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Motivation

It is clear that we are living a really important period in the development and the knowl-
edge of life sciences. Fifty years after the description of the structure of the double helix,
we have moved from the analysis of a single gene to the systematic mass sequencing
of entire genomes. At the time of writing this dissertation, whole genome sequencing
projects for hundreds of organisms (bacteria, archea and eukaryota, as well as many
viruses and organelles) are either complete or underway. All the information we are gath-
ering today will probably modify the way we will understand life, science and medicine.
But, before the best use can be made of this data, the identification and the precise location
of the functional regions of the genomic sequences must be determined. The most impor-
tant things to realize about the “book of life”, is that we know almost nothing about the
language in which it is written, and that raw genomic sequences are mainly useless for
the scientific community. The challenge ahead is to extract relevant information encoded
within the billions of nucleotides stored in our databases.

In a very simplistic description, the first step in the functional annotation of a genome
would be to find the collection of genes encoded in the nucleic acid sequences. The next
step would be to assign a function to each protein, where the three dimensional structure
of the proteins will play a key role. Then, using microarrays technology, it will be feasible
to obtain the spatial and temporal expression pattern of each gene at any developmental
stage or specific condition. Finally, the last step would be to establish the network of
interactions and regulations among all the proteins of a complete genome.

This thesis focuses on the first step of any genome analysis: to find where genes are.
The motivation of this thesis, thus, is to give a little insight in how genes are encoded and
recognized by the cell machinery and to use this information to find genes in unannotated
genomic sequences. The complexity of gene prediction differs substantially in prokary-
otic and eukaryotic genomes. While prokaryotic genes are encoded in single continuous
open reading frames, usually adjacent to each other, eukaryotic genes are separated by
long stretches of intergenic regions, and their coding sequences can be interrupted by
large non coding sequences. One of the objectives of this thesis is the development of
tools to identify eukaryotic genes through the modeling and recognition of their intrinsic
signals and properties.

This thesis addresses another significant open problem of this field: how the sequence
of related genomes can contribute to the identification of genes. The value of comparative
genomics is illustrated by the sequencing of the mouse genome for the purpose of anno-
tating the human genome. The availability of closely related genomes makes it possible to
carry out genome-wide comparisons and analysis of syntenic regions. Recently, compar-
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ii Motivation

ative gene predictions programs exploit this data under the assumption that conserved
regions between related species correspond to functional regions (coding genes among
them). Thus, the second part of this thesis describes a gene prediction program that com-
bines ab initio gene prediction with comparative information between two genomes to
improve the accuracy of the predictions.

Nowadays computational analysis is a major, integral part of genomics. It would not
be an exaggeration to claim that genomics analysis can only be made with computational
tools. Only by using computational methods and statistical models we can try to find out
how genes are encoded and try to accurately predict their location in complete genomic
sequences.

Thus, the work described in this dissertation is essentially interdisciplinary; this means
that while the basic subject of matter is biological and the obtained results are of biological
interest, techniques from other fields have been extensively used. Statistical approaches
have been used to create models of genomic features to be able to recognize sequence mo-
tifs and reproduce the underneath biological process, while computational programming
has been applied to include these models into efficient bioinformatic tools.

Genís Parra

Barcelona, December 2004
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Introduction

1.1 Biological background

In the initial part of this chapter we try to define what a gene is. This is not an easy
task and this section owes its overall structure to the recent review done by Snyder and
Gerstein (2003). The second part of the section describes some of the molecular processes
that are involved in the pathway from the nucleic acids to proteins.

1.1.1 What is a gene?

Historically, the term gene (from the Greek word genos, which means birth, race or off-
spring), was coined by the Danish botanist Wilhelm Johannsen in the early 1900s as an
abstract concept to explain the hereditary basis of traits. He also made the distinction be-
tween the morphological appearance of an individual (phenotype) and its genetic traits
(genotype).

Earlier, William Bateson, a geneticist supporter of Mendel’s ideas, had used the word
genetics in a letter; he felt the need for a new term to describe the study of heredity
and inherited variations. But the term did not start spreading until Wilhelm Johannsen
suggested the Mendelian factors of inheritance to be called genes.

Phenotypic traits were associated with hereditary factors even though the physical
basis of those factors were not known. Early genetic studies by Thomas Hunt Morgan and
others associated heritable traits with specific chromosomal regions. Using fruit flies as
a model organism, Thomas Hunt Morgan and his group at Columbia University showed
that genes, located in the chromosomes, are the units of heredity. In 1930s, George Beadle,
based on mutagenesis experiments, introduced the concept of “one gene, one enzyme”,
which later became “one gene, one protein”.

With the development of recombinant techniques and gene cloning, in the 60s, it be-
came possible to combine the assignment of a gene to a specific segment of a chromosome
and the synthesis of a gene product. Although it was originally presumed that the final
product was a protein, the discovery that ribonucleic acids can have structural, catalytic,
and even regulatory properties made it evident that the end product could be a nucleic
acid. Thus, we can define a gene in molecular terms as “a complete chromosomal segment
responsible for making a functional product”. This definition has several logical compo-
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2 1. Introduction

nents: the expression of a gene product, the requirement that it must be functional, and
the inclusion of both coding and regulatory regions.

Nowadays, however, in the so-called “genomic era”, geneticists have realized that the
complexity of the genomic information is even beyond the standard definition of gene.
There are additional “peculiarities” in gene identification that do not fit in previous defi-
nitions (i.e. overlapping transcripts, alternative splicing, fusion genes or pseudogenes).

There are now examples of overlapping transcriptional units (for example where ex-
ons of one gene are encoded within the intron of another) and even overlapping protein
coding genes (Coelho et al., 2002; Tycowski et al., 1996). In all cases of gene overlap, each
gene has a unique functional sequence that is different from the others.

The production of several isoforms from the same transcriptional unit by various
types of alternative splicing seems to be a very common event. A single primary tran-
script can have several regions that can generate alternative splicing. Thus, the resulting
combinatorial effects of selecting different splice sites can be very pronounced, and genes
that code for tens to hundreds of different isoforms could be common (Graveley, 2001).
In the human genome, at least half of all genes have alternative spliced isoforms and this
is likely to be an underestimation because not all transcript variants have been identified
(Modrek and Lee, 2002).

There is also evidence that, in some cases, two adjacent genes are transcribed together.
Genes in prokaryotic organisms are organized into operons that generate long transcripts
encoding for many proteins that are transcribed together and translated sequentially. The
phenomenon in eukaryotic genomes that we are describing involves the synthesis of one
protein from two fused genes. Thus, an authentic gene fusion event would possess a par-
ticular mechanism to override the nonsense codon that would be used to stop translation
of the protein from the first gene. Employing the efficient splicing system in eukaryotes,
a few observed cases use alternative splicing to skip the exons containing the stop codon.
Therefore, there are described cases where genes from two adjacent loci are transcribed
together, probably as a result of a weak terminating signal, and after splicing, a fusion
mature transcript is built skipping the stop signal and generating a new chimeric protein
with exons from both pre-existing and independent genes (Thomson et al., 2000; Poulin
et al., 2003).

The definition of a gene is also linked with the definition of a pseudogene. Pseu-
dogenes are similar in sequence to normal genes, but they usually contain obvious dis-
ablements such as frame shifts or stop codons in the middle of coding domains. This
prevents them from producing a functional product or having a detectable effect on the
organism’s phenotype. The boundary between “living” and “dead” genes is often not so
sharp. Pseudogenes can be transcribed; truncated proteins could still have some func-
tionality, and regions with stop codons could be alternatively spliced. Conversely, there
are some pseudogenes that have entire coding regions without obvious disablements but
do not appear to be expressed. Presumably they lack the regulatory elements required for
the transcription. In these cases, it is difficult or almost impossible to discard marginal
transcription in some isolate tissue at some developmental stage.

As we have seen, the term gene has a broad and often diffuse definition. This plasticity
in the way that genes are specified could be convenient for the cell in order to generate a
huge amount of different combinations of final mRNAs and subsequently a huge amount
of protein diversity. For the rest of this thesis, the term gene will be used to refer to protein
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coding regions, and to simplify the problem, overlapped transcripts, fusion transcripts
and alternative splicing isoforms will not be taken into account.

1.1.2 Molecular basis of genomic information

Deoxyribonucleic acid (DNA) is a double-stranded molecule that is twisted into a spiral
staircase like helix. Each strand is composed of a sugar-phosphate backbone and nu-
merous base chemicals attached in pairs. The four bases that make up the steps in the
spiraling staircase are adenine (A), thymine (T) (uracil (U) when we are referring to the
ribonucleic acid, RNA), cytosine (C) and guanine (G). These steps act as the "letters" in
the genetic alphabet, combining into complex sequences to form the words, sentences
and paragraphs that code for the instructions to guide the formation and the differenti-
ation of the cell. Maybe even more appropriately, the A, T, C and G in the genetic code
of the DNA molecule can be compared to the "0" and "1" in the binary code of computer
software. Like software to a computer, the DNA code is a genetic language that com-
municates information to the organic cell. It was not until the early 90s and the Human
Genome Project that the scientific community deeply began to explore the nature and
complexity of the digital code inherent in DNA and bioinformatics rose as the only way
to provide tools to manage this type and amount of information.

But, returning to the biological problem, how do we move from DNA to proteins? This
process, known as the central dogma of biology, involves three main steps: transcription,
RNA processing (including capping, splicing and polyadenylation) and translation. The
basic schema of the central dogma is shown in Figure 1.1.

Transcription

As the initial step in gene expression, transcription is the central point of many regulatory
mechanisms. Eukaryotic genes contain highly structured regulatory sequences that direct
complex patterns of expression in many cell types during different stages of development.
The transcription of a gene is modulated by the interactions between specific proteins that
bind regulatory elements in the genomic sequence. These proteins function as transcrip-
tion factors needed for the RNA polymerase to initiate transcription. The control region
combines several different kinds of regulatory elements, and suggests the principle that
when a promoter is regulated in more than one way, each regulatory event depends on
the binding of its own protein to a particular sequence. When the optimal combination of
transcription factors are bound to their corresponding sequence elements, the continuous
sequence of DNA corresponding to a single gene is copied to an RNA sequence by the
RNA polymerase II.

The degree of complexity of the transcriptional regulatory regions differs notably
among eukaryotes and seems to correlates with structural and behavioral complexity.
A typical yeast regulatory region consists of short sequences located immediately up-
stream of the transcription start site (see Figure 1.2 a). Most core promoters contain a
TATA element, which serves as a binding site for TBP (TATA-binding protein). In gen-
eral, promoters are selected for expression by the binding of TBP to the TATA element.
The regulation of the TBP binding depends on upstream activating sequences, which are
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Figure 1.1: Schema of the central dogma of gene expression. In the typical process of
eukaryotic expression, a gene is transcribed from DNA to pre-mRNA. mRNA is then
produced from pre-mRNA by RNA processing, which includes the capping, splicing and
polyadenylation of the transcript. It is then transported from the nucleus to the cytoplasm
for the translation. From Zhang (2002).
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usually composed of 2 or 3 closely linked binding sites for one or two different sequence-
specific transcription factors. A few genes in the yeast genome contain distal regulatory
sequences, but the majority contains a single upstream activating sequence located within
a few hundred base pairs of the TATA element (Levine and Tjian, 2003).

A typical metazoan gene is likely to contain several enhancers that can be located in
5’ or 3’ regulatory regions, as well as within introns (see Figure 1.2 b). Each enhancer is
responsible for a subset of the total gene expression pattern; they usually mediate expres-
sion within a specific tissue or cell type. A typical enhancer is something like 500 bp in
length and contains in the order of ten binding sites for at least three different activators
and one repressor (Levine and Tjian, 2003). The core promoter is compact and extends
few hundred bases upstream of the transcription start site. There are at least three differ-
ent sequence elements that can recruit the TBP complex: the TATA element, the initiator
element and the downstream promoter element (DPE). Core promoters that lack a TATA
sequence usually containing a compensatory DPE element, in order to ensure recognition
by the RNA polymerase II transcription complex.

Many genes contain binding sites for proximal regulatory factors located just 5’ of
the core promoter. These factors do not always function as classical activators or repres-
sors; instead, many of them work as recruiting elements for distal enhancers to the core
promoter. Finally insulators prevent enhancers associated with one gene from inappro-
priately regulating neighboring genes. These regulatory genomic sequences: enhancers,
silencers and insulators, are scattered over distances of roughly 10 Kbp in fruit flies and
100 Kbp in mammals (Levine and Tjian, 2003).

A dominant characteristic of promoter sequences in the human genome is the abun-
dance of CpG dinucleotides. Methylation plays a key role in the regulation of gene ac-
tivity. Within regulatory sequences, CpGs remain unmethylated, whereas up to 80% of
CpGs in other regions are methylated on a cytosine. Methylated cytosines are mutated
to adenosines at a high rate, resulting in a 20% reduction of CpG frequency in sequences
without a regulatory function as compared with the statistically predicted CpG concen-
tration (Fazzari and Greally, 2004). CpG islands have been identified at the promoter sites
of approximately half of the gene in the human genome, most of which are considered to
be “house keeping” genes according with their ubiquitous expression pattern.

Transcription termination by RNA polymerase II seems to be only loosely specified. In
some transcription units termination occurs beyond 1000 bp downstream of the site cor-
responding to the mature 3’ end of the primary transcript (which is generated by cleavage
at a specific sequence). Instead of using a specific terminator sequence, the enzyme stops
RNA synthesis within multiple sites located in rather long “terminator regions” (Lewis,
1997). The nature of individual termination sites is not known.

RNA processing

There are three main RNA modifications: the capping reaction, splicing and the matu-
ration of the 3’ end by cleavage and polyadenylation. These three processes occur while
the RNA is being synthesized. There is evidence that regulatory interactions among these
processes and transcription (through the C-terminal domain of the RNA polymerase II)
are crucial to obtain the final mature RNA. Recent studies have shown that the “mRNA
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Figure 1.2: Comparison of a simple eukaryotic promoter and a extensively diversified
high eukaryotic regulatory modules. a) Simple eukaryotic transcriptional unit. A simple
core promoter (TATA), upstream activator sequence (UAS) and silencer element spaced
within 100-200 bp of the TATA box that is typically found in unicellular eukaryotes. b)
Complex metazoan transciptional control modules. A complex arrangement of multiple
clustered enhancer modules interspersed with silencer and insulator elements which can
be located 10-50 kb either upstream or downstream of the core promoter containing TATA
box initiator sequences (INR), and downstream promoter elements (DPE). Adapted from
(Levine and Tjian, 2003).
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factory” is a dynamic complex whose composition changes as it moves along the tran-
scribed sequence of genes (Zorio and Bentley, 2004).

Capping

The 5’ end of the RNA (which is the end synthesized first during transcription) is capped
by the addition of a methylated G nucleotide. Capping occurs almost immediately, after
about 30 nucleotides of RNA have been synthesized, and it involves condensation of the
triphosphate group of a molecule of GTP with a diphosphate left at the 5’ end of the ini-
tial transcript. The new G residue added to the end of the RNA is in reverse orientation
from all the other nucleotides. This 5’ cap will later play an important part in the initi-
ation of protein synthesis and it also seems to protect the growing RNA transcript from
degradation (Lewis, 1997).

Polyadenylation

The 3’ ends of mRNAs are generated by cleavage followed by polyadenylation. RNA
polymerase transcribes past the site corresponding to the 3’ end, and sequences in the
RNA are recognized as targets for an endonucleolytic cut followed by polyadenylation.
A common feature of the mature transcripts in higher eukaryotes (not including yeast)
is the presence of the sequence AAUAAA in the region from 11-30 nucleotides upstream
of the site of poly(A) addition. The sequence is highly conserved and only occasionally
is even a single base different. Deletion or mutation of the AAUAAA hexamer prevents
generation of the polyadenylated 3’ end. The signal is needed for both cleavage and
polyadenylation (Lewis, 1997). Generation of the proper 3’ terminal structure requires
an endonuclease (consisting of the cleavage factors CFI and CFII) to cleave the RNA,
a poly(A)polymerase (PAP) to synthesize the poly(A) tail, and a specificity component
(CPSF) that recognizes the AAUAAA sequence and directs the other activities.

The addition of poly(A) helps to stabilize the mRNA and seems to be related with
the efficiency of translation initiation. The average size of the poly(A) tail is from over
70 adenosines in yeast, to over 240 adenosines in mammals for newly transcribed mRNA
and pre-mRNA in the nucleus. Cytoplasmic enzymes may also cause the polyA to shorten,
and occasionally lengthen before translation. Not all transcripts are polyadenylated;
some histone mRNA is poly(A) negative. For transcripts without poly(A) tail, the 3’ end
seems to be protected or sequestered by association with other factors.

Splicing

The primary RNA transcript is spliced to remove intron sequences, producing a shorter
RNA molecule. Introns are removed from the nuclear RNAs of eukaryotes by a sys-
tem that recognizes short consensus sequences conserved at exon-intron boundaries and
within the intron. The splicing of precursors to mRNAs occurs in two steps, both involv-
ing single transesterification reactions. The first step generates a 2’-5’ bond at the branch
site upstream of the 3’ splice site and a free 3’ hydroxyl group on the 5’ exon generating a
lariat RNA intermediate. The second step involves an attack of the 3’ hydroxyl group on
the phosphodiester bond at the 3’ exon and results in the joining of the two exons.
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This reaction requires a large splicing apparatus, which takes the form of an array of
proteins and ribonucleoproteins that generate a large particulate complex, the spliceo-
some. There are two distinct types of spliceosome in most organisms. The major class
or U2-type (also known as canonical or GT-AG splice sites) is universal in eukaryotes,
whereas the minor class or U12-type (also known as AT-AC) may not be present in some
organisms. The consensus sequences of U12-type introns are more conserved than those
of vertebrate U2-type introns (Sharp and Burge, 1997). Although less conserved, the U2-
type involved signals still have clearly recognizable motifs (see Figure 1.3).

The U2-type spliceosome is composed of five small nuclear RNAs (snRNAs) called U1,
U2, U4, U5, and U6 and numerous protein factors. Splice site recognition and spliceoso-
mal assembly occur simultaneously according to a complex sequence of steps (see figure
1.4). The first step appears to be the recognition of the donor (5’) splice site at the exon-
intron junction: a substantial amount of genetic and biochemical evidence has established
that this occurs primarily through base pairing with the U1 snRNA over a stretch of ap-
proximately nine nucleotides, including the last three exonic nucleotides and the first six
nucleotides of the intron. The second step in spliceosomal assembly involves binding of
U2 auxiliary factor (U2AF) and possibly other proteins to the pyrimidine-rich region im-
mediately upstream of the acceptor site, which directs U2 snRNA binding to the branch
point sequence approximately 20 to 40 bp upstream of the intron-exon junction. The
U2 snRNA sequence 3’ GGUG 5’ has been show to base pair with the branch point sig-
nal, consensus 5’ YYRAY 3’, with the unpaired branch point adenosine outstanding of the
RNA duplex. Mutations or deletions of the branch site in yeast prevent splicing. In higher
eukaryotes, the relaxed constraints in its sequence result in the ability to use related se-
quences in the vicinity when the authentic branch site is deleted. Subsequently, a particle
containing U4, U5, and U6 is added to the spliceosome. The subunit U5 possibly interacts
with the acceptor site, leading eventually to the formation of the mature spliceosome.

Several examples of intronic and exonic cis-acting elements, important for correct
splice site identification and distinct from the classical splicing signals, have been de-
scribed recently. These elements can act stimulating (as enhancers) or repressing (as si-
lencers) splicing, and they seem to be especially relevant for the regulation alternative
splicing. Exonic splicing enhancers (ESEs) in particular appear to be very prevalent and
might be present in most, if not all, human exons, including constitutive ones (Cartegni
et al., 2002). The lack of a well-defined consensus sequence for these signals indicates
that they might consist of numerous functionally different classes, and that the factors
involved may recognize degenerate signal sequences (Cartegni et al., 2002).

Translation

The mRNA sequence is translated into protein sequence, outside the nucleus, by a sub-
cellular structure known as ribosome (a compact ribonucleo-protein consisting of two
subunits). The ribosome binds to the mRNA, and scans the sequence synthesizing the
amino acid sequence specified by consecutive non-overlapping codons. Codons are de-
fined as triplets of consecutive nucleotides which are recognized by the transfer RNA
(tRNA) with the corresponding attached amino acid. Scanning of the mRNA proceeds
until the ribosome finds one of the three codons not specifying amino acids (the stop
codons: UGA, UAG and UAA). At that point, elongation of the amino acid sequence
ends and the final protein product is released.
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Figure 1.3: Splicing sequence motifs for U2-type spliceosome. The nearly invariant GU
and AG dinucleotides at the intron ends, the poly-pyrimidine tract preceding the 3’AG,
and the A residue that serves as a branch point are shown. For each sequence motif, the
size of nucleotide at a given position is proportional to the frequency of that nucleotide
at that position in an alignment if conserved sequences. Nucleotides that are part of the
classical consensus motifs are shown in blue, except for the branch point A, which is
shown in orange. Adapted from Cartegni et al. (2002).

Figure 1.4: The spliceosome cycle. The processing of the pre-mRNA containing two exons
and one intron into the ligated exon product and lariat intron is shown, emphasizing the
involvement of the small nuclear ribonucleoprotein (snRNP) particles at distinct steps in
spliceosome formation and catalysis. Adapted from Burge et al. (1999).
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Selection of the start codon, a methionine codon triplet, sets the reading frame that
is maintained normally throughout all subsequent steps in the translation process. What
makes the start different from the addition of a methionine internally in the polypeptide
chain is a special tRNA, initiator transfer RNA (tRNAi), that is used to recognize the
translational start codon. When this tRNAi is charged with Met to form met-tRNAi, this
compound binds to the P site of ribosomes. In eukaryotes, the small (40S) ribosomal
subunit carrying met-tRNAi and other associated proteins recognizes the 5’ capped end
of the mRNA. After the initial recognition it migrates through the 5’ untranslated region
(UTR) until it encounters the first “suitable” AUG codon which is recognized by base
pairing with the anticodon in met-tRNAi. When a 60S ribosomal subunit joins the paused
40S subunit, selection of the start codon is fixed.

Flanking sequences modulate the efficiency with which the AUG codon is recognized
as a stop signal during the scanning phase of initiation. In vertebrate mRNAs, initiation
sites usually conform to all or part of the so called translation (or Kozak) signal: GCCAC-
CaugGCG (Kozak, 1987).

For maximum effectiveness, the upstream GCCACC motif must directly precede the
AUG codon. If the motif is further upstream or the sequence is not optimal the effective-
ness in the translation is reduced and even other cryptic AUG codons can be used instead
the real one (Kozak, 1999). How the consensus sequence is recognized is not yet known.
One possibility is that interaction with GCCACC might slow scanning and thus facilitate
the recognition of the AUG codon by met-tRNAi.

Although context effects on AUG codon recognition have been studied primarily in
mammalian systems, a strong contribution of the motif has also been demonstrated in
plants. In S. cerevisae, however, the effects of context are minimal (Kozak, 1999).

Proteins are assembled by the sequential addition of amino acids in the direction from
the N-terminus to the C-terminus as a ribosome moves along the mRNA (see Figure 1.5).
The genetic code consists of 64 triplets of nucleotides. With three exceptions, each codon
encodes for one of the 20 amino acids used in the synthesis of proteins . That produces
some redundancy in the code: most of the amino acids being encoded by more than one
codon (see Table 1.1). The amino acid is attached to the appropriate tRNA by an activating
enzyme (one of 20 aminoacyl-tRNA synthetases) specific for that amino acid as well as
for the tRNA assigned to it. An aminoacyl-tRNA (a tRNA covalently bound to its amino
acid) able to base pair with the next codon on the mRNA arrives at the A site associated
with an elongation factor. The preceding amino acid (Met at the start of translation) is
covalently linked to the incoming amino acid with a peptide bond. Then, the ribosome
moves one codon downstream alowing the next codon to be binded by the corresponding
aminoacyl-tRNA.

Translation termination is initiated when one of the three stop codons is present in
the ribosomal A site, resulting in binding of the Release Factor (RF) proteins. Then, RF1
is removed from the ribosome in a GTP-dependent reaction involving RF3, resulting in
the dissociation of the 60S/mRNA complex. However, a peculiar family of selenium
containing proteins present in all three domains of life, recode the UGA stop codon into
the 21st amino acid, the selenocisteine. The alternative decoding is mediated by a stem-
loop structure in the 3’UTR of selenoprotein mRNAs (the SECIS element). See Castellano
(2004) for a good review of selenoproteins.

Chemical properties that distinguish different amino acids and post-translational mod-
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ifications (i.e. phosporilations, methylation or cleavage) ultimately cause the protein
chains to fold up into specific three-dimensional structures that enable them to carry out
their specific function.

Figure 1.5: Standard protein translation of an mRNA. From Biology, Harcout, Brace and
Jovanovich (1986).

1.2 Gene prediction

Computational analysis is a major, integral part of genomics, as stated by Galperin and
Koonin (2003). From genome shotgun sequence assembly to gene prediction and from se-
quence comparison to functional protein assignment, including evolutionary studies and
building of phylogenetic trees. It would not be an exaggeration to claim that genomics
analysis can only be made with computational tools. The way in which genomic infor-
mation can be directly codified as string of letters make it easy to process, to store and
to visualize. A lot of algorithms that had already been developed to analyze and solve
string based problems are now being used in the genome analysis field.

The human genome is about 3,000,000,000 base pairs, and many other genomes are
already stored in the public databases. Only by using computational methods and statis-
tical models we can try to find out how genes are encoded and try to accurately predict
their location in complete genomic sequences.

In the following sections we are going to describe the most common statistical meth-
ods to model genes features, and give a brief summary of the previously existent methods
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>Adh
AAATGCAAAACCGACAAGTTTGATTGGAGGGTTTGTAAAAAATAAAATTCGAATGTAAAA
ATGTATCGATGAGTCCATTAATCATTTCATTTGGTTCAATTCGCGCCACTGAGCTTAAAT
TCACGTACTGTGGTCGTCCCTTGTTTATGGGCAGGCATCCCTCGTGCGTTGGACTGCTCG
TAC ATGTGGGCGAGGTTCCGTAAAC GTCGGCATGTTGTCCACTGAGACAAACTTGTAAA
CCCGTTCCCGAACCAGCTGTATCAGAGATCCGTATTGTGTGGCCGTGGGGAGACCCTTCT
AGAGTTTCAGTTAGCGCAGGTGGATTTTACAGAAAAAAATGCAATGCAATTAAACATTAC
CGCTTAGCATCGAAAAGTAACCTGCGGGAAAAAGAAAAAATACAAATGTTAAAATTGTCC
TTGTATCTTATGTTGTATGCGTATCTCTTCTATTAAAGTGGGTTCATCTAACCATTATAC
ATTTCATAAATAAATAG ATTACAATTGGGTCAAAATAAATGTTCA GTGAAGCTTCCCTT
CTCAAGGTCATAAAAGCATTTAAAAAAAATAGCACAAATCAATAATTAAAAACTAATTTT
GAAATCTCTTTGAACAAGACAGATATTTTGGTTCAGTCGCTGAACAAATCTGTTTACTGT
CTGAGATATATGTATTTTTTGTCTTAAAATAAAAGCATATAAAAGCATTTTTTGTCAATT
CTAAAATCTGAAAACCATTTTTCCGACAGCTGACAGCTTCGAACAGAATATAGTACACAA
TTTGCAG TCCAAAAATGAGTACAGACCAACAATCAAAGAA TGACGACGCGACTGGGCAT
CTCTTAGTATTGAGATATATGTATTTAATTTTCTTAAAATAAAAGCATTTTTTGTCAATT
TATAATGATACAATAAAAAAAATTGATGATAAAGAGAGAAAGAGAGACTA . . . . . . . . . . . . .

Figure 1.6: Example of genomic sequence. Annotation of the encoded gene is showed
in colors. Red boxes correspond to coding regions, the translational start site (ATG) in
green, the almost invariable dinucleotides of the splice sites in violet (GT-AG) and the
stop codon in blue. From (Blanco, 2000).

for computational gene prediction.

1.2.1 Gene prediction methods

As we have seen in the previous section, a given protein sequence is not usually specified
by a continuous DNA sequence, but genes are often split in a number (that may be large)
of small coding fragments known as exons, separated by, usually larger, non-coding in-
tervening fragments known as introns. Often, intronic and intergenic DNA is considered
to correspond to a large fraction of the genome in higher eukaryotes. In the human ge-
nome, for instance, only a very small fraction of the DNA, which can be lower than 2%,
corresponds to protein coding exons.

The aim in any gene prediction program is, given a DNA sequence (see Figure 1.6), to
find the encoded gene structures and the corresponding amino acid sequences. Indeed, a
typical computational eukaryotic gene prediction tool involves the following tasks:

• identification of suitable signals

• prediction of candidate exons defined by the corresponding signals

• assembly of a subset of these exon candidates in a predicted gene structure

The particular implementation of these tasks varies considerably between programs.

Prediction of biological signals

Sequence signals involved in gene prediction are defined as short functional sequence
elements that are recognized by the cellular machinery involved in the pathway leading
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from DNA to proteins. As has been shown in the previous sections, there are many se-
quence signals that play a key role in the recognition of genes. However, as gene finding
tools focus on predicting coding regions, the four basic signals that define the boundaries
of the coding regions of the primary transcript are the most commonly used. These sig-
nals correspond to the translational start site (including the Kozak region), the 5’ splice
site (also known as donor site), the 3’ splice site (also known as acceptor site) and the
translational stop codons.

The main problem in signal recognition is that these motifs are not 100% conserved.
There is a high degree of variation in the actual sequences that are recognized by the same
cell machinery. Therefore, how can we model this variability? The most widespread ap-
proach to model these sequence signals has been position frequency matrices. Senapathy
et al. (1990) presented the first quantitative frequency matrices where each matrix element
Pij is the frequency of the base i in the position j from a set of aligned splice site sequences.

If Qij is the background frequency of nucleotide i at position j, then the popular
log-odd scoring matrix (known as Position Weight Matrix PWM, Weight Matrix Model
WMM, or Position Specific Scoring Matrix PSSM) can be computed as:

Mij = log(Pij/Qij). (1.1)

Then, given a sequence of length l the log-likelihood ratio can be computed by sum-
ming the coefficients of the log-likelihood matrix corresponding to each nucleotide in
each position on the sequence. Usually, a window the length of the matrix is run along
the sequence, and the coefficients from the matrix corresponding to each nucleotide in
each position on the window sequence are summed. Formally, the score of a matrix M
for a site s of length l (s = s1, ..., sl , and sk being one of the four nucleotides) is computed
as:

ms =
l

∑
j=1

Msj j. (1.2)

If the resulting score is positive the sequence occurs in the signal site more often than
in the background model, while if the score is negative the sequence is more likely to
be found in the background model. Figure 1.7 shows the frequency matrix and a PWM
derived from a set of D. melanogaster donor sites.

Although, PWMs are the most common method to model sequence motifs, they have
some limitations. For instance PWMs assume that bases at different positions are inde-
pendent and this is often an oversimplification. Several authors have observed statis-
tically significant dependencies between position within different signals. Certain ob-
served dependencies between donor splice sites positions can be interpreted in terms of
the thermodynamics of RNA duplex formation between U1 snRNA and the 5’ splicing
region of the pre-mRNA. Similarly, positional dependencies observed in human accep-
tors sites, appear partially to result simply from the compositional heterogeneity of the
human genome, whereas others probably relate to specificity of pyrimidine tract binding
proteins.

There are many ways to incorporate base dependencies. One method is to assume
that the probability of each base at a given position depends on the base occurring at
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a -3 -2 -1 0 1 2 3 4 5 6
A 35.14 50.33 12.81 0.00 0.00 58.92 75.69 5.94 11.76 30.91
C 28.01 14.40 8.98 0.00 0.00 1.85 5.94 2.25 12.02 13.74
G 19.29 18.63 67.24 100.00 0.00 35.14 11.36 87.58 7.40 18.49
T 17.57 16.64 10.96 0.00 100.00 4.10 7.00 4.23 68.82 36.86

b -3 -2 -1 0 1 2 3 4 5 6
A 26.25 28.41 28.11 0.00 0.00 20.86 24.29 27.98 24.87 27.14
C 21.93 22.64 19.47 0.00 0.00 20.57 24.55 22.50 24.85 22.36
G 23.40 21.92 21.32 100.00 0.00 30.17 23.86 23.25 21.88 25.10
T 28.34 26.97 31.05 0.00 100.00 28.37 27.24 26.20 28.31 25.28

c -3 -2 -1 0 1 2 3 4 5 6
A 0.292 0.572 -0.786 . . 1.038 1.137 -1.550 -0.749 0.130
C 0.245 -0.452 -0.774 . . -2.409 -1.419 -2.303 -0.726 -0.487
G -0.193 -0.163 1.149 . . 0.152 -0.742 1.326 -1.084 -0.306
T -0.478 -0.483 -1.041 . . -1.934 -1.359 -1.824 0.888 0.377

A/C A G G T A/G A G T G

Figure 1.7: Frequency matrices and position weight matrix derived from a set of canonical
donor splice sites. Negative positions correspond to the bases upstream of the splice site
boundaries. a) Frequency matrix derived from a set of canonical donor splice sites. b)
Background frequency matrix derived from a set of sequences with the a conserved GT
but not annotated as fucntional donor sites. c) Position weight matrix computed from
the frequency matrix derived from the real donor sites versus the background frequency
matrix. The consensus sequence is showed below.
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the one or more of the previous positions (the so-called Position Weight Array PWA,
Markov dependence or Weight Array Model WAM, Zhang and Marr (1993)). Another
method is to apply a decision tree (so-called Maximal Dependence Decomposition MDD,
Burge and Karlin (1997)) to partition the training data into subsets so that splice site bases
within each subset are approximately independent and can, hence, be modeled by sepa-
rate PWMs.

Recently described methods, as multilayer neural networks (Reese et al., 1997) or
inclusion-driven learned Bayesian Networks (idlBNs) (Castelo and Guigó, 2004), model
significant dependencies between all possible bases. More dependencies, however, result
in more parameters to be estimated and require much more data to generate the models.
These more complex models typically yield significant, but not dramatic, improvements
in splice site discrimination over the simpler models which assume only dependence be-
tween adjacent positions. The increase of efficiency is higher in isolation than in the con-
text of an integrating gene finding method, where other information (like coding statis-
tics) also helps, indirectly, in the definition of the exon boundaries (Burge and Karlin,
1998).

Prediction of exons

Once all the signals are predicted, all the putative exons can be built. Typically, gene pre-
diction programs redefine the term exon to refer only to the coding fraction of the exons,
and classify them as: initial (limited by a translational start site and a donor site), internal
(limited by an acceptor and a donor site), terminal (limited by an acceptor and a stop
codon) and single exon genes (limited by a translational start site and a stop codon). See
Zhang (2002) for a more realistic description of all the possible types of exons including
UTR exons and mixed coding and non-coding regions.

To discriminate coding regions from non coding regions a large number of content
measures have been developed (Fickett and Tung (1992), Gelfand (1995) and Guigó (1999)).
Such content measures, also known as coding statistics, can be defined as functions that
compute a real number that indicates the likelihood of a given DNA sequence to code
for a protein. Protein coding regions exhibit characteristic sequence composition which is
absent in non-coding regions. This bias is mainly due to coding restrictions: the specific
amino acid usage to build proteins and the unequal usage of the synonymous codons
(see Table 1.1). Fickett (1982) also showed that coding regions have asymmetries and
periodicities that help to distinguish them from non-coding sequences.

Among all the different coding measures, codon position dependent 5th order Markov
models (Borodovsky and McIninch, 1993) appear to offer the maximum discriminative
power (Guigó, 1998) and are at the core of most popular gene finders today. In this model,
the conditional probability of the identity of the next nucleotide depends on the identities
of previous five bases. This relatively complicated model incorporates a combination of
biases related to amino acid usage, codon usage, di-amino acid and dicodon usage as well
as other underlying factors.

Coding measures are usually combined with the scores of the exon defining signals to
obtain a final exon score. There are a number of ways in which these scores can be com-
bined. If computed as log-odds, they can be simply summed up under the assumption of
independence.
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Gly GGG 17.08 0.23 Arg AGG 12.09 0.22 Trp TGG 14.74 1.00 Arg CGG 10.40 0.19
Gly GGA 19.31 0.26 Arg AGA 11.73 0.21 End TGA 2.64 0.61 Arg CGA 5.63 0.10
Gly GGT 13.66 0.18 Ser AGT 10.18 0.14 Cys TGT 9.99 0.42 Arg CGT 5.16 0.09
Gly GGC 24.94 0.33 Ser AGC 18.54 0.25 Cys TGC 13.86 0.58 Arg CGC 10.82 0.19

Glu GAG 38.82 0.59 Lys AAG 33.79 0.60 End TAG 0.73 0.17 Gln CAG 32.95 0.73
Glu GAA 27.51 0.41 Lys AAA 22.32 0.40 End TAA 0.95 0.22 Gln CAA 11.94 0.27
Asp GAT 21.45 0.44 Asn AAT 16.43 0.44 Tyr TAT 11.80 0.42 His CAT 9.56 0.41
Asp GAC 27.06 0.56 Asn AAC 21.30 0.56 Tyr TAC 16.48 0.58 His CAC 14.00 0.59

Val GTG 28.60 0.48 Met ATG 21.86 1.00 Leu TTG 11.43 0.12 Leu CTG 39.93 0.43
Val GTA 6.09 0.10 Ile ATA 6.05 0.14 Leu TTA 5.55 0.06 Leu CTA 6.42 0.07
Val GTT 10.30 0.17 Ile ATT 15.03 0.35 Phe TTT 15.36 0.43 Leu CTT 11.24 0.12
Val GTC 15.01 0.25 Ile ATC 22.47 0.52 Phe TTC 20.72 0.57 Leu CTC 19.14 0.20

Ala GCG 7.27 0.10 Thr ACG 6.80 0.12 Ser TCG 4.38 0.06 Pro CCG 7.02 0.11
Ala GCA 15.50 0.22 Thr ACA 15.04 0.27 Ser TCA 10.96 0.15 Pro CCA 17.11 0.27
Ala GCT 20.23 0.28 Thr ACT 13.24 0.23 Ser TCT 13.51 0.18 Pro CCT 18.03 0.29
Ala GCC 28.43 0.40 Thr ACC 21.52 0.38 Ser TCC 17.37 0.23 Pro CCC 20.51 0.33

Table 1.1: The human codon usage and codon preference table. Published online at
http://bioinformatics.weizmann.ac.il/databases/codon . For each codon,
the table displays the frequency of usage of each codon (per thousand) in human cod-
ing regions (first column) and the relative frequency of each codon among synonymous
codons (second column).

Assembly of putative exons

Predicted exons need to be assembled into genes. This assembly must conform to a num-
ber of intrinsic biological constraints such as non-overlap between assembled exons and
the maintenance of an open reading frame (ORF) among them.

The main difficulty in exon assembly is the combinatorial explosion problem: the
number of ways N candidate exons may be combined grows exponentially with N. To
address this problem a number of methods based on dynamic programming techniques
have been developed. In dynamic programming, the solution to a general problem is
obtained by the recursive solution of smaller versions of the problem. In the “opti-
mal exon assembly” problem, dynamic programming allows us to find the solution ef-
ficiently, without having to enumerate all exon assembly possibilities (Gelfand and Royt-
berg, 1993). Algorithms running in quadratic time (in time proportional to the square of
the number of predicted exons, O(N2)) were used in geneparser (Snyder and Stormo,
1993), grailII (Xu et al., 1994) and fgenes (Solovyev et al., 1995), among other pro-
grams. Guigó (1998) developed a more efficient algorithm running in linear time (that
is in time proportional to the number of predicted exons, O(N)). At the core of the re-
cently developed gaze (Howe et al., 2002), a program that assembles data obtained from
external sources of gene predictions and experimental evidence, there is also a chaining
algorithm that runs effectively in linear time.

A revolution in gene prediction was the application of Generalized Hidden Markov
Models (GHMMs). This probability model was first developed in the speech-recognition
field and later applied to protein and DNA sequence pattern recognition and was initially
implemented in the gene prediction field in the genie algorithm (Kulp et al., 1996).

In a GHMM approach, different types of gene structure components (such as exon or
intron) are characterized with states (as shown in Figure 1.8). A gene model is generated
by a state machine: starting from 5’ to 3’, each base-pair is generated by a “emission prob-
ability” conditioned on the current state and surrounding sequences and transition from
one state to another is governed by a “transition probability” which obeys all the con-

http://bioinformatics.weizmann.ac.il/databases/codon
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straints (for example an intron can only follow an exon, reading frames of two adjacent
exons must be compatible, etc.). All the parameters of the “emission probabilities” and
“transition probabilities” are learned (pre-computed) from some training data set. Since
the states are unknown (“hidden”), an efficient dynamic programming algorithm (called
the Viterbi algorithm) may be used to select the best set of consecutive states (called a
“parse”), which has the highest overall probability compared with any other possible
parse of the given genomic sequence (see Rabinier (1989) for a tutorial on GHMMs).

Figure 1.8: Schema of the states and transitions in genscan GHMM. Each circle or square
represents a functional unit (a state) of a gene. Arrows represent the transition probability
from one state to another. E correponds to exon, I to intron and pro to promoter. Adapted
from Burge and Karlin (1997).

1.2.2 Ab initio gene prediction

Computational gene finding is not a brand new field and a large body of literature has ac-
cumulated during the last 25 years. Early studies by Shepherd (1981), Fickett (1982) and
Staden and McLachlan (1982) showed that statistical measures related to biases in amino
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acid and codon usage could be used to approximately identify protein coding regions
in genomic sequences. Based on these differences, the first generation of gene predic-
tions programs, designed to identify approximate locations of coding regions in genomic
DNA were developed. The most widely known of such kind of programs were probably
testcode (based on Fickett (1982)) and grail (Uberbacher and Mural, 1991). These
programs were able to identify coding regions of sufficient length (100-200 bp) with fairly
high reliability, but did not accurately predict exon locations.

In order to predict exon boundaries, a new generation of algorithms were devel-
oped. A second generation of programs, such sorfind (Hutchinson and Hayden, 1992),
grailII (Xu et al., 1994) and xpound (Thomas and Skolnick, 1994), use a combination of
splice signal and coding region identification techniques to predict “spliceable open read-
ing frames” (potential sets of exons), but do not attempt to assemble predicted exons into
complete genes. A third generation of programs attempt the more difficult task of pre-
dicting complete gene structures: sets of exons which can be assembled into translatable
coding sequences. The earliest examples of such integrated gene finding algorithms were
probably the genemodeler program (Fields and Soderlund, 1990) for prediction of genes
in C. elegans and the method of Gelfand (1990) for mammalian sequences. Subsequently,
there has been a mini-boom of interest in development of such methods, and a wide
variety of programs have appeared, including (but not limited): geneid (Guigó et al.,
1992), which used a hierarchical rule based structure; geneparser (Snyder and Stormo,
1993), which scored all subintervals in a sequence for content statistics and splice site
signals weighted by a neural network and chained by dynamic programing; genemark
(Borodovsky and McIninch, 1993) which combined the specific Markov models of coding
and non-coding region together with Bayes’ decision making function; genlang (Dong
and Searls, 1994), which treated the problem by linguistic methods describing a grammar
and parser for eukaryotic protein-encoding genes; and fgenes (Solovyev et al., 1994)
which used a discriminant analysis for identification of splice sites, exons and promoter
elements.

At the end of last decade, the introduction of the GHMMs produced a new gen-
eration of gene prediction programs. GHMMs, as discussed in the previous section,
have some advantages over the previous approaches. The main advantage is that all
the parameters of the model are probabilities and that, given a set of curated sequences
and defined states, the Viterbi algorithm can be used to compute the set of optimal pa-
rameters. A great variety of programs appeared simultaneously exploring the capabil-
ities of GHMMs: genie (Kulp et al., 1996), hmmgene(Krogh, 1997), veil (Henderson
et al., 1997), genscan (Burge and Karlin, 1997) and the GHMMs version of genemark
(genemark.hmm , Lukashin and Borodovski (1998)) and fgenes (fgenesh , Salamov and
Solovyev (2000)).

Of the gene prediction tools that were released during this period, genscan clearly
outperformed all the others (at least with regards to human gene prediction). Novel fea-
tures included in genscan were: the capacity to predict multiple genes in a sequence, to
deal with partial as well as complete genes, and to predict consistent sets of genes occur-
ring on both DNA strands; the use of distinct, explicit, empirically derived sets of model
parameters to capture differences in gene structure and composition between different
C+G compositional regions; and statistical models of donor (using MDDs) and acceptor
(using PWAs) splice sites which capture potentially important dependencies between sig-
nal positions. Significant improvements in the accuracy of prediction have been observed
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for genscan over existing programs at that time.

genscan is still considered the standard gene prediction program (at least for human)
and it is used in most of the genome annotation pipelines like ENSEMBL and the NCBI
genome resources.

