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Chapter one: Introduction 

The literature written on the topic of volatility forecasting has been lately enriched by the access 

to high frequency data, documented that it would enhance the modeling problem in a number of 

ways. As such, high frequency data allows a better understanding of dynamic properties of 

highly persistent volatility, it allows dissemination of announcements in markets that trigger 

shocks in volatility, it provides more accurate forecasts, and the realized measures computed 

from high frequency data were found as good estimators of conditional future volatility, and may 

boost the complex volatility models by reducing the parameter uncertainty. Due to the large 

contribution to volatility field of high frequency data topic, this work concentrates on further 

disseminating on the existing high frequency volatility models and the realized measures used in 

their compilation, as well as on proposing new opportunities of research by employing 

alternative models that would allow improved volatility estimation in univariate and multivariate 

assets. As such, it aligns to the two major lines of research in the literature, that of ranking 

models and proposing alternative methods to model conditional volatility. 

The current thesis focuses on the topic of volatility forecasting of financial (stock) time series, 

and searches to reach three objectives. The first scope constitutes of the proposal of a new 

method of volatility forecasting that follows a recently developed research line that pointed to 

using measures of intraday volatility and also of measures of night volatility. It starts from an 

idea developed by Hansen, Huang and Shek (2010b), who proposed a partial form of a Bivariate 

Realized GARCH (Realized Generalized Autoregressive Conditional Heteroskedastic) model, 

and applies it to other realized GARCH-type models to obtain new bivariate versions of them. 

The need for new models is given by the question whether adding measures of night volatility
1
 

improves day volatility estimations. New models will be proposed: Bivariate EGARCH 

(Bivariate Exponential Generalized Autoregressive Conditional Heteroskedastic), Bivariate 

EGARCH-X (Bivariate Exponential Generalized Autoregressive Conditional Heteroskedastic 

with an exogenous realized measure), Bivariate Realized EGARCH (Bivariate Realized 

Exponential Generalized Autoregressive Conditional Heteroskedastic), Bivariate GARCH 

(complete form) (Bivariate Realized Generalized Autoregressive Conditional Heteroskedastic) 

                                                           
1
 Defined as incremental increase or decrease of the price at the market opening as compared to the price at the 

market closing the previous trading day 
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and Bivariate Realized GARCH(2,2) (Bivariate Realized Generalized Autoregressive 

Conditional Heteroskedastic (2,2)). 

The second scope is to propose a methodology to forecast multivariate day volatility with 

autoregressive models that use day and night volatility estimates, as well as high frequency 

information when that is available. For this, the Principal Component (PC) algorithm will be 

applied to the univariate realized GARCH-type of models discussed in chapter three (in first 

instance), and to the bivariate models proposed in chapter five (in second instance). This method 

was inspired from Burns‟ (2005) PC GARCH (Principal Component Generalized Autoregressive 

Conditional Heteroskedastic), that estimated a multivariate simple GARCH model by estimating 

univariate GARCH models of the principal components of the initial variables. In first instance, 

following the methodology of Burns, the Principal Component algorithm will be applied to a 

multivariate EGARCH, EGARCH-X, Realized GARCH, Realized EGARCH and Realized 

GARCH(2,2)  model, as such there would result new versions of the PC-GARCH type of models 

that would accommodate not only to day, but also to intraday volatility data. New models will 

emerge: PC EGARCH (Principal Component Exponential Generalized Autoregressive 

Conditional Heteroskedastic), PC EGARCHX (Principal Component Exponential Generalized 

Autoregressive Conditional Heteroskedastic with an exogenous realized measure), PC Realized 

GARCH (Principal Component Realized Generalized Autoregressive Conditional 

Heteroskedastic), PC Realized EGARCH (Principal Component Realized Exponential 

Generalized Autoregressive Conditional Heteroskedastic), and PC Realized GARCH(2,2) 

(Principal Component Realized Exponential Generalized Autoregressive Conditional 

Heteroskedastic (2,2)), that will be used to forecast multivariate volatility by using high 

frequency information obtained from intraday stock returns. 

In second instance, the contribution will be the application of the PC algorithm to multivariate 

realized-GARCH models so that it would allow the multivariate asset volatility forecasting with 

bivariate autoregressive models proposed in chapter five, that allow using day, intraday and night 

volatility data. New models will result: PC Bivariate EGARCH (Principal Component Bivariate 

Exponential Generalized Autoregressive Conditional Heteroskedastic), PC Bivariate EGARCHX 

(Principal Component Bivariate Exponential Generalized Autoregressive Conditional 

Heteroskedastic with an exogenous realized measure), PC Bivariate Realized GARCH (Principal 
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Component Bivariate Realized Generalized Autoregressive Conditional Heteroskedastic), PC 

Bivariate Realized EGARCH (Principal Component Bivariate Realized Exponential Generalized 

Autoregressive Conditional Heteroskedastic), PC Bivariate Realized GARCH(2,2) (Principal 

Component Bivariate Realized Generalized Autoregressive Conditional Heteroskedastic (2,2)).  

The third goal of the thesis is to test the gain or loss in performance of existing or newly 

proposed volatility forecasting models, as well the accuracy of the intraday measures used in the 

estimations of the realized models. For this purpose, based on the estimations, there will be 

undertaken rankings of the models, also of the intraday measures used. With regard to the 

models, there will be ranked the realized models already proposed (together with the simple 

EGARCH model), following different criteria and methodologies. The scope is to see if some 

models persistently rank better or worse, across the various types of ranks. As well, there will be 

ranked the bivariate realized models, and also the bivariate versions will be compared to the 

univariate ones in order to investigate whether using night volatility measurements in the 

models‟ equations improves volatility estimation or not. Finally, the PC realized models and PC 

bivariate realized models will be estimated and their performances will be ranked; improvements 

the PC methodology brings in high frequency multivariate modeling of stock returns will also be 

discussed. 

Specifically, the scopes of the work may be disseminated from the resumed description of the 

chapters that follows. 

In chapter two it will be undertaken a literature review of the topic, starting from the papers that 

proposed the basic models to the more recent papers that include the foundation of the current 

work. The description explains the development of the field towards integrating high frequency 

data in the estimation exercise, the need for accessing measures of volatility that would describe 

the latent phenomenon in shorter than a day periods, offering a conceptual framework of the 

attempt to propose new models for estimating and forecasting volatility. The ranking addresses 

to the new models‟ power assessment, attempting to offer a contribution to the existing debate on 

the identification of the prevalent models. 

The third chapter considers two types of models: two simple models that do not use measures of 

intraday volatility (GARCH(1,1) (proposed by Bollerslev (1986) and EGARCH(1,1)) (proposed 
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by Nelson (1991)), and four models that incorporate measures of intraday volatility (EGARCH-

X(1,1) (a version of the GARCH-X model proposed by Engle (2002)), Realized GARCH(1,1), 

Realized EGARCH(1,1) and Realized GARCH(2,2) of Hansen, Huang and Shek (2010a). These 

models were already proposed, the scope of this chapter being to estimate and rank them for the 

four stocks (AIG - American International Group, AXP - American Express, BAC - Bank of 

America and JPM – J. P. Morgan) considered, as well as to rank the six measures of intraday 

volatility used (realized kernels, high-low, and realized variance sampled at 15 seconds, 5 

minutes, 15 minutes, and 20 minutes). The models will be estimated in sample and out of 

sample, for each of the realized measures mentioned above and the performance will be 

measured by the size of their maximized loglikelihood functions and also by the values of three 

loss functions (RMSE – Root Mean Squared Error, MAE – Mean Absolute Error and MAPE – 

Mean Absolute Percentage Error). In order to make the rankings comparable across criteria, the 

size of the loglikelihood and loss functions will be normalized. The rankings will be combined in 

order to build up a general ranking for all the estimations made. 

The fourth chapter, in its first instance, will propose new methods that attach an algorithm 

(Principal Component Analysis) to a class of multivariate realized and non-realized models, 

offering an improved alternative to the multivariate volatility estimation of stocks. The method 

takes advantage of a methodology proposed by Alexander (2000) for Orthogonal GARCH, also 

of a methodology proposed by Burns (2005) that indicated a method to estimate a multivariate 

GARCH model by estimating univariate GARCH models of the principal components. The 

method has been called PC GARCH. This chapter will adapt this methodology to the class of 

models that uses measures of intraday volatility, also to a simple model (EGARCH), the result 

being a new PC-class of models: PC EGARCH(1,1), PC EGARCHX(1,1), PC Realized 

GARCH(1,1), PC Realized EGARCH(1,1) and PC Realized GARCH(2,2).  

In its second stance, the fourth chapter will comprise a performance assessment of the new PC 

models. As such, the models will be estimated in sample and out of sample, for each of the 

intraday volatility measures considered (realized kernels, high-low, realized variance sampled at 

15 seconds, 5 minutes, 15 minutes, and 20 minutes), and their accuracy will be assessed by the 

size of the three loss functions considered (RMSE, MAE and MAPE). Models will be compared 

to their peers (the other PC models) and will be ranked. As well, the six measures of intraday 
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volatility will be assessed with regards to the size of the loss functions of the PC-models they 

will be used for. In order to combine the rankings across the criteria, the loss and loglikelihood 

functions will be normalized for making them comparable. 

The fifth chapter will have, as well, a dual scope. The first one is to propose new bivariate 

models that use not just measures of day volatility, but also measures of night volatility. The idea 

sparked from the observation that the price at the stock market closing of one share differs from 

the price of the same share at the opening of the stock market the next day. This suggests that 

during the night there also exists latent volatility, although no trades take place when the market 

is closed. As such, a bivariate model that would encumber measures of day and intraday 

volatility and also of night volatility, could be formulated and estimated, as it could improve the 

estimation of day volatility. The first such model was proposed by Hansen, Huang and Shek 

(2010b), being a partial version of a Bivariate Realized GARCH model, with an exogenous 

realized measure. This chapter continues the idea of Hansen, Huang and Shek (2010b) and 

proposes the formulation of the bivariate version of one simple EGARCH model, as well 

bivariate versions of the realized models discussed in chapter three. As such, new models will 

emerge: a Bivariate EGARCH, a Bivariate EGARCH-X, a Bivariate Realized EGARCH, a 

Bivariate GARCH model (in its complete form – with an endogenous realized measure) and a 

Bivariate Realized GARCH(2,2) model. These models‟ estimation will differ from that of the 

models in chapter three by the fact that it will not be estimated the volatility of a univariate 

vector, but that of a bivariate vector formed from two univariate vectors correlated with a 

different from zero correlation factor. The newly proposed models will be estimated in sample 

and out of sample, using one measure of intraday volatility, the realized kernels. In chapter five 

there will be also undertaken (the second scope of the chapter) a ranking of the new bivariate 

models and it will be checked the gain or loss in accuracy when compared to the models‟ 

univariate formulations. The forecasting performance will be expressed with regards to the size 

of the maximized loglikelihood functions, and also with regards to the three loss functions 

considered (RMSE, MAE and MAPE); a general ranking will be obtained through normalization 

of the functions‟ values. 

Finally, chapter six will attach the Principal Component Algorithm to the bivariate realized 

models from chapter five, in order to solve the problem of multivariate estimation of stock 
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volatility, by offering an alternative to multivariate GARCH estimations through univariate 

models. The chapter takes as well advantage of the methodology offered by Alexander (2000) 

for Orthogonal GARCH and of the one of Burns (2005) for PC GARCH. New models will be 

obtained: a PC Bivariate EGARCH(1,1) model, a PC Bivariate EGARCH-X(1,1) model, a PC 

Bivariate Realized EGARCH(1,1) model, a PC Bivariate Realized GARCH(1,1) (partial) and a 

PC Bivariate Realized GARCH(1,1) (complete) model, as well as a PC Realized GARCH(2,2) 

model. The new models will be estimated in sample and out of sample, having the realized 

kernels as measures of intraday volatility. The models will be ranked after the size of their loss 

functions.  
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Chapter two: Literature review 

Volatility represents an intensely researched topic in Time Series Econometrics for several 

decades. The interest came following the numerous applications in real life, as volatility played a 

central role in a broad range of activities, from portfolio allocation to density forecasting in risk 

management. The number and size of various crashes and crises forced that the attention of 

practitioners, researchers and regulators move from traditional research in Financial Economics 

which pointed to assessing the mean in stock market returns, and to the level and stationarity of 

volatility of stock prices, towards developing econometric tools that better model price volatility. 

With time, it became evident that returns at high frequencies were difficult to accurately predict 

and that returns‟ volatility was easier to model. This explains why Financial Econometrics 

dedicated that much attention to modeling financial volatility, which gained an essential role in 

modern pricing and risk management theory. In Financial Economics it was found that the 

distributional pattern of returns was essential in describing the fluctuation of any financial or 

economic time series. Conclusions on conditional distributions may say a lot on how to price a 

specific instrument, how to allocate funds according to a specific portfolio, how to measure risk 

and performance and how to undertake the management decision process. The distributional 

pattern is highly connected to other features of a portfolio, like conditional return fractiles that 

determined the probability that extreme jumps occur in portfolio value. 

Correct econometric modeling became essential to a large panel of activities like risk 

management, investments, security valuation, asset pricing, and monetary policy. Poon and 

Granger (2003) found that volatility forecasting became a central tool in option forecasting due 

to the constantly increasing use of derivative securities trading, in financial risk management due 

to banking cross-boundary globalization, in market timing decisions, portfolio management and 

in variance modeling of asset prices. Andersen, Bollerslev, Christoffersen and Diebold (2005) 

resumed the applications of volatility forecasting in three types of activities: 1) generic 

forecasting applications that included point forecasting, interval forecasting, probability 

forecasting including sign forecasting and density forecasting; 2) financial applications like risk 

management ones (specifically value-at-risk and expected shortfall, covariance risk assessment: 

time-varying betas and conditional Sharpe ratios, asset allocations with time-varying 
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covariances, option valuation with dynamic volatility); and 3) applications residing outside the 

financial field such as medicine, weather forecasting, and agriculture.  

Given the various contexts in which volatility played a role, the concept received various 

definitions. A less rigorous definition of volatility is that of a series of fluctuations that describes 

a phenomenon over a specific period of time. Economics describes volatility in a more formal 

way, as the variation of a random component of a time series, without necessarily specifying a 

certain implied metric. Further narrowing the concept of volatility to confine it to Financial 

Economics, Andersen et al. (2005) described volatility as an instantaneous standard deviation of 

a random Wiener-driven component in a continuous-time diffusion model. Campbell, Lo and 

MacKinlay (1997) observed that one pattern that mainly distinguished Financial Economics from 

microeconomics was the role the uncertainty played in both theory and empirics. In the absence 

of uncertainty, the problems in Financial Economics reduce to simple microeconomic exercises. 

Andersen, Bollerslev, Christoffersen, and Diebold (2005) observed that one main characteristic 

of financial data, as compared to microeconomic data, was the latent, or inherently unobserved 

character of volatility that evolved stochastically along the time. Since volatility could not be 

directly measured, but rather estimated, an intensive research was done towards more accurate 

modeling of this process. The high degree of uncertainty and volatility‟s hidden (latent) character 

in financial data, transformed the return variance estimation and forecasting problem into a 

filtering problem in which the “true” volatility cannot be determined exactly, but extracted with 

some degree of error. 

Volatility may be described in both discrete and continuous time patterns, contingent to data 

availability or model use. Security prices follow a continuous rather than a discrete pattern, given 

the high liquid markets in which transactions are made at every second. For this, it is natural to 

consider the stock market time series as arising through discrete observations of an underlying 

continuous time process.  However, the models that describe continuous data may be formulated 

in discrete time as this would allow, for example, deducing distributional implications of a time 

series that evolves under a continuous time pattern. Discrete and continuous formulations do not 

contradict each other and both pose considerable econometric challenges.  

Given the topic‟s high relevance in Finance, the literature has developed in two directions: 

compounding new models that would result in higher estimation and forecasting performances 
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and, due to the numerous formulations of volatility models, better ranking of the existing models, 

mainly in terms of predictions‟ accuracy. With respect to the modeling development process, 

models range from basic versions of historical volatility models (random walk, historical 

averages of squared returns or of absolute returns, moving averages, exponential weights, 

autoregressive or fractionally integrated autoregressive absolute return models) to the more 

complex GARCH models and their extensions (Exponential GARCH (EGARCH) model of 

Nelson (1991), Nonlinear GARCH (NGARCH) model of Higgins and Bera (1992) and Engle 

and Bollerslev (1986), Threshold GARCH (TGARCH) model of Zakoian (1994), Glosten-

Jagannathan-Runkle GARCH (GJRGARCH) model of Glosten, Jaganathan and Runkle (1993),  

Power ARCH (PARCH) model of Taylor (1986) and Schwert (1989), Augmented GARCH 

(AUGGARCH) model of Duan (1997). Other important volatility forecasting models that found 

useful in both applied and theoretical contexts were the random coefficient autoregressive (RCA) 

model proposed by Nicholls and Quinn (1982), the conditional heteroskedastic autoregressive 

moving average (CHARMA) model proposed by Tsay (1987), the stochastic volatility (SV) 

models (based on Black-Scholes model and different generalizations of it) compiled by Melino 

and Turnbull (1990), Taylor (1994), Harvey, Ruiz and Shephard (1994), and Jacquier, Polson 

and Rossi (1994), or the implied standard deviation models. Each model has proved its own 

strengths and weaknesses when tested with various types of data, and having at hand such a large 

number of models, all designed to serve to the same scope, it became highly relevant to correctly 

distinguish between various models in order to find the appropriate ones that would provide the 

highest accuracy in the forecasting exercise. 

Comprehensive reviews of the literature on volatility modeling are the works written by 

Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993) and Bollerslev, Engle and Nelson 

(1994) and more recently Andersen, Bollerslev, Christoffersen and Diebold (2005). Poon and 

Granger (2003) investigated 93 published and working papers written on the topic of volatility 

forecasting (out of which only 66 were considered relevant) searching for a comprehensive 

insight on how the literature ranked the volatility models, also revealing an apparent lack of 

consensus in the literature in identifying the most accurate model in predicting the latent 

volatility. 
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With respect to models‟ ranking, the obvious conclusion is that the literature has not arrived yet 

to a consensus as regards which models performed better. This results from the observation that 

the literature contains contradictory evidence as regards the performance of volatility forecasting 

models. The subjectivism arises from various sources, starting from the fact that conditional 

evidence is unobserved and there is no natural and intuitive way to model the conditional 

heteroskedasticity, reason for which each model will capture features that its author thought to be 

important and, ultimately, from the fact that models with poor forecasting capacities in all 

empirical tests have not been identified yet. As such, ranking volatility forecasting models may 

vary, conditional to factors related to the models themselves, or to the methodology used (in-

sample or out-of-sample methods), to the type of asset whose underlying volatility is estimated 

(volatility of the exchange rates, commodities or volatility of the stock returns, etc.), to the 

forecasting horizon or to the error statistic choice. As an example, Brailsford and Faff (1996) 

concluded that models‟ performance ranking was sensitive to the choice of the error statistic, for 

each such statistic being identified different rankings structures.  

Literature on this subject may be characterized, as such, as a framework of a mixed set of 

findings, a conclusion that may be grasped from this lack of consensus being that volatility 

forecasting is a notoriously complicated undertaking. There is evidence that underlines the 

superiority of more complex models such as GARCH models, while equally weighted evidence 

points to the superiority of simpler alternatives. This is seen as an extremely problematic fact due 

to the difficulty that this contradiction rises in choosing the appropriate model in volatility 

forecasting in decision-making and analysis activities. However, despite literature obvious 

complexity and lack of homogeneity, Matei (2009) found that, in the pool of all volatility 

forecasting models, GARCH model was an appropriate model to use when one has to evaluate 

the volatility of the returns of stock groups with large amounts (thousands) of observations.   

 

2.1 Literature on modeling realized volatility 

The serial correlation in the volatility of financial asset returns paved the way to an extremely 

rich literature written on the topic of volatility modeling and forecasting. Such volatility is 

typically modeled in empirical contexts with daily data starting from GARCH-type of models or 
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stochastic volatility processes that consider volatility as a latent, unobserved variable. Although 

returns may be measured with minimal measurement error and analyzed with ordinary time 

series techniques, being constructed from face prices of assets, volatility needs more careful and 

complex computational modeling due to the latency property. A common approach to deal with 

the fundamental latency problem of return variance is to conduct inferences on volatility through 

strong parametric assumptions. Another option is to employ models designed for option pricing 

in order to transform back derivatives‟ prices into forecasts of implied latent volatility over a 

specific horizon. One important drawback of such methods is that they rely heavily on the type 

of models chosen - forecasts may vary significantly according to the choice of the model. 

Another drawback is that they include in the estimated measure a volatility risk premium that 

fluctuates with time, the effect being that their forecasts on the underlying asset volatility are 

often biased. Another flaw results from the backward looking methodology employed. The 

current and future volatilities are estimated starting from the return standard derivation of 

backward looking rolling samples, returns which most often are calculated from past daily 

observations. Because of this, models are less prepared to represent volatility shocks that 

currently happen and even less to anticipate them. However, backward looking models are not 

meaningless, as volatility is persistent and thus offers some useful information on ongoing 

patterns, but volatility also has a mean reverting character due to which the unit root type 

forecasts of it are not optimal, since conditionally biased given the history of the past returns.  

Despite the large variety of the models which seek solutions to relatively similar questions, most 

of the models designed to estimate and forecast latent volatility fail to describe adequately 

significant issues as regards the fluctuation of financial returns (Bollerslev (1987), Carnero, Peña 

and Ruiz (2004) and Malmsten and Teräsvirta (2004)). One such important feature of latent 

volatility which is not satisfactorily encapsulated in the models is the low, though diminishing 

autocorrelation in the squared returns related to the high excess kurtosis of returns. Adequate 

modeling of return dynamics is required as accurate forecasting is essential in risk management 

or decision taking processes. As such, the assumption of the existence of Gaussian standardized 

returns has been contested in many studies, being replaced by heavy-tailed distributions. By 

investigating the literature written on the topic of volatility forecasting, it can be observed that its 

largest part has concentrated on obtaining and using highly restrictive and complex parametric 
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versions of GARCH models or of stochastic volatility models, which soon have found their 

limitation in terms of predictability, especially at higher frequency distributions of returns. 

