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Resum

Aqueta tesi tracta dues aplicacions dels estadístics d'ordre superior al tractament d'imatges.

En primer lloc, es proposa l'ús de mètodes basats en estadístics d'ordre superior per a la

restauració d'imatges. Primerament, es consideren imatges degradades per filtres de blurring

de fase lineal o zero i soroll Gaussià aditiu. S'examina un segon model de degradació per

imatges astronòmiques on el blurring es causat per les turbulències de l'atmosfera i les

aberracions del telescopi. L'estratègia de restauració en amdós casos es basa en el fet de que la

fase del senyal original i la dels seus estadístics d'ordre superior no es ditorsionen per la

funció de blurring. Les dificultats associades a combinar senyals de dues dimensions i els

seus estadístics d'ordre superior, es redueixen gràcies a la utilització de la transformada de

Radon. La projecció a cada angle de la imatge de dues dimensions és un senyal d'una

dimensió que pot ser processada per qualsevol mètode de reconstrucció d'una dimensió. En

aquesta part de la tesi es desenvolupen mètodes que utilitzen el Bicepstrum Iterative

Reconstruction Algorithm i el Weight Slice Algorithm. Un cop es reconstrueixen les

projeccions originals, la transformada inversa de Radon ens dóna la imatge restaurada.

En la segona part de la tesi es proposa una classe de funcions de cost, basades novament en

estadístics d'ordre superior, per estimar el vector de moviment entre imatges consecutives

d'una seqüència. En cas de que les imatges estiguin degradades per soroll Gaussià aditiu de

covariancia desconeguda, la utilització d'estadístics d'ordre superior és molt apropiada ja que

els cumulants de processos Gaussians són nuls. Per a obtenir estimacions consistents es

necessiten varies realitzacions de la mateixa seqüència, cosa que generalment no és possible.

Tanmateix, imatges prèvies de la seqüència on el problema d'estimació del moviment ja s'ha

resolt, poden ser utilitzades per a obtenir estimacions assimptòticament no esbiaixades. Això

es possible quan es pot suposar estacionaritat entre les imatges de la seqüència empreades.

L'objectiu d'aquesta part del treball d'investigació es l'ús de tècniques basades en estadístics

d'ordre superior que puguin estimar moviment fins i tot per a regions o blocs relativament

petits. Es defineix també una estimació alternativa quan només es disposa de dues imatges,

que supera altres tècniques existents. Finalment es desenvolupa una versió recursiva per casos

en què es tingui accés a informació a priori.
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CHAPTER 1

INTRODUCTION

Digital Image Processing is a rapidly evolving field which abundance of applications cover

many fields of science and engineering. It is concerned with the treatment and analysis of

images or two-dimensional data. Digital image processing can be classified into three

subareas: (i) enhancement, restoration and reconstruction, (ii) digitization and compression

and (iii) matching, description and recognition. One of the first applications of image

processing was conducted in the 1960's and dealt with the restoration of astronomical images

that suffered from atmosphere degradations. At that time, the computational burden was

prohibitive and ultimate computing facilities could hardly cope with such problem. During the

past years, the availability of fast processors and memory at reasonable costs, has permitted to

reduce the time of computation and make this branch of engineering widely accessible.

Moreover, new applications have been devised as well as new theoretical developments. This

technological breakthrough has also allowed the processing of image sequences which add to

the 2-D nature of images, a third dimension involving time. An image or video sequence is a

series of two-dimensional images sequentially ordered in time. The manipulation of image

sequences in areas such as visual communications, multimedia, entertainment, education,

medicine, surveillance, remote control and scientific research is constantly growing as the use

of video systems is becoming more and more common.



This thesis addresses two topics involving image series, namely image restoration and motion

estimation. In both areas we consider that series of images are available, although of different

nature in each case.

In the first topic we consider that the image series consist of various versions of the same

image that suffered different degradations and spatial shifts. Images corrupted by

deterministic or random blur and random noise are studied. We refer to the spatial shift that

affects all pixels belonging to a frame in the same way, therefore there is no intrinsic

movement in the scene. Real examples in this group of image series include, for instance,

some type of astronomical images and rigid objects moving in a noisy background.

In the motion estimation problem, the image series are nothing else than image sequences. In

this case, a certain scene is been captured and a more complex movement is observed. All

pixels may undergo a completely different displacement. There are some situations where the
image sequence might be corrupted with noise, for example, images from surveillance

cameras or medical images such as echographics with speckle noise.

The objective of image restoration is to remove or at least reduce the effect of degradation per

se, and thus the original scene is recovered. On the other hand, in motion estimation the prime

objective is to obtain the motion that experiences each pixel throughout an image sequence.

The final goal may be improvement of the visual quality of the sequence, conversion between

video formats or information interpretation. The major challenge in the two studied topics is to

solve each particular problem when images have suffered a degradation phenomena. Images

acquired are susceptible to be deteriorated by the sensing environment. In general, most

images are of very fine quality. Some of them are of lesser quality; and among these a certain

subset are of such importance, or are so unique, that is appropriate to consider special

techniques by which the degradation is taken into account. Every image of the series suffers a

different degradation, however, we may assume that the statistical nature of such degradation

does not change along time.

At this point, we might wonder which degradation model best fits our two particular

problems; which associated tools are appropriate to solve them; and which is the current state

of the art in these fields. Extracting signals from noise, or more generally extracting

information of signals from noise is one of the major concerns in engineering. In recent years,

Higher-Order Statistics (HOS) of signals techniques have been sucessfully applied to diverse

areas of science and engineering such as communications, geophysics, sonar, image

processing, radar, oceanography, biomedicine, plasma physics, speech processing and fluid

mechanics. It's poweful properties steem from the large amount of information that HOS of



signáis carry as opposed to the limited information of their second-order statistics. Only

Gaussian processes are completely specified by second-order statistics. Thus, non-Gaussian

processes, that is, many real-world signals, can benefit from the knowledge of their HOS.

They are also useful in extracting phase information as well as in detecting the presence of

nonlinearities. Moreover, under a broad signal and noise conditions, HOS domains boost the
signal-to-noise ratio, allowing an improved detection, parameter estimation and signal

reconstruction.

Although it would be natural to first define each of the problems and then find a right

solution, we will start introducing Higher-Order Statistics of signals, that given their tedious

tractabilily and multiple properties require a full introductory Chapter. This knowledge will

allow the reader to understand properly this work. After this introduction the thesis is

developed.

l . l Thesis Outline

The structure of this thesis is the following. Chapter 2 deals with the definitions and

properties of Higher-Order Statistics of signals. Among these we remark the ones more

relevant for this work. In contrast to second-order statistics, higher-order statistics are

asymptotically unaffected by additive Gaussian disturbances and the phase information is not

completely lost, therefore are not phase blind. Literature on recent applications of these

techniques to the area of image processing are outlined, including diverse fields such as image

restoration, feature extraction, texture analysis and motion estimation. The last part of this

chapter presents a general framework for the two problems considered in this thesis. A unique

formulation may be given for the two types of image series described in this introduction.

The two following chapters forni the burden of the thesis. In Chapter 3 the problem of image

restoration is studied. In the first part, the image degradation model is described, including the

blur and noise models. The projection theorem that allows the reconstruction of an image

from its 1-D projections and 1-D HOS-based reconstruction methods are revisited. In the

second part of this chapter, the theoretical bases that allow the reconstruction from either the

phase of the Fourier Transform or the phase of the Bispectrum are established. Once all

rudiments have been presented, three image restoration algorithms are developed. Several

examples obtained by these schemes are shown and discussed in detail.

Chapter 4 deals with the problem of motion estimation. Cost functions based on the variance

and kurtosis of the displaced frame difference are reviewed for AR models of the noise and

image covariances. Following, a new class of HOS-based cost functions is derived together



with its corresponding recursive version. The improvement of the new strategies with respect

to the other cost functions is demonstrated in the examples.

The last chapter of the thesis is devoted to a summary of conclusions of this work. Future

trends of research in the area are also suggested.

1.2 Contributions

In this thesis, we find new applications of Higher-Order Statistics to two different image

processing topics.

For the image restoration problem we deal with old concepts and new concepts that as a

whole contribute to obtain a novel work. First of all, this part deals with old concepts, for

example, restoration of images from projections is not new, signal reconstruction from the

Fourier phase is not new. However we have thoroughly studied this old concepts and bring

about new insights. Thus, the main contributions in this area are summarized in the following

points:

- The use of HOS in the area of Image Restoration has just begun to find applicability. In this

part of the thesis, the benefits from the properties of HOS in the area are shown.

- We state three Corollaries that are the theoretical bases that guarantee the uniqueness, except

for a constant factor, of the reconstruction of image projections when they are degraded by

zero-phase blurs or compensated linear phase blurs.

- From the above theoretical results three restoration schemes are developed. Some examples

show the improvement for the reconstructed projections and final images.

- New applications of an existing method, the WS algorithm, are demonstrated.

In the second part of the thesis the problem of Image Motion Estimation is considered. The

main contributions in this area are the following:

- Analytical expressions of second-order and higher-order cost functions are derived for AR

models of the image regions and the noise. The behavior of these functions is obtained and

carefully examined.



- A new HOS-based cost function outperforms the previously reported approaches for
reasonable small size regions and low SNR. This new approach is based on an adaptive
scheme for the estimation of fourth-order cumulants using previous frames.

- We also derive a HOS-based cost function that outperforms a previous fourth-order statistics

criterion when only two images of the sequence are available.

- A recursive version of the new cost function to estimate the displacement is presented and

compared to the recursive scheme of the second-order cost function.

As a whole, the results of this thesis show some of the possibilities of HOS to image

processing.



CHAPTER 2

HIGHER-ORDER STATISTICS IN IMAGE PROCESSING

This chapter presents an overview of the motivation, definitions, properties and applications

of Higher-Order Statistics (HOS) to digital image processing. There are four main reasons

behind the use of Higher-Order Statistics in signal processing: 1) to suppress additive colored

Gaussian noise of unknown power spectrum; 2) to identify non-minimum phase systems or

reconstruct non-minimum phase signals; 3) to extract information due to deviations from

Gaussianity; and 4) to detect and characterize nonlinear properties in signals or identify

nonlinear systems. Image Restoration and Motion Estimation problems are two Image

Processing topics that can benefit from these properties. Specifically, for the first problem the

first and second property may be applied to reconstruct some type of degraded images,

whereas the first and third properties can be utilized to solve the Motion Estimation problem.

Before treating these two particular applications in the following chapters, a review of the

definitions and properties of Higher-Order Statistics is presented in the first section of this

chapter. General aspects of HOS and particular aspects that best fit our purposes have been

included. In section 2, recent developments of HOS to image processing are examined. HOS-

based techniques have found applicability to diverse areas such as image restoration, feature

extraction, texture analysis and motion estimation. Hence, the motivation of using HOS to the

two problems treated in this thesis stems not only from the properties of HOS but from a

logical trajectory of recent developments of HOS to image processing. Finally, in the last

section, a general framework is introduced for the two problems considered in this thesis. An

image restoration model and a motion estimation model are derived from particular cases of a

general image model.



2.1 Higher-Order Statistics of signals

The material given in this section was taken from the tutorial papers by Nikias & Raghuveer

[1987], Mendel [1991], Nikias & Mendel [1993], and by the recently published book on

higher-order statistics by Nikias & Petropulu [1993]. The goal is to provide the basic

formulation and properties of HOS in signal processing. Hence, further details and

explanations may be found in the above references. For the sake of simplicity, the definitions

that follow are given for 1-D signals, although some of them are also derived for 2-D signals.

