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Data Integration with XML and Semantic Web Technologies
AbstractAccessing data from multiple heterogeneous databases entails dealing with di�er-ent data models, di�erent schemas and di�erent query languages and interfaces. This thesiscan be divided in two main parts, both related to di�erent aspects of the design of moderndata integration systems. The �rst part is related to the problem of dealing with hetero-geneous data models and schemas. It is also divided in two di�erent sub-parts. The �rstone is focused in the semantic integration between XML and RDF (the Resource Descrip-tion Framework). We suggest a strategy based on the mapping of the XML model to RDFtriples. Translating XML documents to RDF permits taking pro�t from the powerful toolsof Description Logics allowing XML documents interoperate at the semantic level. Thismapping has generated some interesting results, like a schema-aware and ontology-awareXPath processor that can be used for schema semantic integration or even for implicit querytranscoding among di�erent data models. The approach have been tested in the DigitalRights Management (DRM) domain, where some organizations are involved in standardiza-tion or adoption of rights expression languages (REL).In the second sub-part we suggest a vector space model for semantic similaritymeasurement and OWL ontologies alignment. A rigorous, e�cient and scalable similaritymeasure is a pre-requisite of any ontology matching system. The presented model is basedon a matrix representation of nodes from an RDF labelled directed graph. A concept isdescribed with respect to how it relates to other concepts using n-dimensional vectors, beingn the number of selected common predicates. We have successfully tested the model withthe public testcases of the Ontology Alignment Evaluation Initiative 2005.The second part of the work is related to the problem of dealing with heterogeneousquery interfaces. We suggest a strategy that allows redistributing an expressive user query(expressed in a XML-based data query language) over a set of autonomous and heterogeneousdatabases accessed through web forms. The idea, that has recently been renamed by ThomasKabisch [81] as "Query Tunneling", consists on the reprocessing of the initial user queryover the results returned by the di�erent sources, that must be a superset of the resultsthat satisfy the initial query. We describe in this document the strategy and its limitations,and an implementation in the form of two Java APIs, the Java Simple API for Metasearch(JSAM), that has been used in the development of a spanish news metasearch engine, andthe Java Simple API for Web Information Integration (SAWII), that o�ers high level toolsto the development of articulated wrappers for complex web form-chains and result pages.
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Chapter 1
Introduction

This introductory chapter serves to three purposes. In one hand to de�ne the scopeof the work that is addressed by this document. In the other hand to facilitate the readingof the document by giving and overview of its structure. Finally, but the most important,to provide the necessary elements to enclose the work in the framework of a PhD thesis.
1.1 About this thesisThis document describes research work being done under the framework of the Dis-tributed Multimedia Applications Group (DMAG), and also in the context of the Doctoratein Computer Science and Digital Communication of the Department of Technology of theUniversitat Pompeu Fabra. The work focuses on the di�erent aspects related to the designof modern data integration systems in the context of the World Wide Web, combining anexploratory stage with others focused on the design of new strategies and models and thedevelopment of speci�c tools. The main scope of the work is the data integration problem,within the databases research discipline, but that also falls between other well-known disci-plines. On one hand Information Retrieval, since in most cases the purpose of storing andaccessing data and metadata is not the metadata themselves but the support to informationsearch and retrieval processes. On the other hand the Web discipline, and specially theSemantic Web Initiative, a promising and relatively new research line where metadata hasa central role. Among all these sources I've tried to choose the elements that de�ne thecontext of this work, and the weaknesses and opportunities that justify the work itself.
1.2 Aims and HypothesisThe general goal of this research project is to study solutions to the new problemsarisen with respect to the querying of distributed and heterogeneous sources of data andmetadata. This goal can be seen as a reformulation of some topics faced by the data inte-gration community, but now arisen again as databases become open and accessible throughthe Web, storing data and metadata in old and new formats that can be the basis of betterways of searching and retrieving digital contents. Within this ambitious and broad aim, thework has focused in two related but independent aspects, semantic integration and query
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2 Chapter 1: Introduction
interoperability. Within the semantic integration problem, we face the XML-RDF integra-tion from a novel approach, and also the ontology alignment problem. Within the queryinteroperability problem, we face the querying of restricted and heterogeneous web-baseddatabase interfaces with XML technologies.A more tangible sub-goal of the work is the development of tools (in the form ofAPIs) to test the models and strategies suggested. For the �rst part, related to semanticintegration, the implementation of a Semantic XPath processor and its usage in the DigitalRights Management (DRM) domain will demonstrate the interest of our novel way to mapXML and RDF. Related to ontology alignment, the implementation of our novel structuresimilarity measure and its results against the Ontology Evaluation Initiative 2005 testsuitewill demonstrate the relevance of our approach. For the second part, related to queryinteroperability, two Java APIs - the Java Simple API for Metasearch (JSAM) and theJava Simple API for Web Information Integration (SAWII) - integrated inside an advancedspanish news metasearch engine will serve to prove the advantage of the Query Tunnelingtechnique.All the work is sustained over the presumption that the traditional data integrationstrategies still don't take pro�t from the potential of the new uses of metadata on the Weband some of its new directly or indirectly related technologies, like XML [151], XML Query[154], RDF [124] or OWL [112]. The success of standard syntaxes for metadata (XML andRDF), the dissemination of metadata related to multimedia contents (e.g. MPEG-7 [101]) orto the more broad framework of the Semantic Web, open new opportunities and challengesfor distributed data retrieval and data integration.For a more detailed description of the goals of the thesis please refer to the ProblemStatement chapter.
1.3 Methodology

In order to avoid replication of work, and also to achieve the necessary background,the exploratory and analytical stage of the thesis has implied the identi�cation and readingof relevant materials from a lot of di�erent sources. Because the work falls between di�erentresearch disciplines, that sometimes have di�erent approaches to the same problems, I havetried to identify the most authoritative sources of each �eld.
1.3.1 Related to the �rst contribution part 'Heterogeneous Data Modelsand Schemas: Semantic Integration'I acquired background of issues related to semantic integration in the works ofA. Y. Halevy [54] et al. (the Piazza Infrastructure), I. Cruz et al. [65], B. Amann etal. [5], M.C.A.Klein, L.V.Lakshmanan and F.Sadri [87], P.F.Patel-Schneider and J.Simeon[117]. However, the spark that inspired the contribution of the �rst sub-part (XML-RDFintegration) came from the reading of a relatively old work of Yoshikawa et al. [97] thatdi�erentiated between approaches that map the structure of some XML schema to a setof relational tables and works that map the XML model to a general relational schemarespectively. I've also found a previous work from Lehti and Fankhauser [91] that also
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pursues the target to achieve a semantic behaviour for XPath/XQuery. For the formalisationof the XML/RDF Syntax with description logics I've borrowed abundant material from IanHorrocks and Ulrike Sattler, like [62], [60], [59], [63] and [61]. During the development of theinference-based XPath processor I've used the Jaxen Universal Java XPath Engine [75] forparsing XPath 2.0 expressions and the Jena API [76] and its OWL inference engine [77] forprocessing the queries. Among the di�ernt RDF query languages (rdfDB [125], SquishQL[139], RDQL [127], or the recent SPARQL [138]) I've chosen RDQL for its maturity andbecause it's supported by the Jena API. This stage has entailed also frequent visits to someunfriendly W3C speci�cations like the XML Information Set [68], the XML Path Language(XPath) 2.0 [69], XQuery 1.0 [154], XQuery 1.0 and XPath 2.0 Data Model [152], XQuery 1.0and XPath 2.0 Formal Semantics [153], RDF/XML Syntax Speci�cation [147], OWL WebOntology Language Overview [112] and XSL Transformations (XSLT) Version 2.0 [155].For the second sub-part (a vector space model for sematic similarity calculation),I've found a good survey on schema alignment from Erhard Rahm and Philip A. Bernstein[122], and a more recent survey on ontology alignment from Natalya F. Noy [106]. I've alsoread abundant material about semantic similarity, like the old works of Philip Resnik [129],Dekang Lin [94] or J.J. Jiang and D.W. Conrath [79]; and also more recent ones like thoseof Francisco Azuaje and Olivier Bodenreider [8] or M. Bisson [19] among others. Here thekey work where I've found inspiration has been the paper of Wei Hu et al. [64] from whoI've also received personal support and patient clari�cations. The graph matching algorithmthat I have used comes from the work of Vincent D. Blondel et al. [20].
1.3.2 Related to the second contribution part 'Heterogeneous Query In-terfaces: Query Tunneling'For general concepts on the Information Retrieval area I've borrowed a lot of mate-rial from the work of Ricardo Baeza [9] and some of the references he uses. For more speci�caspects on Web search, I've studied the works of Kobayashi and Takeda [85], Lawrence andGiles [88], Brin and Page [23][113] and others. It has been di�cult to �nd rigurous researchworks about metasearch, because is a popular topic among independent and sometimesvolunteer-based communities, but I've found a good basis on the works of Dreilinger [33]and Selberg and Etzioni [135], among others.For the study about the Semantic Web I've read materials by the people whoare behind this initiative, like Tim Berners-Lee [11][15][12][14][13], James Hendler [17], OraLassila [17] or Dan Brickley [22], and I've had to assimilate the speci�cation of RDF andother related technologies. I've also invested some time trying to understand and appreciatethe added value of the RDF model against others (e.g. relational or XML), and I have foundsome good materials about this topics, like e.g. [25] or [13]. Searching for materials related tothe Semantic Web activity, I've found some promising works, like the RDFWeb initiative andits FOAF ontology [39], the work of Guha and MacCool [120][49] or the Query by Exampleby Reynolds [130]. To make the analysis about digital libraries and general metadata issuesI've spent some time studying the speci�cations of the Dublin Core Element Set [28], theZ39.50 protocol [156], SRW [140] and the OAI-PMH protocol [109][110]. I've also foundsome works discussing issues about digital libraries and the Open Archives Initiative, likee.g. those by Lagoze and Sompel [86][137] or Baker [10]. These are just some of the materials
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reviewed, but serve to illustrate in some way the selection criteria.For the development of the specialised metasearch application I've followed a tradi-tional software engineering approach. The requirements stage has consisted in innumerablemeetings with my advisor, Jaime Delgado, to try to de�ne clearly the di�erent aspects ofthe functionality. The analysis stage has involved the hard task of translating the naturallanguage requirements to some formal model, I've used UML to do this but also some home-made diagrams. The design stage has consisted in weaving the objects architecture of theapplication, with an special emphasis in the multi-threading sub-parts. It has also involvedthe speci�cation of test XML-based query language and the study of the critical parts ofthe system, as the mapping of the queries or the metadata extraction. I've studied to dothis some existing XML-based Query Languages, like XCQL [150] or XML Query [154].The implementation methodology has involved the study and selection of the tools (Java,Tomcat, XML, XML Query, Tidy) and the analysis of the performance, where I've investedan important time, specially in de�ning a good policy to discard targets that are su�ering ofnot ordinary delays. I'm going to talk more about the implementation methodology later.
1.4 Document outline

This document has four main parts, 'Background Information', 'State of the Artand Problem Statement', 'Heterogeneous Data Models and Schemas: Semantic Integration'and 'Heterogeneous Query Interfaces: Query Tunneling', and also other smaller sections likethis introduction or the �nal comments.
1.4.1 Background InformationThe 'Background Information' part tries to compile in a coherent way some resultsof the exploratory stage that can help readers not familiar with databases, informationretrieval or the semantic web. This implies to de�ne and describe the key concepts of theseareas and related to the work, and also the di�cult task to weave all the relationshipsbetween them. Readers familiar with these technologies will probably skip this part.
1.4.2 State of the Art and Problem StatementThe 'State of the Art and Problem Statement' part is a survey of the progressesbeing done in the data integration �eld in general and the semantic integration research trendin particular in the last years. It begins enumerating some classical works and concepts ofthe area and ends analysing its current weaknesses and opportunities.
1.4.3 Heterogeneous Data Models and Schemas: Semantic IntegrationAfter the State of the Art come two related but independent parts containingthe main contributions of this work. Because of their particularities each one of themprovides a complete internal structure, including an introduction, a related work sectionand conclusions.
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The �rst main contribution, 'Heterogeneous Data Models and Schemas: SemanticIntegration' part includes two works related to the use of Semantic Web technologies to helpsolving the problem to work in domains where multiple schemas or ontologies exist. The�rst sub-part, 'XML Semantic Integration: A Model Mapping Approach' , describes a modelto face the problem of dealing with heterogeneous data models and schemas. It is focusedin the semantic integration between XML and RDF (the Resource Description Framework).I suggest a strategy based on the mapping of the XML model to RDF triples. Translat-ing XML documents to RDF permits taking pro�t from the powerful tools of DescriptionLogics allowing XML documents interoperate at the semantic level. This mapping has gen-erated some interesting results, like a schema-aware and ontology-aware XPath processorthat can be used for schema semantic integration or even for implicit query transcodingamong di�erent data models.The second sub-part, 'A Vector Space Model for Semantic Similarity Calculationand OWL Ontology Alignment', describes a novel semantic similarity measure based on amatrix representation of nodes from an RDF labelled directed graph. A concept is describedwith respect to how it relates to other concepts using n-dimensional vectors, being n thenumber of selected common predicates. It shows how adapting the graph matching algorithmin [20] to apply this idea to the alignment of two ontologies. It also includes the results ofthe testcases of the Ontology Alignment Evaluation Initiative 2005.

1.4.4 Heterogeneous Query Interfaces: Query TunnelingThe second main contribution, 'Heterogeneous Query Interfaces: Query Tunneling'describes a strategy to face the problem of dealing with heterogeneous query interfaces. Isuggest a strategy that allows redistributing an expressive user query over a set of databaseswith heterogeneous Web-based query interfaces. The idea, that has recently been renamedby Thomas Kabisch [81] as "Query Tunneling", consists on the reprocessing of the initialuser query over the results returned by the di�erent sources, that must be a superset of theresults that satisfy the initial query. I describe in this part the strategy and its limitations,and an implementation in the form of two Java APIs, the Java Simple API for Metasearch(JSAM), that has been used in the development of a spanish news metasearch engine, andthe Java Simple API for Web Information Integration (SAWII), that o�ers high level toolsto the development of articulated wrappers for complex web form-chains and result pages.
1.4.5 Relationship between thesis parts and chaptersThe �rst part, 'Heterogeneous Data Models and Schemas: Semantic Integration',refers to the problem of schema/ontology interoperability. This problem can be dividedin two sub-problems, 1) How can we use a global (mediator) data schema/ontology tointeroperate a set of heterogeneous schemas/ontologies? and 2) How can we automaticallygenerate this global schema/ontology?Chapter 9 faces the �rst of these problems for the particular case of XML, suggest-ing a strategy to design a schema-aware and ontology-aware XPath processor, which processqueries taking in consideration the relationships de�ned in one or more XML schemas orOWL/RDFS ontologies. This allows to write the queries in terms of one of the schemas/ontologies
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(acting as a global schema), whose relationships with the speci�c schemas have been pre-viously speci�ed. How these relationships (mappings) are obtained is not the focus of thischapter, but of the next one.Chapter 10 is independent from the previous one, but is related to the secondproblem (how the mappings between ontologies/schemas can be automatically generated).This is the reason why the two chapters have been placed in the same part.The second part, 'Heterogeneous Query Interfaces: Query Tunneling', describes apractical approach to the design of a web-based data integration system using XML tech-nologies. It includes some chapters covering practical solutions, based on XML and XMLQuery, for real world scenarios. However, despite of it is strongly related to the previouschapters, the focus of this work is not the generation of schema mappings or the interac-tion with ontologies, but the problem of distributing the queries over restricted autonomousinterfaces. This is the reason why the two contributions have been placed in separate parts.



Chapter 2
Background Information

Terms as 'information', 'data', 'metadata', 'information retrieval', 'data retrieval','data integration', 'Semantic Web' and others, are specially susceptible of being interpretedin very di�erent ways. So, to avoid misunderstandings, in this section I'm going to clarify,or at least narrow, the semantics of some important concepts related to this work.
2.1 Information vs. DataDespite of in some works the terms 'information' and 'data' are used indistinctly,here I'm going to specially strict in separating the two concepts. According to The Free On-line Dictionary of Computing [111], data are �numbers, characters, images, or other methodof recording, in a form which can be assessed by a human or (especially) input into a com-puter, stored and processed there, or transmitted on some digital channel. Computers nearlyalways represent data in binary. Data on its own has no meaning, only when interpreted bysome kind of data processing system does it take on meaning and become information.�.So, it is clear that is easier to de�ne data than information, which requires ahigher e�ort of abstraction. Now we can take pro�t that we've already separated these twoconcepts to locate another one, knowledge. According to [21] �We had two decades whichfocused solely on data processing, followed by two decades focusing on information technology,and now that has shifted to knowledge. There's a clear di�erence between data, information,and knowledge. Information is about taking data and putting it into a meaningful pattern.Knowledge is the ability to use that information.�.
2.2 MetadataIn short, metadata is �data about data�. According to [9] metadata is �informa-tion on the organization of the data, the various data domains, and the relationship betweenthem�. Tim Berners-Lee gives a more Web-centric de�nition, �Metadata is machine under-standable information about web resources or other things�. We can di�erence two kindsof metadata [100], Descriptive Metadata and Semantic Metadata. Descriptive Metadata isexternal to the meaning of the data it describes, and pertains more to how it was created.For example, the Dublin Core Metadata Element Set [28] proposes 15 �elds to describe a
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document. Semantic Metadata features the subject matter that can be found within thedata it is describing. An example of semantic metadata could be some MPEG-7 [101] de-scriptors, that allow to describe for example that a video includes a football match in arainy day. There are a lot of di�erent uses of metadata, like cataloguing, content rating,intellectual property rights, etc. but nowadays some point to more ambitious uses (overallof semantic metadata) like for example the Semantic Web initiative.
2.3 Information Retrieval vs. Data Retrieval

According to [9], information retrieval �deals with the representation, storage, or-ganization of, and access to information items�. The aim of an IR system is to facilitatethe user access to the information in which he is interested. However, the user informationneed cannot be easily formalized, an it must be translated into a query processable by theretrieval system. Given the user query, the IR system aims to retrieve information whichmight be relevant to the user.On the other hand, a data retrieval system aims to determine which objects ofa collection satisfy clearly de�ned conditions as those in a relational algebra expression.For a data retrieval system, like a database, a single erroneous object among a thousandsretrieved means a total failure. So, data retrieval deals with well de�ned data models,expressive query languages and performance issues, while information retrieval faces theproblem of interpreting the contents of the information items to decide their relevance. Thetwo concepts are not isolated, data retrieval is ever an important part of an IR system, andcan be seen as a lower-level layer. Because this research work focuses in metadata, insteadof on other traditional IR issues, it is in some way more related to data retrieval rather thanto information retrieval. However, because the context keeps being IR systems for the Web,the references to IR aspects will be usual.
2.4 Traditional Information Retrieval vs. Multimedia Infor-mation Retrieval

Traditional information retrieval only deals with unstructured textual data. Tra-ditional IR is an old discipline, with published books from even the last 70s like e.g. [131],and already classic conferences like ACM SIGIR (International Conference on InformationRetrieval) or TREC (Text REtrieval Conference). Its research is based in solid and well char-acterized models, like the boolean model, the vector model or the probabilistic IR model.The irruption of the Web and Web search engines has put IR at the �center of thestage� since the 90s. However the new context introduces new challenges for IR like theretrieval of heterogeneous multimedia contents. Multimedia data is rapidly growing in theInternet, and also metadata related to multimedia information objects, that of course includetextual documents. Multimedia IR systems must support di�erent kinds of media with veryheterogeneous characteristics such as text, still and moving images, graphs and sound. Thisposes several interesting challenges, due to the heterogeneity of data and the fuzziness ofinformation. Multimedia IR systems have an interesting feature for our concerns, they must
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handle metadata, because it is crucial for data retrieval, whereas traditional IR systems donot have such requirement.
2.5 Data IntegrationThe Data integration (also named Information Integration) research disciplinestudy mechanisms for a seamless access to autonomous and heterogeneous informationsources. These sources can vary from legacy databases to Semantic Web or P2P appli-cations. Traditionally the target of a data integration system is to provide a mediationarchitecture in which a user poses a query to a mediator that retrieves data from underlyingsources to answer the query. The constraints of the sources access, and their potentiallydi�erent data models and schemas, are the challenges of a data integration system.

Data integration is the main topic of this thesis, and its evolution and currentsituation will be described in the State of the Art and Problem Statement Chapter.
2.6 Distributed Information Retrieval vs. Data IntegrationSearch engines for the Web or other information retrieval systems are usually based,according to [24], in a single database model of text retrieval, in which documents are copiedto a centralized database, where they are indexed and made searchable (this model canbe seen as the information retrieval version of data warehousing for data retrieval). How-ever, some information is not accessible under this model (it can be queried but cannot becopied to the centralized database) for di�erent reasons (size, volalility, interface restric-tions). The alternative is a multi-database model, in which the central site (or any peer in adistributed peer-to-peer context), instead of storing copies of the documents, translates theuser information need into queries to the di�erent sources. This kind of model is studiedby the Distributed Information Retrieval discipline, and has been also informally known asmetasearch.A distributed information retrieval system covers traditionally the following stages:

� Source description: The contents of each text database must be described� Source selection: Given the descriptors and the user information need, which sourcesmust be queried.� Source querying: Map the information need to the selected sources and query them.� Results merging: Merge the ranked lists returned by the di�erent sources.
In some aspects data integration and distributed information retrieval are equiv-alent, and in some contexts the words are mixed. However, while distributed informationretrieval targets to satisfy a user information need over unstructured data or semi-structureddata sources, a data integration system aims to satisfy a query over also autonomous andheterogeneous, but structured data sources.
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2.7 MetasearchMetasearch is the informal name that refers to Web-based distributed informationretrieval systems (see [33] or [135] for a more detailed de�nition). Because metasearchsystems are supposed to solve some of the problems described in the previous section, andbecause they never have really gained the favour of Web users, some interesting conclusionscan be extracted from their evolution.In theory, the strength of a metasearch engine is its recall value, because it queriesa set of conventional crawler-based search engines that cover certain subsets of the publicindexable Web. However, some studies have demonstrated that these subsets, far frombeing disjoints, are highly overlapped [88]. Furthermore, recall is not precisely the mainproblem of conventional Web search systems, but precision. Another important drawbackof metasearch systems is that their work often does neither rely over an agreement withtheir underlying sources nor over speci�c interchange protocols. This forces them to facethe problem to manage query forms and results pages designed for human consumption andwritten in HTML. This is usually solved with hand-coded screen-scraping rules or similarthings that reduce speed and di�cult maintainability. Some metasearch defenders claimthat these systems have an important advantage, the ability to access the hidden web,because they capture the results of the target sources on-the-�y, that allows them to harvestdynamically generated content. However, this style of doing things, without consideringlegal issues1, is far from being elegant, remember the sentence of Tim Berners-Lee [14]:
"And so you have one program which is turning it from data into documents, and anotherprogram which is taking the document and trying to �gure out where in that mass of glowing�ashing things is the price of the book. It picks it out from the third row of the second columnof the third table in the page. And then when something changes suddenly you get the ISBNnumber instead of the price of a book and you have a problem. This process is called 'screenscraping', and is clearly ridiculous."

