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Abstract 
The understanding of proteins as dynamical entities rather than static structures marked a very 

significant advance in the interpretation of their functional role in life. The capacity of proteins to 

interact with their environment, sense molecular perturbations and exert responses can be explained 

in an effective manner by specific dynamical events. The study of proteins from this perspective has 

been possible in the last decades thanks to the emergence of computational approaches. Among these 

techniques, Molecular Dynamics (MD) simulations have emerged as a potent tool, playing a pivotal 

role in investigating conformational transitions at atomic resolution across diverse biomacromolecular 

systems. 

As computational power and infrastructures keep evolving, we are increasingly able to generate 

longer MD simulations that are capable of capturing dynamical events at biologically relevant 

timescales. MD simulations typically generate an overwhelming amount of data in the form of a 

collection of snapshots, called a trajectory. Thus, we need to find suitable metrics to extract, quantify 

and present the relevant information depending on the target of the study. The scenario is even more 

challenging when we aim to analyze multiple trajectories and compare their similarity. Among the 

proposed strategies to explore the comparability between trajectories, essential dynamics analysis 

(EDA) approaches are a common choice, where Principal Components Analysis (PCA) or other 

dimensionality reduction techniques are applied to express the differential behavior between 

trajectories in terms of the underlying collective features of the ensemble. 

The work presented in this thesis delves further into this analytical field with the aim of improving the 

applicability of EDA in functional studies of proteins. The developed approach, termed Consensus 

Essential Dynamics Analysis (CEDA), introduces a protocol to integrate the information from 

independent PCAs and derive a consensus set of vectors, the Consensus Principal Components (CPCs). 

CPCs encapsulate the most representative (consensus) collective motions of an ensemble of 

trajectories of the system under study, allowing for sharper descriptions and comparisons of its 

relevant dynamical events. The framework of CEDA also facilitates the comparative study of 

alternative trajectory ensembles of the same system, in terms of the reference set of CPCs. The 

outcomes of such comparisons may be interpreted using different data analysis techniques and 

graphical representations. In this thesis, a strategy was proposed to evaluate the underlying 

similarities and differences between trajectory ensembles by comparison of their conformational 

profiles and application of similarity metrics between statistical distributions. 

The capacities of the CEDA protocol were demonstrated with the analysis of a collection of MD 

simulations of human erythrocyte pyruvate kinase (PKR) that covers multiple conditions of the 

enzymatic complex with its natural ligands, as well as a large array of human genomic missense 

variants of the protein. Pyruvate kinase is among the most studied proteins from the perspective of 

biochemistry, given both its role in glycolysis and its paradigmatic and complex set of allosteric 

properties. This study has provided new support for several of the proposed conformational changes 

that are associated with the transition between the inactive and active states of the enzyme. Following 

from the study of the wild-type protein, a second experimental part of the project revolved around 

the characterization of the functional effects of missense variants of the enzyme. Analysis with CEDA 

enabled detection of altered dynamical behavior in variants either with a previously validated 
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pathogenic status or for which no functional details were previously known. The conducted research 

in this regard is presented in depth throughout this manuscript. The obtained results are discussed in 

the light of the potential application of this protocol in functional studies of proteins in general, and 

with a particular perspective on pathogenicity prediction studies. 
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Chapter 1 Introduction 

1.1 Proteins 

Proteins are fascinating components of the machinery of life. The vast majority of biological processes 

are carried out (or mediated) by proteins, a fact that explains why they have been a permanent object 

of study in biochemistry since their discovery and progressive characterizations in the nineteenth and 

twentieth centuries. Etymologically, the term “protein” was coined by Jöns Jacob Berzelius in 1838 

from the Greek word πρώτειος (proteios) and means “primary” [1] or “standing in front” [2], which 

reinforces the idea of their capital importance. The range of functions exerted by proteins is 

spectacularly broad and diverse, including providing structural integrity to cells and tissues, catalyzing 

chemical reactions, sensing and transmitting stimuli, transporting molecules or even performing 

mechanical action, to mention a few. 

Such a wide range of functions can only be explained by a high degree of structural complexity. 

Proteins are polymeric chains of smaller molecules called amino acids. The different (and virtually 

infinite) combinations of the 20 standard amino acids in sequences of varying length confer a rich 

variety of physicochemical properties. A given amino‑acid sequence is, in fact, the principal 

responsible for a particular protein to achieve its features and capabilities [1]. This statement serves 

as a primary view of one of the fundamental challenges of biology: what determines protein function? 

However, with this level of description we are barely scratching the surface of the problem. A 

mechanistic understanding of protein function cannot be derived from sequence information alone. 

A far better and more comprehensive view is achieved when we take notice of how proteins operate 

from the perspective of their three‑dimensional structure and dynamics. After all, it is only intuitive 

that biological functions such as the aforementioned cannot be carried out in the absence of a proper 

architecture and movement patterns. Structure enables function, and dynamics ultimately governs it 

[3]–[7]. Both features are the embodiment of the information inherently encoded in sequence that 

has accordingly been refined through evolution [8], [9]. The capacity of understanding and studying 

proteins from this perspective has been possible in the last decades thanks to the emergence of 

structural resolution techniques and more recently the use of computational approaches to simulate 

dynamics. These are employed in the disciplines of structural biology and structural bioinformatics to 

solve problems in biology and create new knowledge by analyzing the structural and dynamical 

behavior of biological macromolecules [10]. The following section elaborates on the subjects of 

protein structure and dynamics, with special focus on the latter. 

1.1.1 Protein structure and dynamics 

Under biological conditions, most known proteins exhibit compactly folded states under the influence 

of internal non‑covalent interactions and forces (Figure 1.1). The information that drives the folding 

process is inherently encoded in the amino‑acid sequence, also called the primary structure of 

proteins. For instance, in soluble proteins, hydrophobic amino acids tend to form densely packed cores 

that make up the inner part of the three‑dimensional structure. This phenomenon is due to the 

so‑called hydrophobic effect, which can be considered the principal agent of the folding process. The 

rest of weak interactions cooperatively guide the local folding of protein segments into fundamental 
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units of specific structural arrangement, the secondary structure elements, such as α‑helices and 

β‑strands. Secondary structure elements subsequently combine to form stable larger folding patterns, 

called motifs and folds, that constitute the tertiary structure. In addition, many proteins also exist as 

assemblies of multiple polypeptide chains (in this context, also called subunits or monomers) that 

associate through specific networks of non‑covalent interactions in order to achieve their assembled 

functional forms (called complexes or multimers). This last level of arrangement is also known as the 

quaternary structure of proteins. Such an organized architecture confers the needed structural 

integrity and specificity to participate in recognition events with other molecules involved in biological 

processes (such as small ligands or nucleic acids) or simply to serve pure structural roles such as fibrous 

or coat proteins [6]. 

 

Figure 1.1. Levels of the protein structure. The concept is illustrated with the example of the structure of a heterotrimeric G 

protein (Protein Data Bank entry 6EG8 [11]). Primary level: a fraction of the amino‑acid sequences of the Gα and Gβ subunits 

is shown in one‑letter code next to their corresponding non‑folded segments. Secondary level: the segments fold into an 

α‑helix and a β‑hairpin (two antiparallel β‑strands). Tertiary level: the fully folded Gα and Gβ subunits. The particular location 

of the previously shown secondary structure elements is indicated. The Gα subunit possesses two domains that have been 

highlighted in different colors. The GTPase domain, colored in cyan, displays a characteristic tertiary structure motif called 

Rossmann fold in the form of a 3‑layer “aba” sandwich. The helical domain, colored in yellow, displays an orthogonal bundle 

motif of α‑helices. A molecule of GDP, colored in red, binds to the cleft between these two domains. The Gβ protein displays 

a 7‑bladed β‑propeller motif. Quaternary level: the Gα, Gβ and Gγ proteins can associate to form the functional protein 

complex of the heterotrimeric G protein. NOTE. Images generated with the software VMD [12]. 

Dynamics is intimately related to structure. Extensive evidence indicates that the more we understand 

the structure of a protein, the more insight we gain about its potential dynamical traits (and how they 

relate to its function). For instance, it is increasingly clear that families of proteins with similar folds 

also share similar modes of motion [9], [13]. The complex architecture of proteins is often described 

as a set of distinguishable modules with mechanistic and functional implications, called domains. The 
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concept of domain does not have a single universally accepted definition, however it usually refers to 

a region of the protein that i) is independently stable and often folds in recognizable motifs, ii) has 

been conserved as a sequence block through evolutionary pathways, iii) may undergo movements as 

a single entity with respect to the rest of the protein, or iv) fulfills a particular function [6], [10], [14]. 

In other words, it represents a fundamental unit of evolutionary, structural, dynamical and functional 

significance. Proteins can consist of just a single domain or otherwise be modularized in several 

domains. In the latter case, domains may be visually discernible as distinct globular lobes separated 

by hinges or rather be more intimately attached through extensive contact interfaces. Such structural 

complexity results in a combination of rigid and flexible regions with the potential to undergo certain 

motion patterns. 

The dynamical nature of proteins remained elusive for years. In fact, we still lack the means of 

observing the motion of macromolecules in real time with the current technology. With the advent of 

X‑ray crystallography in the late 50s, the scientific community was able to get a first glimpse of the 

dynamical properties of biological macromolecules and began building new knowledge on top of this 

notion. X‑ray crystallography revealed the existence of structural regions (even whole proteins) that 

are hard or unable to be resolved due to disperse electronic density (i.e., they possess high mobility). 

This technique also provides a rough measure of structural flexibility, the B‑factors [5]. Remarkably, 

the role of dynamics in catalytic mechanisms was validated thanks to the crystallographic data of 

lysozyme both in its apo and holo conditions, which revealed diverse structural arrangements for the 

same protein [15], [16]. Later, Nuclear Magnetic Resonance (NMR) spectroscopy was able to reaffirm 

this view. This technique enables the resolution of the atomic displacement of a structure over time. 

Subsequent comparisons between the resulting static structures help infer the potential motions that 

occur in timescales from picoseconds to seconds. Other more recent structure resolution techniques 

(see section 1.4.1) have been providing further insight in this regard since then. 

Nevertheless, for the time being, we resort to computational simulation methods (see section 1.4.2.2) 

to obtain more accurate descriptions of dynamical behavior, with molecular dynamics (MD) 

simulations being the most accepted and powerful approach [17]. As a result, through the years we 

have gathered irrefutable evidence that dynamics is instrumental for protein function. The capacity of 

proteins to interact with their environment, sense molecular perturbations and exert responses can 

be explained in an effective manner by specific dynamical events. While this is clear in proteins that 

serve as molecular motors, which explicitly convert chemical energy into mechanical work [18], it is 

also true in many other protein functions that were traditionally believed to depend only on static 

structures. Allosteric regulation of enzymes is facilitated by their ability to sample alternative 

structural forms [19], [20]. Protein flexibility can adapt the shape of binding pockets to regulate the 

binding process, and even trigger the formation of a completely new binding pocket [21]. The catalytic 

event in enzymes can be triggered by explicit loop or domain closures that isolate the active site from 

solvent and provide an optimal chemical environment [22], [23]. Protein regions cataloged as loops 

and linkers can exert a variety of communication roles between different functional modules of 

multidomain proteins via sequential dynamical effects [24]. Changes in the flexibility profiles of 

transmembrane proteins act as switches to propagate biological information through the cell 

membrane [25]. These and many other examples have been decisive in abandoning the simplistic view 

of proteins as single structures and adopting a more realistic model that considers their dynamical 

nature as a powerful source of research [5], [9], [19], [26], [27]. 
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Protein motions occur in a spectrum of time and length scales. Broadly speaking, we can distinguish 

between two major kinds of dynamics: local and global motions. Local motions correspond to 

fluctuations of small amplitudes, involving a few atoms, that generally take place in the faster 

timescales. For instance, bond vibrations at the femtosecond timescale, rotations of amino‑acid side 

chains at the picosecond‑nanosecond timescale or rearrangements of small regions (e.g., loops or 

helices) at the nanosecond timescale. On the other hand, global motions refer to larger structural 

rearrangements that usually require longer time spans, from collective motions involving domains and 

subunits (nanosecond‑microsecond timescale) to the folding process of whole proteins from their 

unstructured state (millisecond‑second timescale and even beyond). Dynamical events taking place in 

the time range between picoseconds and milliseconds are usually the main target of protein dynamics 

studies, leaving behind faster atomic vibrations that are negligible. Examples of different biologically 

relevant motions are shown in Figure 1.2. 

 

Figure 1.2. Examples of biologically relevant motions of proteins. (a) Large global motions of Hsp70. Hsp70 proteins are an 

important part of the cellular machinery for protein folding, performing chaperoning functions, and helping to protect cells 

from the adverse effects of physiological stresses. Left: closed state of the substrate binding domain (SBD) of Hsp70, with 

subdomains SBDα (cyan) and SBDβ (orange) interacting (Protein Data Bank entry 2KHO). Right: open state of the SBD, with 

SBDα and SBDβ detached from one another and docked to different faces of the ATPase domain (gray) as a consequence of 

ATP binding (Protein Data Bank entry 4B9Q). (b) Hinge motions of RBP. Ribose‑binding protein (RBP) is a periplasmic binding 

protein involved in bacterial intercellular communication systems that mediate transport and chemotaxis. Left: open state 

of RBP in the absence of ligand (Protein Data Bank entry 1URP). Right: closed state of RBP, with the bilobal structure capturing 

the ligand with a hinge motion (Protein Data Bank entry 2DRI). (c) Local fluctuations of the C‑terminal domain of the bacterial 

50S ribosomal protein L11. This domain of the protein (Protein Data Bank entry 1FOX; 33 structures solved by NMR) binds 

tightly to a highly conserved 58 nucleotide domain of the 23S ribosomal RNA. The conformational dynamics are thought to 

play an important role in the binding process. Loop 1 is flexible and disordered in the RNA‑unbound form; it fluctuates in a 

picosecond‑nanosecond timescale. In the RNA‑bound form, it rigidifies and adopts a specific conformation as a result of its 

direct contact with RNA. NOTE. Images generated with the software VMD. 
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The spatial arrangements that a protein can adopt are called conformations. Once in their functional 

folded state, proteins still possess internal degrees of freedom that allow the structure to undergo 

changes of conformation without altering the fold. Such an array of conformations is known as the 

native conformational ensemble, where the predominant conformations are usually the ones that are 

energetically more stable (i.e., they possess the lowest values of free energy, symbolized as 𝐺) [6], 

[19]. The study of protein dynamics often aims to characterize both the kinetic and thermodynamic 

perspectives of this scenario, in other words, the quantification of the energy barrier (𝛥𝐺) associated 

to the transitions between particular conformations and the relative probabilities of their respective 

equilibrium populations [4]. 

In this regard, we can make use of a simple mathematical definition to fully describe and characterize 

protein dynamics. All possible conformations of a protein can be represented as points in a topological 

space where dimensionality corresponds to the number of atomic Cartesian coordinates (or to 

another metric with geometric information of the structure). Consequently, any conformational 

change, either local or global, can be depicted accordingly as a shift in spatial position. Such a space, 

infinite in its mathematical definition, is not explorable in its entirety in practice. There are regions in 

this space that would imply physically impossible twists, elongations, overlaps… These unrealistic 

structures are forbidden because they would lead to bond breakage or simply be absurdly penalized 

in energetic terms. Conversely, the allowed portion of space complies with the energetic constraints 

dictated by the laws of physics. In turn, this implicitly means that there are particular regions which 

are actually preferred in energetic terms. Following this rationale, the described scenario is equivalent 

to considering a continuous function that can be applied to the topological space so that every point 

(i.e., every conformation) is associated with a particular energy value that informs about its relative 

stability. This is the concept of a free‑energy landscape (FEL) [4], [26], [28], [29]. 

FELs are highly multidimensional, since proteins have many atoms and therefore there is an 

overwhelming number of degrees of freedom. In practice, we build low‑dimensional FELs (with energy 

as a function of 1D or 2D conformational spaces) in order to gain representability and interpretability; 

often with pedagogical or qualitative purposes as in Figure 1.3. FELs are rugged surfaces, where valleys 

and hills (the local minima and maxima of the function) correspond respectively to metastable states 

and to the energy barriers (or the transition states) between them. The explorable landscape is vast: 

it does not only include the native conformational ensemble, but also the countless unstructured 

states of the unfolded protein, misfolded states and possible folding intermediates. It is organized in 

a hierarchy where energy valleys are, in turn, composed of smaller energy valleys, and so on [30]. This 

topological model successfully illustrates the dynamical nature of the range of possible local and global 

motions and their probability of occurrence. For instance, it helped solve the puzzle of how proteins 

can achieve their correct folded states without randomly sampling all the possible conformations 

(Levinthal’s paradox [31]). Following the hypothesis of the folding funnel [32], [33], the FEL looks like 

a funnel (Figure 1.3a), where the outermost surface corresponds to the unfolded subspace and the 

native conformational ensemble is located at the bottom of a major deep well. The steep walls of the 

well provide multiple pathways that rapidly direct the unfolded protein downhill until reaching the 

states of minimum energy. 
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Figure 1.3. The free‑energy landscape (FEL) in protein folding and dynamics. Example of the FEL of a hypothetical protein 

with the free energy as a function of a one‑dimensional conformational coordinate. (a) The folding funnel. The unfolded 

protein can fold to its native conformation via multiple intermediates by following different routes. As the protein travels 

downhill in the free‑energy landscape, there is a fall in conformational entropy and energy. (b) Dynamics of the native 

conformational ensemble. A progressive close‑up of the native conformational ensemble reveals the valleys and hills that 

correspond to different conformational (sub)states and the energy barriers between them. The different tier levels of the 

hierarchical nature of protein dynamics [4] encompass the transitions that occur in a spectrum of timescales according to 

the height of the corresponding energy barrier. NOTE. (a) was adapted from [34]. 

The native conformational ensemble looks like a basin with multiple valleys that correspond to the 

conformational subpopulations that exist in equilibrium. The width and ruggedness of this level of the 

FEL determine the degree of conformational entropy or heterogeneity of the functional protein. Again, 

the topology is hierarchical: the larger valleys correspond to the major stable conformations that also 

inherently consist of spectrums of minor conformational substates (Figure 1.3b) [26], [34], [35]. Native 

proteins are constantly sampling the available space, hopping from valley to valley, undergoing 

transitions between conformational states and substates. Transitions mainly occur by virtue of 

thermal motion, which induces structural shaking and eventually provides the necessary energy to 

reach the up‑and‑down path that leads to a different valley nearby. Energy barriers can be expressed 
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as multiples of the term 𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature of the 

system. The height of energy barriers between wells is correlated with the timescale at which 

conformational transitions take place. 

In 2007, Henzler‑Wildman and Kern [4] synthesized the theoretical and experimental knowledge of 

protein dynamics available at the time. The contents of their work have been extensively reproduced 

since then to illustrate the nature of dynamical events based on their timescale. More specifically, 

they provided a referential tier classification of dynamical processes that is illustrated in Figure 1.3b 

and summarized here as follows. Slow dynamical events (tier‑0) correspond to transitions between 

kinetically distinct conformations separated by energy barriers of several 𝑘𝐵𝑇 at physiological 

conditions. These occur with relatively low frequency, at the timescale of microseconds‑milliseconds 

and slower. Typically, the transitions in this category are global motions such as collective motions of 

whole domains, usually involved in biologically relevant processes. Within a tier‑0 state, the protein 

fluctuates in a faster timescale between the more closely related conformational substates that 

compose the major state. These fast dynamical events are separated by smaller energy barriers (often 

less than 1 𝑘𝐵𝑇 at physiological conditions) that occur with higher frequency at the 

picosecond‑nanosecond timescale. The motions involved in this category of transitions are usually 

local, with small amplitudes, such as the collective fluctuation of a loop or a backbone region (tier‑1) 

or side‑chain rotations (tier‑2). Bond vibrational modes would be encompassed in higher tiers, at the 

femtosecond timescale. 

Following from the kinetic description of dynamics, it is clear that temperature has a critical impact on 

the shape of the FEL. However, the FEL is substantially susceptible to various other physicochemical 

factors such as pressure and solvent conditions (ionic strength, pH…). In fact, some studies sustain 

that the role of the solvent must be considered primarily in order to obtain a complete view of the 

hierarchical nature of dynamical events. In those models, water dynamics (the bulk solvent and the 

hydration shell surrounding the protein) would be the dominant agent of protein dynamics [29], [30]. 

Be that as it may, all evidence supports that the physicochemical environment determines the profile 

of the FEL, and that any perturbation would modify the energetic stability of the states and/or their 

rate of interconversion [4], [8], [36]. Whenever a perturbation occurs (e.g., a chemical reaction or a 

temperature or pressure jump) the conformational equilibrium of the ensemble is altered. The system 

then undergoes a relaxation process from the generated non‑equilibrium state towards the new 

equilibrium dictated by the reshaped FEL [26]. 

Far from being incidental, the reshaping of the FEL as a response to a perturbation is a key functional 

mechanism of the vast majority of proteins. Evolution has exploited this capacity and has given rise to 

sophisticated conformational regulation mechanisms that are able to tune protein activity [8]. 

Through this perspective, virtually every known process mediated by proteins can be explained. 

External stimuli often involve direct interactions with other biomolecules (cofactors, small ligands, 

substrates, and/or biomacromolecules). Other purpose‑specific proteins rely on particular 

environmental changes, such as temperature or electric potential shifts. All these considerations are 

intimately linked to the concept of allostery, a topic of central interest in protein research that is 

covered in the following section. 



Chapter 1 

8 
 

1.1.2 Allosteric proteins 

Allostery is a fundamental property of proteins, being one of the major means of functional regulation 

with which the organism achieves a careful calibration of physiological activity, adapting to the needs 

at any given time and in an orchestrated manner. Many biological processes require allostery, most 

prominently signal transduction, molecular machine function, transcriptional regulation and 

metabolism [37], [38]. Consequently, failure of allosteric control leads to malfunction and is associated 

with many diseases [39], [40]. Due to its capital role, it is no wonder that allostery is one of the most 

widely studied properties of proteins [41], and was even referred to as “the second secret of life” 

(second only to the genetic code) back in the 1960s when Jacques Monod and coworkers were 

presenting pioneering formulations on allosteric regulation [42], [43]. 

Essentially, allostery refers to the process by which a perturbation at one site of a biological 

macromolecule transmits an effect to a physically distinct site of it through alteration of shape and/or 

dynamics [40], [44]. The allosteric stimulus generally consists in the non‑covalent binding of a ligand 

molecule (either small or large), called the allosteric modulator or effector. However, in some contexts 

the concept also applies (albeit with controversy [43]) to other localized events such as covalent 

modifications (phosphorylation, formation of disulfide bonds, glycosylation…) or light absorption [39], 

[40], [45], [46] because they function analogously to the mechanism described for ligand binding. The 

definition has been further exploited to include as allosteric perturbations particular changes in the 

physical environment (temperature, pH, ionic concentration…) [46], [47] or even to refer to the 

functional consequences of point mutations [40], [46], [48]. In such cases, this terminology may be 

specifically employed when there are noteworthy similarities or implications with respect to the 

general conceptual framework of the phenomenon. For instance, some mutations in G‑protein–

coupled receptors can emulate the modulation effects of their natural allosteric ligands [49]. 

Allosteric effectors may be either allosteric activators when they enhance protein activity, or allosteric 

inhibitors when they suppress or reduce it. The degree of complexity of allosteric proteins is diverse, 

depending on the number of agents that take part in the regulation and their mechanism of action. A 

relatively simple allosteric protein may have only one or two modulators. For instance, aspartate 

carbamoyltransferase is activated by ATP and inhibited by CTP and both ligands bind competitively to 

the same allosteric site. In contrast, other proteins may combine several allosteric mechanisms that 

turn them into systems of considerable regulatory complexity. For instance, bacterial glutamine 

synthetase is among the most complex regulatory enzymes known, with at least eight different 

modulators including reversible covalent modification and the association of other regulatory proteins 

[6]. 

Over the years, the knowledge gathered shows that all dynamical proteins have potential allosteric 

faculties [38], [47], [50], [51], thus leaving behind the idea that allosteric regulation is exclusive to 

certain enzymes or processes. In turn, this means that, potentially, many allosteric systems remain 

unknown. This notion has opened up the possibility to apply high‑throughput screening experiments 

with the aim of discovering new allosteric sites and modulators by what we could call an “accelerated 

serendipity”. Some artificial ligands can bind to latent allosteric sites (i.e., binding pockets without 

natural ligands [52]) and selectively stabilize a protein conformation that possesses the desired 

biological activity. For instance, a synthetic compound named mitapivat binds to a latent allosteric site 

of erythrocytic pyruvate kinase and stabilizes its active conformation, enhancing its enzymatic activity. 
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This drug has been recently approved to treat hemolytic anemia in patients with pyruvate kinase 

deficiency [53]–[55]. Thus, the remarkable omnipresence of allostery provides promising 

opportunities from the perspective of pharmacological research. We are experiencing an explosive 

growth in the number of approved allosteric drugs [56] that clearly demonstrates their prominent 

advantages: they can cooperate with other endogenous or exogenous ligands, they offer potentially 

enhanced selectivity and reduced toxicity, they can target proteins that are difficult to reach 

pharmacologically, and they have the potential to combat drug‑resistant mutations located at 

orthosteric sites [40], [56]–[58]. 

1.1.2.1 The classical views of allostery 

The first formulations of allostery as such are attributed to the works of Jacques Monod, Jean‑Pierre 

Changeux and François Jacob [59]–[61]. However, decades before their elaborations on the 

phenomenon and their efforts to build a plausible model to understand it, some studies had described 

prior observations of protein activity regulation processes. Remarkably, Christian Bohr discovered that 

the affinity of hemoglobin for oxygen decreased with higher concentrations of carbon dioxide and, 

consequently, acidic pH (the so‑called “Bohr effect”) [62]. Later, Adair related this behavior to the 

tetrameric structure of the protein [63] and Pauling proposed the first structural model to explain the 

positive regulation of the binding of oxygen molecules to hemoglobin [64]. Gerty and Carl Cori 

described how glycogen phosphorylation was regulated by the concentration of adenosine 

monophosphate [65]. The works of Novick and Szilard [66], Umbarger [67], and Yates and Pardee [68] 

provided definitive proof of the existence of feedback inhibition mechanisms in the biosynthesis of 

amino acids and nucleotides, where the end product inhibited the initial steps of the enzymatic 

pathway without sharing structural similarity with the substrates. All the gathered evidence led to an 

incipient need to propose a new model of activity regulation in proteins [49]. 

The terminology that Monod and Jacob chose to refer to the phenomenon was “allosteric inhibition” 

[59]. The term “allosteric” derives from the Greek words ἄλλος (allos), meaning “other,” and στερεὀς 

(stereos), meaning “solid” or “shape.” This etymological construction historically has had two possible 

interpretations [49]. The first is a reference to the fact that, in allosteric regulation mediated by ligand 

binding in enzymes, the shape of the allosteric effector may be different from that of the enzymatic 

substrate(s). Conversely, the second interpretation does not refer to the ligand but to the fact that the 

regulatory site of an allosteric protein lies in a separate region from the functional site and 

consequently also has a different shape. Even though both interpretations are practically equivalent, 

the latter best encompasses the formal definition of allostery as we understand it nowadays. 

The first models of allosteric regulation were developed in the mid 1960s. Both the rationale and 

terminology employed were specially influenced by the extensive studies that had been performed 

on a few proteins, most notably hemoglobin. This protein has indisputably been the prototype system 

for the investigation of functional regulation in macromolecules [69]. Over those years, the term 

“cooperativity” had been used to refer to the kinetic profile displayed by proteins in which ligand 

binding alters the affinity for subsequent binding of the same ligand. In positive cooperativity the 

affinity increases and in negative cooperativity the affinity decreases. On another note, the first 

crystallographic structures of proteins (myoglobin in 1958 [70] and hemoglobin in 1960 [71]) allowed 

the models of allostery to include speculations underpinned by the observations made on the 

structural data. In fact, a new view of the mechanism of molecular recognition had recently arisen to 

address the question of conformational change of the protein upon ligand binding that had been 
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raised by evidential findings. For instance, it was seen that the binding of the oxygen molecule to the 

heme group in hemoglobin required some structural rearrangements; otherwise the binding site was 

hardly accessible just by regular diffusion [6], [71]. In this sense, the “induced fit” model of Koshland 

[72] was gaining more and more acceptance as a replacement to the older “lock‑and‑key” model. The 

“lock‑and‑key” model (Figure 1.4a) had been introduced by Fischer in 1894 [73] and hypothesized that 

the substrate was recognized by the enzymatic binding site through shape complementarity, using the 

analogy of a key in a lock, thus neglecting any dynamical contributions of the binding process and 

relying solely on chemical specificity. Conversely, the “induced fit” model (Figure 1.4b) suggests that 

the binding of a ligand induces a local conformational change in the binding interface so that the 

shapes of both bodies are adjusted to provide the optimal fit and form the final complex [72]. The 

analogy in this case is like a hand in a glove. 

 

Figure 1.4. Models of ligand binding. The receptor (represented in blue) is capable of adopting different conformations with 

an impact on the binding affinity for the ligand (represented in green). (a) “Lock‑and‑key” model. The receptor and its ligand 

are complementary in shape; there is no conformational change involved. (b) “Induced fit” model. The ligand induces a 

conformational change in the binding interface to provide the optimal fit. (c) “Conformational selection” model. The receptor 

exists in an equilibrium between conformations, with different affinities for the ligand, prior to the binding event. The ligand 

binds to the most affine conformation. (d) “Population shift” model. The receptor exists in multiple states, each with an 

associated energetic stability (and proportional population). The binding occurs as in the “conformational selection” model, 

however the stabilities and populations of all receptor states (the native conformational ensemble) are altered. 
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In this context, two alternative models were proposed to explain the effects observed in oligomeric 

protein assemblies of identical subunits. Both models are phenomenological, therefore they offer 

explanations to observations without providing definite insight into the actual structural mechanisms 

that take place at an atomic level of detail [44], [69]. They were based on the assumptions that there 

is at least one ligand binding site per protein subunit and that they adopt two major conformations: 

the relaxed (R) state and the tense or tight (T) state. The R state is commonly associated with the more 

active form of the protein. 

The MWC model, formally published in 1965 and named following the initials of its authors Monod, 

Wyman and Changeux [74], postulated that all protein subunits exist at the same time either in the R 

or the T state. In other words, the conformational interconversion between T and R occurs 

equivalently and simultaneously in all subunits. For this reason, this model is also known as the 

concerted or the symmetry model. Furthermore, the model assumes that the interconversion 

between states is in thermodynamic equilibrium in the absence of the ligand. The allosteric effect is 

achieved because when the ligand binding takes place, the conformational equilibrium becomes 

shifted towards the state with higher affinity. Since the conformational change is concerted, no matter 

which subunit hosts the ligand, all subunits undergo the transition and therefore they are more 

receptive to further ligand binding. Consequently, the MWC model added an alternative view of the 

mechanism of molecular recognition, other than the recently introduced “induced fit” model [49]. The 

fact that the ligand‑affine conformation is available prior to the binding event contradicts the 

postulate of the “induced fit” model, where it is stated that the specific interaction of the ligand is 

required to induce the conformational change. This view is commonly known nowadays as the 

“conformational selection” model (Figure 1.4c). In addition, the MWC model also introduced 

subclasses of allosteric interaction. According to the nature of the allosteric effector, the allosteric 

interaction is either homotropic when it occurs between identical ligands or heterotropic when it 

occurs between different ligands. According to the effects produced in enzymatic systems, in the 

so‑called K‑type systems the binding of the allosteric effector alters the affinity for the substrate (as 

described in the general behavior of the model), whereas in V‑type systems it changes the maximum 

rate of catalysis (in this case the T and R states differ in catalytic activity rather than affinity for the 

substrate) [43], [74]. 

The KNF model came a year later and offered an alternative view of the allosteric mechanism. It was 

developed by Koshland, Némethy and Filmer [75], and took up some of the considerations that had 

been made by Pauling [64], [69]. Contrary to the MWC model, under the perspective of the KNF model 

the subunits of the protein can undergo conformational transitions independently. However, prior to 

ligand binding, the protein exists only in the T state. When the ligand binds to a given subunit, it 

triggers its conversion to the previously inaccessible R state. This conformational change affects the 

structures of the adjacent subunits, increasing their affinity for the ligand. Successively, they will be 

more prone to achieving ligand binding, changing into the R state, and facilitating the same process at 

the remaining subunits until eventually all binding sites are occupied. Due to the sequential nature of 

the allosteric process, this model is also called the sequential model. The KNF model was, in fact, a 

natural derivation from the “induced fit” model that Koshland himself had proposed a few years 

earlier [72] to explain the mechanism of the binding event. An additional trait of the KNF model is that 

it can explain the possibility of negative homotropic cooperativity, unlike the MWC model [69], [76]. 

In such a case, the effect exerted on the adjacent subunits upon ligand binding is a decrease in the 

affinity instead of an increase. 
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The dichotomy brought about by the formulations of the MWC and KNF models caused that the 

subsequent studies of allosteric systems would focus on finding out which model best fitted the 

experimental data. In general, the MWC model was able to describe a broader range of cases [69], 

especially those for which concerted quaternary structure changes could be proved by means of 

techniques such as X‑ray crystallography, spectroscopic techniques or even molecular dynamics 

simulations. Several regulatory proteins from different categories (enzymes, ligand‑gated ion 

channels, G‑protein–coupled receptors and nuclear receptors) have been found to support a 

“conformational selection” regime [49]. Conversely, the KNF model particularly succeeded in 

describing systems displaying negative cooperativity (something that the MWC model was incapable 

of doing by definition) [76]. In other cases, such as aspartate carbamoyltransferase, the GroEL 

chaperonin, the nicotinic acetylcholine receptor, ribonucleotide reductases or even the very same 

hemoglobin, both models have proven to be partially right by predicting well different structural and 

kinetic features [49], [69], [76]. Given that they were not entirely mutually exclusive, was the KNF 

model a particular case of a more general scenario governed by the MWC model, or the other way 

around? At least, the existence of a “conformational selection” did not exclude the possibility that, at 

a fine‑structure level, local ligand‑dependent movements consistent with the “induced fit” 

mechanism might take place [49]. Some works addressed the controversy by proposing general 

schemes combining features of both models [77], [78]. It is a debate that has never closed, although 

the scenario has evolved substantially since then. The new insight provided by the more contemporary 

views on the subject allows us to see beyond the constraints of the old models. 

1.1.2.2 The current understanding of allostery 

The subsequent discovery of allosteric properties in diverse biomacromolecular systems evinced some 

of the limitations of the original formulations of allostery. Remarkably, allostery began to be detected 

in many monomeric systems, such as signaling proteins, transport proteins, molecular motors and ion 

pumps [57], [69], [79], leading to the realization that proteins could be allosteric irrespective of their 

quaternary structure. This, in turn, implied that structural symmetry was not a required feature, and 

also that the conformational changes associated to the allosteric mechanism could occur at the level 

of tertiary structure motions. Allostery has been well‑documented in a broad spectrum of possibilities 

of conformational heterogeneity, including large‑scale conformational disorder (absence of a defined 

fold) [44], [80]. Furthermore, extensive evidence gained through analysis of structural data revealed 

that a conformational change is not even always required to transmit the allosteric signal, while such 

a role can be attributed to dynamical changes alone [81], [82]. Last but not least, allostery is also a 

regulatory mechanism of DNA and RNA‑based systems, seen for instance in ribozymes and 

riboswitches [58], [83] or in the cooperative binding of two ligands to a DNA segment [84]. 

The consideration of dynamics in protein function and the first descriptions of the FEL in the 80s and 

the 90s [26], [28] marked a turning point in the understanding of the allosteric phenomenon. The 

modern views of allostery share the central notion that the allosteric behavior of a macromolecular 

system arises from the properties of the native conformational ensemble of the system [38]. Proteins 

are constantly sampling the available conformations of their free‑energy landscape, depicted as a 

rugged surface with valleys and hills. The conformations with lower free energy (the valleys) are more 

stable and therefore are sampled more often than those of higher free energy (the hills). Any 

perturbation of the system, for instance the binding of an allosteric effector, reshapes the landscape 

and consequently modifies the energetic stability of the states and/or their rate of interconversion 
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[4], [8], [26]. The considerations of how this concept relates to allosteric proteins have been explored 

in depth through the years [8], [38], [44], [45], [50], [51], [85], [86]. 

The current understanding of allostery has been integrated in the so‑called ensemble allosteric model 

(EAM), a framework that unifies descriptions of allostery in structured, dynamical and disordered 

systems [44], [80], [87]. The model describes the allosteric phenomenon entirely on the basis of the 

thermodynamic analysis of the FEL of allosteric systems. Accordingly, the characterization of the 

allosteric behavior of a system does not lie in identifying a single active conformation or a defined 

pathway of transmission of the signal along the structure, but in determining the conformational 

heterogeneity of the system. In other words, the nature of allosteric coupling is statistical and 

considers the ensemble‑weighted contribution of all the states that exist in solution. Even if an 

allosteric effector binds with affinity only to a small fraction of states in the ensemble, the binding 

event will stabilize those particular states to the detriment of others, thus leading to a redistribution 

of the probabilities of the entire ensemble. Consequently, every state in the ensemble, regardless of 

its structural dissimilarity and/or functional activity, can be regarded as a potential allosteric state. 

This perspective has been very enlightening and extensively supported by experimental and 

computational research, especially as the number of biomolecular structural models available for 

study has increased [44]. 

In this regard, the EAM works with the following parameters: 1) the relative stabilities (or populations) 

of each accessible state of the ensemble, 2) the energy barriers associated with the transitions 

between states and their timescales, and 3) the binding affinities of the allosteric effectors or the 

measures of susceptibility to any other corresponding allosteric stimuli associated with each state 

[38], [86]. The spectrum of conformational heterogeneity of the FEL will give rise to different allosteric 

mechanisms, each with different properties and biological advantages, which are inherently 

pre‑encoded in the ensemble. Thus, allosteric phenomena can take place within a dynamical 

continuum of possibilities (Figure 1.5) that encompasses rigid body motions (the classical T and R 

states), dynamical changes without conformational transition, local unfolding, and general structural 

disorder [44], [87], [88]. 

 

Figure 1.5. The dynamical continuum of the allosteric phenomena. The Ensemble Allosteric Model considers the whole 

spectrum of allosteric mechanisms in structured, dynamic and disordered systems. NOTE. Adapted from [44]. 
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A particular feature of the EAM is that it successfully integrates in the same framework cases of 

allostery that lie in extreme points of the spectrum of conformational heterogeneity. Hilser and 

Thompson [80] were the first ones to propose and demonstrate that intrinsic disorder can be used by 

proteins to mediate allosteric coupling. Intrinsic disorder in proteins refers to the lack of a discernible 

tertiary structure. Proteins can have intrinsically disordered regions (IDRs), which can either be short, 

spanning a few amino acids, or constitute full domains. In some cases, the entire protein is disordered; 

it is an intrinsically disordered protein (IDP). IDRs and IDPs are highly dynamic systems typically 

involved in cellular signaling and regulation [6], [89]. They exhibit extreme conformational fluctuation 

(i.e., smooth FELs), and typically stabilize into a more defined conformation once they bind or interact 

to other biomolecules [90]. Indeed, this attribute has been identified as a mechanism that allows to 

adjust or even reverse the cooperativity between two sites of the protein under certain conditions 

[44], [80]. 

Much of the insight contained in the EAM is the product of a collective effort of research in allostery 

and, in general, in structural biology. The growing embrace of the inherent dynamical nature of 

biomacromolecules inspired new insights and formulations. In 1999, Nussinov and coworkers 

proposed the “population shift” model of molecular recognition [33], which extended the previous 

propositions of the “conformational selection” model. The improvement consisted in arguing that the 

two‑state scenario was in fact a reductionism, and actually, the general case comprises multiple states 

in equilibrium prior to ligand binding. A selective binding to the states of more affinity generates a 

new equilibrium of shifted populations (Figure 1.4d). “Population shift” is now the usual term 

employed by the scientific community to refer to the allosteric model that follows this molecular 

recognition regime [19], [39], [41], [50], [85]. For many years, it was claimed to be the “new view” of 

allostery, although it is rooted in the earlier intuitions of the MWC model. It had wide acceptance and 

managed to bring about an upturn of interest in research in allostery [69], and now it is integrated in 

the broader scheme of the EAM [44], [87]. 

An insightful implication of the dynamical view of proteins was brilliantly pointed out by Gunasekaran, 

Ma and Nussinov [50]. They stated that, if a population shift of the conformational ensemble is likely 

inducible by structural perturbation at any site of the protein, then virtually all dynamical proteins are 

potentially allosteric. Indeed, the evidence gathered in the last years of research was showing that 

allostery could be elicited by a rich variety of dynamical mechanisms. Furthermore, many proteins 

previously assumed to be non‑allosteric were increasingly confirmed to display allosteric behavior, 

either by newly discovered putative effectors or by artificially introduced perturbations such as 

chemical modifications or point mutations. Following this rationale, they proposed that the binding of 

a ligand anywhere could potentially lead to a conformational change with an associated functional 

impact. The proposition has been subsequently supported [38], [41], [47], [51], [69]. Moreover, the 

existence of such hidden allosteric sites has been well proved [52] and has led to fruitful applications 

in drug discovery [56]. 

Perhaps the most extreme incarnation of dynamics in this subject [69] is the particular scenario of 

allostery without conformational change, an early hypothesis of Cooper and Dryden in 1984 [91]. 

Using a statistical thermodynamic formalism, they presented a rigorous demonstration of a 

mechanism by which the allosteric phenomenon can rely entirely on a change in the entropy of the 

system. In this model, termed “thermal fluctuations allostery” by the authors, the allosteric signal is 

transmitted solely by a modulation in the frequency and amplitude of thermal fluctuations, i.e., in the 
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absence of an appreciable conformational change of the protein backbone [44], [69], [91]. Years later, 

the work of Popovych and coworkers [81] was able to provide experimental validation of this 

theoretical proposition. They detected that the negative cooperativity in the CAP homodimer is mainly 

the result of an induced entropic penalty: the binding of cAMP to a subunit of the protein increases 

dynamics in the adjacent subunit that must be quenched to bind the second ligand [44], [81]. 

This model of allostery is known nowadays as “dynamic allostery” and has been further studied and 

discussed [38], [44], [47], [69], [82], [85], [86], [92]. Rather than a separate model, it has remained as 

a particular case of allostery potentially compatible with the EAM. In the definition made by Tsai et al. 

[47], allostery, as a thermodynamic phenomenon, can be classified as a process governed by enthalpy; 

by enthalpy and entropy; or solely by entropy. Accordingly, a change in the average structure (or 

“population”) is not strictly required for allostery. Rather, in entropy‑driven allosteric systems, it is the 

distribution around the average structure that changes, which in turn, affects the subsequent (binding) 

affinity at a distant site [69]. In other words, the principal (or the only) agent of allosteric response is 

the change in the vibrational profile of the protein (e.g., backbone and/or side‑chain dynamics). 

The updated view of allostery with the consideration of the “dynamic allostery” model has been 

helpful in understanding allosteric mechanisms and thus in prediction of allosteric sites, 

allostery‑related residues, allosteric drugs, and allosteric modulation [92]. Importantly, it has helped 

clarify the limitations of deducing the allosteric mechanism from static structure alone, clearly 

manifested in cases where the ligand‑bound and unbound structures of a protein revealed no 

conformational differences [44], [49], [69]. Nevertheless, Nussinov and Tsai [93] also request 

extensive validation before assuming that a system follows the “dynamic allostery” model, and list 

several reasons for failing to observe conformational changes in some prominent allosteric systems. 

These reasons include crystal‑packing effects, non‑native crystallization conditions, inadequate 

accounting for disordered regions, ignoring synergistic effects between allosteric effectors, and too 

short molecular dynamics simulations [38], [41], [93]. 

Additional formulations have been proposed and discussed through the years, focusing on diverse 

particular aspects of allostery. For instance, is the allosteric signal from site to site propagated via a 

defined network of physically interconnected and/or thermodynamically linked amino acids that 

sequentially interact? The idea of the existence of allosteric networks that are evolutionarily 

conserved is intuitively very appealing and has been hinted at by many studies [41], [46], [58], [94], 

[95]. Moreover, if such networks exist, their identification in apparently non‑allosteric proteins could 

provide clues to the location of possible allosteric sites [50]. Under the perspective of Tsai, del Sol and 

coworkers [47], [92], it is unlikely that a single defined pathway of communication between sites 

exists. A unified view of allostery should consider the more realistic scenario of the coexistence of 

pre‑existing multiple pathways, where the degree of contribution of each pathway is determined by 

the particular physicochemical conditions [47], even in highly structured proteins [38]. Alternatively, 

other researchers dismiss the idea of defined pathways to state that communication occurs in a 

diffusely distributed manner [96], especially because of the existence of allosteric IDPs [87]. 

On another note, some studies have proposed other classification schemes and minor models that 

account for specific traits that have been observed in diverse allosteric systems. These may 

complement or overlap with each other or with the EAM, and can serve as a practical manner to refer 

to subgroups of proteins that display equivalent behaviors. Laskowski et al. [39] provide a classification 

scheme which groups cases into different categories according to the nature of the allosteric 
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mechanism: i) open/close active site, ii) change active site conformation, iii) change active site 

electrostatic properties, iv) affect protein‑protein complex formation, v) change protein flexibility, and 

vi) induce “population shift” in ensemble of conformers. The “morpheein model” explains the 

allosteric process of morpheeins: homo‑oligomers that achieve alternative stoichiometries and 

require dissociation and reassociation steps [97]. The “mnemonical mechanism”, characteristic of the 

enzyme glucokinase, describes the concept that an enzyme “memorizes” the active conformation 

after the catalytic reaction and subsequently “forgets” it some time afterwards [98], [99]. 

All in all, over the more than five decades of research in allostery, we now possess a broader and 

precise view of the allosteric phenomenon. The concept of allostery has evolved substantially, thanks 

to a joint perspective of the structural and dynamical traits of proteins (and other biomacromolecules) 

that is focused on highlighting the convergent nature of the wide range of observed allosteric 

mechanisms [38], [44], [86]. The large bodies of experimental and computational studies have allowed 

us to consolidate our understanding of the strategies developed by evolution to transmit information 

from one part of a molecule (the allosteric site) to another (the effector site) [69]. In parallel, the 

growing interest in this subject has expanded considerably our therapeutic capabilities by developing 

effective allosteric drugs [40], [41], [56]–[58], [88], [92]. There are also initiatives devoted to 

integrating the vast amount of gathered knowledge, such as the AlloSteric Database [100], a central 

resource for the display, search and analysis of the structure, function and related annotation for 

allosteric molecules. 

Despite the significant advances, much is still unknown about the physical properties that underpin 

allostery [38]. There are essential questions that remain unresolved. For instance, what mathematical 

parameters are needed to describe allostery both in highly structured and highly disordered systems? 

Or, what are the relative contributions of entropy and enthalpy to the allosteric free energy? Indeed, 

quantitatively understanding allosteric communication remains a great challenge, since we are still 

unable to derive common terms to provide a general detailed (atomic‑level), quantifiable and 

predictive description of the allosteric mechanism [41], [43], [44], [87]. With this goal, Tsai and 

Nussinov developed a unified mathematical framework of the thermodynamic, “population‑shift”, 

and structural points of view that links experimental allosteric proteins and the relative change in 

energy between the distinct conformational states [95]. LeVine and Weinstein explored models of 

biomolecular allostery through the use of Allosteric Ising Models (AIMs) in order to develop a 

quantitative theoretical description that bridges the features of the structural components and their 

interactions, to the thermodynamic allosteric parameters [101]. A recent work by Huang et al. 

developed a unified anisotropic elastic network model (uANM) to quantitatively estimate the 

contribution of pure “dynamic allostery” in a dataset of known allosteric proteins by excluding the 

conformational changes upon ligand binding [102]. Additional studies are needed to unveil the missing 

pieces of the puzzle. With both the available and the upcoming methods we will progressively conquer 

the still large territory that is open for scientific exploration. 

1.1.2.3 Methods to study allosteric properties 

Allostery has been largely studied by experimental and computational methods. These have allowed 

the discovery of a vast number of allosteric sites and effectors, as well as the characterization of the 

corresponding allosteric regulation mechanisms. The following summary offers just a glimpse of the 

actual scenario of the research in allostery, and only aims to illustrate the general traits of the 

spectrum of methods and techniques employed to study allosteric systems. For extensive reviews on 
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the topic, I refer the reader to the following articles, [38], [41], [56], [58], [86], [88], [103], which list 

further references and describe many paradigmatic case studies. 

Experimental approaches tackle the study of allostery by focusing on the analysis of local or distal 

conformational rearrangements and dynamical fluctuations at different timescales and possibly at the 

atomic level [88]. Computational approaches complement experimental methods and provide 

powerful tools to study allostery, with molecular dynamics simulations being a major source to provide 

details on dynamics. Some of the underpinnings of allostery have been elucidated by powerful 

computational techniques, which are also a great promise in protein engineering and drug discovery 

[38], [58], [86], [103]. Another advantage is that they help integrate large quantities of information 

resulting from extensive experimental data. However, the wide range of mechanisms encompassed 

by allostery cannot be modeled solely by a single technique. Rather, joint research efforts between 

different techniques are needed to keep advancing in our general understanding of allostery [88]. 

In the experimental side, X‑ray crystallography, cryogenic electron microscopy (cryo‑EM), and Nuclear 

Magnetic Resonance (NMR) spectroscopy are the most frequently used techniques [41], [44], [56], 

[69], [88]. X‑ray crystallography and cryo‑EM allow the study of biomacromolecules by providing 

detailed structural information on different static conformations of the same system, at atomic 

resolution. The new technical advances are expanding its potential by reducing the constraints of 

cryogenic temperatures typically employed (room‑temperature X‑ray crystallography [104], 

Multitemperature Multiconformer X‑ray crystallography [105]) and enhancing the frequency of 

structural resolution along rapid events (time‑resolved X‑ray crystallography [106]). A thorough 

comparison of the obtained structures between different conditions can lead to the identification of 

pivotal regulatory mechanisms and of key residues involved. The lack of dynamical information of 

X‑ray crystallography and cryo‑EM is overcome by NMR spectroscopy methods, which can capture 

more transient conformations that are less populated and track motions belonging to the 

picosecond‑second timescale. It is particularly useful to study allosterically regulated proteins for 

which a conformational change is rarely detected in response to allosteric modulator binding, thus 

providing direct experimental evidence to prove the “dynamic allostery” model in such systems [107]. 

Another technique that has emerged as a very useful tool to study allostery is native mass 

spectrometry (native MS). It enables simultaneous detection of co‑existing states with different 

numbers of bound ligand molecules, allowing quantification of their populations and determination 

of binding constants [38], [88]. Further experimental approaches can be used to indirectly explore 

allostery in particular systems by detecting conformational changes. These include: site‑directed 

mutagenesis methods, fluorescent and photoaffinity labeling such as Förster resonance energy 

transfer (FRET), and hydrogen/deuterium exchange mass spectrometry (HDX‑MS) [41], [56]. 

In the computational side, molecular dynamics (MD) simulations have had a central role in exploring 

allosteric transitions at atomic resolution in all kinds of biomacromolecular systems [44], [69], [108], 

[109]. MD simulations generate large collections of snapshots, called trajectories, that track the 

dynamical behavior of biomacromolecules. They can be used to map the energy landscape of the 

allosteric process, compute free‑energy calculations and explore any collective atomic motions 

possibly associated with allosteric transitions. Beside classical MD simulations, diverse other 

MD‑derived strategies have been designed that can magnify the slower relevant motions by artificially 

lowering free‑energy barriers. Some of these biased MD techniques that have been used to study 

allostery are accelerated molecular dynamics, steered molecular dynamics, and discrete molecular 
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dynamics [38], [86]. Coarse‑grained MD simulations also provide a strategy to attenuate the usually 

high computational cost of this technique by employing simplified models that preserve the global 

dynamical properties [41], [44]. It is important, however, to keep validating the reliability of the 

mechanistic descriptions of the conformational transitions of allosteric systems obtained with MD 

simulations by cross‑checking the computational outcome with evidence gathered from experimental 

data, when possible [38]. 

The output data from MD simulations can be subsequently employed to conduct specialized analyses. 

Remarkably, graph theory derived methods can probe the mechanistic aspects of allostery on the 

simulated system by representing the structure of the biomacromolecule as a weighted graph or 

network, with individual residues as nodes, and edges expressing properties of the interconnected 

nodes such as the strength of residue‑residue interactions or dynamical correlation metrics [58], [86], 

[103], [109]. Another well‑established analysis derived from dynamical data consists in building 

Markov state models. In Markov state models, the sampled conformations of the trajectory are 

clustered by structural similarity, defining microstates of the system, and the transition probabilities 

between microstates can be estimated [86]. More recently, deep learning neural networks known as 

“autoencoders” have been applied to compare the time fluctuations of protein structures from MD 

simulations under different conditions, revealing concerted motions potentially involved in allosteric 

regulation [110]. 

Dynamical data can also be extracted from the approaches of Normal Mode Analysis (NMA) and the 

Elastic Network Models (ENM). This family of methods represent a reasonable first approximation to 

the description of correlated thermal motions. They can reveal soft collective modes of motion directly 

related to the functional mechanism of biomacromolecules, especially including conformational 

transitions associated with the allosteric regulation [86]. These modes of motion have been suggested 

to be like “paths” in the conformational space favored by evolution to enable the allosteric transition, 

thanks to the fact that they are highly collective and robustly defined by the overall architecture of 

the system [111]. Additionally, other more specialized methods have been developed to simulate and 

quantify the transmission of the allosteric perturbation by means of coarse‑grain models. Some of 

them were reviewed recently in an interdisciplinary CECAM (Centre Européen de Calcul Atomique et 

Moléculaire) workshop, such as diverse 2D and 3D spring networks, the “allosteron” models and the 

“allosteric potential” metrics [38]. 

On the other hand, a handful of computational methods are focused on the identification of allosteric 

sites and effectors. These may be identified without previous experimental knowledge on 

conformational changes. Predictive tools can estimate the dynamical perturbation upon ligand 

binding to a particular site [41], [112]. The approaches for identifying the so‑called “cryptic binding 

sites” are diverse [38], [86], [112]. Potential hotspots may be predicted by integrating the available 

dynamical and structural features of the analyzed systems, which can be subsequently implemented 

into machine‑learning approaches. Alternatively, docking procedures can drive the predictions by 

estimating the strain exerted by different small ligand probes and selecting those with the lower 

energy binding poses. Among the different strategies for prediction of allosteric sites, some have been 

integrated in web servers, such as SPACER [113], MCPath [114] and Allosite [115]. 

Finally, some other bioinformatics approaches should be mentioned, which work with sequence data 

and seek to find patterns of evolutionary co‑conservation of residues. Although it is not necessarily a 

property specific to allosterically coupled residues, it can inform or validate mechanistic aspects of 
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allosteric processes [38], [56]. The increasingly available data on protein sequences and human 

polymorphism obtained with next‑generation sequencing techniques is providing a promising 

scenario to exploit sequence analysis and investigate the role of evolution in shaping allosteric 

regulation. Nonetheless, this kind of analysis may be complemented by the usually more powerful 

computational approaches on the structural and dynamical level [38]. A referential approach named 

Statistical Coupling Analysis (SCA) was developed in 1999 by Lockless and Ranganathan [116], which 

measures the tendency of certain residues in a multiple sequence alignment to display correlated 

substitution patterns. Other methods inspired by SCA have been developed to find signals of 

evolutionary pressure that can lead to the identification of paths of allosteric communication [41], 

[86]. 

1.2 Pyruvate kinase 

The protein known as pyruvate kinase (PK) represents a paradigmatic case of an allosteric protein that 

has been a focus of extensive research in the field of biochemistry, due to its pivotal role in the 

regulation of glycolysis. This section delves into the structural attributes of PK and the current 

understanding of its allosteric mechanism. Special focus will be given to the human erythrocytic form 

of this protein. Its distinctive features, both in the biological and the clinical contexts, make it an ideal 

subject for study in this thesis, aligning with the proposed hypotheses and research plan.  

1.2.1 Function 

Pyruvate kinase (systematic name: ATP:pyruvate 2‑O‑phosphotransferase; Enzyme Commission 

number 2.7.1.40) catalyzes the last step of glycolysis. In the corresponding reaction (Figure 1.6) a 

phosphate group from phosphoenolpyruvate (PEP) is transferred to adenosine diphosphate (ADP), 

producing pyruvate and adenosine triphosphate (ATP). 

 

Figure 1.6. The reaction catalyzed by pyruvate kinase. 

PK is a major regulation component of the flux of the glycolytic pathway in almost every cell type, 

together with hexokinase and phosphofructokinase. The three reactions catalyzed by these enzymes 

are the three rate‑limiting steps of this pathway, meaning that they determine the overall rate of the 

pathway and thus serve as regulation points. Under physiological conditions, these reactions are 

energetically favorable and thus become essentially irreversible [117]–[119]. In addition, this reaction 

is of twofold importance as it is one of the two steps of the glycolytic pathway that synthesizes ATP, 

along with that of phosphoglycerate kinase, thus providing chemical energy for consumption in other 

metabolic or cellular processes [120]. 
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The other product of the reaction, pyruvate, is a crucial versatile metabolite involved in multiple 

pathways. Under aerobic conditions, pyruvate is converted to acetyl‑CoA to fuel the citric acid cycle 

as part of cellular respiration or, alternatively, to be utilized in fatty acid biosynthesis. Under anaerobic 

conditions, it is oxidized to lactic acid or ethanol. Moreover, pyruvate can be converted to alanine or, 

when gluconeogenesis is stimulated, to oxaloacetate to begin the synthesis of glucose and other 

carbohydrates [6], [117], [119]. Due to the existence of such a network of metabolic pathways, PK is 

subject to fine control by multiple mechanisms that favor the right processes under specific conditions 

and avoid possible futile cycles, for instance, between glycolysis and gluconeogenesis. Depending on 

the cell type and isoform, PK can be regulated by gene expression, pH, phosphorylation, and several 

allosteric effectors [6], [117], [120]. 

Given the wide occurrence of glycolysis across all life forms, PK is an ubiquitous enzyme that is found 

in most species and cell types [117]. It has been largely conserved throughout evolution (with up to 

~40% of overall sequence identity between PKs from evolutionarily distant organisms [119]), as 

demonstrated by the high similarity in overall structure and active‑site architecture [121]. 

Evolutionary divergence in this enzyme seems to be intimately connected to the acquisition of 

different allosteric properties that have enabled adaptation to diverse environments and metabolic 

strategies [119], [122]. In general, the main regulation mechanisms exhibited by most PKs comprise: 

i) the modulation of enzymatic activity by the presence of physiologic ions, mostly H⁺, K⁺ and Mg²⁺ (or 

Mn²⁺), ii) the homotropic activation by its own substrate PEP, iii) the inhibition by the product ATP, 

and iv) the heterotropic activation by allosteric effectors whose nature depends on the organism, 

being fructose 1,6‑bisphosphate (FBP) the most common modulator in bacterial, yeast, and 

mammalian PKs [117], [123]. 

1.2.2 Isoenzymes 

Almost all organisms have at least one PK gene that corresponds to a single form of the enzyme. 

However, many species possess two or more PK isoenzymes (or enzyme isoforms) aimed at fulfilling 

specialized roles. For instance, multiple bacterial species express two isoenzymes that are modulated 

by different allosteric activators, while vascular plants exhibit cytoplasmic and plastic isoenzymes with 

disparate physical, immunological, and kinetic/regulatory characteristics [117]. 

In vertebrates, the use and control of PK is more sophisticated than in the rest of eukaryotes due to 

the specialized demands of the different tissues. Four PK isoenzymes are expressed in a tissue‑specific 

manner by two different genes, namely, PKM and PKLR. The PKM gene is located on chromosome 15 

(chromosomal location 15q22) and consists of 12 exons. The PKM1 and PKM2 isoenzymes are 

produced via alternative splicing of exons 9 and 10, respectively, differing solely in 22 amino acids 

within a fragment of 56 amino acids [124]. PKM1 is expressed in tissues with high catabolic demand, 

such as muscle, brain, heart [119], [125]. PKM2 is expressed in most adult tissues and especially in 

proliferative cells. It has been found in kidney, white adipose tissue, lungs, spleen, leukocytes, 

platelets, lymphocytes and the cells of the intestinal epithelium. Additionally, PKM2 is the dominant 

isoenzyme in early fetal tissues, and is progressively replaced by the more tissue‑specific isoenzymes 

[118], [119], [124]–[126]. Moreover, elevated levels of low‑active forms of PKM2 have been found in 

a broad range of cancer types. This anomaly aids in tumor cell proliferation and sustains their high 

metabolic demands by converting glucose into lactate, even under conditions of sufficient oxygen (a 

phenomenon known as the Warburg effect). For this reason, this isoenzyme has been the focus of 
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considerable research in the last few decades, being considered a valuable tumor marker [55], [119], 

[124], [125], [127], [128]. 

On the other hand, the PKLR gene is located on chromosome 1 (chromosomal location 1q21) and 

consists of 12 exons. Alternate splicing of exons 1 and 2 produce the PKR and PKL isoenzymes, 

respectively, through the use of tissue‑specific promoters, causing the former to have a larger 

N‑terminal fragment of 31 extra amino acids [118], [129]. PKL is mainly expressed in the liver, renal 

cortex, and small intestine, and can also be found in pancreatic β‑cells [117] and as a minor isoenzyme 

in the kidney [125]. PKR is exclusive to erythrocytes [118], [121]. During erythroid differentiation, the 

action of erythroid‑specific transcription factors binding to the PKR promoter causes a switch from 

PKM2 to PKR [130]. A metabolic disorder arises from the functional disruption of PKR, called pyruvate 

kinase deficiency, which is presented in greater detail in section 1.3.4. 

1.2.3 Molecular architecture 

More than 120 crystallographic models of PKs have been resolved and uploaded in the public database 

of the three‑dimensional structural data of biomacromolecules known as the Protein Data Bank [131]. 

Thanks to the extensive research conducted on PK, a rich characterization of its structure (functional 

sites, conformations, structural divergence between isoenzymes…) has been achieved. In most 

organisms, PK is a homotetramer of 200–240 kDa, although it may also be found in several other forms 

of quaternary structure, from monomeric to decameric [117], [118], [121]. The tetrameric formation 

has its subunits assembled in a “dimer‑of‑dimers” configuration (D₂ or 222 symmetry), involving three 

perpendicular 2‑fold rotation axes that intersect at the center of the structure [118], [124] (Figure 

1.7a). Each subunit is generally composed of four well‑defined domains (Figure 1.7b). 

The A domain is the largest, and constitutes the central region of the subunit. It folds in a (βα)₈ barrel 

structure [121], [132], [133] that consists of an eightfold repeat of βα units, such that eight parallel 

β‑strands on the inside are covered by eight α‑helices on the outside. This is a conserved protein fold 

that can be found in several unrelated protein families. It is also known as the TIM barrel, named after 

the first enzyme where it was found, triose‑phosphate isomerase (TIM) [134]. The β‑strands and 

α‑helices of the A domain can be designated with a sequential numbering from the N‑terminus as 

Aβ1–Aβ8 and Aα1–Aα8 [120], [132], [135], following the typical naming scheme of TIM barrels. The 

connecting loops can then be referred to as βα loops and αβ loops [134]. In this work, a more explicit 

nomenclature has been adopted to designate the particular loops in the form “L‑X‑Y”, where X and Y 

are the connected secondary‑structure elements. For instance, the L‑Aβ1‑Aα1 loop follows after 

strand β1, or the L‑Aα2‑Aβ3 loop follows after α2. In PK, the barrel is characterized by three additional 

α‑helical segments frequently named Aα6′, Aα7′, and Aα8′ that are located on βα loops and precede 

Aα6, Aα7, and Aα8, respectively. These helices have a central role in catalysis and allosteric regulation 

[125], [132]. 

The B domain is a protrusion of the A domain, inserted in the L‑Aβ3‑Aα3 loop, thus splitting the 

sequence of the A domain into two separate fragments. This domain folds in a combination of seven 

β‑strands, random coils, and one or two short helical fragments; this topology has also been described 

as a mixed β‑barrel [119], [124], [132]. The two fragments that interconnect the two domains (called 

the hinge fragments) are very flexible, enabling the B domain to behave as a lid that can bend and 

cover the region of the barrel of the A domain where the active site is located [119], [124]. 
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Figure 1.7. The structure of pyruvate kinase. The model corresponds to the human PKR isoenzyme (Protein Data Bank entry 

2VGB [121]), shown in ribbon representation. (a) View of the tetrameric structure. The dashed gray lines show the two 

perpendicular 2‑fold rotation axes that coincide with the A‑A′ and C‑C′ interfaces between subunits. The image of the protein 

structure (left) is accompanied by a 3D schematic diagram of the arrangement of the subunits and domains of the protein 

(right). (b) View of a subunit. The natural ligands that bind to the active and allosteric sites are shown in a black licorice 

representation. The ligands come from both the 2VGB structure and the holoenzyme complex that was modeled and 

employed in this study. NOTE. The images of the protein structure were generated with the software VMD. The 3D schematic 

model was built with the software Blender [136]. 

The C domain is found on the opposite side of the A domain and displays an α+β structure with 

ααβαβαβαββ topology. The five β‑strands form a central β‑sheet with the first four strands being 

parallel and the last strand being antiparallel [132], [133]. Finally, the N‑terminal domain is a smaller 

helical domain characterized by a helix‑turn‑helix motif preceded by an initial fragment that has never 

been successfully crystallized and, thus, has been suggested to be intrinsically disordered [121], [124]. 
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The tetrameric assembly is stabilized through extensive intersubunit interactions between the A and 

C domains of adjacent subunits, defining two large contact areas. The A‑A′ interface coincides with a 

2‑fold rotation axis (vertical axis in Figure 1.7a) and is characterized by a network of contacts between 

the adjacent A domains, especially involving the Aα6, Aα7, and Aα8 helices. The C‑C′ interface 

corresponds to the contact between adjacent C domains, coinciding with another 2‑fold rotation axis 

(horizontal axis in Figure 1.7a). Tight interactions between the Cα2 helices and the Cβ5 strands of both 

subunits maintain the attachment. In fact, the C‑C′ interface joins the central β‑sheets of each C 

domain to generate a single continuous 10‑stranded intermolecular β‑sheet, antiparallel between 

subunits [119], [121], [132]. The folded fragment of the N‑terminal extends towards the center of the 

tetramer where it reinforces the intricate network of contacts of the assembly by interconnecting the 

A and C domains of both its own subunit and the adjacent subunits [120]. 

In general, the A domain is the region with highest sequence identity among PKs, followed by the B 

and C domains [119]. The N‑terminal domain is characteristic of eukaryotes, being absent in many 

bacterial species. It is a sequence of a variable number of residues, being especially lengthy in PKL and 

PKR isoenzymes [117], [121], [132]. Several bacterial isoenzymes, especially from the genus Bacillus, 

feature an additional C‑terminal domain that is predicted to interact with adjacent subunits and be 

involved in a specific allosteric mechanism among PKs [122]. 

1.2.4 Active site and reaction mechanism 

The active site of the enzyme is located in a cleft between the A and B domains, at the C‑terminal ends 

of the β‑strands of the barrel (Figure 1.7b). This is, indeed, the universal location of active sites in all 

known enzymes consisting of a TIM barrel [134]. The evolutionary conservation of the active site 

between PK isoenzymes is remarkably high, with very limited variation between species [117], [119]. 

Thus, the descriptions of both the binding geometry of ligands and the residues involved in catalysis 

are strongly equivalent between the diverse crystallographic models of this protein [120], [121], [124], 

[126], [132], [133], [135], [137]–[140]. 

The main sequence differences that exist in this regard lead to a distinction between two groups of 

PKs: those that show absolute requirement for K⁺, and those that do not. Most PKs are from the first 

type, with the second type being found mainly in bacterial species [117], [119], [141]. In the binding 

site of K⁺ (Figure 1.8a), the cation coordinates to the side‑chain oxygen atoms of residues Asn118, 

Ser120, and Asp156, and the backbone carbonyl oxygen atom of Thr157 [126] (residue numbering 

according to the sequence of human PKR). In the absence of further ligands at the active site, the 

coordination complex is completed with two water molecules in a distorted octahedral geometry 

[137], [139]. Even though Na⁺ may also bind to the site with barely distinguishable crystallographic 

structures, catalytic activity is dramatically reduced, which suggests that Na⁺ somehow alters the 

optimal catalytic environment [133], [139], [142]. 
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Figure 1.8. The active site of pyruvate kinase. The model corresponds to the human PKR isoenzyme (Protein Data Bank entry 

2VGB). The backbone of the protein is shown in ribbon representation, colored according to the domains of the protein: A 

domain in red, B domain in blue, and C domain in yellow. The ligands are depicted with spherical or thick licorice 

representations, and come from both the 2VGB structure and the holoenzyme complex that was modeled and employed in 

this study. The amino acids that interact with the ligands are depicted with a thinner licorice representation. Atoms are 

colored by species. Coordination bonds and hydrogen bonds are depicted with black dashed lines. All the relevant amino 

acids, ligands, and structural regions of the protein are labeled. (a) The binding site of the cofactor K⁺. (b) The binding site of 

the cofactor Mg²⁺ and the substrate PEP. K⁺ is also included to show the coordination bond with the phosphate group of PEP. 

(c) The binding site of ADP and its complexed Mg²⁺ ion. PEP is also included to show its coordination bond with Mg²⁺. NOTE. 

The images were generated with the VMD software. 
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The side chain of Glu161, located at the hinge between the A and B domains, also establishes 

electrostatic interactions with K⁺ but is not canonically described as part of the coordination complex. 

In K⁺‑independent PKs, position 161 instead corresponds to a lysine residue that provides the positive 

charge internally via the protonated ε‑amino group. In fact, it has been demonstrated that K⁺ 

dependence can be removed by directed mutagenesis of the Glu161Lys replacement [119], [143]. 

K⁺‑independent PKs can still bind K⁺ given that they conserve 3 of 4 of the coordination residues, with 

the only change being a substitution of Thr157 for a leucine (which nevertheless maintains 

coordination to K⁺ via the backbone carbonyl oxygen atom) [141]. 

PK also requires a divalent cation as a cofactor, usually Mg²⁺ (or Mn²⁺). The divalent cation coordinates 

to the carboxylate groups of Glu315 and Asp339 [121], [126], [139]. Mg²⁺ does not have more 

amino‑acid coordination ligands because it forms a tridentate complex with the substrate PEP, 

specifically with oxygen atoms from the carboxylate, phosphoester, and phosphate groups (Figure 

1.8b) [121], [126], [137], [139]. The coordination complex completes its octahedral geometry with one 

water molecule [124], [137], [139]. PEP also binds to the enzyme via interactions of its carboxylate 

moiety with the backbone amide groups of Gly338 and Asp339, which are located in the Aα6′ helix, 

and the hydroxyl group of Thr371 [119], [121], [137]. When PEP is bound, its phosphate group 

becomes coordinated to K⁺, replacing one water molecule in the distorted octahedral geometry [126], 

[137]. The nearby side chain groups of Arg116 and Lys313 also establish interactions with the 

phosphate group of PEP. 

Figure 1.8 (Continued) 
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ADP (bearing its own complexed Mg²⁺ ion) binds to the active site with the β‑phosphate group aligned 

towards the phosphate group of PEP to provide an optimal orientation for the phosphoryl‑transfer 

reaction (Figure 1.8c). The adenine ring of ADP fits into a pocket defined by the L‑Aβ1‑Aα1 and 

L‑Aβ2‑Aα2 loops and the Aα8′ helix. Multiple side chains establish interactions with ADP: Arg116 with 

the α‑phosphate, Asn118 with both the α‑ and β‑phosphates, His121 with the β‑phosphate, and 

Lys410 with the 2′‑ and 3′‑hydroxyl groups of the ribose moiety. Additionally, Arg163 from the B 

domain also interacts with the β‑phosphate when the B domain adopts the corresponding closed 

conformation to better capture the substrate [119], [137], [139]. The exocyclic amino group of the 

adenine ring potentially makes a H‑bond with the hydroxyl group of Tyr126. However, the absence of 

a definite H‑bonding interaction for this group is consistent with the rather broad nucleotide 

specificity of the enzyme [139]. Incidentally, this ADP/ATP‑binding site does not fit the patterns of 

binding interactions that are characteristic of the superfamilies of nucleotide‑binding proteins or 

ATP‑binding structural motifs [139]. Crystallographic structures with bound MgATP show that this 

second Mg²⁺ ion does not interact with the protein, but rather coordinates to the α‑, β‑, and 

γ‑phosphates and has its octahedral coordination sphere completed by three water molecules [137], 

[139]. Since the phosphate of PEP is equivalent to the γ‑phosphate before the occurrence of the 

reaction, it can be inferred that in the initial state, with the two substrates bound, PEP concurrently 

interacts with the three metal ions of the active site [139]. 

Due to the abundance of K⁺ under physiologic conditions in the cytosol, the metal is most likely 

constitutively bound to the enzyme [142], [144], [145]. It has been demonstrated that with K⁺ bound, 

PEP and MgADP can bind independently to their respective sites in a random sequential mechanism 

[125], [140], [146]. This is the usual kinetic mechanism in type I K⁺‑activated enzymes [142]. The 

binding of the cofactor Mg²⁺ is also required for the stable and catalytically active configuration of the 

active site. The process by which the bound state of both Mg²⁺ and PEP is eventually reached is not 

clear. However, Mg²⁺ has been hypothesized to be retained after product release to prime the active 

site to accept the next PEP substrate molecule [137]. 

The physiologic reaction takes place in two steps (Figure 1.9). The first step consists in the phosphoryl 

transfer from PEP to ADP, producing ATP and the enolate of pyruvate (Figure 1.9a). The cofactors K⁺ 

and Mg²⁺ assist by providing electrostatically optimal binding of the substrates. These and the 

ADP‑bound Mg²⁺ are coordinated to each peripheral oxygen of the phosphate of PEP, thus screening 

electrostatic repulsion between the anionic reactants and lowering energy barriers. Under this 

influence, the aligned β‑phosphate of ADP accomplishes the nucleophilic attack on the phosphorus 

atom of PEP (SN2 reaction). During the phosphoryl‑transfer process, K⁺, Arg116, and Lys313 serve to 

compensate the developing negative charge of the corresponding pentacoordinate transition state 

and stabilize the enolate intermediate for its detachment from the phosphate group [124], [125], 

[133], [139], [142]. 
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Figure 1.9. The two steps of the reaction catalyzed by pyruvate kinase. Curved arrows indicate the flow of pairs of electrons 

as commonly used in diagrams of reaction mechanisms. (a) The first step involves the formation of an enolate intermediate 

and the release of ATP as a product, while the second step involves the ketonization of the enolate intermediate to release 

pyruvate as a product. (b) The proposed H‑bonding scheme responsible for the protonation of the enolate, with a water 

molecule as the donor, stabilized by Thr371 and Ser405. Additional water molecules and residues may also participate as 

general proton donors based on a H‑bonding network. NOTE. The image was adapted from [124]. 

In the second step, the energetically less‑stable enol form of pyruvate is subsequently protonated to 

produce the corresponding α‑keto carboxylate form of the molecule, i.e., pyruvate (Figure 1.9b). This 

process is also known as the tautomerization from the enol to the keto form, or simply ketonization. 

Ketonization of enolpyruvate is highly energetically favorable and, thus, renders the overall reaction 

exergonic and irreversible in physiologic conditions. The process occurs when enolpyruvate accepts a 

proton from a water molecule at the 2‑si face of the double bond. Crystallographic evidence shows 

that a specific water molecule can be held in position by the conserved active site residues Thr371 and 

Ser405. A proton‑relay system has been also hypothesized whereby Thr371, Ser405 and even Arg116 

and Lys313 could participate as general proton donors of the reaction via the H‑bonding network of 

water molecules nearby [124]–[126], [133], [139]. 

1.2.5 Allosteric sites and regulation mechanisms 

The major allosteric activator in PKs in a diverse range of species is FBP, only being replaced by the 

slightly different effector fructose 2,6‑bisphosphate (FDP) in trypanosomatid protozoans [117], [119], 

[125], [137], [147]. Binding of FBP (or FDP) increases the affinity of the enzyme for PEP without altering 

the catalytic rate (𝑘𝑐𝑎𝑡) or the affinity for MgADP. Therefore, regulation by FBP follows the classical 

description of K‑type allosteric mechanisms [43], [74], [123]. The allosteric center is located within the 

C domain, next to the C‑C′ interface and approximately 40 Å from the catalytic site. The binding site 

of FBP (Figure 1.10) is a pocket between the L‑Cβ1‑Cα3 loop and the first two turns of the Cα5 helix. 