2.1.1 Definitions

The nth-order moments of a collection of random variables x - (xj,X2,...,xn) are defined as

the coefficients of <D - (a>j,Cu2,...,G),i) in the Taylor series expansion (provided it exist) of the

moment-generating function:

jck2, .... j c ; = E xlxk2 ... * =

k
l(u=<»= -^=0 (2-D

where

= E{ exp(j(o lx) } (2.2)

is the joint characteristic function and n = kj+k2+...+kn. The natural logarithm of (2.2) is the

joint second characteristic function [Papoulis, 1984]:

¥((0) = Ln( E { exp(jú) 'x) } )= Ln($(Cû)) (2.3)

The joint nth-order cumulants are defined as the coefficients of ú) = (ú)j,ú)2,...,(On) in the

Taylor series expansion of the joint second characteristic function :

i
/«- C0- . . . = = 0 (2-4)

2.1.2 Relationship Between Moments and Cumulants

The general relationship between moments and cumulants of order n is given by [Mendel,

1991]:

cum(Xl,x2, .... xn) ^Zi-lf-^p-l)! E{ ü xJEf ü x¡}... E{ II x¿J (2.5)
' íes.,



where the summation extends over all partitions (s2,S2,...,sp), p = 1,2, ...,n, of the set of

integers (1,2,..., n). An example that illustrates (2.5) is the following: the set of integers

(1,2,3) can be partitioned into :

P = l *i = {1,2,3}

Sl = {2} s2 = {1,3}

si = {3} s2 = {1,2}

and therefore (2.5) becomes for 77=3:

cum(x2,x2,x3) = E{xlx2x3}-E{x1}E{x2x3}-E{x2}E{x1x3}

- E{x3}E{x1x2}+2E{x1}E{x2}E{x3} (2.6)

which is

cum(x1,x2,x3) - E{x¡x2x3}

in the case of zero-mean random variables. Also in this case for the second- and fourth-order

cumulants we obtain:

cum(x},x2) = E{xjx2}

cum(x1,x2,x3,x4)=E{x1x2x3X4}-E{x1x2}E{x3X4}-E{x1x3}E{x2x4}-E{x1X4}E{x2x3}

(2.7)

The relationship expressed in (2.5) implies that the computation of cumulants of order n

requires knowledge of all moments up to order n whether the signal is zero-mean or not. This

is easily seen in (2.6) and (2.7). We also observe that second- and third-order moments and

second- and third-order cumulants are identical for zero-mean random variables, whereas this

is not true for higher than third-order statistics.

Example 2.1

The moments
j

nij = mom(xj) = E{x¡) m2 = mom(xi,xi) = E{xj }

m3 = nwm(x¡,x¡,xi)= E{x¡ } m^ - mom(x¡,xi,x¡,xi) = E{x¡ }

of the random variable {x]}are related to its cumulants by :
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f(x) = 0.5exp(-lxl)

0.9

0.8

0.7

0.6

ÌO.S

0.4

0.3

0.2

0.1

0.6 1 1.5

n

1

2

3

4

mn

0

2

0

24

cn

0

2

0

12

f(x)= 0.5

f(x) = 7 -c < x < +c

n

1

2

3

4

mn

0

c2/3

0

c4/5

cn

0

C2/3

0

-2c4/15

K 02)1/2

n

1

2

3

4

mn

0

a2

0

3o4

Cn

0

CJ2

0

0

Figure 2.1 The nth-order moments and cumulants for n=l,2,3,4 of the Laplacian, Gaussian
(<7= 1) and Uniform (c=l) Probability Density Functions (pdfs).



f(x) = exp(-Ä-x) u(x)

Exponential
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T Y" "Jl = c ¡ = cum(xj) =m¡ y2 =c2 = cum(xi,x¡) = m2-ni2
Y ?% = Cj = cum(x],xj,X])= 1113 -3in2mj+2mj

yf =04= cum(xi,x¡,x¡,xi) = iri4 -4m3mj-3m2 +12ni2ini -6m.j (2.8)

If 7777 = O it follows that jf - C2 = 1112, 73* = cj = mj and 74* = €4 = 1114-8 ni22. Figure. 2.1

and 2.2 show the moments and cumulants up to fourth-order for different Probability Density

Functions (pdf). We observe that symmetrically distributed pdfs have odd-order statistics
identically zero.

Moreover, for the Gaussian distribution we observe that the fourth-order cumulant is zero. In

general this is true for all cumulants of order greater than two. However higher-order

moments are different from zero.

On die other hand, it is more difficult to infer any conclusion for asymmetric distributions.

2.1.3 Moments and Cumulants of Stationary Processes

Let fx(t)J be a real zero-mean stationaiy process. The nth-order cumulant of ¡x(t)J, denoted
Cn>x(T},T2,...,Tn.]), is defined as the joint nth-order cumulant of the random variables

{x(t),x(t+Ti)...x(t+Tn.i)}, i.e.

Cntx(*I>T2·····*n~l) = cum(x(t)>x(t+TI),...,x(t+Ta.1)) (2.9)

If fx(t)J is non stationary, then the nth-order cumulant explicitly depends on t as well. The
second-, third-, and fourth-order cumulants are related to its moments as follows:

= E{x(t)x(t+T1)J

C3,x fart) = E{x(t)x(t+T:1)x(t+T:2)}

= E{x(t)x(t+r2)x(t+r2)x(t+r3)}-

Efx(t)x(t+ T1)]E{x(t+ T2)x(t+ r3)J-

E{x(t)x(t+T2)JE{x(t+T1)x(t+'C3)J-

Efx(t)x(t+T3))E{x(t+rJ)x(t+'C2)J- (2- 10)

Of course, the second-order cumulant is just the autocorrelation of x(t). By putting
?j = i2 = TJ = 0 in (2.10) we get the variance yf - C2,x(0), the skewness y f = Cj^fO.Oj

and the kurtosis 74* =E{x4(t)}-3 (Y2X)2= C4tX( 0,0,0) in terms of cumulant lags. The

normalized kurtosis is defined as 4X /^) 2 •

11



2.1.4 Polyspectra

Assuming that Cn>x (ti,t2,—,tn-l) is absolutely summable, the nth-order polyspectrum is

defined as the (n--Z)-dimensional discrete-time Fourier transform of the nth-order cumulant,
i.e.,

oo oo n-1
Snx(0)2,ú)2,...,ú)n.]) = Z, ... 2., Cn % f'T/,T2,...,Tn./j • exp[ -j ¿¿CuiTi ]

fj =-OO I/»-/ ="°° i=7

(2.11)

The power Spectrum, Bispectrum and Trispectrum are special cases of the nth-order
polyspectrum:

Power Spectrum: n=2

oo
S2,x (Cu) = PX(Ú))= E C2x (TI) ' exp[ -j 0)2 TI) J (2.12)

Bispectrum: n-3
OO 00

S3iX (0)2,0)2) = B¿(Ub(U2) = £ S C3x (T¡,T2) • exp[ -j (ú)1Tj + 0)2T2) ] (2.13)

oo oo

Trispectrum: n=4

S4x(0)2,0)2,Ú)3)= X ~LC4>X(T2,T2,T3)- exp[-j (CU2T2 + ú)2T2+0)3T3) ] (2.14)

Important symmetry conditions, which make the calculations more manageable, exist in the

arguments of C (r,,T,,...,T J an<^ ^n x ^l'G)2'"''(un-l^' ^or examP^e'

Using these equations we can divide the (T,,T7) plane into six symmetry regions for C7 .
I £ Jf A

Knowledge of the cumulants in one of these regions is enough for a complete description of

all the plane.

In this thesis, we deal with problems involving random processes added to deterministic

signals. For this reason, we are interested in having a definition of the Bispectrum, given in

terms of the Fourier Transform of the signal as it is usually done for deterministic signals (see

next section). For the bispectrum, the two-frequency index notation is standard, however it

hides the three-frequency interaction [Hinich, 1990]. Thus, if x(t) is stationary:

12



EfX(coj) X(co2) X(ß)J

CO OO OO

= Ef X X S x(t)x(r)x(h) exp[ -j (Cüjt+Cuy+ßh) ] J
-OO -OO -OO

OO OO

S Z Cj>JC(T/,T2; exp[-j
t j— -oo ̂ 2= -"°°

(2.15)
S = -oo

where X(a>) is the Fourier Transform of (x(t)}, 8 is the Dirac delta function and we have

applied r - t+x, and h = t+t2. For \w\ <it,

E{X((uj) X(a>2) X(ß)}= S3x (a>j ,co2) -8(0}}+(u2+ß) (2.16)

It follows that this expression is different from zero only at ß = -(ù^Cù^ Note that (2.16) is

invariant to permutations of the frequency indexes ca^, a>2 and ß = -a>j-G)2, thus, the

symmetry regions may be derived. Actually the above relationship holds only for stationary

signals. Similarly, by windowing in t, we obtain the Fourier transform of the window W(a>),

instead of the Dirac delta, hence:

E{X(o)j)X(co2)X(ß)J l^.^.afSsjfiOj.aizWai+Vz+ß) l ̂ .^.^ S3Jcù1,fû2)W(0)

(2.17)

On the other hand, extensions to the definition of polyspectra for 2-D signals may be easily

derived by considering each scalar lag, T. or CD. , as an ordered pair, (tf.r,ti.2) or ((uf.j,cOf.2)-

Equation (2.11) becomes:

OO CO

Snjc(°)ll'G)12 •'-• ^n-ll'^n-n) = £ - £ QzC'r/;.'r;2'"r2/''r22''-'"rn-//''r/i-72>>
T7/=-~ Tn-12=-°°

n-1

-j IX/T,7+utet/27 (2- 1 8)

2.1.5 Estimation of HOS

In most practical applications, we deal with the problem of estimating the cumulant or moment

spectrum of a process when a finite set of observation measurements is available. Actually,
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one of the main drawbacks of HOS methods is that, in general, long data records are needed
to obtain low variance estimates. Moreover, the computations may be numerically expensive
despite the use of fast algorithms. There are two main approaches that can be used to estimate
HOS; namely, the conventional (time average and "Fourier" type) and the parametric
approach, which is based on autoregressive (AR) moving average (MA), ARMA or Volterra
models. The conventional methods, the ones we will use in this thesis and that will be

inspected in the following chapters, may be classified in indirect class, direct class and

complex demodulates class. See Nikias and Petropulu [1993, Chapter 4] for a thorough

review of conventional estimation methods.

2.1.6 HOS of deterministic signals

Let us consider x(t), a real one-dimensional, finite energy, deterministic, discrete-time signal,

and assume that its moments, or multiple correlation exist. Then the nth-order moments of

energy signals are functions of (n-1 ̂ -dimensional arguments defined by
CO

Mn x. (T7'T2 ..... rn-l) = ^ *W x(f+rl) - x(t+rn.]) (2.19)
t =-oo

and their spectra are given by:

n-l
(2-20)

It is well known that the Energy Spectrum ofx(t), is defined as the Fourier Transform (FT) of

its con-elation function and is given by

(2.21)

where X(co) is the Fourier Transform ofx(t) . In the same way, the Bispectrum B^CÙJ,^) is

defined as the Fourier Transform (FT) of its triple correlation function, therefore

Bx((u¡,(u2) = X(fQj) X(a>2)X*(a>j+u>2), (2.22)

Some authors define the Bispectrum of such a signal as the triple product of the Fourier

Transform of the mean subtracted signal. This would bring the definition in line with that of

Bispectra of stationary stochastic processes which are defined as the Fourier Transform of

third-order cumulant sequences. There are some advantages in using cumulants, instead of
moments, with stationary random processes. These are related to ergodicity, testing for

statistical independence [Brillinger, 1965], etc. It is not clear if any such advantage is gained

with a similar definition when we deal with deterministic signals. Hence, we will proceed
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with the definition in Eq. (2.19), as is commonly done in optical applications

[Sundaramoorthy, 1990].

For periodic signals the power spectrum is defined as in Eq. (2.19) given the definition of

Fourier series with t ranging in one period and dividing by the period of the signal.

We can as well derive similar expressions for 2-D signals. That is, given a discrete M x N

image x(m,n), its /tth-order spectrum is defined as:

n-l n-1

k=l k=l

(2.23)

where X(a>j,a>2 ) is the M x N DFT ofx(in,n).

2.1.7 Properties of Moments and Cumulants

Following are some important properties of moments and cumulants, which are often used in

theoretical developments (see [Mendel, 1990] and references therein):

[PI] If A/, / = l,...,k are constants and x¿, i=l,...,k, are random variables, then

it
mom( A/x;,A2.ï2,...,An.xnj = Tl^-i mom(xi,x2,...,xn)

i=l
k

cum(ÁjX1,^2X2>-^nxn) = ̂ ^i cum(xi,x2,...,xn) (2.24a)
i=l

[P2] Moments and cumulants are symmetric in their arguments, i.e.,

mom(xj,...,xn) = mom(xn,...,xin)

cum(xi,...,xn) - cum(xn,...,xin) (2.24b)

where (il,...,in) is any permutation of (l,...,n).