2.8 DatalogChapters 3 and 4 make use of the Datalog language [43] in some examples relatedto initial data integration approaches. Datalog is an old (1978) database query languagethat syntactically is a subset of Prolog. Its logic basis made it popular in academic databaseresearch, but despite of its advantages over standard query languages like SQL it neversucceeded in becoming part of commercial systems.A Datalog query program consists of a �nite set of Horn clauses C1; :::; Ck (therules of the Datalog program). Horn clauses express a subset of statements of �rst-orderlogic with at most one positive literal:
L( L1; :::; Ln1Some conventional search engines explicitly forbid metasearch. In Google's terms of service page we can�nd "You may not send automated queries of any sort to Google's system without express permission inadvance from Google".
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Equivalent to: L _ :L1; :::;:LnIn Datalog each literal corresponds to an atomic formula p(A1; A2; :::; An) where p is therelation name and Ai are variables or constants (names that start with an upper case letterare variables). Let's see a relation table written in Datalog:
employees(name, dept, id)
Let's see an example query program with one Datalog rule:
financeEmployees(X, Y) :- users(X, "finance", Y)There are two types of relations: (1) base relations (physically stored in thedatabase) and (2) derived relations (temporary relations that hold intermediate results).The general form of a rule is as follows:

p(x1; x2; :::; xn) : �q1(x11; x12; :::; x1m); :::; qk(xk1; :::; xkp); e:Where qi are base or derived relation names, e is an arithmetic predicate (anynumber) and each xi appearing in p appears in at least one of the qi's. The Datalog rulecan be interpreted as:
p(:::) is true if q1(:::) and q2(:::) and ... qk(:::) and e is true.
In Datalog an answer to an atomic query is a set of constants that satisfy the query.Answers are computed by using top-down (or backward-chaining) or top-down algorithms.

2.9 The Extensible Markup Language (XML)According to [9] Markup is de�ned as �extra textual syntax that can be used todescribe formatting, actions, structure information, text semantics, attributes, etc.�. Oneexample of markup can be the formatting commands of the popular text formatting softwareTeX. In the late seventies was de�ned the Standard Generalized Markup Language(SGML), a metalanguage for tagging text developed by Charles F. Goldfarb and his group,and based on a previous work done at IBM. In 1996 the SGML Editorial Review Boardbecame the XML Working Group under the auspices of the World Wide Web Consortium(W3C), chaired by Jon Bosak of Sun Microsystems and with the intermediation of DanConnolly. This group developed The Extensible Markup Language [151] (XML), a subsetof SGML which goal is to enable generic SGML �to be served, received, and processed on theWeb in the way that is now possible with HTML(also based on SGML). XML has been de-signed for ease of implementation and for interoperability with both SGML and HTML�[151].XML, the same as SGML, is not exactly a markup language, it is a metalanguagethat can be used to de�ne speci�c markup languages (like XHTML, MathML, SVG, etc.).That means that XML allows users to de�ne new tags and structures for their own languages.
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For some reasons, some obvious and other that will remain a mystery, XML have reachedan amazing success worldwide. In an interconnected and global society, the interchange ofdata over a standard syntax has become a key issue, and here is where XML �ts perfectly.
2.10 The Semantic WebThe Semantic Web is a promising initiative lead by the W3C which aim is toprovide a data model for the Web, allowing information to be understood and processedalso by machines. The o�cial de�nition of the W3C [142] says �The Semantic Web is therepresentation of data on the World Wide Web. [....] It is based on the Resource DescriptionFramework (RDF), which integrates a variety of applications using XML for syntax andURIs for naming.�. So, it is clear that this initiative strongly relies on RDF, but what isthe meaning of �the representation of data�? Often in this document we have referred to dedi�culties related to search and retrieve information on the Web. One of the main reasonsis the fact that the most part of Web data, despite of being processed by machines, canbe only understand by humans. This include natural language text, still/moving images,audio, etc.Before we have discussed the di�erence between information retrieval and dataretrieval, saying that while data retrieval is appropriate for databases it is not appropriate(or not enough) for the Web. The reason is that the information on the Web, contrary todatabases, does not have an underlying data model. So, �the representation of data� meanstwo things, the development of a data model for the Web, and the dissemination of machine-understandable metadata (under the framework of the data model) linked in some way tothe Web information. Another classic de�nition is that by Berners-Lee et al. [17] �TheSemantic Web is an extension of the current web in which information is given well-de�nedmeaning, better enabling computers and people to work in cooperation.�.
2.11 Querying the Semantic WebThe Semantic Web initiative has opened a broad spectrum of opportunities forimproving the search and retrieve of information on the Internet. Of course this is notcasual, but one of the main targets of this new scenario as pointed in [15] or [12]. However,the consolidation of a standardised way to interchange semantic information is just anotherstep in the race for interoperability. Other battles are being �ght to rationalise the way thisinformation is processed and search and retrieval are maybe the most important elementsof the information feed chain. The challenge is to �nd e�cient and rational ways to exploitthis new information that begins to be disseminated over the net, and that, despite of it isformalised in a standard way (RDF [22]), it can be stored in di�erent ways (embedded onHTML pages, in a database, in speci�c knowledge repositories, etc.) and it remains highlyheterogeneous (an innumerable an unrestricted number of ontologies, potentially overlapped,can co-live in the Semantic Web).This two key issues, how to locate and access the information, and how to manageheterogeneity, are of relevance for our analysis and also very related with what we havesaid in the previous sections. Some research works re�ect special approaches to this, like the
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Edutella project [102] that constitutes a distributed search network for educational resourcesand is based on P2P networking (its JXTA implementation [80]) and RDF. This interestingwork uses the query exchange language family RDF-QEL-i (based on Datalog semanticsand subsets) as standardised query exchange language format. Because Edutella peers arehighly heterogeneous and have di�erent kinds of local storage for RDF triples, as well assome kind of local query language (e.g., SQL) to enable them to participate in the network,wrappers are used to translate queries and results from the peer and vice versa.Another work is Sesame [73], an extensible architecture implementing a persistentRDF store and a query engine capable to process RQL queries [3] [42]. Of special interest forus is TAP [49] a system that implements a general query interface called GetData, SemanticNegotiation and Web of Trust enabled registries. It introduces the concept of SemanticSearch and describes an implemented system which uses the data from the Semantic Webto improve traditional search results. The GetData interface is a simple query interfaceto network accessible data presented as directed labelled graphs, in contrast to expressivequery languages like SQL, RQL or DQL. This work defends deployability against queryexpressiveness.Related to this project, and also with the query language of Edutella, is RDF-QBE[130], a mechanism for specifying RDF subgraphs, which they call 'Query by Example', thatcould allow a high performance standardised interface for retrieval of semantic informationfrom remote servers. From all this study cases we can observe the latent necessity of de�ninga low-barrier mechanism that allow to harvest heterogeneous semantic information and howit generates a trade-o� between deployability and expressiveness. Some of them (e.g. TAP)point the necessity to consider also other conventional or not-semantic search strategies, likecrawler-based engines, when thinking in future applications.
2.12 Semantic IntegrationThe semantic integration research area is a joint e�ort between the people fromdatabases and data integration, and the people from knowledge management and ontologyresearch. It can be seen as a reformulation of some old problems like matching databaseschemas or answering queries using multiple sources. Ontologies can be the solution to someof these old challenges but also the source of new problems, like ontology alignment. Thislast topic tries to determine which concepts and properties represent similar notions betweentwo ontologies and is one of the main goals in this area. Related to ontology alignment ariseother questions, like how do we represent the mappings or what do we do with them. [106]presents a recent survey on semantic integration.

Semantic integration is one of the main topics of this thesis, and it will be discusseddeeper in the State of the Art and Problem Statement Chapter.
2.13 Resource Description Framework (RDF)According to [124] the Resource Description Framework (RDF) is �a foundation forprocessing metadata; it provides interoperability between applications that exchange machine-
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understandable information on the Web�. RDF is the main building block of the SemanticWeb, a framework composed by some di�erent but strongly related elements (a data model, asyntax and a subclassing language among other things). First RDF is a syntax-independentdata model designed for representing named properties and property values. The basicmodel consists of three object types. On one hand Resources, as all things being described,like Web pages, images, videos or any other thing, even it is not digital (like a real-life book).The only requirement is that they have a name, and this name conforms to the URI [16]syntax. On the other hand we have Properties, as speci�c characteristics used to describe aresource. The value of a property (the object) can be another resource (speci�ed by a URI)or it can be a literal (i.e. a simple string). Finally, a speci�c resource together with a namedproperty plus the object (the value of the property for that resource) is a Statement, thethird basic object type of the model.RDF is being used in a variety of application areas, like in resource discovery, incataloguing (for describing the content and content relationships of some information object),by intelligent software agents, in content rating, or in describing intellectual property rightsfor example. The combination of RDF with digital signatures aims to allow what is knownas the "Web of Trust" [83]. The conceptual model of RDF is complemented with an XMLinterchange syntax. The syntax is needed to ensure the required interoperability whencreating and exchanging metadata.To complete the framework, RDF have a class system much like many object-oriented modelling systems. A collection of RDF classes is called a schema. A schemacontains classes organised in a hierarchy, o�ering extensibility through subclass re�nement.RDF schemas allow reusability of metadata de�nitions. The schemas themselves may bewritten in RDF, with the RDF Schema language [126]. RDF schemas are being used nowa-days to serialise ontologies.
2.14 Ontology Web Language (OWL)

According to [112] the Ontology Web Language (OWL) is a language � intended tobe used when the information contained in documents needs to be processed by applications,as opposed to situations where the content only needs to be presented to humans. OWL canbe used to explicitly represent the meaning of terms in vocabularies and the relationshipsbetween those terms. This representation of terms and their interrelationships is called anontology "OWL is a vocabulary for describing properties and classes of RDF resources, com-plementing the RDFS capabilities in providing semantics for generalization-hierarchies ofsuch properties and classes. OWL enriches the RDFS vocabulary by adding, among others,relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richertyping of properties, characteristics of properties (e.g. symmetry), and enumerated classes.The language has three increasingly expressive sublanguages designed for di�erent uses:
� OWL Lite has the lowest formal complexity, and serves for simple classi�cation hier-archies. It has some restrictions like e.g. permitting only cardinality values of 0 or1.



Chapter 2: Background Information 15
� OWL DL tries to o�er the maximum expressiveness while retaining computationalcompleteness (all conclusions are guaranteed to be computable) and decidability (allcomputations will �nish in �nite time). OWL DL is so named due to its correspondencewith description logics.� OWL Full does not give any computational guarantee but o�ers the maximum expres-siveness and the syntactic freedom (e.g. a class can be treated simultaneously as acollection of individuals and as an individual).

In this work I will focus always in OWL DL, even when I do not mention itexplicitly.
2.15 OWL and Description LogicsOWL has the in�uence of more than 10 years of Description Logic research. It issupposed that this knowledge has served to choose the constructors and axioms supportedcarefully, balancing expressiveness and e�ciency. This balance was achieved by basingOWL on the SH family of Description Logics [63]. Members of the SH family includethe SHIQ Description Logic [62] and the SHOQ Description Logic [61], that overcomessome limitations of SHIQ by taking the logic SHQ and extending it with individuals andconcrete datatypes.The OWL Lite and OWL DL species are syntactical variants of Description Logiclanguages. OWL Lite can be seen as a variant of the SHIF(D) description logic language,which is itself just SHOIN (D) without the oneOf constructor and with the atleast andatmost constructors limited to 0 and 1 [60].OWL DL is a variant of the SHOIN (D) language, which is itself an extensionof the SHOQ(D) (adding inverse roles and restricted to unquali�ed number restrictions)[59]. OWL Full extends both OWL DL and RDF(S) and thus cannot be translated intoa Description Logic language. Entailment in OWL Full is undecidable in the general case,because it allows arbitrary roles in number restrictions, which makes the logic undecidable[62].
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Chapter 3
State of the Art in Data Integration

The integration of data from multiple heterogeneous sources is an old and well-known research problem. It has been traditionally faced by the database and AI researchcommunities, but the promise of integrating data on the WWW or Peer-to-Peer systemsand its related technologies (XML, RDF, etc.) has attracted e�orts from other disciplines.Below I explain the progress of this topic and what challenges lie ahead.
3.1 Historical Progress

The integration of multiple information sources aims at giving users and applica-tions the illusion of interacting with one single information system. There are two generalapproaches to this problem, materialized integration and virtual integration.Materialized integration is strongly related to materialized views in databases, andconsists on �rst storing all data from all sources locally and then querying them. Datawarehousing is a well-know example of materialized integration. It is suited for situationswhen data changes infrequently and a fast evaluation of complex queries is required. Howeverit is not always possible or convenient to replicate and update all data from a set of sources.There are situations when the size or volatility of data (or the limitations imposed by thesources query interfaces) makes materialization impossible. This is the reason why virtualintegration has become of increasing interest in recent years as it has matured.Virtual integration aims to o�er the same results without the constraint of havingto store and update all data from all sources. In pure virtual integration the global schemais strictly a logical entity. Queries issued over it are dynamically rewritten at runtime andredirected to the underlying data sources. Resulting data is fetched from the sources throughwrappers and merged. Here we are just interested in virtual integration, or simply dataintegration from now. There are several problems related to data integration, but the mainones are: 1) The ability to present an integrated (mediated) schema for the user to query,or the modelling problem, 2) The ability to reformulate the query to combine informationfrom the di�erent sources according to their relationships with the mediated schema, or thequerying problem, and 3) The ability to e�ciently execute the query over the various localand remote data sources.
19
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Figure 3.1: Architecture of a data integration system
3.1.1 Mediated Schema (the modeling problem)We talk about a mediated schema when a data integration system employs a logicalschema in order for several autonomous sources to interoperate (see �g. 3.1). This kind ofschema is usually accompanied by the de�nition of semantic mappings (translations) betweenthe mediated schema and the schemas of the di�erent sources. This correspondence willdetermine how the queries posed to the system are answered.The two classic approaches concerning mediated schemas and mappings mod-elling are the global-as-view and the local-as-view. The global-as-view approach or GAV[2](TSIMMIS)[26][50], consists on a mediated schema (the global schema) which is de�nedas a set of views over the data sources. This kind of mediation has the advantage that theuser query can be simply merged with the view de�nitions (unfolded) obtaining a full query.The disadvantage of this approach is that the mediated schema is strongly coupled with theunderlying source schemas and their changes, making it a bad solution for the Web context,where sources are autonomous and volatile.The local-as-view approach or LAV [98][56][34] takes the inverse point-of-view anddescribes sources as views over the mediated schema. It has the advantage that changes onthe underlying sources does not imply changes on the mediated schema. The disadvantageof this approach is the di�cult to map the user query, referred to the mediated schema, tothe di�erent data sources. It's worth mention also the hybrid combination of GAV and LAVinto the GLAV formalism [41].
3.1.2 Formalisation of the modelling problemA formalisation of the modeling problem borrowed from [93] can be:De�nition 3.1.1. A data integration system I is a triple <G, S, M> where:� G is the global schema (structure and constraints),� S is the source schema (structures and constraints), and
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Figure 3.2: Global-as-view (GAV) approach
� M is the mapping between G and S.To specify the semantics of I we have to start with a source database D (sourcedata coherent with S). We call global database for I any database for G. A global databaseB for I is said to be legal with respect to D if:� B is legal with respect to G, i.e., B satis�es all the constraints of G;� B satis�es the mapping M with respect to DWe can also specify the semantics of queries posed to a data integration system. Ifq is a query of arity n and DB is a database, we denote with qDB the set of tuples (of arityn) in DB that satisfy q. Given a source database D for I, the answer qI;D to a query q inI with respect to D, is the set of tuples t such that t 2 qB for every global database B thatis legal for I with respect to D. The set qI;D is called the set of certain answers to q in Iwith respect to D.

3.1.3 Formalisation of global-as-view (GAV) approachWhen modeling with GAV, the mapping M associates to each element g in G aquery qS over S.De�nition 3.1.2. A GAV mapping is a set of assertions, one for each element g of G, ofthe form g  qSThe idea is that each element g of the global schema should be characterized interms of a view qS over the sources. The mapping is explicitly telling the system how toretrieve data related to each element from the global schema. In this sense the GAV approachhelps enormously the query processing design, but is just e�ective when the system is basedon a set of sources that is stable.Example 3.1.1. A data integration system over two sources of movies information couldpresent the following global schema:
Global schema:
movie(Title, Year, Director)european(Director)
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Figure 3.3: Local-as-view (LAV) approach
review(Title, Critique)
The two data sources could present the following local schemas:
Source 1: r1(Title, Year, Director ) since 1960, european directorsSource 2: r2(Title, Critique) since 1990
Each entity of the global schema has assotiated one or more views over the sources:
movie(T ;Y;D) f(T ;Y;D)jr1(T ;Y;D)geuropean(D) f(D)jr1(T ;Y;D)greview(T ;R) f(T ;R)jr2(T ;R)g
3.1.4 Formalisation of local-as-view (LAV) approachWhen modeling with LAV, the mapping M associates to each element s of thesource schema S a query qG over G.De�nition 3.1.3. A LAV mapping is a set of assertions, one for each element s of S, of theform s qGThe idea is that each source s should be characterized in terms of a view qG overthe global schema. This means that adding a new source just implies adding a new assertionin the mapping. This favours the maintainability and extensibility of the data integrationsystem.Example 3.1.2. The movies example under the LAV approach:
Global schema:
movie(Title, Year, Director )european(Director)review(Title, Critique)
In LAV the sources are featured as views over the global schema:
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r1(T ;Y;D) f(T ;Y;D)jmovie(T ;Y;D) ^ european(D) ^ Y >= 1960gr2(T ;R) f(T ;Y;D)jmovie(T ;Y;D) ^ review(T ;R) ^ Y >= 1990g



Chapter 4
Query reformulation algorithms (the
querying problem)
4.1 Query reformulation in LAV and GAV (the querying prob-lem)Strongly related to the mediated schema we found the algorithms for answeringthe user query in a data integration system. A initial query, targeting the logical mediatedschema, must be translated into queries over the di�erent data sources. In the case of theGlobal-as-view (GAV) approach, this problem reduces to view unfolding (unnesting). Inthe Local-as-view (LAV) approach, it translates to the more complex problem of answeringqueries using views [51], with some good solutions like MiniCon [119] or the bucket [56]algorithms.The following two examples illustrates the querying problem for GAV and LAV:Example 4.1.1. Querying the movies example under the GAV approach:
The query "Title and critique of movies in 1998" could be formalised (in respect to theglobal schema) as:
f(T ;R)jmovie(T ; 1998;D) ^ review(T ;R)g
Because in GAV we have views for each schema entity, the query is processed by means ofview unfolding, i.e., by expanding the atoms according to their de�nitions:
movie(T ; 1998;D)! r1(T ; 1998;D)review(T ;R)! r2(T ;R)Example 4.1.2. Querying the movies example under the LAV approach:
Having the same query of the previous example ("Title and critique of movies in 1998")and its formalisation:

24
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f(T ;R)jmovie(T ; 1998;D) ^ review(T ;R)g
Because in LAV both the query and the mappings target the global schema, it is not trivialto determine how to map the query to the local sources. This process is performed by meansof an inference mechanism that re-expresses atoms of the global schema in terms of atomsof the sources:
f(T ;R)jr2(T ;R) ^ r1(T ; 1998;D)gWhile query reformulation looks easier in GAV, it is very complex (it needs reason-ing) in LAV. However, LAV appears to be a better solution when autonomous and hetero-geneous sources are present, like in the case of the Web. In such context we cannot rewritethe global schema and its mappings once and again, so we need a stable global schema andindividual mappings that can be changed independently.
4.2 Answering queries using viewsThe �rst goal of the data integration system is to reformulate a user query Qto refer to the data sources. In the LAV approach the data covered by each source canbe abstracted by a view Vi over the global schema. The �rst task of the system will bedetermining which views should be queried to achieve the best possible answer.The old research paper (1995) "Answering Queries Using Views" [55] by A. Halevyet al. is probably the oldest and best known work facing the problem of determining thecombination of data sources (modelled as views) that must be used to answer a given queryin a LAV approach. This work considers the problem of rewriting a conjunctive query usinga set of conjunctive views in the presence of a large number of candidate views.As most part of similar works of these initial approaches it uses Datalog1 to for-malise the problem:

A conjunctive query Q has the form:
q(X) :- e1(X1); :::; en(Xn)
where q and e1; :::; en are predicate names. The atom q(X) represents the answerrelation and is called the head of the query. The atoms e1(X1); :::; en(Xn) are the subgoalsof the query, where e1; :::; en are database relations from the global schema.

4.2.1 Query containmentThe query rewriting problem is closely related to the concept of query containment.We say that a query Q1 is contained in the query Q2, denoted by Q1 v Q2, if the answerto Q1 is a subset of the answer to Q2. To determine if a conjunctive query Q1 is containedinto another conjunctive query Q2 we must �nd for each subgoal of Q2 a subgoal in Q11see the Background Information chapters for a brief introduction to Datalog
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Figure 4.1: A conjunctive query Q2 with two subgoals

Figure 4.2: A conjunctive query Q1 with three subgoals that is contained in Q2
contained in it. Figures �g. 4.1 and �g. 4.2 shows graphically the concept of containmentapplied to conjunctive queries.
Example 4.2.1. A query Q2 that asks for people with blue eyes and blond hair contains aquery Q1 that asks for women with blue eyes and blond hair because for each subgoal of Q2(blue eyes, blond hair) Q1 has a subgoal contained in it (plus some other goals, like being awoman). In contrast, a query Q3 that asks for people with blue eyes is not contained in Q2because it does not provide a subgoal contained in the subgoal "blond hair".

When all subgoals of a query contain subgoals of another query we call the set ofcontainments a containment mapping. So we can say that a query Q2 contains Q1 if andonly if there is a containment mapping from Q2 to Q1.
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4.2.2 Rewriting a query using viewsGiven a conjunctive query Q and a set of views V = V1; :::Vn, we want to rewriteQ using just some of the views and comparison predicates.Example 4.2.2. Consider the following global schema. The relation movie(m, n) storesthe identi�ers (m) of all movies and their names (n). The relation actor(a, n, y) storesidenti�ers (a) of actors, their names (n) and birth years (y). The relation starring(a, m)stores the relationship between movies and actors identi�ers. The following query asks forthe �lmography of the actor 'Christopher Walken'.Q(m) :- movie(m,n),actor(a,'Christopher Walken'),starring(a,m)

Database views are named queries that return a subset of the data in a database.They can also be modelled as conjunctive queries and formalised with Datalog rules. Thereare some di�erences between answering queries using real relational views and answeringqueries using virtual views representing data sources in a LAV-based data integration sys-tem. Two LAV views with the same de�nition are not assumed to contain the same tuplesbecause they represent autonomous data sources. So, it makes sense to have the views:
V1(m) :- movies(m,n)

V2(m) :- movies(m,n)
V1 and V2 can represent two di�erent movie databases containing di�erent subsetsof movies.Example 4.2.3. Continuing with our example, consider the following views:V1(m) :- movies(m,n)V2(m) :- movies(m,n)V3(a, m) :- starring(a,m)V4(a) :- actors(a,n,y), y<1950
Now we can consider the problem of rewriting a query over a database using onlyviews or comparison predicates (without directly using relation predicates).De�nition 4.2.1. (contained rewriting or simply rewriting) Let Q be a query, and V =V1; :::Vn be a set of views. The query Q0 is a rewriting of Q using V if Q0 v Q.Example 4.2.4. One possible rewriting of the previous example query using the views is:Q'(m) :- V1(m),V3(a,m),V4(a)

Another possible rewriting can be:Q'(x,y) :- V2(m),V3(a,m),V4(a)Example 4.2.5. Unfolding the views of the previous example we can see that the resultingrewritings are contained in the initial query, so they are valid rewritings. Take the �rst for
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example:
Q�(m) :- movie(m),actor(a,'spain'),starring(a,m),woman(a)

The obtained rewritings guarantee that results will not be outside the scope of theinitial query, but they do not guarantee that they are the same results that could be obtainedapplying directly the query over a hypothetical local database containing all the data fromthe sources. This ideal situation is called equivalent rewriting and is pursued when answeringqueries using views is applied to query optimization and physical data independence in alocal database.De�nition 4.2.2. (equivalent rewriting) Let Q be a query, and V = V1; :::Vn be a set ofviews. The query Q0 is an equivalent rewriting of Q using V if Q0 v Q and Q v Q0
In the context of data integration we pursue to obtain the biggest set of resultspossible using the given views. The best rewriting in this sense is called the maximally-contained rewriting.De�nition 4.2.3. (maximally-contained rewriting) Q0 is a maximally-contained rewritingof Q using views V = V1; :::Vn if (1) Q0 v Q and (2) there is no other query Q00 such thatQ0 v Q00 v Q.The maximally-contained rewriting of a conjunctive query can be obtained withthe union of all possible contained rewritings.Example 4.2.6. To obtain the maximally-contained rewriting of our example we simplyperform the union of the two obtained rewritings. This is usually represented just by showingthe list of rewritings:Q'(m) :- V1(m),V3(a,m),V4(a) Q'(m) :- V2(m),V3(a,m),V4(a)

4.3 Parametrized viewsThe initial approaches to answering queries using views provide a formal basis forthe data integration problem. However, data sources in the real world are di�cult to berepresented with a single view or with a �nite set of views because they use to presentparametrized query interfaces. These initial works on answering queries using views assumea �nite set of views V, but a parametrized query interface can be only represented by apotentially in�nite number of views.Example 4.3.1. Continuing with our example about movies, it is not realistic to assumethat a data source can be represented with a �nite view like:
V1(m) :- movies(m,n)

Probably the source would o�er a query interface with some parameters, like e.g.the movie name. In this case instead of one view we would have one view for each possible
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name:
V1(m) :- movies(m,'Rio Bravo')V2(m) :- movies(m,'Assault on Precinct 13')...