The L‑Cβ4‑Cβ5 loop is a mobile fragment that surrounds the cavity. Upon binding of FBP, it covers the 

molecule via stabilizing interactions [119], [121], [124], [126], [147], [148]. 
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Figure 1.10. The allosteric site of pyruvate kinase. The model corresponds to the human PKR isoenzyme (Protein Data Bank 

entry 2VGB). The backbone of the protein is shown in ribbon representation, colored according to the domains of the protein: 

A domain in red and C domain in yellow. The ligand FBP is depicted with a thick licorice representation. The amino acids that 

interact with the ligand are depicted with a thinner licorice representation. Atoms are colored by species. Hydrogen bonds 

are depicted with black dashed lines. All the relevant amino acids and structural regions of the protein are labeled. NOTE. 

The image was generated with the VMD software. 

The FBP molecule is engaged in an extensive network of contacts at the binding site. The 6′‑phosphate 

group of FBP makes a series of H‑bonds with i) the backbone amide groups of Thr476, Thr477 and 

Gly563; ii) the hydroxyl groups of Thr475, Thr477, Ser480, and Ser562. The 1′‑phosphate group makes 

H‑bonds with i) the side‑chain groups of Thr476, Trp525, and Arg532, and ii) the backbone amide 

group of Gly561. The 3′‑hydroxyl and 4′‑hydroxyl groups make H‑bonds with the backbone oxygen 

atoms of Arg559 and Gly561, and with the backbone amide group of Tyr564. These interactions of the 

furanose ring are a result of the orientation of the L‑Cβ4‑Cβ5 loop locking FBP bound at the allosteric 

site [119], [121], [124], [126], [147], [148]. 

The PK isoenzymes that are not regulated by neither FBP nor FDP belong to bacterial species and 

coincide with the PK subtype of isoenzymes that have a K⁺‑independent reaction mechanism. These 

are instead regulated by adenosine monophosphate (AMP), which binds to the same site as FBP, or 

sugar monophosphates. In addition, PKs of some species are not even subject to allosteric control 

[117], [119], [132]. 

The four PK isoenzymes from vertebrates display disparate kinetic and allosteric properties that reflect 

the different metabolic requirements of the tissues. PKM1 is the only constitutively active isoenzyme; 
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it is not allosterically regulated by FBP and neither displays cooperativity by PEP [118], [120], [132]. 

This is due to the sequence differences introduced by the alternatively spliced exon with respect to 

PKM2, which affect the specific regions of the allosteric site and the intersubunit contacts involving 

the C domain. FBP is not able to bind PKM1 due to the structural differences. A glutamic acid replaces 

a threonine/serine residue (Thr476 in PKR) in the allosteric site that is characteristic of FBP‑regulated 

PKs. This glutamic acid may either hinder FBP binding due to electrostatic repulsion, or act to mimic 

the effect of FBP binding [117], [124]–[126], [149]. 

On the other hand, PKM2 exhibits a unique regulation mechanism that is based on the transition 

between different oligomeric states during allosteric activation. Unlike the other isoenzymes, PKM2 is 

not a constitutive tetramer; it exists in an equilibrium between monomers, dimers and tetramers, the 

latter being the least abundant in the absence of the allosteric activator FBP [119], [127], [128], [149], 

[150]. The binding of FBP effectively shifts the equilibrium towards an active tetrameric formation. In 

the monomeric or dimeric state, the enzymatic activity of PKM2 is very low in comparison to the 

FBP‑bound tetramer. FBP may bind to monomeric or dimeric forms to induce tetrameric formation, 

or may bind to the available sites of a tetramer and stabilize its assembly in an active conformation. 

The binding occurs in a highly positively cooperative manner [125], [150]. Monomers first dimerize 

along the A‑A′ interface and, subsequently, dimers associate along the C‑C′ interface [124]. In addition, 

PKM2 is also allosterically regulated by the thyroid hormone 3,3′,5‑triiodo‑ʟ‑thyronine (T₃). In this 

case, T₃ inhibits PKM2 by binding to the inactive monomeric form and stabilizing it. The inhibitory 

effects of T₃ are overcome by FBP binding [125], [149]. 

In addition to the regulation by FBP, a range of individual amino acids in solution have been described 

to be allosteric effectors of PKs. Amino‑acid modulators bind to a second allosteric site, different from 

that of FBP, which is known as the amino‑acid binding site. It is located in each subunit at the interface 

between the A and C domains, in a pocket delimited by Aβ1, L‑Aα1‑Aβ2, L‑Aα2‑Aβ3, Cβ3, and Cα4 

(Figure 1.11). This region is highly conserved in sequence between PKM1, PKM2, PKL, and PKR. The 

ʟ‑2‑aminopropanaldehyde substructure shared by all amino acids (except for glycine) has been 

proposed to be the chemical moiety that is required for successful binding of the amino‑acid effectors 

in PKM1 and PKL. However, particular amino acids achieve different extents of allosteric response 

between these two isoenzymes, raising the idea that allosteric pathways are not always conserved 

between homologues of a protein family [151]. As observed in crystallographic structures, the 

carboxylate group of the amino‑acid ligand interacts with the side‑chain groups of Asn113, Arg149 

and His507, while the amino group interacts with the backbone oxygen atom of Val512 (PKR 

numbering) [128], [149], [151]. 
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Figure 1.11. The amino‑acid binding site of pyruvate kinase. The model corresponds to the human PKM2 isoenzyme (Protein 

Data Bank entry 6GG4 [128]) in complex with the allosteric inhibitor phenylalanine (PHE). The backbone of the protein is 

shown in ribbon representation, colored according to the domains of the protein: N‑terminal domain in green, A domain in 

red and C domain in yellow. The ligand PHE is depicted with a thick licorice representation. The amino acids that interact 

with the ligand are depicted with a thinner licorice representation (hydrogen atoms not depicted). Atoms are colored by 

species. Hydrogen bonds are depicted with black dashed lines. All the relevant amino acids and structural regions of the 

protein are labeled. Amino‑acid labels corresponding to human PKR numbering are included in parenthesis. NOTE. The image 

was generated with the VMD software. 

In PKL and PKR, the amino‑acid effector that exerts the most significant modulation is alanine, which 

is an allosteric inhibitor. Kinetic assays with directed mutagenesis on several PKL positions suggest 

that inhibition by alanine is not simply the reverse of activation by FBP, i.e., different networks of 

residues contribute to the two allosteric functions [152]. Other allosteric inhibitors with weaker effect 

in PKL and PKR are cysteine, proline, valine, and phenylalanine [151]. In PKM1, alanine, proline, and 

phenylalanine are allosteric inhibitors, with the latter exerting a stronger effect than the others. FBP 

binding overcomes their inhibitory effects [122], [125], [128], [149], [151]. In PKM2, phenylalanine, 

alanine, and tryptophan are inhibitors. Interestingly, phenylalanine does not oppose the 

tetramer‑promoting activity of FBP, but rather stabilizes the tetrameric formation albeit in a 

less‑active state. There is conflicting evidence on whether alanine and tryptophan inhibit the enzyme 

via the same mechanism or, alternatively, by inducing dissociation of the tetramer [125], [128], [149]. 

Serine is an allosteric activator and induces tetrameric formation in an active state, similarly to FBP. 

Other amino acids are either activators or inhibitors that exert weaker effects [128], [153], [154]. 

Finally, several post‑translational modifications that regulate the different tissue‑specific isoenzymes 

have also been described. The activity of PKL and PKR can be regulated by phosphorylation by protein 

kinase A. This phosphorylation event affects the residue Ser43 (PKR numbering), at the N‑terminal 

domain, and has been suggested to interrupt a constitutive interaction between the N‑terminal 

domain and the main body of the protein, leading to a decrease in apparent PEP affinity [155], [156]. 
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Phosphorylation of Ser43 has also been correlated with increased affinity for inhibitors ATP and 

alanine and decreased affinity for FBP [157], although the real physiologic implications of the 

phosphorylation event remain unanswered [158]. Regarding PKM2, several other post‑translational 

modifications have been identified. These are caused by the action of either enzymes 

(phosphorylation of serine and tyrosine residues, acetylation of lysine residues, hydroxylation of 

proline residues) or reactive oxygen species (oxidation of cysteine residues). Some of these 

modifications disrupt PKM2 tetramerization and thus are inhibitory, whereas others have been 

correlated with more complex responses that promote proliferation in tumor cells [119], [125], [127], 

[128]. 

1.2.6 Conformational changes 

Extensive evidence has been gathered over the years through the interpretation of comparative 

studies of crystallographic structures of PKs in complex with various ligands, revealing the diverse 

conformations of the enzyme. This has enabled the deduction of the conformational transitions 

induced by the binding of cofactors, substrates, and allosteric effectors. The tetrameric structure 

exists in an equilibrium between two main conformations, namely, the T and R states, which 

correspond to catalytically inactive and active states, respectively. Shifts in this conformational 

equilibrium are correlated with the binding events of either the substrate PEP or the allosteric 

effectors [135], [159]. 

The conformational transition involves a reorientation of the subunits and their domains that occurs 

in a symmetric fashion along the tetramer. The overall structure of each domain does not undergo 

major internal rearrangements in the process; instead, the different structural modules behave as 

rigid bodies that move relative to each other. The corresponding concerted motions have been 

interpreted with two different models (Figure 1.12). Mattevi et al. [132] compared the crystallographic 

structures of the type I PK from Escherichia coli without ligands and the constitutively active PKM1 

from rabbit in complex with Mn²⁺, K⁺, and pyruvate [133]. The structural differences between the 

former (T state) and the latter (R state) were described as a combination of rotations both of the 

individual domains within each subunit and of each subunit within the tetramer (Figure 1.12a). This 

model has been referred to as the “domain‑rotation” model by other studies and reviews [119], [160]. 

In contrast, Morgan et al. [147] worked with crystallographic data of PKs from trypanosomatid 

parasites and interpreted the conformational change as a joint rigid‑body rotation (rocking motion) of 

the A and C domains as a single block (Figure 1.12b). The pivot point of the rotation was identified as 

the interface between these two domains, coinciding with the location of the Cα4 helix. The model 

was termed the “rock‑and‑lock” model by the authors, and later has been referred to as the 

“rigid‑body–reorientation” model [119], [160]. This model was further expanded in subsequent 

studies with structures of human PKM2 [128], [149]. 
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Figure 1.12. The main conformational transition of pyruvate kinase. Schematic diagrams of the arrangements of the subunits 

and domains in the inactive (T) and active (R) states of the enzyme. (a) The “domain‑rotation” model, proposed in the study 

of Mattevi et al. [132]. The diagrams represent the T state of type I PK from Escherichia coli and the R state of rabbit PKM1. 

The A, B, and C domains of a subunit are colored in green, blue and red, respectively. The set of motions affecting the domain 

and subunit orientations involved in the T‑to‑R conformational transition are indicated with arrows. (b) The “rock‑and‑lock” 

model, proposed in the studies of Morgan et al. [147], [149] and further characterized in the study of Yuan et al. [128]. The 

diagrams represent human PKM2 in the tetrameric formation. The T and R states feature the allosteric effectors 

phenylalanine (inhibitor; shown in orange) and alanine (activator; shown in cyan), respectively, bound to the amino‑acid 

binding site. Each AC core of PKM2 is represented as an irregular pentagonal block. B domains are represented by narrow 

rectangles. Active sites are represented as blue rectangles. The diagrams show a network of the important interactions 

(dashed lines) established between different residues (shown in green) that were identified in [128]. The figure included here 

is an adaptation from the one of the original work that only has the purpose of showing the overall reorientations of the 

structure. Readers are referred to the original work to find the corresponding full‑size figure and scrutinize the network of 

interactions in detail. NOTE. The images were adapted from [132], [161] (a), and [128] (b). 
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Irrespective of the particular interpretation of the underlying concerted motions, both models offer 

an explanation for the molecular basis of the coupling between the active and allosteric sites. 

Importantly, the same conformational transition is achieved by the independent binding of PEP or 

FBP, which simultaneously explains both homotropic cooperativity and heterotropic activation and 

evinces the existence of a communication pathway that interconnects both mechanisms [132], [159], 

[162]. The original studies in which these models were proposed, in conjunction with subsequent 

extensive research, have provided consistent descriptions of concurrent changes in the network of 

interactions at the A‑A′ and C‑C′ interfaces that result from such subunit/domain reorientations. The 

mechanistic interpretations suggested in the literature [124], [127], [128], [132], [147], [148], [159], 

[162]–[165] can be summarized as follows. 

Ligand binding at either the active or the allosteric site exerts local rearrangements at the nearest type 

of subunit interface that subsequently propagate to the rest of the structure, driving the integral 

conformational change. The binding event of PEP to the active site of a subunit stabilizes a symmetrical 

network of interactions between the Aα6′ and Aα7 helices across the A‑A′ interface, priming the 

adjacent (unoccupied) active site to accept a molecule of PEP with higher affinity. In turn, this 

symmetrical local rearrangement of the A‑A′ interface results in the subunit rotations exhibited by T‑ 

and R‑state crystallographic structures. The rotational motions of the structures are accompanied by 

the corresponding local rearrangements at the C‑C′ interface, manifested in the formation and 

breakage of different intersubunit interactions. The region close to the center of the tetramer 

involving the Cα1 and Cα2 helices gains tighter interactions between the adjacent C domains. In 

parallel, the intersubunit interactions at the opposite section of the C‑C′ interface that involves the 

Cα5 helix, the L‑Cβ4‑Cβ5 loop, and the Cβ5 strand are broken. 

This very same process can be triggered from the complementary perspective that begins with FBP 

binding to a subunit of the T‑state tetramer. Initially, the L‑Cβ4‑Cβ5 loop folds to lock FBP at the 

allosteric site. This event interrupts the intersubunit interactions at that region of the C‑C′ interface 

that stabilize the T state, thus promoting the formation of the ones near the center of the tetramer. 

The changes propagate with the corresponding rotation of the structure, reaching the active site and 

inducing a local environment with higher affinity for PEP. Interestingly, the particular interactions that 

stabilize the T and R states may be different between species due to sequence variation, but the 

underlying principle of subunit rotation to stabilize the R‑state tetramer upon effector binding appears 

to be a shared allosteric strategy [122], [149]. Amino‑acid allosteric inhibitors and activators also 

promote the T or R states, respectively, via a network of interactions that originates in the amino‑acid 

binding site and converges on the aforementioned mechanism [128] (Figure 1.12b). 

On the other hand, the conformational changes of the B domain were also originally included in the 

“domain‑rotation” model [132]. Considering the general notion of allosteric enzymes, the binding of 

allosteric effectors should be expected to modulate the behavior of the B domain. Contrary to this 

expectation, subsequent studies have shown that the conformational changes of the B domain are 

not directly coupled to the main conformational transition of the core structure of PK. The B domain 

is a particularly mobile region due to the flexible pair of linker fragments that connect it to the A 

domain and that serve as a hinge mechanism [164]. The ensemble of orientations of this domain is 

dominantly governed by the presence or absence of the ligands at the active site. The B domain tends 

to decrease mobility upon substrate binding, adopting partially closed conformations when PEP is 
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bound and a fully closed conformation when ADP is bound [121], [124], [135], [137], [139], [140], 

[147], [160]. 

As a final remark, it is worth noting that most of the accumulated evidence regarding the 

conformational transitions of PK has been primarily derived from the comparison of static structures 

of the enzyme. Currently, there is limited insight about the speculated transition events from a 

dynamical point of view. To the best of my knowledge, only a few dynamical studies of PK structures 

have been conducted [141], [160], [164], [166]–[170], with the study by Naithani et al. [164] being the 

only one specifically aimed at elucidating the dynamical nature of the allosteric transitions in PK via 

MD simulations. The implementation of further dynamical studies is crucial for attaining a holistic view 

of the mechanism of the enzyme by providing a more direct identification of the corresponding 

dynamical events. 

1.3 The clinical significance of protein variants 

1.3.1 Single amino‑acid variants 

The central role of proteins in biology may be highlighted from a different perspective when we 

consider their implication in human health. A significant portion of the known diseases are directly 

related to the deficiency and/or dysfunction of one or several proteins. We have seen how the 

functional capabilities of proteins can be understood from the intricacies of their structural traits and 

dynamical behavior. In turn, such macromolecular features primarily emerge from the specific 

constitution of their sequence [1], [8], [9]. It is the amino‑acid chain that confers the combination of 

physicochemical properties that are needed to adopt particular folds and to form regions with specific 

functional purposes (flexible hinges, pockets with chemical complementarity with a ligand, chemical 

groups optimally oriented for enzymatic reactivity…). Given this degree of complexity and fine‑tuning 

of protein structure and dynamics, it is not surprising that even the subtlest variations in protein 

sequence may result in functional alterations. Since the information to produce proteins is encoded 

in genes (i.e., at the DNA level), the occurrence of disease‑causing protein variants is rooted in the 

phenomenon of genetic variation. 

Mutations are alterations in the DNA sequence that occur from time to time due to a number of events 

such as DNA replication errors or contact with mutagenic agents [171]. Depending on the DNA region 

where the change in sequence is produced, a mutation will have diverse effects at the protein level. A 

broad classification of mutations consists in distinguishing those that affect coding and non‑coding 

regions of DNA. The former introduce changes at the sequence of genes, and thus may possibly 

perturb the native constitution of protein sequences. The latter affect regulatory elements and other 

regions between genes, and generally do not modify the sequence of proteins but may alter their 

expression levels [172]. 

Among the different types of mutations that affect the coding region, some may have a dramatic 

impact whereas others may only produce a minor perturbation or even be totally innocuous. Of 

course, there is a deductible general correspondence between the portion of the sequence that is 

affected by the mutation and its potential functional consequences. The so‑called nonsense mutations 

introduce a change in the DNA sequence that prematurely stops the production of the protein, 

generating a shortened protein that is likely non‑functional. The omitted fragment will be shorter or 

larger depending on the position of the mutation. Frameshift mutations disrupt the reading frame of 
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the gene, causing the misreading of the DNA encodings for all subsequent amino acids of the chain 

and producing a meaningless peptide from the mutation point onwards. Both nonsense and 

frameshift mutations likely produce non‑functional proteins due to the significant loss of information. 

Generally, they can be automatically classified as damaging [173]–[175]. Nevertheless, a certain 

tolerance to the alteration of such mutation types has been recognized when they occur near the 

carboxyl terminus of the protein, thus minimizing their magnitude [174], [176]. Also with high 

probability of being damaging, mutations that occur at the splice sites of the gene disrupt the splicing 

machinery that is responsible for processing the final mature RNA after transcription. This kind of 

mutation leads to the production of an abnormal protein that either skips extensive fragments or 

includes non‑functional peptides[177]. 

The most commonly observed type of mutation affecting protein‑coding genes are missense variants 

[176], [178]. These cause the replacement of an amino acid for a different one at a given position of 

the protein sequence. For this reason, missense mutations are also known as single amino‑acid 

variants (SAVs), especially in the clinical context. SAVs are particularly interesting from a medical point 

of view since they are implicated in a wide range of human diseases, as they are often the direct cause 

for a protein to partially or totally lose its function [173], [179]. Amino‑acid replacements can affect 

to a different extent the stability, catalytic efficiency and regulatory properties of proteins. The 

possible functional consequences of such molecular perturbations range from having no effect at all 

(innocuous, benign or neutral) to completely impeding protein function (damaging or pathogenic). In 

the majority of cases, elucidating the relationship between the nature and location of the replaced 

amino acid and the type of molecular perturbation is not always evident [121]. Thus, the exact 

functional effects of SAVs are often difficult to predict or assess [173], [175]. 

Pathogenic SAVs may disrupt sites that are critical in protein function. They can impair biochemical 

function by hindering catalytic or binding efficiency at active sites or ligand‑binding pockets [173], 

[180]. At protein‑protein interfaces, they can prevent the formation of protein complexes [181]. They 

can alter the flexibility profile of certain regions that are key for native dynamics such as hinges [182]. 

They can prevent the sampling of the proper conformations by altering local or global folding, 

impeding the formation of disulfide bonds or in general by decreasing structural stability [173], [175], 

[180]. They may also affect regulatory properties by impairing protein expression or affecting 

post‑translational modification sites [175], [180], [183]. On the other hand, if the given amino‑acid 

substitution maintains the needed physicochemical properties of the position where it occurs, the 

change may be imperceptible. This is the molecular basis of benign SAVs. For instance, a benign SAV 

could consist in the substitution of an amino acid that only provides structural support (i.e., it forms 

non‑specific interactions with its surroundings) with another that displays similar capacities. As a final 

remark of SAVs, it is also interesting to note that they could also lead to the enhancement of the 

original function of the protein or even drive the acquisition of a new one [175]. These possibilities lie 

outside of the clinical setting, but are the basis of positive selection and genetic diversification in 

evolution. 

Finally, indels (i.e., insertions and deletions) of one or a few amino acids anywhere in the protein 

sequence can also be a product of mutations. As with missense mutations, the functional 

consequences of indels are hard to assess because they can give rise to a wide range of effects [175]. 

The study of such variants in a comprehensive manner has been hampered by their lower frequency 

of occurrence. For an indel to occur at the protein level, the corresponding genetic mutation must 
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involve three adjacent positions (or multiples of three), so that the reading frame of the gene is 

maintained. The majority of small natural indels of amino acids that are tolerated affect either 

solvent‑exposed regions, intrinsically disordered regions, or the termini regions of the protein [174]. 

1.3.2 Towards personalized medicine 

The types of protein variants reviewed above can be involved in diseases as the resulting products of 

mutations with a genetic origin. Thus, from a medical point of view it is of paramount importance to 

delve into the prognosis, diagnosis and treatment of genetic diseases. Contemporary medicine 

benefits from an interdisciplinary effort that tackles the study of health problems from diverse angles. 

In particular, the mission of the discipline known as medical genetics is to study hereditary diseases. 

In other words, to detect and monitor the incidence and transmission of disease‑causing mutations 

both at the levels of population and individuals. 

The elucidation of pathogenic mutations at the genetic level is not always straightforward since they 

coexist among a rich pool of neutral variants. Intrinsic DNA variation is a natural part of life. Every 

single person has a unique genome. Evolution takes place thanks to this genetic diversity, which 

maximizes the chance of survival of populations (and, in general, of life beings) by making us able to 

adapt to the environment [171], [184]. Between human individuals, genomes diverge in a few million 

sites [176], [185]. The first complete picture of human genetic diversity was achieved in the 

unprecedented endeavor of the Human Genome Project that achieved full sequencing of the complete 

human genome in the early 2000s [186]. Later on, several other projects such as the 1000 Genomes 

initiative (1000G) [185], the Exome Sequencing Project (ESP) [187], the Exome Aggregation 

Consortium (ExAC) [188] or the Genome Aggregation Database (gnomAD) [189] have achieved 

important milestones in completing, enriching and refining the study of DNA variation, with particular 

emphasis on coding regions. 

Sequencing methods have been experiencing constant growth in the last couple of decades. These 

technological advances, known as next‑generation sequencing (NGS), have brought cheaper and 

faster sequencing methods; they have facilitated an explosion in the number of species and human 

genomes sequenced in the last years [171], [172], [183]. As this trend has been increasing, so has the 

expectation towards personalized medicine [190]. Personalized or precision medicine can be 

understood as the customized medical care for the unique condition of each patient with respect to 

their genetic makeup [191]. Thus, personalized medicine benefits directly from the generalized 

application of NGS techniques in different areas of medical practice, such as diagnosis, prognosis and 

therapy. Sequencing biological or clinical samples offers insights into the relationships between the 

human genomic variants and the observable traits of disease symptoms and responses to treatment. 

This medical strategy not only enables more accurate diagnosis and the identification of diseases at 

the molecular level, but also has a major role in unveiling which genetic profiles respond better to 

certain drug types and treatments [172], [184], [190], [192]. In summary, the purpose is to take into 

account the specific needs and singularities of every patient to administer personalized treatment. 

The exponential growth of human genomic information is gathered and integrated in databases that 

help us understand and classify the patterns and occurrences of genetic variants. One of the most 

comprehensive and well‑known public repositories is the Single Nucleotide Polymorphism database 

(dbSNP) [193] which serves as both a publication and permanent archive for variation data. The 

Ensembl Variation database [194], [195] is another useful infrastructure that integrates genetic 
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variation data from several other sources and provides a set of interconnected components for data 

visualization and analysis. Variants can be classified according to the type of genetic alteration and the 

frequency of observation within the population. Traditionally, a variant that is observed with at least 

1% of frequency in the population is termed a polymorphism. Now, in the era of NGS and personalized 

medicine, this terminology needs reassessment because rare variants may become polymorphisms or 

vice versa according to the population analyzed, which is particularly confusing on the basis of their 

disease‑causing capacities [192]. For instance, the most common mutation type is the single 

nucleotide variant (SNVs), that accounts for around 90% of the whole genetic variation between 

human individuals [173], [185], [188], [196]. When a given SNV is observed with at least 1% of 

population frequency, it has been traditionally called a single nucleotide polymorphism (SNP). SNPs 

have been generally described as harmless, being markers of ancestries and human subpopulations, 

however some have been associated with clinically relevant profiles consisting in the predisposition 

to certain traits, including diseases [172], [192]. Given that it is not possible to classify the functional 

role of variations according to frequency in the population or their capability to cause a disease [192], 

in the present work the most generic nomenclature is adopted, i.e., SNV. The second most common 

type of genetic variation in human genomes after SNVs are insertions and deletions (indels). Indels 

that affect just one position have the highest occurrence. In general, the larger the length of the 

affected fragment, the less frequent the indel [174]. Accordingly, the smallest portion of genetic 

variation comes in the form of larger altered DNA segments, called structural variants. These 

encompass mutation events of diverse types and sizes, such as translocations, duplications, and 

inversions [196]. 

Mutations can arise in any cell of the organism, and they will be hereditary when they affect the 

germline cells. Genetic variation is subjected to the effects of evolutionary pressure, meaning that it 

follows the rules of both positive and negative selection [171]. This means that the prevalence of a 

given mutation will depend on the effects that it produces. Neutral mutations with no functional 

significance persist by chance in the absence of selective pressure. Conversely, mutations with 

deleterious effects, either on viability before reproduction or on fertility, are less frequently 

transmitted to subsequent generations. By this reasoning, the observed frequency of pathogenic 

mutations (especially those that are more severe) will be necessarily lower than predicted by the 

generic rate of occurrence of mutations, or directly not observable if they are lethal [196]. This 

phenomenon can be particularly evidenced in the fact that the observed mutation rate is higher in 

non‑coding regions than in coding regions since the former will not alter the protein product. In coding 

regions, the observed mutation rate is approximately half of the general genome, with synonymous 

variants being more prevalent than missense or nonsense ones [188]. The case of genetic indels at the 

coding region is very illustrative. Indels of one or two consecutive positions at a gene will alter the 

reading frame and give rise to frameshift protein variants, whereas indels of three consecutive 

positions will not (they will produce an amino‑acid indel instead). Since frameshift mutations are likely 

more deleterious than amino‑acid indels, genetic indels of one or two positions are less common even 

if they have more odds of happening (as they affect a shorter DNA fragment) [174]. 

Of course, the strategies of variant annotation are in turn influenced by this scenario. The information 

obtained from large‑scale sequencing projects such as 1000G or gnomAD gives an idea of the 

prevalence of benign variants. On the other hand, the same kind of initiative has also been conducted 

for the study of complex diseases; the so‑called Genome Wide Association Studies (GWAS). GWAS 

initiatives collect the genetic sequences of individuals suffering from certain diseases, enabling the 
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contrast of the genomic information from healthy and sick individuals. In other words, they focus on 

revealing the potentially pathogenic variants associated with those diseases and enriching their 

annotation [174]. For instance, The Cancer Genome Atlas (TCGA) [197] and the International Cancer 

Genome Consortium (ICGC) [198] have sequenced thousands of samples from patients of cancer to 

better understand this disease and find markers at the level of genetic sequence. 

1.3.3 Diagnosis of genetic disorders 

Analyzing the sequence of patients suffering from certain diseases that are suspected to have a genetic 

origin is a valuable asset to confirm diagnosis. This practice is increasingly becoming available and 

prevalent in the clinical setting, outside large‑scale sequencing projects, thanks to NGS techniques 

[175], [192], [199]. In order for this practice to fully fulfill the promise of personalized medicine [190], 

clinical genomics and genome informatics face the colossal challenge of the accurate interpretation 

of genetic variation [172], [175]. The major problem in ascribing functional roles and/or 

clinical‑significance labels to variants identified from sequencing studies lies in being able to 

distinguish harmful mutations from the background variants without significant effect on human 

health [172], [200]. Indeed, only accurate discrimination of variants will help in understanding the 

etiology of mutation‑related diseases [179] and providing proper diagnostic and progression 

assessments [201], [202]. 

The discovery of novel variants in clinical research starts with the sequencing of the particular genes 

and/or regulatory elements potentially suspected to be involved in the impaired physiologic functions 

of the disease. Then, the interpretation of variants begins with the annotation step, which consists in 

providing the location of any found genetic variants using genome coordinates [172]. The obtained 

sequence information of the patient should be contrasted with the reference genome information 

and the known variants that may have been characterized previously. Whether a novel variant 

becomes a candidate for being causative of the disease or not depends on the prediction of their 

impact on protein functions or genetic regulation properties. Such an assessment is primarily based 

on the location of the variant in the coding or non‑coding regions [172]. Variants in the non‑coding 

regions are often connected to complex diseases. However, generally they are not prioritized for 

further assessment because currently there is insufficient understanding of the regulatory machinery 

encrypted in non‑coding DNA, leading to poor accuracy of prediction [176]. 

Most well‑annotated genetic diseases are directly associated with coding variants, which fortunately 

allow further structural analysis and thus are the basis of variant interpretation [172], [175]. Among 

the coding variants, synonymous changes (i.e., those that do not alter amino‑acid encoding) rarely 

influence the protein product, however they have been associated with non‑neutral effects, such as 

influencing alternative splicing, mRNA stability, or translational efficiency [176]. On the other hand, 

the impact of non‑synonymous variants can be predicted in terms of the expected alteration of the 

amino‑acid encoding pattern, with nonsense and frameshift variants usually being assigned damaging 

labels by default [176]. Indeed, SAVs are the protein variants that are the most particularly interesting 

from a medical point of view, given their widespread incidence in the average human genome [173], 

[176], [178], [179]. SAVs are implicated in a large portion of the known inherited diseases, being 

causative for more than half of them [203]. Therefore, they constitute an important focus in clinical 

research [204]. As mentioned earlier, amino‑acid substitutions can result in a wide range of possible 

molecular perturbations that may be not trivial to identify, hampering the accurate prediction of their 



 Introduction 

39 
 

possible functional effects [121], [173], [175], [179], [201]. Since (novel) SAVs will often be found upon 

sequencing and there may be discrepancies between their predicted and actual clinical consequences 

[178], there is an active field of research devoted to further improving our ability to discriminate 

between pathogenic and neutral SAVs [201]. 

The interdisciplinary community of professionals involved in medical genetics have provided 

consensus guidelines for the evaluations of NGS applications for the diagnosis of genetic disorders 

[202], [205]. A clear message given by such evaluations is that the variant‑disease relationship cannot 

be conclusive from the information of sequence alone. As a matter of fact, various additional 

assessments must be conducted to gather sufficient evidence to support or reject pathogenicity 

propositions. Ultimately, connecting variants either to disease or innocuousness is a complex, 

multistep process where expert review should always be required [176]. In the consensus guidelines 

issued by the American College of Medical Genetics and Genomics (ACMG) in association with the 

Association for Molecular Pathology (AMP) and the College of American Pathologists [205], they 

propose standardized terminologies to define clinical significance, together with workflows and sets 

of rules for assessing the evidence for a case. The paramount goal is to avoid wrong clinical decisions 

based on hasty pathogenicity predictions. 

In general, most of the best‑established practices and criteria, including the ACMG/AMP guidelines, 

are only applicable in the particular case of monogenic or Mendelian disorders. Monogenic disorders 

are diseases caused by alterations on a single gene, hence there is a direct relationship between 

genotype (i.e., the particular genetic sequence carried by an individual) and phenotype (i.e., the 

detectable expression of the genotype, or the manifestation of symptoms in the context of a disease). 

Thus, in contrast to other more complex diseases, monogenic disorders constitute the simplest 

paradigm when it comes to diseases with genetic origins. Indeed, they present the opportunity to fully 

comprehend the molecular basis of the protein‑disease relationship with minimized interferences of 

other known or unknown external factors. The clinical research on monogenic disorders has been 

greatly empowered by the rising applicability of NGS technologies and, in turn, it helps consolidate 

the framework of personalized medicine. Typically, diseases arising from monogenic disorders are 

caused by only one or two variants (frequently, SAVs) in a human individual. However, fewer than 50% 

of monogenic disorders are resolved after sequencing affected families [176]; this fact reminds us of 

the fundamental challenges that medical genetics still has to accomplish. 

While the results of the efforts in the identification and characterization of pathogenic variants are 

usually published in research articles, the field has greatly benefited from the creation of publicly 

available databases of human variants with clinical annotations [183], [201]. The Online Mendelian 

Inheritance in Man (OMIM) [206] represents the most complete resource of curated genes related to 

monogenic disorders. OMIM includes comprehensive descriptions on genotype‑phenotype 

relationships developed and the variants known to affect function, with references to relevant studies. 

Databases such as SwissVar [207] (currently discontinued; its data has been transferred to the UniProt 

Knowledgebase [208]), ClinVar [209], Leiden Open Variant Database (LOVD) [210], and the Human 

Gene Mutation Database (HGMD) [203] provide public portals to submit and query entries of variants 

with associated interpretations of their clinical significance. Depending on the database, the sources 

may include GWAS and/or individual submissions with experimental evidence that might 

subsequently be subject to different levels of data curation. In general, these repositories are mainly 

focused on germline mutations in monogenic disorders, and many entries correspond to SAVs. 
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Although we are still far from having a complete catalog of disease‑causing mutations, the databases 

keep growing as clinicians and researchers around the world keep carrying out the arduous task of 

interpreting the clinical consequences of variants. 

1.3.4 Pyruvate kinase deficiency: a monogenic disorder 

Taking pyruvate kinase as an example, a metabolic disorder called pyruvate kinase deficiency (PKD; 

OMIM entry 266200) arises from the functional disruption of the PKR isoenzyme. Given the central 

role of PK in cellular metabolism, it is not surprising that health complications arise when the enzyme 

malfunctions or its regulatory systems fail. Indeed, altered PK activity and expression levels of the 

enzyme have been associated with various types of human cancers [55], [125], [128]. In comparison, 

PKD has a considerably simpler etiology and represents an example of a monogenic disorder. 

PKD is the most frequent enzymopathy of the glycolytic pathway. It was first identified in the early 

1960s and has been recognized as one of the most common causes of the disease called hereditary 

(or congenital) non‑spherocytic hemolytic anemia, together with glucose‑6‑phosphate 

dehydrogenase deficiency [53], [55], [118], [199], [211]. 

PKD is caused by pathogenic variants in the PKLR gene. Although genetic variations of this gene likely 

affect both the PKL and PKR isoenzymes, the liver tissue is generally resistant to PKD because 

hepatocytes normally synthesize higher levels of the enzyme and/or have residual PKM2 activity. 

Conversely, erythrocytes are highly dependent on PKR because they lack a nucleus and mitochondria, 

thus relying on glycolysis for maintaining cell integrity and function. Erythrocytes deprived from 

sufficient ATP levels experience loss of membrane plasticity, cellular dehydration, and premature 

destruction in the spleen or liver [118], [211], [212]. 

The exact prevalence of PKD is unknown, although it has been estimated to be 1 to 8 per million, with 

a worldwide geographical distribution. Certain communities exhibit higher frequencies due to a 

founder effect or the potential protective effects from malaria [211], [212]. The disease is inherited in 

an autosomal recessive manner, thus being manifested only in individuals with compound 

heterozygous or homozygous genotypes for pathogenic mutations [53], [118], [199]. PKD is highly 

heterogeneous from biochemical and genetic points of view. Homozygotes generally retain <25% 

residual PK activity in vitro, whereas heterozygotes have 40% to 60% activity [211]. This variability has 

been related to possible differences in metabolic or proteolytic activity between individuals, or to the 

compensatory persistence of the PKM2 isoenzyme [118], [213]. Moreover, patients may present a 

broad spectrum of clinical symptoms with highly variable clinical severity, ranging from 

life‑threatening neonatal anemia to mild symptoms or even fully compensated anemia [54], [118]. 

Patients may also face difficulties in accessing diagnostic testing, or may receive regular transfusions, 

thus complicating interpretation of diagnostic tests. Under all these circumstances, PKD is likely 

underdiagnosed and may have a prevalence higher than estimated [199], [211], [212]. For this reason, 

in the last years there have been collective efforts between international experts to study the current 

gaps in diagnosis of PKD and establish more robust diagnostic guidelines [199]. 

A range of symptoms have been associated with PKD, with possible additional complications that arise 

from chronic hemolysis, and variable manifestation at different ages. Some symptoms have a 

substantial impact on the everyday quality of life, whereas others are more bearable. The list includes: 

fetal hydrops, jaundice, scleral icterus, splenomegaly, anemia, low energy levels, irritability, fatigue or 
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poor concentration, the formation of gallstones, increased risk for thrombotic complications, 

osteoporosis, iron overload, extramedullary hematopoiesis, and pulmonary hypertension [55], [211], 

[212]. An initiative from an international group of PKD patients maintains a website to provide 

comprehensible information about the disease, adapted for the general public, and to generate a 

community that can share everything that accompanies living with this disease 

(https://pyruvatekinasedeficiency.com). 

Treatment approaches have been traditionally based on supportive measures, which include regular 

or intermittent blood transfusions, splenectomy, cholecystectomy, and iron chelation therapy to 

prevent organ damage from iron overload [54], [118], [211], [212]. More recently, other 

disease‑modifying therapies have arisen or are in clinical development. Hematopoietic stem cell 

transplantation is a curative treatment option for PKD, although no clearly described indications exist 

and there is considerable associated risk. Gene therapy has also been explored with promising 

preclinical results (a Phase 1 clinical trial is currently ongoing). This treatment strategy has been 

successful in diseases caused by monogenic defects and other erythrocyte disorders [211], [212]. 

The recent incorporation of PK activation therapy with oral drugs has represented a significant step 

forward in the development of treatment strategies of PKD. In the last few years, the development of 

the synthetic compound known as mitapivat (or AG‑348) has been the most notable. This small 

molecule is an allosteric activator of PKR that binds to a latent allosteric site different from the 

canonical FBP and amino‑acid binding sites, located in a buried cavity between the N‑terminal domain 

of a subunit and the A and C domains of the adjacent subunit across A‑A′ interface [53]–[55]. The 

design of such a compound was inspired by the previous discoveries [214], [215] of other 

small‑molecule allosteric activators that bind to the equivalent site in PKM2. Mitapivat was recently 

approved by the Food and Drug Administration (FDA) and the European Medicines Agency, having 

demonstrated safe and effective treatment of PKD in adults through two Phase 3 clinical trials. 

Mitapivat is now commercially sold under the name PYRUKYND® (Agios Pharmaceuticals, Inc). A few 

other synthetic PKR activators are in clinical development. The review article of Van Dijk et al. [55] 

contains a summary of the main results from preclinical and clinical studies of subjects treated with 

PK activators in hereditary hemolytic anemia. 

To date, more than 370 mutations associated with PKD have been identified in the causative gene 

PKLR [54], [199]. Most of these correspond to missense mutations encoding SAVs that affect the 

structure of the enzyme, its stability, or its catalytic function. Only a subset of PKD genotypes occur 

relatively frequently, while the majority of patients harbor a unique combination of mutations. 

Common missense variants include Arg510Gln, which is found in Northern Europe and the USA, and 

Arg486Trp in the Southern European population. There is relatively little predictive value between 

genotype and phenotype and the severity of the clinical course [212]. However, the more severe 

phenotypes are generally associated with less frequent and more disruptive mutations, such as 

premature stop codons, frameshifts, or large deletions [54], [211], [212]. 

Biochemical characterization of the protein product of genetic variants may be a valuable tool to assist 

with diagnosis and genetic counseling [118]. Most of the pathogenic missense mutations cluster in 

specific regions within the PKR structure, including subunit or domain interfaces and functional sites, 

affecting to a different extent thermostability, catalytic efficiency and response to the allosteric 

effector [121]. Identifying the nature, location, and type of molecular perturbations of the replaced 

amino acid in missense variants may facilitate predicting the functional consequences of other variants 

https://pyruvatekinasedeficiency.com/
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of similar nature. However, in general, direct predictions should not be considered solely based on 

analysis of the molecular properties of the altered molecule, since the clinical manifestations of a 

genetic disease reflect the interactions of a variety of physiological and environmental factors [118]. 

1.3.5 Computational techniques and tools in pathogenicity 

prediction 

The common approaches to test the molecular impact of sequence variation and its relation with 

disease are functional assays, i.e., either in vivo or in vitro tests of the stability and/or biological 

function of the RNA or proteins involved. In order for functional assays to be as helpful as possible, 

experiments should closely reflect the biological environment. For example, assaying enzymatic 

function directly from biopsied tissue from the patient or an animal model provides stronger evidence 

than expressing the protein in vitro [205]. Remarkably, the method called deep mutational scanning 

(DMS) is becoming an invaluable tool for experimental evaluation of SAVs by enabling the systematic 

assessment of the effects of hundreds or thousands of variations on a given target property such as 

cell growth or ligand binding [175]. Naturally, these kinds of efforts need complex equipment and are 

both expensive and time‑consuming [172], [175], [181]. These drawbacks make the experimental 

analysis of the sheer volume of variants that are annotated simply impractical [179]. In this context, 

computational tools for predicting variant impact have emerged as a promising alternative. The use 

of these tools as a way to complement and strengthen the quality of clinical assertion can help bridge 

the gap between the vast amount of genomic data generated and the limited known genetic evidence 

[172], [183], [205]. 

In the last twenty years, more than 50 computational predictive tools that can aid in the interpretation 

of sequence variants have been released, both publicly and commercially available [172], [175], [200], 

[201], [204], [205], [216], [217]. The computational approach used by each tool may differ depending 

on the type of variant that is being assessed. The majority of them are specifically focused on 

addressing the functional effects of SAVs, which is not accidental given their already stated relevance 

both as a frequent cause of diseases and as an object of study for their effects in protein structure and 

function. Other tools specialize in the effect of splicing variants and non‑coding mutations [205]. 

In general, all computational tools that predict the consequences of SAVs follow a similar procedure, 

regardless of their particular method. Firstly, the properties of the variant are evaluated to get insight 

into its potential impact on the protein structure or function. Each predictive tool takes into account 

a different biochemical or biological basis to perform the forecast. Then, at the light of the resulting 

feature set, the variant is labeled as pathogenic or not [173], [183]. The outcome of these approaches 

must be taken just as an assistance to clinical diagnosis. As it happens, if a variant is predicted to be 

“damaging” or “pathogenic”, it does not necessarily lead to a specific phenotype or disease condition. 

Experimental validation is still indispensable [176], [183], [202]. 

In a recent review by Liu et al. [183], they classify the existing computational predictive tools in six 

classes, based on the characteristics and included features of each type. The first and predominant 

class comprises homologous sequence‑based predictive tools that base their outcomes in the 

evidence provided by comparative genomics. Indeed, the degree of evolutionary conservation of each 

position in genetic sequences is informative about the tolerance to certain changes. In general, the 

more conserved the position, the more likely for an amino‑acid substitution to be deleterious. This 
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class of predictive tool typically relies on the construction of a multiple sequence alignment of several 

similar protein sequences and the subsequent extraction of scores and metrics, hidden Markov 

Models or machine learning models. The tools SIFT [218], PANTHER [219], MutationAssessor [220], 

PROVEAN [221], and FATHMM [222] are among the most popular tools of this class. 

The second class comprises structure‑based predictive tools, which assess the impact of SAVs in 

proteins in the context of the macromolecular structure. Most tools calculate the change in free 

energy (𝛥𝛥𝐺) upon an amino‑acid replacement, which gives an idea of the change in conformational 

stability by approximating structural energy via physics‑based and/or knowledge‑based terms [175], 

[183], [204]. This metric is not exclusive to the field of pathogenicity prediction; it is rather commonly 

used to assess folding or protein interaction changes upon mutation [204]. In comparison to benign 

variants, disease‑causing mutations predominantly impact the core of the protein, making structural 

destabilization the major cause for pathogenicity in monogenic disorders [175], [183]. A large volume 

of pathogenic SAVs are also found in structural and functionally essential regions, such as 

protein‑protein interfaces or binding sites. For this reason, structure‑based predictive tools often aim 

to improve predictions by taking into account structural annotations to assess whether the mutation 

is occurring in a hot spot or a functionally‑relevant site [181], [201]. However, structure‑based 

predictive tools have been hampered by the limited availability of structural data in comparison to 

sequence data, which is available for the entire human proteome [172], [183]. The days of this major 

drawback may now be coming to an end thanks to the newest deep learning approaches such as the 

AlphaFold project [223], [224], which is dramatically expanding the availability of considerably reliable 

structural models. 

While structure‑based approaches may give greater insights into the mutation effect than 

homologous sequence‑based approaches, the former have not led to clearly significant increases in 

prediction accuracy so far [175] and may still be outperformed by the latter under certain 

circumstances [183]. Thus, combining both strategies into an integrated approach may aid in 

improving prediction capacity [172], [173], [179], [183]. In this regard, the third class of predictive 

tools are the sequence and structure combination‑based tools, with MutPred2 [225], SNPs&GO [226], 

PolyPhen‑2 [227], PMut [216], and MutationTaster [228] being among the popular ones. In a similar 

spirit, the fourth class of predictive tools are the so‑called meta‑predictors, which make predictions 

by integrating results of pre‑existing tools. Meta‑predictors aim to leverage on potential 

complementary performance of selected predictors in classifying variants. They are able to improve 

prediction performance and avoid some biases attributed to single tools [183]. The tools CONDEL 

[229], CADD [230], and REVEL [231] are among the most popular tools of this class. A fifth class of 

predictors classify variants according to population‑frequency data, given that the ACMG/AMP 

guidelines state that a variant with more than 5% of frequency is considered as a stand‑alone support 

for benign interpretation for rare monogenic disorders [183], [205]. For instance, the tool ClinPred 

[232] trains on clinically curated pathogenic and benign datasets, and also acts as a meta‑predictor by 

including feature scores from 16 other pre‑existing tools. The last class of predictive tools overlaps 

with several of the above but include disease‑, phenotype‑, and gene‑specific features. They are able 

to specialize by selecting and refining the training and validation datasets, constructing sub‑models 

for each gene, re‑constructing the multiple sequence alignments and phylogenetic trees of the 

targeted genes, and employing additional rule‑based classification systems [183]. 
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Yet with all the progress achieved, there are still many challenges that need to be overcome in order 

for these methodologies to reach sufficient reliability in practical applications. Indeed, the available 

predictive tools are bringing us closer to personalized medicine: they can be successfully used for 

variant prioritization [204]. The methodologies that have been reviewed mostly refer to 

general‑purpose predictive tools, which are trained with large datasets of a wide spectrum of 

sequence variation annotations in order to be applied to any human protein. Nevertheless, in general, 

the maximum accuracy achieved by general‑purpose predictive tools so far is around 80–85%, which 

strongly limits their usage in clinical diagnosis [173], [175], [233]. Most of these tools also tend to have 

low specificity: they can overpredict SAVs as deleterious and fail to correctly identify pathogenic 

variants with a milder effect [205]. Moreover, they have been found to consistently perform badly for 

some protein families [216]. As an alternative, the implementation of specific predictive tools has also 

been explored. In this case, tools are trained only with variants from the gene, protein, or protein 

family of interest, especially when considerable experimental data is available, and entail a 

subsequent stage of thorough data curation. Specific predictive tools can potentially mitigate some of 

the limitations of general‑purpose predictive tools and outperform them in some circumstances, 

although combining both approaches is the best strategy for achieving the highest success rates [233]. 

1.3.6 The use of dynamical features in pathogenicity prediction 
Incorporating a dynamics‑based rationale is the logical next step to enhance the accuracy of 

predictions of the impact of SAVs in proteins. Despite the continuous development of computational 

predictive tools, dynamical features have been largely neglected in the field of pathogenicity 

prediction. In the last years, the subject has begun to be raised by the community, with the increasing 

expectation that the integration of dynamical features will be a valuable complement to improve the 

state of the art [172], [175], [184], [201], [234]. Recently, Galano‑Frutos et al. [175] have covered the 

subject in depth and provide insightful considerations for pursuing the goal of interpreting human 

genetic variations at large scale through dynamical data (and specifically, with MD simulations). 

The major obstacle is the high computational cost of the task [175]. As with structure‑based 

pathogenicity prediction, but perhaps more seriously, this issue results in the lack of availability of 

data. Of course, the assessment of the functional effects of protein variants via dynamics‑based 

methods at the level of an individual study is possible; many instances are commonly found in the 

literature [167], [235]–[239]. However, the integration of such approaches in tools that can 

systematically evaluate any variant (especially in a massive way) is still a pending challenge. The 

problem is also related to the lack of robust and accurate analysis techniques that can quantitatively 

determine the impact of any mutation in conformational sampling and protein stability [175]. 

Only a handful of initiatives have released tools for predicting the impact of mutations on protein 

stability by including assessment of protein dynamics. The ENCoM [240] and DynaMut [241] web 

servers implement NMA simulations to inspect the set of possible conformational changes from a 

static equilibrium structure. Although they have not been designed specifically for clinical assistance, 

the outcome of the predicted change in protein stability upon a given SAV can be useful to speculate 

about its pathogenicity. However, they do not seem to surpass other predictive tools in terms of 

maximum performance. Possible reasons may be the limited ability of NMA simulations to sample the 

native conformational space and the inability to describe solvation interactions [175]. 
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On the other hand, MD simulations provide a more accurate and comprehensive modeling of the 

dynamical behavior of biomolecular systems (see section 1.4.3). MD simulations have proved to be a 

powerful approach to detect the minor changes associated with protein variants [172], [184]. They 

can derive a mechanistic understanding of the impact of SAVs in protein structure and dynamics from 

realistic simulations (e.g., explicit solvent, physiological temperature and pH). Given the structure of 

the wild‑type protein, a starting model of the mutant structure can be generated by modeling the 

corresponding amino‑acid substitution. The web‑based tool ANGDelMut [242] relies on a classical 

atomistic MD approach (albeit in implicit solvent) to capture certain structural and dynamical features 

of SAVs and predict mechanisms of functional loss. ANGDelMut, however, is not a general 

computational predictive tool but rather specific for only the angiogenin protein, which is associated 

with amyotrophic lateral sclerosis. Another remarkable effort is the work of Fleming et al. [234], who 

implemented a neural network approach that predicts protein thermostability upon mutation using a 

set of features extracted from MD time‑series data. 

At present, no other dynamics‑based predictive tools seem to have been released. Still, we must not 

neglect the contribution of independent studies that have aimed to take into consideration the role 

of dynamics as a source of insight for predicting the implications of mutations, mostly via MD‑based 

approaches. A significant volume of this kind of studies can be found in the literature [167], [201], 

[204], [235]–[239], [243]–[248]. Remarkably, the Dynameomics project [248] gathered a rich 

collection of MD simulations of 29 different wild‑type proteins and 200 associated SAVs, which 

provided insight into the molecular basis for structural disruption and destabilization mechanisms. 

Although the pertinence of modeling SAVs and performing subsequent MD simulations may be 

arguable, many of these works showed quite good correlations between their predictions and 

experimental data [175]. All in all, MD simulations are establishing a promising future for personalized 

medicine. Provided that the trends in both the optimization of MD algorithms and the power of 

computational hardware keep increasing, and counting with international coordination efforts, the 

predictive MD analysis of the entire set of possible SAVs of the human proteome could become a 

reality in the next decades [175]. 

1.4 The study of conformational ensembles 

From the perspective of promoting dynamics‑based knowledge to solve biomedical problems, we 

require techniques that can capture the dynamics of the involved biomolecular systems of study. 

Dynamical data is obtained when we can gather several instances of the structure of a system that 

bear a defined time relationship. Such a collection of data is also called a conformational ensemble. 

Conformational ensembles not only capture the intrinsic dynamics of a molecule, but also account for 

the additional variability that may arise from uncertainties and statistical noise during experiments 

and structure determination [249]. Being able to generate reliable and rich conformational ensembles 

is one of the challenges of contemporary structural biology and bioinformatics [5]. A variety of 

experimental and computational techniques have been developed to provide insights into protein 

dynamics by building complete 3D pictures of biomolecules at atomic or near‑atomic resolution, and 

at different time intervals. Each technique has its own advantages and limitations and generally comes 

with particular spatial or temporal resolution constraints (Figure 1.13). Thus, the choice of method 

may depend on factors such as the size and the properties of the system under study, or the desired 

resolution of the final model. 
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Figure 1.13. Spatiotemporal resolution of various biophysical techniques. Several common biological objects and processes 

are included next to the axes to compare their relative time and size scales. Techniques capable of yielding data on single 

molecules (as opposed to only on ensembles) are shown in bold. NMR methods can probe a wide range of timescales, but 

they provide limited information on motion at certain intermediate timescales, as indicated by the lighter shading and 

dashed lines. NOTE. Extracted from [250]. AFM, atomic force microscopy; EM, electron microscopy; FRET, Förster resonance 

energy transfer; NMR, nuclear magnetic resonance. 

1.4.1 Experimental methods 
The gold‑standard experimental techniques for providing starter structures for dynamical analysis are 

X‑ray crystallography, cryogenic electron microscopy (cryo‑EM), and Nuclear Magnetic Resonance 

(NMR) spectroscopy. Over the years, we have accumulated a vast amount of resolved structures from 

these sources. The majority of these structures are deposited in the Protein Data Bank (PDB; 

www.wwpdb.org) [131], the reference repository for 3D structure data for large biological molecules 

(proteins, DNA, and RNA). At the time of writing this thesis, the PDB has more than 195,000 structures, 

with roughly 86.4% of them resolved by X‑ray crystallography, 7.1% by NMR, 6.4% by cryo‑EM, and 

0.1% by other methods. The PDB has an invaluable impact on structural biology, as it allows 

researchers to use the available structures for conducting subsequent analyses. 

The size of the present PDB contains a substantial degree of redundancy, since the continuous 

uploading not only encompasses new systems but also additional instances of already deposited 

molecules. Furthermore, one may often find structures of the same biomacromolecule resolved in 

different biological conditions (for instance, ligand‑bound and unbound forms, or wild‑type and 

mutant forms). These facts are interesting because the different static structures of a system provide 

http://www.wwpdb.org/
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a general idea of its conformational heterogeneity, thus revealing some initial clues on how to 

approach a study of dynamics. In general, the higher the found structural variability between the 

copies, the broader the array of techniques/studies that will be required to obtain sufficient coverage 

of the spatiotemporal scale of the functionally relevant dynamical events. Of course, the weaknesses 

of the PDB are directly influenced by the inherent limitations of the techniques that feed it. For 

instance, the composition of the PDB is biased, with systems presenting significant flexibility (e.g., IDRs 

and IDPs) being especially absent. 

In X‑ray crystallography, also known as X‑ray diffraction, a beam of X‑ray light is projected towards a 

crystal, generating a diffraction pattern. The angle and intensity of the diffracted beams can be 

measured to deduce the 3D structural arrangement of the atoms within the crystal based on electron 

density signals. The major bottleneck of this procedure resides in obtaining a crystal of the highest 

possible quality [251], [252]. The crystallization of the protein or nucleic acid under study requires 

bringing a supersaturated solution of the compound to very specific conditions of ionic strength and 

co‑solutes that ultimately induce the molecules to arrange themselves in a repeating series of unit 

cells by adopting a uniform orientation. The higher the degree of order within the crystal, the better 

the quality (and the higher the resolution of the resulting structural model). Such a procedure is often 

challenging, and it directly prevents flexible regions to be resolved because they cannot achieve 

sufficient crystal organization. Other hardly crystallizable systems are macromolecules of large 

molecular weight and some membrane proteins due to their poor solubilization [253]. Moreover, 

crystallization conditions differ from the conditions of the cell environment, therefore, they can also 

give rise to technical artifacts. Crystal‑packing effects can induce some molecular contacts and 

interactions that are not present in physiological conditions and are rather a product of the imposed 

symmetric arrangement [254]. The co‑solutes required for fulfilling crystallization can also interact 

with the structure and disrupt the native local conformation of some sites [93], [252]. Lastly, crystal 

structures represent the static information from dynamical entities expressed as the average atomic 

positions of the stabilized conformation within the crystal. When more than one electron density 

signal is obtained for particular atoms (e.g., side chains of amino acids), crystallographic data 

sometimes includes the alternative positions with their fraction of occupancy. A rough measure of the 

atomic mean fluctuation is also reported in the B‑factor metric, which provides an estimation of the 

flexibility of each region of the molecule [5]. 

Despite the challenges of the technique, X‑ray crystallography has undoubtedly been the most 

important source for structural data of biomolecules, as demonstrated by the composition of the PDB 

[252]. Improved versions of the technique are focusing on attenuating the constraints of both the 

crystallization stage and the possible radiation damage of the structure due to long‑term exposure to 

X‑rays. The X‑ray free‑electron lasers (XFELs) are a promising solution, although they can only be 

produced in highly specialized facilities. When projected in femtosecond‑long pulses, usable 

diffraction patterns are generated before any radiation damage can compromise the sample (serial 

femtosecond crystallography, or SFX). XFELs can also enable detection of fast dynamical information 

such as the intermediate states of an enzymatic reaction (time‑resolved crystallography) and 

circumvent the need of cryo‑cooling protein crystals which can perturb the native conformational 

heterogeneity (room‑temperature and multi‑temperature crystallography) [27], [104], [105], [252], 

[255]. 
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Cryo‑EM is another increasingly powerful method that since the last decade can reach a spatial 

resolution comparable to that of X‑ray crystallography. This technique can be considered an advanced 

version of electron microscopy, where electron beams pass through a purified sample to yield a 

reconstructed 3D image. In cryo‑EM, prior to electron irradiation, the sample is brought to cryogenic 

temperatures to reduce radiation damage. An advantage is that the crystallization stage is not needed. 

Instead, the sample forms an amorphous frozen solid that even allows single particle analysis and 

eludes the problems of crystal‑packing and the need of averaging the signals of high symmetric 

lattices. This makes it particularly suitable for screening large macromolecules and macromolecular 

assemblies, while a disadvantage is that smaller systems pose more problems due to possible signal 

noise. Time‑resolved experiments are possible by fast freezing multiple states of a system, however 

cryo‑EM possesses the same limitations to study particularly flexible systems and fragments, with such 

regions suffering from too low spatial resolution [27], [256]. 

On the other hand, NMR methods are more proficient in providing both structural and dynamical data 

since it can quantitatively describe conformer populations and their exchange rates of 

interconversion. The experimental procedure involved is fundamentally different from that of X‑ray 

crystallography or cryo‑EM. The structural information of a given molecule is obtained by measuring 

the resonance frequencies of atomic nuclei (particularly 1H and 15N atoms) under a homogeneous 

external magnetic field. The exposure to the magnetic field generates some observables such as the 

Nuclear Overhauser Effect (NOE) and the J‑coupling, which read signals related to the probable 

distances and interactions between the atoms involved. If the sample contains multiple conformers, 

they can be revealed by detecting different signal peaks. A major advantage of NMR is that the sample 

can be directly probed in solution, without the need of crystallization or cooling stages, therefore 

substantially closer to its native conditions and with the potential to describe intermolecular 

interactions. NMR has indeed helped in identifying regions involved in ligand binding, protein–protein 

interaction, and protein–nucleic‑acid interaction [252]. However, the size of systems that can be 

studied through NMR is limited, as the spectral profile gets too difficult to process and interpret for 

large macromolecules. Moreover, this technique requires relatively large amounts of pure samples, 

and systems with poor solubility such as membrane proteins are harder to prepare. Contrary to X‑ray 

crystallography and cryo‑EM, NMR can resolve highly flexible systems, therefore it is a principal means 

of study of IDRs and IDPs. Thanks to being able to capture different conformers, it can be employed 

to capture the transient conformations involved in dynamical processes belonging to the 

picosecond‑second timescale. Nevertheless, there are a few blind spots in the timescale that may be 

more challenging to resolve [107], [257], [258]. 

In addition to the gold‑standard methods, other experimental techniques can also afford structural 

and dynamical data and have been useful to discover or confirm functional mechanisms of both 

proteins and nucleic acids. Hydrogen/deuterium exchange mass spectroscopy (HDX‑MS) quantifies 

the exchange of hydrogen with deuterium in solution when heavy water (deuterium oxide, 2H2O or 

D2O) is present. The exchange is produced rapidly in amide groups that belong to disordered regions 

that lack stable hydrogen‑bonding. The detection of the macromolecular regions with different 

exchange rates provides information about the tertiary structure of proteins, and can help elucidate 

conformational changes upon ligand binding and during allosteric regulation [252], [259]. Cross‑linking 

mass spectroscopy (XL‑MS or CL‑MS) relies on creating covalent bonds between spatially close regions 

of protein complexes, and afterwards inducing enzymatic digestion to analyze the resulting peptides 

in search of the regions enriched in cross‑linked peptides. Thus, XL‑MS can identify structural regions 
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(domains or even single helices or loops) that are responsible for protein‑protein interactions [260]. 

In single‑molecule Förster resonance energy transfer (smFRET) two fluorescent dyes are attached to 

the biomolecule of study and then a laser beam is employed to produce an energy transfer between 

the excited donor fluorophore and the acceptor fluorophore. This technique can measure 

intramolecular distances within proteins and, in addition, can also characterize the times and 

amplitudes of their modulation during function [261]. Small‑angle and wide‑angle X‑ray scattering 

(SAXS and WAXS) are X‑ray diffraction methods that can be applied to samples in solution or less 

crystalline than in X‑ray crystallography. SAXS can be applied to samples in solution and provides 

quantitative information about the macromolecular shape and weight by a rapid determination of the 

radius of gyration (Rg) metric. It can help determine the oligomeric states of proteins at low resolution, 

as well as the structure and dynamics of IDPs and integral membrane proteins. WAXS can probe 

smaller length scales and can sense small structural changes in proteins, characterize the breadth of 

the structural ensemble in solution, and identify proteins with similar folds [252], [262]. Infrared 

spectroscopy uses infrared radiation to excite vibrational transitions of molecules and determine 

various levels of their chemical composition and architecture, potentially also in a time‑resolved 

manner. It is a valuable tool for the investigation of protein structure, of the molecular mechanism of 

protein reactions and of protein folding, unfolding and misfolding [263]. Finally, atomic force 

microscopy (AFM) relies on a mechanical probe that scans the sample either by contact, oscillating, or 

force approaches. This technique can provide overall topographical and mechanical data, to some 

extent time‑resolved, and identify assembly patterns, signs of dynamical behavior and the ability to 

interact with other molecules [264]. 

All in all, when manipulated properly, experimental techniques are powerful tools to deliver reliable 

structural data, especially taking into account that they can complement each other to cover systems 

of different chemical and dynamical natures. However, they are laborious and hard to execute in a 

systematic way. For instance, in order to accumulate a substantial collection of structural and/or 

dynamical data of variations of the same system, experimental techniques are simply too costly and 

time‑consuming. Indeed, in addition to the efforts related with performing the technique itself, one 

must also previously acquire the sample of the actual protein or nucleic acid under study, possibly 

facing stages of mutagenesis, transfection, purification or even artificial synthesis. Therefore, for 

certain research scenarios and in general as a suitable complement to experimental techniques, we 

resort to computational methods, which are nowadays very well established and reliable. 

1.4.2 Computational methods: molecular modeling 

1.4.2.1 Structure prediction 

The 3D structure of biomacromolecules can be predicted and modeled by computational approaches 

to some extent. Structure prediction covers knowledge‑based approaches that derive information 

from the already available structural data to determine as yet unknown structures. Given their 

condition of predictive tools, their purpose is to produce models as accurate as possible albeit with 

approximations. Of course, the existence of this kind of methods could not be possible without a prior 

robust background of already known structures. In the case of proteins, even though the number of 

resolved structures has increased exponentially in the last decades, the number of known protein 

sequences for which structural data still lacks is hundreds of times larger and grows at an even faster 

rate. Thus, structure prediction methods play a crucial role in filling this widening gap. For this reason, 
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these modeling tools are bringing about substantial advances in clarifying protein interactions and 

making drug discovery faster, easier, cheaper, and more practical [265]. 

The main techniques in this field are called comparative modeling techniques, of which homology 

modeling is considered to be the most accurate. Besides, it is a fast approach with very well defined 

steps and low cost [265], [266]. Homology modeling operates under the central assumption that the 

3D structure of a protein is mainly determined by the inherent properties of its amino‑acid sequence. 

In turn, protein folds tend to be more conserved than sequence during evolution, therefore similar 

sequences entail very similar structures [8], [9], [265], [267]. In fact, the currently available data 

suggests that, although the number of possible proteins is essentially infinite, the number of actual 

folds is limited and can be classified into approximately 2000 different classes. Given two proteins that 

share a 70% of sequence identity, if we already know one structure, we can expect that the accuracy 

of performing homology modeling to build the missing structure is comparable to that of resolving its 

crystal structure. At 25% of sequence identity, the expected accuracy is still reasonably reliable [267]. 

The procedure of homology modeling starts by searching a database of structures (normally the PDB) 

for sequences that are homologous to the query sequence. The search is usually driven by sequence 

alignments, and also by profile‑profile alignments and hidden Markov Models. The found sequences 

with the highest similarity will be the best template candidates for the structure prediction. Among 

the eligible templates, it is also useful to consider other factors such as phylogenetic similarity, the 

resolution of the experimental structures and the degree of similarity between their environmental 

conditions. Then, after a careful adjustment of the alignment between the query and the template 

sequences, a software of homology modeling is employed to build the backbone of the model and 

later add the amino‑acid side chains. There are several approaches for model building, each with their 

advantages and limitations. Some of the more popular tools and servers are MODELLER [268], 

I‑TASSER [269], and SWISS‑MODEL [270]. The modeling of loops is a particularly delicate part of the 

process that can be reinforced by other specialized software; loops longer than ten amino acids yield 

poor accuracy. Finally, the models can be optimized and validated according to several parameters in 

order to choose the best quality template(s) [265], [267]. 

The major limitation of homology modeling is, of course, the lack of experimentally resolved structures 

of the homologous sequences [266]. When no direct homologous sequences or templates are found, 

the secondary structure must be predicted from the best‑matching recognized templates of a 

database, in what is called threading or 3D‑1D fold recognition. Also, the sequence may be segmented, 

modeled separately and combined back into a full structure. De novo prediction is also possible with 

ab initio approaches. In this case, an iterative process generates a large number of potential 

three‑dimensional models with a Monte Carlo type of algorithm and possible refinements via short 

simulations. Models are either discarded or improved in each iteration. However, both threading and 

especially de novo prediction come with a high degree of uncertainty of the quality of the built models 

[265], [267]. Contact prediction tools constitute another subfamily of methods that attempt to 

reconstruct 3D models by building contact maps with predictions of residue‑residue distances when 

no templates are available [271]. 

More recently, deep learning approaches were introduced in this field with unprecedented 

improvements in the accuracy of predictions. These employ artificial neural networks to derive hidden 

features and patterns from large collections of data that can cast predictions on new data [272]. 

Among the developed tools, the extraordinary success of the AlphaFold project [223], [224] was able 
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to produce reliable models for the whole human proteome, and in its latest release the collection has 

expanded to cover nearly all cataloged proteins known to science (over 200 million structures). This 

groundbreaking feat challenges the so far settled notion that only experimental methods were a 

reliable source of 3D models to perform subsequent analyses. 

The modeling of biomacromolecules through structure prediction approaches not only allows to 

circumvent the cumbersome procedures of the experimental techniques, but also provides direct 

means to model variants of the same system with little additional effort. This is a powerful advantage. 

For instance, amino‑acid substitutions can be modeled from existing protein structures, allowing 

parallel study of a wildtype protein and its missense variants, as performed in this thesis. For this 

purpose, side‑chain prediction software such as SCWRL [273] or the BioBB Structure Checking tool 

[274] can be employed to replace the atoms of a side chain with those of any other amino acid and 

accommodate them in a proper orientation based on the information from refined rotamer libraries 

and/or other scoring functions. It is also possible to model protein variants that are more complex 

than substitutions, such as insertions or deletions. However, the larger the altered fragment, the less 

reliable the resulting model. In fact, even amino‑acid substitutions may render inaccurate models 

because the possible effects of misfolding cannot be taken into account. For example, it is possible to 

model a polar residue in a hydrophobic environment by amino‑acid replacement, however whether 

the actual mutated protein in vivo would adopt an equivalent fold or fail to do so is rather 

unpredictable. 

1.4.2.2 Conformational sampling: biomolecular simulations 

While the methods covered in the last sections primarily provide structural models, with possible 

insights on the flexibility profile of the structures (e.g., with NMR), dynamical information can be 

directly modeled with conformational sampling methods. These are computational simulations based 

on algorithms that are designed to sample the conformational landscape with different strategies and 

levels of resolution. Given a starting structural model, biomolecular simulations aim to represent the 

physical properties of the molecular system, quantify its potential energy, and predict how the 

structure will move. This family of methods are theoretical approaches with varying degrees of 

accuracy. Although no model can achieve a perfect description of reality, the current implementations 

of physics‑based terms to describe molecular forces and interactions can indeed yield strong and 

reliable predictive power. However, coping with the highest levels of complexity generally comes with 

disappointingly impractical computational costs. Thus, every technique needs to introduce certain 

approximations in a balance between resolution, accuracy and computational feasibility. Among the 

variety of conformational sampling techniques, perhaps the best known are molecular dynamics (MD) 

simulations. In MD, a conformational ensemble is generated in an iterative process that integrates 

equations of motion for all the components of the system at successive time points. MD techniques 

and software can be implemented to operate in the different existing levels of complexity of molecular 

modeling. 

Atomistic‑level simulations constitute the models with the highest spatial resolution since they treat 

the system with atomic detail. The movement of every single atom is explicitly modeled to analyze 

molecular flexibility [5]. Within this category of simulations, the most rigorous quantitative description 

is the one provided by pure quantum mechanics (QM) models. An ideal prediction of dynamics in the 

atomistic level should be achieved by taking into account atomic nuclei and electrons and solving the 

corresponding time‑dependent Schrödinger equation. In practice, an exact solution to the equation 
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cannot be obtained for systems with large degrees of freedom (i.e., no more than a few particles). 

Therefore, QM approaches usually rely on the theoretical approximations that have been developed 

in the last decades [5], [275]. Some methods benefit from the widely used Born‑Oppenheimer 

approximation that allows to disconnect nuclear and electronic movements, given that nuclei are 

much heavier and slower than electrons. This approximation serves as a basis for treating many‑body 

electronic systems with the Hartree‑Fock (HF) method (also known as the self‑consistent field 

method), which introduces molecular orbitals to represent electron movements in an averaged way. 

The HF method, in turn, is taken as a reference state in the so‑called post‑HF methods to correct some 

of its inaccuracies by taking into account electron correlations. In contrast, Density Functional Theory 

(DFT) methods generally offer a positive trade‑off between accuracy and computational efficiency. 

They have become a preferred framework for modeling complex chemical systems like 

metalloproteins and studying reaction mechanisms at the active site of enzymes [252], [276], [277]. 

In DFT, molecular energy is expressed purely in terms of electron density. This simplification provides 

reliable energy estimates with a moderately low impact on accuracy and allows to simulate systems 

with sizes of 100‑1000 atoms at a more affordable computational cost [275], [278]. Both in HF and 

DFT, molecular orbitals are constructed as linear combinations of a set of atom‑centered functions, 

known as the basis set, that represent the individual atomic orbitals [279]. Given that the valence 

region of the atom carries more importance in chemical bonding, the so‑called split‑valence basis sets 

have become a popular option. Split‑valence basis sets represent valence orbitals with several basis 

functions and leave core orbitals represented with just a single function, thus providing increased 

accuracy in the former. Even better descriptions of the electron distribution are achieved by adding 

polarization and diffuse functions to the basis set. The former are functions with higher angular 

momentum that help to describe how the electron cloud of an atom polarizes (distorts) under the 

influence of the other atoms in the molecule, while the latter are functions that spread out further 

from the nucleus that allow a better description of loosely bound electrons [276], [279], [280]. The 

MD techniques that operate in the QM regime are Born‑Oppenheimer MD and Car‑Parrinello MD. The 

former has been used to study protein dynamics; however, without further simplifications this 

technique suffers from a prohibitive computational cost. The latter allows to perform calculations with 

DFT methods, with established applications in material sciences and increasingly in proteins [5], [281]. 

On the other hand, the molecular mechanics (MM) description further increases computational 

efficiency by neglecting quantum effects and relying on classical mechanics. In MM methods, atoms, 

forces, and interactions are described with a set of parameters known as the force field. Force‑field 

parameters are typically determined by deriving the data obtained from high quality QM calculations 

and/or experimental studies [5], [282]. Atoms are represented as spherical particles with associated 

values of charge, mass and volume. The degrees of freedom of the electronic configuration are no 

longer treated, but such information is implicitly present within the covalent bonds of the structure, 

which are represented as spring‑like strings that follow Hooke's law. Angle and dihedral (torsion) 

parameters complete the set of classical potentials that describe the interactions between 

consecutively covalently‑bonded atoms. Non‑covalent interactions are described by the non‑bonded 

terms: the electrostatic and van der Waals forces, modeled through Coulomb and Lennard‑Jones 

potentials. Some force fields are especially accurate for describing particular molecular systems 

depending on their chemical composition (nucleic acids, proteins, carbohydrates and lipids). Through 

the years, the quality of the force fields has been consistently improving thanks to the continuous 

refinement of the parameters, although they still possess limitations [282]–[284]. With MM 
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approaches, larger systems can be simulated in generally shorter computation times, thus providing 

the best option for simulating most biological systems. Nevertheless, given that they cannot describe 

changes in the electronic distribution, chemical rearrangement events such as enzymatic reactions 

cannot be modeled. Classical MD simulations lie within the MM level of conformational sampling. In 

this case, atomic movements are calculated using Newton’s laws of motion by integrating the forces 

acting on each atom at each timestep [285]. Classical MD (widely known as just “MD”) is the main 

source of dynamical information used in this project. Throughout the thesis, further considerations 

will be discussed on this subject, starting with a more extensive review at section 1.4.3. 

The hybrid QM/MM methods aim to benefit from the high accuracy of QM and the computer 

efficiency of MM. The QM treatment allows modeling of the electronic rearrangements involved in 

the breaking and making of chemical bonds, while the MM treatment allows for the efficient inclusion 

of the wider environment and its effects on the reaction energetics [286]. Thus, in the QM/MM 

framework, the structure is divided into two parts: a small one (the QM part) that covers the essential 

region where the chemical reaction is expected to occur, and a large one (the rest of the structure; 

the MM part) that is included to complete the modeling of the whole macromolecule where a 

quantum level of treatment is not needed. The choice of the level of theory to treat the QM part is 

crucial and should be suitable for the reaction of interest, while atomic interactions at the boundary 

between both parts can be treated with different strategies [275], [286]. QM/MM calculations have 

been a fundamental tool in computational enzymology for several years. They can provide details of 

transition state structures that are otherwise impossible to pinpoint in experimental studies. These 

methods have also delivered insightful contributions in drug design, drug metabolism and biocatalyst 

design [275], [286]. 

With a lower spatial resolution, we can find the coarse‑grained models. In the coarse‑graining 

strategy, the degrees of freedom of the system are further reduced by grouping together several 

atoms in a single particle, pseudo‑atom or “bead”. Of course, the aim is to benefit from the dramatic 

increase of computational efficiency when the associated loss of accuracy is not an issue in order to 

tackle the scientific question of interest. In this sense, coarse‑grained particles can represent different 

atomic formations. For example, in proteins, a residue can be represented with a few beads covering 

the most important chemical moieties, or rather by a single bead [287]. The fewer number of particles, 

the lower the complexity of the model. For obvious reasons, coarse graining is not compatible with 

QM or MM methods as described above. The approaches to describe the potential energy of the 

system fall into two categories. On the one hand, structure‑independent models treat the system with 

knowledge‑based potentials and are especially useful in applications of protein structure prediction. 

On the other hand, structure‑based models are closer to MM methods in the sense that they employ 

force fields of non‑physical statistical potentials that have been carefully calibrated in order to 

reproduce the structural and flexibility properties of macromolecules [5], [287]. Within the latter 

category, elastic network models (ENM) [288] represent the connections between particles with 

harmonic springs with reference distances extracted from experimental structures. Gō models [289] 

incorporate terms for non‑bonded interactions. The MARTINI force field [290] adds torsional restraints 

aimed to specifically maintain native secondary structure. Some of these approaches can be 

integrated in very computationally efficient MD simulations. Coarse‑grained MD has been successfully 

applied to study protein–protein interactions, biomolecular motors and particularly large systems of 

cellular biology such as ribosomes and membrane proteins [287]. 
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Besides MD simulations, other sampling algorithms and strategies are widely used in the study of 

macromolecular dynamics. Normal mode analysis (NMA) is a technique that studies the vibrational 

harmonic oscillating motions of a mechanical system. NMA takes an experimental (or reference) 

structure, assumes that it corresponds to a local minimum conformation, and derives a set of normal 

modes of motion along the corresponding potential energy basin [291]. While standard all‑atom NMA 

relies on classical force fields, the technique is frequently integrated with the ENM regime, thus 

replacing the force field with Hookean potentials (ENM‑NMA), often also employing a coarse‑grained 

resolution [5], [291]. Unlike in MD, the conformations sampled by NMA are not time‑correlated. 