1.2.3 Genome comparison gene prediction

With the availability of many genomes from different species, a number of strategies have
been developed to use genome comparisons to predict genes. The rationale behind com-
parative genomic methods is that functional regions, protein coding among them, are
more conserved than non-coding ones between genome sequences from different organ-
isms (see Figure 1.9). This characteristic conservation can be used to identify protein
coding exons in the sequences. The approach taken by different programs to exploit this
idea differ notably.

In one such approach (Blayo et al., 2002; Pedersen and Scharl, 2002), the problem is
stated as a generalization of pairwise sequence alignment: given two genomic sequences
coding for homologous genes, the goal is to obtain the predicted exonic structure in each
sequence maximizing the score of the alignment of the resulting amino acid sequences.
Both, Blayo et al. (2002) and Pedersen and Scharl (2002) solve the problem through a com-
plex extension of the classical dynamic programming algorithm for sequence alignment.
Although very appropriate for short sequences, in practice, the time and memory require-
ments of this algorithm may limit its utility for very large genomic sequences. Moreover,
although the approach theoretically guarantees to produce the optimal amino acid se-
quence alignment, the fact that sequence conservation may also occur in regions other
than protein coding, could lead to over prediction of coding regions, in particular when
comparing large genomic sequences from homologous sequences from closely related
species.

To overcome this limitation, the programs doublescan (Meyer and Durbin, 2002)
and slam (Alexandersson et al., 2003) rely on more sophisticated models of coding and
non-coding DNA and splice signals, in addition of sequence similarity. Since sequence
alignment can be solved with Pair Hidden Markov Models (PHMMs, Durbin et al., 1998)
and GHMMs have been proved very useful to model the characteristics of eukaryotic
genes (Burge and Karlin, 1997), slam and doublescan are built upon the so-called Gen-
eralized Pair HMMs. In these, gene prediction is not the result of the sequence alignment,
as in the programs above, but both gene prediction and sequence alignment are obtained
simultaneously.

A third class of programs adopt a more heuristic approach, and separate clearly gene
prediction from sequence alignment. The programs rosetta (Batzoglou et al., 2000),
sgp1 (from Syntenic Gene Prediction, Wiehe et al., 2001), and cem (from the Conserved
Exon Method, Bafna and Huson, 2000) are representative of this approach. All these pro-
grams start by aligning two syntenic regions (specifically human and mouse in rosetta ,
and cem; less species specific in sgp1 ), using some alignment tool (the glass program,
specifically developed in the case of rosetta or generic ones, such as tblastx , or
sim96 in the case of cem and sgp1 ), and then predict gene structures in which the
exons are compatible with the alignment. This compatibility often requires conserva-
tion of exonic structure of the homologous genes encoded in the anonymous syntenic



20 1. Introduction

Figure 1.9: A plot of sequence conservation across the gata3 gene region in human, rat and
Takifuguwith the zpicture program. From http://zpicture.dcode.org/zPicture.
php?id=example&numseq=3 .

regions. Although conservation of exonic structure is an almost universal feature of or-
thologous human/mouse genes (Mouse Genome Sequencing Consortium, 2002), it does
not necessarily occur when comparing genomic sequences of homologous genes from
other species.

As the number of genome sequences of species at different evolutionary distances
increases, methods to predict genes based on the comparative analysis of multiple ge-
nomes (and not only of two species) look promising. For instance, Dewey et al. (2004)
combine pairwise predictions from slam in the human, mouse and rat genomes to si-
multaneously predict genes with conserved exonic structure in all three species. In the
so-called Phylogenetic Hidden Markov Models (phylo-HMMs) or Evolutionary Hidden
Markov Models (EHMMs), a gene prediction Hidden Markov Model is combined with a
set of evolutionary models, based on phylogenetic trees. Phylo-HMMs take into account
that the rate (and type) of evolutionary events differ in protein-coding and non-coding
regions. Recently, phylo-HMMs have been applied to gene prediction with encouraging
results (Pedersen and Hein, 2003; Siepel and Haussler, 2004).

1.2.4 Gene prediction accuracy

The accuracy of gene prediction programs is usually measured in controlled data sets.
To evaluate the accuracy of a gene prediction program, the gene structure predicted by
the program is compared with the structure of the actual gene encoded in the sequence.
The accuracy can be evaluated at different levels of resolution. Typically, these are the
nucleotide, exon, and gene levels. These three levels offer complementary views of the
accuracy of the program. At each level, there are two basic measures: sensitivity and
specificity. Briefly, sensitivity (Sn) is the proportion of real elements (coding nucleotides,
exons or genes) that have been correctly predicted, while specificity (Sp) is the proportion
of predicted elements that are correct. More specifically, if TP is the total number of
coding elements correctly predicted, TN, the number of correctly predicted non-coding
elements, FP the number of non-coding elements predicted coding, and FN the number
of coding elements predicted as non-coding (see Figure 1.10). Then, in the gene finding
literature, Sn is defined as:

http://zpicture.dcode.org/zPicture.php?id=example&numseq=3
http://zpicture.dcode.org/zPicture.php?id=example&numseq=3
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a

b

Figure 1.10: Schema of the measures used to determine gene prediction accuracy. a)
Definition of the TN true negatives, FN false negatives, TP true positives, and FP false
positives, when the evaluation is perform at base level. b) Examples of perfect macth,
and missing and wrong exons. From Burset and Guigó (1996).

Sn =
TP

TP + FN
(1.3)

and Sp as:

Sp =
TP

TP + FP
(1.4)

Both, Sn and Sp, take values from 0 to 1, with perfect prediction when both measures
are equal to 1. Neither Sn nor Sp alone constitute good measures of global accuracy, since
high sensitivity can be reached with low specificity and vice versa. It is desirable to use a
single measure for accuracy. In gene finding literature, the preferred such measure at the
nucleotide level is the Correlation Coefficient, which is defined as:

CC =
(TP× TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(1.5)

and ranges from -1 to 1, with 1 corresponding to a perfect prediction, and -1 to a prediction
in which each coding nucleotide is predicted as non-coding and vice versa.

At exon level, these measures determine if predictions correspond to real exons, with
the exon boundaries perfectly predicted (see Figure 1.10). The prediction is considered
incorrect if only a single base does not correspond to the coordinates of the real exon.
Therefore, Sn at exon level measures the proportion of actual exons that have been per-
fectly predicted, and Sp measures the proportion of predicted exons that correspond to
actual exons. The average exon prediction accuracy SnSp is computed as:
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SnSp =
Sn + Sp

2
(1.6)

Apart from Sn, Sp and SnSp, two extra measures have been used to determine the
accuracy at exon level: the missed exons (ME) and the wrong exons (WE). ME measures
how frequently a predictor completely failed to identify exons (no prediction overlap at
all) whereas WE identifies the ratio of exons that do not overlap with any exon of the
standard set. At gene level Sn and Sp measure if a predictor is able to correctly identify
and assemble all of the exons of a gene. For a prediction to be counted as TP, all coding
exons must be identified, every intron-exon boundary must be exactly correct, and all the
exons must be included in the proper gene. In addition, missed genes (MG) and wrong
genes (WG) can also be computed in the same way as at the exon level.

The large amount of gene finding programs that have been described in the previous
sections raises the obvious question of whether the gene finding problem has perhaps
already been solved. This question was repetitively answered negatively by different
systematic comparisons of available integrated gene finding methods.

Table 1.2 reproduces the results from the benchmark by Burset and Guigó (1996), one
of the first systematic evaluations of gene finders. These authors evaluated seven pro-
grams, using a set of 570 vertebrate single gene genomic sequences deposited in GenBank
after January 1993. This was done to minimize the overlap between this test set and the
sets of sequences which the programs had been trained on. The average CC for the pro-
grams analyzed ranged from 0.65 to 0.80 at the nucleotide level, while the SnSp at exon
level ranged from 0.37 to 0.64.

Recently, a new independent comparative analysis of seven gene prediction programs
have been published (Rogic et al., 2001). The programs were again tested in a set of 195
single gene sequences from human and rodent species. In order to avoid overlap with
the training sets of the programs, only sequences were selected that had been entered in
GenBank, after the programs were developed and trained. Table 1.3 shows the accuracy
measures averaged over the set of sequences effectively analyzed for each of the tested
programs.

The programs tested by Rogic et al. (2001) showed substantially higher accuracy than
the programs tested by Burset and Guigó (1996): the average CC at the nucleotide level
ranged from 0.66 to 0.91, while the average exon prediction accuracy ranged from 0.43
to 0.76. This illustrates the significant advances in computational gene finding that were
achived during the nineties.

The evaluations by Burset and Guigó (1996), Rogic et al. (2001), and others suffered
from the same limitation: gene finders were tested in controlled data sets made of short
genomic sequences encoding a single gene with a simple gene structure. These datasets
are not representative of the genome sequences being currently produced: large sequences
of low coding density, encoding several genes and/or incomplete genes, with complex
gene structures.
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Base level Exon level
Sn Sp CC Sn Sp SnSp WE ME

fgenes 0.77 0.88 0.80 0.61 0.64 0.64 0.15 0.12
geneparser2 0.66 0.79 0.65 0.35 0.40 0.37 0.29 0.17
genlang 0.72 0.79 0.71 0.51 0.52 0.52 0.21 0.22
grail 2 0.72 0.87 0.76 0.36 0.43 0.40 0.25 0.11
sorfind 0.71 0.85 0.72 0.42 0.47 0.45 0.24 0.14
xpound 0.61 0.87 0.69 0.15 0.18 0.17 0.33 0.13
geneid+ 0.91 0.91 0.88 0.73 0.70 0.71 0.07 0.13
geneparser3 0.86 0.91 0.85 0.56 0.58 0.57 0.14 0.09

Table 1.2: Evaluation of the different gene finding tools. The evaluation is divided into
nucleotide level and exon level. From Burset and Guigó (1996).

Base level Exon level
Sn Sp CC Sn Sp SnSp WE ME

fgenesh 0.86 0.88 0.83 0.67 0.67 0.67 0.12 0.09
genemark.hmm 0.87 0.89 0.83 0.53 0.54 0.54 0.13 0.11
genie 0.91 0.90 0.88 0.71 0.70 0.71 0.19 0.11
genscan 0.95 0.90 0.91 0.70 0.70 0.70 0.08 0.09
hmmgene 0.93 0.93 0.91 0.76 0.77 0.76 0.12 0.07
morgan 0.75 0.74 0.69 0.46 0.41 0.43 0.20 0.28
mzef 0.70 0.73 0.66 0.58 0.59 0.59 0.32 0.23

Table 1.3: Evaluation of the different gene finding tools. The evaluation is divided into
nucleotide level and exon level. From Rogic et al. (2001).
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1.3 Automatic genome annotation pipelines: ENSEMBL

To annotate a genome is, in short, to identify (find the start and end coordinates along a
DNA sequence) the key features of the genome (i.e. genes, promoter regions, polymor-
phisms). Usually, we refer to an annotation pipeline as an automatic (computational) or
semi-automatic (with human intervention) process in which these features are predicted,
somehow assessed (by computational or experimental means) and this information gath-
ered in a comprehensible way. This is achieved by the combination of several computa-
tional programs which analyze different aspects of the genomic sequence. This process
may also include a user-friendly display interface, which makes this biological informa-
tion available to the whole scientific community.

There are three main systems that annotate and display genome information: EN-
SEMBL (http://www.ensembl.org ), the University of California (Santa Cruz) genome
browser system (UCSC browser, http://genome.cse.ucsc.edu/ ) and the National
Center of Biotechnology Information genome resources (NCBI browser, http://www.
ncbi.nlm.nih.gov ). ENSEMBL is considered to generate the most reliable set of ge-
nome annotations and many genome projects consider it as a standard reference.

The ENSEMBL project was conceived in response to the acceleration of the public effort
to sequence the human genome in 1999. At that time, it was clear that if the annotation
of the draft sequence was to be available in a reasonable amount of time, it had to be
automatically generated to deal with the new genomes to come and with the subsequent
releases.

The initial stage of the automated genome annotation in ENSEMBL starts with running
a set of analysis tools. It includes repeatmasker (Smit and Green, 1999), genscan ,
tRNAscan (Lowe and Eddy, 1997), eponine (Down and Hubbard, 2002) and homology
searches using blast . The results from this initial analysis are combined in a complex
automatic process to generate the final annotation.

The ENSEMBL gene-build process is based on genomic information coming from four
different sources: proteins and mRNAs from the corresponding species, proteins and
mRNAs from other species, expressed sequence tags (ESTs) and ab initio gene predictions
supported by experimental data. The complete pipeline is described in depth in Curwen
et al. (2004) and can be briefly summarized as follows (see Figure 1.11):

• Proteins and mRNAs from the species whose genome is being annotated are mapped
in the genome to create transcript models. First, proteins of the genome of interest
are aligned against the entire genome using pmacth (Durbin, unpubl.). The second
stage is to realign the proteins in the corresponding region with a more accurate
(and time consuming) program (genewise (Birney et al., 2004b) in the case of pro-
teins and est_genome (Mott, 1997) for mRNAs). Protein and mRNA based tran-
scripts are combined to obtain transcripts with untranslated region information.

• Proteins and mRNAs from other species are then used to locate the transcripts
which have not been found previously. The same two-step approach is used but,
less restricted parameters are used to allow some degree of divergence.

• The ENSEMBL EST gene build process involves three steps. First, ESTs from the
species of interest are aligned against the entire genome using exonerate (Slater,

http://www.ensembl.org
http://genome.cse.ucsc.edu/
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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unpubl.). The second stage is to realign the ESTs in a smaller region with the more
accurate program est_genome . In the third step the aligned ESTs are used to build
all compatible gene structures using the clustermerge (Eyras et al., 2004) algo-
rithm.

• Ab initio predicted genes are compared against different DNA and protein sequences
databases using blast . Using this information putative transcripts are generated
in the following way: adjacent exon pairs are built if they are supported by blast
evidence in a consistence way (neither overlapping nor having a excessive gap be-
tween them). Exon pairs are then recursively linked into transcripts which can be
clustered together.

After the gene-building process all predictions are gathered and labeled with the cor-
responding identification (consistent among different releases).

As we have seen, all ENSEMBL predictions are at least partially based on preexisting
evidence of transcription or similarity to known proteins. Thus, the ENSEMBL pipeline is
biased to produce a set with high specificity at the expense of sensitivity: they prefer to
miss a few features than heavily overpredict genes. As extensively discussed in Birney
et al. (2004a) there are two reasons that lead them to follow these criteria. First, there
are already several programs that generate high sensitivity at the expense of specificity
and ENSEMBL already provides the results of some of these tools through their web site.
Second, they considered that specific data sets are more useful for researchers in order to
assure a high ratio of success in experimental approaches to study or to characterize any
of the predicted genes.

1.4 Experimental verification of gene predictions

Once we have a set of gene predictions, it would be desirable to have a systematic way
to validate experimentally whether they correspond to actual genes. The most intuitively
way to determine if predicted genes are functional would be to find the encoded proteins
expressed in the corresponding organism. Very promising advances have been achieved
in the determination of genomic coding regions with the analysis of two dimensional pro-
tein gels and subsequent mass spectrometry (Arthur and Wilkins, 2004). However these
techniques are still in a very early stage of development for whole genome approaches.

Other evidence of the expression of a gene, is the evidence of transcription of the
genomic region where it is encoded. Although it can not be claimed that the transcript
is translated into the predicted protein, translation and splicing are considered strong
evidence of functionality. There are two main techniques to identify and characterize
expressed mRNAs: microarrays and RT-PCR amplification.

1.4.1 Microarrays

DNA microarray or DNA chip technology allows the monitoring of the expression of
thousand of genes at the same time. Microarrays are rigid supports on which oligonu-
cleotide probes have been synthesized in situ or deposited by high-speed robotic print-
ing. Transcripts from two different sources or cell conditions are obtained and usually
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Figure 1.11: Schema of the automatic annotation pipeline used by ENSEMBL. Figure
kindly provided by Eduardo Eyras.

converted to the more stable complementary DNA and labeled with two different fluo-
rescent markers. Labeled transcripts are mixed with the oligonucleotide probes that are
attached to the surface of the substrate of the microarray. After hybridization, spots are
washed to remove unhybridized transcripts. Then, the microarray is scanned using two
different lasers, corresponding to the excitation wavelength of the markers. The fluo-
rescence signal from each transcript population is evaluated independently and used to
calculate the expression ratio.

Microarray based methods have recently been applied to verify novel gene predic-
tions. For example, Penn et al. (2000) tested a collection of ORFs predicted by different
gene finding programs in the draft sequence of the human genome and Shoemaker et al.
(2001), tested the expression of all annotated exons predicted by genscan in human chro-
mosome 22 under 69 different conditions. In the experiment showed in Shoemaker et al.
(2001), two 60-mer oligonucleotides were designed based on each predicted exon and
printed on a single array. This array was hybridized with 69 pairs of RNA samples us-
ing two colors hybridization technique (see Figure 1.12). New genes were verified as
groups of co-expressed exons that are located next to each other in the genome. Although
microarrays offer an attractive approach for large-scale monitoring of mRNA levels, the
approaches described in these studies cannot directly determine whether two exons form
part of the same transcript or are part of two coexpressed genes, relying on co-expression
to make such inferences.

Recent experiments have illustrated the principle that microarrays can monitor splic-
ing events, using probes positioned at exon-exon junctions (Johnson et al., 2003). De-
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Figure 1.12: Design and fabrication of exon arrays for the predicted exons on human
chromosome 22. From Shoemaker et al. (2001).

tection of expression using “junction arrays” is limited in several ways. Junction arrays
cannot determine whether two splicing events in one tissue are present in the same or
separate transcripts. Detection also requires differential expression; if two isoforms are
present in the same proportion in every tissue, no signal will be observed. Finally, cross
hybridization could cause false positives when sequence-similar genes have strong tissue
specific regulation. The resolution and sensitivity of this approach could be improved by
adding probes in exons.

1.4.2 RT-PCR amplification

RT-PCR (reverse-transcriptase polymerase chain-reaction) allows the amplification of small
amounts of RNA fragments and is the most sensitive technique for mRNA detection and
quantification currently available. Compared to the two other commonly used techniques
for quantifying mRNA levels, Northern blot analysis and RNAse protection assay, RT-
PCR can be used to quantify mRNA levels from much smaller samples. In fact, this
technique is sensitive enough to enable quantification of RNA from a single cell.

Figure 1.13 shows the schema of the amplification of a target sequence using RT-PCR.
First, the mRNA must be isolated from tissue or cells and made accessible to the primers.
To generate the cDNA using the enzyme reverse transcriptase (RT), the primer must be
attached to the mRNA target. Then, the first strand of the cDNA is synthesized produc-
ing a hybrid molecule that consists of the mRNA template and the complementary DNA
strand. In the next step the template strand of RNA is removed by treatment with RNAse
II. What follows is a typical PCR amplification. The second primer is bound to the tem-
plate cDNA and the Taq polymerase adds the complementary nucleotides. The resulting
product is a double stranded cDNA. The three step process of denaturation, primer bind-
ing and Taq extension is repeated to yield a detectable PCR product, the product can be
visualized on ethidium bromide stained agarose gel following electrophoresis.

In some cases RT-PCR can produce false positives due to amplification of genomic
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Figure 1.13: Schema RT-PCR amplification process. The process is shown from top
to bottom and from left to rigth. Adapted from http://ccm.ucdavis.edu/cpl/
Techupdates/TechUpdates.htm .

DNA instead of RNA. In the case of multi-exonic gene structure validation, primers are
located in exons that, in most cases, are separated more than the number of bases that the
reverse transcriptase is able to transcribe in a row. Therefore, only after the splicing events
that join the two exons, the primers are at the optimal distance for the amplification. If
splicing does not occurs, the probes are too far away from each other, so that the reverse
transcriptase stops before reaching the region where the second primer binds, and thus,
the fragment can not be amplified.

Amplified fragments are usually sequenced to confirm that they correspond to the
predicted transcripts and to ensure that introns have been removed.

RT-PCR experiments have also been used for large scale validation of gene predic-
tions. In Das et al. (2001) gene predictions on chromosome 22 were validated using
primers designed to amplify a pair of adjacent exons. From the results, they infer that
approximately between 13% and 27% of the predictions of genscan in the chromosome
22 that do not overlap previously annotated genes are considered to be positive.

http://ccm.ucdavis.edu/cpl/Tech updates/TechUpdates.htm
http://ccm.ucdavis.edu/cpl/Tech updates/TechUpdates.htm
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geneid (Guigó et al., 1992) was one of the first programs to predict full exonic structures
of vertebrate genes in anonymous DNA sequences. However, since the original geneid
was released, there had been substantial developments in the field of computational gene
identification, and it had become clearly inferior to the other existing tools.

The goal of this thesis, was to improve geneid prediction accuracy, and make it useful
for the new genomes that were going to come. Therefore, the main objectives of this
dissertation were the followings:

• To develop and test a generic parameter file structure for the new version of geneid
including the most appropriate recognition models. The parameter file should have
a simple and intuitive interpretation and should be easily estimated from any avail-
able set of genes.

• To analyze the signals and intrinsic properties of gene codification in eukaryotes.
Check which of the current statistical models better fit each genomic feature and try
to develop a more general biological model of the complete process.

• To build sets of reliable annotated genomic sequences for different species and infer
from them parameter files for geneid .

• To infer evolutionary relations and the evolution of gene codification from the pre-
vious generated sets of sequences.

• To develop a method to incorporate genomic comparative information to geneid
prediction framework.

• To provide and distribute both, predicted genes and the bioinformatic tools to the
research community.

Many of the goals listed above have been achieved by the current implementation of
geneid and its extension, which uses comparative information, sgp2 .

The parameter file was designed to incorporate several types of information. Depend-
ing on the amount of available data for each species and the nature of the signal every
type of site could be represented with a position weight array of different order. As cod-
ing statistics geneid allows the use of any order of Markov chain, depending again on

29



30 2. Objectives

the amount of available data. Moreover, the new parameter file, can have a complete set
of parameters for different C+G content context.

geneid and sgp2 accuracy have been tested in different sets of sequences, showing
an accuracy superior to the existing tools, being both specially more specific than other
existing programs. On the other hand, certain features remain difficult to predict includ-
ing very small exons and the exact boundaries of genes. More general challenges in the
gene prediction field are pointed out in the Discussion section.

Some of the work presented in this dissertation has been done in collaboration with
international genome sequencing consortiums. These collaborations gave me the oppor-
tunity to meet and work with specialist from all over the world, and made our work very
relevant. These collaborations had put a lot of pressure on us and a lot of effort have been
invested in the genomic annotation projects. The annotation of recently sequenced geno-
mes, however, has been very fruitful allowing us to test and adapt our gene prediction
tools to the real needs of the genomic annotation projects.

On the other hand, this effort was detrimental to some of the initial objectives. For
instance, the biological approach to the definition of the splice sites and the building of
more realistic models has been impossible to achieve during the realization of this thesis.
The comparative analysis of the signals and properties of protein coding genes across the
evolution is in a very preliminary stage. Although a lot of information has been gathered
building the training sets for geneid , we did not have enough time to analyze this data
in depth.

For the last objective, the dissemination of data, all the programs, data sets and gene
predictions have been made available with no restriction through our own web service
and ENSEMBL and the UCSC genome browser systems serve our predictions thought their
web interface browsers.



Ab initio gene finding: geneid

This chapter describes the basic geneid architecture, the statistical models and the pa-
rameters included in the current distribution. The first parameter set for the new geneid
version was obtained while the re-programing in C of the first version was still in pro-
cess. The motivation to start working on D. melanogaster was the announcement by the
Berkeley Drosophila Genome Project of an experiment to determine the state of the art
of gene prediction tools in which any bioinformatic group could participate. Our group
decided to take part in this assessment and to develop a parameter file for Drosophila
melanogaster. The results of the assessment are briefly commented. After that, parameter
files for several species have been built. A short description of the “training” process and
some observed properties of gene codification in different species are presented.

3.1 geneid architecture and parameter file

geneid is a program that predicts genes in anonymous genomic sequences designed fol-
lowing a simple hierarchical structure (see Figure 3.1). First, splice sites and translational
start and stop codons are predicted and scored along the sequence. Next, potential ex-
ons are built from the previously predicted sites and scored, taking into account the score
of the sites and the coding sequence model. Finally, from the set of predicted exons, the
gene structure maximizing the sum of the score of its exons is assembled using a dynamic
programming algorithm (genamic , Guigó (1998)).

In most gene prediction programs, there is a clear separation between the gene model
itself and the parameters of the model. Typically, the parameters of the gene model define
the characteristic of the sequence signals involved in gene specification (i.e. PWMs for the
splice sites), the codon bias characteristic of coding exons (i.e. hexamer counts or Markov
Models for coding regions), and the relation between the exons when assembled into gene
models (i.e. intron and exons length distributions, transition probabilities in GHMMs,
etc.). These parameters are estimated from a set of annotated genomic sequence from the
species of interest.

The geneid parameter file contains the description of the probabilistic models (com-
puted as log-likelihood ratios) in a comprehensible data structure. The file is text-based
and includes comments to clarify and to differentiate each defined structure. The defi-
nition of each feature has some flexibility allowing different types of models depending
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on the amount of training data available. In what follows, the different models and the
process of genes prediction in geneid are described. Although some of this information
is also included in the paper presented in section 3.2.2, the original models have been
extended. For instance, instead of the initial PWMs, the current version allows PWAs (a
generalization of the classical position weight matrices) for the detection of the signals.
As coding measure, instead of a fixed 5th order Markov Model, a Markov Model of any
order can be used.

3.1.1 Site definition

geneid uses PWAs (in which every position contains a Markov chain of order k) to pre-
dict acceptor and donor splice sites and start codons. From a collection of annotated
sequences containing the same signal, a probability matrix P is derived for the positions
around the characteristic motif (i.e. GT for donor sites). Thus, Pj(xk+1|x1 . . . xk) is the
probability of observing the nucleotide xk+1 after the oligonucleotide x1 . . . xk at position
j in an actual site. A false site is considered to be any sequence that contains the character-
istic motif but has not been annotated as a functional site. Therefore, from a collection of
false sites of the same signal, a probability matrix Q is also computed in the same manner.
Then, a PWA D representing this type of site is calculated as follows:

Dj(x1 . . . xk, xk+1) = log
Pj(xk+1|x1 . . . xk)
Qj(xk+1|x1 . . . xk)

. (3.1)

PWAs are used to score each potential site along a given sequence. For instance, the
score LD of a potential donor site of length n, S = s1s2 . . . sn is computed using a first-
order (k = 1) PWA D as:

LD(S) =
n−1

∑
i=1

Di(si, si+1) . (3.2)

This is the log-likelihood ratio of the probability of observing this particular sequence
S in a real site versus the probability of observing S in any false site.

3.1.2 Prediction of exons

All potential exons that are compatible with the predicted sites are constructed. By de-
fault, only the five highest scoring donor sites that are in frame are considered for each
start and acceptor site.

The probability distribution of each nucleotide given the n nucleotides preceding it,
is estimated from the exon sequences. The transition probability matrices F1, F2 and F3

are constructed for each one of the three possible reading frames. Fj(s1 . . . sn+1) is the
observed probability of finding the sequence s1 . . . sn+1 with s1 in codon position j. An
initial probability matrix I j is derived from the observed n-mer frequencies at each codon
position. From the intron sequences a single transition matrix is computed F0, as well
as a single initial probability matrix I0. Then, for each (n + 1)-mer h and frame j the
log-likelihood ratio LF is computed as:
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Figure 3.1: General schema of geneid : a hierarchical structure that goes from signal
recognition and exon building to gene assembly. Adapted from Blanco (2000).
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LFj(h) = log
Fj(h)
F0(h)

, (3.3)

as well as for each n-mer p and frame j the log-likelihood ratio LI is computed as:

LI j(p) = log
I j(p)
I0(p)

. (3.4)

Then, given a sequence S of length l in frame j, the protein coding potential LM of the
sequence is defined as:

LM(S) = LI j(S1..Sn) +
l−n

∑
i=1

LFj(Si..Si+n) . (3.5)

The final score LE of a potential exon S, defined by sites sa (start/acceptor) and sd
(donor/stop) is computed as:

LE(S) = LA(sa) + LD(sd) + LM(S) . (3.6)

This is the log-likelihood ratio of the probability of finding such sites and sequence
composition given a real exon over the probability of finding them given a false exon (a
real intron).

3.1.3 Gene Model

From a large number of candidate exons, geneid selects an appropriate combination of
exons to assemble the best gene structure. This assembly must conform to a number of
intrinsic biological assumptions such as non-overlap between assembled exons and the
maintenance of an open reading frame along assembled genes.

The gene model in geneid is the list of rules referring to the succession of elements
in the gene structure and to the range allowed distances among them. Each rule is a three
column record in the gene model. For instance, the rule

First+:Internal+ Internal+:Terminal+ 40:11000

indicates that elements (exons) of type Internal or Terminal, must be immediately assem-
bled after elements of type First or Internal in the forward strand. The third column
indicates the range of valid distances at which these elements can be assembled into a
predicted gene. In this case, the elements must be at least 40 bp and at most 11000 bp
apart. Users can easily modify the gene model to consider other features such as pro-
moter elements, poly-A tails or secondary structures in the assembly. Such features must
then be introduced as external information. The complete geneid gene model is shown
in Figure 3.2.
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# GENE MODEL: Rules about gene assembling (GenAmic)
General_Gene_Model
# INTRAgenic connections
First+:Internal+ Internal+:Terminal+ 40:11000
Terminal-:Internal- First-:Internal- 40:11000
# External features
Promoter+ First+:Single+ 50:4000
Terminal+:Single+ aataaa+ 50:4000
First-:Single- Promoter- 50:4000
aataaa- Single-:Terminal- 50:4000
# INTERgenic conections
aataaa+:Terminal+:Single+ Single+:First+:Promoter+ 300:Infinity
aataaa+:Terminal+:Single+ Single-:Terminal-:aataaa- 300:Infinity
Promoter-:First-:Single- Single+:First+:Promoter+ 300:Infinity
Promoter-:First-:Single- Single-:Terminal-:aataaa- 300:Infinity

Figure 3.2: Gene model definition in geneid parameter file.

3.1.4 Assembling genes

geneid constructs genes structures, which can contain multiple genes in both strands.
The assembly algorithm tries to optimize the sum of scores of the putative assembled
exons. Let g be a gene structure whose sequence of exons is e1, e2, . . . , en; the scoring
function LG is defined as:

LG(g) = LE(e1) + LE(e2) + . . . + LE(en) . (3.7)

This can be approximately interpreted as the log-likelihood ratio of the probability
of the defining sites and the hexamer composition of the resulting product given a gene
sequence, over this probability given a non-gene sequence. The gene structure predicted
for a given sequence is the gene which maximizes LG among all gene structures that can
be assembled from the set of predicted exons for the sequence.

However, the simple sum of log-likelihoods does not necessarily produce genes with
the correct number of exons. If LE is positive, the genes tend to contain many exons,
while if LE is negative, the genes tend to contain less exons. To overcome this limitation,
the score of the exons is corrected by adding a constant EW. Therefore, the new exon
scoring function L∗E is calculated as:

L∗E(S) = LE(S) + EW . (3.8)

Given an exon, the parameter EW could be interpreted as the prior odds of being a
real exon versus being a false one (Kass and Raftery, 1995). We assume the sequence S,
is generated under one of the two hypotheses, being an exon (exon) or not being an exon
(¬exon). Therefore, given the prior probabilities p(exon) and p(¬exon) = 1 − p(exon),
we are interested in updating our knowledge about how likely this sequence S is an exon
in the light of data. This is done by calculating the posterior probabilities p(exon|S) and
p(¬exon|S) and their ratios ,i.e., their posterior odds. By the Bayesian theorem, we can
formulate:
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p(exon|S) =
p(S|exon)p(exon)

p(S|exon)p(exon) + p(S|¬exon)p(¬exon)
(3.9)

and

p(¬exon|S) =
p(S|¬exon)p(¬exon)

p(S|exon)p(exon) + p(S|¬exon)p(¬exon)
(3.10)

so that we obtain the following equation:

p(exon|S)
p(¬exon|S)

=
p(S|exon)

p(S|¬exon)
p(exon)

p(¬exon)
. (3.11)

Then, equation (3.8) would be equivalent to equation (3.11) in log-scale and could be
rewritten from a Bayesian perspective as:

posterior odds = likelihood ratio× prior odds , (3.12)

and EW could be defined as:

EW = log
p(exon)

p(¬exon)
(3.13)

Thus, if we compute an EW with value -7, the ratio of the prior odds would be 1/128.
That could be interpreted as the ratio of the probabilities of being an exon versus not
being and exon in a exhaustive set of exons generated by geneid .

EW must be estimated for each species and for each training set. A simple optimiza-
tion procedure is performed. Thus, the value that maximizes the accuracy of the predic-
tions in the training set is selected. More formally, the value that maximizes the coefficient
of correlation between the actual and the predicted coding nucleotides is selected (as ex-
plained in more detail in section 3.3.2).

geneid implements the dynamic programming algorithm genamic which searches
the space of predicted exons in order to assemble the gene structure. From a list of exons,
genamic computes the best gene ending in every exon and the associated score in a linear
time according to the number of input exons (Guigó, 1998).

3.2 Genome Annotation Assessment Project

The Genome Annotation Assessment Project (GASP, Reese et al. (2000), http://www.
fruitfly.org/GASP1/ ) was organized by the Berkeley Drosophila Genome Project to
formulate guidelines and accuracy standards to evaluate computational annotation tools.
The aim of the project was to encourage the development of existing genome annotation
approaches through a careful assessment and comparison of the predictions made by all
the available programs. The goal of the annotation process is to assign as much informa-
tion as possible to the raw target sequence with an emphasis on the location of coding
genes.

http://www.fruitfly.org/GASP1/
http://www.fruitfly.org/GASP1/
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3.2.1 GASP bases

The GASP experiment consisted of the following stages:

• A training data set of curated sequences and the alcohol dehydrogenase (Adh) re-
gion, including 2.9 Mb of Drosophila melanogaster genomic sequence, was collected
by the organizers and provided to the participants.

• A set of standard annotations based on experimental data was developed to eval-
uate submissions while the participating groups produced and submitted their an-
notations for the region.

• The participant´s predictions were compared to the standards and the results were
presented as a tutorial at the Intelligent Systems for Molecular Biology (ISMB, Hei-
delberg 1999).

The organization chose the 2.9 Mb Adh contig because it was large enough to be chal-
lenging, contained genes with a variety of sizes and structures, and included regions of
high and low gene density.

The annotation used as standard, ideally, should contain the correct structure of all the
genes in the region without any error. Unfortunately, such a set was impossible to obtain
because the underlying biology of the entire region was incompletely understood. The
organization built a two-part approximation to the perfect data set, taking advantage of
data from a cDNA sequencing project and a Drosophila community effort to build a set of
curated annotations for this region (Ashburner et al., 1999). The first standard set, known
as std1, used high quality sequences from a set of 80 full-length cDNA clones from the
Adh region to provide a set of annotations that are very likely to be correct but certainly
not exhaustive. The second standard set, known as std3, was built from the annotations
being developed for Ashburner et al. (1999) to give a standard with more coverage of
the region, although with less confidence about the accuracy and independence of the
annotations.

To evaluate the accuracy of gene prediction in the Adh region, std1 and std3 sets were
used. std1 is a rigorous annotation set, but incomplete, while std3 is as complete as possi-
ble, but less reliable. Therefore, the organization decided to compute sensitivity measures
using the std1 set, and specificity measures to be computed in the std3 set. The combi-
nation of the two standard sets seemed to sufficiently represent the true nature of the
region and conclusions based on them are interesting, and more realistic than previous
benchmarks realized on single gene sequences.

The organization also provided several Drosophila-specific data sets to enable the par-
ticipants to tune their tools. The gene curated set, extracted from the Flybase, contained
genomic sequences of 275 multi- and 141 single exon non-redundant genes together with
their start and stop codons an the splice sites coordinates.

Participants were given the finished sequence for the Adh region and the available re-
lated training data. However, they did not have access to the full-length cDNA sequences
that were sequenced for the paper by Ashburner et al. (1999) that describes the Adh region
in depth. The experiment was widely announced and open to any participant.
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3.2.2 geneid in Drosophila

A special issue of Genome Research was dedicated to the GASP, and participants were
encouraged to describe their methods and results in detail. Our paper was included in
this special issue and describes how the parameters for geneid in D. melanogaster were
computed, the test of different approaches to improve the predictions and the protocol to
obtain the final predictions. The final geneid predictions showed an accuracy compara-
ble to the gene finding programs that exhibited the highest accuracy in the GASP results
published in Reese et al. (2000).

Although geneid was not used by the Drosophila Genome Project to annotate the D.
melanogaster genome, it had some usage through our web page and from people who had
freely downloaded the program. Some experimental papers have been based on geneid
predictions (i.e. Dunlop et al. (2000), Castellano et al. (2001) and Beltran et al. (2003)).



 
 
 
 
 
 
 
 
 
 
Parra G, Blanco E, Guigo R.  
GeneID in Drosophila. 
Genome Research. 2000 Apr;10(4):511-5 
© 2000 by Cold Spring Harbor Laboratory Press 
 



GeneID in Drosophila
Genı́s Parra, Enrique Blanco, and Roderic Guigó1

Grup de Recerca en Informàtica Mèdica, Institut Municipal d’Investigació Mèdica (IMIM), Universitat Pompeu Fabra,
E-08003 Barcelona, Spain

GeneID is a program to predict genes in anonymous genomic sequences designed with a hierarchical structure.
In the first step, splice sites, and start and stop codons are predicted and scored along the sequence using
position weight matrices (PWMs). In the second step, exons are built from the sites. Exons are scored as the sum
of the scores of the defining sites, plus the log-likelihood ratio of a Markov model for coding DNA. In the last
step, from the set of predicted exons, the gene structure is assembled, maximizing the sum of the scores of the
assembled exons. In this paper we describe the obtention of PWMs for sites, and the Markov model of coding
DNA in Drosophila melanogaster. We also compare other models of coding DNA with the Markov model. Finally,
we present and discuss the results obtained when GeneID is used to predict genes in the Adh region. These
results show that the accuracy of GeneID predictions compares currently with that of other existing tools but
that GeneID is likely to be more efficient in terms of speed and memory usage. GeneID is available at
http://www1.imim.es/∼eblanco/GeneId.

GeneID (Guigó et al. 1992) was one of the first pro-
grams to predict full exonic structures of vertebrate
genes in anonymous DNA sequences. GeneID was de-
signed with a hierarchical structure: First, gene-
defining signals (splice sites and start and stop codons)
were predicted along the query DNA sequence. Next,
potential exons were constructed from these sites, and
finally the optimal scoring gene prediction was as-
sembled from the exons. In the original GeneID the
scoring function to optimize was rather heuristic: The
sequence sites were predicted and scored using posi-
tion weight matrices (PWMs), a number of coding sta-
tistics were computed on the predicted exons, and
each exon was scored as a function of the scores of the
exon defining sites and of the coding statistics. To es-
timate the coefficients of this function a neural net-
work was used. An exhaustive search of the space of
possible gene assemblies was performed to rank pre-
dicted genes according with an score obtained through
a complex function of the scores of the assembled ex-
ons.

During recent years GeneID had some usage,
mostly through a now nonfunctional e-mail server at
Boston University (geneid@darwin.bu.edu) and
through a WWW server at the IMIM (http://
www1.imim.es/geneid.html). During this period, how-
ever, there have been substantial developments in the
field of computational gene identification (for recent
reviews, see Claverie 1997; Burge and Karlin 1998;
Haussler 1998), and the original GeneID has become
clearly inferior to other existing tools. Therefore, some
time ago we began developing an improved version of
the GeneID program, which is at least as accurate as

other existing tools but much more efficient at han-
dling very large genomic sequences, both in terms of
speed and usage of memory. This new version main-
tains the hierarchical structure (signal to exon to gene)
in the original GeneID , but we have simplified the
scoring schema and furnished it with a probabilistic
meaning: Scores for both exon-defining signals and
protein-coding potential are computed as log-
likelihood ratios, which for a given predicted exon are
summed up into the exon score, in consequence also a
log-likelihood ratio. Then, a dynamic programming al-
gorithm (Guigó 1998) is used to search the space of
predicted exons to assemble the gene structure (in the
general case, multiple genes in both strands) maximiz-
ing the sum of the scores of the assembled exons,
which can also be assumed to be a log-likelihood ratio.
Execution time in this new version of GeneID grows
linearly with the size of the input sequence, currently
at ∼2 Mb per minute in a Pentium III (500 MHz) run-
ning linux. The amount of memory required is also
proportional to the length of the sequence, ∼1 mega-
byte (MB)/Mb plus a constant amount of ∼15 MB, ir-
respective of the length of the sequence. Thus, GeneID
is able to analyze sequences of virtually any length, for
instance, chromosome size sequences.

In this paper we describe the “training” of GeneID
to predict genes in the genome of Drosophila melano-
gaster. In the context of GeneID training means essen-
tially computing PWMs for splice sites and start
codons, and deriving a model of coding DNA, which,
in this case, is a Markov model of order 5, similar to the
models introduced by Borodovsky and McIninch
(1993). Therefore, in the following sections, we de-
scribe the training data set used, particularly our at-
tempt to recreate a more realistic scenario to train and
test GeneID by generating semiartificial large genomic
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E-MAIL rguigo@imim.es; FAX 34-93-221-3237.
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contigs from single-gene DNA sequences, and we
briefly describe the main features of GeneID for D. me-
lanogaster. Then, we present the results obtained in the
training data set when different schemas are used to
compute scores for sites and coding potential, and the
results obtained on the D. melanogaster Adh region
when the optimal scoring schema in the training set is
used to predict genes in this region.

METHODS

Data Sets
We have merged the sets of 275 multi- and 141 single-
exon sequences provided by Martin Reese (Reese et al.
2000) as a set of known D. melanogaster gene-encoding
sequences into the unique MR set. From the MR set we
inferred PWMs for splice sites and start codons, and the
Markov model of order 5 for coding regions. The MR set
contains only single-gene sequences. To assess the accu-
racy of the predictions in a more realistic scenario, we
have randomly embedded the sequences in the MR set in
a background of artificial random intergenic DNA as de-
scribed (R. Guigó, P. Agarwal, J.F. Abril, M. Burset, and
J.W. Fickett, in prep.). Thus, a single sequence of
5,689,206 bp embedding the 416 genes in the MR set has
been used to evaluate the accuracy of the predictions.
The sequence, and the coordinates of the embedded ex-
ons are available at http://www1.imim.es/∼gparra/
GASP1.

GeneID
As outlined, GeneID for D. melanogaster uses PWMs to
predict potential splice sites and start codons. Potential
sites are scored as log-likelihood ratios. From the set of
predicted sites (which includes, in addition, all potential
stop codons), the set is built of all potential exons. Exons
are scored as the sum of the scores of the defining sites,
plus the log-likelihood ratio of the Markov model for
coding sequences. Finally, the gene structure is as-
sembled from the set of predicted exons, maximizing the
sum of the scores of the assembled exons. The procedure
is illustrated in Figure 1, which shows the GeneID pre-
dictions in a small region of the Adh sequence.

Predicting and Scoring Sites
Actual splice sites, and start codons were extracted
from the MR set.

Donor Sites
The MR set contains 757 donor sites. From them, a
frequency matrix P was derived from position 13 to +6
around the exon–intron boundary, with position 0 be-
ing the first position in the intron. Pij is the probability
of observing nucleotide i[i {(A,C,G,T)] at position j [j
{(13,. . .,+6)] in an actual donor site. The positional
frequency Q of nucleotides in the region 13 to +6
around all dinucleotides GT was also computed (with

position 0 being the position corresponding to the
nucleotide G in the GT dinucleotides.) Then, a PWM
for donor sites D was calculated as

Dij = logS Pij

Qij
D (1)

PWMs for acceptor sites, A, and start codons, S, were
obtained in a similar way. These matrices can be ob-
tained from http://www1.imim.es/∼gparra/GASP1.

PWMs can be used to score each potential donor
site (GT), acceptor site (AG), and start codon (ATG),
along a given sequence. The score of a potential donor
site, S = s1s2 . . . s10 within the sequence is computed as

LD~S! = (
i = 1

10

Dsii
(2)

This is the log-likelihood ratio of the probability of
observing this particular sequence S in an actual site
versus the probability of observing S in any false GT
site. Similar scores are computed for acceptor sites (LA)
and start codons (LB).

Predicting and Scoring Exons
GeneID distinguishes four types of exons: (1) Initial
ORFs, defined by a start codon and a donor site; (2)
internal ORFs, defined by an acceptor site and a donor
site; (3) terminal ORFs, defined by an acceptor site and
a stop codon; and (4) single ORFs, defined by a start
codon and a stop codon. This corresponds to intronless
genes. GeneID constructs all potential exons that are
compatible with the predicted sites. (Only the five
highest scoring donor sites within frame are consid-
ered for each start codon and acceptor site.)