To overcome this limitation some works have analysed the problem of answeringqueries using sources modelled by an in�nite set of views. In [115] authors already consideredthis possibility, showing that it is important to be able to exploit the local processing powerof sources to reduce the amount of data transmitted over the network. In this work is intro-duced the concept of a parametrized view as a conjunctive query that contains placeholdersin argument positions.A parametrized view V represents the set of all view de�nitions obtained by as-signing a constant to each placeholder. Placeholders can be denoted by argument namesbeginning with an asterisk (*).Example 4.3.2. We can rewrite the previous example with this parametrized view:V1(m) :- movies(m, *n)
In [57] A. Halevy, A. Rajaraman and J. D. Ullman extend this idea showing thatany in�nite set of views can be partitioned into a �nite set of equivalence classes, in sucha way that all views in an equivalence class are also equivalent with respect to rewritingsof a query Q. The equivalence classes allow to keep applying the traditional algorithms ofanswering queries using views like [56].

4.4 Query processingThe resolution of a query in a data integration system can be divided in two stages,query reformulation and query processing. Query reformulation corresponds to the researcharound answering queries using views, and focus on the selection of the sources that canprovide the best valid response to a given query. However, knowing which sources to queryit is not enough. The obtained rewritten query of the �rst stage is a declarative querywich refers to the sources modelled as views. In a local system such a high-level querywould be translated to a syntactic tree and then optimized for execution. By contrast, ina data integration system some of the algebraic operations can be performed locally at thesources, while others must be performed in the mediator. The query processing stage aimsto generate the best execution plan for a given query and executing that plan with the helpof the mediator and the wrappers of the sources.Because the target systems are distributed, autonomous and heterogeneous, achiev-ing a good performance can be a di�cult task. In answer to this challenge, several workshave considered adaptive query processing [71][72][7] where the systems starts with someexecution plan and adapts it as the execution proceeds.



Chapter 5
Data Integration and XML

The classic data integration literature focused on the Relational Model for bothqueries and mappings till mid-90s. However, in late-90s researches turned their interestto a new and emerging data model, XML [68]. The new model aroused as a de-factostandard to expose and interchange data, so it was the ideal choose for systems pursuingdata interoperability. Now, XML and its query languages are the selected interfaces for WebServices, XML-native databases and lots of other applications.
5.1 Mapping the classic data integration problems to XMLIntegrating data from various XML sources arise the same problems described inthe classic data integration literature, but new solutions need to be found to tackle theparticularities of the new scenario.The �rst of these classical problems is schema mapping. The schema in whichterms is expressed the query (there's no need to call it the Global Schema if we are e.g. ina peer-to-peer context) must be someway mapped to the schema or schemas of the sourceswhere the query will be actually executed. The simplest approach to such mapping is anattribute correspondence, where some property or attribute in one representation corre-sponds to some attribute in the other representation. We �nd an increased complexity whenmapping concepts that are semantically the same, but the XML representations may bestructured di�erently.Example 5.1.1. This example, borrowed from [52], illustrates some of the problems ofmapping XML schemas.
Source1.xml DTD:pubsbook*titleauthor*namepublisher*name

30
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Source2.xml DTD:authorsauthor*full-namepublication*titlepub-type

The example shows how a simple schema describing books and authors can takedi�erent shapes. The di�cult of obtaining a mapping between them will depend on thegoal of that mapping. It may serve for simple migration tasks (translation of data from oneschema to another), and then a simple translation template will be enough. However, itmay be needed for querying purposes, and then a more complex strategy is needed, relatedto the old query rewriting problem described in previous sections.
5.2 XML query languages and data integrationXML query languages have been broadly used for the development of simple dataintegration applications. Mapping between schemas or de�ning wrappers with XSLT orXQuery can be a direct solution for some real world problems. These solutions generallyare based on the manual coding of templates and updates, so they represent the modernversion of the more primitive data integration approaches.
5.2.1 XSL Transformations (XSLT)XSL Transformations (XSLT) is a language standardized by the W3C for trans-forming XML documents into other XML documents. XSLT is a component of the W3C'sXML Stylesheet Language, and initially its main purpose was to be used in conjunctionwith a formatting language like XSL:FO, targetting the presentation layer independence.However, XSLT can be used independently, and it has been used in many application areas,but specially by the data integration community.A transformation expressed in XSLT, called a stylesheet, describes rules for trans-forming a source XML document into a result XML document. An XSLT stylesheet asso-ciates patterns with templates. When a pattern is matched against an element in the sourceXML tree, the corresponding template is instantiated to generate XML code for the resultdocument. This generation can include data from the source tree, but also can include newdata. The current version, XSLT 2.0 (W3C Candidate Recommendation 3 November2005), is a revised version of the XSLT 1.0 Recommendation published on 16 November1999. It is designed to be used in conjunction with XPath 2.0, which is de�ned in [69].XSLT shares the same data model as XPath 2.0, which is de�ned in [152].The capabilities of XSLT for transforming XML documents makes it a naturalchoice for data integration applications. In scenarios where heterogeneous XML schemas
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need to be mapped, XSLT stylesheets can be manually coded or semi-automatically gener-ated to allow the conversion between the di�erent schemas. XSLT has been used also forintra-model conversions, like RDF-to-XML. Another usage of XSLT has been in the de�ni-tion of web wrappers. HTML code can be easily modi�ed to become XHTML with tools likeHTML Tidy [143], and then �ltered with XSLT stylesheets. Lots of commercial productsmake use from XSLT data integration capabilities, like the Altova MapForce tool [99].Example 5.2.1. This example shows how an input XML document can be transformedusing an XSLT template. Take the followint XML document describing two movies.
intput.xml:
<?xml version="1.0"?><movies><movie id="26"><title>Blade Runner</title><year>1982</year></movie><movie username="27"><title>Rio Bravo</title><year>1959</year></movie></movies>The following XSLT template is applied recursively to all the nodes of the under-lying tree of the input document. The template translates the movie elements into recordelements. It also translates the id attributes into equivalent elements.
template.xslt:<?xml version="1.0"?><xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"><xsl:output method="xml" indent="yes"/><xsl:template match="/"><transform><xsl:apply-templates/></transform></xsl:template><xsl:template match="movie"><record><id><xsl:value-of select="@id" /></id><title><xsl:value-of select="title" /></title></record>
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</xsl:template></xsl:stylesheet>This is the resulting XML document:

output.xml:<?xml version="1.0" encoding="UTF-8"?><transform><record><id>26</id><title>Blade Runner</title></record><record><id>27</id><title>Rio Bravo</title></record></transform>
5.2.2 XML Query (XQuery)The W3C's XML Query language (XQuery) [154] allows to query the logical struc-ture of an XML document (de�ned in [152] in a SQL-like fashion. It is derived from theprevious XML query language called Quilt, which in turn borrowed features from severalother languages, including XPath 1.0, XQL, SQL, and OQL.XQuery Version 1.0 is an extension of XPath Version 2.0. It enriches XPath func-tionality with FLWR expressions (FOR-LET-WHERE-SORT BY-RETURN), element con-structors, variables, functions and updating capabilities.There have been some discussion about the overlapping of XQuery and XSLT.This discussion can also take place in data integration scenarios. In principle XQuery andXSLT can be interchangeable on most part of situations, e.g. when mapping data fromheterogeneous schemas or for the de�nition of wrappers. The �nal choose usually dependson the quality of tools and developers preferences. In general XSLT continues to be theprimary choice for transforming XML data, while XQuery it is becoming the standard forquerying and updating XML-based databases.Example 5.2.2. This example shows how an input XML document can be transformedusing an XQuery expression. The result of processing this query will be the same as in theprevious example.
<transform>{ for $m in doc("input.xml")//moviereturn<record><id>{ $m/@title/text() } </id>
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<title>{ $m/title/text() } </title></record>}</transform>

5.3 XML Data Integration SystemsThe success of XML and its potential use in interoperability problems has fuelledlots of XML-related data integration projects like XQuare, Liquid Data (Enosys), Nimble,XML Information Workbench, Callixa, Metamatrix, Xyleme, Tukwila or Raccoon. Here Idescribe the features of three representative cases.
5.3.1 TukwilaThe Tukwila system, developed at the The University of Washington DatabaseResearch Group, is an example of the LAV approach applied to XML data. It uses theMiniCon [119] algorithm to reformulate the queries posed over the global schema into queriesover the local XML sources. Tukwila is a native-XML integration system, because it operatesdirectly over non materialized XML (not converted to another internal representation). Thesystem introduces the X-scan operator, that allows to process XML data as it is beingreceived (streaming XML).Today Tukwila already is an old academic prototype, but it was designed by someactive researchers in data integration like Zachary Ives and Alon Halevy, and provides ad-vanced features not present in other commercial systems.
5.3.2 EnosysThe industrial success of a research approach do not always entail that it was thebetter choice, but at least demonstrates it was viable and well motivated. We can �ndsuch a success in an XML-based data integration system, the Enosys XML IntegrationPlatform [116]. This system, based on the wrapper-mediator architecture, allows queryingheterogeneous data sources abstracted with XML schemas. Wrappers (or XMLizers in theproject's terminology) uses XML schemas as logical views of the sources, and a mediatorresolves XQuery expressions over the sources.On June 18, 2003, Enosys Software was acquired by BEA Systems, Inc. Now thesystem is part of the BEA's AquaLogic DSP, formerly known as Liquid Data, an XQuery-based Enterprise Information Integration (EII) solution that takes a data service layer-basedapproach to data integration.
5.3.3 XQuare FusionXQuare (XQuery Advanced Runtime Environment), previously known as XQuark,is a set of open source Java modules for extending J2EE platforms with XML-based, hetero-geneous information integration capabilities. Instead of being an API, XQuare is designed
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to be embedded into Java-based Web or application servers, and rely on the standard J2EEservices for exchanging, processing and publishing XML information. The goal of XQuare ispresenting to applications a single, uniform XML view of the di�erent data sources, whichcan then be queried with XQuery to produce XML documents. Accessible data sourcesinclude relational databases, XML documents, Web Services and any XQuery-enabled datasource and JCA connectors. Last known release was in September 10, 2005.



Chapter 6
Semantic Integration
6.1 Ontologies and Data Integration

The Data Integration discipline has studied during almost two decades mecha-nisms to allow several autonomous data sources to interoperate. The main limitation oftraditional data integration systems has been the impossibility to automatically establishsemantic mappings between the data schemas of the di�erent sources. Schemas obtainedfrom traditional data models (e.g. relational and XML) are built with a reduced set ofsimple and meaningless constructs and lots of human readable labels. These kinds of datastructures are designed to being interpreted just for humans, and automatically establishingsemantic mappings among them becomes a very di�cult and imprecise task.The recent success of not so recent semantic-rich modelling languages under theglobal name of The Semantic Web Initiative has raised a new opportunity and challengeto the data integration community. Ontologies, instead of schemas, are the new way torepresent information domains. They are built with a rich set of meaningful constructsprovided by the Semantic Web modelling languages like RDFS [126] and OWL [112].Because ontologies are built with standard semantic operators, a software agentcould try to perform some automatic interpretations of the represented meaning. Thiscould allow for example to automatically entail the semantic mappings between two di�erentontologies. However, the set of standard semantic operators are still very small, and todayontology modelling involves a lot of ambiguous natural-language labels. Obviously, as greateris the set of standard semantics of an ontology, easier will be its automatic processing bysoftware agents. This is the reason of the proliferation of initiatives to standardize anUpper Ontology, like the IEEE SUMO (Suggested Upper Merged Ontology) [105], DOLCE(Descriptive Ontology for Linguistic and Cognitive Engineering) [44] or Cyc/OpenCyc [92].While the �ght for a standard semantic basis remains at the top level, at the domainlevel ontology standardization is not the goal. For many knowledge domains (anatomy, webdirectories, digital rights management, music, etc.), several overlapping ontologies have beenengineered. Each is a di�erent abstraction and representation of the same or similar concepts.To enable collaboration within and across information domains, software agents require thesemantic alignment (mapping) of the di�erent formalisms. It is the same old problem ofSchema Mapping from Data Integration, but now with new promising expectatives and
36
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under the name of Ontology Alignment. This topic has attracted a lot of interest recently,even being object of an international contest, The Ontology Alignment Evaluation Initiative2005 [108].
6.1.1 Semantic integration challenges[106] enumerates the three main dimensions of semantic-integration research:
Mapping discovery (ontology alignment)How do we de�ne the similarity between two ontology entities. And, given twoontologies, how do we �nd the similarities between them.
Declarative formal representations of mappingsOnce we have found the mappings between two ontologies, how do we representthis new knowledge to enable reasoning with mappings.
Reasoning with mappingsWhat do we do with the obtained mappings, how we use them to answer queries,how we face their uncertainty.
6.2 Ontology AlignmentOntology alignment (or matching) is the operation that takes two ontologies andproduces a mapping between elements of the two graphs that correspond semantically toeach other. Several ontology alignment algorithms have been provided like PROMPT [107],GLUE [32], Ontrapro [6], OLA [37] or FOAM [36].De�nition 6.2.1. (from [35]) Given two ontologies O and O0, an alignment between O andO0 is a set of correspondences (i.e., 4-uples): < e; e0; r; n > with e 2 O and e0 2 O0 beingthe two matched entities, r being a relationship holding between e and e0, and n expressingthe level of con�dence [0..1] in this correspondence.It is typically assumed that the two ontologies are described within the same knowl-edge representation language (e.g. OWL [112]). Here I will focus on automatic and au-tonomous alignment, but other semi-automatic and interactive approaches exist.Example 6.2.1. Let's see simple example. Figures 6.1 and 6.2 present two ontologies,OA and OB respectively.A possible alignment A1 (to simplify, the relation is always "=" and the con�denceis always 1.0) is de�ned as follows:
<a:Human,b:People,=,1.0><a:Director,b:Manager,=,1.0><a:Staff,b:Employee,=,1.0><a:directs,b:supervise,=,1.0>
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Figure 6.1: The RDF graph of OA

Figure 6.2: The RDF graph of OB
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Another reasonable alignment A2:

<a:Human,b:People,=,1.0><a:Director,b:Manager,=,1.0><a:Staff,b:Sales Employee,=,1.0><a:directs,b:supervise,=,1.0>And an obviously wrong alignment A3:
<a:Human,b:Manager,=,1.0><a:Director,b:Employee,=,1.0><a:directs,b:Sales Employee,=,1.0>
6.2.1 Alignment MethodsThe ontology alignment problem has an important background work in discretemathematics for matching graphs [58][114], in databases for mapping schemas [122] and inmachine learning for clustering structured objects [19]. It is closely related to the conceptof similarity, an inverse measure of the distance between entities.Most part of ontology alignment algorithms rely on some semantic similarity mea-sure, used to deduce that two di�erent data items correspond to the same information.Semantic similarity between ontology entities (within the same ontology or between twodi�erent ones) may be de�ned in many di�erent ways. For example, it may be de�ned interms of topological patterns. Given a pair of entities, c and c0, a traditional method formeasuring their similarity consists of calculating the distance between them in the graph.The shorter this distance, the higher the similarity. This is commonly known as the edgecounting method.Topological similarity methods have evolved from this simple idea, but there existother similarity methods based e.g. in information theory . The recently celebrated Ontol-ogy Alignment Evaluation Initiative 2005 [108] has shown that best alignment algorithmscombine di�erent similarity measures.
6.2.2 Similarity measuresThere are many di�erent ways to de�ne the similarity between ontologies. [37]provide a classi�cation (updating [122]):

� terminological (T) comparing the labels of the entities; stringbased (TS) does theterminological matching through string structure dissimilarity (e.g., edit distance);terminological with lexicons (TL) does the terminological matching modulo the rela-tionships found in a lexicon (i.e., considering synonyms as equivalent and hyponymsas subsumed);� internal structure comparison (I) comparing the internal structure of entities (e.g.,the value range or cardinality of their attributes);
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� external structure comparison (S) comparing the relations of the entities withother entities; taxonomical structure (ST) comparing the position of the entities withina taxonomy; external structure comparison with cycles (SC) an external structurecomparison robust to cycles;� extensional comparison (E) comparing the known extension of entities, i.e. the setof other entities that are attached to them (in general instances of classes);� semantic comparison (M) comparing the interpretations (or more exactly the mod-els) of the entities.

This taxonomy is inherited from the study of similarity in relational schemas, andIMHO can be simpli�ed to three categories when being applied to ontologies: Lexical,Topological and Extensional.
Lexical approachesLexical (or terminological) similarity is based in applying information retrievaltechniques to match labels of entities. Labels are written in natural language and constituteone of the main sources of ambiguity in an ontology. However, all best algorithms of theOntology Alignment Evaluation Initiative 2005 make use of lexical similarity measures attheir �rst stages.
Topological (structural) approachesThe initial works around ontologies just focus on is-a constructs (taxonomies). The�rst ways to evaluate semantic similarity in a taxonomy were based only on the topologyof the concept tree. Works like [121] and [90] measure the distance between the di�erentnodes. The shorter the path from one node to another, the more similar they are. Givenmultiple paths, one takes the length of the shortest one. [148] �nds the path length to theroot node from the least common subsumer (LCS) of the two concepts, which is the mostspeci�c concept they share as an ancestor. This value is scaled by the sum of the pathlengths from the individual concepts to the root. [89] �nds the shortest path between twoconcepts, and scales that value by the maximum path length in the is�a hierarchy in whichthey occur.However, the problem of this approach is that it relies on the notion that nodesin the taxonomy represent uniform distances. Actually, there can be a big variability inthe distance covered by a single taxonomic node, specially when certain sub-taxonomies aremuch denser than others (e.g., biological categories).Recently, new works like [20] de�ne more sophisticated topological similarity mea-sures, based on graph matching from discrete mathematics. These new graph-based mea-sures suit the particularities of the new ontologies, built with more expressive languages likeOWL [112]. Their use by some of the best alignment algorithms of the Ontology AlignmentEvaluation Initiative 2005 (e.g. [64]) arises some expectation over this way of measuring thesimilarity of two concepts.
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Extensional approachesIn some cases we know only the labelled structure of an ontology. However, inother situations we can also have some information about the instances corresponding tothe classes and properties de�ned in the ontology (its extension). If these instances areenough representative, they can o�er some relevant information to the similarity measure-ment. Extensional or corpusbased measures are related to statistics, Machine-Learning andInformation Theory.One of the oldest extensional measure is res, de�ned by Resnik in 1995 [129]. It wasfollowed by two measures, lin [94] and jcn [79], that augment the information content of theLCS of two concepts with the sum of the information content of the individual concepts. [94]scales the information content of the LCS by this sum, while [79] subtracts the informationcontent of the LCS from this sum.More recent information-theoretic approaches are [30], [32] (GLUE) and [67]. Theyare essentially based in the concept of joint probability distribution de�ned in [38]. Thisdistribution consists of the four probabilities: P (A;B), P (A;B), P (A;B), and P (A;B). Aterm such as P(A,B) is the probability that a randomly chosen instance from the universebelongs to A but not to B, and is computed as the fraction of the universe that belongs toA but not to B.Practical uses of extensional information-theoretic similarity measures exist, liketheir application to Functional Genomics [8].
6.3 GMO. A structure-based semantic similarity algorithmOne of the best behaving algorithms of the Ontology Alignment Evaluation Initia-tive 2005 was Falcon-AO. Among other tools it makes use of a lexical similarity resolver andan interesting structural similarity strategy called GMO (Graph Matching for Ontologies[64]). GMO is interesting because it is a purely automatic algorithm for �nding struc-tural similarities between OWL-DL ontologies, and because it obtained excellent results intests where lexical labels where obfuscated (to evaluate the behaviour of structural similaritystrategies). Among other particularities, GMO simpli�es the alignment of ontologies de�nedwith rich modelling languages like OWL-DL because, instead of managing each relationship(is-a, part-of,...) speci�cally, it makes use of the underlying directed bipartite graph of theparticipating ontologies.
6.3.1 Graph similarity calculation algorithmGMO is based on the structural similarity calculation described in [20], that isbased on the following updating equation to compute the similarity matrix:
De�nition 6.3.1. Xk+1 = BXkAT +BTXkA; k = 0; 1; :::where Xk is the nB �nA similarity matrix of entries xij at iteration k, and A and B are theadjacency matrices of GA and GB respectively. [20] demonstrates that the normalized evenand odd iterations of this equation converge.
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Let's decompose this basic equation for a better understanding of its behaviour.Once we have a similarity matrix between GB and GA, we can obtain the relationships be-tween entities of GB and entities of GA by using the following formula:

relba = BXkThis new matrix describes the elements of GB in terms of their relationship with the el-ements of GA. We can compare this matrix with A, that describes the elements of GA interms of their relationship with themselves:
simba = relbaAT
The resulting matrix is already a similarity matrix between GB and GA, but it describesonly the relationship between GB and GA w.r.t. how elements of GB relate to elements ofGA. We must add the equivalent formulas and we obtain the �nal equation:
Xk+1 = BXkAT +BTXkA; k = 0; 1; :::
That can be seen as:
Xk+1 = simba + simabWhere:
relba = BXk
simba = relbaAT
relab = XkA
simab = BT relab

Example 6.3.1. Let's see a simple example. Take the following trivial graphs GA and GB.
Note that initially the similarity matrix X0 is set to 1. If we start the processalready knowing the similarity values of some pair of entities, we can modify this matrixaccordingly, and keep the known values between iterations. Let's calculate the similaritybetween GA and GB:

A =
0@ 0 0 01 0 00 1 0

1AB =
0@ 0 0 01 0 00 1 0

1AX0 =
0@ 1 1 11 1 11 1 1

1A
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Figure 6.3: GA (left) and GB (right)
X1 = BX0AT +BTX0A =

0@ 1 1 01 2 10 1 1
1A

X1 = X1=frobeniusNorm(X1) =
0@ 0; 316 0; 316 00; 316 0; 632 0; 3160 0; 316 0; 316

1A
Iterating the algorithm 22 times it converges to the following result:

X22 =
0@ 0; 577 0 00 0; 577 00 0 0; 577

1A
So, as expected the entities a0, b0 and c0 (rows) are similar to a, b and c (columns) respectively.
6.3.2 GMO adaptation of the graph similarity algorithm to OWL-DLGMO takes the graph structural similarity calculation of [20] and adapts it toOWL-DL ontologies.De�nition 6.3.2. (from [64]) Let G0A be the RDF directed labelled graph of OA. Thedirected bipartite graph of ontology OA, denoted by GA, is a derivation of G0A by replacingthe "s" (subject) edges with edges pointing to statement nodes, and the "p" (predicate) and"o" (object) edges with edges pointing from statement nodes. The adjacency matrix of GAis called the matrix representation of ontology OA, denoted by A.Because of the di�erent nature of the ontology entities (classes, properties, state-ments, shared entities, etc.) it is convenient to give the input matrices the following blockstructure,

A =
0@ 0 0 AES0 0 ASAE AOP 0

1A
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Figure 6.4: Comparison between an RDF graph (left) and its correspondant directed bipar-tite graph (right).
B =

0@ 0 0 BES0 0 BSBE BOP 0
1A

� AES and BES represent the connections from external entities to statements in A andB respectively.
� AS and BS represent the connections from internal entities to statements in A and Brespectively.
� AE and BE represent the connections from statements to external entities in A andB respectively.
� AOP and BOP represent the connections from statements to internal entities in A andB respectively.