However, this method provides very relevant insight on the flexibility profile of the (native) structure. 

Moreover, the vibrational normal modes exhibiting the lowest frequencies (the so‑called soft modes) 

in proteins describe large motions that are considered to be biologically functionally relevant. These 

soft modes can also be studied in a comparable manner with MD simulations followed by subsequent 

essential dynamics analysis [292], [293]. 

Monte Carlo (MC) simulations use stochastic methods to generate new conformations of a system and 

increasingly sample diverse regions of the conformational space. From a starting structure, the MC 

algorithm induces potential random movements to propose a new conformation. Then, the generated 

conformation is accepted or rejected based on the relative energy of the previous structure. Again, 

this sampling method does not deliver time‑correlated dynamical data. Instead, an iterative algorithm 

is implemented with the aim of covering a statistically meaningful region of the conformational space 

in no particular order. MC simulations can be used with rationally selected sampling variables and 

constraints that can improve its sampling efficiency by avoiding certain regions in the Cartesian space 

that will likely yield rejections [5], [294]. 

Although not a conformational sampling tool per se [295], the energy minimization (EM; also known 

as geometry optimization) methodology aims to find a set of coordinates representing the minimum 

energy conformation for the given structure [296]. Given an initial structure, EM algorithms iteratively 

calculate the potential energy of the atomic arrangement and progressively move the atoms towards 

positions where the net interatomic forces are closer to zero. The produced intermediate snapshots 

do not have a physical meaning nor a time‑dependent relationship. The identification of a low‑energy 

conformer is a valuable means to study biomolecules since bioactive conformers often correspond to 

(near) energy‑minimum states. EM is also widely used to correct possible structural anomalies in a 

molecular system in order to prepare it for subsequent simulations, such as MD or MC, or to refine 

models coming from structure prediction methods. EM algorithms can be classified into two 

categories: those that rely on the mathematical calculation of derivatives (e.g., the steepest descent, 

conjugate gradient or the Newton‑Raphson methods), and those that do not (e.g., the simplex or the 

sequential univariate search methods). In the MM regime, EM methods commonly work with 

Cartesian coordinates, while in the QM regime internal coordinates are more frequently used. In 

practice, the exact true energy minimum is not reachable, therefore an approximation is needed to 

terminate the calculation when a reasonably low‑energy model is obtained. A possible strategy is to 

end the simulation when the difference in energy between iterations gets smaller than a certain 

threshold. Usually, the technique advances from the starting point towards the closest local minimum 

of potential energy, without crossing energy barriers, however some EM methods can also visit 

adjacent basins of the energy surface in search of a more global energy minimum [295], [296]. 



 Introduction 

55 
 

In addition to all the strategies summarized above, which concern the modeling of the macromolecule 

of interest, biomolecular simulations also need reliable approaches to represent the chemical 

environment, i.e., the solvent. Indeed, water is the medium where all biological activity takes place. 

Water molecules constantly interact with proteins: i) they facilitate the folding process by reinforcing 

hydrophobic interactions, ii) they form a network of transient hydrogen bonds with the 

solvent‑exposed amino acids, iii) they provide an electrostatic screening effect, and iv) they can be 

involved in chemical reaction mechanisms. Furthermore, the aqueous medium in physiological 

conditions also contains dissolved ions that exert electrostatic interactions [297]. Therefore, solvent 

effects are generally considered in biomolecular simulations either by explicit or implicit solvent 

models. Explicit‑solvent methods incorporate atomistic‑level or coarse‑grained solvent molecules in 

the simulation, thus including the calculations of the corresponding interatomic interactions. Through 

the years, hundreds of different potential models have been developed to treat water molecules with 

different levels of accuracy [298]. In contrast, implicit‑solvent methods omit the solvent degrees of 

freedom by approximating the discrete solvent as a simulated continuous medium. Implicit models 

are considerably cheaper in terms of computational expense since the number of particles is reduced 

by several factors, however the specific solvent‑solute interactions are lost [299]. While in classical 

MD studies the solvent is almost always represented with explicit models, in other conformational 

sampling methods the situation varies depending on the scientific scenario. For instance, in NMA and 

MC it is common to see implicit models to avoid the possible damping of large‑scale motions. In the 

particular case of MC, explicit methods complicate the simulations because the chances of rejection 

of the tried conformations increase due to atomic overlaps being more likely to occur [291], [294]. 

1.4.3 Molecular dynamics simulations 

Molecular dynamics (MD) simulations are commonly referred to as a veritable “computational 

microscope”, capable of valuably complementing many experimental methodologies and facilitating 

discovery in spatial and temporal domains that would otherwise be inaccessible [250], [285], [300]. 

With MD we can simulate the motion of a given atomic system and store such information in a 

collection of snapshots, called a trajectory. For the sake of clarity, we must take into account that 

“MD” is actually the name of a family of methods. As seen in the section above, the algorithms behind 

MD techniques can be based on either QM or MM approaches. However, the term “MD” is generally 

employed to refer to all‑atom simulations powered by classical force fields, at least when no further 

specifications are given. In this thesis I also adopt this convention. 

1.4.3.1 Applications and breakthroughs in structural biology 

The first implementation of MD simulations in the fields of biochemistry and biophysics dates back to 

the late 1970s when McCammon and colleagues produced a 9.2 ps trajectory of the bovine pancreatic 

trypsin inhibitor protein in vacuum [301]. That simulation opened the door to a whole new era of 

structural biology with dynamics in the spotlight. In the words of the authors, “the results were 

instrumental in replacing our view of proteins as relatively rigid structures with the realization that 

they were dynamic systems, whose internal motions play a functional role” [302]. Since then, the 

popularity of this method has done nothing but grow [303], [304] (Figure 1.14). Nowadays, it remains 

the prevalent choice when it comes to deciphering functional traits of biomacromolecules like proteins 

or nucleic acids in terms of their structural conformations and dynamical behavior [5], [305], [306]. 



Chapter 1 

56 
 

 

Figure 1.14. Trend in MD simulations of proteins. The popularity of MD for the study of proteins has followed an exponential 

growth, as evidenced by the number of publications per year that are related to the field. Recently, with the pandemic 

outbreak of the COVID‑19 disease, a considerable piece of such studies has been devoted to aid in the design of a cure by 

deciphering the structural basis of the SARS‑CoV‑2 infection. The data was extracted from the Clarivate Analytics’ Web of 

Science database, at the time of writing this thesis, for the time span between 1977 and 2022. The search was refined to 

include only research and review articles, for the topics “molecular dynamics” and “proteins” together (blue) and later 

incorporating the topic “SARS‑CoV‑2” (in green). 

After decades of fruitful research, MD simulations have proven to be a quintessential tool for the fields 

of biochemistry, biomedicine and pharmacology. MD not only allows the simulation of native 

biomolecular interactions and motions in full atomic detail and with high temporal resolution, but also 

the introduction of carefully controlled perturbations (e.g., ligands, external forces…) to predict their 

effect on structure and dynamics [108]. With this potential, MD has achieved remarkable milestones 

in describing biomacromolecular phenomena. Although it is impossible to provide a comprehensive 

list of such contributions, we can mention a few examples of interest that cover the study of 

biomolecular systems of diverse biochemical nature. 

The process of protein folding has been probed with extensive MD simulations as in the cases of the 

villin protein headpiece subdomain [307] or the N‑terminal domain of ribosomal protein L9 [308], 

where the timescales of reaching the native state agreed well with the experimentally observed 

folding rates. 

MD simulations are especially useful to identify flexibility patterns and monitor conformational 

changes associated with biological function. The short peptide linker between the SH2 and SH3 

domains of tyrosine kinases of the Src protein family exhibits a flexible behavior that governs the 

activation of such proteins [309]. Targeted MD simulations were able to determine some of the 

progressive intermediate conformations that populate the transition pathway between the open and 

closed conformations of the GroEL chaperonin protein, estimated to occur in the millisecond timescale 

[310]. More recently, such conformations have been further sampled by impressively long unbiased 

simulations, and even enabling the direct study of the folding of the small protein HP35 inside the 

GroEL cavity [311]. 
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Large macromolecular complexes have been available for study via astonishing MD simulations 

achieved at the most cutting‑edge supercomputing facilities [312]. Bock et al. [313] monitored the 

intermediate states and the underlying molecular forces in simulations of time‑resolved translocation 

events in complete ribosome structures. Chandler et al. [314] simulated a membrane patch of 23 

million atoms from a bacterial photosynthetic system, which provided insight into the packing of the 

proteins and the diffusion of the quinone molecules through the narrow lipid phase between the 

proteins of the complex. 

Water and ion transport across the cell membrane has been measured in simulation for proteins such 

as aquaporins and potassium channels [315]. Similarly, the intermittent opening and closing of the 

long channel from the surface of acetylcholinesterase to its buried active site has been observed in 

simulation, thus providing a correspondence between the expected rate of diffusion of acetylcholine 

through the channel and the kinetic measurements of the enzymatic reaction [316]. 

When it comes to allostery, in section 1.1.2.3 we already have had the chance to highlight the capital 

importance of MD tools in the study of the allosteric mechanism. The allosteric nature of a 

biomolecular system can be confirmed by detecting the structural mechanisms that match what 

kinetic and thermodynamic data suggest. In the review by Hertig et al. [108], the authors list some 

examples of successful case studies of allosteric phenomena. In one of those, MD simulations were 

able to reveal the mechanism by which the binding of a G protein to a receptor protein (GPCR) causes 

a subtle conformational change in the G protein that accelerates the release of the ligand GDP 

molecule from it. This allosteric mechanism was subsequently validated by experimental procedures 

[317]. 

Nucleic acids have also been well studied with MD simulations to determine their functional roles in 

many biological processes and diseases. For instance, the destabilization of the structure of the rigid 

tetrad core of G‑quadruplexes of DNA in the absence of coordinated ions was described more than 

twenty years ago [318], and later the possible folding intermediates of the structure were proposed 

[319]. Protein‑DNA interactions have also been elucidated, such as the binding modes of the 

tetrameric formation of protein p53 when recognizing and accommodating DNA [320]. 

Free ligand binding simulations can provide mechanistic information about the process of binding to 

a macromolecule. Although they are not common due to their generally high computational cost, we 

can find some examples in the literature such as the study by Buch et al. [321] where 187 out of 495 

MD simulations managed to capture the binding event of benzamidine to the protein trypsin, allowing 

to quantitatively reconstruct the complete binding process. Similarly, Sneha et al. [184] list several 

examples where MD simulations can aid in drug discovery and design and personalized medicine. MD 

simulations can detect and explore the minor changes in the interactions and binding patterns of drugs 

associated with protein variants. For instance, a local conformational change in variant His274Tyr of 

neuraminidase from the influenza A virus was revealed to be responsible for conferring resistance to 

the inhibitor drug oseltamivir [322]. 

Last but not least, the relevance of MD as a valuable asset in the science of today has been evidenced 

in the global community’s response to the COVID‑19 disease. The pandemic outbreak in 2020 shook 

all social strata, and countless research groups around the globe embarked on the effort of aiding in 

the design of a cure by deciphering the structural basis of the SARS‑CoV‑2 infection. As soon as 

structural data of the viral proteome became available, MD simulations, in conjunction with other in 
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silico techniques, began to be employed at an unprecedented pace to study its functional dynamics 

[323] (Figure 1.14). In this joint response, the need to work cooperatively was highlighted and shared 

among the community [324], eventually resulting in the release of several databases of SARS‑CoV‑2 

MD trajectories, such as BioExcel‑CV19 (https://bioexcel‑cv19.bsc.es/) and others [323], [325]. 

1.4.3.2 The role of force fields 

The principles of the MD technique rely on a simple algorithm. Given a starting structure, Newton’s 

classical equations of motion are calculated for all particles of the system to provide the evolution of 

their positions and velocities, iteratively, at successive time points [285]. The force fields that provide 

the molecular mechanics potentials for representing the physical properties of atom types and their 

chemical connectivity must be accurate enough to provide meaningful simulations. For that purpose, 

force‑field parameters generally must be derived from reliable sources such as ab initio QM data 

and/or experimental data (NMR, structural databases) [282], [284]. 

Force fields are inherently imperfect because they contain approximations to reduce the 

computational cost and complexity of the simulations. When obtaining parameters from samples of 

biomolecular systems, the representation of the broad diversity of biochemical environments is 

inevitably limited. In the case of generic protein force fields, for instance, the simulation of IDPs has 

been revealed to be imprecise because they are underrepresented in the samples of (folded) proteins 

employed to build parameters [284], [326]. A continuous exchange between experimental biophysical 

techniques and MD is needed, and force fields should be validated against proteins with diverse folds. 

Indeed, there exists a certain risk to obtain misleading models from MD simulations as a consequence 

of using a set of parameters that does not describe the system of study with enough accuracy [283]. 

The most popular families of protein force fields in academia (AMBER [327], CHARMM [328], OPLS 

[329]) have been subjected to continuous refinements over the years. Comprehensive studies that 

compare simulation results with experimental data [282], [330] have shown that the current 

state‑of‑the‑art force fields perform satisfactorily well when describing the majority of structural and 

dynamical properties of proteins. The different available force fields share similar mathematical 

functional forms, and they mainly differ in how they have refined a subset of relevant parameters for 

torsional angles. These are key components of force fields that serve as a bridge between bonded and 

non‑bonded interactions of both backbone and side‑chain atoms [282]–[284]. 

Despite successful advances, there is still margin for improvement to achieve more optimal force fields 

that can truly be transferable to proteins of diverse constitution. Any upcoming refinements will target 

the most prominent deficiencies in accuracy that have been found. The current force fields still 

overestimate the persistence of salt bridges and fail to accurately describe interactions that need 

polarizable effects to be explicitly taken into account, such as in metal‑binding proteins [283]. As 

pointed out above, proteins in unfolded states or IDPs cannot be simulated with confidence, mainly 

because of the unbalance in the sampling of secondary structural elements and the inherent 

propensity to generate over‑compacted conformations [326]. The solvation free energies of many 

amino‑acid analogues in water are more unfavorable than experimental values, suggesting that most 

current protein force fields are generally too hydrophobic and also that the relative strengths of 

protein–water versus protein–protein interactions are incorrect [284]. Finally, protein folding 

simulations still present deficiencies in describing folding equilibria and their dependence on 

temperature, as well as in correctly identifying protein folding pathways/intermediates [284]. The use 

https://bioexcel-cv19.bsc.es/
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of machine‑learning tools for deriving new potentials is a promising solution that is currently being 

explored, and we may soon see a growing tendency in resorting to these kinds of approaches [331]. 

1.4.3.3 Technical improvements in hardware 

Besides the efforts invested on refining the force fields, the rest of improvements performed on 

classical MD as such are essentially technical. Remarkably, the emergence of modern computational 

architectures that are capable of running MD algorithms more efficiently has substantially boosted 

the performance of MD simulations. A couple of decades ago, the achievable simulation time would 

be of 10 ns or less, comprising hundreds or a few thousands of atoms [302]. Nowadays, in contrast, 

considerably larger simulations are affordable. An average MD simulation of our era easily comprises 

a million atoms and reaches multi‑nanosecond to microsecond timescales [5], [304]. Should this trend 

continue, the relevance and reliability of MD simulations in both academia and industry will even keep 

increasing. 

Indeed, computational cost is one of the main technical restraints of MD. It has been widely stated 

that for an MD trajectory to describe functionally relevant dynamics events it must span a sufficient 

amount of simulation time, comparable to the scale at which biological phenomena occur [5]. 

Although there is simply no threshold that ensures sufficient sampling, and thus this matter is subject 

to expert judgment, the appropriate time window is certainly beyond the 100 ns for an average‑sized 

protein [302], [332]–[335]. Being able to perform such simulations routinely is computationally 

expensive, especially taking into account that this kind of studies often comprise not just a single 

simulation but an ensemble of trajectories of different system conditions or replicates. Storage 

capacity is also often a constraint; large disk space is required to store the produced trajectories 

(normally several GB per trajectory). 

Fortunately, simulation engines have evolved in several ways to overcome the setbacks of 

computational cost. First and foremost, it has been possible for several years now to run MD 

computations distributed among hundreds or thousands of processors, running in parallel at a 

supercomputer in an efficient way. This fact has been crucial to enhance our capability of studying 

bigger, more realistic systems [5]. Besides, high‑performance computing (HPC) facilities are growing 

and are increasingly accessible. With the continuous increases in computational power, we can expect 

that performance will be boosted even further by any forthcoming computing architectures [304]. 

Secondly, algorithms have been reorganized and optimized to run efficiently in graphical processing 

units (GPUs). Thus, even when having access to a supercomputer is not an option, the computation of 

MD trajectories in a local machine with GPUs is a moderately cheap alternative [305]. 

Over the last years, we have been witnessing a handful of all‑atom MD simulations of colossal 

biomolecular systems [312]. Of course, these are often achieved only at state‑of‑the‑art HPC facilities. 

For instance, two simulations of 100 ns of the whole capsid of the virus HIV‑1 (64 million atoms) were 

performed on the supercomputer Blue Waters (National Center for Supercomputing Applications), 

using 4,000 Cray XE6 nodes [336]. Simulations of 40 ns and 150 ns of membrane patches of 20 million 

and 23 million atoms from the bacterium Rhodospirillum photometricum, respectively, were obtained 

by using the computational resources from the following facilities: Jaguar and Titan (Oak Ridge 

National Laboratory), Tsubame (Tokyo Institute of Technology), and Blue Waters [314]. More recently, 

an outstanding simulation of 500 ns of a chromatophore of 100 million atoms (136 million atoms with 
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explicit solvent) was produced at the supercomputer Titan using up to 8,192 of its computation nodes 

[337]. 

As a side note, we can point out two initiatives that perhaps are the highest expressions of the 

phenomenon of advanced hardware. The first is the existence of HPC infrastructure specifically 

designed to run MD simulations efficiently. Only two instances of such initiative exist at the moment: 

the supercomputers Anton [338] and MDGRAPE [339]. Anton is famous for having produced the first 

protein simulations that reached the millisecond timescale [340], together with several other 

high‑impact simulations. Currently, Anton is in its third incarnation which is 100‑fold faster than any 

other supercomputer and is estimated to achieve the simulation of a million atoms at over 100 

microseconds per day [341]. The second initiative is the Folding@home project 

(https://foldingathome.org/), which allows volunteer users around the world to lend their own 

personal computers as a way of sharing a distributed computing system. This means that MD 

simulations can be separated into work pieces, distributed across the network of volunteered 

machines, run, and finally returned to the project's database servers where they are compiled into an 

overall simulation. The philosophy behind this initiative is that supercomputers are often too busy to 

let an MD simulation scale to all their processors, whereas there are hundreds of millions of personal 

computer processors of comparable speeds setting idle around the world that can host such 

calculations in an orchestrated manner. In March 2020, as a result of the joint COVID‑19 research 

project, Folding@home became the first computing system to break the exaFLOPS (1018 floating point 

operations per second) barrier, a prestigious feat of computer performance that was expected to be 

first achieved by non‑distributed computing systems (i.e., the “regular” supercomputers). 

1.4.3.4 Technical improvements in software 

Hand in hand with hardware, biomolecular software usability has also improved. For several years, 

there has existed fair criticism about the impractical use of MD simulations for non‑experts. Indeed, 

the process of setting up a system for simulation often requires overcoming a steep learning curve. 

Depending on the complexity of the experiment, the user can face a plethora of technical decisions 

and parameter adjustments. A poor choice of parameters not only may compromise the quality of the 

study, but also lead to the degradations of computing performance. These handicaps are not caused, 

a priori, by a lack of sufficient simulation software, but rather by the intricacies of the configuration 

and the control of the simulation conditions. In fact, there is a considerable amount of different 

software packages, each with different features and merits, that are available freely or commercially. 

For a comprehensive list, see [342]. 

Embarking on MD simulations is nowadays more possible than ever because simulation software has 

adapted conveniently to reach non‑expert users [304], [305]. The implementation of Graphical User 

Interfaces (GUIs) that work on top of traditional software is substantially helping by bringing more 

user‑friendly environments that enhance interactivity, clarity, and reproducibility. Such is the case of 

interfaces like CHARMM‑GUI [343], MDWeb [344], or QwikMD [345]. Continuing with this endeavor, 

modern software tools facilitate creating pipelines and following state‑of‑the‑art MD protocols 

straightforwardly. The programmable environment HTMD [346] enables preparation, simulation, 

visualization and analysis of molecular systems in scripts written in Python programming language. 

The BioBB software library [274] allows building workflows by assembling a collection of prepared 

modules of common biomolecular simulation tools. More recently, the tool has been incorporated in 

a web‑based GUI, BioBB‑Wfs [347], that offers complex pipelines like those used in medicinal 

https://foldingathome.org/?lng=en
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chemistry, biophysics, or computational biology pipelines, including automatic small molecule 

parameterization, protein‑ligand docking or protein MD analyses. Other tools like MDBenchmark 

enable individual users to run benchmarks and find the optimal run parameters and settings for any 

simulation and hardware stack [303]. Last but not least, neither should we disregard the efforts of 

software developers to keep providing documentation and tutorials [348] or the distribution of 

comprehensive protocols by independent authors or research groups [344], [349]–[351]. 

1.4.3.5 FAIR principles and MD data sharing 

Together with the exponential growth of MD studies, lately we are witnessing a growing concern to 

implement bioinformatics frameworks that can enable efficient storage and exchange of trajectory 

data [304], [352], [353]. Indeed, the data derived from MD simulations is potentially reusable, since 

trajectories often contain a vast amount of information from which typically only a subset is analyzed 

in the context of a single study. The massive quantities of expended computational resources and 

accumulated simulation time should somehow be further exploitable by the community to accelerate 

research. 

Historically, the implementation of databases of MD trajectories has been hindered by several 

challenges. First and foremost, infrastructures should cope with the immense demand of disk space. 

Then, the deposited files should comply with pre‑established types, formats, documentation… 

Best‑practice guidelines on how to share MD simulations are still being defined [352], [354]. Finally, 

once deployed, resources must ensure a proper maintenance plan regarding economical 

sustainability, user support, and curation of the uploaded data. General‑purpose data repositories like 

Zenodo (https://zenodo.org), FigShare (https://figshare.com), and Open Science Framework 

(https://osf.io) provide some advantages (global public access, wide file format acceptance…) and are 

being used. However, they have limited storage quotas and cannot help standardize and harmonize 

the rules of MD data sharing. A modest number of initiatives have developed special‑purpose MD 

sharing platforms, such as BioSimGrid [355] (halted in 2009), MoDEL [356] and MoDEL_CNS 

(https://mmb.irbbarcelona.org/MoDEL‑CNS/), BIGNASim [357], TMB‑iBIOMES [358], GPCRmd [359], 

BioExcel‑CV19 (https://bioexcel‑cv19.bsc.es/), and SCoV2‑MD [325]. 

This subject also raises questions about whether we as a scientific community are using all our 

potential to follow the best practices of research and data sharing, which are very well synthesized in 

the FAIR principles: Findable, Accessible, Interoperable, and Reusable [360]. Indeed, pursuing an 

effective MD data sharing model does not only aim to preserve trajectory data, but also to improve 

reproducibility and scientific transparency. Repositories can become powerful platforms of 

collaborative research, for instance, by providing tools for the interactive visualization and analysis of 

trajectories. In turn, these implementations are potentially beneficial for improving the quality of 

research dissemination. Usually, a publication of an MD study describes its results with the usual 

means of a manuscript (text, tables, plots, and figures) and occasionally encloses supplementary 

videos. However, the clarity of such explanations can be substantially enhanced if the described 

dynamical events can be followed directly with a web‑based visualization tool [353]. Thus, journal 

articles (online editions) and web portals dedicated to scientific outreach should start incorporating 

standardized means of showing trajectories. The number of graphical interfaces optimized for 

trajectory display is conveniently growing [304], [325], [353]. Tools like Molywood [361] and 3dRS 

[362] aim to facilitate the design, generation, and sharing of videos and interactive biomolecular 

https://zenodo.org/
https://figshare.com/
https://osf.io/
https://mmb.irbbarcelona.org/MoDEL-CNS/
https://bioexcel-cv19.bsc.es/
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representations. These initiatives can encourage researchers to provide visual material to highlight 

structural and dynamical information. 

1.4.3.6 Sampling quality 

One of the main disadvantages of MD is the limited extent of conformational space that can be 

sampled at the accessible simulation timescales. Indeed, most important biomolecular processes 

often involve dynamical events that take place in slow timescales, possibly of dozens of microseconds 

or beyond the millisecond [305]. This is the case for diffusive ligand binding events, folding‑unfolding 

processes, or even the conformational change cycles that comprise the mechanical part of 

biomolecular function (e.g., allosteric transitions). Even though the current computational force 

enables the generation of long simulations that can span such timescales, this is usually not enough 

for ensuring more extensive conformational sampling. 

The complex shape of the FEL makes most of the simulations explore just a small region around the 

energy minimum closest to the initial conformation. Due to the stochastic nature of MD, there is no a 

priori way of telling whether a (sufficiently long) simulation will be walking over energy barriers and 

thus exploring different basins of the conformational space, or rather stay trapped in a single basin 

most of the time (an effect known as conformational trapping) [17], [283], [363], [364]. For this reason, 

several simulation replicates are generally required to observe dynamical events at their entire spans. 

Moreover, even when a particular simulation manages to capture such an event by chance, a single 

observation is not statistically robust. The same event must be observed multiple times to be able to 

provide descriptions of its dynamical mechanism and the relative conformational populations with 

confidence [109], [335], [365]. From this well‑known issue, an interesting discussion can be brought 

up concerning how we can handle trajectory ensembles. This subject is further introduced in section 

1.4.5 and takes a relevant place throughout the thesis. 

With the aim of overcoming the sampling problem, a wide variety of enhanced sampling methods 

have been developed over the years. These techniques employ diverse strategies that introduce 

controlled biases to MD simulations to favor a given transition or to capture longer‑timescale events 

[5], [305]. Some examples are listed here below. In replica exchange methods [366], parallel MD 

simulations are launched in different conditions (typically temperature) and their structures are 

periodically interchanged according to a Metropolis acceptance algorithm. The resulting simulation 

benefits from the fact that the sampling ability increases with temperature, and thus usually achieves 

a larger overall sampling of the conformational space. Weighted ensemble methods [367] look out for 

rare sampling events of the conformational space and launch more simulations from those points, 

generating a branched ensemble of trajectories in the process. In metadynamics [368], a biasing term 

penalizes the system to re‑visit regions previously sampled, therefore helping the simulation escape 

the initial local minimum. Umbrella sampling techniques employ a biasing potential to force the 

system to move in small steps along a transition from a predefined pair of initial and final states [5]. 

Targeted MD [369] implements a variant of umbrella sampling that drives the transition by monitoring 

and slowly reducing a metric of structure dissimilarity. Similarly, steered MD [370] pulls the system 

towards the final state via a steering force. Temperature‑accelerated MD [371] was inspired by 

metadynamics and enhances the sampling by using an artificially high temperature associated with 

certain degrees of freedom [283]. In accelerated MD [372], the height of energy barriers is lowered by 

adding a bias potential to the true potential. Finally, NMR parameters have been also used to restrain 

MD simulations [283]. The application of enhanced sampling methods is subject to the specificity of 
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the information that one wants to obtain; for instance, when certain conformations of the 

biomolecular system are known beforehand. However, for a study that aims to explore the native 

dynamical behavior without prior knowledge, regular MD is probably best suited [349]. 

1.4.3.7 Trajectory analysis 

MD simulations generate an overwhelming amount of data. A trajectory file contains the atomic 

coordinates and velocity values that were sequentially calculated during the simulation. The typical 

MD run employs an integration time step of 1‑2 femtoseconds [351], but usually the snapshots of the 

trajectory are stored with less frequency; probably three orders of magnitude lower, i.e., every few 

picoseconds [348]. Otherwise, a single trajectory that spans a few dozens of nanoseconds would 

account for unreasonable memory usage, especially considering that dynamical events faster than the 

picosecond mainly correspond to atomic vibrations that are negligible for studying biomolecular 

function [4]. Aside from atomic coordinates and velocities, energy values are often also saved at the 

same time intervals [348]. 

Given the format of trajectory data, how can we treat it to describe the captured dynamical events? 

The most straightforward approach consists in visualizing the 3D model of the system along the 

simulation. Many of the gold‑standard molecular rendering software applications, such as VMD [12] 

and PyMOL [373], can read trajectory files and display them as animations. The simplest 3D 

representation consists in drawing atoms as spheres that are connected by sticks to indicate covalent 

bonds. There are other more sophisticated representations that for instance draw ribbons or cylinders 

to highlight protein secondary structure segments. By visually inspecting trajectory animations one 

can look for any relevant motions occurring at the molecular sites of interest. 

While this (common) practice can provide qualitative insight of the evolution and flexibility of a 

particular system, it does not suffice to derive definitive conclusions. We should be able to validate 

the nature of any spotted dynamical event in the light of questions such as the following. How often 

does it occur? Does it always occur with a similar duration and/or motion amplitude? Is it conditioned 

(preceded, accompanied or succeeded) by another event? Could it be just an artifact or a misleading 

perception? Moreover, relying on visual inspection gets impossible as the amount of data increases. 

It would take too long and be dangerously imprecise to thoroughly inspect trajectories of large 

systems and/or long simulations; let alone entire ensembles of trajectories. All in all, even though 

visual inspection is a crucial initial component of trajectory analysis [24], researchers must face the 

challenge to find suitable metrics to extract, quantify and present the relevant information depending 

on the target of the study. 

Various metrics have been extensively applied for such purposes [184], [239], [248], [342], [374]. By 

means of basic geometric analyses we can inspect the evolution of the system along the trajectory by 

focusing on structural traits. Some of the most widely used metrics within this category comprise the 

measurement of the root‑mean‑square deviation (RMSD), the root‑mean‑square fluctuation (RMSF), 

interatomic distances and angles (for instance, to describe hydrogen bonds), the radius of gyration, 

the solvent‑accessible surface area (SASA), or the secondary structure content. On the other hand, 

energy analyses comprise the calculation of binding free energies, for example with the molecular 

mechanics Poisson‑Boltzmann or generalized Born combined with surface areas (MM/PBSA and 

MM/GBSA), or conformational free energies by constructing a FEL in terms of a given set of metrics 

that serve as reaction coordinates [239], [375]. 
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Other specialized analysis techniques further characterize the dynamical behavior of the system by 

fitting the trajectory data into a mathematical or statistical model. Among them, dimensionality 

reduction methods aim to find collective variables that can capture underlying key features. Many 

approaches of dimensionality reduction have been proposed over the years to work with trajectory 

data, including recent implementations with machine learning methods [376], [377]. However, the 

foundational and still most prominent technique of this family of methods is the Principal Component 

Analysis (PCA) [377]–[380]. PCA constitutes the analytical framework in which this thesis develops new 

propositions for extracting meaningful features and comparing trajectory ensembles. Finally, other 

popular trajectory analysis strategies that are relevant to mention are those derived from network 

analysis [283], [381]–[383] and Markov state models [384], [385]. 

1.4.4 Dimensionality reduction of trajectory data 

The structure of a biological macromolecule, such as a protein, possesses many degrees of freedom 

that allow it to adopt a myriad of different conformations. Accordingly, the variability contained in a 

given conformational ensemble needs to be described, a priori, by a set of multidimensional variables, 

such as atomic Cartesian coordinates, interatomic distances, or dihedral angles. Thus, in the case of 

an MD trajectory, dynamical information is obtained as a time series of high‑dimensional data. Such 

amount of information, even if valuable, is not easily interpretable. Therefore, extracting key features 

from raw trajectory data is crucial to understand the dynamics of biological macromolecules. For this 

purpose, dimensionality reduction approaches began to be proposed only a few years after the first 

MD studies with proteins and have since been widely applied for over 30 years to elucidate 

macromolecular dynamics [386]. 

Dimensionality reduction methods operate under the following assumption: the high‑dimensional 

space of the input data structure contains a lower‑dimensional subspace that preserves most of the 

original variability of the data. In other words, the aim is to identify a set of collective variables (CVs) 

that effectively reduce the dimensionality where the problem is formulated [376], [377]. The 

procedure is rooted in the possibility that large data samples in the high‑dimensional space hold 

redundancies and correlations. If this is the case, the interpretability of data generally improves. 

However, such simplification often always comes with an inevitable degree of information loss, 

therefore an optimal tradeoff must be found for it to be favorable [377]. 

In protein dynamics, extensive studies have proven that the significant, functional motions are 

expected to take place precisely in a low‑dimensional subspace. Dimensionality reduction approaches 

have been exploited with broad success in protein functional and folding studies [378]. CVs capture 

the underlying collective atomic motions that can potentially provide mechanistic insight into 

biological function such as enzymatic catalysis or signal transduction [377]. On the other hand, the 

detection of characteristic features of the conformational ensemble via the CVs enables the 

construction of FELs. Accordingly, the structures can be classified into those that represent metastable 

states (the maxima of the conformational distribution) and the connection paths between them 

(yielding the energy barriers between the states) [375], [376], [378]. 

1.4.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a multivariate statistical technique that has been largely applied 

to analyze multidimensional datasets in many kinds of scientific and technical fields [378], [379]. 
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Nowadays it is also often classified as an unsupervised machine learning technique [386]. In the 

earliest stages of MD studies with proteins, several researchers implemented PCA‑based methods to 

analyze trajectories [387]–[394]. This strategy has been referred to as “quasi‑harmonic analysis” [387], 

“molecule optimal dynamic coordinate analysis” [393], or “essential dynamics analysis” (EDA) [391], 

the latter being the common term used nowadays [378], [379] and thus also adopted in this thesis. 

PCA, as the central technique in EDA, aims to identify a few CVs that correspond to the “essential” 

degrees of freedom that can describe the functionally relevant motions [391], [392], [395], [396]. 

Technically speaking, the standard PCA procedure applied with trajectory data consists in performing 

an eigendecomposition of either the covariance or the correlation matrix of the Cartesian coordinates 

of the atoms involved in the analysis [379] (see section 3.5.1 from the Methods chapter for further 

details). This mathematical operation enables expression of the original trajectory data points in terms 

of a new basis set of orthonormal vectors that are not linearly correlated and indicate the directions 

of the dataset that capture the maximum amount of variance. The projection of the data onto such 

new coordinates, called the principal components (PCs), enables inspection of the underlying key 

collective features of the dataset. In the particular context of trajectory analysis, PCs describe 

collective atomic displacements [334], [379], [386], [392], [395], [397]. Consequently, PCs allow for 

the exploration of the collective motions that best describe the conformational variability that was 

sampled during the simulation. Roughly speaking, PCA normally achieves a tremendous reduction of 

dimensions in the average protein trajectory, being 20 PCs usually more than enough to define an 

“essential subspace” that captures the motions governing biological function [379]. 

PCA is a useful asset both for the study of conformational mechanics and dynamics of 

biomacromolecules and the construction of folding FELs; many examples of successful studies can be 

found in the literature [378]. These have revealed and confirmed functional features of countless 

proteins (regulatory proteins, enzymes, channels…) not only by applying PCA to a single system, but 

also to different conditions of the same system for their comparison (for instance, ligand‑bound and 

unbound states, or wild‑type and mutated forms). PCA benefits from great simplicity since it can be 

applied in a straightforward manner without any a priori information or phenomenological parameter. 

However, a deeper understanding of the technique will allow one to exploit its full potential. For 

instance, a plain application of PCA to the whole system in the trajectory may not be sensitive enough 

for detecting the more localized, small‑amplitude but functionally important motions; however, the 

resolution can be increased by applying it to a subregion of interest or excluding noisy coordinates 

that may be overshadowing them [376], [379], [386], [398]. Additionally, PCA has been used with 

trajectory data for other purposes, for instance, to feed enhanced sampling techniques [378], [399], 

in trajectory compression [400], small molecule docking [401] and determining the redox potential of 

proteins [402]. 

A frequently used variation of standard PCA relies on the use of internal coordinates instead of atomic 

Cartesian coordinates to perform the analysis. Internal coordinates such as intramolecular distances 

and angles are not affected by the overall motion of the macromolecule and thus manage to escape 

the possible interferences of such degrees of freedom. However, the direct correspondence of the 

data with definite conformations is lost, thus entailing a decrease in the interpretability of the 

collective features [375], [376], [379], [386], [403]. Some approaches of PCA that employ interatomic 

contacts and distances as input data are: internal distance pair coordinates (dpPCA) [404], contact 

distance‑based (conPCA), reciprocal distance‑based (iconPCA), and inter‑Cα distances (CαPCA) [405]. 
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Since the number of pairwise atomic distances scales quadratically with the number of considered 

atoms, this makes the analysis increasingly expensive. Thus, dihedral angles are a most common 

alternative. Backbone dihedral angles are valuable descriptors of the secondary structure, whereas 

side‑chain dihedral angles report inter‑residue contacts [376]. Dihedral angle PCA (dPCA) uses 

backbone dihedral angles and converts them to sines and cosines to obtain a linear coordinate space 

with the usual Euclidean distance [403], [406]. An improved version called dPCA+ performs the 

analysis directly on the dihedral angles by transforming the data such that the maximal gap of the 

sampling is shifted to the periodic boundary of a dihedral angle [376]. In GeoPCA, dihedral angular 

data are projected on a sphere composed of the first two principal component geodesics [407]. In 

Torus‑PCA (T‑PCA), dihedral dynamics are characterized by taking advantage of the fact that the 

n‑dimensional torus is a product space of n circles [408]. 

Since Cartesian PCA applies a linear transformation from the original variables to the new CVs, it 

detects only linear correlations, while trajectory data can also include nonlinear correlations [386], 

[409], [410]. Nonlinear correlated behavior in protein dynamics is more prominent on folding and 

unfolding processes, given the divergence of the sampled conformations [411], but other simpler 

phenomena can display a nonlinear correlation such as the collective rotations of two methyl groups 

[378]. The PCA approaches with dihedral angular data can already give insight into the possibly 

significant nonlinear correlated motions of the protein atoms [378], [386], [406]. For instance, the 

application of dPCA was able to describe more accurately the rugged nature of the FEL of protein 

folding [375]. In order to account for nonlinear correlations, the Kernel PCA approaches [412] are often 

a choice. Kernel PCA (kPCA) can be thought of as a generalization of PCA, where firstly a nonlinear 

transformation (the so‑called kernel function) maps the input coordinates to a feature space of higher 

dimensionality with the aim that the transformed data becomes approximately linear. Then, a simple 

linear dimensionality reduction is performed in this space. Thus, the original nonlinear correlations 

are captured through the definition of the kernel itself [376], [379], [386], [412]. Kernels with 

sigmoidal, exponential and polynomial functions have been employed, although the most widely used 

is the Gaussian kernel. A linear kernel would make kPCA equivalent to Cartesian PCA [377], [380]. The 

choice of a proper kernel is not obvious because it is problem dependent and faces the impracticality 

of defining function parameters. Although kPCA may prove especially useful to study specific cases, 

the regular Cartesian PCA is a validated method to describe the dominant correlations present in 

atomic motions found in proteins [379]. 

1.4.4.2 Other dimensionality reduction approaches 

Besides the PCA family of methods, a wide variety of other analytic techniques have been explored to 

achieve a meaningful dimensionality reduction of trajectory data. Two popular linear transformation 

approaches are multidimensional scaling (MDS) [413], [414] and time‑lagged independent 

components analysis (tICA) [415], [416]. In MDS, the aim is to find a low‑dimensional space that best 

preserves the pairwise distances between the original high‑dimensional points by minimizing a cost 

function. MDS can be equivalent to PCA under certain conditions, however an advantage is that it can 

be used directly with a matrix of pairwise distances, thus allowing it to work in a more general way 

with non‑Euclidean high‑dimensional spaces and to address nonlinear correlations [377], [380]. The 

approach of tICA is similar to PCA but the produced CVs aim to maximize the autocorrelation time of 

the degrees of freedom rather than their variance. It accomplishes it by incorporating information on 

time dependency among the extracted eigenvectors (time‑lagged covariance matrix). The produced 



 Introduction 

67 
 

CVs are not orthogonal and show collective atomic motions that possess a rough estimate of their 

associated characteristic timescales, therefore are interesting to describe the slowest‑relaxing modes 

of motion of the trajectory. tICA has become a popular tool for extracting kinetically relevant CVs and 

applying them for subsequent Markov state models analysis. However, the robustness of the 

technique is dependent on the ambiguous choice of a central parameter, the lag time [376], [377], 

[416]. 

A handful of approaches have been proposed for addressing nonlinear correlations. Nonlinear 

dimensionality reduction methods can indeed determine more intricate and elusive higher‑order 

correlations and classify conformations from a set of trajectories, at low risk of loss of information on 

the protein dynamics [417]. Notwithstanding, they have characteristic disadvantages that may limit 

their applicability in practice: i) the reconstruction of data is difficult to interpret because the mapping 

loses the direct geometric interpretation, ii) the number of CVs has to be determined in advance, iii) 

the order of relevance of the obtained CVs is unknown or difficult to determine, and iv) some key 

parameters often have to be defined a priori [378], [379], [411]. 

Isometric feature mapping (Isomap) [418] generates a low‑dimensional representation that best 

preserves the geodesic distance (the distance along a straight line in a curved manifold) by finding the 

shortest path through a network analysis performed on the high‑dimensional space. The so‑called 

scalable Isomap (ScIMAP) [419] is a variant of the Isomap algorithm specifically designed for big 

datasets such as the output of MD simulations. Stochastic Proximity Embedding (SPE) [249], [420] 

takes as input the structural similarity between all pairs of conformations, and uses an iterative 

method to obtain a low‑dimensional projection in which pairwise distances are approximately 

preserved locally. Diffusion maps [421], [422] employ a Gaussian kernel (as in kPCA) to preserve the 

dynamical proximity between conformations visited in the high‑dimensional space. Several specialized 

variants of diffusion maps have been proposed over the years to specifically improve diverse 

particularities of the technique [377]. Full correlation analysis (FCA) [423] minimizes the Shannon’s 

mutual information metric to obtain maximally uncoupled collective coordinates. The Sketch‑map 

algorithm [424] solves a highly nonconvex optimization problem to preserve the distances falling 

within a specific window which is assumed to characterize the important models of the system under 

study. Provided that a proper selection of parameters is made, Sketch‑map may find a relevant 

low‑dimensional representation of the data even when other simpler methods fail; however, this 

requires extensive trial‑and‑error operations with no guarantee of success [380]. The t‑distributed 

stochastic neighbor embedding (t‑SNE) [409] estimates, from the distances in the high‑dimensional 

space, the probability of each point to be a neighbor of each other point. Such a procedure is 

dependent on a free parameter called “perplexity”, which roughly represents the number of nearest 

neighbors whose probabilities are preserved by the projection. Uniform Manifold Approximation and 

Projection (UMAP) [410] is a fuzzy topology‑based dimensionality reduction method that is similar to 

t‑SNE but employs a different pairwise local distance metric between the points and a cross‑entropy 

loss function. 

Most of the current dimensionality reduction strategies that aim to account for high‑order 

correlations apply deep learning approaches with artificial neural networks. In fact, it has been several 

years since the first applications of such technology with trajectory data, remarkably with the 

development of nonlinear Principal Component Analysis (NLPCA) [411] approaches, which perform 

nonlinear mapping with hierarchically arranged neural networks. Nevertheless, with the 
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improvements of deep learning algorithms, these methods are currently gaining more relevance both 

in MD studies and in general in the majority of technical and scientific fields [377], [380], [425]. The 

increasing richness of data (up to the regime of big data) is prompting a shift in the methodologies 

employed in the field of molecular dynamics in favor of more automatized and less human‑dependent 

procedures [377]. 

Of particular interest are the auto‑associative neural networks or autoencoders (AEs). AEs rely on the 

sequential use of two neural networks, namely the encoder and the decoder. Firstly, the encoder maps 

the input features to a low‑dimensional embedding called the latent space. Then, the decoder is 

capable of mapping back the compressed information to the original space. The process is iteratively 

optimized until the error between the original data and the reconstructed data points is minimized. 

Provided that the operation succeeds (i.e., there is little loss of information), the CVs at the latent 

space serve as good descriptors of some underlying key collective features of the dataset. As it occurs 

with other nonlinear dimensionality reduction approaches, if a linear map was used in the AE, the 

procedure would be equivalent to PCA. Many trajectory analyses that employ AEs [110], [417], [426]–

[428] and more specialized versions such as the variational autoencoders (VAEs) [425], [429]–[431] 

can be found in the recent literature. 

1.4.5 The comparability of trajectory ensembles: a challenge 

From the perspective of gathering rich conformational ensembles to achieve meaningful functional 

descriptions of biomolecules [5], [249], comparing biomolecular structures or states now becomes a 

question of comparing conformational distributions rather than individual conformations [432]. In 

general, conformational ensembles can be compared by spotting prominent differences in the scalar 

metrics computed for each individual ensemble, for instance, employing basic geometric analyses 

[248], [374], [398], [433], [434]. This comparative approach is straightforward and enables 

interpretation of the similarity both in a qualitative and quantitative manner, depending on the level 

of detail of the analysis. 

In the case of MD trajectories, comparisons are less trivial because structural properties evolve as a 

function of time. Indeed, we are facing an extension of the challenges posed at section 1.4.3.7. In 

addition to the need of finding suitable “property spaces” to better interpret dynamical information, 

the next question is whether such representations and metrics are also powerful enough to provide a 

measure of similarity between different trajectories. If two trajectories yield similar time‑dependent 

properties, are they similar? Or, if two trajectories exhibit very different time‑dependent properties 

are they necessarily different? Kazmirski et al. [374] provided a conceptual example of the complexity 

of the problem by illustrating a hypothetical scenario of three trajectories that follow different 

pathways in their transition from an initial state to a final state (Figure 1.15). Conceptually, similar 

trajectories are those that span close regions of the multidimensional topological space (i.e., they have 

sampled similar conformations). However, even when such regions overlap, the rate at which each 

trajectory has sampled the shared conformations may still differ. This entails time‑dependent 

differences that one may want to take into account or not, depending on the purpose of the study. 

Similarity between two trajectories may be apparent or not, when examined from different angles. 

For this reason, in general, when analyzing multiple trajectories, it is important to perform a detailed 

comparison using multiple methods [374]. Nevertheless, in contrast to the amount of metrics that can 
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be applied to compare individual structures, there has remained a lack of specific methods to compare 

conformational ensembles [398], [432], [435]. 

 

Figure 1.15. A conceptual example of the complexity of comparing trajectories. Three hypothetical trajectories of the 

dynamical process from a state 1 to a state 2 are represented. (a) The pathway of the three trajectories transitioning from 

state 1 to state 2. Trajectories A and B walk along the same pathway with A taking a longer amount of time to reach state 2 

as it becomes trapped in a substate for a certain period of time. Trajectory C takes an alternate pathway, and like trajectory 

A becomes stuck in a substate along the way for a certain period of time. (b) Measuring the distance from the starting point 

against time for each of the three trajectories, it may seem that trajectory A and C follow the same path, while trajectory B 

walks a separate path until reaching state 2. Monitoring only this single property versus time leads to a wrong interpretation. 

NOTE. Adapted from [374]. 

A handful of studies have proposed a few comparative methods that aim to provide a (dis)similarity 

score between trajectories. A group of approaches are based on the idea that two ensembles can be 

compared by firstly estimating their underlying probability distributions and then quantifying their 

similarity using distance measures from probability and information theory. Quantitative comparisons 

can also be complemented by using the information derived from the correlation of motions between 

pairs of residues or atoms. One of the earliest proposals was the inter‑ensemble RMSD (eRMSD) [433], 

which combines expressions of RMSD and the isotropically distributed covariance matrix of atomic 

positions. The harmonic ensemble similarity (HES) improved the eRMSD and gives weight to both 

differences in the mean conformation as well as differences in the fluctuations away from this mean. 

The clustering ensemble similarity (CES) applies a clustering algorithm followed by the calculation of 

the Jensen‑Shannon divergence [249], [432]. Other studies have further proposed similar approaches 

[435]–[437]. The covariance overlap [438] as well as the dissimilarity index of Dynamical 

Cross‑Correlation Matrices (DCCM) and Linear Mutual Information (LMI) [398] are examples of 

approaches that purely compare the information from correlation. Additionally, other methods 

implement comparisons on the residue‑residue contacts [374] or use network theory metrics to 

perform the so‑called difference contact network analysis (dCNA) [439]. 

On the other hand, the comparability between trajectories can be explored by dimensionality 

reduction methods. Among such strategies, EDA‑based approaches constitute common ground to 

address this analytic problem. Indeed, in the same way as EDA provides insight into the underlying 

collective features of an individual trajectory, it can also reveal differential behavior between 

trajectories. With this purpose, a usual strategy involves performing PCA on each trajectory as an 

isolated experiment and then describing the resemblances and divergences of the corresponding 

essential spaces of each analyzed trajectory. The literature contains numerous instances of studies 

where trajectories are compared following this strategy: between replicates of the same MD 
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conditions [293], [332], [334] and/or between different conditions such as the ligand‑bound or 

unbound states of a protein [440]–[442] or mutant variants [235]–[239]. 

It should be noted, however, that such an approach practically only provides qualitative information. 

Each set of PCs originates from a separate space (i.e., it has its own origin of coordinates). Therefore, 

a quantitative comparison of the PC values from different trajectories is meaningless. Instead, 

comparisons can be made by describing the differences in the observed structural traits manifested 

in the PCs, that is to say, by visually inspecting the captured collective motions in each case. Comparing 

the amount of conformational heterogeneity (variance) captured by each PC is also informative. For 

instance, depending on the divergence of the sampled conformations, a different number of PCs will 

be required to account for 50% of the variance (normally between 2 and 20) [379]. Additionally, the 

degree of overlap between the essential subspaces (e.g., considering the first 10 or 20 PCs of each 

trajectory) can be quantified with the root‑mean‑square inner product (RMSIP). The RMSIP metric 

provides a general idea about the similarity between the regions of the conformational space sampled 

by individual trajectories. It ranges from 0 (i.e., completely orthogonal spaces sampled by the essential 

subspaces of the two trajectories) to 1 (i.e., a perfect overlap) [378], [391], [398]. Likewise, the 

similarity between pairwise PCs can also be assessed by calculating the corresponding inner product. 

A matrix of inner products can detect possible shifts in the order of relevance of similar PCs between 

trajectories [441]. 

As an alternative, the strategy known as combined‑PCA [443] is an EDA‑based approach that is more 

oriented towards trajectory comparison. Combined‑PCA consists in concatenating the involved 

trajectories into a “multi‑trajectory” (also called a “meta‑trajectory”) and performing a single PCA on 

it. The main feature of combined‑PCA is that it provides a single reference PC space for the whole 

ensemble of trajectories, enabling the extraction of the features of the average dynamical behavior of 

the ensemble. As such, the interpretability of combined‑PCA has been discussed by several authors; 

depending on the degree of conformational space overlap of the different subsets of trajectories of 

the analyzed ensemble, each scenario prompts different considerations that should be taken into 

account [36], [109], [333], [365], [392], [443]–[446]. Mainly, this approach enables comparison by 

analyzing the properties of the different trajectories when projected onto the same PCs, namely the 

differences in the average and deviation values [36]. This strategy is usually implemented in studies 

that compare the trajectories of different biological conditions [214], [447], [448]. 

Several studies have explored other interesting implementations that allow envisioning new creative 

ways to exploit EDA‑based approaches as a tool for effective trajectory comparison. For instance, 

Lindorff‑Larsen et al. [249], [432] proposed the dimensionality reduction ensemble similarity (DRES) 

metric, which builds on the HES and CES methods proposed by the same authors, but employing a 

nonlinear dimensionality reduction approach to estimate the probability density of each 

conformational ensemble in terms of the generalized coordinates. Grosso et al. [440] implemented an 

unbiased method to quantify the similarity between different essential dynamics subspaces using the 

information provided by the angles between PCs. Their method was able to detect an increase in 

flexibility in the structure of glutaminase interacting protein (GIP) upon ligand binding that is 

otherwise hardly perceptible with standard EDA. In another study, Angarica et al. [237] developed a 

strategy for the detection of conformational instability based on combined‑PCA and a subsequent 

clustering approach of the trajectory data projected onto the common PC subspace. They were able 

to obtain a classification of the severity of structural destabilization of the entire SNP mutational space 
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(227 missense variants) of the low‑density lipoproteins receptor (LDL‑r) LA5 domain. Finally, Ahmad 

et al. [449] proposed the Relative Principal Component Analysis (RPCA), a method that focuses on 

extracting CVs that are most informative of the changes between two trajectories that represent 

different sampled states of a system. 
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Chapter 2 Objectives 
The main goals of the thesis are to explore the coupling between protein function and dynamical 

behavior, and to assess the performance of metrics derived from molecular dynamics (MD) 

simulations aimed at describing and comparing the nature of distinctive dynamical events. With these 

goals, specific objectives were established as follows: 

1. To define a protocol for the analysis of differential dynamical behavior among MD trajectories 

of a protein system, grounded on the methodology of essential dynamics analysis (EDA) 

approaches. 

2. To study the dynamical behavior of erythrocyte pyruvate kinase (PKR): i) by identifying and 

characterizing the distinctive motions involved in the allosteric events in the protein and its 

functional sites, and ii) by integrating the obtained insight with the previous knowledge of the 

structural and functional traits of this enzyme. 

3. To detect characteristic dynamical alterations of a set of missense variants of PKR and assess 

their functional significance. Subsequently, to evaluate the capabilities of the proposed 

analytical strategy to discriminate between damaging and benign missense variants in 

proteins. 
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Chapter 3 Methods 
The methodology employed in this study pivots around a central computational technique: classical 

molecular dynamics (MD). On the basis of the established goals (see the Objectives chapter), a 

comprehensive collection of MD simulations of the human erythrocyte pyruvate kinase protein (PKR) 

in multiple biological conditions was generated. 

Such an effort entailed the need to assemble an advanced MD protocol, suitable for treating a large 

protein system with bound metals and small molecules. The protocol also sought to be reproducible 

in order to launch massive amounts of simulations. A substantial volume of work was accordingly 

destined to preparation procedures, including the setup of the initial structures and the development 

of specialized topology parameters. The subsequent analysis stage comprised both standard 

techniques and a strategy originally developed in this work that has been termed Consensus Essential 

Dynamics Analysis (CEDA). The approach of CEDA involves integrating the information from Principal 

Component Analysis (PCA) applied independently to each equivalent trajectory and deriving a 

consensus set of vectors that enable trajectory comparison in a common framework. The steps of 

CEDA are presented both separately and collectively as a proposed protocol for analyzing other similar 

biological systems. Additionally, the project also involved a stage of collecting a comprehensive 

dataset of pathogenic and potentially neutral missense variants of PKR. 

This chapter describes the set of materials, computational techniques, software, and resources 

employed throughout the project for all the aforementioned purposes. It is worth noting that a 

fraction of the methodology followed in this thesis comprises techniques and practices that are 

nowadays strongly consolidated within its scientific field. Given the broadness of the background that 

underpins such methods, it has not been possible to include here a full report on all the theoretical 

and technical considerations. Instead, on the basis of the theory and the research framework 

established in the Introduction of the thesis, we now focus on the particular decisions that were 

conducted to achieve the goals of the study. Thus, the following sections aim to provide the primary 

practical details that facilitate following up each experiment, while the particular setups and 

implications of the employed procedure are further expanded and discussed at the Results and 

Discussion chapters. 

Additionally, a set of relevant files involved in diverse procedures of this thesis has been uploaded to 

the online repository Zenodo (https://zenodo.org/) to facilitate reproducibility and further exploration 

of technical aspects of the methodology [450]. A complete detail of the contents can be found in 

Appendix A. Furthermore, the complete set of simulations and standard trajectory analyses have been 

made available at https://pklr.mddbr.eu. 

3.1 Setup of structures 

3.1.1 Protein structure (apoenzyme) 

The initial model of PKR was obtained from the Protein Data Bank (PDB) entry 2VGB [121], which 

corresponds to an X‑ray crystallographic structure of the protein, with a resolution of 2.73 Å, and 

co‑crystallized in a complex with phosphoglycolate (PGA; a structural analog of the native substrate 

phosphoenolpyruvate (PEP) and also a potent PKR inhibitor [126]), fructose 1,6‑bisphosphate (FBP), 

https://zenodo.org/
https://pklr.mddbr.eu/
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K⁺, and Mn²⁺ (Mn²⁺ fulfills the role of the putative cofactor Mg²⁺ and equivalently occupies its binding 

site). The fact that the allosteric activator FBP is bound to the enzyme implies that it is found in the 

active conformation or R state [121]. All ligands were removed from the model in order to proceed 

with the setup of the protein (apoenzyme condition). 

Due to the restraints imposed by the crystallization procedure [121], the 2VGB model exhibits a few 

structural gaps. Firstly, the first 56 N‑terminal residues, as well as the last C‑terminal residue, are 

absent from the model as it usually happens with flanking regions that are too flexible to achieve 

sufficient crystal organization. These gaps are equivalently found in each monomer of the structure. 

Additionally, a few other internal segments of the protein (located at domain B) could not either be 

resolved. These correspond to positions 167‑174, 187‑196, and 229‑236 from subunit B, and position 

167‑171 from subunit D. In order to prepare the protein model for subsequent simulations, the 

internal gaps of subunits B and D were modeled after their respective symmetrical crystal coordinates 

from subunits A and C. This procedure was done manually with the tools of the software PyMOL 

(v2.3.2) [373]. 

When preparing the protein structure of PKR missense variants, mutated amino acids were modeled 

at each subunit of the protein with the structure checking utility from the BioBB library [274]. 

Afterwards, each site of amino‑acid substitution was manually inspected to check for possible atomic 

clashes and overlaps after the replacement. The only variant that needed readjustment was 

Ser120Phe due to a structural overlap with the nearby side chain of Glu161. The side chain of Phe120 

was subjected to the Mutagenesis Wizard function of the software PyMOL, which contains a collection 

of side‑chain rotamers of frequent occurrence in proteins and enables selection of the one that better 

fits the needs of the structure. In this case, the selection of a suitable rotamer allowed the side chain 

of Phe120 at every protein subunit to accommodate among the nearby residues and minimize atomic 

clashes (see Figure 4.68 of the Results chapter). 

Later, a set of quality check operations were carried out with the structure checking tool. Such a 

procedure provided confirmation that none of the following concerns are present in the structure: 

incorrect side‑chain chirality, unusual peptide bond dihedrals, and severe atomic clashes in general. 

On the other hand, an assessment of the amide group orientation in the side chains of glutamine and 

asparagine residues was performed. The interpretation of the electron density signal obtained from 

X‑ray diffraction experiments may face ambiguities when resolving amide groups specifically, since 

the data can be compatible with two rotamers related by a 2‑fold symmetry axis, with the oxygen and 

nitrogen atoms interchanging positions. Since amides can act simultaneously as hydrogen‑bond 

donors and acceptors, the chemical context of the vicinity may be useful to refine the assignment of 

their orientation, so that the number of favorable contacts is maximized. Following this rationale, the 

structure checking tool optimized the orientation of 17 amide groups that were involved in unusual 

contacts. Finally, oxygen atoms were added to the C‑termini to complete their backbone carboxyl 

groups. 

The software propKa (v3.1.8) [451] and PDB2PQR (v2.1.1) [452] were applied to predict the formal 

charge of all protein residues at physiologic pH 7.4 and the protonation configuration of histidine 

residues. All predicted protonation states were assessed by manual inspection and rationally 

reconsidered where stable hydrogen‑bond or electrostatic contacts are known to occur, for instance, 

at the binding site of ligands and at protein interfaces. No charged states different from the usual ones 

at neutral pH were assigned to any amino‑acid side chain. All N‑ and C‑termini were set to their 
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charged forms. This protonation configuration scheme was applied to all simulation conditions of the 

project, and the corresponding hydrogen atoms were modeled at each protein position with the 

pdb2gmx tool from GROMACS (v2018.3) [453]. 

3.1.2 Structures of the holoenzyme complexes 

This section gives details of the sources and procedures that were applied to model the holoenzyme 

complexes that were studied in this project. Each holoenzyme condition incorporates a particular 

combination of small molecules. Besides the ligands of the protein, crystallographic water molecules 

(oxygen atoms) located at the coordination spheres of the metals were also included in every complex. 

The breakdown of this information is compiled in Table 3.1. 

The structure and binding orientation of all the involved ligands were extracted from either the 

original model 2VGB or other PDB entries of pyruvate kinase. The PDB entry 4HYW [137] corresponds 

to an X‑ray crystallographic structure (resolution of 2.35 Å) of PK from Trypanosoma brucei in complex 

with K⁺, Mg²⁺ and fructose 2,6‑bisphosphate. The PDB entry 4HYV [137] is similar to model 4HYW but 

incorporates PEP in a crystal‑soaking experiment (resolution of 2.30 Å). The PDB entry 4FXF [149] 

corresponds to an X‑ray crystallographic structure (resolution of 2.55 Å) of human PKM2 in complex 

with K⁺, Mg²⁺, oxalate (PEP analog), and MgATP. 

Hydrogen atoms were added to complete the structures of the corresponding small molecules. The 

hydrogen atoms of the ligands were added at their corresponding sites at physiologic pH with the tool 

reduce [454] from the AmberTools suite (v17.3) [455]. The hydrogen atoms of the water molecules 

were firstly modeled at random orientations with the pdb2gmx tool from GROMACS; then, the 

instances with the most suitable orientations were rationally selected. 

3.2 Parameterization 

3.2.1 Protein parameters 

The chosen force field to run MD simulations was AMBER99SB‑ILDN [456], which is one of the 

gold‑standard force fields that is widely recognized to provide an accurate description of many 

structural and dynamical properties of proteins [282], [284]. The AMBER99SB‑ILDN force field is 

natively supported by the software GROMACS. 

3.2.2 Ligand parameters 

The inclusion of small organic molecules in the simulation system comes with the corresponding need 

to provide a given set of force‑field parameters that are able to represent with enough reliability the 

physical properties of their atom types and their chemical connectivity in MD. This is not the case with 

common biopolymers such as proteins and nucleic acids, which are already well covered by the main 

force fields and therefore directly available within MD software. The missing parameters need to be 

either determined via quantum mechanics (QM) calculations and/or experimental data [282], [284], 

imported from complementary force fields or libraries, or extracted from the literature. [12], [373]  
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The bond, angle and dihedral parameters for ligands PEP and FBP were obtained from the General 

Amber Force Field (GAFF) [457]. GAFF is a force field that was specifically designed to provide 

parameters for arbitrary small molecules. It serves as a library of parameters derived from 

comprehensive empirical and QM data that covers almost all the organic chemical space that is made 

up of C, N, O, S, P, H, F, Cl, Br and I. An advantage of GAFF is that it was designed to be compatible 

with the AMBER macromolecular force fields, allowing to combine parameters from both sources in 

the same simulation. Thus, GAFF is frequently used to fill in the missing parameters of complexes 

between a macromolecule and a ligand [455], [457]. The program ACPYPE (v2020.10.24.12.16) [458] 

was used to select the GAFF parameters that best suit ligands PEP and FBP and build the topology files 

in GROMACS format. 

The determination of the atomic charges for both ligands was accomplished by reproducing the 

protocol that is consistent with the use of GAFF and other force fields of the AMBER family (and 

specifically AMBER99SB‑ILDN) [459], namely, the Restrained Electrostatic Potential (RESP) [460]. Prior 

to the charge derivation, a geometry optimization of the structure is computed at the QM level, 

treating the system with the second‑order Møller‑Plesset perturbation theory (MP2) [461] approach. 

MP2 is a post‑Hartree‑Fock method that adds a second‑order perturbation to provide an estimation 

of electron correlation effects on the energy and on the wave function. The calculation uses the 

polarized split‑valence double‑zeta basis set 6‑31G(d) [462], [463], where core orbitals are built as a 

contracted Gaussian‑type orbital of 6 functions and valence orbitals are built as the combination of 

two contracted Gaussian‑type orbital (with 3 and 1 functions respectively), and d‑type polarization 

functions are applied to non‑hydrogen atoms. Geometry optimizations were carried out using 

redundant internal coordinates, with the threshold of convergence for the root‑mean‑square force 

set to 3×10⁻⁴ Hartree·Bohr⁻¹ (1 Hartree = 627.5095 kcal·mol⁻¹, 1 Bohr = 0.52917721092 Å). 

After the geometry optimization, atomic charges are determined at the QM level by performing a 

single‑point energy calculation, treating the system with the Hartree‑Fock method and with the basis 

set 6‑31G(d). In this stage, a molecular electrostatic potential (MEP) is calculated with the 

Merz‑Singh‑Kollman (MK) scheme. The points of the MEP are defined with the original method [464], 

[465], with 4 layers per atom, the first one located at 1.4 times the van der Waals radii and with an 

increment of the scaling factor 0.2 for the rest; with the value of 1 for the density of grid points per 

Å². Afterwards, the calculated atomic charges are finally redistributed according to the RESP 

procedure, in a two‑stage fit [466] where rotationally degenerate atoms receive equivalent charge 

values. The resulting charge distribution, even if generated in the gas phase, is able to reproduce 

solution phase interactions [459], [460]. All QM calculations were carried out with the software 

Gaussian16 (Rev. B.01) [467], at the supercomputing facilities of the Molecular Modeling and 

Bioinformatics (MMB) group of the Institute for Research in Biomedicine of Barcelona (IRB). Each 

calculation was parallelized in 16 cores of the hpcluster supercomputer. The input, log, and checkpoint 

files related to the QM calculations with Gaussian16 are available as part of the online supplementary 

material of this thesis (see Appendix A). The subsequent RESP fitting workflow was carried out with 

the programs antechamber, espgen, respgen, and resp from the AmberTools suite. 

On the other hand, the parameters for the ligand ADP were extracted from the work of Meagher, 

Redman, and Carlson [468], available at the AMBER parameter database 

(http://amber.manchester.ac.uk/). Their parameterization procedure was equivalent to that followed 

in this work for ligands PEP and FBP, also intended to be compatible with the force fields of the 

http://amber.manchester.ac.uk/
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AMBER99 set. The obtained topology files were adapted to the GROMACS format with the program 

ACPYPE. 

3.2.3 Metal‑center parameters 

The holoenzyme complexes contain the metal ligands K⁺ and Mg²⁺. These occupy defined sites of the 

metalloprotein (metal centers) and form coordination complexes with amino acids, the substrates PEP 

and ADP, and water molecules. The simulation of metal centers requires specific sets of force‑field 

parameters, capable of both modeling the involved coordination bonds and maintaining the stability 

of the binding geometry. This section details the procedures followed to incorporate suitable 

parameters for treating the metal centers with a bonded/non‑bonded hybrid model. 

3.2.3.1 Van der Waals parameters 

The van der Waals parameters allow the modeling of the attractive and repulsive forces that arise 

between two atoms based on their relative proximity and polarizability. The van der Waals parameters 

for K⁺ and Mg²⁺ were obtained from the works of Merz, Li and colleagues [469], [470], and more 

specifically from their ion‑oxygen distance (IOD) parameter sets for the 12‑6 Lennard‑Jones 

non‑bonded model. 

Depending on the implementation of the equation of the Lennard‑Jones potential, the van der Waals 

parameters can be expressed in different terms. In this case, such parameters were obtained in the 

form of 𝑅𝑚𝑖𝑛/2 (Å) and 𝜀 (kcal·mol⁻¹), which is the format in which they are typically given when 

working with the force fields of the AMBER family. However, the implementation of the MD algorithm 

in GROMACS expresses the parameters in the form of 𝜎 (nm) and 𝜀 (kJ·mol⁻¹). The conversion of the 

first parameter requires multiplying by a factor of 2 to obtain 𝑅𝑚𝑖𝑛, then applying Equation 3.1, 

 𝜎 =
𝑅𝑚𝑖𝑛

√2
6  (3.1) 

and finally multiplying by a factor of 10 to express the value in nanometers. The conversion of the 

second parameter only requires applying the conversion of units (1 kcal = 4.184 kJ). Table 3.2 shows 

the original values from the literature and after the conversion. 

Table 3.2 

Van der Waals parameters of the metal ligands in the holoenzyme complexes 

Ionic species 

Van der Waals parameters 

References in AMBER format in GROMACS format 

𝑹𝒎𝒊𝒏
𝟐⁄   ( ) 𝜺  (𝒌𝒄𝒂𝒍

𝒎𝒐𝒍⁄ ) 𝝈  (𝒏𝒎) 𝜺  (
𝒌𝑱

𝒎𝒐𝒍⁄ ) 

K⁺ 1.745 1.70181 × 10⁻¹ 3.10924 × 10⁻¹ 7.12036 × 10⁻¹ IOD parameter set 
from [469] 

Mg²⁺ 1.395 1.49170 × 10⁻² 2.48561 × 10⁻¹ 6.24127 × 10⁻² IOD parameter set 
from [470] 

 

3.2.3.2 Bonded parameters and atomic charges 

The bonded parameters and the atomic charge distributions at the metal centers were generated with 

the protocol suggested by Li and Merz with their software Metal Center Parameter Builder (Python 

version 4.0; MCPB.py) [471], [472], from the AmberTools suite. The approach of MCPB.py was 

complemented with a number of modifications based on the modeling standards for metalloproteins 
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that are available in the literature and that apply to the complexity of the metal centers of the PKR 

structure. The steps of the followed strategy are listed hereafter and further presented and discussed 

in the Results and Discussion chapters. 

 

Figure 3.1. Main steps of the metal‑center parameterization approach. 

For each metal center, the parameterization began with the definition of the so‑called cluster model, 

which corresponds to the portion of the system that accounts for the metal and the surrounding 

residues (amino acids, ligands, water molecules) that are relevant to describe the chemical 

environment of the coordination complex. Two different representations of the cluster model are 

employed in the standard methodology of MCPB.py. In the “small model”, the involved amino acids 

are represented with only the fraction of the structure that is essential to describe the interactions 

with the metal center. In the “large model”, the involved amino acids are fully represented and in 

addition the adjacent or a few intermediate residues are included. MCPB.py builds each model 

automatically, based on the input residue specifications of the user, according to the integrated 

capping scheme [471]. The different partial amino‑acid structures can be represented either as acetyl 

(ACE) and/or 𝑁‑methyl amide (NME) groups in the case of backbone moieties, as CH₃‑R where R 

represents a side‑chain group, or as glycine residues in the case of the intermediate amino acids of 

the chain. All non–amino‑acid residues are always fully represented. Table 3.3 shows the amino acids 

included in the cluster model of each holoenzyme condition together with their representation in the 

small and large models. Two QM calculations were run in parallel with the small and the large model 

to derive, respectively, the bonded parameters and the atomic charges. All QM computations were 

performed with the software Gaussian16 (Rev. B.01), at the supercomputing facilities of the Molecular 

Modeling and Bioinformatics (MMB) group of the Institute for Research in Biomedicine of Barcelona 

(IRB). Each calculation was parallelized in 16 cores of the hpcluster supercomputer. 

The first QM computation comprised a geometry optimization of the small model. The system was 

treated with the hybrid functional B3LYP, which includes a mixture of Hartree‑Fock exchange with 

Density Functional Theory exchange‑correlation. Specifically, B3LYP combines the B3 exchange 

functional [473], with the LYP correlation functional [474], with a 20% of exact exchange [475]. The 

Grimme D3 model of empirical dispersion correction with Becke‑Johnson damping (GD3BJ) [476] was 

incorporated to properly take into account the long‑range electron correlation effects in DFT. The 

chosen basis set was 6‑31+G(d,p) [477], which is like 6‑31G(d) but including p‑type polarization 

functions on hydrogen atoms and s‑type and p‑type diffuse functions on non‑hydrogen atoms. Solvent 

effects were introduced with a conductor‑like Polarizable Continuum Model (C‑PCM) [478], using the 

empirical value of 20 for the dielectric constant (𝜀) to simulate the average effect of both the protein 

and the water medium surrounding the metal centers [479], [480].  
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The geometry optimization was carried out using redundant internal coordinates, with the threshold 

of convergence for the root‑mean‑square force set to 3×10⁻⁴ Hartree·Bohr⁻¹. A rational selection of 

frozen atoms was applied, comprising all backbone atoms, all hydrogen atoms of the capping groups, 

and several individual atoms that account for the structural context of the boundaries of the cluster 

model. With the optimized geometry, a step of force‑constant calculation was performed at the same 

QM level of theory to derive the bond and angle parameters of the coordination complex from the 

corresponding Hessian matrix with the Seminario method [481]. Dihedral parameters were not 

generated, as is usually recommended for the bonded model of metal centers [482]–[484]. 

The second QM computation comprised a geometry optimization of only the hydrogen atoms of the 

large model. The simulation settings were the same as in the geometry optimization of the small 

model, except for the frozen atoms which of course were all non‑hydrogen atoms. With the geometry 

optimized, a single‑point energy calculation was performed to determine atomic charges, this time 

with the basis set 6‑311++G(3df,3pd). This is a polarized split‑valence triple‑zeta basis set where core 

orbitals are built as a contracted Gaussian‑type orbital of 6 functions and valence orbitals are built as 

the combination of three contracted Gaussian‑type orbital (with 3, 1, and 1 functions, respectively). 

The basis set also contains several functions: 3 sets of d‑type and a set of f‑type polarization functions 

(applied to non‑hydrogen atoms), 3 sets of p‑type and a set of d‑type polarization functions (applied 

to hydrogen atoms), a set of s‑type and p‑type diffuse functions (applied to non‑hydrogen atoms), and 

a set of s‑type diffuse functions (applied to hydrogen atoms). In this stage, a MEP was calculated with 

the MK scheme and the final atomic charges were determined with the RESP procedure. The ChgModB 

approach of MCPB.py was followed for the RESP fitting, in which: i) all amino acids that bind the metal 

via a side‑chain group have the atomic charges of their backbone heavy atoms (CA, N, C and O) fully 

restrained to their force‑field values (i.e., AMBER99SB‑ILDN), and ii) all amino acids that bind the metal 

via a backbone atom have all their atomic charges flexible. Additionally, the rest of amino acids of the 

cluster model (those that do not bind the metal), as well as all water molecules, had their atomic 

charges fully restrained to their force‑field values. 

The input, log, and checkpoint files related to the QM calculations with Gaussian16 are available as 

part of the online supplementary material of this thesis (see Appendix A). After the QM calculations, 

the program tleap from the AmberTools suite was used to produce the corresponding topology files, 

which were converted to the GROMACS format with the program ACPYPE. 

The parameterization up until this point corresponds to the implementation of a bonded model to 

treat the metal centers. However, after a stage of testing the parameters in MD simulation, the models 

were fine‑tuned with an empirical approach that combines properties of both the bonded and the 

non‑bonded schemes. Such a strategy consists in selectively treating coordination bonds as simple 

harmonic restraints by employing the corresponding generated bond parameters. As a result, the van 

der Waals and electrostatic interactions of the neighboring atoms up to 3 bonds away are accounted 

for as dictated by the force field, as opposed to the treatment of regular chemical bonds in which 

these interactions are abolished or scaled down. This was accomplished by manually establishing such 

bonds in the GROMACS topology as “type 6” bonds (harmonic potentials) and deleting the associated 

1‑4 interaction scaling factors. The implementation of this methodology may serve to mitigate 

structural distortion in the vicinity of specific bonds, which may arise due to the absence of 1‑3 terms 

in the conventional bonded model [484], [485]. This approach was applied to all coordination bonds 

between: i) metals and amino acids, ii) PEP and K⁺, and iii) ADP and its complexed Mg²⁺. 
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In respect of the angle parameters, they were retained since they proved to be beneficial to maintain 

the experimental binding geometry of the complexes. The only angle parameter that was discarded 

was that between K⁺ and the hydroxyl group of Ser120 because otherwise it constrains the needed 

mobility of the group to find stable transient hydrogen bonds with either Glu161 or any other water 

molecule nearby. Finally, all water molecules were fully treated with the non‑bonded model. Both 

their bond and angle parameters with the metals were discarded in order to let water flow freely and 

occupy the coordination binding sites transitionally according to their stability in simulation. 

3.2.3.3 Metal centers of the mutant protein systems 

The procedure described above for the parameterization of the metal centers was carried out with 

the wild‑type (WT) protein system. Later, these metal‑center parameters were transferred to the 

mutant protein systems to economize the computational cost of this stage of the project. The majority 

of the missense variants taken into account in this project fall outside of the metal binding sites, 

therefore the metal‑center parameters are fully transferable. However, some of the modeled 

amino‑acid substitutions do affect a few positions of the cluster model that are listed in Table 3.3. For 

those mutant protein systems, the transfer of the metal‑center parameters was addressed according 

to the following criteria. 