Coding Potential

All exon and intron sequences were extracted from the
MR multiexon data set. A Markov model of order 5 was
estimated to model both exon and intron sequences,
that is, we estimated the probability distribution of
each nucleotide given the pentanucleotide preceding it
in exon and intron sequences. From the exon sequences
we estimated this probability for each of the three pos-
sible frames, building the transition probability matrices
F1, F2, F3. Fj (s1s2s3s4s5s6) is the observed probability of
finding hexamer s1s2s3s4s5s6 with s1 in codon position j,
given that pentamer s1s2s3s4s5 is with s1 in codon posi-
tion j. An initial probability matrix, Ij, was estimated
from the observed pentamer frequencies at each codon
position. From the intron sequences a single transition
matrix was computed F0, as well as a single initial prob-
ability matrix, I0. Then, for each hexamer h and frame j a
log-likelihood ratio was computed:

LFj~h! = log
Fj~h!

F0~h!
(3)

as well as for each pentamer p and frame j
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LIj~p! = log
I j~h!

I0~h!
(4)

The distributions F and I can be obtained from http://
www1.imim.es/∼gparra/GASP1.

Then, given a sequence S of length l in frame j, the
coding potential of the sequence is defined as

LM~S! = LIj~S1..5! + (
i = 1

l − 5

LFj~Si..i + 5! (5)

where Si..k is the subsequence of S starting in position i
and ending in position k.

The score of a potential exon, S, LE(S) defined by
sites sa (start/acceptor) and sd (stop/donor) is computed
as

LE~S! = LA~sa! + LD~sd! + LM ~S! (6)

This score can be assumed to be the log-likelihood ratio
of the probability of finding such sites and sequence
composition given an actual exon over the probability
of finding it on a random sequence bounded by AG
and GT dinucleotides. Because LM is the logarithm of
the ratio of the probability of the sequence under the
coding model over the probability under the noncod-
ing model (not under a random model), LM only ap-
proximates such a log-likelihood ratio.

Assembling Genes
GeneID predicts gene structures, which can be mul-
tiple genes in both strands, as sequences of frame-
compatible nonoverlapping exons. A minimum intron
length of 40 bp and a minimum intergenic distance of
300 bp are enforced. If a gene structure, g, is a sequence
of exons, e1, e2,. . .en, a natural scoring function is

Figure 1 Predictions obtained by GeneID in the region 462500–477500 from the Adh sequence, compared with the annotation in the
standard std3 set. In a first step, GeneID identifies and scores all possible donor (blue) and acceptor (yellow) sites, start codons (green),
and stop codons (red) using PWMs—the height of the corresponding spike is proportional to the site score. A total of 4704 sites were
generated along this 15,000-bp region by GeneID , only the highest scoring ones are displayed here. In a second step, GeneID builds
all exons compatible with these sites. A total of 11,967 exons were built in this particular region (not displayed). Exons are scored as the
sum of the scores of the defining sites, plus the score of their coding potential measured according with a Markov model of order 5. The
coding potential is displayed along the DNA sequence (MM_score). Regions strong in red are more likely to be coding than regions strong
in blue. From the set of predicted exons, the gene structure is generated, maximizing the sum of the scores of the assembled exons. Exons
assembled in the predicted genes are drawn with heights proportional to their scores. A two-color code is used to indicate frame
compatibility: Two adjacent exons are frame compatible if the right half of the upstream exon (the remainder) matches the color of the
left half of the downstream exon (the frame). Data are from the gff2ps program (available at http://www1.imim.es/∼jabril/GFFTOOLS/
GFF2PS.html). The input GFF and the configuration files required for gff2ps to generate this diagram can be found at http://
www1.imim.es/∼gparra/GASP1.
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LG~g! = LE~e1! + LE~e2! + … + LE ~en! (7)

LG (g) can be approximately interpreted as the log-
likelihood ratio of the probability of the defining sites
and the hexamer composition of the resulting product
given a gene sequence, over this probability given a
nongene sequence. In GeneID , the gene structure pre-
dicted for a given sequence is the gene maximizing LG

(g), among all gene structures that can be assembled
from the set of predicted exons for the sequence. Be-
cause the number of approximations made, the simple
sum of log-likelihood ratios does not produce necessar-
ily genes with the correct number of exons (if LE is
positive, the genes tend to have a large number of ex-
ons; if LE is negative, the genes tend to have a small
number of exons), and the score of the exons is cor-
rected by adding a constant, IW. Thus, given an exon,
e, the actual score of e is

L*E~e! = LE~e! + IW (8)

To estimate this constant, a simple optimization pro-
cedure was performed. Genes were predicted in the
training semiartificial genomic sequence for different
values of IW, and the value was chosen that maxi-
mized the correlation coefficient between the actual
and predicted coding nucleotides. This value was
found to be IW = 17.

RESULTS

Training GeneID
We tested two additional models of coding DNA before
deciding for a Markov model of order 5, a Codon usage
model, and a model that combined a Markov model of
order 1 of the translated amino acid sequence and a
Codon preference model (see Guigó 1999 for details on
these models). In both cases, log-likelihood ratios were
obtained in a similar way to the Markov model log-
likelihood ratios (see Methods). For instance, in the

case of the Codon usage model, for each triplet s, we
estimated the probabilities of the codon s in coding
sequences, U(s) and the probability of the triplet in
noncoding sequences, U0(s), and built the log-
likelihood ratio

LU~s! = log
U~s!

U0~s!

Then, given a sequence, S, of length l in frame 0 (i.e.,
S1S2S3 form a codon), the coding potential of the se-
quence is computed as

LC~S! = (
i = 1,4,7...

l − 2

LU~SiSi + 1Si + 2!

The models were inferred from the MR set, as the
Markov model was, and tested on the MR-set se-
quences embedded in the large artificial genomic con-
tig. To test the models, genes were predicted using
GeneID , but exons were scored using only the scores
derived under the coding DNA model (i.e., the scores
from the exon defining sites were ignored). Predictions
were compared with the annotated genes, and the
usual measures of accuracy were computed (Reese et al.
2000). Results are shown in Table 1. For comparison,
we also show the results when only the scores of the
sites are used to score the exons. As it is possible to see
the Markov model of order 5 produces more accurate
results than the other models, it was chosen to be used
in GeneID to predict the genes in the Adh region. As
described above, GeneID scores the exons as the sum of
the scores of the sites and the Markov model score.
Results under this scoring schema, the one effectively
used to predict genes in the Adh region, are also given
in Table 1.

Results in the Adh Region
Table 2 shows the results when GeneID , with the pa-
rameters estimated above, is used to predict genes in

Table 1. Testing Different Models of Coding DNA in the Training Semiartificial Genomic Sequence

Base level Exon level

Sn Sp CC Sne Spe SnSp ME WE

Sites–PWM 0.23 0.65 0.37 0.17 0.13 0.15 0.72 0.79
CU 0.91 0.88 0.88 0.46 0.43 0.45 0.21 0.27
DIA + CP 0.91 0.88 0.89 0.46 0.46 0.46 0.23 0.25
MM-5 0.93 0.90 0.91 0.54 0.51 0.52 0.18 0.24
PWM and MM-5 0.92 0.92 0.92 0.75 0.71 0.73 0.12 0.18

(CU) Codon usage model; (DIA+CP) combination of a Markov model of order 1 of the translated amino acid sequence and a Codon
preference model; (MM-5) Markov model of order 5. Genes have been predicted using GeneID, but in each case exons have been
scored on the basis solely of the coding DNA model, ignoring the contribution of the exon-defining sites. Predicted genes have been
compared with the annotated ones, and the usual measures of accuracy computed. Results obtained when exons are scored as a
function only of the scores of the defining sites are also given (Sites–PWM). Finally, we report the results on accuracy when the exons
are scored as the sum of the Markov model score and the scores of the exon-defining sites. This is the scoring schema used by GeneID
when attempting to predict genes in the Adh region.

Parra et al.
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the Adh region. Both the results originally submitted to
the Genome Annotation Assessment Project (GASP)
and the results obtained with the currently available
version of GeneID are given (see Discussion). In addi-
tion, we provide information on execution time and
memory requirements of GeneID to analyze the Adh
region. The detailed exon coordinates of the predic-
tions by GeneID can be found at http://www1.
imim.es/∼gparra/GASP1.

DISCUSSION
The results presented above indicate that the current ver-
sion of GeneID shows an accuracy, as measured by the
GASP contest, comparable to the accuracy of the pro-
grams based on hidden Markov models (HMMs), which
in GASP exhibited the highest accuracy. In favor of Ge-
neID is the simplicity and modularity of its structure,
which, as a consequence, is likely to make the program
more efficient in terms of speed and memory usage. In
GeneID the gene identification problem is stated as a
one-dimensional chaining problem for which more effi-
cient algorithms may be designed than for an aligment
problem, as gene identification is implicitly formulated
in HMMs. Against GeneID is the somehow less rigorous
probabilistic treatement of the scoring schema. For in-
stance, we are currently unable to justify the “magic
number” (IW, see Methods), which needs to be added to
the exon scores to obtain accurate predictions.

GeneID submitted rather poor predictions to GASP
(see Table 2). Two bugs in the version of the program
under development at that time were to blame. They
were discovered and a second prediction submitted
(see Table 2). After GASP we changed a rather complex
schoring schema to the simpler and more natural
schema described in Methods, which resulted in
higher accuracy. This is the scoring schema currently
in use in GeneID .

Although currently fully functional, we are still de-
veloping GeneID further. Our short-term plans in-
clude, among others, to train GeneID to predict genes

in the human and the Arabidopsis thaliana genomes
and to include the possibility of incorporating the re-
sults of database searches—both ESTs and proteins—in
the GeneID prediction schema, which can be done
rather naturally. The possibility of including external
evidence to “force” known genes or exons into the
prediction is already included in the working version
of GeneID . This may be useful for reannotation of very
large genomic sequences. Finally, the current structure
of GeneID can be highly parallelized, and we are also
working in this direction.
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Guigó, R., S. Knudsen, N. Drake, and T.F. Smith. 1992. Prediction of
gene structure. J. Mol. Biol. 226: 141–157.

Haussler, D. 1998. Computational genefinding. Trends in Biochemical
Sciences, Supplementary Guide to Bioinformatics: 12–15. Trends
Genet.

Reese, M.G., G. Hartzell, N.L. Harris, U.Ohler, and S.E. Lewis. 2000.
Genome annotation assessment in Drosophila melanogaster.
Genome Res. (this issue).

Received February 9, 2000; accepted February 28, 2000.

Table 2. Accuracy of GeneID in the Adh Region

Base level Exon level

CPU time
(sec)

Memory
(MB)

Sn Sp Sn Sp ME WE
(std1) (std3) (std1) (std3) (std1) (std3)

GeneID, submitted (1) 0.48 0.84 0.27 0.29 54.4 47.9 74 ∼500
GeneID, submitted (2) 0.86 0.82 0.59 0.34 21.0 48.0 74 ∼500
GeneID, current 0.96 0.92 0.70 0.62 11.0 17.0 83 18.11

The std1 annotation data set was used to evaluate sensitivity; the std3 annotation data set to evaluate specificity, as in GASP1 (see
Reese et al. 2000). Discrepancies between the accuracy of the submitted predictions, both the initial ones (1) and the corrected (2),
and the accuracy of the predictions obtained with the current version of GeneID are due to a number of errors during the process
of generating the submitted predictions (see Discussion). The decrease in the amount of memory required to obtain the predictions
is due to algorithmic developments occurring after GASP1.
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3.2.3 GASP results

The GASP project gave some insights on the performance of gene prediction programs in
large genomic sequences. The accuracy of the different programs is summarized in Table
3.1. Several gene prediction tools had a sensitivity greater than 95% at nucleotide level.
There was a great deal of variability at exon level accuracy. Several tools had sensitivity at
exon level over 75%. However, their specificity at exon level was generally much lower.
The few missing exons combined with the high sensitivity at nucleotide level suggests
that several tools were successful at identifying coding regions, but had trouble finding
the correct exon boundaries. All the predictors had considerable difficulty with the cor-
rect assembly of complete genes. The best tools were able to achieve sensitivities between
0.33 and 0.44. Most programs tend to predict many genes incorrectly. The major problem
is the prediction of initial and terminal short coding exons that could be in some cases
shorter than 10 bases. Only gene finding tools based on homology searches of databases
can predict them.

To summarize the conclusions drawn by the GASP organizers (Reese et al., 2000):

• 95% of the coding nucleotides of the coding genes were correctly predicted.

• The correct structures were predicted for about 40% of the genes. Nucleotide level
predictions are easier, exon level predictions are more difficult.

• Current gene prediction programs have achieved major improvements in multiple
gene regions.

• Gene finding including ESTs and protein homology does not always improves pre-
dictions.

• Programs with specific parameter files for the species under study performed better
than the others.

• No program is perfect.

The two last statements encouraged us to continue developing geneid and to try to
obtain parameter files for the next genomes to be sequenced.

The main conclusions from this experiment were that gene prediction methods had
improved and that they could be very useful for whole genome annotations. However,
these results could not be extrapolated to, for instance, vertebrates, which have larger ge-
nomes and their gene structure is less compact than in D. melanogaster. On the other hand,
the GASP also showed that high quality annotations depend on a solid understanding of
the organism in question.

3.3 Training geneid in other species

As we have seen in the previous section, parameter files derived from a specific species
perform better than generic ones. It appears that each genome (each species) has some
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Base level Exon level
Sn Sp Sn Sp WE ME

(Std1) (Std3) (Std1) (Std3) (Std1) (Std3)
Fgenes CGG1 0.89 0.77 0.65 0.49 10.5 31.6
Fgenes CGG3 0.93 0.60 0.75 0.24 5.6 53.3
GeneMark HMM 0.96 0.86 0.70 0.47 8.1 28.9
Genie 0.96 0.92 0.70 0.57 8.1 17.4
Genie EST 0.97 0.91 0.77 0.55 4.8 20.1
Genie EST HOM 0.97 0.83 0.79 0.52 3.2 22.8
HMM Gene 0.97 0.91 0.68 0.53 4.8 20.2
MAG PIE 0.96 0.63 0.63 0.41 12.1 50.2
Grail exp 0.81 0.86 0.42 0.41 24.3 28.7
geneid 0.96 0.92 0.70 0.61 11.0 17.0

Table 3.1: Evaluation of the different gene finding tools that participated in the GASP. The
evaluation is divided into nucleotide level and exon level. From Reese et al. (2000).

characteristic signatures for gene recognition. Under this assumption, we decided to de-
velop training sequence sets and geneid parameter files for species whose genomes were
going to be sequenced.

Nowadays, geneid has parameter files for several species. So far, we have devel-
oped parameter files for the following species: Arabidopsis thaliana, Ceanorhabditis elegans,
Dictyostelium discoideum, Drosophila melanogaster, Homo sapiens(used for other mammal
species), Oryza sativa, Plasmodium falciparum, Tetraodon nigroviridis and Triticum aestivum.
Parameter sets for more species will be available soon. The datasets used to train geneid
are freely available at: http://genome.imim.es/datasets/geneid .

3.3.1 Collecting training data

The first step for the development of a parameter file is to gather a set of well annotated
sequences: the “training set”. The success of the final predictions depends largely on the
quality of the data that are used as training set. A good review of the standards to create
clean data sets for gene prediction can be found at http://bioinformer.ebi.ac.
uk/newsletter/archives/5/gene_prediction.html . A training set is defined
as a set of genomic sequences satisfying a number of constraints:

• Genes should have been determined experimentally and not by the outcome of a
genome project. The protein should be known or the complete mRNA sequenced.

• For each gene, the genomic sequence should have been sequenced and the coordi-
nates of coding regions exactly mapped.

• The description of the gene must not contain any of the following: alternative gene
product, alternative splicing, partial or putative CDS, putative gene, gene predic-
tion nor viral or mithocondrial origin.

http://genome.imim.es/datasets/geneid
http://bioinformer.ebi.ac.uk/newsletter/archives/5/gene_prediction.html
http://bioinformer.ebi.ac.uk/newsletter/archives/5/gene_prediction.html
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• In addition, the sequences must contain the basic structural properties of standard
coding genes:

– Translational start and stop signals should be standard (ATG for start codon
and TGA, TAG and TAA for the stop codons).

– The presence of the minimal canonical signal for the splice sites (with introns
starting with GT and ending with AG).

– The maintenance of the open reading frame through out the translation of the
coding exons until the annotated stop codon.

Since the training set is used to derive statistical parameters, the features to model
should have a unique representation. To ensure non-redundancy, blastp is used to
compare all proteins with each other. If any group of protein sequences have a simi-
larity greater than 80% over a strech of 50 amino acids, only one sequence is retained and
the others are discarded.

Genomic sequences are mandatory to be able to model splice sites and exonic structure
of the genes, however, a set of mRNA sequences is also convenient to complement the
amount of coding regions (as described in section 3.3.2).

To gather the training sets we mostly search the EMBL (http://www.embl.org/ ) or
GenBank (http://www.ncbi.nlm.nih.gov/ ) databases. For species without enough
annotated sequences in the public databases, we contact the consortium in charge of the
corresponding genome sequencing project to gather, in collaboration, a reliable set of
annotated sequences.

As a result of these collaborations we have participated in the annotation of several
genomes. The Annexed papers section includes two publications that were partially based
on the gene predictions obtained using geneid with parameter files specifically devel-
oped for each species.

3.3.2 Building the parameter file

Sites definition

To determine which positions are relevant for the definition of a site, the relative entropy
is calculated. The positions frequency of nucleotides in the surrounding bases of the
canonical signals in both actual exon boundaries P and non functional sites Q is measured
(30 base pairs upstream and downstream). Then, for each position j, the relative entropy
Dj (also known as the Kullback-Liebler distance (Durbin et al., 1998)) is defined as:

Dj(P, Q) = ∑
i=A,C,G,T

Pij log
Pij

Qij
. (3.14)

The stretch of nucleotides crossing the coding exon boundary with the relative entropy
above a threshold of 0.1 is taken for the PWA model. After that, the log-likelihood ratio
between the real and the non functional site is computed as explained in section 3.1.1.

Depending on the amount of available data for each species and the nature of the sig-
nal every type of site could be represented by a PWA of different order. For acceptor sites

http://www.embl.org/
http://www.ncbi.nlm.nih.gov/
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in human, a first-order PWA is constructed based on some bias detected in dinucleotides
around the canonical signal AG (Burge and Karlin, 1997). However, a second-order PWA
is built for start codons to capture the appearance of a second ATG signal after the real
one because a biological penalty is known to exist in order to avoid the activation of the
second ATG (Kozak, 1999). In contrast, PWAs of order zero, equivalent to PWMs, are
constructed for species with less accurate annotations.

Coding potential

First, the sequence of coding regions (CDS) and introns from the training set are extracted.
If available, the mRNA set, containing non redundant CDS, can be used in this step to
enrich the amount of CDS. Next, the initial and transition matrices for the Markov Model
are computed as log-likelihood ratios. The optimal order that reflects the dependencies
between contiguous codons seems to be order five. geneid allows the use of many orders
of Markov chain as a coding statistic. Different orders could be chosen, depending on the
amount of available CDS for the corresponding species. In order to create a matrix for
order n, 90 ∗ 4n+1 bases of CDS and 30 ∗ 4n+1 bases of non-coding sample sequence are
required, as estimated by Mark Borodovsky (personal communication). Thus, for a 3rd
order matrix you would need at least 23,040 bases of CDS and 7,680 bases of non-coding
sequence. Using smaller samples will generate less accurate predictions.

With geneid , a complete set of initial and transition probabilities can be incorporated
for different C+G content contexts. Thus, signals and exons can be predicted using a
different scoring schema, according to their genomic context. For human, three different
initial and transition matrices have been constructed depending on the percentage of C+G
content (0-45%, 45-55% and 55-100%).

Optimization

A general process of optimization is needed in order to predict the number of real exons.
We do not use any maximal optimization algorithm. Rather, we made an extensevely
exploration of the EW parameter space. A Perl script generates geneid predictions from
an extesive set of EW values (from a minimal and maximal boundaries and with a defined
interval). Then, predictions for each EW were evaluated and the correlation coefficient is
mesured using the actual gene coordinates as reference. The EW value that maximizes
the correlation coefficient between the actual and the predicted coding nucleotides in the
training set is selected.

3.4 Variation in gene structure and splice site signals

The compilation of these training sets is also extremely useful for the comparative anal-
ysis of the general mechanisms of gene recognition (including translational, splicing and
translational signals). This section tries to describe some structural and compositional
properties of gene defining features. Although, nowadays, we have data available for
many species, this initial analysis has been done with the paramater files for the follow-
ing species: D. melanogaster, H. sapiens, D. discoideum and T. nigroviridis. Thus, this short
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section is a preliminary analysis towards the characterization of peculiarities found in the
observed species and further analysis are needed to reach more general conclusions.

Table 3.2 and Figure 3.3 have been generated with the corresponding training sets for
each species (described in section 3.2.2 for Drosophila melanogaster and in the Annexed Pa-
per section for Dictyostelium discoideum and Tetraodon nigroviridis). The human sequences
correspond to the 178 genes used in Guigó et al. (2000).

Unlike the process of mRNA translation by the ribosome, which seems to follow a
set of rules that is essentially invariant, the rules governing the RNA splicing clearly
differ between different groups of eukaryotes. A graphical representation of the splice
sites composition is shown in Figure 3.3. Although all species conserve the canonical GT
and AG dinucleotides at the beginning and end of the introns the complete splice signal
differs notably. The upstream region of the 3’ region (from position -17 to -5), frequently
known as poly-pyrimidine track is AT rich in Dictyostelium, mostly T rich in Drosophila
(except for positions -11 to -6 that exhibits a C enrichment), and TC rich in vertebrates. In
the region proximal to the 3’ exon boundaries, Dictyostelium only has conservation in the
canonical AG, whereas the other three species seem to have a bias to C in the -3 position
and to G in +1 position.

In the donor splice site all species seems to have the conserved motif CAGGTAAGT
corresponding to the complementary sequence of the U1 snRNA subunit. However, the
overall genomic C+G content seems to model this conservation. In Dictyostelium, for in-
stance the positions of the motif containing A and T are more conserved, and even in the
first position of the motif that in the other species correspond to A or C, is completely
biased to A.

The splice signals in D. discoideum show the canonical GT-AG motif. However, in
contrast with the other species, besides these common sites only weak preferences for
nucleotides adjacent to the donor site could be detected. The distal positions are slightly
favored by a (A/T)GT motif. This may be caused by the high mean A/T content in in-
trons of 87%. The splice aparatus has therefore to be able to correctly detect and process
this signal in spite of its relative weakness compared to other organisms. Possibly the
difference composition content between introns and coding sequences contribute to the
recognition of the exon boundaries.

There is considerable variation in the C+G content of exons and introns (Table 3.2).
For instance, the average C+G content of the introns in Dictyostelium is 9% versus 23% in
the entire genome. Therefore, it seems that there is also some constraint on the compo-
sition of introns. On the other hand, in vertebrates it seems that exons have a bias in the
other direction, coding exons being much richer in C+G than the average in the genome.
However, introns have a C+G content more similar to the general genomic composition.
This composition bias could play an important role in the identification of introns and
exons.

An interesting property observed in the structure of genes (Table 3.2) is the variation of
intron and internal coding exon size across the different species. In Dictyostelium, intron
length seems to have clear restrictions (with a mean of 132 and a standard deviation of 76),
whereas the length of the internal coding exons seems to be less restricted (with a average
of 544 bp and a standard deviation of 1012). On the other hand, in vertebrates, intron
length seems to have no clear restriction (average 641 bp and standard deviation of 975
in human), whereas exons seem to be constrained (average 145 and standard deviation
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Exon Intron Exon Intron genomic
length (bp) length (bp) C+G C+G C+G

average std. dev. average std. dev (%) (%) (%)
D. discoideum 543.92 1012.12 132.02 76.04 0.31 0.09 0.23
D. melanogaster 455.31 618.44 245.92 618.45 0.54 0.38 0.43
T. nigroviridis 140.03 102.65 296.81 670.88 0.53 0.43 0.46
H. sapiens 145.38 95.35 640.85 974.76 0.55 0.45 0.41

Table 3.2: Average exon and intron length and C+G content for the four species under
study. Exon refers to internal coding exons

of 95 in human). Intriguingly, Drosophila shows intermediate and very variable intron
and exon length distributions without any clear pattern of restriction. The most striking
observation is that exon length distribution in vertebrates is very similar to the intron
length distribution in Dictyostelium.

This data is consistent with the differential intron and exon definition where short in-
trons, which are mostly found in lower eukaryotes, seem to be recognized molecularly by
the interaction of the splicing factors which bind to both ends of the intron. In vertebrates
the internal exons are small (140 nucleotides on average), whereas introns are typically
much longer (with some being more than 100 kb). The exon definition was proposed to
explain how the splicing machinery recognizes exons in a sea of intronic DNA, where
many cryptic splice sites exist. This theory suggests that an internal exon is initially rec-
ognized by the presence of a chain of interactions of the splicing factors that bind to it.
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Drosophila melanogasterCompositional profile of /home/ug/gparra/Research/dros29MB/splicesites_info/training_15.donors.fa
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Tetraodon nigroviridisCompositional profile of /home/ug/gparra/Research/tetraodon/splicesites_info/donor.fa
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Homo sapiensCompositional profile of /home/ug/gparra/Research/humGeneId/splicesites_info/Human.EID.donors.fa
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Figure 3.3: Splice signal conservation in different species. Sequence motifs for 5’ splice
sites (donors) and 3’ splice sites (acceptors) were generated using Pictogram (http:
//genes.mit.edu/pictogram.html ). The height of each letter is proportional to the
frequency of the corresponding base at a given position, and bases are listed in descend-
ing order from top to bottom. The relative entropy (in bits) of the model relative to the
background transcript base composition is also shown.

http://genes.mit.edu/pictogram.html
http://genes.mit.edu/pictogram.html


Comparative gene finding: sgp2

The increasing number of available genomes has lead to the development of new compu-
tational gene finding methods that use sequence conservation to improve the accuracy of
gene prediction methods (as reviewed in section 1.2.3). Anonymous genomic sequences
from different organisms are compared, under the assumption that coding regions tend
to be more conserved that non-coding regions. The first part of this section gives a brief
overview of the sgp1 algorithm, its strengths and limitations. Then, we summarize the
approaches to overcome these limitations on which sgp2 is based. This section also in-
cludes a short description of twinscan . twinscan was developed by Korf et al. (2001)
and it uses a similar approach to combine comparative information. The attached pa-
per gives a detailed description of sgp2 structure and the accuracy achieved in different
annotated sets of sequences.

4.1 sgp1, Initial Syntenic Gene Prediction

As was mentioned in the Introduction (section 1.2.3), there are different ways to exploit
the information from genome comparison into gene prediction. The first version of sgp
(from Syntenic Gene Prediction) was developed mainly by Thomas Wiehe and Roderic
Guigó (Wiehe et al., 2001). sgp1 separates clearly gene prediction from the alignment
problem.

sgp1 starts by aligning two syntenic regions using an external alignment program
(for instance sim90 or blast ), and then predicts the final gene structures in which the
exons are compatible with the alignment. A central strategy of sgp1 is to rely as little as
possible on species specific nucleotide composition, such as isochore distribution, codon
bias or any other coding statistic. Therefore, predicted exons do not receive scores that
depend on any of such sources of information. Rather, scoring at the initial step (before
the alignment) relies exclusively on splice site quality.

After the alignment, sgp1 generates a set of pairs of pre-candidate exons between
the two species. A pre-candidate exon is a sequence with a well defined reading frame
and splice signals. A filtering process checks whether the begin and end positions of any
pair of pre-candidates are contained in the alignment regions. If there is any discrepancy,
the pair is discarded. Optionally, the filter can be relaxed to allow for an offset between
alignment and pre-candidate exon. There are two parameters: x, the number of base pairs
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Figure 4.1: Relaxed filtering of pre-candidate exons in sgp1 .(a) Non exact exon bound-
aries, but complete coverage by the alignment. (b) Non exact exon boundaries and partial
coverage by the alignment. Setting parameters d and x to a value greater than 0 retains
pre-candidates with unaligned splice sites. Adapted from Wiehe et al. (2001)

by which locally aligned segments are extended, and d, the maximal distance by which
the ends of two paired pre-candidates may be separated (see Figure 4.1).

The exons that pass the filter are assembled into gene predictions independently for
both species using the chaining algorithm described by Guigó (1998). The assembly pro-
gram attempts to build complete gene models consisting of either a single exon or one ini-
tial exon, an arbitrary number of internal exons, and one terminal exon. Multiple genes,
on either strand, can be assembled.

Given two sequences and their alignment as input, the program calls subroutines for
the alignment post-processing, generating pre-candidate exons, exon filtering, rescoring
and gene assembly and for generating the final output. The subroutine with the highest
time complexity is the one that filters the pre-candidate exons. A very rough estimation
of its running time is O(nm), quadratic time, where n and m are the lengths of the input
query sequences. This is due to the fact that the size of the two exon pre-candidates
lists depends on n and m, respectively, and each pair of pre-candidates, one from each
list, has to be processed. This is one of the major limitations of sgp1 for whole genome
predictions. The amount of comparisons of exons structures increases quadratically with
the length of the sequences. Therefore, this is a computationally very expensive approach
to comparative prediction in complete eukaryotic genomes.

Another important limitation of sgp1 is that it relies too much on syntenic sequences.
If any of the sequences is partially sequenced the accuracy of the method drops substan-
tially. This limits, again, its utility when analyzing complete, large, eukaryotic genomes.
In particular when one genome is in non-assembled shotgun form.
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4.2 New strategies to overcome sgp1

To overcome these limitations, sgp2 takes a different approach. Essentially, the query
sequence from the target genome is compared against a collection of sequences from the
informant genome (which can be a single sequence homologous to the query sequence, a
whole assembled genome, or a collection of shotgun reads). The results of the comparison
are used to modify the scores of the exons produced by geneid ab initio gene prediction
program.

One of the most important differences between sgp1 and sgp2 , is that sgp2 does not
attempt to generate all the compatible exons of the two orthologous sequences. Finding
compatible exons requires that genes in the two sequences have the same exon-intron
structure. Extending this strategy to multi-gene sequences would require the assumption
that the two sequences have the same genes in the same order and orientation. In a large-
scale comparison there are a lot of partial duplications and rearrangements, and even
sequencing mis-assemblies that complicate such approaches.

Using a global alignment or the compatible exons strategy requires informant se-
quences to be finished. The sequence conservation approach taken by sgp2 , which is
based on the highest scoring local alignments, allows to use draft and shotgun sequences.
The sequence conservation effectively rearranges the alignments into the correct order
and orientation. In addition because local alignments can be from any region of the in-
formant genome, it allows us to take, apart from the similarities from orthologies, the
similarity observed from paralogies or domain conservation occurring in non syntenic
regions.

sgp2 combines tblastx genome comparison results with geneid . tblastx com-
pares the six-frame translations of a nucleotide query sequence against the six-frame
translations of a nucleotide sequence database. To score the alignment an amino acid
substitution matrix is used. An amino acid substitution matrix is a 20 x 20 matrix in
which every possible identity and substitution is assigned a score based on the observed
frequencies of such occurrences in alignments of related proteins. Scores are computed
as log-likelihood ratios. Identities are assigned the most positive scores. Frequently ob-
served substitutions also receive positive scores and less observed substitutions are given
negative scores (see Figure 4.2). Therefore, tblastx is much more sensitive that using
blastn alone. tblastx can capture similarities at amino acid level that could be dif-
ficult or impossible to find at nucleotide level. Moreover, the amino acid substitution
matrices score the alignments from an evolutionary point of view.

After the tblastx alignment, the maximum scores of the overlapping high-scoring
segment pairs (HSPs) are projected in the target sequence in the maximum scoring pro-
jection. The maximum scoring projection is provided to geneid in general feature for-
mat (GFF, http://www.sanger.ac.uk/Software/formats/GFF/ ) where each line
contains the coordinates of the alignment and the highest observed score. Essentially,
geneid is used to predict all potential exons along the target sequence. Scores of exons
are computed as log-likelihood ratios, function of the splice sites defining the exon, the
coding bias in composition of the exon sequence as measured by a Markov Model of or-
der five, and of the optimal alignment at the amino acid level between the target exon
sequence and the counterpart homologous sequence in the reference set. From the set
of predicted exons, the gene structure is assembled (potentially multiple genes in both

http://www.sanger.ac.uk/Software/formats/GFF/
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Figure 4.2: A section of the 20 x 20 BLOSUM62 matrix in which every possible identity
and substitution is assigned a score based on the observed frequencies of such occur-
rences in alignments of related proteins.

strands), maximizing the sum of the scores of the assembled exons.

A similar approach has also been recently explored by Korf et al. (2001) for their pro-
gram twinscan . In twinscan , the genome sequences are compared using blastn and
the results serve to modify the underlying probability of the potential exons predicted
by genscan . genscan assigns one of the possible sequence states to each nucleotide of
an input sequence (see Figure 1.8). In twinscan , genscan model that assigns a prob-
ability to any parsed DNA sequence is combined with a parallel sequence conservation
model. Coding, UTR, and intron/intergenic states are assigned probability to stretches
of sequence conservation using a 5th order Markov Model. Models of sequence conser-
vation at splice donor and acceptor sites were based on a 2nd order PWA. These models
are not based on dependencies between nucleotides but on dependencies in the pattern
of conservation.

To summarize, twinscan takes as input local alignments between a target genome
and a database of sequences from an informant genome. For each nucleotide of the target
genome, only the highest scoring HSP overlapping that nucleotide is used. These align-
ments are converted into a representation called conservation sequence, which assigns one
of the three symbols to each possible nucleotide in the alignment: “|” if the alignment con-
tains a match, “:” if it is a gap or a mismatch , and “.” if there is no overlapping alignment
(as shown in Figure 4.3). Given a target genomic sequence and the conservation sequence
model, twinscan predicts the more probable gene structures according to the probabil-
ity of corresponding to a particular state together with the given pattern of conservation.

4.3 sgp2: Comparative gene prediction in human and
mouse

The following paper gives a more detailed description of the sgp2 algorithm, specially
to the maximum scoring projection of the HSPs obtained with the tblastx and the re-
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Figure 4.3: Conversion of the best local alignment in each region of the target genome
(top) into the conservation sequence representation used by twinscan (bottom). A typi-
cal coding region (left), in which there are no unaligned bases or gaps, and the distance
between mismatches tend to be multiple of three. A typical intron (right), in which there
are unaligned regions, gaps and adjacent mismatches. Adapted from Korf et al. (2001).

scoring of the geneid exons. It also shows the evaluation of sgp2 in different single
genes sets of sequences and in the human chromosome 22. Finally, whole genome human
and mouse sgp2 predictions are analyzed.
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The completion of the sequencing of the mouse genome promises to help predict human genes with greater
accuracy. While current ab initio gene prediction programs are remarkably sensitive (i.e., they predict at least a
fragment of most genes), their specificity is often low, predicting a large number of false-positive genes in the
human genome. Sequence conservation at the protein level with the mouse genome can help eliminate some of
those false positives. Here we describe SGP2, a gene prediction program that combines ab initio gene prediction
with TBLASTX searches between two genome sequences to provide both sensitive and specific gene predictions.
The accuracy of SGP2 when used to predict genes by comparing the human and mouse genomes is assessed on
a number of data sets, including single-gene data sets, the highly curated human chromosome 22 predictions,
and entire genome predictions from ENSEMBL. Results indicate that SGP2 outperforms purely ab initio gene
prediction methods. Results also indicate that SGP2 works about as well with 3x shotgun data as it does with
fully assembled genomes. SGP2 provides a high enough specificity that its predictions can be experimentally
verified at a reasonable cost. SGP2 was used to generate a complete set of gene predictions on both the human
and mouse by comparing the genomes of these two species. Our results suggest that another few thousand
human and mouse genes currently not in ENSEMBL are worth verifying experimentally.

After the genome sequence of an organism has been obtained,
the very first next step is to compile a complete and accurate
catalog of the genes encoded in this sequence. For higher
eukaryotic organisms, however, the accuracy of currently
available gene prediction methods to perform such a task is
limited (Guigó et al. 2000; Rogic et al. 2001; Guigó andWiehe
2003). The increasing availability of genome sequences from
different organisms, however, has lead to the development of
new computational gene finding methods that use sequence
conservation to help identifying coding exons, and improve
the accuracy of the predictions (Fig. 1; Crollius et al. 2000;
Wiehe et al. 2000; Miller 2001; Rinner and Morgenstern
2002). Indeed, three such comparative gene prediction pro-
grams, SLAM (Pachter et al. 2002), SGP2, and TWINSCAN
(Korf et al. 2001) have been used for the comparative analysis
of the human and mouse genomes. These analyses lead to
more accurate gene predictions, and to the verification of pre-
viously unconfirmed genes. In this paper, we describe the
program SGP2. Typical computational ab initio gene predic-
tion methods rely on the identification of suitable splicing
sites, start and stop codons along the query sequence, and the
computation of some measure of coding likelihood to predict
and score candidate exons, and delineate gene structures (see
Claverie 1997; Burge and Karlin 1998; Haussler 1998; Zhang
2002 and references therein for reviews on computational
gene finding).

Similarity between the query sequence and known cod-

ing sequences (amino acid or cDNA) can also be used to infer
gene structures. When the query sequence encodes a protein
for which a close homolog exists, a special type of alignment
can be used between the DNA sequence and the target pro-
tein/cDNA sequence, in which gaps in the target sequence
corresponding to introns in the query sequence must be com-
patible with potential splicing signals. This is the approach in
GENEWISE (Birney and Durbin 1997) and PROCRUSTES
(Gelfand et al. 1996). Alternatively, the results of searching
the query sequence against a database of known coding se-
quences, using for instance BLASTX (Altschul et al. 1990,
1997; Gish and States 1993), can be incorporated more or less
ad hoc into the scoring schema of an ab initio gene prediction
method. The program GENOMESCAN (Yeh et al. 2001),
which incorporates BLASTX search results into the predic-
tions by the GENSCAN program (Burge and Karlin 1997), is an
example of a recent development in that direction.

Recently developed comparative gene prediction pro-
grams further exploit sequence similarity. Instead of compar-
ing anonymous genomic sequences to known coding se-
quences, anonymous genomic sequences are compared to
anonymous genomic sequences from the same or different
organisms, under the assumption that regions conserved in
the sequence will tend to correspond to coding exons from
homologous genes. The approach taken by the different pro-
grams to exploit this idea differs notably.

In one such approach (Blayo et al. 2002; Pedersen and
Scharl 2002), the problem is stated as a generalization of pair-
wise sequence alignment: Given two genomic sequences cod-
ing for homologous genes, the goal is to obtain the predicted
exonic structure in each sequence maximizing the score of the

5Corresponding author.
E-MAIL rguigo@imim.es; FAX 34 93 224-0875.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.871403.
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alignment of the resulting amino acid sequences. Both Blayo
et al. (2002) and Pedersen and Scharl (2002) solve the problem
through a complex extension of the classical dynamic pro-
gramming algorithm for sequence alignment.

In a different approach, the programs SLAM (Pachter et
al. 2002) and DOUBLESCAN (Meyer and Durbin 2002) com-

bine sequence alignment pair hid-
den Markov Models (HMMs;
Durbin et al. 1998) with gene pre-
d i c t i on g en e r a l i z e d HMMs
(GHMMs; Burge and Karlin 1997)
into the so-called generalized pair
HMMs. In these, gene prediction is
not the result of the sequence align-
ment, as in the programs above;
gene prediction and sequence
alignment are obtained simulta-
neously.

A third class of programs adopt
a more heuristic approach, and
separate clearly gene prediction
from sequence alignment. The pro-
grams ROSSETA (Batzoglou et al.
2000), SGP1 (from ‘syntenic gene
prediction’; Wiehe et al. 2001), and
CEM (from ‘conserved exon
method’; Bafna and Huson 2000)
are representative of this approach.
All these programs start by aligning
two syntenic sequences and then
predict gene structures in which the
exons are compatible with the
alignment. The programs described
thus far rely on the comparison of
fully assembled (and when from
different organisms, syntenic) ge-
nomic regions. This limits their
utility when analyzing complete
large eukaryotic genomes, and in
particular when the informant ge-
nome is in nonassembled shotgun
form. To overcome this limitation,
the programs TWINSCAN (Korf
et al. 2001) and SGP2 take still
a different approach. The approach
is reminiscent of that used in
GENOMESCAN (Yeh et al. 2001) to
incorporate similarity to known
proteins to modify the GENSCAN
scoring schema. Essentially, the
query sequence from the target ge-
nome is compared against a collec-
tion of sequences from the infor-
mant genome (which can be a
single homologous sequence to the
query sequence, a whole assembled
genome, or a collection of shotgun
reads), and the results of the com-
parison are used to modify the
scores of the exons produced by ab
initio gene prediction programs. In
TWINSCAN, the genome sequences
are compared using BLASTN, and
the results serve to modify the un-

derlying probability of the potential exons predicted by
GENSCAN. In SGP2, the genome sequences are compared us-
ing TBLASTX (W. Gish, 1996–2002, http://blast.wustl.edu),
and the results are used to modify the scores of the potential
scores predicted by GENEID. TWINSCAN and SGP2 have been
successfully applied to the annotation of the mouse genome
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Figure 1 Pairwise comparison using TBLASTX of the human and mouse genomic sequences coding
for the HLA class II alpha chain. Black boxes indicate the coding exons, while black diagonals indicate
the conserved alignments. The score of the conserved alignments (divided by 10) is given in the lower
panels. Although conserved regions between the human and mouse genomic sequences coding for
these genes fully include the coding exons, a substantial fraction of intronic regions is also conserved.
The TBLASTX outptut was post-processed to show a continuous non-overlapping alignment.
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(Mouse Genome Sequencing Consortium 2002), and have
helped to identify previously unconfirmed genes (Guigó et
al. 2003).

In the next section, we describe the algorithmic details of
SGP2, and its implementation. We also describe the sequence
sets used to benchmark SGP2 accuracy. Results based on these
data sets indicate that SGP2 is an improvement over pure ab
initio gene prediction programs, even when the informant
genome is only in shotgun form. We have found that 3x
coverage will generally suffice to achieve maximum accuracy.
Finally, we describe the application of SGP2 to the compara-
tive analysis of the human and mouse genomes.

METHODS

SGP2
SGP2 is a method to predict genes in a target genome sequence
using the sequence of a second informant or reference genome.
Essentially, SGP2 is a framework to integrate the ab initio
gene prediction program GENEID (Guigó et al. 1992; Parra et
al. 2000) with the sequence similarity search program
TBLASTX. The approach is conceptually similar to that
used in TWINSCAN to incorporate BLASTN searches into
GENSCAN.

GENEID is a genefinder that predicts and scores all po-
tential coding exons along a query sequence. Scores of exons
are computed as log-likelihood ratios, which are a function of
the splice sites defining the exon, and of the coding bias in
composition of the exon sequence as measured by a Markov
Model of order five (Borodovsky and McIninch 1993). From
the set of predicted exons, GENEID assembles the gene struc-
ture (eventually multiple genes in both strands), maximizing
the sum of the scores of the assembled exons, using a dynamic
programming chaining algorithm (Guigó 1998).

When using an informant genome sequence to predict
genes in a target genome sequence, ideally we would like to
incorporate into the scores of the candidate exons predicted
along the target sequence, the score of the optimal alignment
at the amino acid level between the target exon sequence and
the counterpart homologous exon in the informant genome
sequence. If a substitution matrix, for instance from the
BLOSUM family, is used to score the alignment, the resulting
score can also be assumed to be a log-likelihood ratio: infor-
mally, the ratio between the likelihood of the alignment
when the amino acid sequences code for functionally related
proteins, and the likelihood of the alignment, otherwise. In
principle, this score could be added to the GENEID score for
the exon. TBLASTX provides an appropriate shortcut to often
find a good enough approximation to such an optimal align-
ment, and infer the corresponding score: The optimal align-
ment can be assumed to correspond to the maximal scoring
high-scoring segment pairs (HSP) overlapping the exon. How-
ever, when dealing in particular with the informant genome
sequence in fragmentary shotgun form, often different re-
gions of a candidate exon sequence will align optimally to
different informant genome sequences. Thus, in the approach
used here, we identify the optimal HSPs covering each frac-
tion of the exon, and compute separately the contribution of
each HSP into the score of the exon. In the next section, we
describe in detail how this computation is performed.

