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Resum

L’objectiu d’aquesta tesi és estudiar la descomposició del senyal de veu en els seus compo-

nents principals (tracte vocal i font de veu) mitjançant tècniques de filtratge invers, amb

la major part dels esforços centrats a la parametrització del pols glotal. Volem explo-

rar la seva utilitat en diverses tecnologies de la parla, com ara sı́ntesi de veu, conversió

de veu o detecció d’emocions. Per tant, estudiarem diverses tècniques per la manipu-

lació prosòdica i espectral del senyal de veu. Un altre requeriment important és que els

mètodes han de ser prou robustos com per poder treballar amb grans bases de dades

tı́piques de la sı́ntesi de veu. En el nostre treball, hem adoptat un model de producció de

veu on les cordes vocals vibren per generar el pols glotal, que travessa el tracte vocal i és

radiat pels llavis. Eliminar l’efecte del tracte vocal de la senyal de veu per obtenir el pols

glotals es coneix com a filtratge invers. Els mètodes tradicionals són basats en predicció

lineal durant la fase tancada de la glotis i tenen problemes quan aquesta és molt curta.

Com a conseqüència, les estimacions acostumen a ser sorolles i difı́cils de parametritzar

després. Nosaltres proposem de solucionar el problema fent servir un model paramètric

del pols glotal directament a la fase d’estimació del tracte vocal i descomposició del senyal

de veu. Com a resultat, obtenim millors estimacions del pols glotal (amb menys soroll)

i una primera parametrització fent servir el model KLGLOTT88, que fem servir després

per a estimar el model LF, més apropiat. També incloem un model per al residu (que

inclou part del soroll d’aspiració) estimat dins l’algorisme principal.

Per tal de validar el funcionament del mètode de parametrització, hem construı̈t un

corpus sintètic fent servir paràmetres del model LF obtinguts de la literatura, comple-

mentats amb resultats propis. Aixı́, podem generar senyals sintètiques amb paràmetres

coneguts que podem fer servir posteriorment com a referència per calcular l’error de

parametrització. Els resultats proven que el nostre mètode funciona bé per a una

àmplia gama de paràmetres amb diferents nivell de soroll. També hem fet un test MOS
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d’opinió comparant la qualitat de dos mètodes proposats per nosaltres amb la del vocoder

STRAIGHT, una referència d’alta qualitat. El nostre mètode fent servir residus blan-

quejats resulta guanyador, amb una puntuació molt alta. El segon mètode fent servir

parametrització total pel residu queda en tercer lloc, però encara amb puntuacions supe-

riors al llindar d’acceptació.

A continuació hem proposat dos algorismes per a fer modificacions prosòdiques,

segons quin dels dos mètodes pel residu fem servir: un fa servir la parametrització com-

plerta i interpolació de trames per als canvis prosòdics, i l’altre una tècnica de remostreig

aplicada a les formes d’ona. Les dos opcions han estat avaluades en un test MOS d’opinió,

comparant-les amb STRAIGHT i el mètode PSOLA fet servir al nostre sintetitzador Og-

mios. Tots dos mètodes reben puntuacions semblants, per sobre el llindar d’acceptació

però no de prou qualitat, aixı́ que el tractament del residu és un tema que cal seguir in-

vestigant.

Hem inclòs el nostre model de producció de veu dins d’un sistema de conversió de veu,

per tal d’avaluar l’impacte de la nostra parametrització en la conversió. El sistema de con-

versió de veu va ser desenvolupat al nostre grup com a part del projecte europeu TC-STAR

i ha participat en diverses campanyes d’avaluació. Hem fet servir el model paramètric i

les mateixes condicions per l’entrenament i el test, per tal de poder comparar els resultats

directament amb els de l’última avaluació del projecte. El nostre mètode ha estat un èxit

en aquesta tasca, ja que ha estat puntuat amb millor nota pels participants a l’avaluació.

Com a part d’aquesta tesi també hem treballat en el camp de les qualitats de veu (de

l’anglès voice quality). Hem enregistrat una petita base de dades que consisteix en una

locutora professional generant vocals sostingudes en espanyol, amb diferents qualitats de

veu (modal, aspre, trencada i falset). Llavors les hem analitzat totes fent servir el nos-

tre algorisme de descomposició i parametrització mitjançant figures estadı́stiques dels

paràmetres LF. Comparant els resultats amb d’altres publicats anteriorment, hem trobat

que les nostres conclusions coincidien en major part amb les d’altres investigadors. Les

diferències es podrien atribuir a la mida de la base de dades i a les dificultats en comparar

qualitats de veu produı̈des per persones diferents.

Per a finalitzar la nostra feina en aquesta tesi, hem treballat també en el camp del re-

coneixement automàtic d’emocions fent servir mètodes estadı́stics basats en GMM. Per

cada emoció, hem entrenat un model especı́fic fent servir diferents caracterı́stiques, com-

parant la nostra parametrització amb un sistema de referència que fa servir mesures es-

pectrals (MFCC) i prosòdiques (F0 i logF0). Hem fet servir una base de dades d’emocions

d’aproximadament 5000 frases de dos locutors diferents, que conté exemples de sis emo-

cions i l’estat neutre. Els resultats són molt satisfactoris, ja que la noves caracterı́stiques

disminueixen un 20% l’error respecte el mètode de referència. L’encert en la detecció

de les emocions també supera els publicats anteriorment amb la mateixa base de dades
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fent servir només caracterı́stiques prosòdiques. La conclusió que en traiem és que els

paràmetres del pols glotal obtinguts amb el nostre mètode tenen un impacte positiu en el

camp del reconeixement d’emocions.
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Abstract

The objective of this dissertation is to study and develop techniques to decompose the

speech signal into its two main components: voice source and vocal tract. Our main ef-

forts are on the glottal pulse analysis and characterization. We want to explore the utility

of this model in different areas of speech processing: speech synthesis, voice conversion

or emotion detection among others. Thus, we will study different techniques for prosodic

and spectral manipulation. One of our requirements is that the methods should be robust

enough to work with the large databases typical of speech synthesis. We use a speech

production model in which the glottal flow produced by the vibrating vocal folds goes

through the vocal (and nasal) tract cavities and its radiated by the lips. Traditional in-

verse filtering approaches based on closed-phase linear prediction have the problem of

having to work only with samples corresponding to the glottal closed phase, which in

some cases can be quite short. This results in a large amount of noise present in the es-

timated inverse-filtered waveforms, which poses further problems when parameterizing

them. We overcome this problem by using a parametric model for the glottal waveform

and thus including the glottal open phase in the estimation. As a result of the source-

filter decomposition, we not only obtain a better (i.e., less noisy) inverse-filtered glottal

estimation, but also a first parametrization using the simpler KLGLOTT88 model used to

estimate the more appropriate LF model. A parametric model for the residual comprising

the aspiration noise was also proposed as part of the parametrization.

In order to validate the accuracy of the parametrization algorithm, we designed a syn-

thetic corpus using LF glottal parameters reported in the literature, complemented with

our own results from the vowel database. Since the parameters used in synthesis were

known a priori, they were used as reference to compute the parametrization error with

the estimated parameters. The results show that our method gives satisfactory results in

a wide range of glottal configurations and at different levels of SNR. We also conducted
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an on-line evaluation in which the quality of two proposed methods was compared to

that of the well established vocoder STRAIGHT. Our method using the whitened resid-

ual compared favorably to this reference, achieving high quality ratings (Good-Excellent).

Our full parametrized system scored lower than the other two ranking in third place, but

still higher than the acceptance threshold (Fair-Good).

Next we proposed two methods for prosody modification, one for each of the residual

representations explained above. The first method used our full parametrization system

and frame interpolation to perform the desired changes in pitch and duration. The second

method used resampling on the residual waveform and a frame selection technique to

generate a new sequence of frames to be synthesized. Both options were again evaluated,

using two standard algorithms as reference (STRAIGHT as in the resynthesis test, and the

PSOLA-like algorithm as implemented in our speech synthesizer Ogmios). The results

showed that both methods are rated similarly (Fair-Good) and that more work is needed

in order to achieve quality levels similar to the reference methods.

Our speech production model was incorporated to an existing voice conversion (VC)

system to evaluate the impact of the parametrization on the conversion performance. The

system used for VC was developed in our group as part of the TC-STAR project, and it had

participated in several evaluation campaigns. The same testing conditions were replicated

and used with our parametrization model, using the full parametrization for the residual.

The waveforms were generated and compared with those obtained with the original VC

system, again using an on-line MOS evaluation. The results showed that the evaluators

preferred our method over the original one, rating it with a higher score in the MOS scale.

As part of this dissertation, we conducted a study in the field of voice quality. We

recorded a small database consisting of isolated, sustained Spanish vowels in four differ-

ent phonations (modal, rough, creaky and falsetto) and were later also used in our study

of voice quality. Each of them was analyzed using our decomposition and parametriza-

tion algorithm, and boxplot of the glottal and residual parameters were produced. The

LF parameters were compared with those reported in the literature, and we found them

to generally agree with previous findings. Some differences existed, but they could be

attributed to the difficulties in comparing voice qualities produced by different speakers.

We have also evaluated the performance of an automatic emotion classifier using glot-

tal measures. The classification was performed by statistical GMM classifiers trained for

each emotion using different features. We have compared our parametrization to a base-

line system using spectral (MFCC) and prosody (F0 and logF0) characteristics. The results

of the test using an emotional database of almost 5000 utterances and two speakers were

very satisfactory, showing a relative error reduction of more than 20% with respect to the

baseline system. The accuracy of the different emotions detection was also high, improv-

ing the results of previously reported works using the same database. Overall, we can
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conclude that the glottal source parameters extracted using our algorithm have a positive

impact in the field of automatic emotion classification.
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CHAPTER 1

Introduction

In a world where images and visual information appear in all the aspects of everyday

life, the human voice continues to play a key role in the communication between peo-

ple. Speech contains the message a person intends to transmit to their audience, but also

conveys extra information about the speaker’s mood, intention, gender, etc. Native speak-

ers can easily recognize where the person they are speaking with comes from using only

acoustic cues. Speech contains also information intimately tied to the speaker, so that he

or she can be uniquely identified by other people. In short, the information speech con-

veys is not only language-related, but also speaker-related. In relation to the particular

language we can agglutinate the speech properties determined by the selection of words

or by the grammar governing the sentence structure. Among the speaker-related features

we can find pitch (fundamental frequency), loudness (magnitude of the auditory sensa-

tion produced), voice quality (characteristics tied to the transmission of affect) and rhythm

(particular melody).

Speech being the most common way of communication between people, it seems just

natural that it should find its way into man-machine interfaces. The widespread of com-

puters and the increasing necessity of finding better ways of communicating with them,

have resulted in an increased popularity of speech-related technologies. The two main

components of a voice-driven user interface are speech recognition and speech synthesis.

In speech recognition, the main task is to translate what the speaker says into text that

can be processed and acted upon by a computer. But as in regular human interaction, not

only the what is important, but also the how and why. And this information is contained

in speech properties not yet recognizable by current speech recognition algorithms. In

speech synthesis, during many years the trend has been to work towards concatenative

speech synthesis. Earlier approaches like formant synthesis, in which knowledge of the
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way human produce speech was at the core of the methods, were slowly abandoned for

mainstream applications and were relegated to specific applications (Ding and Campbell,

1997; Klatt, 1980; Liljencrants, 1967). Although very flexible and able to imitate many

of the underlying processes in speech production, they required laborious tuning and

computer power to achieve a minimal degree of naturalness, still insufficient for satisfac-

tory communication. The idea with modern concatenative systems is to use parts of pre-

recorded speech to form the synthetic utterances, thus being able to achieve high quality

and naturalness, assuming, of course, that the concatenation is properly done (Charpen-

tier and Moulines, 1988; Moulines and Charpentier, 1990). The main problem here is that

we are limited to the quality and style of the recordings, since they only aim at perfectly re-

producing the original recorded voice. In order to achieve high quality synthesis we need

large databases, which has a high cost in terms of storage space, processing power and

human time (high-quality recording is very time-demanding for both the professional

speakers and the operators). And there are new applications, like voice conversion of

emotional speech synthesis, requiring large degrees of prosody modification that con-

catenation systems are unable to fulfill (Dutoit, 1997). Several alternatives making use of

the periodic/aperiodic components of the speech signal have been proposed in order to

overcome some of these difficulties (Dutoit and Leich, 1992, 1993). McAulay and Quatieri

(1986) introduced a speech sinusoidal representation with a higher resilience to distor-

tion when performing prosodic and spectral modifications. In Laroche et al. (1993) the

authors presented an speech modification algorithm based on the decomposition of the

speech into harmonic and noise, which was later applied to concatenative speech synthe-

sis by Stylianou (2001).

However, although these algorithms generally succeed in permitting greater prosody

modifications without the penalty of degrading the resulting quality to unacceptable lev-

els, they still fail to incorporate the characteristics responsible for emotion and affect. Is

in this context where glottal waveform analysis has the ability to play an important role.

Fant (1970) proposed a speech production model in which the glottal flow produced by

the vibrating vocal folds goes through the vocal (and nasal) tract cavities and its radiated

by the lips. According to this model, a source-filter decomposition should be possible,

in which the two main contributions (from the glottis and the vocal tract) could be in-

dependently analyzed and modified. The focus of this thesis is on the extraction of the

glottal source information. This is a fundamental problem in speech processing, having

applications in a wide range of speech related technologies: voice conversion (Childers

and Ahn, 1995; Gutiérrez-Arriola et al., 1998; Mori and Kasuya, 2003), speech synthesis

(Cabral et al., 2007; Childers and Hu, 1994; Pinto et al., 1989), voice pathology detection

(Drugman et al., 2009b; Gómez-Vilda et al., 2009), emotion analysis/synthesis (Burkhardt

and Sendlmeier, 2000; Gobl and Chasaide, 2003b), etc.
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The objective of this dissertation is to study and develop techniques to decompose the

speech signal into its two main components: voice source and vocal tract. Our main ef-

forts are on the glottal pulse analysis and characterization. We want to explore the utility

of this model in different areas of speech processing: speech synthesis, voice conversion

or emotion detection among others. Thus, we will study different techniques for prosodic

and spectral manipulation. One of our requirements is that the methods should be robust

enough to work with the large databases typical of speech synthesis. We use a speech

production model in which the glottal flow produced by the vibrating vocal folds goes

through the vocal (and nasal) tract cavities and its radiated by the lips. Traditional in-

verse filtering approaches based on closed-phase linear prediction have the problem of

having to work only with samples corresponding to the glottal closed phase, which in

some cases can be quite short. This results in a large amount of noise present in the es-

timated inverse-filtered waveforms, which poses further problems when parameterizing

them. We overcome this problem by using a parametric model for the glottal waveform

and thus including the glottal open phase in the estimation. As a result of the source-

filter decomposition, we not only obtain a better (i.e., less noisy) inverse-filtered glottal

estimation, but also a first parametrization using the simpler KLGLOTT88 model used to

estimate the more appropriate LF model. A parametric model for the residual comprising

the aspiration noise was also proposed as part of the parametrization. The dissertation is

organized as follows:

Chapter 2 explains the human voice production system used in this work and intro-

duces the different parametric models for the glottal model that have been presented in

the literature, with special focus on those used in our method. Furthermore, a thorough

review of the different methods for source-filter decomposition is presented, from the

early attempts to the current state-of-the-art systems. Measures for the automatic rating

of the glottal estimations are also explained. The main characteristics of the aspiration

noise generation are detailed here.

Chapter 3 describes in detail our proposed algorithm for source-filter decomposition.

The chapter starts with an outline of the whole method and the details of the convex

decomposition algorithm used thorough the chapter. The extraction of the glottal timing

information from the laryngograph signal is presented, and an algorithm to optimize this

initial estimation follows. Then the source-filter estimation technique is described, and

the algorithms to parametrize the glottal flow and the aspiration are described next. The

chapter ends with the schema for synthetic speech generation and the conclusions.
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Chapter 4 presents the methodology used to validate and evaluate our source-filter

analysis system, using both a synthetic corpus designed using real glottal parameters

reported in the literature, and real corpus specifically recorded for this purpose, contain-

ing sustained vowels in Spanish uttered with different voice qualities. The resynthesis

capabilities of the method are evaluated using an online listening test.

Chapter 5 describes our two proposed algorithms for prosody modification. The re-

quired changes in the parametrization are explained and the two methods to change pitch

and duration are described next. We follow by presenting and discussing the results of

an online listening test comparing them to two well-known and established algorithms.

Chapter 8 describes our work in the field of CART-based voice conversion using GMM.

The underlying theory is presented and the current algorithms are described. Next

the baseline system used is introduced, with the necessary changes to introduce our

parametrization detailed. There follows the results of an online evaluation test and cor-

respondent analysis and discussion.

Chapter 7 presents our work in the field of voice quality analysis. The literature on this

topic is reviewed and an analysis of the corpus presented in Chapter 4 is conducted. There

follows a listening test focused on the characterization and identification of voice quality

using our analysis/synthesis algorithm. Our work in automatic emotion recognition is

also presented here.

Chapter 8 ends this dissertation by presenting the conclusions and future lines of re-

search that could follow the work presented here.
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CHAPTER 2

Background

2.1 The human voice production system

Voicing sounds are produced when the airflow expelled by the lungs arises from the tra-

chea and reaches the glottis, causing the vocal folds to vibrate in a quasi-periodic manner.

This vibration generates the glottal volume-velocity waveform, or glottal flow, which then

travels through the cavities of the vocal (and nasal) tract, and it is radiated by the lips re-

sulting in the speech pressure waveform. Fant (1970) proposed a model of the human

speech production system using a source-filter approach, adding detailed knowledge of

the glottal flow signal. In this model, the glottal source excites the vocal tract, and it is

radiated by the lips (as illustrated in figure 2.1). Both the vocal tract filter and the lip-

radiation effect are often modeled using linear filters: the vocal tract is usually assumed

to be an all-pole filter, a simplification that excludes the possibility of source-filter inter-

action, but that works generally well in the majority of occasions; the lip-radiation effect

is often modeled by a first-order derivative filter. Since these two filters are linear and

invariant (at least over short periods of time), they can be linearly exchanged and the

derivative filter can be combined with the source, resulting in the differentiated glottal

volume-velocity waveform.

One method to obtain this representation is to use inverse filtering techniques to ac-

quire an estimation of the glottal volume-velocity waveform by canceling the effect of the

vocal tract. The goal is to design a filter that cancels the poles introduced by the vocal tract

in order to eliminate its contribution from the speech signal. This can be used to estimate

either the glottal velocity waveform or its first derivative, depending on whether the lip-

radiation and the vocal tract filters have been commuted. Thus, the resulting (simplified)

source-filter consists of the derivative glottal waveform, together with the differentiated
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Figure 2.1: Speech production system using the source-filter approach.

aspiration noise, passing trough an all-pole filter modeling the vocal tract effects. This

process is illustrated in figure 2.2 and described next. According to this model, the speech

waveform S(z) is obtained as:

S(z) = Ug(z) · V (z) · L(z), (2.1)

where V (z) represents the vocal tract, L(z) the lip radiation effect, and Ug(z) is the glottal

volume-velocity waveform. Since we are modeling the vocal tract using an all-pole filter,

we can write:

V (z) =
1

A(z)
=

1

1−
∑N

k=1 ak z
−k

, (2.2)

where A(z) is the polynomial in the z-domain, whose roots are the poles of the vocal tract

filter V (z). The lip radiation effect can be effectively modeled using a differentiator filter:

L(z) =
1

1− z−1
. (2.3)

Furthermore, we can exchange V (z) and L(z) since they are both linear, and we can incor-

porate the differentiator into the glottal source, effectively working with the differentiated

glottal volume-velocity waveform G(z) as the glottal source:

G(z) = Ug(z) · L(z). (2.4)
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Taking into account equations 2.2 and 2.4, we can rewrite (2.1) as:

S(z) = G(z) ·
1

1−
∑N

k=1 ak z
−k

, (2.5)

which in the time-domain can be written as:

s(n) = g(n) +
N
∑

k=1

aks(n− k). (2.6)

Thus, the value of the speech signal at sample n can be computed using the current value

of the glottal source g(n) and a linear combination of the previousN speech samples using

the filter coefficients ak.

Figure 2.2: Block-diagram of the main source-filter components.