External entities are usually those constructs de�ned by RDFS or OWL, built-indata types and literals.
As said before GMO uses the updating equation from [20]:
Xk+1 = BXkAT +BTXkA; k = 0; 1; :::

The matrix Xk includes also the similarity related to statements and externalentities. It can be decomposed as follows:
Xk =

0@ EBA 0 00 Ok 00 0 Sk
1A

� EBA represents the similarity among external entities.
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� Ok represents the similarity among internal entities.
� Sk represents the similarity among statements.
� Other similarities are kept to zero (e.g. between statements and internal entities)

Initially Sk = 1, Ok = 1, and EBA is set in advance as an identity matrix becauseexternal entities are supposed to be the same. Take for example only three external entities,subClassOf, range and domain. Their crossed similarity matrix would be:
EBA =

0@ 1 0 00 1 00 0 1
1A

For each iteration Sk and Ok are recalculated and normalized using the sum ofthe frobenius norm of the three matrices (EBA is kept unchanged). Finally Sk and Ok arenormalized again but with the 2-norm.Some improvements of the algorithm described in [64] include a further classi�cation ofentities (in classes, properties and instances) that improves the scalability and performance.
6.3.3 Concept of similarity in GMOThe traditional de�nitions of structural similarity are usually based on the distanceamong nodes. This concept of similarity is inherited from the graph matching problem fromdiscrete mathematics. However, in a knowledge representation scenario, the same or similarinformation can be represented taking a wide range of di�erent shapes. So, simple graph-based similarity can arise totally arbitrary results. Intuitively, similarity of two conceptscan be de�ned in terms of how these two concepts relate to the world they share. Two redobjects are similar w.r.t. the colour dimension, but their similarity cannot be determined ina general way.Because GMO is based in the directed bipartite graph of the participating ontolo-gies, some modelling constructs like subClassOf, range or domain appear as shared externalentities in the input graphs. Initially, GMO measures similarity of entities comparing theway they relate to these shared entities. As the algorithm iterates (structural similarityalgorithms are always iterative), entities appearing to be similar can be also taken as a ref-erence to �nd similarities between other entities 1. This is a more rigorous and less arbitraryconcept of similarity than those based on node distance. It compares how entities relate tocommon concepts, so it is closer to the human interpretation process, in which the mean-ing of something is entailed from how it relates to things for which the meaning is alreadyknown.1[20] demonstrates that the algorithm converges
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6.3.4 An exampleExample 6.3.2. Let's see a simple example. Take the following graphs G0A and G0B.

Figure 6.5: G0A

Figure 6.6: G0B
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Figure 6.7: GA

Figure 6.8: GB
Iterating the algorithm 22 times it converges to the following result (Rows: b:Teacher,b:OverseaStudent, b:People, b:Other, b:Student; Columns: a:Graduate, a:Scholastics, a:PhdStudent,
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a:Supervisor):

X12 =
0BBBB@

0; 049 0 0; 014 0; 1060; 013 0 0; 02 0; 0130; 051 0; 125 0 00; 018 0 0; 014 0; 0180; 145 0; 029 0; 014 0; 049

1CCCCA
The similarity between b:teach and a:supervise is 0,446.After normalization:

X12 = X1=maxV alue(X1) =
0BBBB@

0; 336 0 0; 098 0; 730; 09 0 0; 134 0; 090; 353 0; 863 0 00; 127 0 0; 098 0; 1271 0; 201 0; 098 0; 336

1CCCCA
The similarity between b:teach and a:supervise is 1.So, as expected the entities a0, b0 and c0 (rows) are similar to a, b and c (columns) respectively.
6.4 Upper OntologiesSome recent and not so recent initiatives pursue to develop a general-purpose on-tology (a.k.a. upper ontology), formalizing concepts such as processes and events, time andspace, physical objects, and so on. These upper ontologies aim to o�er some basic andstandard meaning building blocks to allow domain-speci�c ontologies extend them.As noted by [106], this scenario is di�erent from the traditional data integrationscenario, where a global schema (a common view on di�erent local schemas) is usuallygenerated once the underlying local schemas are already known. User queries are writtenin terms of the global schema, and the integration problem reduces to 1) Map the localschemas to the global schema (using the Global As View (GaV) or the Local As View (LaV)approaches) and 2) Answer the query using the de�ned mappings.An upper ontology does not aim to be a view over all its derived domain-ontologies,nor pretending standard queries being written in its terms. An upper ontology is usuallymore general, since it de�ne constructs for ontologies yet to be developed. However, it servesalso to the data integration goals, sice increasing the number of standard semantics it alsoimproves the con�dence of Ontology Alignment algorithms.Some upper or top-level ontologies are SUMO [105], DOLCE [44] and Cyc/OpenCyc[92]. Very related to this idea -despite it is not strictly an upper ontology- we �nd also Word-Net [95].
6.4.1 IEEE SUMOSUMO (Suggested Upper Merged Ontology) [105] is an e�ort by the IEEE StandardUpper Ontology Working Group aimed at developing a standard upper ontology that will
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promote data interoperability, information search and retrieval, automated inferencing, andnatural language processing.. SUMO tries to standardize a hierarchy of some basic groundconcepts like Object, ContinousObject, Process, Quantity or Relation.
6.4.2 DOLCEDOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) [44] is aformal foundational ontology developed as an upper ontology in the WonderWeb project.DOLCE aims to provide a set of common semantics to achieve interoperability among on-tologies related to WonderWeb. According to [44], it aims at capturing ontological categoriesunderlying natural language and human common-sense.
6.4.3 WordNetWordNet is an online lexical reference system, developed at Princeton University.English nouns, verbs, adjectives and adverbs are organized into synsets (synonym sets),each representing one underlying lexical concept that is semantically identical to each other.Despite of WordNet does not de�ne itself as an ontology, synsets are cross-linked throughrelationships such as synonymy and antonymy, hypernymy and hyponymy (Subclass-Of andSuperclass-Of) meronymy and holonymy (Part-Of and Has-a). So, we can consider WordNetas a special kind of upper ontology.
6.4.4 Cyc/OpenCycDoug Lenat's Cyc (from enCYClopedia) Project [92] was begun in 1984 as anattempt to build a universal expert system. The project resolved basic questions aboutrepresenting time, substances, perception, etc., and the original emphasis on frames shiftedtowards �rst-order predicate calculus instead. The initial idea of a uni�ed knowledgebasewas replaced with the idea of many partially-independent micro-theories.Cyc's main goal was constructing a foundation of basic common sense knowledge, asemantic substratum of terms, rules, and relations. It intended to provide a layer of meaningthat can be used by other programs (such as domain-speci�c expert systems). Nowadays itsopen source version, OpenCyc, is still progressing, and contains over 47,000 concept termsand over 300,000 facts.



Chapter 7
Current Challenges in Data
integration

Data integration has evolved in parallel to computer networks and computer paradigms.First data integration problems were related to the evolution of local area networks. Thesuccess of Internet and the WWW fed a new generation of problems, and solutions for someof them. Now XML, the Semantic Web, and the P2P paradigm arise new challenges for thisdiscipline.
7.1 Semantic Mappings Generation: Schema matching andOntology Alignment

Most part of approaches of data integration (GAV, LAV and GLAV) rely on thesemantic mappings between a set of di�erent data sources and a mediated schema. Tradi-tionally these mappings have been written manually, being this the main drawback of dataintegration systems. Manual mapping generation is a costly and error-prone task, and -whatis worst- it entails serious maintainability problems.For the moment, complete automation of the generation of semantic mappingsseems not to be possible. This task entails the complete understanding of the semanticsof the source schemas or ontologies, that surpasses all known AI techniques. However, thetopology and lexical information of the schemas and ontologies, or even their related data,provide clues that can serve to help the process of generation and maintainment as we haveseen in the chapter about Semantic Integration. Now, the focus has turned to OntologyAlignment, because ontologies have potentially better possibilities for semantic integrationthan schemas. However, schema integration research has achieved good results these lastyears, like the semi-automatic approach in [122], or the work of A. Doan [31], whose Ph.D.thesis "Learning to Match the Schemas of Databases: A Multistrategy Approach" won the2003 ACM Doctoral Dissertation Award.
50
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7.2 Answering queries using ontology alignments

Data integration aims at giving users and applications the illusion of interactingwith one single information system. This interaction usually takes the form of a query thatthe user issues to the system, which it must process and return a satisfactory answer. Inontology-based information systems, user queries are translated to queries or other retrievaltasks over the ABox de�ned1.One of the main goals of Ontology Alignment is allowing semantic informationsystems to answer queries independently of the ontology from which the query terms havebeen taken. The common way to proceed in most part of existing systems is to materializethe obtained mappings into new statements (e.g. owl:equivalentClass), and then let theinference engine do its task. However, not all the mappings have the same level of con�dence,and deciding which to include and which not becomes a problem that is usually solvedheuristically.

Figure 7.1: Work�ow of the query answering process
7.2.1 Uncertain mappingsIn traditional semantic information systems, if a statement does not satisfy theexact constraints of a query, then it is not included in the result. However, there aresome situations when there are some degree of uncertainty over an statement. One of thissituations could be an ontology alignment process, which returns a set of mappings withtheir respective level of con�dence. Traditional description languages (e.g. OWL) or querylanguages (e.g. SPARQL), do not provide mechanisms to face this problem. However, someinitiatives like Fuzzy OWL [141] or PR-OWL [27] are now working to include certainty inthe Semantic Web.

1Abox and Tbox are used to describe two di�erent types of statements in ontologies. Tbox statementsdescribe a controlled vocabulary (e.g. a set of classes and properties) while Abox are statements about thatvocabulary (instances).
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PR-OWL (probabilistic OWL)PR-OWL [27] is a novel ontology description language that extends OWL providingconstructs for modelling uncertainty in ontologies. It allows moving beyond the currentlimitations of deterministic classical logic to a full �rst-order probabilistic logic. PR-OWLit is not limited to extending the attribute-value model by including syntax to describeprobabilities, it goes beyond by allowing to represent complex Bayesian probabilistic models.PR-OWL has Multi-Entity Bayesian Networks (MEBN) as its underlying logical basis. Thiskind of networks combine Bayesian probability theory with classical First Order Logic.
f-OWL (fuzzy OWL)Fuzzy OWL or simply f-OWL [141] is a fuzzy extension of OWL DL by addingdegrees to OWL facts. Despite that the only syntactic change required is the addition ofa membership degree, that ranges from 0 to 1, the semantics of f-OWL must be rede�ned.[141] describes the new semantics and also f-SHOIN as an extension of the SHOIN DL.
7.3 XML-RDF semantic integrationInteroperability among autonomous XML schemas has been one of the recent chal-lenges of data integration. The success of the Resource Description Framework (RDF) [124]and its related technologies (RDFS [126], OWL [112]) has refuelled the problem by, on onehand, raising the necessity to establish interoperability mechanisms between XML schemasand RDF schemas (RDFS or OWL), and, on the other hand, opening the possibility touse RDFS/OWL ontologies as a solution for the semantic mapping problem among XMLschemas. One of the contributions of this thesis is strongly related by the research trend thattries to exploit the advantages of an XML-to-RDF mapping [54][65][5][84][87][117][132]. TheXML-to-RDF mapping has been faced traditionally from what is known as the structure-mapping [97], that de�nes a direct way to map XML schema entities to RDF classes. Ourcontribution consists on exploring a di�erent approach, the mapping of the general XMLmodel to RDF. A more deep analysis of the related state of the art can be found in therelated work section of Chapter 9.
7.4 Querying highly volatile and restricted Web data sourcesThe classical problems of data integration have well-known solutions like the GAVand LAV approaches or the MiniCon [119] and bucket [56] algorithms. However, the evo-lution of web-related technologies like XML and RDF, and the proliferation of new datasources and wrapper technologies suggest the reformulation of the old problems and solu-tions. One of the contributions of this thesis is related to using XQuery [154] in a LAV-basedapproach to query a set of spanish online newspapers. Recently Thomas Kabisch and MattisNeiling [81] have used a very similar strategy but using RDF and RDQL to query data re-lated to research papers from the best-known web sources. I borrow from them the name of
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Query Tunneling to de�ne this trend, which in fact is a simpli�cation of the LAV approachbut more appropriate for the very restricted web data interfaces.
7.5 Data integration in P2PPeer-to-peer (P2P) architectures are becoming popular. They update the client-server model by eliminating the necessity of having central servers, reducing communicationand storage costs and improving reliability. Some works have suggested that having a centralschema for data is not a good idea in a P2P architecture. We can �nd an example of thisin the Peer-data management systems (PDMS) [4][53][18]. In a PDMS participants do notneed to agree on a central data schema, they can de�ne their local semantic mappings to themost convenient peer, and queries can be answered by chaining mappings. This approachimproves �exibility, allowing each peer to query the system using its own schema.In [52] Alon Y. Halevy et al. described Piazza: Data Management Infrastructurefor Semantic Web. Piazza is a PDMS based on the use of XML and XQuery but allowsalso the integration of RDF. In [4] are described some of the problems related to PDMS,focusing on data placement (also related to the Piazza system). They demonstrate thatan intelligent materialization of views (replication) in some nodes in the network allows toimprove performance and availability.In [18] Philip A. Bernstein et al. described local relational models as a formalismfor mediating between di�erent peers in a PDMS, and an algorithm for answering queriesusing the formalism. In [103] is described the Edutella system, focused in the XML-RDF in-teroperability. It aims to provide query and storage services for RDF, but with the ability touse heterogeneous underlying sources. The RDF queries are reformulated to the underlyingstorage formats and query languages using canonical mappings (Edutella does not employpoint-to-point mappings between nodes).The Chatty Web [1] describes protocols for exchanging semantic mapping informa-tion in a decentralized fashion. Schemas and mappings are dynamically spread through thenetwork by a gossip mechanism, and queries are routed and mapped using this information.Hyperion [82] faces the problem of mapping objects from di�erent sources. It focuses on theuse of relational tables and provides a theoretical model.Finally, PeerDB [104] avoids schema mappings taking a di�erent approach basedon Information Retrieval algorithms for query reformulation. Each peer and each one of itsattributes is associated with a set of keywords. Given a query over a peer schema, PeerDBreformulates the query into other peer schemas by matching the keywords associated withthe attributes of the two schemas.



Chapter 8
Problem Statement

This thesis faces two speci�c problems within the general and old research topic ofData Integration. In general, integration of multiple data sources aims at giving a uni�edview over a set of pre-existent data. This entails to allow users a uniform access over thedata without having to deal with the particularities of each source. Achieving this ambitiousgoal implies solving several problems that have de�ned di�erent research topics.
8.1 Problem addressed 1: Semantic integrationSemantic heterogeneity is one of the key challenges in integrating and sharing dataacross disparate sources. Semantics refer to meaning, in contrast to syntax that refers tostructure. In the database area, semantics can be regarded as people's interpretation of dataand schema items according to their understanding of the world in a certain context. Se-mantic integration is the research area focused in reconciling data from autonomous sourcesusing ontologies or other semantic-based tools.This thesis aims to contribute to this research trend by providing solutions to twoproblems:

1. XML-RDF Semantic Integration: How to take pro�t from ontologies to integrate XMLdata from disparate schemas? How to query XML data related to multiple schemasbut also to one or more ontologies? It is possible to do this and keep using conventionalXML query languages like XPath or XQuery?2. OWL Ontology Alignment: Can a rigorous and scalable semantic similarity measurebe de�ned for OWL ontologies? Can an ontology alignment process successfully workdirectly over the RDF labeled directed graph, or it is better to process the equivalentbipartite graph?
8.2 Problem addressed 2: Heterogeneous query interfacesWithin the old data integration LAV (Local-As-View) approach, some solutionswere provided to the problem of how an initial query, targeting a logical mediated schema,

54



Chapter 8: Problem Statement 55
must be translated into queries over a set of di�erent autonomous data sources. The oldsolutions, generally complex, were based on Datalog, and focus on answering expressivequeries over heterogeneous but rich query interfaces. The evolution of the Web and itsrelated technologies, like XML, allows to reformulate this old problem, that is the basis ofthe second main contribution of this work:

1. Can XML-technologies and a strategy based on the reprocessing of results be a prac-tical solution for web-based data integration systems? How this approach can beinstantiated to develop speci�c applications?
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Part II
Heterogeneous Data Models and
Schemas: Semantic Integration
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Chapter 9
XML Semantic Integration: A Model
Mapping Approach

This work describes 1) Why an ontology-aware XPath processor (or an XQueryengine that makes use of it) can be a natural and powerful tool for processing metadata,2) How a processor with such behaviour has been implemented using Description Logics(materialised in RDFS and OWL constructs) and 3) A real application scenario in theDigital Rights Management (DRM) domain. We present the architecture of a schema-awareand ontology-aware XPath processor that acts over an RDF mapping of XML. TranslatingXML documents to RDF permits taking pro�t from the powerful tools of Description Logicsallowing XML documents interoperate at the semantic level. We test our approach inthe Digital Rights Management (DRM) domain, where some organizations are involved instandardization or adoption of rights expression languages (REL). We explore how a schema-aware and ontology-aware XPath/XQuery processor can be used in two of the main RELinitiatives (MPEG-21 REL and ODRL).
9.1 Already published workLarge portions of this chapter have appeared in the following papers:Tous R., García R., Rodríguez E., Delgado J. �Architecture of a Semantic XPathProcessor. Application to Digital Rights Management�, 6th International Con-ference on Electronic Commerce and Web Technologies EC-Web 2005. August2005 Copenhagen, Denmark. Lecture Notes in Computer Science, Vol. 3590(2005), pp. 1-10. ISSN: 0302-9743Tous R., Delgado J. �A Semantic XPath processor�. InterDB 2005 InternationalWorkshop on Database Interoperability. ELSEVIER's Electronic Notes in The-oretical Computer Science 2005Tous R., Delgado J. �RDF Databases for Querying XML. A Model-mappingApproach�. DISWeb 2005 International Workshop Data Integration and the Se-mantic Web. Procedings of the CAiSE'05 Workshops. Faculdade de Engenhariada Universidade do Porto. ISBN 972-752-077-4 Pages: 363 - 377
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Tous R., Delgado J. �Using OWL for Querying an XML/RDF Syntax�. WWW'05:Special interest tracks and posters of the 14th international conference on WorldWide Web. Chiba, Japan. Pages: 1018 - 1019. ACM Press 2005. ISBN:1-59593-051-5. http://doi.acm.org/10.1145/1062745.1062847

9.2 IntroductionThe most part of XML-based applications make use of one or more XML schemasfor instance validity check. In addition to de�ning a valid structure for the documents,generally the schemas de�ne also inheritance hierarchies among types and element names (torationalize the writing of the schemas and the instances respectively). However, sometimesit is necessary to consider this information not only for validation but also when evaluatingqueries over the XML data. Today it is also becoming common the use of RDFS/OWLontologies to de�ne semantic connections among application concepts. In some cases, theontologies de�ne relationships that are relevant for query evaluation (equivalences amongnames, subclassing, transitiveness, etc.). Unfortunately, all this structural and semanticknowledge is hard to access for developers, because it requires a speci�c treatment, likede�ning multiple extra queries for the schemas or using complex RDF tools to access theontologies information.To overcome this situation we present the architecture of a schema-aware andontology-aware XPath/XQuery processor. The processor can be fed with an unlimitedset of XML schemas and RDFS/OWL ontologies and will resolve the queries taking inconsideration the structural and semantic connections described in them. To achieve thisgoal, the processor acts over an RDF mapping of XML, contributing to a recent researchtrend that de�nes an XML-to-RDF mapping allowing XML documents interoperate at thesemantic level. We use a model-mapping approach to represent instances of XML and XMLSchema in RDF. This representation retains the node order, in contrast with the usualstructure-mapping approach, so it allows a complete mapping of all XPath axis.This chapter is structured in three main blocks. First, we describe some relatedwork to help identifying the problem and the relevance of the contribution. Second, wedescribe the architecture of the semantic XPath processor and some implementation details.Third, we apply our approach to a plausible usage scenario, the Digital Rights Management(DRM) domain. We explore how an XPath/XQuery processor with semantic behaviour canbe used for processing licenses from two of the main Rights Expression Language (REL)initiatives (MPEG-21 REL and ODRL).
9.3 Related work
9.3.1 The query rewriting approachThere is a previous work that also pursues the target to achieve a semantic be-haviour for XPath/XQuery. This approach is described in [91], and also shares with oursthe translation from XML Schemas to OWL. Because the authors do not attempt to providea new XQuery implementation, they use the obtained ontology as a guidance to rewrite the
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original semantic XQuery instance (they call it Semantic Web Query Language or SWQL)to a conventional XQuery instance.The di�erence between this approach and ours is that our work does not describea new query language and does not need a translation between the semantic queries andXPath/XQuery expressions. We have developed a new XPath processor that directly manip-ulates conventional XPath instances but taking in consideration the semantic relationshipsde�ned in the schemas and/or ontologies and related to the names involved in the query. Theprocessor can be embedded into a conventional XQuery processor to obtain the semanticbehaviour also for XQuery.
9.3.2 Other related work. Model-mapping vs. Structure-mappingThe key element of our work is the mapping of the XML and XML Schema modelsto OWL. The origins of this approach can be found in a research trend that tries to exploit theadvantages of an XML-to-RDF mapping [54][65][5][84][87][117][132]. However, the conceptsof structure-mapping and model-mapping are older. In 2001, [97] de�ned these terms todi�erentiate between works that map the structure of some XML schema to a set of relationaltables (element names become table names) and works that map the XML model to ageneral relational schema (a small number of tables representing elements, atributes andrelationships, element names become just �eld values) respectively.More recently, [84] takes a structure-mapping approach and de�nes a direct way tomap XML documents to RDF triples ([65] classi�es this approach as Direct Translation).[54], [65], and [5] take also a structure-mapping approach but focusing on de�ning semanticmappings between di�erent XML schemas ([65] classi�es their own approach as High-levelMediator). They also describe some simple mapping mechanisms to cover just a subsetof XPath constructs. Other authors like [87] or [117] take a slightly di�erent strategy(though within the structure-mapping trend) and focus on integrating XML and RDF toincorporate to XML the inferencing rules of RDF (strategies classi�ed by [65] as EncodingSemantics). Finally it's worth mention the RPath initiative [132], that tries to de�ne ananalogous language to XPath but for natural (not derived from XML) RDF data (this lastwork doesn't pursue interoperability between models or schemas).
9.4 Architecture of the semantic XPath processor9.4.1 OverviewFigure 9.1 outlines how the schema-aware and ontology-aware XPath processorworks. The key issue is the XML-to-RDF mapping, already present in other works, butthat we face from the model-mapping approach. In contrast with the structure-mappingapproach, that maps the speci�c structure of some XML schema to RDF constructs, we mapthe XML Infoset [68] using RDFS and OWL axioms based on the already existing W3C'sRDFS informative representation [147]. This allows us to represent any XML documentwithout any restriction and without losing information about node-order. We use the sameapproach with XSD, obtaining an RDF representation of the schemas, as we will explainlater. Incorporating alternative OWL or RDFS ontologies is straightforward, because they
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Figure 9.1: Semantic XPath processor architecture overview
are already compatible with the inference engine. In the �gure we can see also that an OWLrepresentation of the XML model is necessary. This ontology allows the inference engine tocorrectly process the di�erent XPath axis and understand how the XML elements relate tothe di�erent XSD constructs.Example 9.4.1. Let us see a simple example. Take the following XML document describingtwo movies:
<movies><movie id="m1"><title>Blade Runner</title><year>1982</year><director id="d1"><name>Ridley Scott</name></director></movie><movie id="m2"><title>Paris, Texas </title><year>1984</year><director id="d2"><name>Wim Wenders</name></director></movie></movies>And also its attached XML schema describing the valid structure for all "movies"documents:
<xs:schema><xs:element name="movies"><xs:complexType><xs:sequence><xs:element name="movie"><xs:complexType>
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<xs:sequence><xs:element name="title"/><xs:element name="year"/><xs:element name="director"><xs:complexType><xs:sequence><xs:element name="name"/></xs:sequence><xs:attribute name="id"/></xs:complexType></xs:element><xs:attribute name="id"/></xs:complexType></xs:element></xs:sequence></xs:complexType></xs:element></xs:schema>