Scoring of Candidate Exons
Let e be one of the candidate exons predicted by GENEID
along the query DNA sequence S. In SGP2, the final score of e,
s(e), is computed as

s�e� = sg �e� + wst �e�

where sg(e) is the score given by GENEID to the exon e, and

st(e) is the score derived from the HSPs found by a TBLASTX
search overlapping the exon e. Both scores are log-likelihood
ratios (and we compute both base two). Assuming that both
components are independent, they can be summed up into a
single score. However, the assumption of independence is not
realistic, sg(e) depends on the probability of the sequence of e,
assuming that e codes for a protein, while st(e) depends on the
probability of the optimal alignment of e with a sequence
fragment of the mouse genome, assuming that both se-
quences code for related proteins. Obviously, these two prob-
abilities are not independent. Their joint distribution could
only be investigated—at least empirically—if the Markov
Model of coding DNA used in GENEID, and the substitution
matrix used by TBLASTX were inferred from the very same set
of coding sequences. Since this is quite difficult, if not unfea-
sible, we use an “ad hoc” coefficient, w, to weight the contri-
bution of TBLASTX search, st(e) into the final exon score.

We compute st(e) in the following way. Let h1···hq be the
set of HSPs found by TBLASTX after comparing the query
sequence S against a database of DNA sequences (Fig. 2A).

First, we find the maximum scoring projection of the HSPs
onto the query sequence. We simply register the maximum
score among the scores of all HSPs covering each position,
and then partition the query sequence in equally maximally
scoring segments (bounded by dotted lines in Fig. 2A) x1···xr,
with scores sp(x1)···sp(xr) (Fig. 2B).

Then, for each predicted exon e (Fig. 2C), we find Xe, the
set of maximally scoring segments overlapping e

Xe = �xi : xi ∩ e � ��

where a ∩ b denotes the overlap between sequence segments
a and b, and � means no overlap. We compute st(e)in the
following way:

st �e� = �
x∈ Xe

sp�x�
| x ∩ e |

| x|

where �a� denotes the length of sequence segment a.
That is, each exon gets the score of the maximally scor-

ing HSPs along the exon sequence proportional to the frac-
tion of the HSP covering the exon. In other words, st(e) is the
integral of the maximum scoring projection function within
the exon interval.

Once the scores s have been computed for all predicted
exons in the sequence S, gene prediction proceeds as usual in
GENEID: The gene structure is assembled maximizing the
sum of scores of the assembled exons.

Running SGP2
In practice, we run SGP2 in the following way. Given a DNA
query sequence and a collection of DNA sequences, we com-
pare the query sequence against the collection using TBLASTX
2.0MP-WashU [23-Sep-2001]. The query sequence can be a
genomic fragment of any size, including complete eukaryotic
chromosomes, whereas the collection of sequences may be
almost anything from just a homologous region or a partial
collection of genomic sequences from the same or another
species to the whole genome sequence of a second species,
either completely assembled or in shotgun form at any degree
of coverage. In particular, two different regions of the same
genome coding for homologous genes can be used within
SGP2; in this case the same genome acts as target and infor-
mant.

In all the analyses reported here, we used BLOSUM62 as
the amino acid substitution matrix, but changed the penalty
for aligning any residue to a stop codon to �500. This helps
to get rid of a large fraction of HSPs in noncoding regions.
Because of TBLASTX limitations, large query sequences may
need to be split in fragments before the search, and the results
reconstructed afterwards. Results of TBLASTX search are then
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parsed to obtain the maximum scoring projection of the HSPs
onto the query sequence. The parsing includes discarding all
HSPs below a given bit score cutoff, subtracting this value
from the score of the remaining HSPs, weighting the resulting
score by w (see above), and collapsing the HSPs in to the
maximum scoring projections. In all analyses described here,
the bit score cutoff was set to 50, and w to 0.20. These values
were chosen to optimize the gene predictions in sequence sets
of known homologous human andmouse genomic sequences
(see the Results section).

The maximum scoring projection is given to GENEID in
general feature format (GFF; R. Durbin and D. Haussler,
http://www.sanger.ac.uk/Software/GFF/). GENEID uses it to
rescore the exons predicted along the query sequence as ex-
plained, and assembles the corresponding optimal gene struc-
ture. GENEID was already designed to incorporate external
information into the gene predictions, and no changes were
required in the program to accommodate it into the SGP2
context, only a small adjustment in the parameter file to cope
with the change in scale of the exon scores.

We have written a simple PERL script which, given a
query DNA sequence and the results of the TBLASTX search,
performs all the components of the SGP2 analysis transpar-
ently: the parsing of the TBLASTX search results, and the
GENEID predictions. In the case wherein both the query and
the informant sequence are single genomic fragments, the
gene predictions can be obtained in both sequences (without
the need for a second TBLASTX search). The script, as well as
the individual components, can be found at http://www1.
imim.es/software/sgp2/.

GENEID has essentially no limits to the length of the
input sequence, and deals well with chromosome size se-
quences. Limits to the length of the input query sequence that
can be analyzed by SGP2 are, thus, those imposed by

TBLASTX. GENEID is quite fast; given the parsed TBLASTX
results, it takes 6 h to reannotate the whole human genome in
a MOSIX cluster containing four PCs (PentiumIII Dual 500
Mhz processors).

Accelerating TBLASTX Searches
TBLASTX searches, although efficient, are much slower. Its
default usage may become computationally prohibitive when
comparing complete eukaryotic genomes. In the context of
SGP2, however, a number of TBLASTX options can be
changed to speed up the search, without significant loss of
sensitivity in the predictions (see the Results section). Thus,
results in human chromosome 22 and whole-genome com-
parisons have been performed using the following set of pa-
rameters: W = 5, -nogap, -hspmax = 150,000, B = 200, V = 200,
E = 0.01, E2 = 0.01, Z = 30,000,000, -filter = xnu + seg, and
S2 = 80. In these cases, the query sequences have been broken
up in 5 MB fragments, and the database sequences in 10 MB
fragments. In all cases, stop codons are heavily penalized
(�500) in the alignments. After the search is completed, lo-
cations of the resulting HSPs are recomputed in chromosomal
coordinates. Results in the single-gene sequence benchmark
data sets were obtained with default TBLASTX parameters.

Sequence Data Sets

Benchmark Sequence Sets
To optimize some of the parameters in SGP2 and to test its
performance, we used a set of known pairs of genomic se-
quences coding for homologous human and rodent genes.
The set is built after the set constructed by Jareborg et al.
(1999). This is a set of 77 orthologous mouse and human gene
pairs. We considered only the 33 pairs of sequences in this set

Figure 2 Rescoring of the exons predicted by GENEID according to the results of a TBLASTX search. See the “SGP2” section for a detailed
explanation of the figure.
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coding for single complete genes. In addition, we discarded
six additional pairs, when we suspected that one of the mem-
bers could be wrongly annotated. Orthology in the Jareborg et
al. (1999) data set is based on sequence conservation. This
could bias the set towards the more highly conserved human/
mouse orthologous genes. To compensate for this bias, we
obtained an additional set of pairs of human/rodent ortholo-
gous genes through an approach which does not involve se-
quence conservation: We obtained the set of pairs of human/
mouse sequences from the SWISSPROT database sharing the
prefix (indicating the gene) in their locus names. We kept
only those pairs for which it was possible to find the corre-
sponding annotated genomic sequence—including the map-
ping of the transcript, and not only of the coding regions—in
the EMBL database. Fifteen additional genes were found this
way. Three of them were discarded because we suspected
wrong annotation in at least one of the members of the pair.
We believe that orthology in the remaining cases is highly
likely because of the absolute conservation of the exonic
structure (number and length of exons, and intron phases)
that we observed. We will call the resulting concatenated set
of 39 pairs of human/mouse homologous genes the SCIMOG
dataset (from Sanger Center IMim Orthologous Genes). The
data set and the detailed protocol used to obtain it can be
accessed at http://www1.imim.es/datasets/sgp2002/.

To test the accuracy of SGP2, we used the data set con-
structed by Batzoglou et al. (2000) of 117 orthologous human
and mouse genes. We discarded those pairs in which in at
least one of the sequences contained multiple genes, and
those in which the coding region started in position 1 in one
of the sequences of the pair. This resulted in 110 genes. We
will call this set the MIT data set. There is some overlap be-
tween the SCIMOG and MIT data sets, and thus the latter
cannot properly be called a test set. However, we decided not
to eliminate the redundant entries, so that the results could be
compared to those published for the ROSSETA program (Bat-
zoglou et al. 2000).

Finally, we tested SGP2 in the complete sequence of hu-
man chromosome 22 (Dunham et al. 1999). The masked se-
quence was obtained from http://genome.cse.ucsc.edu/
goldenPath/22dec2001/. Chromosome 22 is probably the best
annotated human chromosome. We used the gene annota-
tions at http://www.cs.columbia.edu/∼vic/sanger2gbd/. The
CDS set contains 554 genes. This is a conservative set that
only contains the coding region of genes and does not include
pseudogenes. This may lead to an underestimation of the
specificity of the predictions.

Mouse and Human Genome Sequences
We used versions MGSCv3 of the mouse genome
(2,726,995,854 bp, http://genome.cse.ucsc.edu/goldenPath/
mmFeb2002/) and NCBI28 of the human genome
(3,220,912,202 bp, http://genome.cse.ucsc.edu/goldenPath/
22dec2001/). Both masked and unmasked sequences were ob-
tained from these locations. ENSEMBL gene annotations for
these genomes were obtained from http://genome.cse.
ucsc.edu/goldenPath/22dec2001/database/ensGene.txt.gz for

the human genome, and from http://genome.cse.ucsc.edu/
goldenPath/mmFeb2002/database/ensGene.txt.gz for the
mouse genome. ENSEMBL predicts 23,005 and 22,076
nonoverlapping transcripts genes on the human and mouse
genome, respectively.

Evaluating Accuracy
The measures of accuracy used here are extensively discussed
in Burset and Guigó (1996). We will restate them briefly. Ac-
curacy is measured at three different levels: nucleotide, exon,
and gene. At the nucleotide and exon levels, we compute
essentially the proportion of actual coding nucleotides/exons
that have been correctly predicted—which we call sensitivity—
and the proportion of predicted coding nucleotides/exons
that are actually coding nucleotides/exons—which we call
specificity. To compute these measures at the exon level, we
will assume that an exon has been correctly predicted only
when both its boundaries have been correctly predicted. To
summarize both sensitivity and specificity, we compute the cor-
relation coefficient at the nucleotide level, and the average of
sensitivity and specificity at the exon level. At the exon level,
we also compute the missing exons, the proportion of actual
exons that overlap no predicted exon, and the wrong exons,
the proportion of predicted exons that overlap no real exons.

At the gene level, a gene is correctly predicted if all of the
coding exons are identified, every intron–exon boundary is
correct, and all of the exons are included in the proper gene.
In addition, we compute the missed genes (MGs), real genes
for which none of its exons are overlapped by a predicted
gene, and the wrong genes (WGs), predictions for which none
of the exons are overlapped by a real gene. In general, gene
finders predict the initial and terminal exons very poorly.
This often leads to so-called chimeric predictions—one pre-
dicted gene encompassing more than one real gene—or to
split predictions—one real gene split in multiple predicted
genes. Reese et al. (2000) developed two measures, split genes
(SG) and joined genes (JG), to account for these tendencies.
SG is the total number of predicted genes overlapping real
genes divided by the number of genes that were split. Simi-
larly, JG is the total number of real genes that overlap pre-
dicted genes divided by the number of predicted genes that
were joined.

RESULTS

Benchmarking SGP2
We evaluated the accuracy of SGP2 using a number of differ-
ent data sets. The lack of a gold standard of gene prediction
makes it difficult to get accurate assessments from any single
data set. We primarily used three data sets as described earlier.

To benchmark SGP2, we constructed BLAST databases
from the mouse and human sections of SCIMOG and MIT,
and each mouse/human sequence to the entire human/
mouse database, respectively. This enabled us to predict genes
in both the mouse and human databases. The results from

Table 1. Gene Prediction in the SCIMOG Data Set

Program

Nucleotide Exon

Sn Sp CC Sn Sp (Sn+Sp)/2 ME WE

GENSCAN 0.98 0.86 0.92 0.84 0.75 0.79 0.04 0.14
TBLASTX default 0.89 0.76 0.81 0.81 — — 0.19 0.11
SGP2 (single complete genes) 0.97 0.98 0.97 0.89 0.89 0.89 0.03 0.03
SGP2 (multiple genes) 0.94 0.97 0.95 0.80 0.87 0.83 0.10 0.02
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comparing SGP2, GENSCAN, and ROSSETA accuracy values in
this case are taken from Batzoglou et al. (2000), and the results
of a simple TBLASTX search on the MIT data set are in Table
2 (below). For the TBLASTX searches, the maximum scoring
projection of the HSPs (see the above section titled “SGP2”) was
assumed to be the gene prediction. The score cutoff for the
HSPs was chosen to maximize the correlation coefficient (CC)
between the projected HSPs and the coding exons. In Table
1,2, we report the accuracy of GENSCAN, SGP2, and TBLASTX
on the SCIMOG dataset. The accuracy values for SGP2 are
reported under two scenarios: assuming a single complete
gene and assuming multiple genes. Both GENEID and SGP2
allow the external specification of a gene model (i.e., a small
number of rules specifying the legal assemblies of exons into
gene structures). These rules can be used to force SGP2 to
predict a single complete gene to make the results comparable
to those of ROSSETA. Without such a restriction (i.e., making
no assumptions about the number and completeness of the
genes potentially encoded in the query sequence), the results
are more directly comparable to those of GENSCAN (although
GENSCAN also has a tendency to start a prediction in any
sequence with an initial exon, and to terminate it with a
terminal exon).

The accuracy of SGP2 is comparable to that of ROSSETA,
and is significantly higher than that of GENSCAN. SGP2 also
improves substantially over a simple TBLASTX search. The
relative low specificity of the TBLASTX search—even after the
large penalties for stop codons—reflects the fact that a sub-
stantial fraction of the conservation between the human and
mouse genomes extends into the noncoding regions (Mouse
Genome Sequencing Consortium 2002). At the nucleotide
level, SGP2 accuracy is almost equal in the MIT data set and
the SCIMOG data set (even though the SGP2 was trained on
SCIMOG). The accuracy at the exact exon level, however, de-
creases, in particular when prediction of multiple genes is
allowed. This is a problem inherited from GENEID, which
tends to replace short initial and terminal exons with longer
internal exons.

Accuracy of SGP2 as a Function of the Coverage
of the Mouse Genome
To investigate the utility of partial shotgun data as informant
sequence in our approach based on TBLASTX, we simulated
shotgun mouse sequence data at different levels of coverage
(1.5x, 3x, and 6x) from the mouse genes in the SCIMOG data
set, and used them to compare the human sequences in
SCIMOG using TBLASTX. The mouse genomic sequences was
shredded with uniformly distributed length between 500 and
600 bp with random starting points. No sequencing errors
were introduced. At each coverage, we measured the CC be-

tween the TBLASTX hits projected along the human genome
sequence, and the coding exons (choosing the TBLASTX score
cutoff resulting in the optimal CC). With 1.5x coverage, a
substantial fraction of the human coding region is not iden-
tified by TBLASTX, whereas with 3x, the results are quite simi-
lar to those obtained with 6x, which are identical to those
obtained with the fully assembled syntenic regions (Table 3).
This indicates that even with 3x coverage of the informant
genome, our method will produce results nearly identical to
those obtained with fully assembled regions. Assembled ge-
nomes, however, result in faster TBLASTX searches.

Accuracy of SGP2 in Human Chromosome 22
Human chromosome 22 was the first human chromosome
fully sequenced (Dunham et al. 1999), and it is quite the best
annotated thus far, due to a number of experimental fol-
lowups (Das et al. 2001; Shoemaker et al. 2001). Therefore, it
provides an excellent data set to validate any gene prediction
technology. Human chromosome 22 was searched using
TBLASTX against the masked whole-genome assembly from
the mouse genome (MGSCv3). The HSPs in chromosomal co-
ordinates resulting from the TBLASTX search were used in
GENEID to perform SGP2 gene prediction. Although the HSPs
had been computed on the masked sequence, in this case the
SGP2 predictions were obtained on the unmasked one. SGP2
predicted 729 genes on human chromosome 22. Table 4
shows the comparative accuracy of the SGP2, GENSCAN,
GENOMESCAN, and pure ab initio GENEID predictions (with-
out TBLASTX data). GENSCAN predictions on the masked se-
quence were taken from the USCS genome browser http://
genome.cse.ucsc.edu/. GENOMESCAN predictions were ob-
tained from ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
build28_chr_genomescan.gtf.gz. Pure ab initio GENEID
predictions were obtained on the masked sequence, and
can also be downloaded from http://www1.imim.es/
genepredictions/.

Although SGP2 is not more sensitive than GENSCAN, it
appears to be more specific (as it utilizes the mouse genome).

Table 2. Gene Prediction Accuracy in the MIT Data Set

Program

Nucleotide Exon

Sn Sp CC Sn Sp (Sn+Sp)/2 ME WE

GENSCAN 0.98 0.89 0.93 0.82 0.75 0.78 0.06 0.13
ROSSETA 0.95 0.97 — — — — 0.02 0.03
TBLASTX default 0.94 0.79 0.85 — — — 0.13 0.13
SGP2 (single complete genes) 0.97 0.98 0.97 0.84 0.85 0.84 0.05 0.03
SGP2 (multiple genes) 0.96 0.97 0.96 0.71 0.79 0.75 0.12 0.03

Table 3. Accuracy of TBLASTX Predictions as a Function of
the Degree of Coverage in the SCIMOG Data Set

Coverage

Nucleotide Exon

Sn Sp CC ME WE

Simulated 1.5x 0.79 0.78 0.77 0.25 0.10
Simulated 3x 0.86 0.76 0.80 0.21 0.11
Simulated 6x 0.89 0.76 0.81 0.19 0.11
Fully assembled 0.89 0.76 0.81 0.19 0.11
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Fifty percent of the GENSCAN-predicted exons do not overlap
annotated chromosome 22 exons; this number is only 31%
for SGP2. Overall, SGP2 appears to be more accurate than
GENSCAN in human chromosome 22: GENSCAN’s CC at the
nucleotide level is 0.64, whereas that of SGP2 is 0.73. Al-
though accuracy decreases for both programs when going
from single-gene sequences (Tables 1, 2) to an entire chromo-
some, SGP2 retains more accuracy. GENSCAN overall shows
higher sensitivity than SGP2, but there were 45 real genes not
predicted by GENSCAN on human chromosome 22, and
SGP2 was able to predict, at least partially, 15 of them. This
suggests that SGP2 and GENSCAN may play complementary
roles. GENOMESCAN, on the other hand, did not appear to be
superior to GENSCAN in human chromosome 22.

Mouse matches (TBLASTX HSPs) covered 11% of the hu-
man chromosome 22. Though they covered 85% of the cod-
ing nucleotides, 74% of the HSPs fell outside annotated cod-
ing regions. This illustrates the difficulties of using genome
sequence conservation even at the protein level between hu-
man and mouse genomes to infer coding genes.

Prediction of Genes in the Human and
Mouse Genomes
We used SGP2 to predict the entire complement of human
(NCBI28) and mouse (MGSCv3) genes. The masked sequences
of these two genomes were compared using TBLASTX. The
TBLASTX HSPs were used within SGP2. SGP2 predicted 44,242
genes in the human genome, and 44,777 genes in the mouse
genome. Obviously, it is difficult to accurately assess these
predictions. We used ENSEMBL genes as the set of reference
annotations and compared both GENSCAN and SGP2 predic-
tions to it. Figure 3 shows summaries of the accuracy of SGP2
at the chromosome level in the human and mouse genomes.
When compared against ENSEMBL, SGP2 is more accurate
than GENSCAN.GENSCAN. It is more specific at the nucleo-
tide level: the average SGP2 specificity is 0.60 for human and
0.61 for mouse, whereas these values for GENSCAN are 0.43
and 0.44. SGP2 is also equally sensitive at the nucleotide level:
The average SGP2 sensitivity is 0.82 for human and 0.85 for
mouse; these values for GENSCAN are 0.82 and 0.84. Overall,
the average SGP2 CCs are 0.70 for human and 0.72 for mouse,
and for GENSCAN, the respective averages are 0.59 and 0.61.
The accuracy of the SGP2 predictions, moreover, appears to
be more consistent across chromosomes than that of the
GENSCAN predictions. Interestingly, human chromosome Y
is an outlier, with genes in this chromosome being poorly
predicted. Genes in chromosome Y appear to be more difficult
to predict than genes in other chromosomes for pure ab initio
gene prediction programs, because chromosome Y is also an

outlier for GENSCAN. SGP2 suffers, in addition, on human
chromosome Y because the mouse chromosome Y has yet to
be sequenced, and thus there was no comparative informa-
tion available.

Overall, 23,913 of the human predictions and 24,203 of
the mouse predictions overlapped ENSEMBL genes, whereas
95% of the mouse and 93% of the human ENSEMBL genes
were among the genes predicted by SGP2. Of the remaining
putative novel 20,570 mouse SGP2 genes and 20,193 human
SGP2 genes, 10,456 mouse and 9,006 human predictions were
found to be similar at P < 10�6 to a prediction in the coun-
terpart genome. Of these, 5,960 and 4,909 have multiple ex-
ons and are longer than 300 bp. A significant fraction of these
putative homologous predictions are likely to correspond to
real genes (Guigó et al. 2003). The predictions are interac-
tively accessible through the USCS genome browser (http://
genome.cse.ucsc.edu/) and through the DAS server at
ENSEMBL (http://www.ensembl.org, under “DAS sources”).
The complete set of prediction files is available at http://
www1.imim.es/genepredictions/.

Speeding Up TBLASTX Searches
Using TBLASTX to compare human and mouse whole-
genome sequences, even in masked form, is quite expensive
computationally because of the 6-frame translation on both
query and target. To substantially reduce the search time, we
used a word size of 5 and sacrificed some sensitivity (see the
section above titled “Accelerating TBLASTX Searches” for de-
tails). We also penalized stop codons heavily and did not per-
mit gaps. The computation took an estimated 500 CPU days
on a farm of Compaq Alphas.

Accuracy in Tables 1 and 2 was computed using default
TBLASTX parameters. Table 5 shows the comparative accu-
racy of TBLASTX and SGP2 predictions, under the default and
the speed-up configuration of TBLASTX parameters on the
SCIMOG data set. The sensitivity of speed-up TBLASTX
searches drops from 0.89 to 0.72, but specificity increases
slightly. SGP2 is more robust, and it compensates for some of
the sensitivity lost in the TBLASTX search. Overall accuracy
for SGP2, as measured by the CC, drops only from 0.95 to
0.93.

Predictions on human chromosome 22 and the whole
human and mouse genomes have been obtained with this
speed-up configuration of parameters.

DISCUSSION
We have described the program SGP2 for comparative gene
finding, and presented the results of its application to the
human and mouse genome sequences. Results in controlled
benchmark sequence data sets indicate that, by including in-

Table 4. Accuracy of Gene-finding Programs on Human Chromosome 22

Program

Nucleotide Exon Gene

Sn Sp CC Sn Sp (Sn+Sp)/2 ME WE Sn Sp (Sn+Sp)/2 MG WG JG SG

GENSCAN 0.86 0.50 0.64 0.70 0.40 0.55 0.13 0.50 0.06 0.04 0.05 0.11 0.45 1.24 1.07
GENOMESCAN 0.87 0.44 0.59 0.72 0.36 0.54 0.10 0.55 0.11 0.06 0.08 0.12 0.52 1.07 1.14
GENEID 0.80 0.63 0.69 0.66 0.53 0.59 0.19 0.35 0.09 0.07 0.08 0.14 0.39 1.20 1.08
TBLASTX 0.84 0.39 0.54 — — — 0.12 0.74 — — — 0.11 — — —
SGP2 0.83 0.67 0.73 0.68 0.56 0.62 0.16 0.31 0.13 0.10 0.11 0.14 0.36 1.14 1.13
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formation from genome sequence conservation, predictions
by SGP2 appear to be more accurate than those obtained by
pure ab initio programs, exemplified here by GENSCAN and
GENEID. Although there is not a significant gain in sensitiv-
ity, the specificity of the predictions appears to increase sub-
stantially, and a smaller number of false positive exons are
predicted.

Indeed, one the major obstacles towards the completion
of the catalog of human (mammalian) genes is our inability to
assess the reliability of the large number of computational
gene predictions that have not been verified experimentally.
Whereas the ENSEMBL pipeline produces about 25,000 hu-
man and mouse genes, the NCBI annotation pipeline predicts
almost 50,000 genes inmouse, and the programGENOMESCAN
predicts close to 55,000 genes in this species. Although a large
fraction of the ENSEMBL genes correspond to computational
predictions without experimental verification, the method is

quite conservative, and recent ex-
periments suggest that essentially
all ENSEMBL genes are indeed real
(Guigó et al. 2003). The problem
remains with the tens of thousands
of additional computational predic-
tions that are not included in
ENSEMBL. A fraction of them are
likely to be real, but the question is
how large this fraction is. The re-
sults obtained here in human chro-
mosome 22 seem to indicate that it
may not be very large. Although the
existence of hundreds of unidenti-
fied genes in this chromosome can-
not be completely ruled out, the re-
sults strongly suggest that a sub-
stantial fraction of these additional
computational gene predictions are
false positives.

In this regard, the results pre-
sented here demonstrate that
through the comparison of the hu-
man and mouse genomes using
SGP2 (or another available com-
parative gene prediction tool), the
false-positive rate can be reduced
significantly, and the catalog of
mammalian genes better defined.
SGP2 predicts a few thousand can-
didate genes not in ENSEMBL that
we believe are worth verifying ex-
perimentally. Indeed, the experi-
mental verification of a subset of
these provides evidence of at least
1000 previously nonconfirmed
genes (Guigó et al. 2003).

The predictions by SGP2 ob-
tained here are, of course, still far
from definitively setting this cata-
log. For one thing, the mouse may
be too close a species to human: A
large fraction of the sequence has
been conserved between the ge-
nomes of these two species. Indeed,
most sequence conservation be-
tween human and mouse does not

correspond to coding exons (Mouse Genome Sequencing Con-
sortium 2002), compounding gene prediction. This suggests
that the genome of another vertebrate species evolutionarily
located between fish and mammals could be of great utility to-
wards closing in the vertebrate (and mammalian) gene catalog.

SGP2 is flexible enough so that it can be easily accom-
modated to analyze species other than human and mouse.
The fact that it can deal with shotgun data at any level of
coverage means that as the sequence of a new genome starts
becoming available, it can be used to improve the annotation
of other already existing genomes. Particularly relevant in this
context is a feature of SGP2 (and GENEID) that we have not
explored here. SGP2 can produce predictions on top of pre-
existing annotations. For instance, we could have given to
SGP2 the location and exonic coordinates (in GFF format) of
known REFSEQ genes (or ENSEMBL), and SGP2 would have
predicted genes only outside the boundaries of these genes of

Figure 3 Accuracy of the human and mouse SGP2 and GENSCAN predictions. The accuracy was
measured in the entire chromosome sequences using the standard accuracy measures: SN, (sensitiv-
ity); SP, (specificity); CC, (correlation coefficient); SNe, (exon sensitivity); SPe, (exon specificity); and
SNSP, (average of sensitivity and specificity at exon level). Predictions from both programs were
compared against the human and mouse ENSEMBL annotations. Each dot corresponds to the accuracy
measure of one chromosome. Chromosome labels are shown for outlier values. The boxplots (Tukey
1977) were obtained using the R-package (http://cran.r-project.org/).
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already well known exonic structure. Preliminary results in-
dicate that this approach improves gene prediction outside of
the preassumed genes, and reduces the rate of chimeric pre-
dictions (i.e., predictions encompassing multiple genes).
Moreover, we believe that SGP2 can be substantially im-
proved. The flexibility of the SGP2/GENEID framework makes
it quite easy to integrate additional information that can con-
tribute to the accuracy of the predictions: synonymous versus
nonsynonymous substitution rates in the alignments by
TBLASTX, conservation of the splice signals in the informant
genome, amino acid substitution matrices specific to the phy-
logenetic distance between the species compared, etc.

In this regard, the reasons to use the default BLOSUM62
matrix are not obvious. Given the expected sequence similar-
ity between mouse–human orthologs, BLOSUM80 appears to
be a better choice. However, we intended to also detect diver-
gent families. Towards that end, the superiority of BLOSUM80
is less clear. We have compared TBLASTX search results on
human chromosome 22 against the whole mouse genome.
Whereas the HSPs resulting from the BLOSUM62 search cover
84% of the chromosome 22 coding nucleotides, BLOSUM80
HSPs cover 88% of them. However, BLOSUM80 is much less
specific than BLOSUM62: 60% of the nucleotides in the
BLOSUM62 HSPs fall outside coding regions, compared to
88% for BLOSUM80. It is thus clear that the optimal matrix or
combination of matrices for comparative gene-finding using
TBLASTX requires further investigation.

Although a large fraction of the human genome se-
quence has been known for more than a year, the exact num-
ber of human genes and their precise definition remain un-
known. Gene specification in higher eukaryotic sequences is
the result of the complex interplay of sequence signals en-
coded in the primary DNA sequence, which is only partially
understood. Without an exhaustive catalog of human genes,
however, the promises of genome research in medicine and
technology cannot be completely fulfilled. The work pre-
sented here, in which it is shown that human–mouse com-
parisons can contribute to the completion of the mammalian
(human) gene catalog, underscores the importance of the
comparisons of the genomes of different organisms to fully
understand the phenomenon of life, and in particular to de-
ciphering the mechanism, central to life, by means of which
the genome DNA sequence specifies the amino acid sequence
of the proteins.
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4.4 Accuracy of gene prediction methods

In collaboration with the genome sequencing centers, the Vertebrate Genome Annota-
tion database (VEGA, http://vega.sanger.ac.uk/ ) attempted to present a consis-
tent high-quality curation of vertebrate genomic sequences. Finished genomic sequences
are analyzed on a clone by clone basis using a combination of similarity searches against
DNA and protein databases as well as a series of ab initio gene predictions. The data gath-
ered in these steps is then used to manually annotate each gene structure. The annotation
is based on supporting evidence only. However, VEGA uses genscan and fgenesh in
the annotation pipeline, and may be biased toward these programs. Currently, there are
eight manually annotated human chromosomes.

We decided to evaluate the accuracy of a number of ab initio and comparative gene
finders in chromosome 22 again. This time using the curated annotations from VEGA
as reference. The results that we obtained, shown in Table 4.1, are consistent with the
ones presented in the Parra et al. (2003). Sensitivity and specificity were a little bit higher
because extra genes were added to the initial chromosome 22 annotation set used in the
previous paper.

As we have already seen, accuracy suffers substantially when moving from single
gene sequences to whole chromosome sequences. For instance, genscan CC drops from
0.91 in the evaluation by Rogic et al. (2001) (shown in Figure 1.3) to 0.65 for chromosome
22.

Ab initio programs have a similar accuracy being geneid more specific and genscan
more sensitive. Both programs tend to predict short wrong genes that do not overlap
with any real gene corresponding nearly half of the predictions to wrong genes.

Comparative approaches show an important improvement in comparison with the
Ab initio methods, specially in specificity. Ab initio specificity at nucleotide level is on
average 0.56, while comparative methods reach a specificity of 0.70. Sensitivity at exon
and gene level increase almost 10% on average. sgp2 performs better at nucleotide level
while twinscan at exon level. In spite of the general improvement of comparative gene
prediction, still 30% of predicted genes, on average, do not overlap any real annotation.

Base level Exon level Gene level
Sn Sp CC Sn Sp SnSp ME WE Sn Sp SnSp MG WG

ab initio
genscan 0.88 0.49 0.65 0.72 0.40 0.56 0.12 0.51 0.07 0.04 0.05 0.12 0.53
geneid 0.82 0.63 0.71 0.70 0.54 0.62 0.17 0.36 0.13 0.08 0.10 0.13 0.46

comparative
twinscan 0.83 0.69 0.74 0.77 0.63 0.70 0.11 0.26 0.16 0.14 0.15 0.17 0.24
sgp2 0.85 0.70 0.76 0.74 0.60 0.67 0.10 0.31 0.15 0.09 0.12 0.13 0.33

sequence similarity based
fgenesh 0.94 0.68 0.79 0.90 0.67 0.78 0.05 0.29 0.58 0.35 0.47 0.09 0.42
ENSEMBL 0.82 0.82 0.81 0.73 0.76 0.75 0.19 0.15 0.43 0.34 0.38 0.09 0.22

Table 4.1: Accuracy of different gene finding tools on the human chromosome 22 using
as reference the VEGA annotations.

http://vega.sanger.ac.uk/
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Even more sophisticated annotation pipelines, such as ENSEMBL (based on genewise )
or fgenesh , which use known cDNAs, are far from producing perfect predictions, with
CCs around 0.80 and prediction at gene level around 0.40. These numbers strongly sug-
gest that current mammalian gene counts are still of a highly hypothetical nature.

4.5 sgp2 distribution and web server

The sgp2 distribution contains a set of independent programs written in C and PERL.
sgp2 is distributed through the GNU General Public License (GNU GPL, http://www.
gnu.org/ ). That means that the code is freely available to any user. GNU GPL gives the
legal permission to copy, distribute and/or modify the software.

We have also developed a web server (see Figure 4.4) to allow the usage through the
Internet. The available web server is optimized for human-mouse comparative predic-
tion, but our plans include the extension to other species in the future.

sgp2 was extensively used in the annotation of the mouse and the human genome.
In the Annexed paper section is attached the paper of the Mouse Genome Consortium in
which we have participate obtaining and processing the set of sgp2 predictions.

http://www.gnu.org/
http://www.gnu.org/
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Figure 4.4: Form of the sgp2 web interface server accesible through http://genome.
imim.es/software/sgp2/sgp2.html .

http://genome.imim.es/software/sgp2/sgp2.html
http://genome.imim.es/software/sgp2/sgp2.html


Toward the completion of the
mammalian catalog of genes

The completion of the mouse genome allowed for the first time a comparative based an-
notation of two mammalian genomes and several comparative methods were applied to
improve gene predictions. However, current predictions are not reliable enough. This
section describes a protocol that reduces the false positive rate of predictions by exploit-
ing the exonic conservation between human and mouse homologous genes. Using this
protocol, a set of human-mouse predicted genes was generated and partially validated
by experimental approaches.

5.1 Expanding Human and Mouse standard annotation
pipelines

The challenge of predicting coding genes in genome sequences has been broadly dis-
cussed in previous sections. Despite the improvements achieved using comparative ap-
proaches, gene prediction methods still tend to predict many false positives. Therefore,
for the initial annotation of the mouse genome, the Mouse Genome Sequencing Consor-
tium relied mainly on the ENSEMBL gene build pipeline. The ENSEMBL automatic anno-
tation pipeline basically relies on known proteins and mRNA sequences (as explained in
section 1.3). However, ENSEMBL can not predict genes for which there is no preexisting
evidence of transcription or similarity to a closely related protein. This limitation could
lead to a bias against predicting genes that have a restricted expression pattern.

The aim of the following work was to survey how many coding genes have been
missed by the conservative ENSEMBL gene building pipeline. The goal, was to generate
a set of novel predicted genes that was not included in the ENSEMBL annotation. To
achieve a high standard of accurate predictions, a filtering protocol based on the exonic
structure conservation of orthologous human-mouse genes was developed. Samples of
gene predictions from each step were validated experimentally to assess the efficiency of
the protocol.

sgp2 and twinscan were used to generate the initial set of gene predictions. Both
programs are based on comparative gene prediction approaches, and both clearly out-
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perform ab initio gene prediction programs (as showed in Table 4.1, Korf et al. (2001) and
Parra et al. (2003)).

The protocol, performed independently within each predictor, consisted of:

• the prediction of human and mouse genes using both comparative gene predictors:
sgp2 and twinscan .

• the identification of homologous human-mouse prediction pairs based on protein
similarity using blastp .

• the filtering of predictions that overlap ENSEMBL predictions.

• the generation of a set of pairs of homologous predictions, with conserved exonic
structure.

After the different enriched sets of gene predictions were generated, experimental
validation of samples of each group was obtained by RT-PCR and direct sequencing.

Our contribution to this project was the generation of the sgp2 predictions in the
human and in the mouse genome and the development of the filtering process that leads
to the different subsets of gene predictions. We also contributed to the development of
exstral , the program needed for the superimposition of the exon-intron boundaries
over a protein alignment.

5.2 Obtaining sgp2 predictions

In this analysis, predictions have been obtained on the mouse genome (MGSCv3 assem-
bly) using comparative information from the human genome (NCBI Build 28) and vice-
versa. To obtain the similarity regions, mouse chromosomal sequences were split into 100
kb fragments to build the blast database. The masked human chromosomes were also
split in 100 kb fragments which were compared with the mouse database using tblastx
with parameters to speed up the search (as explained in Parra et al. (2003)). Although
these parameters increased the speed of the comparison, the whole computation took
one week of CPU time using 100 Alpha processors.

The 7,194,658 HSPs resulting from the comparison of the human and the mouse geno-
mes were processed in order to find the maximum scoring projections (MSPs). The MSPs
correspond to the complete non overlapping sections of HSPs with the highest score. This
process is realized taking into account in which of the six coding frames the HSPs have
been found ( as far as the alignments provided by tblastx are obtained at protein level).
After the projection, the number of HSPs was reduced to 2,169,704 MSPs for human and
2,145,493 for mouse.

sgp2 has essentially no limits to the length of the input query sequence, and deals
well with chromosome sequences. Therefore, predictions were computed from the entire
chromosome sequences (no fragmentation was needed). The predictions were obtained
from the unmasked sequences of the human and the mouse genome. The computation
took one day in a MOSIX cluster containing four PCs (PentiumIII Dual 500 Mhz proces-
sors).
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sgp2 predictions were obtained in a mode in which the complete mRNA sequences
obtained from the Reference Sequence database (REFSEQ, http://www.ncbi.nlm.nih.
gov/RefSeq/ ), mapped by the UCSC browser team, were provided to sgp2 as external
gene evidence. The coordinates of the corresponding coding fraction of the mRNAs were
provided to sgp2 in GFF format. Thus, predictions were built on top of this experi-
mentally verified set of mRNAs. Obviously, these genes were correctly predicted, but in
addition, the incorporation of these genes as external information, induced sgp2 to re-
fine the structure of nearby genes, reducing the number of joined and split genes. This
is a serious problem of most gene finding programs, because of the poor conservation of
the signals defining the beginning and the end of genes. Using this external information,
sgp2 only predicted genes in the regions between known mRNAs.

The accuracy of the predictions using external evidence was evaluated in the human
chromosome 22. The evaluation of the accuracy using VEGA annotations as reference is
shown in Table 5.1. The REFSEQ mRNA set (510 transcripts corresponding to 380 genes)
can be considered as a subset of the VEGA annotation set (containing 493 genes). The
relatively low specificity at gene level obtained by the REFSEQ set, 0.76, can be explained
by the fact that only one of the overlapping transcripts per gene is taken into account for
the evaluation. Therefore, in some cases, the selected isoform obtained from the VEGA
annotations does not correspond to the same isoform of the REFSEQ set. The sensitivity of
sgp2 at nucleotide level using the REFSEQ set increased only from 0.84 to 0.94. However,
the sensitivity at gene level increased from 0.15 to 0.68. The number of genes predicted
by sgp2 without using the mRNAs set in human chromosome 22 was 711 and using the
set of 380 non-overlapping mRNAs was 727.

Base level Exon level Gene level
Sn Sp CC Sn Sp Sn+Sp ME WE Sn Sp SnSp

REFSEQ mRNA 0.86 0.96 0.91 0.88 0.95 0.91 0.10 0.02 0.66 0.76 0.71
sgp2 0.85 0.70 0.76 0.74 0.60 0.67 0.10 0.31 0.15 0.09 0.12
sgp2 mRNA 0.94 0.74 0.84 0.92 0.70 0.81 0.04 0.20 0.68 0.38 0.53

Table 5.1: Accuracy of sgp2 on human chromosome 22 using REFSEQ mRNAs as exter-
nal evidence and the VEGA annotations as reference. The first sgp2 row contains the
accuracy of the standard sgp2 . In the sgp2 mRNA the results of introducing the mRNAs
of the REFSEQ database.

Figure 5.1 shows the schema of the sgp2 prediction protocol. sgp2 predicted 45,104
genes (including the 14,729 human mRNAs obtained from REFSEQ database) in the hu-
man genome and 47,055 genes (including the 8,405 mouse mRNAs from REFSEQ data-
base) in the mouse genome.

twinscan predictions were provided directly by Michael Brent’s laboratory at Wash-
ington University (St. Louis) and they were incorporated in the next steps of the protocol.

5.3 Obtaining the homologous pairs of predictions

The enrichment procedure was applied separately to twinscan and sgp2 predictions.
The protein sequences predicted by each program in the mouse genome were compared

http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ncbi.nlm.nih.gov/RefSeq/
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Figure 5.1: Schema of the protocol to obtain human-mouse sgp2 prediction and filtering
process
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with the human predictions using blastp . For each predicted mouse protein, human
predictions with blast expected values (e-value) lower than 1x10−6 were considered ho-
mologs. 18,068 and 20,331 homologous human-mouse pairs of predictions were obtained
from twinscan and sgp2 respectively.

As far as the purpose of the experiment was to find novel genes, the predictions cor-
responding to known genes were discarded. The preliminary ENSEMBL annotation gen-
erated with the RIKEN cDNA database was used as the standard of known genes. Any
prediction that overlapped with the mapped ENSEMBL genes was rejected (considered
non novel). Moreover, to assure the novelty, predictions were compared with the EN-
SEMBL predicted transcripts and the complete REFSEQ database using blastn . Predic-
tions with more than 95% nucleotide identity over at least 100 bp were also rejected. The
novelty protocol was applied to the mouse and human gene predictions. In the case of
the homologous predictions, if only one of the pair of proteins was found in the set of
known proteins both were discarded. About 95% of the homologous set of predicted pro-
teins were considered to be previously known (18,951 of 20,331 sgp2 and 17,304 of 18,068
twinscan predictions). However, only about 50% of the singleton proteins correspond
to the set of known proteins (13,687 of 26,724 sgp2 and 14,185 of 30,395 predictions).

This low percentage of known proteins in predictions not having a homologous coun-
terpart suggested that this set could not be very reliable. We analyzed some of these
cases and we found that many genes were shorter than expected and contained highly
repetitive stretches of DNA. These low complexity regions can mislead measurements of
coding statistics due to their repetitive composition, and may be scored as coding regions.
A quality filter was applied to this set in order to obtain a better set of predictions. Genes
shorter than 100 bp or those of which more than 75% of the prediction corresponded to
low complexity regions were discarded. The dust program (included in the WU-blast
support programs, http://blast.wustl.edu/ ) was used to determine the percent-
age of low complexity regions in the predicted transcripts. dust detects highly repetitive
regions, variable number of tandem repeats and short tandem repeats. Of the set of 13,037
sgp2 and 16,510 twinscan unpaired proteins 77,31% and 78,59% were respectively dis-
carded after the quality control filtering.

5.4 Conserved exonic structure

Mutations that disrupt splicing can cause catastrophic reading frame shifts, therefore in-
tron junctions and exonic structure are expected to be conserved features. A complete
analysis of conserved exonic structure is described by the Mouse Genome Sequencing
Consortium (2002) from a set of 1,506 pairs of human-mouse REFSEQ genes confidently
assigned to be orthologous. The Mouse Genome Sequencing Consortium (2002) showed
that gene structures are very conserved between orthologous pairs: 86% of the cases have
the identical number of coding exons and 46% have identical coding sequence length.
When all exons, rather than just coding exons, are taken into account, 62% have the same
number of exons. Based on this data we have developed a method to check if pairs of
genes from the homologous set of predictions have a conserved exonic structure.

Every homologous pair of predictions was first aligned using t-coffee (Notredame
et al., 2000). t-coffee , a global sequence alignment program, was run with default pa-

http://blast.wustl.edu/
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rameters on the amino acid sequences. Exonic structure was added to the global pairwise
alignments using exstral (Exon Structural Alignment).

exstral is a program that takes a global alignment of two proteins and the genomic
coordinates of the exonic structure of both genes as input, and outputs the exon and intron
junctions superimposed on the protein alignment. This program computes the relative
position of the intron boundaries in aligned pairs of sequences. The exon-intron junctions
are superimposed on the alignment taking into account the corresponding position of
the amino acid as well as the codon position where the exon-intron junction occurs. In
addition of the alignment with the exonic structure,exstral also provides information
of each confirmed compatible exonic junctions. Figure 5.3 shows the output of exstral .

When both members of an aligned gene pair contained an intron at the same coordi-
nate with at least 50% identity over 15 amino acids at both sides of the alignment, it was
assigned to the “enriched” pool. Predictions with homologous proteins but no aligned
introns were assigned to the “similar” pool.