• If the mutated position is not part of a coordination complex (the original amino acid does not 

bind to any metal): 

o The bonded parameters remain unchanged from the original WT parameterization. 

o Atomic charges also preserve their original values, except for the mutant amino acid 

which is given its corresponding force‑field atomic charge values (in the same way as 

the original amino acid was treated). 

• If the mutated position belongs to a coordination complex (the original amino acid binds to a 

metal): 

o The bonded parameters that used to apply to this position are removed while the rest 

are retained. 

o Atomic charges undergo a mild redistribution to compensate for the differences 

caused by the methods employed to assign the total charge between the original and 

the mutant amino acids. The original amino acid had QM‑derived atomic charges, and 

therefore its total charge does not necessarily correspond to an integer value (but is 

usually close). In contrast, the mutant amino acid adopts its corresponding force‑field 

atomic charge values, which add up to an integer value. This generates a deviation of 

a small decimal amount that is automatically redistributed by the program ACPYPE. 

Such cases were manually assessed to rule out any undesired imbalance. 

3.3 Molecular dynamics protocol 

The MD protocol consisted of several concatenated operations and simulations, starting with the 

setup structure as the first input for the workflow until producing the last simulation, called the 

production run, which accounts for the actual analyzable trajectory data. Figure 3.2 shows a 

comprehensive flow chart of the process. The present section further elaborates on the technical 

details of each stage, including the generation of the simulation box, the generation of the physiologic 

aqueous medium, the energy minimizations, and the equilibration and production phases. 
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Figure 3.2. MD protocol and steps of the workflow. 
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Additionally, the flow chart facilitates identification of the points of the process where the ligand and 

metal‑center parameters were incorporated. The original files of the AMBER99SB‑ILDN force field, 

distributed in the native installation of GROMACS, were modified to include new entries with the data 

of the ligands of this project (custom residue and atom names and types, non‑bonded terms). Details 

of this process are available as part of the online supplementary material of this thesis (see Appendix 

A). 

The workflow was designed following the standard procedures and the recommended guidelines 

applied to protein MD simulations [344], [348]–[351], and further tuned to treat a large protein system 

such as PKR. The assembly of the steps of the workflow was carried out via a combination of in‑house 

scripts (Python and Bash programming languages) and calls to diverse GROMACS tools. The workflow 

could be accurately reproduced at present with the equivalent modules from the BioBB library [274]. 

The aqueous medium was modeled with explicit solvent to account for water‑mediated interatomic 

interactions. The water model TIP3P [486] was employed. TIP3P is a three‑point water model, which 

means that point charges are defined at the oxygen and the two hydrogen atoms. It is a standardly 

used explicit model in all‑atom MD of proteins with the AMBER force fields [356]. 

Each system was simulated in Periodic Boundary Conditions (PBC), whereby the entire system is 

placed in a unit cell that is infinitely replicated in the three spatial dimensions. This construction 

eliminates surface effects by following the minimum image convention: particles and interactions that 

cross the boundary of the unit cell simply emerge back from the opposite side of the box thanks to 

periodic images. Consequently, the use of PBC enables conservation of the total number of particles 

in the simulation and allows simulating bulk solid and liquid properties. 

The lattice of periodic unit cells can be constructed with different box geometries. A large enough box 

is needed to avoid the interaction of the protein with its own periodic images [348]. However, in 

simulations with explicit solvent, the greater the amount of water molecules within the system the 

greater the computational cost. Therefore, it was important to find an appropriate balance. In this 

study, a rhombic dodecahedron box was used to optimize computational impact, as fewer solvent 

molecules are required to fill the box around the protein [170], [453]. The protein was placed in the 

center of the box, with the boundaries at a distance of 1.2 nm of the outermost atom, which 

accounted for sufficient size to elude self‑interaction of the protein across PBC. 

After filling the box with water solvent, physiological conditions were mimicked by incorporating 

dissolved ions. Accordingly, several solvent water molecules were replaced by the standard 

monoatomic ions, Na⁺ and Cl⁻, firstly to neutralize the system and then subsequently until reaching 

an ion concentration of 0.15 M. The parameters used to treat these ions were the standard ones 

provided by GROMACS. 

A customized restriction in ionic placement was added at this stage. Normally, with the algorithm of 

the genion tool of GROMACS, water molecules are randomly replaced by the corresponding number 

of ions of both species. However, an implication of this method is the fact that an ion can be artificially 

placed in energetically unfavorable sites in contact with the protein by chance, thus potentially 

introducing local anomalies especially if a problematic ion is sterically trapped for a significant amount 

of simulation time. Therefore, a restriction was incorporated to the algorithm to add ions at least 6 Å 

away from the protein surface. Of course, during simulation, this restrain was no longer active; ions 

diffused and eventually made favorable contacts with the protein surface. 
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Two energy minimization (EM) runs were applied at different points of the workflow. The first EM was 

applied before the addition of the solvent (EM in vacuum), to relax the possible bad contacts involving 

side‑chain atoms that may arise both from inaccuracies in the experimental data of the 

crystallographic structure and the addition of hydrogen atoms. In the case of the holo simulations, this 

EM calculation was run twice: before and after the incorporation of the QM‑derived parameters of 

the metal centers. For this EM stage, the steepest descent algorithm was used until reaching a 

maximum force of 1000 kJ·mol⁻¹·nm⁻¹ with a maximum of 1000 steps. Strong position restraints were 

applied on the protein backbone atoms using a force constant of 1000 kJ·mol⁻¹·nm⁻². In the holo 

simulations, the heavy atoms of ligands, including crystallographic water molecules, were fully 

restrained (represented with a force constant of 1×10⁵ kJ·mol⁻¹·nm⁻²). The second EM was applied 

after solvation and incorporation of dissolved ions. The aim of this EM stage was to optimize the 

orientation of the added solvent molecules. The steepest descent algorithm was used until reaching a 

maximum force of 1000 kJ·mol⁻¹·nm⁻¹ with a maximum of 5000 steps. Strong position restraints were 

applied on the protein heavy atoms (1000 kJ·mol⁻¹·nm⁻²). In holo simulations, the heavy atoms of 

ligands were fully restrained (1×10⁵ kJ·mol⁻¹·nm⁻²). 

After the EM stages, the MD simulation formally begins. The first stages of a standard MD simulation 

of a protein constitute the equilibration phase, typically aimed at relaxing the system from the 

non‑equilibrium initial conditions and bringing it to a stable state in the desired conditions 

(temperature and pressure). The equilibration phase generally comprises two stages in different 

thermodynamic conditions, referred to as ensembles in statistical mechanics. First, the NVT ensemble 

(or canonical ensemble) is used, whereby the number of particles (N), volume (V), and temperature 

(T) are kept constant. After temperature is stabilized, the NPT ensemble (or isothermal‑isobaric 

ensemble) is used to keep both temperature and pressure (P) constant, allowing the volume to 

equilibrate to provide the correct density. 

The equilibration phase was divided into multiple steps to conduct a progressive relaxation of the 

system, starting with strong position restraints and gradually releasing them. Figure 3.2 contains a 

detailed breakdown of the applied values of force constant and the corresponding recipient groups of 

atoms. The NVT ensemble was applied in the first two stages of the equilibration phase, first in a 

gradual heating of the system from 0 K to 310 K (physiologic temperature) and then maintaining the 

final temperature. Subsequently, the NPT ensemble was applied in six equilibration stages. The total 

simulation time of the equilibration phase was 1 ns. Finally, after the equilibration phase, the 

production phase comprised a simulation time of 400 ns, from which the first 25 ns were discarded as 

an additional extension of the equilibration based on the stability analysis of the trajectories (see 

section 4.1.2.1 of the Results chapter). 

In NVT ensembles, the average temperature was maintained at 310 K via the velocity‑rescaling 

thermostat [487] in two separate baths: one for the protein (plus ligands, if present) and another for 

the solvent and dissolved ions. In NPT ensembles, pressure was maintained constant via the 

Berendsen [488] or the Parrinello‑Rahman [489] barostats in restrained and free simulations, 

respectively. Moreover, restrained simulations were treated with a scaling of the center of mass of 

the reference coordinates with the scaling matrix of the pressure coupling. 

Intramolecular interactions were treated with the AMBER99SB‑ILDN force field [456]. Long‑range 

electrostatic interactions were treated with Particle Mesh Ewald (PME) [490], for full‑system periodic 

electrostatics. The cut‑off distance for both electrostatic and van der Waals pairwise interactions was 
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set to 1 nm. The leap‑frog algorithm [491] was used to calculate the atomic velocities and coordinates 

with an integration time step of 2 fs. The LINCS algorithm (Linear Constraint Solver) [492] was used to 

maintain bonds involving any hydrogen atom at their equilibrium values, as the frequency of vibration 

of such bonds is in the order of 1 fs (thus, below the integration time step). 

Table 3.4 shows a breakdown of the total collection of MD simulations of this study specifying the 

simulation replicates produced per PKR condition. Each replicate was started with different sets of 

initial atomic velocities generated for the same initial structure. For the WT apo condition, two 

different batches of trajectory ensembles were produced. The main analyses of the project were 

conducted with the first batch (5 simulation replicates), whereas the second batch (5 additional 

simulation replicates) was procured with the sole purpose of assessing the replicability of the 

experiments with respect to the first batch. For each WT holo condition, 5 simulation replicates were 

performed. The simulation of the PKR mutant variants covered the apo condition and a single holo 

condition, either K‑Mg‑holo, PEP‑holo, PEP‑ADP‑holo, or FBP‑holo, rationally selected according to 

the expected type of dysfunction that may be manifested in dynamics, on the basis of both the 

available clinical annotations and the location of the particular amino‑acid substitution. Given the high 

number of PKR variants studied, the simulation replicates of these systems were reduced to 3 per 

variant and condition, to make the computational cost more feasible. 

Table 3.4 

MD simulations per PKR condition 

Condition Trajectory ensembles 
Simulation replicates 

per ensemble 
Total simulations 

WT    

Apo   2 a 5 10 

K‑holo 1 5 5 

K‑Mg‑holo 1 5 5 

PEP‑holo 1 5 5 

ADP‑holo 1 5 5 

PEP‑ADP‑holo 1 5 5 

FBP‑holo 1 5 5 

Full‑holo 1 5 5 

Mutant variants    

Apo   61 b 3 183 

Holo c   61 b 3 183 

Total 131  411 

a The main analyses of the project were conducted with the first batch of trajectory ensembles of the WT apo condition. 
The second batch was procured with the sole purpose of assessing the replicability of the experiments with respect to 
the first batch. 

b A trajectory ensemble for each of the 61 simulated missense variants of PKR. 

c A single holo condition, either K‑Mg‑holo, PEP‑holo, PEP‑ADP‑holo, or FBP‑holo, was simulated for each PKR variant. 

 

The collection of trajectories of this research project have been made publicly available for the sake 

of reproducibility and to facilitate reutilization for further analyses. The complete set of simulations, 

as well as standard trajectory analyses can be found at the online database PKLR from the Molecular 

Dynamics Data Bank (https://pklr.mddbr.eu), a project funded by the European Union’s Horizon 

Europe programme under grant agreement 101094651. In addition, the structure and topology files 

https://pklr.mddbr.eu/
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of all the systems subjected to MD are available as part of the online supplementary material of this 

thesis (see Appendix A). 

All simulations were carried out at the supercomputing facilities of Barcelona Supercomputing Center 

(BSC), using the computational resources of the supercomputer MareNostrum4, and with the 

GROMACS (v2018.3) software. Each execution of the workflow was parallelized in 192 MareNostrum4 

cores, requiring approximately 40,000 CPU hours (over 8 days of execution) to complete the 

simulations and a disk storage of approximately 280 GB. The total computation time and disk storage 

of the project comprised over 16 million CPU hours and 120 TB, respectively. The project activities 

BCV‑2019‑1‑0004, BCV‑2019‑3‑0006, BCV‑2020‑3‑0005, and BCV‑2021‑3‑0002 of the Red Española 

de Supercomputación (RES) provided the needed support to cope with the expended computational 

resources. 

3.4 Standard trajectory analysis 

3.4.1 Removal of PBC 

All trajectories were processed to remove periodicity conditions prior to conducting further analysis. 

This step is essential for two reasons: firstly, it facilitates a more efficient visualization of the 

trajectories; secondly, it eliminates any ambiguity about the atomic positions that should be 

considered when a molecule crosses the boundaries of the PBC box at given time points. 

Consequently, this ensures that each analytical technique can interpret the data adequately. 

The removal of PBC was achieved with consecutive operations conducted with the trjconv tool from 

GROMACS, following the workflow that is suggested at the documentation of the software. First, the 

trajectory data was re‑written so that all molecules that were broken across PBC became whole (i.e., 

the broken fragments reunited at the box boundaries so that no molecules remained split). Secondly, 

a similar step was applied to maintain the tetrameric assembly (and the bound ligands, when 

applicable) unseparated. Lastly, the protein was centered in the box, and its rotational and 

translational components were disregarded by applying a structural superposition (least‑squares 

fitting) with the initial structure of the production run. 

3.4.2 Root‑mean‑square deviation 

The root‑mean‑square deviation (RMSD) of atomic positions is a measure of structural similarity 

between two structures of a molecule, expressed as the average distance between two sets of atomic 

coordinates. Given two structures 𝑣 and 𝑤 each with 𝑁 atoms under analysis, the RMSD follows the 

equation: 

 𝑅𝑀𝑆𝐷 (𝑣, 𝑤) = √
1

𝑁
∑ ((𝑣𝑖,𝑥 − 𝑤𝑖,𝑥)

2
+ (𝑣𝑖,𝑦 − 𝑤𝑖 ,𝑦)

2
+  (𝑣𝑖,𝑧 − 𝑤𝑖,𝑧)

2
)

𝑁

𝑖=1

 (3.2) 

where 𝑣𝑖 and 𝑤𝑖 refer to the 𝑖‑th atom of each corresponding structure, with the subscripts 𝑥, 𝑦, and 

𝑧 designating their Cartesian coordinates in the 3‑dimensional space. RMSD values are expressed in 

length units, typically in angstroms or nanometers. RMSD is standardly used as a quantitative measure 

to express the structural deviation of one or several structures with respect to a reference 
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conformation. The lower the value, the more similar the conformations. RMSD may also be computed 

by mass‑weighting the different particles, which incorporates atomic masses as terms of the equation. 

RMSD is generally computed after optimal superposition between the structures to remove the effects 

of global translation and rotation and thus focus only on the internal rearrangements of the molecule. 

Accordingly, in the interpretation of RMSD, it is crucial to identify the regions of the molecule that 

exhibit the highest degree of flexibility or mobility. Perturbations confined to a specific region, such as 

surface loops or hinged domains, have the potential to create large RMSD values. This could lead to 

the interpretation that the two conformations are highly dissimilar even when the overall structure 

yields substantial overlap. For this reason, RMSD may not only be calculated over all atoms of the 

structure, but also on a subset either to focus on a region of interest (single domains, active site…) or 

to exclude highly variable elements. When analyzing global conformational changes between protein 

structures, only backbone or α‑carbon atoms are typically considered. Using such subsets of atoms 

also allows for comparison between protein structures with sequence variants, thanks to the 

equivalencies between the pairs of backbone atoms regardless of the particular amino acids [493]. 

The frequent uses of RMSD comprise characterization of the quality of biomolecular simulations, 

clustering of related conformations, and definition of free‑energy landscapes employing it as a 

reaction coordinate [494]. In this study, RMSD was used to assess the structural stability during the 

MD simulations, by comparing the structure at each frame with respect to the initial structure, and to 

evaluate and compare the modeled coordination complexes along geometry optimizations and MD 

simulations. 

3.4.3 Root‑mean‑square fluctuation 

The atom positional root‑mean‑square fluctuation (RMSF) quantifies the fluctuation of an atomic 

position about its average value in an ensemble of conformations of a molecule. This measure is 

related to RMSD, but instead of expressing structural divergence between structures, it reveals which 

fragments of the system are the most mobile. Given an ensemble of 𝑇 structures, the RMSF of an atom 

𝑖 is calculated as: 

 𝑅𝑀𝑆𝐹𝑖 = √
1

𝑇
∑(�⃗�𝑖,𝑗 − 〈�⃗�𝑖〉)

2
𝑇

𝑗=1

 (3.3) 

Where �⃗�𝑖,𝑗  is its position (set of Cartesian coordinates) in the conformation 𝑗, and 〈�⃗�𝑖〉 is its average 

position over the whole ensemble. RMSF values are expressed in length units, typically in angstroms 

or nanometers. The higher the RMSF value, the greater the mobility of the atom within the ensemble. 

The most common use of RMSF with protein structures is to analyze the flexibility of each residue 

along the trajectory of an MD simulation. As with RMSD, the RMSF analysis is typically preceded by 

structural superposition of the structures and restricted to backbone or α‑carbon atoms, except when 

the localized fluctuations of side chains are also of interest [494]. By plotting the residue number vs. 

RMSF per residue, the regions of the system with higher flexibility (higher contribution to molecular 

motion) can be identified. In this study, RMSF was employed for such purposes, to identify the most 

mobile regions of the protein in the simulations and, more specifically, to assess the structural 

variability of each amino acid included in the cluster models of the metal centers of the protein. 
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3.4.4 Free‑energy difference between states from simulation 

trajectories 
The free‑energy changes associated with a transition of the molecular system in one state or the other 

(conformational changes, interactions…) along a trajectory can be determined by measuring the 

probability of finding the system in each of the defined states. An interconversion between states can 

happen spontaneously if the associated free‑energy barrier is sufficiently low to allow the transition 

with a certain probability. In the absence of an external source of energy, the system will tend to 

sample the lowest free‑energy states more often. Free‑energy changes can be described with multiple 

levels of complexity by means of different approaches. By measuring this thermodynamic quantity 

with computational techniques, we can inquire about the fundamental properties of the system and 

compare them with the experimental data. 

With MD simulations, we use the formalisms of statistical mechanics whereby the difference in free 

energy (𝛥𝐺𝐴→𝐵 in J·mol⁻¹) between two states 𝐴 and 𝐵 can be expressed through the probability of 

observation of those states as: 

 ∆𝐺𝐴→𝐵 = −𝑅𝑇 ln
𝑃𝐵

𝑃𝐴
 (3.4) 

where 𝑅 is the gas constant (8.314 J·K⁻¹·mol⁻¹), 𝑇 is the temperature of the system (310 K in the 

simulations of this study), and 𝑃𝐴 and 𝑃𝐵 are the probabilities of observing states 𝐴 and 𝐵, respectively. 

With this straightforward approach, the difference in free energy can be estimated just by determining 

the proportions of each corresponding state in the ensemble generated in the simulation. 

The states can be defined as those configurations that satisfy a particular objective criterion such as 

the RMSD from a particular folded conformation. It is important to note that this technique is only 

valid under the assumption that the simulation time is enough to capture an equilibrium between 

states, i.e., where the reversible transition has occurred with sufficient frequency in the ensemble to 

obtain reliable statistics [333], [495]–[497]. In this study, this method was applied to report the relative 

free‑energy differences between the different coordination‑complex configurations of the metal 

centers of the protein that occurred along the simulations. 

3.5 Consensus Essential Dynamics Analysis 

This section describes the methodological components that were integrated into the central analytic 

strategy that was designed in this thesis, namely, Consensus Essential Dynamics Analysis (CEDA). CEDA 

was applied to identify the most representative collective motions from a trajectory ensemble and 

subsequently compare the extracted dynamical traits between alternative trajectory ensembles in a 

unified framework. The following subsections present the theoretical basis of the techniques and 

metrics related to CEDA, while the rationale of their implementation in the actual analytical 

procedures is progressively presented with full detail throughout the Results chapter in parallel with 

the reports on the corresponding analyses (sections 4.1.3 and 4.2). In addition, a point‑by‑point 

summary of the full developed protocol has been included at the end of that chapter (section 4.3) to 

provide a unified recapitulation of the resulting approach. 
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3.5.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction technique that is widely used in 

diverse scientific and technical fields to capture correlations among variables from high‑dimensional 

data, thus enabling extraction of underlying key features. The application of PCA in trajectory analysis 

allows for the decomposition of the trajectory into simple linearly uncorrelated collective motions that 

account for most of the conformational variability that was sampled during the simulation. This 

procedure is also known as Essential Dynamics Analysis (EDA) because it achieves representation of 

dynamics in terms of a reduced set of variables that bear the “essential” dynamical information, often 

associated with the biologically relevant behavior of proteins [379], [391]. 

In this study, PCA was applied with the standard procedure using as input the atomic Cartesian 

coordinates of the protein along the trajectory. Usually, only backbone or α‑carbon atoms are 

employed for the analysis because they suffice to account for the overall correlated motions and, in 

addition, the computational cost is dramatically reduced [498]. However, the analysis can be applied 

to any subset of atoms and subregions of the macromolecule when small‑scale motions are of interest 

[379]. 

The first step in Cartesian PCA involves removing the global effects of rotational and translational 

motion to consider only the atomic fluctuations related to the internal rearrangements of the 

molecule. Accordingly, each frame in the trajectory is subjected to structural superposition on a 

reference structure. Importantly, this structure should be representative of the whole ensemble of 

conformations to yield optimal equivalent orientation of all the structures [391], [397]. 

A given conformation of a molecule can be mathematically represented as a vector 𝐱 of 3𝑁 

components, where 𝑁 is the number of atoms, each with its set of three‑dimensional Cartesian 

coordinates. Accordingly, an MD trajectory is a set of points scattered in this 3𝑁‑dimensional space, 

such that each point 𝐱(𝑡) corresponds to a given conformation sampled at a given time value 𝑡 [363], 

[389], [438]. Despite the high dimensionality of this space, most degrees of freedom are constrained 

due to bonded interactions that of course prevent any pair of bonded atoms from fluctuating in an 

independent manner with respect to each other [438]. Further constraints are imposed by angle and 

dihedral energetic restrictions, non‑bonded interactions, and steric hindrance. In folded proteins, the 

concept also scales up, with the different levels of structural organization narrowing down the 

available subspace. Regions outside the constrained subspace would imply deformation or unfolding 

of the protein and, thus, will never be visited. This fact, in turn, implies that the available 

conformational space is characterized by a substantial degree of correlation between the variables 

(i.e., the Cartesian coordinates) because the structurally coupled groups of atoms move collectively 

[419]. 

The pairwise correlations are accounted for by calculating the covariance matrix 𝐂 of the trajectory 

data. Alternatively, the correlation matrix can also be employed, which corresponds to the normalized 

version of the covariance matrix and is useful when the objective is to identify correlated motions 

without necessarily large amplitudes of motion, disregarding the skewing effect towards the largest 

atomic displacements [379], [404]. The covariance 𝑐𝑖𝑗 between two coordinates 𝑥𝑖 and 𝑥𝑗 is calculated 

as follows: 
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 𝑐𝑖𝑗 =
1

𝑆
∑ ((𝑥𝑖(𝑡) − 𝑥𝑟𝑒𝑓,𝑖)(𝑥𝑗(𝑡) − 𝑥𝑟𝑒𝑓,𝑗))

𝑆

𝑡=1

 (3.5) 

where 𝑥𝑟𝑒𝑓,𝑖 and 𝑥𝑟𝑒𝑓,𝑗 are the equivalent coordinate values of a reference structure, 𝑆 is the total 

number of frames or conformations, and 𝑡 denotes the time iteration from the first to the last frame 

of the trajectory data (although data can be provided in any order, as this analysis can be applied, for 

instance, to a set of non‑temporal experimental structures). Typically, the average structure of the 

trajectory is selected as the reference structure, so that the deviations of each conformation are 

calculated with respect to the center of mass of the data. Nevertheless, in purpose‑specific scenarios, 

a structure other than the average can be used to express deviation with respect to alternative 

reference points [237]. In the computation of the covariance matrix, the trajectory data is implicitly 

centered around the chosen reference structure. 

Subsequently, the covariance matrix 𝐂 is diagonalized via a mathematical procedure known as 

eigendecomposition, which produces a set of 3𝑁 pairs of eigenvalues (𝜆1, 𝜆2, …, 𝜆3𝑁) and eigenvectors 

(𝒓1, 𝒓2, …, 𝒓3𝑵), arranged as: 

 𝐑𝖳𝐂𝐑 = 𝚲 (3.6) 

where 𝚲 is a diagonal matrix of the eigenvalues diag(𝜆1, 𝜆2, …, 𝜆3𝑁), and 𝐑 is an orthogonal coordinate 

transformation matrix with its columns being the eigenvectors (𝐑𝖳 is its transpose). The set of 

eigenvectors constitutes a new basis set of orthonormal vectors that point in the directions of the 

dataset along which maximum variance is captured. Each eigenvector 𝒓𝒊 is associated with the 

eigenvalue 𝜆𝑖 that expresses a magnitude of the corresponding variance along its direction. 

Eigenvectors originate from the location of the reference structure that was employed in the 

construction of the covariance matrix. Thus, the original (centered) trajectory data now can be 

expressed in terms of the new coordinate system given by the orthogonal eigenvectors. For this 

reason, the process can be understood as a rotation of the original axes of Cartesian coordinates to 

the new orientation according to the set of eigenvectors [378], [438]. 

In trajectory analysis, the valuable feature of this procedure is that the directions of the new system 

of coordinates, or collective variables, reflect the collective atomic displacements of the molecular 

structure that best describe the conformational variability that was sampled during the simulation. 

Exploration of the dynamics along the 𝑖‑th collective variable is accomplished by projecting the original 

trajectory data points 𝐱(𝑡) onto the eigenvector 𝒓𝒊, which results in what is called a Principal 

Component (PC), that is, the transformed trajectory data expressed in coordinates 𝒑𝒊(𝑡) [379], [397], 

[446]: 

 𝒑𝒊(𝑡) = ∑ (𝒓𝒊𝑗(𝑥𝑗(𝑡) − 𝑥𝑟𝑒𝑓,𝑗))

3𝑁

𝑗=1

 (3.7) 

PCs can then be visualized as structures 𝐱′(𝑡) by applying a transformation back to the 

three‑dimensional representation (atomic Cartesian coordinates). This operation enables inspection 

of the captured concerted motions along each PC. 

 𝒙′(𝑡) = 𝒓𝒊 · 𝒑𝒊(𝑡) + 𝒙𝒓𝒆𝒇 (3.8) 

Dimensionality reduction is accomplished by retaining only a subset of PCs that describe the collective 

motions of larger spatial scales. Since eigenvalues represent the weights of the different collective 

motions in the total atomic fluctuation, they are sorted in descending order to identify their related 

eigenvectors. The relevance of PCs is often expressed in terms of percentage of variance, which is 
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calculated as the ratio of each eigenvalue to the sum of all eigenvalues. Normally, in the average 

protein trajectory, less than 5 PCs already account for 50% of cumulative variance, and 20 PCs are 

usually more than enough to capture most of the behavior of the system. The selection of the desirable 

number of PCs may be assessed either by establishing a threshold of cumulative variance, by 

determining the “elbow” point of the corresponding “scree plot”, or by detecting the PCs with 

non‑Gaussian probability density distributions [379], [446]. 

Provided that there are at least 3𝑁 different conformations under analysis, which is advisable [379], 

the number of eigenvalues (and eigenvectors) is also 3𝑁, from which 6 should equal zero as their 

corresponding eigenvectors represent the overall rotation and translation that was removed via 

structural superposition. With a number of conformations 𝑆 lower than 3𝑁, the total number of 

nonzero eigenvalues is at most 𝑆‑1 because this is the number of directions required to account for 

their internal degrees of freedom [237], [292], [334], [391], [446]. 

On another note, when the analysis involves different atomic species (e.g., protein backbone atoms), 

every coordinate in Equations 3.5, 3.7, and 3.8 must be weighted with the square root of the atomic 

mass in order to obtain physically relevant dynamic PCs compliant with the laws of Newton [397]. 

Finally, the equivalent information can be provided with an alternative mathematical procedure called 

singular value decomposition. This method is usually chosen when computational cost should be 

minimized, as it eludes calculation of the covariance matrix and directly takes the 3𝑁‑dimensional 

trajectory data matrix as input. However, the data should be explicitly centered around the reference 

structure before applying the procedure [386]. 

3.5.2 Cosine content 

The cosine content is a qualitative indicator for determining whether sufficient sampling time has been 

achieved to ensure a reliable physical significance of PCs. This measure is calculated for the PCs that 

bear the higher variance values of atomic fluctuations, for instance, the first five PCs. It was proposed 

by Hess [397], [438] when he demonstrated that a system of particles undergoing a process of random 

diffusion (also termed Brownian motion) generates cosine‑shaped projections of the first few 

dominant PCs, with cosine periods equal to half the PC index along the total simulation time window. 

MD trajectories with a statistically insufficient number of samples produce the same pattern of 

cosine‑shaped PCs, which is indicative of the simulation being too short so that the captured protein 

dynamics cannot be distinguished from multidimensional random diffusive behavior. The 

interpretation of this observation was further clarified by Palese [499], who noted that cosine‑shaped 

PCs in protein dynamics do not exactly reflect pure Brownian motion, albeit the two phenomena share 

some features. In short timescales, proteins explore a reduced flat portion of the energy landscape, 

with shallow minima, such that the system does not have time to encounter the more significant 

kinetic barriers of the true underlying shape of the potential. This barrier‑free diffusion is 

Brownian‑mimetic. However, even in very short simulations, coherent protein motions (e.g., α‑helix 

bending or stretching motions) may take place where one would only expect purely random events 

[378], [386], [398], [446], [499], [500]. 

Accordingly, the cosine content measures the resemblance of the variation of PC values along the 

trajectories to the corresponding cosine curves. The cosine content 𝐶𝐶𝑖 of the 𝑖‑th PC 𝒑𝒊(𝑡) is calculated 

as: 
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 𝐶𝐶𝑖 =
2

𝑇
(∫ cos (

𝑖𝜋𝑡

𝑇
)

𝑇

0

𝒑𝒊(𝑡)𝑑𝑡)

2

(∫ 𝒑𝒊
2(𝑡)

𝑇

0

𝑑𝑡)

−1

 (3.9) 

where 𝑇 is the total simulation time. Its value ranges from 0 (no cosine shape) to 1 (perfect cosine 

shape). A very high cosine content along the first PCs is, thus, an indicator of not sufficient sampling 

or sampling that can be improved with regard to the atomic fluctuations of interest and in the context 

of the timescale and local sampling enabled by a classical MD simulation [398]. 

In practice, this measure cannot be used for quantitative assessment of sampling because it is affected 

by statistically high uncertainty. For this reason, it is employed just as an indicator for poor sampling 

when the cosine content is high, but no further interpretation can be drawn from values close to zero 

[378], [446]. The cutoff value indicative of inadequate sampling is arbitrary. Based on empirical 

determination, cosine‑content values not higher than 0.2 in small peptides and 0.5 in proteins are 

considered reasonable to justify acceptable sampling [334], [397], [398], [500]. 

3.5.3 Cosine similarity and distance 

The cosine similarity (also known as Orchini similarity, angular similarity, or normalized dot product) 

is a measure of the similarity between two vectors of an inner product space. It expresses the similarity 

in the direction or orientation of the vectors, disregarding differences in their magnitude or scale. 

Mathematically, the cosine similarity 𝑆𝑐 is equivalent to the cosine of the angle 𝜃 between the vectors 

𝒗 and 𝒘, which is calculated as: 

 
𝑆𝑐(𝒗, 𝒘) ≔ cos(𝜃) =

𝒗 · 𝒘

‖𝒗‖‖𝒘‖
=

∑ 𝑣𝑖𝑤𝑖
𝑛
𝑖=1

√∑ 𝑣𝑖
2𝑛

𝑖=1 · √∑ 𝑤𝑖
2𝑛

𝑖=1

 
(3.10) 

where 𝒗 · 𝒘 is the dot product of the vectors, and ‖𝒗‖ and ‖𝒘‖ are their respective magnitudes, also 

known as Euclidean norms or 𝓁²‑norms [501], [502]. 

The cosine similarity is bounded between ‑1 and 1, according to the range of the cosine function. A 

value of 0 means that the two vectors are orthogonal (with an angle of 90°) and thus uncorrelated. 

The closer the value to 1, the smaller the angle, meaning that the vectors are more collinear and 

correlated (i.e., similar). Values lower than 0 indicate angles greater than 90°, with ‑1 meaning that 

the two vectors are collinear but point in opposite directions (they are inversely or negatively 

correlated; with an angle of 180°) [441], [502]. 

The cosine similarity may be subtracted from 1 to express the complementary measure known as the 

cosine distance 𝐷𝑐 [501]: 

 𝐷𝑐(𝒗, 𝒘) ≔ 1 − 𝑆𝑐(𝒗, 𝒘) (3.11) 

The cosine similarity and distance are formally considered to be non‑metric measures as they do not 

obey all the formal mathematical properties of metrics. They are commonly used in information 

retrieval, text document clustering, biological taxonomy, and gene feature mapping. In comparison to 

other distance measures, the cosine similarity performs particularly well with sparse numerical data, 

as it only considers the non‑zero vector coordinates to provide the measure of proximity [502], [503]. 

Depending on the application, the cosine similarity may be expressed bounded in the interval [0, 1]. 

For instance, in this thesis, the cosine similarity was applied to express the similarity between the 

eigenvectors derived from PCA of equivalent trajectories. Since eigenvectors define the directions of 

PCs, and PCs reflect collective atomic displacements of the structure, collinear eigenvectors with 

opposite directions capture the same collective motions albeit reversed. In CEDA, such collective 
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motions are equivalent in dynamical nature. Hence, cosine similarity was expressed in absolute value 

to disregard the differences due to opposite directions. The resulting measure ranges from 0 (totally 

dissimilar; orthogonal directions) to 1 (totally similar; either with equivalent or opposite directions). 

Consequently, the corresponding cosine distance was also expressed in the interval [0, 1]. 

3.5.4 Agglomerative hierarchical clustering 

Clustering is a methodology aimed at grouping data objects based on the similarity between them. 

These objects are numerical measurements on a set of variables or attributes, and can thus be 

represented as points or vectors in a multidimensional space. A plethora of different clustering 

algorithms and techniques have been developed [502], [503]. 

Hierarchical clustering is a family of connectivity‑based algorithms that categorize data points into a 

hierarchical set of clusters, organized in a tree structure. Agglomerative approaches, in particular, 

construct the hierarchy in a “bottom‑up” manner. Each object is initially considered a single‑element 

cluster (or singleton cluster). In each iteration of the algorithm, the pair of clusters with the highest 

similarity are combined into a new larger cluster. This process continues until all data points are 

members of a single cluster, encompassing the entire collection [502], [504], [505]. 

The clustering results are depicted in a dendrogram, a binary tree diagram that presents the original 

data objects as leaves and the clusters as inner nodes at the various hierarchy levels. The root of the 

tree represents the single cluster of the entire collection. The height of the link at which two clusters 

are first joined is proportional to the distance between them, termed the cophenetic distance. 

Dendrograms display data objects along one axis and cophenetic distance along the other axis (Figure 

3.3). The visualization of a dendrogram facilitates choosing a particular cutting point to yield the most 

optimal number of separate clusters, depending on the purpose of the application. Among the 

possible strategies, a given cophenetic distance value may be selected to split the dendrogram and 

obtain clusters characterized by minimum similarity value among their members [504]. 

 

Figure 3.3. Hierarchical clustering represented in a dendrogram. In this illustrative example, there are ten data objects A–J 

that have been clustered according to a given measure of distance. The red dashed line represents the chosen cophenetic 

distance value selected to split the dendrogram and obtain four clusters (shown in different colors). 

A measure of distance 𝑑 must be defined to calculate the dissimilarity values between individual data 

points. Hierarchical clustering methods accept a wide variety of distance measures, as long as they 

can define a magnitude of dissimilarity and satisfy the mathematical properties of symmetry and 
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positive definiteness [503]. The corresponding dissimilarity matrix between pairwise objects is taken 

as the input data. 

Subsequently, cluster similarities are then inferred as a function of 𝑑 via a particular linkage criterion. 

A popular choice, especially in computational biology, is the formulation of the average‑linkage 

algorithm [506], also known as UPGMA (unweighted pair group method with arithmetic mean) or 

group‑average clustering. In UPGMA, the distance between two clusters is defined as the average 𝑑 

of all pairwise data points between the first and the second clusters. On the basis of this definition, at 

each step of the algorithm, the two clusters with the smallest average‑linkage distance 𝑑𝑈𝑃𝐺𝑀𝐴 are 

combined [502], [505]. The 𝑑𝑈𝑃𝐺𝑀𝐴 between two clusters 𝐴 = {𝑎1, 𝑎2, …, 𝑎𝑁} and 𝐵 = {𝑏1, 𝑏2, …, 𝑏𝑀}, 

with 𝑁 and 𝑀 being their respective number of members (also called the cardinalities), is [501]: 

 𝑑𝑈𝑃𝐺𝑀𝐴(𝐴, 𝐵) =
1

𝑁𝑀
∑ ∑ 𝑑(𝑎𝑛 , 𝑏𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

 (3.12) 

In this thesis, as part of the CEDA strategy, the UPGMA algorithm was applied to perform clustering of 

eigenvectors and construct the corresponding dendrogram, using the cosine distance (bounded in the 

interval [0, 1] as derived from cosine similarity expressed in absolute value) between pairwise vectors 

as input data. The corresponding implementation was carried out with the Python package SciPy [507]. 

3.5.5 Kernel Density Estimation 

A density estimator is an algorithm that models an estimate of the underlying probability distribution 

that generates a given 𝑁‑dimensional dataset. Kernel density estimation (KDE), also known as the 

Parzen‑Rosenblatt window [508], [509], is a widely used density estimator which relies in a 

nonparametric approach, i.e., it does not require the assumption that data is drawn from a known 

distribution from a parametric family. The nonparametric nature of KDE makes it a very flexible 

approach to model random or complicated data distributions. The approach of KDE is comparable to 

that of histograms, but with the advantage of removing the dependence on the location of the 

sub‑intervals or bins along the domain of values. 

The conceptual idea behind KDE consists in fitting instances of a kernel function 𝐾(𝑥) at the location 

of each data point. Then, the estimate of the probability distribution is constructed as the sum of all 

fitted kernels (Figure 3.4). Given a set of observations {𝑥1, 𝑥2, …, 𝑥𝑛} sampled from an unknown 

distribution with density function 𝑝, the estimate 𝑝 ̂𝑛 at any given point 𝑥 is defined as: 

 𝑝 ̂𝑛(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (3.13) 

The particular kernel function may be chosen from a range of non‑negative symmetric functions and, 

importantly, determines the shape of the final distribution. Frequently, smooth kernel functions are 

chosen, such as the Gaussian function, which facilitate representation of the estimate with a 

continuous curve. At regions with many observations, there will be many instances of the kernel 

function that will yield a large total value of the KDE function. On the other hand, regions with sparse 

observations will have a lower contribution to the density estimate. 
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Figure 3.4. An illustration of how KDE is constructed with one‑dimensional data. In this example, there are six observations, 

located at the positions indicated by black lines. An instance of a Gaussian function (kernel) is fitted at the location of each 

observation (red curves), which are summed to obtain the density estimate (blue curve). NOTE. Adapted from [510]. 

The parameter ℎ is called the bandwidth or the smoothing parameter. As its name suggests, this value 

controls the smoothness of the generated curve. Changes in the bandwidth modify the shape of the 

employed kernel, such that it is wider with higher values of ℎ and narrower with lower values of ℎ. 

The bandwidth is a free parameter, meaning that its value is not pre‑defined by the model and must 

be chosen empirically in any scenario. Importantly, it has a strong impact on the quality of the results 

of the estimate by controlling the bias‑variance trade‑off [510]. 

When ℎ is too small, the model does not provide much more information than the raw data, even 

reflecting randomness rather than the true underlying density. Too narrow kernels lead to a 

high‑variance estimate or over‑fitting, where the presence or absence of a single point makes a large 

difference, resulting in a curve that contains too many spurious artifacts (spiky surface). This scenario 

is called “under‑smoothing”. In contrast, when ℎ is too large, the model fails to capture important 

features of the data. Too wide and shallow kernels lead to a high‑bias estimate or under‑fitting, where 

the informative variations in density of the underlying structure have been obscured by a large smooth 

curve that is too unspecific. This scenario is called “over‑smoothing”. When ℎ is correctly adjusted, 

the underlying density of the dataset is revealed more clearly. The dependence on the bandwidth in 

KDE may be compared with the selection of the bin width in a histogram. In nonparametric statistics, 

bandwidth selection is a classical research topic. Several approaches have been developed to find 

optimized values of the parameter, although one may adjust it empirically [510]. Figure 3.5 shows the 

three cases with an example of KDE with different values of the smoothing parameter, performed on 

a single dataset. 

The Gaussian kernel is one of the most common choices of kernel. It is expressed as a Gaussian (or 

normal) distribution rescaled to have a unit area under the curve, with zero mean and unit variance: 

 𝐾(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2

 (3.14) 

In the context of the KDE equation (Equation 3.13), the Gaussian kernel becomes centered around the 

value of the given observation 𝑥𝑖 (i.e., this value becomes the mean of the distribution) with a standard 

deviation equal to ℎ [511]. 
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Figure 3.5. Influence of the bandwidth in KDE. The three panels display different KDE performed on the same hypothetical 

one‑dimensional dataset (not shown), using three different values of the smoothing parameter ℎ. The left panel is the case 

of under‑smoothing, with an excessively small bandwidth ℎ. The center panel is the case of the correct value of smoothing, 

which can be found, for instance, using a bandwidth‑selection algorithm. The right panel is the case of over‑smoothing: the 

chosen ℎ is too large. NOTE. Adapted from [510]. 

KDE can be extended to estimate multivariate densities. In this thesis, KDE was applied to generate 

the density distributions of trajectory data projected onto the consensus vectors of CEDA. The KDE 

algorithm was applied through its implementation in the Python package scikit‑learn [512], with a 

Gaussian kernel. A bandwidth value of 0.3 was empirically chosen because it showed the best 

smoothness trade‑off when applied to the datasets of this study. The corresponding KDE curves 

(univariate data), surfaces (bivariate data), and hypersurfaces (trivariate data) were constructed with 

100 points along the domain of each dimension. To cope with performance degradation with high 

dimensional data, a parallelization scheme was implemented via in‑house Python scripts to split the 

KDE calculation to run in multiple cores. 

3.5.6 Bhattacharyya coefficient 

The Bhattacharyya coefficient [513] (also known as fidelity similarity or Hellinger affinity) is a measure 

that quantifies the similarity between two probability distributions. It is also often described as a 

measure of the degree of overlap between statistical samples or populations. Given two discrete 

probability distributions 𝑃 and 𝑄 on the same domain with 𝑁 classes or bins, their Bhattacharyya 

coefficient 𝐵𝐶 is calculated as: 

 𝐵𝐶(𝑃, 𝑄) = ∑ √𝑝𝑖𝑞𝑖

𝑁

𝑖=1

 (3.15) 

where 𝑝𝑖 and 𝑞𝑖 are the probabilities of occurrence of event or sample 𝑖 in each respective distribution 

such that ∑ 𝑝𝑖 = ∑ 𝑞𝑖 =𝑁
𝑖=1 1𝑁

𝑖=1 . Given such properties, the geometric interpretation of the 𝐵𝐶 is the 

cosine of the angle between the 𝑁‑dimensional vectors (√𝑝1, √𝑝2, … , √𝑝𝑁) and (√𝑞1, √𝑞2, … , √𝑞𝑁) 

[513], [514]. 

The Bhattacharyya coefficient ranges from 0 to 1, where 1 indicates maximum similarity (identical 

distributions) and 0 indicates total divergence (no overlap between the distributions). Figure 3.6 

shows the visual representation of the Bhattacharyya coefficient between two examples of probability 

density distributions. This measure has been suggested as a powerful measure for comparing 

histogram data [514], and can be applied both to unimodal and multimodal distributions, whether 
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they are Gaussian or not. It is commonly used in statistics, pattern recognition, image processing, 

document comparison, information retrieval, data analysis with machine learning and, in general, in 

data science tasks of clustering and classification. Its expression (Equation 3.15) can be generalized to 

calculate the similarity between multivariate distributions [515]. In this thesis, it was used to express 

the similarity between the density distributions of trajectory data projected onto the consensus 

vectors of CEDA. 

 

Figure 3.6. Visual representation of the Bhattacharyya coefficient. The dashed and solid lines are examples of probability 

density functions 𝑃 and 𝑄 from Equation 3.15. The corresponding visual representation of the Bhattacharyya coefficient is 

shown as a curve filled in gray. NOTE. Adapted from [511]. 

3.6 Repositories of protein variants 

This section elaborates on the set of actions that were conducted to collect a dataset of known 

missense variants of PKR. The landscape of the repositories of human genetic variants is continuously 

evolving; there is an increasing volume of initiatives that publish new data or that gather and 

harmonize the information from multiple databases to display it in single data hubs. The search actions 

conducted in this thesis were performed between the end of 2019 and the beginning of 2020. 

Therefore, the available methods to retrieve this kind of data may have been optimized since then, 

and the databases may now contain a higher volume of downloadable content. 

On the one hand, most of the queried repositories comprised databases of human protein variants 

that include annotations and interpretations of their clinical significance. On the other hand, queries 

were also made on data portals of large‑scale sequencing projects. From these sources, only genetic 

variants causing a single amino‑acid variant (SAV; equivalent expression for a missense variant) were 

retrieved, whether from single nucleotide variants (SNVs) or small in‑frame indels. Data was filtered 

to display only the variants affecting gene PKLR, and more specifically, the transcript of PKR (or, 

equivalently, the UniProt ID P30613). The collected data principally comprised: i) the associated 

amino‑acid substitution (original and alternative amino acids and the affected position in the protein), 

ii) the corresponding change in the cDNA (when available), and iii) the enclosed literature references. 

The collected information was integrated in an internal database as a catalog of the known missense 

variants of PKR from diverse sources. Table 3.5 lists the employed repositories, including a brief 

description of their goals and the nature of their contents, as well as the specific filters that were 

applied in the queries and the additional data fields retrieved. [207], [208][205][208][209][210][203][188][189][193]–

[195][197][198][516][517] 
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On the basis of the gathered data, the search was complemented with a comprehensive exploration 

of the available literature related to the reported clinical and experimental conditions of each variant. 

The following features were included as annotations of the internal database: phenotype and 

pathogenicity state, genotype (zygosity) of the patients, ethnic origin, enzymatic activity, kinetic 

parameters, thermostability, provided rationale of structural abnormalities and other evidence of 

function impairment. Furthermore, Dr. Richard van Wijk (Department of Clinical Chemistry and 

Haematology, University Medical Center Utrecht) kindly provided further variant annotations from 

personal clinical research. 

Finally, the published data from the “pyruvate kinase” challenge of the fourth edition of the Critical 

Assessment of Genome Interpretation (CAGI) [518] was also incorporated. CAGI is a global community 

experiment to objectively assess computational methods for predicting phenotypic impacts of 

genomic variation. CAGI proposes challenges whereby participants are provided genetic variants and 

make predictions of the resulting phenotypes. Subsequently, these predictions are evaluated against 

gold‑standard experimental or clinical data by independent assessors, and the ranking of the best 

predictions submitted to the challenge is provided along with the answer key. The “pyruvate kinase” 

challenge [519] revolved around the prediction of the effects of missense mutations in human liver 

pyruvate kinase (PKL) on its activity and allosteric regulation. As recombinant protein expression of 

PKL in Escherichia coli has more rate of success than that of PKR, the activity and the regulatory 

properties of the enzyme are typically studied with this isoform. However, mutation effects are 

assumed to be equivalent in PKR, as both isoforms share virtually the same kinetic properties despite 

PKR having 31 extra N‑terminal amino acids. 

The published data of this CAGI challenge contains experimental kinetic values related to 113 different 

amino‑acid replacements at 9 different positions of PKL, mostly near the active site, as well as all 

possible amino‑acid replacements with alanine at 430 positions of PKL. The kinetic values comprise: i) 

the enzymatic activity in binary values, with 0 for no detected activity or 1 for detected activity; ii) the 

allosteric coupling constant (Qax) for the negative effector alanine, with values between 0 (total 

negative allosteric effect) and 1 (no allosteric effect); and iii) the Qax for the positive effector FBP, with 

the value of 1 indicating no allosteric effect and values greater than 1 indicating a positive allosteric 

effect. 
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Chapter 4 Results 
The results of this thesis have been divided into two main blocks. The first block presents the study of 

the dynamical traits of human erythrocyte pyruvate kinase (PKR) using molecular dynamics (MD) 

trajectories. The collection of trajectories covers different biological conditions of the wild‑type (WT) 

protein complexed with its natural ligands. In the initial part of the chapter, the modeling strategy and 

the performance of the developed parameters of the simulated systems are evaluated. This is 

followed by the application of traditional techniques of trajectory analysis aimed at assessing the 

principal features of stability and flexibility of the structures along the trajectories. 

The final part of the first block of results constitutes a central part of the thesis, related to the design 

and implementation of the Consensus Essential Dynamics Analysis (CEDA), a method devised to 

identify the distinctive collective motions of the protein from the most representative (consensus) 

behavior of the ensemble of trajectories. The corresponding sections report the most significant 

findings about the conformational changes of key regions of the enzyme, manifested in the 

trajectories, along with their possible implication in enzymatic function and allosteric communication 

mechanisms. 

The second block revolves around a set of comparative analyses of missense variants of PKR with 

respect to the WT behavior. In the corresponding sections, the process for selecting variants for 

subsequent MD simulation is described. This is followed by a report on the results derived from the 

application of the framework of CEDA to identify signs of differential behavior in the trajectories of 

PKR variants. The potential dynamical alterations are reported in terms of the similarity with the 

conformational profiles of the WT enzyme. The analyses conducted in this segment represent the 

culmination of the study based on the formulated objectives. 

Finally, this chapter concludes with a summary of the final protocol of the CEDA strategy, which 

provides a global view of the methodology developed and proposed in this research project, and after 

which this thesis is entitled. 

4.1 Study of the WT protein 

The study of PKR in its WT form comprised both the apoenzyme and also several of the possible 

holoenzyme states according to different combinations of the ligands that bind to the active and 

allosteric sites. The components included in each holo condition studied in this project can be found 

in detail in section 3.1.2 from the Methods chapter. Nonetheless, an overview of this information 

(cofactors, substrates, and allosteric regulator) is provided here in Table 4.1 to keep it on hand for the 

present chapter. 
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Table 4.1 

Components of the PKR enzymatic complex per condition 

Condition 
Cofactors Substrates Allosteric effector 

K⁺ Mg²⁺ PEP MgADP FBP 

Apo      

K‑holo X     

K‑Mg‑holo X X    

PEP‑holo X X X   

ADP‑holo X   X  

PEP‑ADP‑holo X X X X  

FBP‑holo X X   X 

Full‑holo X X X X X 

NOTE. Abbreviations: ADP, adenosine diphosphate; FBP, fructose 1,6‑bisphosphate; PEP, phosphoenolpyruvate. 
 

4.1.1 Evaluation of the parameterization procedures 

This section presents the series of actions that were applied with regards to the evaluation of the 

parameterization of the ligand molecules and the metal centers required to model the holo conditions 

of PKR in MD simulation. It is worth noting that the holo conditions that only differ in the absence or 

presence of FBP in the allosteric site of the protein did not require an individual parameterization. 

Accordingly, the FBP‑holo and Full‑holo systems reused the metal‑center parameters from the 

K‑Mg‑holo and ADP‑PEP‑holo systems, respectively. The results of the parameterization procedure 

are presented mainly in a descriptive and qualitative manner, with the support of a series of figures 

that facilitate the tracing of the main points of the process. The structure and topology files of all the 

parameterized systems are available as part of the online supplementary material of this thesis (see 

Appendix A). 

4.1.1.1 Ligands 

The first operation regarding the parameterization stage of the project consisted in the determination 

of the internal bonded parameters and atomic charges for the ligands PEP and FBP. The set of bonded 

parameters for each ligand were extracted from the GAFF force field; the program ACPYPE was used 

to build the corresponding topology files. Atomic charges were determined with the RESP 

methodology after a geometry optimization at the QM level. The geometry optimization stage for 

both ligands was straightforward, reaching convergence in 21 steps in the case of PEP and 24 steps in 

the case of FBP. Figure 4.1 shows the chemical structure of both ligands together with the obtained 

atomic‑charge values. The RESP methodology allowed the assignment of equivalent charges in the 

cases of rotationally degenerate atoms, which is particularly important when it comes to modeling the 

resonant forms of the phosphate and carboxylic groups. 

Given that PEP is one of the coordination ligands of the cofactor Mg²⁺, these atomic charges were only 

used in the first minimization in vacuum of the system. Afterwards, new atomic charges for the whole 

coordination complex were derived at the metal‑center parameterization stage, replacing these ones. 

The same occurs with the ligand ADP, except that the original parameters of this molecule were not 

generated in this project but extracted from [468]. Conversely, the atomic charges of FBP were 

retained for the whole MD simulation workflow, given that this ligand does not belong to any metal 

center. 
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Figure 4.1. QM‑derived atomic charges of ligands PEP and FBP. Atom labels, bonds, and charges are colored by atomic 

species. NOTE. The images were generated with the software MolView (http://molview.org). 

4.1.1.2 Metal centers 

The incorporation of metal ligands in the holo systems required deriving a set of parameters that can 

properly model the involved coordination complexes, as well as maintain their binding geometry 

stable during MD simulations. The parameterization strategy was mainly built on the guidelines and 

protocols of the software MCPB.py, which employs a cluster model to represent the metals and the 

coordination ligands [471], [472]. From there, a number of modifications were introduced to take into 

account further modeling standards and good practices as found in the literature for similar 

metalloproteins. The process resulted in a thorough empirical procedure aimed to determine the set 

of decisions and settings (mostly concerning the QM calculations) that are required to satisfactorily 

mimic the chemical environment of the metal centers of PKR. An overview of the employed 

methodology can be found in the Methods chapter. The present section therefore focuses on the 

specifications that help understand how the protocol was designed, what it pursues and what has 

been accomplished. 

To assemble the initial structure of each holo condition, the chosen model of the PKR was the PDB 

structure 2VGB [121], which is also the protein structure employed in the MD simulations in the apo 

condition. According to the contents of each holo condition, the needed ligands were imported from 

other PDB structures of pyruvate kinases co‑crystallized with such molecules (structures 4HYW, 4HYV, 

and 4FXF). Combining these sources is possible thanks to the consistent similarities in the spatial 

arrangement of the active site components among the pyruvate kinase family, which are shown in 

detail in Figure 4.2. The figure also highlights which molecules have been imported from each of the 

complementary structures. This information coincides with that provided in Table 3.1 of the Methods 

chapter and Table 4.1 of the present chapter. 

The only notable difference with regard to the spatial arrangement of the metal centers corresponds 

to the case of the cofactor Mg²⁺ imported from the structure 4HYW (Figure 4.2c). This Mg²⁺ binding 

site, called the Mg‑3 site, has been found to be occupied when the substrate PEP is unbound and 

would potentially work as a priming mechanism to attract the next PEP molecule and maintain the 

enzyme in the active R‑state conformation [137]. Conversely, the other canonically described Mg²⁺ 

http://molview.org/
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binding site, called the Mg‑1 site, can be seen in 2VGB since the substrate analog PGA is bound. The 

Mg‑1 and Mg‑3 sites involve the same amino‑acid chains, namely Glu315 and Asp339 (in PKR 

numbering), but in altered orientations. The side chain of Phe287 also rotates in correlation with the 

positions of Mg²⁺, Glu315, and Asp339. The side‑chain orientations that are characteristic of the Mg‑3 

site have been obtained by generating rotamers in 2VGB and selecting the suitable ones. In the Mg‑3 

site, three water molecules complete the positions of the coordination sphere of Mg²⁺ left vacant by 

the unbound substrate. In this project, the Mg‑3 site has been chosen to model conditions K‑Mg‑holo 

and FBP‑holo, while the Mg‑1 site is used in conditions PEP‑holo, PEP‑ADP‑holo and Full‑holo. 

In connection with the above, it is also interesting to note the differences and similarities in the protein 

conformation depending on which ligands were included in the crystallization. The structural overlays 

shown in Figure 4.2 were obtained by a structural superposition (least‑squares fitting) using as a fitting 

group the backbone atoms of the amino acids that were used to build the cluster model and that are 

located in the A domain of the protein. These are depicted with a licorice representation in the images 

and can also be found listed in Table 3.3 of the Methods chapter with the roles “ligand of K⁺/Mg²⁺” 

and “chemical context”. The structural superpositions show that there is almost an exact match 

between the A domains of the structures and that the C domains adopt an overall equivalent 

conformation. Conversely, the B domains show different degrees of closure upon substrate binding 

that have been described in the literature [119], [124], [135], [137], [139], [147]: open in the absence 

of substrate (structure 4HYW), partially closed when PEP is bound (structures 2VGB and 4HYV), and 

fully closed when ADP/ATP is bound. 

 

Figure 4.2. The PDB structures employed in the modeling of the holoenzyme conditions of PKR. A structural superposition 

between the main structure 2VGB (subunit A) and the structures 4HYW (subunit B), 4HYV (subunit A) and 4FXF (subunit D) 

is shown. (a) Pairwise comparison of the overall conformation of the monomers. The different degrees of closure of the B 

domains are highlighted with illustrative dashed lines and arrows. (b, c, d) Close‑up of the metal centers of the pairwise 

superposed structures. The ligands that were imported to model the holoenzyme systems of PKR are marked with a black 

pointing‑finger symbol and highlighted with black thick edges. The backbones of the structures are depicted with a ribbon 

representation. The amino acids and ligands employed in the cluster model are depicted with licorice or spherical 

representations. Structure 2VGB is colored in cyan and by atomic species, while the rest of structures are colored as in (a). 

Coordination bonds are shown as black thick dashed lines, only in structures 4HYW, 4HYV and 4FXF. Labels are colored in 

black when they refer to a residue or region that is present in both structures; otherwise they are colored with the 

corresponding color of the structure. The numbering of amino acids corresponds to 2VGB. In (b), the Mg‑1 and Mg‑3 sites 

are encircled with black dashed lines. NOTE. Abbreviations: N-t, N-terminal; OXL, oxalate; PGA, phosphoglycolate; Wat, 

water. The images of the protein structure were generated with the software VMD. 
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Figure 4.2 (Continued) 
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The high degree of structural conservation of the active site in the pyruvate kinase family as well as 

the availability of crystallographic structures with ligands have provided valuable criteria to guide and 

assess the parameterization of the metal centers. Thus, it has been possible to monitor the procedure 

to ensure that the experimental binding geometries are qualitatively well reproduced. In this sense, 

the QM geometry optimizations of the cluster model, which were carried out prior to the calculation 

of the bond and angle parameters and atomic charges, were satisfactory. Several attempts were 

needed until finding an optimal combination of components of the cluster model and simulation 

settings. Here, the details of the selected configurations are provided. 

The primary components of the cluster model are the metals and the ligands of their first coordination 

spheres. By exploring the environment of the coordination complexes, more residues were rationally 

included in each cluster model. These help specify a chemical context where steric hindrances and 

relevant interactions with the primary components are taken into account, both in structural and 

energetic terms. Figure 4.3 (subfigures a, d, g, j, and m) shows 2D schemes of the components and 

their interactions in each cluster model built, where the rationally included residues are depicted with 

a faded representation to distinguish them from the coordination complexes. 

The delimitation of a cluster model implies that there will always exist a number of interactions that 

are not represented and occur at the boundary between the included and the excluded components, 

thus affecting the freedom of movement of the former. Some of these can be taken into account by 

providing a scheme of frozen atoms that will not be able to move during the simulation. These are 

marked in Figure 4.3 with an “F” or with a black sphere representation. Firstly, all amino‑acid backbone 

Figure 4.2 (Continued) 
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atoms were frozen so that the cluster model would not decouple from the overall conformation of the 

protein. Therefore, a priori only the amino‑acid side chains and the non‑protein small molecules were 

free to move. According to the protocol of MCPB.py, a full geometry optimization is applied only to 

the “small model” of the cluster model, whereby the majority of amino acids are represented in the 

form CH₃‑R (with R corresponding to the side‑chain group). Thus, all these methyl groups were frozen 

to meet the constraints of the protein backbone. In addition, a few other atoms of the model were 

also frozen to represent further interactions and regions across the boundary: 

• The hydrogen atom HH11 of Arg116 was frozen because it makes a H‑bond beyond the 

boundary with the hydroxyl group of Thr93. 

• The non‑coordinated oxygen atom of the carboxylate of Glu315 was frozen because it makes 

a H‑bond with the hydrogen atom on the backbone nitrogen atom of Phe287. This only applies 

to the Mg‑1 site models. 

• Both oxygen atoms of the carboxylate of PEP were frozen because they make H‑bonds with 

the hydrogen atoms on the backbone nitrogen atoms of both Gly338 and Asp339. 

• All atoms that comprise the rings of adenine and ribose in the ADP molecule were frozen 

because this region of the molecule is inserted in a pocket that lies beyond the cluster model. 

• All heavy atoms of Ser286 were frozen. This residue was included in the model to account for 

the steric hindrance that prevents Lys313 from approaching Asp156. Furthermore, it 

maintains the network of H‑bonds between itself and Lys313 and Thr157. 

• All heavy atoms of Glu161 were frozen. This residue is located in the hinge of the B domain of 

the protein, being around the metal center of K⁺ only when the B domain is its partially or fully 

closed conformation; otherwise, it moves away (see, for instance, structure 4HYW in Figure 

4.2c). When present, the carboxylate of Glu161 potentially makes H‑bonds with the hydroxyl 

group of Ser120 and one water molecule coordinated to K⁺. When absent, its role can be 

fulfilled by the water medium. Glu161 was included in the cluster model for consistency with 

the conformation of structure 2VGB and to take into account its electrostatic effects without 

the need to optimize its geometry in particular. 

Figure 4.3 (subfigures b, e, h, k, and n) shows the initial and final states of each geometry optimization 

of the “small model”. The simulations involved moderate rearrangements. Table 4.2 reports the 

corresponding RMSD values as well as the number of steps that each geometry optimization needed 

to reach convergence. The inclusion of a polarizable continuum model (PCM) improved the 

physicochemical properties of the model by accounting for the electrostatic influence of its 

surroundings (i.e., a protein environment with partial exposure to water). Without the PCM, residues 

such as Asn118 and Asp156 that are coordination ligands of K⁺ and are also at the boundary of the 

cluster model underwent reorientations and failed to properly bond to the metal. 

The widest movements usually corresponded to the water molecules, since their initial placement and 

orientation were the most approximate of the ensembles. The inclusion of the water molecules was 

decisive to complete and give consistency to the coordination complexes. Indeed, the QM simulations 

effectively recognized the majority of the included water molecules as coordination ligands. Only in 

the case of K‑holo, one of the water molecules that was intended to coordinate K⁺ moved away to 

interact with Asn118, Ser120 and another water molecule (Figure 4.3a‑c), leaving K⁺ with just 5 

coordination ligands. Interestingly, as it will be shown in section 4.1.2.3.3, the K⁺ of K‑holo is also 

mostly found in a 5‑coordinate state in MD simulations, closely followed by the 6‑coordinate state. 
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Therefore, this metal center in this condition seems to be stable with either 5 or 6 coordination 

ligands. Moreover, this displaced water molecule ended up fulfilling a role analogous to that of a 

structural water molecule in PEP‑holo (Figures 4.2c and 4.3g‑i). This water molecule in PEP‑holo makes 

H‑bonds with Asn118, Ser120, and the phosphate group of PEP, and was decisive to stabilize the 

geometry optimization of this metal center, specifically the orientations of Asn118 and PEP. All in all, 

strong consistencies have been found between the experimental geometries and the QM simulations. 

 

 

Figure 4.3. Schematics and results of the geometry optimizations of the cluster models. The purpose of this figure is to show 

detailed representations of the residues included in each cluster model and their interactions, as well as the course of the 

geometry optimizations performed on their MCPB.py “small model” versions. Five cluster models were employed to model 

the metal centers of the holo conditions of PKR: one for condition K‑holo (a‑c), one for conditions K‑Mg‑holo and FBP‑holo 

(d‑f), one for condition PEP‑holo (g‑i), one for condition ADP‑holo (j‑l), and one for conditions PEP‑ADP‑holo and Full‑holo 

(m‑o). (a, d, g, j, m) 2D schemes of the components of each cluster model and their interactions. Two kinds of molecules 

comprise each cluster model: the primary components are the metals and the ligands of their first coordination spheres, 

whereas the rest were rationally included to represent the relevant chemical context of the vicinity. To distinguish between 

the two kinds, the latter are depicted with a faded representation. Atoms are colored by species. Non‑bonded interactions 

after geometry optimization are depicted with green dashed lines. The distance values (in Å) of the coordination bonds are 

included. Labels of each residue and atom name are included. All hydrogen atoms have been omitted for the sake of clarity. 

The atoms marked with an “X” were absent or replaced in the “small model” according to the capping scheme of MCPB.py. 

The atoms marked with an “F” were frozen during the geometry optimizations. (b, e, h, k, n) Initial and final states of each 

geometry optimization of the “small model”. The former are shown in a faded representation. Atoms are colored by species. 

Coordination bonds in the final state are depicted with black dashed lines. A black sphere representation is included to show 

the atoms that were frozen during the geometry optimizations. Labels of each residue are included. (c, f, i, l, o) 3D structures 

of the cluster models in their structural context within PKR after geometry optimization of the “small model”. Atoms are 

colored by species. The backbone of the protein is shown in ribbon representation, colored according to the domains of the 

protein: A domain in red, B domain in blue, and C domain in yellow. Coordination bonds are depicted with black dashed lines, 

with their distance values (in Å). Labels of each residue are included. NOTE. Abbreviations: Wat, water. The images were 

generated with the softwares LigPlot+ (v2.2.5) [520] and VMD. 
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Figure 4.3 (Continued) 
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From the optimized structures of the “small model”, bond and angle parameters were calculated and 

imported to the corresponding MD topologies. Regarding the “large model” representations of the 

cluster models, they were subjected to hydrogen‑only geometry optimizations to subsequently derive 

atomic charges. The response of the resulting parameter sets was tested in several trials of MD 

simulations and refined iteratively until observing a stable behavior and well‑reproduced geometries 

over the course of the simulations. Section 4.1.2.3 further elaborates on the geometrical and 

structural assessment of the metal centers during MD. 

Table 4.2 

Structural divergence between the initial and final states of the geometry optimizations 

Modeled conditions 
Small model Large model 

RMSD (Å) Number of steps Number of steps 

K‑holo 0.563 98 177 

K‑Mg‑holo and FBP‑holo 0.634 132 93 

PEP‑holo 0.423 129 53 

ADP‑holo 0.388 107 85 

PEP‑ADP‑holo and Full‑holo 0.365 95 39 
 

Before parameter refinement, occasional simulation crashes were experienced due to inaccuracies in 

the treatment of the K⁺ metal center with the standard bonded model. Prematurely terminated 

simulations were accompanied by LINCS warning messages. The LINCS algorithm (Linear Constraint 

Solver) [492] maintains control of bond lengths according to their equilibrium values in simulation. 

When anomalies are detected in the corresponding values at a specific time step, an incident report 

is generated. Specifically, the bond of the hydroxyl group of Ser120 was found to exceed the default 

maximum value of 30 degrees of rotation per time step. This moiety coordinates K⁺ and 

simultaneously acts as a H‑bond donor with other nearby chemical groups. The H‑bond is usually 

formed with the side chain of Glu161. This interaction is structurally dependent on the conformational 

transition of the B domain, based on the evidence from crystallographic data [137]. The interaction 

can be observed when the B domain is in a range of partially or totally closed conformations, whereas 

it may be absent when the open conformation is sampled. A careful examination of the problematic 

simulations revealed that the incident was precisely produced in instances of the latter case, where 

the eventual interruption of the H‑bond with Glu161 caused the side chain of Ser120 to undergo 

unphysical behavior due to an imbalance of the forces acting on it. The stability of the region 

substantially improved by applying a variation of the bonded model that treats the coordination bonds 

as harmonic restraints and considers the full set of non‑bonded terms between consecutively 

connected atoms. Such an approach achieved the correct modeling of the interchange of H‑bond 

acceptors of Ser120. 

All coordinated water molecules were fully treated with the non‑bonded model (i.e., their QM‑derived 

parameters were excluded). Table 4.3 presents a qualitative validation of the employed metal‑center 

parameters, using the reference values recommended by the experts of MCPB.py. According to their 

guidelines, appropriate metal‑center parameters should generally adhere to the following criteria 

(although exceptions may occur): i) the bond force constants between a metal ion and its coordinated 

atoms are lower than 200 kcal·mol⁻¹·Å⁻²; ii) the equilibrium bond distances between a metal ion and 

its coordinated atoms are lower than 2.8 Å; iii) the angle force constants related to the metal ion are 

lower than 100 kcal·mol⁻¹·rad⁻²; iv) the equilibrium angle values related to the metal ion are greater 

than 100 degrees; and v) the RESP charge of a metal ion is lower than its oxidation state. 
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Table 4.3 

Validation of the employed metal-center parameters according to the reference criteria of MCPB.py 

Criteria 

Modeled conditions 

K‑holo 
K‑Mg‑holo 

and FBP‑holo 
PEP‑holo ADP‑holo 

PEP‑ADP‑holo 
and Full‑holo 

Bond force constants 
< 200 kcal·mol⁻¹·Å⁻² 

4 / 4 6 / 6 10 / 10 6 / 6 13 / 13 

Equilibrium bond distances 
< 2.8 Å 

4 / 4 6 / 6 8 / 10 6 / 6 12 / 13 

Angle force constants 
< 100 kcal·mol⁻¹·rad⁻² 

10 / 10 13 / 13 31 / 31 13 / 13 37 / 37 

Equilibrium angle values 
> 100° 

7 / 10 9 / 13 19 / 31 9 / 13 23 / 37 

RESP charge of metal ion 
less than oxidation state 

1 / 1 2 / 2 2 / 2 2 / 2 3 / 3 

 

Most of the obtained parameter sets are consistent with the criteria listed above. The most significant 

exception is the case of angle parameters, where several equilibrium values are below 100°. For 

instance, this occurs between some of the coordination ligands of the K⁺ metal center, where the local 

conformation of the protein and thus the corresponding orientation of the side chains promote a 

distorted trigonal prismatic geometry. Another example is the molecule of PEP, which is a tridentate 

ligand of Mg²⁺ and therefore adopts a very specific conformation. 

4.1.2 Trajectory analysis 

The following section describes the results of the analyses performed to examine the stability and 

flexibility of the systems along the trajectory. Standard methods for structural and geometric analysis 

were applied to address two main objectives: i) to monitor the structural divergence of the trajectories 

with respect to the initial structure, and ii) to characterize the flexibility profile of the protein, i.e., to 

identify the regions with high or low conformational variability. 

The insight gained at this primary level allowed us to subsequently guide further advanced analyses 

more effectively, targeting the regions that contain the most relevant dynamical events. Results are 

presented in an orderly manner, starting with the properties of the WT apo system, and then 

comparing them qualitatively with those of the holo conditions and inferring the differential effects 

of ligand binding (cofactors, substrates and allosteric activator) on the enzyme behavior. 

Finally, a more specific analysis (and complementary to the previous one) on the region of the metal 

binding sites was performed to evaluate the performance of the incorporated parameter sets. The 

aim was to assess whether the stability and flexibility of this region were consistent with the 

expectations derived from the parameterization procedure that was selected for this project. 

4.1.2.1 Stability 

The evolution of the stability of the systems along the MD simulations was examined by computing 

the root‑mean‑square deviation (RMSD) of each snapshot with respect to the initial structure of the 

trajectory. This widely employed analysis in MD studies offers a general indication of the extent of 

conformational divergence explored throughout the simulation time. 
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Figure 4.4a (top panel) shows the plot corresponding to the calculation of the RMSD of the WT apo 

tetramer (for each of the 5 trajectory replicates separately). For both the calculation of the metric and 

the prior structural superposition (least‑squares fitting), only the protein backbone atoms were 

considered. Alongside the original data from each time series, a two‑sided moving average (darker 

line) is also shown, which comprises values up to 5 ns on either side of each point and allows for a 

clearer interpretation of data progression. As a first remark, during the first nanoseconds of simulation 

the characteristic relaxation curve can be noted, in which the structure rapidly diverges from its initial 

conformation. RMSD values exhibit an abrupt transition from zero to a range between 0.27 and 

0.32 nm at approximately 25 ns. Subsequently, values remain relatively stable until 60 ns. This 

progression is common to all 5 replicates, perhaps with the exception of replicate #2, which displays 

a more pronounced initial rise and reaches slightly higher RMSD values before decreasing to the 

aforementioned range. 

 

Figure 4.4. Time‑series RMSD of the WT apo trajectories. The analysis was applied to the protein backbone atoms. The darker 

line plotted alongside each time series represents the two‑sided moving average of the data, encompassing values up to 5 ns 

on either side of each point. Schematic representations of the analyzed structure in each panel are included with a diagram 

of the arrangement of the subunits and domains of the protein and the corresponding ribbon representation. A vertical black 

dashed line indicates the cutoff of 25 ns that marks the end of the structural relaxation phase. (a) RMSD values of the whole 

tetramers (top panel) and disregarding the B domains (bottom panel). (b) RMSD values by monomers of the trajectory 

replicate #3. A separate structural superposition was performed for each monomer before computing the corresponding 

RMSD values. NOTE. The images of the protein structure were generated with the software VMD. The 3D schematic models 

were built with the software Blender [136]. 
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Beyond this time window, two distinct behaviors can be observed. On the one hand, some trajectories 

remained stable for the rest of the simulation, without major deviations from the average RMSD value. 

On the other hand, other trajectories exhibited significant structural divergence, exploring a range of 

conformations characterized by higher and diverse RMSD values. Replicates #4 and #5 exemplify the 

former behavior, while replicates #1 and #3 are representative of the latter. Replicate #2 displays an 

intermediate behavior, characterized by moderate stability with a broader range of RMSD fluctuation. 

The observed disparity in behavior among the replicates raises an ambiguity regarding the overall 

stability profile of the system over the course of 400 ns of MD simulation. Nevertheless, it is 

well‑established that the B domain of pyruvate kinases is a particularly mobile region of the protein 

and is capable of adopting multiple conformations, as evidenced by both MD simulations and X‑ray 

crystallography [121], [132], [138], [164]. The flexibility of the B domain can be attributed to the two 

small linkers that covalently connect it to the A domain and serve as a hinge mechanism. Accordingly, 

the RMSD analysis was repeated but excluding the B domains of the tetramer to assess the stability of 

the protein core (N‑terminal, A, and C domains; ~80% of the structure). The corresponding results 

(Figure 4.4a, bottom panel) revealed that the tetramer core remained strongly stable after the initial 

time of structural relaxation. All structures fluctuated close to their average RMSD values, with 

replicates #1 and #3 now being only marginally higher than the rest. Therefore, our simulations 

confirm that the main source of structural divergence of PKR corresponds to the sampling of different 

conformations of the B domain. In contrast, the protein core exhibits considerable stability, as 

consistently demonstrated among trajectory replicates. 

This analysis not only facilitates the understanding of the stability profile of the system, but also serves 

as an approach to discriminate between equilibration and production phases of the trajectories. 

Despite the inclusion of equilibration stages within the MD protocol, satisfactory equilibration is not 

achieved until structural relaxation has been completed. By identifying the endpoint of the initial 

RMSD curve, it is possible to determine the portion of trajectory that should be discarded from 

subsequent analyses to avoid the inclusion of potential artifacts derived from structural relaxation. 

Based on the observations from the analysis conducted, this cutoff can be established at 25 ns. This 

suggestion becomes particularly evident when examining the RMSD plot of the tetramer cores, in 

which the RMSD values of all trajectory replicates have already reached a plateau at 25 ns. The 

Figure 4.4 (Continued) 



Chapter 4 

124 
 

inclusion of the B domains in the analysis obscures the presence of a distinct cutoff, as the 

conformational divergence may reduce the clarity of the plateau. 

In addition, the RMSD analysis was conducted at the level of individual enzyme monomers to 

investigate whether the stability profile of the tetramer is proportionally reflected in each of its four 

subunits. Figure 4.4b illustrates the case of the trajectory replicate #3, which was shown to exhibit the 

greatest structural divergence among replicates (Figure 4.4a, top panel). Notably, the behavior of each 

subunit within the tetramer was not equivalent. Chain D stands out as being particularly unstable, and 

its RMSD profile is comparable to that displayed by the whole tetramer in the respective plot. On the 

other hand, chains A, B, and C were comparatively more stable, balancing between two close RMSD 

states in an independent manner. Incidentally, the RMSD profile of each monomer conforms to the 

post‑relaxation cutoff of 25 ns. These observations suggest that the behavior of the B domains within 

the tetramer is not symmetrical, in agreement with the previous studies of pyruvate kinases [121], 

[132], [138], [164]. The four B domains may undergo smaller or larger conformational changes 

independently between different simulation replicates. Moreover, the apparent degree of stability of 

the entire system is strongly influenced by the behavior of the individual B domains in a basic analysis 

such as RMSD. 