The increasing opportunity to get access to high frequency data allowed researchers to 

experiment more straightforward methods to model volatility by constructing daily time series 

out of intraday data. This step allows treating “volatility” as observed rather than latent, to which 

standard time-series techniques may be applied. Since the addition of intraday sampled squared 

returns provides a consistent estimator of the actual daily volatility, the forecasting performance 

of the estimated models could be evaluated more accurately than in the case of methodologies 

that employ squared daily returns as volatility measures. Merton (1980) observed that the 

conditional variance over a fixed period can be expressed, arbitrarily but still satisfactorily 

accurate, under a sum of squared realizations, when data is available at high sampling frequency. 

Andersen and Bollerslev (1998) also provided an argument for the same conclusion, saying that 

ex post daily foreign exchange volatility can be optimally estimated by aggregating 288 squared 

five-minute returns. Among all existing models, the Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) and the Heterogeneous Autoregressive (HAR) models emerged as 

the most popular models in literature, capable of capturing the observed long-memory pattern of 

volatility and empirically outperforming more traditional counterparts such as GARCH and 

stochastic volatility models.  

Realized volatility notion solves many drawbacks of the traditional methods that use squared 

returns. In the presence of no transaction costs, with continuously observed prices, the realized 

return variance may be modeled with no error by using realized returns. When we control for the 

measurement error, the ex post volatility eventually becomes from latent, observable, which 

allows it to be modeled directly rather than being estimated from a latent process. Moreover, the 

realized variance is correlated with the concept of cumulative expected variation of the returns 

over a specific horizon for a large set of underlying no- arbitrage diffusive data generating 

processes. On contrary, over the short term it is not possible to link the actual realized returns to 

the expected returns if not making supplementary assumptions.  

Andersen and Bollerslev (1998), Patton (2005), and Hansen and Lunde (2005) used realized 

volatility measures in order to estimate the out-of-sample forecasting performance of GARCH 

models. Starting from pioneering studies led by Barndorff-Nielsen and Shephard (2002), 
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Meddahi (2002) and Andersen, Bollerslev, Diebold and Labys (2003), more recent papers 

proposed methodologies to isolate information obtained from realized volatility measures 

constructed from high frequency data, and integrate it in daily return modeling. Aït-Sahalia, 

Mykland and Zhang (2005), Zhang, Mykland and Aït-Sahalia (2005), Bandi and Russell (2005, 

2006), and Hansen and Lunde (2006) also provided solutions to the inconsistency problem.  

Works written by Anderson, Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen and 

Shephard (2001) argue that the realized volatility measures are not just unbiased ex-post 

estimators of daily volatility, but also asymptotically free of any measurement error. Barndorff-

Nielsen and Shephard (2004, 2006) and Jiang and Oomen (2008) proposed nonparametric 

methods to detect the existence of jumps in intraday financial time series. Jiang et al. (2010) used 

the bipower variation developed by Barndorff-Nielsen and Shephard (2004, 2006) and the 

variance swap approach of Jiang and Oomen (2008) to identify the price jumps in the 2-, 3-, 5-, 

10-year notes and 30-year bonds, finding that macroeconomic news were often precipitated by 

market volatility increase and by liquidity withdrawal, while liquidity shocks played an 

important role for price jumps in US Treasury market. This work created an opportunity in 

modeling the volatility of energy prices as a common feature of energy futures prices is that they 

are very volatile and often exhibit jumps during announcement periods. Bjursell et al. (2009) 

were the firsts to apply a nonparametric method based on realized and bipower variations 

calculated from intraday data in order to identify jumps in daily futures prices of crude oil, 

heating oil and natural gas contracts traded at the New York Mercantile Exchange, finding that in 

terms of realized volatility the natural gas was the most volatile and that the large volatility days 

may be often associated with large jump components.  

Parametric approaches were extensively used in order to model and identify jumps in financial 

stock data. Chan and Maheu (2002) proposed an autoregressive conditional jump intensity 

anchored in a common GARCH setting in order to detect jumps in a seventy-two year long time 

series, finding significant time variation in the conditional jump intensity and evidence of time 

variation in the jump size distribution. Maheu and McCurdy (2004) modeled conditional 

variance of returns by using jumps coupled with smoothly changing components. 

Nonparametric approaches have been employed by Huang and Tauchen (2005) who used the 

Monte Carlo analysis on various jump test statistics developed by Barndorff-Nielsen and 
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Shephard (2004, 2006) and by Andersen, Bollerslev and Diebold (2004). They concluded that 

newer developed z-tests performed very well, with an appropriate size and power properties, 

accurate in identifying the days on which jumps occurred. As well, the theoretical and Monte 

Carlo analysis indicated that microstructure noise biased the tests against detecting jumps, and 

that a simple lagging strategy corrected the bias. Using a similar nonparametric approach, 

Andersen et al. (2007) provided evidence that the volatility jump component was both highly 

significant and less persistent than the continuous sample path component. 

Sampling at higher frequency has some disadvantages also. It has been proved that employing 

intraday volatility estimates is a trade-off between higher accuracy in latent volatility description, 

theoretically optimized when the frequency sampling is the highest as possible, and the 

microstructure noise that may arise through bid-ask bounce, asynchronous trading, price 

discreteness, and infrequent trading. Some references discussing this issue are Madhavan (2000), 

Biais, Glosten and Spatt (2005), and Hansen and Lunde (2005). 

However, in the last decade, the advancement in volatility modeling has stalled in some aspects. 

The larger access to high-frequency data moved away the attention from further modeling of 

volatility with daily data, and thus the effect of better data inputs was negligible in what 

concerned improving model designs. It has been empirically demonstrated that the standard 

models designed to provide estimates by using daily observations were improper in functioning 

with intraday values. As well, new models specified for the intraday data failed in capturing the 

information of the interdaily movements as well, reason for which their daily forecasts were not 

as precise as expected. In the context of not having an empirically superior proved alternative as 

concerns modeling day or intraday volatility by using high-frequency data, the standard practice 

continued to use the traditional modeling tools in order to obtain relatively good estimates of 

daily values, although intraday data was available. The emphasis has continuingly been placed 

on low-dimensional volatility modeling, and mainly univariate. Although multivariate variants of 

the existing ARCH and GARCH models were already proposed by Bollerslev, Engle and Nelson 

(1994), Ghysels, Harvey and Renault (1996), and Kroner and Ng (1998), the multitude of 

constraints and computational problems they raised made them computationally difficult to be 

applied in empirical contexts. Therefore, few applications dealt with more assets in the same 

time. As a consequence, practitioners avoided to search for solutions to highly practical relevant 
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multidimensional problems, and continued to rely on simple exponential smoothing methods 

combined with the assumption of conditional normally distributed returns. An example of 

models that found large applicability in business contexts is the RiskMetrics proposed by J.P. 

Morgan; although it employs counterfactual assumptions and proves to be most of the times 

suboptimal, it functions sufficiently well, its main quality being the model‟s feasibility, 

simplicity, and short implementation time characteristic to high-dimensional contexts. 

In this context, the realized volatility methodology improves modeling process in two regards: 1. 

it proposes a rigorous methodology that fully exploits the information contained in the high-

frequency data and which proves efficient in forecasting daily return values; and 2. the models 

distinguish through simplicity and facile implementation in high-dimensional environments.  

High frequency models proved that incorporating any measure of intraday volatility significantly 

improves the modeling of jumps in time series data. GARCH-X model (with an exogenous 

realized measure) with realized variance (Engle, 2002) or realized variance and bipower 

variation (Bandorff-Nielsen and Shephard, 2007) as realized measures empirically proved a 

significant gain in fit when jumps occurred. Engle and Gallo (2006) proposed the Multiplicative 

Error Model (MEM) which was first to contain a separate equation for the realized measure. A 

similar complete model nested in an MEM setting was the High Frequency Based Volatility 

(HEAVY) model proposed by Shephard and Sheppard (2010). Both MEM and HEAVY models 

are difficult to use, as they work with multiple latent processes. 

A different completed high frequency version of the GARCH model was the Realized GARCH 

model proposed by Hansen, Huang and Shek (2010a), model which combined a GARCH 

structure for returns with a model that used realized measures of volatility. As compared to 

MEM and HEAVY models, the Realized GARCH model takes advantage of the natural 

relationship between the realized measure and the conditional variance and proposes, instead of 

introducing additional latent factors, a single measurement equation in which the realized 

measure is a consistent estimator of the integrated variance. Besides its elegant mathematical 

structure, the Realized GARCH model is easy to estimate, captures the return-volatility 

dependence (leverage effect) and was empirically proven that it outperformed the conventional 

GARCH. 
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Papers written on the topic of realized volatility are heterogeneous in their scope and indexing 

methodologies. Some papers comprise extensive reviews of the written literature, rather limiting 

to a general discussion of volatility, like Poon and Granger (2003) and Andersen, Bollerslev, 

Christoffersen and Diebold (2006). A commonality in the general reviews is not discussing the 

microstructure noise problem. Instead, this problem has been discussed in Bandi and Russell 

(2006), paper which places an emphasis on the economic determinant of the noise component. 

McAleer and Medeiros (2008) addressed to the problem of measurement error. Barndorff-

Nielsen and Shephard (2007) reviewed the papers by putting a stronger emphasis on 

nonparametric estimation of volatility and on the frictionless case with/without jump effects. 

By reviewing the volatility literature, it can be observed that there have been extensive studies on 

the expected return volatility but little in what concerns the expected mean return from high 

frequency asset prices. This perspective produced a significant effort from the researchers as 

regards obtaining and empirically using realized volatility estimates disseminated from high 

frequency data. As such, in the today markets, the realized volatility field became a well-

established practice to use intraday returns to build up ex-post volatility measures. Due to larger 

access to high-quality transaction data over a well-diversified panel of financial assets, it‟s 

unavoidable that this topic be further investigated and more tested in wider empirical contexts 

over the future. 

 

Modeling with various sampling schemes 

The realized volatility approximates the quadratic variation pretty well as the sampling frequency 

increases. Nevertheless, this simple statement complicates further the problem according to the 

following two stances. The first one is that even for the most liquid assets a continuous price is 

not available. This constraint leads to an unavoidable discretization error in the estimates of the 

realized volatility which determines us to recognize the existence of a measurement error. 

Although by subsequent reiteration we may estimate the magnitude of such errors, according to 

the continuous asymptotic theory, this inference is always subject to sampling distortions and is 

totally true only when price jumps are disregarded. The second issue refers to the large panel of 

microstructure effects which induces spurious autocorrelations in the high frequency sampled 
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return series. In this category there are included the effects of rounding, price discreteness, bid-

ask bounces, the trades which occur on various markets, the steady (gradual) response of process 

to a block trade, asymmetric information contained in order of different size, spreads positioning 

according to the dealer inventory control, strategic order flows and data recording flaws. The 

spurious autocorrelations emerging from these sources may increase the estimates of the realized 

variance and thus generate a traditional type of bias-variance trade off. Although the general 

recommendation is to use the highest sampling frequency as its optimal for efficiency captured 

signal, this also tends to bias the estimate of the realized volatility.  

The above described tradeoff is often plotted through a volatility signature diagram which 

illustrates the sample mean of the realized volatility estimator over a long time period as a 

function of the sampling frequency. As such, the long time duration diminishes the impact of 

sampling variability and therefore, when the microstructure noise is not considered, the plot 

should appear as an approximately horizontal line. Nevertheless, it is observed in empirical 

applications that in plots with transaction data sampled from highly liquid stocks we will find 

spikes at high sampling frequencies and more moderate reductions in order to stabilize at 

frequencies at 5-40 minute range. On contrary, the reversal occurs for returns built up from bid-

ask quote midpoints as asymmetric adjustments of the spread determines positive serial 

correlation and biases the signature diagram downward at the highest sampling frequency. As 

such, for the case of the illiquid stocks, the inactive trading produces positive return serial 

autocorrelation, which induces the signature diagram increase at lower sampling frequencies. 

Aït-Sahalia, Mykland and Zhang (2006), Bandi and Russell (2007) and Andersen, Bollerslev, 

Diebold and Labys (2003) have further developed this topic by trading off efficient sampling 

with bias-inducing noise in order that optimal sampling schemes be obtained. 

Another solution proposed in order to deal with the tradeoff described above is to use alternative 

quadratic variance estimators that would be more efficient and less sensitive to the 

microstructure noise. Huang and Tauchen (2005) and Andersen, Bollerslev and Diebold (2007) 

are among them, suggesting that staggered returns and realized bipower variation (the latter for 

non-parametrical measurement of the jump component in asset return volatility) be used, 

effective in noise reduction, while Andersen, Bollerslev, Frederiksen and Nielsen (2006) 

extended the signature diagrams in order to count also for power and h-skip bipower variation. 
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An alternative realized variance like high-low measure has been used by Brandt and Jones 

(2006), Alizadeh, Brandt and Diebold (2002), Brandt and Diebold (2006), Gallant, Hsu and 

Tauchen (1999), Yang and Zhang (2000), Schwert (1990), Parkinson (1980), and Garman and 

Klass (1980). Moreover, Christensen and Podolskij (2006) and Dobrev (2007) generalized the 

high-frequency data estimator in various ways, and discussed its link to the realized variance 

topic. Zhou (1996) sought a method to correct the bias of the realized variance estimators by 

explicitly accounting for the covariance in the lagged squared return observations. Hansen and 

Lunde (2006) extended the work began by Zhou for the case of non-independent and identically-

distributed noise. Aït-Sahalia, Mykland and Zhang (2006) examined the necessary correction 

when the noise was independent and identically normally distributed, while Zhang, Mykland and 

Aït-Sahalia (2005) came with a consistent volatility estimator which considered all the data 

available, averaging realized variances through forming different sub-samples and correcting for 

the remaining bias. Aït-Sahalia, Mykland and Zhang (2005) extended further this work and 

proposed a method to account for some serial correlated errors. Barndorff-Nielsen, Hansen, 

Lunde and Shephard (2006) proposed kernel estimators as realized measures. 

In a traditional setting, prices are observed at discrete and unevenly spaced intervals, reason 

which determines one to look for different sampling schemes. An interval [0,1] is subdivided in 

   sub-periods and the observation times are defined under the form of a set     {        
} 

with               
   where      

         is the length of each subinterval. 

Naturally, such length should decrease while the number of observations in a day increases. Then 

the intraday variance over each subperiod may be defined as 

      ∫   (     )  
  

    

 

McAleer and Medeiros (2008) distinguish four sampling schemes, as it follows: 

1) The calendar time sampling in which the intervals have equal length in calendar time, 

meaning that      
 

 

  
, ∀ i. One example is sampling prices at each 5, 10 or 15 minutes. 

A methodology for this type of sampling has been offered by Wasserfallen and 

Zimmermann (1985), Andersen and Bollerslev (1997), and Dacorogna, Gencay, Muller 

and Pictet (2001), motivated by the fact that intraday data is irregularly spaced, with no 
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fixed period spacing, so that for most of the data sampled observations must be built upon 

artificially. Hansen and Lunde (2006) found that the previous tick method (method which 

adds values of the last observations in the missing gaps) is a straightforward and 

competitive method to sample prices according to calendar time. More exactly, this 

method samples only the first observation of a five-minute interval.  

2) Another sampling method is the transaction time sampling in which prices are sampled 

with every transaction made. 

3) A third alternative is the business time sampling in which sampling times are selected in 

such a way that       
   

  
.  

4) Finally, there is the tick time sampling in which prices are recorded at each change.  

To be mentioned that in the first sampling choice the observations are latent, while in the 

last three ones the sampled data is observed, each sampling choice producing effects in 

the estimated integration variance. 

 

The conditional return variation and the concept of realized volatility 

The following section is dedicated to the natural liaison existing between quadratic variation and 

the integrated variance, in order to cover some practical aspects as regards the estimations of the 

realized volatility and of the variance of conditional return. Assuming an invariable drift and 

volatility coefficients, both conditional and unconditional variance in returns will equal the 

quadratic variation of the log price. On contrary, if assuming volatility as a stochastic process, 

then precise distinction between conditional variance (which stands for the expected size of the 

innovations of the squared returns over a specific interval) and the quadratic variation over a 

specific time horizon, is needed. Therefore, the difference may be expressed as an expectation 

against future realizations of the volatility of stock returns. Theoretically, the realized volatility 

would express only the actual realizations, and not their previous expectations. However, the 

realized volatility estimates are efficient in capturing the conditional return variation as one may 

build up accurate forecasts/conditional expectations of return volatility out of a financial or 

economic time series formed from past realized volatility.  
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The above assertions may be even strengthened under a simplified setting. If the instant return is 

a continuous-time process and the return, average and volatility series are low or not correlated 

processes, then the conditional expectation of the return should be normally distributed, 

conditional to the cumulative drift and on the quadratic variation. Therefore, the distribution of 

the return series is mixed Gaussian with the mixture ruled out by the integrated variance 

realizations, along with their integrated mean. Realization jumps from the integrated variation 

process make the outliers of the returns become probable while the persistence in the integrated 

variance process may determine volatility clustering. Furthermore, over short horizons, when the 

conditional mean is very low as compared to the cumulative absolute return innovations, the 

integrated variance process may be intrinsically linked to the conditional variance.  

Because the realized variance is roughly unbiased for the related unobserved quadratic variation, 

the realized volatility estimate comes as the natural point of reference against which to estimate 

the volatility forecasts accuracy. There may be also undertaken tests of goodness-of-fit on the 

residuals resulted from subtracting the forecast from the realized volatility measures.  

The realized volatility topic is also related to the return variation estimated over a discrete time 

period rather than with the spot (instant) volatility. The distinction appears due to the 

differentiation between realized volatility concept and a whole range of literature written in the 

search of spot volatility estimation from discrete observations, mainly in a setting with a constant 

diffusion coefficient. Although theoretically the measurement of realized volatility can be 

adapted easily to spot volatility estimation, in practice this is not feasible as frequent sampling 

over very small intervals may amplify the effects of microstructure noise. 

 

Modeling and forecasting realized volatility 

A well-known fact in the literature is that when GARCH and SV models are employed, the 

standardized returns do not exhibit a Gaussian distribution. Instead, the standardized returns 

present an excess kurtosis, thing that justifies the employment of heavy-tailed distributions. 

Andersen, Bollerslev, Diebold and Labys (2000, 2001, 2003) proved that when modeling has 

been made with the employment of realized variance measures, the distribution of standardized 

exchange rates is approaching the properties of a typical Gaussian. A similar application with 
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stock returns run by Andersen, Bollerslev, Diebold and Labys (2001) arrived to similar 

conclusions.  

The log-realized variance is significantly persistent, but stationary, with long memory properties, 

traditionally expressed like an ARFIMA(p,d,q) process. Various models have been proposed to 

catch the properties of such time series. One of them is the Multiplicative Error Model (MEM) 

proposed by Engle and Gallo (2006) that is consistent and asymptotically normal under a wide 

range of specifications for the error density function. The MEM model is best suited to model the 

conditional behavior of positively valued variables choosing a convenient GARCH-type 

structure when modeling variance and persistence.  Another model is the HEAVY model 

(Shephard and Sheppard (2010)), a high frequency based volatility model of daily asset return 

volatility based on measures constructed from high frequency data. The authors proved that such 

models perform more robust to level breaks in the volatility than conventional GARCH models, 

adjusting to the new level much faster. Supplementary, although such model shows mean 

reversion, it exhibits as well momentum, a feature that misses from classical models. 

Another model which uses realized measures is the Heterogeneous AutoRegressive Realized 

Volatility (HAR-RV) model proposed by Corsi, Zumbach, Muller and Dacorogna (2001) and 

Corsi (2003), model that has at its fundament the Heterogeneous ARCH (HARCH) model 

proposed by Müller, Dacorogna, Davé, Olsen, Puctet and von Weizsäcker (1997). The HAR-RV 

model represents an additive cascade of different volatility components produced by the actions 

of the participants in the market that produces remarkably good out-of-sample forecasting 

performance. The HAR-RV model is in such a way built up that the additive volatility cascade 

leads to an AR (autoregressive) - type model in the realized volatility, considering volatilities 

realized over different sampling sizes.  

Subsequently, McAleer and Medeiros (2006) offered a multiple regime smooth transition 

generalization of the HAR-RV model (called Multiple Regime Smooth Transition 

Heterogeneous Autoregressive HARST), by coming with a flexible model able to capture the 

non-linearities and long-range dependence in time series dynamics. The model has been 

designed to describe concurrently long memory and size and sign asymmetries.  
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In volatility forecasting topic, sources of long memory have been intensively searched, because 

shorter memory of a model, better forecasting performances may be produced. For example, 

Hyung, Poon and Granger (2005) evidentiated that numerous nonlinear short memory models, 

especially those which present infrequent breaks, may generate long memory patterns. Some of 

these models are the regime switching model of Hamilton and Susmel (1994), the volatility 

component model of Engle and Lee (1999), the model proposed by Diebold and Inoue (2001), 

the break model developed by Granger and Hyung (2004), and the multiple regime-switching 

model of Medeiros and Veiga (2004). The latter one is developed to aim describing size and sign 

asymmetries in financial volatility as well as intermittent dynamics and excess kurtosis. 

Hilledebrand (2005) and Hilledebrand and Medeiros (2006) evidenced the statistical 

consequences of neglecting structural breaks and regime switches in autoregressive and GARCH 

models, proposing two solutions to remedy the problem: the identification of those regimes with 

constant unconditional volatility that use a change point detector and then estimate a separate 

GARCH model on each of the separate resulting segments, and the estimation of a multiple-

regime GARCH model, like that of the type of a FCGARCH (Flexible Coefficient Generalized 

Autoregressive Conditional Heteroskedastic).  

Scharth and Medeiros (2006) came with a new model built up on regression trees that described 

the realized volatility dynamics for some DJIA (Dow Jones Industrial Average) stocks. They 

presented empirical evidence that additive price changes convey meaningful information as 

regards multiple regimes in the realized volatility of stocks, whereas large rises (falls) occurred 

in prices are highly dependent on persistent regimes of low (high) variance in stocks. Therefore, 

past cumulated daily returns incorporated as source of regimes‟ switches accounts for high 

empirical values of long memory parameter estimates. The nonlinear model has been found to be 

superior to the other long memory models, ARFIMA and HAR-RV. 