5.5 RT-PCR validation experiments

A subset of random predictions were extracted from each set (for sgp2 and twinscan ),
and two adjacent exons across an intron were chosen from the selected predictions for
the RT-PCR test. The experimental test required that the exons were at least 30 bp long,
and the introns were at least 1000 bp long. Pairs of exons verifying these requirements
are sorted by the sum of the scores given by each prediction program, and the top scoring
pair was selected for the RT-PCR test.

5.6 Comparison of mouse and human genomes followed
by experimental verification yields an estimated 1,019
additional genes.

The following article is mainly based on the filtering method and the different subsets
of predictions we have already described. The final results of the RT-PCR experiments
showed that the comparative enrichment selection correlates with the ratio of amplifica-
tion. It also contains a functional analysis of some of the predicted proteins



76 5. Toward the completion of the mammalian catalog of genes

chr12_328 MSVTGFTITDEKVHLYHSIEKEKTVRHIGDLCSSHSVKKIQVGICLLLVELCERFTFFEV

chr6_2206 ------------------------------------------------------------

chr12_328 VCNMIPFCTIKLGYHNCQAAILNLCFIGTSILTPVFVRWLTDVYLGRNKLVYICLFLHFL
****** :** :* ***:*** *****:*****: **:* *:*****:**.* ****

chr6_2206 ---MIPFCTGRLGSYNHQAAMLNLGFIGTSVLTPVFMGWLADEYFGRNKLMYIALSLHFL

|1a
chr12_328 GTALLSVVAFPLEDFYLGTYHAVNNIPKTEQHRLFYVALLTICLGIGGVRAIVCPLGAFG

******::*** *:** *:* ..** . ** **:*****:*** **:**:*** . *
chr6_2206 GTALLSMLAFPAENFYRGAYPVFNNTSVEEQAGLFHVALLTLCLGTGGIRAVVCPPDMCG

|1a

|2b
chr12_328 LQEYGSQKTMSFFNWFYWLMNLNATIVFLGISYIQHSQAWALVLLIPFMSMLMAVITLHM

** *:*.*.* ** * ****::****** ** : ** :*:* :*:: *::**::
chr6_2206 SQERESKKPMPFCNWASWSANLNAAVVFLGISSIQPLGSGALGILLPSLSVFTALVTLYL

|2b

|3a
chr12_328 IYYNLIYQSEKRVGVL------VSALKTCHPQYCHLGRDVTSQLDHAKEKNGGCYSELHV

: :***:.*:* .:* * **** ***:*** :* **** **:** :***:
chr6_2206 KHCDLIYRPENRCSLLTIARAFVRALKTRCLPYCHFGRDGSSWLDHAMEKQGGHHSELQE

|3a

|4c
chr12_328 EDTTFFLTLLPLFIFQLLYRMCIMQIPSGYYLQTMNSNLNLDGFLLPIAVMNAISSLPLL

*** : :***** **:*** *::************** * .** ****:***** ****
chr6_2206 EDTRNISALLPLFSFQILYRTCLLQIPSGYYLQTMNSNRNWGGFSLPIALMNAISLLPLL

|4c

|5a
chr12_328 ILAPFLEYFSTCLFPSKRVGSFLSTCIIAGNLFAALSVMIAGFFEIHRKHFPAVEQPLSG

**.**::***.**:**** *.***:*:****: ** ** :***:**:** * **. **
chr6_2206 ILPPFMDYFSNCLLPSKRDGPFLSACMIAGNICAASSVAMAGFLEIYRK--LAREQSPSG

|5a

|6b
chr12_328 KVLTVSSMPCFYLILQYVLLGVAETLVNPAREYCNLN-----------------------

*:::****.*. *: *******:*.***** *. .
chr6_2206 KLFSVSSMACVCLVPQYVLLGVSEVLVNPAGAQCSKTCGIIKYSQKLATLQLSDNRTFAP

|6a

chr12_328 -------HFNA--------------------------QNIRGSNLEETLLLHEKSLKFYG
*:. :.***.. ****** ********

chr6_2206 NRQLVSKHIRQRQSRELLLRAGILDAAQHPGTLEGFMERIRGNRCEETLLLTEKSLKFYG
|7c

chr12_328 SIQEFSSSIDLWETAL
* * ***********

chr6_2206 STQGASSSIDLWETAL

chr12_328 chr6_2206 1 1 121a 361 223 172 223 0.94 0.93 0.81 0.73 0.00 0.00

chr12_328 chr6_2206 2 2 195b 223 170 223 170 0.75 0.73 0.56 0.60 0.00 0.00

chr12_328 chr6_2206 3 3 252a 170 203 170 221 0.88 0.47 0.44 0.33 0.00 0.40

chr12_328 chr6_2206 4 4 325c 203 187 221 187 0.88 0.93 0.69 0.93 0.00 0.00

chr12_328 chr6_2206 5 5 388a 187 193 187 183 0.94 0.80 0.69 0.67 0.00 0.00

# chr12_328 chr6_2206 6 7 5 0.48 0.63 0.83

Figure 5.3: exstral alignment output. On top, the alignment of the two proteins with
the superimposition of the exonic boundaries. Each exon boundary is marked with a ver-
tical line, the number of intron, and the codon position (a, b or c). The bottom part of the
exstral output shows the information associated with the aligned boundaries. For each
aligned exon-exon boundary the names of the proteins, the number of the aligned exons,
the length of the upstream and downstream exons, and the percentage of identities, sim-
ilarities and gaps of the the 15 downstream and upstream amino acid are shown.
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A primary motivation for sequencing the mouse genome was to
accelerate the discovery of mammalian genes by using sequence
conservation between mouse and human to identify coding exons.
Achieving this goal proved challenging because of the large propor-
tion of the mouse and human genomes that is apparently conserved
but apparently does not code for protein. We developed a two-stage
procedure that exploits the mouse and human genome sequences to
produce a set of genes with a much higher rate of experimental
verification than previously reported prediction methods. RT-PCR
amplification and direct sequencing applied to an initial sample of
mouse predictions that do not overlap previously known genes
verified the regions flanking one intron in 139 predictions, with
verification rates reaching 76%. On average, the confirmed predic-
tions show more restricted expression patterns than the mouse
orthologs of known human genes, and two-thirds lack homologs in
fish genomes, demonstrating the sensitivity of this dual-genome
approach to hard-to-find genes. We verified 112 previously unknown
homologs of known proteins, including two homeobox proteins
relevant to developmental biology, an aquaporin, and a homolog of
dystrophin. We estimate that transcription and splicing can be veri-
fied for >1,000 gene predictions identified by this method that do not
overlap known genes. This is likely to constitute a significant fraction
of the previously unknown, multiexon mammalian genes.

Complete and precise delineation of protein coding genes in
mammalian genomes remains a challenging task. To produce

a preliminary gene catalog for the draft sequence of the mouse (1),
the Mouse Genome Sequencing Consortium relied primarily on the
ENSEMBL gene build pipeline (2). ENSEMBL works by (i) aligning
known mouse cDNAs from REFSEQ (3), RIKEN (4, 5), and
SWISSPROT (6, 7) to the genome, (ii) aligning known proteins from
related mammalian genes to the genome, and (iii) using portions of
GENSCAN (8) predictions that are supported by experimental evi-
dence (such as ESTs). This conservative approach yielded �23,600
genes. However, ENSEMBL cannot predict genes for which there is
no preexisting evidence of transcription (1). Furthermore, reliance
on known transcripts may lead to a bias against predicting genes that
are expressed in a restricted manner or at very low levels.

Before the production of a draft genome sequence for a
second mammal, the best available methods for predicting novel
mammalian genes were single-genome de novo gene-prediction
programs, of which GENSCAN (8) is one of the most accurate and
most widely used. These programs work by recognizing statistical
patterns characteristic of coding sequences, splice signals, and
other features in the genome to be annotated. However, they
tend to predict many apparently false exons caused by the
occurrence of such patterns by chance. With the availability of
draft sequences for both the mouse and human genomes, it is
now possible to incorporate genomic sequence conservation into
de novo gene prediction algorithms. However, DNA alignment
programs alone are not an effective means of gene prediction

because a large fraction of the mouse and human genomes is
conserved but does not code for protein.

We developed a procedure that greatly reduces the false-positive
rate of de novo mammalian gene prediction by exploiting mouse–
human conservation in both an initial gene-prediction stage and an
enrichment stage. The first stage is to run gene-prediction programs
that use genome alignment in combination with statistical patterns
in the DNA sequence itself. A number of such programs have been
described (9–12). For these experiments, we used SGP2 (13) and
TWINSCAN (refs. 14 and 15 and http:��genes.cs.wustl.edu), two such
programs that we designed for efficient analysis of whole mamma-
lian genomes. TWINSCAN is an independently developed extension
of the GENSCAN probability model, whereas SGP2 is an extension of
GENEID (16, 17). The probability scores these programs assign to
each potential exon are modified by the presence and quality of
genome alignments. TWINSCAN uses nucleotide alignment [BLASTN
(18), blast.wustl.edu] and has specific models for how alignments
modify the scores of coding regions, UTRs, splice sites, and
translation initiation and termination signals. SGP2, in contrast, uses
translated alignments [TBLASTX (18), blast.wustl.edu] to modify the
scores of potential coding regions only. These programs predict
many fewer exons than GENSCAN with no reduction in sensitivity to
the exons of known genes (13, 14).

The second stage of our procedure is based on the observation
that almost all mouse genes have a human counterpart with highly
conserved exonic structure (1). We therefore compare all mul-
tiexon genes predicted in mouse in the first stage to those predicted
in human. Predictions are retained only if the protein predicted in
mouse aligns to a human protein predicted by the same program,
with at least one predicted intron at the same location (aligned
intron, Fig. 1). Predicted single-exon genes are always discarded by
this procedure. Although there are many real single-exon genes, it
is not currently possible to predict them reliably nor to verify them
reliably in a cost-effective, high-throughput procedure.

In this article, we show that our two-stage process yields
�1,400 predictions outside the standard annotation of the
mouse genome. RT-PCR and direct sequencing of a single exon
pair in a sample of these predictions indicates that the majority
correspond to real spliced transcripts. Our results also show that
this procedure is sensitive to genes that are hard to find by other
methods. The combination of these computational and experi-
mental techniques forms a powerful, cost-effective system for
expanding experimentally supported genome annotation. This
approach is therefore expected to bring the annotation of the
mouse and human genomes nearer to closure.

Experimental Procedures
Genome Sequences. The MGSCv3 assembly of the mouse genome
described in ref. 1 and the December, 2001 Golden Path assembly
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of the human genome (National Center for Biotechnology Infor-
mation Build 28) were downloaded from the University of Cali-
fornia (Santa Cruz) genome browser (http:��genome.ucsc.edu).

Genome Alignments. TWINSCAN was run on the mouse genome by
using BLASTN alignments to the human genome (WU-BLAST,
http:��blast.wustl.edu). Lowercase masking in the human se-
quence was first converted to N masking. The result was further
masked with NSEG by using default parameters, all Ns were
removed, and the sequence was cut into 150-kb database
segments. The mouse genome sequence was divided into
1-mb query segments. BLASTN parameters were: M�1
N��1Q�5 R�1 Z�3000000000 Y�3000000000 B�10000
V�100 W�8 X�20 S�15 S2�15 gapS2�30 lcmask
wordmask�seg wordmask�dust topcomboN�3. TWINSCAN was
run on the human genome by using separate BLASTN alignments
to the mouse genome, which was prepared in the same way except
that Ns were not removed before creating the BLAST database.

SGP2 was run on the mouse and human genomes by using a single
set of alignments. The masked human genome was cut into 100-kb
query segments that were compared with a database of all 100-kb
segments of the mouse genome with TBLASTX (WU-BLAST,
parameters: B�9000 V�9000 hspmax�500 topcom-
boN�100 W�5 E�0.01 E2�0.01 Z�3000000000 nogap
filter�xnu�seg S2�80). The substitution matrix was BLOSUM62
modified to penalize alignments with stop codons heavily (�500).

Initial Gene Predictions. TWINSCAN was run on 1-mb segments of
the mouse and human genomes with target genome parameters
identical to the GENSCAN parameters and the 68-set-ortholog
conservation parameters (available on request). Note that the
TWINSCAN results described in ref. 14 are based on a subse-
quently developed set of target genome parameters that yields
better results than those described here. SGP2 was run on
unsegmented mouse and human chromosomes. The REFSEQ
genes (which were not tested in the experiments reported here)
were incorporated directly into the SGP2 predictions, which
improved the predictions outside the REFSEQS slightly by pre-
venting some gene fusion errors. Note that the REFSEQS were not
used in generating the SGP2 results described in ref. 13.

Novelty Criteria. Mouse predictions were considered known if
they overlapped ENSEMBL predictions or had 95% nucleotide
identity to a REFSEQ mRNA or an ENSEMBL-predicted mRNA
over at least 100 bp. We used the most inclusive set of ENSEMBL
predictions available, based on the complete RIKEN cDNA set
without further filtering (1).

Enrichment Procedure. The enrichment procedure was applied
separately to predictions of TWINSCAN and SGP2. The protein
sequences predicted by each program in human and mouse were
compared by using BLASTP (19). For each predicted mouse
protein, all predicted human proteins with expect values �1 �

10�6 were called homologs. A global protein alignment was
produced for the best scoring homologs (up to five) by using
T-COFFEE (ref. 39; http:��igs-server.cnrs-mrs.fr��cnotred�
Projects�home�page�t�coffee�home�page.html) with default pa-
rameters. Exonic structure was added to the alignments by using
EXSTRAL.PL (www1.imim.es��rcastelo�exstral.html). When
both members of an aligned pair contained an intron at the same
coordinate with at least 50% identity over 15 aa on both sides the
corresponding mouse prediction was assigned to the ‘‘enriched’’
pool. Predictions with homologs but no aligned intron were
assigned to the ‘‘similar’’ pool.

RT-PCR. To test predictions, primers were designed in adjacent
exons as described in Results and used in RT-PCR of total RNA
from 12 normal mouse adult tissues. All procedures were as
described (20), except that JumpStart REDTaq ReadyMix
(Sigma) and primers from Sigma-Genosys were used.

Additional Details. See supplementary information at www1.
imim.es�datasets�mouse2002 for additional details of these
procedures.

Results
We applied the two-stage procedure described above to the
entire draft mouse and human genome sequences (see Experi-
mental Procedures). TWINSCAN predicted 17,271 genes with at
least one aligned intron, whereas SGP2 predicted a largely
overlapping set of 18,056 genes with at least one aligned intron.
These predicted gene sets contain 145,734 exons and 168,492
exons, respectively. Together the two sets overlapped 90% of
multiexon ENSEMBL gene predictions.

To estimate a lower bound on the proportion of novel predictions
that are transcribed and spliced, we performed a series of RT-PCR
amplifications from 12 adult mouse tissues (20). We did not test
genes that overlap ENSEMBL predictions nor those that are 95%
identical to ENSEMBL predictions or REFSEQ mRNAs over �100 bp
or more. Because ENSEMBL was the standard for annotation of the
draft mouse genome, we refer to the non-ENSEMBL genes as
‘‘novel.’’ A random sample of novel genes predicted by each
program and containing at least one aligned intron was tested.
Primer pairs were designed in adjacent exons separated by an
aligned intron of at least 1,000 bp (Fig. 2). The exon pair to be tested
was chosen on the basis of intron length (minimum 1,000 bp),
primer design requirements, and de novo gene prediction score,
with no reference to protein, EST, or cDNA databases. Amplifi-
cation followed by direct sequencing of the PCR product (Fig. 3)
verified the exon pair in 133 unique predicted genes of 214 tested
(62%, enriched pool, see Table 1 and www1.imim.es�datasets�
mouse2002). Mouse genes predicted by both programs were veri-
fied at a much higher rate than those predicted by just one program
(76% vs. 27%). Extrapolating from the success rates in Table 1,
testing the entire pool of 1,428 enriched predictions in this way is

Fig. 1. An example of predictions with aligned introns. RT-PCR positive predicted protein 3B1 (a novel homolog of Dystrophin) is aligned with its predicted human
ortholog (N-terminal regions shown; Upper of each row: mouse, Lower of each row: human). Each color indicates one coding exon. Three of four predicted splice
boundaries (color boundaries) align perfectly. Any one of these three is sufficient for surviving the enrichment step. Gaps in the alignment (shown as dashes) may
indicate mispredicted regions.
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expected to yield a total of 788 (	48) predictions with confirmed
splices, none of which overlap ENSEMBL predictions.

Considered in isolation, genes predicted by TWINSCAN had a
higher verification rate than those predicted by SGP2 (83% vs.

44%), but that difference is skewed by the fact that TWINSCAN
predicted fewer exons per gene, and hence its predictions were
less likely to overlap ENSEMBL predictions. We corrected for this
by clustering overlapping TWINSCAN and SGP2 predictions to
ensure that both were counted as positive if either was verified
experimentally. For each program, the predictions belonging to
a given cluster were counted only once, even if more than one
was RT-PCR positive. After this correction, the confirmation
rates were much closer (76% for TWINSCAN vs. 62% for SGP2).
The results shown in Table 1 include the correction. The
TWINSCAN verification rate is similar to the verification rate for
genes predicted by both programs because the exons predicted
by TWINSCAN are largely a subset of those predicted by SGP2.

Before the enrichment procedure, the combined predictions of
SGP2 and TWINSCAN overlap 98% of multiexon ENSEMBL genes, as
compared with 90% for the enriched pool. This finding suggests
that the enrichment procedure reduces sensitivity by a small but
noticeable degree. To investigate the potential loss of sensitivity
further, we applied the same RT-PCR procedure to two samples of
gene predictions that were excluded by the enrichment criterion and
did not overlap ENSEMBL predictions. One sample had one or more
regions of strong similarity to a predicted human gene but did not
satisfy the aligned intron criterion (similar pool) whereas the other
lacked any strong similarity to a human prediction by the same
program (other pool). The verification rates for the similar and
other pools were 25% and 20%, respectively, for genes predicted by
both programs, and 0% and 2%, respectively, for genes predicted
by only one program (Table 1 and www1.imim.es�datasets�
mouse2002). This finding shows that the enrichment procedure
increases specificity greatly and, consistent with the ENSEMBL
overlap analysis, reduces sensitivity only slightly. If all predictions in
the similar and other pools were tested the expected numbers of
successes are 126 (	105) and 105 (	83), respectively, with the large
standard errors resulting from the small number of successful
amplifications in these pools.

As a control, we also tested 113 predictions from the enriched
pool that did overlap ENSEMBL predictions. In 66 of the predic-
tions the splice boundary we tested was predicted identically in
ENSEMBL, and 64 of these tests (97%) were positive. In 47 of the
predictions the splice boundary we tested was not predicted
identically in ENSEMBL, and 21 of these tests (45%) were positive,

Fig. 2. Two examples of predicted gene structures (blue) with introns verified by RT-PCR from primers located in exons flanking the introns indicated in red.
Mouse–human genomic alignments (orange) correlate with predicted exons but do not match them exactly. (A) Verified mouse prediction 6F5, a novel homolog
of Drosophila brain-specific homeobox protein (bsh), with matching human prediction. (B) Verified mouse prediction 11F6, a homolog of rat vanilloid receptor
type 1-like protein 1. No matching human gene was predicted. A cDNA (GenBank accession no. AF510316) that matches the predicted protein over four
protein-coding exons was deposited in GenBank subsequent to our analysis.

Fig. 3. Verification of gene predictions by RT-PCR analysis. (A and B) Test of
prediction 6F5, a homolog of Drosophila brain-specific homeobox protein (bsh).
(C and D) Test of prediction 11F6, a homolog of rat vanilloid receptor type 1-like
protein. Gel analysis of amplimers (*) with the source of the cDNA pool indicated
above is shown in A and C. Primers (blue) and the region to which the amplimer
sequence aligned (underlining) are shown in B and D. The indicated forward
primers were used to generate the amplimer sequences (brain amplimer, B; skin
amplimer,D).Br,brain;Ey,eye;He,heart;Ki,kidney;Li, liver;Lu, lung;Mu,muscle;
Ov, ovary; Sk, skin; St, stomach; Te, testis; Th, thymus.
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despite the fact that ENSEMBL predictions are based on transcript
evidence. This verification rate may reflect alternative splices
identified by our method but not by ENSEMBL.

To determine whether tissue-restricted expression could explain
the absence of the predictions we verified from the transcript-based
annotation, we compared the expression patterns of our RT-PCR
positive predictions to those of the complete set of mouse orthologs
of genes mapping to human chromosome 21 (Hsa21). These genes
were chosen for comparison because they had been previously
subjected to the same protocol with the same cDNA pools in the
same laboratory (20). Our verified novel gene predictions showed
a significantly more restricted pattern of expression (Fig. 4A). The
mean number of tissues for our positive predictions was 6.3, and
33% of the positive predictions showed expression in three or fewer
tissues; the corresponding numbers for the mouse orthologs of
human chromosome 21 genes are 8.2 tissues on average and 14%
showing expression in three or fewer tissues. This difference in
expression specificity was statistically significant (ANOVA, F �
23.22, df � 1, P � 0.001).

To determine whether prediction of pseudogenes by our method
could explain some of the RT-PCR negatives, we computed the
ratio of nonsynonymous to synonymous substitution rates (KA�KS)
(21) for the subset of tested mouse predictions with unique putative
human orthologs (Fig. 4B). The mean for PCR-positive predictions
was 0.29 whereas for PCR-negative predictions it was 0.72. The
difference was statistically significant (ANOVA, F � 34.86, df � 1,
P � 0.001), suggesting that (i) some of the negative predictions may
be pseudogenes, and (ii) KA�KS can be efficiently incorporated in
the enrichment protocol to increase specificity (22).

Among the predictions with confirmed splices, 112 had signifi-
cant homology to known genes and�or domains. A few of these
genes, which were not represented in databases at the beginning of
our gene survey, were submitted to databases and�or published in
the literature in the intervening months. For example, we correctly
predicted the first four protein coding exons of TRPV3, a heat-
sensitive TRP channel in keratinocytes (23), and both exons of
RLN3 (preprorelaxin 3), an insulin-like prohormone (24). The
verified predictions with the most notable homologies are shown in
Table 2, including a novel homolog of dystrophin that is discussed
in the mouse genome paper (1). Table 2 includes two noncanonical
homeobox genes, one that is most similar to fruitfly brain-specific
homeobox protein (Figs. 2 and 3 A and B) (25) and another that is
a Not-class homeobox, likely to be involved in notochord develop-
ment (26). Four predicted genes were found to be expressed in the
brain and are likely to have neuronal functions, including one
paralog each of: Nna1, which is expressed in regenerating motor
neurons (27); an N-acetylated-�-linked-acidic dipeptidase, which
hydrolyses the neuropeptide N-acetyl-aspartyl-glutamate to termi-
nate its neurotransmitter activity (28); a novel �-aminobutyric acid

type B receptor, which regulates neurotransmitter release (29); and
an Ent2-like nucleoside transporter, which modulates neurotrans-
mission by altering adenosine concentrations (30). Other verified
genes are likely to be important in muscle contraction (myosin light
chain kinase homolog), degradation of cell cycle proteins (fizzy�
CDC20 homolog), Wnt-dependent vertebrate development
(Dapper�frodo homolog), and solute and steroid transport in the
liver (solute transporter �). Homologs of two further genes pre-
dicted in our studies are associated with disease. ATP10C, an
aminophospholipid translocase, is absent from Angelman syn-
drome patients with imprinting mutations (31), and otoferlin, which
is mutated in a nonsyndromic form of deafness (32).

Fig. 4. Characteristics of verified predictions. (A) Expression specificity.
Percentages of RT-PCR positive de novo predictions (red) and Hsa21 mouse
orthologs (blue) expressed in 1–12 tissues, tested in the same cDNA pools. (B)
Distributions of the ratio of nonsynonymous to synonymous substitution rate
(KA�KS) in 83 RT-PCR positive (red) vs. 98 RT-PCR negative (blue) mouse
predictions with reciprocal best BLAST matches among the human predictions.

Table 1. Predicted novel gene sets and RT-PCR verification rates

Pool Programs* No. of predictions No. tested No. positive Success rate, % Expected successes Standard error

Enriched† Both 827 154 117 75.97 628
One 601 60 16 26.67 160
Total 1,428 214 133 62.15 788 48

Similar‡ Both 505 16 4 25.00 126
One 1,620 22 0 0.00 0
Total 2,125 38 4 10.53 126 105

Other§ Both 234 5 1 20.00 46
One 3,425 58 1 1.72 59
Total 3,659 63 2 3.17 105 83

All Total 7,212 315 139 N�A 1,019

N�A, not applicable.
*Both, Genes predicted at least partially by both TWINSCAN and SGP2 programs. One, Genes predicted by one program that are not overlapped by predictions of
the other program. N�A, not applicable.

†Mouse gene predictions containing an intron whose flanking exonic regions align with flanking exonic regions predicted by the same program in human.
‡Mouse gene predictions that fail the enrichment step but show regions of strong similarity to a gene predicted by the same program in human.
§Mouse gene predictions without regions of strong similarity to any gene predicted by the same program in human.
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Discussion
We have demonstrated a remarkably efficient mammalian gene
discovery system. This system exploits the draft mouse and human
genome sequences in both an initial gene-prediction stage and an
enrichment stage. The first stage consists of SGP2 and TWINSCAN,
gene-prediction programs that use genome alignment in combina-
tion with statistical patterns in the DNA sequence. We have shown
elsewhere that both programs have greater sensitivity and speci-
ficity than single-genome de novo predictors, such as GENSCAN (13,
14). In this article, we have demonstrated the effectiveness of the
enrichment stage, in which predictions are retained only if the
protein predicted in mouse aligns to a human protein predicted by
the same program, with at least one predicted intron at the same
location (aligned intron, Fig. 1). In our pool of predictions, the
aligned intron filter is expected to eliminate 24 times more RT-PCR
negatives than RT-PCR positives. This enrichment procedure can
be applied to predictions from any program.

Our goal was to develop a low-cost, high-throughput system
for finding and verifying coding regions that are missed by
annotation systems that require existing transcript evidence.
ENSEMBL was chosen as the representative of such systems
because the Mouse Genome Sequencing Consortium judged it to
be the most suitable tool for timely, cost-effective, reliable
annotation of the mouse genome sequence. Thus, we evaluated
our system by investigating genes that do not overlap ENSEMBL
predictions. Our system is not designed to find genes that would
be missed by expert manual annotators, who can effectively
integrate information such as the predictions of GENSCAN (8) and
GENOMESCAN (33), percent-identity plots (34), comparison to
fish genomes (35, 36), alignment of weakly homologous proteins,
and alignment of EST sequences. As a result, we did not exclude
gene predictions from our evaluation based on these indicators.

Our two-stage system identified a highly reliable pool of 827
predicted genes not overlapping the standard annotation, of which
we tested 154 for expression by using RT-PCR and direct sequenc-
ing. Primers designed for a single pair of adjacent exons in each
predicted gene yielded a spliced PCR product whose sequence
closely matched that of the predicted exons in 76% of these tests.

In the only other published report of high-throughput verification
of gene predictions of which we are aware, 14% of predictions not
overlapping the standard annotation yielded spliced products (37).
These numbers cannot be compared directly because of differences
in the sampling criteria, but the magnitude of the difference
suggests our method provides new levels of efficiency in experi-
mental confirmation of genes outside the standard annotation set.

The sensitivity of our method also appears to be high. Predictions
in our enriched pool overlap 90% of multiexon genes predicted by
ENSEMBL. However, it has been estimated that �4,000 ENSEMBL
predictions comprising 12,000 predicted exons are in fact pseudo-
genes (1). Although the precise number of multiexon pseudogenes
in the ENSEMBL annotation is unknown, this estimate suggests that
our enriched pool may overlap a much larger fraction of the
functional genes identified by ENSEMBL. Further, RT-PCR tests of
TWINSCAN and SGP2 predictions outside the enriched pool indicate
that a relatively small number of these predictions are transcribed
and spliced in the 12 tissues tested. Thus, the enrichment procedure
is sensitive to both ENSEMBL predictions and verifiable predictions
by TWINSCAN and SGP2.

Using our system, we confirmed one intron of 139 predicted
genes that do not overlap any gene in the standard mouse
genome annotation (1). Ninety-two of the RT-PCR positive
introns (66%) did not align to any mouse EST, and these might
have posed difficulties even for human annotators. Furthermore,
seven of the RT-PCR negative introns (4%) did align to mouse
ESTs and six of these were in the enriched pool, suggesting that
the true percentage of transcribed and spliced predictions in this
pool may be even higher than the RT-PCR positive percentage.

Among RT-PCR positive predictions, 24 had homologies to
known proteins that we found particularly interesting (Table 2). The
positive identification of these homologs is expected to impact
numerous research programs devoted to genes of developmental
and medical importance. In general, these genes were probably
missed in the ENSEMBL annotation because the length and percent
identity of the homologies were not sufficient to support a protein-
based gene prediction (Table 2). In many cases, such as the
predicted homolog of a brain-specific homeobox protein, the ex-

Table 2. Novel mouse genes, their tissue expression, and their homologs

Code B H K Y V S M L T K E O %Id Ln Homology

3B1 � � 38 134 Dystrophin-like; with ZZ domain
3B3 � � � � � 25 184 Novel aquaporin; similar to Drosophila CG12251
3C3 � � � � � 25 260 TEP1 (telomerase associated); probable ATPase
3C5 � � 47 198 Voltage-dependent calcium channel � subunit
4B3 � � � 34 74 IFN-induced�fragilis transmembrane family
4C6 � � � � � 30 134 IL-22-binding protein CRF2-10
4G4 � � � � 64 109 Nna1p, nuclear ATP�GTP-binding protein
5B5 � � � 43 111 Likely aminophospholipid flippase (transporting ATPase)
1E3 � � � � � 40 106 N-acetylated-�-linked-acidic dipeptidase (NAALADase)
6C4 � � 42 117 Not-type homeobox; poss. involved in notochord development
6F5 � � � 66 102 Drosophila brain-specific homeobox protein (bsh)
11F2 � � � � � 29 216 Human �-aminobutyric acid type B receptor 2, neurotransmitter release regulator
5A2 � � � � 41 36 Skate liver organic solute transporter �
11B6 � � � 55 116 IFN-activatable protein 203; nuclear protein
12B3 � � � � � � � � 25 229 Fatty acid desaturase; maintains membrane integrity
11F6 � � � � � � � 44 494 Rat vanilloid receptor type 1 like protein 1
12E3 � � 52 175 Fizzy�CDC20; modulates degradation of cell-cycle proteins
12F1 � � � � � 43 355 Otoferlin (mutated in DFNB9, nonsyndromic deafness)
12H1 � � � 45 116 Fruitfly additional sex combs; a Polycomb group protein
12C4 � � � 43 133 Caenorhabditis elegans C15C8.2; single-minded-like; HLH and PAS domains
12D2 � 41 397 Cytosolic phospholipase A2, group IVB
12A5 � 38 415 Fruitfly GH15686p; Ent2-like nucleoside transporter
12E5 � � � � 32 111 Relaxin 3 preproprotein; prohormone of the insulin family
11A1 � � � � � 89 75 Mouse BET3, involved in ER to Golgi transport
11A2 � � � � � � 70 207 Vacuolar ATP synthase subunit S1
11B2 � � � � � � 54 271 Myosin light chain kinase, skeletal muscle
11G2 � � � � � � � � � � 36 179 Dapper�frodo (transduces Wnt signals by interacting with Dsh)

Code, Coding name of tested gene model. B, brain; H, heart; K, kidney; Y, thymus; V, liver; S, stomach; M, muscle; L, lung; T, testis; K, skin; E, eye; O, ovary.
%Id, Percentage amino acid identity. Ln, Number of amino acids in the local alignment between the prediction and the homolog.
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pression patterns we found were consistent with what would be
expected from the function of the known homolog (Fig. 3 A and B).

The confirmed 139 genes also showed a relatively restricted
expression pattern, on average. Because all mouse orthologs of
genes on human chromosome 21 had already been tested by using
the same experimental protocol and the same cDNA pools, we were
able to directly compare expression patterns. To the extent that the
known genes on chromosome 21 are no more tissue specific than
the complete set of known genes, the results (Fig. 4) suggest that our
system may be particularly sensitive to genes with tissue-restricted
expression. Qualitatively similar restricted expression patterns were
reported for novel GENSCAN predictions on chromosome 22 (37),
lending further support to the value of de novo prediction for
identifying genes with tissue-restricted expression.

Of the RT-PCR positive novel predictions, only 33% have
identifiable homologs in the sequenced fish (Fugu�Tetraodon�
zebrafish) genomes. Comparing this finding to the recent estimate
that three-quarters of all human genes can be recognized in the
Fugu genome (36) suggests that our system may be particularly
sensitive to genes that are not ubiquitous in the vertebrate lineage.
Genes with relatively restricted expression patterns and species
distribution can be difficult to find by using transcript-based meth-
ods like GENEWISE (38) and compact-genome methods like EXO-
FISH (35), but they appear to be tractable for our system.

Extrapolating from the success rates in all categories, the ex-
pected total number of gene predictions that could be successfully
RT-PCR amplified in the cDNA pools we tested is 1,019 (Table 1),
adding �5% to the number of functional mouse genes identified by
ENSEMBL (1). The number of distinct genes verifiable in this way
may be slightly smaller, because the effect of fragmentation in
ENSEMBL and in our predictions is not readily testable. However, the
number of predictions that are transcribed and spliced is likely to
be �1,019, because (i) we tested only one exon pair from each
prediction and (ii) we used only 12 adult mouse tissues (20).

The relatively low success rate in the pools failing the enrichment
step suggests that the number of real, multiexon genes whose
existence has been predicted but not yet confirmed is in the range
of 1,000–2,000 (including those predictions in the enriched pool that
have not been confirmed). Because we have used only two predic-
tion programs, TWINSCAN and SGP2, it is possible that other pro-
grams might yield a large additional set of predictions that pass the
enrichment step. However, GENSCAN yields only 49 additional
predictions that pass enrichment and novelty criteria and do not

overlap the 1,428 “aligned intron” novel predictions from TWIN-
SCAN and SGP2 (3%). These 49 are worth testing, and adding more
prediction programs will yield at least a few more predictions with
aligned introns. Nonetheless, the data presented here suggest that
the 1,428 predictions in the enriched pool may overlap a significant
fraction of the previously unannotated, multiexon mouse genes.

Using the draft sequences of the mouse and human genomes,
we have developed a cost-effective, high-throughput system for
predicting genes and verifying the existence of corresponding
spliced transcripts. Applying this system to the entire mouse
genome, we showed that an automated system can produce a
large set of experimentally supported mammalian gene predic-
tions outside the standard annotation. Further, the average cost
per verified exon pair is less than two primer pairs and sequenc-
ing reactions. We expect that testing the remaining predictions
in the enriched pool will locate most multiexon mouse genes that
are currently unannotated, bringing us significantly closer to
identification of the complete mammalian gene set.

As more mammalian genomes are sequenced, the need for
experimentally validated high-throughput annotation will con-
tinue to grow, as will the data available for methods such as ours.
Using the sequences of more genomes, it may be possible to
extend this approach to single-exon and lineage-specific genes.
In combination with methods like ENSEMBL and refinement by
expert annotators, these developments may bring complete,
experimentally supported genome annotation within reach.
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17. Guigó, R., Knudsen, S., Drake, N. & Smith, T. (1992) J. Mol. Biol. 226, 141–157.
18. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol.

215, 403–410.
19. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. &

Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402.
20. Reymond, A., Marigo, V., Yaylaoglu, M. B., Leoni, A., Ucla, C., Scamuffa, N.,

Caccioppoli, C., Dermitzakis, E. T., Lyle, R., Banfi, S., et al. (2002) Nature 420, 582–586.
21. Hughes, A. L. & Nei, M. (1988) Nature 335, 167–170.

22. Nekrutenko, A., Makova, K. D. & Li, W. H. (2002) Genome Res. 12, 198–202.
23. Peier, A. M., Reeve, A. J., Andersson, D. A., Moqrich, A., Earley, T. J., Hergarden,

A. C., Story, G. M., Colley, S., Hogenesch, J. B., McIntyre, P., et al. (2002) Science
296, 2046–2049.

24. Bathgate, R. A., Samuel, C. S., Burazin, T. C., Layfield, S., Claasz, A. A., Reytomas, I. G.,
Dawson, N. F., Zhao, C., Bond, C., Summers, R. J., et al. (2002) J. Biol. Chem. 277, 1148–1157.

25. Jones, B. & McGinnis, W. (1993) Development (Cambridge, U.K.) 117, 793–806.
26. Talbot, W. S., Trevarrow, B., Halpern, M. E., Melby, A. E., Farr, G., Postlethwait,

J. H., Jowett, T., Kimmel, C. B. & Kimelman, D. (1995) Nature 378, 150–157.
27. Harris, A., Morgan, J. I., Pecot, M., Soumare, A., Osborne, A. & Soares, H. D. (2000)

Mol. Cell. Neurosci. 16, 578–596.
28. Pangalos, M. N., Neefs, J. M., Somers, M., Verhasselt, P., Bekkers, M., van der Helm,

L., Fraiponts, E., Ashton, D. & Gordon, R. D. (1999) J. Biol. Chem. 274, 8470–8483.
29. Billinton, A., Ige, A. O., Bolam, J. P., White, J. H., Marshall, F. H. & Emson, P. C.

(2001) Trends Neurosci. 24, 277–282.
30. Crawford, C. R., Patel, D. H., Naeve, C. & Belt, J. A. (1998) J. Biol. Chem. 273, 5288–5293.
31. Meguro, M., Kashiwagi, A., Mitsuya, K., Nakao, M., Kondo, I., Saitoh, S. &

Oshimura, M. (2001) Nat. Genet. 28, 19–20.
32. Yasunaga, S., Grati, M., Cohen-Salmon, M., El-Amraoui, A., Mustapha, M., Salem,

N., El-Zir, E., Loiselet, J. & Petit, C. (1999) Nat. Genet. 21, 363–369.
33. Yeh, R. F., Lim, L. P. & Burge, C. B. (2001) Genome Res. 11, 803–816.
34. Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., Bouck, J., Gibbs, R.,

Hardison, R. & Miller, W. (2000) Genome Res. 10, 577–586.
35. Roest Crollius, H., Jaillon, O., Bernot, A., Dasilva, C., Bouneau, L., Fischer, C., Fizames,

C., Wincker, P., Brottier, P., Quetier, F., et al. (2000) Nat. Genet. 25, 235–238.
36. Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J. M., Dehal, P., Christoffels,

A., Rash, S., Hoon, S., Smit, A., et al. (2002) Science 297, 1301–1310.
37. Das, M., Burge, C. B., Park, E., Colinas, J. & Pelletier, J. (2001) Genomics 77, 71–78.
38. Birney, E. & Durbin, R. (2000) Genome Res. 10, 547–548.
39. Notre dame, C., Higgins, D. G. & Heringa, J. (2000) J. Mol. Biol. 302, 205–217.
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Discussion

The rapid release of completed genome sequences has lead to significant developments
in genome annotation and gene finding tools. In the near future, comparative approaches
will be essential in order to build a more accurate catalog of genes for each organism.
Previous chapters have described the development of different tools and protocols to ob-
tain sets of gene predictions that outperform the currently available methods. In what
follows, we discuss the utility of the ab initio gene finding methods versus the compara-
tive approaches, the utility of the generated data sets and how gene prediction can lead
high throughput experimental approaches. We also summarize some open problems in
computational gene prediction and explore the future trends in the field.

6.1 geneid

The results previously presented indicate that the current version of geneid has an accu-
racy comparable to the most used gene prediction programs (mostly based on generalized
Hidden Markov Models, GHMMs). In a GHMM approach, gene structure components
are characterized with states and the gene model is generated according to the probabil-
ities of transition and emission of the state machine. Therefore, the cost of finding the
optimal parse in a GHMM is considered to be quadratic in the number of possible state
transitions and linear to the length of the sequences (Burge and Karlin, 1997). In geneid ,
however, the simplicity of the algorithm architecture (signals → exons → genes) is re-
flected in a more efficient implementation that is asymptotically linear only in terms of
length of the input sequences, without any loss in the accuracy of the results. The main
difference between both approaches relies on the separation in geneid between signal
and exon generation and the gene assembly stage. In the GHMM based gene finders,
however, both tasks are performed simultaneously.

Most gene finders suffer from lack of specificity, predicting a large number of false
positive exons and genes particularly in long genomic regions. Comparatively, geneid
has superior specificity than other existing gene prediction programs, showing a more
conservative behavior. The price is paid in terms of sensitivity. In general, for large ge-
nomic sequences encoding multiple genes, the overall accuracy of geneid is comparable,
to that of the most accurate existing tools, but offers a better balance between specificity
and sensitivity.
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The parameter file is text based and it has a clear and direct interpretation. The statisti-
cal models for the recognition of the sequences signal are position weight arrays (PWAs).
A Markov Model chain is used as coding statistic. Both are computed as log-likelihood
ratios from real exons. These models are specially useful because the number of depen-
dencies, and thus the number of parameters, can be adapted depending on the amount of
available data. The order of the dependencies can be incorporated in the model without
any modification in the source code.

These properties make geneid specially useful for the new genomes that are going
to come. Although we are planning to produce parameter files for many species, the
simplicity in the specification of the parameters allows any advanced user to generate
his own specific parameter file. In the Annexed papers section there are two examples of
the geneid training in different species. In these two cases, geneid was a key tool for
the annotation of Dictyostelium discoideum (Glokner et al., 2002) and Tetraodon nigroviridis
(Tetraodon Genome Sequencing Consortium, 2004) genomes.

The flexibility of geneid gene model allows the user to introduce any type of exter-
nal information to be incorporated with the ab initio predictions. Recently this capability
proved to be very effective in the prediction of selenoproteins by the introduction of pre-
dicted mRNA secondary structures.

In selenoproteins, the presence of a secondary structure (SECIS element) in the 3’ UTR
of the mRNA induces the UGA codon, usually a termination signal, to be translated as se-
lenocysteine, the 21st amino acid. In consequence, current computational gene prediction
methods, which rely on the standard meaning of sequence signals, invariably mispredict
selenoprotein genes. In order to address this problem, a slight modification in geneid
was introduced to permit the dual meaning of the UGA triplet. However, the inclusion of
an additional exon-defining signal decreases the overall gene prediction accuracy. Such a
drawback can be rapidly compensated with the introduction of ad hoc biological knowl-
edge into the geneid prediction to constrain which genes may be interrupted by in-frame
TGA codons. In this case, the downstream position of potential SECIS elements along the
genome is informative, and delimits where selenoprotein genes can lie. This strategy,
together with comparative approaches, has been successfully applied to describe the D.
melanogaster, H. sapiens and T. rubripes selenoproteomes (Castellano et al., 2001; Kryukov
et al., 2003; Castellano et al., 2004).

Among the drawbacks of geneid is the somehow less rigorous probabilistic treat-
ment of the scoring schema. For instance, the exon weight (EW) value that could be
considered as the prior odds of being a real exon versus not being an exon must be com-
puted for each parameter file. Another limitation of geneid is the lack of a model of exon
and intron length distributions. The current version of geneid also lacks a model of the
distributions of the number of exons per gene. We are currently working on some modifi-
cation of the algorithm to allow the definition of intron and exon length distribution and
to model the variability of the number of exons for each gene.

The flexibility of geneid also facilitates its ongoing development. Our short-term
plans include the definition of a branch point model, the modeling of long distance de-
pendencies in splice sites, the prediction of UTRs and the analysis of suboptimal gene
structures to determine different alternative splicing isoforms.
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6.2 sgp2

We have described a successful way to combine geneid and information from compara-
tive genomic data into sgp2 . As expected, obtained results indicate that, by including in-
formation from genome sequence conservation (for instance, using the human and mouse
genomes), sgp2 clearly outperforms ab initio gene finding approaches.

Our approach, based on local alignments, allows to use a draft genome or shotgun
sequences. This means that as the sequence of a new genome starts becoming available
(shotgun sequences), it can be used to improve the gene predictions of other preexisting
genomes. Another important feature is the ability of sgp2 to make the predictions on top
of a set of annotated genes. This has been proved to be specially useful in genome-wide
annotations in order to reduce the number of joint and split predicted genes.

In comparison to existing algorithms, sgp2 is most similar in its overall architecture
to the recently developed twinscan (Korf et al., 2001). twinscan uses blastn align-
ments and different nucleotide conservation models integrated in a GHMM to generate
the gene predictions. sgp2 , instead, use tblastx alignments obtained with the corre-
sponding amino acid substitution matrix. This will probably help sgp2 to find similarity
between sequences from distant species were the conservation at nucleotide level could
be more difficult to find. On the other hand, twinscan and the model of conservation
at nucleotide level will be more useful for the recognition of more closely related species.
In close related species, coding sequences will be more conserved and little changes in
the pattern of mutation, not visible at amino acid level, can be captured by the nucleotide
conservation models used by twinscan .

sgp2 is flexible enough so that it can be easily accommodate to analyze species dif-
ferent pairs of genomes than human and mouse. So far, sgp2 is currently used in the
prediction of the genes in G. gallus using H. sapiens as a reference genome.