Finally, the trajectories of the different holo conditions were also analyzed, both including and 

excluding the B domains (Figure 4.5). In general, the results indicate that the B domains contribute 

significantly to the overall fluctuation of the protein, similarly to the case of the apo trajectories. 

However, some exceptions occur in which the RMSD profiles of the whole tetramer and the tetramer 

core are qualitatively equivalent. This behavior is displayed by certain trajectory replicates of the 

PEP‑holo and PEP‑ADP‑holo conditions, suggesting that the presence of PEP might induce distinctive 

dynamical events with the B domain and the subunit core coupled with each other. In addition, a 

positive correlation between the stability of the protein and the number of bound ligands is apparent. 

This trend can be attributed mainly to the ligands that bind to the active site. Remarkably, this implies 

that while the constraints of cofactor and substrate binding were imposed on the A domain, the B 

domain also exhibited rigidity, possibly both by propagation of dynamical effects and interactions with 

the ligands. On the other hand, the effects of the allosteric activator FBP on the stability of the B 

domains and the tetramer core are not clear from this analysis. The incorporation of FBP to the protein 

with cofactors and substrate (Full‑holo vs. PEP‑ADP‑holo) suggests that FBP may have a stabilizing 

effect on the tetramer core, but further evidence is needed to confirm this hypothesis. 
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4.1.2.2 Flexibility 

Following the RMSD analysis, the information was complemented with a root‑mean‑square 

fluctuation (RMSF) analysis. This metric quantifies the divergence from the average position of each 

region of the protein, facilitating the identification of flexible fragments. The RMSF was computed for 

the backbone atoms of different protein regions (after a corresponding structural superposition) and 

expressed as a mass‑weighted average per residue. Figure 4.6 shows the RMSF profile of a WT apo 

tetramer, using the trajectory replicate #3 as an example. In accordance with the insights gained from 

the RMSD analysis, the B domains stand out as the most flexible regions, especially in chain D. 

 

Figure 4.6. RMSF per residue of a WT apo tetramer. Data corresponds to trajectory replicate #3. The regions corresponding 

to each subunit of the tetramer are indicated with labels and accompanied by schematic representations of the structure 

with a ribbon representation with the respective subunit highlighted. NOTE. The images of the protein structure were 

generated with the software VMD 

The flexibility profile at the level of the enzyme monomer was characterized in greater detail. Firstly, 

all subunits from each trajectory replicate were subjected to individual RMSF analyses. Figure 4.7 

shows the corresponding results with the averaged data for all monomers. Subsequently, a 

multi‑trajectory of all subunits was generated by concatenating their respective trajectory data. RMSF 

was calculated for each protein domain on the multi‑trajectory to examine the most flexible 

fragments. Such results are presented in Figure 4.8. 
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Figure 4.7. Average RMSF per residue of WT apo monomers. The analysis comprises the data from all trajectory replicates. 

(a) RMSF plot of the average values with standard deviation (depicted with a darker area around the line). A schematic 

representation of the structure of the monomer with a ribbon representation is included. (b) Backbone structure of the 

monomer colored by average RMSF value. RMSF values range from 0.06 to 0.28 nm and correspondingly map to a 

red‑gray‑blue color transition, as indicated in the color bar. Two views of the structure depicted with the licorice 

representation are provided, with a horizontal rotation of 90° with respect to each other. NOTE. The images of the protein 

structure were generated with the software VMD. 
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Figure 4.8. RMSF per residue of the WT apo domains. The analysis was performed on the concatenated version of the 

trajectory data of all subunits from each trajectory replicate. (a) RMSF plot of each domain. Each plot is accompanied by a 

schematic representation of the structure of the monomer with a ribbon representation and with the respective domain 

highlighted. The structural fragments with particularly high RMSF values are encircled with dashed lines. (b) Backbone 

structures of the domains colored by average RMSF value. RMSF values range from 0.04 to 0.28 nm and correspondingly 

map to a red‑gray‑blue color transition, as indicated in the color bar. The structure of each domain is presented in the same 

order as in (a), namely (from top to bottom), B, A, N‑terminal, and C domains. Structures are depicted with the licorice 

representation. The structural fragments with particularly high RMSF values are encircled with dashed lines, matching those 

in (a) and incorporating their residue ID labels to facilitate identification of the most flexible regions. NOTE. The images of 

the protein structure were generated with the software VMD. 
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The flexibility profiles show that all domains have stable tertiary structure folds. Distinctive local 

fluctuations occurred mainly at the loop fragments between the secondary structure elements and 

far from the core of the structure. All linker fragments that connect the different domains of the 

monomer exhibited significant flexibility, which suggests that the conformational divergence of the 

monomer largely arises from rigid‑body motions between domains. 

The structural mobility of the B domain with respect to the protein monomer was high and variable. 

It displays the highest average RMSF values of the structure, with broad standard deviation intervals 

that reflect how this domain may undergo smaller or larger conformational changes independently 

among subunits and trajectory replicates. The B domain possesses two internal loops with significant 

flexibility, namely, at residues 169‑174 and 232‑235. The hinge region that connects it with the A 

domain is composed of two linker fragments located at both endpoints of its sequence. Remarkably, 

the final linker is longer and displays the highest flexibility among all inter‑domain linkers. 

The A domain is characterized by a rigid core, as reflected in the eight distinctive valleys of the RMSF 

profile that correspond to the β‑strands of the barrel fold of this domain. Conversely, the loops that 

interconnect the secondary structure elements exhibited prominent peaks, in particular, L‑Aβ2‑Aα2 

(residues 119‑122), L‑Aα2‑Aβ3 (residues 141‑147), L‑Aα4‑Aβ5 (residues 304‑306), and the fragment 

338‑347, which forms a small α‑helix (Aα6’) that connects Aβ6 and Aα6. Notably, the L‑Aβ2‑Aα2 loop 

contains residue Ser120 which binds to the cofactor K⁺. The L‑Aα2‑Aβ3 loop and the Aα6’ helix are 

particular protrusions of the A domain that extend towards the C and B domains, respectively, and 

serve as contact points with these. Consequently, their flexibility could be coupled to the motion of 

these two domains. Finally, the eight α‑helices of the barrel adopt intermediate values between the 

loops and the β‑strands. 

The C domain displays three loops of significant flexibility, namely, at residues 522‑523, 548‑549, and 

558‑564. Remarkably, the latter corresponds to the L‑Cβ4‑Cβ5 loop that accommodates the allosteric 

activator FBP, absent in the apo condition. The region of the C domain at the interface with the A 

domain exhibited the lowest RMSF values of the monomer, together with the β‑barrel of the A 

domain. Lastly, the N‑terminal domain displays marked flexibility at its terminus fragment, as expected 

from a free protein tail. The missing initial fragment (residues 1‑56) is hypothesized to be disordered 

given its common absence in crystallographic structures. 

The flexibility profile of the different holo conditions were analyzed using the same approach as in 

Figure 4.7, i.e., by inspecting the average RMSF values of all monomers from each trajectory replicate 

of the same condition. Figure 4.9 shows the corresponding analyses. The comparison between the 

RMSF profiles of each condition reinforces the idea that the bound ligands at the active site exerted a 

clear rigidification effect on the B domain, in accordance with the observations from the RMSD 

analyses. This effect is already noticeable at the K‑holo condition, which only features the cofactor K⁺ 

as a ligand. Additionally, the binding of this cofactor abolished the fluctuation of the L‑Aβ2‑Aα2 loop 

given the constraints of Ser120 as a coordination ligand of the metal. The binding of the PEP strongly 

reduced the variability of flexibility of this domain, as can be observed by the narrowed standard 

deviation of conditions PEP‑holo, PEP‑ADP‑holo, and Full‑holo. In other words, monomers with PEP 

bound behaved more uniformly both within the same tetramer and between trajectory replicates. 

Lastly, the L‑Cβ4‑Cβ5 loop that stabilizes the binding of FBP to the allosteric site (positions 558‑564) 

was markedly rigidified when the ligand was present, i.e., in the FBP‑holo and Full‑holo conditions. 
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Figure 4.9. Average RMSF per residue of WT monomers of each holo condition. The analysis comprises the data from all 

trajectory replicates of the same condition. Standard deviations are depicted with the darker areas around the average. A 

schematic representation of the structure of the monomer with a ribbon representation is included. NOTE. The image of the 

protein structure was generated with the software VMD. 

4.1.2.3 Analysis of the metal centers 

While in section 4.1.1.2 descriptive and qualitative assessments of the metal‑center parameterization 

were given, the present section elaborates on a quantitative analysis on the geometrical and structural 

features of the metal centers along the MD simulations. The conducted analyses consisted in: i) 

inspecting the variability of the distance values of the coordination bonds, ii) assessing the overall 
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flexibility of the region, and iii) measuring the relative abundance of the sampled coordination 

numbers (by the solvent). 

4.1.2.3.1 Distance values of the coordination bonds 

Firstly, the distance values of all the modeled coordination bonds were collected to inspect their 

variability in MD with respect to their parameterized equilibrium values. Figure 4.10 shows the 

corresponding analysis, which was carried out on all trajectories of each holo condition. Each box plot 

in the figure contains the aggregated data of each PKR subunit in the 5 trajectory replicates of the 

corresponding bond and condition. Where applicable, the original distance values from the source 

crystallographic structures are included as an additional reference. The analysis does not comprise the 

coordination bonds with water molecules, since those were not parameterized and were rather 

allowed to be established transiently with different water molecules as they freely occupy the 

coordination binding sites. 

All distance values were consistently maintained during MD with an acceptable range, although as a 

general tendency they were marginally greater than the parameterized equilibrium values. Value 

distributions of the K⁺ metal center feature moderately larger upper tails with more outlier 

occurrences, whereas distributions of the Mg²⁺ metal centers are narrower and more symmetrical. 

When it comes to the comparison with the crystallographic values, metal‑ligand distances were not 

reproduced in general, except in some instances such as the bonds of ADP with its complexed Mg²⁺ 

ion. 

The parameterized coordination bonds are either lower or greater with respect to their 

crystallographic counterparts. In general, the coordination bonds involving K⁺ fall in the first case, with 

the simulation values lying between the crystallographic and the parameterized values. In contrast, 

the bonds involving Glu315 and Asp339 with the cofactor Mg²⁺ in the Mg‑1 site are instances of the 

second case. These crystallographic values are especially low in the Mg‑1 site (conditions PEP‑holo, 

PEP‑ADP‑holo, and Full‑holo), compared to those of the Mg‑3 site (conditions K‑Mg‑holo and 

FBP‑holo). It should be noted that the crystallographic model of the Mg‑1 site featured Mn²⁺ instead 

of Mg²⁺. When it comes to the parameterization of these bonds, the Mg‑1 and Mg‑3 sites share very 

similar equilibrium values, which were also very stable in MD. 

The only bond lacking a crystallographic reference was that between PEP (atom O3P) and the 

ADP‑bound Mg²⁺. It is not possible to obtain a crystallographic structure naturally with these ligands 

since the chemical reaction takes place. In our MD simulations, the distance values for this bond were 

greater than the corresponding parameterized equilibrium value. This behavior was expected, since 

the simulation is requested to sustain the repulsion between the phosphate groups of PEP and ADP 

while being incapable of modeling the phosphoryl‑transfer reaction that would eventually occur. 

 

 



Chapter 4 

132 
 

 

Figure 4.10. Distance values (Å) of the modeled coordination bonds along the MD simulations. Data is presented as a grid of 

box plots where rows correspond to each coordination bond and columns correspond to each holo condition. Each box plot 

contains the aggregated data of each PKR subunit in the 5 corresponding trajectory replicates. The parameterized equilibrium 

distance value of each bond is included as a reference with a dotted line in each box plot. Where applicable, the original 

distance values from the source crystallographic structures are included as an additional reference, with a dashed line. The 

data of each holo condition is colored as follows: K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, 

PEP‑ADP‑holo in brown, FBP‑holo in pink, and Full‑holo in gray. 
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4.1.2.3.2 Stability and flexibility of the region 

After having confirmed the stability of the modeled coordination complexes in terms of bond 

distances, the next analysis aimed to assess the overall flexibility of the region in simulation. This issue 

was explored with an RMSD and RMSF analysis of the protein local region of the metal centers. Figure 

4.11 shows the RMSD values (nm) of each holo simulation, using as reference the corresponding 

structures of the geometry optimization of the “small model” (Figure 4.3; subfigures c, f, i, l, and o) in 

each case. In addition, the data is compared with the same analysis carried out on the apo simulations 

(with the same reference structures, respectively). Each box plot in the figure contains the aggregated 

Figure 4.10 (Continued) 
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data of each PKR subunit in the 5 trajectory replicates of the corresponding conditions. The RMSD 

analysis was performed only on the amino acids coordinated to K⁺ or Mg²⁺, using the backbone atoms 

as the fitting group, and calculating the RMSD concerning all their atoms. The ligands were not 

included in the analysis. 

 

Figure 4.11. RMSD values (nm) of the coordinated amino acids along the MD simulations. Data is presented as a row of box 

plots where columns correspond to the comparison of each holo condition with the apo condition. Each box plot contains 

the aggregated data of each PKR subunit in the 5 corresponding trajectory replicates of each condition. RMSD was calculated 

taking into account all atoms of the amino acids coordinated to K⁺ or Mg²⁺, and using the backbone atoms as the fitting 

group. The reference structure for the calculation in each box plot was the geometry‑optimized “small model” of the 

corresponding holo condition. The data of each MD condition is colored as follows: apo in blue, K‑holo in orange, K‑Mg‑holo 

in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in pink, and Full‑holo in gray. 

The analysis reveals that the metal centers of the holo conditions maintained a stable local 

conformation during the simulations. In general, RMSD values fluctuated around 1 Å when the protein 

region was constrained only by the K⁺ metal center (K‑holo, ADP‑holo). When the model included the 

Mg‑1 site and the PEP molecule (PEP‑holo, PEP‑ADP‑holo, Full‑holo) the region became stiffer with 

values below 1 Å. Conversely, the models with the Mg‑3 site (K‑Mg‑holo, FBP‑holo) reported 

moderately higher values, while still below 2 Å (disregarding outliers). The corresponding structural 

divergence for this range of RMSD values consists only in minor side‑chain fluctuations without 

backbone conformational changes (not shown). When it comes to the apo simulations, the analysis 

reveals that the region was twice as flexible, in general, given that there is a broader range of RMSD 

values centered around 2 Å. An exploration of the structures with RMSD values of 2 Å or higher 

revealed backbone conformational changes (not shown). All in all, the protein region of the metal 

centers had an overall higher conformational divergence in the apo condition than in the holo 

conditions. 

The structural variability of each metal‑center amino acid was further explored by calculating the 

RMSF of the side chains. In this case, the analysis was performed not only on the coordinated amino 

acids, but also on the rest of amino acids included in the cluster models. The results are shown in 

Figure 4.12, where the RMSF values (nm) are compared between conditions. Once again, each box 

plot in the figure contains the aggregated data of each PKR subunit in the 5 trajectory replicates of the 

corresponding conditions. For each analyzed residue, the backbone atoms were used as the fitting 

group, and the RMSF was calculated for the side‑chain atoms. 
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Figure 4.12. RMSF values (nm) of the amino acids of the cluster models along the MD simulations. Data is presented as a grid 

of box plots where rows correspond to each amino acid and columns correspond to the comparison of each holo condition 

with the apo condition. Each box plot contains the aggregated data of each PKR subunit in the 5 corresponding trajectory 

replicates of each condition. RMSF was calculated taking into account all side‑chain atoms of the corresponding amino acid, 

using the backbone atoms as the fitting group. The data of each MD condition is colored as follows: apo in blue, K‑holo in 

orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in pink, and Full‑holo in 

gray. 
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In accordance with the RMSD analysis, in general, each residue in the apo simulations had higher 

fluctuation than in the holo simulations. This is especially true for the amino acids that coordinate K⁺ 

with their side chain, namely Asn118, Ser120, and Asp156. Thr157 also coordinates K⁺ but with the 

oxygen atom of its backbone. Therefore, it maintained equivalent RMSF values both in apo and holo 

conditions. As for the amino acids that coordinate Mg²⁺, namely Glu315 and Asp339, they showed 

different behaviors depending on which Mg²⁺ binding site was modeled. With the Mg‑1 site, they 

drastically reduced fluctuation, whereas with the Mg‑3 site they had more variability, even displaying 

more fluctuation than in the apo condition in the case of Asp339. This observation correlates with the 

fact that these models showed a moderately higher flexibility in the RMSD analysis. 

Figure 4.12 (Continued) 
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The rest of the amino acids of the cluster model (i.e., not coordinated to the metals) display equivalent 

RMSF values between apo and holo conditions. As previously observed in the RMSD analysis, when 

the model contains the PEP molecule, the majority of amino acids become more rigid and thus adopt 

the lowest RMSF values with the smallest data variance. His121 behaves differently: it only decreases 

fluctuation when ADP is included in the active site, which proves that this amino acid is indeed involved 

in ADP binding. 

4.1.2.3.3 Relative abundance of coordination numbers 

Up to this point, the trajectory analyses have shown that the developed bonded parameters for the 

metal centers succeed in modeling stable structures that represent the holoenzyme conditions of the 

system. To supplement these results, the last analysis focused on evaluating the non‑bonded portion 

of the metal‑center parameterization approach. Specifically, the surroundings of the metal centers in 

simulation were explored to determine whether the coordination spheres are spontaneously 

completed or not, in accordance with the expected coordination sites. With this aim, a count was 

made of the number of instances in which other molecules can be found closer than a distance 

threshold with respect to the metals. From these counts, it was possible to determine which 

coordination‑complex configurations have occurred along the simulations, along with their relative 

abundance. 

Water molecules are mainly the expected coordination ligands, in accordance with the experimental 

evidence provided by the crystallographic structures. However, the simulation also contains ions in 

solution, thus they have been also considered as coordination ligand candidates. Finally, Glu161, even 

if not a putative coordination ligand of K⁺, was confirmed to be able to interact with the metal for 

short spans of time, being close enough to consider this interaction as possible. 

The chosen distance cutoff depended on the analyzed pair of metal and coordination ligand. Starting 

from the tentative guess of 3.5 Å, each type of cutoff was empirically adjusted until the number of 

reported false positives was minimized without compromising the true positives. A false positive could 

occur, for instance, when the oxygen atom of a water molecule is indeed found within the distance 

cutoff but in an improper orientation to interact with the metal. For the K⁺ metal center the final cutoff 

values were the following: 3.1 Å for water (oxygen atom), 3.5 Å for Cl⁻, and 3.1 Å for Glu161 (either of 

the oxygen atoms of its side‑chain carboxylate group). For the Mg²⁺ metal centers: 2.8 Å for water 

(oxygen atom), and 3.5 Å for Cl⁻. The trjorder tool from GROMACS was used to provide the occurrences 

in each trajectory snapshot. 

By integrating the data from each type of probed coordination ligand, the different possible 

coordination‑complex configurations or states were identified. Figure 4.13 shows the relative 

abundance of each state found in simulation, for each metal center in each holo condition. In the case 

of K⁺, a few states with less than 0.1 % of abundance were dismissed because they corresponded to 

negligible convoluted configurations (for instance, the coincidental presence of water molecules, Cl⁻ 

and Glu161 at the same time, or similar variations) and are not included in the figure. The featured 

states are defined in the bottom table of each bar plot (12 for cofactor K⁺, 5 for cofactor Mg²⁺, and 5 

for ADP‑bound Mg²⁺). The interaction of the side chain of Glu161 (symbolized RCOO⁻) with K⁺ was 

simplified as a single contact regardless of whether one or both oxygen atoms of the carboxylate group 

participate in the interaction. The figure contains the aggregated data of each PKR subunit in the 5 

corresponding trajectory replicates of each condition. 
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Figure 4.13. Relative abundance (%) of the states of transient coordination ligands of each metal center. The breakdown of 

the possible states is given in a tabular format, where rows specify the molecule species and columns contain the aggregate 

contents of each state. The number of molecule species (water, Cl⁻ ions or carboxylate groups (RCOO⁻)) is indicated by the 

number of black circles in each cell. Then, each column defines the region of the horizontal axis that corresponds to each 

state in the bar plot. Each bar plot contains the aggregated data of each PKR subunit in the 5 corresponding trajectory 

replicates of each condition. (a) States of the metal center of cofactor K⁺. (b) States of the metal center of cofactor Mg²⁺. (c) 

States of the metal center of the ADP‑bound Mg²⁺. 

Regarding the K⁺ metal center (Figure 4.13a), in the absence of PEP the most abundant state was that 

with a single coordinated water molecule (38‑46%). This observation matches the results of the 

geometry optimization of the “small model” of K‑holo, in which one of the water molecules that was 

intended to coordinate K⁺ moved away, leaving K⁺ in a 5‑coordinate state. However, this configuration 

was closely followed by the 6‑coordinate state with 2 water molecules (25‑37%). The state without 

water molecules was the third most abundant (8‑21%), followed by the state with 3 water molecules 

(5%). The state with 4 water molecules is negligible. 

Remarkably, the only conditions where Cl⁻ ions in solution were detected to occasionally bind to K⁺ 

(4‑7%) were those when the Mg‑3 site was occupied (K‑Mg‑holo and FBP‑holo). This observation could 
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be related to the hypothesis of Zhong et al. [137] whereby the Mg‑3 site could work as a priming 

mechanism to attract the next PEP molecule, which is negatively charged like Cl⁻. Figure 4.14a shows 

an instance of the 6‑coordinate K⁺ metal center with a coordinated water molecule and Cl⁻. When the 

model included PEP without ADP, the most abundant state (68%) was that with one coordinated water 

molecule (therefore, a 6‑coordinate state). However, the state without water also frequently occurred 

(30%). With both PEP and ADP, both states occurred with a similar frequency (44‑54%). All in all, the 

K⁺ metal center has been found to be stable both with 5 or 6 coordination ligands. 

In addition to the coordinated water molecules, the exploration of the structures in this analysis also 

allowed capturing in simulation the stabilizing water molecule near the K⁺ metal center that was 

modeled in the PEP‑holo condition following the experimental evidence of structure 4HYV (Figures 

4.2c and 4.3g‑i). This water molecule makes H‑bonds with Asn118, Ser120, and the phosphate group 

of PEP, and can be seen in Figure 4.14b. 

In the presence of ADP, the states of Glu161 coordinated to K⁺ become non‑negligible (1‑3%). This 

could be related to the fact that the B domain of the protein tends to adopt the fully closed 

conformation when ADP/ATP is bound, therefore Glu161 would have more chances to be found close 

to K⁺. Figure 4.15a‑b shows a sequence of two close snapshots in simulation where firstly Glu161 is 

coordinated to K⁺ and later it abandons its coordination site as two water molecules nearby establish 

new coordination bonds with K⁺. Figure 4.15c shows an instance of the K⁺ metal center with one 

coordinated water molecule and a bidentate coordination of Glu161. 

Regarding the Mg²⁺ metal centers (Figure 4.13b‑c), no coordinated Cl⁻ were ever detected; just water 

molecules. There is almost no variability of the configurations, with the 6‑coordinate states being the 

predominant (other configurations with coordination number less than 6 are negligible). The Mg‑3 

site always had 4 coordinated water molecules and adopted an octahedral geometry. An instance of 

this metal center can be seen in Figure 4.14a. The Mg‑1 site nearly always was found with 1 

coordinated water molecule and adopted an octahedral geometry, except in a few snapshots where 

such coordination site was empty (1%). An instance of the predominant state of this metal center can 

be seen in Figure 4.14b. Incidentally, the figure also features a Na⁺ ion that is interacting with PEP 

beside the Mg‑1 site, thus illustrating that the parameterization approach is compatible with the 

modeling of spontaneous interactions with free ions in solution. Lastly, the ADP‑bound Mg²⁺ always 

had 3 or 4 coordinated water molecules in the presence or absence of PEP, respectively, and adopted 

an octahedral geometry. 

Finally, these results are alternatively reported in the form of the relative 𝛥𝐺 (kJ·mol⁻¹) between the 

states of each metal center in each holo condition. To perform the calculations, Equation 3.4 was 

employed, setting the most abundant state in each case as the reference state. Such results are shown 

in Figure 4.16. An interesting remark is that in the K⁺ metal center a similar pattern of relative 

stabilities can be seen between the states according to both the number of coordinated water 

molecules and the number of coordinated Cl⁻ or RCOO⁻. 
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Figure 4.14. Instances of 6‑coordinate states of the metal centers of cofactors K⁺ and Mg²⁺ in MD simulation. The figure 

shows the components of the coordination complexes (in licorice or sphere representations) as well as other water molecules 

and ions that surround the metal centers (in line or sphere representations). The relevant residues are labeled, and their 

components are colored according to atomic species. The rest of the local region of the protein is included with a gray surface 

representation. All coordination bonds and H‑bonds are shown as black dashed lines. (a) A Cl⁻ ion in solution coordinates K⁺. 

The Mg²⁺ metal center is located at the Mg‑3 site. (b) The stabilizing water molecule of the K⁺ metal center was captured in 

action. The Mg²⁺ metal center is located at the Mg‑1 site and features a Na⁺ ion in solution interacting with PEP. NOTE. 

Abbreviations: Wat, water. The images were generated with the software VMD. 



 Results 

141 
 

 

 

Figure 4.15. Instances of different states of transient coordination ligands of the metal center of cofactor K⁺ in MD simulation. 

The figure shows the components of the coordination complex (in licorice or sphere representations) as well as other water 

molecules that surround the metal center (in a line representation). The relevant residues are labeled, and their components 

are colored according to atomic species. The rest of the local region of the protein is included with a gray surface 

representation. All coordination bonds and H‑bonds are shown as black dashed lines. (a‑b) A sequence of two close snapshots 

in simulation where firstly Glu161 is coordinated to K⁺ and later it abandons its coordination site as two water molecules 

nearby establish new coordination bonds with K⁺. (c) K⁺ is seen with one coordinated water molecule and a bidentate 

coordination of Glu161. NOTE. Abbreviations: Wat, water. The images were generated with the software VMD. 
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Figure 4.16. Relative free‑energy differences between the states of transient coordination ligands of each metal center. The 

horizontal axis shows the possible states according to the number of coordinated water molecules (as indicated by the 

number of black circles), whereas the states that incorporate either Cl⁻ ions or carboxylate groups (RCOO⁻) are indicated by 

the vertical dashed arrows. Each plot contains the aggregated data of each PKR subunit in the 5 corresponding trajectory 

replicates of each condition. (a) States of the metal center of cofactor K⁺ in separate plots per holo condition. (b) States of 

the metal center of cofactor Mg²⁺ in separate plots per holo condition. (c) States of the metal center of the ADP‑bound Mg²⁺ 

in separate plots per holo condition. 
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Figure 4.16 (Continued) 
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4.1.3 Consensus Essential Dynamics Analysis 

Following the structural and geometric analyses of the trajectories, we now delve into the extraction 

and analysis of actual dynamical features. The results presented in this section constitute the outcome 

of the central endeavor of the thesis. The conducted experiments are based on the traditional 

methodology of trajectory analysis known as Essential Dynamics Analysis (EDA). In the paradigm of 

EDA, the underlying collective motions of the trajectory are explored through the application of a 

dimensionality reduction technique, namely, Principal Component Analysis (PCA). The aim of this 

procedure is to ascertain potential mechanistic interpretations of the observed motions on the basis 

of the known biological function of the protein. 

As detailed in the Methods chapter, PCA can be employed to determine a subset of collective variables 

(CVs) that capture the maximum amount of variance of the dataset. These CVs extend along directions 

that are mathematically characterized by an orthonormal basis of eigenvectors. In turn, each 

eigenvector comes with its respective eigenvalue, which quantifies the relative portion of variance 

captured along the direction of the vector. The new coordinates are called the Principal Components 

(PCs). The projection of the original data of the trajectory onto a reduced number of PCs reveals the 

relevant correlated atomic displacements along the directions of the dataset. 

One of the main motivations of this thesis is to investigate the utilization of EDA as the basis for a 

novel methodology that facilitates the integration of the PCA output from independent trajectories of 

a system within a unified framework. This approach enables the characterization of the dynamical 

traits of the biomacromolecule under examination that are broadly manifested among the replicates 

of a single reference condition. In turn, it provides quantitative indicators for comparison of such 

reference traits with alternative conditions (e.g., apo vs. holo, or WT vs. mutant variants). The method 

has been termed Consensus Essential Dynamics Analysis (CEDA).  

The CEDA strategy consists in deriving a set of Consensus Principal Components (CPCs) by applying a 

clustering algorithm on the most relevant eigenvectors obtained from the standard PCA of each 

individual trajectory. The centroid vectors of the resulting clusters bear the CPCs of the trajectory 

ensemble. CPCs accentuate the common qualities of the collective motions described by the members 

of the cluster, such that: i) the predominant fraction of the shared collective motion is maintained or 

emphasized, and ii) the minor variations displayed only by sporadic cases are filtered out or 

dampened. The analysis of the projections of the involved trajectories to the single consensus set 

facilitates the comparison of the different simulation conditions in a consistent way. 

The implementation of this method is progressively presented with more detail throughout this 

section as the corresponding results of the analysis of PKR are reported. With the following 

experiments, the aim was to design and test the protocol based on its conceptual idea while 

simultaneously conducting the study of the dynamic behavior of the protein in a manner similar to 

traditional EDA. The corresponding analyses were applied on the portion of each trajectory that 

excludes the initial relaxation phase of 25 ns that was determined in section 4.1.2.1. Thus, the 

analyzed trajectories have a length of 375 ns each. To illustrate and discuss the collective motions of 

interest, schematic representations of the analyzed structures are provided, depicting several of the 

relevant conformations along the path of the motions. To facilitate a more detailed inspection of the 

motions, supplementary videos have been generated and are available as part of the supplementary 

material of this thesis (see Appendix A). 
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4.1.3.1 Collective motions of domains within the PKR monomer: the A 

and B domains 

PKR is a modular enzyme that does not only fold into distinct domains but also oligomerizes into a 

symmetric tetramer. This fact implies that the function of PKR does not solely rely on the local 

arrangement of catalytic residues at the active site, but also on the orchestrated intercommunication 

between modules and functional sites. This degree of structural and dynamical complexity is what 

precisely confers the enzyme with its full range of allosteric capabilities. 

The speculated conformational transitions between the T (inactive) and the R (active) states of the 

enzyme (Figure 1.12 from the Introduction chapter) embody this behavior. The structural 

rearrangements traditionally described in the proposed models have been found by comparison 

between static structures of pyruvate kinases, and are a summarized version of the actual dynamical 

events taking place. Assessing the mechanism of transmission of dynamical information at the level of 

each decomposed motion is critical to having a complete view of the function of the enzyme. Domains 

in contact, via either flexible hinges or interfaces, undergo the motions of individual interest that can 

be studied to reveal different features of the dynamical behavior of the protein (symmetrical vs. 

independent transitions, rigid‑body motions vs. internal rearrangements). 

In particular, within the monomeric structure of PKR, domains are inherently able to move relatively 

to each other as suggested by the high flexibility of the joint regions according to the RMSF analysis 

(section 4.1.2.2). The monomer represents the basic unit of the architecture of the protein. Therefore, 

the characterization of such motions is a crucial starting point towards the general understanding of 

the function of the enzyme coupled to dynamics. 

The collective motions between the A and B domains are of high relevance as they imply direct 

changes in the environment of the active site. Trajectory analyses via RMSD and RMSF have shown 

that the B domain tends to exhibit the highest structural mobility of the monomer, with its dynamical 

behavior being potentially uncoupled between subunits. These features make this region a suitable 

candidate to begin extracting dynamical features and establishing a comparative framework to assess 

the persistence or absence of collective motions between trajectory replicates and conditions. 

4.1.3.1.1 Derivation of CPCs of the WT apo condition 

The reference condition for extracting the set of CPCs was the WT apoenzyme. Accordingly, PCA was 

applied to each trajectory of this condition. The analysis was enriched by treating all individual 

monomeric instances of the A and B domains as separate trajectories of the same system, due to their 

symmetrical locations within the tetramer and their analogous role from a dynamical point of view. 

Therefore, from the 5 simulations of the WT apo tetramer, 20 actual trajectory replicates of the A and 

B domains (one per monomer) were available and employed. Throughout this section, each trajectory 

replicate will be designated by the number of the simulation (#1 to #5) and the chain ID of the 

monomer (A, B, C, or D) (for example, replicate #3‑D refers to the trajectory of the subunit with chain 

ID “D” of the third simulation of the tetramer). 

Prior to the covariance calculation, an indispensable step in CEDA involves aligning the structures of 

all the analyzed trajectories to a single reference structure. This ensures that the structural 

coordinates of all the sampled conformations can be equivalently expressed in terms of either the CVs 

or the original three‑dimensional Cartesian coordinates with a common mathematical transformation, 
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applicable to all trajectories. The average structure of all monomeric trajectories of PKR was generated 

and used as the general reference for the structural superposition (least‑squares fitting). The A domain 

was chosen as the fitting group for the removal of the rotational and translational components. Due 

to its rigidness, the A domain constitutes a stable reference region to orient all trajectories and 

facilitate inspection of the relative motions of the B domain with respect to the A domain. Only the 

Cα atoms of the structure (347 atoms) were considered in the analysis, therefore each PCA yielded a 

set of 1041 eigenvectors. 

Subsequently, a clustering analysis was conducted with the pool of eigenvectors generated from the 

multiple PCAs. A primary decision at this stage involved determining the quantity of eigenvectors to 

incorporate into the clustering analysis. It is crucial to import a minimum threshold of eigenvectors 

from each trajectory that ensures the acquisition of a significant fraction of data variance. Thus, the 

chances of detecting similar collective motions between trajectories will be maximized, irrespective 

of whether they appear in the same PC indices. On the other hand, the inclusion of an excessive 

number of eigenvectors may introduce noise and unnecessarily slow down the calculation. To address 

this question, the percentage of variance explained by the PCs was explored. Figure 4.17 shows the 

mean values of variance (individual and cumulative) explained by PCs #1 to #30 of the 20 trajectory 

replicates. 

 

Figure 4.17. Percentage of variance explained by the PCs of the A and B domains in the WT apo condition. Data corresponds 

to the mean values from the first 30 PCs of the 20 trajectory replicates of the experiment. Standard deviation intervals are 

included as error bars. 

The figure suggests that the third PC may mark the “elbow” point beyond which the subsequent PCs 

only provide marginal information. PCs #1 to #3 accounted for around 80% of cumulative variance, 

which is typically an acceptable cutoff in EDA studies. However, a greater number of eigenvectors 

were incorporated in the clustering analysis to determine whether analogous minor collective 

fluctuations among replicates occur and to assess the sensitivity of CEDA in detecting them. The 

following two criteria were established. First, a minimum of 6 eigenvectors per replicate were 

included, given that PC #6 is the last PC that individually captures more than 1% of variance and the 

first that accumulates more than 85% of variance on average. Second, the remaining eigenvectors 

were also included until either gathering a 95% of cumulative variance or reaching a maximum of 20 

eigenvectors per replicate. 
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The cosine content of the PCs of all the selected eigenvectors was calculated. This measure provides 

a qualitative indicator for determining whether sufficient sampling time has been achieved to ensure 

a reliable physical significance of PCs. The cosine content value expresses the resemblance of the 

variation of PC values along the trajectories to cosine‑shaped curves, ranging from 0 (no cosine shape) 

to 1 (perfect cosine shape). High cosine contents are indicative of PCs describing protein dynamics in 

barrier‑free diffusive events less meaningful than the biologically relevant atomic displacements. In 

protein MD simulations, a cosine content lower than 0.5 is considered to be acceptable to proceed 

with EDA [334], [397], [398], [500]. 

Figure 4.18 shows that the vast majority of PCs exhibit cosine content values below 0.5, suggesting 

that reasonable local conformational sampling of the A and B domains was achieved and, thus, PCs 

reflect biologically relevant dynamical features. Only two instances of high cosine content were found. 

These correspond to the PC #1 of trajectory replicates #4‑B and #5‑D, with values 0.77 and 0.57 

respectively. This fact does not entail their automatic exclusion from further analysis, since even when 

sufficient sampling quality is achieved, PCs may display cosine‑like shapes by chance if they describe 

an actual transition of the system from one state to another. This possibility should not be considered 

if high cosine content values had been obtained in a generalized manner, which would indicate poor 

sampling and therefore require caution when continuing the analyses. The significance of the two PCs 

of high cosine content shall be assessed in the light of the clustering analysis, which may clarify 

whether they represent meaningful collective motions comparable to those observed in other 

trajectory replicates. 

 

Figure 4.18. Cosine content values of the PCs considered in the CEDA of the A and B domains in the WT apo condition. The 

cutoff value of 0.5 below which the sampling is considered to be acceptable in protein dynamics is shown with a horizontal 

dashed black line. 

To perform the clustering, a dissimilarity matrix between pairwise eigenvectors of the analysis was 

generated employing the cosine distance (derived from the calculation of the cosine similarity in 

absolute value; thus, bounded in the interval [0, 1]). An agglomerative hierarchical clustering 

algorithm was applied to the dissimilarity matrix, using the average‑linkage method to calculate the 

distance between clusters in each combination step and construct a dendrogram. A cophenetic 

distance cutoff of 0.4 was applied to split the dendrogram and obtain clusters. Finally, from the 

resulting clusters, those with at least 20% of coverage (i.e., with a representation of at least 4 out of 
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the 20 trajectory replicates that participate in the clustering) were retained, yielding a total of 10 

relevant clusters that describe a consensus behavior. The other minor clusters were discarded. Figure 

4.19 shows the corresponding dendrogram, highlighting the important elements of the process to 

facilitate visualization of the results. 

A primary exploration of the dendrogram reveals two distinctive main families of clusters. The first 

family, located in the lower section of the dendrogram, comprises 3 large clusters (clusters #2 to #4) 

and a few eigenvectors that do not form relevant clusters. These 3 major clusters are of particular 

significance, as they include representation of all or most trajectory replicates and exhibit high 

similarity values. They emerge prominently at low values of cophenetic distance, ranging from 0.02 to 

0.15, in the form of smaller clusters that rapidly expand and merge into larger ones with increasing 

cophenetic distance. 

Clusters #3 and #4 hit their maximum sizes, consisting of 20 and 19 members, at values of 

approximately 0.24 and 0.27 respectively. In terms of coverage, the former is the only cluster that 

achieves a 100% coverage (i.e., it is composed of exactly one eigenvector instance from each of the 20 

trajectory replicates), suggesting the presence of an ubiquitous collective motion. The latter reaches 

95% of coverage, meaning that the corresponding collective motion is also predominant but 

potentially absent in one trajectory, namely, replicate #1‑A. Cluster #2 is less compact and consists of 

17 members. It starts forming at 0.15 and continues to incorporate members until approximately 0.37, 

at which point it has an 85% of coverage and lacks participation from trajectory replicates #1‑B, #2‑A, 

and #3‑D. Notably, cluster #2 could gain three additional members by merging with cluster #1 (a minor 

cluster with 15% coverage) at approximately 0.44. However, the newcomers would only incorporate 

representation from the first two absent trajectories, while a trajectory already present in the cluster 

would double its representation. For this reason, the merged version of the cluster would only reach 

95% of coverage instead of 100%. The repeated trajectory is replicate #1‑A, which incidentally is the 

absent trajectory at cluster #4. 

The second family of clusters of the dendrogram is characterized by scattered eigenvectors that only 

form smaller clusters of both lower similarity and coverage values. Cluster #23 has 35% of coverage, 

while clusters #24, #26, #28, #29, #31, and #34 have exactly 20% of coverage. This section of the 

dendrogram is sensitive to readjustments in the criteria for selecting the relevant clusters. For 

instance, increasing the cophenetic distance cutoff to 0.45 would result in several changes: i) the 

minor clusters #11 and #12 would merge and comply with the minimum size and coverage to become 

relevant; ii) cluster #23 would gain a new member, increasing its coverage from 35% to 40%; and iii) 

clusters #28 and #29 would merge, combining their individual 20% coverage into 40%. Conversely, by 

decreasing the cutoff to 0.35, clusters #24 and #34 would no longer be relevant, while cluster #23 

would lose a member that would reduce its coverage from 35% to 30%. A more restrictive cutoff of 

0.3 would filter out all clusters except #23, which would still retain a 20% coverage. Due to such 

instability in the number of relevant clusters in this section of the dendrogram, the criterion was simply 

to establish the cophenetic distance cutoff that best elucidates the 3 main clusters of the first family. 

As described above, 0.4 is a cutoff that optimizes the maximum coverage of cluster #2 without 

incorporating redundant provenances. 
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Figure 4.19. Dendrogram of the CEDA of the A and B domains in the WT apo condition. The cophenetic distance cutoff of 0.4 

used to split the dendrogram and obtain clusters is shown with a vertical black line. Non‑singleton clusters are shown in 

various colors to facilitate visual identification. The 10 clusters with at least 20% of coverage were selected to acquire the 

Consensus Principal Components (CPCs) of the experiment. CPCs were numbered from #1 to #10 in decreasing order of 

coverage and average percentage of variance of their cluster members. The figure indicates which clusters yielded each CPC, 

together with their achieved coverage. At the left margin of the dendrogram, the span of the detected families and 

subfamilies of clusters is indicated with labeled curly brackets. 
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On the other hand, the minimum percentage of coverage is also a subjective parameter that highly 

influences the number of retained clusters of the second family. With a coverage greater than 20% as 

a requirement for consensus behavior, 6 clusters would be discarded. In contrast, by lowering the 

minimum coverage to 15%, 5 additional clusters would be retained. In this case, the cutoff was finally 

set to 20%, which allowed the exploration of a reasonable number of consensus collective motions. 

The only trajectories that had no representation in any cluster of the second family were replicates 

#1‑A and #4‑B. 

The next step in CEDA involved computing the centroid (average) vector of each selected cluster. 

Vectors within the same cluster may point in opposite directions, describing similar collective atomic 

displacements albeit reversed. Therefore, this step required choosing a reference direction in each 

cluster and then flipping all opposite vectors before computing the corresponding centroids. The 10 

centroid vectors resulting from this experiment represent the set of CPCs of the 20 trajectory 

replicates of the A and B domains of the WT apo condition. CPCs were numbered from #1 to #10 in 

decreasing order of coverage and average percentage of variance of their cluster members. 

The collective motion described along each CPC was examined by projecting trajectory data onto the 

centroid vectors. Besides the structural superposition to the global average structure of the A and B 

domains with the former as the fitting group (applied previously, in the PCA stage), the inspection of 

the CPCs also requires a data centering of the aligned trajectories around the very same average 

structure so that it represents the origin of the system of coordinates. 

Characterizing and conveying the observed motions requires establishing a supporting terminology to 

unambiguously refer to: i) the involved parts/regions of the structure, ii) the referential points of views 

from which they are observed, and iii) the nature and path of the movement. For that purpose, certain 

terms and conventions from descriptive geometry (reference system of 3D views) and mechanics 

(mechanical degrees of freedom of movement of rigid bodies) were adopted. This terminology was 

complemented with analogies to real‑world objects or situations, or references to the actual function 

of the motion in the context of the protein, which serve to summarize the set of technical terms into 

a plainer language. Figure 4.20 shows schematic diagrams of the A and B domains with the 

terminology that will be employed in this section. The mechanical degrees of freedom of the B domain 

as a rigid body describe its primary rotational (yaw, roll, and pitch) and translational (heave, surge, 

and sway) directions of motion. Three main points of reference (top, side, and front views) will be 

used to orient the protein region and show images of its structure. On the basis of this terminology, 

Figure 4.21 shows schematic representations of the path and extreme conformations of the collective 

motions from CPCs #1 to #10. Finally, these motions can also be viewed in the Supplementary Videos 

S4.1 to S4.10. 
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Figure 4.20. Schematic diagrams of the A and B domains of PKR. Various markers indicate the terminology to refer to (a) the 

regions, the reference views and (b) the directions of motion along the six mechanical degrees of freedom of the B domain 

as a rigid body. The A and B domains are colored in red and blue, respectively. NOTE. The 3D schematic models were built 

with the software Blender [136]. 

 

Figure 4.21. Consensus collective motions of the A and B domains in the WT apo condition. (a‑j) Schematic representations 

of the path and extreme conformations of the motion captured in each CPC from #1 to #10. In each panel, the protein 

domains are depicted with the diagrams of Figure 4.20 (left) and with the trace representation between Cα atoms (center 

and right). The diagram representation and markers of motion are omitted in (j), which instead shows a few intermediate 

conformations of the L‑Bβ5‑Bβ6 loop in transparent gray. The A and B domains are colored in red and blue, respectively. 

These motions can also be viewed in the Supplementary Videos S4.1 to S4.10. NOTE. The images of the protein structure 

were generated with the software VMD. The 3D schematic models were built with the software Blender. 
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Figure 4.21 (Continued) 
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Figure 4.21 (Continued) 
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CPCs #1, #2, and #3 arose from the three major clusters of the experiment, located in the first family 

of clusters of the dendrogram (see Figure 4.19). These clusters agglomerated the eigenvectors with 

higher eigenvalues, mostly corresponding to PCs with indices #1 to #3. The collective motions captured 

in these CPCs have large amplitudes of motion and reveal the space of highest conformational 

freedom of the B‑domain oscillations. The collective motion captured by CPC #1 (Figure 4.21a, 

Supplementary Video S4.1) shows the B domain undergoing a combination of pitch and surge that 

results in a hammer‑like swinging motion. This movement coincides with the classically described 

transition between the ligand‑bound and ‑unbound states in crystallographic structures, namely, the 

opening/closing of the active site with the B domain acting as a lid to cover or uncover the top of the 

A domain. The collective motion captured by CPC #2 (Figure 4.21b, Supplementary Video S4.2) shows 

a combination of yaw, roll, and sway that results in the B domain describing an arc from side to side 

with its frontal region, also ascending and descending along the first and second halves of the path of 

motion, respectively. This complex motion can also be understood as the combination of a 

metronome‑like and a camera‑panning–like swinging motions. Finally, the collective motion captured 

by CPC #3 (Figure 4.21c, Supplementary Video S4.3) shows the B domain undergoing a gyration about 

an axis that coincides with the overall direction of the hinge between domains. 

Remarkably, the two PCs that displayed high cosine content (Figure 4.18), namely, the PC #1 of 

trajectory replicates #4‑B and #5‑D, were found to be perfectly integrated in CPCs #1 and #3, 

respectively. This observation confirms that the collective displacement of coordinates captured by 

these PCs corresponded to biologically relevant dynamical features, equivalent in nature to those of 

other trajectory replicates, despite their PC projection values having stronger resemblance to cosine 

shapes. 

On the other hand, CPCs #4 to #10 arose from the smaller clusters of the experiment, located in the 

second family of clusters of the dendrogram. The collective motions of these CPCs correspond to 

B‑domain oscillations with considerably smaller amplitudes of motion. Interestingly, within this family 

of clusters, an additional subdivision allows us to distinguish between two subfamilies (Figure 4.19). 

The two subfamilies correlate with the nature of the captured collective motions. CPCs #4 to #9 belong 

to the first subfamily, which comprises rigid‑body motions of the B domain. CPC #10 belongs to the 

second subfamily, which instead is characterized by local rearrangements of the structure of the B 

domain. Such a distinction was confirmed by inspecting the collective motions of both the involved 

CPCs and several other minor clusters or individual PCs. 

Moreover, there is a correlation between the two subfamilies and the range of PC indices that they 

agglomerated. The CPCs from the first subfamily comprise PCs with indices mainly between #4 and 

#6, with only a few instances of #7 and #8. Conversely, the CPC from the second subfamily resulted 

from the consensus between PCs with indices #13, #14, and #20. This observation suggests that the 

consensus dynamics among trajectory replicates of this protein region occurred within the 85% of 

cumulative variance on average (Figure 4.17), and that PCs that captured less than 1% of the variance 

had low or null similarity. 

The collective motions captured by CPCs #4 to #10 (Figures 4.21d‑j, Supplementary Videos S4.4‑S4.10) 

can be described as follows. CPC #4: a combination of roll, pitch, and yaw that results in the gyration 

about an axis perpendicular to the hinge between domains (a gyration perpendicular to that of CPC 

#3). CPC #5: a combination of roll, heave, and sway that results in a variation of roll with the top‑left 

region acting as the pivot point. CPC #6: a combination of pitch, heave, and surge that results in a 



 Results 

155 
 

variation of pitch with the top‑back region acting as the pivot point. CPC #7: a variation of CPC #5 that 

adds a component of yaw. CPC #8: a vertical shift (heave) that makes the hinge between domains 

stretch or compress. CPC #9: a combination of pitch and surge that results in a playground‑swing–like 

swinging motion. CPC #10: the local fluctuation of the L‑Bβ5‑Bβ6 loop. 

It is important to point out that the collective motions of the B domain were also accompanied by 

certain local fluctuations of the A domain. However, these were not distinctive of particular CPCs but 

repeatedly appeared in most of them, irrespective of the nature of the corresponding B‑domain 

motion. Such local fluctuations mainly involve the most flexible loops of the A domain that were 

previously detected via the RMSF profiles (Figure 4.8), namely, L‑Aβ2‑Aα2 (residues 119‑122), 

L‑Aα2‑Aβ3 (residues 141‑147), and L‑Aα4‑Aβ5 (residues 304‑306). What is the significance of such 

ubiquitous fluctuations in the context of CEDA? Remarkably, the incidence of these loop fluctuations 

was substantially lower, or almost null, in CPCs #1 to #3. This last observation is indicative of them 

potentially occurring by chance as background noise, rather than in a concerted manner with the 

diverse B‑domain oscillations. This is because the lower incidence of the fluctuations in CPCs of high 

coverage (i.e., CPCs #1 to #3) can be explained as the result of a more representative average behavior 

in contrast to that of CPCs with lower coverage. 

This question was elucidated by examining the variance of the components of the clustered 

eigenvectors of each CPC. Vector components of eigenvectors represent the relative contribution of 

each atom to the displacement in the X, Y, and Z directions along the correlated motion of the 

corresponding PC. For instance, Figure 4.22 shows the plots of the X‑, Y‑, and Z‑components of the 

centroid vector (mean values ± standard deviation) of the cluster that produces CPC #2. Reminiscent 

of RMSF profiles, the plots show that the B domain undergoes a correlated displacement as a block in 

the three spatial directions along CPC #2. The standard deviation interval illustrates the differences in 

orientation that the B domain adopts among replicates for the same overall motion. In other words, 

the collective motion does not occur along a unique clean path; the CPC represents the average path 

among the possible variations of the motion. Conversely, the vector components that relate to the 

A‑domain flexible loops consist of a set of opposite values that cancel out upon averaging. Thus, CPC 

#2 displayed almost no fluctuation of these regions, in contrast to the majority of the individual 

trajectories that belong to the cluster, as shown in Figure 4.23. In CPCs with lower coverage, the 

attenuation was less perceptible due to the lower amount of structural divergence at these positions. 

In conclusion, the fluctuations of the A‑domain flexible loops appeared correlated with other motions 

by chance due to their high dynamical activity, although they oscillated in divergent directions with 

lack of consensus when accompanying the larger displacements of the B domain. This denoising effect 

achieved in CEDA precisely accords with the rationale behind the design of this strategy. When 

different correlated motions are truly concerted, CPCs provide the consensus paths of motion. 

Otherwise, random correlated fluctuations become attenuated or neutralized. As a result, CPCs render 

a denoised version of the predominant collective motion. As argued in the Discussion chapter, the 

performance of CEDA depends on the chosen method and parameters for the calculation of 

eigenvector similarity. 
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Figure 4.22. Vector components of the centroid vector of CPC #2 of the A and B domains in the WT apo condition. The X‑, Y‑, 

and Z‑components are colored in red, green, and blue, respectively. Data corresponds to the mean values of the 

corresponding cluster of eigenvectors ± their standard deviation (shaded intervals). The A domain comprises residue IDs 85 

to 159 and 163 to 431, while the B domain comprises residue IDs 160 to 262. The location of the A‑domain loops L‑Aβ2‑Aα2 

(residues 119‑122), L‑Aα2‑Aβ3 (residues 141‑147), and L‑Aα4‑Aβ5 (residues 304‑306) is highlighted with the dashed black 

rectangles. 
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Figure 4.23. Local fluctuations of L‑Aβ2‑Aα2 along CPC #2 of the A and B domains in the WT apo condition. Structures are 

depicted with the trace representation between Cα atoms. In each panel, the initial conformations of the A and B domains 

are colored in red and blue, respectively. Structures colored in black correspond to the final conformations of the B domain 

and the L‑Aβ2‑Aα2 loop. Several intermediate conformations of the loop are also shown in transparent gray. (a) Example of 

dynamical divergence in two of the clustered eigenvectors. The tilting motion of the B domain from its rightward to its 

leftward orientation is accompanied by the fluctuation of the L‑Aβ2‑Aα2 loop in opposite directions between eigenvectors. 

(b) Attenuated fluctuation represented in the centroid vector (average behavior). The L‑Aβ2‑Aα2 loop barely fluctuates, with 

no discernible intermediate conformations. NOTE. The images were generated with the software VMD. 

4.1.3.1.2 Density distribution of projection values of CPCs in the WT apo condition 

After deriving the CPCs of the WT apo condition and revealing the corresponding consensus collective 

motions, the next stage revolved around a deeper characterization of the conformational distribution 

intrinsic to such motions. The distribution of projection values along each CPC was examined to 

determine whether certain conformations are more abundant within the span of the motions. This 

allows for ascertaining the conformational diversity among equivalent trajectories of the system, as 

well as studying the possible functional implications of both the motions and their most distinctive 

conformations. 

For that purpose, the Kernel Density Estimation (KDE) method was employed to estimate the 

probability density function of the range of projection values between the extreme positions of the 

motion. KDE facilitates representation of random data distributions in a similar manner as histograms, 

but with the advantage of providing a smooth continuous curve along the domain of values. The 

estimation requires choosing a value for a free parameter, called the bandwidth, which has an 

influence on the smoothness of the generated curve. Suboptimal bandwidth values may produce 

undesired effects: “under‑smoothed” curves contain too many spurious artifacts (spiky surface), 

whereas “over‑smoothed” curves obscure the informative variations in density of the underlying 

structure. The trials of KDE with our data showed marked tolerance (strongly conserved curve shapes) 

to diverse values of bandwidth. Since data was abundant (187501 analyzed frames per trajectory), the 

estimate robustly reproduced the true underlying densities. Ultimately, the empirical value of 0.3 was 

selected because it showed the best smoothness trade‑off. KDE curves were represented with 100 

points along the domain of the data. 
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Figure 4.24 shows the density distributions along CPC #1 for each trajectory replicate and for the 

aggregated projection data of the whole trajectory ensemble. Representative structures of the A and 

B domains at different projection values are included to inform about their correspondence with the 

range of conformations. Noticeably, both the shape and span of the distributions are diverse among 

replicates. Therefore, the collective motion along CPC #1 (the opening/closing of the active site) was 

manifested with different degrees of closure between equivalent trajectories. This was the case 

despite the motion being present in all 20 replicates with strong consensus features. In other words, 

this observation indicates that the fact that a consensus collective motion is detected in an ensemble 

of trajectories does not imply that the sampled amplitudes of motion are the same between the 

individual trajectories. 

Despite the wide conformational heterogeneity, certain regions of the spectrum concentrate more 

density and correspond to the conformations with higher sampling. These are reflected in the final 

distribution of the aggregated projection data, which is trimodal. The most frequent conformation 

comprises projection values around 1.6 and corresponds to a partially closed form of the B domain. 

This state is a local maximum of the distribution. Around the value of 4.5, although not manifested as 

a local maximum, another density concentration corresponds to a more open form of the B domain. 

Finally, the local maximum of less size around the value of ‑7.2 corresponds to a closed form of the B 

domain. The low levels of density at the extreme values of the spectrum suggest residual sampling of 

conformations with highly closed (negative extreme values) and highly open (positive extreme values) 

forms of the B domain. 

While some simulations individually covered a range of conformations of the spectrum, others mainly 

remained in a single conformation and its surroundings. The largest volume of sampled conformations 

differed from that of the original crystallographic structure of the simulations, the PDB entry 2VGB 

[121]. The projection values of 2VGB were determined by projecting its structural data onto the vector 

of CPC #1, with a procedure equivalent to that applied to trajectory data. The structure 2VGB is a WT 

holo PKR co‑crystallized with both cofactors K⁺ and Mg²⁺, the substrate analog phosphoglycolate and 

the allosteric effector FBP. All four subunits of 2VGB exhibit closed B domains, with projection values 

around ‑6 (marked with black vertical dashed lines in Figure 4.24b), near the local maximum of the 

closed forms in simulation. Therefore, it appears that the removal of ligands for simulation in the apo 

condition promoted the sampling of the more open forms of the B domain, as has been shown to 

occur frequently in apo PKs [119], [124], [135], [137], [139], [147], [160], [164]. 

In agreement with this idea, a more thorough exploration of the projection values as time‑series data 

along the course of each simulation showed that transitions occurred predominantly from closed to 

open forms (see the example of replicate #2‑A in Figure 4.25a). Nevertheless, the reverse transition 

(open‑to‑closed transition) was also detected, albeit in fewer instances (see the example of replicate 

#3‑B in Figure 4.25b), thus confirming that the apo protein is able to oscillate between both forms 

within the time span of these simulations. Moreover, one replicate even remained stable most of the 

time in the closed form (replicate #5‑D). On another note, the conformational profiles of the different 

replicates show further evidence of the lack of symmetry in the B‑domain conformations between the 

subunits of the tetramer, reinforcing the idea suggested in previous results of both this study and 

others [121], [132], [138], [164]. Otherwise, we should see roughly equivalent profiles between 

subunits of the same replicate in a more consistent way. 
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Figure 4.24. Density distributions along CPC #1 of the A and B domains in the WT apo condition. The highlighted region along 

the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the A and B domains at different intervals of projection values. 

Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted with the 

trace representation between Cα atoms. The A and B domains are colored in red and blue, respectively. NOTE. The images 

of the protein structure were generated with the software VMD. 
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Figure 4.25. Examples of time‑series projection values along CPC #1 of the A and B domains in the WT apo condition. Data 

from the first 25 ns of simulation was excluded from the analysis as it accounted for the initial relaxation phase. The darker 

line plotted alongside each time series represents the two‑sided moving average of the data, encompassing values up to 5 ns 

on either side of each point. The subplots at the right margin show the density of projection values as estimated with a KDE 

with bandwidth 0.3 (the distributions are equivalent to those shown in Figure 4.24 for the same trajectory replicates). The 

local maxima of the distributions are indicated with green lines and labeled arrows with the corresponding projection values. 

(a) Example of replicate #2‑A that underwent the predominant conformational transition of the trajectory ensemble, from a 

closed conformation to more open conformations. The simulation started in the closed conformation. Then, at the time 

interval between 80 and 90 ns, it shifted to the open conformations. (b) Example of replicate #3‑B that underwent both the 

forward and the reverse conformational transitions. The simulation balanced between the closed and open conformations, 

with the corresponding shifts at the time intervals between 70 and 80 ns, 150 and 160 ns, and 190 and 230 ns. 

The density distributions of projection values along CPCs #2 and #3 are shown in Figures 4.26 and 4.27, 

respectively. The clusters of these two CPCs did not have full coverage of all replicates. However, the 

few absent trajectories (labeled as “None” in the figures) do manifest certain degrees of 

conformational variance when projected along the directions of CPCs #2 and #3, especially the latter. 
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Figure 4.26. Density distributions along CPC #2 of the A and B domains in the WT apo condition. The highlighted region along 

the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier (labeled “None” when the replicate is absent from the cluster). 

(b) KDE curve of the aggregated projection data with representative structures of the approximate conformation of the A 

and B domains at different intervals of projection values. Vertical dashed lines indicate the projection values of the subunits 

of the structure 2VGB. Structures are depicted with the trace representation between Cα atoms. The A and B domains are 

colored in red and blue, respectively. NOTE. The images of the protein structure were generated with the software VMD. 

 



Chapter 4 

162 
 

 

Figure 4.27. Density distributions along CPC #3 of the A and B domains in the WT apo condition. The highlighted region along 

the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier (labeled “None” when the replicate is absent from the cluster). 

(b) KDE curve of the aggregated projection data with representative structures of the approximate conformation of the A 

and B domains at different intervals of projection values. Vertical dashed lines indicate the projection values of the subunits 

of the structure 2VGB. Structures are depicted with the trace representation between Cα atoms. The A and B domains are 

colored in red and blue, respectively. NOTE. The images of the protein structure were generated with the software VMD. 
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The distribution of CPC #2 is mainly unimodal, with a local maximum around the value of ‑1.6. 

However, it displays minor volumes of density at the region of positive values beyond the value of 4. 

Such a region was practically only sampled by four distinct trajectory replicates, namely, replicates 

#1‑B, #1‑D, #2‑C, and #3‑D, and corresponds to conformations with the B domain tilted to its left. Not 

surprisingly, the eigenvectors of these replicates have the highest eigenvalues of the cluster and bear 

the PC index #1, in contrast to the rest of the cluster members which have PC indices #2 and #3 (only 

one instance of the latter). 

The distribution of CPC #3 is unimodal and features heavy tails. Unlike the former two distributions, it 

is centered around the global average structure (i.e., the zero value). Interestingly, the structure 2VGB 

exhibits conformational heterogeneity among its subunits. While three subunits display projection 

values near 0, the remaining subunit displays a value near ‑2 that corresponds to a conformation of B 

domain with its frontal region slightly more oriented to its right. 

Figure 4.28 shows the density distributions along CPCs #4 to #10. This time, for the sake of brevity, the 

plots corresponding to each individual trajectory replicate have been omitted to show only the density 

of the aggregated projection data. The distributions of these CPCs mainly are unimodal, with different 

degrees of skewness, and are mostly centered around the global average structure. Only CPC #8 

appears to exhibit a minor volume of density further from the main region, at positive projection 

values beyond 1.5. The total span of projection values of the majority of these distributions is 

considerably narrower than that of the first three CPCs. All in all, these features suggest that these 

collective motions describe fluctuations around a single energy minimum per CPC. The conformational 

heterogeneity between the subunits of structure 2VGB is repeatedly exhibited in most CPCs. 

Density distributions may also be examined along several CPCs at once by arranging the corresponding 

projection data and applying KDE. Such multidimensional distributions provide more detailed 

topologies of the underlying conformational heterogeneity. For instance, an apparent concentration 

of density along one CPC may correspond to several distinct regions upon consideration of a second 

CPC. The interpretation of these topologies is similar to that of a free‑energy landscape, although 

inverted: conformational stability is represented with local maxima of frequency instead of local 

minima of energy. Figure 4.29 shows the pairwise two‑dimensional plots of CPCs #1 to #3, which are 

the most relevant. 

The comparison between CPCs #1 and #2 (Figure 4.29a) provides new insights in the interpretation of 

the characteristic conformations. While the distribution of CPC #2 alone may be described as unimodal 

(disregarding the scattered minor volumes of density), now two characteristic values can be 

distinguished within the major volume of density. One value coincides with the one‑dimensional peak 

(around the value of ‑1.6), while the other (around the value of ‑3) becomes more perceptible. 

Remarkably, the two‑dimensional distribution facilitates additional distinction of the open and 

partially closed forms of the B domain (values of CPC #1 around 4.8 and 2; now both manifested as 

local maxima) by these two values of CPC #2. Furthermore, the closed form of the B domain (value of 

CPC #1 around ‑7.7) mainly adopts the newly acknowledged characteristic value of CPC #2, which 

corresponds to a more rightward‑tilted B domain. In contrast, bimodality of CPC #2 becomes irrelevant 

in its comparison with CPC #3 (Figure 4.29c), whereby both motions are clearly describing the 

fluctuation around a single and wide conformational ensemble. Finally, the comparison between CPCs 

#1 and #3 (Figure 4.29b) reveals that the open and partially closed forms of the B domain are entirely 
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circumscribed in the central region of density of CPC #3, while the closed form defines a separate 

narrower conformational ensemble at the more negative side of the spectrum. 

 

 

 

 

Figure 4.28. Density distributions along CPCs #4 to #10 of the A and B domains in the WT apo condition. KDE curves of the 

aggregated projection data with representative structures of the conformation of the A and B domains at different projection 

values. The highlighted region along the abscissa indicates the total span of projection values. Triangle markers at the top 

margin of each plot indicate the locations of local maxima. Vertical dashed lines indicate the projection values of the subunits 

of the structure 2VGB. Structures are depicted with the trace representation between Cα atoms. The A and B domains are 

colored in red and blue, respectively. NOTE. The images of the protein structure were generated with the software VMD. 
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Figure 4.28 (Continued) 
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Figure 4.29. Pairwise 2D density distributions along CPCs #1 to #3 of the A and B domains in the WT apo condition. The 

highlighted rectangular regions indicate the total span of projection values. Contour lines delineate 21 levels of highest 

density percentage: the farthest encompasses the 99.5% of the highest density and serves to enhance perception of the 

boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density 

in steps of 0.5. Triangle markers indicate the locations of local maxima. The projection values of the subunits of the structure 

2VGB are indicated with “X” markers. Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in 

the top (abscissa) and right (ordinate) margins. 
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4.1.3.1.3 Comparison with an additional trajectory ensemble of the WT apo 

condition 

The reliability of the obtained CPCs and conformational profile of the A and B domains in the WT apo 

condition is conditional on the robustness of its replicability with new equivalent trajectories. For this 

reason, 5 additional simulations (#6 to #10) of the WT apo tetramer were executed, thus providing a 

new batch of 20 trajectory replicates of the A and B domains in this condition. Importantly, these 

additional simulations were procured with the sole purpose of assessing the replicability of the 

experiments. Therefore, their data was neither mixed with the original simulations nor incorporated 

as input for subsequent experiments. 

The first replicability assessment consisted in evaluating the similarity between the original set of CPCs 

and those derived with the second ensemble of trajectories. The procedure of CEDA was accordingly 

applied to these new replicates and the corresponding set of CPCs was obtained. The clustering of 

eigenvectors generated 9 relevant clusters with the same parameters as in the original experiment. 

The structure of the resulting dendrogram (Figure 4.30) coincided significantly with that of the original 

dendrogram, with three major clusters of high coverage values (95‑100%) and with the rest bearing 

low coverage values near the cutoff (20‑35%) (clusters are designated by their number and a prime 

symbol). The dendrogram noticeably repeated the subdivision into two main families of clusters. 

Interestingly, in this regard, the only difference is that cluster #5′ (the third in decreasing order of 

coverage) is now located in the second family of clusters. 

Figure 4.29 (Continued) 
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Figure 4.30. Dendrogram of the CEDA of the A and B domains in the WT apo condition (second batch of simulations). The 

cophenetic distance cutoff of 0.4 used to split the dendrogram and obtain clusters is shown with a vertical black line. 

Non‑singleton clusters are shown in various colors to facilitate visual identification. The 9 clusters with at least 20% of 

coverage were selected to acquire the CPCs of the experiment. CPCs were numbered from #1′ to #9′ in decreasing order of 

coverage and average percentage of variance of their cluster members. The figure indicates which clusters yielded each CPC, 

together with their achieved coverage. At the left margin of the dendrogram, the span of the detected families and 

subfamilies of clusters is indicated with labeled curly brackets. 
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The centroid vector of each cluster was computed to obtain the 9 corresponding CPCs. Then, the 

similarity between the first and the second sets of CPCs was measured in terms of the cosine of the 

angle between vectors (cosine similarity), expressed in absolute value to disregard differences due to 

opposite directions. The results of the comparison are shown in Figure 4.31, where each radar chart 

displays the pairwise similarity values between one of the 10 original CPCs and each of the 9 new CPCs. 

CPCs from the new set are designated by their index and a prime symbol. 

 

Figure 4.31. Similarity between the original and additional sets of CPCs of the A and B domains in the WT apo condition. Each 

radar chart displays the pairwise similarity values between one of the 10 CPCs from the original set (indicated at the caption 

of each chart) and each of the 9 CPCs from the additional set (distributed along the angular axis and designated by a prime 

symbol). Similarity is expressed in absolute value of cosine similarity, bounded between 0 (no similarity) and 1 (full similarity), 

along the radial axis. 

The correspondence between both sets is remarkably high at the first three CPCs (#1 with #1′; #2 with 

#2′; #3 with #3′), as evidenced by the respective sharp edges that indicate a cosine similarity value 

close to 1. Thus, both trajectory ensembles were strongly characterized by these main collective 

motions. In contrast, the rest of the original CPCs do not exhibit a clear correspondence with individual 

CPCs of the new set, but rather mild or moderate levels of similarity with a wider number of vectors. 

This observation confirms that CPCs with low coverage values are also less represented among 

trajectory ensembles, and suggests that they traverse conformational subspaces of mixed collective 

features. Interestingly, CPCs #7′ and #9′ do not appear to be similar to any of the original CPCs. Finally, 
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CPC #10 is not represented in the second set of CPCs, which is coherent with the lack of clusters at the 

corresponding region of the new dendrogram. 

On the other hand, a second replicability assessment was conducted to evaluate the similarity 

between the conformational profiles of both trajectory ensembles in terms of the original set of CPCs. 

Accordingly, the trajectories from the new batch of replicates were subjected to structural 

superposition and data centering around the original global average structure. Then, the processed 

trajectory data was projected onto the vectors of the original CPCs. Subsequently, the corresponding 

density distributions of projection data were generated. Figure 4.32 shows the pairwise 

two‑dimensional plots of CPCs #1 to #3 with overlays of the density distributions of both trajectory 

ensembles to facilitate comparison. Filled areas in the plots represent the intervals of highest 95% 

density of each distribution. 

 

Figure 4.32. Comparative analysis of the original vs. additional WT trajectory ensembles (A and B domains) in the apo 

condition: conformational profiles (2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory 

data projected onto CPCs #1 vs. #2 (top), #1 vs. #3 (center), and #2 vs. #3 (bottom) from the reference (WT apo) condition. 

Contour lines delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the highest density 

and serves to enhance perception of the boundaries of the distributions, while the next 20 levels encompass intervals from 

the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 95% density. 

Triangle markers indicate the locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves along each 

individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular regions 

indicate the total span of projection values, while the filled area under the curve represents the intervals of highest 95% 

density. 
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Both trajectory ensembles share a substantial fraction of their principal concentrations of density, 

which is indicative of an overall equivalent exploration of the same conformational space. However, 

the distributions also exhibit significant differences. Most importantly, the second ensemble is less 

heterogeneous. Regarding CPC #1, the open and partially closed forms of the B domain exhibit 

Figure 4.32 (Continued) 
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equivalent conformational profiles, although the second distribution displays a slight shift towards the 

negative side of the spectrum. However, the closed form of the B domain was considerably less 

sampled; it is only detected as a local maximum in the two‑dimensional distributions. Thus, the second 

trajectory ensemble is again characterized by a predominant transition from closed to open forms of 

the B domain, with only a marginal sampling of the open‑to‑close transition by a few replicates (not 

shown). Along the direction of CPC #2, the second trajectory ensemble scarcely explored the 

leftward‑tilted forms of the B domain. Moreover, there is no appreciable distinction between 

subpopulations within the major volume of density of the distribution. The distributions along CPC #3 

do not display notorious changes between trajectory ensembles, although, when inspected in 

combination with CPCs #1, the major conformations are shifted towards the positive side of the 

spectrum of CPC #3. On another note, the density distributions along CPCs #4 to #10 (not shown) 

exhibited equivalent profiles between the two ensembles. 

The similarities and differences found between the two trajectory ensembles have been described in 

terms of a visual inspection between the corresponding data distributions. In order to complement 

this assessment with quantitative indicators, three metrics were employed to summarize the 

comparison between the main features of the reference and target distributions. Below is a brief 

explanation of each metric accompanied by Figure 4.33, which shows a conceptual example of their 

application to two hypothetical reference and target distributions. 

The first metric, termed the overlap, was defined as the percentage of the span of the target 

distribution, weighted by its density values, that is within the span of the reference distribution. This 

metric represents the extent of conformational space sampled by the target condition that coincides 

with that of the reference condition. In the example of Figure 4.33b, it accounts for about 67% of the 

target distribution, meaning that 33% of the trajectory frames of the target condition correspond to 

conformations outside of the reference conformational space. 

The second metric, termed the coverage, is related to the definition of the overlap but interchanging 

the reference and target distributions. More specifically, it was defined as the percentage of the span 

of the reference distribution, weighted by its density values, that is covered by the span of the target 

distribution. In this case, it represents how well the conformational space sampled by the target 

condition covered that of the reference condition. In the example of Figure 4.33c, it accounts for about 

80% of the reference distribution, meaning that 20% of the reference conformational space was never 

sampled by the simulations in the target condition. 

Finally, the last metric is the Bhattacharyya coefficient (BC), which is a statistical measure that 

quantifies the similarity between two statistical samples or populations (Equation 3.15). The BC is 

bounded between 0 and 1, whereby a value of 0 denotes total dissimilarity (distributions do not 

overlap), while a value of 1 corresponds to identical distributions. The BC was applied to compare the 

full reference distribution with the overlapping fraction of the target distribution in the span of the 

former, as shown in the example of Figure 4.33d, with both distributions being normalized such that 

the total density of each distribution equals 1. 

In the quantitative comparison between the two trajectory ensembles of the WT apo condition, the 

reference and target distributions refer to those of the original and additional simulations, 

respectively. Rather than calculating the similarity metrics between the one‑ or two‑dimensional pairs 

of distributions that were already visually inspected, the quantitative comparison was conducted on 
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the three‑dimensional density distributions along CPCs #1, #2, and #3 of both trajectory ensembles. 

While such three‑dimensional distributions cannot be conveniently shown in a plot, they account for 

the combined distributional features along each dimension. Importantly, only the intervals of highest 

95% density of each distribution were considered to disregard outlier regions before computing the 

metrics. 

 

Figure 4.33. Conceptual example of the application of the similarity metrics to two hypothetical reference and target 

distributions. The density distributions have been depicted with a representation that resembles that of Figure 4.32. The 

intervals of density percentage delineated by contour lines are arbitrary. Triangle markers indicate the locations of local 

maxima, only for the fractions of the distributions that are considered in every panel. (a) The reference and target 

distributions in the same system of coordinates. (b) Visualization of the overlap: the fraction of the target distribution that 

is within the span of the reference distribution. (c) Visualization of the coverage: the fraction of the reference distribution 

that is within the span of the target distribution. (d) The Bhattacharyya coefficient is calculated between the full reference 

distribution and the overlapping fraction of the target distribution in the span of the former. 

The overlap of the target distribution with the reference distribution was 99.29%. Such a high overlap 

can already be appreciated in the two‑dimensional plots (Figure 4.32), whereby the distributions of 

the second ensemble exist almost entirely within the span of the distributions of the original 
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ensemble. The measurement of the coverage served to provide a more complete interpretation of the 

extent of similarity between the distributions. Even though the second ensemble appears to leave 

uncovered a wide region of the span of the original ensemble, the achieved coverage was as high as 

83%. Therefore, the uncovered region only accounted for 17% of the conformational population of 

the reference distribution. Finally, the BC was 0.86. This score summarized the joint effect of the 

previously described observations concerning the changes in relative proportions: i) the 

undersampling of the closed form of the B domain, ii) the absence of the extreme regions along CPC 

#2, and iii) the various mild shifts in shape or position of the local maxima and other characteristic 

sites of the topology. 

4.1.3.1.4 Comparison between the trajectory ensembles of the WT apo and holo 

conditions 

In the preceding section, the comparative capabilities of CEDA were exemplified by contrasting the 

two trajectory ensembles of the WT apo condition. Subsequently, the comparison was extended to 

alternative conditions. The reference apo condition was contrasted with the seven trajectory 

ensembles of different holo conditions, thus constituting a first major comparative block of central 

importance for understanding the dynamical traits of PKR and their functional significance. Based on 

the insights of the dynamical behavior of the A and B domains in the apo condition, the objective was 

to ascertain whether the different holo conditions exhibited similar or distinct conformational profiles 

with respect to the reference set of CPCs. 

The comparison was conducted by assessing the similarities and differences between the 

conformational profiles along CPCs #1, #2, and #3 from the apo condition. As shown previously 

(Figures 4.31 and 4.32), these three CPCs captured the most representative dimensions of the 

conformational space sampled in equivalent WT apo trajectory ensembles. Accordingly, the holo 

trajectories (A and B domains) were subjected to structural superposition and data centering around 

the reference (apo) global average structure. Then, the processed trajectory data was projected onto 

the vectors of the aforementioned CPCs, and the corresponding density distributions of projection 

data were generated. The comparison was based on the visual examination of the one‑ and 

two‑dimensional distributions, shown in Figures 4.34 and 4.35, and the calculation of the similarity 

metrics (the overlap, coverage, and BC metrics) between the three‑dimensional distributions, which 

have been compiled in Figure 4.36. The two‑dimensional plots of CPCs #2 vs. #3 have been omitted 

for the sake of brevity and because their visual inspection did not provide any additional significant 

information beyond what is already discernible from the other plots. 