[P3] If a subset of the n random variables {x¡} is independent of the rest, then,

cum(xj,...,xn) = 0,

whereas in general ,

mom(xlt...,xn) ï 0. (2.24c)
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[P4] If the random variables {x¡} are independent of the random variables fy¡}, i =1,2,... ,n,

then,

cum(xj+y>2,...,xn+yn) = cum(xI,...,xn)+ cum(y1,...,yn) (2.24d)

in general this not true for moments, however for the random variables fyo,xo,xj,...,xn.i}

we have:

,...jn) = cum(x0,x1,...,xn)+cum(y0,xI,...,xn)

>»"Xn) = mom(x0,x1,...,xn)+mom(y0,x],...,xn) (2.24e)

Additional properties that make higher-order statistics very attractive in practical applications

may be derived. Next, we summarize some of these important properties with special

emphasis to the ones we are going to utilize in this thesis.

1) Deviations from Gaussianity. The nth-order cumulant function of a non-Gaussian

stationary random signal can be written as (for n=3,4 only) [Mendel, 1991]:

Cn,x(^l^2>-^n-i) = E{x(t)...x(t+Tn.1)j-E{g(t)...g(t+rn_I)J (2.25)

where g(t) is a Gaussian signal that has the same mean value and autocorrelation sequence as

x(t). líx(t) is Gaussian then Cfí ^¡^'""^n-l^ ~ ® ^or any or<^er- Hence, the cumulants of

order greater than two (n > 2) , in some sense, measure the non-Gaussian nature of signals.

2) Symmetrically distributed signals. Cumulants of symmetrically distributed signals are zero

for odd orders. Therefore we can draw non-symmetrically distributed signals out of

symmetrically distributed signals for these orders. Suppose *(/?) = y(n)+v(n) where y(n) and

v(n) are independent; from property P4 we obtain

V(r1,T:2,...,Tn.1) (2.26)

If v(n) is symmetrically distributed (colored or white) and n>2 and odd, then

3) Gaussian noise. The cumulants of signals with Gaussian distribution are not only zero for

odd orders but for any order n>2. This makes higher-order statistics more robust to additive

Gaussian noise than correlation, even if noise is colored. In essence, cumulants can draw

non-Gaussian signals out of Gaussian noise for any order n>2.

3) Phase Information. Any higher-order cumulant suppresses linear phase information.

Nevertheless, while the power spectrum suppresses all phase information, the Bispectrum

does not. Actually we can recover all phase information except for the linear phase
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component. This fact makes the Bispectrum useful in identifying non-minimum (mixed)

phase systems or sequences. These properties are illustrated in the following example. Let

y(t) be the output of a linear time-invariant (LTI) system driven by a non-Gaussian

independent, identically distributed (i.i.d.) process, x(t), i.e.,

ïnx ifr1=r2=...,rn.1=0
0 otherwise (2.27)

where jn^ denotes the /îth-order cumulant of x(t). Brillinger and Rosenblatt established that

the /îth-order cumulant spectra of the input x(t) and the output y(t) are related by:

n-1
Snty((Ù1,CÙ2 0)n.j) = Snx(u}ltC02,...,CUn.j) H(O)j) H(0>2) - H(G>n-l)

 H*< IX )
k=l

n-1
= rnxH(ú)1)H(o)2)...H((ün.1)H*( 5X; (2.28)

k=l

The Power Spectrum (n=2) is given by:

(2.29)

where y~ is the variance of the input white sequence. S2 (cu,) is real and non-negative and

we see that all phase information is lost On the other hand, the Bispectrum (n=3)is written as:

2 J = V3j.H«üi) H((D2) H*(Cûj + (û2) (2.30)

Its magnitude is given by:

lS3i){T],T2 ) '= I7jjc I \H(a)¡)\ \H(o)2Ì\

whereas the phase infonnation:

, (2.32)

where y/y(a>j,cu2) = Z S3>y(a>},û)2) and (pi,(co) = ZH(cù). Clearly any linear phase

component is canceled out whereas any other component of (px(co) may be retrieved from the

Bispectrum phase [Matsuoka and Ulrych, 1984] [Bartelt et al., 1984], [Kang et al, 1991],

[Petropulu and Nikias, 1993] and [Dianat and Raghuveer, 1990].

It is interesting to notice the similitude of Eq. (2.30) with the one given for deterministic

signals in section 2.1.6, Eq. (2.22). Actually the same conclusions about the phase of the
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Power Spectrum and Bispectrum can be drawn and any method that retrieves the transfer

function from the Bispectrum of the output sequence may be used to retrieve a deterministic

signal from its Bispectrum. The same argument will be used in next chapter, where methods

to estimate an MA system will be used to retrieve a deterministic signal.

2.1.8 Higher-Order Cepstra

The last definition of this survey introduces the concept of cepstrum. This transformation has

several applications to nonminimum phase signal reconstruction and deconvolution. See, for

example Oppenheim and Shaffer [1989, chapter 12] for definitions and Nikias and Petropulu

[1993, Chapter 5] for extensions to the HOS domain. The nth-Order complex cepstrum of a

discrete nth-order stationary random signal, x(t) , is defined as :

cxfm1,m2,...,mn.1) = F ' } f ln[Sn>x ((ub a>2...,a)n.i) ]} (2.33)

where F ~1 denotes the inverse Fourier transform operation, In denotes complex logarithm.

The existence of the nth-order complex cepstrum is discussed in [Tekalp, 1989] and

[Dudgeon, 1975].

In the third-order domain the Bicepstrum is defined as

2) = F -]{ InfB^coj,^) ]j (2.34)

If B (ú),, C02) corresponds to the bispectrum of a deterministic signal (2. 19), or the output of a

stable LTI system driven by a third-order white random signal (2.25), it can be shown that the
cepstrum is different from zero on the straight lines, m,=0, m2=0, w.=m2 [Tekalp, 1989],

[Petropulu, 1994]. The non-zero coefficients define the cepstral coefficients which are related

to the minimum and maximum phase components of the system (or deterministic signal). It

can also be shown, [Petropulu, 1994], that the difference of the cepstral coefficients contain

phase information while their sums contain magnitude information.

Another function of interest is the bicoherence index or normalized bispectrum of a sequence

x(t) which is defined as:

(135)

The complex cepstrum of the bicoherence, c. , is defined as the inverse Fourier transform of

the complex logarithm of the bicoherence index: i.e..,

cbx(mbm2) = F -*{ In[bx(wl,w2) ]} (2.36)
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Rewriting (2.35) as:

Bx(03¡, 0)2)
bx(wl,w2) = — = expfjiffyf 0)2,0)2) ) (2-37)

we get from (2.36):

chx(mL·in2) = j F'1 f \ffx(u}],Cù2)} (2.38)

That is, the cepstrum of the Incoherence index is the inverse Fourier Transfonn of the phase
of the bispectrum.

We see from these definitions that higher-order cepstra may play an important role in phase

reconstruction problems.

2.2 HOS in Image Processing

Image Restoration

The problem of image restoration refers to finding an estimate of the ideal image from its

blurred and possibly noisy rendition. Often, noise can be characterized by a colored Gaussian

process of unknown covariance. Some research works in this field exploit the fact that the

Bispectrum of Gaussian processes are identically zero. Thus, Sadler [1989] considers the

Bispectrum to estimate a randomly translating and rotating object from a sequence of noisy

images . The work by Dianat and Raghuveer [1990] discusses the reconstruction of the phase

of the Fourier Transfonn and its magnitude from the Bispectrum, they develop techniques to

reconstruct images degraded by a jittery channel with additive tone interference. These works

have succeeded in restoring images, however blur was not taken into consideration. Erdem

and Tekalp [1990] address the problem of Blur identification. Their method is based on the

detection of zero-crossing in the Bispectrum assuming that the signal does not have any zeros

in this domain. In practice, this assumption is rarely met. Moreover it is usually the case for

moderate blurs, (out-of-focus blurs and long term atmospheric turbulences), that the FT of the

blur filter is real and strictly positive, therefore all zeros in the Bispectrum domain correspond

to the signal. In addition, the phase of the Bispectrum corresponds exclusively to the signal.

Based on this considerations, Petropulu and Nikias [1993] developed a technique, called

BIRA, based on bicepstrum coefficients to reconstruct images degraded by ID channels. In

[Sayrol et al., 1993b] we utilized this method to restore images from their projections when

2D blurring filters degraded the image. However, the BIRA algorithm could not be applied to

those projections which had Z-Transform with zeros on the unit circle. The Weight-Slice

Algorithm (WS) [Fonollosa and Vidal, 1993], on the other hand, could recover the signal of
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interest even if its Z-Transform has zeros on the unit circle. Although possible, the extension

of the WS algorithm to 2-D would increase enormously its analytical complexity. In chapter

3, we present two algorithms that use the WS method over the 1-D projections of the image.

Finally, these algorithms can also be applied to space imagery [Sayrol et al., 1993c]. In fact,

one of the early applications of digital image restoration was to employ triple correlations to

reconstruct astronomical images from short-exposure photographs [Hofmann and Weigelt,

1983], [Lohmann et al., 1983] and [Lohmann at al, 1984].

Feature extraction

Another important application of HOS in a 2-D context is introduced by Chandran and Elgar

[1992], [1993] where invariant Higher-Order Spectra features of projections are used for

object classification. Higher-order spectra are translation invariant because translation

produces linear phase shifts which cancel. A useful function of the Bispectrum is defined

integrating the bispectral values along straight lines which pass through the origin in the

bifrequency plane. It is shown that from these functions, invariants to translation,

amplification or DC-level and scaling changes are derived. This is possible provided that the

signal of interest is bandlimited and scaling does not introduce any aliasing. Finally rotation

invariance is also achieved deriving invariants from the Radon Transform of the image and

using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results

on synthetic and actual images show isolated, compact clusters in feature space and high

classification accuracy. This application was also treated by Giannakis and Tsatsanis [1990].

Texture analysis and synthesis

In the area of texture analysis and synthesis, important works have been done by Tugnait

[1993] [1994], Zou and Giannakis [1992], [1994] and Hall and Giannakis [1993]. Statistical

approaches to texture processing have largely relied upon random models which characterize

the 2-D process in terms of its first- and second-order statistics, and therefore cannot

completely capture phase properties of random fields which are non-Gaussian and /or

asymmetric. In [Tugnait, 1993] and [Tugnait, 1994] 2-D noncausal autoregressive models,

with possibly asymmetric support for synthesis of images are investigated. The gray level at

an image pixel is characterized as a linear combination of gray levels at nearby locations in all

directions and an additive non-Gaussian, higher-order white noise variable. In [Zou and

Giannakis, 1992] and [Zou and Giannakis, 1994] nonlinear matching techniques that improve

over linear equation methods in estimating parameters of non-Gaussian random fields are

derived. It is shown there, that formulation of seasonal 1-D sequences ( which are obtained

by concatenation of the rows or columns of a 2-D field into a 1-D sequence), allow treatment
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of semi-stationary 2-D models. A 2-D signal is called semi-stationary if it is stationary in one

of the two dimensions. These models are used to generate synthetic space variant textures. A
basis expansion approach is also proposed using prolate spheroidal sequences for

parsimonious nonstationary modeling. In [Hall and Giannakis, 1993], a consistent parameter

estimator for non-minimum phase, asymmetric non-causal, 2-D ARMA models is obtained by

minimizing a quadratic-error polyspectrum matching criterion. HOS are used to derive and

implement 2-D Gaussianity, linearity and spatial reversibility tests which validate the

modeling assumptions. To conclude, the results presented in these works indicate that HOS-

based random field models are appropriate for texture modeling.

Motion estimation

In the area of motion estimation, most authors assume that no noise is present on image

sequences and therefore no precautions are taken. Thus, when the images are degraded most

existing methods do not work properly and more robust techniques are necessary. On the

other hand, noise can be realistically described as a colored Gaussian process. In such

circumstances, Higher-Order Statistics may offer some advantages since cumulants of

Gaussian processes are asymptotically zero. Two authors have begun to utilize HOS for

motion estimation. Kleihorst et al. [1993] obtain the displacement by maximizing a third-order

statistics criterion. However, it is assumed that image regions are non-symmetrically

distributed when employing third-order statistics. Anderson & Giannakis [1991], [1994] also

use HOS to estimate the displacement between two images. They have developed several

algorithms based on a parametric cumulant method, a cumulant matching method and a mean

kurtosis error criterion. We have found that this method works well for large size regions.

Otherwise it is not clear the advantage over second-order statistics. The method we develop

on the fourth chapter of this thesis is also based on a kurtosis measure, however, as we will

see, the estimation allows smaller size regions [Sayrol, 1994].