In addition to this, we are starting to analyze the possibility of combining alignments
obtained from the comparison of more than one species at the same time. However, to
achieve this objective we need to analyze in depth the effect of the substitution matrix
used for species at different evolutionary distances.

One of the limitations of any comparative gene prediction method is that the target
sequence must have appropriate informant sequences, with sgp2 ability to utilize un-
finished informant sequences and with the current rate of genome sequencing, this will
become a minor restriction.

Further plans in the development of sgp2 include the measurement of the synony-
mous versus non-synonymous substitution rates in the alignments and conservation of
the splice signals in the informant genome.

6.3 Ab initio vs. comparative gene prediction

The analysis of the performance of gene finding methods has shown that comparative
methods clearly outperform standard ab initio approaches. Although, sensitivity in com-
parative gene finders does not clearly improve, the specificity is superior. Therefore, one
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can ask the question of whether there is any reason to keep developing such ab initio gene
finding methods.

From our point of view, the question has a positive answer. First of all, because the
core of all comparative gene finding programs relies, at least partially, on ab initio gene
recognition methods. Therefore, improvements in ab initio recognition models can then
be applied to comparative approaches.

Another important reason for developing ab initio gene prediction tools, is that, al-
though we have a lot of complete genomic sequences, is not always possible to find a
reference genome of a species at the correct evolutionary distance to use comparative
gene prediction. However, as mentioned in the previous section, with the current rate of
genome sequencing, this will become a minor restriction.

Finally, ab initio gene prediction programs should be considered as applications, which
make it possible to gather our knowledge about what a gene is. This elucidates that our
current knowledge of the genome biology is rather poor: we are not able to reproduce
what the cell does to obtain the proteins encoded in a genome. Even using sophisticated
probabilistic models we still predict less than 50% of the human genes correctly. Proba-
bilistic models only make sense when the underlying model is biologically meaningful,
and the training samples are not biased. Therefore, we believe that future ab initio devel-
opments will tend to be more based on biological information and less on pure statistical
data.

New models should try to mimic the biological scenario, and the actual underlying
processes. Then, apart from the specific goal of gene prediction, new approaches will
probably be able to determine effects of point mutations or single nucleotide polymor-
phisms in the pattern of transcription and the alternative splicing events.

6.4 Evolution of the signals that define genes

The fact that individual parameter files for each species perform better than general mod-
els can be explained because each genome seems to have its own signatures for gene sig-
naling which were shaped by evolutionary pressures. This implies that gene structures
and the transcription and translation machinery in each species are adapted, enabling the
cell to appropriate transcription and translation for each genome.

During the process of building different parameter files for geneid , a complete da-
tabase of curated genes for different species has been generated. The study of the dif-
ferences on the specification of genes can elucidate the evolution of the mechanisms in-
volved in gene expression and help us to better understand the underlying processes.

In this regard, a recent publication by Korf (2004) started to analyze the results of pre-
dictions generated in one species using parameters for many different species. Korf (2004)
shows that the most compatible parameters may not come from the nearest phylogenetic
neighbor. He trained and evaluated snap , a gene finding program based on genscan ,
in the Arabidopsis thaliana, Ceanorhabditis elegans, Drosophila melanogaster, and Oryza sativa
genomes, and demonstrate that for instance in A. thaliana, the best foreign parameters
come from C. elegansinstead of Oryza sativa (rice).

Some of these specific variations seem to be related with the general C+G content of



6.5 Conservation of the exonic structure 87

the genome. Other features, like splicing, seem to have different recognition mechanism
(intron versus exon definition) that should have different models for each species. For in-
stance most fungi seem to have a very conserved branch point, while some plants seem to
have an intron signaling system through differential intron base content. Therefore, gene
prediction programs should adapt their model to the specific prevalences and nature of
each signaling mechanism. There might not be a single model of how genes are defined.
Rather, different mechanisms, that could have evolved independently, are acting together
in each species to recognize and process its genes.

In addition, analysis of gene signatures may also help to resolve conflicting phylo-
genies and to pinpoint horizontal gene transfers, genetic drifts and other evolutionary
events. If we are able to recognize different gene signatures, we could easily identify
genes that have been recently incorporated into a genome, and track down where they
come from.

6.5 Conservation of the exonic structure

The availability of an increasing number of eukaryotic genomes is contributing to the un-
derstanding of the evolution of exonic structure. Comparative analysis of exonic structure
and splice signals of homologous genes from different species will certainly contribute to
our understanding of the mechanisms by which splice sites are recognized.

Recent large scale comparative analyses have reported extraordinary conservation of
the exonic structure between human and mouse orthologous genes (Roy, 2003). The ex-
onic structure conservation has been successfully used in the filtering protocol that we
have shown to target bona fide genes among thousands of computational gene predic-
tions.

Some other genomic approaches have been used to exploit exon structure conserva-
tion. In one of such approaches, Dewey et al. (2004) describes a method for the simul-
taneous prediction of homologous genes with identical structure in the human, mouse
and rat genomes using slam . slam is a gene prediction program based on pair-GHMMs,
where alignment and gene prediction are performed simultaneously. The combination of
pairwise predictions made with slam provides 3698 gene triplets in the human, mouse,
and rat genomes which are predicted with exactly the same gene structure. These consen-
sus predicted genes greatly improve the specificity (over 90% of the predicted structures
correspond to complete actual genes), but at expenses of a large loss of sensitivity.

Although these approaches based on pair-GHMMs or phylo-GHMMs (where more
than two species are treated simultaneously) are very promising, they have not yet yielded
practical improvements in the accuracy of gene prediction. Some limitations of these
methods are that they need accurate complete syntenic maps between species and that
the complexity of the evolutionary models leaves little room for complex gene structure
models.

Nevertheless, gene prediction programs that exploit alignment and exonic structure
conservation among multiple species are likely to outperform current gene finding meth-
ods in the coming years.
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6.6 Experimental validation of the predictions

The emergence of high throughput techniques, characteristic of genomics research, has
lead to the so-called data- or discovery- driven biology, in which data is obtained without
the need for a hypothesis about the nature of any biological problem, as opposed to the
classical hypothesis-driven approach in which experiments are performed (and data ob-
tained) to test previously formulated hypothesis within the framework of a pre-existing
theory.

Genome projects are mostly high throughput biology, and they certainly produce a
lot of valuable data. High throughput biology alone, however (through indiscriminate
sequencing of cDNA libraries), appears to have reached a limit in its ability to annotate
genes in the human genome. For instance, we now start to see regions of the genome that
are transcribed but do not appear to be coding for proteins. It is therefore time for the
computational biologist to generate gene models with the enough confidence to be worth
trying to be validated with high throughput experimental approaches.

Synergy between computational and experimental methods of gene identification will
facilitate the full analysis of the currently sequenced genomes. As more genomes are se-
quenced, the need for experimentally validated high throughput annotation will continue
to grow, as will the data available for such methods.

In this regard, recent reports underscore the importance of a hybrid approach. In
one such reports, Tenney et al. (2004) shows that this approach could be feasible, at least
by now, in genomes like Cryptococcus neomorfans. They argue that C. neomorfans is an
attractive system for RT-PCR based annotation because it has relatively complex gene
structures, while being a single-celled organism. This simplifies the task of obtaining
representative mRNA samples. Application of computational gene prediction followed
by experimental verification by RT-PCR has lead to the identification 63 complete novel
genes. Now they are planning to extend this approach to validate the entire genome
predictions.

Confirmation by RT-PCR and direct sequencing seems to be a cost effective technique
that will probably constitute the basis for the final curated annotation of many available
genomes. This approach is complementary to EST sequencing which produces data from
highly expressed genes at a lower cost. However, RT-PCR of predictions is much more
sensitive for genes that are expressed at relatively low levels and therefore, more diffi-
cult to obtain through ESTs sequencing. The success of these studies, suggests a new
paradigm in high throughput genome annotation, in which gene predictions serve as the
hypothesis that drives experimental determination of intron-exon structures.

6.7 Gene finding: open problems

Existing gene finding programs, although significantly advanced over those that were
available a few years ago, still have several important limitations. Almost without ex-
ception, computational gene finders predict only the coding fraction of a single spliced
form of non-overlapping, canonical protein-coding genes. Some key problems and future
challenges in the gene prediction field are:
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• To identify the untranslated regions of genes.

• To predict alternative transcripts. Alternative splicing events will be one of the most
important problems to solve in the near future.

• To have a better characterization of the splicing enhancers and silencers that me-
diate alternative splicing, to allow models to predict alternative exons or aberrant
splicing events.

• To improve our understanding of CpG islands, methylation patterns and G+C vari-
ations across the genome, and to use this information to improve gene predictions.

• To identify gene promoter regions and the corresponding transcription start site.

• To characterize promoter regions, to be able to elucidate the combination of tran-
scription factors needed for the activation and inhibition as well as the tissue and
developmental stage specific expression pattern.

• To predict genes that encode for functional RNAs.

• To predict insulators, matrix-attachment regions and nucleosome organization pat-
terns that could play a key role in the accessibility of the transcriptional machinery
to the chromatin.

• To predict uncommon features as overlapping genes, genes within introns, genes
with non canonical splice sites, mRNA editing or frame shifting. We assume these
cases to be rare, but because these assumptions are implicit in our gene models, we
may have been seriously underestimating their occurrence.

At the root of these limitations lies our still incomplete knowledge of what defines
an eukaryotic gene, and which mechanisms are mediating the recognition of sequence
signals involved in gene identification and processing in the eukaryotic cell. The models
in which current gene finding methods are based are over-simplistic and only include a
partial knowledge of gene biology. In most cases computational programs detect genes
mostly by the imprinting they leave on the sequence, like coding statistics, that can be
considered the consequence, but not the cause of their existence.

We believe that the problem should be addressed in a more restricted scenario. In-
stead of trying to predict genes in complete genomic sequences, try to divide the general
problem of gene finding into easier and biologically meaningful sub-problems.

For instance, promoter regions and the transcription factor binding sites that define
them seem to be recognized as a combination of not very conserved motifs. Using cur-
rent pattern searching tools, putative binding sites are predicted all over the genomic
sequence. Therefore, promoter and the transcription start site of each transcript may be
intrinsically related to the structure of the DNA in the nucleus, the attachment of the chro-
matin, the nucleosome organization and the methylation patterns. Improvements in the
knowledge of the accessibility of the transcription to the DNA will be crucial to solve this
puzzle. Recently, Bajic and Seah (2003) improved the prediction of trancriptional start
sites using information of CpG islands and signals in the downstream promoter region.
Prediction of promoter regions and transcriptional start sites could be considered a field
on its own.
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Modeling of splicing is another important open problem. Even the most sophisticated
computational models of splicing currently available are limited to model dependencies
between positions within the canonical signals defining the intron boundaries. The mod-
els implicitly assume, in consequence, the splice signals to be recognized independently
and atemporally in a nucleic acid sequence without further information.

There is, however, increasing experimental evidence suggesting that additional in-
tronic and exonic sequences play a role in the definition of the intron boundaries, and in
the regulation of the production of alternative splice forms. Moreover, it must be taken
into account that transcription and splicing seem to occur at the same time in what is
called the “mRNA factory” (Zorio and Bentley, 2004). There are dynamic relations, not
yet completely understood, between transcription and splicing, and dependencies be-
tween distant splice signals can not be discarded. Thus, while the gene is transcribed
there may be some pattern of splice site recognition depending on the speed, length, nu-
cleotide composition and the accessibility of the splice sites among other possibly relevant
features. RNA structure, too, may influence splice site selection.

All these phenomena should be taken into account in a biologically realistic model of
the splicing process. The results of future gene prediction tools should not be an unique
model for each gene, but a set of putative spliced transcripts with the associated expected
frequency. Additionally, while experimental data is crucial to understand the mechanistic
details of these phenomena, the fact that we have accumulated in our databases a large
collection of annotated splicing events, makes the contribution of computational analyses
very important.

In summary, only with enough biological information of the underlying mechanisms,
gene prediction will be transformed from being statistical to being biological in nature.
However, computational analyses will be decisive to direct the efforts invested to get this
biological knowledge and providing hypotheses to be experimentally tested.



Conclusions

The following conclusions can be drawn from this dissertation:

1. The results presented here, indicate that the current version of geneid shows an
accuracy comparable, and often superior, to the most currently used methods. In
favour of geneid is the simplicity and modularity of its structure.

2. Gene recognition patterns seem to be conserved over large phylogenetic distances,
but they also appear to have some taxa specific components. For instance, although
the canonical consensus splicing sequences are conserved (GT-AG), the pattern of
conservation around these sites among species differs notably. This variability sug-
gests specific adaptations of the cell machinery to the recognition and processing of
genes.

3. Since the signals that define genes seem to have some species-specific signatures,
parameters and models for each species improve the prediction of genes. The con-
struction of geneid parameter files for different species showed an important im-
provement in the accuracy of the predictions.

4. Our experiments demonstrate that integrating ab initio information with genomic
similarity, even from shotgun reads, using sgp2 , significantly improves accuracy
over ab initio standard methods.

5. The enrichment prediction protocol, based on exonic structure conservation be-
tween closely related species, has led to an increase of the amplification success
ratio of predicted genes from 3% to 76%. This experiment has proved the value of
comparative genomics and the conservation of the gene structure in gene finding.

6. The synergy between computational and experimental methods of gene identifica-
tion has shown to yield hundreds of novel human genes. The success of our study,
suggests a new paradigm in high throughput genome annotation, in which gene
predictions serve as the hypothesis that drives experimental determination.
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This work was done in collaboration with the Dictyostelium Genome Sequencing
Consortium, which is an international consortium for the sequencing and the analysis
of the genome of D. discoideum. The Dictyostelium Genome Sequencing Consortium is a
collaboration between the University of Cologne, the Institute of Molecular Biotechnol-
ogy in Jena, the Baylor College of Medicine in Houston, Institut Pasteur in Paris, and the
Sanger Center in Hinxton.

D. discoideum is a soil-living amoeba with a very peculiar cell cycle: it grows as sepa-
rate, independent cells but interact to form multicellular structures when challenged by
adverse conditions such as starvation. Thousands of individual cells signal each other
by releasing the chemo-attractant cAMP and aggregate together by chemo-taxis to form
a multicellular structure that is surrounded by an extracellular matrix. This organism has
unique advantages for studying fundamental cellular processes with powerful molecu-
lar genetic tools. These processes include chemo-taxis and signal transduction, and as-
pects of development such as cell pattern formation and cell-type determination. Many
of these cellular behaviors and biochemical mechanisms are either absent or less accessi-
ble in other model organisms.

The hereditary information of Dictyostelium is contained in six chromosomes with
sizes ranging from 4 to 7 Mb resulting in a total of about 34 Mb of haploid DNA genome
with a base composition of 77% of adenines and thymines. This extreme base composi-
tion biased to A+T nucleotides have some influence in the signals and the codon usage
that are used to codify the genes. Obviously, with such a biased base composition the
accuracy of available gene prediction programs was very low.

Building a parameter file

A parameter file for geneid based on experimental annotated sequences from D. dis-
coideum was generated. The training set was obtained by screening GenBank database
(release 120.0, October 2000) for entries containing: "Dictyostelium discoideum" [organism]
AND "complete" [title word] AND "CDS" [title word]. From the previous search, 160 se-
quences were obtained. 16 entries corresponding to mithocondrial or plasmid DNA were
discarded. The quality of the sequences was checked following the criteria described in
section 3.3.2. After the filtering protocol , 7 cases were discarded because the CDS was
incomplete, 5 because of non-standard splice sites and 2 because of stop codons in frame.

Finally, 130 genomic sequences were gathered, from which 97 corresponded to multi-
exon and 33 to single-exon gene. An extra set of 250 mRNAs, provided by the Dic-
tyostelium Genome Sequencing Consortium, was included in the training set. Thus, the
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Base level Exon level
Sn Sp CC Sne Spe SnSp ME WE

H. sapiens geneid 0.87 0.98 0.89 0.24 0.37 0.31 0.39 0.06
D. melanogaster geneid 0.12 0.83 0.22 0.03 0.08 0.06 0.66 0.23
A. thaliana genscan 0.79 0.98 0.83 0.29 0.36 0.33 0.32 0.08
P. falciparum glimmer 0.91 0.97 0.91 0.32 0.41 0.36 0.25 0.07
D. discoideum geneid 0.99 0.97 0.97 0.76 0.75 0.76 0.06 0.06

Table 7.1: Gene structure predictions statistics. Sn sensitivity, Sp specificity, ME missing
exons and WE wrong exons, CC and SnSp correlations between sensitivity and specificity.

final set contained 380 translational starts sites, 170 pairs of splice sites and 472,549 coding
nucleotides (96,542 bp from the 130 genes and 376,007 bp from the mRNA set).

PWAs of order zero (equivalent to PWMs) were computed for the start sites and splice
sites. The corresponding informative positions were twelve bases upstream of the trans-
lation start site (methionine) and six positions downstream the coding region. For the
donor and acceptor nucleotides in the region -2 to 6 and -15 to 1 bases were taken respec-
tively (with 1 being position after the cleavage of the splice site, see Figure 3.3).

A Markov chain of order 5 was computed using the coding regions of the 130 se-
quences plus the 250 coding regions of the mRNA sequences, as a background model the
intronic regions were used.

After the exhaustive search process on the 130 sequences an EW of -9.50 was found to
optimize the value of the correlation coefficient at nucleotide level.

Prediction accuracy on Dictyostelium

To asses the accuracy of the available gene prediction methods in D. discoideum, differ-
ent programs were selected. glimmer (Delcher et al., 1999) was selected, because it had
a version with parameters for Plasmodium falciparum, which genome has a similar G+C
content and similar gene structures. glimmer uses interpolated Markov models to find
genes in microbial DNA. The new release based on Plasmodium falciparum allows multi-
genic and multiexonic predictions. genscan was also selected and it was used with
Arabidopsis thaliana parameter file. A. thaliana genes have some similarities with the D. dis-
coideum gene structure. Introns are short and with a low G+C content and long stretches
of adenines and thymines. geneid with human and Drosophila parameters were also
selected.

Table 7.1 shows that geneid using D. melanogaster parameter file has very low accu-
racy. A lot of real exons were lost (with a missing exon rate of 0.66) and a lot of wrong
exons were generated (with a wrong exons rate of 0.23). Low accuracy at base level and
at exon level could be explained because neither the composition nor the signals of D.
melanogaster seems to be similar to D. discoideum(See Figure 3.3 and Table 3.2). genscan
using A. thaliana parameter file and geneid using human parameter file had similar per-
formance. Although these species are not close to D. discoideum, both have regions of very
low C+G content, and both programs are prepared to deal with low C+G content regions.
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Sensitivity at base level was very high (0.79 using A. thaliana parameters and 0.87 using
human parameters). However, the sensitivity at exon level was low (near 0.30). This
low exon prediction accuracy could be explained by a different gene structure and splice
sites signaling between those species. From the available tools glimmer (trained on P.
falciparum sequences) had the most accurate predictions. As it was expected due their
similarity in gene structure (a low number of short introns), and genomic C+G content.
The correlation coefficient at base level was very high (0.91). However, at exon level the
average between sensitivity and specificity was only of 0.36, revealing that the recogni-
tion of the splice signals was very poor. This is an important result because, although,
these two species have important similarities at genomic level they seem to have differ-
ences in the splice sites definition. geneid trained on D. discoideum seemed to achieve the
best results of all the programs, at the base and exon level, but we have to take in account
that it could be over-training problems as far as the test and the training sets were the
same.

Prediction of genes in chromosome 2 of Dictyostelium
discoideum

geneid was run on all the contigs that correspond to the chromosome 2 of D. discoideum.
Partial predictions or predictions shorter than 100 amino acid were discarded. The final
annotation was based on the 2,799 genes predicted by geneid . The presented paper is
focused on the analysis of the function and the structure of geneid predicted genes. This
analysis reinforce the view that the evolutionary position of D. discoideum is located before
the branching of metazoa and fungi but before the divergence of the plant kingdom.



sex-specific lethality that would accompany inappropriate somatic
expression of Sxl (ref. 28). Moreover, using a very sensitive test29, we
determined that infection does not alter the effectiveness of the
primary sex-determination signal (data not shown), perturbations
of which can cause sex-specific lethality owing to inappropriate
somatic expression of Sxl. Nevertheless, the possibility should be
explored that Wolbachia-induced male killing reported for other
Drosophila species6 may be caused by inappropriate activation of
Sxl.

Although it may seem surprising that infection with a parasite
would reverse the deleterious effect of a mutation in the host
genome, particularly when the isolation of that mutation had
nothing to do with infection, such surprise should be tempered
by the fact that the interaction described here between host and
parasite mimics a naturally occurring situation mentioned above
that was reported recently for the parasitic wasp Asobara tabida9.
Moreover, in light of the fact that Wolbachia is a parasite that is
known to manipulate host reproductive and sex-determination
systems, it does not seem unreasonable that the host gene with
which it interacts in Drosophila is the master regulator of sex-
determination and a gene essential for oogenesis. The fact that the
interacting gene in this case has been studied so extensively and
belongs to a model experimental organism can be exploited to yield
further insights into the mechanism by which this parasite takes
advantage of its various arthropod hosts. A
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André Rosenthalkq & Angelika A. Noegel†

* IMB Jena, Department of Genome Analysis, Beutenbergstr. 11, 07745 Jena,
Germany
† Center for Biochemistry, Medical Faculty, University of Cologne,
Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
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Mèdica, Universitat Pompeu Fabra, Centre de Regulació Genòmica,
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The genome of the lower eukaryote Dictyostelium discoideum
comprises six chromosomes. Here we report the sequence of the
largest, chromosome 2, which at 8 megabases (Mb) represents
about 25% of the genome. Despite an A 1 T content of nearly
80%, the chromosome codes for 2,799 predicted protein coding
genes and 73 transfer RNA genes. This gene density, about 1 gene
per 2.6 kilobases (kb), is surpassed only by Saccharomyces cere-
visiae (one per 2 kb) and is similar to that of Schizosaccharomyces
pombe (one per 2.5 kb)1,2. If we assume that the other chromo-
somes have a similar gene density, we can expect around 11,000
genes in the D. discoideum genome. A significant number of the
genes show higher similarities to genes of vertebrates than to
those of other fully sequenced eukaryotes1–6. This analysis
strengthens the view that the evolutionary position of D. dis-
coideum is located before the branching of metazoa and fungi but
after the divergence of the plant kingdom7, placing it close to the
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Figure 1 Feature distribution on chromosome 2. Only the linked portion (6.5 Mb) is shown

(solid black line). Clone gaps (c), sequence gaps (s), repeat elements (r; heavier bars to

their right indicate unresolvable clusters), tRNA genes (t) and genes (g) used to seed

assembly are shown. HAPPY linkage groups (h) were used to guide assembly; only the

endmost markers in each group are named. GþC content (g/c), strand-specific coding

sequence density (d), the ribosomal DNA copy, and the duplicated region above it

(represented here as a single copy) are shown. The centromere and telomere are

respectively above and below the portion shown. An expanded version is at http://

genome.imb-jena.de/dictyostelium/chr2/Chr2map.html.
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base of metazoan evolution.
The natural habitat of D. discoideum is deciduous forest soil

where the amoeboid cells feed on bacteria by phagocytosis and
multiply by equal mitotic division. Exhaustion of the food source
triggers a developmental programme, in which more than 100,000
cells aggregate by chemotaxis to form a multicellular structure.
Morphogenesis and cell differentiation then culminate in the
production of spores, enabling the organism to survive unfavour-
able conditions8. D. discoideum therefore lies at the borderline
between free-living cells and multicellular organisms, making it
ideal for the study of cellular differentiation and integration. Its
haploid genome, ease of culture and genetic manipulability make
it amenable to biochemical, genetic, and cell-biological
approaches9. This allows the dissection of the molecular basis of
the most fundamental cellular processes: differentiation, signal
transduction, phagocytosis, cytokinesis, cell motility and chemo-
taxis10–12.

To provide the basis for genome-wide investigations an inter-
national effort was initiated13 to sequence the ,34-Mb genome of
D. discoideum, strain AX4. Besides six chromosomes ranging from 4
to 8 Mb (refs 14, 15), the nucleus harbours approximately 100
copies of a ,90-kb palindromic chromosome containing the
ribosomal RNA genes. The high AþT content (78%, exceeded
only by Plasmodium falciparum at 80%; refs 16, 17) coupled with
a high density of repetitive elements, posed severe challenges for
genome sequencing. To reduce the complexity of the assembly task,
the genome was analysed chromosome by chromosome, using a
whole chromosome shotgun (WCS) approach. The chromosomal
libraries were only ,50% pure and contained clones derived from
other chromosomes, so we developed an iterative and integrated
assembly strategy. This allowed us to identify contiguous DNA
sequences (contigs) originating from chromosome 2 and to bridge
difficult sequences. Briefly (see Methods), nonrepetitive reads from
the chromosome 2-enriched libraries were binned with those from
the other WCS projects, and sequences of known chromosome 2
genes were used as ‘seeds’ around which to build contigs. These were

extended using sequence data and supplemented using read-pair
information and BLAST (http://blast.wustl@adu/) analysis. To
confirm the chromosomal assignment of these contigs we used
the relative frequencies of the constituent sequences in the chro-
mosomally enriched libraries of the various WCS projects.

The high AþT content, the existence of many repetitive elements
and the fact that clones larger than about 5 kb were unstable in
Escherichia coli18,19, precluding the use of large-insert bacterial
clones as second-source templates, led to three types of gaps. The
first type could not be spanned by plasmid clones (‘clone gaps’),
presumably owing to the instability of some of the intergenic
regions, which have AþT contents of up to 98%. The second type
arose from clusters of repetitive elements, which could not be
unambiguously resolved (‘repeat gaps’). The third type (‘sequence
gaps’) were spanned by clones which, owing to their content of long
homopolymer runs (even more abundant and longer than in P.
falciparum) or lack of targets for custom primers, were recalcitrant
to repeated attempts at sequencing. Contigs divided by sequence
gaps were linked by read-pair information to produce larger
‘scaffolds’ with a total size of 7.5 Mb. The majority of these scaffolds
were then connected, oriented and their internal structure validated
by using mapped genes, circular yeast artificial chromosomes
(cYACs) and HAPPY map20 data. This yielded a ‘linked portion’
spanning 6.5 Mb of the chromosome (Fig. 1; Table 1; http://genome.
imb-jena.de/dictyostelium/chr2/Chr2map.html). Although many

Figure 2 Functional classification of D. discoideum chromosome 2-coded proteins. We

used the GO terminology (http://whitefly.lbl.gov/annot/go/database/index.html) for the

automated classification of proteins in process (a) and function (b) groups according to

their InterPro domains. The process groups contain 689 proteins, the function groups 991

proteins. Proteins with InterPro domains but no GO assignment (424) or proteins without

Interpro domains (1,319) were not characterized. Currently no D. discoideum-specific GO

terms are defined, thus leaving some of the functionally characterized D. discoideum-

specific genes unclassified.

Table 1 Features of chromosome 2

Feature Value
.............................................................................................................................................................................

Calculated total length (Mb)* 8.0–8.1
Total length of sequence contigs (Mb)* 7.52
Cumulated length of 71 small orphan unlinked contigs (Mb) 0.4
Number of loci containing complex repetitive elements** 58

Resolved loci 40
Unresolved loci 18

Number of tRNAs 73
.............................................................................................................................................................................

Genes*†
.............................................................................................................................................................................

Predicted number 2,799
Density 1 gene/2.6 kb
Average length (bases) 1,626
Number of genes with ESTs 1,120 (40%)
AT content (%)

Exons 72
Introns 87
Intergenic 86
Whole chromosome 77.8

Exons (coding)
Number 6,398
Average exon number/gene 2.29
Average size (bases) 711

Introns
Number 3,587
Average size (bases) 177

Intergenic regions
Average size (bases) 786

Intronless genes (%) 893 (32)
.............................................................................................................................................................................

*Excluding duplication of 0.7 Mb.
** In 6.5-Mb linked portion of chromosome 2.
†Excluding genes coded for in repeat loci.
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of the sequence and clone gaps have been closed, those that remain
(95 sequence gaps and 89 clone gaps, totalling an estimated 150 kb)
appear intractable. The most resistant gaps have been those contain-
ing the most AþT-rich DNA, and are hence least likely to contain
sequences of biological relevance.

D. discoideum chromosomes have been reported to be acro- or
telocentric with the centromere embedded in a large cluster of long
terminal repeat retrotransposons (DIRS-1) composed of more than
40 elements15,19. The fine structure of this cluster, which lies outside
the linked portion of the chromosome shown in Fig. 1, could not be
resolved because of the low polymorphism rates of the complex
repetitive elements19. It spans up to 0.5 Mb and also contains copies
from other transposon families and small repetitive elements.
Overall, the number of repetitive elements in D. discoideum geno-
mic DNA is high compared to S. cerevisiae, Caenorhabditis elegans
and Drosophila melanogaster. Chromosome 2 harbours all pre-
viously described D. discoideum complex repetitive elements,
mainly organized in clusters of intact and truncated elements19.
There are 58 such loci (each consisting of one or more such
elements) on the linked portion of chromosome 2. The fine
structure of 18 of these could not be resolved and remain as ‘repeat
gaps’ (Fig. 1; Table 1). Altogether, we estimate that complex
repetitive elements represent 10.2% (approximately 0.8 Mb) of
chromosome 2, corresponding well with the estimate of 9.6% for
the entire genome19. On the basis of the combined sizes of the
sequence scaffolds, the clone and sequence gaps, and the unresolved
repeat regions (including the pericentromeric region), we calculate
the size of the chromosome to be 8.1 Mb.

A duplication of approximately 700 kb is thought to have
occurred after the separation of the laboratory strains AX2 and
AX4 (ref. 15). We detected an inverse tandem repeat of similar
size between the HAPPY Map markers DH3162 and DH3740,
bordered at the telomeric end by an almost complete copy of the
extrachromosomal rDNA palindrome (Fig. 1). This might represent
a chromosomal master copy for the generation of the extrachro-

mosomal rDNA palindrome after sexual recombination, as in
Tetrahymena thermophila21. The second copy of the duplication
was excluded from calculations of chromosome length and gene
number.

We find that most features of the chromosome (GþC content,
coding sequence density (CDS) and complex repetitive elements)
are evenly distributed over the 6.5-Mb linked portion, although the
distribution of the transfer RNA genes shows a slight bias towards
the telomere (Fig. 1; http://genome.imb-jena.de/dictyostelium/
chr2/Chr2map.html). We used gene prediction programs and
database searches to determine and annotate the 2,799 putative
genes of chromosome 2. A further 124 putative genes coded for by
complex repetitive elements were excluded from further analyses. D.
discoideum genes in general have few and small introns, with an
average of 1.2 introns per gene. Intron length and distribution is
comparable to that of P. falciparum and other lower eukaryotes. The
mean AþT content in exons is 72%, whereas it is 87% in introns,
and 86% in intergenic regions (Table 1). This extreme compo-
sitional bias may help to delineate the introns during splicing, as
has been suggested in Arabidopsis thaliana. In support of this
hypothesis, D. discoideum introns do contain the canonical
GT–AG dinucleotides but, unusually among fully sequenced
eukaryotes, all information is confined to the intron side of the
splice site22.

Turning to the gene content, expressed sequence tags (ESTs) exist
for 40% (1,120) of the predicted genes (Table 1)23. BLAST searches
against the protein sets of completely sequenced eukaryotic gen-
omes as well as against SwissProt and TrEMBL databases showed
that 45% (1,260) of the putative D. discoideum genes had a match
(P , 10215), leaving the proportion of unique genes (55%) com-
parable to that observed for other eukaryotes. About 53% (1,480) of
the putative genes contained domains defined in the InterPro
database (http://www.ebi.ac.uk/interpro)24; again, this proportion
is comparable to other eukaryotes6. In total, EST, protein, and/or
InterPro matches provide support for 1,960 of the 2,799 predicted

Table 2 Most frequent InterPro domains

Domain Description DD SC AT CE DM HS
...................................................................................................................................................................................................................................................................................................................................................................

IPR001687 ATP/GTP-binding site motif A (P-loop)* 6.07 0.57 0.61 0.32 0.46 0.33
IPR000694 Proline-rich region 3.72 NA NA NA NA NA
IPR000561 EGF-like domain* 2.18 0.02 0.16 0.68 0.62 1.28
IPR000719 Eukaryotic protein kinase 1.93 1.91 4.07 2.34 1.79 2.64
IPR002290 Serine/threonine protein kinase 1.89 1.83 3.34 1.33 1.22 1.83
IPR001245 Tyrosine protein kinase 1.71 0.05 1.84 0.84 0.65 1.22
IPR001680 G-protein beta WD-40 repeats 1.11 1.63 1.02 0.80 1.31 1.34
IPR003593 AAA ATPase superfamily* 1.11 0.95 0.90 0.40 0.56 0.46
IPR000051 SAM (and some other nucleotide) binding motif 0.89 0.33 0.40 0.25 0.28 0.20
IPR001849 Pleckstrin homology (PH) domain 0.89 0.47 0.12 0.41 0.54 1.24
IPR002048 EF-hand* 0.86 0.26 0.85 0.65 0.93 1.15
IPR001841 RING finger 0.82 0.65 1.82 0.81 0.85 1.20
IPR002085 Zinc-containing alcohol dehydrogenase superfamily 0.82 0.34 0.15 0.06 0.07 0.08
IPR000794 Beta-ketoacyl synthase* 0.79 0.03 0.02 0.02 0.03 0.01
IPR003579 RAS small GTPases, Rab subfamily 0.79 0.15 0.23 0.15 0.21 0.22
IPR001611 Leucine-rich repeat 0.75 0.13 1.93 0.33 0.83 0.74
IPR003577 RAS small GTPases, Ras subfamily 0.75 0.05 0.00 0.06 0.07 0.10
IPR003880 Phosphopantetheine attachment site 0.75 0.10 0.21 0.15 0.28 0.08
IPR000504 RNA-binding region RNP-1 (RNA recognition motif) 0.71 0.93 0.96 0.69 1.13 1.25
IPR000873 AMP-dependent synthetase and ligase 0.71 0.18 0.17 0.17 0.25 0.16
IPR003578 RAS small GTPases, Rho subfamily 0.71 0.10 0.04 0.05 0.04 0.10
IPR000345 Cytochrome c family haem-binding site 0.68 0.10 0.58 0.31 0.31 0.37
IPR001227 Acyl transferase domain* 0.68 0.02 0.00 0.02 0.03 0.01
IPR001806 Ras GTPase superfamily 0.68 0.36 0.38 0.33 0.51 0.60
IPR000477 RNA-directed DNA polymerase (Reverse transcriptase) 0.64 0.08 0.50 0.46 0.09 0.14
IPR001064 Zinc-finger GCS-type 0.64 0.10 0.07 0.04 0.07 0.14
IPR002110 Ankyrin-repeat* 0.64 0.29 0.44 0.53 0.62 0.91
IPR001601 Generic methyl-transferase 0.61 0.10 0.22 0.06 0.07 0.06
IPR001410 DEAD/DEAH box helicase 0.57 1.19 0.53 0.44 0.54 0.52
IPR002106 Aminoacyl-transfer RNA synthetases class-II 0.57 0.36 0.35 0.59 0.41 0.20
...................................................................................................................................................................................................................................................................................................................................................................

Occurrence of the thirty most frequent InterPro domains on D. discoideum chromosome 2 (DD; including repetitive elements) and fully sequenced eukaryotes. The percentage of genes in each
organism that contain the respective domain type is given. SC, S. cerevisiae; AT, A. thaliana; CE, C. elegans; DM, D. melanogaster; HS, H. sapiens. The data for SC, CE, DM, HS and ATwere taken from
http://www.ebi.ac.uk/proteome/. NA, not analysed.
*These entries are discussed in the text.
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genes. Applying the gene ontology (GO) terminology for the
automated classification of proteins (http://whitefly.lbl.gov/annot/
go/database/index.html) we could attribute functions and/or pro-
cesses to 1,026 (37%) of the predicted protein products (Fig. 2).
Slightly more of these proteins could be classified to functions (991)
than to process (689) categories, and 654 out of the 1,026 classified
proteins are present in both categories. Forty-seven per cent of the
putative proteins remain unclassified and a further 15% of all
proteins could not be categorized because their corresponding
InterPro domains are not yet assigned to GO terms (Fig. 2).

Because D. discoideum undergoes differentiation and develop-
ment we might expect a significant number of genes associated with
multicellular life. In fact, a remarkably high proportion of GO-
classified proteins are grouped into the cell communication cat-
egory (9.14%) and involved in signal transduction or cell adhesion,
or comprise cytoskeletal proteins containing signalling domains. As
expected, analysis of InterPro matches reveals that domains
required for cell motility, signalling, surface attachment and cyto-
skeletal functions are considerably more abundant than in yeast.
When we compare the most frequent InterPro domains of chromo-
some 2 genes to those of other species (Table 2), the ATP/GTP-
binding site motif A (P-loop) is strongly over-represented (6.07% of
the predicted genes on the D. discoideum chromosome 2 carry this
motif, versus 0.33% in human), whereas the epidermal growth
factor (EGF)-like domain is over-represented only slightly com-
pared to human (2.18% versus 1.28%), but strongly in comparison
to yeast (0.02%). The AAA ATPase superfamily domain is found
in comparable proportions in D. discoideum, S. cerevisiae and

A. thaliana, but is less abundant in C. elegans, D. melanogaster
and human, whereas the proportions of the Ca2þ-binding EF-hand
domain and the ankyrin repeat are roughly comparable in all
organisms with the exception of yeast, where they are less abundant.
We have also identified many beta-ketoacyl synthase and acyl
transferase domains, which are hardly present in the other organ-
isms considered here. In D. discoideum many of these domains are
part of polyketide synthases, which are exceptionally large, multi-
functional proteins, primarily present in actinomycetes, bacilli and
filamentous fungi. The compounds built via the polyketide synthase
pathways might enable D. discoideum to defend itself against its
natural competitors.

Many D. discoideum genes—particularly those involved in signal-
ling and cell movement—are known to be present as multiple copies
or as members of large gene families. This is supported by our
analysis of chromosome 2, which contains 130 genes present as two
or more copies (P , 10230 and sequence similarity over the
complete length), amounting to 337 (12%) of the predicted
genes. Because paralogues on the other chromosomes have not
been taken into account, the number of singletons will further
decrease when all chromosomes have been analysed. We have found
ten genes for members of the Ras-related small GTP-binding
protein family and nine genes sharing the RasGEF domain. Fur-
thermore, we identified another G protein with homology to Ga2, a
component of the cyclic AMP signalling system, and also residing
on chromosome 2. We have also found two more members of the G-
protein coupled receptor family. Surprisingly, these proteins have
highest homology to GABA (g-aminobutyric acid) receptors, which
have not yet been found outside the metazoan branch. Genes coding
for components of the cytoskeleton are frequently present in
multiple copies. Of the ,27 actin genes (including pseudogenes)
in the D. discoideum genome19, thirteen are present on chromosome
2 and ten of these translate into identical protein sequences.
Chromosome 2 harbours several genes coding for motor proteins,
among which are six genes for different unconventional myosins.
Although the cytoskeleton has been intensively studied, we have
found putative new paralogues for profilin I/II, fimbrin, cofilin 1/2
and the unconventional myosin gene family. The discovery of
additional putative paralogues of cytoskeletal proteins supports
the concept of functional redundancy in the cytoskeletal system12.
The ABC (ATP-binding cassette) transporter family is probably one
of the largest in the genome. There are thirteen such genes on
chromosome 2, including several members of the ABC A subfamily
whose occurrence has been restricted to multicellular eukaryotes.
ABC transporters use the energy of ATP hydrolysis to translocate
specific substrates across cellular membranes. Mutations in many of
the human genes coding for ABC transporters are associated with
disease such as cystic fibrosis, Stargardt’s disease or hyperinsulinism.
We have found genes on chromosome 2 with high similarities to the

Table 3 D. discoideum chromosome 2 genes with similarity to human disease genes

Disease (gene symbol) OMIM number Accession number D. discoideum gene BLASTP value (,1.0 £ 10250)
...................................................................................................................................................................................................................................................................................................................................................................

Renal tubular acidosis (ATP6B1) 192132 AAD11943 dd_01070 4.0e-246 (0)
Immunodeficiency (DNA Ligase 1) 126391 NP_000225 dd_02463 1.9e-245 (0)
Hereditary nonpolyposis colorectal cancer, type 1 (HNPCC) (MSH2) 120435 AAA18643 dd_00995 2.4e-237 (1)
*Hyperinsulinism (ABCC8) 600509 Q09428 dd_00006 3.0e-220 (1)
G6PD deficiency (G6PD) 305900 NP_000393 dd_01534 5.1e-190 (0)
*Stargardt’s (ABCA4) 601691 AAC51144 dd_02412 6.5e-189 (3)
Deafness, hereditary (MYO15) 602666 AAF05903 dd_02568 1.2e-182 (5)
Familial cardiac myopathy (MYH7) 160760 P12883 dd_02401 4.2e-177 (5)
Chediak–Higashi (CHS1) 214500 NP_000072 dd_02608 3.3e-151 (1)
Cancer (AKT2) 164731 AAA58364 dd_02928 1.5e-94 (2)
HNPCC (MSH3) 600887 AAB06045 dd_01030 8.9e-78 (1)
...................................................................................................................................................................................................................................................................................................................................................................

From a list of 287 confirmed human disease protein sequences30 those are shown that match a D. discoideum chromosome 2 protein with a BLASTP probability of less than 1.0 £ 10250, indicating a
strong similarity. Only the best hit is listed and the total number of additional strong hits (P , 1.0 £ 10250) is given in parentheses after the probability score. OMIM, Online Mendelian Inheritance in
Man (http://www.ncbi.nlm.nih.gov/omim/).
*Homologous proteins discussed in the text.

Figure 3 Phylum-specific distribution of proteins. a, For comparison with the

chromosome 2 translated genes, plants are represented by the full protein set of

A. thaliana and fungi by S. cerevisiae plus S. pombe. Metazoans are represented by

D. melanogaster, C. elegans, the (as yet incomplete) Homo sapiens protein set, plus

annotated nonhuman vertebrate proteins from the SwissProt database. b, Distribution of

D. discoideum genes with P , 10215 between fully sequenced metazoan species. The

vertebrate gene set is as in a.
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latter two genes and to several other human disease-related genes
(Table 3).

What can the genome of D. discoideum tell us about the common
genomic repertoire of eukaryotic life? To address this question, we
compared the protein products of the 2,799 genes of chromosome 2
to the complete protein sets of fully sequenced eukaryotes
(P , 10215) and found that 973 proteins (35%) have matches. Of
these only 487 share similarities across plants (A. thaliana), fungi (S.
cerevisiae and S. pombe) and metazoa (C. elegans, D. melanogaster
and available vertebrate sequences). A surprisingly high number
(141) have matches with metazoa but not plants or fungi (Fig. 3a).
Subdividing metazoa into fly, worm and vertebrates shows that even
amongst this closely related group not all genes have comparable
similarities in each species (Fig. 3b). This may reflect gene losses
during evolution, or evolutionary rate variations for identical genes
in different organisms, but could also reflect a gain of function for
specific gene groups in each organism. If chromosome 2 is taken as a
representative quarter of the D. discoideum genome, then less than
2,400 different genes are shared between D. discoideum, S. pombe, S.
cerevisiae, C. elegans, A. thaliana, D. melanogaster and man. This
number might well represent the ‘minimal gene set’ of a free-living
eukaryote. From random mutagenesis studies it was previously
estimated that the essential genes of yeast comprise only about 30%
of all its genes25. Our estimate of the number of genes shared by all
eukaryotes is close to this number.

Our analyses are all predicated on the assumption that chromo-
some 2, representing 25% of the genome, is typical of the remainder.
This seems a reasonable assumption and other evidence on the
distribution of mapped genes15 does not suggest that chromosome 2
is particularly atypical. Our findings can also clarify the evolution-
ary position of D. discoideum. Its genome exhibits greater simi-
larities to metazoa than to plants or fungi (Fig. 3). This supports the
finding of a recent phylogenetic analysis of conserved protein
sequences which placed the Myxomycota (to which D. discoideum
belongs) at a position before the branching of the metazoa and fungi
but after the divergence of the plant kingdom7. D. discoideum does
not appear to have suffered the extensive gene loss observed in S.
cerevisiae and therefore its gene content may better represent a basic
eukaryotic genome. This conservation of the complete gene set
makes D. discoideum well suited for functional studies of genes not
represented in yeast. Its surprisingly high gene number may in part
reflect the higher order of complexity associated with multicellular
life. A

Methods
Further information on sequence data and analysis results can be accessed via
http://genome.imb-jena.de/dictyostelium/ and http://www.uni-koeln.de/dictyostelium/.