The dynamics of the glottis can be separated into two phases. During the first phase,

called the open phase, the airflow coming from the trachea increases the sub-glottal pres-

sure, causing the vocal folds to open in a progressively manner. When the vocal folds

reach the elastic displacement limit, they abruptly return to the initial state (return phase),

and remain closed until the sub-glottal pressure increases again (closed phase) include it in

the closed phase we . Figure 2.3 serves as an illustration of the glottal phases, showing a

cycle of the glottal flow and its time derivative using the LF model (Fant et al., 1985) that

will be explained in detail in section 2.2.2. The open phase consists of two sub-phases: the

opening phase, from the moment the glottis starts to open at time 0, until the glottal flow

(upper figure) reaches its maximum at Tp, and the closing phase, from this moment until

the derivative of the glottal flow (lower figure) reaches its minimum at Te. The closed

phase begins at Te with the return phase 1 , that lasts until Tc, where the vocal folds are

completely closed for the rest of the cycle until T0.

1Whether the return phase is considered part of the open or closed phases is a matter of opinion and varies
from author to author. In this thesis we consider the closed phase to begin at Te in figure 2.3, thus comprising
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Glottal flow model (Ug)

Glottal flow differentiated model (dUg)

RETURN
PHASE

CLOSING
PHASE

OPENING
PHASE

CLOSED PHASEOPEN PHASE

0 Tp Te Tc T0

0 Tp Te Tc T0

−Ee

0

0

U0

Figure 2.3: Phases of the glottis in the glottal flow and differentiated glottal flow (illustrated using the
LF model nomenclature from Section 2.2.2)

2.2 Glottal models

While some applications require directly working with the high definition inverse fil-

tered waveform (e.g., pathological speech analysis or the study of voice disorders), there

are many others that would immensely benefit if these waveforms could be reduced to

a smaller set of parameters. Several models have been proposed in the literature for

parametrization of the glottal flow pulses. One of the earlier models was the Rosenberg

(1971) C, a trigonometric model defined by four parameters (amplitude, fundamental pe-

riod, maximum of the glottal flow waveform and the time interval between this maximum,

and the glottal closure instant). Based on this model, several other parametric models

were presented: the Liljencrants-Fant model (LF) was introduced by Fant et al. in 1985,

the KLGLOTT88 model (Klatt and Klatt, 1990) and the R++ model (Veldhuis, 1998). Both

the LF and the KLGLOTT88 model have been widely adopted and extensively reported

the return phase.
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in the literature, thus they will be reviewed below. The LF model is more flexible than

the KLGLOTT88 model in its ability to model different voice types. On the other hand,

it has a more complex mathematical formulation, which makes it difficult to use in some

algorithms.

Although several parametric models have been proposed in the literature, all of them

share some common properties as reported in Doval and d’Alessandro (1997, 1999, 2006).

We will outline here the general guidelines for characterizing the (derivative) glottal

volume-velocity waveforms, and then we will present the details of the two models used

in this work: the KLGLOTT88 and the LF models. A glottal flow model (GFM) is a contin-

uous, differentiable function of time (with some exceptions at the instant of glottal clos-

ing), always positive or null. The GFM is quasi-periodic and bell-shaped during a funda-

mental period: first increasing, then decreasing, and then becoming null. This is shown

in the upper part of figure 2.3. A differentiated glottal flow model (dGFM) is a quasi-

periodic function, and during a fundamental period it is positive (increasing glottal flow),

then null (glottal flow maximum), then negative (decreasing glottal flow) and finally null

(when the glottal flow is null). This is shown in the lower part of figure 2.3. Arroabarren

and Carlosena (2003c) also presents a unified spectral analysis of the KLGLOTT88 and LF

models. Analyzing the general properties of open quotient, asymmetry coefficient and

spectral tilt, the authors conclude both models are equivalent. The main difference re-

ported there is the glottal asymmetry not being independent of the open quotient and the

tilt in the KLGLOTT88 model.

2.2.1 KLGLOTT88 model

The KLGLOTT88 model (Klatt and Klatt, 1990) is a time-domain model, defined using

a Rosenberg-Klatt waveform (Klatt, 1980) followed by a first-order, low-pass filter TL(z)

controlling the glottal closure abruptness. The Rosenberg-Klatt glottal flow is described

by a third degree polynomial:

urk(t) =

{

at2 − bt3 , 0 ≤ t < Oq · T0

0 , Oq · T0 ≤ t < T0,
(2.7)

and, accordingly, the Rosenberg-Klatt glottal flow derivative is expressed as:

grk(t) =

{

2at− 3bt2 , 0 ≤ t < Oq · T0

0 , Oq · T0 ≤ t < T0,
(2.8)
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where

a =
27AV

4O2
q T0

, (2.9)

b =
27AV

4O3
q T

2
0

, (2.10)

and T0 is the pitch period of the voice, Oq is the open quotient (ratio of the open phase

of the glottal cycle to the duration of the cycle) and AV is the amplitude parameter. Note

that the parameters a and b are related as:

a

b
= Oq T0. (2.11)

The complete KLGLOTT88 model is then obtained by filtering the Rosenberg-Klatt wave-

form with the aforementioned low-pass filter:

TL(z) =
1

1− µz−1
, (2.12)

resulting in:

Gkl(z) = Grk(z)TL(z) = Grk(z)
1

1− µz−1
. (2.13)

Thus, the KLGLOTT88 model contains four parameters: AV , Oq, T0 and µ. Figure 2.4

shows the time-domain glottal cycles (2.4a) and the corresponding spectra (2.4b), respec-

tively, for both the glottal waveform flow and its derivative.

Although in this thesis we work almost exclusively in the temporal domain, we will

explain some of the properties of the spectrum of the glottal models. The analytical spec-

trum of the Rosenberg-Klatt flow was computed in Doval and d’Alessandro (1997) and is

given by:

Urk(f) =
27j AV

2Oq (2πf)2

(

je−j2πfOqT0

2
+

1 + 2e−j2πfOqT0

2πfOqT0
+ 3j

1− e−j2πfOqT0

(2πfOqT0)2

)

. (2.14)

As we can see in Figure 2.4b, this spectrum is flat in the lower range of the spectrum and

has a slope of −12 dB/oct for higher frequencies. This behavior can be approximated by

a second order low-pass filter with cutoff frequency fk =
√
3

π
1

OqT0
, which depends only

on Oq and T0 (Doval and d’Alessandro, 1997). Differentiating the glottal flow to obtain

the differentiated glottal waveform adds 6 dB/oct, as we can see in the figure. The tilt

filter TL(z) from eq. (2.12) adds −6 dB/oct attenuation at its cutoff frequency ft. Thus,

the spectrum of the KLGLOTT88 model can be divided in three regions: flat between 0

and fk, with a spectral slope of −12 dB/oct between fk and ft, and with a spectral slope

of −18 dB/oct from this point on.
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Figure 2.4: Temporal and spectral plot of the Rosenberg-Klatt and KLGLOTT88 glottal flow (urk and
ukl) and differentiated (grk and gkl)
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The KLGLOTT88 model has been used in the study of glottal characteristics for female

and male speakers (Hanson, 1997; Hanson and Chuang, 1999; Klatt and Klatt, 1990). It

is also of common use to use this model in the initialization stage of several source-filter

decomposition algorithms working with more complex models (e.g., Ding and Campbell,

1997; Lu, 2002).

2.2.2 Liljencrants-Fant (LF) model

The LF model is a well established and powerful model, capable of characterizing the

shape of the derivative glottal wave for a wide range of voices, both in the open and

closed phases. Its parameters have been derived from and correlated to physiological

and acoustic features (Childers and Ahn, 1995; Gobl, 1989), and researchers from several

disciplines have adopted it for tasks such as speaker identification (Plumpe et al., 1999),

voice conversion (del Pozo and Young, 2008), singing speech (Kim, 2003; Lu, 2002) among

others. The LF model is more flexible than the KLGLOTT88 model from previous sec-

tion, although this flexibility comes at a price: its formulation is more complicated, which

makes its inclusion in optimization algorithms more difficult to accomplish. The mathe-

matical description of the LF model is:

glf (t) =











E0e
αt sin(wgt) , 0 ≤ t ≤ Te,

− Ee
ǫTa

[e−ǫ(t−Te) − e−ǫ(tc−te) , Te < t ≤ Tc,

0 , Tc < t ≤ T0,

(2.15)

In figure 2.5 a glottal LF cycle is presented, ranging from 0 to the fundamental period T0.

The other time marks are:

• Tp, representing the maximum of the glottal flow (and thus a value of 0 for the

derivative),

• Te, the time instant of the minimum in the derivative,

• Ta, defined as the point where the tangent to the exponential return phase crosses

0,

• Tc the moment when the return phase reaches 0,

• Ee as the absolute value of the minimum of the derivative.

The rest of the parameters in eq. (2.15) (α, wg, E0 and ǫ) are computed from the temporal

ones by fulfilling some requirements of area balance and continuity (Fant, 1995; Gobl,
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2003; Lin, 1990):

T0
∫

0

glf (t) = 0 (2.16)

wg =
π

Tp
(2.17)

ǫTa = 1− e−ǫ(tc−te) (2.18)

E0 = −
Ee

eαTe sinwgTe
. (2.19)

E0

0

−Ee

T0TcTeTp0

Normalized pitch period (F0=100 Hz)

A
m

p
li

tu
d

e

Ta

Figure 2.5: Glottal cycle of the LF model with parameters Tp = 5.0, Te = 7.0, Tc = 8.5, Ta = 0.2
and T0 = 10.0 in milliseconds, and Ee = 2.)

In this thesis we follow the common approach of setting Tc to T0, effectively working

with only three temporal parameters (Tp, Te and Ta) (Fant, 1995). These time measures are

not suitable for direct interpolation, since they are absolute time instants inside cycles of

different duration. Furthermore, it is not possible to directly compare pulse shapes of dif-

ferent glottal cycle duration. Fant proposed the use of extended parameter set, an alternative

representation solving these problems:

Ra =
Ta

T0
, (2.20)

Rg =
T0

2Tp
, (2.21)

Rk =
Te − Tp

Tp
. (2.22)
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Ra (or Ta) defines the abruptness of the glottal closure, a measure related to the degree of

spectral tilt. This is often made explicit by writing:

Fa =
1

2πTa
=

T0

2πRa
(2.23)

Rk is the relative duration of the LF model’s falling branch (from Tp to Te), and Rg is

inversely proportional to the duration of the opening phase (from 0 to Tp). One of the main

advantages of the LF model over the KLGLOTT88 model is its ability to model a wider

range of glottal pulse shapes, thanks to the more flexible formulation. As Figure 2.6a

shows, it makes possible the use of a variable asymmetry coefficient (ratio of the opening

phase over the closing phase) as opposed to the KLGLOTT88 fixed value of 2
3 . Figure 2.6c

illustrates the control of the abruptness of the glottal closure using the Ra or equivalent

Fa parameter.
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Figure 2.6: Effect of Rk and Fa on the glottal cycle and spectrum
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The analytical expression for the spectrum of the LF model was computed in Doval

and d’Alessandro (1997):

Glf (f) = E0
1

(α− j2πf)2 + w2
g

·

(

e(α−j2πf)Te((α− j2πf) sin(wgTe)

− wg cos(wgTe))

)

+ Ee
e−j2πfTe

ǫTaj2πf(ǫ+ j2πf)
·

(

ǫ(1− ǫTa)(1− e−j2πf(T0−Te))− ǫTaj2πf

)

. (2.24)

Figures 2.6b and 2.6d shows the spectrum of the LF model for both the glottal flow and

its derivative for several values of Fa and Rk. As in the KLGLOTT88 case, the spectral

behavior of the model can be approximated by a second order low-pass filter of cutoff

frequency Fa (Fant, 1995, 1997). Doval and d’Alessandro (1997) computed its exact value

using the analytical expression of the spectrum, and demonstrated that the cutoff fre-

quency also depended on Rk and Rg, although for normal values of these parameters the

approximation using only Fa worked well.

Up to this point we have introduced the generic characteristics of the glottal flow and

its derivative, and we have presented in detail the parametric models of the glottal wave-

forms that we used in this thesis. Next we will review the state-of-the-art in glottal ex-

traction and parametrization algorithms.

2.3 Source-filter decomposition algorithms

Glottal inverse filtering (IF) encompasses the techniques whose goal is to obtain an esti-

mation of the glottal volume velocity waveform, the source of voicing in speech, using

acoustical measures. Although our main interest here lies on the acoustical domain, it is

worth mentioning other voice production analysis techniques using different approaches.

In glottography, for instance, the dynamics of the vocal folds during phonation are directly

recorded using electric (e.g., Henrich et al., 2004; Lecluse et al., 1975) or electromagnetic

sensors (e.g., Holzrichter et al., 1998; Titze et al., 2000). Although its application is usually

restricted to clinical applications, there are several techniques that perform visual analy-

sis of the vibrating vocal folds: video stroboscopy (e.g., Hirano, 1981), digital high-speed

stroboscopy (e.g., Eysholdt et al., 1996) and kymography (Švec and Schutte, 1996), among

others. Multi-channel approaches combining some of the previous techniques are also

used for specific studies (e.g., Granqvist et al., 2003; Larsson et al., 2000). We will proceed

now to review the main methodologies in IF.
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2.3.1 Early approaches

Early attempts at inverse vocal tract filters were analog networks, constructed using dis-

crete components, and required arduous manual efforts for fine-tuning. For instance, in

Miller (1959) only the first two formants were canceled, resulting in recognizable glottal

waveforms, but which contained a considerable amount of ripple during the closed phase.

Computers started being incorporated into the task, but still required large amounts of

manual intervention. Mathews et al. (1961) identified individual pitch periods using an

oscilloscope, and computed the Fourier transform to obtain the speech spectrum using

a computer. The spectrum was then analyzed using pole-zero techniques, and source-

filter decomposition was achieved by assigning the zeros to the glottal waveform and the

poles to the vocal tract. Rosenberg (1971) presented one of the first attempts at parame-

terizing the glottal waveform. Using the same analysis technique developed by Mathews

et al. (1961), Rosenberg incorporated pitch-synchronous resynthesis with synthetic simu-

lations, using different shapes for the glottal waveform (triangular, polynomial, trigono-

metric and trapezoidal). The resulting speech was then judged in terms of naturalness

by means of a listening test. It was concluded that the shapes with a spectral decay of

12 dB/octave produced the most natural sounding speech, consistent with earlier find-

ings (Mathews et al., 1961).

In order to overcome some of the difficulties associated with inverse filtering in those

early works (e.g., amplitude calibration, low frequency distortion due to ambient noise,

incorrect DC offset level), Rothenberg (1973) introduced the Rothenberg mask, a pneu-

motachograph mask permitting the direct measurement of the oral volume velocity (as

opposed to the speech pressure waveform). The mask allowed for better identification

of the glottal closure phases, but was somewhat limited in its frequency response, which

reached to only 1 kHz. Despite the limitations, the mask was successfully used in sev-

eral studies (Holmberg et al., 1988; Karlsson, 1985; Sundberg and Gauffin, 1978). Sondhi

(1975) introduced a new inverse-filtering approach using a reflectionless tube with rigid

walls to cancel out the vocal contribution, thus allowing a microphone, embedded into

the wall of the tube, to directly record the glottal waveform. Monsen and Engebretson

(1977) used this equipment to study the variations of the glottal waveform in males and

females, across several voice qualities. Sondhi and Resnik (1983) performed vocal tract

area function estimations in real time (18 frames per second) using the tube, and were

successful in synthesizing intelligible speech from the estimated area functions.

2.3.2 Closed-phase linear prediction

Despite the possible limitations, inverse filtering using closed-phased linear prediction

(CPLP) continues to be one of the most popular techniques for glottal waveform estima-
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tion. One of the main problems is properly identifying the regions where the glottis is

closed. Wong et al. (1979) proposed a pitch-synchronous algorithm using the linear pre-

diction error of the covariance method to detect the closed phase. A similar approach was

taken by Childers and Lee (1991), where a two-pass method was used to first identify the

regions of closed phase, using a fixed frame LP analysis, and then a pitch synchronous co-

variance CPLP analysis was performed to estimate an improved filter. Plumpe et al. (1999)

presented a technique for automatic estimation and parametrization of the glottal flow, us-

ing the lack of modulation of the formant frequencies during the closed phase to identify

the regions of glottal closure, applied to the task of speaker identification. Akande and

Murphy (2005) presented a new iterative method to improve the estimation of the vocal

tract transfer function. Traditional fixed, single-pole pre-emphasis was substituted by a

multi-pole (high-pass) filter. Then, the covariance analysis was performed in an adaptive

loop, using the phase information of the filter candidates to select the optimal frame posi-

tion and filter order. Cabral et al. (2007) used a similar CPLP analysis method to integrate

the glottal waveform, modeled using the LF model, into a HMM synthesizer. The results

of the evaluation tests showed that the glottal source resulted in more natural speech than

the previously used pulse train source.

2.3.3 Joint decomposition

To avoid some of the problems associated to closed-phase linear prediction (e.g., being

dependent on the correct location —or existence— of the glottal closed phase, analysis of

high pitched voices) Alku (1992) proposed an iterative method (IAIF) to obtain the glot-

tal waveform. A gross initial estimation of the glottal waveform was initially obtained

and removed from the speech signal, using a first order LP analysis (like an adaptive pre-

emphasis filter). Next, the vocal tract was estimated using a higher order LP analysis on

the pre-emphasized speech, and a new estimation of the glottal waveform was obtained

by inverse-filtering the original speech with this filter. This process was iterated using

different orders for the LP analysis to obtain the final, refined estimation of the glottal

waveform. In a following work (Alku et al., 2004), the discrete all-pole modeling (DAP)

algorithm (El-Jaroudi and Makhoul, 1991) was adopted, instead of LP analysis. The DAP

method uses the Itakura-Saito distortion measure to model the discrete spectral envelope

of voiced speech. El-Jaroudi and Makhoul showed that DAP modeling results in better

all-pole spectral modeling, and also provided an extended version of the algorithm using

frequency weighted error functions. In the modified IAIF, the speech was high-pass fil-

tered to eliminate low-pass distortions, and then inverse filtered using a first-order all-pole

filter, estimated using DAP. A DAP analysis was performed on the output of this stage,

the input speech was inverse filtered using the resulting filter, and the result was inte-
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grated to obtained an estimation of the true glottal flow. This process was again repeated

twice with a different order DAP analysis stage, to further refine the estimated glottal

flow. The results obtained showed an encouraging small error between the synthetic (real)

and estimated results. The “simultaneous inverse filtering and model matching” method

proposed by Frölich et al. (2001), also based on the DAP algorithm introduced above, in-

cluded the spectrum of the parametric LF model into the iterative DAP algorithm. All

glottal measures were then computed from the LF parameters, avoiding the use of the

noisy inverse filtered signal. The authors concluded that the algorithm performed with a

high accuracy when analyzing synthetic data, although natural data presented more diffi-

culty. Lu (2002) investigates the parametrization of singing speech, using the KLGLOTT88

model to perform an initial joint estimation using convex optimization methods. This is

further refined using the LF model and a non-linear optimization stage. Kim (2003) uses

a modified version of this approach introducing a warping factor in the filter coefficients

in order to improve the accuracy of the matching filter. A similar approach was used in

del Pozo (2008) for the purposes of voice source and duration modelling, applied to the

tasks of voice conversion and speech repair.

2.3.4 Pole-zero modeling

There are several authors using more advanced production models for speech, where both

zeros and poles are used to model the vocal tract. Ding et al. (1997) used and autoregres-

sive model with an exogenous input (ARX) for the speech production process:

s(n) +

p
∑

i=1

ai(n)s(n− i) = g(n) +

q
∑

j=1

bj(n)g(n− j) + e(n). (2.25)

The (observed) speech signal and the (unknown) glottal waveform at time n are repre-

sented by s(n) and g(n) respectively. e(n) agglutinates both the input noise and the model

estimation error. The joint estimation is performed by means of simulated annealing (SA)

and Kalman filtering, using the mean-square estimation error criterion. The iterative al-

gorithm uses SA to select a new set of KLGLOTT88 parameters, and Kalman filtering

to compute the corresponding ARX filter coefficients. This continues until the system

converges to a (global) minimum. They include a final step for correcting the order of

the model (i.e., the number of poles) using a formant tracking algorithm to discard any

ghost formants. The method is validated by analyzing a two-channel speech database,

and achieving reliable estimates of the different parameters (voice source and vocal tract).

The same decomposition algorithm was also used to improve the unit selection module

in the CHATR speech synthesizer (Ding and Campbell, 1997).

According to Ohtsuka and Kasuya (2000), the previous method presented by Ding
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et al. suffers from two main drawbacks. First, the Kalman filtering provides a new set

of coefficients on a point-by-point basis, and they average all the valid formant values to

obtain a single set per pitch period. Furthermore, analyzing female voices with a high

pitch presents difficulties, as well as weak voiced consonants. Ohtsuka and Kasuya pre-

sented an improved algorithm based on the previously reviewed one. To solve the first

problem, they propose using a least-square method to reduce the Kalman coefficients to a

single filter per period. They claim that the second problem owes to the formant tracking

algorithm introducing spectral distortion by simply excluding the roots of the filters not

associated with valid formants. Instead, they include an adaptive prefilter to compensate

for the effects of the disregarding roots on the spectral tilt. Dynamic programming is also

introduced to improve the formant tracking. According to their perceptual experiments

performing analysis-synthesis of a natural speech sentence, their algorithm outperforms

both the method presented in Ding and Campbell (1997) and the mel cepstral method

(Tokuda et al., 1994).