2.3 General Framework

Usually, the problems of image sequence restoration and motion estimation, although

different, can be analyzed using a generalized linear shift-invariant model formulated as,

= Mm) * Mm )+ nk (m) , (2.37)

where m = (m,n) denotes the spatial image position of a point, g^m) is the observed image

intensity at time k ,/f/tn) is the noise-free image, h^m) is a linear shift-invariant blurring

point spread function (PSF) and n ¡.(in) is additive noise.
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Motion is not observable and cannot be directly measured. Therefore, it is imperative that a

relationship between motion and image sequence be established. This relationship expresses

assumptions about the properties of objects undergoing motion. Complex descriptors such as

size, shape or structure of an object can be used, however, their evaluation is a difficult task.

Alternatively, simple characteristics such as brightness, color or their derivatives can be

employed, even tough they are insufficiently stable over long intervals. Assuming that time

intervals are relatively short, the hypothesis that image brightness along motion trajectories is

constant holds:

f k ( m ) = f i ( c i ( m , k ) ) (2.38)

where the function c^(m,k) describes the 2-D trajectory of an image point, i.e., c¡(m,k) is

the spatial position at time / of an image point that at time k is located at m. When l=k-l and
denoting by d¡9(m) the displacement of a point from time £-7 to k, Eq. (2.38) simplifies to

fk('n) = fk.! (m-dk°(m)) (2.39)

Therefore Eq. (2.36) becomes

8k(m) = fk-i (m-dk°(m)) * hk(m)+ nk (m), (2.40)

When dealing with image restoration problems we are interested in obtaining flm) from the
observation g(m). In this case we assume d/,°(m) = djP, the trajectories are displacements

which are the same for the set of all pixels in the image.

8k(m) = fk.i (m-dk°) * hk(m)+ nk (m), (2.41)

On the other hand, in image motion estimation we are interested in estimating djP(m) from

gfJ[m) given at several urne lags. In this case, the model is usually simplified to the case of no

blurring, i.e., hk(m) = ok(m) since, if it is unknown, the use of incorrect filters can do more

harm than good. Thus, the equation that characterizes motion estimation problems can be

described as :

gk(m) = fk.j (m-dk°(m)) + nk (m), (2.42)

At this point, the basic tools of HOS have been introduced from a signal processing

perspective and a survey of HOS applications to image processing has been carried out. To

conclude, a general framework that involves the two topics treated in this thesis has been

established. In the following chapters, we thoroughly study these two problems, starting with

the problem of Image Restoration.
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CHAPTER 3

IMAGE RESTORATION USING HIGHER-ORDER STATISTICS

The use of higher-order statistics (HOS)-based methods is proposed to address the problem

of image restoration. First, images degraded by linear or zero phase blurring point spread

functions (PSF) and additive Gaussian noise are considered. A second degradation model for

astronomical images is examined where the blur is caused by turbulent atmosphere and

telescope aberrations. The restoration strategy in both cases is based on the fact that the phase

information of the original image and its HOS, are not distorted by the blurring function. The

difficulties associated with the combination of truly two-dimensional signals and their higher-

order statistics are reduced by means of the Radon Transform. The projection at each angle of

a 2-D image is an 1-D signal which can be processed by an 1-D higher-order statistics-based

method. Methods that apply the Bicepstrum Iterative Reconstruction Algorithm (BIRA)

[Petropulu, 1993] and the Weight-Slice Algorithm (WS) [Vidal, 1993] are developed. After

the original projections have been estimated, the Inverse Radon Transform is employed to

obtain the restored image.

In Section 1, the assumptions for the image observation model are described, including the

blur and noise models. The projection theorem that yields to the processing of images from

their projections is reviewed and, the BIRA and the WS method are also revisited. In Section

2, the theoretical bases that allow the reconstruction from either the phase of the Fourier

Transform or the phase of the Bispectrum are established. In Section 4 three image restoration

algorithms are developed. Some examples are given in Section 6. Finally, Section 7 is

devoted to conclusions and final remarks.
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3.1 Preliminaries

Every visual scene is an image that originates from a great variety of image formation

processes that, fortunately, can be approximately described with a relative small number of

equivalent physical concepts and an associated set of equations. Describing the processes and

equations of image formation is motivated by the desire to provide image restoration. The

techniques that deal with such problem are oriented towards modeling the degradations, blur

and noise, and applying an inverse procedure to obtain an approximation of the original

scene. The restoration concept is different from the enhancement concept which goal is to

manipulate an image producing more visually pleasing results to an observer. Usually

enhancement techniques do not consider degradation models.

The problem of image restoration has been extensively treated in the literature given its

practical importance as well as its theoretical interest. Hence, an overview of such methods

would be too extensive and laborious since the problem arises in almost every branch of

engineering and applied physics. A state of the art in recent developments as well as a detailed

introduction is presented in [Katsaggelos, 1991]. Another classical introductory book on this

problem is [Andrews, 1977]. Additionally, a survey on digital image restoration is also given

in [Sezan, 1990].

Perhaps one of the most prominent examples of successful image restoration was the work

done at the Jet Propulsion Laboratory with images of the Moon, Mars and other planets from

TV cameras on board of satellites [Huang, 1979]. A lot of research has been also carried out

by imaging planets and stars through the atmosphere from systems based on earth.

Atmosphere turbulence is also a severe limitation in remote sensing and aerial imaging used

for geographic purposes or weather prediction. Another particular example where restoration

techniques could have been useful was to restore images obtained from the Hubble Telescope,

which suffered form a spherical aberration of its primary min-or. Perhaps, if applicable, the

use of HOS-based methods, which are known to be "expensive techniques", would have

been cheaper than sending a space shuttle to repair the telescope.

A typical imaging system consist of an image formation system, a detector and a recorder. For

example, an electro-optical system such as the television camera, contains a photoelectronic

device which is scanned for transmission or recording of the image. In any stage of the

system images are likely to be degraded. The success of any image restoration scheme relies

on how good the mathematical model fits the real image degradation. Here, we are concerned

with two types of degradation: deterministic or random spatial degradation (the blur) and;

random pointwise degradation (the noise). We address the problem of recovering images
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from degraded versions of it, assuming a linear imaging system with space invariant point

spread function (PSF) and additive noise. Thus, the discrete image model was given in Eq.
(2.41) and it is rewritten here as:

g(m) = Z h(m-m ')f(m ') + n(m)
in

= h(m) *f(m) + ntfm) = a(m) + n(m) (3.1)

where the time sub index k has been dropped, and will be used only when required. The

displacement or shift dk°, has also been withdrawn since it is assumed the same for all pixels.

Recall that g(m) is the observed image intensity for the spatial position m = (m,n),flm) is

the noise-free image considered deterministic, h(m) is a linear shift-invariant blurring point

spread function (PSF) that can be either deterministic or random, n(m) is symmetrically

distributed random noise, in' belongs to the region of support of h(m), and a(m) denotes the

2-D convolution of h(m) <maf(m).

The restoration objective is to obtain a signal as close as possible to the original image, f(m),

given g(m), and having some knowledge of h(m) and n(m). Most restoration techniques

based on statistical models make use of second-order statistics, ignoring the phase

information. On the other hand, in many cases noise can be modeled as having Gaussian

statistics of unknown covariance. Both facts combined, make HOS a potential tool to restore

degraded images. A detailed motivation and development will be given throughout this

chapter. Let us first obtain the bispectrum of an image that may be derived from the

definitions provided in the previous chapter. The bispectrum of g( in) is given by:

S3,g ((°n·a)J2 • (Û21'(Û22) = G(Cûn,(û12) G((Û21,CÙ22) G( -(ûirû}2i , - O)¡2-CU22 ), (3.2)

where Gfu^.o^J is the 2-D Fourier Transform of g(m). In the above expression a

deterministic formulation is supposed. A stochastic formulation could be easily derived by

taking the expectation of the above equation, see Eq. (2.17). Both formulations have to be

kept in mind since we are dealing with deterministic signals, the original image and the

blurring filter, and stochastic signals, random blurring filters and the noise.

Note that the Bispectrum is a 4-D signal from which the original noise-free image must be

retrieved. The Weight-Slice Method is a HOS-based method capable of obtaining the signal of

interest from its Bispectrum. It requires the inversion of the third-order cumulant matrix,

which needs, for an image of size NxN, the order of O(NxN)3 = O(N^) operations. This

tremendous amount of computations, even for moderate values of N, must be reduced by
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either using a less computationally expensive approximation or by processing the image in the
projection domain. In the latter case, considering W projections of length N, the

aforementioned method will require O(N) O(N)3 = O(N4) operations. This number of

computations is substantially lower and, thus, this solution is the one we adopt for the

restoration of images. In order to ensure that the properties of the blur and noise are kept in

this new domain, the projection theorem is first introduced. Hence, the mathematical

description will be given for the 1-D projections of the image.

3.1.1 The Projection Theorem

The difficulties associated with the combination of truly two-dimensional signals and their

higher-order statistics can be reduced by means of the Radon Transform, also called

projection operator. In Computer Tomography (CT) problems the projection space arises

naturally because of the data gathering mechanics. This coordinate system plays an important

role in many other applications unrelated to CT. For example, two dimensional linear shift

invariant filters can be realized by a set of decoupled one-dimensional filters by working in the

projection space. The 2-D signal recovery problem, that we treat in this thesis, can be

uniquely decomposed into many 1-D signal reconstruction problems. Other applications

where projections are useful are image segmentation, geometrical analysis of objects and

image processing applications requiring transformation between polar and rectangular

coordinates [Jain,1989].

The Radon Transform of a 2-D continuos function flx,y) denoted f@(s), is an analog

operation defined as the line integral off(x,y) along a line inclined at an angle 9 from the x-

axis and at a distance s from the origin (Fig. 3.1) [Deans, 1983]. Each point in the (s,6)

domain corresponds to a line in the spatial domain. Mathematically it is written as:

fe(s)=í f f(x,y) 8(xsin8-ycosG-s) àx dy (3.2)
J J R

where R is an area containing the object of interest. In practice, we deal with discrete signals

and in this case ./fay) is an ideal low-pass version otf(m,n).

A fundamental relationship, the Projection Theorem, relates the 1-D Fourier Transform of the

projection/^)1, with the central slice, at angle 6, of the 2-D Fourier Transform of the object

F(œltcû2) [Deans, 1983], [Jain, 1989]. We obtain:

variable s will now be used for discrele signals.
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fe(s)

Fig. 3.1 Projection off(x,y) at angle 0

N-JN-l
Fg®= I I.

m=0n=0
(3-3)

where Fg(C) is the 2-D Fourier Transform in polar coordinates off(m,n) as well as the 1-D

Fourier Transform oíf^s) with respect to s.

The example in Figure 3.2 shows that, taking sampled values for 6 and | in the 2-D

frequency domain, we end up with many more values at low frequencies than at high. The

samples (full points) are spaced uniformly along the rays, but the distribution is not uniform

in the ÚJ/-C02 Cartesian coordinate system. This implies that exact reconstruction of the

original image from the discrete projections is not possible although very good

approximations may be derived. Actually, much of the research in reconstruction algorithms

deals with the proper compensation for the nonuniform distribution of the available values of

the Fourier Transform [Tabei, 1992].

Despite this problem, restoration from projections is still feasible. As we will see in the

examples, the problems inherent with implementing the Radon Transform are negligible as

compared to the blur and noise degradations that deteriorate the image. See for example Fig.

3.11 (a) and 3.11(b) and 3.12(a) and 3.12(b), where a couple of images are shown together

with the same image after Radon and inverse Radon Transform.
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Fig. 3.2 Example of distribution of available values of the Fourier transform.

or taking Inverse Fourier Transform,

Let us now consider the projections of a blurred image. Denoting by Gg(Ç), Ag(£,), Hg(Ç) and

Fg(C) the Fourier Transforms in polar coordinates of g(n,m), a(n,m), h(n,m), andf(n,m)

respectively, then, in the absence of noise:

(3.4)

(3.5)

where gd(s), ae(s), hrfs),fe(s) happen to be the projections of g(n,m), a(n,m), h(n,m),

f(n,m) at angle 6.