In all previously mentioned references, volatility has been assumed to refer only to short memory 

between breaks on each component of volatility and within each regime. A significant 

improvement of this approach came from Martens, van Dijk and Pooter (2004) who considered a 

model that combined the long memory properties with nonlinearity, particularly relevant in 

modeling asymmetries and leverage effects. The model they proposed is a nonlinear model for 

realized volatility which accommodated level shifts, day-of-the-week effects, leverage effects 
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and volatility level effects. Deo, Hurvich and Lu (2006) proposed a long-memory stochastic 

volatility model (LMSV) which is found as a very good competitor to the method which 

predicted realized variance by using a long memory stochastic volatility model applied to high 

frequency return data while accounting for significant gradually varying intra-day seasonality in 

volatility. Koopman, Jungbacker and Hol (2005) established a model which joined unobserved 

elements and long-memory, while Hillebrand and Medeiros (2008) documented a model that 

joined long memory with different features of nonlinearity. 

Despite such a rich literature written on the emerging field of realized volatility topic, open 

questions reside as regards the sources of long memory characteristic to the realized volatility 

and as regards the extension of benefits in terms of volatility predictability from combining long-

memory with nonlinear models (Ohanissian, Russell and Tsay  (2004)). 

Treating the same topic of long-memory, Lieberman and Philips (2008) offered some analytical 

explanations on the reasoning according to which realized volatility series typically display long 

range dependence with a memory parameter (d) of around 0.4. They found that long-memory 

properties were an effect of the accumulation of realized variance and offered some solutions to 

refine the statistical inference as regards the parameter d in ARFIMA(p,d,q) models. 

Aït-Sahalia and Mancini (2006) compared the out-of-sample relative capacity of forecasting of 

realized variance in different contexts. Ghysels and Sinko (2006) assessed the extent to which 

the correction for microstructure noise improved forecasting future volatility using Mixed Data 

Sampling (MIDAS) and found that the conditional optimal sampling works reasonably well in 

practice. As well, they found that within the class of quadratic variation measures, the 

subsampling and averaging approach (Zhang, Mykland and Aït-Sahalia (2005)) represents the 

class of estimators that best predicts volatility at five minute sampling schemes. Furthermore, 

Corradi, Distaso and Swanson (2006) estimated and forecasted conditional predictive density and 

confidence intervals for integrated volatility by newly proposed nonparametric kernel estimators, 

built upon various realized volatility measures constructed using ex post variation of asset prices. 

Corsi, Kretschmer, Mittnik and Pigorsch (2008) showed that the residuals of the commonly used 

time-series models for realized volatility exhibited non-Gaussianity and volatility clustering, 

proposing extensions to explicitly account for these properties and assess their relevance when 

modeling realized volatility. Moreover, they demonstrated that allowing for time-varying 
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volatility of realized volatility leads to significant improvement of model fit and of the predictive 

performance as well, while the distributional assumption for residuals proved to be crucial in 

density forecasting. 

Another important topic in the context of realized volatility is that, regardless the microstructure 

noise presence, the realized volatility is an estimated quantity rather than a true, daily, value of 

volatility or of the integrated variance, while integrated quarticity may be replaced by realized 

quarticity. This fact opens the perspective of employing generated regressors and generated 

variables in forecasting exercises, associated with critical questions on the efficient estimation 

and invalid inferences that may occur when biased (asymptotic) standard errors are used (Pagan 

(1984, 1986), McKenzie and McAleer (1997)).  

Andersen, Bollerslev and Meddahi (2004, 2005) built up a general model-free adjustment 

method aimed at estimating the unbiased volatility loss functions starting from practically 

feasible realized volatility benchmarks. According to them, an efficient measurement error 

accounting in the evaluations of volatility forecasts may lead to markedly higher estimates for 

the true degree of return-volatility predictability. Corradi and Distaso (2006) proposed a 

procedure to test for the correct specification of the functional form of the volatility process 

within the class of eigenfunction stochastic volatility models. The procedure starts from the 

comparison of the moments of realized volatility measures with the corresponding ones of 

integrated volatility implied by the model under the null hypothesis. They first provided 

primitive conditions as regards the measurement error associated to the realized measure, which 

would allow to construct asymptotically valid specification tests. Then, they established those 

regularity conditions under which the realized measures (realized volatility, bipower variation, 

and modified subsampled realized volatility) satisfy the given primitive assumptions. 

 

Multivariate empirical studies 

One of the most cited papers which discussed the topic of realized variance in applications with 

multivariate models is de Pooter, Martens and van Dijk (2008). In this paper it is investigated the 

merits of high-frequency intraday data when forming mean-variance efficient stock portfolios 

with daily rebalancing from the individual stock components of the S&P100 index. They focused 
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on the problem of establishing the optimal sampling frequency as revealed by the performance of 

these portfolios. Surprisingly, the authors found that the optimal frequency is not the highest 

frequency one, but it ranges between 30 and 65 minutes, significantly lower than the popular 

five-minute one, which typically is motivated by the aim of maintaining a balance between the 

variance and bias in covariance matrix estimates due to market microstructure effects like non-

synchronous trading and bid-ask bounce. Another important finding is that bias-correction 

procedures, based on combining covariance matrix estimates with low-frequency and high-

frequency, and on the summing of leads and lags, do not significantly influence the optimal 

sampling frequency or the portfolio performance. This is also robust to presence of transaction 

costs and to the portfolio rebalancing frequency.  

Another paper that discusses in multivariate context the functioning of realized variance 

modeling is Bauer and Vorkink (2006) which proposes a new matrix logarithm model of the 

realized covariance of stock returns, by employing latent factors as functions of both lagged 

volatility and returns. The model proves advantageous as it is parsimonious, does not require 

imposing parametric restrictions, and yields a positive definite covariance matrix. The model is 

empirically tested with a covariance matrix of size sorted stock returns and two factors are 

isolated as satisfactory to capture most of the dynamics. A new method to track down an index 

using the model of the realized volatility covariance matrix proposed was also introduced. 

 

2.2 The autoregressive models 

In what follows, we will make a description of the basic models that this work addresses to, 

which are the main autoregressive models. An autoregressive model, in its simplest form, is a 

model in which one uses the statistical properties of the past behavior of a variable    to predict 

its behavior in the future. In other words, we can predict the value of the variable      by just 

taking into account the sum of the weighted values that    took in the previous period plus the 

error term   . 

The basic autoregressive models were the ARMA models. They were built in order to shape up 

the basic particularities of volatility. With respect to financial time series, one main such 
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characteristic is that volatility is not uniformly dispersed in time, but higher or lower in some 

periods as compared to other periods, phenomenon known as the clustering effect. Then, as 

previously mentioned, another characteristic is the continuous evolvement in time as jumps are 

rarely seen. The third characteristic is that volatility does not diverge to infinity, but varies with 

some fixed range, describing its stationarity. Finally, it is the leverage effect that describes a 

different reaction when a price largely increases or decreases. 

Updates of the volatility forecasting models try to encompass such characteristics as the earlier 

models have failed to capture such features. One example would be the EGARCH model which 

was developed in order to capture the asymmetry in volatility induced by large “positive” and 

“negative” asset returns. Some financial time series might be serially uncorrelated, but 

dependent. Volatility models try to reveal such dependence in the return series of financial data. 

The ARMA(p,q) model may be defined as it follows 

         

      ∑      

 

   

 ∑      

 

   

 

where p and q are non-negative integers.    is called shock or innovation of an asset    while 

   stands for the mean equation for    . 

It results that       (  |    )     (  |    ) 

The autoregressive moving-average (ARMA) models join the concepts of AR and MA models 

with having as the main scope keeping the number of parameters small. Their importance in 

finance is given mainly for their use in explaining ARCH and GARCH models, the generalized 

autoregressive conditional heteroskedastic model being seen as a non-standard ARMA model for 

an   
  series. The ARMA model has been firstly proposed by Box, Jenkins and Reinsel (1994). 

Modeling conditional heteroskedasticity is equivalent to creating a dynamic equation which 

reproduces the evolution in time of the conditional variance of the asset return. Conditional 

heteroskedastic models may be grouped in two categories: one is the one in which    is modeled 

by an exact function, while the other is comprised by models that use a stochastic equation to 
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describe   . Examples would be GARCH model, for the first category, and stochastic volatility 

models for the second one. 

The ARCH(m) model was proposed by Engle (1982) and has the following form 

       (  )      (√    ),       (  )          
          

  or 

      (  )    ∑      
 

 

   

 

where    is a sequence of independent and identically distributed random variables with mean 

zero and variance 1,    , and      for    . As such, ARCH model expresses the variance 

in returns    as a function of the past squared returns. In order to ensure finite unconditional 

variance of   ,   ‟s must satisfy some regularity conditions so that the unconditional variance    

be finite. In practice,    is frequently assumed to follow the standard normal or a standardized 

Student-t distribution or a generalized error distribution. 

From the model‟s structure, we can see that large squared shocks in the past *    
 +   

  result into 

a large conditional variance    for the return   . Therefore,    tends to assume large values (in 

modulus). Consequently, in ARCH terms, a large shock tends to be followed by another large 

shock. This is similar to clusters observed in asset returns. 

ARCH models are simple and easy to handle, and take care of clustered errors, as well as of 

nonlinearities. One characteristic of ARCH models is the “random coefficients problem”: the 

power of forecast changes from one period to another.  

Among the weaknesses of the ARCH model, could be mentioned the following: 

1. The model assumes the fact that both positive and negative shocks produce similar 

effects on volatility as it depends on the square of the previous shocks, while in the real 

world the price of a financial asset shows different (most often opposite) effects when 

affected by negative and positive shocks.  

2. The ARCH model is rather restrictive. This is due to the fact that   
  must find in 

different restricted intervals, depending of the series‟ moment. Thus, in an ARCH(1) 



38 

 

model,   
  must be in the ⌈  

 

 
⌉ interval if the series has a finite fourth moment. The 

constraint becomes more difficult to establish for higher order ARCH models. In the real 

world, such characteristic limits the ability of ARCH models with Gaussian innovations 

to capture excess kurtosis. 

3. Another weakness of the model is that it doesn‟t help in understanding the source of 

variations of a financial time series. However, the only contribution is that it provides a 

mechanical method of linking the past variations to the present ones, thus depicting the 

time-varying conditional variance. But the causes of such behavior are not better 

illustrated. 

4. Finally, ARCH models, in most of the instances, overpredict volatility because they 

respond slowly to large isolated shocks to the return series. 

Although the ARCH model has a basic form, one of its characteristics is that it requires many 

parameters to describe appropriately the volatility process of an asset return. Thus, alternative 

models must be further searched, one of them being the one developed by Bollerslev (1986) who 

proposed a useful extension known as the Generalized ARCH. 

As compared to the ARCH model, the Generalized Autoregressive Centralized Heteroskedastic 

(GARCH) model has only three parameters that allow for an infinite number of squared roots to 

influence the current conditional variance. This feature allows GARCH be more parsimonious 

than the ARCH model, feature that explains the wide preference for use in practice, as against 

ARCH.  

While ARCH incorporates the feature of autocorrelation observed in return volatility of most 

financial assets, GARCH improves ARCH by adding a more general feature of conditional 

heteroskedasticity. Simple models - low values of parameters p and q in GARCH(p,q) - are 

frequently used for modeling the volatility of financial returns; these models generate good 

estimates with few parameters. Like everything else, however, GARCH is not a “perfect model”, 

and thus could be improved - these improvements are observed in the form of the alphabet soup 

that uses GARCH as its prime ingredient: TARCH (Threshold Autoregressive Conditional 

Heteroskedastic), OGARCH (Orthogonal Generalized Autoregressive Conditional 
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Heteroskedastic), M-GARCH (Multiplicative Generalized Autoregressive Conditional 

Heteroskedastic), PC-GARCH etc. 

Similar to the ARCH model, the conditional variance determined through GARCH is a weighted 

average of past residuals. The weights decline but never reach zero. Essential to GARCH is the 

fact that it permits the conditional variance to be dependent upon previous own lags. 

The GARCH model proposed by Bollerslev (1986) expressed the same variance    as a function 

of past squared returns and past variance. As such, Bollerslev added to ARCH equation for 

variance, the past variance of the same time series:  

      (  )    ∑      
 

 

   

 ∑      

 

   

 

The GARCH(1,1) version of the model is  

   
    

√  

 

          
        

One of the shortcomings of GARCH is that this model takes into account only the size of the 

movement of the returns (magnitude), not the direction as well. Investors behave and plan their 

actions differently depending on whether a share moves up or down which explains why the 

volatility is not symmetric in the stance of the directional movements. Market declines forecast 

higher volatility than comparable market increases. This represents the leverage effect described 

by Gourieroux and Jasiak (2002). Both GARCH and ARCH have this limitation that impedes 

them from very accurate forecasts. 

All GARCH models necessitate lots of data. Simulations (both univariate and multivariate) 

proved that 1000 observations is a small sample, and fewer than this does not provide any picked 

up signal. 5000 observations is not as well a very large sample in terms of accuracy with which 

parameters are estimated. GARCH models require several years of daily data in order to be 

trustworthy. 
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As observed by Andersen and Bollerslev (1998) and Andersen et al. (1999), a source of failure of 

the autoregressive conditional heteroskedastic models in modeling volatility could be the latent 

(hidden) character of volatility, stochastically evolving through time. Due to the fact that models, 

until then, were compounded to describe volatility of time series formed from daily returns 

(usually the returns were formed from prices registered at the last transaction of the trading day), 

having the purpose of a better approximation of the underlying (true) volatility, maybe the failure 

of the GARCH-class of models to provide good forecasts was not a failure of the models 

themselves, but rather a failure to specify correctly the true volatility measures against which the 

forecasting performance was measured. According to Andersen and Bollerslev, the standard way 

of using ex post daily squared returns as the measure of “true” volatility for daily forecasts was 

flawed as such measure comprised a large and noisy independent zero mean constant variance 

error term which was unrelated to the actual volatility. As such, Andersen and Bollerslev 

suggested that cumulative squared-returns from intra-day data be used as an alternative way to 

express such “true” volatility. Such measure, called “integrated volatility” offered the 

opportunity of a more meaningful and accurate volatility forecast evaluation. This represented a 

step forward in forecasting problem as it indicates the necessity of using high frequency data in 

empirical estimations. 

This observation opened the perspective towards modeling in autoregressive conditional 

heteroskedastic frameworks by also using measures of intraday data. It was Engle (2002) who 

proposed first a new version of GARCH models to include measures of intraday volatility. The 

GARCH-X model of Engle (2002) was a standard GARCH model to which it was added an 

exogenous component      that described the intraday volatility of each trading day. As such, the 

GARCH-X model took the form 

      (  )    ∑      
 

 

   

 ∑      

 

   

 ∑      

 

   

 

Introducing measures of intraday volatility in order to better describe the latent volatility, proved 

a better empirical fit of a GARCH-type model, highlighted by the fact that when jumps in (true) 

volatility occurred, the GARCH-X model updated its estimated volatility to the new level much 

faster than a standard GARCH model. 
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Among the weaknesses of this model, the most important one was the fact that in a GARCH-X 

model, the intraday measure of volatility    was treated as an exogenous variable, posting no 

dependence    to   , when actually that existed. As for the measures of intraday volatility used, 

Engle (2002) employed the realized variance, while Barndorff-Nielsen and Shephard (2007) used 

the realized variance and the bipower variation. 

In the empirical exercise to follow we will use the univariate version of an EGARCH-X model in 

its logarithmic form: 

   
    

√  

 

                                   (    
   ) 

in which      is treated as exogenous since we do not link it to any other variable. 

Some models endogenized    trying to explain the measure of intraday volatility by creating an 

additional latent volatility process for each intraday measure included in the model. The 

univariate Multiplicative Error Model (MEM) of Engle and Gallo (2006) proposed a separate 

volatility process for returns and realized measures, but employed two realized measures besides 

squared returns (intraday range and realized variance). As such, MEM formulated a separate 

GARCH equation for each of the realized measures, introducing a latent volatility process for 

each of them. 
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                              (      )         

  

where    describes volatility of the daily returns, while      and       describe the volatility 

processes of the intraday range and of the realized variance. 

The univariate High Frequency Based Volatility (HEAVY) model proposed by Shephard and 

Sheppard (2010) was nested in the MEM framework, but unlike MEM model, it contains a 

separate conditional volatility process for only one intraday volatility measure used (that is 

realized kernels) (two latent volatility processes as against MEM that had three such processes): 

   
    

 

√  

 

          
              

   
    

 

√  

 

                    

where    represents the volatility process of the asset returns and    represents the volatility 

process of the realized measures used. 

The fact that such models work with more latent volatility processes by employing a parallel 

GARCH structure infers that a high number of coefficients need to be estimated (four for each of 

the two or three processes), which makes the estimating problem rather complicated. 

An important step in the field of volatility forecasting by using intraday measures has been made 

by Hansen, Huang and Shek (2010a) who proposed a new GARCH-type model with an 

endogenous realized measure of intraday volatility linked to the return variance by a 

measurement equation. The proposed Realized GARCH model maintains a single volatility-

factor structure of the traditional GARCH model and, as compared to MEM and HEAVY models 

which introduced separate volatility equations for each of the realized measure, proposes an 

additional equation which models the natural relationship between the realized measure and the 

conditional return variance produced by the model, avoiding as such to introduce additional 

latent volatility factors. In its linear formulation, the Realized GARCH(1,1) model takes the form 



43 

 

   
    

√  

 

                 

          (  )     

where       (  |    ) represents the conditional variance,    the realized measure as a 

consistent estimator of the integrated variance,       (    
 ) the studentized returns, and    are 

the random innovations. The first equation is called the return equation and the second one is 

called the GARCH equation. As it can be easily observed, the first two equations form a typical 

GARCH-X model, if    is taken as exogenous. The novelty of the Realized GARCH model 

introduced by Hansen, Huang and Shek (2010a) is the third equation (that is called the 

measurement equation) that links    to   . The advantages of including into a GARCH structure 

of a measurement equation that defines the realized measure through a linear relationship with 

the conditional variance, instead of regressing it against its past lagged values, nests the model in 

a simple, tractable GARCH structure and offers an elegant formulation of the dependence 

between shocks to returns and shocks to volatility, known as the leverage effect. A simple but 

effective formulation of the leverage function  ( ) is  

 ( )        ( 
   ) 

that allows for an asymmetric response in volatility to return shocks. A convenient version to 

work with of the Realized GARCH(1,1) model is the log-linear specification 

   
    

√  

 

                          

                      

and we shall confine to this formulation in the empirical exercise to follow. To this model it can 

be written the volatility shock formula 

 *      + 
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with the coefficients defined as in the previous model. 

The Realized EGARCH model proposed by Hansen, Huang and Shek (2010a) slightly extends 

the Realized GARCH model. The difference constitutes in the way the leverage function in the 

measurement equation is defined, as it contains two parts instead of one. The log-linear form of 

the Realized EGARCH(1,1) model that we will use is defined as follows  

   
    

√  

 

                 (         (    
   ))           

                      

The leverage function sums the leverage effects (shocks which can be explained by returns)  

       and those shocks that are uncorrelated to the leverage effects    (    
   ).  

The volatility shock may be calculated as it follows 

     *      +         (  
   )   *       (  

   )    + 

The Realized EGARCH(1,1) model represents an improved version of the EGARCH(1,1) model  

(Nelson (1991)), built upon estimations of day and intraday volatility: 
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We will use the EGARCH(1,1) model in its logarithmic form 

   
    

√  

 

                          (    
   ) 

Another model we will use in the empirical exercise is the Realized GARCH(2,2) model, which 

is built on a 2-lag Realized GARCH structure. 



45 

 

   
    

√  

 

             (   (    
       ))            

                               

                (       (  
   ))     

The volatility shock formula for the Realized GARCH(2,2) model is  

   *         (    
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Chapter three: Estimating a class of realized volatility 

models 

 

3.1 Introduction 

Chapter three proposes to undertake an extensive benchmarking that will seek to compare the 

performances of some of the recently proposed realized models, as well the gain in accuracy 

obtained when using one type of intraday realized measures against another type. In chapter‟s 

first stance, the models will be estimated across different criteria. There will be considered two 

simple models, with no measurement of intraday volatility - GARCH(1,1) ) (proposed by 

Bollerslev (1986)) and EGARCH(1,1) (proposed by Nelson (1991)), one realized model with an 

exogenous measurement of intraday volatility – EGARCH-X (a version of the GARCH-X model 

proposed by Engle (2002)), and three realized models with endogenous measurements of 

intraday volatility – Realized EGARCH(1,1), Realized GARCH(1,1), Realized GARCH(2,2) 

(Hansen, Huang and Shek (2010a)). These models will be estimated in sample and out of sample, 

the realized ones using six measures of intraday volatility: high-low, realized kernels and 

realized variances sampled at 15 seconds, 5 minutes, 15 minutes, and 20 minutes. The models 

will be estimated separately for each of the four stocks considered: AIG, AXP, BAC and JPM, 

and will be measured, with each estimation, the maximized loglikelihood function and three loss 

functions (RMSE, MAE, and MAPE).  

In second instance, there will be undertaken rankings of the models for each measure of intraday 

volatility used, and according to the maximized loglikelihood function and the three loss 

functions calculated. The functions‟ values will be normalized, as described in the 

methodological section of the chapter, and will be combined in order to obtain general rankings 

of the models. As well, there will be obtained rankings of the realized measures for each 

estimated model, having as measure of fit the maximized loglikelihood functions and the three 

loss functions mentioned above. The functions‟ values will be also normalized in order to 

combine the rankings. A general ranking of the realized measures used will be obtained. 
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3.2 The models 

The table that follows resumes the list of the models that will be used in the first empirical 

exercise. GARCH(1,1) and EGARCH(1,1) models are simple models with no intraday measures, 

the others will comprise various types of measures of intraday volatility. 

