
CR compression ratio
CS compressive sensing
DF data fusion
DMD digital micromirror device
DOI diffuse optical imaging
DOT diffuse optical tomography
FLIM fluorescence lifetime imaging
FOV field of view
FWHT fast Walsh-Hadamard transform
HMC hybrid Monte Carlo
KM Kubelka-Munk
LUT lookup table
MC Monte Carlo
MFP mean free path
MSE mean squared error
MTF modulation transfer function
OIR oblique incidence reflectometry
PSF point spread function
PMT photomultiplier tube
PSNR peak signal-to-noise ratio
ROI region of interest
RTE radiative transport equation
SFDI spatial frequency domain imaging
SLM sptail light modulator
SNR signal-to-noise ratio
SPC single-pixel camera
SPI single-pixel imaging



SP-SFDI single-pixel spatial frequency domain imaging
SVD singular value decomposition
TCSPC time-correlated single-photon counting
TMFP transport mean free path
TV total variation
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