Sequencing and assembly
Library construction and sequencing was done as described previously19. 160,000
chromosome 2 library-derived reads were pooled with the nonrepetitive reads from other
D. discoideum whole chromosome shotgun projects to give a total of 500,000 reads. The
subset of reads matching genes mapped to chromosome 2 (ref. 15) were assembled to
build seed contigs, and further contigs were assembled around complementary reads from
the clones in these seeds (for details see http://genome.imb-jena.de/dictyostelium/chr2/
seeds.html). The previously published15 map order of the ‘seed’ genes was largely
confirmed. Considering the combined data of the HAPPY map and sequence assembly, it
is likely that the discrepancies arise from errors in the earlier YAC contigs, which have been
shown to suffer from a proportion of misplaced clones26. The assembly database was then
enlarged by the incorporation of reads with a higher than average frequency of occurrence
in the chromosome 2 library reads (these are more likely to originate from chromosome 2
than from other chromosomes, owing to our preferential use of the chromosome 2 specific
clone libraries). The contigs were extended by the incorporation of further reads which
were found by BLAST analysis of the contig ends. This assembly method yielded about
1,100 contigs larger than 2 kb. Chromosomal assignment of each contig was checked on
the basis of its content of sequences derived from each of the different chromosome-
enriched libraries (K.S., unpublished software). In this way, contaminant sequences were
filtered out; conversely, reads derived from the other whole chromosome shotgun projects
but assigned to chromosome 2 were incorporated into our assembly. To ensure that we had
not missed portions of the chromosome by this strategy we assembled all chromosome 2
library-derived reads and checked the resulting contigs for chromosome specificity. The
resulting additional contigs were added to the chromosome 2-specific assembly. All

contigs were manually inspected to ensure data accuracy. Clones spanning sequencing
gaps between neighbouring contigs defined scaffolds. Directed closure of these gaps was
done using custom primers to walk on existing clones. Additional gaps were closed by
using the transposon insertion technique and polymerase chain reaction (PCR)
approaches.

Mapping
As part of the ongoing genome-wide D. discoideum HAPPY mapping project, a short
range (,100 kb), high-resolution (mean, 15 kb) HAPPY mapping panel was prepared
from AX4 genomic DNA, pre-amplified by PEP (primer extension pre-amplification) and
diluted before use as a template for marker typing. Hemi-nested primers were designed for
824 markers selected from the sequencing projects. Markers were typed onto the HAPPY
mapping panel and sorted into linkage groups as previously described26. Maps for each
linkage group were generated and validated by inspection to reduce the risk of
incorporating spurious intermarker linkages. The results obtained so far define the order
of 365 chromosome 2 markers in 12 large linkage groups (for details see http://
genome.imb-jena.de/dictyostelium/chr2/linkage.html). Further positional information
was obtained from PCR screening of a cYAC library with insert sizes of 80–100 kb covering
the genome approximately sevenfold. Sequence contigs or HAPPY linkage groups were
assumed to be linked if primer pairs derived from them hit the same cYAC clone(s). By
integrating the HAPPY, cYAC and sequence scaffold data, a region spanning 6.5 Mb was
robustly assembled. Only four sequence scaffolds, totalling 0.6 Mb, could not be placed
onto the map. Of these, two are too large to fit in the gaps of the linked 6.5-Mb portion of
the chromosome, and are presumably located at the ends. The assembly produced 71
unlinked orphan contigs amounting to 0.41 Mb, consisting mainly of fragments of
complex repetitive elements.

Sequence analysis
GþC content was calculated using a sliding window of 10,000 bases and a step size of 1,000
bases. Strand-specific CDS density was measured as percentage of coding triplets in a
stepped window of 5,000 bases. A database containing the complex repetitive elements of
D. discoideum was used with RepeatMasker to scan the sequence for repeats19. tRNAs were
detected using tRNAscan-SE27. To define the genes on chromosome 2, the gene prediction
program GeneID28 was trained with 140 known D. discoideum genes and its parameters
adjusted to be able to define proper gene borders and intron positions. The lower limit for
the gene length was 120 bases of coding sequence. EST matches were defined by BLAST
with .98% identity, and word length of 32. The protein products of predicted genes were
compared to the databases of completed genomes: The Arabidopsis Information Resource
(http://www.arabidopsis.org/home.html), Wormpep (http://www.sanger.ac.uk/Projects/
C_elegans/wormpep/), ftp://ftp.ebi.ac.uk/pub/databases/edgp/sequence_sets/,
Saccharomyces Genome Database (http://genome-www.stanford.edu/Saccharomyces/),
The Schizosaccharomyces pombe Genome Sequencing Project (http://www.sanger.ac.uk/
Projects/S_pombe/), Ensembl Genome Browser (http://www.ensembl.org) as well as
against SWISS-PROT entries and TrEMBL. They were also checked for the presence of
InterPro domains using the InterPro database (http://www.ebi.ac.uk/interpro).
Functional classification was done automatically using the GO classification system
(http://www.geneontology.org/)29.
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Information in neurons flows from synapses, through the den-
drites and cell body (soma), and, finally, along the axon as spikes
of electrical activity that will ultimately release neurotransmit-
ters from the nerve terminals. However, the dendrites of many
neurons also have a secretory role, transmitting information
back to afferent nerve terminals1–4. In some central nervous
system neurons, spikes that originate at the soma can travel
along dendrites as well as axons, and may thus elicit secretion
from both compartments1. Here, we show that in hypothalamic
oxytocin neurons, agents that mobilize intracellular Ca21 induce
oxytocin release from dendrites without increasing the electrical
activity of the cell body, and without inducing secretion from the
nerve terminals. Conversely, electrical activity in the cell bodies
can cause the secretion of oxytocin from nerve terminals with
little or no release from the dendrites. Finally, mobilization of
intracellular Ca21 can also prime the releasable pool of oxytocin
in the dendrites. This priming action makes dendritic oxytocin
available for release in response to subsequent spike activity.
Priming persists for a prolonged period, changing the nature of
interactions between oxytocin neurons and their neighbours.

Neurons in the supraoptic nucleus (SON) of the hypothalamus
project axons to the posterior pituitary, where oxytocin and
vasopressin are secreted from axonal nerve terminals into the
systemic circulation. These peptides are also released in large
amounts from dendrites in the SON5, but secretion at these two
sites is not consistently correlated. Suckling evokes oxytocin release
in the SON6 before significant peripheral secretion, whereas after
osmotic stimulation, SON oxytocin release lags behind peripheral
secretion7. During lactation, in response to suckling, oxytocin cells
discharge with brief, intense bursts8; these bursts release boluses of
oxytocin into the circulation that result in milk let-down from the
mammary glands. The bursting activity can be blocked by central
administration of oxytocin antagonists9, thus central as well as
peripheral oxytocin is essential for milk let-down. It has been
proposed that suckling evokes dendritic oxytocin release that acts
in a positive feedback manner to evoke bursting10.

Oxytocin mobilizes intracellular Ca2þ from thapsigargin-sensi-
tive stores in oxytocin cells11. Here we tested the hypothesis that this
might be critical for dendritic oxytocin release. In anaesthetized rats,
we implanted a microdialysis probe into the SON to measure
oxytocin release in response to systemic osmotic stimulation. In
some of these experiments we applied thapsigargin directly to the
SON through the dialysis probe. Thapsigargin caused a significant
increase in SON oxytocin release that returned to control levels after
washout. Subsequent systemic osmotic stimulation (2 ml of 1.5 M
NaCl, intraperitoneal injection) caused a much larger release of
oxytocin in thapsigargin-pretreated rats than in controls. Osmoti-
cally stimulated oxytocin secretion into the circulation was unaf-
fected by exposure of one SON to thapsigargin (Fig. 1a, b).

To test whether thapsigargin potentiated spike-dependent release
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Genome duplication in the teleost fish Tetraodon nigrovi-
ridis reveals the early vertebrate proto-karyotipe

Tetraodon Genome Sequencing Consortium (including G. Parra and R. Guigó).
Nature (431):946-957 (2004)

The fish Tetraodon nigroviridis lives in the rivers and estuaries of Indonesia, Malaysia
and India. As a vertebrate, its gene pool is very similar to that of other vertebrates, in-
cluding mammals such as humans and mice. It has been observed that the genome of T.
rubripes, another puffer fish from the same family, has a remarkably low content of repet-
itive DNA, and this also applies to T. nigroviridis. Therefore, for geneticists interested in
studying genes, fishes of the Tetraodontiform family have a huge advantage over mam-
mals: their gene pool is contained within approximately eight times less DNA (i.e. the
genome is eight times smaller). This feature allows us to rapidly target our studies on the
interesting part: the genes.

Because of the compactness of the genome, the fraction of intergenic and intronic re-
gions is smaller than in the other vertebrates. Thus, the identification of the structure
of coding genes should be easier than in other vertebrates. This should allow, for the
first time, to get the complete picture of the gene content of a vertebrate genome. This
collection should also serve as a reference for comparisons with the human genome.

Our participation was focus on the gene annotation process (section 5 of the presented
article). A geneid parameter file was obtained based on a set of annotated sequences.
GENOSCOPE, the center that was in charge of the Tetraodon genomic annotation, provided
us with a set of 10 sequences containing 117 Tetraodon genes. From these sequences we
built a parameter file for geneid that was used for the final annotation of the T. nigrovi-
ridis genome.

Building the parameter file

The data set annotation was checked before the extraction of the biological information.
From the 117 annotated genes. One had a mis-annotated exon indicating that the end
of the annotation was not clear. Four CDSs contained stop codons in frame and four
did not contain the ATG start site. Finally, we gathered split the contig sequences in 108
sequences containing the validated genes for the training set. The sequences contained
290,567 coding nucleotides and 150,345 intronic nucleotides.

The data set contained 922 exons, 922 acceptor and donor sites and 108 translational
start sites. The amount of information of every position was analyzed for each signal.
The splice sites seemed to not differ substantially from the other vertebrate splice sites
(see Figure 3.3).

PWMs were computed to model the splice sites and the translational start signal. For
the start site modeling, the six positions upstream of the beginning and six positions
downstream were selected. For the donor and acceptor sites position from -3 to 7 and
from -18 to 2 were considered informative (with 1 being position after the cleavage of the
splice site). The Markov Models of order 5 and order 4 were computed using the cod-
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ing regions of the 108 sequences and considering the intronic regions as the background
model.

At this point, an optimization of EW with the new parameter file was done. The
optimal EW was found to be -9. The results of geneid with Tetraodon parameters file
showed a higher sensitivity than either geneid run using human parameters (see Table
7.2).

Benchmarking Tetraodon gene predictions

The same training set was first used to test the accuracy of the new parameter files. And
apparently the parameter file with the Markov Model of order 5 had higher accuracy than
the one using a Markov Model of order 4 (see Table 7.2). Running geneid with Tetraodon
parameter file had the best performance although specificity was low (70% at nucleotide
level).

To analyze a possible over-training of the parameter files, we developed a novel test-
ing procedure based on the classical ’leave-one-out’ or Jack-knife protocol. This proce-
dure consists in leaving one example out at a time from the training set; repeating the
training with the rest of sequences to build a new parameter file; testing the accuracy on
the single example. Thus, the final accuracy is the average of the individual accuracy
values computed in every leave-one-out round.

The results after Jack-knife protocol shows that accuracy decrease in the predictions
obtained in both parameter file (the one trained with a Markov Model of order 5 and
4). However, the lost of accuracy is more pronounced in the parameter file generated
with a Markov Model of order 5. This phenomenon can be explained because higher
order Markov Models need larger amount of parameter to be estimated. Thus the lost of
accuracy is due the over estimation of the statistical model. In order to create a matrix for
order n, at least 90 ∗ 4n+1 bases of CDS and 30 ∗ 4n+1 bases of non-coding sample sequence
are required, as estimated by Mark Borodovsky (personal communication). Therefore, for
a Markov Model of order 5 at least 368,640 coding bases are needed. Using the Jack-knife
approach we have confirmed that smaller samples will generate less accurate predictions.
The parameter file generated with the Markov Model of order 4 was finally selected for
the annotation of the T. nigroviridis genome.

Final annotation of the Tetraodon genome

The way to obtain the final annotation gene sets was using a combination of different
sources of information: geneid and genscan , as ab initio gene finding programs, ex-
ofish regions, genewise and est_genome alignments. All this genomic features were
integrated using gaze , a generic framework for the integration of gene-prediction data
by dynamic programming.

The following pages correspond to the article describing the properties of the Tetraodon
nigroviridis genome. It is also included the section 5 of the supplementary materials that
corresponds to the test and the results of the combination of geneid and genscan in to
the gaze pipeline.



Base level Exon level
Sn Sp CC Sn Sp SnSp ME WE

Tetraodon MM5 -self- 0.94 0.87 0.88 0.71 0.68 0.70 0.08 0.12
Tetraodon MM5 -jkf- 0.74 0.81 0.72 0.50 0.57 0.54 0.26 0.18
Tetraodon MM4 -self- 0.92 0.80 0.82 0.66 0.61 0.64 0.10 0.18
Tetraodon MM4 -jkf- 0.87 0.79 0.78 0.60 0.58 0.59 0.15 0.19
human 0.80 0.76 0.72 0.49 0.59 0.54 0.26 0.15

Table 7.2: Accuracy of geneid using different parameter files and with the human profile.
Tested on 108 Tetraodon sequences flanked by 1000 bp at both sides of the coding region.
Markov coding matrices of order 5 (MM5) and 4 (MM4) were used in developing the
parameter file. The evaluations have been done using the same training and test set for
the -self- group and using the Jack-knife protocol in the -jkf- group.
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Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome
sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a
greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with
other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues.
Comparison with the human genome suggests,900 previously unannotated human genes. Analysis of the Tetraodon and human
genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals.
The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of
12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading
to the modern human karyotype.

Access to entire genome sequences is revolutionizing our under-
standing of how genetic information is stored and organized in
DNA, and how it has evolved over time. The sequence of a genome
provides exquisite detail of the gene catalogue within a species, and
the recent analysis of near-complete genome sequences of three
mammals (human1, mouse2 and rat3) shows the acceleration in the
search for causal links between genotype and phenotype, which can
then be related to physiological, ecological and evolutionary obser-
vations. The partial sequence of the compact puffer fish Takifugu
rubripes genome was obtained recently and this survey provided a
preliminary catalogue of fish genes4. However, the Takifugu assem-
bly is highly fragmented and as a result important questions could
not be addressed.

Here, we describe and analyse the genome sequence of the
freshwater puffer fish Tetraodon nigroviridis with long-range linkage
and extensive anchoring to chromosomes. Tetraodon resembles
Takifugu in that it possesses one of the smallest known vertebrate
genomes, but as a popular aquarium fish it is readily available and is
easily maintained in tap water (see Supplementary Notes for

naming conventions, natural habitat and phylogeny). The two
puffer fish diverged from a common ancestor between 18–30
million years (Myr) ago and from the common ancestor with
mammals about 450 Myr ago5. This long evolutionary distance
provides a good contrast to distinguish conserved features from
neutrally evolving DNA by sequence comparison. Tetraodon
sequences in fact had an important role in providing a reliable
estimate of the number of genes in the human genome6.

There has been a vigorous and unresolved debate as to whether a
whole-genome duplication (WGD) occurred in the ray-finned fish
(actinopterygians) lineage after its separation from tetrapods7–9. By
exploiting the extensive anchoring of the Tetraodon sequence to
chromosomes, we provide a definitive answer to this question. The
distribution of duplicated genes in the genome reveals a striking
pattern of chromosome pairing, and the correspondence of ortho-
logues with the human genome show precisely the signatures
expected from an ancient WGD followed by a massive loss of
duplicated genes.

Moreover, we find that relatively few interchromosomal
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rearrangements occurred in the Tetraodon lineage over several
hundred million years after the WGD. This allows us to propose a
karyotype of the ancestral bony vertebrate (Osteichthyes) composed
of 12 chromosomes, and to uncover many unknown evolutionary
breakpoints that occurred in the human genome in the past
450 Myr.

The Tetraodon genome sequence
Sequencing and assembly

The Tetraodon genome was sequenced using the whole-genome
shotgun (WGS) approach. Random paired-end sequences provid-
ing 8.3-fold redundant coverage were produced at Genoscope
(GSC) and the Broad Institute of MITand Harvard (see Supplemen-
tary Table SI1). From this, the assembly program Arachne10,11

constructed 49,609 contigs for a total of 312 megabases (Mb;
Table 1), which it then connected into 25,773 scaffolds (or super-
contigs) covering 342 Mb (including gaps; see Supplementary
Information). Half of the assembly is in 102 scaffolds larger than
731 kilobases (kb; the N50 length) and the largest scaffold measures
7.6 Mb, the typical length of a Tetraodon chromosome arm.

We produced additional data to physically link scaffolds and
anchor them to chromosomes. These data include probe hybridiz-
ations to arrayed bacterial artificial chromosome (BAC) libraries,

restriction digest fingerprints of BAC clones, additional linking
clone sequence, alignment to available Takifugu sequence and two-
colour fluorescence in situ hybridization (FISH) (see Supplemen-
tary Information). The impact of these additional mapping data was
twofold: first, we could join 2,563 scaffolds in 128 ‘ultracontigs’ that
cover 81.3% of the assembly, and second, we were able to anchor the
39 ultracontigs among the largest (covering 64.6% of the assembly,
with an N50 size of 8.7 Mb) to Tetraodon chromosomes (Fig. 1; see
also Supplementary Table SI2 and Supplementary Notes).

The accuracy of the assembly was experimentally tested and the
inter-contig links found to be correct in.99% of cases. On the basis
of a re-sequencing experiment, we estimate that the assembly covers
.90% of the euchromatin of the Tetraodon genome (Supplemen-
tary Information). Finally, the overall genome size was directly
measured by flow cytometry experiments on several fish; an
average value of 340 Mb was obtained, consistent with the sequence
assembly and smaller than the previously reported estimate of
350–400 Mb.

The Tetraodon draft sequence has roughly 60-fold greater con-

Table 1 Assembly statistics

Parameter Number N50 length
(kb)

Size with gaps
included (Mb)

Size with gaps
excluded (Mb)

Longest
(kb)

Percentage of the genome
with gaps included

...................................................................................................................................................................................................................................................................................................................................................................

All contigs 49,609 16 312.4 312.4 258 91.9
All scaffolds 25,773 984 342.4 312.4 7,612 100.7
All ultracontigs 128 7,622 276.4 247.0 12,035 81.3
Mapped contigs 16,083 26 197.7 197.7 258 58.1
Mapped scaffolds 1,588 608 218.4 197.7 7,612 64.2
Mapped ultracontigs 39 8,701 219.7 197.7 12,035 64.6
...................................................................................................................................................................................................................................................................................................................................................................

Figure 1 The Tetraodon genome is composed of 21 chromosomes. Red areas indicate

the location of 5S and 28S ribosomal RNA gene arrays on chromosome 10 and

chromosome 15, respectively. Many chromosomes are subtelocentric; that is, they only

possess a very short heterochromatic arm. The extent of 39 sequence-based ultracontigs

that cover about 64% of their length is shown in blue. In addition, approximately 16% of

the genome is contained in another 89 ultracontigs that are not yet anchored on

chromosomes, and the remaining 20% of the genome is in 23,210 smaller scaffolds.

Figure 2 Distribution of the G þ C content. a, Distribution in 5-kb non-overlapping

windows across Tetraodon (red squares) and Takifugu (blue circles) scaffolds, and in

50-kb windows in human (black triangles) and mouse (green inverted triangles)

chromosomes. Windows containing more than 25% ambiguous or unknown nucleotides

(gaps) were excluded from the analysis. b, Cumulative sum of annotated coding bases in

Tetraodon and Takifugu (5-kb non-overlapping windows) and human and mouse (50-kb

windows) as a function of G þ C content. c, In sharp contrast to Takifugu4 the density of

genes increases with the G þ C content (%) in Tetraodon (red circles) much more than in

human (black triangles). d, The three major families of repeats in Tetraodon are not

distributed uniformly in the genome: long terminal repeat (LTR) and LINE elements (red

diamonds and green squares, respectively) concentrate in (G þ C)-rich regions and SINE

elements (blue circles) concentrate in (A þ T)-rich regions. In contrast, the distribution of

these elements is much more uniform in Takifugu (Supplementary Fig. S4).
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tinuity at the level of N50 ultracontig size than the Takifugu draft
sequence (7.62 Mb versus 125 kb). Critically, the anchoring of the
assembly provides a comprehensive view of a fish genome sequence
organized in individual chromosomes.

Genome landscape

A consequence of the remarkably compact nature of the Tetraodon
genome is that its GþC content is much higher than in the larger
genomes of mammals. Although the GþC content is shifted
markedly, it still shows the same asymmetric bell-shaped distri-
bution with an excess of higher values as seen in human and mouse
(Fig. 2a). (GþC)-rich regions tend to be gene-rich in mammals, and
analysis of our data shows that this is also true for Tetraodon
(Fig. 2b, c). The Tetraodon genome thus cannot be considered as
a single homogeneous component but, as in mammals, it is a mosaic
of relatively gene-rich and gene-poor regions.

Transposable elements are very rare in the Tetraodon genome12,13:
we estimate here that they do not exceed 4,000 copies; however, with
73 different types, they are richly represented (Supplementary Notes
and Supplementary Table SI3). In sharp contrast, the human and
mouse genomes contain only ,20 different types but are riddled
with millions of transposable element copies. One of the intriguing
features of the human genome is that the distribution of short
interspersed nucleotide elements (SINEs) is biased towards (GþC)-
rich regions, whereas long interspersed nucleotide elements
(LINEs) favour (AþT)-rich regions. In Tetraodon, these preferences
are precisely reverse: LINEs occur preferentially in (GþC)-rich

regions and SINEs in (AþT)-rich regions (Fig. 2d). The reason
for these differences is not clear.

The Tetraodon genome shows certain striking differences from
the previously reported Takifugu genome sequence. Takifugu con-
tains eightfold more copies of transposable elements4 than Tetra-
odon, which may contribute to its slightly larger genome size
(approximately 370 Mb; see Supplementary Information). More
surprisingly, the GþC content of Takifugu does not show the
characteristic asymmetry seen in mammals and in Tetraodon
(Fig. 2a) nor the biases in SINE and LINE distribution (Supplemen-
tary Fig. S4). Why would the (GþC)-rich component be lacking in
the Takifugu sequence, when this fraction is gene dense in mammals
and in Tetraodon? This cannot be ascribed to transposable elements,
which represent less than 5% of the assembly in both of these puffer
fish species. One possible explanation is that the (GþC)-rich
fraction exists in Takifugu, but was markedly under-represented as
a result of aspects of the cloning, sequencing or assembly process.
The fact that Tetraodon (GþC)-rich regions contain an excess of
genes with no apparent orthologues in the Takifugu genome sup-
ports this hypothesis. Indeed, the Tetraodon genome appears to
contain ,16.5% more coding exons than Takifugu (see below).

Tetraodon genes
Gene catalogue

The most prevalent features of the Tetraodon genome are protein-
coding genes, which span 40% of the assembly. We constructed a
catalogue of genes by adapting the GAZE14 computational frame-
work (Supplementary Fig. S5) in order to combine three types of
data: Tetraodon complementary DNA mapping, similarities to
human, mouse and Takifugu proteins and genomes, and ab initio
gene models (Supplementary Notes and Supplementary Tables SI4
and SI5).

The current Tetraodon catalogue is composed of 27,918 gene
models, with 6.9 coding exons per gene on average (7.3 including
untranslated regions (UTRs); Table 2). Assuming that fish and
mammal genes possess similar gene structures, this suggests that
some Tetraodon annotated genes are partial or fragmented because
human and mouse genes respectively show 8.7 and 8.4 coding exons
per gene2. Adjusting the gene count for such fragmentation (by
multiplying by 6.9/8.6) would yield an estimated gene count of
22,400 genes, whereas accounting for unsequenced regions of the
genome might increase the estimate slightly further. Although such

Table 3 Comparative InterPro analysis of fish, mammal and urochordate proteomes

Tetraodon Takifugu Human Mouse Ciona InterPro description
...................................................................................................................................................................................................................................................................................................................................................................

Actinopterygian-enriched
61 78 22 21 48 Sodium:neurotransmitter symporter
33 29 11 13 33 Naþ/solute symporter
21 16 8 7 6 Sodium/calcium exchanger membrane region
141 191 86 97 52 Collagen triple helix repeat
15 28 6 4 19 HAT dimerization
17 15 5 4 27 Peptidase M12A, astacin
3 4 0 0 1 Inosine/uridine-preferring nucleoside hydrolase

Sarcopterygian-enriched
0 0 275 173 0 KRAB box
0 0 14 8 0 KRAB-related
3 0 25 29 0 High mobility group protein HMG14 and HMG17
0 0 9 95 0 Vomeronasal receptor, type 1
0 0 13 21 0 Keratin, high sulphur B2 protein
0 0 3 3 0 Keratin, high-sulphur matrix protein
0 0 22 11 0 Mammalian taste receptor
0 0 11 9 0 Pancreatic RNase
0 0 7 8 0 b-Defensin

Vertebrate-enriched
52 40 82 102 9 Histone core
252 253 240 228 88 Homeobox
62 56 80 55 9 Zn finger, B box
94 83 75 74 19 Zn-binding protein, LIM
65 56 70 135 17 HMG1/2 (high mobility group) box

...................................................................................................................................................................................................................................................................................................................................................................

Supplementary Table SI7 contains the top 100 InterPro domains in Tetraodon.

Table 2 Comparison between Tetraodon and Takifugu annotations

Parameter Tetraodon Takifugu* Takifugu†
.............................................................................................................................................................................

Annotated genes 27,918 35,180 20,796
Annotated transcripts 27,918 38,510 33,003
Average number of coding exons per gene 6.9 4.3 8.6
Average number of UTR exons per gene 0.4 0‡ 0.07
Average gene size (bp) 4,778 2,754 6,547
Average CDS size (bp) 1,230 745 1,397
Average exon size (bp) 178 171 163
Number of annotated bases (Mb)
Coding 33.9 26.1 29.1
UTR 2.4 0‡ 0.02

.............................................................................................................................................................................

*Takifugu annotations are from Ensembl version 18.2.1.
†Takifugu annotations are from Ensembl version 23.2.1.
‡Takifugu annotations from Ensembl version 18.2.1 do not include UTRs.
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estimates are somewhat imprecise, it seems likely that Tetraodon has
between 20,000–25,000 protein coding genes.

The Tetraodon gene catalogue appears to be the most complete so
far for a fish, with coding exons and UTRs totalling ,36 Mb (,11%
of the genome; Table 2). TheTakifugu paper4 reported an estimate of
35,180 genes, but it did not account for a high degree of fragmenta-
tion (,4.3 exons per gene model). More recent, unpublished
analyses have revised this number sharply downward (Table 2).
The human and Tetraodon genomes have a similar distribution of
exon sizes but markedly different distributions of intron size
(Supplementary Fig. S6a). Although neither genome seems to
tolerate introns below approximately 50–60 base pairs, Tetraodon
has accumulated a much higher frequency of introns at this lower
limit. Interestingly, this phenomenon is not uniform across the
genome: there is an excess of genes with many small introns
(Supplementary Fig. S6b), suggesting that intron sizes fluctuate in
a regional fashion.

Proteome comparison between vertebrates

We examined in detail two gene families with unusual properties
that represent challenges for automatic annotation procedures and
have particular biological interest. The first is the family of seleno-
proteins, where the UGA codon encodes a rare cysteine analogue
named selenocysteine (Sec) instead of signalling the end of trans-
lation as in all other genes15. We annotated 18 distinct families in
Tetraodon based on similarities with the 19 protein families known
in eukaryotes, and discovered a new selenoprotein that seems to be
restricted to the actinopterygians among vertebrates and does not
have a Cys counterpart in mammals. We also catalogued type I
helical cytokines and their receptors (HCRI), a group of genes that
were not found in the Takifugu genome4 because of their poor
sequence conservation, leading to the hypothesis that fish may not
possess this large family that includes hormones and interleukins.
Tetraodon, in fact, contains 30 genes encoding HCRIs with a typical
D200 domain (Supplementary Fig. S7) and represents all families
previously described in mammals16.

InterPro17 domains were annotated in protein sequences pre-
dicted in the Tetraodon, Takifugu, human, mouse and the urochor-
date Ciona intestinalis18 genome using InterProScan19. We did not
identify major differences between fish and mammal InterPro
families, except for a few striking cases (Table 3): (1) collagen
molecules are much more diverse in fish than in mammals, with
one Tetraodon gene containing 20 von Willebrand type A domains,

the largest number found so far in a single protein. (2) Some
domains associated with sodium transport are noticeably enriched
in fishes and Ciona, perhaps a reflection of their adaptation to saline
aquatic environments that was lost in land vertebrates. (3) Purine
nucleosidases usually involved in the recovery of purine nucleosides
are more abundant in fish, including an allantoin pathway for
purine degradation that is present in Tetraodon and absent in
human. (4) Several hundred KRAB box transcriptional repressors
involved in chromatin-mediated gene regulation exist in mammals
and are totally absent in fish. (5) Proteins involved in general gene
regulation are more abundant in vertebrates than in Ciona.

Protein annotation with gene ontology (GO) classifications20

shows only subtle differences between fish and mammals, as was
already observed between human and mouse2. The largest differ-
ences between species are seen with the GO classification in
molecular functions (Supplementary Fig. S9). Interestingly, the
two puffer fish and Ciona often vary together, showing for instance
a higher frequency of enzymatic and transporter functions, and a
lower frequency of signal transducer and structural molecules than
both mammals (human and mouse). These global observations are
difficult to relate to evolutionary or physiological mechanisms but
provide a framework to understand the emergence or decline of
molecular functions in vertebrates.

Number of genes in mammals and teleosts

The total amount of coding sequence conserved between the two
fish and the two mammalian genomes provides a measure of their
respective coding capacity. The Exofish method6 is well suited to
measure this, because it translates entire genomes in all six frames
and identifies conserved coding regions (ecores) with a high
specificity and independently of prior genome annotation
(Table 4; see also Supplementary Information). The four vertebrate
genomes contain remarkably similar numbers of ecores, apart from
minor differences attributable to varying degrees of sequence
completion. This suggests that they possess fairly similar numbers
of genes. In fact, the gene count may be slightly less in mammals
than in fish because the proportion of ecores corresponding to
pseudogenes is higher in mammals21.

The human ecores can be used to search for previously unrecog-
nized human genes. The discovery of new human genes is becoming
an increasingly rare event, given the scale and intensity of inter-
national efforts to annotate the genome by systematic annotation
pipelines and by human experts. Roughly 14,500 human ecores

Table 4 Evolutionarily conserved regions between mammals and fish

Target genome

Query genome Tetraodon nigroviridis Takifugu rubripes Homo sapiens Mus musculus
...................................................................................................................................................................................................................................................................................................................................................................

Tetraodon nigroviridis NA ND 139,316 133,091
Takifugu rubripes ND NA 139,932 131,835
Combined fish NA NA 151,708 142,804
Homo sapiens 142,820 133,239 NA ND
Mus musculus 140,407 129,996 ND NA
Combined mammals 151,668 140,965 NA NA
...................................................................................................................................................................................................................................................................................................................................................................

NA, not applicable; ND, not determined.

Table 5 Rates of DNA evolution in vertebrates

Species Total number
of orthologues

Number of
orthologues used

Average per cent
identity

(without gaps)

Observed number
of substitutions
per 4D site

Estimated amount
of neutral evolution

Estimated rate of
neutral evolution
(sites per Myr)

Ka

...................................................................................................................................................................................................................................................................................................................................................................

Human–mouse 14,889 5,802 91.76 0.32 0.43 0.0057 0.05
Tetraodon–Takifugu 12,909 5,802 90.51 0.27 0.35 0.0146 0.06
Tetraodon–human 9,975 5,802 69.90 0.63 1.54* – 0.24
Tetraodon–mouse 9,666 5,802 69.46 0.63 1.53* – 0.25
Takifugu–human 9,143 5,802 70.05 0.63 1.52* – 0.24
Takifugu–mouse 8,956 5,802 69.67 0.63 1.52* – 0.25
...................................................................................................................................................................................................................................................................................................................................................................

*These values are saturated and cannot be considered reliable estimates.
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conserved with Tetraodon sequences do not overlap any ‘known’
features (genes or pseudogenes) in the human genome. Using these
as anchors for local gene identification using the GAZE program, we
identified 904 novel human gene predictions. Of these, 63% are also
supported by expressed sequence tag (EST) data (from human or
other species) and 50% contain predicted InterPro protein domains
(Supplementary Table SI9). The most convincing evidence support-
ing these gene predictions is that they are strongly enriched on
chromosomes that have not yet been annotated by human experts
(Supplementary Table SI10). The novel gene predictions have
relatively small size (average coding sequence (CDS) of 469 bp),
which may have caused them to be eliminated by systematic
annotation procedures. They provide a rich resource to help
complete the human gene catalogue.

Tetraodon gene evolution

We measured rates of sequence divergence between fish and
mammals to estimate the relative speed with which functional
and non-functional sequences evolve in these lineages. We used
fourfold degenerate (4D) site substitutions in orthologous proteins
as a proxy for neutral nucleotide mutations, an approach that has
been shown to be robust across entire genomes2. To optimize
further the selection of sites used for comparison, we only con-
sidered the 5,802 proteins that are identified as orthologues in all
pairwise comparisons between human, mouse, Tetraodon and
Takifugu. The average neutral nucleotide substitution rate, inferred
using the REV model22,23, shows that the divergence between
Tetraodon and Takifugu is about twice as fast per year as between
human and mouse (Table 5), or between mouse and rat3.

We were interested to see whether this higher mutation rate is also
seen in protein sequences. Pairwise comparison of all possible
combinations of the 5,802 four-way orthologous proteins clearly
indicates that proteins between the two puffer fish are more
divergent than between the two mammals, despite the shorter
evolutionary time that has elapsed (Fig. 3). This is confirmed by

the fact that the average frequency of non-synonymous mutations
(leading to an amino acid change, Ka) between C. intestinalis and
human proteins is lower than between Ciona and Tetraodon (see
Methods).

Independent of the overall rate of change, the ratio of non-
synonymous to synonymous changes (Ka/K s ratio) is much higher
between the two puffer fish than between human and mouse
(Supplementary Table SI11 and Supplementary Information),
suggesting that protein evolution is proceeding more rapidly
along the puffer fish lineage. The reasons for this faster tempo of
protein change are unknown, although it is likely to be positively
correlated with the higher rate of neutral mutation.

Genome evolution
Genome-wide sequence provides a rare opportunity to address key
evolutionary questions in a global fashion, circumventing biases
due to small sequence and gene samples. In this respect, the
combination of long-range linkage in the Tetraodon sequence and
its evolutionary divergence from the mammalian lineage at 450 Myr
ago makes it possible to explore overall genome evolution in the
vertebrate clade.

Evidence for whole-genome duplication

The occurrence of WGD in the ray-finned fish lineage is a hotly
debated question due both to the cataclysmic nature of such an event
and to the difficulty in establishing that it actually occurred24–26.

Figure 3 Distribution of the per cent identity between pairs of orthologous protein sets.

Comparisons were performed with 2,289 proteins that are orthologous between the

chordate C. intestinalis and all four vertebrates—Tetraodon, Takifugu, human and mouse

(asterisks)—and with 5,802 proteins orthologous between all four vertebrates only,

between fish and mammals (triangles) or between the two fish (circles), and between the

two mammals (squares). As expected, all vertebrates show the same distribution profile

compared to Ciona and both fish show the same distribution profile compared to

mammals. Surprisingly, the distribution profile of the comparison between the two fish

and between the two mammals is also very similar, despite the much shorter evolutionary

time since the tetraodontiform radiation.

Figure 4 Genome duplication. a, Distribution of K s values of duplicated genes in

Tetraodon (left) and Takifugu (right) genomes. Duplicated genes broadly belong to two

categories, depending on their K s value being below or higher than 0.35 substitutions per

site since the divergence between the two puffer fish (arrows). b, Global distribution of

ancient duplicated genes (K s . 0.35) in the Tetraodon genome. The 21 Tetraodon

chromosomes are represented in a circle in numerical order and each line joins duplicated

genes at their respective position on a given pair of chromosomes.
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Definitive proof of WGD requires identifying certain distinctive
signatures in long-range genome organization, which has pre-
viously been impossible to address with the data available.

It is expected that after WGD the resulting polyploid genome
gradually returns to a diploid state through extensive gene deletion,
with only a small proportion of duplicated copies ultimately

retained as sources of functional innovation26. Paralogous chromo-
somes will thus each retain only a small subset of their initially
common gene complement and then will be broken into smaller
segments by genomic rearrangements. WGD will thus leave two
distinctive signs for considerable periods before eventually fading.

The first distinctive sign is duplicated genes on paralogous
chromosomes. In the absence of chromosomal rearrangement it
would be simple to recognize two paralogous chromosomes arising
from a WGD from the genome-wide distribution of duplicate genes:
the chromosomes would each contain one member from many
duplicated gene pairs occurring in the same order along their length.
The difficulty is that this neat picture will eventually be blurred
by interchromosomal rearrangement, which will disrupt the 1:1
correspondence between chromosomes, and intrachromosomal
rearrangement, which will disrupt gene ordering along
chromosomes.

We analysed the genome-wide distribution of duplicated gene
pairs to see whether a strong correspondence between chromo-
somes could be detected. We identified 1,078 and 995 pairs of
duplicated genes in the Tetraodon and Takifugu genomes, respect-
ively, using conservative criteria (see Supplementary Information).
On the basis of the frequencies of silent mutations (K s) between
copies, ,75% are ‘ancient’ duplications that arose before the
Tetraodon–Takifugu speciation (Fig. 4a).

The chromosomal distribution of these ancient duplicates fol-
lows a striking pattern characteristic of a WGD. Genes on one
chromosome segment have a strong tendency to possess duplicate
copies on a single other chromosome (Fig. 4b). The correspondence
is not a perfect 1:1 match owing to interchromosomal exchange, but
it is vastly stronger than expected by chance (Supplementary Table
SI12). As expected from a WGD, all chromosomes are involved.
Remarkably, some duplicate chromosome pairs such as Tetraodon
chromosome 9 (Tni9) and Tni11 have remained largely undis-
turbed by chromosome translocations since the duplication event.
In other cases, one chromosome has links to two or three others,
suggestive of either fusion or fragmentation (for example, Tni13
matches Tni5 and Tni19).

The second distinctive sign, which is an even more powerful
signature of genome duplication, comes from comparison with a
related species carrying a genome that did not undergo the WGD.
Such a comparison was recently used to prove the existence of an
ancient WGD in the yeast Saccharomyces cerevisiae based on
comparison with a second yeast species Kluyveromyces waltii that
diverged before the WGD27,28. Although two ancient paralogous
regions typically retained only a few genes in common, they could
be readily recognized because they showed a characteristic 2:1
mapping with interleaving; that is, they both showed conserved
synteny and local order to the same region of the K. waltii genome
with the S. cerevisiae genes interleaving in alternating stretches. Such
regions were called blocks of DCS (doubly conserved synteny).
Whereas the first distinctive sign of WGD depends only on a

Table 6 Distribution of human orthologues on Tetraodon chromosomes listed by their ancestral chromosome of origin

Ancestral chromosome

A B C D E F G H I J K L
...................................................................................................................................................................................................................................................................................................................................................................

Tetraodon chromosome (copy 1) 4 17 2 2 5 13 7 1 1 10 9 6
Number of orthologues on copy 1 141 30 130 318 187 145 136 143 151 262 214 111
Percentage of orthologues on copy 1* 32.0 19.2 31.4 62.1 52.1 58.5 58.1 58.8 61.6 52.5 45.2 36.4
Tetraodon chromosome (copy 2) 12 18 3 3 13 19 16 7 15 14 11 8
Number of orthologues on copy 2 299 94 166 97 172 103 98 100 94 237 259 129
Percentage of orthologues on copy 2* 68.0 60.26 40.1 18.9 47.9 41.5 41.9 41.2 38.4 47.5 54.8 42.3
Tetraodon chromosome (copy 3) – 20 18 17 – – – – – – – 21
Number of orthologues on copy 3 – 32 118 97 – – – – – – – 65
Percentage of orthologues on copy 3* – 20.5 28.50 18.9 – – – – – – – 21.31
...................................................................................................................................................................................................................................................................................................................................................................

*Only orthologues that belong to syntenic groups are indicated here. For instance, ancestral chromosome A could be reconstructed with 141 Tetraodon–human orthologues belonging to Tetraodon
chromosome 4 and 299 to chromosome 12.

Figure 5 Synteny maps. a, For each Tetraodon chromosome, coloured segments

represent conserved synteny with a particular human chromosome. Synteny is defined as

groups of two or more Tetraodon genes that possess an orthologue on the same human

chromosome, irrespective of orientation or order. Tetraodon chromosomes are not in

descending order by size because of unequal sequence coverage. The entire map

includes 5,518 orthologues in 900 syntenic segments. b, On the human genome the map

is composed of 905 syntenic segments. See Supplementary Information for the synteny

map between Tetraodon and mouse (Supplementary Fig. S11).
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minority of duplicated genes, the DCS signature considers all genes
for which orthologues can be found in the related species.

We used 6,684 Tetraodon genes localized on individual chromo-
somes that possess an orthologue in either human or mouse to
create a high-resolution synteny map (Fig. 5 and Supplementary
Fig. S11, respectively). The map contains 900 syntenic groups
composed of at least two consecutive genes (average 6.1; maximum
55) having orthologues on the same human chromosome; the
syntenic groups include 76% of Tetraodon–human orthologues.
The synteny map with mouse contains 1,011 syntenic groups,
probably reflecting the higher degree of chromosomal rearrange-
ment in the rodent lineage2.

The synteny map typically associates two regions in Tetraodon
with one region in human. Using precise criteria (see Methods) we
defined DCS blocks for Tetraodon relative to human; in contrast to

the yeast study, strict conservation of gene order within DCSs was
not required. Notably, most (79.6%) orthologous genes in syntenic
groups can be assigned to 90 DCS blocks (Fig. 6). As in S. cerevisiae27,
we see the distinctive interleaving pattern expected from WGD
followed by massive gene loss. Analysis of the interleaving pattern
shows that the gene loss occurred through many small deletions in a
balanced fashion over the two Tetraodon sister chromosomes
(average balance 42% and 58% of retention; Supplementary
Information); this is consistent with the results in yeast.

These two analyses provide definitive evidence that the Tetraodon
genome underwent a WGD sometime after its divergence from the
mammalian lineage. The first test used only the ,3% of genes that
represent duplicated gene pairs retained from the WGD. The second
test used the pattern of 2:1 mapping with interleaving involving
,80% of orthologues between Tetraodon and human.

Figure 6 Duplicate mapping of human chromosomes reveals a whole-genome

duplication in Tetraodon. Blocks of synteny along human chromosomes map to two (or

three) Tetraodon chromosomes in an interleaving pattern. Small boxes represent groups

of syntenic orthologous genes enclosed in larger boxes that define the boundaries of 110

DCS blocks. Black circles indicate human centromeres. A region of human chromosomes

Xq and 16q are shown in detail with individual Tetraodon orthologous genes depicted on

either side.
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Figure 8 Reconstructing ancient genome rearrangements. Model of chromosome

duplication followed by the four simplest chromosome rearrangements: (1) no

rearrangement; (2) two different duplicate copies fused recently; (3) two different

duplicate copies fused early after the duplication; (4) a duplicate chromosome fragmented

very recently. In each model, the distribution of human orthologues from a given

chromosomal region on two or three duplicate Tetraodon chromosomal regions is

expected to be different (each dot is an orthologue, positioned in the human genome on

the vertical axis and in the Tetraodon genome on the horizontal axis). The distinction

between early or late events follows the assumption that intrachromosomal shuffling

progressively redistributes genes over a given chromosome. A recent fusion would thus

bring together two sets of genes that appear compartmented on their respective

segments, whereas an ancient fusion shows the same pattern except that genes have

been redistributed over the length of the fused chromosome. It should be noted that a fifth

case exists, consisting of a chromosome break early after duplication but it is not

represented here. The lower panel shows excerpts of data illustrating the four types of

event. The complete Oxford grid is shown in Supplementary Fig. SI12.

Figure 7 Composition of the ancestral osteichthyan genome. The 110 DCS blocks

identified on the human genome are grouped according to their composition in terms of

Tetraodon chromosomes, thus delineating 12 ancestral chromosomes containing 90 DCS

blocks. The order of DCSs within an ancestral chromosome is arbitrary. The 20 blocks

denoted by the letters U, V, W and Z (Supplementary Information) could not be assigned to

an ancestral chromosome because each has a unique composition, probably due to

rearrangements in the human or Tetraodon genome. Colour codes are as in Fig. 6.
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The presence of supernumerary HOX clusters in zebrafish7,
Tetraodon (Fig. S8) and many other percomorphs29 but not in the
bichir Polypterus senegalus30 indicates that the event has affected
most teleosts but not all actinopterygians. This timing early in the
teleost lineage is in agreement with recent evolutionary analyses in
Takifugu that estimated the divergence time for most duplicated
gene pairs at ,320–350 Myr ago31,32.