The object-oriented nature of some XML Schema constructs allows using them toincrease the interoperability of applications or to �x interoperability problems in an elegantway. For example, the substitutionGroup inheritance mechanism can be used to bind thenames of two di�erent XML languages. The previous schema de�nes the elements movies,movie, title, year, etc. It could be interesting in some context to have the possibility to writethe element and attribute names in a language di�erent from English. We can generate aschema that binds the di�erent names from the Spanish version to the (master) Englishversion:
<xs:schema><xs:element name="películas" substitutionGroup='movies'><xs:complexType><xs:sequence><xs:element name="película" substitutionGroup='movies'><xs:complexType><xs:sequence><xs:element name="título" substitutionGroup='title'/><xs:element name="año" substitutionGroup='year'/><xs:element name="director" substitutionGroup='director'><xs:complexType><xs:sequence><xs:element name="nombre" substitutionGroup='name'/></xs:sequence><xs:attribute name="id"/></xs:complexType></xs:element>
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<xs:attribute name="id"/></xs:complexType></xs:element></xs:sequence></xs:complexType></xs:element></xs:schema>

Now, using our schema-aware XPath processor, if we ask for /movie/country wewill obtain the same as for the /pelicula/pais (independently if the XML instance is writtenin English or in Spanish). So, we can develop applications that are not tied to a particularschema but to an global one. This feature allows using XML schemas (or also OWL on-tologies) to de�ne semantic relationships between other XML schemas or ontologies, and toissue XPath queries that will be solved accordingly. This is just one of the features of theapproach in a trivial scenario, but serves to illustrate the idea.
9.4.2 OWL. An ontology web languageThe OWL Web Ontology Language, being produced by the W3C Web OntologyWorking Group (WebOnt), is a language for de�ning and instantiating Web ontologies. Thelanguage can be used to formalize a domain by de�ning classes, properties of those classesand individuals. With the information of a domain in a machine-understandable format,inference engines or other application can reason about the di�erent classes and individuals,deriving logical consequences, i.e. facts not literally present in the ontology, but entailed bythe semantics.1
9.4.3 An OWL ontology for the XML model (XML/RDF Syntax)Instead of taking the intuitive structure-mapping approach to transform a XMLdocument in a set of RDF triplets like [65], we tried to represent the XML Infoset [68] usingan OWL ontology based on the already existing W3C's [147]. This allows us to representany XML document without any restriction and without losing information about node-order. Fig. 9.3 shows graphically how the example of �g. 9.2 will be represented using theclasses and properties de�ned with OWL. The descendants of the class node (document,element, attribute and textNode) in conjunction with the ObjectProperty childOf are themain building blocks of the document tree, while the ObjectProperty preceding-sibling isnecessary to preserve the node order.Following we include the OWL ontology to show the details. We take pro�t fromthe expressive power of OWL to de�ne properties like parentOf, descendant, ancestor, de-scendantOrSelf, ancestorOrSelf, immediateFollowingSibling, followingSibling, following, pre-cedingSibling, and preceding just in terms of the two primitives childOf and immediatePre-cedingSibling. This will be of great help later when we translate an XPath query to a RDQLquery for the RDF-representation of the XML data. For e.g., we de�ne descendant as asuperset of childOf, which itself is de�ned as the inverse of parentOf. All these properties do1see the Background Information chapters for a brief introduction to OWL
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not need to be present in the representation because they will be deduced by the inferenceengine when processing the queries. A simpli�ed description of the ontology in DescriptionLogics syntax (SHIQ-like style [62]) would be:

Document vNodeElement vNodeTextNode vNodechildOf vdescendantparentOf vancestorchildOf �parentOf�T rans(ancestor)ancestor vancestorOrSelfself vdescendantOrSelfself vancestorOrSelfself �sameAsimmediatePrecedingSibling vprecedingSiblinngimmediateFollowingSibling vfollowingSiblingimmediatePrecedingSibling �immediateFollowingSibling�T rans(followingSibling)Fig. 9.3 shows graphically how the example of �g. 9.2 will be represented using the classesand properties de�ned with OWL.

Figure 9.2: XML simple example describing two movies



66 Chapter 9: XML Semantic Integration: A Model Mapping Approach

Figure 9.3: RDF graph for movies example
9.4.4 XPathWhile the o�cial de�nition of XPath [69] remains saying "XPath is a language foraddressing parts of an XML document", that was strictly correct for XPath 1.0, the version2.0 cannot be de�ned just that way. Because the syntax of XPath 2.0 is a compact-versionof XQuery 2.0, it better would be de�ned as e.g. "a sequence-based language for queryingand processing XML". XPath uses a compact, non-XML syntax to facilitate use of XPathwithin URIs and XML attribute values. XPath operates on the abstract, logical structureof an XML document, rather than its surface syntax.[69] says that XPath 2.0 has been designed to be embedded in another host languagesuch as XSLT 2.0 [155] or XQuery 1.0 [154]. However the relation of XPath and these twolanguages di�ers. XPath 2.0 and XQuery 1.0 have the same semantics, de�ned by XQuery1.0 and XPath 2.0 Formal Semantics [153]. [69] says that "XQuery 1.0 is an extension ofXPath 2.0". So one can talk about the same language with two syntaxes, one with the SQL�avour (XQuery), and the compact version (XPath) to be embedded in a host language(XSLT).
9.4.5 XPath data model[152] speci�es the XQuery 1.0 and XPath 2.0 data model. It de�nes the infor-mation contained in the input to the host language in which XPath is embedded and alsoall permissible values of XPath expressions. The data model is based on the XML Infoset[68]. The following de�nitions (extracted from [152] and not comprehensive) describe thekey elements of the XPath data model:1. Every instance of the data model is a sequence.2. A sequence is an ordered collection of zero or more items.



Chapter 9: XML Semantic Integration: A Model Mapping Approach 67
3. A sequence cannot be a member of a sequence.4. An item is either a node or an atomic value5. Every node is one of the seven kinds of nodes (document, element, attribute, text,namespace, processing instruction, and comment).So, the basic building block of the data model is the sequence. This is an importantdi�erence with respect to Xpath 1.0, in which the basic constructs were node-sets (withoutduplicates). Sequences can contain duplicates but not other sequences, combining sequencesalways produce a �attened sequence instead of a nesting.

9.4.6 XPath syntaxThe grammar rules of XPath 2.0 have increased in complexity, since now supportsfor expressions, conditionals, intersections, unions and di�erences among other constructs.Here we are going to describe just the rules that are shared with the version 1.0, focusing inlocation paths (now PathExpr). The partial Backus-Naur Form (BNF) rules for an XPath'sexpression are:
Expr ::= ExprSingle ("," ExprSingle)*ExprSingle ::= ForExpr | QuantifiedExpr | IfExpr | OrExprOrExpr ::= AndExpr ( "or" AndExpr )*AndExpr ::= PathExpr ( "and" PathExpr )*The basic building block of the syntax is the expression, which is a string of Unicodecharacters. For this work we are going to consider just expressions consisting on a singlePathExpr, the basic construct to address parts of an XML document. The BNF rules for aPathExpr are:
PathExpr ::= RelativePathExpr | ("/" RelativePathExpr)?RelativePathExpr ::= AxisStep "/" (AxisStep)*AxisStep ::= (ForwardStep | ReverseStep) Predicate*ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStepAbbrevForwardStep ::= "@"? NodeTestReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStepAbbrevReverseStep ::= ".."NodeTest ::= KindTest | NameTestNameTest ::= QName | "*"KindTest ::= "node()" | "text()" | ...Predicate ::= "[" Expr "]"These rules, extracted from [69], were more simple and clear in the version 1.0.They say simply that a PathExpr is a sequence of steps (axisStep), each one composed ofan axis (ForwardAxis or ReverseAxis), a NodeTest and a list of Predicates. Axis are the keyelement, because de�ne the direction of each step. There are 13 di�erent axis:
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ForwardAxis ::= <"child" "::">| <"descendant" "::">| <"attribute" "::">| <"self" "::">| <"descendant-or-self" "::">| <"following-sibling" "::">| <"following" "::">| <"namespace" "::">ReverseAxis ::= <"parent" "::">| <"ancestor" "::">| <"preceding-sibling" "::">| <"preceding" "::">| <"ancestor-or-self" "::">

Table 9.1 gives the meaning of each axis. Some example XPath queries for anXML document describing movies could be:
/child::movies/child::movie/child::title(in abbreviated form /movies/movie/title)/descendant-or-self::title(in abbreviated form //title)/child::movies/child::movie[@id='m1']/following-sibling::node()(in abbreviated form /movies/movie[@id='m1']/following-sibling)
9.4.7 XPath Formal semanticsXPath can be formally de�ned by describing the operations on this data model. Itis not a coincidence that some of the axioms are already present in the XML/RDF ontology,because they map directly to XML primitives (e.g. child). First we must de�ne the functionE, corresponding to the XPathExpr rule from the EBNF grammar [69].

E : Path! Node! sequence(Node)
E[[e1=e2]]x = fx2 j x1 2 E[[e1]]x ^ x2 2 E[[e2]]x1gE[[a :: t]]x = fx1 j x1 2 Aa(x) ^ Tt(x1)gE[[e[p]]]x = fx1 j x1 2 E[[e]]x ^ P [[p]]x1g

The function Aa describes both the ForwardAxis and the ReverseAxis rules from the gram-mar. Aa :! Node! sequence(Node)



Chapter 9: XML Semantic Integration: A Model Mapping Approach 69
Table 9.1: XPath axischild All children of the context element(attributes cannot have children)descendant The descendants of the context node(the children, the children of thechildren, and so on)parent The parent of the context node.ancestor The ancestors of the context node(the parent, the parent of the parent,and so on)following-sibling Those children of the context node'sparent that occur after the contextnode in document orderpreceding-sibling Those children of the context node'sparent that occur before the contextnode in document orderfollowing All nodes that are descendants ofthe root of the tree in which thecontext node is found, are notdescendants of the context node,and occur after the context node indocument orderpreceding All nodes that are descendants ofthe root of the tree in which thecontext node is found, are notancestors of the context node,and occur before the context nodein document orderattribute The attributes of the context nodenamespace Namespace nodesself The context nodedescendant-or-self The context node and thedescendants of the context nodeancestor-or-self The context node and the ancestorsof the context node

Achild(x) = fx1 j childOf(x1; x)gAdescendant(x) = fx1 j childOf(x1; x)_(childOf(x2; x)^ x1 2 Adescendant(x2))gAdescendant�or�self (x) = fxg [ fx1 j x1 2 Adescendant(x)gAparent(x) = fx1 j childOf(x; x1)gAancestor(x) = fx1 j childOf(x; x1)_(childOf(x; x2) ^ x1 2 Aancestor(x2))g
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Aancestor�or�self (x) = fxg [ fx1 j x1 2 Aancestor(x)gApreceding�sibling(x) = fx1 j precedingSibling(x1; x)gApreceding(x) = fx1 j x1 2 Adescendant�or�self (x2)^ x2 2 Apreceding�sibling(x3)g^ x3 2 Aancestor�or�self (x)gAfollowing�sibling(x) = fx1 j precedingSibling(x; x1)gAfollowing(x) = fx1 j x1 2 Adescendant�or�self (x2)^ x2 2 Afollowing�sibling(x3)g^ x3 2 Aancestor�or�self (x)gAattribute(x) = fx1 j attributeOf(x1; x)gAattribute(x) = fx1 j namespaceOf(x1; x)gThe function T describes the NodeTest rule from the grammar.

T : NodeTest! Node! Boolean
T�(x) = ftruegTn(x) = fhasName(x; n)gTnode()(x) = ftype(x;0 node0)gTtext()(x) = ftype(x;0 textNode0)gTelement()(x) = ftype(x;0 elementNode0)gThe function P describes the Predicates rule from the grammar. There are a lot ofdi�erent predicates but de�ning all is out of the scope of this document. As an example wede�ne here the predicate that expresses the existence of a speci�c sub-tree as a condition.

P : Predicate! Node! Boolean
P [[p]]x = f9x1 2 E[[p]]xg

9.4.8 RDQL A Query Language for RDFRDQL [127] is the popular RDF query language from HP Labs Bristol. RDQL isan implementation of the SquishQL [139] RDF query language, which itself is derived fromrdfDB [125]. The speci�cation of RDQL was submitted to the W3C in 9 January 2004,and has an enormous in�uence to the new W3C's RDF query language, SPARQL [138].However we have chosen RDQL instead of SPARQL because of the existence of a maturequery processor as the Jena API [76]. The results obtained are extensible (and we plan todo this explicit when tools are available) to the new W3C's language.An RDF model is a graph, often expressed as a set of triples. An RDQL queryconsists of a graph pattern, expressed as a list of triple patterns. Each triple pattern iscomprised of named variables and RDF values (URIs and literals). An RDQL query canadditionally have a set of constraints on the values of those variables, and a list of thevariables required in the answer set. An example RDQL query could be:



Chapter 9: XML Semantic Integration: A Model Mapping Approach 71
SELECT ?bookWHERE (?book, <somelibrary:year>, ?year)AND ?year >= 2004USING somelibrary FOR <http://example.somelibrary.org/books#>This sample query will return all the RDF triples with a predicate somelibrary:yearand a literal object consisting on an integer equal or greater than 2004. A complete expla-nation of the language can be found in [127].
9.4.9 XPath translation to RDQLSome works face the problem to execute XPath queries over RDF data. Mostof them (like [65]) take a structure-mapping approach and describe some simple mappingmechanisms to cover just a subset of XPath constructs (as mentioned before it is not feasibleto map the constructs based on node-order in a structure-mapping approach). Anotherworks, like the RPath initiative [132], try to de�ne an analogous language to XPath but fornatural (not derived from XML) RDF data.Our strategy is radically di�erent because we transform a XPath query into aRDQL query that we execute over an exact (and not just an intuitive mapping) RDFrepresentation of the input XML data. This makes feasible the mapping of all XPathconstructs in a natural and elegant way.Each XPath axis can be mapped into one or more triple patterns of the targetRDQL [127] query. Analogously each nodetest and predicate can be mapped also with justone ore more triple patterns. The output RDQL query always takes the form:
SELECT *WHERE(?v1, <rdf:type>, <xmloverrdf:document>)[triple pattern 2][triple pattern 3]...[triple pattern N]USINGxmloverrdf FOR <http://dmag.upf.edu/xml#>

The translation can be deduced from the XPath formal semantics. For example,the following axis is described as:
Afollowing(x) = fx1 j x1 2 Adescendant�or�self (x2)^ x2 2 Afollowing�sibling(x3)g^ x3 2 Aancestor�or�self (x)g

So the following axis must be translated to:
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(?vi, <xmloverrdf:ancestor-or-self>, ?vi-1)i = i + 1(?vi, <xmloverrdf:following-sibling>, ?vi-1)i = i + 1(?vi, <xmloverrdf:descendant-or-self>, ?vi-1)i = i + 1There are also simple conversion rules for all nodeTests and predicates but we omitthem to save space. The notation used includes variable names like vi and vi-1 where ibegins with value 2 (because of the �rst triple pattern is always the same as shown before).So if we would have just the expression:
/child::movies/child::movieWe will translate the �rst child axis to:
(?v2, <xmloverrdf:childOf>, ?v1)The �rst node test to:
(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>)The second child axis to:
(?result, <xmloverrdf:childOf>, ?v2)And the second node test to:
(?result, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)The complete WHERE clause will appear as:
WHERE(?v1, <rdf:type>, <xmloverrdf:document>),(?v2, <xmloverrdf:childOf>, ?v1),(?v2, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movies>),(?result, <xmloverrdf:childOf>, ?v2),(?result, <xmloverrdf:hasName>, <http://dmag.upf.edu/xmlrdf/names#movie>)
9.4.10 Example resultsAn example query could be:
/child::movies/child::movie/child::title(in abbreviated form /movies/movie/title)That is translated to:
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SELECT *WHERE (?v1, <rdf:type>, <xmloverrdf:document>), (?v2, <xmloverrdf:childOf>, ?v1), (?v2, <xmloverrdf:hasName>, "movies"), (?v3, <xmloverrdf:childOf>, ?v2), (?v3, <xmloverrdf:hasName>, "movie"), (?result, <xmloverrdf:childOf>, ?v3), (?result, <xmloverrdf:hasName>, "title")
Result: 6, 9 (node numbers, see figure)
9.5 Incorporating schema-awareness9.5.1 Mapping XML Schema to RDFIn our ontology for the XML model, the object of the hasName property is not aliteral but a resource (an RDF resource). This key aspect allows to apply to hasName all thepotential of the OWL relationaships (e.g. de�ning ontologies whith names relationships).So, if we want our XPath processor to be schema-aware, we just need to translate the XMLSchema language to RDF, and to add to our XML/RDF Syntax ontology the necessaryOWL constructs that allow the inference engine to understand the semantics of the di�erentXML Schema components. The added axioms in Desctiption Logics syntax (SHIQ-likestyle [62]) would be:

hasName vfromSubstitutionGroupT rans(fromSubstitutionGroup)hasName vfromTypeT rans(fromType)fromType vsubTypeOf
9.5.2 A simple example of schema-aware XPath processingThe next example ilustrates the behaviour of our processor in a schema-relatedXPath query. Take this simple XML document:
<A><B id='B1' /><B id='B2'><C id='C1'><D id='D1'></D></C></B><B id='B3'/></A>
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And its attached schema:
<schema><complexType name='BType'><complexContent><extension base='SUPERBType'></extension></complexContent></complexType><element name='B'type='BType' substitutionGroup='SUPERB' /></schema>When evaluating the XPath query //SUPERB, our processor will return the elements withIDs 'B1', 'B2' and 'B3'. These elements have a name with value 'B', and the schema speci�esthat this name belongs to the substitution group 'SUPERB', so they match the query. Also,when evaluating the query //SUPERBType, the processor will return 'B1', 'B2' and 'B3'.It assumes that the query is asking for elements from the type SUPERBType or one of itssubtypes.
9.5.3 Complete XSD to OWL MappingThe previous XML Schema (XSD) to RDF mapping is partial in the sense that itjust maps the XML Schema semantics that are needed in order to make the XPath processorXSD semantics aware. There is also a more complete XML Schema to OWL mapping(XSD2OWL) that is responsible for capturing almost all the schema implicit semantics. Thissemantics are determined by the combination of XML Schema constructs. The XSD2OWLmapping is based on translating these constructs to the OWL ones that best capture theirsemantics. The informal semantics of XML Schema constructs are presented in Table 9.2and then used to guide the XML Schema to OWL mappings shown in Table 9.3.The XSD2OWL mapping is quite transparent and captures a great part XMLSchema semantics. The same names used for XML constructs are used for OWL ones, al-though in the new namespace de�ned for the ontology. XSD and OWL constructs names areidentical; this usually produces uppercase-named OWL properties because the correspondingelement name is uppercase, although this is not the usual convention in OWL.Therefore, XSD2OWL produces OWL ontologies that make explicit the semanticsof the corresponding XML Schemas. The only caveats are the implicit order conveyed byxsd:sequence and the exclusivity of xsd:choice.For the �rst problem, owl:intersectionOf does not retain its operands order, there isno clear solution that retains the great level of transparency that has been achieved. The useof RDF Lists might impose order but introduces ad-hoc constructs not present in the originalmetadata. Moreover, as it has been demonstrated in practise, the elements ordering doesnot contribute much from a semantic point of view. For the second problem, owl:unionOf isan inclusive union, the solution is to use the disjointness OWL construct, owl:disjointWith,between all union operands in order to make it exclusive.The resulting OWL ontology is OWL-Full because the XSD2OWL translator hasemployed rdf:Property for properties to cope with the fact that there are properties that have
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Table 9.2: XML Schema informal semanticsXML Schema Shared informal semanticselement j attribute Named relation between nodes or nodes and valueselement@substitutionGroup Relation can appear in place of a more general oneelement@type The relation range kindcomplexType j group j attributeGroup Relations and contextual restrictions packagecomplexType//element Contextualised restriction of a relationextension@base j restriction@base Package concretises the base package@maxOccurs @minOccurs Restrict the number of occurrences of a relationsequence choice Combination of relations in a context

Table 9.3: XSD2OWL translations for the XML Schema constructsXML Schema OWLrdf:Propertyelement j attribute owl:DatatypePropertyowl:ObjectPropertyelement@substitutionGroup rdfs:subPropertyOfelement@type rdfs:rangecomplexType j group j attributeGroup owl:ClasscomplexType//element owl:Restrictionextension@base j restriction@base rdfs:subClassOf@maxOccurs owl:maxCardinality@minOccurs owl:minCardinalitysequence owl:intersectionOfchoice 0wl:unionOf
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both data type and object type ranges as speci�ed in the XML Schema for the correspondingxsd:element.The full mapping facilitates the implementation of XSD semantics-aware applica-tions. These applications can use the XSD schema semantics formalised in the correspondingontologies. This ontologies enable semantic XPaths but also they open the possibility touse other semantics-enabled tools to the XML domain, e.g. reasoning engines or ontologyalignment solutions for schema integration.For instance, this approach has already shown its usefulness in the Digital RightsManagement (DRM) domain [48]. These ontologies have been then exploited for DRMSystems implementation [45] [46] and assisted negotiation of digital goods [47].
9.6 Implementation and performanceThe work has been materialised in the form of a Java API. We have used the Jena2 API [76] for RDQL computation and OWL reasoning. To process XPath expressions wehave modi�ed and recompiled the Jaxen XPath Processor [75]. An on-line demo can befound at http://dmag.upf.edu/contorsion.
9.6.1 Jena Inference EngineThe Jena API [76] provides a set of di�erent inference engines or reasoners. Weuse the Jena's OWL reasoner to allow the RDQL query processor to derive additional RDFassertions from the base RDF data together with the XML/RDF ontology axioms. Thisreasoner includes rules for each one of the OWL/Lite constructs and also others, so itcan be considered an incomplete implementation of OWL/Full. Table 9.4 enumerates theconstructs supported by the OWL reasoner.

Table 9.4: OWL constructs supported by the Jena's OWL reasonerConstructsrdfs:subClassOf, rdfs:subPropertyOf, rdf:typerdfs:domain, rdfs:rangeowl:someValuesFrom, owl:allValuesFromowl:minCardinality, owl:maxCardinality, owl:cardinalityowl:intersectionOfowl:equivalentClass, owl:disjointWithowl:sameAs, owl:di�erentFrom, owl:distinctMembersowl:Thingowl:equivalentProperty, owl:inverseOfowl:FunctionalProperty, owl:InverseFunctionalPropertyowl:SymmeticProperty, owl:TransitivePropertyowl:hasValue
The OWL reasoner is built on top of a general purpose rule engine. This engineallows rule-based inference over RDF graphs, combining two di�erent strategies. On one
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hand the engine uses forward chaining (speci�cally the RETE algorithm [40]) to precomputedeductions. On the other hand it uses backward chaining (a Logic Programming strategylike Prolog) to answer the queries. The combination of these wwo strategies (hybrid model)is used by default, but the engine can be con�gured to run just one of them.