We can derive similar expressions for the projections of the Bispectrum. From the definition

of deterministic Bispectrum and denoting by B tfÇ],Ç2) the Bispectra ofg^s), we obtain:

= atfs) = he(s)
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From Eq. (3.4), in the noise-free case, the above expression becomes:

Denoting by BatfÇj£2), Blid(Çj,Ç2) and BjrfÇj,^) the Bispectra ofarfs), h ¿s) anafes),
respectively, the last equation is equivalent to:

¿2) Bjg(Çi ¿2). (3.6)

Finally, denoting by R„(/Sj,S2), Ra(¿
si>s2)' ^hésl-s2^ an(* Rfésl>s2^ tne íriP^e correlations

of g(fs), a^s), hffs) anafes), respectively, we can compute the Inverse Fourier Transform

of Eq. (3.6) as:

2) (3.7)

Equations (3.6) and (3.7) imply that the convolution property that was valid for the image and

for its projections can be extended to the third-order statistics of the projections.

3.1.2 Degradation Models

The formulation that deals with the projections of the image has been established taking into

account the blur degradation only. Next, some considerations on the noise degradation are

presented to later on retake the above expressions considering the presence of additive noise.

3.1.2.1 Noise in Imaging Systems

The noise process may originate in the image formation process, the transmission medium,

the recording process or any combination of these. For example, in photographic film, the

noise, called film-grain noise, is introduced by the silver grains that compose the developed

image. The image is formed by the masses of silver deposited after development, but there is

a fundamental randomness inherent in the grain deposition. The silver grains are randomly

distributed with respect to their size, shape and location. Film-grain noise is signal-dependent

and Poisson distributed which makes restoration algorithms particularly difficult

[Huang, 1968]. Fortunately, it can be approximated by a Gaussian process.

In photoelectronic systems the noise introduced is due, first, to the random fluctuations in the

number of photons and photoelectrons on the active photoactive surface of the detector and,

second, to the random thermal noise sources in the posterior circuits. The latter, has a

behavior that is well-known, it is described as a zero-mean white Gaussian noise. The first
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process generates signal-dependent noise governed by Bose-Einstein statistics [Andrews,

1977], which, for high light levels, is approximated by Gaussian statistics and it is considered

independent of the signal.

A different type of noise that occurs in the coherent imaging of objects is called speckle noise.

For low-resolution objects, it is multiplicative and occurs whenever the surface roughness of

the object being imaged is of the order of the wavelength of the incident radiation. It is

modeled as log-normal, where after using a logarithmic transformation, it is converted to a

signal independent, additive process which is close to Gaussian when an integrating aperture

is used [Wear, 1990].

As pointed out in [Sezan, 1990], almost all practical implementations of the restoration

algorithms assume that observation noise is a zero-mean, white Gaussian process that is

uncorrelated to the signal. Furthermore, it was suggested in [Walkup, 1974] that not much

improvement can be obtained by modeling the noise as signal-dependent in the image

estimation problems [Tekalp, 1991]. Thus, it is a good approximation to assume Gaussian

noise independent of the signal in our degradation model although any other type of

symmetrically distributed noise is allowed. Furthermore, the methods presented here can also

deal with cases in which the Gaussian noise is colored.

Noise can be disregarded in many applications where the SNR is high and the degradation is

not perceivable. Nevertheless, there are some situations where the signal power is low, this

is, for example, the usual case in medical imaging. In such circumstances, restoration

methods should have noise into account.

Our puipose is to recover each projection,/^), in non-ideal conditions. Next, we shall study

two possible situations in which the reconstruction is possible. First, when the image is

degraded by a deterministic PSF and additive Gaussian noise, and second, when the PSF is

random of known statistics.

3.1.3.1 Deterministic Blur and Additive Noise Model

The first restoration problem we address involves deterministic PSF. We consider the Optical

Transfer Function (OTF), which is the Fourier Transform of the PSF, to have linear or zero

phase. This property of the 2-D blur is fortunately preserved in the projection domain. Thus,

Hß(%) is also linear or zero phase since it is just an slice of the 2-D filter in the frequency

plane.
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The blur model we assume is realistic since in many applications, blur degradations due to an

important number of sources are considered to have linear or zero phase. For example, in

[Sezan, 1991] models for real out-of-focus images are investigated. It is shown that the phase
is either zero or linear.

A more general case of spatially invariant models will include the class of symmetric PSF

where the OTF is obviously real but not strictly positive. In this case we could not easily

separate the phase of the signal from the phase of the blurring. Only if we had FQ(%) real and

strictly positive, we could identify the phase of the blurring filter and therefore reconstruct the

blurring filter prior to restoration. Nevertheless, this case is not much realistic since it depends

on the nature of the image. Otherwise we need more information about the blurring PSF. Our

goal is to show that it is possible and appropriate to restore blurred-noisy images once we

have recovered the true phase of the Fourier Transform or the trae phase of the Bispectrum.

Let c„Q(C), <Pa()(Ç)j and çW£) be the phase functions of Gg(C), AQ(^), Fg(C) respectively. Let

us also denote by V^efé/.^» Va 0^7»^ and ^fâ^i^2> the Phase functions of BgrfÇj.Çj,
Baé%i'%2Ì and Bfé^l'^- ^ tne phase of the OTF is linear, the phase of the 1-D Fourier
Transform of AQ(%), differs from the phase of the Fourier Transform of the projection of the

original image by a linear factor, therefore

(3-8)

where t0 characterizes the phase of the OTF. If TO is zero they are equivalent,

Cató) = <P/Ä (3.9)

In the third-order domain,

Yatâl&) = VftfÇl&), (3.10)

where the linear phase component is canceled out.

In absence of noise çgtfÇ) = 9a^) and VAflf£;.^ = Vae^l'^- Then from 9jg(Ç) and

\fffQ(Ç],Ç2) > F(j(Ç) and B d Ç j, Ç 2) are uniquely reconstructed except for a constant factor. The
uniqueness of the reconstruction is explained in Section 3.2.

When the signal of interest is contaminated with noise, the original phase functions are no

longer available. Nevertheless, we can estimate the Bispectra of the projections in the case

many independent, although possibly shifted, observations of the image are available. Using

the fact that the Gaussian processes have identically zero polyspectra of all order greater than
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two, additive Gaussian noise may be rejected by computing the sample bispectrum of the

observations ofg^s). Along with the phase retrievability property, see Eq. (2.32), this is one

of the advantages of using the bispectrum as opposed to power spectrum. Our immediate goal

is to obtain a good estimation of Ba^^2,^2) and therefore VVe^/»^ or Vfefà- Th's

estimation is computed from:

1 K *
Bae(Ci&) =TT J Getä) Gok&) Gek fa+fr) (3.11)

A.— I

where K is the number of observations. Estimates of the bispectrum of OQ(S) are

asymptotically unbiased at all frequency pairs if and only if the Fourier Transform ofa^s) at

£ = 0 is zero [Giannakis, 1989]. For a finite extent sequence, this means that the mean value

of the signal should be zero. It was latter shown in [Sundaramoorthy, 1990] that, even if the

signal has non zero mean, we can still obtain asymptotically unbiased estimates for all

frequencies which do not lie in the axis ¿jy = 0, £2 = 0, and C¡+ E,2 ~ ® • We have extended

these results in Appendix A and shown that when the relative shift among the projections has

a uniform or triangular distribution, the Bispectrum estimation is only biased near the origin

and limited to the axis ¿jy = 0, C2
 = 0, and C¡+ Ç2

 = 0 wnen noise is white. Thus,

IT/ B ^ f M ¡a £7 |2 «OE{Bae(Çi,Ç2)} = i .
BaQ(Çl,Ç2) otherwise

(3.12)

We can take advantage of the fact that the phase of the Bispectrum is not biased at the origin

since it is zero. However this is not true for the magnitude unless AAO)= 0, that is, when the

signal is zero-mean. Then, regardless of the mean ofA^O), from the estimated bispectrum

B(iQ^l'%2) we obtain i¡/ae(^j,^2) and therefore V/gté/»^ ^rom which, as we will see, we

can reconstruct the signal of interest.

3.1.3.2 Random Blur Model : Turbulent atmosphere

Anyone who views an astronomical star with a large telescope will observe a blurred image

consisting of a collection of small dots which are wiggling around. The resolution of

conventional astrophotography with large telescopes is not limited by the diffraction on the

finite aperture. The influence of the atmosphere is worse than aperture diffraction. The

inhomogeneities of the atmosphere are in constant turbulent motion, with the results that

instantaneous wavefront degradations fluctuate rapidly with time. To "freeze" the atmospheric

degradations, thus eliminating any time averaging, it is necessary to use a short-exposure
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time, from 0.1 to 0.001 second or less. The.PSFs and OTFS encountered for short-exposure

images are markedly different from their long-exposure counterparts. The PSF of a long-

exposure image is a smooth and broad function, then the corresponding OTF is narrow and

smooth. On the other hand, the PSF for a short-exposure image is a jagged and narrower

function, whereas the corresponding OTF has significant fluctuations of both magnitude and

phase. One of the most important facts about short-exposure images is that their quality is

unaffected by the tilt component of the wavefront distortions. A tilt of the incident wavefront

simply shifts the center of the image and affects the image in no other way. Provided the goal

of the imaging experiment is to determine the structure of the object brightness distribution,

but not its absolute position, tilt is of no consequence. On the other hand, for long-exposure

images, changing tilt of the incident wavefront serves to broaden the PSF and narrow the

OTF. Since the structure of the OTF is statistical in nature for the short-exposure case, the

best we can hope to do in mathematically describing it is to calculate some of its average

properties.

The short-exposure image of a point source is found to have a great deal of high-frequency

structure, often referred as "speckle'. The average speckle size corresponds to that of the

diffraction-limited Airy disk of the telescope [Goodman, 1985]. This gives the hope that

short-exposure data will give diffraction-limited information about the object. If we were to

gather a large set of short-exposure photographs and center them all in such a way as to

remove the effects of pure image shift from frame to frame, a sum of these aligned images

would yield an image that closely agrees with the predictions of a theoretical average short-

exposure OTF [Goodman, 1885]. A. Labeyrie [1970] invented an alternative approach called

Speckle interferometry, motivated by the observation that, whereas the ensemble average of

the short-exposure OTF falls off comparatively rapidly, the ensemble average of the squared

modulus of the OTF has significant value out to much higher frequencies. Latter, Lohmann at

al. [1983], [1984] conceived a method based on triple correlations, considering the theories

by Labeyrie, that was capable of reconstructing true diffraction-limited images. This method,

called speckle masking, might be seen as a generalization of speckle holography, where the

cross-correlation of speckle interferograms of the object with the corresponding speckle

interferograms of a point source yields a true diffraction limited image of the object. The light

from the reference point source and the object must pass through the same isoplanatic patch in

order to form correlated speckle patterns. This condition limits the class of objects which can

be studied with the holographic method. In speckle masking, multiplication of a speckle

interferogram with the same but properly shifted interferogram forms a mask which can act as

an artificial reference star.
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We next provide the mathematical description of the speckle masking method (in 1-D since we

process the projections of the image). Thus, a sequence of short exposure speckle

interferograms, itfx) is evaluated, each one given by :

ik(x) = o(x) * pk(x), (3.13)

where o(x) is the intensity distribution of the object and p/Jix) is a random PSF, combination

of the atmospheric turbulence and the telescope. For a space-invariant incoherent image

forming system, the OTF is known to be :

Pk(cû) = ¡H(fû') H(0)' + (ù) dû)', (3.14)

where

H(a>) = H0(co) M((u). (3.15)

HO(CU) represents the pupil function of the telescope, for example, for a rectangular aperture,

P/.(CU) = Tri(a/a), a triangular function that depends on the dimensions of the aperture. M((u)

represents the random turbulent atmosphere. The average energy spectrum of the image is

related to that of the object by,

\îœ)\2 = \O(co)\2 \H(cu)\2 (3.16)

It is clear that the retrievable information about the object will in general not be complete, for it

is the squared modulus of the object spectrum that is obtained, not the complex spectrum

itself. In speckle masking the following quantity is evaluated,

Ri(xj.o) =< [ik(x])ik(xi-a)] * ik(x) > => R0(x},a) =[o(X])o(x}-a)]*o(xj) ~o(xi) (3.17)

where < > indicates ensemble averaging and => denotes compensation of the speckle masking

transfer function [Lohmann, 1983]. cris selected such that the product mask [ofxjjofxj-cr)] is

approximately a S function. In this case, cross correlation with the object yields to the object

itself. The proper shift vector a for a double star is identical to their separation, for other

objects crmay be difficult to find. Generalization of din Eq. (3.17) by a variable vector x2 is

nothing else than the triple correlation,

Ri(xi,x2) -Roixi.x^RpixLXi) (3.18)

which gives the Bispectrum in the frequency domain
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B i (a>i,(02) =B0(cùi,Cû2)Bp(o)i,Cù2). (3.19)

The random medium M(co) can be modeled as a stationary random process with independent

zero-mean Gaussian real and imaginary parts, it is shown that the average Bispectrum of the
A

transfer function, BJcOj,^), is strictly positive for all frequencies up to the diffraction limit

[Lohmann, 1983]. Therefore :

Z B i (0)1,0)2) = Z B(,((Oj,Cû2). (3.20)

The phase information of the Bispectrum of the object is given by the phase of the average

Bispectrum of the observed intensities.