Funaki et al. (1997) propose a combination of a time varying ARMA exogenous model

with glottal excitation together with white Gaussian noise. The MIS method is used to

estimate the ARMAX filter coefficients, and an hybrid approach using genetic algorithms

(GA) and simulated annealing (SA) is employed for estimating the parameters of the KL-

GLOTT88 model (Klatt and Klatt, 1990). Funaki et al. (1997) report that both natural and

synthetic speech can be accurately analyzed with the proposed algorithm. One of the

main drawbacks of this method is the high computational load. For this reason, they fur-

ther introduce the use of Haar or QMF filter-banks for sub-band processing (Funaki et al.,

1998). This not only reduces the computation time, but also achieve a more accurate esti-

mation of the glottal source model parameters due to the improved frequency resolution.

All the methods so far reviewed use the KLGLOTT88 parametric model although it

does not model certain types of voice as well as, say, the LF model. The main reason to

choose this model, is that it presents a simpler formulation, more suitable for certain op-

timization procedures. Fu and Murphy (2004) presented a joint source-filter estimation

method based on the LF model for the glottal source. They separated the joint estimation

procedure in two parts, stating that if the parametric glottal flow derivative were known,

the ARX could be uniquely obtained using the Kalman algorithm. Thus, they proposed

an iterative procedure where at each step, the LF parameters are refined using a descent

algorithm based on the interior trust region method (Coleman and Li, 1996), and where

the filter coefficients were updated applying the Kalman algorithm. Since the problem

is not convex, they needed a good starting point in order to avoid getting stuck into a

local minimum. They used the procedure explained in (Strik, 1998) to obtain an initial

KLGLOTT88 model. The parameters were then directly mapped into the corresponding

LF ones. Fu and Murphy reported the method to be accurate and robust both for syn-
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thetic and natural speech. In their previous, more detailed report, Fu and Murphy (2003)

compared their proposed method with the closed-phase linear prediction (CPLP) and the

iterative adaptive inverse filtering (IAIF) methods. They reported a similar performance

to that of CPLP, and a better one than the obtained with IAIF. One of the main advan-

tages of their method is that no closed-phase information (quite often difficult to obtain)

is needed. Furthermore, separation of non-parametric inverse filtered glottal signal and

glottal noise is inherent to the algorithm.

2.3.5 Spectral methods

So far, we have only dealt with methods using a time-domain parametrization of the voice

source. However, several authors have reported evidence that for the estimation of some

parameters it would improve the accuracy to do it in the frequency domain (Childers

and Ahn, 1995; Childers and Lee, 1991; Fant and Lin, 1998). Arroabarren and Carlosena

(2003b) present an inverse filtering technique using the analytical expression of the spec-

trum of the KLGLOTT88 model. They analyze the speech signal using a hamming win-

dow to frame three or four pitch periods. They compute the several glottal spectrum

candidates using different values of the open quotient (OQ) parameter, and subtract each

of them from the short time spectrum of the speech signal. DAP modeling is then applied

to obtain the corresponding set of coefficients of the all-pole vocal tract filter. From the

different candidates for the OQ, they choose the one resulting in minimum formant ripple

when inverse filtering the speech signal.

2.3.6 Mixed-phase algorithms

A different sort of method are those relying on the mixed-phase model of speech, in which

speech can be divided in both minimum-phase, or causal, and maximum-phase, or an-

ticausal, components (Bozkurt and Dutoit, 2003). Whereas the vocal tract response and

the return phase of the glottis can be considered as minimum-phase signals, the glottal

open phase has been proved to be a maximum-phase signal (Doval et al., 2003). In these

algorithms, both the window used to extract speech frames for the analysis (due to the

phase-based nature of the algorithm) and the GCI location play an crucial role in the suc-

cess of the decomposition (Bozkurt et al., 2005; Drugman et al., 2009a).

One of the main techniques to achieve this mixed-phase decomposition uses the zeros

of the Z-transform (ZZT) (Drugman et al., 2012). The Z-transform X(z) of a series of n

samples x(n) of a signal (n = 1 . . . N ):

X(z) =

N
∑

n=1

x(n) z−n, (2.26)
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Assuming the signal samples are obtained using a carefully designed and located win-

dow, to avoid phase distortion, the roots (zeros) of X(z) are computed: those falling out-

side the unit circle are assigned to the glottal open phase (anticausal component), and the

rest to the vocal tract (causal component) (Bozkurt et al., 2005). The ZZT method has been

shown to outperform other approaches of glottal flow estimation (Sturmel et al., 2007).

The other main technique is based on the complex cepstrum decomposition (CCD)

(Drugman et al., 2009a). The complex cepstrum cx(n) of a signal x(n) can be formulated

as (Proakis and Manolakis, 1996):

cx(n) =
1

2π

π
∫

−π

logX(ω) ej∗ω∗ndω, (2.27)

where X(ω) is the Fourier transform of x(n). The source-filter decomposition is used by

using the following propriety: when x(n) is a causal signal, cx(n) = 0 for n < 0; con-

versely, if x(n) is anticausal, cx(n) = 0 for n > 0. If only the negative indexes of the com-

plex cepstrum are kept, then it is possible to obtain the glottal contribution. (Drugman

et al., 2012) performed a comparative study of glottal source estimation techniques, ob-

taining similar results for CCD and CPLP using clean speech (the performance degraded

when analyzing noisy speech).

2.4 Glottal Quality Measures

Evaluating the performance of an IF algorithm is very difficult, since there are no real (cor-

rect) values that could be used as reference. For certain applications it is possible to assess

it using manual inspection, but for others that is unfeasible. Furthermore, only defining

what the quality of an estimated glottal waveform should be is not an easy task: even

among trained scientists there is often a lack of consensus regarding this matter. Many of

the proposed algorithms evaluate the performance using synthetic data generated using

known glottal and vocal tract data, according to the speech production model adopted in

the study. This way, those values can be used as reference and a numerical evaluation of

the decomposition is possible. Nevertheless, the validity of the results obtained with this

approach could be questioned, since the same model is normally used both in the anal-

ysis and synthesis stages. To overcome this limitations, Alku et al. (2004) proposed the

use of a physical modeling of voice production (vocal folds vibration and acoustic wave

propagation) to generate the synthetic vowels used as testing references (Story and Titze,

1995; Titze, 2002; Titze and Story, 2002).

There are, however, some glottal quality measures (GQM) based on the characteristics

of a theoretical glottal waveform that could be of help here. Although its practical appli-
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cation in automatic glottal waveform estimation techniques has not yet been successful

(Moore and Torres, 2008), it is worth reviewing them here.

2.4.1 Group delay phase

In (Alku et al., 2005) it was proposed to use the group delay function (GDF), the nega-

tive derivative of the spectrum phase, to assess the quality of the inverse filtering. When

computed over a single glottal cycle, the GDF is almost a linear function of frequency

over the largest part of the frequency range. Thus, if the estimation of the vocal tract is

accurate and its poles are correctly canceled, the inverse filtered signal (estimated glottal

waveform) should also present this behavior. Figure 2.7 shows the GDF computed for the

estimated glottal waveform obtained with two different candidates for the glottal epochs.
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Figure 2.7: Group delay computed for two candidate pairs (gci, goi). The left side presents a higher
variance (i.e., a worst inverse filtering).

2.4.2 Phase-plots

Visual (subjective) inspections of phase-plots were proposed in Edwards and Angus

(1996) as a tool to evaluate the quality of estimated glottal waveforms. Bäckström et al.

(2005) defined two objective measures based on phase-plane analysis. Since the glottal

flow waveform can be modeled using a second-order polynomial, its plot on the phase-

plane (g(t), dg/dt) consists of one (closed) loop per glottal cycle. Errors in the estimation

of the VT filter resulting in non-completely removed resonances, have the effect of sec-

ondary loops in the phase-plane, as shown in Fig. 2.8. They proposed two measures that

quantify this effect:

• ppcper, number of cycles per fundamental period. This number should ideally be 1,

with results higher than 2 indicating the presence of formant ripple in the estima-

tion. It is often necessary to threshold this ratio in the range [1, 2] to increase the

robustness.
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2.4 Glottal Quality Measures

• ppcyc, mean sub-cycle length. The size of the sub-cycles is directly proportional to

the amount of formant ripple still present in the estimation. The lower the length of

the sub-cycles, the better the estimation is.

Glottal flow

G
lo

tt
al

fl
o
w

d
er

iv
at

iv
e

-0.5 -0.25 0 0.25 0.5 0.75 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)
Glottal flow

G
lo

tt
al

fl
o
w

d
er

iv
at

iv
e

-0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b)

Figure 2.8: Phase-plots of two glottal candidates: the candidate in (b) (ppcper = 1.733, ppcyc =
0.0054) is of higher quality than that of (a) (ppcper = 3.481, ppcyc = 0.231). This comes from an
extreme test case scenario where two of the vocal tract resonances where not removed.

2.4.3 Kurtosis

The kurtosis is a measure of similarity of a given distribution to the Gaussian distribu-

tion. The range of the kurtosis measures is [−3, inf], where positive and negative values

correspond to narrower and wider peaks of the distribution, respectively (the kurtosis of a

Gaussian distribution is zero). Bäckström et al. (2005) proposed it as a glottal quality mea-

sure, arguing that since the glottal glow is a subgaussian waveform by nature (it has two

distinct peaks as shown in Fig. 2.9), a lower kurtosis should indicate a better estimation.

2.4.4 Harmonics ratio

Moore and Torres (2006, 2008) proposed a GQM measure based on the mean ratio of the

first harmonic peak to other peaks, computed over two different frequency ranges. The

motivation is that the glottal waveform should present a strictly negative spectral slope,

since any resonant structure is removed by the inverse filtering process. Three measures

based on this property of the glottal waveform were proposed:

• hrmn, mean ratio of the first harmonic peak to other peaks,

• hrmx, ratio of the first harmonic peak to the maximum pea,
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Figure 2.9: Glottal flow waveform and corresponding histogram for the kurtosis measure

• linear regression R2 statistic of the log-spectral peaks, computed as

R2
(X) =

∑

i:0<fi<X(v̂i − v̄)2
∑

i:0<fi<X(vi − v̄)2
,

where v represents the logarithmic magnitude of the spectral peaks, f contains their

frequencies (Hz), and v̂ is the best linear fit to v. The magnitudes are normalized

using the mean value v̄.

All these measures are computed over two different frequency ranges X , one comprising

only the lower part of the spectrum (0–1000Hz), and a second one extending from 0–

3500Hz).

2.5 Aspiration noise

So far, we have only dealt with the excitation of the vocal tract due the vibration of the

vocal folds. During the production of unvoiced sounds, and in a lesser measure also dur-

ing voicing (aspiration noise), a turbulent flow acts as the excitation source. Aspiration

noise, although not so extensively research, has been proved to contribute to the natural-

ness of synthetic speech. From turbulent flow theory Cook (1991), the sound pressure of

the turbulent noise is proportional to the square of the volume-velocity of airflow, and

inversely proportional the cross-sectional area of the glottal constriction. Cook has calcu-

lated the likelihood of the existence of aspiration (turbulence) noise, and reported that the

likelihood of turbulence exists during the whole open phase. Maximum sound radiation

power is achieved just when the closing-phase of the glottis begins. He also concluded
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2.5 Aspiration noise

that another high power burst of noise is likely to occur at glottal opening instant, due

to highly pressurized air passing through a small aperture. Hence, two pulses of noise

per glottal cycle are to be expected, occurring at the beginning of the opening and closing

phases.

Klatt (1980); Klatt and Klatt (1990) used two different noise sources in the software

implementation of a formant synthesizer: aspiration source and frication source. Both

were defined in the same way, although they represented noise generated at different lo-

cations: a random Gaussian-noise generator, modulated in amplitude by the fundamental

frequency f0, and a low-pass filter (in practice canceled by the lip-radiation filter). Klatt

used a square waveform of period equal to the fundamental period, with a fixed degree

of amplitude-modulation (50%). The amplitude of the noise waveform was determined

with an independent parameter.

Hermes (1991) simulated breathy vowels by combining low-pass filtered pulse trains

and de-emphasized, high-pass filtered noise bursts. The frequency of the noise burst was

equal to the pulse train frequency (125Hz in the experiments). They varied the phase

difference between the pulses and the noise bursts (between 0 and 2π) to study whether

the two signals were integrated or perceived as segregated. They concluded that in order

to contribute to adding breathiness to the synthetic vowels, the noise bursts should be

synchronized with the pulse trains, should not have excessive peaks and their energy

should be about equal in each pitch period. They chose a cut-off frequency of the high-

pass filter between 1200Hz and 2000Hz, with lower values resulting in a greater degree

of breathiness. The de-emphasis filter was a first order low-pass filter, with a pole at 0.9.

Childers and Ahn (1995); Childers and Lee (1991) used a similar approach, without de-

emphasis.

Lu (2002) neglected the existence of noise bursts at the opening points of the glottis,

and modeled the aspiration noise using two components: and additive white Gaussian

noise to represent the noise floor of the aspiration noise (constant leakage of air through

the glottis), and a pitch synchronous amplitude modulated Gaussian noise. Lu used a

Hanning window for each glottal period, centered around the glottal closing point.

Mehta and Quatieri (2005) studied the use of a modulated noise signal in their speech

production model. They extracted the noise component from the speech signal using a de-

composition method based on the sinusoidal/harmonic model. A linear prediction step

was then performed to estimate the vocal tract filter. After inverse filtering the noise sig-

nal (whitening process), they applied a Hilbert transform followed by a low-pass filtering

in order to extract the envelope. Pitch modification was then performed on the estimated

envelope by means of resampling, and the result was then filtered using the vocal tract

coefficients to obtain the pitch-modified noise signal.
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Matthews et al. (2006) studied the synthesis of breathiness in natural speech by means

of sinusoidal modeling and modulated noise. The harmonics in the sinusoidal model

were used to modulate low-pass filtered white noise, and both amplitude and phase mod-

ulation results were presented. They used three parameters: the amplitude of the mod-

ulated noise, the bandwidth of the low-pass filter, and the lower cutoff frequency (i.e.

minimum harmonic) that was modified. They reported a moderate success in adding

breathiness to the synthetic speech, by measuring with a MOS test the number of sen-

tences the listeners would rate as breathy.

Kim (2003) took a stochastic codebook approach and used the glottal derivative resid-

uals to train a codebook using Principal Component Analysis (PCA) (Duda et al., 2000).

PCA uses the eigenvectors and eigenvalues of the covariance matrix of the data. Since

PCA requires all the input vectors to be of equal size, the compute the Fast Fourier Trans-

form for each glottal residual prior to the PCA analysis. They were able to reduce the di-

mensions of the codebook by ignoring the largest eigenvectors, those capturing the lowest

amount of variance among the input data.

2.6 Proposed approach

For this work we have decided to follow a time-based approach in which the source-filter

decomposition is done using the temporal expression of the glottal models. We need a

robust algorithm that could readily be applied to large amounts of data, since our main

goal is the characterization of the voice source for the purpose of performing prosodic and

spectral manipulations. This is necessary for including the parametrization algorithm in

speech synthesis and voice conversion tasks. In our method, we use the two glottal mod-

els explained before: the KLGLOTT88 model, and the LF model. The relatively simple

formulation of the former allows us to include it in a convex optimization step to obtain

an optimal estimation of the vocal tract parameters. The estimated vocal tract is then used

to obtain the glottal waveform by inverse-filtering the speech signal. The more powerful

LF model is then fitted to this glottal waveform by means of a minimization algorithm,

that due to the LF formulation is non-linear by nature and thus require a good initial esti-

mation to guarantee convergence to the optimal solution. This initial estimate is obtained

by using the previously obtained KLGLOTT88 model parameters. In next chapter we will

explain in detail both the analysis and synthesis methods.
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CHAPTER 3

Speech production system parametrization

In this chapter we present our complete algorithm for the parametrization of natural

speech using the speech production system proposed by Fant, as seen in Sec. 2.1. First

we introduce the main blocks of the algorithm, and then we proceed to explain in detail

each of them.

3.1 Algorithm outline

Our algorithm is based on the idea that, knowing the opening and closing instants of a

glottal cycle, we can decompose a single cycle of speech using the source-filter approach

to obtain the coefficients of the all-pole vocal tract filter and the KLGLOTT88 glottal model

using a convex minimization algorithm. This is the idea around which the different parts

of our algorithm revolve. Thus, we start by giving the details of the convex decomposition

in Section 3.2. The algorithm we have designed around this decomposition consists of the

four main blocks shown in Figure 3.1 and explained below.

In the first block, explained in Section 3.3, we deal with the extraction and optimization

of the glottal epochs (instants of glottal opening and closing). We follow a dual-channel

approach using both the speech signal and a simultaneously recorded laryngograph sig-

nal, since it is available in all of our databases, to obtain an initial estimation of the glottal

epochs. This is explained in detail in Section 3.3.1. Next, we proceed to optimize these

initial locations (Section 3.3.2) by first performing a global synchronization step, which

accounts for the time lag due to the different nature of the two signals being recorded

(Section 3.3.2), and then a separate optimization of the individual GCI and GOI points as

explained in Sections 3.3.2 and 3.3.2.

Once we have the optimal set of glottal epochs, we proceed to perform the source-
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Figure 3.1: Block diagram of our proposed algorithm for source-filter decomposition.

filter estimation. This is done by extending the single-cycle decomposition algorithm of

Section 3.2 to work with multiple, adjacent cycles. We explain this in detail in Section 3.4.

The next block deals with the use of the more advanced LF glottal model to obtain

a better representation of the glottal source. As will be explained in Section 3.5, this is

involves a non-linear least squares minimization.

In the last step of our algorithm, we extract the aspiration noise present in the residual

resulting from the previous LF parametrization. Section 3.6 first outlines the aspiration

noise characteristics, and then explains the details of the extraction and parametrization

process.

3.2 Convex source-filter decomposition

As we have seen in Chapter 2, Section 2.1, in our speech production model the speech

signal s(n) is the result of filtering the true glottal waveform g(n), using an all-pole filter
1

A(z) with coefficients ak to model the vocal tract effect:

S(z) =
1

A(z)
G(z) =

1

1−
∑N

k=1 akz
−1

G(z) frequency domain, (3.1)

s(n) = g(n) +
N
∑

k=1

aks(n− k) time domain. (3.2)
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3.2 Convex source-filter decomposition

Let us suppose that we are able to estimate the filter coefficients (ak). We can then estimate

the inverse-filtered glottal waveform gif by removing the effect of the vocal tract from the

speech signal:

Gif (z) = A(z)S(z) =

(

1−
N
∑

k=1

akz
−1

)

S(z), (3.3)

gif (n) = s(n)−
N
∑

k=1

aks(n− k). (3.4)

For the convex decomposition we will use the KLGLOTT88 model from Section 2.2.1 to

model gif above. Recall that the return phase (tilt) of the glottis is controlled using a low-

pass filter:

TL(z) =
1

1− µz−1
. (3.5)

We can separate the inverse-filtered glottal waveform Gif from eq. (3.3) into its untilted

component G̃if and the tilt filter:

Gif (z) = G̃if (z) ·
1

1− µz−1
, (3.6)

gif (n) = g̃if (n) + µ gif (n− 1) (3.7)

(3.8)

Since both the tilt TL(z) and the vocal tract 1
A(z) filters are linear, we will combine them

into an extended vocal tract filter and compute µ as part of the vocal tract estimation. This

approach is similar to that in Lu (2002) or Kim (2003), as opposed to the a priori tilt elimi-

nation using pre-emphasis used in Childers and Lee (1991) or del Pozo (2008) for instance.

Combining eqs. (3.3) and (3.6), we then have:

G̃if (z) =
(

1− µz−1
)

Gif (z)

=
(

1− µz−1
)

(

1−
N
∑

k=1

akz
−1

)

S(z)

=

(

1−
N+1
∑

k=1

ãkz
−1

)

S(z), (3.9)

where the filter order has been increased from N to N + 1 to accommodate for the extra

parameter µ it now includes. In its time domain form, eq. (3.9) is written as:

g̃if (n) = s(n)−
N+1
∑

k=1

ãks(n− k). (3.10)
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Figure 3.2 shows the differences between gif from eq. (3.4) and g̃if (n) from the equation

above, and their approximations using the KLGLOTT88 and Rosenberg-Klatt models re-

spectively (with and without tilt effect).
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Figure 3.2: Real inverse-filtered gif and parametric KLGLOTT88 gkl glottal waveforms (a), vs Un-
tilted inverse-filtered and estimated Rosenberg-Klatt grk glottal waveforms (b).