Figure 9.4: Jena hybrid execution model
The forward engine maintains a set of inferred statements in the deductions store.Forward rules can infer new data (deductions) and also other rules. When a query is for-mulated, the backward chaining LP engine applies the merge of the supplied and generatedrules to the merge of the raw and deduced data.The hybrid approach allows improving performance by reducing e.g. the generalityof some backward rules that could be instantiated for a speci�c dataset. As an example,extracted from [77], consider the RDFS subPropertyOf entailments. A simple solution wouldinvolve the following backward rule:

(?a ?q ?b) <- (?p rdfs:subPropertyOf ?q), (?a ?p ?b) .
Of course the rule would work, but because the head is composed just by variables,every goal from the query will match. This will cause that the engine will have to testfor subProperty relations for all possible goals. So, it makes sense to adapt this rule to aspeci�c dataset before the backward process begin. We can try the following combinationof a forward rule and a backward rule:

(?p rdfs:subPropertyOf ?q), notEqual(?p,?q)-> [ (?a ?q ?b) <- (?a ?p ?b) ] .The forward strategy would precompile all the declared subPropertyOf relationships intosimple backward rules. These rules would only be �red if the goal references a propertywhich actually has a sub property.
9.6.2 PerformanceThough performance wasn't the target of the work, it is an important aspect ofthe processor. We have realised a performance test over a Java Virtual Machine v1.4.1 ina 2GHz Intel Pentium processor with 256Mb of memory. The �nal delay depends mainlyon two variables, the size of the target documents, and the complexity of the query. Table9.5 shows the delay of the inferencing stage for di�erent document depth levels and also forsome di�erent queries.
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The processor behaves well with medium-size documents and also with large oneswhen simple queries are used (queries that not involve transitive axis), but when documentsize grows the delay related to the complex queries increases exponentially. Some perfor-mance limitations of the Jena's OWL inference engine have been described in [78]. We arenow working on this problem, trying to obtain a more scalable inference engine.

Table 9.5: Performance for di�erent document depth levelsexpression 5d 10d 15d 20d 20d (Xalan XPath processor)/A/B 32ms 47ms 47ms 62ms 16ms/A/B/following-sibling::B 125ms 46ms 48ms 47ms 15ms/A/B/following::B 125ms 62ms 63ms 47ms 16ms/A//B 172ms 203ms 250ms 219ms 31ms//A//B 178ms 266ms 281ms 422ms 32ms

9.7 Testing in the DRM Application DomainThe amount of digital content delivery in the Internet has made Web-scale DigitalRights Management (DRM) a key issue. Traditionally, DRM Systems (DRMS) have dealtwith this problem for bounded domains. However, when scaled to the Web, DRMSs are verydi�cult to develop and maintain. The solution is interoperability of DRMS, i.e. a commonframework for understanding with a shared language and vocabulary. That is why it isnot a coincidence that organisations like MPEG (Moving Picture Experts Group), OMA(Open Mobile Alliance), OASIS (Organization for the Advancement of Structured Informa-tion Standards), TV-Anytime Forum, OeBF (Open eBook Forum) or PRISM (PublishingRequirements for Industrial Standard Metadata) are all involved in standardisation or adop-tion of rights expression languages (REL). Two of the main REL initiatives are MPEG-21REL [149] and ODRL [66].Both are XML sublanguages de�ned by XML Schemas. The XML Schemas de�nethe language syntax and a basic vocabulary. These RELs are then supplemented with whatare called Rights Data Dictionaries [133]. They provide the complete vocabulary and alightweight formalisation of the vocabulary terms semantics as XML Schemas or ad hocontologies. ODRL and MPEG-21 REL have just been de�ned and are available for theirimplementation in DRMS. They seem quite complete and generic enough to cope with sucha complex domain. However, the problem is that they have such a rich structure that theyare very di�cult to implement. They are rich in the context of XML languages and the"traditional" XML tools like DOM or XPath. There are too many attributes, elements andcomplexTypes (see Table 9.6) to deal with.
9.7.1 Application to ODRL license processingConsider looking for all constraints in a right expression, usually a rights license,that apply to how we can access the licensed content. This would require so many XPath



Chapter 9: XML Semantic Integration: A Model Mapping Approach 79
Table 9.6: Number of named XML Schema primitives in ODRL and MPEG-21 RELSchemas xsd:attribute xsd:complexType xsd:element TotalODRL EX-11 10 15 23 127DD-11 3 2 74MPEG-21 EL-R 9 56 78 330REL-SX 3 35 84REL-MX 1 28 36

queries as there are di�erent ways to express constraints. For instance, ODRL de�nes 23constraints: industry, interval, memory, network, printer, purpose, quality. . . This amountsto lots of source code, di�cult to develop and maintain because it is very sensible to mi-nor changes to the REL specs. Hopefully there is a workaround hidden in the languagede�nitions.As we have said, there is the language syntax but also some semantics. The sub-stitutionGroup relations among elements and the extension/restriction base ones amongcomplexTypes encode generalisation hierarchies that carry some lightweight, taxonomy-like,semantics. For instance, all constraints in ODRL are de�ned as XML elements substitutingthe o-ex:constraintElement, see Figure 9.5. The di�culty is that although this information
odd:industry odd:interval odd:memory odd:network odd:printer odd:purpose odd:quality

oex:constraintElement

... ...

substitutionGroup

Figure 9.5: Some ODRL constraint elements de�ned as substitutionGroup of constraintEle-ment
is provided by the XML Schemas, it remains hidden when working with instance documentsof this XML Schemas. However, using the semantics-enabled XPath processor we can pro�tfrom all this information. As it has been shown, the XML Schemas are translated to OWLontologies that make the generalisation hierarchies explicit, using subClassOf and subProp-ertyOf relations. The ontology can be used then to carry out the inferences that allow asemantic XPath like �//o-ex:constraintElement� to retrieve all o-ex:constraintElement plusall elements de�ned as its substitutionGroup.
9.7.2 Application to the MPEG-21 authorization modelMPEG-21 RELIn MPEG-21 standard the protection and governance of digital content are speci�edin MPEG-21 IPMP Components [70], MPEG-21 REL [128] and RDD [123] parts. MPEG-21IPMP Components provides mechanisms to protect a digital item (DI) [29] and to associatelicenses to the target of their governance, while MPEG-21 REL speci�es the syntax andsemantics of the language for issuing rights for users to act on DIs while MPEG-21 RDDcomprises a set of terms to support the MPEG-21 REL. Suppose an MPEG-21 compliant
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peer that receives a protected and governed MPEG-21 DI, which consists of a digital assetand some metadata, as the information related to the tools to unprotect the asset and theconditions of use of this asset (see example). When processing this DI the �rst step isto obtain the IPMP metadata associated to the asset, then if any license that governs theprotected asset is found, the application has to resolved if the user can exercise the requestedaction by means of the authorization mechanism de�ned in MPEG-21 REL, and if the resultis positive the asset is unprotected and the action is exercised.<DIDL><Item><Component><Resource mimeType="application/ipmp"><ipmpdidl:ProtectedAsset mimeType="audio/mp3"><ipmpdidl:Identifier><dii:Identifier> urn:mpegRA:mpeg21:dii:as002-11</dii:Identifier></ipmpdidl:Identifier><ipmpdidl:Info><ipmpinfo:IPMPInfoDescriptor><ipmpinfo:Tool> ... </ipmpinfo:Tool><ipmpinfo:RightsDescriptor><ipmpinfo:License><r:license> ... </r:license></ipmpinfo:License></ipmpinfo:RightsDescriptor></ipmp:IPMPInfoDescriptor></ipmpdidl:Info><ipmpdidl:Contents> EFJDV9FUV98JRF424U039RNCNK... </ipmpdidl:Contents></ipmpdidl:ProtectedAsset></Resource></Component></Item></DIDL>In the scenario described above, the XPath processor is useful when implementing licensebased authorization mechanisms. MPEG-21 REL standard speci�cation de�nes the autho-rization model, Figure 9.6, that makes use of the authorization request and story elementsand resolves the question "Is a Principal authorized to exercise a Right such a Resource?".The XPath processor simpli�es the implementation of the authorization algorithm becauseit allows to the application to quickly identify which elements are of a particular type in thelicenses, authorization request and stories considered to resolve this algorithm. Therefore,when the application has to determine if a license or a grant within an authorization requestor story has any element representing a resource, a principal or a condition, this processcould result complex and costly if we don't use the XPath processor. A clear example iswhen we look for a resource in a license or grant element within an authorization requestor story, if we don't have the capability to search for an element that its substitutionGroupis resource, then we have to look for one of the elements depicted in Figure 9.7. In the
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Figure 9.6: MPEG-21 REL authorization model

Figure 9.7: Example of resource elements
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authorization process, the Xpath processor also is useful when comparing the right the userwants to exercise and the right in the user's license, because we have to take into accountthe rights lineage de�ned in RDD as described above.
MPEG-21 RDD

In order to interpret REL licenses, the semantic XPath processor help us whendetermining if the user has the appropriate rights taking into account the rights lineagede�ned in the RDD (Rights Data Dictionary).In contrast with ODRL, that uses XMLSchemas both for the language and dic-tionary de�nitions, MPEG-21 has an ontology as dictionary (RDD). The semantics that itprovides can also be integrated in our semantic XPath processor. To do that, the MPEG-21RDD ontology is translated [74] to the ontology language used by the Semantic XPath Pro-cessor, i.e. OWL. Once this is done, this ontology is connected to the semantic formalisationbuild up from the MPEG-21 REL XML Schemas. Consequently, semantic XPath queriescan also pro�t from the ad hoc ontology semantics. For instance, the acts taxonomy inMPEG-21 RDD, see Figure 9.8, can be seamlessly integrated in order to facilitate licensechecking implementation. Consider the scenario: we want to check if our set of licenses au-thorises us to uninstall a licensed program. If we use XPath, there must be a path to look for

Figure 9.8: Portion of the acts taxonomy in MPEG-21 RDD
licenses that grant the uninstall act, e.g. �//r:license/r:grant/mx:uninstall�. Moreover, as itis shown in the taxonomy, the usetool act is a generalisation of the uninstall act. Therefore,we must also check for licenses that grant us usetool, e.g �//r:license/r:grant/mx:uninstall�.An successively, we should check for interactwith, do and act.However, if we use a semantic XPath, the existence of a license that grants anyof the acts that generalise uninstall implies that the license also states that the uninstallact is also granted. This is so because, by inference, the presence of the fact that re-lates the license to the granted act implies all the facts that relate the license to all theacts that specialise this act. Therefore, it would su�ce to check the semantic XPath ex-pression �//r:license/r:grant/mx:uninstall�. If any of the more general acts is granted itwould match. For instance, the XML tree /r:license/r:grant/dd:usetool implies the trees/r:license/r:grant/dd:install and /r:license/r:grant/dd:uninstall.
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9.8 ConclusionsIn this chapter we have described a novel strategy for designing a schema-aware andontology-aware XPath/XQuery processor. Such behaviour, that we have called semantic,can be used to transparently resolve queries over XML instances bound to schemas thatde�ne inheritance hierarchies among types and element names, or related to ontologies thatde�ne relationships that are relevant for the queries evaluation.Our approach has consisted in mapping the XML and XSD models to OWL, al-lowing a complete translation from XML and XSD instances to RDF triples. The XPathexpressions are translated to RDQL queries (we have provided a simple and elegant algorithmto do it) that are then resolved by an RDQL engine with OWL reasoning capabilities. Thechosen representation retains the node order, in contrast with the usual structure-mappingapproach, that maps the speci�c structure of some XML schema to RDF constructs. Thework has been materialised in the form of a Java API. An on-line demo can be found athttp://dmag.upf.edu/contorsion.Finally, we have demonstrated how our approach can be useful in a plausible usagescenario, the Digital Rights Management domain, where the schema-aware and ontology-aware XPath/XQuery Processor has shown its bene�ts. The behaviour of the processorallows a transparent access to the semantics hidden in the schemas of the Rights ExpressionLanguages, so we do not need to recode them. This allows developing software less coupledwith the underlying speci�cations.





Chapter 10
A Vector Space Model for Semantic
Similarity Calculation and OWL
Ontology Alignment

Ontology alignment (or matching) is the operation that takes two ontologies andproduces a set of semantic correspondences (usually semantic similarities) between someelements of one of them and some elements of the other. A rigorous, e�cient and scalablesimilarity measure is a pre-requisite of an ontology alignment process. This chapter presentsa semantic similarity measure based on a matrix represention of nodes from an RDF labelleddirected graph. An entity is described with respect to how it relates to other entities usingN -dimensional vectors, being N the number of selected external predicates. We adapt thegraph similarity calculation described in [20] when applying this idea to the alignment of twoontologies. We have successfully tested the model with the public testcases of the OntologyAlignment Evaluation Initiative 2005. 1

10.1 Already published work
Large portions of this chapter have appeared in the following paper:

Tous R., Delgado J. �A Vector Space Model for Semantic Similarity Calculationand OWL Ontology Alignment�, 17th International Conference on Database andExpert Systems Applications (DEXA 2006), 4-8 September 2006. To be pub-lished in Lecture Notes in Computer Science.
1 This work has been partly supported by the Spanish administration (DRM-MM project, TSI 2005-05277).
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10.2 Introduction
10.2.1 MotivationFor many knowledge domains (biology, music, web directories, digital rights man-agement, etc.) several overlapping ontologies (middle ontologies) are being engineered. Eachone is a di�erent abstraction and representation of the same or similar concepts. There areproliferating also a myriad of problem-speci�c ontologies (lower ontologies) for many appli-cations, metadata repositories, personal information systems and peer-to-peer networks.To enable collaboration within and across information domains, software agentsrequire the semantic alignment (mapping) of the di�erent formalisms. The alignment processwill identify the equivalences between some entities (e.g. classes and properties) of theparticipating ontologies, and the di�erent levels of con�dence. These mappings are requiredbefore the querying of semantic data from autonomous sources can take place.
10.2.2 Ontology AlignmentOntology alignment (or matching) is the operation that takes two ontologies andproduces a set of semantic correspondences (usually semantic similarities) between someelements of one of them and some elements of the other. Several ontology alignment al-gorithms have been provided like GLUE [32], OLA [37] or FOAM [36]. A more formalde�nition, borrowed from [35], can be given:De�nition 10.2.1. Given two ontologies O and O0, an alignment between O and O0 is aset of correspondences (i.e., 4-uples): < e; e0; r; n > with e 2 O and e0 2 O0 being the twomatched entities, r being a relationship holding between e and e0, and n expressing the levelof con�dence [0..1] in this correspondence.It is typically assumed that the two ontologies are described within the same knowl-edge representation language (e.g. OWL [112]). Here we will focus on automatic and au-tonomous alignment, but other semi-automatic and interactive approaches exist.
10.2.3 Semantic similarity measuresThe ontology alignment problem has an important background work in discretemathematics for matching graphs [58][114], in databases for mapping schemas [122] and inmachine learning for clustering structured objects [19]. Most part of ontology alignmentalgorithms are just focused on �nding close entities (the "=" relationship), and rely on somesemantic similarity measure.A semantic similarity measure tries to �nd clues to deduce that two di�erent dataitems correspond to the same information. Data items can be ontology classes and proper-ties, but also instances or any other information representation entities. Semantic similaritybetween ontology entities (within the same ontology or between two di�erent ones) may bede�ned in many di�erent ways. The recently held Ontology Alignment Evaluation Initiative2005 [108] has shown that the best alignment algorithms combine di�erent similarity mea-sures. [37] provides a classi�cation (updating [122]) inherited from the study of similarity
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in relational schemas. This classi�cation can be simpli�ed to four categories when beingapplied to ontologies: Lexical, Topological, Extensional and Model-based.
10.2.4 Our approachThe work presented in this chapter takes a topological or structure-based semanticsimilarity approach. As ontologies and knowledge-representation languages evolve, moresophisticated structure-based similarity measures are required. In RDF graphs, relationshipsare labeled with predicate names, and trivial distance-based strategies cannot be applied.Some works like [64] explore similarity measures based on structure for RDF equivalentbipartite graphs.Our work focus also in RDF, but faces directly the natural RDF labelled directedgraphs. The approach can be outlined in the following two points:

1. To compute the semantic similarity of two entities we have taken the common RDFand OWL predicates as a semantic reference. Objects are described and compareddepending on how they relate to other objects in terms of these predicates. We havemodeled this idea as a simple vector space.2. To e�ciently apply our similarity measure to the ontology alignment problem we haveadapted it to the graph matching algorithm of [20].
10.3 Representing RDF labelled directed graphs with a vectorspace model (VSM)In linear algebra a vector space is a set V of vectors together with the operations ofaddition and scalar multiplication (and also with some natural constraints such as closure,associativity, and so on). A vector space model (VSM) is an algebraic model introduced along time ago by Salton [134] in the information retrieval �eld. In a more general sense,a VSM allows to describe and compare objects using N-dimensional vectors. Each dimen-sion corresponds to an orthogonal feature of the object (e.g. weight of certain term in adocument).In an OWL ontology, we will compare entities taking into consideration their rela-tionships with all the other entities present in the ontology - First we will focus on similaritywithin the same ontology, next we will study its application to the alignment of two ontolo-gies -. Because relationships can be of di�erent nature we will model them with a vectorspace. For this vector space, we will take as dimensions any OWL, RDF Schema, or otherexternal predicate (not ontology speci�c) e.g. rdfs:subClassOf, rdfs:range or foaf:name. Wecan formally de�ne the relationship of two nodes in the model:De�nition 10.3.1. Given any pair of nodes n1 and n2 of a directed labelled RDF graphGO representing the OWL ontology O, the relationship between them, rel(n1; n2), is de�nedby the vector farc(n1; n2; p1); :::; arc(n1; n2; pN )g, where arc is a function that returns 1 ifthere is an arc labelled with the predicate pi from n1 to n2 or 0 otherwise. pi is a predicatefrom the set of external predicates P (e.g. {rdfs:subClassOf, foaf:name}).
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rel(n1; n2) =farc(n1; n2; p1); :::; arc(n1; n2; pN )g jn1; n2 2 GO ^ 8i 2 [0;N ] ; pi 2 P
arc(n1; n2; pi) = (1 if there is an arc labelled with pi from n1 to n2;0 otherwise.Example 10.3.1. Let us see a simple example. Take the following graph GA representingan ontology OA. Imagine a trivial two-dimensional vector space to model the relation-ships between nodes. External predicates rdfs:domain and rdfs:range have been chosen fordimensions 0 and 1 respectively.

Figure 10.1: GA
The relationship between the property directs and the class director will be de-scribed by f1; 0g. The relationship between the property actsIn and the class movie will bedescribed by f0; 1g, and so on.Now, the full description of an entity can be achieved with a vector containing therelationships between it and all the other entities in the ontology. Putting all the vectorstogether we obtain a three-dimensional matrix A representation of the labelled directedgraph GA (row order: director, actor, movie, directs, actsIn, voiceIn):

A =
0BBBBBB@

(0; 0) (0; 0) (0; 0) (0; 0) (0; 0) (0; 0)(0; 0) (0; 0) (0; 0) (0; 0) (0; 0) (0; 0)(0; 0) (0; 0) (0; 0) (0; 0) (0; 0) (0; 0)(1; 0) (0; 0) (0; 1) (0; 0) (0; 0) (0; 0)(0; 0) (1; 0) (0; 1) (0; 0) (0; 0) (0; 0)(0; 0) (1; 0) (0; 1) (0; 0) (0; 0) (0; 0)

1CCCCCCA
10.4 Similarity of entities within the same ontologyIn the general case, the correlation between two vectors x and y in an N-dimensionalvector space can be calculated using the scalar product. We can normalize it by dividing this
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product by the product of the vector modules, obtaining the cosine distance, a traditionalsimilarity measure. In our case, vectors describing entities in terms of other entities arecomposed by relationship vectors (so they are matrices). We can calculate the scalar productof two of such vectors of vectors V and W using also the scalar product to compute ViWi:

V �W = NX
i=1

MX
j=1 VijWij

Applying this equation to the above example we can see that the scalar product ofe.g. the vector describing directs and the vector describing actsIn is directs ��actsIn = 1.The scalar product of actsIn and voiceIn is actsIn ��voiceIn = 2, and so on. Normalizingthese values (to keep them between 0 and 1) would allow to obtain a trivial similarity matrixof the ontology entities. However, we aim to propagate the structural similarities iteratively,and also to apply this idea to the alignment of two di�erent ontologies. In the followingsections we will describe how to do it by adapting the ideas described in [20].
10.5 Applying the model to an ontology alignment processTo calculate the alignment of two ontologies represented with our vector spacemodel we have adapted the graph matching algorithm of [20]. This adapted algorithm cal-culates entity similarities in an RDF labelled directed graph by iteratively using the followingupdating equation:
De�nition 10.5.1. Sk+1 = BSkAT +BTSkA; k = 0; 1; :::where Sk is the NB � NA similarity matrix of entries sij at iteration k, and A and B arethe NB � NB � NP and NA � NA � NP three-dimensional matrices representing GA and GBrespectively. NA and NB are the number of rows of A and B, and P is the number ofpredicates selected as dimensions of the VSM.Note that, as it is done in [20], initially the similarity matrix S0 is set to 1 (assumingfor the �rst iteration that all entities from GA are equal to all entities in GB). If we start theprocess already knowing the similarity values of some pair of entities, we can modify thismatrix accordingly, and keep the known values between iterations.Example 10.5.1. Let's see a simple example. Take the following graphs GA and GB. Figure10.6 shows their corresponding RDF labelled directed graphs.

Figure 10.2: GA (left) and GB (right)
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A =
0@ (0; 0) (1; 0) (0; 1)(0; 0) (0; 0) (0; 0)(0; 0) (0; 0) (0; 0)

1AB =
0@ (0; 0) (1; 0) (0; 1)(0; 0) (0; 0) (0; 0)(0; 0) (0; 0) (0; 0)

1AS0 =
0@ 1 1 11 1 11 1 1

1A

Rba = BS0 =
0@ (1; 1) (1; 1) (1; 1)(0; 0) (0; 0) (0; 0)(0; 0) (0; 0) (0; 0)

1A

simba = RbaAT =
0@ 2 0 00 0 00 0 0

1A

Rab = S0A =
0@ (0; 0) (1; 0) (0; 1)(0; 0) (1; 0) (0; 1)(0; 0) (1; 0) (0; 1)

1A

simab = BTRab =
0@ 0 0 00 1 00 0 1

1A

S1 = simba + simab = BS0AT +BTS0A =
0@ 2 0 00 1 00 0 1

1A
To normalize the similarity matrix (to keep its values between 0 and 1) [20] divides all itselements by the Frobenius norm of the matrix, de�ned as the square root of the sum of theabsolute squares of its elements 2.

S1 = S1=frobeniusNorm(S1) =
0@ 0; 816 0 00 0; 408 00 0 0; 408

1A
Iterating the algorithm 4 times it converges to the following result:

S4 =
0@ 0; 577 0 00 0; 577 00 0 0; 577

1A
So, as expected the entities a0, b0 and c0 (rows) are similar to a, b and c (columns) respectively.