The analyses above also shed light on the rate of intra- and
interchromosomal exchange. The synteny analysis shows extensive
syntenic segments in which gene content has been well preserved

but gene order has been extensively scrambled (striking examples
include conserved synteny of Tni20 with human chromosome 4q
(Hsa4q) and Tni1 with HsaXq); this is consistent with observations
in zebrafish33. The duplication analysis within Tetraodon also shows
that the chromosomal correspondence of duplicated gene pairs has
been extensively preserved, whereas local gene order has been
largely scrambled. Both analyses thus indicate that a relatively
high degree of intrachromosomal rearrangement and a relatively
low degree of interchromosomal exchange have taken place in the
Tetraodon lineage.

Figure 10 Proposed model for the distribution of ancestral chromosome segments in the

human and the Tetraodon genomes. The composition of Tetraodon chromosomes is

based on their duplication pattern (Fig. 9), whereas the composition of human

chromosomes is based on the distribution of orthologues of Tetraodon genes (Fig. 6). A

vertical line in Tetraodon chromosomes denotes regions where sequence has not yet been

assigned. With 90 blocks in human compared with 44 in Tetraodon, the complexity of the

mosaic of ancestral segments in human chromosomes underlines the higher frequency of

rearrangements to which they were submitted during the same evolutionary period.

Figure 9 Model for the reconstruction of an ancestral bony vertebrate karyotype

comprising 12 chromosomes, based on the pairing information provided by duplicated

Tetraodon chromosomes showing interleaved patterns on human chromosomes. The ten

major rearrangements (two ancient fusions, three recent fusions, one ancient and one

recent fission, and three ancient translocations) are deduced by fitting the distribution of

orthologues to the four simple theoretical models of chromosome evolution. The order

between events is arbitrary although the approximate timeline differentiates between

ancient and recent events respectively before and after the dashed line. Arrowheads point

to the direction of three ancient translocations.
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Ancestral genome of bony vertebrates

We then sought to use the correspondence between the Tetraodon
and human genomes to attempt to reconstruct the karyotype of
their osteichthyan (bony vertebrate) ancestor. The DCS blocks
define Tetraodon regions that arose from duplication of a common
ancestral region. Notably, the DCS blocks largely fall into 12 simple
patterns: eight cases involving the interleaving of two current
Tetraodon chromosomes and four cases involving three current
Tetraodon chromosomes (Fig. 7 and Table 6). The first group
represents cases in which the ancestral chromosomes have remained
largely untouched by interchromosomal exchange; the second
group represents cases in which one major translocation has
occurred.

The distribution of Tetraodon orthologues in the human genome
(shown as an Oxford grid in Supplementary Fig. S12) provides a
detailed record that can be used to partially reconstruct the history
of rearrangements in both lineages. We considered the expected
distribution resulting from various types of interchromosomal
rearrangements, assuming a relatively high degree of intrachromo-
somal shuffling (Fig. 8; see also Supplementary Information).
We found that only ten large-scale interchromosomal events suffice
to largely explain the data, connecting an ancestral vertebrate
karyotype of 12 chromosomes to the modern Tetraodon genome
of 21 chromosomes (Fig. 9). Eleven of the Tetraodon chromosomes
appear to have undergone no major interchromosomal rearrange-
ment. For example, 13 DCS blocks in human are composed of
interleaved syntenic groups mapping to Tni9 and Tni11, which are
presumed to be derived from a common ancestral chromosome
denoted chromosome K (AncK; Fig. 7). The orthologue distri-
bution between the two chromosomes (Fig. 8) confirms that they
derive by duplication from AncK (Fig. 9). In a more complex case,
Tni13 is systematically interleaved with Tni5 (AncE) or Tni19
(AncF), but Tni5 and Tni19 are never interleaved together; the
orthologue distribution among the three chromosomes (Fig. 8)
implies that the duplication partners of Tni5 and Tni19 fused soon
after the WGD to give rise to Tni13 (Fig. 9). The overall model is
consistent with a complete WGD, in that it accounts for all
Tetraodon chromosomes.

Several lines of evidence support the historical reconstitution
presented here. First, the pairing of Tetraodon chromosomes agrees
with the independently derived distribution of duplicated genes in
the genome (Fig. 4b). Second, centric fusions of the three largest
chromosomes are consistent with cytogenetic studies34, and the
recent timing of the fusion leading to Tni1 is supported by
cytogenetic studies showing its absence in Takifugu35. Third, the
modal value for the haploid number of chromosomes in teleosts is
24 (refs 36–38), consistent with a WGD of an ancestral genome
composed of 12 chromosomes.

The analysis also sheds light on genome evolution in the human
lineage, with the interleaving patterns on human chromosomes
delineating the mosaic of ancestral segments in the human genome
(Figs 6 and 10). The results are consistent with and extend several
known cases of rearrangements in the human lineage. The model
correctly shows the recent fusion of two primate chromosomes
leading to Hsa2 (ref. 39) occurring at the junction between two
ancestral segments (D2 and D3; Fig. 6) in 2q13.2-2q14.1. It shows
HsaXp and HsaXq to be of different origins (corresponding to
AncD and AncH, respectively), consistent with the fact that HsaXp
is known to be absent in non-placental mammals40. The map
indicates that most of HsaXq and Hsa5q were once part of the
same chromosome, but that the tip of HsaXq (Xq28) originates
from a different ancestral segment and is thus a later addition. Some
pairs of human chromosomes show similar or identical compo-
sitions, suggesting that they derived by fission from the same
ancestral chromosome, with examples being Hsa13–Hsa21 and
Hsa12–Hsa22; the latter case is consistent with cytogenetic studies
showing that a fission occurred in the primate lineage41.

The results show a major difference in the evolutionary forces
shaping the Tetraodon and the human genomes (Fig. 10). Whereas
11 Tetraodon chromosomes did not undergo interchromosomal
exchange over 450 Myr, only one human chromosome (Hsa14) was
similarly undisturbed. Hsa7 is an extreme case, with contributions
from six ancestral chromosomes. A possible explanation for the
difference may be the massive integration of transposable elements
in the human genome. The presence of transposable elements may
increase the overall frequency of chromosome breaks, as well as the
likelihood that a chromosome break fails to disrupt a gene (by
increasing the size of intergenic intervals). It will be interesting to
see whether teleosts that carry many more transposable elements
(such as zebrafish) show a higher frequency of interchromosomal
exchanges.

Conclusion
The purpose of sequencing the Tetraodon genome was to use
comparative analysis to illuminate the human genome in particular
and vertebrate genomes in general. The Tetraodon sequence, which
has been made freely available during the course of this project, has
already had a major impact on human gene annotation. It has
provided the first clear evidence of a sharply lower human gene
count6 and has been used in the annotation of several human
chromosomes42–45. Here, we show that it suggests an additional
,900 predicted genes in the human genome. Given its compact size,
the Tetraodon genome will probably also prove valuable in identify-
ing key conserved regulatory features in intergenic and intronic
regions.

In addition, the Tetraodon genome provides fundamental insight
into genome evolution in the vertebrate lineage. First, the analysis
here shows that Tetraodon is the descendant of an ancient WGD
that most probably affected all teleosts. Together with the recent
demonstration of an ancient WGD in the yeast lineage, this suggests
that WGD followed by massive gene loss may be an extremely
important mechanism for eukaryote genome evolution—perhaps
because it allows for the neofunctionalization of entire pathways
rather than simply individual genes. There remains a fierce debate
about whether one or more earlier WGD events occurred in early
vertebrate evolution25,46–50, with no direct and conclusive evidence
found so far51,52. The examples of yeast and Tetraodon show that
ultimate proof will probably best come from the sequence of a
related non-duplicated species. An obvious candidate is amphioxus,
as its non-duplicated status is supported by the presence of
many single-copy genes (including one HOX cluster53) instead of
two or more in vertebrates, and it is among our closest non-
vertebrate relatives based on anatomical and evolutionary
observations.

Second, the remarkable preservation of the Tetraodon genome
after WGD makes it possible to infer the history of vertebrate
chromosome evolution. The model suggests that the ancestral
vertebrate genome was comprised of 12 chromosomes, was com-
pact, and contained not significantly fewer genes than modern
vertebrates (inasmuch as the WGD and subsequent massive gene
loss resulted in only a tiny fraction of duplicate genes being
retained). The explosion of transposable elements in the mamma-
lian lineage, subsequent to divergence from the teleost lineage, may
have provided the conditions for increased interchromosomal
rearrangements in mammals; in contrast, the Tetraodon genome
underwent much less interchromosomal rearrangement.

With the availability of additional vertebrate genomes (dog,
marsupial, chicken, medaka, zebrafish and frog are underway), it
will be possible to explore intermediate nodes such as the last
common ancestor of amniotes, of sarcopterygians and of actinop-
terygians, and to gain an increasingly clearer picture of the early
vertebrate ancestor. Because the early vertebrate genome is ‘closer’
to current invertebrates, this should in turn facilitate comparison
between vertebrate and invertebrate evolution. A
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Methods
Sequencing, assembly and data access
Sequencing was performed as described previously for Genoscope54 and the Broad
Institute1,2. Approximately 4.2 million plasmid reads were cloned and sequenced from
DNA extracted from two wild Tetraodon fish and passed extensive checks for quality
and source, representing approximately 8.3-fold sequence coverage of the Tetraodon
genome. To alleviate problems due to polymorphism, the assembly proceeded in four
stages: (1) reads from a single fish were assembled by Arachne as described
previously10,11; (2) reads from the second individual were added to increase sequencing
depth; (3) scaffolds were constructed using plasmid and BAC paired reads; and (4)
contigs from a separate assembly combining both individuals were added if they did not
overlap with the first assembly. The final assembly can be downloaded from the EMBL/
GenBank/DDBJ databases under accession number CAAE01000000. Full-length
Tetraodon cDNAs have been submitted under accession numbers CR631133–CR735083.
Ultracontigs organized in chromosomes are available from http://www.genoscope.org/
tetraodon. This site also contains an annotation browser and further information on
the project.

Gene annotation
Protein-coding genes were predicted by combining three types of information: alignments
with proteins and genomic DNA from other species, Tetraodon cDNAs, and ab initio
models. All alignments with genomic DNA from human and mouse were performed with
Exofish as described previously6, whereas a new Exofish method was developed to align
Takifugu genomic DNA. Proteins predicted from human and mouse were also matched
using Exofish and a selected subset was then aligned using Genewise. The integration of
these data sources was performed with GAZE14. A specific GAZE automaton was designed,
and parameters were adjusted on a training set of 184 manually annotated Tetraodon
genes. See Supplementary Information for details.

Evolution of coding and non-coding DNA
To identify orthologous genes between human, mouse, Tetraodon, Takifugu and Ciona,
their predicted proteomes were compared using the Smith–Waterman algorithm and
reciprocal best matches were considered as orthologous genes between two species.
However, only those genes that were reciprocal best matches between four or five species,
and only sites that were aligned between the four or five genes, were further considered to
compute the percentage identity, Ka, K s and fourfold degenerate sites by the PBL
method applying Kimura’s two-parameter model55–57. See Supplementary Information for
details.

Genome duplication
A core set of Tetraodon duplicated genes was identified by an all-against-all comparison
of Tetraodon predicted protein using Exofish. Only proteins that matched a single other
protein by reciprocal best match were considered further and realigned by the Smith–
Waterman algorithm to compute Ka and K s values. Duplicates with a K s . 0.35 (the
amount of neutral substitution since the Tetraodon–Takifugu divergence) were
considered ‘ancient’ and used to calculate P-values for chromosome pairing
(Supplementary Table SI12). Rules for classifying alternating patterns of syntenic
groups along human chromosomes in DCS blocks included the following criteria:
number of genes in syntenic groups, number of syntenic groups in the DCS region,
number of Tetraodon chromosomes that alternate, and number of times the same
combination of Tetraodon chromosomes occur in the human genome. See
Supplementary Information for details.

Ancestral genome reconstruction
One category of DCS with the following definition encompassed most orthologues:
“alternating series of i syntenic groups that belong to two (i . ¼ 2) or three (i . ¼ 3)
Tetraodon chromosomes. The series may only be interrupted by groups from categories
‘unassigned singletons’ or ‘background singletons’. A given combination of two or three
Tetraodon chromosomes must appear at least twice in the human genome”. These DCS
blocks showed 12 recurring combinations of Tetraodon chromosomes, and were thus
further classified in 12 groups labelled A to L. Each of the 12 groups, consisting of at least
two DCS blocks with the same combination of alternating Tetraodon chromosomes,
represents a proto-chromosome from the ancestral bony vertebrate (Osteichthyes). A
model was then designed to account for the possible fates of chromosomes after
duplication of the ancestral genome in the teleost lineage (Fig. 8). The model only deals
with orthologous gene distribution between two genomes. It is simply based on the
postulate that interchromosomal shuffling of genes within a genome increases with time,
which is a measure to distinguish between ancient and recent events (for example,
chromosome fusions or fissions). The two-dimensional distribution of 7,903 Tetraodon–
human orthologues (Oxford Grid, Supplementary Fig. S12) was then confronted to the
model and all 21 Tetraodon chromosomes could be grouped in pairs or triplets and
assigned to a given type of event. See Supplementary Information for details.
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Zebulon of the NeSL clade. Rex3 elements are widely spread in fish genomes27. We found

nearly complete (but corrupted) copies of Rex3 and Babar in the Tetraodon genome, on the

insert of fully sequenced BAC clones (C. Fischer, unpublished results). The Maui element,

which is by far the most abundant retrotransposon of the Takifugu genome (and in which full-

length copies are present), is far less abundant in the Tetraodon genome. Other distribution

discrepancies between both pufferfish genomes can be seen with the I element, which is

present only as fossils in Takifugu, while it is still moderately abundant in Tetraodon. Similar

discrepancies in the abundance of transposons between these two genomes as well as among

families (for instance, the TC1 family of Tetraodon), can also be observed.

5. Tetraodon Gene Annotation

5.1 Repeat Masking

Most of the genome comparisons were performed with repeat masked sequences. For this

purpose, we searched and masked sequentially several kinds of repeats using BLASTN and

TBLASTX:

• Microsatellites and known Tetraodon centromeric and subtelocentric satellite repeats

• Tetraodon specific transposable elements and rRNA sequences.

• Other eukaryotic known repeats and transposons available in Repbase.

• Tandem repeats with the TRF program40.

5.2 Exofish between mammal genomes and Tetraodon

All Exofish comparisons between mouse or human and Tetraodon or Takifugu were

performed using TBLASTX and filtering parameters described previously41. Computations

were performed at the CINES (Centre Informatique National de l’Enseignement Supérieur) on

a 768 CPU SGI ORIGIN 3800 computer, with the Biofacet software package from Gene-IT

(www.gene-it.com).

5.3 Exofish between the Takifugu genome and Tetraodon

Compared to the Exofish version designed to detect ecores between mammals and fish,

the much shorter evolutionary time that has elapsed since the divergence of the two pufferfish
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imposed more severe alignment constraints, and required an additional filter in the form of

Genscan42 and GeneID43 predictions. Both ab initio tools were trained on a set of manually

annotated Tetraodon genes, and only alignments at least 60 bp long that overlapped a predicted

exon from either program were considered valid. Calibrations were performed on two sets of

Tetraodon gene. First, a set of 507 reference Tetraodon genes built using Genewise with

human protein sequences, in which both the fish and the mammal genes have the same number

of exons. The assumption is that this set of well conserved genes represents a stringent

selection template to identify Takifugu alignments that must not occur in introns. The second

set of reference genes comes from finished BAC sequences produced at Genoscope and

elsewhere, in which 178 gene structures could be identified by human expertise using cDNAs

sequences and comparisons with proteins from other species.

Comparisons between the Tetraodon  and Takifugu genome assemblies using

TBLASTN were much faster than between fish and mammals, and were computed on a cluster

of 40 CPU alpha EV6.8 at Genoscope.

5.4 Genewise

       In addition to gene structures provided by ecotigs, human and mouse proteins mapped to a

given locus on the Tetraodon genome with Exofish were aligned using Genewise with default

parameters44. In cases where several proteins from a given mammalian species overlapped on

the Tetraodon assembly, the candidate with the longest span over the locus was chosen for a

Genewise alignment.

5.5 cDNAs

An important resource for Tetraodon gene annotation came from cDNA sequences.

They provide a high confidence evidence for the identification of protein coding genes, refine

gene structures based on similar genes in other species and enable the detection of genes that

evolve too fast for methods based on conservation during evolution.

We sequenced 286,955 cDNA clone ends corresponding to 155,067 clones from 7

libraries constructed from brain, muscle, liver, kidney, eye, ovaries and whole fish RNA

preparations.

RNAs were extracted with the TRI REAGENT kit (Sigma) and polyA+ mRNAs were

purified using a Quiagen Kit (Quiagen). Depending on the tissue, between 11 (muscle and

liver) and 32 (kidneys and brain) fish were required to obtain sufficient material, i.e. between
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50 and 500 µg of polyA+ mRNA, except for the whole fish where a single individual was

sufficient.

Thirteen full-length cDNA libraries were constructed according to the method of Oligo-

Capping as described by Maruyana and Sugano45. The Oligo-Capping method includes three

enzymatic reaction steps. First, BAP (Bacterial alcaline phosphatase, Takara, 1.2U) hydrolyses

the phosphate of truncated mRNA 5' ends whose cap structures have been truncated. Then, the

tobacco acid pyrophosphatase (TAP, TEBU, 40 U) removes the cap structure leaving a free

phosphate at the 5' end of complete mRNAs. Third, the T4 RNA ligase (Takara, 250U), which

requires a phosphate at the 5'end as its substrate, selectively ligates 5' r-oligos which contains a

SfiI site only to the 5' ends that originally had the cap structure. Using Oligo-capped mRNA,

first-strand cDNA was synthetised with dT adapter primers by RNaseH reverse transcriptase

(SuperScriptII RNase H Reverse Transcriptase, Invitrogen, 400 U). Finally, after alkaline

degradation of the RNA, first-strand cDNAs were amplified by PCR (20 cycles at 94°C for

1min, 56°C for 1 min, 72°C for 10 min) using the LA Taq (Kit Takara, 10 U), and digested

with restriction enzyme SfiI.

For cloning, inserts were ligated in a plasmid vector (pME18S-FL3; Maruyama and

Sugano, accession AB009864) using the DNA Ligation kit Ver.1. (Takara). Ligations were

electroporated in E.coli DH10B cells and plated on LB agar with ampicilin. After overnight

growth, single colonies were robotically picked in 384 microtitre plates and frozen at -80°C.

DNA extractions and sequencing was performed as previously described4.

We did not perform quality checks on the cDNAs reads for two reasons. First,

corrupted cDNA sequence reads (e.g. continuous run of a mononucleotide) may score high

Phred values and second, we postulated that aligning cDNAs sequences to the assembled

genomic DNA would select the useful reads from those that are of too low quality. To align the

cDNAs we used BLAST against the microsatellite masked assembly with the following

parameters: W=20, X=8, match=5, mismatch=-4. The scores of all High Scoring Pairs (HSPs)

are then summed in each genomic interval where the cDNA end sequence matches, and the

interval with the highest score is selected if it scores above 1,000. In cases where two intervals

have equal scores, both are selected.  The interval corresponding to the 5’ and the 3’ sequences

of the same clone were then fused if they lied on the same scaffold and if they were separated

by less than 30 kb. Only 91% of the 286,955 sequences could be aligned in this way. Those

that did not match represent vector only clones (4%) and low quality sequences or genes absent

from the assembly (5%). To estimate the fraction of cDNAs really missing from the assembly,
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we aligned the 24,758 cDNA sequences that did not match Tetraodon, to the Takifugu

assembly, and obtained only 650 positive hits corresponding to 136 clusters. Since it is

unlikely that large unsequenced regions of both pufferfish genomes overlap extensively except

in gene poor heterochromatin, we conclude that the vast majority of cDNA sequences that did

not align to the Tetraodon assembly are low quality reads or contaminations. To create gene

models, 5’ and 3’ cDNA sequences where first assembled by Phrap when possible (99,204

pairs), and aligned using EST_GENOME46 to the genomic interval identified by BLAST that

was first extended by 5 kb on each side. Parameters for EST_GENOME were: mismatch=2 and

penalty=3.  We obtained 147,835 gene models and from those, we eliminated 13,481 models

that were considered unreliable: unspliced models and models overlapping on the forward and

reverse strand. The remaining 134,354 models were individually provided to GAZE47, and they

represent 12,154 clusters on the assembly.

5.6 Geneid and Genscan

Geneid48and Genscan49 ab inito gene prediction software were trained on 184

Tetraodon genes that had been annotated and reviewed in finished sequenced by human

experts. We then identified the same genes in the genome assembly and reconstituted one long

sequence from the 184 genes in draft sequence. The performance50 of GeneID and Genscan on

this sequence were respectively 46% and 41% for specificity, and respectively 59% and 49%

for sensitivity.

5.7 Integration of resources using GAZE

All the resources described here were used to automatically build Tetraodon gene

models using GAZE47. Individual predictions from each of the programs (GeneID, Genscan,

Exofish, Genewise, EST_GENOME) were broken down into segments (coding, intron,

intergenic) and signals (start codon, stop codon, splice acceptor, splice donor, transcript start,

transcript stop). Segments and signals were extracted from Genewise and EST_GENOME

alignments. Because geneid and Genscan exons are not specific, we only considered their

signals (splice donor, splice acceptor, etc.) but did not use their exons as “coding segments”.

Ecores and ecotigs do not predict exon boundaries so they were only used to generate “coding

segments” but no signals (Fig. S6B). Each segment or signal from a given program was given a

value reflecting our confidence in the data, and these values were used as scores for the arcs of

the GAZE automaton (Fig. S6A). All signals from a given source were given a fixed score, but
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segment scores were context sensitive: coding segment scores were linked to the percentage

identity (%ID) of the alignment; intronic segment scores were linked to the %ID of the

flanking exons; the intergenic segment score was linked to the score of the flanking ecotigs.

All scores were then homogenised on scale from 1 to 100. Finally, the impact of each data

source (Exofish, geneid, etc.) was evaluated on a reference Tetraodon sequence containing 184

genes individually annotated by human experts, and a weight was assigned to each resource to

further reflect its reliability and accuracy in predicting gene models. This weight acts as a

multiplicator for the score of each information source, before processing by GAZE. On the

reference sequence, the final selection of coding segments, signals, associated scores and

weights, once processed by GAZE, generates models with 72% sensitivity and 74% specificity

in exons.

When applied to the entire assembled sequence, GAZE predicts 34,355 gene models.

We used a filter to reject most obvious artefacts (CDS with a single amino acid for instance).

Criteria for rejections were: 1,210 models with a CDS smaller than 75 bp; 2,997 models with

more than 50% of their exons with a GAZE score below 0 (i.e. exon only supported by ab

initio methods); 1,000 models with an overall GAZE score below 1,000.

6. Analysis of specific gene families

6.1 Class I cytokines and their receptors

      The sequences from the known class I helical cytokines (HC) and their receptors (HCR)

from vertebrates were used to search both the Tetraodon predicted peptides and the translated

assembly sequence. Matching Tetraodon sequences could be classified in three categories:

1) Protein sequences clearly belonging to the HC or HCR families

2) Already identified proteins not belonging to HC or HCR familes

3) Sequences that do not clearly belong to either category 1 or 2.

      Genes models were built around initial sequence alignments from categories 1 and 3 and

compared to canonical gene structures coding for helical cytokines (phase 0 introns) or for the

D200 domain of their receptors (phase1,2,1,0,1 introns). Using this strategy, 9 genes

potentially coding for class I helical cytokines were identified and 30 potentially coding for

their receptors. For each gene, the most robust putative exons were chosen to design

oligonucleotides that could be used for Q-RT-PCR to test for their expression and look for

tissues with the highest expression. For each gene, RNAs from the tissue showing the highest
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Table S5. Summary of evidence (signals) used to annotate the Tetraodon genome

Features transcript_start transcript_stop start stop splice3 splice5

Number of features available 7,068 5,651 27,918 27,918 168,966 168,966

Real number of features used 5,425 5,644 25,412 17,830 168,966 168,966

available 42,110 37,161 526,700 n.a. 94,346 94,146

cDNAs
used 5,945

14%
5,976
16%

5,126
(<1%)

n.a. 70,182
(75%)

70,358
(75%)

available n.a. n.a. 21,692 21,692 142,210 142,210
Genewise

with human
IPI

used n.a. n.a. 13,691
(63%)

14,908
(69%)

121,649
(85%)

122,319
(86%)

available n.a. n.a. 21,567 21,567 132,799 132,799
Genewise

with mouse
IPI

used n.a. n.a. 8,650
(40%)

10,271
(48%)

109,309
(82%)

110,384
(83%)

available n.a. n.a. 18,972 20,086 180,262 179,148

Genscan
used n.a. n.a. 7,557

(40%)
3,500
(17%)

111,306
(62%)

112,709
(63%)

available n.a. n.a. 17,893 19,791 169,029 167,131

GeneID
used n.a. n.a. 7,176

(40%)
3,265
(16%)

103,365
(61%)

103,376
(62%)

cDNAs 5,425 5,644 2,615 n.a. 7,309 7,458

Genewise with
human IPI

n.a. n.a. 4,715 4,461 5,487 4,928

Genewise with
mouse IPI

n.a. n.a. 22 30 0 0

Genscan
n.a. n.a. 2,921 948 9,912 9,792

Annotations
exclusively
supported

with the
resource

GeneID
n.a. n.a. 2,590 746 7,204 7,343
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Initial sequencing and comparative analysis of the mouse
genome

Mouse Genome Sequencing Consortium (including G. Parra and R. Guigó).
Nature 420(6915):520-562 (2002).

The mouse genome was the second mammalian genome sequenced, and it was a re-
ally genomic breakthrough as it provides the key to discover the secrets of our own DNA.
It allows for the first time the complete comparative analysis of two mammalian geno-
mes. In addition, the mouse genome encodes an experimentally tractable organism. This
means that it is now possible to determine the function of each and every component gene
by experimental manipulation and evaluation, in the context of the whole organism.

The two genomes, are remarkably similar: 99% of mouse genes seem to have a direct
human counterpart. On the other hand, only about 40% of the complete genomic se-
quence can be aligned. Therefore, it means that most of the divergences between human
and mouse seem to occur in the non-coding DNA regions.

Our contribution to this work was basically in the De novo gene prediction section,
pages 539-540. This section give some insights of the number of missed genes in the first
conservative mouse annotations. De novo, refers to the fact that the analyzed gene pre-
dictions are only based in comparative genomic methods, without using any homology
based on proteins or expression evidences databases. Therefore, these predictions are
supposed to be genes without a strong homology to any known protein.

The section analyzes the results of sgp2 and twinscan emphasizing the similarities
and differences against the ENSEMBL automatic annotation pipeline. Most of the com-
ments and results are derived from the paper presented in chapter 6. Therefore, my main
contribution was to filter sgp2 and twinscan predictions and to obtain the correspond-
ing statistics of the overlapping ratios against ENSEMBL.

Due to the length of the corresponding paper (42 pages), it what follows its only repro-
duced the first page of the paper and the two pages corresponding De novo gene prediction
section, where the gene comparative prediction result are discussed.





Initial sequencing and comparative
analysis of the mouse genome
Mouse Genome Sequencing Consortium*

*A list of authors and their affiliations appears at the end of the paper

...........................................................................................................................................................................................................................

The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key
experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality
draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes,
describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the
evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most
of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the
genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and
immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

With the complete sequence of the human genome nearly in hand1,2,
the next challenge is to extract the extraordinary trove of infor-
mation encoded within its roughly 3 billion nucleotides. This
information includes the blueprints for all RNAs and proteins,
the regulatory elements that ensure proper expression of all genes,
the structural elements that govern chromosome function, and the
records of our evolutionary history. Some of these features can be
recognized easily in the human sequence, but many are subtle and
difficult to discern. One of the most powerful general approaches
for unlocking the secrets of the human genome is comparative
genomics, and one of the most powerful starting points for
comparison is the laboratory mouse, Mus musculus.

Metaphorically, comparative genomics allows one to read evolu-
tion’s laboratory notebook. In the roughly 75 million years since the
divergence of the human and mouse lineages, the process of
evolution has altered their genome sequences and caused them to
diverge by nearly one substitution for every two nucleotides (see
below) as well as by deletion and insertion. The divergence rate is
low enough that one can still align orthologous sequences, but high
enough so that one can recognize many functionally important
elements by their greater degree of conservation. Studies of small
genomic regions have demonstrated the power of such cross-species
conservation to identify putative genes or regulatory elements3–12.
Genome-wide analysis of sequence conservation holds the prospect
of systematically revealing such information for all genes. Genome-
wide comparisons among organisms can also highlight key differ-
ences in the forces shaping their genomes, including differences in
mutational and selective pressures13,14.

Literally, comparative genomics allows one to link laboratory
notebooks of clinical and basic researchers. With knowledge of both
genomes, biomedical studies of human genes can be complemented
by experimental manipulations of corresponding mouse genes to
accelerate functional understanding. In this respect, the mouse is
unsurpassed as a model system for probing mammalian biology and
human disease15,16. Its unique advantages include a century of
genetic studies, scores of inbred strains, hundreds of spontaneous
mutations, practical techniques for random mutagenesis, and,
importantly, directed engineering of the genome through trans-
genic, knockout and knockin techniques17–22.

For these and other reasons, the Human Genome Project (HGP)
recognized from its outset that the sequencing of the human
genome needed to be followed as rapidly as possible by the
sequencing of the mouse genome. In early 2001, the International
Human Genome Sequencing Consortium reported a draft sequence

covering about 90% of the euchromatic human genome, with about
35% in finished form1. Since then, progress towards a complete
human sequence has proceeded swiftly, with approximately 98% of
the genome now available in draft form and about 95% in finished
form.

Here, we report the results of an international collaboration
involving centres in the United States and the United Kingdom to
produce a high-quality draft sequence of the mouse genome and a
broad scientific network to analyse the data. The draft sequence was
generated by assembling about sevenfold sequence coverage from
female mice of the C57BL/6J strain (referred to below as B6). The
assembly contains about 96% of the sequence of the euchromatic
genome (excluding chromosome Y) in sequence contigs linked
together into large units, usually larger than 50 megabases (Mb).

With the availability of a draft sequence of the mouse genome, we
have undertaken an initial comparative analysis to examine the
similarities and differences between the human and mouse gen-
omes. Some of the important points are listed below.

† The mouse genome is about 14% smaller than the human
genome (2.5 Gb compared with 2.9 Gb). The difference probably
reflects a higher rate of deletion in the mouse lineage.

†Over 90% of the mouse and human genomes can be partitioned
into corresponding regions of conserved synteny, reflecting seg-
ments in which the gene order in the most recent common ancestor
has been conserved in both species.

†At the nucleotide level, approximately 40% of the human genome
can be aligned to the mouse genome. These sequences seem to
represent most of the orthologous sequences that remain in both
lineages from the common ancestor, with the rest likely to have been
deleted in one or both genomes.

†The neutral substitution rate has been roughly half a nucleotide
substitution per site since the divergence of the species, with about
twice as many of these substitutions having occurred in the mouse
compared with the human lineage.

†By comparing the extent of genome-wide sequence conservation
to the neutral rate, the proportion of small (50–100 bp) segments in
the mammalian genome that is under (purifying) selection can be
estimated to be about 5%. This proportion is much higher than can
be explained by protein-coding sequences alone, implying that the
genome contains many additional features (such as untranslated
regions, regulatory elements, non-protein-coding genes, and chro-
mosomal structural elements) under selection for biological
function.

†The mammalian genome is evolving in a non-uniform manner,
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comes from a single collection of mouse cDNAs (the initial RIKEN
cDNAs41). These cDNAs are very short on average, with few exons
(median 2) and small ORFs (average length of 85 amino acids);
whereas some of these may be true genes, most seem unlikely to
reflect true protein-coding genes, although they may correspond to
RNA genes or other kinds of transcripts. Both groups were omitted
in the comparative analysis below.

Comparison of mouse and human gene sets
We then sought to assess the extent of correspondence between the
mouse and human gene sets. Approximately 99% of mouse genes
have a homologue in the human genome. For 96% the homologue
lies within a similar conserved syntenic interval in the human
genome. For 80% of mouse genes, the best match in the human
genome in turn has its best match against that same mouse gene in
the conserved syntenic interval. These latter cases probably rep-
resent genes that have descended from the same common ancestral
gene, termed here 1:1 orthologues.

Comprehensive identification of all orthologous gene relation-
ships, however, is challenging. If a single ancestral gene gives rise to a
gene family subsequent to the divergence of the species, the family
members in each species are all orthologous to the corresponding
gene or genes in the other species. Accordingly, orthology need not
be a 1:1 relationship and can sometimes be difficult to discern from
paralogy (see protein section below concerning lineage-specific
gene family expansion).

There was no homologous predicted gene in human for less than
1% (118) of the predicted genes in mouse. In all these cases, the
mouse gene prediction was supported by clear protein similarity in
other organisms, but a corresponding homologue was not found in
the human genome. The homologous genes may have been deleted
in the human genome for these few cases, or they could represent
the creation of new lineage-specific genes in the rodent lineage—this
seems unlikely, because they show protein similarity to genes in
other organisms. There are, however, several other possible reasons
why this small set of mouse genes lack a human homologue. The
gene predictions themselves or the evidence on which they are based
may be incorrect. Genes that seem to be mouse-specific may
correspond to human genes that are still missing owing to the
incompleteness of the available human genome sequence. Alterna-
tively, there may be true human homologues present in the available
sequence, but the genes could be evolving rapidly in one or both
lineages and thus be difficult to recognize. The answers should
become clear as the human genome sequence is completed and
other mammalian genomes are sequenced. In any case, the small
number of possible mouse-specific genes demonstrates that de novo
gene addition in the mouse lineage and gene deletion in the human
lineage have not significantly altered the gene repertoire.

Mammalian gene count
To re-estimate the number of mammalian protein-coding genes, we
studied the extent to which exons in the new set of mouse cDNAs
sequenced by RIKEN132 were already represented in the set of exons
contained in our initial mouse gene catalogue, which did not use
this set as evidence in gene prediction. This cDNA collection is a
much broader and deeper survey of mammalian cDNAs than
previously available, on the basis of sampling of diverse embryonic
and adult tissues150. If the RIKEN cDNAs are assumed to represent a
random sampling of mouse genes, the completeness of our exon
catalogue can be estimated from the overlap with the RIKEN
cDNAs. We recognize this assumption is not strictly valid but
nonetheless is a reasonable starting point.

The initial mouse gene catalogue of 191,290 predicted exons
included 79% of the exons revealed by the RIKEN set. This is an
upper bound of sensitivity as some RIKEN cDNAs are probably less
than full length and many tissues remain to be sampled. On the basis
of the fraction of mouse exons with human counterparts, the

percentage of true exons among all predicted exons or the specificity
of the initial mouse gene catalogue is estimated to be 93%. Together,
these estimates suggest a count of about 225,189 exons in protein-
coding genes in mouse (191,290 £ 0.93/0.79).

To estimate the number of genes in the genome, we used an exon-
level analysis because it is less sensitive to artefacts such as frag-
mentation and pseudogenes among the gene predictions. One can
estimate the number of genes by dividing the estimated number of
exons by a good estimate of the average number of exons per gene. A
typical mouse RefSeq transcript contains 8.3 coding exons per gene,
and alternative splicing adds a small number of exons per gene. The
estimated gene count would then be about 27,000 with 8.3 exons per
gene or about 25,000 with 9 exons per gene. If the sensitivity is only
70% (rather than 79%), the exon count rises to 254,142, yielding a
range of 28,000–30,500.

In the next section, we show that gene predictions that avoid
many of the biases of evidence-based gene prediction result in only a
modest increase in the predicted gene count (in the range of about
1,000 genes). Together, these estimates suggest that the mammalian
gene count may fall at the lower end of (or perhaps below) our
previous prediction of 30,000–40,000 based on the human draft
sequence1. Although small, single-exon genes may add further to the
count, the total seems unlikely to greatly exceed 30,000. This lower
estimate for the mammalian gene number is consistent with other
recent extrapolations141. However, there are important caveats. It is
possible that the genome contains many additional small, single-
exon genes expressed at relatively low levels. Such genes would be
hard to detect by our various techniques and would also decrease
the average number of exons per gene used in the analysis above.

De novo gene prediction
The gene predictions above have the strength of being based on
experimental evidence but the weakness of being unable to detect
new exons without support from known transcripts or homology to
known cDNAs or ESTs in some organism. In particular, genes that
are expressed at very low levels or that are evolving very rapidly are
less likely to be present in the catalogue (R. Guigó, unpublished
data).

Ideally, one would like to perform de novo gene prediction
directly from genomic sequence by recognizing statistical properties
of coding regions, splice sites, introns and other gene features.
Although this approach works relatively well for small genomes with
a high proportion of coding sequence, it has much lower specificity
when applied to mammalian genomes in which coding sequences
are sparser. Even the best de novo gene prediction programs (such as
GENSCAN145) predict many apparently false-positive exons.

In principle, de novo gene prediction can be improved by
analysing aligned sequences from two related genomes to increase
the signal-to-noise ratio135. Gene features (such as splice sites) that
are conserved in both species can be given special credence, and
partial gene models (such as pairs of adjacent exons) that fail to have
counterparts in both species can be filtered out. Together, these
techniques can increase sensitivity and specificity.

We developed three new computer programs for dual-genome
de novo gene prediction: TWINSCAN160,325, SGP2 (refs 161, 326)
and SLAM162. We describe here results from the first two programs.
The results of the SLAM analysis can be viewed at http://bio.math.
berkeley.edu/slam/mouse/. To predict genes in the mouse genome,
these two programs first find the highest-scoring local mouse–
human alignment (if any) in the human genome. They then search
for potential exonic features, modifying the probability scores for
the features according to the presence and quality of these human
alignments. We filtered the initial predictions of these programs,
retaining only multi-exon gene predictions for which there were
corresponding consecutive exons with an intron in an aligned
position in both species327.

After enrichment based on the presence of introns in aligned
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locations, TWINSCAN identified 145,734 exons as being part of
17,271 multi-exon genes. Most of the gene predictions (about 94%)
were present in the above evidence-based gene catalogue. Conver-
sely, about 78% of the predicted genes and about 81% of the exons
in this catalogue were at least partially represented by TWINSCAN
predictions. TWINSCAN predicted an extra 4,558 (3%) new exons
not predicted by the evidence-based methods. SGP2 produced
qualitatively similar results. The total number of predicted exons
was 168,492 contained in 18,056 multi-exon genes, with 86% of the
predicted genes in the evidence-based gene catalogue at least
partially represented. Approximately 83% of the exons in the
catalogue were detected by SGP2, which predicted an additional
9,808 (6%) new exons. There is considerable overlap between the
two sets of new predicted exons, with the TWINSCAN predictions
largely being a subset of the SGP2 predictions; the union of the two
sets contains 11,966 new exons.

We attempted to validate a sample of 214 of the new predictions
by performing PCR with reverse transcription (RT) between
consecutive exons using RNA from 12 adult mouse tissues163

and verifying resulting PCR products by direct DNA sequencing.
Our sampling involved selecting gene predictions without nearby
evidence-based predictions on the same strand and with an intron
of at least 1 kb. The validation rate was approximately 83% for
TWINSCAN and about 44% for SGP2 (which had about twice as
many new exons; see above). Extrapolating from these success rates,
we estimate that the entire collection would yield about 788
validated gene predictions that do not overlap with the evidence-
based catalogue.

The second step of filtering de novo gene predictions (by requiring
the presence of adjacent exons in both species) turns out to greatly
increase prediction specificity. Predicted genes that were removed
by this criterion had a very low validation rate. In a sample of 101
predictions that failed to meet the criteria, the validation rate was
11% for genes with strong homology to human sequence and 3%
for those without. The filtering process thus removed 24-fold more
apparent false positives than true positives. Extrapolating from
these results, testing the entire set of such predicted genes (that is,
those that fail the test of having adjacent homologous exons in the
two species) would be expected to yield only about 231 additional
validated predictions.

Overall, we expect that about 1,000 (788þ231) of the new gene
predictions would be validated by RT–PCR. This probably corre-
sponds to a smaller number of actual new genes, because some of
these may belong to the same transcription unit as an adjacent de
novo or evidence-based prediction. Conversely, some true genes
may fail to have been detected by RT–PCR owing to lack of
sensitivity or tissue, or developmental stage selection327.

An example of a new gene prediction, validated by RT–PCR, is a
homologue of dystrophin (Fig. 16). Dystrophin is encoded by the

DMD gene, which is mutated in individuals with Duchenne
muscular dystrophy164. A gene prediction was found on mouse
chromosome 1 and human chromosome 2, showing 38% amino
acid identity over 36% of the dystrophin protein (the carboxy
terminal portion, which interacts with the transmembrane protein
b-dystroglycan). Other new gene predictions include homologues
of aquaporin. These gene predictions were missed by the evidence-
based methods because they were below various thresholds. These
and other examples are described in a companion paper327.

The overall results of the de novo gene prediction are encouraging
in two respects. First, the results show that de novo gene prediction
on the basis of two genome sequences can identify (at least partly)
most predicted genes in the current mammalian gene catalogues
with remarkably high specificity and without any information
about cDNAs, ESTs or protein homologies from other organisms.
It can also identify some additional genes not detected in the
evidence-based analysis. Second, the results suggest that methods
that avoid some of the inherent biases of evidence-based gene
prediction do not identify more than a few thousand additional
predicted exons or genes. These results are thus consistent with an
estimate in the vicinity of 30,000 genes, subject to the uncertainties
noted above.

RNA genes
The genome also encodes many RNAs that do not encode proteins,
including abundant RNAs involved in mRNA processing and
translation (such as ribosomal RNAs and tRNAs), and more
recently discovered RNAs involved in the regulation of gene
expression and other functions (such as micro RNAs)165,166. There
are probably many new RNAs not yet discovered, but their com-
putational identification has been difficult because they contain few
hallmarks. Genomic comparisons have the potential to significantly
increase the power of such predictions by using conservation to
reveal relatively weak signals, such as those arising from RNA
secondary structure167. We illustrate this by showing how compara-
tive genomics can improve the recognition of even an extremely well
understood gene family, the tRNA genes.

In our initial analysis of the human genome1, the program
tRNAscan-SE168 predicted 518 tRNA genes and 118 pseudogenes.
A small number (about 25 of the total) were filtered out by the
RepeatMasker program as being fossils of the MIR transposon, a
long-dead SINE element that was derived from a tRNA169,170.

The analysis of the mouse genome is much more challenging
because the mouse contains an active SINE (B2) that is derived from
a tRNA and thus vastly complicates the task of identifying true
tRNA genes. The tRNAscan-SE program predicted 2,764 tRNA
genes and 22,314 pseudogenes in mouse, but the RepeatMasker
program classified 2,266 of the ‘genes’ and 22,136 of the ‘pseudo-
genes’ as SINEs. After eliminating these, the remaining set con-
tained 498 putative tRNA genes. Close analysis of this set suggested
that it was still contaminated with a substantial number of pseudo-
genes. Specifically, 19 of the putative tRNA genes violated the
wobble rules that specify that only 45 distinct anticodons are
expected to decode the 61 standard sense codons, plus a seleno-
cysteine tRNA species complementary to the UGA stop codon171. In
contrast, the initial analysis of the human genome identified only
three putative tRNA genes that violated the wobble rules172,173.

To improve discrimination of functional tRNA genes, we
exploited comparative genomic analysis of mouse and human.
True functional tRNA genes would be expected to be highly
conserved. Indeed, the 498 putative mouse tRNA genes differ on
average by less than 5% (four differences in about 75 bp) from their
nearest human match, and nearly half are identical. In contrast,
non-genic tRNA-related sequences (those labelled as pseudogenes
by tRNAscan-SE or as SINEs by RepeatMasker) differ by an average
of 38% and none is within 5% divergence. Notably, the 19 suspect
predictions that violate the wobble rules show an average of 26%

Figure 16 Structure of a new homologue of dystrophin as predicted on mouse

chromosome 1 and human chromosome 2. Mouse and human gene structures are shown

in blue on the chromosomes (pink). The mouse intron marked with an asterisk was verified

by RT–PCR from primers complementary to the flanking exons followed by direct product

sequencing327. Regions of high-scoring alignment to the entire other genome (computed

before gene predictions and identification of predicted orthologues) are shown in yellow.

Note the weak correspondence between predicted exons and blocks of high-scoring

whole-genome alignment. Nonetheless, the predicted proteins considered in isolation

show good alignment across several splice sites.
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