The main idea behind our decomposition algorithm is that using an all-pole filter to

model the vocal tract, and the Rosenberg-Klatt parametric model to represent the glottal

waveform, results in the estimation of the filter coefficients and the glottal waveform pa-

rameter (amplitude) being a convex optimization problem (Lu, 2002). Since we want to

model the glottal waveform g̃if using the Rosenberg-Klatt model from Section 2.2.1, we

can rewrite (2.8) to emphasize its linear dependence on the amplitude parameter b. Dur-

ing the glottis’ open phase we then have (in terms of t = n/fs, where fs is the sampling

frequency):

grk(n) = 2 a
n

fs
− 3 b

(

n

fs

)2

= b
n

f2
s

(

2
a

b
fs − 3n

)

= b
n

f2
s

(2Nop − 3n)

= bC(n) 1 ≤ n ≤ Nop, (3.11)

where we have used (2.11) to set the duration Nop (in samples) of the open phase as:

Nop =
a

b
fs = Oq T0 fs, (3.12)

As we can see, with this formulation, the Rosenberg-Klatt model requires only one
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amplitude-related parameter to be estimated (b) since

C(n) =
n (2Nop − 3n)

f2
s

(3.13)

depends only on known parameters (given that the glottal instants GOI/GCI are obtained

outside this optimization step): the sample index n, the sampling frequency fs, and the

duration of the open phase Nop.

We can calculate the glottal source parametrization error using our Rosenberg-Klatt

model by means of (3.10) and (3.11) as:

e(n) = grk(n)− g̃if (n)

=







b · C(n) +
∑N

k=1 ãks(n− k)− s(n) open phase,
∑N

k=1 ãks(n− k)− s(n) closed phase.
(3.14)

This is the error that needs to be minimized by a proper selection of both the filter coeffi-

cients ãk and the KLGLOTT88 amplitude b. We will show below that when we minimize

the L2 norm of the error, this minimization is a convex optimization problem, guaranteed

to have only one minimum (i.e., the optimal solution) (Boyd and Vandenberghe, 2004).

In particular, it pertains to the family of Quadratic Programming (QP) mathematical op-

timization problems, where a quadratic function f(x) of several variables is optimized

(minimized or maximized) w.r.t. x subject to linear constraints on these variables. We

could use L1 or L∞ and solve the problem using Linear Prediction methods, but choos-

ing an L2 norm results in AR filters less prone to instabilities (Lu, 2002). The QP problem

can be formulated as:

min
x

f(x) = min
x

1

2
xTQx+ fTx, (3.15)

subject to one or more linear constraints:

Ax ≤ c inequality constraint, (3.16)

Ex = d equality constraint, (3.17)

where x ∈ ℜn, Q is a n× n symmetric matrix, and f is a n× 1 vector. If Q is also positive

semi-definite, then f(x) is a convex function, and the quadratic program has a global unique

minimum. The solution of this type of problems is well known1 and it exists in closed

from due to the convex properties. We will see next that this is the case for our problem,

so the solution will be a global optimum point. For this work we have chosen a trust

region method implemented in Matlab (Boyd and Vandenberghe, 2004), since they have

1There are many implementations of these algorithms already available and listed in the Neos Optimiza-
tion Guide, available on-line at http://www.mcs.anl.gov/otc/Guide/
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good convergence properties. It is based on the concept of approximating the function to

be minimized with a simpler one on a region around the current local solution and use a

gradient algorithm to iteratively improve the local solution. The trust region is updated

or corrected depending on whether or not the new solution results in an improvement.

The process is repeated until convergence is achieved.

We will use matrix notation to write down the error (3.14) for the whole glottal cycle:

e =























e(1)

e(2)

...

e(P )























=





























C(1) s(0) · · · s(−N)

C(2) s(1) s(−N + 1)
...

...
...

C(Nop) s(Nop − 1) s(Nop − 1−N)

0 s(Nop) s(Nop −N)
...

...
...

0 s(P − 1) · · · s(P −N − 1)















































b

ã1

...

ãN+1



















−























s(1)

s(2)

...

s(P )























≡ Fx− y (3.18)

where P the cycle length and

x = [b ã1 · · · ãN+1]
T (3.19)

is the vector containing the parameters to be estimated. We can now formulate the mini-

mization of the L2 norm of the error (3.18) in matrix notation:

min
x
||e||2 = min

x
||Fx− y||2

= min
x

xTFTFx+ yTy − 2yTFx

= min
x

xTFTFx− 2yTFx,

(3.20)

since yTy is independent of x. Comparing equations (3.20) and (3.15), we can rewrite our

problem to follow the QP formulation using the following identities:

Q = 2FT F (3.21)

f = −2FT y. (3.22)

The solution of (3.20) needs to be constrained in order to be physically meaningful.

For example, the amplitude b of the glottal pulses needs to be positive and the resulting

filters should be stable.
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3.2 Convex source-filter decomposition

3.2.1 Constraints for the convex formulation

The solution to the convex optimization problem must fulfill the following restrictions:

the resulting vocal tract filter must have a resonator characteristic, the filter must be sta-

ble, and the spectral tilt must have the characteristics of a low-pass filter. Since it is not

possible to directly enforce these restrictions without breaking the convexity of the prob-

lem, we will make some compromises. The filter response of the vocal tract is the result of

concatenating a series of digital resonators, second-order filters with a transfer function

given by

R(z) =
d1

1− c1 z−1 − c2 z−2
. (3.23)

The frequency response of a single resonator is shown in figure 3.3. The coefficients d1, c1

and c2 are related to the formant frequency Ff and bandwidth BW :

c2 = −e
−2πBW /fs (3.24)

c1 = 2e−πBW /fs cos(2πFf/fs) (3.25)

d1 = 1− c1 − c2, (3.26)

where fs is the sampling frequency. In this work we consider that d1 = 1, implicitly

incorporating its effect into the amplitude of the glottal waveforms. Thus we can see that

each resonator has a pair of complex conjugate poles:

R(z) =
1

(1− pz−1)(1− p∗z−1)
. (3.27)
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Figure 3.3: Frequency response of a resonator with center frequency 1500 Hz and bandwidth 300 Hz
(sampling frequency of 16 kHz)
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Then, for vocal tract filter length of N coefficients (i.e., N/2 complex conjugate pairs)

we have:

A(z) = 1−
N
∑

k=1

ak z
−k

= (1− p1z
−1)(1− p∗1z

−1) . . . (1− pN/2z
−N/2)(1− p∗N/2z

−N/2). (3.28)

Figure 3.4 shows the transfer function of a female vocal tract, with center frequen-

cies 640, 1100, 2850, 3750 and formant bandwidths 270, 170, 200, 200 (data from Karlsson,

1988). Thus, in order for the vocal tract to have a resonator characteristic, its poles must oc-

cur in complex conjugate pairs as we have seen. This can not be directly ensured given the

problem formulation, and although some times extraneous roots may occur, the resulting

filter often behave as expected. Some authors working on formant tracking place restric-

tions on the roots and prune those considered as not related to the resonators (Childers

and Lee, 1991), although for this work we keep all of them. If the vocal tract were to be

modified, the estimated glottal waveform would need to be recomputed using eq. (3.10)

with the updated filter, and the KLGLOTT88 model would need to be reestimated using

the procedure explained in Section 3.2.2.
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Figure 3.4: Vocal tract transfer function, corresponding to a female subject with center frequencies
(bandwidths) of: 640(270), 1110(170), 2850(200), 3750(200) Hz.

The low-pass spectral tilt can be achieved if the filter coefficient µ is positive and

smaller than 1 for stability. If we combine A(z) from (3.28) with (1− µz−1), we can form
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3.2 Convex source-filter decomposition

the extended polynomial:

Ã(z) = A(z) · (1− µz−1)

= (1− p1z
−1)(1− p∗1z

−1) . . . (1− pN/2z
−N/2)(1− p∗N/2z

−N/2)(1− µz−1)

= 1−
N+1
∑

k=1

ãk z
−k. (3.29)

We see that the last coefficient of the resulting filter, ãN+1, is the product of all the other

poles and µ:

ãN+1 = p1 · p
∗
1 · . . . · pN/2 · p

∗
N/2 · µ

= ‖p1‖
2 · . . . · ‖pN/2‖

2 · µ. (3.30)

Thus, constraining the coefficient ãN+1 to be positive guarantees the low-pass character-

istic of the spectral tilt.

The filter will be stable if all the roots lay within the unit circle in the z-plane. Stability

can not be guaranteed within the formulation of the convex problem but we can place an

upper bound on ãN+1 in order to obtain filters as stable as possible. The upper bound is

computed by placing maximum values to the poles and spectral tilt. We use the values 0.9

for the glottal spectral tilt and 0.985 for the N vocal tract poles (Kim, 2003; Lu, 2002). This

approximation does not always result in stable filters, so after each convex decomposition

step, those roots lying outside the unit circle are inverted. This is a common approach to

guarantee stable filters that does not affect the spectral response of the filter (Proakis and

Manolakis, 1996).

We also need a final constraint to force the amplitude of the KLGLOTT88 glottal wave-

form (b) to be positive. We can now formulate the constraints for the variables ãN+1 and

b in terms of (3.16):

ãN+1 > 0 → (0 · · · 0 −1) · x ≤ 0

ãN+1 ≤ 0.9 · 0.985N → (0 · · · 0 1) · x ≤ 0.9 · 0.985N

b > 0 → (−1 0 · · · 0) · x ≤ 0.

As we can see, our problem has no equality constraints, only inequality ones. From (3.16),

matrix A and vector c are:

A =







0 0 · · · −1

0 0 · · · 1

−1 0 · · · 0






c =







0

0.9 · 0.985N

0
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3.2.2 KLGLOTT88 reestimation from inverse-filtered glottal waveform

The reestimation of the KLGLOTT88 model is not needed unless the vocal tract obtained

during the convex decomposition step were modified outside the algorithm, for instance

by placing restrictions on the maximum allowed bandwidth or minimum formant fre-

quencies like in Childers and Lee (1991). Although in this work we do not perform any

modifications of the vocal tract, we include the KLGLOTT88 reestimation because it will

be used in next chapter to fit the KLGLOTT88 model to the LF model for testing purposes.

To re-estimate the KLGLOTT88 model using gif , we will apply the same method as in

the full convex decomposition algorithm, but restricting the filter order to 1 since only the

µ parameter needs to be estimated. From eq. (3.7) we see, that given the estimated glottal

waveform gif , the tilt effect can be removed as:

g̃if (n) = gif (n)− µ gif (n− 1). (3.31)

In this case, the error from eq. (3.14) is rewritten as:

e(n) = grk(n)− g̃if (n)

=







b · C(n) + µ gif (n− 1)− gif (n) open phase,

µ gif (n− 1)− gif (n) closed phase.
(3.32)

Using matrix notation, we can write the error for the whole cycle length:

e =























e(1)

e(2)

...

e(P )























=





























C(1) gif (0)

C(2) gif (1)
...

...

C(Nop) gif (Nop − 1)

0 gif (Nop)
...

...

0 gif (P − 1)





























(

b

µ

)

−























gif (1)

gif (2)

...

gif (P )























≡ Fx− y (3.33)

where P the cycle length and x = [b µ]′ is the vector containing the two parameters to be

estimated. We can now proceed as in the regular convex decomposition algorithm, using
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3.2 Convex source-filter decomposition

the inequality constraints:

µ > 0 → (0 −1) · x ≤ 0

µ ≤ 0.9 → (0 1) · x ≤ 0.9

b > 0 → (−1 0) · x ≤ 0.

As a result, a new tilt filter coefficient µ and a new KLGLOTT88 amplitude b are obtained.

Figure 3.5 serves as an illustration of this procedure.

Convex

decomposition

order 1

µ

b

TL(z)

grk

gklg̃if

Figure 3.5: Block diagram of the convex gif re-parametrization.

In this section we have seen how to analyze a single cycle of speech to obtain the coef-

ficients of the all-pole vocal tract filter and the KLGLOTT88 glottal model using a convex

minimization algorithm. Now we will explain how this is integrated into the complete

analysis/synthesis algorithm. As we have seen, the location of the glottal epochs needs

to be known a priori. The GOI are required since they delimit the speech segment cor-

responding to a glottal cycle as required to build the error matrix in eq. (3.18). The GCI

indicates the instant when the glottis closes, so it corresponds to the duration in samples of

the open phase (the Rosenberg-Klatt model parameter Nop in eq. (3.12)). We will start by

describing the extraction and optimization of the glottal epochs (instants of glottal open-

ing and closing), and will proceed with the glottal modeling using the LF model, and the

residual parametrization.
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3.3 Estimation of glottal epochs

Correct and accurate extraction of the glottal opening (GOI) and closing (GCI) instants is

a key issue for the success of the glottal parametrization algorithm. In this section we will

explain how an initial estimation is obtained using a dual channel approach that includes

a laryngograph (Section 3.3.1, and then will see how to refine them into the final set of

GOI/GCI (Section 3.3.2).

3.3.1 Initial estimation of glottal epochs

Direct observation of the glottal movements is not feasible when recording large

databases, since it requires intrusive methods like X-ray imaging or high-speed cameras

among others (Fourcin, 2000; Granqvist et al., 2003). We obtain the information of the

glottal epochs using the simultaneously recorded laryngograph signal (EGG), which has

been regarded, with some caution, as an accurate source of information of the glottal

timing behavior (Henrich et al., 2004; Krishnamurthy and Childers, 1986). The laryngo-

graph2 monitors the variations in the conductance of a high frequency signal transmitted

between two electrodes, placed to the neck on each side of the larynx. The opening and

closing of the vocal folds modify the conductivity of the path between the electrodes, and

thus modulate in amplitude the signal transmitted.

The GCIs can be obtained by locating the local minima of the differentiated EGG sig-

nal (dEGG), as shown in Fig. 3.7. The dEGG waveform presents sharps negative peaks3,

which are associated to the glottal closure instants (Henrich et al., 2004; Krishnamurthy

and Childers, 1986; Marasek, 1997). This measurement has been shown to be a very accu-

rate estimation of the GCIs.

Obtaining the opening instants is not such a straightforward task, since it is often dif-

ficult to assess when the glottis has completely opened. Some authors make use of dEGG

as before, locating the local maxima of the signal between consecutive GCI marks (Krish-

namurthy and Childers, 1986). Although this often results in accurate predictions (see

Fig. 3.7a), when dealing with pathological voices or some voice types other than modal,

one often founds that this estimation is inaccurate (Henrich et al., 2004). For instance, in

case of a non-gradual opening of the glottis, the differentiated EGG often presents two

peaks, as can be observed in Fig. 3.7b. A number of methods have been proposed to

overcome this problem (Bouzid and Ellouze, 2009; Orlikoff, 1991), we have adopted a ro-

2Some authors refer to this instrument as Glottograph, since it is used to monitor the activity of the glottis.
However, we prefer the term Laryngograph since what we actually measure is the conductivity of the larynx,
from which indirect knowledge about the glottis phases can be derived.

3We assume a polarization where the increasing impedance measured with the laryngograph coincides
with the signal raising. Speech polarity can be automatically determined and corrected if necessary (Ding
and Campbell, 1998).
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3.3 Estimation of glottal epochs

GCI GCI GCI GCI GCI GCI GCI GCI GCI
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dEGG

(a) Modal voice.
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EGG
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(b) Creaky voice.

Figure 3.6: Laryngograph signal (EGG) and its first derivative (dEGG), corresponding to the vowel
u uttered in two phonations: modal (3.6a) and creaky (3.6b). The vertical lines indicate the glottal
closing instants (labeled GCI) and the glottal opening instants (without label).

bust approach using threshold levels: the GOI corresponds to the time instant where the

ratio of the peak value of the EGG (in that cycle) to the value at the opening instant is

7/3 (Marasek, 1997). Figure 3.7 illustrates this procedure.

The EGG signal needs to be bandpass filtered prior to any processing, due to the ad-

justments in the larynx position every speaker perform while speaking. The movements

of the larynx often are sufficient to alter the impedance between the electrodes, and thus

add a slow variation to the dc level of the signal, as can be seen in Fig. 3.8a. This filter needs

to be designed so that it does not introduce distortion in the EGG signal, otherwise the

temporal measures would be inaccurate. We use in this study a 199-point bandpass linear

FIR filter, with cutoff frequencies at 80Hz and 5000Hz (assuming a sampling frequency

of fs = 16 kHz). To filter the laryngograph signal, we then use a forward-backward step,

by first filtering the EGG signal as usual, reversing the resulting waveform, filtering again

and then reversing the waveform one last time. Thus the lags introduced by each filter-

ing stage cancel each other out and there is no phase distortion. This procedure works
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dEGG
EGG

maxEGG

TH3/7

minEGG

min dEGG

gcigoigci

(a) Middle of vowel /a/

dEGG
EGG

maxEGG

TH3/7

minEGG

min dEGG

gcigoigci

(b) Onset of vowel /u/

Figure 3.7: Glottal timing detection using the laryngograph. In (a) both the 3/7-ratio and maximum
EGG methods give the same results (middle of a sustained vowel), but in (b) the 3/7 is more robust
(vowel onset).
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3.3 Estimation of glottal epochs

with any generic, nonlinear phase response filter (Proakis and Manolakis, 1996). Fig. 3.8b

shows the resulting signal after removing the artifacts and noise.
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(b) Band-pass filtered laryngograph signal

Figure 3.8: Pre-processing of the laryngograph signal to remove low frequency artifacts and noise

Prior to the GCI/GOI location, we perform a coarse estimation of the voiced portions

of the signal using the speech signal. This is necessary since the laryngograph signal

often contains non-negligible bursts of energy in the unvoiced regions that would affect

the performance of the algorithms. For this, we first compute a Moving Average (MA)

smoothed version of the speech signal:

ss(k) =

k+Ns−1
∑

i=k

s(i)/Ns, (3.34)

where s is the original speech signal, ss is the smoothed result, k is the sample index and

Ns is the length of the MA window (20 samples here at a sampling frequency fs = 16 kHz).
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We now proceed to calculate the instantaneous energy of the signal as:

ens(k) =

k+Ne/2
∑

i=k−Ne/2

ss(i)
2, (3.35)

using frames of length Ne = 160 samples (10ms at fs = 16 kHz). The course voiced region

detection is done by selecting those frames k with energy such that ens(k) > th · ¯ens,

where ¯ens is the mean energy computed over all the frames, and th is a threshold set

experimentally to 0.02. Figure 3.9 shows the band-pass filtered laryngograph signal (top),

the original speech signal (middle), and the smoothed speech and instantaneous energy

signals (bottom) in solid lines. The voiced regions resulting from the energy thresholding

are shown with a dash line. As we can see in the top figure, a noisy laryngograph region

occurring during the initial silence has been successfully excluded from the analysis.

In a dual channel (speech and laryngograph signals) approach like this, the EGG sig-

nal needs to be delayed in order to account for the non-negligible period of time required

for the speech flow to pass through the vocal tract. Since our main algorithm individually

corrects the pitch marks (Sec. 3.3.2), at this moment we just apply a global delay of 1ms to

synchronize the voiced regions in both the laryngograph and speech channels (roughly

corresponding to an average vocal tract length of 25cm plus 10cm of space between the

microphone and the speaker).

All the voiced frames are then analyzed in order to extract the GCIs marks using the

minima of the differentiated EGG, as stated above. In practice, it is necessary to post-

process these results in order to eliminate isolated marks or small voiced-regions (we

used 5 as the minimum number of pulses in a voiced frame). We also set minimum and

maximum values for the F0 in the post-processing stage (e.g., close marks due to double

negative peaks in the dEGG). Once this initial set of glottal epochs is obtained, we can

proceed with the optimization of the individual marks, as next section explains.

3.3.2 Optimization of glottal epochs

Using the initial set of epochs extracted from the laryngograph and the estimated voiced

regions, we proceed now to optimize the glottal marks. The optimization is performed

on a voiced region-by-region basis, and for each one, we proceed as follows:

• a better global delay is applied to the region’s GOI/GCI marks to obtain a better

synchronization with the speech signal, improving the generic 1ms delay previously

applied,

• then, the location of each individual GCI in the voiced region is optimized, operation

on a glottal cycle-by-cycle bases,
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(a) Band-pass filtered laryngograph signal (solid) and coarse voice regions (dash)
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Figure 3.9: Coarse voiced regions detection for glottal epochs location using the instantaneous energy
of the MA smoothed speech signal.
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• lastly, each single GOI is individually optimized following a similar procedure.