Model* Return Equation* GARCH Equation* Measurement 

equation* 

GARCH(1,1)    
    

√  

           
        

 
- 

EGARCH(1,1) 

(loglikelihood 

form) 

   
    

√  

                        

   (    
   ) 

- 

EGARCH-X(1,1) 

(loglikelihood 

form) 

   
    

√  

                          

          (    
   ) 

 

- 

Realized 

GARCH(1,1) 

(loglikelihood 

form) 

   
    

√  

 

 

                                        

    
    

Realized 

EGARCH(1,1) 

(loglikelihood 

form) 

   
    

√  

                 

 (         (    
   ))

          

              

    
    

Realized 

GARCH(2,2) 

(loglikelihood 

form) 

   
    

√  

              (   (    
       ))

           
          

                     

               

 (    
   (  

 

  ))
    

*Notations were maintained as they appear in Hansen, Huang and Shek (2010a) 

 

3.3 Data and Methodology 

The models will be estimated in sample and out of sample, for each estimation being considered 

six measures of intraday volatility – high-low, realized kernel, realized variance sampled at 15 

seconds, 5 minutes, 15 minutes and 20 minutes. The models will be estimated by maximizing the 

loglikelihood function, and will be evaluated according to four criteria: the value of the 
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maximum loglikelihood function, and the values of three loss functions: the root mean squared 

error (RMSE), the mean absolute error (MAE) and the mean absolute percentage error (MAPE). 

Each of the twelve tests will be assessed according to each of the four above mentioned criteria. 

There will be made classifications that will highlight: how models rank against each other for 

each measure of intraday volatility considered and how the measures of intraday volatility rank 

for each estimated model. 

The source of the data used is the Department of Economics of the Stanford University, through 

the kind help of Professor Peter Reinhard Hansen and of Professor Zhuo (Albert) Huang, and has 

been made available to me during the research stage I spent at Stanford University during April-

June 2010 period. The price quotations, including the measures of intraday data (realized kernels, 

realized variance sampled at 15 seconds, 5, 15 and 20 minutes) were provided through the kind 

help of them, thing for which I feel very indebted. The High-Low data was calculated as a simple 

difference between the daily highest and lowest prices for each of the stocks considered. 

The data represents 3436 observations long daily time series comprising price information of 

four stocks (AIG - American International Group, AXP - American Express, BAC - Bank of 

America and JPM – J.P. Morgan) over January 4, 1995 – September 30, 2008 period. The daily 

price data used had multiple expressions: open prices, close prices, opening and closing times, 

number of trades taking place each day, various measures of intraday volatility, like realized 

kernels, highest and lowest prices of each trading day, and the realized variance sampled at 15 

seconds, 5 minute, 15 minutes and 20 minutes. 

In order to avoid the outliers that would result from „quiet‟ days, the data was cleaned by 

removing the half trading days around the Christmas and the Thanksgiving Days, the length of 

the trading day being assessed after the number of trades taken place that day with each stock 

considered. All time series were equally adjusted so that they have equal length and 

correspondence of the prices for each day. This means that if one day was excluded for a stock, 

the same day was excluded for the other stocks as well. 

The daily returns were calculated in logarithmic form, as follows: 

       (   (              )     (              )) 
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for each trading day t,         . 

The option towards the calculation of the daily returns as price variation from the opening to the 

closing of each trading day, instead as price variation from the closing of one trading day to the 

closing of the next trading day, may be justified as follows: in some days, varying from one 

company to another, the stocks were split in a number of stocks with smaller values. Since the 

variation in price from the last trading of one day to the first trading of the next day was not due 

to the underlying latent volatility of that asset but due to the administrative decisions related to 

the number of shares each company held, such price variations should have not been modeled by 

the models. As such, returns were calculated by measuring the variation of price from the 

beginning of each trading day to the price corresponding to the closing of the same trading day, 

as the trading day volatility was considered only. 

However, in chapter five, when there will be proposed bivariate models, such restriction does not 

necessarily need to hold anymore (although we will keep it for the bivariate estimations) since 

those models will be specifically designed to measure both the day and night volatility. To avoid 

days in which price variations from one day to another existed due to stock splits, the time series 

were shortened as such during the sampled period no such price drops would have taken place 

(only for bivariate estimations). 

As mentioned, one GARCH(1,1) model, one EGARCH(1,1) model, one EGARCH-X(1,1) 

model, one Realized GARCH(1,1) model, one Realized EGARCH(1,1) model, and one Realized 

GARCH(2,2)) will be estimated in sample and out of sample for each of the four stocks, and for 

each measure of intraday volatility (realized kernels, high-low, and realized variance sampled at 

15 seconds, 5 minutes, 15 minutes and 20 minutes) . The in sample estimation was made by 

maximizing the loglikelihood function over the whole sample (considering all 3436 

observations), subject to some constraints, and then by measuring the size of the maximized 

loglikelihood function over the same 3436-long sample. As such, there will be estimated 

coefficients that allow the best fit of the model over the whole sample.  

The out of sample estimation was made by maximizing the loglikelihood function over shorter 

time series of sampled data (the first 2000 observations/days). This is considered as a better 

predictive test as it actually finds the estimators for a best fit over an interval, but then actually 
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measures the forecasting accuracy of the model for the next period, not included in the model‟s 

estimation. 

In both cases, the model‟s predictive capacity was measured by the value of the maximum log-

likelihood function (corresponding to the returns), and by the size of three loss functions: root 

mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error 

(MAPE), calculated as follows: 
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Higher the maximum loglikelihood function and lower the loss functions (over the whole period 

for in sample estimations and over the last 1436 days for out of sample estimations), better fit of 

the model over the population the sampled data belongs to. 

The log-likelihood function is a joint likelihood function formed from two partial functions. The 

first partial log-likelihood function (  ) represents the model fit to the return values, while the 

second partial function (  ) measures the fit to the realized measures,   . With respect to the 

models that do not comprise measures of intraday data (like GARCH and EGARCH), the total 

loglikelihood function is   . With respect to all models, the loglikelihood function to be 

maximized will be        , but what will be actually measured and accounted for ranking 

purposes, will be   , since what is compared is the model‟s capacity in describing and 

forecasting volatility of returns. As such, in each estimation it will be maximized L, but what we 

account for in order to measure the fitness of the model will be    only. 

The loglikelihood functions corresponding to the above models are  

 (   )   
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    (EGARCH and EGARCH-X) and  (   )  
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    (Realized EGARCH, Realized GARCH 

and Realized GARCH(2,2)). 

The rankings to be obtained will rank the models (in first instance) and then the realized 

measures (in second instance), according to the corresponding maximized loglikelihood and to 

each of the three loss functions. In order to combine the rankings, the values of the functions will 

be normalized according to the formula 

              
     

     
 

where    represents the value of the corresponding calculated function,    the function value of 

the highest ranked model or realized measure, and    the value of the lowest ranked model or 

realized value. By normalizing the loglikelihood function and the loss function values, in each 

ranking, we will be able afterwards to add them across the rankings for the criteria considered. 

After normalization, the values of each model and realized measure will be summed across the 

rankings, in order to obtain the general rankings. The sum of the normalized values of each 

model and of each realized measure will give the position of that model and measure in the final 

rankings. 

 

3.4 Results 

The maximized loglikelihood functions, and the loss functions calculated with each estimation, 

are summarized in the following tables: 

Model AIG 

 Maximum log-likelihood function 

 In sample Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ H-L RK 15’’ 5’ 15’ 20’ 

EGARCH(1,1) -6.258,9 -6.258,9 -6.258,9 -6.258,9 -6.258,9 -6.258,9 -949,9 -949,9 -949,9 -949,9 -949,9 -949,9 

EGARCH-X -6.239,4 -6.153,4 -6.207,6 -6.164,5 -6.138,1 -6.149,7 -977,9 -900,6 -918,3 -901,7 -897,2 -900,4 

GARCH(1,1) -6.215,1 -6.215,1 -6.215,1 -6.215,1 -6.215,1 -6.215,1 -921,7 -921,7 -921,7 -921,7 -921,7 -921,7 

Realized 

EGARCH(1,1) 
-6.429,3 -6.173,3 -6.244,6 -6.188,0 -6.151,3 -6.168,5 -2.623,0 -926,1 -920,5 -928,3 -910,6 -917,5 
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Realized 

GARCH(2,2) 
-6.848,2 -6.145,1 -6.219,6 -6.164,4 -6.129,7 -6.147,9 -3.469,9 -933,6 -920,0 -940,4 -923,2 -932,5 

Realized 

GARCH(1,1) 
-7.562,8 -6.161,7 -6.233,4 -6.177,9 -6.146,0 -6.162,8 -3.303,3 -900,5 -899,5 -902,2 -901,8 -904,1 

 

Model AXP 

 Maximum log-likelihood function 

 In sample Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ H-L RK 15’’ 5’ 15’ 20’ 

EGARCH(1,1) -6.472,2 -6.472,2 -6.472,2 -6.472,2 -6.472,2 -6.472,3 -915,9 -962,2 -915,9 -915,9 -915,9 -915,9 

EGARCH-X -6.466,4 -6.397,1 -6.461,9 -6.430,6 -6.408,6 -6.408,3 -916,3 -899,3 -913,0 -903,1 -899,3 -902,1 

GARCH(1,1) -6.488,9 -6.488,9 -6.488,9 -6.488,9 -6.488,9 -6.488,9 -919,0 -919,0 -919,0 -919,0 -919,0 -919,0 

Realized 

EGARCH(1,1) 
-6.640,3 -6.404,4 -6.546,3 -6.438,0 -6.415,5 -6.415,4 -945,1 -898,6 -900,5 -898,3 -897,9 -900,5 

Realized 

GARCH(2,2) 
-6.620,0 -6.369,1 -6.523,3 -6.410,1 -6.389,4 -6.392,3 -944,8 -898,8 -901,2 -900,1 -897,8 -901,3 

Realized 

GARCH(1,1) 
-6.643,6 -6.408,9 -6.558,5 -6.447,9 -6.428,6 -6.430,1 -951,2 -898,6 -900,7 -898,2 -897,2 -900,6 

 

Model BAC 

 Maximum log-likelihood function 

 In sample Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ H-L RK 15’’ 5’ 15’ 20’ 

EGARCH(1,1) -6.131,3 -6.131,3 -6.131,3 -6.131,3 -6.131,3 -6.131,3 -884,0 -884,0 -884,0 -884,0 -884,0 -884,0 

EGARCH-X -6.122,3 -6.086,4 -6.095,5 -6.083,3 -6.087,8 -6.090,3 -889,9 -858,6 -868,8 -857,1 -861,0 -863,4 

GARCH(1,1) -6.147,3 -6.147,3 -6.147,3 -6.147,3 -6.147,3 -6.147,3 -890,5 -890,5 -890,5 -890,5 -890,5 -890,5 

Realized 

EGARCH(1,1) 
-6.222,7 -6.088,5 -6.111,4 -6.088,0 -6.094,1 -6.100,7 -1.072,6 -854,4 -859,7 -855,6 -856,9 -859,2 

Realized 

GARCH(2,2) 
-6.297,6 -6.052,8 -6.094,5 -6.058,4 -6.056,5 -6.069,1 -1131,9 -850,8 -858,6 -853,8 -854,6 -856,0 

Realized 

GARCH(1,1) 
-6.351,3 -6.100,0 -6.128,7 -6.100,3 -6.105,6 -6.116,7 -1.110,5 -853,4 -856,5 -853,6 -854,4 -855,8 

 

Model JPM 

 Maximum log-likelihood function 

 In sample Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ H-L RK 15’’ 5’ 15’ 20’ 

EGARCH(1,1) -6.452,1 -6.452,1 -6.452,1 -6.452,1 -6.452,1 -6.452,1 -921,7 -921,7 -921,7 -921,7 -921,7 -921,7 

EGARCH-X -6.439,1 -6.396,0 -6.412,0 -6.387,4 -6.388,7 -6.395,2 -922,0 -898,1 -901,4 -896,5 -897,2 -899,4 
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GARCH(1,1) -6.471,7 -6.471,7 -6.471,7 -6.471,7 -6.471,7 -6.471,7 -922,9 -922,9 -922,9 -922,9 -922,9 -922,9 

Realized 

EGARCH(1,1) 
-6.716,9 -6.404,1 -6.432,5 -6.392,2 -6.390,5 -6.397,4 -958,5 -895,0 -891,9 -894,3 -895,7 -897,4 

Realized 

GARCH(2,2) 
-6.951,0 -6.376,3 -6.411,9 -6.363,3 -6.364,0 -6.375,1 -974,2 -894,6 -891,4 -893,1 -893,0 -894,4 

Realized 

GARCH(1,1) 
-6.825,8 -6.421,9 -6.451,8 -6.409,5 -6.409,1 -6.419,3 -989,6 -896,7 -893,3 -896,3 -896,7 -899,0 

 

Model AIG 

 Errors 

 In sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 109,978 7,200 91,668 109,978 7,200 91,669 109,978 7,200 91,668 109,978 7,200 91,668 109,978 -1,465 7,200 91,668 109,978 7,200 

EGARCH-X 110,955 7,436 82,658 107,371 7,033 79,635 119,619 8,537 80,875 107,322 6,969 76,896 108,297 -0,936 7,022 75,570 107,664 6,862 

GARCH(1,1) 109,866 6,953 81,602 109,866 6,953 81,602 109,866 6,953 81,602 109,866 6,953 81,602 109,866 -1,141 6,953 81,602 109,866 6,953 

Realized 

EGARCH(1,1) 
111,256 7,112 82,232 107,455 6,382 79,366 106,923 6,436 82,177 107,718 6,365 77,414 107,657 -2,277 6,487 75,069 107,723 6,436 

Realized 

GARCH(2,2) 
113,429 9,293 130,225 107,776 6,326 78,228 107,130 6,388 82,333 108,045 6,351 76,356 108,249 -2,391 6,468 74,264 108,150 6,392 

Realized 

GARCH(1,1) 
113,881 9,970 167,169 108,764 7,321 80,492 112,315 7,758 82,570 107,752 7,194 77,919 109,776 -0,800 7,247 76,364 108,641 7,141 

 

Model AIG 

 Errors 

 Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 308,680 33,457 162,269 308,680 33,457 162,269 308,680 33,457 162,269 308,680 33,457 162,269 308,680 33,457 162,269 308,680 33,457 162,269 

EGARCH-X 309,942 32,098 120,727 303,272 33,463 134,337 306,515 33,760 156,403 303,894 33,423 129,100 303,730 33,866 125,610 304,268 33,495 127,927 

GARCH(1,1) 306,730 33,830 159,941 306,730 33,830 159,941 306,730 33,830 159,941 306,730 33,830 159,941 306,730 33,830 159,941 306,730 33,830 159,941 

Realized 

EGARCH(1,1) 
318,500 33,650 137,646 306,100 32,082 137,238 303,748 32,281 155,271 306,557 32,080 133,778 304,771 32,693 127,307 305,670 32,414 134,399 

Realized 

GARCH(2,2) 
318,290 33,627 138,881 308,553 31,715 132,371 304,869 31,777 155,405 309,263 31,754 128,675 308,812 32,115 121,721 309,147 31,810 125,542 

Realized 

GARCH(1,1) 
318,619 33,638 109,373 303,002 33,393 136,283 300,538 35,315 159,358 303,442 33,153 131,694 305,234 33,916 125,537 305,267 33,523 130,586 
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Model AXP 

 Errors 

 In sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 7,470 3,604 81,854 7,470 3,603 81,839 7,470 3,604 81,854 7,470 3,604 81,877 7,470 3,604 81,854 7,471 3,599 81,429 

EGARCH-X 7,466 3,599 81,544 7,290 3,529 80,941 7,439 3,583 78,833 7,314 3,531 74,028 7,323 3,528 76,818 7,332 3,530 76,533 

GARCH(1,1) 7,524 3,656 80,685 7,524 3,656 80,685 7,524 3,656 80,685 7,524 3,656 80,685 7,524 3,656 80,685 7,524 3,656 80,685 

Realized 

EGARCH(1,1) 
8,359 4,262 96,256 7,305 3,516 79,334 7,472 3,693 73,975 7,318 3,519 72,602 7,337 3,515 75,780 7,342 3,530 75,588 

Realized 

GARCH(2,2) 
8,437 4,311 94,548 7,317 3,506 76,007 7,521 3,722 72,185 7,335 3,541 72,493 7,372 3,517 72,478 7,377 3,531 72,485 

Realized 

GARCH(1,1) 
8,004 3,988 94,177 7,335 3,555 79,334 7,501 3,722 73,812 7,344 3,558 72,063 7,376 3,559 75,297 7,382 3,559 74,901 

 

Model AXP 

 Errors 

 Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 9,959 5,128 167,936 12,498 5,683 154,289 9,959 5,128 167,937 9,959 5,128 167,937 9,959 5,128 167,937 9,959 5,128 167,937 

EGARCH-X 9,980 5,077 168,064 9,444 5,132 192,768 9,891 5,123 168,698 9,672 5,003 166,571 9,591 5,042 179,150 9,698 5,075 179,160 

GARCH(1,1) 9,946 5,208 164,936 9,946 5,208 164,936 9,946 5,208 164,936 9,946 5,208 164,936 9,946 5,208 164,936 9,946 5,208 164,936 

Realized 

EGARCH(1,1) 
10,429 4,977 179,342 9,445 5,095 184,196 9,492 4,941 170,022 9,544 4,919 164,278 9,567 5,016 173,782 9,648 5,080 175,361 

Realized 

GARCH(2,2) 
10,376 5,006 164,756 9,430 5,015 166,912 9,548 4,926 160,594 9,558 4,844 147,590 9,552 4,914 154,535 9,624 4,978 155,181 

Realized 

GARCH(1,1) 
10,480 4,957 172,299 9,385 5,157 188,268 9,462 4,946 168,918 9,480 4,941 164,513 9,495 5,062 175,605 9,615 5,096 174,553 

 

Model BAC 

 Errors 

 In sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 10,743 3,605 83,150 10,743 3,605 83,150 10,743 3,605 83,150 10,743 3,605 83,150 10,743 3,605 83,150 10,743 3,605 83,151 

EGARCH-X 10,765 3,574 81,843 10,305 3,546 87,703 10,346 3,532 73,989 10,269 3,513 83,668 10,356 3,540 85,291 10,398 3,544 84,893 

GARCH(1,1) 10,788 3,717 87,312 10,788 3,717 87,312 10,788 3,717 87,312 10,788 3,717 87,312 10,788 3,717 87,312 10,788 3,717 87,312 

Realized 

EGARCH(1,1) 
11,166 3,839 91,930 10,319 3,497 88,839 10,477 3,486 76,042 10,348 3,457 84,272 10,385 3,477 86,601 10,411 3,470 87,081 

Realized 

GARCH(2,2) 
11,544 4,188 107,268 10,320 3,499 91,893 10,509 3,511 77,713 10,381 3,461 86,074 10,493 3,481 91,496 10,487 3,489 92,819 

Realized 

GARCH(1,1) 
11,535 4,009 104,661 10,397 3,573 92,926 10,463 3,552 77,711 10,357 3,539 88,292 10,450 3,579 92,925 10,411 3,579 95,018 
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Model BAC 

 Errors 

 Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 25,565 8,172 93,437 25,565 8,172 93,437 25,565 8,172 93,437 25,565 8,172 93,437 25,565 8,172 93,437 25,565 8,172 93,437 

EGARCH-X 25,931 7,723 80,977 24,379 8,003 111,922 25,110 7,870 96,174 24,481 7,775 101,233 24,678 7,967 103,307 24,810 7,997 101,778 

GARCH(1,1) 25,551 8,504 95,643 25,551 8,504 95,643 25,551 8,504 95,643 25,551 8,504 95,643 25,551 8,504 95,643 25,551 8,504 95,643 

Realized 

EGARCH(1,1) 
27,837 7,732 53,212 24,166 7,778 111,482 25,023 7,416 88,625 24,432 7,525 96,929 24,428 7,707 104,877 24,578 7,756 103,663 

Realized 

GARCH(2,2) 
27,958 7,727 47,461 24,202 7,656 107,684 25,133 7,363 85,278 24,590 7,432 92,874 24,769 7,553 98,816 24,867 7,652 98,169 

Realized 

GARCH(1,1) 
27,905 7,744 51,084 24,218 7,973 117,059 24,844 7,443 90,560 24,263 7,701 101,494 24,380 7,920 112,971 24,409 7,946 111,773 

 

Model JPM 

 Errors 

 In sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 14,876 4,232 91,832 14,876 4,232 91,832 14,876 4,232 91,832 14,876 4,232 91,832 14,876 4,232 91,832 14,876 4,232 91,832 

EGARCH-X 14,747 4,166 88,796 14,550 4,109 99,946 14,475 4,161 94,243 14,517 4,098 95,287 14,648 4,106 95,249 14,616 4,127 94,452 

GARCH(1,1) 15,190 4,337 94,224 15,190 4,337 94,224 15,190 4,337 94,224 15,190 4,337 94,224 15,190 4,337 94,224 15,190 4,337 94,224 

Realized 

EGARCH(1,1) 
15,384 4,756 105,189 14,486 4,075 101,907 14,511 4,051 94,010 14,476 4,059 95,075 14,633 4,103 95,598 14,588 4,127 95,222 

Realized 

GARCH(2,2) 
15,335 4,987 150,324 14,641 4,099 101,593 14,642 4,097 94,318 14,639 4,079 94,511 14,791 4,124 95,093 14,743 4,140 94,835 

Realized 

GARCH(1,1) 
15,476 4,622 107,646 14,738 4,102 103,434 14,690 4,178 96,372 14,736 4,126 97,031 14,845 4,146 96,856 14,822 4,159 96,410 

 

Model JPM 

 Errors 

 Out of sample 

 H-L RK 15’’ 5’ 15’ 20’ 

 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH(1,1) 17,076 6,291 
209,54

7 
17,076 6,291 209,547 17,076 6,291 209,547 17,076 6,291 209,547 17,076 6,291 209,547 17,076 6,291 209,547 

EGARCH-X 17,138 6,136 
197,81

0 
16,491 6,623 272,792 16,632 6,430 231,639 16,456 6,574 261,150 16,558 6,588 253,632 16,583 6,564 242,926 

GARCH(1,1) 16,962 6,502 
207,43

0 
16,962 6,502 207,430 16,962 6,502 207,430 16,962 6,502 207,430 16,962 6,502 207,430 16,962 6,502 207,430 
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Realized 

EGARCH(1,1) 
17,876 5,849 

193,31
1 

16,227 6,661 305,740 16,217 6,287 250,710 16,302 6,536 275,149 16,482 6,646 262,457 16,476 6,661 252,356 

Realized 

GARCH(2,2) 
18,019 5,868 

195,06
7 

16,070 6,731 288,947 16,148 6,284 236,838 16,177 6,581 255,354 16,458 6,747 247,157 16,287 6,731 237,353 

Realized 

GARCH(1,1) 
18,117 5,913 

206,83
9 

16,293 6,821 314,819 16,241 6,544 259,438 16,520 6,821 288,650 16,576 6,866 268,751 16,504 6,853 255,878 

 

The models were ranked according to two goals: to rank the realized models for each intraday 

volatility measure used (plus GARCH and EGARCH models which don‟t have a measure of 

intraday volatility), and to rank the measures of intraday volatility for each type of realized 

model. The models and the realized volatility measures were ranked with respect to the size of 

the maximized loglikelihood functions (the higher the better) and with respect to the size of the 

three loss functions considered (the lower the better). 