Several algorithms have been derived to retrieve the object from the average Bispectrum of the
A

speckle interferograms. Usually, B (úJj.ú^J is obtained from accurate measurements of a

point source, yielding to the object bispectrum by deconvolution. Other algorithms use

speckle masking as it is given in Eq. (3.17). Both options present some drawbacks, the first

one requires the measurement of an isolated star in the isoplanatic neighborhood of the object,

whereas the second one requires the selection of a proper masking a. As pointed out in

[Dainty, 1989], it is desirable to use only the Bispectrum phase in the reconstruction.

Therefore, as in the deterministic blur model, our purpose is to retrieve the object of interest

from its true Bispectrum phase.

3.1.3 HOS-based methods

We consider HOS-based methods to restore images affected by one of the two blur models

presented before. In the first model, deterministic blurring and additive noise, third-order

statistics will reduce the presence of zero-mean symmetrically distributed noise while

preserving the phase information. In the second model, the properties of the blur in HOS

domains supply the true Bispectrum phase of the object. Before developing the restoration

algorithms we briefly describe the Bicepstrum Iterative Reconstruction Algorithm (BIRA)

[Petropulu, 1990] and the Weight-Slice (WS) Algorithm [Fonollosa, 1993], [Vidal, 1994]

that yield to the desired signal from its third-order statistics.

3.1.3.1 BIRA

This method reconstructs a signal from the phase of its bispectrum. As mentioned in the

previous chapter, higher-order cepstra are closely related to the phase functions. BIRA

employs the cepstral coefficients, that for a signal f^n) are defined as
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m
(3.21)

(3.22)

where a.n, b.o , are the zeros inside and outside the unit circle respectively, and thus are

related to the minimum and maximum phase components. The coefficients«:.«are the poles

inside the unit circle of the Z-transform off^n). Observe that for finite sequences fZ,2 =0)

this term is zero. The cepstral coefficients are related to the phase of the bispectrum as

[Nikias, 1990]:

bß (m,0)= - - Btfrn) m> 0 (3.23)

In/Alfe/

where c^Q was defined in Eq. (2.36). They are also related to the power cepstrum c ,g,

which is the cepstrum of the power spectrum:

m > 0

m = 0 (3.24)

m < 0

where A, ,0 is a constant. The relationship with the signal itself is

ftfn) = F-1{eFfcJV(m)Jj, n=0,..,N-l (3.25)

where

m>0

m = 0 (3.26)

m < 0

is the complex cepstrum of the signal.

Inspecting the above equations we observe that the desired signal may be obtained in the

following way. Knowledge of the phase of the Bispectrum leads us to the difference of the

0
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cepstra coefficients, Eq. (3.23). On the other hand, the power cepstrum gives the sum of the
cepstra coefficients, Eq. (3.24). Thus both coefficient sequences A.fAm) and BfAm) can be
found and from Eq. (3.25) and Eq. (3.26) we compute the desired signal f^n).

3.1.3.2 The WS Algorithm

As we have seen in the previous chapter, it is known that, for a causal and exponentially
stable system which input is assumed to be an independent, identically distributed and non-

Gaussian sequence, with skewness y3x, the output Bispectrum By(a)],a>2) exists and is given
by

By(ú)i,ú)2) = 73xH(0)i) H(a>2) +co2). (3.27)

We can observe that finding the coefficients of the filter H(a>) in Eq. (3.27) is equivalent to

estimating a signal from its bispectrum.

The Weight Slice (WS) Algorithm has been previously used to obtain the parameters of a
possibly non-minimum MA system [Vidal, 1993]. The MA parameters can be expressed as a

linear combination of cumulant slices. It was shown that if there is a set of weights that gives
a causal slice, then the MA system can be identified. The system of equations is expressed as

Scw = b0

where Sc is the matrix of cumulants of order 2 or higher

-q,j) C4x(-q,j,k)

(3.28)

C2x(q)

(3.29)

Each matrix coefficient,

the weight vector

is the estimated n th-order cumulant of the output signal, w is

w = w2,

and b0 is the coefficient vector:

b0 = (0 ... 0 1... b(q-l) b(q))

The unknowns are the vector w, and the last q elements of b0

(3.30)

(3.31)
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The matrix equation is solved in two steps :

1) Computation of the minimum noun weights that give a causal W-slice

S u wm = (0, ..,0,1),

w,„ = Su
 ff l, (3.32)

where Su is the matrix formed from the upper q+1 rows of Sc, and S^ denotes the pseudo

inverse of Su

2) Computation of the coefficients as

l'j — V » . » — \ \ / I i ^ T l

¿0 is the estimated sequence we obtain using a combination of cumulants, thus:

fe(n) = b0

3.2 Uniqueness of the reconstruction from the phase functions

The restoration strategy for each projection is based on the fact that we have exact knowledge

of its Fourier phase or its Bispectrum phase. Once we have this information we need to

ensure that we can uniquely reconstruct the desired signal. We first show that it is possible to

recover the sequence Fg(C) from the phase of AQ(%). Analogously, Bj-g(Ç],Ç2) will be

determined from the phase of BQQ (C¡,C2). Finally, F^fy may be found from the phase of

Hayes [1980] and Oppenheim [1981] were the first to thoroughly study the importance of

phase in signals. In general, the phase and magnitude of the Fourier Transform are

independent functions, which implies that the signal can not be recovered from either of them

alone. Nevertheless, for some cases, there is a certain relationship that can be exploited. For

example when the signal is minimum phase or maximum phase, the log magnitude and phase

are related though the Hubert Transform [Oppenheim, 1989]. Hayes and Oppenheim realized

that, under certain conditions, a discrete sequence is completely specified to within a scale

factor by the phase of its Fourier Transform, without the restriction of minimum or maximum

phase. The conditions under which this is possible were established in the following theorem

[Hayes, 1980]:
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Theorem l : Let x[n] and y [n] be two finite sequences which are zero outside the interval

0 <n <N-1 with Z-Transforms which have no zeros in reciprocal pairs or on the unit circle2.

IfZX((u) = ZY(Cu) atN-1 distinct frequencies in the interval 0 < (u < n, then x[n] = ßy[n]

for some positive constant ß.

We have derived an important consequence of this theorem:

Corollary 1 : Let x[n] be a finite sequence which is zero outside the interval 0 <n < N-l

and which number of zeros is N-l = K^-l + 4P + 2P*, where (K¡}-1) is the number of non-

reciprocal zeros, and P and P* are the number of reciprocal and real reciprocal pairs

respectively. There is a unique sequence y[n], except for some positive constant factor, that is

zero outside the interval 0 < n< Kh-l, far which Z X((u) = Z Y(a>) at N-l distinct

frequencies in the interval 0 < (ù < n.

We have created a new set of conditions to reconstruct a sequence from another with the same

Fourier-phase but different length. This is the case of projections blurred by a zero phase

OTF. The reconstruction is only possible if the Z-Transform ofx[n], has the same zeros than

the Z-Transform of y[n] plus necessarily the rest of zeros in reciprocal pairs. In our case these

zeros will correspond to the zeros of the PSF. The proof of Corollary 1 follows from

considering that it is false and leading to a contradiction of Theorem 1. To identify the

sequence y[n] only Kb-l points of its Fourier phase are needed. However our original signal

x[n] is specified by N-l points of its Fourier phase. Therefore we need N-l points to ensure

that all information about y[n] is contained in the Fourier phase ofxfnj.

We are also interested in extending these results to 2-D sequences. This extension can be

achieved by mapping the 2-D sequence into a 1-D sequence and then applying Theorem 1,

although in this case, the election of the pairs of distinct frequencies ((ûlt(û2) is not arbitrary

(see Appendix B). Thus, we have stated a similar corollary for 2-D signals :

Corollary 2 : // x[n,m] is a finite sequence of dimensions NxN then there is a unique

sequence, yfn,m], except for some positive constant factor, with dimensions K^K^ NxN

such that ZX(u)j,C02) = Z Y((ùi,(û2) at (N -1)2 distinct frequencies in the region 0 < 0)1 < n,

0< a>< n.

2 Although not demonstrated in [Hayes, 1980] the theorem could be modified to allow zeros on the unit circle.
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Corollary 2 is a very important result since it demonstrates that a 2-D signal may be recovered

from its 2-D phase function. In particular, the Bispectrum of a 1-D signal, which is a 2-D

signal, may be recovered from its Bispectrum phase.

A related lemma was derived by [Petropulu, 1990], where it was shown that a signal may be

uniquely reconstructed from its bispectral phase except for some positive constant and some

integer shift:

Lemma 1 : Let x[n] and y[n] be two finite sequences that satisfy the requirements of

Theorem 1, and let \j/x(û)j,(jÛ2) and y/yfúJj,^) be the phases of the Bispectrum of x[n] and

y[n] respectively. If\f/x((ùj,(Ù2) = ty/./ö)y, £ö2 j at N(N-I)/2 discrete frequencies in the region

described by 0< (u¡+ Cû2 ̂ , ®2 - ®l> ^l — ̂ > tnen x^ = ay(n~no) for some positive
constant a and some integer n0.

As we did for Theorem 1 we can derived a corollary to allow reconstruction of a sequence

from another with the same Bispectrum phase but different length.

Corollary 3 : Let x[n] be a finite sequence that satisfies the requirements of Corollary 1.

There is a unique sequence y[n], except for some positive constant factor and some integer

shift, that is zero outside the interval 0 <n <Kb-l, for which \ifx(ú)j,ú)2) = if/y(û)2,a>2)
 at

N(N-l)/2 distinct frequencies in the region 0< co,+ (O2<n:, 0)2 <Cfy, 0)j >0.

Corollary 3 is demonstrated from the demonstration of Lemma 1 and Corollary 1.

The restoration schemes that we have developed are based on the theoretical results stated in

the Corollaries. Corollary 1 set the bases to reconstruct a 1-D signal degraded by a zero-phase

OTF from the phase of the blurred signal. We can include the case of linear-phase OTF if it is

previously compensated. The first WS-based algorithm we develop in this paper is based on

this result. Corollary 2 set the theoretical bases to reconstruct the Bispectrum of a 1-D signal

degraded by a zero-phase or linear OTF from its Bispectrum phase. This result is exploited in

the second WS-based algorithm developed in this work. Finally, we have developed a BÏRA-

based algorithm exploiting Corollary 3.

3.3 Algorithms

3.3.1 Motivation

In the preceding sections we first revised the projection theorem and described an image

model characterized by some type of noise and blur degradation. Later, the BIRA and Weight
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Slice method were chosen as two possible methods to recover a sequence from the bispectrum

or a combination of cumulants respectively. We then set the theoretical bases that allow the

reconstruction of a 1-D signal or a 2-D signal from its phase functions. In this section, we

derive different methodologies to solve the image restoration problem for the deterministic and

random blur models.

We assume that a series of images is provided. For example, we might have several

observations of the same image embedded in noise with possibly different phase shifts; or a

sequence of images of an object moving in a noisy background; or a sequence of short

exposure speckle interferograms, etc.

Given a set of shifted images we could solve the registration problem and do frame averaging

which is optimal in the maximum likelihood sense. This would reduce the noise degradation

however the shift for each of the images could be difficult and burdensome to find and we

will still need to deblur the resulting image.

All the concepts we have previously seen in this chapter are of paramount importance and will

now make sense in the reconstruction schemes. Thus, the structure of the algorithms is

motivated by the following facts,

1) To avoid the high complexity associated with HOS of 2-D signals we restore images from

their projections.

2) Use of HOS allows reducing the presence of Gaussian noise while retaining phase

information from the signal.