As a general remark, all holo conditions explored a conformational space that partially or totally 

overlaps with that of the apo condition at the most characteristic regions. Thus, the different 

conditions principally differed in the relative proportions between conformational populations that 

share similar spaces. This observation holds significant value as it validates the use of a single 

framework of reference CPCs to measure conformational variance among different trajectory 

ensembles. As a result, from the detected similarities and differences we may infer potential 

correlations between the distinct conformational profiles of the A and B domains and their enzymatic 

function. The projection values of the subunits of 2VGB are also displayed to enable comparison with 

each condition. The corresponding locations substantially align with the regions of higher density of 

several holo conditions, especially concerning CPCs #1 and #2. 
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Figure 4.34. Comparative analysis of the WT trajectories (A and B domains) in apo vs. holo conditions: conformational profiles 

(1 CPC). The 1D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 (top), #2 

(center), or #3 (bottom) from the reference (WT apo) condition. The data of each condition is colored as follows: apo in blue, 

K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in pink, and 

Full‑holo in gray. The plots show the KDE curves of the aggregated projection data along with representative structures of 

the conformation of the A and B domains at different projection values. The highlighted region along the abscissa indicates 

the total span of projection values. Triangle markers at the top margin of each plot indicate the locations of local maxima. 

Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted with the 

trace representation between Cα atoms. The A and B domains are colored in red and blue, respectively. NOTE. The images 

of the protein structure were generated with the software VMD. 
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Figure 4.35. Comparative analysis of the WT trajectories (A and B domains) in apo vs. holo conditions: conformational profiles 

(2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 vs. #2, 

#1 vs. #3, and #2 vs. #3 from the reference (WT apo) condition. The data of each condition is colored as follows: apo in blue, 

K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in pink, and 

Full‑holo in gray. Contour lines delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the 

highest density and serves to enhance perception of the boundaries of the distributions, while the next 20 levels encompass 

intervals from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 

95% density. Triangle markers indicate the locations of local maxima. The projection values of the subunits of the structure 

2VGB are indicated with “X” markers. Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in 

the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular regions indicate the total span 

of projection values, while the filled area under the curve represents the intervals of highest 95% density. 

Figure 4.34 (Continued) 



 Results 

177 
 

 

 

Figure 4.35 (Continued) 
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Figure 4.35 (Continued) 
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Figure 4.35 (Continued) 
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Figure 4.35 (Continued) 
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Figure 4.35 (Continued) 
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Regarding CPC #1, all holo conditions exhibit an overall preference for the closed forms of the B 

domain. Therefore, the presence of ligands at the active site appears to have exerted an influence to 

retain a closed conformation. However, sampling of the more open forms of the B domain persisted, 

implying that such an effect could be described as a shift in the conformational equilibrium. The 

presence of cofactor K⁺ alone was sufficient to induce this effect, as evidenced by the conformational 

profile of the K‑holo condition. The K‑Mg‑holo condition exhibits the least attenuation of sampling of 

the open forms of the B domain, despite having both K⁺ and Mg²⁺. The same observation applies to 

the FBP‑holo condition, which also contains both cofactors and exhibits comparable levels of relative 

conformational proportions. In both of these conditions, Mg²⁺ was modeled at the Mg‑3 binding site, 

based on the structural evidence presented by Zhong et al. [137] (see section 4.1.1.2). The higher 

sampling of the open forms of the B domain in these conditions possibly correlates with the higher 

dynamical activity of the Mg‑3 site hinted at in the stability and flexibility analyses of the metal centers 

(section 4.1.2.3). 

On the other hand, PEP (complexed with Mg²⁺ at the Mg‑1 site) is the ligand that imposed the highest 

degree of conformational restriction, as indicated by the complete permanence of the PEP‑holo, 

PEP‑ADP‑holo, and Full‑holo conditions at the region of the conformational spectrum that mainly 

corresponds to closed forms. This effect is consistent with the higher stability and lower flexibility of 

the B domain in these conditions reported in the RMSD and RMSF analyses (sections 4.1.2.1 and 

4.1.2.2). The predominant form of the closed B domain in the majority of holo conditions is analogous 

to that found in the apo condition, with local maxima values between ‑6 and ‑8. This characteristic 

region of the spectrum was also distinctively sampled in the PEP‑holo and ADP‑holo conditions, 

however their distributions exhibit shifted local maxima. In PEP‑holo, the shift occurred towards a 

slightly more open form of the B domain, with a local maximum around the value of ‑4.5. This 

characteristic form is also observed in the distributions of the other two conditions with PEP, although 

in lower proportions: residually in PEP‑ADP‑holo and as a second predominant form in Full‑holo. In 

ADP‑holo, the shift occurred towards a more closed form of the B domain, with a local maximum 

around the value of ‑9. The corresponding region of this form is also detected with various density 

levels in other holo conditions. Finally, the ADP‑holo condition also significantly sampled a more 

extreme closed form of the B domain around the value of ‑11. 

Regarding CPC #2, all holo conditions exhibit a major volume of density comparable to that of the apo 

condition albeit narrower, with distinctive local maxima values between ‑2 and ‑4. Regions with 

projection values greater than 3 were only marginally explored by the conditions that lack PEP. Finally, 

regarding CPC #3, the holo distributions are centered around different negative values of projection, 

unlike the apo distribution which is centered around the zero value. The details of the topology of the 

conformational space along this CPC can be more clearly discerned when inspected as 

two‑dimensional distributions with CPC #1. The presence of ADP (i.e., ADP‑holo, PEP‑ADP‑holo, and 

Full‑holo conditions) appears to have particularly favored the same rotary orientation as that adopted 

by the B domain in its characteristic closed form in the apo condition. In the K‑Mg‑holo condition, 

there is also significant coverage of the predominant conformations of the apo condition. In addition, 

this condition sampled a distinctive region that corresponds to closed and leftward‑oriented forms of 

the B domain. This very same region was also sampled by the FBP‑holo condition, as well as another 

one that corresponds to partially closed and leftward‑oriented forms. 
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Figure 4.36. Comparative analysis of the WT trajectories (A and B domains) in apo vs. holo conditions: quantitative indicators. 

The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D density 

distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) condition. 

The bar sizes of the BC (values bounded between 0 and 1) are shown with a scaling proportional to the overlap and coverage 

metrics (expressed in percentage values) to enable a balanced interpretation of the three metrics. 

The reported similarity metrics (Figure 4.36) allow establishing a single comparative framework to 

summarize the extent of deviation relative to the reference condition. The three metrics provide 

complementary insights, enabling the identification of the particular features that contribute to the 

similarity or dissimilarity between two trajectory ensembles. From the perspective of the overlap 

metric, all holo conditions manifest a reasonable degree of similarity with the apo condition, as 

evidenced by the range of high values between 87% and 99%. This can be attributed to the fact that, 

in all instances, the majority of the sampled conformational space aligns with that of the apo 

condition. This feature is readily observable through visual analysis of the density distributions. 

Distributions that exhibit some deviations from the reference region are those that have obtained 

lower scores within this range of overlap values. These findings suggest that the primary differences 

between the apo and holo conditions do not arise from the emergence of new significant 

conformations. Instead, they potentially result from changes in the relative proportions of the 

conformational equilibrium. 

In respect of the coverage metric, the observed wider range of values denotes differential behavior 

between conditions. The PEP‑holo, PEP‑ADP‑holo, and Full‑holo conditions are notable for their 

exceptionally low values. In these conditions, the B domain was stabilized in its closed conformation, 

close to the original crystallographic holo structure. Accordingly, the conformational ensemble of the 

open forms of the B domain, which comprises a considerable portion of the apo condition, was not 

covered. Conversely, the other holo conditions exhibit intermediate coverage values that are 

indicative of an increased degree of accessibility to the apo conformational space, albeit significantly 

incomplete. 

Finally, the BC metric displays a range of moderate and low values. The BC was applied to compare 

the reference distribution with exclusively the overlapping fraction of the target distribution. Thus, 

the BC manifests the extent of similarity between conditions disregarding the divergent 

conformational space of the target condition, if any. In this sense, this metric is mainly dependent on 

the quality of the coverage, and not the overlap. For instance, the density distributions of the 

PEP‑holo, PEP‑ADP‑holo, and Full‑holo conditions are characterized by very localized topologies in 
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comparison to the more extensive distribution of the apo condition. Consequently, low coverage 

correlates with low BC. Since the location and shape of the distribution is equivalent in all three 

conditions, the BC score resulted in very similar values between 0.24 and 0.26. In contrast, the other 

holo conditions are found in a range between 0.44 and 0.64 that accounts for both the partial coverage 

and the conformational shift between the open and closed conformations. 

To complement the comparison of the density distributions, an additional assessment was conducted 

to determine the consistency with which the reference CPCs accurately represent the intrinsic 

consensus behavior of the trajectory ensemble of each holo condition. In other words, the aim was to 

assess whether each trajectory ensemble independently generates CPCs that are analogous to those 

of the reference CPCs #1, #2, and #3. This enables verification on whether the conformational 

variations that have been examined in terms of the density distributions result from equivalent 

collective motions in each case. 

The analysis was conducted with the same methodology as in the first half of section 4.1.3.1.3. 

Accordingly, the procedure of CEDA was applied to the trajectory ensemble of each holo condition, 

using the same parameters of the original experiment. The resulting sets of CPCs contained between 

7 and 10 CPCs. The similarity between these and the reference CPCs #1, #2, and #3 was measured via 

the cosine similarity metric, expressed in absolute value to disregard differences due to opposite 

directions. The corresponding results are shown in Figure 4.37, where each radar chart displays the 

pairwise similarity values between one of the reference CPCs and each of the CPCs of each holo 

condition. 

 

Figure 4.37. Similarity between the WT apo and holo sets of CPCs in the A and B domains. Each radar chart displays the 

pairwise similarity values between one of the first three CPCs from the apo set (indicated at the caption of each chart) and 

each of the CPCs from the corresponding holo set (distributed along the angular axis and designated by a prime symbol). 

Similarity is expressed in absolute value of cosine similarity, bounded between 0 (no similarity) and 1 (full similarity), along 

the radial axis. The data of each holo set is colored as follows: K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo 

in purple, PEP‑ADP‑holo in brown, FBP‑holo in pink, and Full‑holo in gray. 
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Figure 4.37 (Continued) 
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Results show a total correspondence of CPC #1 among all conditions, even in those that exhibited less 

conformational heterogeneity (narrower density distributions), namely, PEP‑holo, PEP‑ADP‑holo, and 

Full‑holo. This confirms that the opening‑and‑closing motion of the B domain is an ubiquitous 

dynamical behavior both in the absence and the presence of ligands at the active site, with different 

degrees of motion amplitude. In respect of CPCs #2 and #3, they are significantly represented in all 

conditions, displaying high values of similarity. However, a one‑to‑one correspondence is only 

detected in K‑holo, PEP‑holo, and PEP‑ADP‑holo, whereas the other conditions exhibit both high 

similarity with one CPC and also moderate similarity with one or two more CPCs. This suggests that 

the collective motions of CPCs #2 and #3 are broadly manifested among the trajectory ensembles, 

albeit with less uniformity. 

4.1.3.2 Collective motions of domains and subunits across the PKR 

tetramer 

The homotetrameric structure of PKR is characterized by a symmetrical arrangement in a 

dimer‑of‑dimers formation. Each subunit possesses two primary points of contact with the adjacent 

subunits. Depending on the reference point of contact, two distinct pairs of subunits, or dimers, can 

be identified. The A‑A′ dimer is formed through the A‑A′ interface between adjacent A domains, while 

the C‑C′ dimer is formed through the C‑C′ interface between adjacent C domains. In such an assembly, 

the collective motions that involve the A and C domains are intricately coupled across the subunits 

and have been suggested to drive the integral conformational changes identified in the 

crystallographic studies of pyruvate kinases. 

Two independent CEDAs were performed to analyze the dynamical events at each of the two types of 

intersubunit contacts. The methodology employed is analogous to that of the experiment on the 

collective motions of the A and B domains, which was reported in detail along with several 

complementary assessments of the robustness of the results. For these two subsequent analyses, a 

more concise version of the experimental section is provided to emphasize the most relevant results. 

4.1.3.2.1 The A‑A′ dimers 

The analysis of the A‑A′ dimers was aimed at examining the collective motions between the adjacent 

A domains. The A‑A′ interface is the closest contact point between the active sites of the tetramer. 

Consequently, the structural rearrangements in this region are potentially involved in a transmission 

of information between subunits, such that the binding of PEP in one subunit leads to higher substrate 

affinity in the neighboring subunit. Accordingly, the identification of distinctive dynamical events may 

provide crucial insights into understanding the phenomenon of cooperativity in this enzyme. 

The CEDA procedure was applied to the WT apo trajectories to derive the corresponding set of CPCs. 

Each tetramer comprises two pairs of adjacent A domains, resulting in 10 analyzable A‑A′ pairs of 

domains from the 5 simulations of the WT apo tetramer. The global average structure of all A‑A′ pairs 

of the trajectory ensemble was generated and used as the general reference for structural 

superpositions. For each A‑A′ pair, two complementary PCAs were performed, alternating the role of 

the fitting group between both domains (i.e., A‑A′ with A as the fitting group and A′‑A with A′ as the 

fitting group; in both cases superposed to A of the global average structure). This approach provided 

a total of 20 analyzable trajectory replicates, designated by the number of the simulation (#1 to #5) 

and the pair of chain IDs of the involved subunits, with the first ID corresponding to the superposed 
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structure. This strategy was adopted to determine whether the analysis of dynamical data of the 

adjacent A domains, when conducted from each respective point of reference, yields information that 

is identical or complementary in nature. 

Only the Cα atoms of the region (488 atoms) were considered in the analysis, therefore each PCA 

yielded a set of 1464 eigenvectors. The first 20 eigenvectors of each trajectory replicate were included 

in the clustering analysis, accounting for approximately 85% of the cumulative variance on average 

(Figure 4.38). The assessment of the cosine content identified 6 instances of PCs with values exceeding 

the threshold of 0.5 (Figure 4.39). These instances correspond to the PC #1 of replicates #3‑BD, #3‑DB, 

#4‑BD, #4‑DB, #5‑AC, and #5‑CA. It is noteworthy that the same three A‑A′ pairs of domains are 

represented twice in these PCs from both of their points of reference. This observation is consistent 

with the expectation that, for a given relative collective displacement between a pair of domains, the 

respective PC values from each point of reference may display similar time‑series progression 

patterns, regardless of whether the displayed motion is symmetrical or not. The degree of integration 

of these PC instances of high cosine content in the clusters of higher coverage will clarify the 

significance of the corresponding captured collective motions. 

 

 

Figure 4.38. Percentage of variance explained by the PCs of the A‑A′ pairs of domains in the WT apo condition. Data 

corresponds to the mean values from the first 30 PCs of the 20 trajectory replicates of the experiment. Standard deviation 

intervals are included as error bars. 
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Figure 4.39. Cosine content values of the PCs considered in the CEDA of the A‑A′ pairs of domains in the WT apo condition. 

The cutoff value of 0.5 below which the sampling is considered to be acceptable in protein dynamics is shown with a 

horizontal dashed black line. 

A cophenetic distance cutoff of 0.45 was applied to split the dendrogram of the hierarchical clustering 

(Figure 4.40), and clusters with less than 20% of coverage were discarded, thus retaining a total of 5 

relevant clusters. The primary division of the dendrogram allows identification of two distinct sections. 

The lower section contains 2 large clusters of full coverage, namely, clusters #1 and #2. The upper 

section of the dendrogram is characterized by scattered eigenvectors that only form smaller clusters 

of both lower similarity and coverage values. Clusters #14, #19, and #21 meet the established criteria 

to produce CPCs, with 65%, 20%, and 20% of coverage, respectively. The centroid vector of the 5 

relevant clusters was computed to acquire the CPCs of the experiment, numbered from #1 to #5 in 

decreasing order of coverage and average percentage of variance of their cluster members. 

Next, the collective motion captured in each CPC was visually examined. Figure 4.41 shows schematic 

diagrams of the A‑A′ pair of domains along with the terminology that will be employed to refer to the 

observed motions. The structure was arranged in a reference orientation with the A′ domain (mobile 

region) piled on top of the A domain (anchored region; fitting group), thus enabling a clear 

visualization of the rotational and translational degrees of freedom of the former. In the front view of 

the structure, the top of the barrel of the A′ domain (active‑site cleft) is oriented towards the observer. 

Figure 4.42 shows the schematic representations of the path and extreme conformations of the 

collective motions from CPCs #1 to #3. 

The collective motion captured in CPC #1 (Figure 4.42a, Supplementary Video S4.11) shows a 

combination of roll and sway. The resulting motion can be described as the rolling of the barrel 

structure of the A′ domain along the contact interface with the A domain. The collective motion 

captured in CPC #2 (Figure 4.42b, Supplementary Video S4.12) shows a combination of pitch and surge 

that results in a seesaw‑like swinging motion of the barrel structure of the A′ domain, with the contact 

interface with the A domain acting as the pivot point. Together, the clusters of these two CPCs 

agglomerated all instances of PCs with indices #1 and #2 of the trajectory ensemble. The index number 

did not determine the cluster membership of these PCs; rather, both clusters contained a mixture of 

the two types. Specifically, cluster #1 (CPC #1) agglomerated 12 instances of PC #1 and 8 instances of 

PC #2, while cluster #2 (CPC #2) contains the complementary combination.  
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Figure 4.40. Dendrogram of the CEDA of the A‑A′ pairs of domains in the WT apo condition. The cophenetic distance cutoff 

of 0.45 used to split the dendrogram and obtain clusters is shown with a vertical black line. Non‑singleton clusters are shown 

in various colors to facilitate visual identification. The 5 clusters with at least 20% of coverage were selected to acquire the 

CPCs of the experiment. CPCs were numbered from #1 to #5 in decreasing order of coverage and average percentage of 

variance of their cluster members. The figure indicates which clusters yielded each CPC, together with their achieved 

coverage. At the left margin of the dendrogram, the span of the detected families of clusters is indicated with labeled curly 

brackets. 
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Figure 4.41. Schematic diagrams of the adjacent A domains across the A‑A′ interface of PKR. Various markers indicate the 

terminology to refer to (a) the reference views and (b) the directions of motion along the six mechanical degrees of freedom 

of the A′ domain as a rigid body. The A and A′ domains are colored in red and pink, respectively. In (a), the B domains of each 

subunit are also depicted (gray) to show that the top of the barrel of the A′ domain is oriented towards the observer in the 

top view of the structure. NOTE. The 3D schematic models were built with the software Blender. 

Moreover, the consideration of the two alternative points of reference (fitting groups) per pair of 

adjacent domains did not account for duplicated information but rather served to enrich the sample 

of the two types of consensus motions of the ensemble. Otherwise, the PC counterparts (equal 

indices) from each version of the same trajectory would have been consistently classified in alternative 

clusters as a consequence of having captured two distinct perspectives of a single collective 

displacement. For each pair of adjacent A domains, PCs of the same index from A‑A′ and A′‑A 

co‑localize in the same cluster on 6 occasions, while the opposite case is observed on 4 occasions. 

Finally, in connection with this matter, the PCs with high cosine content are well integrated into these 

two clusters, thus confirming the significance of their captured collective displacement of coordinates 

despite their PC projection values having stronger resemblance to cosine shapes. All these 

observations suggest that the sampling of this protein region principally occurred within the 

conformational space defined by the dimensions of CPCs #1 and #2, which captured comparable 

degrees of conformational variance.  

The collective motion captured in CPC #3 (Figure 4.42c, Supplementary Video S4.13) features the yaw 

rotation of the A′ domain. It can be described as a swiveling motion of the barrel structure of the A′ 

domain, with the contact interface with the A domain acting as the joint. This CPC comprises PCs with 

indices between #3 and #5. The motions along CPCs #4 and #5 mostly show variations of the former 

three and comprise PCs with various indices between #3 to #8. CPC #4 features a combination of heave 

and yaw that results in the swiveling motion of CPC #3 but with an additional displacement whereby 

the A′ domain approaches or separates from the A domain. CPC #5 features a combination of pitch 

and heave that results in a variation of pitch with the back region acting as the pivot point. Such 

motions can be viewed in the Supplementary Videos S4.14 and S4.15. 
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Figure 4.42. Consensus collective motions of the adjacent A domains across the A‑A′ interface in the WT apo condition. (a‑c) 

Schematic representations of the path and extreme conformations of the motion captured in CPCs #1, #2, and #3. In each 

panel, the protein domains are depicted with the diagrams of Figure 4.41 (left) and with the trace representation between 

Cα atoms (center and right). The A and A′ domains are colored in red and pink, respectively. These motions can also be 

viewed in the Supplementary Videos S4.11 to S4.13. NOTE. The images of the protein structure were generated with the 

software VMD. The 3D schematic models were built with the software Blender. 
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The observed motions mainly involve rigid‑body displacements of the adjacent A domains relative to 

one another. However, due to the structural arrangement of the interdomain joint, such motions 

additionally transmit local conformational changes at the top of the barrel structure, where the active 

site of the enzyme is located. Specifically, the width of the active‑site cleft fluctuates in a correlated 

manner with the major motions of CPCs #1, #2, and #3. The corresponding local conformational 

changes are shown in detail in Figure 4.43 and the Supplementary Videos S4.16, S4.17, and S4.18 to 

enable identification of the involved structural elements. The active‑site cleft of the A domain narrows 

in correlation with the rigid‑body motions of the A′ domain, namely, the rolling motion towards its left 

(CPC #1; Figure 4.43a), the seesaw‑like swinging motion towards its front (CPC #2; Figure 4.43b), and 

the clockwise swiveling motion (CPC #3, Figure 4.43c). The narrowing of the active‑site cleft occurs via 

the mutual approach of the following elements at the top of the barrel: L‑Aβ2‑Aα2, L‑Aβ3‑Bβ1, 

L‑Bβ8‑Aα3, Aα3, Aα6′, Aα6, Aα7′, L‑Aα7′‑Aα7 and Aα7. These observations are consistent with 

previous crystallographic studies that report a potential cooperative mechanism whereby subunit 

rotation and the restructuring of Aα6′ and its vicinity are coupled to prime the adjacent PEP binding 

sites to bind substrate more efficiently [127], [128], [132], [149]. 

On another note, a few elements at the base of the A‑domain barrel also undergo slight 

rearrangements in correlation with the rigid‑body displacement of the A′ domain. These can be 

especially noted in CPC #1 (Figure 4.43a) and involve the following elements: L‑Nα2‑Aβ1 and Aα8, 

which are the linker fragments with the N‑terminal and C domains), and L‑Aα2‑Aβ3 that is a loop that 

notably protrudes towards the C domain. Consequently, the relative reorientation of the adjacent A 

domains appears to have an impact in the relative conformations of both the N‑terminal and C 

domains, with potential successive global rearrangements of the whole tetramer. 

After the derivation of the CPCs and the examination of the captured motions, the experiment 

proceeded with the exploration of the corresponding conformational profiles. The probability density 

functions of the projection data along each CPC were estimated with KDE, using a bandwidth of 0.3 

and representing the curves with 100 points along the domain of the data. Only the conformational 

profiles along CPCs #1, #2, and #3 were explored as they constitute the clusters of greatest coverage 

and conformational sampling variance of the experiment. Figures 4.44, 4.45, and 4.46 show the 

one‑dimensional density distributions along each of these CPCs, both for each individual trajectory 

replicate and for the aggregated projection data. Representative structures of the A‑A′ pair of domains 

at different projection values are included to inform about their correspondence with the range of 

conformations. The projection values of the subunits of the structure 2VGB are also indicated in the 

figures. 
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Figure 4.43. Local structural rearrangements of the A domain correlated with the collective motions of the adjacent A′ 

domain in the WT apo condition. (a‑c) Schematic representations of the path and extreme conformations of the motion 

captured in CPCs #1, #2, and #3. In each panel, the protein is depicted with the trace representation between Cα atoms. The 

initial conformations of the A and A′ domains are colored in red and pink, respectively. Structures colored in black correspond 

to the final conformations of the A domain. Several intermediate conformations are also shown in transparent gray for the 

A domain and in pink for the A′ domain. The black lines connecting the intermediate structures indicate the path of motion 

of Cα atoms. These motions can also be viewed in the Supplementary Videos S4.16, S4.17, and S4.18. NOTE. The images 

were generated with the software VMD. 
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Figure 4.44. Density distributions along CPC #1 of the A‑A′ pairs of domains in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the A‑A′ pair of domains at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. The A and A′ domains are colored in red and pink, respectively. NOTE. The 

images of the protein structure were generated with the software VMD. 



 Results 

195 
 

 

Figure 4.45. Density distributions along CPC #2 of the A‑A′ pairs of domains in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the A‑A′ pair of domains at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. The A and A′ domains are colored in red and pink, respectively. NOTE. The 

images of the protein structure were generated with the software VMD. 
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Figure 4.46. Density distributions along CPC #3 of the A‑A′ pairs of domains in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the A‑A′ pair of domains at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. The A and A′ domains are colored in red and pink, respectively. NOTE. The 

images of the protein structure were generated with the software VMD. 
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The aggregated projection data along each CPC generate unimodal distributions with large dispersion. 

The total span of projection values diminishes as the CPC index increases. The distributions of the 

aggregated data are mostly centered around zero or nearby values, suggesting that the structures 

sampled conformations around an energy minimum close to the global average structure of the 

ensemble. The distributions of the individual trajectory replicates have diverse locations in the 

spectrum of values, although, in some instances, there is a certain correspondence in the 

conformational profiles between the two trajectory replicates of the same pair of domains with 

alternative fitting groups (e.g., #5‑AC with #5‑CA, or #5‑BD with #5‑DB, along CPC #2). 

The structure 2VGB displays different degrees of divergence with respect to the trajectory ensemble 

at each CPC. For CPC #1, both the local maximum and the 2VGB values have similar conformations 

with projection values near zero. For CPC #2, however, the local maximum matches the global average 

structure, while 2VGB exhibits a conformation at the negative extreme values of the spectrum, around 

‑5.5. This conformation has the A′ domain tilted forward and the active‑site cleft of the A domain 

narrowed, consistent with the presence of the substrates. This implies that the apo simulations 

generally left the initial holo conformation of the crystallographic structure and adopted a range of 

conformations around the center of the spectrum of CPC #2, which are potentially more stable without 

ligands. Finally, the conformational profile of CPC #3 suggests a conformational equilibrium between 

the most sampled form of the trajectory ensemble, with a local maximum around ‑0.5, and another 

form between 1 and 1.5 that is distinctive of 2VGB and persisted in a few replicates. This conformation 

has the frontal region of the A′ domain oriented to its right and, again, a narrowed active‑site cleft of 

the A domain. 

The exploration of the conformational profiles was complemented with the generation of the 

two‑dimensional density distributions (Figure 4.47). In this case, the visual examination of the 

corresponding plots did not provide additional insight. No major topological irregularities or 

singularities can be discerned besides those implied in the one‑dimensional distributions. In general, 

the three dimensions appear to define an energy minimum and its surroundings. The deviation of 

2VGB from the sampling region of the trajectory ensemble is especially noted in the distributions of 

CPC #1 vs. #2 and #2 vs. #3. 

In a similar manner as shown in the second half of section 4.1.3.1.3, the additional set of WT apo 

simulations (#6 to #10) was employed here to evaluate the replicability of the obtained 

conformational profiles with new equivalent trajectories of this condition. On the one hand, Figure 

4.48 shows the overlays of the pairwise two‑dimensional plots of CPCs #1 to #3, which were visually 

compared to assess the similarities and differences in the sampling along the reference collective 

motions. On the other hand, the quantitative indicators (the overlap, coverage, and BC metrics) were 

calculated for the comparison between the corresponding three‑dimensional distributions. 
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Figure 4.47. Pairwise 2D density distributions along CPCs #1 to #3 of the A‑A′ pairs of domains in the WT apo condition. The 

highlighted rectangular regions indicate the total span of projection values. Contour lines delineate 21 levels of highest 

density percentage: the farthest encompasses the 99.5% of the highest density and serves to enhance perception of the 

boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density 

in steps of 0.5. Triangle markers indicate the locations of local maxima. The projection values of the subunits of the structure 

2VGB are indicated with “X” markers. Each two‑dimensional plot also features subplots of the one‑dimensional KDE curves 

along each individual CPC in the top (abscissa) and right (ordinate) margins. 
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Figure 4.48. Comparative analysis of the original vs. additional WT trajectory ensembles (A‑A′ pairs of domains) in the apo 

condition: conformational profiles (2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory 

data projected onto CPCs #1 vs. #2 (top‑left), #1 vs. #3 (top‑right), and #2 vs. #3 (bottom) from the reference (WT apo) 

condition. Contour lines delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the highest 

density and serves to enhance perception of the boundaries of the distributions, while the next 20 levels encompass intervals 

from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 95% 

density. Triangle markers indicate the locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves 

along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular 

regions indicate the total span of projection values, while the filled area under the curve represents the intervals of highest 

95% density. 

Among the noteworthy differences between the conformational profiles, the second trajectory 

ensemble exhibits a characteristic region of moderate density around the value of ‑4.5 of CPC #2, 

closer to the values of the structure 2VGB. The rest of the sampling appears to be substantially 

equivalent, albeit with small differences in the span at the peripheral regions of the distributions. The 

overlap between the two WT apo trajectory ensembles was 87.41%. This value reflects the existence 

of a fraction of density of the second trajectory ensemble (12.59%) that lies outside of the reference 
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region of the original trajectory ensemble. The coverage was 85.38%, and mainly reflects the lower 

degree of dispersion of the second trajectory ensemble, particularly along CPCs #1 and #3. The BC was 

0.88, and captures the combination of the aforementioned effects. 

Following from the characterization of the results of the WT apo condition, the next stage of the 

analysis revolved around the comparison with the conformational profiles of the WT holo trajectory 

data when projected onto the reference set of CPCs. The comparison was based on the visual 

examination of the one‑ and two‑dimensional distributions, shown in Figures 4.49 and 4.50, and the 

calculation of the similarity metrics between the three‑dimensional distributions, which have been 

compiled in Figure 4.51. The two‑dimensional plots with CPCs #1 and #3 have been omitted for the 

sake of brevity and because their visual inspection did not provide any additional significant 

information beyond what is already discernible from the other plots. 

 

Figure 4.49. Comparative analysis of the WT trajectories (A‑A′ pairs of domains) in apo vs. holo conditions: conformational 

profiles (1 CPC). The 1D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 

(top), #2 (center), or #3 (bottom) from the reference (WT apo) condition. The data of each condition is colored as follows: 

apo in blue, K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in 

pink, and Full‑holo in gray. The plots show the KDE curves of the aggregated projection data along with representative 

structures of the conformation of the A‑A′ pair of domains at different projection values. The highlighted region along the 

abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the locations 

of local maxima. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are 

depicted with the trace representation between Cα atoms. The A and A′ domains are colored in red and pink, respectively. 

NOTE. The images of the protein structure were generated with the software VMD. 
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Figure 4.49 (Continued) 
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Figure 4.50. Comparative analysis of the WT trajectories (A‑A′ pairs of domains) in apo vs. holo conditions: conformational 

profiles (2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 

vs. #2 (left panels) and #2 vs. #3 (right panels) from the reference (WT apo) condition. The data of each condition is colored 

as follows: apo in blue, K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, 

FBP‑holo in pink, and Full‑holo in gray. Contour lines delineate 21 levels of highest density percentage: the farthest 

encompasses the 99.5% of the highest density and serves to enhance perception of the boundaries of the distributions, while 

the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas 

represent the interval of highest 95% density. Triangle markers indicate the locations of local maxima. The projection values 

of the subunits of the structure 2VGB are indicated with “X” markers. Each 2D plot also features subplots of the 1D KDE 

curves along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted 

rectangular regions indicate the total span of projection values, while the filled area under the curve represents the intervals 

of highest 95% density. 
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Figure 4.50 (Continued) 
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In general, the density distributions of the holo conditions preserve unimodality. The main differences 

compared to the apo condition involve moderate shifts in the distribution centers and small 

alterations in density dispersion. While the distributions along CPCs #1 and #2 display various shifts 

depending on the type of holo condition, all holo conditions align distinctively with similar distribution 

centers along CPC #3. 

In the presence of PEP at the active site (conditions PEP‑holo, PEP‑ADP‑holo, and Full‑holo), the 

density distributions are narrower and consistently show shifts towards the projection values of 2VGB. 

Along CPC #2, these distributions display heavy tails that extend towards the spectrum region 

characteristic of the apo condition, thus indicating signs of an underlying conformational equilibrium. 

Consequently, PEP is the substrate that most significantly attenuated conformational diversity by 

constraining sampling around the conformations of the crystallographic structure. This effect was also 

strongly represented in the analysis of the A and B domains, thus indicating a consistent behavior. This 

observation provides additional evidence supporting the described mechanism of cooperativity 

Figure 4.50 (Continued) 
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between adjacent active sites (A‑A′ interface), whereby PEP binding induces relative motions and 

symmetrical rearrangements between the A domains [127], [128], [132], [149]. In line with this 

proposed model of cooperativity, simulations with all active sites occupied with PEP firmly stabilized 

the active conformation. Conversely, in the absence of PEP, the structure exhibited greater 

conformational freedom. 

The holo conditions exhibiting minimal changes compared to the apo condition are those containing 

only cofactors at the active site, namely K‑holo and K‑Mg‑holo. Particularly along CPCs #1 and #2, the 

density distributions are not significantly shifted but display higher dispersion. Specifically, the 

two‑dimensional distributions of K‑holo exhibit more local maxima scattered around the span of the 

distributions. The ADP‑holo condition displays density distributions that resemble those of K‑holo but 

with slightly less dispersion. Thus, the addition of MgADP to the K⁺‑bound active site does not seem 

to have caused significant sampling changes of the analyzed conformations and motions. 

The FBP‑holo condition displays density distributions with intermediate characteristics between those 

from the other groups of holo conditions. Of particular relevance are the possible differences with 

respect to the K‑Mg‑holo condition, as these conditions differ only by the fact that FBP‑holo has FBP 

bound to the allosteric site. Along CPC #2, the FBP‑holo density distribution is more shifted towards 

the characteristic region of the PEP‑bound holo conditions, suggesting that FBP may have induced 

retention of sampling of conformations that are close to those induced by PEP binding. Along CPC #3, 

the FBP‑holo density distribution is more aligned with the rest of holo conditions and exhibits less 

dispersion than that of K‑Mg‑holo. Along CPC #1, the FBP‑holo density distribution has a similar span 

than that of K‑Mg‑holo but is more polarized in two opposing regions. The region with minor density 

does not particularly overlap with other holo conditions, although, when inspected in combination 

with CPC #2, it seems to correspond to conformations closer to those of the PEP‑bound holo 

conditions. 

 

Figure 4.51. Comparative analysis of the WT trajectories (A‑A′ pairs of domains) in apo vs. holo conditions: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. The bar sizes of the BC (values bounded between 0 and 1) are shown with a scaling proportional to the overlap 

and coverage metrics (expressed in percentage values) to enable a balanced interpretation of the three metrics. 

The principal traits discerned from the visual examination of the density distributions are reflected in 

the ranges of values of the similarity metrics along CPCs #1 to #3. The three metrics, both individually 
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and collectively, facilitate the classification of the different types of behavior of the holo conditions. 

On one side, the K‑holo and K‑Mg‑holo conditions display the highest values of each metric that 

denote a substantial degree of similarity with the apo condition. In terms of these indicators, they are 

essentially within the range of intrinsic variability exhibited by different trajectory ensembles of the 

apo condition, as seen from the comparison between the original and the additional apo simulations. 

These are closely followed by a second group that includes the ADP‑holo and FBP‑holo conditions and 

displays slightly lower values. For ADP‑holo, these values can be attributed to slightly lower sampling 

of the apo spectrum of conformations compared to K‑holo. For FBP‑holo, these values signify the 

intermediate behavior of this condition between the former and the following groups of holo 

conditions. The last group comprises the PEP‑holo, PEP‑ADP‑holo, and Full‑holo conditions, which 

display the lowest values as a result of more restrictive sampling. 

4.1.3.2.2 The C‑C′ dimers 

The analysis of the C‑C′ dimers was aimed at examining the collective motions of a larger region of the 

enzyme, namely, both the A and C domains of the adjacent subunits. The A and C domains constitute 

the major central region of each subunit, called the AC core. The study of the dynamical events 

between the adjacent AC cores offers the possibility to characterize the conformational changes 

across the C‑C′ interface and, simultaneously, uncover potential coupling mechanisms with the A‑A′ 

interface via the corresponding intrasubunit rearrangements. Importantly, the binding site of the 

allosteric activator FBP is located beside the C‑C′ interface. Therefore, the identification of distinctive 

patterns of motion of the AC cores may provide insight on the mechanism of propagation of the 

allosteric effect to the active site. 

The CEDA procedure was applied to the WT apo trajectories to derive the corresponding set of CPCs. 

Each tetramer comprises two pairs of adjacent AC cores across the C‑C′ interface, resulting in 10 

analyzable AC‑C′A′ pairs of cores from the 5 simulations of the WT tetramer. The global average 

structure of all AC‑C′A′ pairs of the trajectory ensemble was generated and used as the general 

reference for structural superpositions. In a similar way as in the experiment with the A‑A′ dimers, an 

approach to obtain 20 analyzable trajectory replicates was implemented, whereby two 

complementary PCAs were performed for each AC‑C′A′ pair, alternating the role of the fitting group 

between the respective A domains (i.e., AC‑C′A′ with A as the fitting group and A′C′‑CA with A′ as the 

fitting group; in both cases superposed to A of the global average structure). 

Only the Cα atoms of the region (772 atoms) were considered in the analysis, therefore each PCA 

yielded a set of 2316 eigenvectors. The first 20 eigenvectors of each trajectory replicate were included 

in the clustering analysis, accounting for approximately 90% of the cumulative variance on average 

(Figure 4.52). The assessment of the cosine content identified 4 instances of PCs with values exceeding 

the threshold of 0.5 (Figure 4.53). These instances correspond to the PC #1 of replicates #3‑CD, #3‑DC, 

#3‑BA, and #5‑CD. It is noteworthy that the trajectory replicates from simulation #3 are 

overrepresented. As in the previous experiments, the degree of integration of these PC instances of 

high cosine content in the clusters of higher coverage will clarify the nature of the corresponding 

captured collective motions. 
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Figure 4.52. Percentage of variance explained by the PCs of the AC‑C′A′ pairs of cores in the WT apo condition. Data 

corresponds to the mean values from the first 30 PCs of the 20 trajectory replicates of the experiment. Standard deviation 

intervals are included as error bars. 

 

Figure 4.53. Cosine content values of the PCs considered in the CEDA of the AC‑C′A′ pairs of cores in the WT apo condition. 

The cutoff value of 0.5 below which the sampling is considered to be acceptable in protein dynamics is shown with a 

horizontal dashed black line. 

A cophenetic distance cutoff of 0.4 was applied to split the dendrogram of the hierarchical clustering 

(Figure 4.54), and clusters with less than 20% of coverage were discarded, thus retaining a total of 9 

relevant clusters. The primary division of the dendrogram allows identification of two distinct sections, 

similarly to the previous CEDA experiments. The lower section contains 2 large clusters of high 

coverage, namely, clusters #1 and #2 with 100% and 95% coverage values, respectively. The upper 

section of the dendrogram contains a large cluster (cluster #6 with 80% coverage) as well as scattered 

eigenvectors that form smaller clusters of both lower similarity and coverage values. Clusters #7, #10, 

#11, #13, #14, and #15 meet the established criteria to produce CPCs, with 30%, 25%, 25%, 35%, 20%, 

and 20% of coverage, respectively. The centroid vector of the 9 relevant clusters was computed to 

acquire the CPCs of the experiment, numbered from #1 to #9 in decreasing order of coverage and 

average percentage of variance of their cluster members. 
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Figure 4.54. Dendrogram of the CEDA of the AC‑C′A′ pairs of cores in the WT apo condition. The cophenetic distance cutoff 

of 0.45 used to split the dendrogram and obtain clusters is shown with a vertical black line. Non‑singleton clusters are shown 

in various colors to facilitate visual identification. The 9 clusters with at least 20% of coverage were selected to acquire the 

Consensus Principal Components (CPCs) of the experiment. CPCs were numbered from #1 to #9 in decreasing order of 

coverage and average percentage of variance of their cluster members. The figure indicates which clusters yielded each CPC, 

together with their achieved coverage. At the left margin of the dendrogram, the span of the detected families of clusters is 

indicated with labeled curly brackets. 
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Next, the collective motion captured in each CPC was visually examined. Figure 4.55 shows schematic 

diagrams of the AC‑C′A′ pair of cores along with the terminology that will be employed to refer to the 

observed motions. The structure was arranged in a reference orientation with the A domain (anchored 

region; fitting group) on the top of the rest of domains. Three primary spatial directions were defined 

as the dimensions of a hypothetical rectangular box (width, height, and depth) containing the 

tetrameric structure. Three perpendicular sectional planes that intersect at the center of the box help 

retain further reference features of the AC‑C′A′ pair of cores in the context of the whole tetramer. The 

horizontal plane coincides with the C‑C′ interface, separating the upper and the lower subunits. A 

vertical plane coincides with the A‑A′ interface, defining the positions where the absent adjacent 

subunits would be. Finally, the remaining vertical plane intersects with all four subunits and has been 

termed the “tetramer plane” because it covers its full extent. Figure 4.56 shows the schematic 

representations of the path and extreme conformations of the collective motions from CPCs #1 to #3. 

 

Figure 4.55. Schematic diagrams of the adjacent AC cores across the C‑C′ interface of PKR. Various markers indicate the 

terminology to refer to (a) the reference views and sections of the structure, and (b) three primary spatial directions defined 

as the dimensions of a hypothetical rectangular box that contains the tetrameric structure. The structure under analysis is 

colored as follows: A domain in red, C domain in yellow, A′ domain in pink, and C′ domain in orange. The rest of the structure 

of the tetramer is also depicted (gray) to provide a reference of the relative positions where the absent domains and subunits 

would be. NOTE. The 3D schematic models were built with the software Blender. 

In contrast with the previous analyses, the structure under investigation now encompasses four 

domains. With the A domain of the upper subunit being the fitting group of the experiment, the 

captured collective motions are characterized by collective displacements of the remaining three 

mobile domains. All observed motions feature a primary path of motion given by the displacement of 

the C domain with respect to the A domain (upper subunit), facilitated by the joint‑like capabilities of 

the A‑C interface, and with the Cα4 helix acting as a pivot point. In turn, the C′A′ core of the lower 

subunit follows the path described by the C domain and mainly moves accordingly with it as a single 

structural block, thanks to the union of the C‑C′ interface. In some instances, the A′ domain also 
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exhibits separate paths of motion, as the conformational freedom of this domain depends on the 

constraints of its adjacent subunit, even though it is not included in the analysis. 

The collective motion captured in CPC #1 (Figure 4.56a, Supplementary Video S4.19) shows a swinging 

motion of the C‑C′A′ block along the depth dimension of the tetramer. The collective motion captured 

in CPC #2 (Figure 4.56b, Supplementary Video S4.20) shows a swinging motion of the C‑C′A′ block 

along the plane of the tetramer. The collective motion captured in CPC #3 (Figure 4.56c, 

Supplementary Video S4.21) shows a horizontal rotational motion of the C‑C′A′ block about a vertical 

axis. 

 

 

Figure 4.56. Consensus collective motions of the adjacent AC cores across the C‑C′ interface in the WT apo condition. (a‑c) 

Schematic representations of the path and extreme conformations of the motion captured in CPCs #1, #2, and #3. In each 

panel, the protein domains are depicted with the diagrams of Figure 4.55 (left) and with the trace representation between 

Cα atoms (center and right). Domains are colored as follows: A in red, C in yellow, A′ in pink, and C′ in orange. These motions 

can also be viewed in the Supplementary Videos S4.19 to S4.21. NOTE. The images of the protein structure were generated 

with the software VMD. The 3D schematic models were built with the software Blender. 
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The composition of the corresponding clusters of these CPCs correlates with the index of the clustered 

PCs. CPC #1 agglomerated 17 instances of PC #1 and 3 of PC #2. All the PCs with high cosine content 

are well integrated into this cluster, thus confirming the significance of their captured collective 

displacement of coordinates despite their PC projection values having stronger resemblance to cosine 

shapes. CPC #2 agglomerated 16 instances of PC #2 and 3 of PC #1. CPC #3 agglomerated 14 instances 

of PC #3 and 2 of PC #4. Consequently, the conformational space defined by the dimensions of CPCs 

#1 to #3, in decreasing order of conformational variability, is representative of the sampling of the 

whole trajectory ensemble. In turn, this distribution of PCs implies that the relative importance of each 

collective motion was equivalent among all AC‑C′A′ pairs of cores, for either of the two alternative 

points of reference (fitting group) with respect to the global average structure. This resulted in the 

derivation of a more robust consensus representation of the motions. 

CPCs #4 to #9 captured collective motions of lower amplitude, and comprise PCs with various indices 

between #3 to #7. The corresponding motions can be viewed in the Supplementary Videos S4.22 to 

S4.27, and can be described as follows. CPC #4: a vertical shift of the C‑C′A′ block. CPC #5: a variation 

of the rotational motion of CPC #3 with an alternative reorientation of the A′ domain. CPCs #6 and #7: 

horizontal shifts along the depth of the tetramer, in combination with a vertical shift similar to that of 

CPC #4. CPC #8: a variation of the vertical shift of CPC #4. CPC #9: a combination of horizontal and 

vertical shifts with a distinctive rotation of the barrel of the A′ domain. 

After the derivation of the CPCs and the examination of the captured motions, the experiment 

proceeded with the exploration of the corresponding conformational profiles. The probability density 

functions of the projection data along each CPC were estimated with KDE, using a bandwidth of 0.3 

and representing the curves with 100 points along the domain of the data. Only the conformational 

profiles along CPCs #1, #2, and #3 were explored as they constitute the clusters of greatest coverage 

and conformational sampling variance of the experiment. Figures 4.57, 4.58, and 4.59 show the 

one‑dimensional density distributions along each of these CPCs, both for each individual trajectory 

replicate and for the aggregated projection data. Representative structures of the AC‑C′A′ pair of cores 

at different projection values are included to inform about their correspondence with the range of 

conformations. The projection values of the subunits of the structure 2VGB are also indicated in the 

figures. 

Figure 4.56 (Continued) 
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Figure 4.57. Density distributions along CPC #1 of the AC‑C′A′ pairs of cores in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the AC‑C′A′ pair of cores at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. Domains are colored as follows: A in red, C in yellow, A′ in pink, and C′ in 

orange. NOTE. The images of the protein structure were generated with the software VMD. 
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Figure 4.58. Density distributions along CPC #2 of the AC‑C′A′ pairs of cores in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the AC‑C′A′ pair of cores at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. Domains are colored as follows: A in red, C in yellow, A′ in pink, and C′ in 

orange. NOTE. The images of the protein structure were generated with the software VMD. 
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Figure 4.59. Density distributions along CPC #3 of the AC‑C′A′ pairs of cores in the WT apo condition. The highlighted region 

along the abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the 

locations of local maxima. (a) KDE curves of the projection data per trajectory replicate. The PC index of the clustered 

eigenvector of each replicate is indicated next to its identifier. (b) KDE curve of the aggregated projection data with 

representative structures of the approximate conformation of the AC‑C′A′ pair of cores at different intervals of projection 

values. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are depicted 

with the trace representation between Cα atoms. Domains are colored as follows: A in red, C in yellow, A′ in pink, and C′ in 

orange. NOTE. The images of the protein structure were generated with the software VMD. 
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The corresponding distributions of the aggregated projection data are mostly unimodal, with large 

dispersion, and centered around zero. This suggests that the structures sampled conformations 

around an energy minimum close to the global average structure of the ensemble. As usual, the total 

span of projection values diminishes as the CPC index increases. The distribution along CPC #1 exhibits 

a particularly wide plateau that spans between the values of ‑5 and 7 and is generated by the various 

localizations of the density distributions of the individual trajectory replicates around the central 

region of the conformational spectrum. Incidentally, there appears to exist a certain complementarity 

in the information provided in CPC #1 by the two trajectory replicates of the same pair of adjacent AC 

cores with alternative fitting groups. It can be noticed that when one exhibits positive projection 

values, the other tends to exhibit negative projection values, and vice versa (e.g., #1‑AB with #1‑BA, 

or #1‑CD with #1‑DC). This implies that the conformational change captured by CPC #1 is described 

with opposite orientations depending on whether the point of reference is the upper or the lower 

subunit of the C‑C′ dimer. This complementarity is not observed in the other CPCs. 

The structure 2VGB displays projection values integrated within the central region of the 

conformational spectrums of CPCs #1 and #3, suggesting that there is no distinction in the preferred 

conformations between the apo and holo conditions of the enzyme along these directions of the 

sampling space. Conversely, in CPC #2, the projection values of 2VGB are located far from the center 

of the distribution, between the values of ‑7 and ‑10, corresponding to a conformation with the C‑C′A′ 

block more tilted towards the center of the tetramer. This suggests that this conformation is not stable 

in the apo condition but rather dependent on the presence of one or several of the ligands of the 

crystallographic structure. 

The exploration of the conformational profiles was complemented with the generation of the 

two‑dimensional density distributions (Figure 4.60). No major topological irregularities or singularities 

can be discerned besides those implied in the one‑dimensional distributions. In general, the three 

dimensions appear to define the basin of an energy minimum. The projection values of 2VGB lie at the 

center of the distribution of CPCs #1 vs. #3, whereas their deviation from the sampling region becomes 

evident when CPC #2 is inspected. 

Next, as with the previous CEDAs, the obtained conformational profiles were compared to those of 

the additional set of WT apo simulations (#6 to #10) to evaluate replicability. On the one hand, Figure 

4.61 shows the overlays of the pairwise two‑dimensional plots of CPCs #1 to #3, which were visually 

compared to assess the similarities and differences in the sampling along the reference collective 

motions. On the other hand, the quantitative indicators (the overlap, coverage, and BC metrics) were 

calculated for the comparison between the corresponding three‑dimensional distributions. 
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Figure 4.60. Pairwise 2D density distributions along CPCs #1 to #3 of the AC‑C′A′ pairs of cores in the WT apo condition. The 

highlighted rectangular regions indicate the total span of projection values. Contour lines delineate 21 levels of highest 

density percentage: the farthest encompasses the 99.5% of the highest density and serves to enhance perception of the 

boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density 

in steps of 0.5. Triangle markers indicate the locations of local maxima. The projection values of the subunits of the structure 

2VGB are indicated with “X” markers. Each two‑dimensional plot also features subplots of the one‑dimensional KDE curves 

along each individual CPC in the top (abscissa) and right (ordinate) margins. 
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Figure 4.61. Comparative analysis of the original vs. additional WT trajectory ensembles (AC‑C′A′ pairs of cores) in the apo 

condition: conformational profiles (2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory 

data projected onto CPCs #1 vs. #2 (top‑left), #1 vs. #3 (top‑right), and #2 vs. #3 (bottom) from the reference (WT apo) 

condition. Contour lines delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the highest 

density and serves to enhance perception of the boundaries of the distributions, while the next 20 levels encompass intervals 

from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 95% 

density. Triangle markers indicate the locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves 

along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular 

regions indicate the total span of projection values, while the filled area under the curve represents the intervals of highest 

95% density. 
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The principal concentrations of density are shared between both trajectory ensembles, indicating an 

overall equivalent exploration of the same conformational space. The values of the quantitative 

indicators were overall high, with an overlap of 90.24%, a coverage of 93.90%, and a BC of 0.93. Among 

the noteworthy differences between the conformational profiles, the second trajectory ensemble 

does not exhibit the wide plateau at the central region of CPC #1 which is instead more focused in the 

form of a single central peak. In addition, it also displays a characteristic region of moderate density 

around the value of ‑5 of CPC #2, closer to the values of the structure 2VGB. 

Following from the characterization of the results of the WT apo condition, the next stage of the 

analysis revolved around the comparison with the conformational profiles of the WT holo trajectory 

data when projected onto the reference set of CPCs. The comparison was based on the visual 

examination of the one‑ and two‑dimensional distributions, shown in Figures 4.62 and 4.63, and the 

calculation of the similarity metrics between the three‑dimensional distributions, which have been 

compiled in Figure 4.64. The two‑dimensional plots with CPCs #1 and #3 have been omitted for the 

sake of brevity and because their visual inspection did not provide any additional significant 

information beyond what is already discernible from the other plots. 

 

Figure 4.62. Comparative analysis of the WT trajectories (AC‑C′A′ pairs of cores) in apo vs. holo conditions: conformational 

profiles (1 CPC). The 1D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 

(top), #2 (center), or #3 (bottom) from the reference (WT apo) condition. The data of each condition is colored as follows: 

apo in blue, K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, FBP‑holo in 

pink, and Full‑holo in gray. The plots show the KDE curves of the aggregated projection data along with representative 

structures of the conformation of the AC‑C′A′ pair of cores at different projection values. The highlighted region along the 

abscissa indicates the total span of projection values. Triangle markers at the top margin of each plot indicate the locations 

of local maxima. Vertical dashed lines indicate the projection values of the subunits of the structure 2VGB. Structures are 

depicted with the trace representation between Cα atoms. Domains are colored as follows: A in red, C in yellow, A′ in pink, 

and C′ in orange. NOTE. The images of the protein structure were generated with the software VMD. 
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Figure 4.62 (Continued) 
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Figure 4.63. Comparative analysis of the WT trajectories (AC‑C′A′ pairs of cores) in apo vs. holo conditions: conformational 

profiles (2 CPCs). The 2D density distributions shown in this figure correspond to the trajectory data projected onto CPCs #1 

vs. #2 (left panels) and #2 vs. #3 (right panels) from the reference (WT apo) condition. The data of each condition is colored 

as follows: apo in blue, K‑holo in orange, K‑Mg‑holo in green, PEP‑holo in red, ADP‑holo in purple, PEP‑ADP‑holo in brown, 

FBP‑holo in pink, and Full‑holo in gray. Contour lines delineate 21 levels of highest density percentage: the farthest 

encompasses the 99.5% of the highest density and serves to enhance perception of the boundaries of the distributions, while 

the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas 

represent the interval of highest 95% density. Triangle markers indicate the locations of local maxima. The projection values 

of the subunits of the structure 2VGB are indicated with “X” markers. Each 2D plot also features subplots of the 1D KDE 

curves along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted 

rectangular regions indicate the total span of projection values, while the filled area under the curve represents the intervals 

of highest 95% density. 
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Figure 4.63 (Continued) 
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The changes in the conformational profiles of the holo simulations with respect to the apo simulations 

involve moderate shifts in the centers of the density distributions. The most significant differences 

occurred along the conformational spectrum of CPC #2, as anticipated by the previous observations 

of the localization of the projection values of structure 2VGB. The density distributions along CPC #3 

also reveal mild differential behavior of certain trajectory ensembles. In contrast, all holo density 

distributions predominantly overlap with the reference distribution along CPC #1, which is indicative 

of an overall equivalent exploration of the same conformational space. In some instances, however, 

there is appreciably less dispersion of values with respect to the center of the distributions. The 

presence of cofactors at the active site (K‑holo and K‑Mg‑holo conditions) did not induce significant 

differential sampling of the conformational space along the three analyzed CPCs, as shown by the high 

similarity of the density distributions with the apo condition. 

Consistent with the previous CEDAs performed on the other protein regions, all holo conditions with 

bound PEP (PEP‑holo, PEP‑ADP‑holo, and Full‑holo) exhibit the most prominent differential behavior 

Figure 4.63 (Continued) 
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with respect to the apo condition. Along CPC #2, the corresponding distributions are shifted towards 

the distinctive localization of the structure 2VGB in the conformational spectrum, thus establishing 

consistency between crystallographic and dynamical data. Although the centers of such distributions 

are not fully aligned with the projection values of 2VGB, these characteristic shifts nonetheless suggest 

the existence of a conformational equilibrium between active and inactive states, whereby each state 

is stabilized by the presence or absence of PEP, respectively. The distribution of the PEP‑holo condition 

is the one that exhibits the greatest overlap with the projection values of 2VGB, as shown by the 

two‑dimensional plots. This condition also displays a heavy tail that extends towards the inactive state. 

When MgADP is the only bound substrate (ADP‑holo condition), the conformational equilibrium is 

found in a state more reminiscent of that of the apo condition (especially the second apo trajectory 

ensemble; Figure 4.61), whereby the protein mainly remained in the inactive conformation albeit the 

sampling of the characteristic region of the PEP‑bound conformation was retained in minor 

proportions. 

Along CPC #3, the displayed shifts in the distributions are harder to interpret, although in general they 

represent conformational changes of lower significance than those of CPC #2, given that the distance 

between centers of the distributions differs in less units of projection value. PEP‑holo exhibits 

bimodality: while the main region of density is aligned with the distribution of the apo condition, it 

displays distinctive sampling of the area around the projection value of ‑3.5. This region of the 

conformational spectrum of CPC #3 corresponds to a form of the C‑C′A′ block rotated 

counterclockwise as seen from the top view. Such a conformation was less sampled in the other 

trajectory ensembles and deviates from the characteristic projection values of 2VGB. With the 

incorporation of MgADP at the active site (PEP‑ADP‑holo and Full‑holo conditions), unimodality is 

regained and the corresponding distributions become centered around the projection value of 1.5, 

closer to the distributions of both the apo and ADP‑holo conditions. 

The differential behavior of the FBP‑holo deserves separate attention. Notably, its density distribution 

along CPC #2 exhibits an intermediate location between those of the PEP‑bound holo conditions and 

the apo condition. Such an observation can be especially noted in the light of the two‑dimensional 

plots of CPCs #2 vs. #3, between conditions. A similar effect was observed earlier when studying the 

collective motions of the adjacent A domains (section 4.1.3.2.1). However, this observation holds 

particular relevance in the context of the present analysis, as the analyzed region includes the 

allosteric site and its structural environment. The similarities between the results of both experiments, 

the implications of the presence of FBP, and the possible connections between the conformational 

changes at the C‑C′ and A‑A′ interfaces are further explored in the next section (4.1.3.2.3). 

The principal traits discerned from the visual examination of the density distributions are reflected in 

the ranges of values of the similarity metrics along CPCs #1 to #3. The total score provided by the three 

metrics facilitates distinction of the different behaviors of the holo conditions with respect to the apo 

condition. The high similarity of the conformational space of both the K‑holo and K‑Mg‑holo 

conditions with that of the apo condition is expressed with high values of all metrics. The next 

condition in order of similarity is the ADP‑holo condition, which only exhibits mildly lower values of 

coverage and BC that reflect the retention of a fraction of sampling in the characteristic region of the 

active conformation of the enzyme. Next is the FBP‑holo condition, which displays coverage and BC 

values similar to those of ADP‑holo; this time due to the mild shift in the center of the unimodal 

distribution towards the active conformation. For this reason, the value of the overlap is lower than 
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in ADP‑holo. Finally, the stronger shifts of the density distributions of the PEP‑bound holo conditions 

are reflected in lower values of all three metrics, especially the PEP‑holo condition that is the one with 

more volume of sampling farther from the apo conformational space. 

 

Figure 4.64. Comparative analysis of the WT trajectories (AC‑C′A′ pairs of cores) in apo vs. holo conditions: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. The bar sizes of the BC (values bounded between 0 and 1) are shown with a scaling proportional to the overlap 

and coverage metrics (expressed in percentage values) to enable a balanced interpretation of the three metrics. 

4.1.3.2.3 Correspondence between the conformational changes at the A‑A′ and 

C‑C′ interfaces 

With the outcome from the independent CEDAs of each region of PKR, we can subsequently search 

for signs of correspondence between the detected conformational profiles of the alternative 

simulation conditions. Specifically, the results from the two previous sections provide a chance to 

identify potential couplings between the distinctive collective motions at the A‑A′ and C‑C′ interfaces 

of PKR. 

Remarkably, significant correspondence has been detected between the information provided by the 

second CPC from both CEDAs (central panels of Figures 4.49 and 4.62). The two conformational 

spectrums display highly similar patterns of differential behavior among the apo and holo conditions. 

In both scenarios, two characteristic regions of the conformational spectrum are distinguished. The 

sampling of one or the other primarily depended on the presence of the substrate PEP at the active 

site, with the PEP‑bound holo conditions being close to the location of the crystallographic structure 

2VGB. Thus, from a functional point of view, these two regions supposedly correspond with the active 

and inactive states of the enzyme. This observation suggests that the collective motions captured in 

terms of each CPC potentially occurred in a concerted manner. Or, in other words, they account for 

complementary perspectives of a single transition between the states. 

In order to test this hypothesis and to achieve further characterization of the nature of the observed 

collective motions along CPC #2 from both CEDAs, the corresponding transitions were re‑examined by 

changing the point of reference through which the motion is visually inspected. To this end, the 

average tetrameric structure of the trajectory ensemble of the apo condition was generated and used 

as a common reference for structural superpositions (least‑squares fitting). For each transition, a 

different fitting group was employed, superposing it to the analogous region of the reference 
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tetrameric structure. For the transition of the AC‑C′A′ pair of cores, the adjacent C domains were set 

as the fitting group. For the transition of the A‑A′ pair of domains, the whole structure was set as the 

fitting group. 

The alternative perspective of the transition of the AC‑C′A′ pair of cores along CPC #2 no longer 

features rotational and translational components of the C domains, thus facilitating the inspection of 

the local conformational changes at the C‑C′ interface. Figure 4.65 and the Supplementary Video S4.28 

show the corresponding collective motion. From this perspective, the transition from the 

PEP‑unbound to the PEP‑bound conformation involves symmetrical local rearrangements across the 

C‑C′ interface (Figure 4.65c). At the section furthest from the center of the tetramer, the gap of the 

interface widens with the mutual separation of the local region of the adjacent C domains. In 

particular, the Cα5 helix and the L‑Cβ3‑Cα5 loop from each domain are points of high amplitude of 

motion that determine the gap width of this section of the interface. At the opposite section of the 

interface, close to the center of the tetramer, the Cα1 helices from the adjacent C domains reorient 

and become more parallel between each other. 

Importantly, the position of the loop of the allosteric site (L‑Cβ4‑Cβ5) also fluctuates coupled to these 

rearrangements. The role of this loop is to lock the FBP molecule bound at the allosteric site by 

covering it via stabilizing interactions. Accordingly, in the apo simulations, the removal of FBP from 

the initial crystallographic structure has enabled the unfolding motion of the loop. In contrast, the 

FBP‑holo simulations should retain the folded state of the loop due to the presence of FBP. The 

conformational profile of the FBP‑holo condition along CPC #2 is characterized by a wide density 

distribution that is centered around an intermediate position between the PEP‑bound and ‑unbound 

states. Therefore, results suggest that the presence of FBP might be preventing the total shift of the 

equilibrium towards the inactive state, even in the absence of PEP. This observation, together with 

the fact that the unfolding motion of the loop (symmetrically in the adjacent C domains) is a strong 

consensus behavior among the apo trajectories in the transition towards the inactive state, suggests 

that the position of the loop might exert an influence in its direct surroundings, helping to break or 

form other interactions related with the observed rearrangements of the C‑C′ interface. These 

functional implications have been suggested in other studies [124], [128], [148], [149], [165] and are 

described more in depth in the Discussion chapter. 

This perspective of the transition also enables observation of the rigid‑body motions of the A domains 

that are correlated with the rearrangements of the C‑C′ interface. The A domain of the upper subunit 

used to be the fitting group of the transition. Now, it undergoes a swinging motion along the plane of 

the tetramer, analogous to that of the original transition but under the point of reference of the fitted 

C domains (Figure 4.65b). The motion of the A domain accompanies the local rearrangements of the 

structural elements of the C domain that have been previously described. On the other hand, in the 

alternative perspective of the transition of A‑A′ pair of domains along CPC #2, both A domains display 

gyration motions that involve the mutual approach of the adjacent active sites (Figure 4.66 and 

Supplementary Video S4.29). The comparison of both transitions reveals that the A domains follow 

qualitatively comparable paths of motion. An overlay of both transitions, superposed to the average 

tetrameric structure, was generated and can be viewed in the Supplementary Video S4.30 for a clearer 

inspection of the motions. 

. 
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Figure 4.65. Alternative perspective of the collective motion of the adjacent AC cores across the C‑C′ interface along CPC #2 

in the WT apo condition. The protein is depicted with the trace representation between Cα atoms. Domains are colored as 

follows: A in red, C in yellow, A′ in pink, and C′ in orange. The opaque structure corresponds to the PEP‑unbound 

conformation, and a few conformations of the transition to the PEP‑bound conformation are represented with transparent 

structures. The PEP‑bound conformation of the C domains is colored in black to better highlight the conformational 

differences of the C‑C′ interface. The black lines connecting the intermediate structures indicate the path of motion of Cα 

atoms. This motion can also be viewed in the Supplementary Video S4.28. (a) General view of the whole structure. (b) 

Swinging motion of the A domain of the upper subunit. (c) Local structural rearrangements of the C‑C′ interface. NOTE. The 

images were generated with the software VMD. 



 Results 

227 
 

 

Figure 4.66. Alternative perspective of the collective motion of the adjacent A domains across the A‑A′ interface along CPC 

#2 in the WT apo condition. The protein is depicted with the trace representation between Cα atoms. The A and A′ domains 

are colored in red and pink, respectively. The opaque structure corresponds to the PEP‑unbound conformation, and a few 

conformations of the transition to the PEP‑bound conformation are represented with transparent structures. The black lines 

connecting the intermediate structures indicate the path of motion of Cα atoms. This motion can also be viewed in the 

Supplementary Video S4.29. NOTE. The image was generated with the software VMD. 

4.2 Analysis of missense variants of PKR 

Following from the study of the WT PKR, the next experimental part of the project revolved around 

the characterization of the functional effects of missense variants of the enzyme. The following 

sections elaborate on the conducted set of actions aligned with this goal. First, the construction 

process of a catalog of the known missense variants of PKR is explained, along with the subsequent 

selection of a representative set of variants for simulation. Secondly, the modeling procedure of the 

corresponding amino‑acid substitutions and the performed simulations in apo and holo conditions are 

reviewed, including a few notes about the stability and flexibility analyses of the trajectories. The last 

section represents the most important part of this block of results, in which the CEDA strategy was 

applied to detect potential dynamical alterations in the simulated variants in comparative terms with 

respect to the WT behavior. 

4.2.1 Construction of a comprehensive database of missense 

mutations of PKR 

Pyruvate kinase deficiency (PKD) is the most frequent glycolytic enzymopathy and one of the most 

common causes of the disease known as chronic hereditary non‑spherocytic hemolytic anemia. Over 

the last decades, an extensive volume of genetic variations have been identified in the gene PKLR that 

cause PKD by either functional impairment of the enzyme or lack of protein production, thus 

representing a paradigmatic case of a monogenic disorder. A considerably large portion of the 

detected genetic mutations produce missense variants or single amino‑acid variants (SAVs) of the 

protein [199]. 
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In order to obtain a global view of the identified missense variants of this protein, a comprehensive 

exploration of public databases of genetic variants was performed, comprising repositories of clinical 

annotations and genome‑sequencing data portals (see section 3.6 of the Methods chapter). The 

search was complemented with a subsequent extensive scan of the available literature to gather 

further clinical and functional annotations. This exercise culminated with the integration of the 

gathered data in a database that serves as a catalog of the known missense variants of PKR. The 

publication of the full database lies outside of the scope of this thesis, as reproduction and distribution 

of the contents is currently not possible in order to comply with copyright policies of several of the 

queried resources. Below is a detail of the dimensions of the database, together with an analysis of 

how the available types of data sources interrelate with each other. 

The constructed database contains a total number of 789 unique missense variants from diverse 

sources. The first informative distinction is given between the missense variants characterized by a 

somatic vs. germline origin. The former correspond to variants that were retrieved from the COSMIC 

and BioMuta repositories (i.e., mutations implicated in the development of cancer; putatively somatic) 

and that were not found in the rest of the queried sources. These are 130, thus representing 16.5% of 

the total. Conversely, the latter correspond to variants that have been detected either in large‑scale 

genome‑sequencing projects or in clinical studies of hereditary PKD. These are 564, thus representing 

71.5% of the total. Finally, there is a fraction of variants that are only registered in dbSNP and 

correspond to entries submitted by diverse screening projects of smaller scale or independent 

laboratories, or that simply lack clear records on their provenance. It is hard to determine their origin 

without a case‑by‑case inspection and, therefore, they were left unclassified. These are 95, thus 

representing 12% of the total. 

For this study, only the variants with a germline origin have been considered, as they account for the 

genetic variation in the human population and, thus, are the target of clinical studies of the incidence 

and transmission of pathogenic mutations associated with PKD. It is important to note that the 

aforementioned distinction between somatic and germline origins based solely in terms of database 

provenance is not entirely reliable. Overlaps between the two types of repositories can be found, thus 

creating ambiguities in the true nature of the variants. 

The extent of contradictory information was examined with the measurement of the overlap of the 

data between the corresponding types of repositories. From the 408 entries retrieved from the ExAC 

and gnomAD datasets, 67 can also be found in COSMIC or BioMuta. The documentation from the 

COSMIC database does warn about the unavailability of definitive evidence for putative somatic 

mutations incorporated from the published literature, as well as the possible occurrence of annotation 

mistakes in laboratories and the intrinsic error rate of DNA sequencing methods. Consequently, 

entries include a “somatic status” label that states whether the mutation has been confirmed to have 

somatic origin or not. Even so, the number of entries in COSMIC with confirmed evidence of somatic 

origin that are also found in ExAC and gnomAD is 31. 

A total of 258 entries of the catalog are associated with PKD. From those, 201 were retrieved from the 

queried repositories that include annotations on the phenotype or the clinical manifestations. While 

there is high overlap between the different sources, they did not contribute equally. The number of 

retrieved entries, in descending order, was the following: 185 from HGMD, 156 from LOVD, 101 from 

Humsavar/SwissVar, and only 24 from ClinVar. On the other hand, 55 of the PKD‑associated missense 

variants of the catalog were acquired thanks to the generous collaboration of Dr. Richard van Wijk 
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from his personal clinical research. In addition, 2 extra variants were retrieved from the exploration 

of the recent literature. These variants were not found in any of the queried repositories. 

In respect of the overlap with other types of repositories, 36 of the PKD‑associated variants can also 

be found in COSMIC or BioMuta, with 11 instances from COSMIC claiming evidence of somatic origin 

and thus holding contradictory information. On the other hand, 102 of the PKD‑associated variants 

also appear in the ExAC and gnomAD datasets. Even though in such projects of large‑scale genome 

sequencing the aim is to annotate DNA variation in the worldwide human population without 

interference of disease‑associated genotypes, there is certainly a chance that some participants 

actually suffer from undiagnosed or neglected diseases. Moreover, PKD is an autosomal recessive 

disorder and, therefore, an individual can be a carrier of a harmful variant and still not develop the 

disease. Accordingly, the majority of instances correspond to detections in a few heterozygous 

individuals (i.e., variant carriers in just one allele), normally less than ten and possibly up to a few 

dozens, with allele frequencies between 4×10⁻⁶ and 5×10⁻⁴, approximately. There are also a few 

isolated instances with a few hundreds of detections that may reach allele frequencies around 4×10⁻³. 

Some of these are notoriously known for being among the most commonly reported mutations in PKD 

patients, such as Arg486Trp and Arg510Gln [199]. Interestingly, 7 of the PKD‑associated variants were 

detected in the homozygous state in ExAC or gnomAD, although only in one to five individuals at most. 

Finally, a couple of additional remarks. The extent of overlap between the v2 and v3 datasets of 

gnomAD was examined. From the total of 398 unique missense variants coming from both datasets, 

174 are exclusive of the v2 set and 65 of the v3 set. On another note, the data imported from the 

“pyruvate kinase” CAGI challenge was able to provide experimental kinetic values for 34 missense 

variants of the catalog, involving entries from diverse sources. 

4.2.2 Selection, setup and simulation of the PKR mutant 

structures 
In accordance with the objectives of the thesis, the next goal was to evaluate the capabilities of the 

framework of CEDA to detect dynamical alterations in missense variants of PKR and assess their 

functional significance. Since performing MD simulations of all the gathered variants was not feasible 

due to the prohibitive computational cost, a set of representative variants was selected. 

The selection of variants was conducted from two angles. The first consideration was to incorporate 

a fraction of variants that hold validation or some evidence of pathogenicity and a fraction of variants 

that are potentially neutral or benign. Such a distinction allowed for testing of whether the strongest 

signs of dynamical alteration are more likely to be found in variants already classified as pathogenic 

via other methods. The candidate variants to be included in the pathogenic subset were those with a 

suggested implication in PKD, as reported in clinical studies or experimental assays. Typically, these 

correspond to the entries of the HGMD, LOVD, ClinVar, and Humsavar/SwissVar repositories or, 

alternatively, to independent variants found in the literature. Variants repeatedly reported as 

pathogenic by different sources were prioritized. On the other hand, the variants retrieved from the 

data portals of large‑scale sequencing projects (and not overlapping with the pathogenic subset) were 

the candidates to be part of the potentially neutral subset. In this regard, variants with an explicitly 

declared somatic origin or with incomplete information were not considered for the selection. 
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On the basis of this primary classification, further criteria were introduced to achieve a diverse and 

balanced representation of features according to the position and the structural and functional 

contexts of the protein. The final set of variants satisfied all the following criteria, in order of priority: 

i) variants affecting the same (or close) positions both in the pathogenic and potentially neutral 

conditions, ii) representation of all four domains of the protein, iii) representation of the active and 

allosteric sites and possibly specific residues that participate in ligand binding or the catalytic 

mechanism, iv) representation of the interdomain and intersubunit interfaces, and v) representation 

of other protein regions without particular documentation as functional sites and comprising both 

solvent‑exposed and buried positions. This last consideration is of particular interest from the 

perspective that structural perturbation at any site may cause population shift of the conformational 

ensemble, in accordance with the current understanding of the allosteric phenomenon [38], [50]. In 

other words, the aim was to broaden the search for dynamical alterations by considering amino‑acid 

replacements at positions beyond the more obvious functional regions. 

A total of 61 variants were selected for subsequent MD simulation, with 40 in the pathogenic subset 

and 21 in the potentially neutral subset. Table 4.4 shows the list of variants along with details on the 

features of their position in the protein and the public repositories where they can be found (except 

for COSMIC and BioMuta which have been omitted for the reasons given above). All variants from the 

pathogenic subset are reported in the literature; a full list of the corresponding bibliographic 

references can be found in Table 1 of Appendix B of this manuscript. Figure 4.67 shows the 2VGB 

structure highlighting the location of the mutated residues. [209] [193] [188][189][203][208][210][53]–[55] 

 

Figure 4.67. Location of the selected missense variants of PKR. Panels show the 2VGB structure depicted with a ribbon 

representation. The positions of the mutated residues are indicated with spheres. Purple spheres correspond to positions 

shared by variants in both the pathogenic and the potentially neutral subsets. Black and gray spheres correspond to positions 

of variants from the pathogenic and potentially neutral subsets, respectively. Domain regions are colored as follows: 

N‑terminal domain in green, A domain in red, B domain in blue, and C domain in yellow. (a) Monomeric structure of PKR. (b) 

A subunit of PKR in the context of the tetrameric structure. The rest of subunits are represented with transparent structures. 

NOTE. The images were generated with the software VMD. 
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Each amino‑acid replacement was modeled at each subunit of 2VGB, as detailed in the Methods 

chapter (section 3.1.1). The corresponding new side chains were able to occupy the available local 

space without generating severe atomic clashes with their surroundings. The subsequent energy 

minimizations removed the steric strain of each model and achieved accommodation of the new side 

chains among the nearby residues. The only variant that required specific readjustment before the 

energy minimization was Ser120Phe. Specifically, the expansion from the hydroxyl group of serine to 

the bulkier phenylalanine led to an overlap with the side chain of Glu161. An alternative side‑chain 

rotamer was selected from a library of the software PyMOL, enabling mitigation of the atomic clashes 

(Figure 4.68). Incidentally, this variant deprives the cofactor K⁺ of one of its coordination ligands, which 

may be the molecular basis of its pathogenicity. In the initial model, the new side chain is blocking a 

significant portion of the binding site of K⁺ (see Figure 4.3c), although it may move away during MD. 