After normalization, the loglikelihood and loss functions will be: 

 AIG AXP 

 in sample out of sample in sample out of sample 

EGARCH 5,03 5,01 3,45 4,38 

EGARCHX 0,17 0,40 0,85 1,12 

GARCH 2,57 2,18 4,41 4,41 

Realized EGARCH 1,73 2,75 3,00 0,87 

Realized GARCH(2,2) 0,70 4,02 1,50 1,02 

Realized GARCH(1,1) 2,05 1,11 3,60 1,01 

 

 BAC JPM 

 in sample out of sample in sample out of sample 

EGARCH 4,00 4,10 3,92 4,80 

EGARCHX 1,27 1,08 0,87 0,88 

GARCH 5,11 5,03 5,06 5,02 

Realized EGARCH 2,29 1,17 1,92 0,81 

Realized GARCH(2,2) 0,77 1,08 1,00 0,77 

Realized GARCH(1,1) 3,77 0,98 3,20 1,53 

 

 AIG AXP 

 in sample out of sample in sample out of sample 

RK 0,262 0,056 0,000 0,062 

H-L 4,000 4,000 4,000 4,000 

RV5m 0,463 0,075 0,955 0,297 
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RV15m 0,000 0,002 0,378 0,005 

RV15s 1,208 0,267 2,789 0,996 

RV20m 0,214 0,050 0,391 0,358 

 

 BAC JPM 

 in sample out of sample in sample out of sample 

RK 0,083 0,046 0,262 0,182 

H-L 4,000 4,000 4,000 4,000 

RV5m 0,024 0,017 0,006 0,088 

RV15m 0,199 0,146 0,026 0,137 

RV15s 0,770 0,420 0,789 0,192 

RV20m 0,407 0,241 0,217 0,289 

 

 AIG AXP 

 In sample Out of sample Out of sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH 4,27 4,28 5,12 4,94 4,46 6,00 3,33 2,61 5,08 5,02 4,56 3,07 

EGARCHX 1,55 3,89 0,23 1,13 4,00 0,62 0,00 0,33 2,70 1,80 2,65 5,02 

GARCH 4,05 2,92 1,43 3,08 5,53 5,36 5,06 4,60 4,35 4,07 5,29 2,43 

Realized 

EGARCH 
0,55 0,23 0,36 2,96 1,99 1,23 1,52 1,79 2,51 1,37 1,25 5,22 

Realized 

GARCH(2,2) 
1,80 0,78 0,72 5,48 0,88 0,58 2,66 2,18 0,93 1,31 0,20 0,33 

Realized 

GARCH(1,1) 
3,46 5,56 1,68 1,50 5,20 1,04 2,14 2,70 2,18 1,00 1,57 4,78 

 

 BAC JPM 

 In sample Out of sample Out of sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

EGARCH 4,50 2,71 0,74 5,01 3,85 1,77 2,76 2,98 0,05 5,10 0,70 1,16 

EGARCHX 0,03 1,20 0,93 1,44 2,01 4,41 0,22 0,67 3,15 1,94 3,16 3,50 

GARCH 5,06 5,23 3,23 4,94 6,00 2,60 5,61 5,21 2,28 4,31 3,38 0,87 

Realized 

EGARCH 
1,11 0,43 2,04 1,52 0,57 2,80 0,92 0,72 3,73 1,44 2,45 4,41 

Realized 

GARCH(2,2) 
2,16 1,23 4,41 2,40 0,00 1,14 2,03 1,48 4,21 0,91 2,98 3,29 

Realized 

GARCH(1,1) 
1,87 2,52 5,18 1,02 1,45 4,56 2,79 1,69 5,31 2,17 5,10 5,83 
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 AIG AXP 

 In sample Out of sample Out of sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

RK 0,39 0,19 1,29 0,57 0,88 1,59 0,00 0,01 1,70 0,00 4,00 4,00 

H-L 3,30 3,34 4,00 4,00 2,22 0,88 4,00 4,00 4,00 4,00 1,92 2,03 

RV5m 0,33 0,09 0,57 0,77 0,77 1,12 0,18 0,09 0,01 0,75 0,00 0,00 

RV15m 0,76 0,34 0,00 0,69 1,95 0,46 0,33 0,02 0,66 0,63 1,82 1,78 

RV15s 1,74 1,33 1,95 0,49 2,10 4,00 1,44 1,66 0,78 1,08 1,56 1,23 

RV20m 0,52 0,12 0,42 0,86 1,22 0,99 0,40 0,08 0,60 1,10 2,97 1,85 

 

 BAC JPM 

 In sample Out of sample Out of sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

RK 0,11 0,77 2,85 0,00 3,80 4,00 0,35 0,23 2,46 0,09 3,93 4,00 

H-L 4,00 4,00 3,57 4,00 2,44 0,00 4,00 4,00 3,00 4,00 0,00 0,00 

RV5m 0,08 0,00 1,90 0,25 1,16 2,92 0,21 0,06 0,74 0,25 3,51 2,97 

RV15m 0,47 0,61 2,52 0,46 3,10 3,40 1,22 0,33 0,78 0,69 3,91 2,49 

RV15s 0,59 0,49 0,00 1,12 0,53 2,33 0,04 1,08 0,49 0,30 2,28 1,89 

RV20m 0,55 0,68 2,64 0,62 3,66 3,30 0,96 0,71 0,63 0,59 3,85 2,03 

 

These enable us to obtain the general rankings across the models and realized measures used: 

 AIG AXP 

 in sample out of sample in sample out of sample 

Highest 

ranked 

 

 

 

 

 

 

Lowest 

ranked 

EGARCHX 0,17 EGARCHX 0,40 EGARCHX 0,85 
Realized 

EGARCH 
0,87 

Realized 

GARCH(2,2) 
0,70 

Realized 

GARCH 
1,11 

Realized 

GARCH(2,2) 
1,50 

Realized 

GARCH 
1,01 

Realized 

EGARCH 
1,73 GARCH 2,18 

Realized 

EGARCH 
3,00 

Realized 

GARCH(2,2) 
1,02 

Realized 

GARCH 
2,05 

Realized 

EGARCH 
2,75 EGARCH 3,45 EGARCHX 1,12 

GARCH 2,57 
Realized 

GARCH(2,2) 
4,02 

Realized 

GARCH 
3,60 EGARCH 4,38 

EGARCH 5,03 EGARCH 5,01 GARCH 4,41 GARCH 4,41 
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 BAC JPM 

 in sample out of sample in sample out of sample 

Highest 

ranked 

 

 

 

 

 

Lowest 

ranked 

Realized 

GARCH(2,2) 
0,77 

Realized 

GARCH 
0,98 EGARCHX 0,87 

Realized 

GARCH(2,2) 
0,77 

EGARCHX 1,27 EGARCHX 1,08 
Realized 

GARCH(2,2) 
1,00 

Realized 

EGARCH 
0,81 

Realized 

EGARCH 
2,29 

Realized 

GARCH(2,2) 
1,08 

Realized 

EGARCH 
1,92 EGARCHX 0,88 

Realized 

GARCH 
3,77 

Realized 

EGARCH 
1,17 

Realized 

GARCH 
3,20 

Realized 

GARCH 
1,53 

EGARCH 4,00 EGARCH 4,10 EGARCH 3,92 EGARCH 4,80 

GARCH 5,11 GARCH 5,03 GARCH 5,06 GARCH 5,02 

 

 AIG AXP 

 in sample out of sample in sample out of sample 

Highest 

ranked 

 

 

Lowest 

ranked 

rv15m 0,000 rv15m 0,002 rk 0,000 rv15m 0,005 

rv20m 0,214 rv20m 0,050 rv15m 0,378 rk 0,062 

Rk 0,262 rk 0,056 rv20m 0,391 rv5m 0,297 

rv5m 0,463 rv5m 0,075 rv5m 0,955 rv20m 0,358 

rv15s 1,208 rv15s 0,267 rv15s 2,789 rv15s 0,996 

h-l 4,000 h-l 4,000 h-l 4,000 h-l 4,000 

 

 BAC JPM 

 in sample out of sample in sample out of sample 

Highest 

ranked 

 

 

Lowest 

ranked 

rv5m 0,024 rv5m 0,017 rv5m 0,006 rv5m 0,088 

rk 0,083 rk 0,046 rv15m 0,026 rv15m 0,137 

rv15m 0,199 rv15m 0,146 rv20m 0,217 rk 0,182 

rv20m 0,407 rv20m 0,241 rk 0,262 rv15s 0,192 

rv15s 0,770 rv15s 0,420 rv15s 0,789 rv20m 0,289 

h-l 4,000 h-l 4,000 h-l 4,000 h-l 4,000 

 

 AIG 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 
 

 

 

Realized 

EGARCH 
0,55 

Realized 

EGARCH 
0,23 EGARCHX 0,23 EGARCHX 1,13 

Realized 

GARCH(2,2) 
0,88 

Realized 

GARCH(2,2) 
0,58 

EGARCHX 1,55 
Realized 

GARCH(2,2) 
0,78 

Realized 

EGARCH 
0,36 

Realized 

GARCH(1,1) 
1,50 

Realized 

EGARCH 
1,99 EGARCHX 0,62 

Realized 

GARCH(2,2) 
1,80 GARCH 2,92 

Realized 

GARCH(2,2) 
0,72 

Realized 

EGARCH 
2,96 EGARCHX 4,00 

Realized 

GARCH(1,1) 
1,04 
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Lowest 

ranked 

Realized 

GARCH(1,1) 
3,46 EGARCHX 3,89 GARCH 1,43 GARCH 3,08 EGARCH 4,46 

Realized 

EGARCH 
1,23 

GARCH 4,05 EGARCH 4,28 
Realized 

GARCH(1,1) 
1,68 EGARCH 4,94 

Realized 

GARCH(1,1) 
5,20 GARCH 5,36 

EGARCH 4,27 
Realized 

GARCH(1,1) 
5,56 EGARCH 5,12 

Realized 

GARCH(2,2) 
5,48 GARCH 5,53 EGARCH 6,00 

 

 AXP 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 
 

 

 
 

 

 
 

Lowest 

ranked 

EGARCHX 0,00 EGARCHX 0,33 
Realized 

GARCH(2,2) 
0,93 

Realized 

GARCH(1,1) 
1,00 

Realized 

GARCH(2,2) 
0,20 

Realized 

GARCH(2,2) 
0,33 

Realized 

EGARCH 
1,52 

Realized 

EGARCH 
1,79 

Realized 

GARCH(1,1) 
2,18 

Realized 

GARCH(2,2) 
1,31 

Realized 

EGARCH 
1,25 GARCH 2,43 

Realized 

GARCH(1,1) 
2,14 

Realized 

GARCH(2,2) 
2,18 

Realized 

EGARCH 
2,51 

Realized 

EGARCH 
1,37 

Realized 

GARCH(1,1) 
1,57 EGARCH 3,07 

Realized 

GARCH(2,2) 
2,66 EGARCH 2,61 EGARCHX 2,70 EGARCHX 1,80 EGARCHX 2,65 

Realized 

GARCH(1,1) 
4,78 

EGARCH 3,33 
Realized 

GARCH(1,1) 
2,70 GARCH 4,35 GARCH 4,07 EGARCH 4,56 EGARCHX 5,02 

GARCH 5,06 GARCH 4,60 EGARCH 5,08 EGARCH 5,02 GARCH 5,29 
Realized 

EGARCH 
5,22 

 

 BAC 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 
 

 

 
 

 

 
 

 

 
 

Lowest 

ranked 

EGARCHX 0,03 
Realized 

EGARCH 
0,43 EGARCH 0,74 

Realized 

GARCH(1,1) 
1,02 

Realized 

GARCH(2,2) 
0,00 

Realized 

GARCH(2,2) 
1,14 

Realized 

EGARCH 
1,11 EGARCHX 1,20 EGARCHX 0,93 EGARCHX 1,44 

Realized 

EGARCH 
0,57 EGARCH 1,77 

Realized 

GARCH(1,1) 
1,87 

Realized 

GARCH(2,2) 
1,23 

Realized 

EGARCH 
2,04 

Realized 

EGARCH 
1,52 

Realized 

GARCH(1,1) 
1,45 GARCH 2,60 

Realized 

GARCH(2,2) 
2,16 

Realized 

GARCH(1,1) 
2,52 GARCH 3,23 

Realized 

GARCH(2,2) 
2,40 EGARCHX 2,01 

Realized 

EGARCH 
2,80 

EGARCH 4,50 EGARCH 2,71 
Realized 

GARCH(2,2) 
4,41 GARCH 4,94 EGARCH 3,85 EGARCHX 4,41 

GARCH 5,06 GARCH 5,23 
Realized 

GARCH(1,1) 
5,18 EGARCH 5,01 GARCH 6,00 

Realized 

GARCH(1,1) 
4,56 

 

 JPM 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 
ranked 

 

 

EGARCHX 0,22 EGARCHX 0,67 EGARCH 0,05 
Realized 

GARCH(2,2) 
0,91 EGARCH 0,70 GARCH 0,87 

Realized 

EGARCH 
0,92 

Realized 

EGARCH 
0,72 GARCH 2,28 

Realized 

EGARCH 
1,44 

Realized 

EGARCH 
2,45 EGARCH 1,16 
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Lowest 
ranked 

Realized 

GARCH(2,2) 
2,03 

Realized 

GARCH(2,2) 
1,48 EGARCHX 3,15 EGARCHX 1,94 

Realized 

GARCH(2,2) 
2,98 

Realized 

GARCH(2,2) 
3,29 

EGARCH 2,76 
Realized 

GARCH(1,1) 
1,69 

Realized 

EGARCH 
3,73 

Realized 

GARCH(1,1) 
2,17 EGARCHX 3,16 EGARCHX 3,50 

Realized 

GARCH(1,1) 
2,79 EGARCH 2,98 

Realized 

GARCH(2,2) 
4,21 GARCH 4,31 GARCH 3,38 

Realized 

EGARCH 
4,41 

GARCH 5,61 GARCH 5,21 
Realized 

GARCH(1,1) 
5,31 EGARCH 5,10 

Realized 

GARCH(1,1) 
5,10 

Realized 

GARCH(1,1) 
5,83 

 

 AIG 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

Lowest 

ranked 

RV5m 0,33 RV5m 0,09 RV15m 0,00 RV15s 0,49 RV5m 0,77 RV15m 0,46 

Rk 0,39 RV20m 0,12 RV20m 0,42 Rk 0,57 Rk 0,88 h-l 0,88 

RV20m 0,52 Rk 0,19 RV5m 0,57 RV15m 0,69 RV20m 1,22 RV20m 0,99 

RV15m 0,76 RV15m 0,34 Rk 1,29 RV5m 0,77 RV15m 1,95 RV5m 1,12 

RV15s 1,74 RV15s 1,33 RV15s 1,95 RV20m 0,86 RV15s 2,10 Rk 1,59 

h-l 3,30 h-l 3,34 h-l 4,00 h-l 4,00 h-l 2,22 RV15s 4,00 

 

 AXP 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

 

Lowest 

ranked 

Rk 0,00 Rk 0,01 RV5m 0,01 Rk 0,00 RV5m 0,00 RV5m 0,00 

RV5m 0,18 RV15m 0,02 RV20m 0,60 RV15m 0,63 RV15s 1,56 RV15s 1,23 

RV15m 0,33 RV20m 0,08 RV15m 0,66 RV5m 0,75 RV15m 1,82 RV15m 1,78 

RV20m 0,40 RV5m 0,09 RV15s 0,78 RV15s 1,08 h-l 1,92 RV20m 1,85 

RV15s 1,44 RV15s 1,66 Rk 1,70 RV20m 1,10 RV20m 2,97 h-l 2,03 

h-l 4,00 h-l 4,00 h-l 4,00 h-l 4,00 Rk 4,00 Rk 4,00 

  

 BAC 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

l 

Lowest 

ranked 

RV5m 0,08 RV5m 0,00 RV15s 0,00 Rk 0,00 RV15s 0,53 h-l 0,00 

Rk 0,11 RV15s 0,49 RV5m 1,90 RV5m 0,25 RV5m 1,16 RV15s 2,33 

RV15m 0,47 RV15m 0,61 RV15m 2,52 RV15m 0,46 h-l 2,44 RV5m 2,92 

RV20m 0,55 RV20m 0,68 RV20m 2,64 RV20m 0,62 RV15m 3,10 RV20m 3,30 

RV15s 0,59 Rk 0,77 Rk 2,85 RV15s 1,12 RV20m 3,66 RV15m 3,40 

h-l 4,00 h-l 4,00 h-l 3,57 h-l 4,00 Rk 3,80 Rk 4,00 
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 JPM 

 In sample Out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

Lowest 

ranked 

RV15s 0,04 RV5m 0,06 RV15s 0,49 Rk 0,09 h-l 0,00 h-l 0,00 

RV5m 0,21 Rk 0,23 RV20m 0,63 RV5m 0,25 RV15s 2,28 RV15s 1,89 

Rk 0,35 RV15m 0,33 RV5m 0,74 RV15s 0,30 RV5m 3,51 RV20m 2,03 

RV20m 0,96 RV20m 0,71 RV15m 0,78 RV20m 0,59 RV20m 3,85 RV15m 2,49 

RV15m 1,22 RV15s 1,08 Rk 2,46 RV15m 0,69 RV15m 3,91 RV5m 2,97 

h-l 4,00 h-l 4,00 h-l 3,00 h-l 4,00 Rk 3,93 Rk 4,00 

 

 

3.5 Conclusions 

The first conclusion that may be grasped by looking to the results is that models‟ ranking is 

sensitive to the type of estimation employed (in sample or out of sample), to the stock choice and 

to the type of criterion chosen for comparing the models‟ performance. However, common 

patterns may be found and general conclusions may be grasped.  

With regards to the AIG stock, when models were ranked after the size of the maximized 

loglikelihood, the EGARCHX model ranked the best, while the EGARCH ranked worst, for both 

in sample and out of sample estimations. On a second place, Realized GARCH model ranked 

fairly well (better in the out of sample estimations). If looking to the size of the loss functions, 

we see that EGARCHX model ranked very well again, while EGARCH and GARCH models 

ranked consistently low at almost each criterion. Realized EGARCH ranks well as well across all 

criteria, as well Realized GARCH(2,2) model for out of sample estimations (excepting for out of 

sample, RMSE criterion). On the fourth place, comes the Realized GARCH model. 

With regards to the AXP stock, using MLE as ranking criterion, EGARCHX performs well (the 

best for in sample estimations), remarking also the Realized EGARCH which comes into a third 

position for in sample ranking and the first as out of sample ranking. Realized GARCH(2,2) 

performs as well under both types of estimations. When the loss function sizes are considered, 

EGARCHX comes the best under RMSE and MAE criteria (for in sample estimations), while 

Realized GARCH(2,2) ranks the best for three other criteria. Realized EGARCH and Realized 
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GARCH as well rank among the best as well. The GARCH and EGARCH models were the 

worst ranked, for five out of six criteria. 

With respect to the BAC stock, EGARCHX ranks consistently on the second position (for MLE 

criterion), while Realized GARCH(2,2) ranks the first and the third alternatively, indicating also 

good forecasting performance. Realized GARCH also ranks well, especially when out of sample 

estimation is considered. EGARCH and GARCH models rank the worst under both types of 

estimations. When loss functions are used as comparison criteria, EGARCHX ranks very well 

again (between the best ranked for four out of six criteria), Realized EGARCH and Realized 

GARCH(2,2) rank among the best two for three and, respectively, two, criteria. GARCH and 

EGARCH rank the worst under four (out of six criteria), and Realized GARCH(1,1) ranks the 

worst under two criteria. 

With respect to the JPM stock, EGARCHX ranks the best when in sample estimation is 

considered, with Realized GARCH(2,2) on the second spot, while EGARCH and GARCH 

models ranked the worst. For out of sample estimations, the Realized GARCH(2,2) and 

EGARCH models ranked the best, and EGARCH and GARCH models ranked on the last two 

positions. For loss function criteria, in sample estimations, EGARCHX, Realized GARCH(2,2) 

and Realized EGARCH ranked the best, while GARCH and EGARCH models ranked the worst. 

For out of sample estimations, Realized GARCH(1,1) and Realized EGARCH ranked well, 

while GARCH and EGARCH ranked poor. 

One general conclusion on the models ranking is that EGARCHX model ranks the best under 

most of the criteria, followed closely by the Realized GARCH(2,2) and Realized EGARCH 

models. However, this conclusion contradicts the previous belief that by adding a measurement 

equation in the realized models that links the realized measures to the conditional volatility, the 

estimation performances would improve. EGARCHX model doesn‟t formulate such a link, 

leaving the realized measures exogenous, and this actually enhances its forecasting performance.  

A second general conclusion is that, indeed, incorporating the measures of intraday volatility in 

the GARCH equations enhances the modeling problem. This is evidenced by the fact that under 

most of the estimations, EGARCHX, Realized EGARCH and Realized GARCH(2,2) ranked the 

best, while GARCH and EGARCH models ranked the worst, with only few exceptions. 
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When the realized measures‟ ranking is considered, a first observation may be made when 

looking to the worst ranked, across all stocks, in sample and out of sample, for MLE criterion. 

That conclusion is that H-L ranks the worst, with no exception, under each criterion. Then, a 

second observation is that realized variance sampled at 5 minutes and 15 minutes ranks the 

highest, with RK coming on a third position. The high ranking of RV5m and RV15m, against a 

higher ranking of RV15s, may be explained due to the existence of a high microstructure noise at 

very high frequencies. This confirms the earlier theories according to which more frequent 

sampling the better, but too frequent sampling decreases the data accuracy due to higher 

microstructure noise. 

When loss functions are used as ranking criterion, we may see again that H-L measures ranks the 

worst under almost all criteria. The best ranked are RV5m, RV15m and RV5s, while RK ranks 

better and worse alternatively, being very sensitive to the loss function, estimation method and 

stock choices. 