Each of the three steps of our optimization technique is described in detail in the following

sections.

Global synchronization

In this first step, we search for a better synchronization of the glottal marks and the speech

signal, since the 1 millisecond synchronization used in the previous section is good for

voiced regions alignment, but it is not optimal for exact glottal period alignment. The

algorithm is listed in pseudo-code in 1 and it goes as follows. We conduct an exhaustive

search for the optimal global delay in the range −15 to 5 samples (approximately −1ms

to 0.3ms at fs = 16 kHz), which we found to be sufficient by analyzing a subset of the

corpus. For each lag in this range, the whole GOI/GCI set is delayed, and we perform a

decomposition on a glottal cycle-by-cycle basis: for each speech period k (delimited by the

k and k+1delayed GOIs) in the voiced region, we perform the convex decomposition from

Section 3.2. We obtain an estimation of the KLGLOTT88 model and the vocal tract filter,

which we use to inverse-filter the speech period to obtain the estimated glottal waveform.

We then evaluate the period estimation by computing the mean-squared error between

the estimated (i.e., inverse-filtered) and parametrized (KLGLOTT88) glottal waveforms.

The global error associated to each individual lag is the mean value of each period’s glottal

error. Since we are not yet considering the noise present in the source, we apply a low-

pass filter to both waveforms prior to computing the error. Once we have the averaged

mean-squared error for each set of delayed glottal marks, we chose as optimal global delay
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3.3 Estimation of glottal epochs

the one resulting in minimum distortion.

Algorithm 1: GOI/GCI synchronization

input : Initial GOIs and GCIs

output: Synchronized GOIs and GCIs

foreach VoicedRegion v do

foreach lag ∈ −15 to 5 do
GCIlag ← (GCI ∈ v) + lag;

GOIlag ← (GOI ∈ v) + lag;

foreach GlottalCycle k ∈ v do
speech←SpeechFrame(GOIlag[k] to GOIlag[k + 1]);

[gif , gkl]←CvxDecomposition(GCIlag[k],speech);

errorcycle[k]←Norm2(gif , gkl);

error[lag]←Mean(errorcycle);

opt← argminl(error);

(GCI ∈ v)← (GCI ∈ v) + lags[opt ];

(GOI ∈ v)← (GOI ∈ v) + lags[opt ];

The top figure in 3.10 shows the resulting error function over the whole search range.

As we can see, it presents a clear, sharp minimum corresponding to the optimal synchro-

nization delay (2 samples in our case, denoted with a vertical dotted line). The bottom

figure shows the inverse-filtered (solid) and KLGLOTT88 matched (dash) waveforms cor-

responding to each of the three synchronization lags marked in the error function plot.

The quality of the inverse-filtered waveforms is clearly better for the optimal case (dotted

line in 3.10a, middle figure in 3.10b), than for the other two cases (top and bottom subfig-

ures in 3.10b, corresponding to the lags denoted with a dash and dot-dash lines in 3.10a).

After finding the optimal synchronization lag, the whole set of GCI/GOI marks is delayed

accordingly, and we proceed to improve each mark individually, first the GCI, and then

the GOI. The procedure is detailed in the next two sections.

Local GCI optimization

Once we have globally adjusted the glottal epochs, we proceed to their individual opti-

mization. We start by finding the optimal location of each GCI inside the corresponding

glottal period. The idea is to search for the optimal GCI in the neighboring area around

the initial GCI. We found that a search area of ±10 samples (±0.6ms at fs = 16 kHz)

around the initial GCI was sufficient to find the optimal GCI. Our optimality criterion

here is the minimum parametrization error between gif and gkl. The algorithm is listed

in pseudo code in 2. For each GCI candidate in the search area, a convex decomposition

is performed to obtain the vocal tract filter and the KLGLOTT88 waveform. The inverse

45



Speech production system parametrization

1

0.5

0
151050-5-10-15

E
rr

o
r

Global GCI/GOI delay (samples)

(a) Glottal estimation error (normalized)

Time

A
m

p
li

tu
d

e

(b) Glottal waveforms for three different global synchronization delays (solid: inverse-filtered, dash: KLGLOTT88)

Figure 3.10: Global synchronization. Top figure: error function for the synchronization lags in the
range [-15:15] (chosen for illustrative purposes only). Bottom figure: inverse-filtered and KL-
GLOTT88 glottal waveforms corresponding to the three synchronization lags indicated in the top
figure (optimal: dotted vertical line, candidates: dash and dot-dash vertical lines).
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of the filter is used to obtain an estimation of the glottal waveform, and the mean-square

error is computed. After all the candidates have been tested, the optimal GCI is chosen as

the one resulting in the lower error. This process is repeated for each period in the voiced

region.

Algorithm 2: gci optimization

input : Synchronized GOIs and GCIs

output: Optimized GCIs

foreach VoicedRegion v do

foreach GlottalCycle k ∈ v do
speech←SpeechFrame(GOI[k] to GOI[k + 1]);

foreach lag ∈ −10 to 10 do
cand← GCI[k] + lag;

[gif , gkl]←CvxDecomposition(cand,speech);

error[lag]←Norm2(gif , gkl);

opt← argminl(error);

GCI[k]← GCI[k] + lags[opt];

The top figure in 3.11 shows the glottal error function (normalized to the [0 : 1] range)

for a search area around the initial candidate of ±30 samples at fs = 16 kHz (chosen for

illustrative purposes only, the actual range used in the algorithm is [−10 : 10]). The glottal

waveforms (inverse-filter and KLGLOTT88) corresponding to four lags in the range (opti-

mal: solid line, candidates: dotted, dashed and dot-dashed lines) are shown in the bottom

figure 3.11b. As we can see, the error function presents a sharp minimum indicating the

optimal delay, and the quality of the estimation is clearly better, both in terms of estimated

glottal waveform shape and quality of the KLGLOTT88 matching.

Local GOI optimization

In the last step, for each glottal period, the optimal GOI is searched in the neighborhood

of the initial GOI resulting from the synchronization step. The method, depicted in 3, is

identical to the GCI optimization algorithm, with two differences. First, the search area

around initial GOIs (±20 samples, ±1.25ms at fs = 16 kHz) is increased with respect to

the GCI case (±10). This is necessary since extracting GOIs using a laryngograph signal

is usually less precise and more prone to errors. And second, the glottal cycles are now

delimited using GCIs, so they start during the closed phase and end with the open phase.

The convex decomposition algorithm needs to be reformulated accordingly. In this case,
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(b) Glottal waveforms for the different GCI candidates (solid: inverse-filtered, dash: KLGLOTT88)

Figure 3.11: Local GCI optimization. Top figure: error function for the GCI lags in the range [-
30:30] (chosen for illustrative purposes only). Bottom figure: inverse-filtered and KLGLOTT88
glottal waveforms corresponding to the four lags indicated in the top figure (optimal: solid line,
candidates: dotted, dashed and dot-dashed lines).
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from (2.8) and (3.11) we can write:

g′rk(n) =







0 1 ≤ n < N −Nop

b · C(n− (N −Nop)) N −Nop ≤ n ≤ N.
(3.36)

Were, as in the GOI delimited case, Nop is the duration of the open phase and C(n) is

calculated as before using (3.13). Using (3.36), we can rewrite (3.14) as:

e(n) = grk(n)− g̃if (n)

=







∑N
k=1 ãks(n− k)− s(n) CP

b · C(n− (N −Nop)) +
∑N

k=1 ãks(n− k)− s(n) OP
(3.37)

to emphasize the use of the GCIs as starting points of the glottal cycle (starts with the

closed phase CP, and then the open phase OP). The error (3.18) for the whole glottal cycle

(length P ) is:

e =
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= Fx− y. (3.38)
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The problem is solved as before.

Algorithm 3: GOI optimization

input : Optimized GCIs, synchronized GOIs

output: Optimized GOIs

foreach VoicedRegion v do

foreach GlottalCycle k ∈ v do
speech←SpeechFrame(GCI[k] to GCI[k + 1]);

foreach lag ∈ −20 to 20 do
cand← GOI[k] + lag;

[gif , gkl]←CvxDecomposition(cand,speech);

error[lag]←Norm2(gif , gkl);

opt← argminl(error);

GOI[k]← GOI[k] + lags[opt];

The top figure in 3.12 shows the glottal error function (normalized to the [0 : 1] range)

for a search area around the initial GOI candidate of ±30 samples at fs = 16 kHz (cho-

sen for illustrative purposes only, the actual range used in the algorithm is [−20 : 20]).

The glottal waveforms (inverse-filter and KLGLOTT88) corresponding to four lags in the

range (optimal: solid line, candidates: dotted, dashed and dot-dashed lines) are shown

in the bottom figure 3.12b. As we can see, the error function presents a clear minimum

indicating the optimal delay. Compared with the GCI error function shown in 3.11a, one

can clearly see that the GOI error function is much smoother. This is due to the opening

of the glottis being more gradual than its closing, which is generally much sudden. As

in the GCI case, the quality of the estimation is clearly better for the optimal lag, both in

terms of estimated glottal waveform shape and quality of the KLGLOTT88 matching.

With the optimized set of GOI/GCI, we can now proceed to the main block of our

algorithm in which the optimal parameters of the voice source and vocal tract filter are

estimated.

3.4 Source-filter estimation

In this section we detail our method for obtaining the definite estimation of the vocal

tract filter coefficients and the voice source parameters, in which several glottal cycles

are simultaneously analyzed. This is convenient in order to increase the robustness of

the analysis (e.g., in case of very short lengths of the glottal periods, such as occur in

high-pitched female voices). Furthermore, tying some of the parameters in the multi-

frame analysis can lead to better continuity properties of the estimation. So far we have

used single-cycle source-filter decompositions to optimize the glottal epochs, and thus the
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Figure 3.12: Local GOI optimization. Top figure: error function for the GOI lags in the range [-
30:30] (chosen for illustrative purposes only). Bottom figure: inverse-filtered and KLGLOTT88
glottal waveforms corresponding to the four lags indicated in the top figure (optimal: solid line,
candidates: dotted, dashed and dot-dashed lines).

51



Speech production system parametrization

convex optimization problem has been formulated on a period-by-period basis, where

each glottal cycle is individually analyzed. We will first formulate the problem for the

multi-cycle case, and then the constraints will be modified accordingly.

3.4.1 Multi-cycle formulation

For this work, we force the modified vocal tract filter (i.e., including the low-pass filter co-

efficient µ associated to the KLGLOTT88 model) to be the same for all the glottal cycles in

the analyzed frame, while we allow independent KLGLOTT88 amplitudes (the parame-

ter b) for each cycle. This approach has the benefit of providing smoother estimates while

preserving the dynamic characteristics of the speech signal. We want to obtain the pa-

rameters that minimize the parametrization error for each cycle in the analysis frame:

e(n) = grk(n)− ĝif (n)

=







































































































b1C1(n) +
∑N+1

k=1 ãks(n− k)− s(n) n ∈ OP1
∑N+1

k=1 ãks(n− k)− s(n) n ∈ CP1

b2C2(n) +
∑N+1

k=1 ãks(n− k)− s(n) n ∈ OP2
∑N+1

k=1 ãks(n− k)− s(n) n ∈ CP2

...
...

bM CM (n) +
∑N+1

k=1 ãks(n− k)− s(n) n ∈ OPM
∑N+1

k=1 ãks(n− k)− s(n) n ∈ CPM

(3.39)

where we have simplified the notation using Ci(n) = n(2N i
op − 3n), and OPi and CPi are

the open and closed phases for glottal cycle i inside the analysis frame. Since the error is
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linear w.r.t. our unknown variables, we can rewrite eq. 3.39 in matrix form as:

e = F



































b1

b2
...

bM

ã1

...

ãN+1
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s(1)

s(2)

...

s(P )























≡ Fx− y, (3.40)

where the matrix F is written as:

F =



































































































C1(1) 0 · · · 0 s(0) · · · s(−N)
...

...
. . .

... s(1) s(−N + 1)

C1(N
1
op) 0 · · · 0

...
...

...
...

. . .
...

...
...

0 0 · · · 0
...

...

0 C2(1) · · · 0
...

...
...

...
. . .

...
...

...

0 C2(N
2
op) · · · 0

...
...

...
...

. . .
...

...
...

0 0 · · · 0
...

...

...
...

...
...

...

0 0 · · · CM (1)
...

...
...

...
. . .

...
...

...

0 0 · · · CM (NM
op )
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. . .
... s(P − 2) s(P −N − 2)

0 0 · · · 0 s(P − 1) · · · s(P −N − 1)



































































































, (3.41)

where Nm
op is the GCI of the mth cycle inside the analysis frame.
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3.4.2 Multi-cycle constraints

When working with multi-cycle analysis with independent glottal amplitudes, we have

to include as many constraints as necessary. The vector of variables in this case is x =

[b1 b2 · · · bM ã1 · · · ãN+1], and the constraints are :

ãN+1 > 0 → (0 · · · 0 −1) · x ≤ 0

ãN+1 ≤ 0.9 · 0.985N → (0 · · · 0 1) · x ≤ 0.9 · 0.985N

b1 > 0 → (−1 0 · · · 0) · x ≤ 0

b2 > 0 → (0 −1 0 · · · 0) · x ≤ 0

bM > 0 → (0 · · · −1 · · · 0) · x ≤ 0.

In this case, matrix A and vector c are:

A =























0 · · · · · · 0 0 · · · −1

0 · · · · · · 0 0 · · · 1

−1 0 · · · 0 0 · · · 0

0 −1 · · · 0 0 · · · 0
...

...
. . .

... 0 · · · 0

0 0 · · · −1 0 · · · 0























c =























0

0.9 · 0.985N

0

0

· · ·

0























3.4.3 Inverse filtering

Each analysis frame was analyzed with the convex decomposition algorithm enforcing the

same vocal tract filter for all of them, but allowing for independent glottal amplitudes. The

resulting vocal tract filter and corresponding glottal amplitude was used as the parameter

set for the cycle. The procedure is illustrated in Figure 3.13.

3.5 LF parametrization

As a result of the previous steps, we obtain an initial estimation of the noisy glottal wave-

form by inverse-filtering the speech with the vocal tract filter, and an optimal approxi-

mation using the KLGLOTT88 model 3.14. As stated before, the KLGLOTT88 model is

a simple model, useful for the mathematical formulation of the problem; there are other

models better suited for a wider range of voice types. For this thesis we have chosen the

LF model, since it is widely accepted and has been used in several research projects. The

next step is then to reparametrize the differentiated glottal inverse waveform with the LF

model.
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CONVEX
SOURCE-FILTER

DECOMPOSITION

. . . . .....

b b b b bbbbb

a1 a1 a1 a1 a1a1a1a1a1
a2 a2 a2 a2 a2a2a2a2a2

aN aN aN aN aNaNaNaNaN

Figure 3.13: Block diagram of the multi-cycle source-filter decomposition algorithm.
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Convex
Decomposition

Inverse
Filtering

LF
Parametrization

LF

KLGLOTT88

VOCAL TRACTSPEECH

Inverse-filtered

gkl

gif

glf

Figure 3.14: LF parametrization scheme

3.5.1 Optimization

With this initial estimate, the parameter set is optimized via constrained non-linear opti-

mization methods (Lu, 2002; Strik et al., 1993). The optimization was done using a non-

linear least squares algorithm, which solves problems of the form:

min
θ
‖f(θ)‖22 = min

θ
(f1(θ)

2 + f2(θ)
2 + · · ·+ fk(θ)

2). (3.42)

In our case, we want to minimize the L2-norm of the error between the inverse-filtered

glottal waveform gif (n) and the LF parametrization glf (n). Prior to any processing, we

will minimize the effect of the noise present in the inverse-filtered waveform by low-pass

filtering both gif and glf . To this effect, we will using a Blackman window of length 7(Strik

et al., 1993). Figure 3.15 presents the impulse (upper part) and frequency (lower part)

response of this filter. As we can see, the cut-off frequency fc of the filter can be adjusted

by changing the length of the Blackman window. For this work, after analyzing a subset

of the residual waveforms, we have found a cut-off frequency of 2 kHz to be sufficient.

Thus, the selected Blackman window’s length is 7 samples.

Thus, we can set the error function to:

f(θ) = gif − glf |θ, (3.43)

where θ = (t0, tp, te, ta, Ee). And then, we construct the minimization problem (3.42)

using:

fk(θ)
2 = (gif (k)− glf (k)|θ)

2. (3.44)

When discretizing the LF model equation, it is important to keep the temporal values

to its original value, allowing them to fall between sample values. This is to avoid the

staircase effect when computing the error, which could result in the minimization algo-

rithm getting stuck in a local, non-optimum minimum, as illustrated in Figure 3.16 for the

case of the te value.
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Figure 3.15: Impulse and frequency response of the Blackman window based low-pass filter for different
window lengths (7, 9 and 11 samples).
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Integer LF
Non-integer LF

R
M

S
E

Time

Figure 3.16: Illustration of the staircase effect during the estimation of the te parameter in the LF
model in the integer vs. non-integer case.

To solve this constrained, non-linear data fitting problem, we use an optimization algo-

rithm based on the interior trust region approach (Coleman and Li, 1996), implemented in

the Matlab Optimization Toolbox. These sort of algorithms have good convergence prop-

erties and they are both reliable and robust, making them appropriate to ill-conditioned

problems (Yuan, 2000). Trust region algorithms solve the minimization problem itera-

tively. At each iteration, a model that approximates the function to be minimized is built

near the current estimate of solution. The solution of this simplified model is then taken

as the next iterative point. The key aspect is that this solution is only trusted in a region

near the current iterate (the trust region). This region is adjusted from iteration to itera-

tion, depending on how well the approximated model fits the original model: when the

fitting is satisfactory, the trust region can be kept or enlarged, otherwise, it is reduced and

the iteration repeated. The model constraints are incorporated into the problem by mak-

ing the trust region be a subset of the feasible region (i.e., the region in which a solution

complies with the constraints and is thus valid) (Coleman and Li, 1996).

3.5.2 Initialization

The fitting of an LF model to the inverse filtered speech signal is a well-understood and

documented process (Strik, 1998; Strik and Boves, 1994; Strik et al., 1993). One of the

problems with these algorithms is that the inverse filtered signal is very noisy, and it

requires the use of a low-pass filter to achieve proper fitting. The same low-pass filter

should be used when matching the LF waveform. Since the fitting is performed by means

of non-linear optimization algorithms, the starting point should be robust enough to avoid
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3.5 LF parametrization

ending in a local (non-optimal) minimum.

One approach to obtain the initial estimations of the model parameters is identifying

the minimum value and the zero-crossings of the estimated inverse-filtered glottal wave-

form gif , as shown in Fig. 3.17: te is set to the time at which the minimum of the derivative

glottal waveform occurs (tmin); Ee is set to the value at this point (gmin); tc is set to the time

at which the next zero-crossing to the right of tmin occurs (ZCend); tp is set to the time at

which the next zero-crossing to the left of tmin occurs (ZCmid); to is set to the time at which

the first zero-crossing occurs ZCini, starting from ZCmid. The parameter controlling the

effective duration of the return phase (ta) is generally obtained by fitting the return branch

of the LF model to the inverse-filtered glottal waveform.

Time

ZCini ZCmid tmin ZCend

gmin

0

Figure 3.17: Standard initialization of the LF parameters using amplitudes, zero-crossings and max-
ima/minima of the estimated glottal waveform gif obtained by inverse filtering.

One of the main problems with this approach, is that the quality of the matching is

highly influenced by the level of noise present in the inverse-filtered speech signal (Strik

et al., 1993). In our work, we have decided to take advantage of the similarities between the

parametric KLGLOTT88 model obtained in the optimization step and the final LF model.

Ee is set to the minimum value of gKL, te to the time position of this minimum, and tp

as the zero-crossing to the left of te. Since the glottal cycle length are already available, tc

and t0 are set to the end of the glottal cycle. The ta parameter of the LF model controlling

the abruptness of the glottal closure has no direct equivalent in the KLGLOTT88 model.

We could obtain it by fitting the return branches of both the LF and KLGLOTT88 models,

but we will use a more elegant approach. As we have seen in eq. 2.23 Section 2.2.2, ta

is proportional to a frequency Fa where an extra −6 dB/octave are added to the source

spectrum. Thus, an elegant way to obtain a first approximation for Fa (and then ta) is to

set it to the cut-off frequency fc of the KLGLOTT88 tilt filter TL(z)4. Now, we can obtain

4The 1st-order FIR filter and its power spectrum equation are H(ω) = 1
1−µ e−jω and ‖H(ω)‖2 =
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the initial estimation for ta by setting Fa ≈ fc:

ta =
1

2πFa
≈

1

2πfc
=

1

fs , arccos
(

2− 1+µ2

2µ

) . (3.45)

We have found this method to be faster and more accurate than the traditional approach

of obtaining ta by fitting the return branch (Strik et al., 1993).