2Frobenius norm: qPM
i=1PN

j=1 jaij j
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10.5.1 Computational cost and optimizationBecause the number of selected external predicates pi 2 P can be small and itis independent of the size of the ontologies, operations involving relationships vectors canbe considered of constant cost, and the general algorithm of order O(N2). Because thenumber of nodes can be considerably high, some optimizations are required to constraintthe processing time. Inspired in [64], we have classi�ed nodes into �ve types: Properties (p),Classes (c), Instances (i), External Classes (c0) and External Instances (i0). Because nodesfrom one type cannot be similar to nodes of another type, the matrices can be rewritten(rows and columns correspond to types previously mentioned and in the same order):

A =
0BBBB@

Ap�p Ap�c Ap�i Ap�c0 Ap�i0Ac�p Ac�c Ac�i Ac�c0 Ac�i0Ai�p Ai�c Ai�i Ai�c0 Ai�i0Ac0�p Ac0�c Ac0�i Ac0�c0 Ac0�i0Ai0�p Ai0�c Ai0�i Ai0�c0 Ai0�i0

1CCCCA

Sk =
0BBBB@

Sp 0 0 0 00 Sc 0 0 00 0 Si 0 00 0 0 Sc0 00 0 0 0 Si0

1CCCCA
De�nition 10.5.2. The Sk+1 equation can be decomposed into three formulas:
Spk+1 = Bp�pSpkATp�p +Bp�cSckATp�c +Bp�iSikATp�i +Bp�c0Sc0kATp�c0 +Bp�i0Si0kATp�i0 +BTp�pSpkAp�p +BTc�pSckAc�p +BTi�pSikAi�p +BTc0�pSc0kAc0�p +BTi0�pSi0kAi0�p
Sck+1 = Bc�pSpkATc�p +Bc�cSckATc�c +Bc�iSikATc�i +Bc�c0Sc0kATc�c0 +Bc�i0Si0kATc�i0 +BTp�cSpkAp�c +BTc�cSckAc�c +BTi�cSikAi�c +BTc0�cSc0kAc0�c +BTi0�cSi0kAi0�c
Sik+1 = Bi�pSpkATi�p +Bi�cSckATi�c +Bi�iSikATi�i +Bi�c0Sc0kATi�c0 +Bi�i0Si0kATi�i0 +BTp�iSpkAp�i +BTc�iSckAc�i +BTi�iSikAi�i +BTc0�iSc0kAc0�i +BTi0�iSi0kAi0�i
Sc0k+1 and Si0k+1 are diagonal matrices passed as input parameters. They are kept unchangedbetween iterations.
10.5.2 Comparison against algoritms based on bipartite graphsThe use of an algorithm to measure similarity between directed graphs could leadto think that it would be better to directly apply it over the ontologies equivalent bipartitegraphs (like it is done in [64]), instead of adapting it to RDF labelled directed graphs.
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However, our approach has some advantages; on one hand we reduce critically the numberof nodes and the computational cost. On the other hand, in bipartite graphs the corepredicates of OWL are treated as all the other nodes, while in our model they becomethe semantic reference to describe and compare entities. Figure 10.7 shows the equivalentbipartite version of the previous example with two graphs of three nodes.

Figure 10.3: Bipartite version of Figure 10.6
Appying the [64] we obtain the following similarity matrix between a0, b0, c0 and a, b, c:

Note that initially the similarity matrix X0 is set to 1. If we start the processalready knowing the similarity values of some pair of entities, we can modify set this matrixaccordingly, and keep the known values between iterations. Let's calculate the similaritybetween GA and GB:

A =
0BBBBBBBB@

0 0 0 1 1 0 00 0 0 0 0 0 00 0 0 0 0 0 00 1 0 0 0 1 00 0 1 0 0 0 10 0 0 0 0 0 00 0 0 0 0 0 0

1CCCCCCCCA
B =

0BBBBBBBB@

0 0 0 1 1 0 00 0 0 0 0 0 00 0 0 0 0 0 00 1 0 0 0 1 00 0 1 0 0 0 10 0 0 0 0 0 00 0 0 0 0 0 0

1CCCCCCCCA
X0 =

0BBBBBB@

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1� 11 1 1 1 1 1�

1CCCCCCA
Iterating the algorithm 22 times it converges to the following result:

X22 =
0BBBBBBBB@

0; 405 0 0 0 0 0 00 0; 153 0; 05 0 0 0; 153 0; 050 0; 05 0; 153 0 0 0; 05 0; 1530 0 0 0; 534 0; 172 0 00 0 0 0; 172 0; 534 0 00 0; 153 0; 05 0 0 1 0; 050 0; 05 0; 153 0 0 0; 05 1

1CCCCCCCCA

X22 =
0@ 0; 405 0 00 0; 153 0; 050 0; 05 0; 153

1A
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As can be seen, the inclusion of statement nodes adds some symmetries not present in theoriginal graphs, resulting in less precise results. Some similarities between nodes b0 and c(and vice-versa) appear.
10.5.3 An extended exampleExample 10.5.2. Let's see a simple example. Take the following graphs GA and GB.

Figure 10.4: GA
Iterating the algorithm 22 times it converges to the following result:

Rows: b:Teacher, b:OverseaStudent, b:People, b:Other, b:Student Columns: a:Graduate,a:Scholastics, a:PhdStudent, a:Supervisor
X12 =

0BBBB@
0; 049 0 0; 014 0; 1060; 013 0 0; 02 0; 0130; 051 0; 125 0 00; 018 0 0; 014 0; 0180; 145 0; 029 0; 014 0; 049

1CCCCA
Separately b:teach and a:supervise similarity = 0,446After normalization:
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Figure 10.5: GB

Figure 10.6: Bipartite version of GA

X12 = X1=maxV alue(X1) =
0BBBB@

0; 336 0 0; 098 0; 730; 09 0 0; 134 0; 090; 353 0; 863 0 00; 127 0 0; 098 0; 1271 0; 201 0; 098 0; 336

1CCCCA
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Figure 10.7: Bipartite version of GB
Separately b:teach and a:supervise similarity = 1So, as expected the entities a0, b0 and c0 (rows) are similar to a, b and c (columns) respectively.A Rows: a:PhdStudent, a:Graduate, a:Scholastics, a:Supervisor, a:supervise, owl:ObjectPropertyB Rows: b:Other, b:People, b:OverseaStudent, b:Student, b:Teacher, b:teach, owl:ObjectPropertyRelationships: (subClassOf, domain, range, type)

A =
0BBBBBB@

(0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 1) (0; 0; 0; 0) (0; 0; 1; 0) (0; 0; 0; 0) (0; 1; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)

1CCCCCCA

B =
0BBBBBBBB@

(0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (1; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 1) (0; 0; 1; 0) (0; 0; 0; 0) (0; 1; 0; 0)(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)

1CCCCCCCCA
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X0 =
0BBBBBBBB@

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1�

1CCCCCCCCA
Iterating the algorithm 48 times it converges to the following result:

Rows: b:Other, b:People, b:OverseaStudent, b:Student, b:Teacher, b:teach, owl:ObjectPropertyCols: a:PhD, a:Graduate, a:Scholastics, a:Supervisor, a:supervise, owl:ObjectProperty

X48 =
0BBBBBBBB@

0 0; 156 0 0; 156 0 00 0 0; 462 0 0 00; 134 0 0 0 0 00 0; 399 0 0; 156 0 00 0; 156 0 0; 354 0 00 0 0 0 0; 589 00 0 0 0 0 1

1CCCCCCCCA

10.6 Results
To test our approach we have used the Ontology Alignment Evaluation Initiative2005 testsuite [108]. The evaluation organizers provide a systematic benchmark test suitewith pairs of ontologies to align as well as expected (human-based) results. The ontologiesare described in OWL-DL and serialized in the RDF/XML format. The expected alignmentsare provided in a standard format expressed in RDF/XML and described in [108]. Becauseour model does not deal with lexical similarity, we have integrated our algorithm insideanother hybrid aligner, Falcon [64] (replacing its structure similarity module by ours). Thisconstraints the interest of the obtained results, but otherwise it hadn't been possible acomparative evaluation. Because most part of the tests include more lexical similarity thanstructural similarity challenges, our aligner and Falcon3 obtain very similar results (the samefor tests 101-104 and 301-304). The di�erences fall between tests 201-266, that we show intable 10.1.Rows correspond to test numbers, while columns correspond to the obtained val-ues of precision (the number of correct alignments found divided by the total number ofalignments found) and recall (the number of correct alignments found divided by the totalof expected alignments).

3A description of all the tests can be obtained from [108]. Our results for tests not present in the tableare the same as those of Falcon, and can be obtained in [64]
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vsm falcon foam olatest prec. rec. prec. rec. prec. rec. prec. rec.205 0.90 0.89 0.88 0.87 0.89 0.73 0.43 0.42209 0.88 0.87 0.86 0.86 0.78 0.58 0.43 0.42230 0.97 0.96 0.94 1.0 0.94 1.0 0.95 0.97248 0.83 0.80 0.84 0.82 0.89 0.51 0.59 0.46252 0.64 0.64 0.67 0.67 0.67 0.35 0.59 0.52257 0.66 0.66 0.70 0.64 1.0 0.64 0.25 0.21260 0.44 0.42 0.52 0.48 0.75 0.31 0.26 0.17261 0.45 0.42 0.50 0.48 0.63 0.30 0.14 0.09262 1.0 0.27 0.89 0.24 0.78 0.21 0.20 0.06265 0.44 0.42 0.48 0.45 0.75 0.31 0.22 0.14266 0.45 0.42 0.50 0.48 0.67 0.36 0.14 0.09

Table 10.1: OAEI 2005 tests where our approach (vsm) obtains a di�erent result than [64]
10.7 Related WorkThe initial work around structure-based semantic similarity just focused on is-aconstructs (taxonomies). Previous works like [90] measure the distance between the di�erentnodes. The shorter the path from one node to another, the more similar they are. Givenmultiple paths, one takes the length of the shortest one. [148] �nds the path length to theroot node from the least common subsumer (LCS) of the two entities, which is the mostspeci�c entity they share as an ancestor. This value is scaled by the sum of the path lengthsfrom the individual entities to the root. [89] �nds the shortest path between two entities,and scales that value by the maximum path length in the is�a hierarchy in which they occur.Recently, new works like [20] de�ne more sophisticated topological similarity mea-sures, based on graph matching from discrete mathematics. These new graph-based mea-sures suit the particularities of the new ontologies, built with more expressive languageslike OWL [112]. Our work is based on the previous work in [20], and also in its adaptationto OWL-DL ontologies alignment in [64]. This last work describes a structural similaritystrategy called GMO (Graph Matching for Ontologies). Di�erently from our work, GMOoperates over RDF bipartite graphs. It allows a more direct application of graph matchingalgorithms, but also increases the number of nodes and reduces scalability.
10.8 ConclusionsWe have presented here an approach to structure-based semantic similarity mea-surement that can be directly applied to OWL ontologies modelled as RDF labelled directedgraphs. The work is based on the intuitive idea that similarity of two entities can be de�nedin terms of how these two entities relate to the world they share (e.g. two red objects aresimilar with respect to the colour dimension, but their similarity cannot be determined in ageneral way). We describe and compare ontological objects in terms of how they relate to
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other objects. We model these relationships with a vector space of N dimensions being Nthe number of selected external predicates (e.g. rdfs:subClassOf, rdfs:range or foaf:name).We have adapted the graph matching algorithm of [20] to these idea to iteratively computethe similarities between two OWL ontologies. We have presented also an optimization of thealgorithm to critically reduce its computational cost. The good results obtained in the testsperformed over the Ontology Alignment Evaluation Initiative 2005 testsuite has proven thevalue of the approach in situations in which structural similarities exist.
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Chapter 11
Facing Heterogeneous Query
Interfaces: Query Tunneling

In this chapter we describe the motivation, the requirements, the design decisionsand some implementation aspects related to the development of an advanced metasearchstrategy. This strategy is a reformulation of the traditional answering queries using views[51] problem in a local-as-view (LAV) scenario from the data integration discipline. Wedescribe a new solution suited for the highly restricted and volatile scenario of the Web, andbased on XML technologies.
11.1 Already published workLarge portions of this chapter have appeared in the following papers:

Gil R., Tous R., García R., Rodríguez E., Delgado J. �Managing IntellectualProperty Rights in the WWW: Patterns and Semantics�. 1st International Con-ference on Automated Production of Cross Media Content for Multi-channelDistribution (AXMEDIS 2005), November 2005
Tous R., Delgado, J. �Interoperability Adaptors for Distributed InformationSearch on the Web�. Proceedings of the 7th ICCC/IFIP International Conferenceon Electronic Publishing 2003. http://elpub.scix.net/cgi-bin/works/Show?0341
Tous R., Delgado, J. �Advanced Meta-Search of News in the Web�, Proceedingsof the 6th International ICCC/IFIP Conference on Electronic Publishing. Pub-lisher: VWF Berlin, 2002. ISBN 3-89700-357-0. 395 pages. http://elpub.scix.net/cgi-bin/works/Show?0234

11.2 IntroductionThe main idea behind this work is that, in speci�c domains such as newspaper news,virtual libraries, videos or music repositories, the available metasearch engines usually o�er
101
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very restricted user interfaces (often only a keywords �eld) because of the di�culty to facethe interface particularities of each underlying source. Our approach targets to overcomethis limitation with a strategy inspired in the old works related to data integration butmaking use of the new possibilities o�ered by XML technologies. We base our stratgyon the reprocessing of the metadata returned by the di�erent sources, allowing to includemetadata-based search conditions in the user interface even if they are not o�ered by someof the target engines.
11.2.1 Web search enginesWhen we are looking for some information or content, in any digital environment,we have two possible alternatives: We can explore one by one all the existing objects insidethe set of interest that in the case of the Web could take probably more than a million yearsor we can use a search application that allows us to express constraints about the propertiesof the objects that we are seeking, using some kind of language as for example SQL in thecontext of databases. The more expressiveness the language has the more precision thequery will have. Traditional search over the Internet is usually performed using applicationsknown as 'search engines'. These systems seek a list of keywords among the textual contentof the Web (HTML, PDF, etc.). The concordance of a resource with the query depends onthe times keywords are present and also on their relative and absolute position.The traditional search engines user interface consists of a single text �eld whereusers can enter a sequence of keywords and boolean operators to constraint how these key-words must be searched. Because common users are not programmers most of the searchsites o�er an "advanced search" page to facilitate an alternative way in boolean queries.Once the search is �nished the search engine shows to the user a results page, where it liststhe web resources where the keywords have been found. The list is showed in descendentorder, from the best result to the worst according to the criteria described before. Theitems of the results list, in this kind of search, contain few information about the resourcedescribed: information about the title, a short description, the size and maybe the author.
11.2.2 Specialised search enginesIn speci�c domains, as newspaper news, the available search engines use to o�er tothe users more complex interfaces than the generic ones. These interfaces allow to specifyconstraints about speci�c features of the resources being searched, as the date of an article,the price of a book, etc. The results page of a specialised search engine it is quite similar tothe results page described in the previous section, but it provides more information abouteach item in the list.Engines of di�erent domains, as videos, music or games for example, will use adi�erent set of attributes to describe each matching result, but even engines of the samedomain, books in this case, will probably use a similar but not equal set of attributes. This isthe main drawback that constraints the functionality of the existing specialised metasearchengines, as we will discuss later, and one of the targets of this part of the research work.
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11.2.3 Metasearch enginesThe increasing number of search engines has motivated the apparition of new sys-tems that help users �nding information in the Internet by automatically querying a set ofavailable search engines. These systems are called metasearch engines. From the users pointof view traditional meta-search engines have the same interface and functionality as normalones, but it is commonly accepted that they are slower. Metasearch engines have to face theproblem of querying applications designed for human interaction with interfaces as those de-scribed above. Some initiatives have appeared to de�ne a standardized and machine-friendlyaccess point to Web search systems, but the success of these approaches is constrained bythe fact that search service providers are reluctant of other systems taking unrestrainedpro�t of their work. However, the inexistence of machine-friendly interfaces cannot avoidthe exploitation by third parties of the information harvesting e�ort of the existing searchengines, mainly because they use browsers as a presentation layer, with exposed HTTPrequests and HTML results pages. This leaves a door open to other applications to act asbrowsers and launch queries against them. So the task of meta-search can be divided in twomain sub-problems:1. How to query each search engine2. How to obtain the information from each results pageThe necessity to feature each engine interface, overall considering the lack of collaboration,is very time-consuming and cumbersome, and no one can guarantee that the interfaces willremain unchanged. This makes existing metasearch engines very di�cult to maintain, andthe uncertainness about their update state reduces their public acceptance.
11.2.4 Specialised MetasearchIf in the �eld of generic search we can �nd the �gure of the meta-search engine,in the �eld of specialised search happens exactly the same. There exist some meta-searchengines designed to launch queries against a set of specialised search engines of the samedomain. Currently there exist specialised metasearch systems in practically every possi-ble area. As said before, specialised search engines provide complex interfaces to performaccurate queries constraining the particular features of the target resources. Surprisingly,traditional specialised meta-search usually o�er only a "one-�eld" interface to the user. Theorigin of this limitation lies in the di�culty to feature the interface particularities of everyunderlying specialised engine. To provide a richest interface it would be necessary to mapthe interface semantics with the semantics of every target engine, a hard task especially if weconsider that the interfaces could change. To overcome this limitation is one of the targetsof our research work concerning this area, as it will be further explained.
11.3 Our approach: Advanced metasearchOur research group has been working during several years in practical solutions toimprove the capabilities of metasearch engines [118]. It is not a quantitative approach, since
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we do not pretend to reduce the search time or to amplify the search �eld, but a qualitativeapproach. The target is to provide users (human or agents) with a search interface thatallows to express unrestricted search criteria over any existing resource in the Internet,without doing any presumption over the existing technologies (as other approaches do, asthe Open Archives Initiative [109]). To achieve these goals we have de�ned a new strategyto design meta-search engines. This strategy is based on �ve main ideas:1. Common metadata speci�cation: The speci�cation of a selected common set of prop-erties (metadata) of the objects targeted by the search. This speci�cation could beformalised using XML DTDs, XML Schemas or RDF Schemas for example.2. User-interface independent query language: The speci�cation of a generic query lan-guage that will be the entry point to the meta-search engine. It is not necessary toreinvent the wheel, if we assume that results will come in some XML form, W3C'sXQuery [154] language will su�ce (or RQL if we are using RDF). The language needn'tto be known by human users because it could be distilled from human-friendly inter-faces.3. Human/machine maintainable XML descriptors: The use of XML descriptors to fea-ture the 'hostile' underlying engines interfaces, to facilitate its generation and main-tainability by human administrators or learning agents.4. Mapping: The XML descriptors should allow to map the generic queries of the users(formalized in the language mentioned above) to the speci�c interfaces of the under-lying engines. These descriptors should also be used to map the heterogeneous resultsobtained to the generic set of metadata. The homogeneous results obtained couldbe formalized using XML or RDF. Some questions arise here, as what happens withsearch conditions that cannot be mapped to some engines, or what must be done withresults where not all the properties were de�ned (specially the properties referencedin some of the search conditions). The following point will answer these questions.5. Reprocessing: The key aspect of our strategy is the reprocessing of the results. Be-cause some of the conditions expressed by the generic user query probably cannot bemapped to all the underlying engines, it is necessary to reprocess the query over theobtained results, once they have been normalised. Because the user query arrives tothe system in the form of a standard query language (XQuery, RQL, etc.) this stagecan be performed by simply executing the respective query processor over the obtainedresults. This step guarantees that the results returned to the user are coherent withthe conditions expressed in the initial query.Our approach can be applied to any kind of search over the Web, but it becomes speciallyappropriate when it is applied to specialised meta-search. The reason is that, in despite ofthat the specialised search engines of the same domain use to share similar and rich sets ofmetadata, the traditional specialised meta-search has not found till now a way to exploitit, unless by establishing partnerships and speci�c protocols with the underlying enginesadministrators. Fig. 11.1 illustrates graphically the main features of this strategy, thatleaves unde�ned some points marked here with dotted lines.
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Figure 11.1: Strategy Diagram
11.4 XML Search Neutral Language (XSNL)

Any query, expressed in some syntax over a set of items featured with a certain setof properties, has an underlying semantic. Unfortunately, there is not an universally acceptedstandard way to express it. The parameters of the HTTP forms from Web search enginescan be viewed as the building blocks of a particular query syntax, one for each di�erentengine. The problem to map a generic user query, expressed in some query language, to aset of di�erent HTTP interfaces is the problem of mapping between query syntaxes.Imagine two news search engines; one o�ers the possibility to constraint the searchto news appeared today, this week and this year. The other engine allows to constraint thesearch to an explicit month from the three last years. These are two di�erent syntaxes. Ifwe would have a syntax that allowed to express a speci�c range of dates, we could map it toeach one of the syntaxes. So we need a language that acts between the meta-search interfaceand the target systems, built to be as �exible and �ne grained as possible, allowing to mapthe biggest set of possible query conditions.The old research paper (1995) "Answering Queries Using Views" [55] by A. Halevyet al. faces a similar situation and considers the problem of rewriting a conjunctive queryusing a set of conjunctive views. As most part of similar works of these initial approachesit uses Datalog1. Instead of Datalog, we have chosen XML related technologies as a morenatural way to interact with modern web interfaces.We have de�ned an XML-based query language to test our approach. We callit XML Search Neutral Language (XSNL) and we have applied it to the development ofan advanced meta-search engine specialized in newspaper news, as explained in the nextsections. The reason why we do not use XML Query as the intermediate language (we use itto process XSNL sentences) is that our strategy is based on having simple queries expressedin XML. There exists also an XML serialization of XML Query, but it is too verbose andcomplex to suit our approach. This doesn't mean that users (developers) cannot use XMLQuery to process the results, because XSNL is just used as a mediator query language withXML output.The following XML code shows a sample instance of XSNL in the news context:
1see the Background Information chapters for a brief introduction to Datalog



106 Chapter 11: Facing Heterogeneous Query Interfaces: Query Tunneling
XSNL sample query:
<query><select><property propertyname="headline" /><property propertyname="date" /></select><where><contains propertyname="content" value="iran" /><between propertyname="date" from="2002-06-31" to="2003-06-31" /><in minimum="3" propertyname="source"><valueitem value="El Mundo" /><valueitem value="ABC" /><valueitem value="La Vanguardia" /><valueitem value="El Pais" /><valueitem value="Reuters" /><valueitem value="CNN Spain" /><valueitem value="Le Monde" /><valueitem value="The Washington Post" /><valueitem value="BBC" /><valueitem value="Diari Avui" /><valueitem value="La Stampa" /></in></where><sortby propertyname="source_order" type="asc"/><sortby propertyname="date"/></query>

To understand the example, let's imagine a web page where a user can searchnewspaper news by specifying some keywords and a date range. In the web server the userrequest is analysed and translated to XSNL. Finally the XSNL is sent to the metasearchengine and the search process begins. The structure of a XSNL document is inspired inthe SQL language. It have a 'select' element, where can be speci�ed the desired attributesof the resulting objects, a 'where' element, where can be speci�ed the search constraints,and an 'sortby' element, to determine the results order. The di�erent constraints can bespeci�ed by using di�erent elements, allowing to add to the language new constraint typeswith di�erent structures.
11.5 A Practical Application: Advanced News Meta-searchEngineWe have applied our ideas in the development of an advanced metasearch enginespecialised in newspaper news [144]. In this domain there exist thousands of commercialand non-commercial traditional search engines, and also hundreds of available meta-search
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applications. The most part of the newspapers with presence in the Web o�er search servicesin their sites. All these engines are the potential information sources of our system, buteach one of them uses a di�erent set of parameters in the queries and a di�erent resultspage format. Our objective is to o�er to the user a generic interface that allows to specifyunrestricted conditions over the set of common properties that we have selected in thisdomain (headline, author, date, section, page, newspaper and language). To achieve thistarget, once selected and formalized (we are currently using a XML DTD) the subset ofmetadata of interest, the next step is to analyse the interface of every engine to obtaininformation about the query method. We use XML descriptors to describe how to mapeach speci�c set of query parameters to the generic common properties selected. We planto use learning agents to perform this operation periodically because the interfaces of theengines could change over time. As a part of the interface featuring we must also acquireinformation about the results page, that will be used during the parsing process. Once wehave a mechanism to feature the engines interfaces, we can design the interface of the meta-search engine. We have selected XML messages (SOAP [136] ) containing XQuery sentencesand HTTP protocol. This interface is open and can be used by third-parties to developindependent clients -user interfaces or agents- However, to demonstrate the functionality ofthe system, we have developed our own interface (see �g. 11.2 or �g. 11.3 for the advancedinterface). The criteria speci�ed by the user is translated to XQuery and sent to themetasearch engine. The engine maps the parts of the query (at least those that are possible)to each underlying engine interface and then launches all the searches in parallel. The resultsobtained are heterogeneous and must be parsed and mapped to the common set of properties.Because no one can guarantee that all the criteria have been mapped to all the engines, theresults (now homogeneous and serialized in XML) must be reprocessed. This reprocessing iseasily performed in the server only by using a XQuery processor with the XQuery receivedas the input.
11.6 Implementation