The general conclusion is that H-L is not sufficiently accurate to measure the intraday volatility, 

while the realized variance, sampled at not too high or too low frequencies, improves the best the 

forecasting abilities. 
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Chapter four: Principal Component Analysis with high 

frequency volatility models 

 

4.1 Introduction 

In applied contexts, a frequent problem is not just estimating the univariate volatility of 

individual stocks, but also the multivariate volatility modeling of a multiple stock asset. This 

poses some difficulties as compared to the one stock case, because the modeling has to consider 

not just the conditional variance of each stock in the asset, but also the correlations between the 

individual stocks‟ variances. Volatility modeling of multiple stock assets requires a multivariate 

approach to be considered. The leading multivariate volatility models are PC GARCH (Principal 

Component GARCH) (Burns, 2005), BEKK (Baba, Engle, Kraft, and Kroner) (Engle and 

Kroner, 1995), (Engle and Mezrich, 1996), DCC (Dynamic Conditional Correlations) (Engle, 

2002), (Engle and Sheppard, 2001), Orthogonal GARCH (Alexander, 2000), and GO GARCH 

(Generalized Orthogonal GARCH) (van der Weide, 2002). 

The PC-GARCH model has kept attention because it offers a straightforward method of 

modeling a multivariate problem through the estimation of a series of univariate models applied 

to principal components. It has been empirically proven that attaching a Principal Component 

algorithm to a GARCH(1,1) model brought significant benefits in both performance and costs 

involved in forecasting problems of highly correlated stock assets. The PC-GARCH model not 

just minimizes computational efforts by reducing significantly the computational time and by 

getting rid of any problem that may arise from complex data manipulations, but also ensures a 

better fit of the model to data as it ensures a tight control of the amount of “noise” and thus 

results in more stable correlation estimates. 

In what follows, the modeling problem of a multivariate asset will be adapted to the 

methodology of Burns (2005), accommodating to a high frequency context. This method (called 

PC GARCH) allowed to solve the modeling problem of multiple stock assets (a multivariate 

GARCH problem) through univariate GARCH estimations of the principal components. Starting 

from Burns‟ (2005) PC-GARCH model, we propose an updated method to solve multivariate 
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volatility forecasting problems of multiple stock assets by employing high-frequency data 

models. New models will be proposed: PC EGARCH(1,1), PC EGARCHX(1,1), PC Realized 

GARCH(1,1), PC Realized EGARCH(1,1), and PC Realized GARCH(2,2). These models follow 

to be estimated for a four-stock asset, and each model‟s forecasting accuracy will be evaluated. 

As well, it will be documented the gain in asset volatility forecasting performance as compared 

to aggregated forecasts made on individual stocks. Methods on how the investors would take 

advantage of the newly proposed models to better portfolio management, will also be discussed. 

Besides Burns‟ (2005) paper, this chapter takes also advantage of a similar methodology 

proposed by Alexander (2000) for Orthogonal GARCH (OGARCH), of the work of Hansen, 

Huang and Shek (2010a) who proposed the Realized GARCH and Realized EGARCH (Realized 

Exponential Generalized Autoregressive Conditional Heteroskedastic) models, and also of the 

work of Nelson (1991) and Engle (2002) who proposed EGARCH and GARCH-X (Generalized 

Autoregressive Conditional Heteroskedastic with an exogenous realized measure) models, 

respectively. 

 

Principal Component Analysis (PCA) – algorithm description 

Stating the problem in general terms first, let‟s consider            variables that represent the 

innovations of   stocks obtained from employing a high frequency GARCH model. These 

vectors form a     matrix  , such that     be a symmetric matrix, with one on the diagonal. 

We assume that each column in the stationary matrix has mean zero and variance one, after 

previously subtracted the sample mean and divided by the sample standard deviation. Let‟s 

consider as well a matrix       the variance-covariance matrix of  , therefore positive 

definite. Matrix   will have on each column the time series formed by the   innovations 

obtained above. 

The goal is to obtain linear combinations of the   innovations such that these combinations be 

orthogonal to each other:                          ,      . 

The above equation may be written in matrix form:              , with each column of 

     orthogonal to any other columns of     . In other words, what are sought are those factor 



67 

 

loadings l’s that multiplied by the corresponding x’s give p‟s that are orthogonal. Restating 

further, what will be obtained will be that matrix      (
       
   
       

+ that, multiplied with 

the matrix      will give the matrix      with columns orthogonal to each other. 

     will be called the matrix of the eigenvectors of  . The weights     of each vector    will be 

chosen from a set of eigenvectors of the correlation matrix   such that: 

a) The principal components be orthogonal, obtained by multiplying the matrix      to the 

matrix      .  

b) The first principal component to explain the maximum amount of total variation in  , the 

second component to  explain the maximum remaining variation, etc. 

As known from matrix algebra, if a matrix   is set to be composed of orthogonal unit 

eigenvectors of    , then the resulting principal components will be orthogonal. It results that 

the necessary condition for   be orthogonal is that columns of   be orthogonal. So, what is 

searched is an orthogonal matrix   that multiplied by   gives an orthogonal matrix. 

The P matrix can be written as it follows:  (

          

          

    
          

, , with   ,…,    defined as the 

orthogonal and unit-length eigenvectors of each principal component of the matrix P:   

       

([

   

 
   

] [

   

 
   

] 0

 
 
 
1 [

   

 
   

]+
.  

As well, a matrix      (

   (     )    (     )     (     )
   (     )    (     )     (     )

    
   (     )    (     )     (     )

, is defined as the 

variance-covariance matrix of  , with    (     ) the variance-covariance between    with itself 

and    (     ) the variance-covariance between    with   . 

Since the principal components need to be orthogonal, then    (     ) with     should equal 

zero, while    (     ) should equal the   ‟s of P’s. It means that      is a diagonal matrix with 
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the variance of P‟s on the diagonal, and all other values null:      

(

 

  
(  )    

   
(  )   

    
     

(  ))

 . 

As such, in order to obtain a matrix   that multiplied by   gives an orthogonal matrix  , we 

need to find out the factor loadings l‟s that form a matrix   that, when multiplied by  , gives a 

matrix   whose variance-covariance matrix ( ) is diagonal (equivalent to orthogonal P 

eigenvectors). 

Since   is the variance-covariance matrix of  , then       (  )               . 

Because   is orthogonal,        and      becomes           . It means that when it 

will be found the matrix   that by multiplication with   gives an orthogonal matrix  , then it 

will be possible to obtain the matrix   whose each column    will be a linear combination of  ‟s 

and other factor loadings  ‟s:                       , where Xi and Pi denote the 

columns of R and P respectively. 

Thus each data vector will be a linear combination of the principal components. The proportion 

of the total variation in R that is explained by the m
th

 principal component is λm/(sum of the 

eigenvalues). Thus, the operation of scaling the original variables with the matrix of orthogonal 

unit eigenvectors L gives us uncorrelated components (PCs) that we could use to reduce the 

earlier multivariate GARCH problem to a set of univariate GARCH problems. 

 

4.2 Data 

The same data as in the previous chapter will be used, spanning over the same period: four stocks 

(AIG, AXP, BAC and JPM) with daily frequency data (open prices, close prices, highest and 

lowest prices of each trading day, the opening and the closing time information and various 

measures of intraday volatility, like realized kernels and realized variance sampled at 15 seconds, 

5 minute, 15 minutes and 20 minutes). The sample is 3436 observations long (between January 

4, 1995 – September 30, 2008). The data has been cleaned by excluding the half-trading days, 

and the returns in their logarithmic forms were calculated as follows: 
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       (   (              )     (              )) 

for each trading day t,         . 

 

4.3 Methodology 

The methodology that follows is a restatement of the methodology given by Burns (2005) for PC 

GARCH, but adapted to new formulations of models that include measures of intraday volatility. 

Seven steps need to be made in order to define the PC EGARCH, PC Realized GARCH, PC 

Realized EGARCH, PC EGARCH-X and PC Realized GARCH(2,2) models. 

There are given N stocks with T price observations. Time series of their returns will be formed 

according to the formula  

       (   (              )     (              )) 

for each trading day t,      . 

The daily stock returns were plot in a matrix      

(

 
 

  
( )

  
( )

   
( )

  
( )

  
( )

   
( )

    

  
( )

  
( )

   
( )

)

 
 

. In return matrix 

  (  
 )             , each variable is observed in time. The purpose is to estimate the volatility 

of the N-stock asset X, that is equivalent to finding the variance-covariance matrix of X. We call 

this variance-covariance matrix     . In a multivariate problem we look for the matrix      

that is equivalent to   in a univariate problem. 

     

(

 
 

 ( )    ( ( )  ( ))     ( ( )  ( ))

   ( ( )  ( ))  ( )     ( ( )  ( ))
    

   ( ( )  ( ))    ( ( )  ( ))   ( )

)

 
 

 

in which  ( ), …,  ( ) are the univariate variance of each stock  ( ). 

The seven step procedure to find      follows. 
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Step 1 

A univariate GARCH-type of model (one of the realized models we considered) is employed for 

each stock returns  ( ). This will provide us with the  ‟s that are on the diagonal of the variance-

covariance matrix     . Step 1 provides us the diagonal of the matrix     , what follows 

(Steps 2 to 7) will be undertaken in order to find the covariances between the stocks. 

Step 2 

Step 1 gives us the day and night standardized returns   . We center and reduce the variables by 

constructing a matrix          having as elements 
(  

( )
  ( ))

√ ( )
. These elements are called 

standardized innovations and will be noted as   
( )

, being calculated as standardized returns with 

the estimated variance and mean process for each of the stocks. These standardized residuals 

(returns) are observed in time at each t for each variable i. Because  ( ) and  ( ) are not 

observable, they need to be estimated. Their estimation is undertaken by employing the 

considered realized GARCH-type of models, and their estimations will be noted as  ( ) and 

 ( ) . The matrix   having as elements 
(  

( )
  ( ))

 ( )
 will be calculated. Because elements of      

are unknown, as they contain  ( ) and  ( )  (the average and variance of population),   will be 

an estimator of     . 

The variance-covariance matrix of the columns of      is     . The variance-covariance 

matrix of the columns of          will be the     , which has 
(  

( )
  ( ))

√ ( )
 on its diagonal and 

   (
     

√  
  

     

√  
),    , in the other  cells of the matrix. But    (

     

√  
*    and 

   (
     

√  
  

     

√  
*  

 

√  √  
   (            )  

 

√  √  
   (      )      (      ). 

In other words,    (    )      ( ), that is the variance-covariance matrix of          is 

equal to the correlation matrix of     . As such,          (    ). 
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It results that an estimator of the correlation matrix of   may be obtained by finding an estimator 

for         (    ). Since an estimator for      is  , it results that an estimator for 

        (    ) is    ( ). It results that an estimator for     ( ) is    ( ). 

Step 3 

We apply Principal Component algorithm on the day standardized returns (columns of matrix 

    ). PCA creates new variables called principal components. The Matlab gives us the weights 

(l‟s) that, by multiplying to each of the standardized returns, form the principal components. In 

matrix form, the matrix of weights (    ) that multiplied by the matrix      of the 

standardized returns, gives us the matrix of the principal components. The result will be another 

matrix of the principal components,     , in which the columns of P (the first characteristic) 

will be linear combinations of the columns of R. As such, we may write 

               

in which L is the principal component loadings‟ (or weights‟) matrix (L is  a matrix formed from 

eigenvectors of the variance-covariance matrix of the variables on which PC is applied; as such, 

L will be a matrix having as columns eigenvectors of the matrix    ( )). Because    ( ) is 

symmetric, its eigenvectors will be orthogonal two by two, with module 1. It results that matrix   

verifies the following relationship:  

          

By multiplying the      relationship with   , we will obtain          ( )  

   (   )      ( )  . As such we obtained    ( )      ( )  . 

The second characteristic of the principal components is that they are orthogonal two by two, 

that is equivalent to that the covariance of any two columns of      is 0. That means that the 

variance-covariance matrix of      will be 

     (

 (  )    
  (  )   
    
    (  )

, 
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The above relationship becomes    ( )      . Since the relationship is valid for any t 

moment, we can write    ( )       . 

As such,    ( )  (

          
          
    
          

,

(

 
 

  
(  )    

   
(  )   

    

     
(  )

)

 
 

(

          

          

    
          

,  

(

 
 

     
(  )      

(  )       
(  )

     
(  )      

(  )       
(  )

    

     
(  )      
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The main difference that Burns‟ methodology takes advantage of (for GARCH models, but the 

advantage remains even for the case of realized GARCH models), is that      is a diagonal 

matrix (because the principal components are orthogonal two by two), while      is not. On its 

diagonal,   will have the variances of the principal components. 

At Step 4, it will be obtained an estimator of     , by using univariate realized GARCH-type of 

models. 

Step 4 

We employ a univariate realized GARCH model on each column of     , step which provides 

us with the  (  )‟s on the diagonal of     . By finding an estimator of      through univariate 

realized GARCH-type estimations, due to the fact that    ( )      , it will be obtained an 

estimator for    ( ). And, as said before, an estimator of    ( ) is an estimator of     , and 

thus we obtain an estimate of the correlation matrix   
 (as     

      (    
 )). 

Step 5 

We return to the initial space      (variance-covariance matrix of     ) through a relationship 

specific to the principal component theory (and which has been obtained in the previous section): 
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where     
  is the transposed matrix of     . 

But,  ̂        ̂(    )   ̂ , where  ̂  is an estimator of the correlation matrix of X. 

However,  ̂    , the estimator of     , is known now from Step 4. So, we know now  ̂ . 

 ̂        ̂(    )  (

 ̂  ̂    ̂  
 ̂   ̂   ̂  

    
 ̂   ̂    ̂ 

,, with  ̂   ∑        
(  ) 

        

       ̂   ̂            ̂   ̂          . 

The correlation matrix of X needs to have 1 on its diagonal. However, there is no guarantee that 

the elements on the diagonal of  ̂  will be equal to 1. That is why  ̂  will be transformed as such 

to look like a correlation matrix ( ̃ ). Between  ̂  and  ̃  there will be only very minor 

differences.  ̃  will be an estimator of     ( )  and will be obtained at the next Step. 

Step 6 

At Step 6,  ̃  will be obtained from  ̂ . This is the same operation through which a variance-

covariance matrix is transformed into a correlation matrix. 

 ̂  is an estimator of the correlation matrix of     , and an estimator of the variance-covariance 

matrix of     : 

 ̂  (

 ̂  ̂    ̂  
 ̂   ̂   ̂  

    
 ̂   ̂    ̂ 

, 

 ̃  is the correlation matrix of     . 
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Step 7 

We need an estimator of     , while      is an estimator of the variance-covariance matrix of 

    . We already have the diagonal of      , that is the  ( )‟s obtained at Step 1. Now we 

move in the opposite direction than we did in Step 6, that is we move from  ̃  to     . This is 

done through the following iteration 
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 ̃  is obtained at Step 6, while  ( )‟s are obtained at Step 1. Then, 
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GARCH equations of standardized returns 

The findings at Step 3 may be otherwise exploited. As such, the relationship        is 

equivalent to 
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This gives us representations of the conditional volatility of the standardized returns as a function 

of past volatility of the principal components. As such, we have a representation of the volatility 

of the returns of one stock not just as a function of its past volatility, but also as a function of the 

past volatility of other stocks (here other stocks‟ volatilities being expressed as the variance of 

principal components). 

As such, for each of the models considered, we may write the conditional volatility equations of 

these standardized returns, as follows: 
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GARCH(1,1) model:  
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EGARCH(1,1) model (loglikelihood form): 
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EGARCH-X(1,1) model (loglikelihood form): 
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Realized GARCH(1,1) model (loglikelihood form): 

      

  ∑*   
 (   

    
          

    
          +

 

   

                           



77 

 

that is equivalent to  
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Realized EGARCH(1,1) model (loglikelihood form): 
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Realized GARCH(2,2) model (loglikelihood form): 

      

  ∑*   
 (   

    
    (   (       

       ))   
 

  
           

  
 

  
           

 

   

  
 

              
 

            )+                            

that is equivalent to  

      

  ∑*   
    

    
    

   (   (       
       )*     

  
 

  
           

    
  

 

  
           

 

   

    
  

 

                
  

 

            +                            

 

In matrix form, the general models will be: 
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EGARCH(1,1) model (loglikelihood form): 

      

  ∑(   
    

)

 

   

 

(

 
 

   
    

   
    
 

   
    )

 
 

 

(

 
 

          

          

 

          )

 
 

 

(

 
 
   
   

  

   
   

  

 

   
   

  

)

 
 

 

(

     
     
 

     

,

 

(

 
 
   
   

  

   
   

  

 

   
   

  

)

 
 

 

(

 
 
     
   

     
   

 

     
   

)

 
 

       

EGARCH-X(1,1) model (loglikelihood form): 
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Realized GARCH(1,1) model (loglikelihood form): 
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Realized EGARCH(1,1) model (loglikelihood form): 
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Realized GARCH(2,2) model (loglikelihood form): 
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In the specific setting of our problem with the four stocks (AIG, AXP, BAC and JPM),     

and  

                                                            

the above equations of conditional volatility may be re-written by replacing the corresponding 

indices. We can thus express conditional volatility of each stock (e.g. AIG) as a function of 

returns, volatilities and intraday volatility measures of the principal components of all stocks 

(AIG, AXP, BAC and JPM). 
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4.4 Results 

The final forms of the PC EGARCH, PC EGARCHX, PC Realized EGARCH, PC Realized 

GARCH and PC Realized GARCH(2,2) models will be the  ̂    matrix below, having as   
( )

    

and   
(  ) formulas the GARCH equations of EGARCH, EGARCHX, Realized EGARCH, 

Realized GARCH and Realized GARCH(2,2) models estimated for the stock returns and 

principal components of the stock standardized returns. 
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In the forecasting activity, they may be used not just to forecast the 1-day ahead volatility of an 

n-stock asset, but also to better weight one portfolio components in order to minimize the 

portfolio variation. As such, when a risk averse investor will know what the variance of stocks 

and the covariance between stocks will be for the next period, he/she will choose to include in 

the portfolio the stocks with the lowest variation and the lowest covariation, as they will 

determine lower values of next day variance-covariance matrix  ̂   . This comes in support of 

the idea that the portfolio risk (here represented by volatility) may be reduced by comprising in 

the portfolio, assets that are opposite in their fluctuations (as this translates in negative 

covariations and, as such, in lower portfolio omega). 

The results obtained above may be even further exploited. According to the variance-covariance 

matrix formula obtained at the Methodological section, there have been calculated the     

variance-covariance matrices for each day of the sample, according to each model used. 

According to each day variance-covariance matrix, it has been calculated the variance of the 

portfolio, considering an equal share of each stock in the portfolio composition. As such, there 

can be calculated the daily estimated portfolio volatilities, as well the real portfolio volatilities, 

according to the following formulas: 
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Then, for each day, there will be calculated the squared errors, and for the whole sample the 

RMSE. The results will be: 

 RMSE  RMSE 

PC EGARCH 15,2650 EGARCH 111,7485 

PC EGARCHX 14,8765 EGARCHX 109,0850 

PC GARCH 15,2555 GARCH 111,6882 

PC Realized EGARCH 14,9362 Realized EGARCH 39,8860 

PC Realized GARCH(2,2) 15,1692 Realized GARCH(2,2) 109,4996 

PC Realized GARCH 14,9731 Realized GARCH 110,4932 

 

By comparing these portfolio errors with those of the individual stocks, it can be observed that 

by making portfolios of stocks it is much easier to predict variations (risk) than predicting 

individually the stocks. This allows us conclude that it is more effective from forecasting point of 

view to make portfolios of stocks and predict their return volatility than predicting individually 

the stock returns. 

 

4.5 Conclusions 

In the chapter we offered an adaptation of one existing method (PCA applied to a GARCH 

model) to a class of conditional autoregressive models that use high frequency data (realized 

GARCH models). The result was new PC models that comprise measures of intraday volatility: 

PC Realized GARCH, PC Realized EGARCH, PC Realized GARCH(2,2), PC EGARCHX. As 

well, a standard PC EGARCH model that uses only daily data was formulated. These models 
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were used in order to assess the volatility of an n-stock asset, problem that must take into 

consideration not only individual volatilities but also correlations between stock returns. By 

reducing the problem to the case of a four-stock asset, the newly composed models were 

estimated and their forecasting accuracy was assessed. It was found that the new PC high 

frequency models estimate and forecast very well the volatility of multiple stock assets, and that 

by forming portfolios with those assets a risk averse investor could weigh the stocks into the 

portfolio according to the forecasts, such that the portfolio overall volatility be reduced (by 

allowing higher weights to those stocks estimated to vary the least on a 1-day ahead horizon 

coupled simultaneously with negative covariances between stocks). This confirms the Finance 

theory according to which diversification with low volatility stocks that commove in opposed 

directions (correlations close to unit) reduces portfolio overall variance.  

Furthermore, it was found that by putting stocks into a portfolio in order to forecast the portfolio 

variance instead of forecasting individual stocks‟ variance, it delivers significantly lower 

summed errors (for the first case against the second). This indicated that the best tool for an 

investor in order to reduce the risk is to choose low volatility stocks, with negative and close to 

unit correlation, to put them in portfolios and forecast portfolio volatility by using one of the PC-

Realized GARCH type of models that assesses multivariate variance by using high frequency 

data. 
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Chapter five: The Bivariate Realized models 

 

5.1 Introduction 

This chapter aims to develop a class of realized models fitted to a larger context that allows using 

information on night volatility. In the third chapter of the thesis, besides the simple non-realized 

models (GARCH(1,1) and EGARCH(1,1)), it was also considered a set of realized models that 

used daily measures of intraday volatility in the formulation of daily volatility equations (besides 

daily squared returns and daily variance). As such, there were considered for testing the 

following models: EGARCH-X(1,1), Realized EGARCH(1,1), Realized GARCH(1,1) and 

Realized GARCH(2,2). These models estimate the daily volatility by considering return time 

series formed of either close-to-close or of open-to-close return time series. They were estimated 

and their accuracy in forecasting was assessed by using a double methodology (in sample and 

out of sample) and various measures of intraday volatility. Their accuracy was assessed by 

comparing the size of the maximum loglikelihood function and the size of three error 

measurements (MAE, RMSE and MAPE). 