After the LF modeling presented in this section, we can generate synthetic speech ap-

plying the synthesis equation (3.2), using the LF train of glottal pulses and the estimated

vocal tract filters. However, since we are ignoring the effects of the aspiration noise, the

quality of the resulting speech will still be quite poor. We performed and informal listen-

ing test resynthesizing the original sentences, and the resulting speech was described as

lacking richness and sounding as muffled, typical of a vocoder-like scheme. This was to

be expected, since we are not including any of the aspiration noise present in the original

speech, which greatly improves the naturalness.

3.6 Glottal residual parametrization

We will extract the noise component from the speech signal by computing the glottal

residual (i.e., LF parametrization error). Then we will model the aspiration noise us-

ing three components, corresponding to the main characteristics identified by turbulence

noise theory (Section 2.5):

• a constant leakage during the whole glottal cycle,

• a primary burst of noise occurring at the beginning of the closing-phase,

• and a secondary one after the glottis opens.

We will start by computing the glottal residual (i.e., LF parametrization error) as:

gres(n) = gif (n)− glf (n), (3.46)

where gif is the real glottal waveform obtained by inverse-filtering the speech with the

vocal tract filter, and glf is the optimal parametrization using the LF model. Ideally, this

residual should contain only the aspiration noise present in the original speech, but, as

1
1−2µ cosω+µ2 . Since at the cutoff frequency fc at 3dB it holds ‖H(ω = 2π fc

fs
)‖2 = ‖H(0)‖2

2
, we can then

compute fc = fs
2π

arccos
(

2− 1+µ2

2µ

)

, with fs being the sampling frequency.
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3.6 Glottal residual parametrization

expected, this is not the case due to several factors: real aspiration noise not considered

in the convex formulation; modeling errors (LF glottal parametrization errors, vocal tract

filter mismatch, etc.); intrinsic errors of the simplified model for the human speech pro-

duction system (nasalization, coupling between vocal tract and sub-glottal cavities, etc.).

As a result, the residual waveform does not correspond to the shapes one would expect

from turbulent noise theory (Section 2.5, page 24).

In theory, the aspiration noise should consist of additive, white Gaussian noise present

during the whole glottal cycle, and a burst of noise at the beginning of the closing phase.

This can be clearly seen in Fig. 3.18: in the upper part (3.18a) we see an artificially gen-

erated segment of aspiration noise conforming to the theory; in the lower part (3.18b) we

have a segment of the real glottal residual.
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A
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d

e

176 177 178 179 180 181 182 183

0

(a) Aspiration noise theoretical sample segment.
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(b) LF parametrization error real segment.

Figure 3.18: Comparison of a theoretical segment of aspiration noise (a) and a real segment of glottal
parametrization residual (b)

The objective here is to condition the glottal residual from (3.46), so it resembles the

predicted aspiration noise waveforms, and to parametrize the resulting waveform with

as few parameters as possible while retaining good resynthesis quality. The method we
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propose to parametrize the residual is divided in three steps:

• Residual whitening, to eliminate extraneous components in the glottal error (mainly

occurring in the lower bands of the spectrum),

• Noise envelope extraction,

• Envelope parametrization.

The process is illustrated in Figure 3.19.

RESIDUAL
WHITENING

ENVELOPE
EXTRACTION

ENVELOPE
PARAMETRIZATION

Aspiration noise Noise envelope

PARAMETERS

Glottal residual

Figure 3.19: Proposed scheme to parametrize the glottal residual.

3.6.1 Residual whitening

The first step consist of whitening the residual by eliminating the extraneous components

in the glottal error. Since they are mainly mainly present in the lower band of the spec-

trum, we have implemented the following three strategies:

• High-pass filtering (500, 1000, 2000, 3000 and 4000Hz)

• Linear prediction (LP) filtering (orders 2, 4, 8 and 16),

• Combined LP and high-pass filtering.

The whole scheme is depicted in Figure 3.20. The procedure to select the best whitening

technique involve visual inspection to assess that the residual waveforms have been well

conditioned, and informal listening tests to evaluate whether the whitening process in-

troduces unacceptable degradation. This was tested by adding the residual and LF wave-

forms, and resynthesizing them using the vocal tract filter estimated before.

The first obvious approach we tried was to high-pass filter the residual to eliminate

the low-frequency fluctuations present in the signal. Figure 3.21 shows a segment of the

original residual, and the result of high-pass filtering at different cut-off frequencies (500,

1000, 2000 and 4000Hz). As we can see in the figure, the method is successful in eliminat-

ing the non-desired characteristics of the residual when we reach a cut-off frequency of
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STRATEGY 1: HIGH-PASS FILTERING

Glottal residual High-pass
fi l ter ing

Aspiration noise

STRATEGY 2: LINEAR PREDICTION INVERSE FILTERING

Low-order
LP analysis

Glottal residual
Inverse 
f i l ter ing

Aspiration noise

STRATEGY 3: LINEAR PREDICTION INVERSE FILTERING + HIGH-PASS FILTERING

Low-order
LP analysis

Glottal residual
Inverse 
f i l ter ing

High-pass
fi l ter ing

Aspiration noise

Figure 3.20: Proposed scheme to whiten the glottal residual prior to parametrization.

2000Hz. In order to evaluate the quality, we performed an informal listening test where

the high-pass filtered residual was added to the LF glottal waveform, and the resulting

(noisy) glottal waveforms (one for each cut-off frequency) were synthesized using the vo-

cal tract filters. The test showed that with a cutoff frequency higher than 1000Hz the

synthetic voice was noticeably degraded and it lacked naturalness.

Since with the high-pass filter at 1000Hz the residual waveforms still contained extra-

neous components, we tried using linear prediction (LP) analysis to estimate a low-order

filter, and then use it to whiten the residual. In Figure 3.22 we can see a segment of the
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Time

LF error

500Hz

1kHz

2kHz

4kHz

176 177 178 179 180 181 182 183 184 185 186 187

Figure 3.21: Original LF parametrization error and residual after whitening using a high-pass filter
with cut-off frequencies of 500, 1000, 2000 and 4000 Hz. The numbered ticks mark the gois;
unnumbered ticks mark the gcis.

original residual, and the result of applying a whitening filter using LP analysis of differ-

ent orders. Visual assessment of the conditioned residual waveforms using this method

did not show any advantage with filter orders higher than 2. However, we also ran a lis-

tening test where the whitened residual was added to the LF glottal waveform and then

synthesized (one waveform for each of the LP orders), the results showing that the quality

improves slightly when increasing from 2 to 4 coefficients the order of the filter. Further

increases did not show any improvement in terms of quality.

However, in terms of waveform shape, the LP whitening step can be further improved

by applying a high-pass filter to the LP residual. We tried again the same filters as in the

high-pass filtering approach, with cut-off frequencies of 500, 1000, 2000 and 4000Hz. Vi-

sual inspection of the results in Figure 3.23 show that from 1000Hz onwards, the residual

waveforms are more adequate for envelope extraction and parametrization.

The final whitening filter is then a combination of a 4th order LP filter (H4
lp), followed

by a high-pass filter with cut-off frequency fc = 1000Hz (H1 kHz
hp ). In the z-domain, the

whitened residual rwhite is computed as:

Rwhite(z) =
H1 kHz

hp (z)

H4
lp(z)

·Gres(z). (3.47)
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Time

LF error

2nd order

4th order

8th order

16th order

176 177 178 179 180 181 182 183 184 185 186 187

Figure 3.22: Original LF parametrization error and residual after whitening using linear prediction
(LP) filters of orders 2, 4, 8 and 16. The numbered ticks mark the gois; unnumbered ticks mark the
gcis.

where Gres is the glottal residual from (3.46). Once the residual has been properly condi-

tioned, we can proceed with the extraction and parametrization of the noise envelope.

3.6.2 Envelope extraction and parametrization

The envelope is extracted using the Hilbert transform, and then applying a low-pass filter

to eliminate spurious components. Let rwhite be the residual from (3.47) after the whiten-

ing process explained in the previous section. The envelope is computed as:

renv =
√

řwhite · ř∗white, (3.48)

where ·̌ denotes the Hilbert transform, and ∗ denotes the conjugate. Prior to the

parametrization step, we apply a low-pass filter hfclp to renv (cut-off frequency fc = 2 f0),

to reduce the effect of the noise on the fitting procedure explained below:

r̃env(n) = hfclp ⋆ renv(n), (3.49)

where ⋆ denotes convolution. In Fig. 3.24 we can see two glottal cycles of the whitened

residual, the Hilbert envelope, and the low-pass filtered envelope used for parametriza-
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Time

LF error

4th+ 500Hz

4th+ 1kHz

4th+ 2kHz

4th+ 4kHz

176 177 178 179 180 181 182 183 184 185 186 187

Figure 3.23: Original LF parametrization error and residual after whitening using a combination of
a 4th order LP filter, and a high-pass filter of cut-off frequencies of 500, 1000, 2000 and 4000 Hz.
The numbered ticks mark the gois; unnumbered ticks mark the gcis.

tion.

We will use amplitude modulated high-pass filtered white Gaussian noise to represent

the aspiration noise. As we can see in Fig.3.25, the modulating envelope consists of three

components: a constant, base-floor level (blvl), accounting for the constant leakage present

during the whole glottal cycle, a window centered around the GCI, which accounts for

the noise burst predicted at the beginning of the closing phase, and a second window

account for the secondary burst occurring after the glottis opens. After inspecting the

residuals, we experimented with three different windows for the modulation part: two

bell-shaped, smooth windows (a Gaussian window Wgau and a Hanning window Whan),
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182 183 184

0

Figure 3.24: Noise envelope extraction. Whitened glottal residual (grey), original Hilbert envelope
(blue) and low-pass filtered final envelope (red) for two complete glottal cycles.

and a sharper window (a exponential window Wexp). The windows are formulated as:

Wgau(t) =

{

e
− 1

2
( t−wc

wl
)2

e−
1
2
( t−wc

wr
)2

0 ≤ t ≤ wc

wc < t ≤ 1.

Whan(t) =



























0
1
2 −

1
2 cos

(

π t−wc+wl
wl

)

1
2 −

1
2 cos

(

π t−wc+wr
wr

)

0

0 ≤ t < wc − wl

wc − wl ≤ t ≤ wc

wc < t ≤ wc + wr

0 ≤ t < 1.

Wexp(t) =

{

(

et wl − 1
)

/ewc wl

(

ewr (1−t) − 1
)

/ewr (1−wc)

0 ≤ t ≤ wc

wc < t ≤ 1.

(3.50)

In all three cases, t is constrained to the normalized glottal cycle’s duration: t ∈ [0, 1].

wc represents the window’s center inside the glottal cycle, and wl and wr are the widths

of the left and right parts respectively. These are not required to be equal in this generic

asymmetric formulation.

In order to select the optimal type of window (Gaussian, Hanning or exponential), the

number of windows (1 or 2) and their symmetry, for each of the three window types, we
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generated four synthetic envelopes using the following configurations:

r̂a2env(n) = blvl + w1
lvl ·W

1
x (n/N ;w1

c , w
1
l , w

1
r)

+ w2
lvl ·W

2
x (n/N ;w2

c , w
2
l , w

2
r) (3.51)

r̂s2env(n) = blvl + w1
lvl ·W

1
x,sym(n/N ;w1

c , w
1
l )

+ w2
lvl ·W

2
x,sym(n/N ;w2

c , w
2
l ) (3.52)

r̂a1env(n) = blvl + w1
lvl ·W

1
x (n/N ;w1

c , w
1
l , w

1
r) (3.53)

r̂s1env(n) = blvl + w1
lvl ·W

1
x,sym(n/N ;w1

c , w
1
l ) (3.54)

where the superscripts 1 and 2 denote the window number, Wx is the window (Gaussian,

Hanning or exponential), and the subscript sym indicates that the window is symmetric

(i.e., wl = wc). The r̂env superscripts a2, s2, a1 and s1 denote the symmetry of the window

(a for asymmetric, s for symmetric), and the number of windows (1 or 2). Figure 3.25

shows a sample synthetic envelope r̂a2env using Hanning windows, and the corresponding

synthetic aspiration noise.

w1
l w1

rw2
l w2

r

w1
lvlw2

lvl

Synthetic noise
Parametric envelope

0 w2
c w1

c
1

0

blvl

Figure 3.25: Proposed method for residual envelope parametrization: a constant level (nlvl) and two
modulating Hanning windows: the primary window centered at w1

c , with amplitude w1
lvl and left

and right amplitudes w1
l and w1

r . A secondary, optional window is situated at w2
c , with amplitude

w2
lvl and left and right amplitudes w2

l and w2
r respectively.

The synthetic envelope parameters from equations (3.51)–(3.54) are obtained by fitting

each of them to the extracted, low-pass filtered envelope from equation (3.49). The fitting
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is done on a period-by-period basis, where for each period the following error norm is

minimized using a non-linear least squares step:

min
θxy
‖r̂xyenv(θ

xy)− r̃env‖
2
2, (3.55)

where x ∈ [a, s] and y ∈ [1, 2] as above, and θxy is the vector of parameters:
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To select the optimal parametrization (window type; symmetric or asymmetric windows;

1 or 2 windows), we compute the SNR between the real and the 12 parametrized noise

envelopes as:

SNRr = 10 log10

(

r̃env

r̂
xy
env(θxy)− r̃env

)2

(3.60)

Windowing function

S
N

R
(d

B
)

a2 s2 a1 s1

Gaussian Hanning Exponential
10

12

14

16

Figure 3.26: Noise envelope parametrization results, using three different windowing functions (Han-
ning, Exponential, Gaussian), symmetric (s) and asymmetric (s), with 1 or 2 windows per cycle.

Figure 3.26 shows the results in terms of averaged SNR between the real and the

parametrized noise envelopes. As the figure shows, the two bell-shaped windows work

better than the sharp window. Using the complete configuration (2 asymmetric windows

per cycle), the Gaussian window gives slightly better results than the Hanning window.

However, once we start reducing the parameter set dimensionality, the later performs bet-

ter. By informal listening tests it was determined that there was no noticeable degradation
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Speech production system parametrization

when using 1 symmetric window, and since we are interested in reducing the dimension-

ality of our overall parameter set, we will choose the configuration with 1 symmetric Han-

ning windows for the rest of this work. Thus, the equation to generate the synthetic noise

envelope using one symmetric Hanning window is:

r̂s1env(n) = blvl + wlvl ·Whann,sym(n/N ;wc, wl) (3.61)

where, as explained before, Whann,sym is a symmetric Hanning window, blvl is the level

of the noise base, wlvl the Hanning window amplitude, wc its position inside the glottal

cycle, and wl the window width.

To generate the synthetic residual, the envelope r̂s1env from eq. (3.61) is used to modulate

in amplitude high-pass filtered (cutoff frequency of 1 kHz, as used when whitening the

residual) white Gaussian noise for the duration of the glottal period. Mathematically, the

synthetic glottal residual ĝres can be written as:

ĝres = r̂s1env · (N (0, 1) ⋆ hhp), (3.62)

whereN (0, 1) is additive white Gaussian noise (zero mean and unitary variance), ⋆ indi-

cates convolution and hhp is the high-pass filter.

3.7 Synthetic speech generation

Once the analysis of the voiced segments is completed, we have have a set of parameters

for each glottal period. Each voiced period is synthesized by:

• generating the LF glottal waveform using eq. (2.15),

• generating the artificial aspiration noise using eq. (3.62),

• adding the LF and noise waveforms,

• and filtering them with the vocal tract filter using eq. (3.2).

This can be formulated as:

ŝ(n) = gllf (n) + ĝlres(n) +

N
∑

k=1

âlk ŝ(n− k), nl
beg ≤ n ≤ nl

end. (3.63)

where l denotes the glottal period l, glf is the LF glottal waveform, n̂asp is the artificial

aspiration noise, and nl
beg and nl

end indicate the beginning and end of each glottal period.

The LF waveform is generated by directly using the model equation (2.15).
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3.8 Conclusions

Before generating the synthetic speech, we need to complete the analysis of the un-

voiced speech segments. We use a standard LPC approach, where each unvoiced segment

is divided into 10ms frames, and each of them is analyzed by Linear Prediction (LP). As

a result, for each unvoiced frame, we have a vector of LSFs coefficients representing the

vocal tract filter, and a scalar noise variance representing the error. Thus, each unvoiced

frame is synthesized by:

• generating zero-mean, white Gaussian noise with the appropriate variance,

• and filtering it with the vocal tract filter.

The complete synthesis scheme is depicted in Fig.3.27.

NOISE
PARAMETERS

NOISE
ENVELOPE

GENERATION

HIGH-PASS FILTER

SYNTHETIC
ASPIRATION

NOISE

RANDOM
NOISE

GENERATOR

LF
PARAMETERS

GLOTTAL
WAVEFORM

GENERATION LF
GLOTTAL

WAVEFORM

UNVOICED
SOURCE

VOICED
SOURCE

VOCAL
TRACT

PARAMETERS

VOICED
UNVOICED
SELECTION

SYNTHETIC
SPEECH

UV NOISE
VARIANCE

VOCAL TRACT
FILTER

Figure 3.27: Block diagram of the complete speech generation algorithm.

3.8 Conclusions

The idea of exploiting the convexity of the problem resulting from minimizing the error

between the inverse-filtered and parametric (Rosenberg-Klatt) glottal waveforms has been

used in a number of studies. Lu (2002) presented a method for singing synthesis in which

the singing speech was analyzed on a cycle-by-cycle basis, and an extra optimization step

was introduced to obtain the open quotient, necessary for the location of the gci/goi. The

aspiration noise was obtained by performing waveform denoising using wavelet decom-

position, and then it was modeled using a similar envelope parametrization approach to
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Speech production system parametrization

the one we have presented here. Kim (2003) presented a similar procedure using warped

linear-prediction integrated into a HMM-based analysis/synthesis algorithm for singing

speech. The possibility of several cycles being simultaneously analyzed was included to

deal with the extremely short periods corresponding to the higher frequencies common

in singing speech. The aspiration noise of the model was tackled by means of a stochastic

codebook obtained using principal component analysis (PCA). Our source-filter decom-

position algorithm (Pérez and Bonafonte, 2005, 2009) is based on the method proposed in

Lu (2002), differing in several aspects in order to increase the robustness of the algorithm.

We locate the goi/gci using the laryngograph signal and then proceed to the optimization

of this initial estimation using convex optimization. The multi-cycle analysis we propose

to increase the robustness of the estimations differs from that in Kim (2003) in that we tie

the amplitudes of the glottal cycles in the analysis frame to obtain smoother estimates of

the source-filter parameters. A similar approach to that in Lu (2002) or Pérez and Bona-

fonte (2005) was later proposed in del Pozo (2008); del Pozo and Young (2008) to estimate

the source-filter components in a voice conversion system, with some differences. The

glottal tilt parameter µ was estimated outside of the convex optimization step by means of

adaptive pre-emphasis. The glottal aspiration noise is also obtained by means of wavelet

denoising as in Lu (2002), but it is modeled differently: additive white Gaussian noise is

modulated using the LF waveform, and its energy is adjusted so to match that of the origi-

nal noise estimate. In our algorithm, the parametrization of the aspiration noise is done by

means of modulated white Gaussian noise, but our method differs from other approaches

in that we directly use the glottal parametrization error between the inverse-filtered and

fitted LF glottal waveforms to obtain the parameters of the modulating envelope. During

the estimation of the LF model, we have proposed the use of the KLGLOTT88 parameters

obtained in the convex decomposition step to initialize the non-linear LF estimation, thus

increasing its robustness.

In this section we have presented in detail the source-filter decomposition and

parametrization algorithm, together with the synthesis schema used to generate synthetic

speech using the model parameters (Pérez and Bonafonte, 2005, 2009). The convex de-

composition step has been detailed first since it is being used in different blocks of the

algorithm, both in its single and multi-cycle formulation. We have seen how to obtain

the vocal tract filter and the estimated glottal waveform by inverse-filtering the speech

signal. We then have explained how to reparametrize the glottal waveform using the LF

model, and how the glottal residual is analyzed and parametrized. To end the chapter,

the final synthesis schema including all the human speech production system compo-

nents has been depicted. In the next chapter we will present the results of the different

steps and tests we carried on to validate and evaluate the performance of the proposed

analysis/synthesis algorithm.
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CHAPTER 4

Algorithm evaluation and resynthesis quality

In the previous chapter we have described in detail the algorithm to decompose the speech

signal into the voice source (glottal and residual waveform) and the vocal tract compo-

nents of the human speech production system. Now we will proceed to explain the steps

we have performed to evaluate the algorithm performance. We will start by presenting

the results obtained using a corpus of synthetic data created using glottal values reported

in the literature and from our own work (Section 4.1). Next we will proceed to analyze

the performance of the parametrization algorithm using a corpus of real vowels recorded

specifically for this thesis (Section 4.2) and will present the results of an online evaluation

test pairing two proposed resynthesis methods against a reference vocoder (Section 4.3).