 

Figure 4.68. Modeling of the Ser120Phe variant of PKR. The replacement of serine by phenylalanine at position 120 in 

structure 2VGB caused structural overlap with the side chain of Glu161. The side chain of Phe120 is depicted with a thick 

licorice representation, colored in gray in the initial position and in cyan after selecting the suitable rotamer. The nearby side 

chains are depicted with a thinner licorice representation and colored by atomic species. Hydrogen atoms are not displayed 

as they had not been modeled yet. The backbone of the structure is depicted with a ribbon representation, with the A and B 

domains colored in red and blue, respectively. NOTE. The image was generated with the software VMD. 

After the setup stage of the mutant systems, the structures were subjected to MD simulations 

employing the same protocol as in the WT systems. The whole set of PKR variants was simulated in 

the apo condition and, additionally, in one of the following holo conditions: K‑Mg‑holo, PEP‑holo, 

PEP‑ADP‑holo, or FBP‑holo. The particular holo condition for each variant was rationally selected 

according to the expected type of dysfunction that may be manifested in dynamics, on the basis of 

both the available clinical annotations and the location of the particular amino‑acid substitution. For 

instance, the above‑mentioned Ser120Phe system was simulated in the K‑Mg‑holo condition based 

on the hypothesis that the mutation may principally interfere with the sampling of the regular 

conformations of the K⁺‑bound enzyme (provided that the binding event actually takes place in vivo). 

For that purpose, the following criteria were taken into consideration. First, variants affecting the 

same positions both in the pathogenic and potentially neutral conditions were evidently given the 

same holo condition to facilitate direct comparison between the two classes. Then, the PEP‑holo and 

FBP‑holo were the conditions with the most specific candidates. For the PEP‑holo condition: i) variants 

within or near the active site, especially affecting PEP‑binding residues; and ii) variants within or near 
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the A‑A′ interface. For the FBP‑holo condition: i) variants within or near the A‑C interface; ii) variants 

within or near the allosteric sites of the protein; iii) variants within or near the interfaces between 

N‑terminal and A domains (either within or between subunits); and iv) variants scattered around the 

C domain. Next, the K‑Mg‑holo condition: i) variants within or near the active site, especially affecting 

cofactor‑binding residues; ii) in general, variants scattered around the A domain and especially 

affecting the hydrophobic core of the barrel; and iii) a few variants miscellaneously at the C domain. 

Lastly, the PEP‑ADP‑holo condition was the least specific: i) variants affecting the B domain, especially 

at the hinge with the A domain; and ii) variants scattered around the A domain. Table 4.5 shows the 

corresponding final distribution. 

Table 4.5 

Simulated holo condition of each PKR variant 

Variant Subset a 
Holo condition 

K‑Mg‑holo PEP‑holo PEP‑ADP‑holo FBP‑holo 

Leu73Pro P    X 

Ser80Pro P    X 

Glu81Lys N    X 

Ala115Pro P X    

Ser120Phe P X    

His124Gln P   X  

Glu125Ala N   X  

Glu129Lys N   X  

Ser130Tyr P   X  

Gly143Ser P   X  

Leu155Pro P X    

Thr157Pro N X    

Arg163Cys P   X  

Glu172Gln P   X  

Glu172Gly N   X  

Ala257Thr N   X  

Gly263Ala N   X  

Gly263Trp P   X  

Ala295Thr N X    

Ala295Val P X    

Pro303Leu N X    

Gly307Ser N    X 

Ile310Asn P X    

Glu315Lys P X    

Leu327Val N X    

Gly332Ser P X    

Arg337Gln P  X   

Asp339His P  X   

Arg359Cys P    X 

Thr371Ile P  X   

Thr384Met P   X  

Arg385Lys P  X   

Asp390Asn P  X   

Ala394Asp P  X   
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Table 4.5 (Continued) 

Ala394Val P  X   

Ile402Val N  X   

Met403Ile P  X   

Met403Thr N  X   

Thr408Ile P   X  

Gly411Ser P   X  

Ala430Thr P    X 

Gly458Ala N X    

Gly458Asp P X    

Arg486Gln N    X 

Arg486Trp P    X 

Ile494Thr P X    

Arg504Leu P X    

Gln505Arg N    X 

Gln505Glu P    X 

Val506Ile P    X 

Arg510Gln P    X 

Arg518His N    X 

Pro521Ser N    X 

Arg531Cys P    X 

Arg531His N    X 

Arg532Trp P    X 

Val552Ala N    X 

Val552Met P    X 

Gly557Ala P    X 

Arg559Gln N    X 

Arg559Gly P    X 

a Same considerations as in Table 4.4. 

 

After the MD stage, the stability and flexibility of the mutant systems along the trajectories were 

examined with the RMSD and RMSF analyses. Although a full report on the corresponding results for 

the whole collection of trajectories could not be included in this manuscript, the analyses provided 

equivalent information to that of the WT systems, in general. The main observations are summarized 

hereafter, along with a few examples. 

In the apo trajectories, structural divergence was strongly influenced by the asymmetrical sampling of 

different conformations of the B domains of the tetramer, as indicated by the comparison of the RMSD 

profiles with and without such regions. The tetramer core (the N‑terminal, A, and C domains) exhibits 

considerable stability. Figure 4.69 shows two examples of strongly stable tetramer cores with 

conformational changes of the B domains (top panels; variants Gly332Ser and Ala394Asp), and two 

examples where the tetramer cores exhibit structural divergence along the simulations and among 

the replicates of the same variant (bottom panels; variants Ala257Thr and Thr408Ile). Similarly to the 

WT simulations, the cutoff of 25 ns remains a suitable choice to select the endpoint of the initial 

relaxation of the systems in general. Again, the characteristic relaxation curves are better identified 

when the B domains are excluded from the analysis. Accordingly, all trajectories had the first 25 ns 

discarded from subsequent analyses as an extension of the equilibration phase. 



 Results 

237 
 

 

Figure 4.69. Time‑series RMSD of the trajectories of four missense variants in the apo condition. The analysis was applied to 

the protein backbone atoms. The darker line plotted alongside each time series represents the two‑sided moving average of 

the data, encompassing values up to 5 ns on either side of each point. For each variant, the top and bottom panels correspond 

to RMSD values of the tetramers including and excluding the B domains, respectively. A vertical black dashed line indicates 

the cutoff of 25 ns that marks the end of the structural relaxation phase. 
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On the other hand, the holo trajectories exhibit a tendency towards higher stability as the number of 

ligands bound to the active site increases, as was the case of the WT trajectory ensembles. In the 

presence of PEP (PEP‑holo and PEP‑ADP‑holo conditions), qualitatively equivalent RMSD profiles can 

be observed with and without including the B domains in the analysis. Thus, this suggests that the B 

domain was more tightly coupled to the dynamical events of the tetramer core. Only a few variants 

may have diverged from this behavior, with the RMSD profile of the whole structure indicating less 

stability than without considering the B domain. For instance, replicate #1 of Glu172Gly simulated in 

the PEP‑ADP‑holo condition (Figure 4.70). This variant affects a position in the frontal region of the B 

domain. 

 

Figure 4.70. Time‑series RMSD of the trajectories of the variant Glu172Gly in the PEP‑ADP‑holo condition. The analysis was 

applied to the protein backbone atoms. The darker line plotted alongside each time series represents the two‑sided moving 

average of the data, encompassing values up to 5 ns on either side of each point. The top and bottom panels correspond to 

RMSD values of the tetramers including and excluding the B domains, respectively. A vertical black dashed line indicates the 

cutoff of 25 ns that marks the end of the structural relaxation phase. 

The flexibility profiles obtained via RMSF enabled inspection of the mobile capabilities of the B 

domains from a different angle. Figure 6.71 shows the RMSF data of two of the examples mentioned 

above. For instance, in the trajectory replicate #1 of variant Gly332Ser simulated in the apo condition, 

the B domain of chain B was the specific region that accounted for most of the structural divergence 

exhibited in the RMSD plot (Figure 4.69, top‑left panel). In respect of variant Glu172Gly simulated in 

the PEP‑ADP‑condition (replicate #1), although B‑domain fluctuations are overall lower due to the 

presence of PEP and the rest of ligands of the active site, the B domain of chain A reached higher 

values (around 0.5) than the average value of the WT system for that region (around 0.2; Figure 4.9 of 

section 4.1.2.2). This particular mobility of this B domain suggests that it may have fluctuated with 

independence of the rest of the structure, in contrast to the most frequent behavior in the presence 

of PEP. On another note, besides the higher fluctuation of the B domains, the RMSF profiles of the 
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mutant systems also display the peaks of the local fluctuations of the loop fragments that extend 

outwards from the main fold of the structure. 

 

 

Figure 4.71. RMSF per residue of the trajectories of two missense variants. Data corresponds to replicate #1 of Gly332Ser in 

the apo condition (top) and replicate #1 of Glu172Gly in the PEP‑ADP‑holo condition (bottom). The regions corresponding to 

each subunit of the tetramer are indicated with labels. 

4.2.3 Comparative analysis with CEDA 

Finally, the trajectories of the mutant systems were analyzed with the framework of CEDA, with the 

aim of detecting signs of dynamical alteration with respect to the WT behavior. The impact of each 

mutation was evaluated in terms of the differences in the conformational profiles that had been 

studied in the previous sections for the WT systems. Thus, several comparative analyses were 

conducted, involving: i) each of the three examined regions of the enzyme, namely, the A and B 

domains, the adjacent A domains (A‑A′ interface), and the adjacent AC cores (C‑C′ interface); and ii) 

the different apo and holo simulation conditions. 

In all the assessments, the WT apo condition served as the reference condition, thus providing the 

reference set of CPCs for each of the regions under analysis. Accordingly, the trajectories of the 

simulated variants were subjected to structural superposition and data centering around the 

reference (WT apo) global average structure of the corresponding regions. Then, the processed 
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trajectory data was projected onto the corresponding set of CPCs. Subsequently, the density 

distributions of projection data were generated. 

On the basis of this procedure, common for all trajectories, the subsequent comparisons between 

density distributions differed in the nature of the alternative conditions being compared. Figure 4.72 

shows a schematic view of the scenario. The comparative analyses between the WT and mutant 

trajectories in the apo condition involved the density distributions of the reference condition (by 

definition; WT apo) and a target condition (mutant apo). Conversely, in the comparative analyses 

between the WT and mutant trajectories in holo conditions, the reference condition (WT apo) 

provided the common set of CPCs to then compare the density distribution of two target conditions 

(WT and mutant holo) between each other. 

 

Figure 4.72. Schematic diagram of the process to compare the WT and mutant trajectories with the framework of CEDA. 

Given the high number of WT vs. mutant comparisons, the assessments were principally made in 

terms of the set of quantitative indicators proposed in this work (introduced in section 4.1.3.1.3) to 

express the (dis)similarity between the CEDA‑derived density distributions, namely, the overlap, the 

coverage, and the Bhattacharyya coefficient (BC). These metrics were systematically calculated for 

each compared WT‑mutant pair of trajectory ensembles, providing a score for the similarity between 

their respective three‑dimensional density distributions along CPCs #1, #2, and #3 of the 

corresponding region under analysis. Importantly, only the intervals of highest 95% density of each 

distribution were considered to disregard outlier regions before computing the metrics. 

Thus, the main results from this section are presented in the form of rankings, from the variant that 

exhibits the greatest differential behavior to the one that exhibits the least. These sets of values also 

provide a global perspective to evaluate how effective the probed collective motions were in revealing 

differential behavior in the collection of mutant simulations as a whole. In addition, for some 

illustrative instances, images of the two‑dimensional density distributions will be included to facilitate 

a more complete interpretation of the types of dynamical alterations that have been detected. It is 

important to highlight that the simulations of the WT systems comprised 5 replicates, whereas the 

number of simulation replicates per variant and condition was reduced to 3 to allow for a more 

feasible computational cost (Table 3.4 from the Methods chapter). Consequently, the comparisons 

conducted in this section were performed with a greater amount of trajectory data in the reference 

condition than in the target conditions. Thus, although the major differences in sampling are expected 

to be caused mainly by the impact of the mutations, the unequal amount of data might be a secondary 

factor. Nevertheless, dissimilarities due to the latter reason are expected to manifest mainly as 
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deviations in the span of the peripheral regions of the density distributions, which account for low 

weight in the calculation of the similarity metrics. 

4.2.3.1 Comparison of apo trajectories 

The results related to the comparison between the WT and mutant trajectories in the apo condition 

are presented below, for each of the three examined regions of the enzyme. The distributions of 

values for each metric were examined by means of box plots, also differentiating between the variants 

from the two subsets, i.e., pathogenic or potentially neutral. The plots also include (dashed horizontal 

lines) the values that were obtained in the analogous analyses involving the two batches of simulations 

of the WT apo condition. Such values afford an additional reference to evaluate the differential 

behavior of the PKR variants with respect to the WT behavior. That is, for variants bearing similarity 

values below these thresholds, the lower the values, the more significant their differential behavior 

with respect to the intrinsic variability of the WT apo condition. 

In the case of the comparative analysis of the A and B domains, as seen from the box plots (Figure 

4.73), the mutant trajectories exhibit values of the overlap metric consistently lower than the 

corresponding threshold (99.29%; i.e., the two trajectory ensembles of the WT apo condition were 

characterized by a strongly conserved overlap). In contrast, the ranges of values for the coverage and 

BC metrics are more centered around their threshold values (83% and 86%, respectively). This implies 

that the overlap metric is the most insightful indicator in this comparative analysis as it allows for 

highlighting a higher number of variants with potentially strong dynamical alterations, divergent from 

the WT behavior. Accordingly, variants were sorted from the lowest to the greatest overlap values to 

generate the ranking (Figure 4.74). In general, the distributions of values do not reveal differences 

between the pathogenic and potentially neutral subsets. 

 

Figure 4.73. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in the apo condition: distributions of 

the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. Dashed horizontal lines correspond to additional reference values as 

determined from the comparative analysis of the two trajectory ensembles of the WT apo condition. 
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Figure 4.74. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in the apo condition: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. Data is sorted in ascending order according to the overlap metric. The bar 

sizes corresponding to the BC (values bounded between 0 and 1) are shown with a scaling proportional to the overlap and 

coverage metrics (expressed in percentage values) to enable a balanced interpretation of the three metrics. 
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No specific correlation between the overlap and the other two metrics is suggested on the basis of the 

ranking. Figure 4.75 illustrates some examples of this comparative analysis by showing the density 

distributions of CPCs #1 vs. #2. For instance, Gly263Trp, a variant from the pathogenic subset, has the 

lowest overlap score (i.e., it is the first in the ranking). This non‑conservative amino‑acid replacement 

affects a position at the hinge between the A and B domains, which likely influences the dynamical 

activity of the B domain. The conformational profile (Figure 4.75a) indicates that this variant sampled 

abnormal conformations outside the WT region, leading to a lower overlap than the reference value. 

In contrast, Gly263Ala, a variant from the potentially neutral subset, affects the same position with a 

more conservative amino‑acid replacement and has a high overlap score (37th in the ranking). Its 

conformational profile (Figure 4.75b) displays no significant abnormal conformations (except for a 

small low‑density region). Interestingly, this variant scarcely sampled the closed (active) 

conformation. However, the replicability test of the WT apo condition revealed specific intrinsic 

variability in sampling at that conformational region (Figure 4.32). 

Leu73Pro is an example of a variant that affects a position distant from the region of analysis, 

specifically, the N‑terminal domain. Results suggest that the amino‑acid replacement induced 

structural alterations that propagated to the A and B domains and influenced the conformational 

sampling of the latter. It ranked third, with its conformational profile (Figure 4.75c) showing abnormal 

conformations that protrude from the WT region. However, this variant displays one of the highest BC 

scores because the overlapping region of the density distributions preserved the relative proportions 

between the major populations. 

Regarding the coverage metric, in general, the variants with scores particularly lower than the 

threshold value of intrinsic WT variability sampled only at the characteristic regions of major density, 

with low conformational heterogeneity. Some of these variants only sampled the open forms of the B 

domain, such as Asp339His (pathogenic subset; 18th in the ranking; Figure 4.75d) or Ser120Phe 

(pathogenic subset; 54th in the ranking; Figure 4.75e). Importantly, these variants affect key residues 

involved in the cofactors/PEP binding and catalytic efficiency. On the other hand, other variants 

achieved sampling of both the open and closed forms of the B domain, such as Ile402Val (potentially 

neutral subset; 20th in the ranking; Figure 4.75f). 

 

Figure 4.74 (Continued) 
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Figure 4.75. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in the apo condition: conformational 

profiles (2 CPCs). This figure only shows the examples of six variants. (a) WT vs. Gly263Trp. (b) WT vs. Gly263Ala. (c) WT vs. 

Leu73Pro. (d) WT vs. Asp339His. (e) WT vs. Ser120Phe. (f) WT vs. Ile402Val. The 2D density distributions shown in this figure 

correspond to the trajectory data projected onto CPCs #1 vs. #2 from the reference (WT apo) condition. Contour lines 

delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the highest density and serves to 

enhance perception of the boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 

0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 95% density. Triangle markers 

indicate the locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in 

the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular regions indicate the total span 

of projection values, while the filled area under the curve represents the intervals of highest 95% density. 
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In the case of the comparative analysis of the adjacent A domains (A‑A′ interface), the chosen indicator 

to rank the variants was the coverage metric, based on the corresponding box plots (Figure 4.76). The 

overlap metric was discarded, as the majority of mutant trajectories exhibit values above the 

threshold (87.41%) and, thus, hardly distinguishable from the intrinsic variability of the WT behavior. 

On the other hand, the coverage and the BC metrics allow for a clearer distinction of the most altered 

variants because there is a higher number of variants bearing values below the corresponding 

thresholds (85.38% and 88%, respectively). Between the two indicators, the former was selected 

because it offers a direct interpretation of the reported differential behavior, namely, the extent of 

reference conformational space sampled by the target condition. The resulting ranking is shown in 

Figure 4.77. In general, the distributions of values do not reveal differences between the pathogenic 

and potentially neutral subsets. 

 

Figure 4.76. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in the apo condition: distributions 

of the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. Dashed horizontal lines correspond to additional reference values as 

determined from the comparative analysis of the two trajectory ensembles of the WT apo condition. 
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Figure 4.77. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in the apo condition: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. Data is sorted in ascending order according to the coverage metric. The bar 

sizes corresponding to the BC (values bounded between 0 and 1) are shown with a scaling proportional to the overlap and 

coverage metrics (expressed in percentage values) to enable a balanced interpretation of the three metrics. 
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Figure 4.78 illustrates some examples of this comparative analysis by showing the density distributions 

of CPCs #2 vs. #3. The variant Pro521Ser belongs to the potentially neutral subset and, however, is the 

first of the ranking with the lowest coverage score. Its conformational profile (Figure 4.78a) exhibits a 

strong shift of the density distribution along CPC #2. Interestingly, this region of the conformational 

spectrum is close to the characteristic region of the PEP‑bound trajectories (Figure 4.50), only differing 

in the fact that the latter is also characterized by higher values of CPC #3. The variant Val506Ile 

(pathogenic subset; 5th in the ranking) stands out as one of the variants with lowest scores on both 

the coverage and overlap metrics. Its conformational profile (Figure 4.78b) features a shift along CPC 

#2, albeit less pronounced than that of Pro521Ser, and bimodality along CPC #3. It shares a central 

region of major density with the WT system, however most of its conformational population lies at 

negative values of CPC #3, far from the characteristic region of the active conformation. 

The variant Thr384Met (pathogenic subset; 3rd in the ranking) affects a position in helix Aα7, at the 

A‑A′ interface. It has a low coverage score and, simultaneously, a high overlap score. It is characterized 

by a more restricted region of conformational sampling, almost entirely inside the WT region and with 

less dispersion of values (Figure 4.78c). The variants Arg385Lys and Asp390Asn also affect positions 

nearby in the A‑A′ interface and display both similar scores and conformational profiles (not shown). 

Finally, the variant Ala115Pro is illustrative of the limitations in the information provided by just a 

single metric. This variant ranked high because it has one of the highest coverage scores (pathogenic 

subset; 59th in the ranking). However, simultaneously, it has one of the lowest overlap scores. Its 

conformational profile (Figure 4.78d) displays high dispersion of values in both CPCs #2 and #3, 

covering a wide extension of the WT region. Interestingly, the region of major density is closer to the 

PEP‑bound trajectories than in the last two examples. 

In the case of the comparative analysis of the adjacent AC cores (C‑C′ interface), the whole set of 

mutant trajectories exhibit coverage values lower than the corresponding threshold (93.90%; Figure 

4.79). Interestingly, in terms of the overlap metric, despite the fact that the majority of variants exhibit 

values above the threshold (90.24%), a potential difference between the pathogenic and the 

potentially neutral subsets is suggested, with the former containing more variants below the 

threshold. Thus, for this comparative analysis, the variants were ranked according to the sum of their 

overlap and coverage values (Figure 4.80). 

Figure 4.77 (Continued) 
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Figure 4.78. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in the apo condition: 

conformational profiles (2 CPCs). This figure only shows the examples of four variants. (a) WT vs. Pro521Ser. (b) WT vs. 

Val506Ile. (c) WT vs. Thr384Met. (d) WT vs. Ala115Pro. The 2D density distributions shown in this figure correspond to the 

trajectory data projected onto CPCs #2 vs. #3 from the reference (WT apo) condition. Contour lines delineate 21 levels of 

highest density percentage: the farthest encompasses the 99.5% of the highest density and serves to enhance perception of 

the boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 0.5% of the highest 

density in steps of 0.5. Filled contour areas represent the interval of highest 95% density. Triangle markers indicate the 

locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in the top 

(abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular regions indicate the total span of 

projection values, while the filled area under the curve represents the intervals of highest 95% density. 
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Figure 4.79. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in the apo condition: distributions 

of the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. Dashed horizontal lines correspond to additional reference values as 

determined from the comparative analysis of the two trajectory ensembles of the WT apo condition. 

 

Figure 4.80. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in the apo condition: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. Data is sorted in ascending order according to the sum of the overlap and 

coverage metrics. The bar sizes corresponding to the BC (values bounded between 0 and 1) are shown with a scaling 

proportional to the overlap and coverage metrics (expressed in percentage values) to enable a balanced interpretation of 

the three metrics. 
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Figure 4.80 (Continued) 
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Figure 4.81 illustrates some examples of this comparative analysis by showing the density distributions 

of CPCs #2 vs. #3. The variant Gln505Glu (pathogenic subset; 1st in the ranking) has the lowest score. 

Its conformational profile (Figure 4.81a) is particularly shifted along CPC #3 towards the opposite 

direction of the PEP‑bound trajectories. It is also characterized by higher dispersion along CPC #1 (not 

shown). This variant affects the Cα4 helix, at the A‑C interface. This helix, specifically, constitutes a 

main pivot point of the rigid‑body collective motions that were revealed in the CEDA of the WT apo 

condition. The amino‑acid replacement introduces a negative charge. In contrast, variant Gln505Arg 

(potentially neutral subset; 48th in the ranking) affects the same position but with a different 

amino‑acid replacement that introduces a positive charge. Despite the fact that both variants 

introduce electrostatic changes in the same position, Gln505Arg exhibited regular dynamical activity, 

as it displays no significant differential behavior (Figure 4.81b). 

The variant Val552Met (pathogenic subset; 14th in the ranking) has a very high overlap score, but also 

one of the lowest coverage scores. This amino‑acid replacement affects a position in the Cβ4 strand, 

at the C‑C′ interface. Its conformational profile (Figure 4.81c) is characterized by being entirely 

confined within the WT region with substantially less dispersion. In contrast, the variant Val552Ala 

(potentially neutral subset; 27th in the ranking) affects the same position and exhibits an overall more 

equivalent exploration of the WT region of the conformational space (Figure 4.81d). 

Several variants that were already highlighted in the previous comparative analysis due to their strong 

signs of differential behavior also exhibit low similarity scores in the present analysis. For instance, 

Leu73Pro (pathogenic subset; 4th in the ranking) displays dynamical alterations similar to those of 

Gln505Glu (not shown). Ala115Pro (pathogenic subset; 7th in the ranking) exhibits considerably higher 

dispersion of density with multiple peaks (not shown), which suggests instability or higher 

fluctuations. Two particularly interesting cases are Pro521Ser and Val506Ile. The former (potentially 

neutral subset; 2nd in the ranking) differs from the WT apo condition in that its conformational profile 

(Figure 4.81e) displays shifts along CPCs #2 and #3. However, this conformational profile is comparable 

to that of the WT FBP‑holo condition (Figure 4.63). The set of dynamical alterations exhibited by this 

variant in both this and the previous analyses suggest that it might enhance sampling of the active 

conformation of the enzyme in the absence of ligands. Finally, the variant Val506Ile (pathogenic 

subset; 5th in the ranking) exhibits a shift along CPC #3 similar to that of Pro521Ser (not shown). 
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Figure 4.81. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in the apo condition: 

conformational profiles (2 CPCs). This figure only shows the examples of five variants. (a) WT vs. Gln505Glu. (b) WT vs. 

Gln505Arg. (c) WT vs. Val552Met. (d) WT vs. Val552Ala. (e) WT vs. Pro521Ser. The 2D density distributions shown in this 

figure correspond to the trajectory data projected onto CPCs #2 vs. #3 from the reference (WT apo) condition. Contour lines 

delineate 21 levels of highest density percentage: the farthest encompasses the 99.5% of the highest density and serves to 

enhance perception of the boundaries of the distributions, while the next 20 levels encompass intervals from the 95% to the 

0.5% of the highest density in steps of 0.5. Filled contour areas represent the interval of highest 95% density. Triangle markers 

indicate the locations of local maxima. Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in 

the top (abscissa) and right (ordinate) margins. In the 1D subplots, the highlighted rectangular regions indicate the total span 

of projection values, while the filled area under the curve represents the intervals of highest 95% density. 
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4.2.3.2 Comparison of holo trajectories 

The results reported in this section relate to the comparative analyses conducted between the WT 

and mutant trajectories in holo conditions. As described above (Table 4.5), each variant was simulated 

in one of the following four holo conditions: K‑Mg‑holo, PEP‑holo, PEP‑ADP‑holo, or FBP‑holo. As 

shown schematically in Figure 4.72, for each holo condition, the corresponding WT vs. mutant 

comparisons were made between the density distributions that result from projecting the trajectory 

data onto the reference sets of CPCs from the WT apo condition. 

In these assessments, the variants were systematically ranked based on the sum of values of the three 

similarity metrics. This approach was adopted due to the potential diversity of manifestations of 

differential behavior that may arise from dividing the collection of mutant simulations into four 

subsets of alternative holo conditions. A single metric may not capture this diversity in a meaningful 

way. Therefore, considering all three metrics simultaneously ensures more balanced rankings across 

the entire collection of mutant simulations. Furthermore, unlike the comparison of apo trajectories, 

there are no additional reference values available in this scenario that would aid in exploring the most 

relevant metric in each comparative analysis on the basis of the intrinsic variability of sampling of each 

WT holo condition. 

Figures 4.82 and 4.83 show the box plots and the rankings of the results of the comparative analysis 

of the A and B domains. Figure 4.84 illustrates some examples of this comparative analysis by showing 

the density distributions of CPCs #1 vs. #2. The variant Ser120Phe (pathogenic subset; 1st in the 

ranking of K‑Mg‑holo) deprives the cofactor K⁺ of one of its coordination ligands and introduces the 

bulky side chain of phenylalanine which partially blocks the K⁺‑binding site. The binding of the cofactor 

was modeled (K‑Mg‑holo condition) by incorporating the QM‑derived parameters of the remaining 

three amino acids of the coordination complex (Asn118, Asp156, Thr157), thus yielding a hypothetical 

Ser120Phe K⁺‑bound model, which was stable in MD. The resulting conformational profile (Figure 

4.84a) reveals that, although the sampling of the closed form of the B domain was retained in minor 

proportions, the conformational equilibrium was shifted towards the open forms, as opposed to the 

WT behavior in this condition. In addition, this variant did not sample the closed form in the apo 

condition (Figure 4.75e). 

The variant Arg163Cys (pathogenic subset; 1st in the ranking of PEP‑ADP‑holo) affects a position in 

the hinge between the A and B domains and manifests dynamical alterations by having sampled more 

open forms of the B domain than in the WT behavior (Figure 4.84b). In the apo condition, this variant 

does not manifest significant alterations (not shown). On the other hand, the variant Gly263Trp 

(pathogenic subset; 2nd in the ranking of PEP‑ADP‑holo), which is also located in the hinge fragment, 

displays dynamical alterations both in the apo (Figure 4.75a) and the PEP‑ADP‑holo (Figure 4.84c) 

conditions. The variant Gly263Ala (potentially neutral subset; 12th in the ranking of PEP‑ADP‑holo) 

affects the same position as the previous variant and does not manifest dynamical alterations neither 

in the apo (Figure 4.75b) nor the PEP‑ADP‑holo (Figure 4.84d) conditions. 
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Figure 4.82. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in holo conditions: distributions of 

the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. 
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Figure 4.83. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in holo conditions: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. For each block of rows corresponding to each holo condition, data is sorted 

in ascending order according to the sum of the three metrics. The bar sizes corresponding to the BC (values bounded between 

0 and 1) are shown with a scaling proportional to the overlap and coverage metrics (expressed in percentage values) to 

enable a balanced interpretation of the three metrics. 
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Figure 4.83 (Continued) 
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Figure 4.84. Comparative analysis of the WT vs. mutant trajectories (A and B domains) in holo conditions: conformational 

profiles (2 CPCs). This figure only shows the examples of four variants. (a) WT vs. Ser120Phe in the K‑Mg‑holo condition. (b) 

WT vs. Arg163Cys in the PEP‑ADP‑holo condition. (c) WT vs. Gly263Trp in the PEP‑ADP‑holo condition. (d) WT vs. Gly263Ala 

in the PEP‑ADP‑holo condition. The 2D density distributions shown in this figure correspond to the trajectory data projected 

onto CPCs #1 vs. #2 from the reference (WT apo) condition. Contour lines delineate 21 levels of highest density percentage: 

the farthest encompasses the 99.5% of the highest density and serves to enhance perception of the boundaries of the 

distributions, while the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density in steps of 0.5. 

Filled contour areas represent the interval of highest 95% density. Triangle markers indicate the locations of local maxima. 

Each 2D plot also features subplots of the 1D KDE curves along each individual CPC in the top (abscissa) and right (ordinate) 

margins. In the 1D subplots, the highlighted rectangular regions indicate the total span of projection values, while the filled 

area under the curve represents the intervals of highest 95% density. 
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Figures 4.85 and 4.86 show the box plots and the rankings of the results of the comparative analysis 

of the adjacent A domains (A‑A′ interface). 

 

 

Figure 4.85. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in holo conditions: distributions 

of the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. 
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Figure 4.86. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in holo conditions: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. For each block of rows corresponding to each holo condition, data is sorted 

in ascending order according to the sum of the three metrics. The bar sizes corresponding to the BC (values bounded between 

0 and 1) are shown with a scaling proportional to the overlap and coverage metrics (expressed in percentage values) to 

enable a balanced interpretation of the three metrics. 
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Figure 4.87 illustrates some examples of this comparative analysis by showing the density distributions 

of CPCs #2 vs. #3. The variant Ala394Asp (pathogenic subset; 1st in the ranking of PEP‑holo) manifests 

strong dynamical alterations. Specifically, its conformational profile (Figure 4.87a) shows that 

approximately half of the conformational population remained in the region characteristic of the apo 

condition. These results suggest that this variant is unstable in the active conformation. The 

amino‑acid replacement affects a position at helix Aα7, near the A‑A′ interface but with its side chain 

buried and facing the β barrel of the A domain. Conversely, the variant Ala394Val (10th in the ranking 

of PEP‑holo), which affects the same position and also belongs to the pathogenic subset, did not 

introduce alterations (Figure 4.87b) and had the best score of its ranking. 

The variant Ala430Thr (pathogenic subset; 1st in the ranking of FBP‑holo) affects a position at helix 

Aα8, preceding the linker fragment with the C domain and at the small interface between the 

N‑terminal and the A domains. Based on its conformational profile (Figure 4.87c), this variant achieved 

sampling of the characteristic region along CPC #2 in the presence of cofactors, whereas it failed to 

undergo a change in sampling towards the region of the active conformation along CPC #3 as the WT 

enzyme does in the presence of FBP. Finally, the variant Arg510Gln (pathogenic subset; 3rd in the 

ranking of FBP‑holo) exhibits a conformational profile (Figure 4.87d) with somewhat opposite features 

as Ala430Thr. 

Figure 4.86 (Continued) 
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Figure 4.87. Comparative analysis of the WT vs. mutant trajectories (A‑A′ pairs of domains) in holo conditions: conformational 

profiles (2 CPCs). This figure only shows the examples of four variants. (a) WT vs. Ala394Asp in the PEP‑holo condition. (b) 

WT vs. Ala394Val in the PEP‑holo condition. (c) WT vs. Ala430Thr in the FBP‑holo condition. (d) WT vs. Arg510Gln in the 

FBP‑holo condition. The 2D density distributions shown in this figure correspond to the trajectory data projected onto CPCs 

#2 vs. #3 from the reference (WT apo) condition. Contour lines delineate 21 levels of highest density percentage: the farthest 

encompasses the 99.5% of the highest density and serves to enhance perception of the boundaries of the distributions, while 

the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas 

represent the interval of highest 95% density. Triangle markers indicate the locations of local maxima. Each 2D plot also 

features subplots of the 1D KDE curves along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D 

subplots, the highlighted rectangular regions indicate the total span of projection values, while the filled area under the curve 

represents the intervals of highest 95% density. 
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Figures 4.88 and 4.89 show the box plots and the rankings of the results of the comparative analysis 

of the adjacent AC cores (C‑C′ interface). 

 

 

Figure 4.88. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in holo conditions: distributions 

of the quantitative indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated 

between the 3D density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference 

(WT apo) condition. Data is presented in the form of box plots, distinguishing between the pathogenic (P) and potentially 

neutral (N) subsets of variants. The BC (values bounded between 0 and 1) is expressed in percentage values to enable a 

balanced interpretation of the three metrics. 
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Figure 4.89. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in holo conditions: quantitative 

indicators. The similarity metrics (overlap, coverage, and Bhattacharyya coefficient [BC]) were calculated between the 3D 

density distributions that correspond to the trajectory data projected onto CPCs #1 to #3 from the reference (WT apo) 

condition. Next to the variant names, the labels “P” or “N” are included to indicate whether they belong to the pathogenic 

or the potentially neutral subsets, respectively. For each block of rows corresponding to each holo condition, data is sorted 

in ascending order according to the sum of the three metrics. The bar sizes corresponding to the BC (values bounded between 

0 and 1) are shown with a scaling proportional to the overlap and coverage metrics (expressed in percentage values) to 

enable a balanced interpretation of the three metrics. 
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Figure 4.90 illustrates some examples of this comparative analysis by showing the density distributions 

of CPCs #2 vs. #3. Several variants that were already highlighted in the previous comparative analysis 

due to their strong signs of differential behavior also exhibit low similarity scores in the present 

analysis. Importantly, these results show further demonstration about the correspondence between 

the conformational changes at the A‑A′ and the C‑C′ interfaces (the second CPCs from both CEDAs) 

that was first highlighted in section 4.1.3.2.3, in the study of the WT system. For instance, the 

conformational profile of the variant Ala394Asp (pathogenic subset; 1st in the ranking of PEP‑holo) 

again exhibits stability in the inactive conformation despite the presence of PEP (Figure 4.90a), thus 

leading to the probable impairment of allosteric communications at both types of subunit interfaces. 

The case of the variant Ala394Val (pathogenic subset; 2nd in the ranking of PEP‑holo) is harder to 

interpret. While it did not manifest dynamical alterations in the previous comparative analysis, it now 

exhibits signs of differential behavior due to its low coverage with respect to the WT PEP‑holo 

condition. However, its corresponding conformational profile (Figure 4.90b) is considerably similar to 

that of the WT PEP‑ADP‑holo or Full‑holo conditions (Figure 4.63). Thus, the reported potential 

dynamical alterations do not suggest dysfunction and, therefore, its status as a pathogenic variant 

remains unclear. 

The variant Gln505Glu (pathogenic subset; 1st in the ranking of FBP‑holo) exhibits a strong shift of the 

density distribution along CPC #3 (Figure 4.90c). The same type of dynamical alteration was detected 

for this variant in the comparative analysis of the apo condition (Figure 4.81a). These observations 

account for strong evidence of the pathogenicity of this variant. On the other hand, the variant 

Gln505Arg (10th in the ranking of FBP‑holo), which affects the same position and belongs to the 

potentially neutral subset, manifests complete regular behavior with respect to the WT enzyme in 

Figure 4.89 (Continued) 
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both analyses (Figures 4.81b and 4.90d). The pair of variants Val552Met (pathogenic subset; 2nd in 

the ranking of FBP‑holo) and Val552Ala (potentially neutral subset; 13th in the ranking of FBP‑holo) 

present a similar case (Figures 4.81c‑d and 4.90e‑f), except that the latter exhibits a skewed 

distribution along CPC #3 that suggests less neutrality. 

The variants Gly411Ser (pathogenic subset; 1st in the ranking of PEP‑ADP‑holo) and Thr408Ile 

(pathogenic subset; 2nd in the ranking of PEP‑ADP‑holo) are examples of the PEP‑ADP‑holo condition 

that failed to undergo a change in sampling towards the region of the active conformation along CPC 

#3 as the WT enzyme does in presence of both substrates (Figure 4.90g‑h). These amino‑acid 

replacements affect the small helical fragment Aα8′ near the active site. Therefore, results suggest 

that the structural alterations induced by these mutations propagated to the rest of the structure of 

the core and influenced conformational sampling. Finally, the variant Arg504Leu (pathogenic subset; 

2nd in the ranking of K‑Mg‑holo) exhibits higher dispersion than the WT behavior in the presence of 

cofactors, with multiple peaks of density scattered around the conformational spectrum of CPCs #2 

and #3 (Figure 4.90i). The amino‑acid replacement affects the Cα4 helix, at the A‑C interface (a main 

pivot point of the rigid‑body collective motions between the A and C domains). Therefore, the 

conformational profile suggests that the mutation induces instability at the region, leading to higher 

fluctuation. 
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Figure 4.90. Comparative analysis of the WT vs. mutant trajectories (AC‑C′A′ pairs of cores) in holo conditions: conformational 

profiles (2 CPCs). This figure only shows the examples of nine variants. (a) WT vs. Ala394Asp in the PEP‑holo condition. (b) 

WT vs. Ala394Val in the PEP‑holo condition. (c) WT vs. Gln505Glu in the FBP‑holo condition. (d) WT vs. Gln505Arg in the 

FBP‑holo condition. (e) WT vs. Val552Met in the FBP‑holo condition. (f) WT vs. Val552Ala in the FBP‑holo condition. (g) WT 

vs. Gly411Ser in the PEP‑ADP‑holo condition. (h) WT vs. Thr408Ile in the PEP‑ADP‑holo condition. (i) WT vs. Arg504Leu in the 

K‑Mg‑holo condition. The 2D density distributions shown in this figure correspond to the trajectory data projected onto CPCs 

#2 vs. #3 from the reference (WT apo) condition. Contour lines delineate 21 levels of highest density percentage: the farthest 

encompasses the 99.5% of the highest density and serves to enhance perception of the boundaries of the distributions, while 

the next 20 levels encompass intervals from the 95% to the 0.5% of the highest density in steps of 0.5. Filled contour areas 

represent the interval of highest 95% density. Triangle markers indicate the locations of local maxima. Each 2D plot also 

features subplots of the 1D KDE curves along each individual CPC in the top (abscissa) and right (ordinate) margins. In the 1D 

subplots, the highlighted rectangular regions indicate the total span of projection values, while the filled area under the curve 

represents the intervals of highest 95% density. 
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Figure 4.90 (Continued) 



Chapter 4 

268 
 

4.3 Summary of the CEDA protocol 

The implementation of CEDA has been progressively illustrated in the previous sections through the 

analysis of the trajectory ensembles of PKR. To conclude the Results chapter, this section provides a 

summary of the main steps of the protocol to facilitate a complete view of the whole procedure. The 

main part of the protocol relates to the derivation of the set of CPCs from the reference trajectory 

ensemble. Subsequently, the protocol closes with the proposition followed in this thesis to 

characterize the conformational distributions along CPCs and achieve a comparative analysis within 

and between alternative conditions. 

Derivation of Consensus Principal Components (CPCs) from a trajectory ensemble 

1. Generate an ensemble of MD trajectories of a macromolecular system simulated in equivalent 

conditions, such that the trajectories can be considered as replicates of a single reference 

condition. 

2. Optionally, choose a structural region that will be the focus of the analysis. Filter the trajectories 

to retain only the involved subset of atoms. 

• If there are multiple copies of the chosen region in the topology of the system, and their 

role in the structure is equivalent (e.g., a certain protein domain or modular region that is 

present multiple times in a symmetrical multimer), they can be extracted as separate 

trajectory replicates to enrich the analysis. 

3. Compute the average structure of all trajectory replicates. 

• If the analysis concerns only a particular structural region of the system, apply this step 

only to the considered subset of atoms. 

4. Perform (Cartesian) PCA independently on each trajectory replicate. 

• Prior to the covariance calculation, apply a structural superposition (least‑squares fitting) 

of all trajectories to the reference structure from step 3. Optionally, choose a particular 

fitting group for the removal of the rotational and translational components in the 

structural superposition. The analysis will be sensitive to this choice, as it will determine 

the main point of reference to orient all trajectories and facilitate inspection of the 

captured collective motions of the structure relative to the position of the superposed 

region. 

5. Perform a clustering of the resulting eigenvectors. 

• Include the desired number of eigenvectors per trajectory replicate. 

• Build a dissimilarity matrix using the cosine distance between pairwise eigenvectors. 

Importantly, cosine distance should be derived from cosine similarity expressed in absolute 

value, resulting in a measure bounded between 0 (full similarity) and 1 (no similarity). 

• Choose the desired clustering method (e.g., agglomerative hierarchical clustering), feed it 

with the dissimilarity matrix, and define the criteria for retrieving the most relevant 

clusters. 
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• Assess the overall quality and meaningfulness of the obtained clusters. Explore possible 

biases or tendencies within the composition of the clusters (for instance, check for 

especially absent or predominant trajectory provenances of the eigenvectors, check for 

repeated provenances within a cluster…). If needed, retune the clustering parameters or 

redesign the analysis with alternative structural regions and fitting groups to adjust to the 

resolution of the dynamics of the system. 

6. Get the centroid (average) vector from each relevant cluster. The set of centroid vectors will 

yield the reference CPCs of the experiment. 

• Due to the properties of the cosine distance bounded in the interval [0, 1], vectors within 

the same cluster may point in opposite directions, describing the same collective atomic 

displacements albeit reversed. Therefore, this step requires choosing a reference direction 

in each cluster and then flipping all opposite vectors (angle greater than 90°) before 

computing the corresponding centroids. 

7. Project the individual trajectories onto the desired CPCs and transform data back to atomic 

Cartesian coordinates to examine the captured collective motions. 

• This step requires having applied the structural superposition from step 4 and applying a 

subsequent data centering of all trajectories around the reference structure from step 3, 

prior to the data projection. This procedure will establish a common origin of coordinates 

for all trajectories in terms of the set of CPCs. 

Comparative analysis within and between alternative conditions in terms of the reference set of 

CPCs 

8. Obtain density distributions of the projection values acquired in step 7, both of the individual 

trajectories and the aggregated data. 

• Choose the desired method for estimating the probability density functions (e.g., Kernel 

Density Estimation). 

9. Compare the features of the resulting density distributions. 

• This procedure allows for ascertaining the conformational diversity among the equivalent 

trajectories of the system, as well as studying the possible functional implications of both 

the motions and their most distinctive conformations. 

• Determine the similarities and differences between the distributions. Do they share 

relative maxima and minima? Does the span of projection values coincide? Are the shapes 

proportionally similar? Does the aggregated data exhibit distinctive regions of high/low 

density? 

• The assessment may be conducted by visual inspection of the plotted data and 

complemented with quantitative metrics that express measures of (dis)similarity between 

distributions. 

• Identify relevant values of the data distributions and characterize the distinctive structural 

conformations of each condition. 
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10. Generate trajectory ensembles of the system simulated in alternative conditions. Alternative 

conditions must hold atomic correspondence (number, identity, and order of atoms) with the 

reference system. 

11. Project the individual trajectories of the alternative conditions onto the desired CPCs of the 

reference condition (apply the considerations from step 7). 

12. Perform a comparative analysis between alternative conditions with the procedure and the 

insight from steps 8 and 9. 
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Chapter 5 Discussion 

5.1 Models and simulations of PKR 

The proposed research project required, in the first place, being able to model and simulate the PKR 

system in different biological conditions. The more comprehensive the collection of simulation 

conditions, the richer the comparative framework that allows elaborating on the knowledge of the 

structure and dynamics of PKR with respect to its biological function and its regulation mechanism. In 

turn, by providing a large dataset of MD trajectories, the project also becomes a suitable scenario to 

suggest an analytical approach like CEDA and test its performance and capabilities. 

The present section provides a discussion about the setup procedures that have been implemented 

to achieve these objectives and obtain the trajectory dataset of PKR. This part of the project comprises 

the modeling of the initial structures and the parameterization strategy. The major decision points 

concerning these procedures are reviewed from a rational point of view, at both the scientific and 

technical levels, with special attention to how each decision has contributed to the goal and the quality 

of the experiments. 

The modeling of the WT PKR enzyme, both as the apoprotein and as the holoprotein with different 

combinations of ligands, was possible thanks to the large volume of consistent crystallographic data 

that is available. The structure 2VGB from the PDB was selected as the main base structure. At the 

time when the project began, 6 different structures of PKR (or the equivalent region of the PKL 

isoenzyme) could be found at the PDB. From those, only the structure 2VGB corresponds to the WT 

sequence of the protein, whereas the rest include different point mutations. Furthermore, this model 

includes most of the natural ligands of the protein, only lacking MgADP. 

The absence of a fragment of the N‑terminal domain 

The only downside of this model is that it lacks a significant portion of the N‑terminal domain (the first 

56 amino acids). This issue would not have been significantly remediated by using any of the other 

available models either. The newer structures of PKR/PKL that have been released lately have only 

achieved the crystallization of a few more residues, and the best models still lack 40 residues. Only 

now, with the release of the AlphaFold2 database [223], we would be able to work with a model of 

the full monomeric structure (Figure 5.1). However, the reported confidence score for the predicted 

fragment of the N‑terminal domain is very low, and the model is not compatible with a tetrameric 

assembly in silico because it generates clashes with the adjacent subunits (not shown). 
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Figure 5.1. Predicted model of monomeric PKR by AlphaFold2. The N‑terminal domain consists of a fragment 

equivalent to that of the PDB structure 2VGB (in green) and a predicted initial fragment that is absent in 

crystallographic models (in gray). NOTE. The image was generated with the software VMD. 

The absence of this N‑terminal region is a limitation with regard to the structural and dynamical study 

of this protein, since we may be missing its participation in the relevant motions of the protein. 

However, the evidence from crystallographic experiments and AlphaFold2 calculations suggest that 

this initial region of the domain is disordered. In fact, it is still not clear whether this fragment is directly 

involved in the modulation of enzymatic activity or fulfills any other functional roles [117]. In mature 

erythrocytes, the PKR isoenzyme is subject to some levels of post‑translational proteolytic cleavage 

that removes the first 47 amino acids, generating both full‑length and truncated proteins that have 

the capacity both for homo‑ and hetero‑tetramerization [157], [521]. In addition, in vitro assays 

reported that the truncated PKR protein (lacking the first 49 amino acids) exhibits kinetic properties 

virtually identical to those of the WT enzyme [121]. It is nonetheless intriguing that this fragment 

appears to be exclusive to erythrocyte and liver isoenzymes, being especially lengthy in the former, 

based on sequence alignment data of the family of pyruvate kinases [117]. 

On the other hand, the serine residue at position 43 is a known phosphorylation site of these 

isoenzymes, which has been correlated with increased affinity for allosteric inhibitors ATP and alanine, 

and decreased affinity for PEP and the allosteric activator FBP [157]. A mechanism has been proposed 

whereby phosphorylation of Ser43 would interrupt a constitutive interaction between the N‑terminal 

domain and the main body of the protein that is energetically coupled with stronger PEP binding, 

causing a decrease in apparent PEP affinity [155], [156]. In contrast, other studies reject this 

proposition showing that the phosphorylation event alone is not sufficient to alter enzyme kinetics or 

structure, and suggest that it must regulate activity by a different mechanism than directly altering 

enzyme kinetics [158]. 

Be that as it may, the region of the N‑terminal that does crystallize folds in a small α‑helical structure 

that interconnects the A and C domains of adjacent subunits of the homotetramer. Therefore, it may 
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potentially be implicated in an orchestrated transmission of conformational changes between 

subunits, albeit not being essential as evidenced by its absence in PK isoenzymes of several species 

that display allosteric capabilities [117]. Recently, it has been found that the synthetic drug mitapivat 

enhances PKR activity by binding to a site buried between the N‑terminal domain and the A and C 

domains of the adjacent subunit, presumably stabilizing the tetramer in its active state [53], [54]. 

Similarly, 17 newly synthesized compounds have been found to be allosteric modulators that bind to 

the same cryptic site [522]. The design of such exogenous allosteric modulators was inspired, in turn, 

by the earlier observations of similar compounds that bind to the homologous site in the PKM2 

isoenzyme and that also induce allosteric response [214], [215]. Thus, this region of the N‑terminal 

domain appears to have implications in the structure‑dynamics‑function relationship of this enzyme. 

The chosen holo conditions of PKR 

The analyzed holoenzyme states of PKR were rationally chosen to cover several conditions of the 

protein with partial and full sets of ligands. The goal was to provide a set of models with the potential 

to track the changes in the dynamical profile of the enzyme across the collection of trajectories, 

according to the functional capacities of each condition. The corresponding configurations were 

selected on the basis of the existing evidence of their occurrence in physiologic conditions. Moreover, 

the fact that PK isoenzymes are remarkably conserved both in architecture and sequence [119] 

enables the incorporation of structural data from a wider range of PK models, even if they correspond 

to isoenzymes other than PKR. Currently, the PDB contains more than 120 PDB models of PK, 

comprising diverse isoenzymes of various organisms and tissues, and co‑crystallized with different 

combinations of ligands. 

The configuration with a fully occupied active site is a self‑evident choice for the study. Of course, no 

crystallographic structures come with both substrates as the chemical reaction would take place. 

Therefore, crystallographic experiments either employ unproductive substrate analogs or simply omit 

one of them. The structure 2VGB only lacks MgADP. The coordinates of these molecules were 

imported from the structure 4FXF, a model of human PKM2 with fully occupied active and allosteric 

sites [149]. This structure emulates the final state of the reaction featuring MgATP and oxalate as an 

analog of pyruvate. The structure 4FXF displays binding geometries for the rest of the ligands that are 

totally equivalent to those of 2VGB and many other models [139], [147], and was selected because it 

is the closest in sequence identity with PKR. The orientation of the γ‑phosphate of ATP is compatible 

with the predicted displacement of this moiety after the phosphoryl‑transfer reaction from PEP [140]. 

Therefore, removing the γ‑phosphate from ATP and placing the resulting ADP molecule alongside PEP 

at the equivalent site in 2VGB rendered a good representation of the pre‑reaction conditions. This 

procedure enabled representation of two holo conditions with fully occupied active sites, named 

PEP‑ADP‑holo and Full‑holo, where the latter also includes FBP bound to the allosteric site. 

The inclusion of the simplest holo condition, only with bound K⁺, was an imperative given that PKR is 

dependent on K⁺ for its enzymatic activity. This condition was named K‑holo. K⁺ is thought to induce 

the first rearrangements of the active site that subsequently allow either PEP or ADP to bind 

independently in a random sequential mechanism [140], [146], as this is the usual mechanism in type I 

K⁺‑activated enzymes [142]. Under physiologic conditions in the cytosol, K⁺ is most likely constitutively 

bound to the apoprotein due to its abundance [142], [144], [145]. Several crystallographic 

experiments feature the spontaneous union of K⁺ to its canonical binding site, again with a binding 
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geometry consistently equivalent to that of 2VGB [128], [147], thus validating the modeling of this 

condition in this study. 

The binding of the cofactor Mg²⁺ is also required for the stable and catalytically active configuration 

of the active site. Ligand‑binding assays and crystallographic data prove that Mg²⁺ assists in the binding 

of PEP, although the process by which the bound state of both ligands is eventually reached is not 

clear. The group of Zhong et al. achieved the crystallization of the enzyme with both cofactors K⁺ and 

Mg²⁺ in the absence of substrates or substrate analogs [137]. The model corresponds to a PK of 

Trypanosoma brucei and also features fructose 2,6‑bisphosphate at the allosteric site, which stabilizes 

the enzyme in the R‑state (active) conformation of the tetramer. Remarkably, Mg²⁺ was found at a 

binding site (which they called the Mg‑3 site) that is shifted ~3 Å from the canonical (Mg‑1) site but 

involves the same protein side chains. The Mg‑3 site was hypothesized to retain Mg²⁺ after product 

release, working as a priming mechanism for the active site to accept the next PEP substrate molecule 

and have Mg²⁺ move back to the Mg‑1 site. In turn, the binding of PEP would trigger the transition of 

the B domain from an open to a partially closed conformation. Interestingly, the only instance in which 

the Mg‑3 had been previously spotted was in the crystallographic model of the constitutively active 

rabbit PKM1 co‑crystallized with the substrate analog ʟ‑phospholactate [138]. The model shows a 

range of open and partially closed B‑domain conformations, with Mg²⁺ at the Mg‑3 site only when the 

B domain is in the open conformation (and otherwise at the Mg‑1 site). 

Moreover, Zhong et al. also noted that Mg²⁺ (or equivalent divalent metal cations) had never been 

found in T‑state PK structures despite being present at relatively high concentrations in the 

crystallization buffers [137]. The study of Yuan et al. [128], which comprises several crystallographic 

structures of human PKM2, likely corroborates this observation since Mg²⁺ can only be found in the 

single model that adopts the R state (with the allosteric activator serine). However, this model is in 

conflict with that of Zhong et al., since Mg²⁺ is located at the Mg‑1 site despite the lack of substrate. 

Other models of the R‑state tetramer in the absence of substrates and in the presence of allosteric 

activators do not detect K⁺ at the active site but show Mg²⁺ at either the Mg‑1 or the Mg‑3 sites [153], 

[163], [523]. Finally, the crystallographic experiment by Wang et al. [127] provided the only instance 

of a PK in the T state (a model of human PKM2) that, despite failing to detect K⁺, shows Mg²⁺ near the 

Mg‑3 site. 

With the current conflicting data, it seems that either Mg‑1 or Mg‑3 can potentially be putative binding 

sites of the cofactor Mg²⁺ in the absence of substrate. Both states might be in equilibrium. Further 

experiments should be carried out to ascertain this issue. In this study, the Mg‑3 site was selected to 

model the conditions with cofactors K⁺ and Mg²⁺ in the absence of substrate, following the structural 

evidence presented by Zhong et al. [137]. Accordingly, two holo conditions were modeled with this 

active‑site configuration, named K‑Mg‑holo and FBP‑holo, where the latter also includes FBP bound 

to the allosteric site. The simulation of the K‑Mg‑holo condition provides the chance to gain novel 

insight on the preferred conformations of the B domain when both cofactors are bound to the active 

site. On the other hand, the simulation of the FBP‑holo condition allows for the study of the influence 

of the allosteric activator in the overall conformation of the enzyme. 

Finally, the last relevant holo conditions are those with one substrate present and the other absent. 

Following the evidence for a random sequential mechanism induced by K⁺ [140], [146], both models 

contain this metal. As argued earlier, since the binding of Mg²⁺ alone is yet to be further demonstrated, 

this cofactor was not included in the model that features MgADP as the only bound substrate (it is 
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important to note that the ADP‑bound Mg²⁺ ion is different from the cofactor Mg²⁺). Furthermore, 

this particular configuration of ligands can be seen in a recent crystallographic structure [119]. This 

holo condition, named ADP‑holo, allows for the study of the influence of MgADP in the closing of the 

B domain, as has been suggested by many studies [119], [124], [135], [137], [139], [147]. On the other 

hand, in the condition with PEP as the only substrate, both cofactors were included (with Mg²⁺ at the 

Mg‑1 site), following the extensive evidence from crystallographic data. This holo condition, named 

PEP‑holo, allows for the study of the cooperative effects exerted by PEP, which presumably manifest 

as a shift towards the R state [127], [147], [163]. 

The usage of the AMBER99SB‑ILDN force field 

In this project, the AMBER99SB‑ILDN force field [456] was chosen to treat the system in general. This 

force field derives from the continuous work that started in the early 1990s, when the Kollman group 

[327] developed the so‑called “second generation” AMBER94 force field with the aim of describing 

solvated systems like proteins and nucleic acids. Since then, subsequent refinement processes have 

allowed remedying its major inaccuracies, with an especial emphasis in upgrading the parameters for 

the protein torsion potentials [282], [284], [524]. Ultimately, the improvement of a few side‑chain 

torsion potentials in 2010 accomplished a considerably better agreement with experimental data 

[456]. 

Even though in the subject of force fields it is very difficult to generate gold standards and assess their 

quality and comparability [524], AMBER99SB‑ILDN has been a widely accepted force field, with a 

generalized use in the last decade [284], [356], [434], [525]. Not surprisingly, therefore, 

AMBER99SB‑ILDN is the most recent force field of the AMBER family that is natively supported in the 

GROMACS MD suite.  

Of course, in parallel, the development of new and better protein force fields has continued up to 

now. Currently, the AMBER documentation recommends AMBER14SB or the newest addition 

AMBER19SB (although the latter is stated to pair best with the OPC water model). In this project, the 

AMBER14SB force field would have been a suitable alternative, which is very similar in terms of 

compatibility, and the scenario would not have changed much with respect to the design of the MD 

protocol, except for having to implement a port of the force field for the GROMACS MD suite. In any 

case, AMBER99SB‑ILDN was chosen because of its proven ability to satisfactorily describe the 

dynamical properties of a wide diversity of folded proteins, as seen in projects of massive simulation 

data like MoDEL [356], [434], [525]. 

Furthermore, the algorithm and the QM level of theory by which the parameters of the AMBER94/99 

force fields were derived was explicitly disclosed, which allows researchers to make consistent 

extensions to include arbitrary molecules together with the protein system [459], [471], [524]. This 

advantage allowed for the inclusion of the parameters for the ligands PEP and FBP according to the 

GAFF force field and the RESP methodology (details in section 3.2.2). 

A bonded/non‑bonded hybrid model for the metal centers 

The parameterization of the metal centers was the last and most challenging step to set up the holo 

models for subsequent MD simulation. The general force fields do not provide robust parameters that 

can describe the interactions of coordination complexes and reproduce the specific binding 

geometries of the metal‑center environments. Thus, this stage of the project involved searching for 
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the available specialized methodology and choosing the strategy that aligns with the needs of the 

study. 

Here, it is important to note that the goal was not to delve deeply into the physicochemical properties 

of the active site or the catalytic mechanism. Simulations at the QM or QM/MM level would have been 

required for this purpose. Instead, the aim was to incorporate the known structural evidence about 

the arrangements of the occupied active site into MD simulations using the derived metal‑center 

parameters. This procedure enabled inspection of the conformational space available to the protein 

with the local constraints imposed by ligand binding. On a practical level, this could manifest as shifts 

in conformational equilibria, the emergence or suppression of certain conformations, distinctive 

collective motions, etc. 

In the field of the modeling of systems containing metal ions, a diverse array of strategies based on 

both quantum and classical regimes have been adopted over the past several decades. At present, no 

single methodology can be considered superior to all others. The optimal parameterization approach 

depends upon the specific scientific question under investigation. Some exhaustive reviews and 

comparative studies comprehensively cover this topic [482]–[485]. Broadly speaking, there are 

non‑bonded and bonded models. While the former allow for dynamical change of coordination 

number, the latter offer good control over geometry of the first coordination sphere of the metals 

[483]. Following this primary distinction, the bonded model was the most appropriate choice for the 

present investigation. The bonded model is widely used with classical force fields and provides 

metal‑center parameters that can readily simulate macromolecular systems with considerable 

accuracy [484]. In the last few years, several studies of the dynamical properties of metalloproteins 

and their internal motions via MD simulations have opted for the bonded model [383], [526]–[528]. 

The MCPB.py software [471] was selected to address this task, as it provides an optimized workflow 

developed by experts in the field to facilitate metal‑center parameterization with the bonded model. 

MCPB.py supports various AMBER force fields and acts as a bridge between QM calculations and MD 

simulation software packages, enabling the direct incorporation of the generated parameters into the 

MD topology files. Parameter determination based on QM calculations offers considerable accuracy 

and is broadly applicable to a wide range of molecular configurations [471]. The implemented 

parameterization schemes within MCPB.py allow for the derivation of force constant parameters and 

atomic charges that fall reasonably within the ranges of values deemed correct in the literature. 

In addition to the QM‑derived parameters, the bonded model requires assigning appropriate van der 

Waals (VDW) parameters to the metal. The 12‑6 Lennard‑Jones (LJ) potential is the most widely 

employed expression for the repulsion and attraction terms of the VDW interaction. Li, Merz, and 

co‑workers developed 12‑6 LJ parameters for monovalent to tetravalent ions by trying to reproduce 

thermodynamic quantities, structural properties, and kinetic or dynamic properties. They derived 

different parameter sets depending on the targeted experimental value: hydration free energy (HFE), 

ion‑oxygen distance (IOD), or coordination number (CN) of the first solvation sphere [469], [470]. In 

this study, the IOD parameter sets for K⁺ and Mg²⁺ at the holo PKR system were incorporated, as they 

are recommended for MD simulations oriented to reproduce structural properties such as metal 

center geometries [455], [526]. 

The bonded model is unable to simulate ligand‑exchange processes due to its inherent construction. 

A bonded/non‑bonded hybrid model can be utilized to allow specific coordination sites to undergo 
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ligand switching by modeling interactions at these sites solely with non‑bonded parameters [484]. In 

this study, this approach was employed to facilitate the modeling of the interactions between the 

metal centers and the solvent. Accordingly, after the parameterization stage with QM calculations, 

the crystallographic water molecules of the model were not retained as permanent ligands in the MD 

simulations. This allowed for the exploration of the changes in coordination number at the metal 

centers according to the stability of each configuration in simulation. 

The setup of the cluster model and the QM calculations 

Some of the modeled configurations used in this study were significantly more complex than those 

shown in the MCPB.py usage examples. As recommended by the authors of the software [484], the 

basic protocol was further adapted and refined with the support of the literature and in accordance 

with best practices in the field. The process required multiple iterations that enabled the successive 

identification of weak points and subsequent refinement. As such, the resulting procedure in this 

thesis also served as a practical application of these methodologies and may provide guidance for 

future studies of metalloproteins or systems with comparable configurations. 

In general, the cluster‑model strategy represents a robust and versatile scheme that has been widely 

used to study the reactions and properties of enzymes, especially metalloenzymes, using QM 

methods. In this approach, only the metal binding site and a limited number of nearby atoms are 

explicitly included in the model, while the rest of the protein is ignored. Over the years, this strategy 

has solved many complex problems in computational enzymology, and models with 250–300 atoms 

are now routine thanks to the technical advances in computational infrastructure [144], [276], [277]. 

Chemical intuition plays an important role to address the practical issues that facilitate a correct design 

of the cluster model. The building of the model starts from the existing structural data of 

crystallographic structures. The first rational decision concerns the selection of the atoms to be 

included in the model in order to adequately describe the properties of the metal center in its 

structural and functional contexts. Besides the metal and its coordination ligands, additional residues 

or moieties of the second coordination sphere or even beyond may be included, as appropriate: i) 

those responsible for stabilization and binding of substrates, ii) those exerting substantial short‑range 

and long‑range electrostatic interactions, iii) those assumed to be involved in the catalytic mechanism, 

and iv) those involved in the optimal orientation of the side chains via nonspecific steric hindrance 

[276], [281], [526]. 

A systematic approach is to begin with the minimal set of atoms and to gradually include additional 

fragments, thus examining their effects and gaining insight into their chemical roles [277], [281]. 

Accordingly, the environment of each metal center in the holo conditions of PKR was meticulously 

inspected to identify the interactions with the immediate environment that are crucial for reproducing 

the corresponding geometries. Arg116 and Lys313 are catalytically relevant residues [139] at the 

second coordination spheres of K⁺ and Mg²⁺ that interconnect both metal sites and mediate relevant 

electrostatic interactions. In turn, Ser286 constrains the side chain of Lys313 to its functional position 

and models the network of H‑bonds between this residue and Thr157. The side chain of Glu161 

incorporates the negative charge density that helps orient the hydroxyl group of Ser120 to interact 

with Glu161 and simultaneously coordinate to K⁺. In the holo conditions where ADP is present at the 

active site, His121 (in its ε protonation configuration) helps accommodate the β‑phosphate moiety by 

forming a H‑bond. Furthermore, the side chains of Thr371 and Ser405 give structural context to the 
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network of H‑bonds between PEP and the water molecules coordinated to the ADP‑bound Mg²⁺. 

These two amino acids have been suggested to participate in the enzymatic reaction as general proton 

donors thanks to a proton‑relay system with the H‑bonding network of water molecules nearby [124], 

[139]. Finally, the included water molecules help describe the solvent‑exposed portion of the metal 

centers. Some examples in the literature reported improvements in the accuracy of the cluster model 

after adding explicit water molecules [281]. In the PKR cluster models, they fill in the expected 

coordination sites and establish a robust network of H‑bonds that signifies the explicit contribution of 

the solvent to the overall geometry. Without these, the orientation of several residues such as Asn118, 

Ser120 and PEP would be indeterminate at the boundaries of the cluster model. 

As the cluster model expands in size, the computational cost becomes increasingly prohibitive. 

Therefore, it is important to determine the point at which a satisfactory balance between accuracy 

and computational efficiency is reached. Capping schemes are usually employed to reduce the size of 

the structure to only the essential fraction that exerts the relevant interactions. Amino‑acid side chains 

can be truncated at the Cβ or Cα atoms, which are saturated with hydrogen atoms. When carbonyl 

groups or amide groups of the backbone are relevant, acetyl (ACE) and 𝑁‑methyl amide (NME) groups 

represent a minimal version of the backbone [276], [471].  

Frozen‑atom schemes also let us represent structural constraints without the need of including further 

additional residues. Geometry optimizations can lead to large movements in regions that should be 

occupied by other residues, especially at the boundary of the cluster model. Peripheral atoms are 

usually fixed at their original crystallographic positions to avoid such artifacts and at the same time 

minimize the total number of atoms and avoid unnecessary calculations [276], [279]. Essentially, 

geometry optimizations should facilitate the proper relaxation of the metal‑center components 

without compromising the conformational information imposed by the backbone of the protein. In 

general, fixing the following fragments has been shown to yield satisfactory results: i) truncation sites 

of side chains (α‑carbon and the surrogate hydrogen atoms), ii) entire side chains further than the first 

coordination sphere that do not require structural optimization, iii) atoms involved in H‑bonds or polar 

interactions with absent residues, and iv) secondary structure elements and backbone atoms in 

general [276], [277], [281]. These guidelines were taken into account to build the cluster model of 

each PKR holo condition. After careful monitorization, optimal configurations for the frozen‑atom 

schemes were achieved (see the details in section 4.1.1.2). 

The surrounding of the cluster model beyond the boundary is expected to exert a certain electrostatic 

influence that may produce a polarization effect. Metal‑containing cluster models, especially when 

they possess non‑zero net charge, are prone to be affected by unrealistic electron transfer. Implicit 

solvation models can compensate for this inaccuracy by simulating a homogeneous polarizable 

medium using a dielectric constant [276], [279], [281]. Although the value for this dielectric constant 

(ε) is arbitrary, values between 2 and 40 may properly describe solvation effects in agreement with 

experimental data [144], [276], [458], [526]. The value of a pure water medium corresponds to 

approximately 80. The value of 4 is the standard procedure to simulate the average effect of a protein 

matrix environment and the buried water molecules surrounding the cluster model [277], [529]. For 

more solvent‑exposed sites a value of 20 may be used [479], [530]. In this study, several values of the 

dielectric constant were tested. Geometries obtained with a value of 20 showed best agreement with 

the experimental structures. It has been seen that the larger the size of the cluster model, the lower 

the impact of the continuum solvation model on accuracy [276], [277], [281], [480]. In the PKR cluster 



 Discussion 

279 
 

models, the dielectric constant strongly influenced the orientation of the charged residues at the 

boundary (e.g., Asp156), whereas other residues less exposed to the solvent were not significantly 

affected. 

In respect of the choice of an appropriate QM level of theory, Density Functional Theory (DFT) 

methods are the most widely used in theoretical mechanistic biochemistry, being able to model 

complex chemical systems like metalloproteins with a positive balance between computational 

efficiency and accuracy [276], [279]. The best predictions are usually achieved by combining DFT with 

a partial or full Hartree‑Fock (HF) exchange contributions, resulting in hybrid functionals. Specifically, 

the most popular hybrid functional to study metalloproteins that bears compatibility with the AMBER 

force fields is the B3LYP hybrid functional [277], [526]. The incorporation of dispersion correction 

terms such as GD3BJ is essential because it improves the description of non‑covalent interactions 

[277], [279]. For studies of metal‑containing systems (especially the heavier transition metals) or when 

high accuracy is a priority, moving to a more modern method than B3LYP is also encouraged [280]. 

Similarly, established criteria guide the selection of the basis sets for QM calculations. As a general 

indication, given the limitations of computational resources, one should select the minimal basis set 

that guarantees the desired level of precision for each computational task. Accordingly, geometry 

optimizations can make use of a relatively small basis set (typically of double‑zeta quality) to procure 

reliable geometries. Then, subsequent single‑point energy (SPE) calculations may rely on considerably 

larger basis sets (typically of triple‑zeta quality and including polarization and diffuse functions) to 

obtain accurate energies. Polarization functions should be included in the basis set to represent the 

electron distribution along chemical bonds, especially in H‑bond interactions where there is 

substantial polarization. In addition, diffuse functions are an essential addition to accurately describe 

the electronic density of anions and coordination complexes, which spread out further from the 

atomic centers [276], [279], [280]. Multiple studies of systems that share a similar complexity with the 

PKR models follow these criteria [281], [383], [527], [531], [532]. Alternatively, Effective Core 

Potentials (ECP) or pseudopotentials may also be added to provide explicit representation of the core 

electrons of the metals [144], [484], [529], [531], [532]. 

After geometry optimization, a subsequent harmonic‑frequency calculation facilitates the derivation 

of harmonic force constants and equilibrium values for the corresponding bond and angle parameters 

of the metal center. Ideally, this type of calculation should be done upon confirmation that the 

optimized structure indeed corresponds to a local minimum. To achieve this challenging objective, 

one can follow the recommendations that have been traditionally used to address the relevant 

methodological caveats [276], [533]. In this study, the geometries of each cluster model were 

optimized until reaching the convergence threshold values suggested in the MCPB.py protocol. In a 

few instances where linear angle values arose during the calculation, the associated indeterminacies 

were amended by applying a restart with a new estimate of the Hessian matrix [533]. Overall, the 

obtained geometries yielded satisfactory results, as evidenced by the performance of the resulting 

force constants in MD (see below). A possible refining stage could comprise further iterations near the 

final equilibrium geometry with tighter convergence values and the exploration of possible conflictive 

degrees of freedom. 
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Finally, the RESP algorithm is a standard practice for fitting the partial charges of metal‑protein 

complexes where charge‑transfer effects take place [484], [526], [531], [532]. A SPE calculation can 

be performed without the need of a full geometry optimization if the positions of hydrogen atoms are 

reasonable. As advised by the MCPB.py developers, and considering that the PKR models comprise a 

substantial part of the environment of the metal centers, the models were submitted to 

hydrogen‑only geometry optimizations before fitting atomic charges [472]. 

Implementation of the QM‑derived parameter sets 

After the QM stage, bond and angle parameters can be generated with MCPB.py based on the 

Seminario method, which calculates force constants using a sub‑matrix of the Cartesian Hessian matrix 

[471], [481]. The Seminario method is a recommended choice for the derivation of an harmonic 

approximation for the bonded terms of structural metal sites [485]. This method has the advantage of 

being simple and accurate enough for most applications. However, it also has a limitation that stems 

from its main characteristic. The parameterization implicitly incorporates the influence of the 

environment, which makes it adaptable to various systems but also incapable of representing isolated 

bonded terms. For studies that require the explicit decoupling of the bonded and non‑bonded 

parameters, the so‑called Automatic Parameterization Methods (APM) may be more suitable, as they 

involve scanning the parameter space and comparing the resulting properties with additional 

experimental or QM data [482], [484]. 

Conventionally, with the Seminario method, dihedral torsion parameters are disregarded because 

they are based on harmonic terms, whereas protein force fields employ a Fourier expansion to 

represent these parameters. Dihedral interactions incorporate the rotational barriers that arise from 

the physical repulsion between electron clouds of adjacent chemical bonds. A proper 

parameterization strategy of dihedral terms would entail a comprehensive refit by examining all the 

available degrees of freedom of the structure. However, this procedure is challenging, especially 

considering that dihedral terms are often coupled with the van der Waals and electrostatic terms that 

also affect the structure. In practice, it is assumed that all the dihedral angle values of a metal center 

are accessible at physiological temperature, and that the corresponding energy barriers are small and 

negligible. Therefore, they are usually set to zero as an acceptable trade‑off between accuracy and 

effort [482]–[484]. 

After the acquisition of the QM‑derived parameter sets, the performance of the models in MD 

simulation was evaluated. Some interactions at the metal centers benefited from a variation of the 

bonded model by which coordination bonds are modeled as individual harmonic restraints rather than 

being included as actual chemical bonds in the topology. In practice, the treatment of the bonded 

terms is virtually equivalent with either approach, although the decision affects how non‑bonded 

interactions between neighboring atoms are considered. 

In protein force fields, a scheme of exclusions is implemented with the bonded model to prevent 

double‑counting of the VDW and electrostatic interactions between consecutively connected atoms, 

which may already be implicitly accounted for with the bonded parameters derived through QM [485], 

[524]. For pairs of atoms separated by one bond (1‑2 pair) or an angle (1‑3 pair), these interactions 

are neglected. For pairs of atoms separated by three bonds (1‑4 pair; endpoints of a dihedral torsion 

angle), these interactions are scaled down by factors of 0.5 and 0.88 respectively (values correspond 

to the AMBER99SB‑ILDN force field). However, under certain situations when modeling metal centers, 
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reincorporating the full non‑bonded set of terms may be advantageous in preventing structural 

distortion [472], [484], [485]. The implementation of this approach yielded stable models for the PKR 

metal centers that optimally reproduce the experimental geometries. 

In particular, this adjustment was instrumental in addressing the inaccuracies encountered in the 

simulation of the side chain of Ser120, a coordination ligand of K⁺ (see section 4.1.1.2). The oxygen 

atom of this hydroxyl group is the only instance of a donor atom in the coordination complexes of PKR 

that corresponds to the penultimate atom of the chain of a chemical moiety. In its structural context, 

this functional group exhibits rotational freedom, as the hydrogen atom can reorient to transiently 

form H‑bonds with either Glu161 or nearby water molecules without disrupting the O‑K⁺ coordination 

bond. The incompatibility of the standard bonded model with this region became apparent as soon as 

events of the switch of H‑bond acceptors occurred in simulation. The lack of the conventional 

non‑bonded terms caused structural instabilities due to unbalanced forces, potentially leading to 

simulation failure. For example, with the 1‑4 interactions scaled down, exaggerated approaches were 

produced between the hydrogen atom and its 1‑4 partners such as the δ oxygen of Asn118. This 

anomaly arises because the VDW interaction between such 1‑4 pairs is zero while their electrostatic 

interaction is non‑zero and attractive. This effect has been previously observed and reported in the 

literature (e.g., for cases of two adjacent water molecules coordinated to the same metal) [484], [485]. 

This variation of the bonded model with harmonic restraints and full non‑bonded terms was also 

applied to the rest of interactions of the K⁺ metal center to harmonize the treatment of the whole 

coordination complex. In addition, the QM‑derived equilibrium angle value between K⁺ and the 

hydroxyl group of Ser120 was dismissed to further relax the moiety in MD simulation. Serine is not an 

uncommon coordination ligand in metalloproteins, especially in K⁺ metal centers [144]. However, to 

the best of my knowledge, other studies that have parameterized metal centers that contain serine 

(or, equivalently, threonine or cysteine) either assumed its deprotonated state based on pKa 

calculations [485], [534] or did not report the specific QM‑derived parameter sets. Therefore, the 

strategy implemented here could not be compared with other studies. We might speculate that this 

adjustment is necessary for similar systems unless the rotational freedom of the coordinated hydroxyl 

group is restricted by steric hindrance or stable interactions. 