In chapter four it was proposed a class of PC-GARCH models that allowed forecasting volatility 

of multivariate assets formed of highly correlated stocks. By applying Principal Component 

algorithm to the recently proposed realized GARCH models, there were proposed new composite 

models (PC EGARCH(1,1), PC EGARCHX(1,1), PC Realized GARCH(1,1), PC Realized 

EGARCH(1,1) and PC Realized GARCH(2,2)). General models were proposed, as well as four-

dimensional models were specifically defined to accommodate to the empirical exercise with the 

four stocks (AIG, AXP, BAC, and JPM). Following a similar methodology as for the non-PC 

models, the PC-variants were estimated in sample and out of sample, for six types of realized 

measures of intraday variance (RK, RV sampled at 15 seconds, 5 minutes, 15 minutes and 20 

minutes, H-L) and their accuracy capacity was assessed according to the size of the maximum 

loglikelihood functions, and the size of RMSE, MAE and MAPE loss functions. As well, it was 

investigated the gain (or loss) in accuracy obtained by employing a PCA procedure in realized 

volatility modeling. 
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In the chapter to follow, the general scope is to further develop the models that use measures of 

intraday volatility (the realized models) by reformulating the previous univariate models (which 

are models that compound daily volatility from one vector information that has relevance to daily 

volatility – returns, variance, realized measures) to a double component formula that would also 

consider information on night volatility. This idea sparked from an observation on financial stock 

time series: not only the prices at the opening of the trading market differ from those at the 

market closing the same day (day volatility), but also prices at the market closing differ from 

those at the market opening the following trading day. This is even further surprising as during 

the night the market is closed and thus no transactions with stocks take place. As such, although 

no trades occur, some hidden volatility still exists, thing which indicates that volatility modeling 

could be further developed by extending the existing day models to formulations that would also 

consider measurements of night volatility. 

The current work starts from an idea belonging to Hansen, Huang and Shek (2010b) who 

proposed a partial form (with exogenous realized measures) of a Bivariate Realized GARCH 

model. We use this idea in order to further propose bivariate versions of other univariate realized 

models.  This defines the first goal of the chapter that reformulates a class of realized GARCH-

type of models so that they also encumber measures of night volatility. As such, starting from an 

existing model (Bivariate GARCH partial model), we propose new realized models and one non-

realized model that also enclose measures of night volatility:  Bivariate Realized GARCH(1,1) 

(with an endogenous component of realized measure and therefore with a separate measurement 

equation, that we will call a full version model), Bivariate EGARCH-X, Bivariate Realized 

EGARCH (1,1), Bivariate Realized GARCH(2,2) and Bivariate EGARCH(1,1). 

The second goal of the chapter is to estimate the new models (and also the already proposed 

Bivariate Realized GARCH partial model) for each of the four stocks (AIG, AXP, BAC and 

JPM), estimation that will be undertaken in sample and out of sample, by using the realized 

kernels as measures of the intraday volatility (for the realized models).  

The third goal of the chapter is to undertake a performance assessment of the new models (and of 

the Bivariate Realized GARCH partial model), as it will be assessed the accuracy gain (or loss) 

in forecasting of the bivariate models when compared to the univariate versions; the performance 

will be evaluated by comparing the maximum loglikelihood functions and the loss functions 
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(RMSE, MAE and MAPE). The bivariate models will also be ranked, in order to determine the 

better performers among their peers. 

The following models will be considered for bivariate transformation: 

Model* Return 

Equation* 

GARCH Equation* Measurement 

equation* 

EGARCH(1,1) 

(loglikelihood form) 

(Nelson, 1991) 
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Realized GARCH(1,1) 

(loglikelihood form) 

(Hansen et al., 2010) 
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(loglikelihood form) 

(Hansen et al., 2010) 
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where    are studentized returns,    are daily returns,    are the intraday volatility measure and 

   are the errors.  

The loglikelihood functions corresponding to the above models are  
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    (Realized EGARCH, Realized GARCH 

and Realized GARCH(2,2)).  

 

5.2 The models 

As mentioned in the introductory part, we use the idea of Hansen, Huang and Shek (2010b) who 

formulated a partial version of the Bivariate Realized GARCH model in order to obtain bivariate 
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versions of the models mentioned in the above table. However, we will also enclose this model 

in our estimation part and also in the performance assessment exercise.  

Hansen, Huang and Shek‟s (2010b)  partial Bivariate Realized GARCH model is: 
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where   denotes the night information, and   denotes the day information of the vector. 

 

The loglikelihood function 

The data is a bivariate vector compounded of two univariate vectors that refer to uncorrelated 

sets of information (we consider first that night volatility is uncorrelated to day one): 
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and has a normal distribution with (
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 . A theoretical result says that when a random vector (as (
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is normally distributed, then its components will be normal as well (this time unidimensional 

normal since each component is normal). From (
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 ). Since a sum of two normal variables is a normal 

variable with the average equal to the arithmetical sum of the two component averages, 
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Taking the log of this expression and using the logarithm properties, the loglikelihood function 

of the total returns    will become 
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If we consider a more complete model with a non-null correlation between   
  and   

  (meaning 

that the night volatility influences the day one), that is     (  
    

 )     , the formulation of 

the loglikelihood function slightly changes. Let‟s observe first that   does not depend on t, that is 

the correlation is not time dependant. Then, the covariance will be 

   (  
    

 )      (  
    

 )√   (  
 )   (  

 )   √  
   

  

                                                           
2
 Note: In all the above notations we kept the conditionality |     because the variables come from a bidimensional 

variable that is also |     conditioned. 
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That means that in the new model (with a non-null correlation), the variance-covariance matrix 

will take the form 

(

 
  

  √  
   

 

 √  
   

   
 

)

  

having on the first diagonal the variances of   
 and   

  , and on the second diagonal the covariance 

between   
 and   

 , that is    (  
    

 ) (since    (  
    

 )     (  
    

 )). As such, the |     

conditioned distribution of the (
  
 

  
 *  vector will be: 

(
  
 

  
 * |      (  

(

 
  

  √  
   

 

 √  
   

   
 

)

 ) 

The conditional variance of   ,    (  |    ), will be    (  |    )     (  
 |    )  

   (  
 |    )      (  

 |       
 |    )    

    
    √  

   
 , that is   

    
    

  

  √  
   

 . 

The loglikelihood function of      
    

  will be the same as the one iterated for the null 

correlation case, with the only difference that the variance will enclose the correlation term: 

  
    

    
    √  

   
  

However, we want to consider the loglikelihood function of the bivariate vector (
  
 

  
 *, and not the 

one of the univariate one      
    

 . As such, in order to define the new loglikelihood 

function, we will consider the density function of the bidimensional normal (
  
 

  
 *. 

The general form of a p dimensional normal vector   (   ) (a matrix with   vector average and 

  variance-covariance matrix) takes the form: 
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 ( )  
 

(√  ) 

 

√    ( )
  

 
 
(   )    (   )

 

in which x is any vector to which it has been calculated the density function with p arguments, 

    ( ) is the determinant of the variance-covariance matrix   and (   )    (   ) is the 

matrix product between the transpose of the (   ) vector, the inverse of matrix   and the 

(   ) vector . As such, with p=2 for the particular case of a bidimensional vector (
  
 

  
 *, the 

density function will be 

 (  
    

 )  
 

(√  ) 

 

√    ( )
 
 
 
 
(  

    
 )   .
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in which     and   
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  √  
   

 

 √  
   

   
 

)

  

Since     ( )    
   

      
   

    
   

 (    ), then the log form of it will be    (    ( ))  

   (   
 )     (   

 )      (    ). 

The inverse matrix of the variance-covariance matrix will be 

    
 

  
   

  (    )
(
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)

  

As such, the product  
 

 
(  

    
 )   (

  
 

  
 * will become 

 
 

 
(  
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  √  
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Thus, the loglikelihood function     (  
    

 ) will be obtained through multiplying the functions 

 (  
    

 ) for the t=1,…,n, and taking the log of the resulting product:  
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By doing some simple iterations in the expression above, we obtain the final form of the 

bivariate loglikelihood function as 
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New bivariate models 

In the section to follow we will formulate the new bivariate models. There will be proposed a 

Bivariate EGARCH(1,1), a Bivariate Realized GARCH(1,1) model in its complete form 

(containing also a measurement equation of the realized measure), a Bivariate Realized 

EGARCH(1,1) model, a Bivariate EGARCH-X(1,1) model and a Realized GARCH(2,2) model. 

These models will contain night and day volatility information and (excepting the first one) a 

measurement of intraday volatility. 

We propose the following bivariate models: 
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Model 
Return 

Equations 
GARCH Equations 

Measurement 

equation 

Bivariate 

Realized 

GARCH(1,1), 

full form 

     
    

  

  
  

  
    

√  
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Realized 

EGARCH(1,1) 
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EGARCH-X 
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Realized 

GARCH(2,2) 
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According to the loglikelihood function iterated previously, the loglikelihood functions of the 

bivariate models will be: 

Model Loglikelihood functions 

 Bivariate Realized 

GARCH(1,1), full 

form 

 Bivariate Realized 

EGARCH(1,1) 

 Bivariate Realized 

GARCH(2,2) 

 (  
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∑
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 Bivariate EGARCH-
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5.3 Methodology 

To estimate the models, we have considered shorter time series as compared to those used in 

chapters three and four, due to the following reason: as explained before, along the time series 

over January 4, 1995 – September 30, 2008 period, some stocks, at various points in time, were 

split in at least two parts: as such each stock became two or more stocks, and, as such, each new 

stock had half (or less) of the price of the old stock. For example, on June 18, 1997, the BAC 

stock had at the closing of the trading day the $134,75 price. At the opening of the next trading 

day, the stock had $67.5 price. Due to the large drop, we presume that such a split decision was 

put in place, and the variation in price was not the effect of the stock conditional volatility. In the 

four time series we use, we can observe drops in prices by different large amounts (30%, 40% or 

50%) from one day to another, and we assume they are due to these administrative decisions. As 

we do not want to include this variance (effect of administrative decisions) in the volatility 
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modeling since it‟s not part of latent volatility process of the stock, but rather a decision of the 

boards towards stocks‟ splitting, we decided to restrict the time series only to a common period 

in which no such events occurred. In chapters three and four we could consider the whole time 

series as we could avoid this type of variation by considering only daily (open-to-close) returns. 

However, in this exercise we cannot avoid anymore this problem, since we have to include also 

night (close-to-open) volatility. As such, we need to consider only that period that has no such 

stock-splits along. By investigating the data available, it came natural to consider that August 30, 

2004 – September 30, 2008 (1023 daily observations) would be the appropriate period for the 

models‟ estimation. Half trading days around the Christmas and Thanksgiving days were 

excluded. The daily returns were calculated in logarithmic form, as follows: 

  
      (   (              )     (              )) 

  
      (   (              )     (              )) 

for each trading day t,         . 

We have estimated the proposed bivariate models by using one type of intraday measure only –

realized kernels, and the estimation has been done in sample, as well out of sample. The cut point 

for the out of sample estimations was chosen such that we kept the proportionality in chapters 

three and four. In these two chapters, for the out of sample estimations, we maximized the 

loglikelihood function for the 1
st
 (January 4, 1995) to the 2999

th
 (December 28, 2006) 

observation period, while the loglikelihood and loss functions were measured for the rest of the 

sample (from the 3000
th

 observation (January 3, 2007) to the 3436
th

 one (September 30
th

, 2008)). 

This means that the cut-point was at the 87% of the observations. Taking the same 

proportionality between the number of observations on which we maximize the loglikelihood 

functions and the sample we use to assess the models‟ forecasting accuracy, we chose that for the 

estimations in chapters five and six, the cut point be at the 894
th

 observation. As such, we 

maximized the loglikelihood functions for August 30, 2004 to March 26, 2008 period, and we 

measured the loglikelihood and loss functions for the March 27, 2008 – September 30, 2008 

period. For making possible the performance comparison between the bivariate models with the 

univariate ones, we have estimated again the univariate models, in sample and out of sample, 

with realized kernels as measures of intraday variance, this time over the shorter time period 

(1023 days long). The same as in chapter three, although the loglikelihood functions composed 
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of both loglikelihood functions of the returns and of the intraday measures were maximized, 

when we compared the models having as criteria the size of the loglikelihood function, we 

considered only the corresponding loglikelihood function for returns (although we maximize the 

loglikelihood function composed by the partial loglikelihood functions for returns and for the 

realized measures). As such, the estimation has been done by maximizing the total loglikelihood 

functions (MLE) (sum of partial loglikelihood functions for the returns and for the intraday 

measures), and the ranking criterion with respect to the MLE was the partial loglikelihood 

function for returns solely.  

The bivariate models will be ranked after the size of the partial MLE for returns and after the 

three loss functions (     √
∑ (     

 )  
   

 
 ,     

∑ |     
 | 

   

 
,      

∑ |
     

 

  
 | 

   

 
). In each 

ranking, each function that served as criterion for ranking (MLE, RMSE, MAE, or MAPE) was 

normalized according to the formula 

              
     

     
 

where    and    represent the function values of the highest/lowest ranked model. Normalizing 

the MLE or the loss function values will enable us to make the functions comparable across the 

rankings, independent of the criteria considered, and their sum will allow us to obtain the general 

rankings.  

 

5.4 Results 

The results were as follows: 

Model 
Maximum loglikelihood (in sample) 

AIG AXP BAC JPM 

EGARCH 
Univariate -1730,2073 -1676,6592 -1511,6476 -1660,7353 

Bivariate -2895,1909 -2749,5632 -2503,8515 -2755,4350 

EGARCH-X 
Univariate -1713,2371 -1646,1439 -1478,3047 -1625,4193 

Bivariate -2828,6248 -2794,2029 -2440,3491 -2701,7384 

Realized EGARCH 
Univariate -1717,6155 -1649,0006 -1481,3114 -1628,1639 

Bivariate -2847,5983 -2846,4539 -2445,9272 -2704,8329 
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Realized GARCH 

Univariate -1718,2407 -1649,1724 -1482,3424 -1629,4545 

Bivariate 

(complete) 
-2882,7995 -2857,1460 

-2449,4971 

 

-2717,8488 

 

Bivariate (partial) -2880,0910 -2861,1102 -2446,5110 -2705,1120 

Realized 

GARCH(2,2) 

Univariate -1707,7811 -1646,5174 -1473,6082 -1619,1382 

Bivariate -2854,2452 -2906,9021 -2443,4573 -2689,5946 

 

Model 
Maximum loglikelihood (out of sample) 

AIG AXP BAC JPM 

EGARCH 
Univariate -415,6748 -326,1583 -358,6989 -339,1702 

Bivariate -1038,6760 -615,0292 -665,3093 -618,1814 

EGARCH-X 
Univariate -397,4277 -317,2314 -352,4266 -332,9467 

Bivariate -801,0685 -577,7278 -696,0684 -600,3923 

Realized EGARCH 
Univariate -399,1439 -316,4594 -360,6550 -331,3792 

Bivariate -762,7673 -579,1729 -684,3183 -591,1353 

Realized GARCH 

Univariate -387,7238 -315,2809 -352,3031 -331,3937 

Bivariate 

(complete) 
-783,2343 -579,2929 -684,5237 -590,2800 

Bivariate (partial) -791,8152 -577,1349 -681,4939 -588,6861 

Realized 

GARCH(2,2) 

Univariate -390,2788 -313,1411 -349,9115 -328,9576 

Bivariate -741,6102 -581,3847 -681,7825 -591,8240 

 

However, in the above tables, the bivariate models have differently composed log-likelihood 

functions as compared to the univariate versions: they maximized a bidimensional vector (
  
 

  
 * 

formed of two subvectors (  
 ,   

 ), and a non-null correlation factor was considered, that is  . Due 

to this, the loglikelihood functions are not fully comparable to those of the univariate models (in 

which we maximized loglikelihood functions of univariate models, with no correlation factor). A 

conclusion on the superiority of one of the two models‟ categories would not be consistent. For 

this scope we use the following results. 

The forecasting accuracy was compared by calculating the three loss functions, and the results 

were: 

In sample EGARCH EGARCH-X 
Realized 

EGARCH 
Realized GARCH 

Realized 

GARCH(2,2) 

  Univ Biv Univ Biv Univ Biv Univ 
Biv 

(com) 
Univ 

Biv 

(par) 
Univ Biv 

AIG 

RMSE 202,98 189,01 203,12 195,97 189,71 196,51 253,59 218,68 253,59 220,38 189,92 250,63 

MAE 17,51 15,27 19,69 17,08 16,77 15,83 22,72 21,72 22,72 21,70 16,97 22,10 

MAPE 122,86 131,77 115,55 114,68 108,43 118,15 114,09 123,17 114,09 122,39 105,57 125,39 

AXP RMSE 6,57 6,54 6,26 6,70 6,27 6,18 6,24 6,17 6,24 6,19 6,22 7,42 
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MAE 2,77 2,72 2,67 2,94 2,66 2,70 2,67 2,68 2,67 2,69 2,68 3,09 

MAPE 132,88 119,14 127,41 137,54 124,83 124,45 124,55 123,79 124,55 124,78 122,76 131,22 

BAC 

RMSE 16,25 16,32 15,76 15,80 15,84 15,89 15,95 15,90 15,95 15,87 15,72 15,42 

MAE 3,86 4,00 3,73 3,72 3,55 3,65 3,77 3,78 3,77 3,74 3,60 3,63 

MAPE 84,01 89,53 83,84 84,17 78,78 82,15 82,87 85,58 82,87 82,49 81,08 82,48 

JPM 

RMSE 11,10 11,17 10,66 10,66 10,58 10,74 10,60 10,50 10,60 10,66 10,55 10,52 

MAE 3,26 3,21 3,15 3,13 3,06 3,15 3,12 3,11 3,12 3,15 3,13 3,11 

MAPE 146,36 171,58 158,83 158,80 155,04 163,82 156,35 161,78 156,35 156,67 153,29 160,88 

 

Out of 

sample 

EGARCH EGARCH-X 
Realized 

EGARCH 
Realized GARCH 

Realized 

GARCH(2,2) 

Univ Biv Univ Biv Univ Biv Univ 
Biv 

(com) 
Univ 

Biv 

(par) 
Univ Biv 

AIG 

RMSE 565,12 574,73 551,61 533,64 543,67 567,07 552,58 572,62 552,58 573,91 538,26 585,47 

MAE 108,62 100,96 106,57 104,57 103,33 103,03 121,50 103,61 121,50 103,24 104,25 121,94 

MAPE 168,40 46,63 146,78 97,37 113,39 99,87 158,06 105,25 158,06 99,76 109,64 221,38 

AXP 

RMSE 14,19 14,70 13,61 13,76 13,61 13,69 13,51 13,23 13,51 13,26 13,39 13,38 

MAE 8,69 8,44 8,49 9,31 8,47 8,38 8,39 8,45 8,39 8,55 8,85 8,46 

MAPE 131,67 94,74 118,28 136,50 120,22 114,13 116,36 117,35 116,36 118,39 149,39 121,45 

BAC 

RMSE 43,50 43,55 42,71 43,04 43,64 42,96 42,89 42,70 42,89 42,84 42,88 43,69 

MAE 19,06 18,69 17,97 18,08 17,69 17,53 17,81 18,40 17,81 17,65 17,73 17,73 

MAPE 112,38 106,59 117,38 117,72 90,42 98,10 111,86 140,66 111,86 97,83 110,99 90,79 

JPM 

RMSE 26,08 26,51 25,48 25,62 25,04 24,62 24,97 25,46 24,97 25,29 24,88 25,48 

MAE 12,08 12,08 12,34 12,35 11,47 11,35 11,56 12,45 11,56 12,07 11,85 12,02 

MAPE 99,45 107,58 86,01 92,93 63,46 57,36 58,74 76,08 58,74 65,48 66,79 74,73 

 

To assess the accuracy of the models, we compare the three loss functions corresponding to the 

bivariate models with the loss functions with respect to the univariate models: a lower loss 

function, the better the model is. The results were normalized according to the methodology 

described in chapter three, having obtained the following general rankings. 