4.1 Evaluation using synthetic data

The purpose of this work is to assess the quality of the source-filter deconvolution process,

in terms of glottal and vocal tract parameter matching. For this reason, we have created

a synthetic corpus combining realistic glottal source obtained during our own research

with glottal and vocal tract parameters obtained in several studies and reported in the

literature. Since the source parameters are known a priori, we use them as reference and

compare them with the estimated parameters using our convex optimization method.

Thus, we can compute objective measure of the performance of our algorithm. Table 4.2

in page 80 contains the 33 LF configurations used to generate the reference corpus and

the phonation mode or voice quality associated to it. Configurations 1–6 are obtained

from our own research and the rest have been previously reported in the literature: 7–11

are taken from van Dinther et al. (2005), 12–21 from Childers and Lee (1991) and 22–

33 from Karlsson and Liljencrants (1996). The R parameters are expressed in % and the
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fundamental frequency F0 in Hz.

The reference corpus of synthetic material is generated using the aforementioned con-

figurations as follows. Each configuration is used to create a reference glottal source sig-

nal by concatenating the same pulse 30 times. For this experiment we work with signals

sampled at 8 kHz. We then add white Gaussian noise to each of the glottal signals at dif-

ferent SNR levels (from 5 dB to 20 dB, in 5 dB increments), amplitude-modulated using a

Hanning window placed at the GCIs (this is motivated by turbulence noise theory from

Section 2.5). The levels of SNR were empirically determined to represent the different de-

grees of breathiness present in real speech data by means of an informal perceptual test.

Figure 4.1 illustrates this procedure for several glottal cycles.

(a) Clean LF waveform

(b) Additive modulated noise (blue) and modulation window (red)

(c) Resulting source waveform
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Figure 4.1: Example of the noise modulation used to generate the synthetic corpus set

These source signals are then filtered with a vocal tract filter constructed using 4 for-

mants (8 coefficients) obtained from van Dinther et al. (2005), corresponding to a vowel

/a/ in modal phonation, located at 790Hz, 1320Hz, 2340Hz and 3600Hz, with bandwidths
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4.1 Evaluation using synthetic data

of 90Hz, 90Hz, 142Hz and 210Hz respectively. The frequency response of the resulting

vocal tract filter is shown in Figure 4.2 up to half the sampling frequency.
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Figure 4.2: Frequency response of the vocal tract filter used to generate the synthetic corpus. The
formant frequencies are 790Hz, 1320Hz, 2340Hz and 3600Hz; the respective bandwidths are
90Hz, 90Hz, 142Hz and 210Hz

To evaluate the quality of the estimation of each of the LF parameters Ra, Rk, Rg, Ee

or F0, we compute the estimation error using Percentile Error (PE) (Strik, 1998):

PE = 100 ·
|P̂ − P |

P
, (4.1)

where P is the reference LF parameter from Table 4.2 page 80 used to generate the syn-

thetic utterance, and P̂ is the estimation using our algorithm. Table4.1 shows the averaged

estimation error for each of the LF parameters and each of the SNR levels of additive noise.

The value in parenthesis is the standard deviation of the error.

Since we are using the KLGLOTT88 model for the initial parametrization, and the test

corpus is being generated using the LF model, the final performance of the parametriza-

tion algorithm may depend on the ability of the KLGLOTT88 model to match each of the

LF configurations presented in Table 4.2. To check whether this holds true, we have ana-

lyzed the input LF glottal waveforms using the KLGLOTT88 reparametrization explained

in Section 3.2.2. By using glf instead of gif in eq. (3.32), we can obtained optimal KL-

GLOTT88 approximations of their LF counterparts. To evaluate the matching quality of

the KLGLOTT88 parametrization we have used the standard Signal-to-Noise Ratio (SNR)
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Figure 4.3: Relation between signal-to-noise ratio (SNR) between original LF and matched KL-
GLOTT88 glottal waveforms and overall error of the different LF configurations
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4.1 Evaluation using synthetic data

Table 4.1: Mean estimation error (in %) of the LF parameters for each SNR level (in parenthesis the
standard deviation)

SNR (dB)
5 10 15 20

L
F

p
ar

am
Ra 12.1 (35.2) 8.5 (25.4) 7.5 (30.2) 7.5 (31.3)
Rg 2.4 (7.4) 2.4 (7.4) 2.4 (7.4) 2.4 (7.1)
Rk 4.6 (13.0) 3.7 (10.5) 3.5 (10.2) 3.4 (10.2)
Ee 3.0 (8.1) 2.5 (6.9) 2.3 (6.5) 2.6 (7.1)
F0 1.2 (8.5) 1.1 (7.9) 1.0 (6.1) 1.0 (6.0)

measure commonly used in speech coding:

SNR(x, x̂) = 10 · log
1
N

∑N
n x(n)2

1
N

∑N
n (x(n)− x̂(n))2

, (4.2)

where x is the original waveform (LF in our case), x̂ is the estimated waveform (KL-

GLOTT88 in our case), and N is the frame length being considered. We compute the SNR

on a cycle-by-cycle basis using eq. (4.2), and then average the results to obtain an overall

SNR for the whole glottal waveform. Figure 4.3 shows the results of this evaluation. The

top figure (4.3a) shows the overall error for each of the LF configurations used in this ex-

periment. The bottom figure (4.3b) shows the SNR between the original LF and matched

KLGLOTT88 glottal waveforms for each of the configurations. Although it does not hold

true for all the cases, we can observe that the overall performance of the algorithm tends

to be lower the worse the KLGLOTT88 matching is. So it appears that when dealing with

synthetic test material the matching ability of the KLGLOTT88 model has a clear impact

on the overall performance, although the performance is in all cases satisfactory.

As we saw in Section 2.2.2, one of the main differences between the two models is

the ability of the LF model to use a variable asymmetry coefficient (Rk), whereas in the

KLGLOTT88 case it is fixed. This difference has a clear impact on the performance, as Fig-

ure 4.4 shows. In the top figure 4.4a we have the SNR between the LF and KLGLOTT88

models plotted as a function of Rk. The bottom figure 4.4a shows a similar plot for the

overall performance case. As we can see, in the [0.30.5] range the performance is very

good, with high values of SNR and low overall error, but outside this range it starts to

decrease, although it is still in the acceptable range as proven by the good overall LF pa-

rameter estimation results that Table 4.1 shows.

Once that we have evaluated the algorithm using synthetic data to obtain objective

measures of its performance, we can proceed with the tests using real utterances. In this
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Figure 4.4: Impact of the Rk parameter on the overall error and SNR between LF and KLGLOTT88
waveforms
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4.1 Evaluation using synthetic data

case, the evaluation needs to be more subjective, since no reference parameters exist to be

compared with. Next section explains the details of the real data corpus and its evalua-

tion.
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Ra Rk Rg F0 Voice Quality

1 4.1 37.1 134.1 170 Modal
2 7.6 35.7 83.9 170 Modal
3 1.3 47.9 126.0 132 Low F0
4 3.5 42.9 88.1 144 Low F0
5 13.1 27.6 98.3 281 High F0
6 11.7 29.0 75.8 340 High F0
7 0.6 50.0 108.7 110 Modal
8 2.0 51.0 92.1 110 Lax
9 1.1 25.0 152.4 110 Tense
10 1.8 37.0 126.9 110 Modal
11 3.5 43.0 110.0 110 Lax
12 2.1 30.6 102.0 106 Modal
13 2.5 34.0 94.4 127 Modal
14 1.5 33.3 98.0 154 Modal
15 0.8 28.6 102.1 84 Slight vocal fry
16 0.5 25.0 250.0 45 Vocal fry
17 13.3 35.1 87.7 344 Falsetto
18 4.3 43.6 80.7 213 Falsetto
19 6.8 41.7 104.2 137 Breathy
20 10.0 44.8 86.2 200 Breathy
21 2.0 37.7 127.5 126 Normal
22 2.6 42.5 116.8 102 Low F0
23 5.1 41.9 93.4 190 Low F0
24 1.5 45.0 129.5 131 Medium F0
25 9.9 32.1 75.9 288 High F0
26 2.7 40.7 102.0 129 Low level
27 10.5 57.1 97.0 249 Low level
28 1.9 45.0 127.2 127 Medium level
29 3.7 51.2 111.2 258 Medium level
30 1.6 37.7 140.5 132 High level
31 4.6 51.0 116.2 131 Breathy
32 8.1 48.3 93.9 254 Breathy
33 1.3 39.5 170.1 128 Pressed

Table 4.2: LF parameters and associated voice qualities used for the synthetic data set: 1–6 are obtained
from our own research, 7–11 are taken from (van Dinther et al., 2005), 12–21 from (Childers and
Lee, 1991) and 22–33 from (Karlsson and Liljencrants, 1996) (R parameters in % and F0 in Hz)

80



4.2 Evaluation with real vowels

4.2 Evaluation with real vowels

For the evaluation with real data, we used a small data set was recorded for the main

purpose of performing voice quality analysis. The examples in this corpus consist of the

5 different Spanish vowels (/a/, /e/, /i/, /o/, /u/ ) uttered in isolation by a female professional

speaker, with different voice qualities: modal, rough, creaky and falsetto. The main char-

acteristics of each of these qualities will be detailed in Chapter 7, our main interest here is

that the utterances were sustained vowels (roughly 2–3 seconds long), and thus suitable

for our validation purposes.
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Figure 4.5: Variance of the Group Delay (top) and SNR between gif and gkl (bottom) for various filter
orders.

It is well known that evaluating a glottal extraction algorithm in a real world scenario

is difficult, due to the lack of reference (Bäckström et al., 2005). One possible way is to

compute the averaged SNR (dB) between gkl and gif , since this gives an idea of how well
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it approximates a idealized glottal waveform. We also use the Group Delay (GD) func-

tion of the glottal waveform, since it has been shown to perform well (Alku et al., 2005).

We chose to minimize the variance of the GD, as ideally it should be close to zero if all

the formants have been removed in the inverse-filtering process. In order to select the

optimal filter order for the vocal tract, the algorithm (without LF parametrization) was

run using several filter orders (from N = 8 until N = 24, even orders only). We found

that when the filter order increased, the SNR between the estimated and the parametrized

glottal waveforms also increased (Fig. 4.5, bottom part), and seemed to stabilize from 16

onwards. Visual inspection of the resulting waveforms showed that orders higher than

18 produced sub-optimal glottal waveforms, since the return phase (defined by TL(z))

was being over-estimated. This resulted in non-existing closed phases, which should not

happen for modal voices. By observing the box-plots for the variance of the GD, we then

found that the optimal filter order was 16. The length of the OLA window was set to 3,

with independent amplitudes for each cycle, after observing that this resulted in a higher

continuity of the estimated glottal parameters. Figure 4.6 shows an example of the smooth

evolution of the estimated LF parameters for the vowel /e/ in modal phonation, as ex-

pected since it was being sustained.

Frame number

V
al

u
e

H
z

RaEe

Rk

R0

F0

0 50 100 150 2000 50 100 150 200
0

40

80

120

160

200

0

0.2

0.4

0.6

0.8

1

Figure 4.6: Estimated R parameters, Ee amplitude (left axis) and fundamental frequency F0 in HZ
(right axis) for the vowel /e/ in modal phonation.

Table 4.3 presents the SNR results (between gif a glf ) for the real data set, using the

optimal filter order and OLA lengths determined before. The SNR needs to be taken

cautiously as an absolute quality measure, since it considers the original aspiration noise

present in the speech as parametrization error, thus resulting in a degradation of the SNR

performance. For this reason, we have also performed the SNR evaluation using low-pass

filtered versions of gif and glf , that should reflect more closely the real parametrization

performance (the results are shown in parenthesis). The filtering has been done by means

of a convolution with a Blackman window of length 7.

As we can see, the algorithm performs well in most cases, with SNR values of more
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Voice phonation

Modal Rough Creaky Falsetto

/a/ 11.45 (12.38) 9.12 (10.16) 12.91 (14.10) 13.12 (16.58)
/e/ 15.50 (16.55) 7.05 (7.93) 14.31 (15.59) 9.52 (11.61)
/i/ 10.22 (11.22) 6.05 (7.57) 9.75 (10.44) 2.19 (4.62)
/o/ 9.52 (12.50) 8.09 (9.20) 12.67 (14.10) 5.24 (9.77)
/u/ 11.21 (12.45) 4.56 (6.27) 9.42 (10.73) 10.00 (12.86)

Table 4.3: SNR between inverse-filtered and LF glottal waveforms (in parenthesis, SNR computed
using low-pass filtered versions of both waveforms)

than 10 dB, even with the higher F0 values (around 350Hz) representative of the falsetto

voice (the exception being /i/ in this case). This ability to work well with very short cy-

cle lengths is an advantage of our method over traditional closed-phase inverse-filtering

methods, since the later often degrade due to the small amount of speech samples present

during the closed phase of the glottis. As expected, the SNR results for the rough phona-

tion are lower than for other modes, since this phonation usually entails higher cycle-to-

cycle variability and larger amounts of turbulences (as will be explained in Chapter 7),

not totally accounted for by the Blackman low-pass filtering.

4.3 Resynthesis evaluation

We performed an evaluation aimed at evaluating the resynthesis performance of our al-

gorithm. We decided to test two different methods in this evaluation. The first one is

the algorithm explained in the previous chapter, where parametric models are adopted

for the three components of the speech production model (vocal tract, glottal waveform

and residual). The speech is synthesized according to the procedure detailed in Sec-

tion 3.7. For the second method, we used the whitened residual waveform from Sec-

tion 3.6.1 without parametrization. The speech was synthesized by first constructing the

glottal LF waveform, adding the whitened residual, and filtering the resulting noisy glot-

tal waveform with the vocal tract. This would allow us to evaluate the contribution of the

glottal parametrization and residual parametrization in a separate way. We compared

our two methods against the STRAIGHT channel vocoder (Kawahara et al., 1999), a high-

quality analysis/synthesis algorithm which is widely regarded as the reference method

for vocoder-like techniques. It uses a pitch-adaptive time-frequency smoothing and an

instantaneous-frequency-based F0 extraction.

We conducted an on-line listening test to evaluate the subjective quality of the resyn-

thesized speech as follows. We used the corpus that we recorded during the TC-STAR

project (Bonafonte et al., 2006b). This corpus was recorded in a professional studio us-
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ing high quality recording settings (96 kHz and 24 bits/sample), two microphones (mem-

brane and close-mouth) and a laryngograph. In this test, only the membrane micro-

phone and the laryngograph signals were used, after being downsampled to 16 kHz and

16 bits/sample. We resynthesized 4 sentences for each of the 3 methods we were com-

paring, so the evaluators were presented with a total of 12 sentences. These sentences

contained utterances from four different speakers (two female and two male). The test

is a standard mean opinion score (MOS) test, where the participants were asked to first

listen carefully to each of the samples, and then rate each sentence using a 5 point scale:

1. Bad (distortion very annoying)

2. Poor (distortion annoying)

3. Fair (distortion slightly annoying)

4. Good (distortion perceptible but not annoying)

5. Excellent (distortion imperceptible)

The utterances were presented in a random order, so the users were unaware of the ori-

gin of the examples they were evaluating. The subjects were asked to use headphones if

possible, and were allowed to listen to each sample as many times as necessary.

M
O

S
sc

o
re

Method

Param. residualWhitened residualStraight

1

2

3

4

5

Figure 4.7: MOS scores of the resynthesis evaluation test for the method of reference (Straight) and
our two proposed methods (using resampled and parameterized residual).

.

The results of the test are presented in figure 4.7 using boxplots. On each box, the cen-

tral line is the median, the box edges are the 25th and 75th percentiles, and the whiskers
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extend to the furthest data points not considered outliers (marked with crosses). The black

dot inside the box represents the mean value of the data. As we can see, our method using

the whitened residual results in the highest rated synthetic speech, with a median MOS

score of 5 and most of the ratings inside the [45] range. The performance of the STRAIGHT

methods is also very high, the median being 4 and also with the majority of scores in the

[45] range. The performance of these two methods was expected to be high, since we are

not yet performing any modification (in terms of duration or pith), and in this case they

act as a nearly distortion-free reconstruction algorithm. The complete parametrization

results in a score slightly worse than that of the STRAIGHT method. While the median

value is also 4, the boxplot indicates that most of the scores are in the [34] range, as can

be seen by the median indicator. The results of the test are satisfactory, proving that our

decomposition and reconstruction algorithm can produce synthetic speech of acceptable

quality similar to that of reference algorithms. However, the performance degradation ob-

served with our second method (using the full parametrization of the residual) indicates

that this is an aspect that requires improvement and further investigation.

4.4 Conclusions

In this chapter we have presented the evaluation of the parametrization algorithm de-

tailed in chapter 3. We have created a synthetic corpus using glottal features reported in

the literature and from our own research to be use as reference for the objective evaluation

of the extracted LF glottal measures. As we have seen, the algorithm was able to estimate

all the values with a low error for different values of additive noise, with Ra being as ex-

pected the parameter where the error figures were higher, since it is widely reported as

the most difficult to estimate. A small corpus of real speech utterances containing sus-

tained vowels was also recorded for the purpose of this work. It has been used to validate

the parametrization method by means of continuity plots of the different LF parameters

for a whole utterance, and to validate the election of the vocal tract filter order by means

of both SNR plots between the inverse-filtered and the parametrized glottal waveforms,

and glottal quality measures (variance of the group delay). To end the evaluation, we have

conducted an online listening test to rate the quality of the resynthesis capabilities. We

have proposed two methods, the difference being the treatment of the parametrization er-

ror or residual, and compared them to the vocoder method STRAIGHT, widely accepted

as the standard reference in this area. The results show that the algorithm perform well

when using the whitened residual without parametrization, but its performance degrades

when using the fully parametrized residual. Although it is still rated in the Fair-Good

range, further investigation would be required in this area to increase the quality of the

synthetic speech. In next chapter we will present the algorithm to perform prosody mod-
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ification, necessary for the inclusion of the proposed analysis and synthesis algorithm in

speech processing applications like speech synthesis or voice conversion.
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CHAPTER 5

Prosody modification

In the previous two chapters we have explained in detail the analysis and synthesis al-

gorithm we propose for the decomposition of the speech signal into its source-filter com-

ponents. We have evaluated the resynthesis capabilities both in objective and subjective

terms, using artificial data and online MOS tests. We will detail now the techniques devel-

oped for performing prosody modification of the speech samples, since this would allow

our analysis/synthesis algorithm to be applied to speech processing tasks such as speech

synthesis or voice conversion. The later task has also been studied as part of this thesis, as

we will see in Chapter 6. We will start by first explaining in Section 5.1 the modifications

of the parameter set that are required for prosody modification. Then we will present

in Section 5.2 two techniques that we have developed for this purpose based on feature

vector selection and interpolation.

5.1 Parametrization modification

Since the prosody modification techniques we have developed use interpolation of the

feature vectors, we will explain here the feature set transformations required for a correct

interpolation of each of the parameters.

5.1.1 Vocal tract

Up to this point, we have represented the vocal tract by means of LPC as an all-pole filter

of the form:

V (z) =
1

A(z)
where A(z) = 1−

N
∑

k=1

ak z
−k (5.1)
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Since the LPC parameters ak used in this representation are not well-suited for interpo-

lation (Kondoz, 2004) (among other reasons, the interpolation of two stable filters is not

guaranteed to be stable), we will use the Line Spectral Frequencies (LSF) as an alternative

representation better suited to our needs (Itakura, 1975). The polynomial A(z) from (5.1)

is decomposed as:

P (z) = A(z) + z−(N+1) A(−z), (5.2)

Q(z) = A(z)− z−(N+1) A(−z). (5.3)

The LSF coefficients lsfk are the roots of these two polynomials, which have too main

characteristics: they are interspersed, and they are located on the unit cycle. Thus, the

final parameter set used for prosody modification is then:

θvt = (lsf1, lsf2, · · · , lsfN )′. (5.4)

Figure 5.1 shows the results of interpolating the LSF coefficients between two vocal tract

filters: the source filter was extracted from the utterance of the Spanish /a/ phoneme in

high phonation, and the target one corresponds to the Spanish /o/ phoneme in modal

phonation.
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Figure 5.1: Interpolation of LSF parameters

5.1.2 Glottal waveform

Recall from Section 3.5 that our LF parameter set consists, for each glottal cycle, of:
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5.1 Parametrization modification

• T0: length of the glottal cycle, or equivalently, the fundamental frequency or pitch:

F0 =
1
T0

• Tp, Te and Ta: absolute time measures, ranging from 0 to the glottal cycle duration

T0

• Ee: LF amplitude.