Evaluation of the metal centers in MD simulation 

The derived metal‑center parameters successfully maintained the structural constraints of ligand 

binding at the active site along the MD trajectories, allowing for a comparative study of the dynamical 

behavior of PKR in apo and holo conditions. The geometrical and structural analyses of the metal 

centers show that the local conformation of the region was stable without significant distortion, 

whereas minor fluctuations were allowed to occur. The use of the RMSD and RMSF metrics provides 

a straightforward and informative approach to assess the flexibility of parameterized metal centers 

[527], [531], [535]. Accordingly, the protein region around the metal center, especially the 

coordinated amino acids, showed an overall higher conformational divergence in the apo condition. 

Local stiffness increased gradually as more ligands were bound in the active site. 

In MD studies with parameterized metal centers, it is important to evaluate the interatomic distances 

between the metal and its coordination ligands over the course of the simulation, as well as to 

determine the predominant coordination geometries [109], [383], [531], [535]. Even though 

crystallographic metal‑ligand distances and QM‑derived equilibrium bond lengths in general did not 



Chapter 5 

282 
 

bear equivalent values, the overall geometry of the coordination complexes was well reproduced. 

Metal‑ligand distance values along the trajectories appear distributed around the corresponding 

equilibrium values and do not show abnormal deviations. 

The K⁺ metal center exhibited more mobility, as suggested by the wider distance value distributions 

and the higher number of upper outliers. This behavior could be attributed to the particular chemical 

and structural features of K⁺ metal centers. Coordination complexes of this metal cation can adopt 

diverse geometries and are mainly governed by electrostatic interactions due to its low charge density. 

In addition, K⁺‑specific binding sites in enzymes such as PKR are often characterized by large cavities 

that can accommodate the particularly large ionic radius of K⁺ (1.33 Å) [142], [145]. 

The average bond distances between K⁺ and the coordinated amino acids and the substrate PEP range 

from 2.7 to 2.9 Å, which is consistent with the literature values. For example, Brás et al. performed a 

comprehensive analysis of the geometric properties of K⁺ coordination spheres based on a 

representative set of structures from the PDB and validated by QM calculations [144]. They reported 

that the average oxygen‑K⁺ distances fall within the same range and vary inversely with the formal 

charge of the oxygen atom. This trend is partially observed in the simulations of this study, where the 

Asp156‑K⁺ and Ser120‑K⁺ distances show the lowest and highest values, respectively, in some 

instances of the holo conditions. An exception to this trend is the PEP‑K⁺ distance, which should be 

among the lowest distances considering that the oxygen belongs to a phosphate group. Interestingly, 

the crystallographic reference values of the K⁺ metal center in structure 2VGB are higher, ranging from 

2.95 to 3.44 Å [121], but they follow the pattern determined by the formal charge of the oxygen atom. 

On the other hand, Mg²⁺ coordination spheres are more rigid and stable [142]. This feature has been 

reflected in narrower distributions of the distance values of both Mg²⁺ coordination complexes. 

Studies of the QM‑calculated and experimental distance between Mg²⁺ and carboxylate ligands in 

monodentate fashion reveal characteristic values that are around 2.0‑2.1 Å, with more distant 

instances not exceeding 2.6 Å [530], [536]. Coordination bonds of cofactor Mg²⁺ with Glu315 and 

Asp339 consistently reproduced this behavior both in the Mg‑1 and Mg‑3 sites. The tridentate 

configuration between Mg²⁺ and PEP results in slightly increased distance values. Finally, the 

interaction between PEP and the ADP‑bound Mg²⁺ exhibits distance values higher than the 

corresponding parameterized equilibrium value. This suggests that the model is unable to 

accommodate the repulsive force exerted by the phosphate groups of both PEP and ADP. 

The dynamical changes in the configuration of the metal centers were inspected with a 

straightforward strategy based on the use of distance cutoff values to detect the number of 

occurrences of certain atoms being near the metal. The particular cutoff values were empirically 

determined, starting from the tentative guess of 3.5 Å and gradually decreasing the value until finding 

an appropriate balance between the sensitivity and specificity of the detection experiment. After 

cutoff adjustment, the final values employed to detect coordinated water molecules were 3.1 Å and 

2.8 Å for the K⁺ and Mg²⁺ metal centers, respectively. Cutoff values of 3.59 Å and 3.0 Å have been used 

in previous studies [145], [536]. The selected values in this study should provide good estimates 

according to the experimental metal‑water distances reported in the literature. Distances for K⁺ in 

aqueous solution range from 2.65 to 2.97 Å, with 2.8 Å being the most common reported value for 6‑ 

and 7‑coordinate complexes of this ion [145], [537]. In the case of the smaller Mg²⁺ ion, distances are 

typically lower, between 2.0 and 2.1 Å [530], [536]. All in all, this approach yielded satisfactory 

estimations of the relative abundance of coordination numbers and configurations of the PKR metal 
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centers in MD simulation. However, alternative tools and methods exist for conducting a more refined 

analysis when necessary. For example, one could incorporate angle values along with distance values 

or employ a Radial Distribution Function (RDF) scan [527]. 

Remarkably, results suggest that the non‑bonded portion of the models was able to simulate the 

spontaneous occupation of the vacant coordination sites. The coordination number of the complexes 

fluctuated along the trajectories mainly as a function of the hydration state. In general, the most 

abundant states for the K⁺ metal center were the 5‑ and 6‑coordinate states. Conversely, both Mg²⁺ 

metal centers were strongly stabilized in the 6‑coordinate state, with invariable octahedral 

geometries. 

Coordination numbers of metal ions in metalloproteins may range from 3 to 8, being 6 the most 

prevalent overall [142]. K⁺‑binding proteins are characteristic examples of this trend, preferentially 

adopting the large 6‑ or 7‑coordinate states. Binding sites of K⁺ are mostly composed of oxygen atoms 

with partial negative charges provided by either the side chain or the backbone of amino acids. 

However, the water molecule is the most common ligand of the first coordination sphere. 

Interestingly, the ligand combination Asn‑Ser‑Asp‑Thr‑Water‑Water, characteristic of the K⁺ metal 

center of PKR, is a prevalent configuration among K⁺‑binding proteins [142], [144]. Water‑exchange 

events may be favored by the presence of the rest of protein ligands at K⁺ metal centers, given the 

large ionic radius of the metal and the fast association and dissociation kinetics of K⁺ complexes. When 

a phosphate group is a coordination ligand of K⁺, the strongly negative charge of this moiety reduces 

the electrostatic potential of the metal cation, limiting its tendency to interact with other molecules 

[145]. This statement correlates with the fact that in presence of PEP, a higher proportion of states 

without water (i.e., bonded‑model–only states) were detected. 

Mg²⁺ metal centers usually form stable octahedral geometries with six oxygen ligands. Such 

coordination complexes cannot accept further ligands due to the lack of vacant space in the vicinity of 

Mg²⁺ [142]. This fact may explain the consistent absence of higher coordination numbers in the 

trajectories of this study. Mg²⁺ binding sites in proteins contain at least one coordinated carboxylate 

group in monodentate fashion. The rest of the coordination sphere may be occupied by other moieties 

of the protein or external ligands, and completed by coordinated water molecules to form the 

octahedron. Furthermore, the rate of dissociation of water molecules in Mg²⁺ complexes is slower 

[142]. Accordingly, almost no variability in the configuration of the Mg²⁺ metal centers of PKR was 

observed along the simulations (states with coordination number less than 6 occurred with negligible 

frequencies). 

5.2 The applicability of the CEDA approach 

The CEDA methodology was developed in response to the objective of exploring analytical strategies 

that can leverage standard PCA to overcome its inherent limitations in comparative trajectory analysis. 

PCA is widely utilized in trajectory analysis due to its straightforward applicability and the fact that the 

captured dynamical features have the potential to afford biological interpretation, such as associating 

observed collective motions with their potential role in molecular function. However, when working 

with a set of trajectories, the usual approach is to conduct PCA on each trajectory as an independent 

experiment. Then, comparing PCs involves a visual examination and description of the observed 

similarities and differences among trajectories, resulting in comparisons that are qualitative rather 

than quantitative. An alternative approach, known as combined‑PCA, is also frequently employed. This 



Chapter 5 

284 
 

method involves applying PCA to a “multi‑trajectory” that is formed by concatenating the various 

trajectories being studied, rendering a single set of PCs representative of the whole ensemble. The 

differences between combined‑PCA and CEDA will be discussed in detail later in this section. 

The CEDA protocol is divided into two parts. The first part is designed to detect the collective 

displacements that are most representative of a trajectory ensemble of a macromolecular system. The 

approach facilitates the dynamical study of the system, grounded in the principles of EDA, but allowing 

for the integration of the PCA output from independent trajectories within a unified framework of 

consensus PCs (CPCs). Thus, the available trajectories are considered as complementary views of a 

single conformational ensemble, enabling elucidation of the predominant dynamical behavior. The 

second part of the protocol introduces an analytical strategy to characterize the conformational 

distribution along the derived CPCs. This enables a comparative analysis between different trajectory 

ensembles by determining whether an alternative condition has explored a similar conformational 

space in terms of the reference CPCs. 

Through the case study of this thesis, the practical application of CEDA has been effectively 

demonstrated. The protocol was employed to analyze three different regions of the structure of PKR, 

offering valuable insights into its potential and advantages for the dynamical study of 

biomacromolecules. The implementation proved successful, as it resulted in the identification of key 

characteristics pertaining to the dynamics of PKR. The detected dynamical events are consistent with 

the existing body of evidence regarding the conformational changes linked to the function of this 

protein, as will be discussed in the next section. Additionally, this exercise has facilitated the 

identification of possible caveats and upgrades to the strategy. With this perspective, the following 

discussion involves an examination of the benefits of the employed methodology, as well as several 

aspects of the process that could be further optimized to manage a broader range of macromolecular 

systems. 

The influence of sampling heterogeneity between equivalent trajectories 

First and foremost, the ensemble of equivalent trajectories of the reference condition, the WT apo 

condition, demonstrated a substantial degree of similarity of the explored conformational space. This 

scenario is determinant for the derivation of meaningful CPCs and, thus, also for the subsequent 

chance to perform comparisons with alternative conditions. Three relevant CPCs were produced per 

CEDA experiment, each accounting for a distinctive collective motion of the corresponding analyzed 

protein region. These CPCs were highly representative of the whole trajectory ensemble because they 

were derived from similar eigenvectors that came from all or most of the 20 equivalent trajectories of 

the reference condition (between 95% and 100% of coverage in the case of CPCs with indices #1 and 

#2, and between 65% and 95% in the case of CPCs with index #3). 

The trajectories of the reference condition are called “equivalent” not because they are identical, but 

because they represent equivalent attempts to sample the conformational space around the 

employed initial structure in the given simulation time. Thus, none holds greater value than the rest. 

Due to the stochastic nature of MD, the more available trajectories, the greater the quality of the 

sampling [293], [445], [538], [539]. Therefore, any average property computed from a trajectory 

ensemble is statistically more significant and consistent between different experiments [109], [335], 

[365], [445]. For this reason, CPCs with high coverage and eigenvector similarity are good estimates 

of the true underlying collective motions of the system or, at least, more robust than regular PCs from 
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a single trajectory. In turn, this implies that the applicability of CEDA is subject to the intrinsic 

dynamical nature of the system under study. For instance, extremely free and flexible large systems 

with a wide disparity of sampling spaces (i.e., too many sampled energy minima between independent 

equivalent trajectories), are expected to produce very few or no meaningful CPCs. 

From a more methodological point of view, the detection of similarity between eigenvectors depends 

on four factors: i) the consideration of sufficient eigenvectors in the clustering, ii) the employed 

measure of (dis)similarity, iii) the clustering algorithm, and iv) the criteria used to define consensus 

behavior. 

Selecting the quantity of eigenvectors to incorporate into the clustering 

Regarding the number of eigenvectors incorporated per trajectory in the clustering process, several 

considerations can be taken into account. Collective motions that co‑occur in multiple trajectories 

may appear in eigenvectors of either the same or different index, by chance, according to their weight 

in the conformational variance of each simulation. The computation of matrices of inner products 

between pairwise trajectories is frequently performed to detect such shifts [441]. The application of 

a clustering algorithm, as in CEDA, offers a similar approach, but with the significant advantage of 

providing a comparison among all trajectories in a single operation. Furthermore, by visualizing the 

results of the clustering in a dendrogram, we obtain a comprehensive view of all eigenvectors 

agglomerated by similarity. Including an excessively large number of eigenvectors in the clustering 

implies adding noise to the dendrogram and may lead to a degradation of performance. Another 

potential constraint might be computational time, although it should not pose a significant obstacle. 

The recommended approach may mirror that of conventional EDA, whereby the objective is to identify 

the “essential subspace” which comprises only the first eigenvectors that define the directions of the 

most important atomic fluctuations. This same principle could be applied in this context. A common 

criterion consists in constructing the so‑called “scree plot” that shows the first eigenvalues (or their 

ratio to the sum of all eigenvalues) as a function of the eigenvector index. In globular proteins, this 

plot often displays an “elbow point”, that is, an abrupt change of slope beyond which the subsequent 

PCs only provide marginal information and thus pertain to a more irrelevant subspace [379], [446]. 

The scree plots of this study (Figures 4.17, 4.38, and 4.52) exhibit clear elbow points at PC #3. However, 

a higher number of eigenvectors were incorporated, ranging from 6 to 20 per trajectory to include up 

to 95% of cumulative variance in each corresponding CEDA experiment. The objective was to test 

whether similarity among equivalent trajectories may be detected not only in terms of the essential 

subspace, but also of lower‑variance eigenvectors. 

The importance of PCs #1–3 was subsequently confirmed as they generated the most relevant clusters 

in all three CEDA experiments. In contrast, PCs with higher indices either formed minor clusters or 

remained strongly isolated with no significant similarity with others. Therefore, PCs #1–3 not only 

captured the essential subspace of the WT apo condition at the level of the individual trajectories, but 

also globally as a single conformational ensemble, forming CPCs of high coverage. 

CPCs of lower coverage and higher PC indices were also found, although their retrieval depends on 

the criteria used to define consensus behavior. For instance, in the CEDA experiment involving the A 

and B domains of PKR, 7 of such CPCs (#4–10) were characterized in more detail by visually inspecting 

the captured collective motions and their estimated probability density distributions. The observed 

motions exhibited significantly lower amplitude compared to the major motions of CPCs #1–3, with 
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unimodal density distributions mostly centered around zero (Figure 4.28). These characteristics 

suggest that these collective motions describe harmonic‑like fluctuations around the conformation of 

the global average structure of the simulations [24], [379], [391]. These CPCs were not subsequently 

employed in the comparisons between alternative conditions as they describe minor consensus 

behavior (with coverage values around 20–35%). Moreover, in the additional CEDA experiment of the 

WT apo condition, designed to test replicability with a second trajectory ensemble, these collective 

motions did not robustly reemerge, as evidenced by cosine similarity calculations between both sets 

of CPCs (Figure 4.31). Still, this demonstrates that CEDA possesses the sensitivity to detect similarity 

between trajectories in terms of eigenvectors that would not be strictly classified within the essential 

subspace. This capability could be of interest for studies dedicated to the characterization of 

vibrational variations in single energy‑minimum basins. 

The distance measure between eigenvectors 

Usually, clustering tasks progressively become more inaccurate as data dimensionality increases due 

to distance measures performing poorly (the so‑called “curse of dimensionality”) [540]. However, in 

certain contexts, specific properties of the dataset can allow for a meaningful usage of a particular 

measure, despite high dimensionality. In the case of eigenvectors, the topology of the dataset makes 

cosine distance a suitable measure. Importantly, trajectories must be subjected to equivalent 

structural superposition on a common reference structure prior to (Cartesian) PCA. Then, each 

trajectory adds a set of (orthogonal) eigenvectors to the pool for their clustering. 

Eigenvector data points lie scattered on the surface of a 3𝑁‑dimensional hypersphere with a unit 

radius, where 𝑁 is the number of atoms of the analysis group. In such a scenario, similarity is optimally 

determined by the angle between eigenvectors, disregarding vector length. A given direction in this 

space corresponds to a particular collective variable constructed from the original variables (atomic 

Cartesian coordinates). Thus, homologous collective motions found in different trajectories will be 

represented as eigenvectors that adopt close directions. In fact, collinearity is the primary factor of 

similarity between eigenvectors, irrespective of direction; eigenvectors with opposite directions are 

equal, since they describe the same collective motion albeit reversed. This property enables 

expression of the cosine distance bounded in the interval [0, 1], where 0 indicates perfect collinearity 

and 1 indicates orthogonality. 

Therefore, homologous eigenvectors among trajectories will tend to aggregate in close‑to‑collinear 

bundles that can potentially become a CPC when there is sufficient group similarity. Cosine distance 

manages to direct a meaningful clustering by detecting the occurrence of such data aggregations while 

marginalizing the otherwise scattered eigenvectors that do not correspond to consensus collective 

motions. 

The clustering method 

With respect to the choice of the clustering algorithm, agglomerative hierarchical clustering was 

selected because it facilitates an adequate control of the consensus behavior by first detecting the 

most similar individuals and then successively merging clusters. More specifically, the average‑linkage 

algorithm was preferred to others because the resulting cophenetic distance preserved the scale of 

cosine distance, thus facilitating a direct interpretation of the dendrogram in the same range of values. 

Moreover, hierarchical clustering methods are agnostic to the employed distance measure and thus 

are compatible with cosine distance [503]. 
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Other clustering methods besides agglomerative hierarchical clustering were tested, such as DBSCAN 

[541] and HDBSCAN [542]. However, they did not bring improvement in qualitative terms (data not 

shown), whereas they are less transparent due to the increase in the number of arbitrary 

hyperparameters. Nevertheless, the choice of the clustering method is open to discussion. Possible 

refinements could even involve combinations of methods, provided that the chosen strategy improves 

the quality of the obtained CPCs. Methods that require a predetermined number of clusters, such as 

𝑘‑means, are not recommended. This is because the pool of eigenvectors is potentially very 

heterogeneous, and not all eigenvectors need to be exhaustively classified as potential CPCs but only 

those that demonstrate a high degree of similarity and effectively represent common collective 

motions. 

Determining criteria for consensus behavior 

The extraction of CPCs is dependent on the selected cutoff values for cophenetic distance and 

coverage of the trajectories of the ensemble. The former parameter establishes the minimum group 

similarity that a cluster must hold for its eigenvectors to reflect the same collective motion. The latter 

parameter sets the minimum number of trajectories that must participate in the formation of a cluster 

for it to be considered representative of the whole ensemble. 

The determination of consensus behavior based on these two parameters is subjective and relies on 

a balance between specificity and sensitivity. Given the unique characteristics of each system or 

structural region under investigation, it is impractical to suggest universal cutoff values for these 

criteria. Consequently, each experiment requires individual evaluation, with an initial focus on 

interpreting the information provided in the outcome of the clustering. With continued benchmarking 

across a variety of proteins or other macromolecular systems, it might be feasible to propose 

recommended ranges. 

In this study, clusters with cophenetic distance values below 0.4–0.45 (depending on the experiment) 

and with a minimum coverage of 20% (i.e., with members coming from at least 4 out of the 20 

trajectories) were retained and processed as CPCs. Clusters that did not meet these criteria were 

discarded. As mentioned earlier, these criteria were selected to characterize various types of CPCs 

with both strong and mild consensus. Notably, the clusters with stronger consensus, which were later 

used in comparative analyses, started forming at cophenetic distance values below 0.1–0.2. They 

could have been procured with dendrogram cutoff points approximately at 0.3–0.35 without 

significant information loss. The adjustment of the cutoffs to the range of values 0.4–0.45 was 

implemented to maximize the size of these clusters without incorporating eigenvectors from repeated 

trajectories. Simultaneously, this range of values facilitated retrieval of other resulting clusters of 

lower coverage. These clusters are located in regions of the dendrograms that exhibit considerable 

variability and lack clear dendrogram cutoff points. 

As demonstrated in this study, future CEDA experiments can adopt a similar rational approach to 

derive suitable CPCs. The first step involves selecting a tentative coverage value, which sets a 

preliminary standard for consensus quality based on the number of available trajectories. This 

criterion enables the evaluation of the feasibility of acquiring CPCs with such coverage, guided by the 

interpretation of dendrogram information. The complexity of this task depends on the observed 

degree of heterogeneity and the identification of clear dendrogram cutoff points. An iterative 

adjustment of the parameters may involve evaluation of the trade‑off between enhancing sensitivity 
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and specificity. Visualization of the potential collective motions and examination of the variance of the 

corresponding averaged vector components (e.g., Figure 4.22) can further inform and validate this 

decision. In cases where there is no clear cophenetic distance cutoff or when outliers need to be 

discarded, a range of different values could be applied to specific areas of the dendrogram. 

Alternatively, if a section of the dendrogram exhibits too high variability, it may be disregarded. This 

flexible approach allows for the optimization of parameters to best adapt to the resolution of the 

dynamics of the system. 

The interpretation of CPCs 

The main source of dissimilarity between eigenvectors of a cluster is the presence of irregular local 

fluctuations that are captured together with the major homologous collective motions. Mobile regions 

such as termini tails or disordered loops undergo local fluctuations that may appear correlated in 

disparate orientations with a common and more essential collective motion. These have been 

identified as one of the main causes of the lack of convergence between equivalent trajectories [332], 

[447]. On the other hand, conformational transitions do not follow perfectly defined paths of motion. 

The same collective motion observed in different trajectories will exhibit variations in the orientation 

of the structure along the displacement. These variations also contribute to minor dissimilarities. 

The CPC represents the average dynamical behavior of a cluster of eigenvectors. As such, CPCs 

accentuate the common qualities of the collective motions described by the members of the cluster. 

Consequently, the CPC provides the most representative (consensus) path of motion from the 

sampled variations of the same collective motion. In addition, the CPC achieves attenuation of the 

fraction of minor fluctuations scattered throughout the rest of the structure that may have appeared 

in correlation by chance. Thus, in essence, CPCs render denoised versions of the predominant 

collective motions that allow for sharper descriptions and comparisons of the relevant dynamics of a 

system while keeping the same interpretability as the regular PCs of EDA. The greater the number of 

homologous eigenvectors among trajectories, the more statistically robust and biologically meaningful 

is the resulting CPC. 

Clear examples of the denoising effect of CPCs were demonstrated with the fluctuation of several 

flexible loops of the A domain. Due to their high dynamical activity, they appeared correlated with the 

found rigid‑body motions of the B domain by chance. Upon derivation of the corresponding CPCs, it 

became clear that the A‑domain loops had oscillated in divergent directions with lack of consensus 

when accompanying the larger displacements of the B domain and, therefore, their net fluctuations 

were almost none (Figures 4.22 and 4.23). 

As similarity between eigenvectors gets moderately lower, it becomes less clear that they represent 

the same underlying collective motion. Mildly similar eigenvectors may still share a considerable 

fraction of collective atomic displacement in combination with other divergent components of motion. 

Whether these kinds of discrepancies should be interpreted as heterogeneous variations of a single 

collective motion or as entirely different motions with individual functional and mechanistic 

implications is dependent on the system of study and should be assessed on a case‑by‑case basis. For 

instance, CPCs #5 and #7 from the CEDA of the A and B domains of PKR were generated by different 

subsets of trajectories and exhibit qualitatively similar rigid‑body motions of the B domain (Figure 

4.21, subfigures e and g; Supplementary Videos S4.5 and S4.7). Their clusters would merge if the 

cophenetic distance cutoff was slightly increased from 0.4 to 0.42 (Figure 4.19). 
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An extreme instance of the aforementioned scenario arises when two eigenvectors from the same 

trajectory, which are orthogonal by definition, appear in close proximity within the dendrogram. This 

closeness could potentially result in their categorization as members of the same cluster, depending 

on the selected cutoffs. The interpretation of such instances is intricate, yet it is most plausible to infer 

that the generalized occurrence of these instances in the same experiment likely indicates that the 

selected cutoffs lead to an excessive increase in sensitivity, thereby compromising specificity. On the 

other hand, the presence of isolated instances might represent an accurate detection of a true 

positive. 

The differences between combined‑PCA and CEDA 

Both combined‑PCA and CEDA are strategies designed to extract consistent and reproducible 

dynamical properties from the average behavior of an ensemble of equivalent trajectories. These 

methods are based on the principle that independent simulations of the same system should be 

considered as a single conformational ensemble to yield statistically robust PCs. While combined‑PCA 

relies on the application of a single PCA on the concatenated version of all trajectories, CEDA manages 

to integrate the output of all PCAs performed to each trajectory of the ensemble and derive a common 

set of consensus PCs. Although it has not been possible to include a comparative experiment between 

the two methods in this thesis, the differences in the nature of the PCs derived from each approach 

can be theoretically discussed. This discussion is informed by the interpretations of combined‑PCA 

that are found in the literature [36], [109], [333], [365], [392], [443]–[446], which highlight certain 

biases inherent to this technique that CEDA potentially circumvents. 

The limitations of combined‑PCA primarily stem from two factors: i) the high sensitivity of PCA to 

outliers [379], [543], and ii) the emergence of “static modes” in the analysis of trajectories that explore 

different regions of the conformational space. 

The first limitation concerns the fact that the eigenvectors of combined‑PCA will be strongly influenced 

by the trajectories with the most deviated behavior with respect to the global average structure. 

Consequently, in scenarios where outliers are present (e.g., a heterogeneous trajectory among a 

group of similar trajectories), the resulting PCs may be skewed towards these specific conformational 

outliers, thus obscuring the true predominant behavior of the ensemble. Due to the orthogonality of 

eigenvectors, any skewness in the first eigenvectors can potentially distort the subsequent 

eigenvectors [332], [395]. 

The second limitation manifests when the variance between average structures across trajectories 

exceeds the dispersion within individual trajectories. Or, in other words, when the conformational 

subspaces explored are markedly divergent. In such cases, the first PCs will represent the structural 

difference between the separately sampled subspaces rather than actual collective motions. The 

information contained in such PCs, referred to as “static modes”, is not much more informative than 

that obtained through simpler methods than PCA. Static modes cannot be reliably extrapolated to 

actual motion paths, as they have not been directly observed in simulations. The rest of the PCs may 

still afford actual dynamical information albeit with unclear precise meaning. 

In practice, a given ensemble of equivalent trajectories can exhibit varying degrees of conformational 

heterogeneity within a broad spectrum of possibilities. Within the approach of combined‑PCA, 

determining the occurrence of the aforementioned problems can be a complex task. Conversely, CEDA 

not only circumvents the emergence of static modes but also offers a more transparent approach that 
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facilitates the precise interpretation of different potential scenarios. Subsets of trajectories exhibiting 

more heterogeneous or outlier behaviors will be more efficiently identified, due to either their 

absence in predominant clusters or the formation of distinct smaller clusters representing minority 

behaviors. 

Comparing alternative conditions with CEDA 

As reviewed in section 1.4.5 of the Introduction of this thesis, the comparative analysis of trajectory 

ensembles is a multifaceted challenge. It requires a combination of diverse analytical methods, 

metrics, and innovative data representations to express similarities and differences between the 

respective conformational ensembles. Currently, no single analytical method can encapsulate all the 

different perspectives from which this problem may be examined. Various strategies have been 

developed, each focusing on specific data properties, depending on the specific scientific inquiry being 

addressed. 

Within the context of the CEDA framework, we attempt to answer the following questions: 1) Given a 

collective motion that is characteristic of a system under a specific reference condition, does this 

motion also manifest in an alternative condition? 2) If so, are the conformational distributions for this 

collective motion consistent across both conditions? Thus, the application of CEDA primarily depends 

on the extraction of meaningful CPCs from a trajectory ensemble of the reference condition. This 

enables a subsequent comparative analysis between conditions by examining the trajectory ensemble 

of the alternative condition in terms of the information provided by the reference CPCs. 

The outcomes of such comparisons may be interpreted using different data analysis techniques and 

graphical representations. In this thesis, the emphasis is on comparing the resulting conformational 

distributions, based on the estimation of the underlying probability density distribution of each 

ensemble and the subsequent application of similarity metrics between statistical distributions. This 

approach is consistent with other methodologies in this scientific field aimed at characterizing 

biologically significant conformational changes associated with phenomena such as ligand binding, 

enzyme catalysis, and allosteric responses [249], [432]. 

Upon projecting the trajectory data onto the relevant CPCs and generating the corresponding density 

distributions, the comparative assessment can be conducted both in qualitative and quantitative 

terms. From a qualitative perspective, one may describe the main features that are visually discernible 

from the plotted data to infer differential dynamical behavior. For instance, if the distributions share 

a common span of values along a given CPC, this indicates that both conditions sampled a comparable 

region of the conformational space. Consequently, the corresponding collective motion is 

characteristic of the system under both conditions. Conversely, if the distributions span different 

ranges of values, this suggests a potential difference in the types of conformations favored under each 

condition. When the sampled conformational spaces coincide, assessing the consistency of 

proportions across the spectrum of CPC values yields valuable information. These observations, 

together with the characterization of the collective motions in the structural context, facilitate the 

study of the potential functional implications of the identified conformational diversity. 

On the other hand, in this study, three simple metrics have been proposed to provide quantitative 

scores for such assessments. The interpretation of each metric is straightforward and can be directly 

correlated with the insights gained through visual inspection of the distributions to achieve a 

comprehensive analysis. Alternatively, when the number of comparative analyses is substantial, these 
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metrics facilitate extracting the main information from each assessment and compiling an overview 

of the results in the form of rankings, as demonstrated in the comparative study between WT and 

mutant variants of PKR (section 4.2.3). However, the experience from this study suggests that 

summarizing the array of potential differences that the distributions may exhibit into three general 

scores is not a trivial task. Consequently, there exists an opportunity to develop more specialized 

metrics. 

First, the metric termed overlap serves as a preliminary reference to assess whether the alternative 

condition operates inside or outside the same conformational space as the reference condition. A low 

overlap value suggests that the alternative condition exhibits distinct conformations. Secondly, the 

metric termed coverage provides insights into the extent of reference conformational space that the 

alternative condition covered. For instance, a scenario where the alternative condition maintains high 

overlap yet displays reduced coverage suggests increased structural rigidity relative to the reference 

condition. Lastly, the Bhattacharyya coefficient (BC) quantifies the consistency of the proportions 

between both distributions, within the span of the reference conformational space. As applied in this 

study, the BC is dependent on the quality of the coverage. High coverage implies that variations in the 

BC are mainly due to alterations in relative proportions or shifts in local maxima between the 

distributions. Mild coverage automatically correlates with reduced BC due to the partial lack of 

correspondence in spatial regions. The combination of both incomplete coverage and distribution 

shifts results in a further decrease in the BC. 

In prospective applications of CEDA, additional complementary techniques could be integrated to 

uncover specific properties or characteristics that are not discernible through density distribution 

comparison. For instance, network analysis metrics could be employed to identify specific amino‑acid 

interactions [439]. Alternatively, other time‑dependent properties could be measured, such as the 

rate of conformational changes or their probability of co‑occurrence across different regions of the 

macromolecular structure. 

5.3 Structure, dynamics, and function in PKR 

The study of PKR through the analysis of MD simulations has provided new support for several of the 

proposed conformational changes that are associated with the transition between the inactive and 

active states of the enzyme. Despite the multiple consistent descriptions of the conformations 

adopted by PKs with different ligands, derived from numerous comparative studies of its crystal 

structures, the characterization of the mechanism of the enzyme remains incomplete without the 

validation of the dynamical events leading to the observed differences between static structures. This 

study identified and captured conformational transitions of PKR that are pivotal in the function of the 

enzyme. The implementation of studies that utilize dynamics‑derived data, such as this one and the 

one of Naithani et al. [164], is enabling a more comprehensive characterization of the functional 

dynamical behavior of the structure. 

The Results chapter of this thesis includes annotations regarding insights obtained from each 

experiment conducted. The purpose of this section is to provide a structured summary of the 

contributions made by this study to our understanding of this protein, viewed through the lens of the 

structure‑dynamics‑function paradigm, and in alignment with observations reported in previous 

studies. In addition to this summary, future analyses are proposed to further investigate the findings 

of this study and provide a more detailed understanding of the involved structural rearrangements. 
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The most relevant observations were obtained primarily through the application of CEDA, which 

facilitated the identification of distinct collective motions and enabled the detection of conformational 

diversity among the various states of the protein‑ligand complex. The stability (RMSD) and flexibility 

(RMSF) analyses of the trajectories provided complementary information. 

Given the modular structure of PKR, each CEDA experiment was designed to focus on a specific 

combination of functional domains. The analyzed regions were selected to characterize the structural 

reorganizations that have an impact on the active site of the enzyme, both its local environment and 

the regions interconnecting its instances across the tetramer. 

Thus, firstly, the analysis of the A and B domains facilitated the exploration of the dynamical behavior 

of the active site and the influence of cofactor and substrate binding on its local conformation. 

Secondly, the analysis of the A‑A’ pair of domains provided insights into the relative motions between 

subunits across the A‑A’ interface, which constitutes the most direct communication path between 

active sites. Finally, the analysis of the AC‑C’A’ pair of cores facilitated the inspection of conformational 

changes of larger scale in the enzyme, which are also directly coupled with the functional role of the 

allosteric site and the local reorganizations of the C‑C’ interface. 

In all these analyses, the A domain served as a fitting group. Given the high rigidity characteristic of 

the TIM barrel core [134], the A domain provided an optimal reference region, enabling the alignment 

of all structures with equivalent spatial orientations. Furthermore, this approach facilitated the 

systematic description of the array of relative motions of the other domains with respect to the A 

domain of one subunit. 

The dynamical behavior of the B domain 

The B domain demonstrated marked mobility, being the major source of structural diversity along the 

trajectories of the apo condition (Figure 4.4). This domain fluctuates mainly as a rigid body along 

diverse directions with respect to the A domain, thanks to the flexible capabilities of the linker 

fragment between these two domains that serves as a hinge mechanism. This type of hinge regions 

are common in multidomain proteins and characteristically enable sampling of a large ensemble of 

heterogeneous conformations with low transition barriers between the states [35]. It has been 

suggested that hinge‑bending motions of domains can take place at relatively fast timescales, on the 

nanosecond‑microsecond time scale [261], consistent with the behavior of the B domains in the 

simulations of this study. 

The conformational variability of the B domain in the apo condition manifested with very diverse 

amplitudes of motion, not only between trajectory replicates but also between the subunits of the 

same tetramer. The asymmetrical dynamical behavior of the B domains was consistently shown by 

comparisons of the corresponding RMSD and RMSF profiles (Figures 4.4 and 4.6), as well as by the 

apparent diversity in the range of conformational spectra generated along the most relevant CPCs of 

the corresponding CEDA experiment (Figures 4.24, 4.26, 4.27). These observations reinforce the 

suggestions made in previous studies [121], [132], [138], [164]. 

Recently, a study of type I PK of Escherichia coli revealed that the removal of the B domain produces 

a protein that achieves regular folding of the rest of the structure, retains a low level of catalytic 

activity with a reduced binding affinity for PEP, and retains allosteric activation [544]. The study 

concluded with the hypothesis that the insertion of the B domain was favored by natural selection to 
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optimize the enzymatic capabilities of a PK ancestor devoid of B domain. Consistent with this idea, the 

absence of symmetrical behavior in the motions of the B domain among the subunits of the tetramer 

suggests that this region is not dynamically coupled with other regions of the structure. Rather, its role 

seems to be entirely related to the optimization of the local configuration of the active site, assisting 

in cofactor/substrate binding and enhancing catalytic activity. 

The conformational change of the B domain that is more relevant from this point of view is the 

transition between open and closed forms, with the B domain acting as a lid to cover or uncover the 

active site at the top of the A domain. The studies of diverse PK isoenzymes show that this 

conformational change is correlated with the absence or presence of ligands at the active site. The 

more open forms tend to be found in ligand‑unbound structures, whereas partially and fully closed 

conformations are favored upon the binding of PEP and ADP, respectively [121], [124], [135], [137], 

[139], [140], [147], [160].  

The collective motion consistent with this transition, called the opening/closing motion, was captured 

in CPC #1 (Figure 4.21a, Supplementary Video S4.1). This CPC was derived from the trajectory 

ensemble in the apo condition, but also exhibited total correspondence with the first CPC of the 

trajectory ensembles of each holo condition (Figure 4.37). Therefore, results suggest that the 

interchange between open and closed forms of the B domain is a dynamical phenomenon inherent in 

the structure of the protein, both in the absence and the presence of ligands at the active site. The 

conformational profiles along CPC #1 show two distinctive regions of the spectrum across apo and 

holo conditions that correspond to the open and closed conformations (Figure 4.34, top). This scenario 

is consistent with the existence of a conformational equilibrium whereby these states represent local 

minima in the FEL of the structure. Ligand binding follows the population shift model: in the apo 

condition the open forms are energetically more favorable, whereas in holo conditions the closed 

forms are stabilized. 

Transitions in the apo condition predominantly occurred from a closed form (characteristic of the 

initial crystallographic structure 2VGB) to the open forms. However, importantly, the open‑to‑closed 

transition was also detected in a few trajectories, confirming that the apo protein is able to oscillate 

between both forms within the time span of these simulations. Extensions of this study should be 

aimed at further validating this statement by providing new trajectory replicates in the apo condition 

starting from diverse initial conformations. 

In contrast, all holo conditions primarily retained the closed conformation of the B domain. The fact 

that simulations with bound K⁺ and Mg²⁺ stabilized the closed conformation suggests that the 

cofactors provide the proper conformation to receive the substrates and catalyze the reaction more 

efficiently. Studies have shown that multi‑substrate enzymes that feature domain closure motions 

may utilize multiple fast cycles of domain opening and closing to enable reorganization of ligand 

binding and reach optimal configuration for the reaction [261]. Sampling of the more open 

conformations of the B domain was no longer allowed in the simulations with bound PEP. Such 

behavior was also demonstrated via RMSD and RMSF measurements, which indicate a progressive 

decrease of mobility of the B domain as more ligands were bound to the active site, with PEP exerting 

the strongest effect (Figures 4.5 and 4.9). Finally, the local environment of the active site increased in 

rigidity in holo conditions, as expected from the restraints imposed by ligand binding (Figures 4.11 and 

4.12). 
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The concerted collective motions of the tetrameric core 

The main body of the PKR tetramer, composed of the four AC cores, is a large and compact structure 

that exhibits markedly lower mobility than the B domains. Each domain, A or C, interacts with two 

other adjacent domains through two interfaces: one intramolecularly with a domain of the other kind 

(the A‑C interface within the AC core itself), and one intermolecularly with a domain of the same type 

(the A‑A′ and C‑C′ interfaces between subunits). Given this interconnected architecture, structural 

rearrangements between any pair of domains propagate to the rest of the structure. 

CEDA experiments were conducted independently on the A‑A′ pair of domains and the AC‑C′A′ pair of 

cores to facilitate the decomposition of the dynamical information of the assembly and detect the 

underlying collective motions between the domains in an isolated manner. This approach enabled 

identification of dynamical events that best represent the differences across apo and holo conditions. 

The corresponding collective motions were captured in the second CPC of each CEDA experiment. 

Relative to the A domain, the A′ domain undergoes a seesaw‑like swinging motion, pivoting about the 

contact point of the A‑A′ interface (Figure 4.42b, Supplementary Video S4.12). On the other hand, the 

C‑C′A′ block undergoes a swinging motion along the plane of the tetramer, facilitated by the joint‑like 

capabilities of the A‑C interface (Figure 4.56b, Supplementary Video S4.20). 

A dynamical coupling between these two collective motions was identified on the basis of two 

characteristic features exhibited by both conformational profiles along their respective CPCs (Figures 

4.49 and 4.62, central panels). Firstly, they displayed the same differential patterns across apo and 

holo conditions, in qualitative terms. Secondly, the main factor contributing to the observed 

differences in the sampling was the presence or absence of PEP at the active site. PEP‑bound 

simulations were predominantly constrained within a conformational space near the initial 

crystallographic structure 2VGB (active state), whereas PEP‑unbound simulations generally left the 

initial conformation and adopted a range of conformations around the center of the spectra. The 

FBP‑holo condition (a PEP‑unbound condition) also displayed distinctive behavior that will be 

discussed later in this section. 

The observed correspondence between the conformational profiles suggests that these two collective 

motions potentially occur in a concerted manner, being complementary perspectives of a single 

transition. Or, at least, the probability of observing the conformational change at one site correlates 

with the probability of observing it at the other site. As described in section 4.1.3.2.3, the overlay of 

both collective motions (Supplementary Video S4.30) revealed that the joint structural 

rearrangements are in alignment with the main descriptions of the conformational changes between 

the T (inactive) and R (active) states in PKs [124], [127], [128], [132], [147]–[149], [159], [162]–[165], 

thus establishing consistency between crystallographic and dynamical data. 

Given that the initial structure of the simulations is in the active state (with bound PEP), the observed 

transition in PEP‑unbound conditions can be interpreted mainly as a relaxation of the structure 

towards the inactive conformation. However, PEP‑bound simulations did explore the conformational 

space characteristic of the inactive conformations in minor proportions, which suggests that both 

states are in equilibrium and that the binding of PEP is consistent with a population shift model. Taking 

into account the observations from both this study and the available literature, the R‑to‑T transition 

can be described with the following sequence of events. 
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The release of PEP results in the loosening of interactions within the active site, thus allowing the 

cavity to widen. The Aα6′ helix, which contains the PEP‑binding residues Gly338 and Asp339, now is 

able to slide away from the inner part of the active‑site cleft. This local rearrangement disrupts an 

R‑state–stabilizing intersubunit interaction between these two residues and Arg385 of the adjacent 

subunit, which is located at the top of Aα7. The loss of this interaction makes this α‑helix recede from 

Aα6′ and favor a T‑state–stabilizing interaction between Arg385 and Asp390 between opposing 

subunits. These rearrangements at the A‑A′ interface occur symmetrically between both instances of 

Aα6′ and Aα7. Consequently, the active sites between the adjacent A domains become less entangled 

with each other, which results in their mutual separation and a subsequent rotation of the A domains 

relative to each other [128], [132], [147], [149], [159], [162]–[164]. The dynamical events associated 

to this process were captured in CPC #2 of the A‑A′ pair of domains: the relative rotation between 

adjacent A domains (Figure 4.66 and Supplementary Video S4.29) and the correlated fluctuation of 

the width of the active‑site cleft involving Aα6′ and Aα7 and their neighboring components (Figure 

4.43b and Supplementary Video S4.17). 

Importantly, these structural rearrangements are currently considered to be the basis of the 

homotropic cooperativity mechanism in PK. The binding event of PEP to one active site triggers the 

reverse process whereby A‑domain rotations induce the narrowing of the adjacent (unoccupied) 

active site which becomes more affine to PEP binding. 

The rotational motion of the A domain in the R‑to‑T transition is transmitted to the C domain of the 

same subunit. This event, in turn, reaches the C‑C′ interface and induces local rearrangements of its 

elements, with corresponding changes in the intersubunit interactions. In the R state, the region close 

to the center of the tetramer establishes tight interactions across the C‑C′ interface. Specifically, 

Lys465 at Cα2 extends towards the Cα1+Cα2+Cα3 region of the adjacent subunit and interacts with 

Pro446, Glu453, and Tyr487. These interactions break or weaken in the transition to the T state due 

to the widening of the gap at this section of the C‑C′ interface. Conversely, the gap at the opposite 

section of the interface narrows and gains T‑state–stabilizing intersubunit interactions. Provided that 

FBP is not bound to the allosteric site, Trp558 and Arg559 located at the L‑Cβ4‑Cβ5 loop (FBP binding 

loop) interact with Asp530 (Cα5) and/or Arg569 (Cβ5) of the adjacent subunit. Interactions between 

the adjacent Cβ5 strands are preserved in the transition. Finally, the rearrangements of the C‑C′ 

interface potentially induce the symmetrical rotational motions in the adjacent subunit, completing 

the mechanism of transmission of dynamical information across the tetramer [124], [128], [132], 

[148], [149], [159], [162], [165]. The dynamical events associated to this process were captured in CPC 

#2 of the AC‑C′A′ pair of cores (Figure 4.65 and Supplementary Video S4.28). 

The observed dynamical events in this study align with the interpretation of the “domain‑rotation” 

model [132] on the conformational change between the T and R states (Figure 1.12). This is because 

two separate pivot points have been detected: one at Cα4 that allows the A and C domains of the 

same subunit to rotate relative to each other, and another at the C‑C′ interface, approximately where 

the adjacent Cα2 helices interact, that allows the subunits of the C‑C′ dimer to rotate relative to each 

other. 

Insights on the allosteric activation by FBP 

Importantly, the described structural rearrangements not only imply that dynamical information is 

transmitted among the active sites of the tetramer, but also that the process is dynamically coupled 
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with the local conformation of the allosteric site. Notably, in the collective motion of the AC‑C′A′ pair 

of cores associated with the R‑to‑T transition in the apo simulations, the L‑Cβ4‑Cβ5 loops of both 

subunits exhibit an unfolding motion correlated with the major rearrangements (Figure 4.65 and 

Supplementary Video S4.28). This suggests that upon removal of the FBP molecule from the initial 

structure, the loop relaxed in simulation. This behavior is consistent with other studies that show that, 

in the absence of FBP, this loop tends to be more stabilized in the open position [165]. 

Conversely, in the FBP‑holo condition, simulations were performed with FBP bound to the allosteric 

site, therefore preventing the unfolding of these loops in the structure. Moreover, these simulations 

exhibited characteristic sampling of intermediate conformations between those of the PEP‑bound 

(active) and PEP‑unbound (inactive) conditions, along the CPCs that captured the R‑to‑T transition 

(Figures 4.49 and 4.62, central panels). While such effects are indicative of a differential dynamical 

behavior induced by the presence of FBP in the allosteric site, it is noteworthy that the active 

conformation was not fully retained. 

Considering this, do these observations account for sufficient demonstration of the allosteric effect? 

The classical MWC model of allostery [74] would have certainly required retention of the “canonical” 

active conformation. However, the current view of allostery, through the lens of the ensemble 

allosteric model (EAM), understands the phenomenon from the perspective of the properties of the 

full native conformational ensemble of the system [38]. Accordingly, determining the conformational 

heterogeneity of the system and detecting a redistribution of the probabilities of the entire ensemble 

of states upon the allosteric perturbation is more meaningful than identifying a single active 

conformation [44]. The allosteric perturbation (i.e., the binding of FBP) reshaped the energy 

landscape, stabilizing an intermediate state to the detriment of the inactive state. This phenomenon 

may consequently suffice to lower the energy barrier associated with the transition to the active state, 

thus increasing the statistical probability of finding instances of the active site with higher affinity to 

PEP binding. 

In terms of the amino‑acid networks described in the literature [128], [148], [149], [165], with the 

L‑Cβ4‑Cβ5 loop in a closed conformation locking FBP at the allosteric site, the characteristic T‑state–

stabilizing interactions between the residues of this loop and Cα5 and Cβ5 of the adjacent subunit 

cannot be properly established. Therefore, the “canonical” T state is not stabilized either, potentially 

leaving the structure in an intermediate state whereby the R‑state–stabilizing interactions may be 

achieved with lower energy barriers. 

Possible expansions of the dynamical study of PKR 

On the basis of the insight provided by this study, subsequent analyses may be proposed to achieve a 

more comprehensive characterization of the enzymatic mechanism. 

Firstly, this study did not include a scan of the most characteristic amino‑acid interactions for each 

specific state of the conformational spectrum. Such research is crucial to validate the descriptions of 

interactions reported by other studies. A potential strategy could involve extracting samples of frames 

from multiple trajectories that explore the same points of the conformational spectrum. This would 

enable the verification of the consistency of interaction networks across trajectories. By conducting a 

thorough examination of various points of the conformational spectrum, it may be possible to obtain 

a description of the dynamical changes in the interaction network throughout each collective motion. 
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Alternatively, the application of methods derived from network theory or Markov state models could 

be employed to achieve similar objectives. 

Secondly, it would be beneficial to expand the collection of trajectories by incorporating conditions 

with asymmetrical ligand binding between the subunits of the tetramer. For instance, it would be 

interesting to investigate whether a tetramer with PEP bound only to the active site of one subunit 

maintains the active tetrameric conformation with the same consistency as the PEP‑bound conditions 

examined in this study. A similar experimental design could be implemented with FBP. Additionally, 

the dynamical behavior of PKR structures with other known allosteric modulators, such as alanine 

(which should favor the T state), or allosteric drugs like mitapivat (which should favor the R state), 

could be explored. 

Lastly, future analyses could aim to examine and compare the transition events of collective motions 

in a time‑resolved manner. That is, ascertaining whether the conformational changes captured by a 

single or multiple CPCs occur concurrently or not in a given trajectory or across trajectories. While this 

type of analysis was not needed to identify the asymmetrical behavior of the B domains within the 

tetramer, it could further validate the nature of the concerted collective motions between the A‑A′ 

and C‑C′ interfaces, or even detect other underlying orchestrations between motions. 

5.4 Dynamical alterations of the analyzed PKR variants 

Despite the extensive array of known sequence variants of the PKLR gene, only a small subset holds a 

fully validated pathogenicity status. This validation is typically achieved through experimental assays 

that are subsequently uploaded in repositories such as ClinVar, or when robust evidence is 

accumulated from multiple clinical cases. For most variants identified in patients with pyruvate kinase 

deficiency (PKD), only sequence information is available. Only in cases where distinct symptomatology 

is manifested, variants can be potentially categorized with a particular degree of severity. 

However, since performing subsequent functional assays in a systematic way is impractical due to cost 

and time restrictions, these variants often remain unanalyzed at the molecular level. Some specialized 

studies have provided insights into the implications of missense variants in the context of the structure 

of PKR. For instance, Valentini et al. and Zanella et al. [118], [121] observed that several of the known 

pathogenic variants cluster in specific regions of the structure that are critical to the function and 

stability of the enzyme. These regions include: i) the hydrophobic core of the A domain, ii) the α-

helices of the A-A′ interface, iii) the A-C interface, and iv) the FBP binding site. Similarly, Pendergrass 

et al. [213] highlighted that the initial fragment of the C domain (Cα1 to mid Cα2) is particularly devoid 

of identified PKD mutations, aligning with the now recognized functional significance of this region in 

establishing R-state–stabilizing interactions at the central region of the tetramer. 

Modeling and simulating variants of PKR 

In general, the knowledge that can be derived solely from the information of sequence or static 

structures is insufficient to assist the clinical community in the colossal task of validating the 

interpretation of genomic data. The implementation of computational methods is a critical necessity 

for this endeavor. The standard use of dynamical data to assess the functional impact of protein 

variants represents one of the next frontiers in the field of pathogenicity prediction. As outlined in 

section 1.3.6 of the Introduction chapter, when expression and kinetic assays cannot be implemented, 
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or when insights derived from structural information fail to provide clear functional implications, 

dynamics-based methods such as MD may offer a more robust approach to uncover anomalies in 

molecular behavior. 

Simulating missense variants commonly involves modeling the corresponding amino-acid substitution 

from a WT structure. This strategy facilitates the use of mutant models without depending on 

experimental methods. However, it is important to note that the resulting model is an approximation. 

In the absence of experimental validation, it is impossible to verify that the new sequence achieves a 

folding equivalent to the WT protein in vivo. 

If there are indications suggesting that a specific mutation could significantly impact folding or the 

machinery of gene expression/transcription, it is not recommended to proceed with the modeling of 

such a mutation. For example, in this study, the Arg479His mutation was excluded as a simulation 

candidate, despite its known severity and particularly high allelic frequency, especially within the 

Amish community [212]. This mutation affects a position at a splicing site of PKLR, resulting in 

significantly reduced transcript levels. Although the corresponding mutated protein is still expressed, 

the study of the molecular perturbation of the amino-acid substitution is not of interest, as the 

insufficient protein product is the primary cause of PKD [121], [545], [546]. 

In contrast, the determination of crystallographic structures of other variants, such as Thr384Met or 

Arg486Trp [121], has confirmed that the corresponding proteins achieve a folding equivalent to the 

WT protein, thus validating the use of in silico models for these mutations. 

These models of missense variants can serve as the initial structure for MD simulations to compare 

their dynamical behavior with that of the WT protein. This strategy has been referred to as “relaxation 

MD” [175], since it describes the relaxation of the native structure of the protein upon introduction of 

a mutation. While the pertinence of this approach may be debatable, numerous studies have 

demonstrated good correlations between their predictions and experimental data, and have been 

able to extract meaningful insights into the mechanisms through which mutations impair protein 

function [175]. 

An additional factor to consider in the simulation of PKR variants aimed at characterizing pathogenicity 

is ascertaining whether the variant under study was found in homozygous, heterozygous, or 

compound heterozygous genotypes. For instance, two missense variants in compound heterozygosity 

produce two types of monomer in the cellular environment that can potentially heterotetramerize. 

The properties exhibited between the resulting heterotetramers of different combinations can vary 

significantly. Therefore, homotetrameric models of a specific mutation only account for one of the 

extreme scenarios of this phenomenon, and the derived insight will only be applicable to cases of 

homozygosity for that variant. 

General assessment of the detected dynamical alterations 

The construction of a catalog of the known missense variants of PKR and the subsequent selection of 

a representative subset have facilitated the generation of an extensive collection of system 

simulations. This task has in turn provided the chance to test the analytical capabilities of the CEDA 

framework with a comprehensive set of comparisons between WT and mutant variants. 
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The identification of dynamical alterations in the trajectories of PKR variants has been conducted 

within the context of the insights targeted by the CEDA framework that were discussed in section 5.2. 

Specifically, the comparative assessments focused on determining whether the target condition 

(mutant) explores the conformational space in a manner similar to the reference condition (WT) in 

terms of the paths of collective motions of the latter. 

Overall, the simulated variants exhibited modest signs of dynamical alteration, with differences less 

pronounced than those observed in the comparative assessments between the WT apo vs. holo 

conditions. Nevertheless, the assessment enabled identification of variants that exhibit distinctively 

altered behaviors. The protein regions with more instances of dynamical alteration were 

predominantly domain interfaces, either intrasubunit or intersubunit. 

In some instances, anomalies have been detected in the conformational profile of variants of known 

pathological phenotype. These results serve as a support to interpret the pathogenicity of these 

variants in terms of the disruption of dynamical behavior. Some examples are Gln505Glu [546], 

Ser120Phe [547], [548], Ala115Pro [547], Arg163Cys [521], Gly263Trp [549], or Arg510Gln, the most 

commonly reported variant in United States and Northern/Central Europe and known for its severe 

clinical phenotype [212], [546], [550]. In contrast, the variant Arg486Trp, despite being a notorious 

pathogenic variant [546], [550], did not show clear alterations. 

In some instances of variants affecting the same positions, such as Gly263Trp vs. Gly263Ala and 

Gln505Glu vs. Gln505Arg, the pathogenic variants exhibited altered behavior whereas the potentially 

neutral variants did not. However, in general, there was no clear distinction between altered and 

unaltered variants that coincides with the classification between damaging and neutral variants 

according to the available annotation resources. The datasets of neutral variants are generally 

retrieved from data portals of the large-scale sequencing projects, typically disregarding entries with 

less than a minimum number of observations in different studies, and/or with allele frequencies lower 

than 1% [173], [551]. In this project, such filters could not be considered since the gathered variants 

were mostly found in only a few individuals. Therefore, they should be regarded as “putatively 

neutral” [204]. 

Such a scenario is nevertheless interesting, since the application of this analysis facilitated the 

characterization of variants that have been observed in the human population and for which no details 

are known other than sequence differences. For instance, variant Pro521Ser was retrieved from the 

ExAC and gnomAD databases and yet exhibited significant alteration in terms of the analyzed 

dynamical properties. Interestingly, results suggest that, in the absence of FBP, it displays a 

conformational profile comparable to that of the WT enzyme in the FBP-holo condition (Figures 4.63 

and 4.81e). Therefore, this variant might not be truly neutral, even though it did not sample abnormal 

conformations. 

The case of Val506Ile is similar, being one of the variants with the highest allele frequency in databases 

such as ExAC/gnomAD. It has been classified as a “polymorphism” or “likely benign” in repositories 

like Humsavar. Despite this classification, there exist several instances of reported pathogenicity in 

the scientific literature [213], [552]. The analyses conducted in this study have identified alterations 

in the conformational profile that are similar to those observed for the Pro521Ser variant (Figure 4.78). 
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The contribution of this study to the field of pathogenicity prediction 

The report on the detected dynamical alterations of the examined PKR variants offers a classification 

that can be used in a complementary manner with other sources of pathogenicity assessment. The 

results were presented in the form of rankings, with the variant exhibiting the most significant 

differential behavior at the top, and the one with the least at the bottom. 

For the comparative assessments between wild-type (WT) and mutant systems in the apo condition, 

the quantitative indicator that best differentiated the behavior of the maximum number of variants 

was selected. This strategy provided the most meaningful comparisons with respect to the reference 

values of the intrinsic sampling variability of the WT apo condition, in each of the examined regions of 

the enzyme (Figures 4.73, 4.76, and 4.79). For the comparative assessments in holo conditions, the 

sum of the three quantitative scores was considered. These approaches leveraged the trajectory 

similarity metrics proposed in this implementation of CEDA, emphasizing variants with potentially 

significant dynamical alterations. 

However, as discussed in section 5.2, there is potential for identifying more specialized metrics. The 

diverse range of possible dynamical alterations may not be captured solely by the systematic 

application of a single score. For instance, the markedly low overlap score of the variant Ala115Pro 

was obscured by its high coverage score in the comparative analysis of the A‑A′ pair of domains in the 

apo condition (Figure 4.77). Finding an appropriate balance in the specificity of the metrics is 

challenging. It is crucial to develop metrics that are sufficiently generic to analyze large sets of 

mutations of diverse nature (e.g., location in the structure, functional role, degree of evolutionary 

conservation) and yet specific enough to extract the most meaningful information from each variant. 

A logical progression for this study involves the development of a predictive tool specifically designed 

for PKR. This tool would incorporate the scores derived from this study (with the possible 

implementation of new iterations to refine the methodology). Unlike general-purpose predictive 

tools, this class of tools is designed to evaluate the pathogenicity of variants in the context of a specific 

gene, protein, or protein family. The precision of these tools is progressively improved by integrating 

the available experimental data from the specific system under study. This process facilitates the 

training of a predictive model that becomes increasingly reliable over time [216], [233]. 

In a recent development, the research group led by Fenton and associates has introduced a 

comprehensive database, known as the PYK-SubstitutionOME [523]. This database encompasses the 

biochemical characterizations of more than 1000 variants in PK isoenzymes. The database collates 

data from a diverse range of studies and aims to set rigorous benchmarks for testing protein 

predictions and improving the continuous advancement of prediction algorithms. The research 

conducted in this thesis could potentially form highly advantageous synergies with such initiatives. 

The ultimate objective is to persist in the integration of information extracted from various 

experiments, thereby amplifying the potential contributions to the field of pathogenicity prediction. 
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Chapter 6 Conclusions 
1. A comprehensive set of molecular dynamics (MD) simulations of human erythrocyte pyruvate 

kinase (PKR) has been procured. The collection of trajectories comprises multiple conditions 

of the enzymatic complex with its natural ligands, as well as a large array of human genomic 

missense variants of the protein. 

2. The insights from the available crystallographic data of PKR have been successfully integrated 

in the MD simulations of the holoenzyme complex by means of a parametrization strategy, 

revalidating the approach of the cluster model as a direct and versatile method to 

parameterize coordination complexes in metalloproteins for subsequent MD simulations. 

Accordingly, the practical application of the methodology in this thesis may serve as a 

reference for setting up other macromolecules with similar complexity and configuration. 

3. The Consensus Essential Dynamics Analysis (CEDA) strategy was developed. CEDA manages to 

integrate the output from the Principal Components Analysis (PCA) of independent MD 

simulations of a macromolecular system in a unified framework. The derived set of collective 

variables, called the Consensus Principal Components (CPCs), accentuate the common 

qualities of the collective displacements displayed by a trajectory ensemble and attenuate the 

representation of sporadic minor variations. 

4. In the framework of CEDA, the underlying similarities and differences between trajectory 

ensembles can be evaluated by comparison of the conformational profiles in terms of a single 

reference set of CPCs. Three simple metrics, namely, the overlap, the coverage and the 

Bhattacharyya coefficient, have been proposed to provide quantitative scores for such 

comparative assessments. 

5. Distinctive consensus motions of the protein domains and functional sites of PKR were 

identified, providing deeper insights into the structure-dynamics-function relationship of the 

enzyme. The findings of this study are coherent and provide further mechanistic insight for 

several of the conformational transitions that had been previously proposed via 

crystallographic studies of pyruvate kinase isoenzymes. 

6. The identified concerted collective motions of the tetrameric core of PKR are consistent with 

the classical descriptions of the transition between the inactive and active states of this 

protein and provide a mechanistic interpretation of the allosteric phenomenon that is 

compatible with the current general descriptions of allostery in terms of the ensemble 

allosteric model (EAM). 

7. The dynamical activity of the B domain of PKR seems to be entirely related to the optimization 

of the local configuration of the active site, not being dynamically coupled with other regions 

of the structure. 

8. A comprehensive database of missense mutations of PKR was constructed by integrating data 

from the available literature as well as from a wide range of public databases of human genetic 

variants. The analysis with CEDA has enabled detection of altered dynamical behavior in 
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variants either with a previously validated pathogenic status or for which no functional details 

were known in this regard. 

9. The report on the detected PKR variants that exhibit dynamical alterations offers a 

classification that can complement other sources of pathogenicity assessment. The 

assessment of the functional consequences of protein variants with dynamics-based 

approaches like CEDA affords valuable insight that is complementary to that obtainable by 

other methods and has the potential to improve specific predictive models. 
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Appendix A 
Contents and access to the Supplementary Material 

This section provides a detail of the contents uploaded to the online repository Zenodo that serve as 

the supplementary material of this thesis. 

➢ Jordà, L. (2023). Supplementary Material to “Analysis of consensus motions in proteins 

through molecular dynamics simulations” [Thesis]. Zenodo. 

https://doi.org/10.5281/zenodo.10017455 

The purposes of this material are: i) to facilitate reproducibility and further exploration of technical 

aspects of the methodology, and ii) to enable visual inspection of the collective motions from the study 

of human erythrocyte pyruvate kinase (PKR). 

The contents are structured in three main directories (compressed as ZIP folders): 

1. Directory QM_related_files 

○ Contains the relevant files to trace and reproduce the quantum mechanics (QM) 

calculations of the project. These comprise geometry optimizations, force‑constant 

calculations, and single‑point energy calculations with the Gaussian16 software. 

■ Input files (ASCII files with the .com extension). They contain the input 

structures and the set of parameters and decisions submitted in every type of 

calculation, including the frozen‑atom schemes of the cluster models for the 

parameterization of metal centers. 

■ Log files (ASCII files with the .log extension). They contain detailed 

information of every step and stage in the calculations (parameters, 

processes, decisions, values…). 

■ Printed information from the checkpoint files (ASCII files with the .gjf 

extension), namely, the molecular structure (charge, multiplicity, 

coordinates), the basis set, the Molecular Orbitals, and the forces (if force 

constants were requested to be calculated). 

2. Directory MD_related_files 

○ Subdirectory force_field_custom_entries 

■ Contains text files (ASCII files with the .txt extension) with descriptions of the 

steps followed to include new custom residue types, atom types and their 

respective non‑bonded terms in the files of the AMBER99SB‑ILDN force field 

included in the native installation of the GROMACS software. The procedure 

was adapted from the GROMACS online “Short How‑To guides”, and involves 

modifying the aminoacids.rtp, atomtypes.atp, and ffnonbonded.itp files of the 

force field, and the residuetypes.dat file. 

○ Subdirectory MDP_files 

■ Contains the GROMACS MDP files Molecular Dynamics Parameters; ASCII files 

with the .mdp extension) that correspond to several of the stages of the MD 

workflow of this project (Figure 3.2 from the Methods chapter), namely, 

https://doi.org/10.5281/zenodo.10017455
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energy minimizations, incorporation of dissolved ions, and NVT/NPT 

simulations. The MDP format contains a list of keywords that are used in the 

framework of GROMACS to set up the different types of simulation that 

require use of the grompp tool. 

○ Subdirectory simulation_systems 

■ Contains the structure files (ASCII files in PDB format with the .pdb extension) 

and the GROMACS topology files (ASCII files with the .top and .itp extensions) 

of all the systems subjected to MD in this project. 

■ In the case of the systems in the apo condition, the files correspond to the 

configuration after the placement of hydrogen atoms, right before the stage 

of energy minimization in vacuum. 

■ In the case of the systems in holo conditions, the files correspond to the 

configuration after the incorporation of the QM‑derived metal‑center 

parameters, right before the repetition of the energy minimization in vacuum. 

■ Importantly, this is the location where all the QM‑derived atomic charges and 

bonded parameters of each type of system can be found. 

3. Directory supplementary_videos 

○ Contains the 30 Supplementary Videos (S4.1 to S4.30) in MP4 and GIF formats (.mp4 

and .gif extensions) that enable visualization of the collective motions reported in the 

Results chapter. Each video is paired with a text file (ASCII file with the .txt extension) 

that includes a brief description of the type of visualization and references to figures 

of the Results chapter. 

On the other hand, the complete set of MD simulations, as well as standard trajectory analyses can be 

found at the online database PKLR from the Molecular Dynamics Data Bank (https://pklr.mddbr.eu), 

a project funded by the European Union’s Horizon Europe programme under grant agreement 

101094651. 

 

https://pklr.mddbr.eu/
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Appendix B 
Bibliographic references for the selected missense variants of PKR 

Table 1 

Bibliographic references for the selected missense variants of PKR 

Variant Subset a Relevant references b 

Leu73Pro P [1] 

Ser80Pro P [2], [3] 

Glu81Lys N - 

Ala115Pro P [4] 

Ser120Phe P [2], [4] 

His124Gln P [5], [6] 

Glu125Ala N - 

Glu129Lys N - 

Ser130Tyr P [7] 

Gly143Ser P [8] 

Leu155Pro P [9] 

Thr157Pro N - 

Arg163Cys P [1] 

Glu172Gln P [10] 

Glu172Gly N - 

Ala257Thr N - 

Gly263Ala N - 

Gly263Trp P [11] 

Ala295Thr N - 

Ala295Val P [12] 

Pro303Leu N - 

Gly307Ser N - 

Ile310Asn P [1] 

Glu315Lys P [12] 

Leu327Val N - 

Gly332Ser P [2], [13], [14] 

Arg337Gln P [6], [10] 

Asp339His P [10] 

Arg359Cys P [15] 

Thr371Ile P [16] 

Thr384Met P [17] 

Arg385Lys P [1], [5], [16] 

Asp390Asn P [17], [18] 

Ala394Asp P [17] 

Ala394Val P [17] 

Ile402Val N - 

Met403Ile P [19], [20] 

Met403Thr N - 

Thr408Ile P [10] 

Gly411Ser P [21] 

Ala430Thr P [5] 
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Table 1 (Continued) 

Gly458Ala N - 

Gly458Asp P [1], [22] 

Arg486Gln N - 

Arg486Trp P [13], [16], [17], [23], [24] 

Ile494Thr P [25] 

Arg504Leu P [12], [13], [17] 

Gln505Arg N - 

Gln505Glu P [17] 

Val506Ile P [10] 

Arg510Gln P [2], [4], [6], [13], [17], [23], [26]–[28] 

Arg518His N - 

Pro521Ser N - 

Arg531Cys P [29], [30] 

Arg531His N - 

Arg532Trp P [17], [27] 

Val552Ala N - 

Val552Met P [31] 

Gly557Ala P [5], [24] 

Arg559Gln N - 

Arg559Gly P [31], [32] 

a The variants from the pathogenic subset (labeled as “P”) have been suggested to be implicated in pyruvate kinase 
deficiency, as reported in clinical studies or experimental assays (either from public repositories or the literature). The 
variants from the potentially neutral subset (labeled as “N”) were retrieved from the data portals of large-scale genomic 
sequencing projects and have not been associated with pyruvate kinase deficiency. 

b This table only includes some representative bibliographic references of each variant. Only variants from the 
pathogenic subset are reported in the literature. 

 

[1] R. Van Wijk, E. G. Huizinga, A. C. W. Van Wesel, B. A. Van Oirschot, M. A. Hadders, and W. W. Van Solinge, “Fifteen 
novel mutations in PKLR associated with pyruvate kinase (PK) deficiency: Structural implications of amino acid 
substitutions in PK,” Hum. Mutat., vol. 30, no. 3, pp. 446–453, 2009, doi: 10.1002/humu.20915. 

[2] W. Kugler et al., “Eight novel mutations and consequences on mRNA and protein level in pyruvate kinase-deficient 
patients with nonspherocytic hemolytic anemia,” Hum. Mutat., vol. 15, no. 3, pp. 261–272, 2000, doi: 
10.1002/(SICI)1098-1004(200003)15:3<261::AID-HUMU7>3.0.CO;2-T. 

[3] R. Uenaka et al., “Compound heterozygosis mutations affecting both hepatic and erythrocyte isozymes of pyruvate 
kinase,” Biochem. Biophys. Res. Commun., vol. 208, no. 3, pp. 991–998, 1995. 

[4] H. Rouger, C. Valentin, C. T. Craescu, F. Galactéros, and M. Cohen-Solal, “Five unknown mutations in the LR pyruvate 
kinase gene associated with severe hereditary nonspherocytic haemolytic anaemia in France,” Br. J. Haematol., vol. 
92, no. 4, pp. 825–830, 1996, doi: 10.1046/j.1365-2141.1996.405941.x. 

[5] L. Montllor, M. del M. Mañú-Pereira, E. Llaudet-Planas, P. Gómez Ramírez, J. Sevilla Navarro, and J. L. Vives-Corrons, 
“Red cell pyruvate kinase deficiency in Spain: A study of 15 cases,” Med. Clínica (English Ed., vol. 148, no. 1, pp. 23–
27, 2017, doi: 10.1016/j.medcle.2016.10.037. 

[6] J. M. Nieto et al., “Next Generation Sequencing for diagnosis of inherited hemolytic anemias,” European Hematology 
Association. 2018. 

[7] M. Cohen-Solal et al., “A new sickle cell disease phenotype associating Hb S trait, severe pyruvate kinase deficiency 
(PK Conakry), and an α2 globin gene variant (Hb Conakry),” Br. J. Haematol., vol. 103, no. 4, pp. 950–956, 1998, doi: 
10.1046/j.1365-2141.1998.01094.x. 

[8] P. Kedar et al., “Spectrum of novel mutations in the human PKLR gene in pyruvate kinase-deficient Indian patients 
with heterogeneous clinical phenotypes,” Clin. Genet., vol. 75, no. 2, pp. 157–162, 2009, doi: 10.1111/j.1399-
0004.2008.01079.x. 
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[9] L. Baronciani and E. Beutler, “Analysis of pyruvate kinase-deficiency mutations that produce nonspherocytic 
hemolytic anemia.,” Proc. Natl. Acad. Sci. U. S. A., vol. 90, no. 9, pp. 4324–7, 1993, doi: 10.1073/pnas.90.9.4324. 

[10] R. Zarza et al., “Molecular characterization of the PK-LR gene in pyruvate kinase deficient spanish patients,” Br. J. 
Haematol., vol. 103, no. 2, pp. 377–382, 1998, doi: 10.1046/j.1365-2141.1998.01013.x. 

[11] A. Zanella et al., “Molecular Characterization of PK-LR Gene in Pyruvate Kinase–Deficient Italian Patients,” Blood, vol. 
89, no. 10, pp. 3847–3852, 1997, doi: 10.1046/j.1365-2141.1998.01013.x. 

[12] A. Demina, K. I. Varughese, J. Barbot, L. Forman, and E. Beutler, “Six previously undescribed pyruvate kinase 
mutations causing enzyme deficiency,” Blood, vol. 92, no. 2, pp. 647–652, 1998, [Online]. Available: 
http://research.bmn.com/medline/search/record?uid=98322173. 

[13] M. C. C. M. Svidnicki et al., “Novel mutations associated with pyruvate kinase deficiency in Brazil,” Hematol. Transfus. 
Cell Ther., vol. 40, no. 1, pp. 5–11, 2018, doi: 10.1016/j.bjhh.2017.08.007. 

[14] W. Kugler, P. Laspe, M. Stahl, W. Schröter, and M. Lakomek, “Identification of a novel promoter mutation in the 
human pyruvate kinase (PK) LR gene of a patient with severe haemolytic anaemia,” Br. J. Haematol., vol. 105, no. 3, 
pp. 596–598, 1999, doi: 10.1046/j.1365-2141.1999.01386.x. 

[15] H. Kanno et al., “Frame shift mutation, exon skipping, and a two-codon deletion caused by splice site mutations 
account for pyruvate kinase deficiency,” Blood, vol. 89, no. 11, pp. 4213–4218, 1997, doi: 
10.1182/blood.v89.11.4213. 

[16] S. Pissard et al., “Pyruvate kinase deficiency in France: A 3-year study reveals 27 new mutations,” Br. J. Haematol., 
vol. 133, no. 6, pp. 683–689, 2006, doi: 10.1111/j.1365-2141.2006.06076.x. 

[17] A. Zanella, E. Fermo, P. Bianchi, L. R. Chiarelli, and G. Valentini, “Pyruvate kinase deficiency: The genotype-phenotype 
association,” Blood Rev., vol. 21, no. 4, pp. 217–231, 2007, doi: 10.1016/j.blre.2007.01.001. 

[18] N. Karadsheh, T. Gelbart, and R. Naffa, “Hemolytic anemia associated with a novel heterozygote mutation 1183A in 
the PK-LR gene (PK- Jordan),” Int. J. Lab. Hematol., vol. 36, pp. e66–e68, 2014, doi: 10.1080/13518040701205365. 

[19] E. Fermo et al., “Red cell pyruvate kinase deficiency: 17 New mutations of the PK-LR gene,” Br. J. Haematol., vol. 129, 
no. 6, pp. 839–846, 2005, doi: 10.1111/j.1365-2141.2005.05520.x. 
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heterozygosis after mitral replacement,” Clin. Biochem., vol. 44, no. 14–15, pp. 1261–1263, 2011, doi: 
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[21] J. O. Park-Hah, H. Kanno, D. K. Won, and H. Fujii, “A novel homozygous mutation of PKLR gene in a pyruvate-kinase-
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HUMU5>3.0.CO;2-G. 

[24] L. Manco, M. L. Ribeiro, H. Almeida, O. Freitas, A. Abade, and G. Tamagnini, “PK-LR gene mutations in pyruvate kinase 
deficient Portuguese patients,” Br. J. Haematol., vol. 105, no. 3, pp. 591–595, 1999, doi: 10.1046/j.1365-
2141.1999.01387.x. 

[25] S. van Straaten et al., “Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase,” 
Haematologica, vol. 103, no. 2, pp. e82–e86, 2018. 

[26] W. W. Van Solinge et al., “Molecular modelling of human red blood cell pyruvate kinase: Structural implications of a 
novel G1091 to A mutation causing severe nonspherocytic hemolytic anemia,” Blood, vol. 90, no. 12, pp. 4987–4995, 
1997, doi: 10.1182/blood.v90.12.4987.4987_4987_4995. 

[27] M. Lakomek, P. Huppke, B. Neubauer, A. Pekrun, H. Winkler, and W. Schröter, “Mutations in the R-type pyruvate 
kinase gene and altered enzyme kinetic properties in patients with hemolytic anemia due to pyruvate kinase 
deficiency,” Ann. Hematol., vol. 69, pp. 253–260, 1994, doi: 10.1007/BF01700280. 



 

B-6 
 

[28] H. Wang, W. Chu, S. K. Das, Q. Ren, S. J. Hasstedt, and S. C. Elbein, “Liver pyruvate kinase polymorphisms are 
associated with type 2 diabetes in Northern European Caucasians,” Diabetes, vol. 51, no. 9, pp. 2861–2865, 2002, 
doi: 10.2337/diabetes.51.9.2861. 

[29] L. Baronciani, P. Bianchi, and A. Zanella, “Hematologically important mutations: Red cell pyruvate kinase (2nd 
update),” Blood Cells, Mol. Dis., vol. 24, no. 3, pp. 273–279, 1998, doi: 10.1006/bcmd.1998.0193. 

[30] T. Utsugisawa et al., “Pyruvate kinase deficiency in Japan: a summary of clinical feature, laboratory data and 
enzymatic diagnosis,” European Hematology Association. 2018. 

[31] L. Baronciani et al., “Study of the molecular defects in pyruvate kinase deficient patients affected by nonspherocytic 
hemolytic anemia,” Blood Cells, Mol. Dis., vol. 21, no. 1, pp. 49–55, 1995, doi: 10.1006/bcmd.1995.0008. 

[32] S. Unal and F. Gumruk, “Molecular Analyses of Pyruvate Kinase Deficient Turkish Patients from a Single Center,” 
Pediatr. Hematol. Oncol., vol. 32, no. 5, pp. 354–361, 2015, doi: 10.3109/08880018.2015.1010671. 


	LJB_COVER
	NOU_Tesi_LJB