3) Reconstruction from the phase information can be motivated considering the following

properties and common assumptions: (i) The FT of a discrete finite length signal can be

uniquely reconstructed from its phase (Corollary 1); (ii) analogously, the Bispectrum may be

recovered from its phase (Corollary 2); (iii) a discrete finite length signal can be reconstructed

from its Bispectral phase (Corollary 3); (iv) the phase from many blurring functions is zero or

linear.

4) Finally, the WS method is chosen to retrieve the signal from its third-order moments since

it is a robust and well-proven method. The B IRA method is also capable of reconstructing a

signal form the phase of its Bispectrum
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3.3.2 Restoration Scheme

Figure 3.3 shows the block diagram of the restoration process that summarizes the operations

we effectuate for all algorithms.

In first place, for each degraded image gk(m), we compute the Radon Transform to obtain the

projections for different angles. The Radon Transform is calculated from an interpolation of

the Cartesian sampling grid to the Polar grid of the 2-D FFT of the image. There is an intrinsic

loss of information in this operation. However using FFT lengths larger than the size of the

image and using polynomial interpolations in each direction of order (m-1) for m > 2 [Press,

1990], we get good estimations for the projections. See [Tabei, 1992] and references therein

for other implementations of the Radon Transform.

Reconstruction

Reconstruction

Reconstruction
f KA9

/\
Fig. 3.3 Restoration scheme ( R: Radon Transform; B:Bispectrum estimation; R'1: Inverse

Radon Transform)

In the second step we calculate the third-order moment sequence or the triple correlation in the

frequency domain for each projection and then, average over the realizations of the projections

at the same angle [Nikias, 1993], as stated in Eq. (3.11). In the Bispectrum domain the

presence of Gaussian noise is reduced.

In the following step we reconstruct the signal by using a HOS-based method. We have

developed different methodologies based on the WS and the B IR A methods. In the next

sections we will describe the reconstruction algorithms.

Finally, the Radon Inverse Transform gives the desired image. The Inverse Radon Transform

is implemented reversing the Radon Transform procedure. That is, we interpolate from polar

grid to Cartesian grid.
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3.3.3 Algorithm 1: BIRA-based reconstruction

This algorithm has the main advantage to realize the reconstruction process in a single step:

from the estimated bispectrum we reconstruct the deblurred signal (Fig. 3.4).

BIRA
A

f ,

Fig. 3.4 Restoration scheme for the BIRA reconstruction

Such operation is implemented using an iterative algorithm that was developed in [Petropulu,

1993]. The algorithm starts from the true sequence of the phase of the bispectrum for at least

N(N-l)/2 samples and an initial guess for the power cepstrum. It converges to a unique

solution for the cepstral coefficients and consequently for the signal, except for a constant

factor and a space shift. It is summarized in the following steps:

Step 1: Initialize the power cepstrum in Eq. (3.24) to an arbitrary value (one for all lags).

Step 2: Since the phase of the Bispectrum gives the differences of the cepstrum coefficients,

estimate these coefficients from Eq. (3.24) and Eq. (3.23). Thus,

A , -mcpfo(in) -2mchfe(m,0)
) 2 m>0

-mc„fg(in) +2mcijfa(m,0)
) = m 2 m>0 (

Step 3: Reconstruct n) from Eq. (3.25) and Eq. (3.26)

Step 4: Correct any linear phase component and set the length of the signal, multiplying
A

f(/n) by the following window:

p , e l _ í 0 if(N-lnt(Kb/2))-n0<n<L-n0-l+Int(Kb/2)
Ki8(S) - \ J otherwise (3"35)

Where L is the size of the FFT used in Eq. (3.25), nQ is the time shift that is introduced due to

the reconstruction from the cepstra coefficients, K¡} is the length of the blurring filter and

Int(x) indicates the closest integer smaller than x.

Step 5: Update the power cepstrum and go to Step 2 until the algorithm converges.
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For further details on the algorithm see the aforementioned reference. We have changed Step
4 in order to restore blurred signals that obey the conditions settled in Corollary 3.

At this point we are really concerned in knowing if zeros of the Z-Transform of image

projections lie on the unit circle. In this case the cepstral coefficients are infinite length

sequences and may not be used. We studied projections of some well known test images :

"camman.pic"; "building.pic"; "face.pic"', "mandril.pic"; "hat.pic". Unfortunately, all

projections had their zeros near the unit circle and most of them had some zeros on the same

unit circle (considering four decimal precision). We took a window of size 60x60 from

"hatpic" and studied the projection at angle 0. This signal does not have any zero on the unit

circle but all of them remain very close (the closest one has I r I = 0.9996 ).

Figure 3.5 shows the position of zeros for the Z-Transform of this projection.

120 60

150 30

180

210 330

240 300

270

Fig. 3.5 Position of zeros for a projection at 0 degrees of a 60x60 window of "hat.pic"
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We tested EIRA when no degradation was affecting this image. The cepstral coefficients were
computed taking 2048 samples. The length of the FFTs was L=1012. Figure 3.6 shows the
reconstructed signal after 30 iterations. Although we have recovered the signal, the results are

not worthy enough since no degradation was present and data lengths were too large.

Moreover, the conditions were propitious since there were no zeros on the unit circle.

Consequently we have discarded this method in our examples since, a priori, we do not know

if a given image has its projections with zeros on the unit circle and, as we have seen for

many test images, this unfortunate situation is very likely.

3.3.4 Algorithm 2: WS-Fourier Phase reconstruction

To avoid the problems associated with BIRA we look for an alternative HOS method which is

capable of reconstructing a signal even if zeros are close to the unit circle. The Weight Slice

Algorithm is one such method. However this algorithm realizes the reconstruction process in

two steps : first, from the estimated bispectrum we reconstruct the projections by means of the

WS itself (noise has been removed, however the signal is still blurred); second, we "deblur"

this signal by Fourier phase reconstruction means. Figure 3.7 illustrates this procedure.
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10 20 30 40
(a)

50 60 70

60
0 10 20 30 40

(b)
50 60 70

Fig. 3.6 a) projection at 0 degrees of "hat.pic". b) Reconstruction form cepstral coefficients

using BIRA
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WS Fourier Phase
Reconstruction

Fig. 3.7 Restoration scheme for the WS-FP reconstruction algorithm

In first place, we obtain the estimated sequence through the WS Algorithm. We only make
A

use of the third-order moment sequence. Therefore Sc = Rad(sl,s2) , that is, the inverse

2-D FT of the estimated Bispectrum, of size (2N-1, 2N-1) . The matrix5c is used in Eq.

(3.32) to obtain the pseudoinverse and then the minimum norm weights. This result is used in

Eq. (3.33) to find b0 = ag(s) of length N.

A A

In the next step, we obtain f Q (s) from the phase of a ̂ s). We use an iterative algorithm

similar to the one proposed in [Hayes, 1980]. Some modifications are necessary to adapt the

scheme to the new set of conditions established in Corollary 1. The algorithm is the

following:

Stepl: Obtain the M-point DFT of OQ(S) and derive its phase function (pa@ (Ç) Ç = 0, ...,

M-l where M > 2N.

Step 2: Forni another sequence y¡Q (s) given by

yie(s) =<
0

0

0 < n < Int (Kb/2)

Int (Kb/2) < n < (N-Int (Kb/2))

(N-Int (Kb/2)) < n < M-l

(3.36)

Step 3 : Obtain a new estimation Fj+j^C) = \ Y¡^^)\ exp (C(,Q(^), where Y^Ç) is the M-
A A

point DFT of y ¡ff s) and Fj+j^c) is the M-point DFT of the new estimated signal, f¡g(s).

In the first iteration of Step 2 we use the blurred signal. We set to zero the left and right

margins to obtain a signal with the same length than the one we are trying to reconstruct. That
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provides a convenient initial guess for the magnitude of the Fourier Transform and at the same

time speeds up the process. Steps 2 and 3 are repeated until the algorithm converges.

It must be pointed out that any linear phase factor should be corrected before applying Step 2

in the reconstruction algorithm, otherwise the iterative procedure will not converge to the right

solution. For the case of an object or an image in a noisy background a linear phase on the

blurring filter causes a linear shift of the object and therefore to its projections. The linear shift

is lost in the third order domain (this is why we can average many shifted projections in this

domain). A simple mechanism that consist on choosing one position for the image been

reconstructed is added. One of the image series is chosen and the shift is settled according to

the shift of each projection of this particular image. For the case of complex shape objects we

need more information to avoid shift errors among projections. For simple objects this

information may be easily extracted, for example for binary stars two perpendicular

projections are enough to locate the object.

3.3.5 Algorithm 3: Bispectrum Phase-WS reconstruction

The previous algorithm uses the estimated Bispectrum which magnitude is biased near the

origin. If we were to use the phase of the Bispectrum we will avoid this problem. We suggest

a third algorithm that reconstructs the true Bispectrum of the projection from the phase of the

Bispectrum of the blurred signal. We then retrieve the signal using the WS method. Figure

3.8 illustrates this procedure, we observe that the two WS-based algorithms involve similar

operations but in a reverse order.

Bispectrum Phase
Reconstruction

B f e t W
WS

A

fn

Fig. 3.8 Restoration scheme for the third algorithm

To retrieve the Bispectrum of the object from the 2-D Bispectrum phase of the interferograms

we implement an analogous iterative algorithm to the one we presented for Algorithm 2. The

new intervals in step 2 take into account the third-order moment region of support depicted in

Fig. 3.9. For signals of length Nj the third-order moment sequence is zero outside an outer
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hexagonal region [Mendel, 1991]. Suppose we know the dimensions of the object to be N2,

where N2 < Nj, in this case the region of support is the inner hexagonal region (Fig. 3.9). Its

boundaries establish the new intervals in the iterative algorithm. We could also speed up the

process by taking advantage of the symmetry regions of third-order moments and use only the

samples in the region O <n¡ <N1,0 <n2 ^N2 , n¡ >n2 .

In the second step, the WS Algorithm reconstructs the signal from its moments. Hence
A A

5 = RfQÍs¡,s2) with size (2N2-1, 2N2-1 ) and bfì - / e(s) of length N2 . Like for the

previous algorithm, after this step, any linear phase factor should be corrected before

projecting back the image.

Comparing the last two algorithm we observe that Algorithm 2 is faster since the iterative step

is performed over 1-D sequences. However, the reconstruction uses the magnitude and phase

of the estimated Bispectrum. On the other hand, in Algorithm 3 the reconstruction is only

based on the phase of the estimated Bispectrum which is unbiased. Nevertheless the

computational load of this algorithm is higher since the iterative procedure is applied to 2-D

sequences.

II
III

Fig. 3.9 Third-order moment region of support for sequences of length

symmetiy regions from I to VI are also shown.

and N2 . The
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3.3.5 Computational Complexity for the WS-based method

As it is well known, higher-order statistics methods are computationally more expensive than

second-order ones. The computational burden arises from the sample mean estimation of

moments or cumulants and of course from the corresponding reconstruction methods. Thus,

the computational burden of the two WS-based algorithms to restore each projection is given

by:

1) the sample estimation of the Bispectrurn which is the same for all algorithms and of order

O(2KN 2), where K is the number of available realizations and N the length of the signal. In

general, the order of operations is given by the number of lags, in this case N 2, the order

statistics and the number of realizations.

2) the WS which requires 0(20/3 N 3), [Vidal, 1993], operations for Algorithm 2 and

O(20/3 (N-Kjj) 3) for Algorithm 3. The computational complexity is due to the size of the

cumulant matrix Sc since any algorithm solving pseudoinverse problems requires around m?

for a matrix of size mxm

3) the iterative reconstruction procedure which differs for both algorithms. We see that for

each iteration we basically compute an FFT and an inverse FFT. Thus, the second step in

Algorithm 2 entails a computational cost to O(2IjMlog2M), where 7¿ is the number of

iterations and M the size of the FFT. For Algorithm 3, it requires O(2J2M22log2M22)

operations, where M2.xM2 is the size of the 2D FFT and 72 is the number of iterations

3.4 Results and comparisons with other methods

Example 1 : This example illustrates the performance of the iterative phase reconstruction

step in Algorithm 2 for a typical projection. Fig. 3.10 (a) shows the original projection of an

image that was blurred by a 3x3 Gaussian filter:

h(m,n) = exp(-a(m2+n2)) (3.37)

where a was set 0.7. The blurred projection is shown in Fig. 3.10 (b). We use FFT's of

dimension 128 and 50 iterations to reconstruct the signal. Fig. 3.10 (c) is the reconstructed

signal and Fig. 3.10 (d) the difference error signal. The reconstructed signal is very close to

the original one, altough small errors show off in the error signal ( notice the scaling is

different).
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Example 2 : This example demonstrates the performance of Algorithm 2 in the absence of

noise for an arbitrary image. The original image is 64x64 and is shown in Fig. 3.11 (a). The

2-D FFTs to compute the projections are 256x128. Fig. 3.11 (b) is a blurred version of this

image with a 5x5 Gaussian filter (a = 0.35). Fig. 3.11 (c) is the restored image from the

Fourier phase. From this image we see that high frequencies have been properly recovered.