 AIG, Bivariate models 

 in sample out of sample 

Highest 

ranked 

 

 

 

 

 

 

 

Lowest 

ranked 

EGARCH-X -2.828,62 0,00 
Realized 

GARCH(2,2) 
-741,61 0,00 

Realized EGARCH -2.847,60 0,29 Realized EGARCH -762,77 0,07 

Realized 

GARCH(2,2 
-2.854,25 0,38 

Realized GARCH 

– complete 
-783,23 0,14 

Realized GARCH - 

partial 
-2.880,09 0,77 

Realized GARCH - 

partial 
-791,82 0,17 

Realized GARCH - 

complete 
-2.882,80 0,81 EGARCH-X -801,07 0,20 

EGARCH -2.895,19 1,00 EGARCH -1.038,68 1,00 
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 AXP, Bivariate models 

 in sample out of sample 

Highest 

ranked 

 

 

 

 

 

 

Lowest 

ranked 

EGARCH -2.749,56 0,00 
Realized GARCH - 

partial 
-577,13 0,00 

EGARCH-X -2.794,20 0,28 EGARCH-X -577,73 0,02 

Realized EGARCH -2.846,45 0,62 Realized EGARCH -579,17 0,05 

Realized GARCH - 

complete 
-2.857,15 0,68 

Realized GARCH - 

complete 
-579,29 0,06 

Realized GARCH - 

partial 
-2.861,11 0,71 

Realized 

GARCH(2,2) 
-581,38 0,11 

Realized 

GARCH(2,2) 
-2.906,90 1,00 EGARCH -615,03 1,00 

 

 BAC, Bivariate models 

 in sample out of sample 

Highest 

ranked 

 

 

 

 

 

 

Lowest 

ranked 

EGARCH-X -2.440,35 0,00 EGARCH -665,31 0,00 

Realized 

GARCH(2,2) 
-2.443,46 0,05 

Realized GARCH - 

partial 
-681,49 0,53 

Realized EGARCH -2.445,93 0,09 
Realized 

GARCH(2,2) 
-681,78 0,54 

Realized GARCH - 

partial 
-2.446,51 0,10 Realized EGARCH -684,32 0,62 

Realized GARCH - 

complete 
-2.449,50 0,14 

Realized GARCH - 

complete 
-684,52 0,62 

EGARCH -2.503,85 1,00 EGARCH-X -696,07 1,00 

 

 JPM, Bivariate models 

 in sample out of sample 

Highest 

ranked 

            

 

 

 

 

 

 

Lowest 

ranked 

Realized 

GARCH(2,2) 
-2.689,59 0,00 

Realized GARCH - 

partial 
-588,69 0,00 

EGARCH-X -2.701,74 0,18 
Realized GARCH - 

complete 
-590,28 0,05 

Realized EGARCH -2.704,83 0,23 Realized EGARCH -591,14 0,08 

Realized GARCH 

– partial 
-2.705,11 0,24 

Realized 

GARCH(2,2) 
-591,82 0,11 

Realized GARCH - 

complete 
-2.717,85 0,43 EGARCH-X -600,39 0,40 

EGARCH -2.755,44 1,00 EGARCH -618,18 1,00 
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 AIG, Bivariate models 

 in sample out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

 

 

 

 

 

 

 

Lowest 

ranked 

EGARCH EGARCH EGARCH-X EGARCH-X EGARCH EGARCH 

EGARCH-X 
Realized 

EGARCH 

Realized 

EGARCH 

Realized 

EGARCH 

Realized 

EGARCH 
EGARCH-X 

Realized 

EGARCH 
EGARCH-X 

Realized GARCH 

– partial 

Realized 

GARCH - 

complete 

Realized 

GARCH - 

partial 

Realized 

GARCH - 

partial 

Realized 

GARCH – 

complete 

Realized 

GARCH – 

partial 

Realized GARCH 

- complete 

Realized 

GARCH - 

partial 

Realized 

GARCH - 

complete 

Realized 

EGARCH 

Realized 

GARCH - 

partial 

Realized 

GARCH - 

complete 

Realized 

GARCH(2,2) 
EGARCH EGARCH-X 

Realized 

GARCH - 

complete 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 
EGARCH 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 

 

 AXP, Bivariate models 

 in sample out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

 

 

 

 

 

 

 

 

 

Lowest 

ranked 

Realized 

GARCH – 

complete 

Realized 

GARCH – 

complete 

EGARCH 

Realized 

GARCH - 

complete 

Realized 

EGARCH 
EGARCH 

Realized 

EGARCH 

Realized 

GARCH – 

partial 

Realized GARCH 

– complete 

Realized 

GARCH - 

partial 

EGARCH 
Realized 

EGARCH 

Realized 

GARCH – 

partial 

Realized 

EGARCH 

Realized 

EGARCH 

Realized 

GARCH(2,2) 

Realized 

GARCH - 

complete 

Realized 

GARCH - 

complete 

EGARCH EGARCH 
Realized GARCH 

– partial 

Realized 

EGARCH 

Realized 

GARCH(2,2) 

Realized 

GARCH - 

partial 

EGARCH-X EGARCH-X 
Realized 

GARCH(2,2) 
EGARCH-X 

Realized 

GARCH - 

partial 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 
EGARCH-X EGARCH EGARCH-X EGARCH-X 
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 BAC, Bivariate models 

 in sample out of sample 

 RMSE MAE MAPE RMSE MAE MAPE 

Highest 

ranked 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lowest 

ranked 

Realized 

GARCH(2,2) 

Realized 

GARCH(2,2) 

Realized 

EGARCH 

Realized 

GARCH - 

complete 

Realized 

EGARCH 

Realized 

GARCH(2,2) 

EGARCH-X 
Realized 

EGARCH 

Realized 

GARCH(2,2) 

Realized 
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EGARCH EGARCH EGARCH 
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EGARCH 
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GARCH - 

complete 

 

 JPM, Bivariate models 
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Realized 

GARCH - 
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partial 
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partial 
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partial 
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Realized 
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EGARCH 

Realized 

GARCH - 
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Realized 

EGARCH 
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EGARCH 
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EGARCH 
EGARCH-X EGARCH-X EGARCH-X 

EGARCH EGARCH EGARCH EGARCH 

Realized 

GARCH - 

complete 

EGARCH 
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5.5 Conclusions 

The first outcome of the chapter was the proposal of a methodology that led to formulating four 

bivariate realized GARCH models (Bivariate EGARCHX, Bivariate Realized GARCH 

(complete form), Bivariate Realized GARCH(2,2) and Bivariate Realized EGARCH) and one 

bivariate non-realized model (Bivariate EGARCH). The novelty of this method is the 

incorporation in the models of a night measure of volatility, computed from price changes 

between the closing and opening of the trading market. 

The first observation that may be grasped by looking to the data is that rankings are sensitive to 

the stock choice, ranking criterion and estimation methodology. However, although results are 

diverse, some conclusions still may be grasped with regards to improvements in forecasting 

capability of the bivariate models. 

For the in sample modeling, when RMSE is taken as the ranking criterion, we may observe that 

the Bivariate Realized GARCH model, in both partial and complete formulations, is a better 

forecaster than comparing to its univariate version, while Realized EGARCH clearly surpasses 

the bivariate version. If MAE is taken as criterion, Bivariate EGARCH is found as a better 

forecaster than simple EGARCH, as well as Bivariate EGARCH-X as against EGARCH-X. 

Bivariate Realized EGARCH performs poorer than Realized EGARCH, the same for Bivariate 

Realized GARCH(2,2). Finally, when MAPE is the criterion, EGARCH, Realized EGARCH, 

Realized GARCH (partial and complete forms) and Realized GARCH(2,2) are better than the 

bivariate versions.  

For the in sample estimations, when RMSE is taken as the ranking criterion, EGARCH, 

EGARCH-X and Realized GARCH(2,2) are better than their bivariate versions, while Realized 

EGARCH and Realized GARCH (partial and complete) post similar cumulative errors. When 

MAE is the criterion, EGARCH and Realized EGARCH perform better when defined as 

bivariate models, while EGARCH-X and Realized GARCH (complete version) seems to work 

better without night volatility measures. Finally, when MAPE is the ranking criterion, Bivariate 

EGARCH and Realized EGARCH work better than EGARCH and Realized EGARCH, 

respectively, while EGARCH-X seems to surpass clearly the bivariate version. 
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For both in sample and out of sample estimations it may be concluded that the bivariate versions 

may improve the forecasting capacity of the simple and realized GARCH models, dependent on 

the methodology choices and on the error measurement choices. However, the bivariate models 

do not prove totally inferior to their univariate counterparts, they exhibit in numerous instances 

superior performances as compared to the univariate ones and as such they may be used in the 

forecasting exercise together with the univariate models for more reliable and precise estimates.  

When ranking the bivariate models, it may be also observed that such rankings are sensitive to 

methodology, ranking criterion and stock choice. As such, for AIG, Bivariate EGARCHX and 

Bivariate EGARCH models rank among the first, while Bivariate Realized GARCH(2,2) 

consistently ranks the worst. According to the AXP stock, Bivariate Realized GARCH(2,2) 

model ranks low, as well Bivariate EGARCHX model. Bivariate Realized GARCH (complete), 

Bivariate Realized EGARCH and Bivariate EGARCH models rank among the best ones. For the 

BAC stock, Bivariate EGARCH model ranks almost consistently the lowest, while Bivariate 

Realized GARCH(2,2), Bivariate Realized and Bivariate GARCH (partial and complete) rank 

among the best ones. For JPM stock, Bivariate EGARCH and Bivariate EGARCHX rank the 

worst, while Bivariate Realized GARCH (partial and complete), Bivariate Realized EGARCH 

and Bivariate Realized EGARCH(2,2) rank the best. 

A general conclusion with respect to the ranking part is that Bivariate Realized GARCH (partial 

and complete) and Bivariate Realized EGARCH models are good forecasters in any of the four 

stock choices, while Bivariate Realized GARCH(2,2), Bivariate EGARCH and Bivariate 

EGARCHX models may prove as well good modeling choices, dependent to the stock choice 

made. 
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Chapter six: The PC Bivariate Realized models 

 

6.1 Introduction 

Chapter six proposes, as general objective, to solve the volatility forecasting problem of 

multivariate stock assets, when bivariate GARCH modeling and high frequency data are 

considered. This involves multivariate modeling, but as explained in the fourth chapter, this 

poses high computational difficulties. One solution proposed to solve similar problems was the 

one belonging to Burns (2005) who suggested a method (PC-GARCH) that solved multivariate 

GARCH problems by univariate GARCH estimation of the principal components. Starting from 

this idea, in the chapter that follows it will be proposed an adaptation of this method to bivariate 

realized GARCH models that use high frequency data. The three specific objectives of the 

chapter are: 

a. To propose a solution to solving the volatility forecasting problem of a multivariate asset 

by employing a Principal Component procedure to a class of bivariate realized (and one 

non-realized) models discussed in chapter five. New models would emerge: a PC 

Bivariate EGARCH(1,1) model, a PC Bivariate EGARCH-X(1,1) model, a PC Bivariate 

Realized EGARCH(1,1) model, a PC Bivariate Realized GARCH(1,1) (partial) and a PC 

Bivariate Realized GARCH(1,1) (complete) model, as well a PC Bivariate Realized 

GARCH(2,2) model. 

b. To estimate in sample and out of sample the new PC bivariate models with data from four 

stocks.  

c. To assess the forecasting capacity of the new PC bivariate models, and investigate their 

use in portfolio asset allocation. 

 

6.2 Methodology 

We follow a similar methodology as in chapter four. The PC algorithm has been described there 

and may be used for reference as regards the computations that follow to be used in the current 

chapter.  
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The seven steps mentioned in chapter four need to be reiterated here. Since we want to perform 

the PC algorithm on the bivariate models, we will first run the bivariate models in chapter five, 

in sample and out of sample, for each of the four stocks. As such, we perform a bivariate 

GARCH model (each of the previous chapter‟s models) on each of the four stocks considered. 

This will give the standardized returns    for day and night, that will be stuck into two matrices 

    
  

(  
 ( )

   ( ))

  ( )
 and     

  
(  

 ( )
   ( ))

  ( )
.     

  will be an estimator of         
 , and     

  

will be an estimator of         
 . We call     

     (    
 )     (        

 ) and it can be 

proved that     
      (    

 ) (Step 2). 

We perform the PCA algorithm (Step 3) on the night and day standardized returns (columns of 

    
  and of     

 ). The Matlab will deliver us the weights (l‟s) that, multiplied to each of the 

standardized returns, will form the principal components. In other words, Matlab gives us that 

matrix of weights (    ) that multiplied by the matrix      of the standardized returns, gives 

us the matrix of the principal components. As such, by employing PCA, we will obtain the 

principal components that will be linear functions of the four standardized return series. This will 

be done for the day standardized returns and also for the night standardized returns. 

    
      

      
  

    
      

      
  

As well, the following relationship will hold 

   (  )       (  )    

We perform then the bivariate GARCH models on the principal components obtained above, in 

order to obtain the GARCH equations of the four principal components (Step 4). The columns of 

    
  and     

  will be the day and night return series on which the bivariate models will be run.   

Step 4 will deliver us       (  ), which means, according to the above relationship, that we 

will have an estimate of    (  ). Since     
     (    

 )      (    
 ), we will have then 

an estimate of the correlation matrix   
 . 

As such, as Step 5, we will obtain  
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However, the correlation matrix of     
  needs to have 1 on its diagonal. However, there is no 

guarantee that the elements on the diagonal of  ̂  will equal 1. That is why  ̂  will be 

transformed into a correlation matrix ( ̃ ), between  ̂  and  ̃  being only very minor differences. 

 ̃  will be an estimator of     ( )  and will be obtained at the next Step. 

Step 6 will obtain an estimator of the correlation matrix,  ̃ : 
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 At Step 7, we will obtain the variance-covariance matrix of  , from the correlation matrix: 
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GARCH equations of standardized returns 

The findings at Step 3 may be otherwise exploited. We further reiterate the expression obtained 

in chapter four, that is       , in which L is the matrix of the weights,   is the variance-

covariance matrix of the principal components and   is the variance-covariance matrix of the 

standardized returns. This relationship gives the variance-covariance matrix of the standardized 

returns as an expression in terms of the weight matrix and the variance-covariance matrix of the 

principal components. 

Since both   and   are diagonal matrices, with variances on the diagonal, it means that the 

above relationship expresses the volatility of the standardized returns in terms of principal 

components and of the weights l‟s. 
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As such, the sigma‟s of the x‟s (of the standardized returns), may be expressed as follows (in 

general terms): 

   

  ∑   
      

 

 

   

         

that describes the volatility of the standardized innovations as a function of the volatility of the 

principal components. 

For our particular case, the above formulated volatility equations with regard to the four stocks 

may be rewritten by replacing the corresponding indices with      

and  

                                                            

By replacing the sigma‟s of the principal components with their equivalents from the GARCH 

equations of each bivariate model, we will obtain the following GARCH equations of 

standardized returns: 

PC Bivariate Realized GARCH(1,1) 
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PC Bivariate Realized EGARCH(1,1) 
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PC Bivariate EGARCH-X(1,1) 
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PC Bivariate Realized GARCH(2,2) 
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We may rewrite the above GARCH equations of the above PC Bivariate models, in matrix form, 

as follows: 
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PC Bivariate Realized GARCH(1,1) 
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PC Bivariate Realized EGARCH(1,1) 
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6.3 Results 

The first main result is the variance covariance matrix that gives the volatility of the multivariate 

asset:  
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where   
 ( )

 and   

(  
 )

 , k=1,…,N, are the conditional volatilities estimated by one of the bivariate 

realized models proposed in chapter five. In order to calculate the volatility of a portfolio formed 

of the stocks considered for multivariate volatility modeling, there will be calculated the real and 

conditional      as follows, considering equal weights of stocks (a‟s): 



120 

 

  
 (                              )

 ∑    
    

 

   

   ∑     (√  

( )√  

( )
∑         

(  ) 
   

√∑    
  

 

(  ) 
   √∑    

  
 

(  ) 
   

)

 

     

 

  
 (                         )

 ∑    
    

 

 

   

   ∑     (      )

 

     

 

The RMSEs calculated over the whole sample for each of the models considered, are as follows. 

As well there were calculated the RMSEs of the individual stocks whose volatility was estimated 

by using correspondent bivariate models.  

 RMSE  RMSE 

PC Bivariate EGARCH 25,7556 Bivariate EGARCH 190,1578 

PC Bivariate EGARCHX 26,5245 Bivariate EGARCHX 197,0068 

PC Bivariate Realized 

EGARCH 
25,8015 

Bivariate Realized 

EGARCH 
197,5427 

PC Bivariate Realized 

GARCH (complete) 
26,3228 

Bivariate Realized 

GARCH (complete) 
219,5970 

PC Bivariate Realized 

GARCH (partial) 
27,9438 

Bivariate Realized 

GARCH (partial) 
221,2924 

PC Bivariate Realized 

GARCH(2,2) 
28,6432 

Bivariate Realized 

GARCH(2,2) 
251,4380 

 

It may be seen that, by including the stocks into a portfolio, the volatility exercise becomes more 

precise, as compared to modeling individual stocks‟ volatility and summing their errors over the 

whole sample. 

 

6.4 Conclusions 

In this chapter we offered a method to forecast multivariate volatility of multiple stock assets by 

using a method (Principal Component Algorithm) adapted to autoregressive conditional 
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heteroskedastic models that use measures of night and day volatility, but also measures of 

intraday volatility (bivariate realized GARCH type of models). We offered bivariate 

formulations of the new models for an n-stock asset (PC Bivariate EGARCH, PC Bivariate 

EGARCHX, PC Bivariate Realized EGARCH, PC Bivariate Realized GARCH (complete and 

partial forms) and PC Bivariate Realized GARCH(2,2)). By reducing the n-multivariate to a 4-

stock dimension, we estimated the new models, and assessed their 1-day ahead forecasting 

performance. We found the models to be very effective, the portfolio forecasting error over the 

whole sample being significantly lower than the summed errors of the bivariate models applied 

to the individual stocks composing the portfolio. According to the methodology presented in the 

chapter, a risk-averse investor could best use the new models by taking a number of stocks, 

putting them into a portfolio, forecasting the variance of the individual stocks and the 

correlations between them according to the methodology described in the chapter; then, 

according to the forecasted volatility and correlations, the investor would increase in the 

portfolio the weights of the stocks with the lowest variance and that commove opposingly. Thus, 

the resulted variance of the portfolio will be significantly lower, equivalent to a reduced risk. The 

new portfolio variance could be then assessed by using one of the newly proposed PC Bivariate 

Realized GARCH models. 
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Chapter seven: Conclusions and further research 

Conclusions 

The current work proposed to offer some insights on the volatility forecasting topic, by 

addressing to two types of objectives. The first type was to enhance the volatility modeling 

problem by proposing alternative (bivariate and multivariate) models to forecast volatility of 

individual stocks or of multiple stock assets. As such it extended a method proposed by Hansen, 

Huang and Shek (2010b) for bivariate modeling of the Realized GARCH model (that we called 

the partial model), method that allowed the inclusion in the GARCH equations of night volatility 

measurements, to a class of realized GARCH models. New models emerged: a Bivariate 

Realized EGARCHX, a complete form of the Bivariate Realized GARCH model, a Bivariate 

Realized EGARCH model, and a Bivariate GARCH(2,2) model. A non-realized Bivariate 

EGARCH model was proposed. 

To the same objective it addressed the proposal of a method that targeted volatility modeling of 

multiple stock assets, taking advantage of the method suggested by Burns (2005) for the PC 

GARCH model. As such, in the current work it was proposed an adaptation of Burns‟ 

methodology, applied to realized GARCH models. The goal was to forecast volatility of 

multivariate assets by a method that attached a Principal Component Algorithm to the realized 

volatility models, taking advantage of the availability of high frequency data. New models 

emerged: PC EGARCHX, PC Realized GARCH, PC Realized EGARCH, and PC Realized 

GARCH(2,2). As well, a non-realized model PC-EGARCH was proposed. They were estimated 

according to various methodologies and their forecasting accuracy was assessed, across various 

criteria. 

To the completion of the first objective, a method that attached the Principal Component 

algorithm to the bivariate realized models was proposed. This method aims to take advantage of 

the realized volatility modeling with high frequency data and with night volatility data, as well as 

to the Principal Component Analysis, in order to model and forecast volatility of multivariate 

stock assets. New models were proposed, namely: PC Bivariate EGARCHX, PC Bivariate 

Realized EGARCH, PC Bivariate Realized GARCH (complete and partial forms) and PC 

Bivariate Realized GARCH(2,2), as well as a non-realized model, PC Bivariate EGARCH. 
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These models were estimated and their forecasting performance was evaluated, across four 

criteria. 

The second type of objectives addressed to an existing problem in the literature and in various 

applied contexts. That results from the coexistence of a high number of volatility models and 

from a lack of consensus in literature on which models perform better. As such, finding a better 

model or group of models emerged as a central research topic. The second objective was to rank 

some of the recently proposed realized GARCH models, and also to rank the models proposed in 

the current research. A general conclusion was that ranking proved to be sensitive to the 

methodology employed, realized volatility measures used, stock choice, and criterion used for 

performance ranking. However, consistent conclusions emerged. As such, it was found that 

EGARCHX model, Realized EGARCH and Realized GARCH(2,2) persistently ranked better, 

while the non-realized models GARCH and EGARCH performed poor in each stance almost. 

This allowed us to conclude that incorporating measures of intraday volatility enhances the 

modeling problem. 

As regards the ranking of the bivariate models, it was found that the Bivariate Realized GARCH 

(partial and complete) and Bivariate Realized EGARCH models performed well in any of the 

four stock choices, followed by the Bivariate Realized GARCH(2,2), Bivariate EGARCH and 

Bivariate EGARCHX models. 

With respect to the second objective, it was also assessed the gain or loss obtained when night 

volatility measures were employed. As such, it has been found that the bivariate models surpass 

the univariate ones when specific methodology, ranking criteria and stocks are used. The results 

are mixed, allowing us to conclude that the bivariate models did not prove totally inferior to their 

univariate counterparts, being a good alternative to be used in the forecasting exercise together 

with the univariate models for more reliable and precise estimates. 

Rankings have been made as well with regards to the measures of intraday volatility. H-L was 

found to perform poor in most estimations, while the realized variance sampled at 5 minutes and 

15 minutes ranked the best. This confirms the fact that higher the frequency, better the sampling, 

with the amendment that at too frequent sampling the microstructure noise may be too high for a 

precise intraday estimate. Realized kernels ranked as well good.  
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With respect to the principal component models it was found that they were a good alternative in 

estimating the volatility of highly correlated stock assets, and that putting stocks in one portfolio 

allowed for a more accurate volatility estimator than modeling volatility as separate univariate 

processes. As well, multivariate modeling with univariate estimations of the principal 

components allowed risk-averse investors to form low-risk portfolios by selecting stocks with 

negative covariances and smaller one-day ahead volatility forecasts. 

 

Further research 

Further research could be extended to the usage of high frequency data to other classes of models 

and to other measures of intraday volatility (like bipower variation, quadratic variance with 

Markov chains etc.). Measurements of intra-night volatility could be simulated by using Monte 

Carlo simulation methods, and incorporated in new realized volatility models. The studies could 

be extended to other types of data, like commodity data (oil, gold, etc.), or to the exchange rates, 

while multi-period horizon forecasts could be considered as well. 

Principal component extensions may be considered to larger classes of stocks, that may be 

restrained to a reduced number of variables according to the highest relevant principal 

components. As such, a possible application would be to consider the 500 stocks compounding 

the S&P index, to apply the PC algorithm to all 500 variables, finding the 500 orthogonal 

principal components and then selecting only those with the highest impact on the initial 

variables. As such, it may obtained a new index, with much fewer variables than S&P500, but 

close in terms of relevance, with which it may be further worked. It may be formed a new 

portfolio of stocks with the new variables to which the new PC-models may be applied in order 

to find their variance-covariance matrix, and consequently to find their volatility. 

Bivariate modeling can be enhanced by proposing a method to generate intranight measures of 

volatility. New models may be proposed, like models that would include night and day, as well 

as intranight and intraday volatility estimates.  

Finally, the current work could be extended by estimating different univariate and multivariate 

GARCH models with Bayesian statistics techniques. Further research could also include 
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extensions of using high frequency information, or of night volatility information to other 

multivariate GARCH models, like VEC, BEKK, CCC, TVC and DCC models, and the 

employment of new developments like semi-parametric estimation, more flexible DCC and 

factor models, finite mixtures of GARCH models. 
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