Implementing the prototype application has meant to instantiate the metasearchstrategy explained above. The next subsections explain how, with the help of W3C's XMLQuery Language [154], the prototype executes the following query over the di�erent sources:
XSNL sample query:
<query><select><property propertyname="headline" /><property propertyname="date" /></select><where><contains propertyname="content" value="test" /><between propertyname="date" from="20020631" to="20030631" /></where>



108 Chapter 11: Facing Heterogeneous Query Interfaces: Query Tunneling

Figure 11.2: DMAG's News Advanced Meta-search Engine user interface
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Figure 11.3: DMAG's News Advanced Meta-search Engine advanced user interface
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Figure 11.4: Mapping XSNL to each engine with XML Query
<sortby propertyname="date" /></query>

11.6.1 Mapping the user query to target systemsThe �rst hole to �ll from the strategy diagram described above is the way to obtainthe parameters for the HTTP call for each search engine from the user query formalised inXSNL. This is not a trivial issue, because it must be determined if the condition expressed inone parameter is also expressed with one ore more statements in the XSNL query, and thenextract the necessary information to give a value to the parameter. This process can requirea complex analysis of the query, and the information to do it must not be coupled withcode, for maintainability reasons. The description of the way to characterize a parameter ofone engine should be editable, human-friendly and modi�able at runtime. Here is where theXML Query language �ts, as is illus-trated in �g. 11.4. Each engine parameter is featuredin XML. The parameters that require some analysis of the user query are featured with aXML Query within a CDATA clause. The following simpli�ed example shows a fragment ofthe con�guration �le of a news metasearch engine.
Configuration file fragment:
<parameter><name>precision</name><type>xquery</type><value><![CDATA[<result-value>LET $a := document('input.xml')LET $b := $a//contains/@typeLET $c := IF ($b = 'or') THEN '1'ELSE IF ($b = 'and') THEN '2'ELSE '3'RETURN $c</result-value>]]>
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Figure 11.5: Screen Scraping with XML Query
</value><default>1</default></parameter>

The parameter precision of the target engine corresponds to a the boolean operatorto be applied. This information is obtained from the user XML query, from the attribute'type' of the 'contains' element. This is a very simpli�ed example, but it serves to illustratethe idea.
11.6.2 Metadata extraction ("Screen Scraping")The second hole to �ll in the design of our system is the way the results pages areanalyzed to extract the metadata related to each item. As we will see later, it would beconvenient to formalize this metadata in XML. So, why not to convert the HTML resultspage in XML and then apply a XML Query to it? There exist a lot of tools to converta HTML page to XML, even if it is malformed, and some of them perform very fast. Anexample is W3C's HTML Tidy [143]. The XML Query can be edited and modi�ed byhuman administrators or software agents at runtime, without the necessity to recompile thesources. The following XML fragment shows an example on how to apply this idea to extractinformation from the results pages of the Washington Post searcher:Example of XML query wrapper for screen scraping:
<resultsmap><![CDATA[import dt as org.dmag.metasearch.utils.XQueryTransformDate;import ps as org.dmag.metasearch.utils.XQueryTransformString;FOR $c IN document('input.xml')/tableWHERE $c/tr/td/font/b/aRETURN<result><property name='headline' value=$c/tr/td[1] />,<property name='description' value=$c/tr/td[2] />,<property name='date' value=dt(ps($c/tr/td[3])) />,
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Figure 11.6: Reprocessing of the results with XML Query
<property name='link' value=$c/tr/td[1]/a/@ref/text() />,</result></results>]]></resultsmap>

11.6.3 Reprocessing the resultsOnce we have obtained the results in XML, we must face the problem of reprocess-ing them to assure that all the initial conditions have been applied. The good news is thatXML Query �ts perfectly to do this job, the bad news is that our initial query is formalizedin XSNL, not in XML Query. To overcome this problem we must simply transform ourinstance of XSNL to a XML Query, as it is shown in the following XML fragment:
<results>for $c in document('input.xml')//resultwhere $c/property[@name='date']/@value .>=. '20020631'and $c/property[@name='20030631']/@value .<=. '20030631'return $csortby (property[@name='date']/@value</results>Now we already have a XML Query and we can just apply it to the results. Thereprocessed results will be the output of the system, being the interface is responsible torender it in a convenient way. With this we have completed the initial strategy �lling allthe unde�ned aspects, as presented in �g. 11.6.
11.7 Related workIn the State of the Art chapters we have seen that the problem faced in this work istraditionally known as the querying problem of the data integration discipline. This problem
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is related to the ability to reformulate a query to combine information from the di�erentsources according to their relationships with a mediated schema. This virtual mediatedschema of data is the only schema visible to the users and their queries, giving them theillusion of interacting with one single information system.There are two classic approaches concerning mediated schemas, the global-as-view(GAV) [2][26][50], which de�nes the mediated schema as a set of views over the data sources,and the local-as-view (LAV) [98][56][34], which takes the inverse point-of-view and describessources as views over the mediated schema. Our approach is similar to the LAV scenario,because describes sources in terms of a mediated schema, and o�ers a very simpli�ed solutionto the problem of answering queries using views.Traditional works on classic metasearch are [33] [135]. A more recent approachvery similar to ours can be found in [81], that de�nes this idea as "Query Tunneling". Itmakes use of RDF tools and focuses on scienti�c papers databases.
11.8 ConclusionsNowadays the Web has become the �rst place where people goes when they needto �nd some information. Surprisingly, and in concordance with what we have exposed inthis document, we can a�rm that the functionality of the current search systems of theWeb is very limited, overall in comparison with other digital environments. Today, the'keywords paradigm' consisting in that one types some words in a text �eld and press the'search' button, satis�es the necessities of the most part of the people, and probably theaverage Web user does not want to hear nothing about new search interfaces. However,the Web is growing exponentially, and also the need for information, and soon the resultsobtained from a query based on a list of keywords will be unmanageable, and new and fastersearch mechanisms will be needed. Furthermore, in the short term, the most part of thenon-textual resources of the Web (images, videos, music, etc.) will be enriched with somekind of metadata, supporting new standards as MPEG-7 [101]. The queries targeting theseresources must be capable to express complex conditions about properties and attributes.In the long term, the 'Semantic Web' will require strategies to adapt the existing human-oriented search services to enable its use by software agents without traumatic impact inthe underlying technologies. Our approach targets all these challenges without makingassumptions of the success of some standard or protocol.





Chapter 12
Waiting Policies for Distributed
Information Retrieval on the Web

Distributed Web search engines, those systems that query on-the-�y a set of avail-able Web search systems in response to a user's request, have to face the problem of inter-acting with a large set of unpredictable systems with heterogeneous and changing responsetimes. The necessity to achieve a compromise between the �nal user perceived delay andthe quality of the results motivate the discussion between di�erent algorithms to determinewhen the query process of an information source should be aborted. We call these algorithms'waiting policies', and their goal is to maximise the quality of service (QoS) by minimizingthe impact of sources behaviour without reducing the result quality beyond user's tolerance.Our experience in the design and development of specialised metasearch engines has givenus the possibility to try some of these policies, and to extract some conclusions that wepresent here.
12.1 MotivationA distributed search engine is a system that sends queries to multiple search sys-tems, then collates the results in some way and formats them for display. We can identify alot of di�erent kinds of these systems, depending on their data sources, that can be internalindexes, associated text search engines, database search engines, message archives, Intranetor Web wide search engines, or even �le servers.This part of the work focuses on distributed search over Web search systems, in anyof its forms (metasearch, content syndication, aggregation, etc.), but mainly over specializedones. The typical session when using a traditional distributed Web search engine beginswhen the user submits a query to the system through the user interface. The engine thensends the user query to a set of underlying search engines (or component search engines[146]). The query must be translated to an appropriate format for each local system. Oncereceived the results from the underlying sources, these are merged into a single ranked listand presented to the user. Nevertheless, we are not going to discuss here the motivationor interest of metasearching or other forms of distributed search on the Web, already welldocumented (see for e.g. [135], [33] or [88]).
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Generally, and independently of the kind of systems the distributed engine is tar-geting, the process of querying the di�erent engines is done in parallel. Each target engineis called and treated by a di�erent execution thread of the distributed engine, that waitsuntil the source (i.e. the queried system) responds with a set of results and then passes theinformation to a results pool. A main thread is responsible to analyse the evolution of theresults pool and determine when the process must end. The set of rules used to do this isthat we call the 'waiting policy', and it is the focus of this article.Any distributed search system needs a waiting policy, but depending on the contextthe complexity of the policy can vary. If we have a system that queries a small set of remotesources and requires all the responses to ful�l the process, the waiting policy will consist insimply determining if some of the remote systems are out of service (even this can be a nontrivial issue). This is what happens with most of traditional Web-wide meta-search systems(for e.g. [135]). However, if we have a Web-based distributed search engine that querieshundreds or even thousands of sources, we can consider that maybe it is not necessary nordesirable to wait them all (even if they are on service).Maybe the user prefers to sacri�ce some results to achieve a better response time.This also may happen when working with specially unreliable underlying sources, as insome specialised domains. But, how to measure the 'quality' of the results? And, when the'quality' is enough to decide to abort the search process? These are di�cult questions thatdepend on subjective variables like user's perception of the results relevance or the responsetime. We have been forced to study this problem as a side e�ect of our work on an advancedmetasearch strategy [118], specially for the development of the architecture that instantiatesthis strategy and that is being used in real engines like [144].

12.2 Distributed Search Engine PerformanceSome of the measures proposed to quantitatively measure the performance of clas-sical information retrieval systems (see, e.g., [96]) can be extended to evaluate Web searchand distributed search engines. However, as remarked by [85] Web users may have a ten-dency to favour some performance issues more strongly than traditional users of informationretrieval systems. For example, interactive response times appear to be at the top of the listof important issues for Web users. A basic model from traditional retrieval systems [145]recognizes a three way trade-o� between the speed of information retrieval, precision andrecall (see �g. 12.1).Precision is the ratio of relevant documents to the number of retrieveddocuments: precision = relevantDocumentsretrievedDocuments (12.1)Recall is de�ned as the proportion of relevant documents that are retrieved with respect thetotal number if existing relevant documents:
recall = relevantDocumentstotalRelevantDocuments (12.2)

The precision is related to the expressiveness of the queries and the structure of the infor-mation to explore. Most Web users are not so much interested in the traditional measure
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Figure 12.1: Three way trade-o� in search engine performance [85]

Figure 12.2: Waiting Policy
of precision and recall as the precision of the results displayed in the �rst page of the list ofretrieved documents, before "next page" command is used. This special characteristic canbe extended to meta-search engines users, and is a key point when considering to design awaiting policy, because it shows that users may prefer to sacri�ce some of the results (evenrelevant ones) to improve response time.
12.3 Waiting PolicyA waiting policy (see �g. 12.2) is an algorithm that determines when a distributedinformation search process must end. A distributed search implies the interaction with re-mote, heterogeneous and potentially unreliable systems, with di�erent and variable responsetimes. This does not imply only that some engines can sporadically appear out-of-service,but this can also imply that some engines may experience enormous delays sometimes un-related to network overloads. This situations can last hours, days or even weeks. So it isnot enough to activate a method to detect source failures, because some sources can beon-service but with response times beyond user tolerance. Because this is a very dynamiccontext, the system must have a mechanism to determine when the search process must bestopped. The algorithm must guarantee the quality of service (QoS) by optimising the rela-tionship between the 'results quality' and the user's perceived response time. The responsetime can be easily measured but the results quality depends on a combination of objective
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Figure 12.3: Distribution of Engines Delay
and subjective aspects. Objective aspects can be the correctness of the results in relationto the query, the total number of results or the number of sources successfully queried. Thepolicies that we will study here focus on the third of these aspects, the number of sources,that has a tight relationship with results quality. Be-cause the quality of the sources can vary,even depending on the user perception, one can establish pondering mechanisms, assigningdi�erent weights to each source of information. However we will talk about 'number ofsuccessful sources' assuming that, if weights have been assigned, the number already re�ectsit.
12.4 Target Engines BehaviourWhen designing a waiting policy, and taking the number of successful sources asa main parameter, it is interesting to know if there is some pattern in the behaviour ofthe target engines. We have tested the response times of an arbitrary set of approximatelysixty search engines1 (see �g. 12.3). The horizontal axis (�g. 12.3) represents the sequenceof delay times and the vertical axis the number of target engines. The measurements havebeen grouped in intervals of 1000 ms (the graph shows the lower margin of the interval, fore.g. the �rst ten engines �nished in less than one second). Knowing this we can anticipatehow the results pool will evolve, because when each engine terminates, the pool receives anew result2. So, the function that models the time evolution of the number of results �rstgrows slowly, because only a few set of engines have very small delay times, then grows veryfast, and �nally grows slowly again (see �g. 12.4). To construct the graph we have madea one-to-one association between results and engines, but the conclusions can be extendedto the situation that we have mentioned before, when we assign di�erent weights to the1We have chosen about sixty heterogeneous engines from diverse locations. They include Web-wide searchengines, specialized search engines, meta-search engines, digital libraries and others. The complete list canbe download at http://www.tecn.upf.es/�ertous/projects/ir/url_waiting_policies.htm2Here for 'result' we mean a set of results returned from one source
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Figure 12.4: Results Evolution
sources. Because target engines are remote systems arbitrarily located, we do not know thereasons that underlay their response time. Despite that, they are all conditioned by globalchanges of network conditions, overall considering that the response time includes the resultstransmission to the distributed search engine, around which they share the same networkstate. So, we can assume that target engines will have a certain global behaviour, and thatthis behaviour can change. Fig. 12.5 shows the progression of the results obtained fromthe same engines of the previous �gures but under di�erent network conditions. We havesimulated a network overload in the proximities of the distributed search engine that haveincreased the delay of all the sources.
12.5 Results vs. TimeThe simplest waiting policy one can imagine is a �xed Timeout Policy. Someone�xes heuristically a time limit for waiting for results; once surpassed, engines that still havenot responded are discarded. In this case, users always experience the same delay (withoutconsidering the time it takes to send collated results to them). When network conditionsare bad, only a few set of engines have the chance to respond, and users get only a smallsubset of the potential results. Obviously this cannot be considered a good policy but servesto illustrate what is the problem we are facing. The only advantage of a Timeout policy isthat does not propagate the changes of target engines behaviour to end users, as illustratedin �g. 12.6. The �gure shows how a degradation of network conditions slows down theharvesting of results that ends when time-out arrives (vertical line).The opposite approach to Timeout Policy is the Minimum-results Policy, that waitsuntil a minimum number of engines have successfully �nished. This policy guarantees thequality of the response, but propagates to the user the delay time of the target engines andits changes (see Fig. 12.7). Again it must be mentioned here that we focus on the number ofsuccessful engines to measure the results quality assuming that this value could have been
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Figure 12.5: Results progression in hostile network conditions

Figure 12.6: Timeout Policy Example
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Figure 12.7: Minimum-results Policy Example
modi�ed to re�ect source relevance issues.These two di�erent approaches optimise only one of the variables, the responsetime or the number of successful sources respectively. The user experience with a systeminstantiating one of these algorithms can be very frustrating. In hostile network conditionsthe timeout policy may abort practically all search threads, eliminating the possibility to�nd answers to even simple queries. If network performance is good, the minimum-resultspolicy will abort threads even with a very fast response time. It is clear that none of thesealgorithms is the solution, because it should optimise the two variables. To design a goodwaiting policy we should achieve a compromise between time and quality, and this must beable to adapt to environmental changes.
12.6 Source Discarding Policies

Some policies focus on being able to detect target failures under changing networkconditions. These policies try to maximise the number of results without discarding anypotential source. One approximation to this is to maintain statistics about each sourcedelay, and, when network conditions vary, be able to determine the expected delay for eachtarget. If we have N sources and K previous search experiences, we can trivially calculatethe average delay (d) of each source to represent its historical performance (see Fig. 12.8).Because we probably want to use the latest information (the information of the searchprocess in course), in the search experience K+1 we can approximate the future delay ofsome engine e applying the average change ratio of the n sources already �nished.This kind of policies work �ne to discard sources that are behaving disaccordingto the network conditions and its own historical values. However these policies propagateto the user the changes in the network performance, and cannot be considered a de�nitesolutions according to what we have said before.
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Figure 12.8: Source Discarding Policies Formula
Figure 12.9: Minimum Granted Results Policy Formula

12.7 Minimum Granted Results Policy
During our work on designing and implementing specialised meta-search engineswe have developed a policy that we call Minimum Granted Results Policy (MGR), thatsatis�es two requirements:

1. The waiting policy must be able to abort the search process if a minimum results havebeen achieved and the response time has surpassed some desirable level.
2. Even if the minimum results have not been achieved a maximum time-out must beestablished.

These two requirements can be more formally expressed. The �rst one just says that if thedelay t surpasses some minimum time tmin and the quality of the results already obtainedr surpasses some minimum level rmin the search process must end. The second requirementsays simply that the delay never must surpass some maximum level tmax. See the formulain Fig. 12.9.Fig. 12.10[h!!] shows how this algorithm behaves in the same two environmentsdescribed before. With normal network conditions (left graph) the system has the chance toharvest results even over the rmin level. When the delay arrives to tmin the search processis aborted. Under hostile network conditions (right graph) the tmin level of delay mustbe surpassed because the number of successful target engines is still not enough to ful�l aresponse. When rmin engines �nish (or the value of pondering the engines that have �nishedreach rmin ) the search process is terminated. The graphs does not show the case when tmaxis reached but no rmin, this could happen under exceptionally bad network performance.We have tested this policy in an implementation of a news metasearch engine [144]. Forthis case we have used heuristic values for rmin, tmin and tmax, but we are studying howto automate this process by obtaining user's feed-back. This can be achieved implicitly,by analysing user actions after di�erent levels of delay (abandoning the session, retypingthe query, etc.), or explicitly, by letting users de�ne themselves what they consider a goodresults level, an unacceptable delay, or how to ponder the di�erent sources (this can bestored in user's pro�le).
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Figure 12.10: Minimum Granted Results Policy
12.8 ConclusionsSpecialised distributed search is a natural link in the information feed-chain. How-ever, some specialised search engines have response times often higher and more unpre-dictable than traditional Web-wide search systems like Google [23]. This constraints theperformance and QoS of specialised distributed search systems and motivates the study oftechniques to optimise the trade-o� between delay and results quality. Aborting a searchprocess to improve performance can seem a sin from a traditional information retrieval pointof view, but if we consider that the recall value for the underlying engines is far from being100%, and taking to consideration that most part of users usually consider only the �rstresults, to abort the search proc-ess when results have reached some reasonable quality canbe a good measure. We have applied the techniques described here to the development ofa specialised meta-search engine that searches and retrieves newspaper news. Most part ofthe sources we have used in the practical application are on-line news services of the Spanishmarket, and have proved to be slow and unreliable. After some initial frustration we decidedto apply the MGR policy described above. The experience of using the system improvednotably, because the policy hides to the user the underlying engines performance and thenetwork conditions.Now we are working to automate some features of the system, that includes amongother issues (automatic source discovery and con�guration, automatic extraction of meta-data) the tuning of the parameters of the MGR policy. As we pointed out before, thisautomation can be done implicitly (observing user reactions under certain conditions) orexplicitly (letting user to establish some of the parameters). We are also working on newtechniques to improve the overall QoS, that includes di�erent levels of caching and the studyof some related issues like cache live times.
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Chapter 13
Conclusions

Because the results of the work can be divided in di�erent parts, correspondingto the di�erent related research papers, I've chosen to keep their speci�c conclusions (seeprevious chapters). However, here I'm going to summarise these conclusions and to givesome �nal comments.
13.1 Heterogeneous Data Models and Schemas: Semantic In-tegrationWithin the general area of data integration, this thesis presents two contributionsto the semantic integration research trend. In on hand, I present a novel approach to theproblem of XML semantic integration. It aims to overcome some limitations of alreadyexisting solutions (e.g. [91][84][65][54]) applying an old idea of [97] related to the XML-Relational data integration. The idea consists on represent the general XML model, insteadof some speci�c schemas, over constructs of another model (Relational Model in the case of[97], RDF and OWL in my case). This translation of XML to RDF allows loading XMLinstances and also multiple XSD schemas into an RDF-based repository, that can also hostdi�erent ontologies.Over this idea, I have implemented a schema-aware and ontology-aware XPathprocessor, that can be used to transparently resolve queries over XML instances boundto schemas that de�ne inheritance hierarchies among types and element names, or relatedto ontologies that de�ne relationships that are relevant for the queries evaluation. Thematerialization of the approach in the Contorsion API, and its usage in a plausible usagescenario like the Digital Rights Management domain, demonstrates its usefulness.In the other hand, but also within the semantic integration area, I have contributedto the ontology alignment problem. The thesis presents a novel sutructure-based semanticsimilarity measure based on a matrix represention of nodes from an RDF labelled directedgraph. The approach is based on the intuitive idea that similarity of two concepts can bede�ned in terms of how they relate to other concepts. We model these relationships witha vector space of n dimensions being n the number of selected standard predicates (e.g.rdfs:subClassOf, rdfs:range or foaf:name). We have adapted the algoritm in [20] to theseidea to iteratively compute the similarities between two OWL ontologies. I have presented
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128 Chapter 13: Conclusions
also an optimization of the algorithm to critically reduce its computational cost. The goodresults obtained in the tests performed over the Ontology Alignment Evaluation Initiative2005 testsuite has proven the value of the approach.
13.2 Heterogeneous Query Interfaces: XML Query TunnelingAlso within the general area of data integration, this thesis contributes to the prob-lem of dealing with heterogeneous query interfaces. I have suggested a strategy that allowsredistributing an expressive user query (expressed in a XML-based data query language)over a set of autonomous and heterogeneous databases accessed through web forms. Thisis a new practical solution to an old problem of the data integration LAV (Local-As-View)approach. How a initial query, targeting the logical mediated schema, must be translatedinto queries over the di�erent autonomous data sources.The idea, that has recently been renamed by Thomas Kabisch [81] as "QueryTunneling", consists on using XML-related technologies for the reprocessing of the initialuser query over the results returned by the di�erent sources, that must be a superset of theresults that satisfy the initial query. The usefulness of the approach, that theoretically doesnot improve the old solutions based in Datalog [51][119][56], relies in its applicability, thathas been demonstrated in the development of a spanish news metasearch engine, and theJava Simple API for Web Information Integration (SAWII), that o�ers high level tools tothe development of articulated wrappers for complex web form-chains and result pages.
13.3 A Final CommentThe integration of data from multiple heterogeneous sources is an old and well-known research problem for the database and AI research communities. However, the evo-lution of the World Wide Web and other distributed environments like Peer-to-Peer and theGrid has refuelled some research challenges of this area with a great practical importance.While the amazing success of XML has clearly improved the interoperability ofdata and metadata in the digital environment, the recent success of not so recent semantic-rich modelling languages under the global name of The Semantic Web Initiative has raiseda new opportunity and challenge to the data integration community. Ontologies, instead ofschemas, are the new way to represent information domains. They are built with a rich setof constructs provided by the Semantic Web modelling languages like RDFS [126] and OWL[112]. Despite of XML and RDF derive from technologies more than 30 years old, andwithout discussing the reasons, it is clear that they are at the centre of the stage, changingthe way to do a lot of things that have remained unchanged for a long time. Their impacthas stimulated the imagination of a lot of people, and has generated a lot of initiatives. Mostof these initiatives are not new, but have been revitalised in the new context. Some of theseinitiatives are those related to the dissemination and use of machine-readable metadata, thattake pro�t from the bene�ts in terms of interoperability that XML and RDF o�er. However,it is not clear where is the limit of the advantages of structured data, and not everybodyagree in what is going to be the future scenario.
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