However, we observe some distortion. This is due to relative small shifts among projections

and to small errors in the reconstruction, like in the previous example. For low SNR these

two sources of errors from projections will be stressed.

Example 3 : In this example we show the performance of the second algorithm and

compare the restoration when other existing methods are applied. The original image is a

computer generated image shown in Fig. 3.12(a). The reconstructed image after applying

Radon Transform followed by the Inverse Radon Transform is shown on Fig. 3.12(b). The

dimensions of the 2-D FFT and 2-D IFFT for the Radon Transform computation are 64x64 to

avoid distortion in the high frequencies. Fig. 3.12(c) presents a blurred version of this image

when a 3x3 Gaussian filter with a = 0.7 is utilized. Fig. 3.12(d) shows the restored image

obtained from Algorithm 2. The phase reconstruction step is applied with FFT's of dimension

128 and 50 iterations. In Fig. 3.12(e) the image is blurred with the same filter and Gaussian

noise for SNR3=25 dB is added. The restored image is shown in Fig. 3.12 (f) when

Algorithm 2 is used. The third-order moments are estimated from 50 shifted realizations. To

compare this result with a correlation-based method we consider in Fig. 3.12 (g) the

parametric Wiener filter given by

A H*(u)i,0)2)
F ((oi,a>2) = » , T G((ùi,(ù2) (3.38)

i»/ i i 2 , Pno(0)l,0)2)\H(0)1,0)2) I + A
Pf(0)1,0)2)

where P^CÙ^û)2) and Pf(o)¿, 0)2) are the periodogram-based estimates of the power spectra

of the noise and the image, that are obtained considering 50 noisy realizations and A =/

[Andrews, 79]. A modified version of this filter is suggested in [Kang, 91], where the

Fourier phase of the restored image is estimated from the Bispectrum. In Fig. 3.12 (h) we

show the restored image from the magnitude of the parametric Wiener filter and the true phase

of the signal. As we can observe, the method proposed in this paper gives better results than

3The signal-to-Noise Ratio for a 2-D signal f(n,m) of dimensions NxN is defined as n m
0—« , where

A/ /T

an2 is the variance of the noise. n
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the Wiener filter and similar results when the true phase is incorporated. However we must

point out that the WS restoration scheme does not make use of the blurring filter, only its size.

In this sense this method realizes a blind restoration.

a) Original projection
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Fig. 3.10 Example of reconstruction from the phase of the FT using 128-point FFT and 50

iterations.
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(a) (c)

(b) (d)

Fig. 3.11. (a) Original image, (b) Image obtained after applying Radon and Inverse Radon

Transform, (c) Blurred Image by a 5x5 Gaussian filter, a = 0.35. (d) Restored image from

(c) using Algorithm 1.
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(a) (c) (e)

(b) (d)

(g)

(h)

Fig. 3.12 (a) Original image, (b) Image obtained after applying Radon and Inverse Radon

Transform, (c) Blurred Image by a 3x3 Gaussian filter, a = 0.7. (d) Restored image from (c)

using Algorithm 2. (e) Same as (c) but SNR = 25 dB. (0 Restored Image from (e) using

Algorithm 2. (g) Restored image using Parametric Wiener Filter, (h) Restored image using

Parametric Wiener Filter and the true phase of the signal.
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Example 4 : In this experiment we compare the algorithms in a low SNR scenario. Figure

3.13 (a) corresponds to the projection of the image in Fig. 3.10 (a) at angle 0 degrees. Figure

3.13 (b) corresponds to the same projection when the image is degraded by a 5x5 Gaussian

blurring filter with oc=0.9 and the SNR=5 dB, 50 noisy and shifted realizations are available

(the shift is randomly generated with uniform distribution between +8 and -8).

The results using the parametric Wiener filter and the modified Wiener filter are shown in

Figs. 3.13 (c) and 3.13 (d). The small details have been lost and even if we use the true phase

of the signal we can not properly restore the original projection. Figures 3.13 (e) and 3.13 (f)

show the results using Algorithm 2 and Algorithm 3 respectively, where the FFT size and the

number of iterations are 256 and 50 for the second algorithm and 256x256 and 25 for the

third one. The restoration is better accomplished by Algorithm 3 (except at the extreme of the

signal) at the expense of a higher computational cost. We have computed the error from

e = Z, ( f o(s) -fo(s) ) 2 and obtained e= 22.00 10 3 for the parametric Wiener filter,

e= 21.70 10 3 for the modified parametric Wiener filter, e = 1.28 10 3 for Algorithm 2 and

e= 1.08 10 3 for Algorithm 3. We clearly see that high frequencies are better preserved and

the error is much lower when the proposed algorithms are utilized. Unfortunately, as was

mentioned before, for this low SNR, although the quality of the 1-D projection has been

considerably improved, small error contributions from all projections will be propagated and

added up to the final image. Thus the resulting final image was not satisfactory.
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Fig. 3.13 (a) Originai projection at angle O degrees, (b) Degraded projection, blurred by a 5x5

Gaussian filter, a = 0.9, SNR = 5 dB. (c) Restored signal using parametric Wiener filter, (d)

Restored signal using the magnitude of the Wiener filter and the true phase of the signal, (e)

Restored signal using Algorithm 2. (f) Restored signal using Algorithm 3.
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Example 5 : We can apply our method to restore the image of a blurred object moving in a

noisy background. A translation in the 2-D image results in a shift in every projection except

for one parallel to the direction of the shift. A rotation of the 2-D object results in a cyclic

shift in the set of projection functions. Our test object is a pyramid object of dimensions

14x14 in a 64x64 image that has been convolved with a 5x5 Gaussian filter (a =0.35). The

translation of the object was simulated shifting the projections of the image. It was generated

randomly with triangular distribution between +25 and -25. A total of 50 different images

were employed with SNR of 25 dB. There was no rotation of the object. Fig. 3.14 (a) shows

the original object, Fig. 3.14 (b) shows the blurred object, and finally Fig. 3.14 (c) shows

the reconstructed object. Though we suppose known the dimensions of the blurring we do

not know the dimensions of the object. The blurred-noisy object should be segmented just

before applying the iterative phase reconstruction step in Algorithm 2.

Example 6 : We have simulated a sequence of short exposure speckle interferograms

assuming Gaussian statistics for the atmosphere. Assuming that we know the dimensions of

the object we uniquely reconstruct the third-order moment sequence from the phase of

B 1(0)1,0)2) by means of Algorithm 3. Fig. 3.15 (a) shows a projection of a group of three

simulated stars of different intensities. The image was diffracted through a rectangular pupil

function. Fig. 3.15 (b) shows one of the 300 interferograms that were generated using

Gaussian distribution for the real and imaginary part of M(co) in Eq. (3.15). The reconstructed

signal using Algorithm 2 is depicted in Fig. 3.15 (c) where we assumed that the length of the

three stars was 16 samples. Fig. 3.16 (a) shows the third-order moment of the original

projection whereas Fig. 3.16 (b) shows the average third-order moments computed from the

interferograms. In Fig 3.16 (c) the third-order moment sequence of the object has been

estimated through the iterative of Algorithm 3 using 2-D FFTs of sizes 256x256 with 150

iterations.

Fig. 3.17 (a) shows a projection of a group of two simulated stars. Fig. 3.17 (b) shows the

reconstructed signal using Algorithm 3 from 300 speckle interferograms assuming a length

equal to 8 samples. Fig 3.18 (a) presents the Bispectrum of the simulated double star and Fig.

3.18 (b) the Bispectrum we obtained dividing the average intensity Bispectrum and the

Transfer function Bispectrum (computed from 300 observations of a point source). Fig. 3.18

(c) gives the estimated Bispectrum with 2-D FFTs of sizes 128x128 after 200 iterations.

Fig. 3.19 (a) shows the image of the 2 simulated stars. Fig. 3.19 (b) is one of the 300 speckle

interferograms. Finally, Fig. 3.19 (c) shows the reconstructed image.
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(a)

(b)

(c)

Fig. 3.14 (a) Original object of dimensions 14 x 14 on a 64 x64 image, (b) One of the 50

observations of the object, blurred with 5x5 Gaussian filter, a = 0.35, SNR = 25 with

random simulated translation of triangular distribution between 25 and -25. (c) Restored

object using Algorithm 2.
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Fig. 3.15. (a) Projection of a diffracted image of three stars.
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Fig. 3.15. (b) One of the 300 simulated speckle interferograms.

3.5

3

2.5

2

1.5

1

0.5

0

-0.5
5 10 15 20 25 30 35

Fig. 3.15. (c) Solution from the reconstructed Bispectrum using Algorithm 2 and assuming
length 16.
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Fig. 3.16. (a) Third-order moment for the projection of Fig. 8 (a).

Fig. 3.16 (b) Average third-order moment interferogram.

Fig. 3.16. (c) Reconstructed third-order moment from the iterative step in Algorithm 2.
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Fig. 3.17. (a) Projection of a diffracted image of two stars.
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Fig. 3.17. (b) Solution from the reconstructed Bispectrum using Algorithm 2 and assuming
length 8.
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Fig. 3.18 (a) Bispectrum for the projection of Fig.3.18. (a).

Fig. 3.18 (b) Division of <Bi(co1,Cu2)> and < Bp(cu1,a>2)>, given 300 speckle interferograms

Fig. 3.18 (c) Estimated Bispectrum from the iterative step in Algorithm 2
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Fig. 3.19 (a) Simulated double star.

Fig. 3.19 (b) One of the 300 speckle interferograms

Fig.3.19 (c) Restored image using Algorithm 2.
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Example 7 : In this example we apply Algorithm 3 to real astronomical images. They were

provided by the Astrophysics Institute of Canaries and recorded from the "William Herschel"

4.2 m telescope at the Observatory of Roque de los Muchachos. Fig. 3.20 is one of the 300

speckle interferograms of size 256x256 that corresponds to a binary star separated 0,4 sec-arc

(ADS4265). Fig. 3.21 (a) shows one of the projections at 0 degrees (vertical projection).

Several choices for the length at this angle were given and found that the two stars were

visible for length around 20 pixels. Algorithm 3 was employed using 2-D FFTs of sizes

512x512 with 25 iterations. The estimated projection is shown in Fig. 3.21 (b).

Fig. 3 One of the 300 real speckle interferograms.
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Fig. 3.21 (a) Projection at angle 0 from one of the 300 speckle interferograms . (b)

Reconstructed projection using Algorithm 2.
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3.4 Conclusions

In this chapter, we have shown that it is possible to restore degraded images from the HOS of

its projections. Different restoration schemes were given to reconstruct the 1-D signals from

either the phase of the Fourier Transform or the phase of the Bispectrum. They were applied

to images distorted with deterministic PSF and Gaussian noise and to simulated and real

astronomical images degraded by turbulent atmosphere of known statistics.

The motivation behind the use of these methods is the following. First, using HOS allows to

reduce the effects of the noise and at the same time obtain an estimate of the Fourier phase or

the Bispectrum phase of the signal that leads to the original signal. Second, employing the

projections of the image reduces the high complexity associated with HOS of images.

Theoretical bases have also been established to ensure the uniqueness of the reconstruction.

Actually, this is the most interesting theoretical result obtained in this part of the thesis. Three

HOS-based methods have been tested to carry out the reconstruction step. On one hand, we

have seen that BIRA-based methods can be applied when we can ensure that the Z-Transform

of the projections does not have zeros on the unit circle. On the other hand, the capability of

the WS to reconstruct the projections from its third-order moments is demonstrated.

Furthermore, for the case of deterministic PSF, the blurring filter was not used, only its size.

Although the complexity using HOS over 2-D signals is reduced, the computational load is

still high. Nevertheless the quality of the images shown in this work was improved as

compared to other existing methods. The results proved to be quite good for moderate SNR.

For low SNR the restoration of the projections was also good, although small errors in some

of the projections are easily propagated to the image.
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