This time-based representation was needed during the parametrization phase, since

the beginning of the glottal cycles was one of the parameters included in the optimization

process. However, they are absolute values and thus not suitable for interpolation, as

needed during prosody modification. Instead, we will use the extended parameter set that

we introduced in Section 2.2.2:

Ra =
Ta

T0
, (5.5)

Rg =
T0

2Tp
, (5.6)

Rk =
Te − Tp

Tp
. (5.7)

The final parameter set used for prosody modification is then:

θlf = (Ra, Rg, Rk, Ee, F0)
′, (5.8)

from which all the needed parameters can be derived. An illustration of the interpolation

properties of the extended LF parameter set is shown in Figure 5.2.

For unvoiced frames, this vector contains all zeros, since there is no glottal component.

5.1.3 Residual

We have developed two methods to modify the prosody of the residual or aspiration noise.

First, we explain a method based on the resampling og the whitened residual waveform

to achieve the desired modification. Then our second method is described, which uses

our full parametrized residual and frame interpolation.

Residual resampling

The first method uses resampling of the residual waveform after the whitening step to

achieve the desired change in F0. The signal is resampled on a period-by-period basis to

obtain the appropriate cycle duration (i.e., target F0), in a similar way to that in Rao and

Yegnanarayana (2006). The resampling is performed by concatenating an interpolator
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Figure 5.2: Interpolation of LF parameters
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Figure 5.3: Proposed scheme to modify the prosody of the residual using resampling.

with a decimator, with a low-pass filter to avoid aliasing (Proakis and Manolakis, 1996),

as shown in figure 5.3. The frequency response of the low-pass filter is:

H(ω) =







I, 0 ≤ |ω| ≤ min π
I ,

π
U

0, otherwise
(5.9)

where I and D are the interpolation and decimation factors respectively. The desired

duration is achieved by applying the frame selection method detailed in section 5.2.

Figure 5.4 shows a segment of the original (top) and the resampled (bottom) residuals,

after reducing F0 by 70%. The vertical dotted lines indicate the limits of the glottal cycles,

longer in the case of the resampled residual as corresponds to the prosody modification

we are performing. As we can see, the relative position of the noise bursts inside each

glottal cycle is preserved after modifying the prosody, which is important to preserve the

naturalness of the synthesized speech.

Resampling a signal results in a compression/expansion of the frequency spectrum

(Proakis and Manolakis, 1996), and this effect can be observed in Figure 5.5. The top figure

shows the spectrum of the original residual segment shown in Figure 5.4a, computed
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Figure 5.4: Segment of original and resampled residual after reducing F0 by 70%. The vertical dotted
lines indicate the limits of the glottal cycles.
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Figure 5.5: Spectrum of original and resampled residual after reducing F0 by 70%.
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5.1 Parametrization modification

using a Hamming window and a FFT of 1024 samples. Similarly, the bottom figure shows

the spectrum of the resampled residual from Figure 5.4b. Notice how the spectrum of

the resampled signal has been compressed with respect to the original one. This has an

impact on the quality of the resulting synthetic speech, although as we will see in the

evaluation from Section 5.3, the quality using this resampling technique is higher than

when using the full residual parametrization from next section.

Parametrized residual

As we have seen in Section 3.6.2, we are modeling the aspiration noise using a syn-

thetic envelope to modulate high-pass filtered Gaussian noise. The set of parameters cho-

sen for the envelope’s parametrization (eq. (3.56)) is already suitable for prosody mod-

ification, since it consists of signal levels (blvl, w
1
lvl and w2

lvl), and temporal parameters

(w1
c , w

1
l , w

1
r , w

2
c , w

2
l , w

2
r ) that are already normalized by the fundamental period (i.e., range

[0, 1]). Figure 5.6 shows the effect of interpolating between two sets (source and target) of

noise envelope parameters. Thus, the parameter set is:

θres = (blvl, w
1
lvl, w

1
c , w

1
l , w

1
r , w

2
lvl, w

2
c , w

2
l , w

2
r)

′. (5.10)
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Figure 5.6: Interpolation of noise envelope parameters

For unvoiced periods, we are using white Gaussian noise to excite the vocal tract filter.

Accordingly, equation (5.10) contains only the noise level blvl:

θres = (blvl, 0, 0, 0, 0, 0, 0, 0, 0)
′. (5.11)

93



Prosody modification

The complete parameter set used for prosody modification is then built using equa-

tions (5.8), (5.4) and (5.10):

θ =







θlf

θvt

θres






. (5.12)

5.2 Time- and pitch-scale modification

We propose two separate methods for prosody modification, depending on which resid-

ual is used (parametrized or whitened waveform). The idea is to generate a new sequence

of glottal epochs (GOIs) following the duration and modification restrictions, similar to

the windowed signal selection technique using in traditional overlap-and-add algorithms

(Moulines and Charpentier, 1990).

5.2.1 Modification using the parametrized residual

In this method all the components of our speech production model are parametrized, and

each parameter vector is associated with its corresponding GOI. Suppose the duration is

to be modified such as the duration of the synthesized signal Ds such as:

Ds = α ·Da (5.13)

whereDa is the duration of the analysis signal, andα the modification factor. Let us adopt

a similar approach for modifying the pitch:

F0,s = β · F0,a, (5.14)

where F0,a and F0,s are the analysis and synthesis fundamental frequencies, and β is the

modifying factor. Rewriting eq. (5.14) in terms of the pitch period:

Ps =
Pa

β
, (5.15)

where Pa and Ps are the analysis and synthesis pitch periods. Given the original sequence

of analysis GOIS goia(i), we generate the new sequence of synthesis gois gois(j) as:

gois(j + 1) = gois(j) +
Pa(j)

β
, (5.16)

where Pa(j) is computed by linear interpolation using the virtual analysis instant goi′a(j)

resulting from projecting gois(j) into the analysis time-line as follows. Let us assume that

the jth synthesis cycle falls in between analysis cycles i and i + 1. Let goi′a(j) = gois(j)
α
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5.2 Time- and pitch-scale modification

be the correspondence of the synthesis instant j in the original time-scale. In this case,

goia(i) < goi′a(j) < goia(i + 1) and goia(i + 1) < goi′a(j + 1) < goia(i + 2), as shown in

Figure 5.7. Then Pa(j) in eq. (5.16) and the parameter vector θjs associated to gois(j) can

be computed as:

Pa(j) = γj Pa(i) + (1− γj)Pa(i+ 1) (5.17)

θjs = γj θ
i
a + (1− γj)θ

i+1
a (5.18)

where:

γj =
goia(i+ 1)− goi′a(j)

δjs/α
, (5.19)

and δjs = gois(j + 1)− gois(j) is the duration of the synthesis cycle j.

Ds = α ·Da

goia(i) goia(i+ 1) goia(i+ 2)

goi′a(j) goi′a(j + 1)

gois(j)

gois(j + 1)

Ps(j)

Analysis

Synthesis

P (t)

t

Figure 5.7: Prosody modification scheme. The synthesis epochs gois(j) are derived from the analysis
epochs goia(i) following the pitch/time modification function. In the example, the new duration Ds

is 25% shorter than the original Da (α = 0.75). The pitch is kept unmodified in this example. The
pitchPs(j) of the synthesis frame j is computed by averaging the original pitch of the corresponding
analysis frames (the frame mapping is done using the virtual epochs goi′a(j)). After Huang et al.
(2001)
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5.2.2 Modification using the whitened residual

A procedure similar to that used in the previous case is used to define the synthesis GOIs

gois(j) and associate to them a parameter vector, consisting only on the vocal tract LSFs

and glottal LF parameters, and a residual waveform. The main difference is that instead

of interpolating between adjacent frames as in eq. (5.18), the closest frame is selected in-

stead (effectively setting γj to 0 or 1) in eq. (5.19). The reason is that are dealing with

whole residual waveforms, and due to their noisy nature, linear interpolation would re-

sult in noticeable artifacts (Moulines and Charpentier, 1990). Once the corresponding

residual waveform is selected, its duration is modified using the algorithm explained in

Section 5.1.3 to achieve the desired fundamental period duration.

5.3 Evaluation

In order to evaluate the quality of our proposed two prosody modification algorithms, we

conducted an on-line listening test comparing them to two other high-quality methods.

Thus, the test consisted of samples generated using:

• proposed source-filter model with resampled residual,

• proposed source-filter model with parametrized residual,

• STRAIGHT (Kawahara et al., 1999), a Vocoder-based analysis-synthesis algorithm,

as we did in the resynthesis experiments (Section 4.3),

• the pitch-synchronous, overlap-and-add method used in our speech synthesizer

Ogmios (Bonafonte et al., 2006a).

The corpus used for this evaluation was recorded during the TC-STAR project (Bonafonte

et al., 2006b), the same used in the resynthesis experiments from the previous chapter (Sec-

tion 4.3). This corpus was recorded in a professional studio using high quality recording

settings (96 kHz and 24 bits/sample), two microphones (membrane and close-mouth, only

the former was used in this work) and a laryngograph. As before, the signals were down-

sampled to 16 kHz and 16 bits/sample, and utterances from four speakers (two female

and two male) were used. Since we wanted to study the effects of the specific duration or

F0 changes, we generated utterances modifying only one of them while keeping the other

one untouched. Four modifications were evaluated, corresponding to typical values used

in speech synthesis:

• shortened duration (factor of 0.8), original F0,

• lengthened duration (factor of 1.2), original F0,
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• decreased F0 (factor of 0.8), original duration,

• increased F0 (factor of 1.2), original duration.

For each of the four modifications, two examples were provided for each of the four dif-

ferent methods, resulting in a total of 32 utterances for this evaluation. The participants in

the test were asked to listen carefully to each sample using headphones, and to rate each

of them using the typical 5 point MOS scale:

1. Bad (distortion very annoying)

2. Poor (distortion annoying)

3. Fair (distortion slightly annoying)

4. Good (distortion perceptible but not annoying)

5. Excellent (distortion imperceptible)

The utterances were presented in a random order, so the users were unaware of the origin

of the examples they were evaluating. The subjects were allowed to listen to each sample

as many times as necessary.
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Figure 5.8: Overall MOS scores of the prosody modification evaluation test for the methods of refer-
ence (PSOLA and Straight) and our two proposed methods (using resampled and parameterized
residual).

The overall results of the test are presented in figure 5.8 using boxplots. On each box,

the central line is the median, the box edges are the 25th and 75th percentiles, and the

whiskers extend to the furthest data points not considered outliers (marked with crosses).
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The ranking of the different methods in terms of MOS score is PSOLA, STRAIGHT, resam-

pled residual and parametrized residual. All four methods surpass the acceptance thresh-

old (MOS score 3, Fair), with the first two obtaining an average rate of 4, Good. As we can

see, our proposed method using the resampled residual is rated higher than that using

the parametrized residual, although only by a small margin. This was a bit surprising, be-

cause according to our informal internal evaluations and the results of the resynthesis test

from the previous chapter (Section 4.3), we would have expected it to rate similar to the

STRAIGHT algorithm. Our second method using the completely parametrized residual

is rated just above Fair, as could be expected given the results of the resynthesis test.
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Figure 5.9: Detailed MOS scores of the prosody modification evaluation test for the methods of ref-
erence (PSOLA and Straight) and our two proposed methods (using resampled and parameterized
residual). The results are presented individually for each of the modifications: shortened (dur: 0.8)
and lengthened (dur: 1.2) durations, and decreased (f0: 0.8) and increased (f0: 1.2) fundamental
frequency.

In figure 5.9 we show the individual mean results for each of the four prosody mod-

ifications. As we can see, PSOLA is the method of preference in all cases except when

increasing the F0, where STRAIGHT gets the first place. Interestingly, while there is no

change in preference order with respect to our two proposed methods when shortening

the duration or increasing the fundamental frequency, when increasing the signal dura-

tion the residual resampling method performs better than STRAIGHT, and when decreas-

ing the fundamental frequency both our methods outperform it. Shortening the duration

seems to be the main drawback of our algorithms, since both of them get the worst rates,

more than 1 point in the MOS scale.
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5.4 Conclusions

We have presented here two techniques for performing prosody modifications as required

for speech processing tasks such as speech synthesis or voice conversion. The first method

uses frame selection and interpolation of the complete parametrized set (vocal tract us-

ing LSF, glottal waveform using extended LF parameter set, and residual using synthetic

envelopes) to achieve the desired changes in duration or prosody. The second method

uses frame selection of the vocal tract and glottal parameters, and waveform resampling

of the residual waveforms to perform the modifications. The performance of this sec-

ond method is slightly better than that of the full parametrization, although in both cases

their ratings fall in the Fair-Good range, below those of well established methods PSOLA

or STRAIGHT. Together with the resynthesis results, we can conclude that although the

performance of the algorithms is acceptable, more work would be needed to get the meth-

ods on the same level as current reference techniques like PSOLA or STRAIGHT, partic-

ularly in the analysis and synthesis of the residual. As we will see next in Chapter 6, we

integrated our full parametrized algorithm into an existing voice conversion system with

good results.
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CHAPTER 6

Voice Conversion

Voice conversion (VC) consists of transforming the voice from one speaker (source) so that

it is perceived as belonging to a different given speaker (target). For instance, this is some-

times needed in speech translation systems, where the system produces speech in a lan-

guage unknown to the source speaker. In this case, the targe speaker is the synthetic

voice resulting from the text-to-speech synthesis, which is modified to sound like what

the source speaker would in the target language (Pérez and Bonafonte, 2006). The aim of

this work was to investigate whether existing voice conversion (VC) methods would ben-

efit from a more accurate speech production representation as the one we propose. The

objective of a VC system is to transform the voice of a certain speaker (source speaker) so

that it is perceived as belonging to another given speaker (target speaker).

Our intention was to evaluate the effect of our speech parametrization paradigm in

a VC context, isolating it from other aspects of the problem (such as alignment and con-

version function training). To do so, we included our parametrization in the VC system

developed in our group for the European project TC-STAR 1 (Duxans, 2006; Duxans et al.,

2006). We trained and tested the system using the same training and testing data sets used

during the project’s evaluation campaigns. This way we could compare the new results to

those presented at the time, which were already available. This reference system is based

on CART and GMM, and uses acoustic (LP) and phonetic characteristics.

Although newer VC paradigms (e.g., Yutani et al. (2009)) have been proposed which

improve the conversion performance, we are here only interested in evaluating the impact

of the signal parametrization by itself. We can also expect newer methods to benefit from

a better parametrization in a similar manner.

First, we will provide a concise overview of the state-of-the-art in VC systems (Sec-

1Technology and Corpora for Speech to Speech Translation http://www.tcstar.org
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tion 6.1). Then we will proceed to explain the VC method we are using in this work, the

baseline parametrization, and the modifications needed to integrate our new parametriza-

tion in Section 6.2. The subjective evaluation that we performed and its results are ex-

plained in Section 6.4.

6.1 Background

As we have explained, a voice conversion systems takes the voice of a source speaker, and

modifies it so it sounds like a given target speaker. The transformation of the acoustics

features of the source speaker into those similar to the target speaker is done by means

of mapping functions. Systems working with spectral features may use mapping code-

books (Abe, 1991), techniques based on a pre-clustering with non-overlapping acoustic

classes (Sündermann and Höge, 2003; Turk and Arslan, 2003), Continuous probabilistic

transform functions (Chen et al., 2003; Kain and Macon, 1998; Lee et al., 2002; Stylianou

et al., 1998; Toda et al., 2001a,b; Ye and Young, 2003), Hidden Markov Model related con-

versions (Mori and Kasuya, 2003; Tamura et al., 2001) or Parametric mappings (Ho et al.,

2002; Rentzos et al., 2003; Slifka and Anderson, 2002). A different approach has been pro-

posed that performs a prediction of the residual signal using the vocal tract, instead of

its transformation (Sündermann et al., 2005). Kain (2001) proposed a residual generation

method based on the linear combination of codebook entries associated to the LSF vec-

tors. Ye and Young (2004) proposed a simple residual selection technique in which the

residual was associated to the closest target LSF vector. There are a few systems trans-

forming prosodic features. One group of algorithms used a similar approach to that of

spectrum mapping (Tamura et al., 2001; Turk and Arslan, 2003). A different method was

presented in Ceyssens et al. (2002), where multi-parameter pitch contours were trans-

formed using stochastic mappings. The transformation of the residual signal has also

been tackled in several studies, since without it no good similarity can be achieved. Dux-

ans (2006) presented a conversion system based on the Linear Prediction (LP) model of

speech production, using phonetic information based on CART and GMM, to be used as a

post-processing stage in a test-to-speech system. New prediction and selection techniques

were presented to deal with the residual of the LP analysis. Duxans extended the method

to take advantage of the unlimited amount of source data that a TTS can generate, and

the phonetic information inherently available at its output. Erro (2008) studied the use of

the harmonic plus stochastic model for intra- and cross -lingual voice conversion tasks. A

combination of statistical Gaussian mixture models with a novel technique for frequency

warping (Weighted Frequency Warped) was proposed in Erro et al. (2010b), improving

the methods developed fro the TC-STAR European project that obtained excellent results

during the international VC evaluation campaigns. Erro et al. also presented a new it-
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erative technique for frame alignment which allowed the VC method to be applied to

cross-lingual VC and other tasks without the requirement of parallel data for the training

stage. In order to overcome some of the problems inherent to the GMM systems (mainly

due to the excessive smoothing induced by the statistical averaging), Toda et al. (2007)

proposed a spectral conversion method using a maximum likelihood estimation of the

parameter trajectories, whith two main advantages over traditional frame-based systems:

it takes into account the correlation that exists between feature frames, and it reduces

the oversmoothing effect by taking into consideration the global variance as part of the

conversion. With a similar purpose, Qiao and Minematsu (2009) used a mixture of prob-

abilistic linear regressions to estimate the mapping function between two feature spaces,

overcoming some of the problems found in GMM systems as a result of the introduced

over-smoothing. Yutani et al. (2009) used multi-space probability distribution models to

simultaneously model the spectrum and theF0, resulting in much better converted quality

than traditional approaches based on GMM. Voice conversion contributions focusing on

the voice-source are scarce. Some of the works listed above presented preliminary works

dealing with residual transformation (Sündermann et al., 2005; Ye and Young, 2004), al-

though no specific voice-source model was adopted. Childers and Ahn (1995) presented

a voice conversion system using a glottal excitation waveform. In their work, however, no

parametrization of the glottal source is performed, and vector quantization techniques

commonly used in speech coding algorithms are employed instead. Mori and Kasuya

(2003) introduced a voice conversion system based on the ARX speech production model,

although no details on glottal modifications are given. A GMM-based VC system using

the LF for the glottal contribution was presented in del Pozo (2008); del Pozo and Young

(2008) with good results, using different GMM for spectral and voice source conversion.

6.2 Reference system

Our VC algorithm (Duxans, 2006) uses a classification and regression tree (CART) to clas-

sify the vocal tract data into phonetic categories. For each category, a transformation func-

tion is build using a standard Gaussian mixture model (GMM). To build such a system,

we first need to parametrize and align both source and target voices. Then we build a

transformation function using the aligned data to convert one set of parameters into the

other. A figure depicting our adopted reference VC system is shown in Figure 6.1.

We will first review the estimation of the GMM parameters and derivation of the trans-

formation function, and then we will explain the use of decision trees in our voice con-

version algorithm.
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Figure 6.1: General Voice Conversion Scheme.

6.2.1 Transformation function for each leaf

Let X = {xn} and Y = {yn} be the set of source and target data frames respectively (n =

1 . . . N ). The transformation function F (x) is defined by means of regression analysis,

where the regression function is formulated as a weighted sum of linear models (Kain,

2001):

ŷ = F (x) = E[y|x] =
M
∑

m=1

p(cm|x) (Wm x+ bm) . (6.1)

In the equation above, p(cm|x) represents the weight of the mth component of the re-

gression and corresponds to the posterior probability of the input data belonging to that

particular class, Wm is a transformation matrix and bm is a bias vector.

The components of the regression F (x) in (6.1) are obtained from a GMM model fitted

to the combined source-target data set:

Z =











X

Y











=











x1 x2 · · · xN

y1 y2 · · · yN











=
{

z1 z2 · · · zN

}

. (6.2)

A GMM is a probability density function represented using a mixture of M Gaussian

densities:

p(zn|θ) =

M
∑

m=1

wmN (zn|µm,Σm)

=

M
∑

m=1

wm
1

(2π)d/2|Σm|1/2
e−

1
2
(zn−µm)tΣ−1

m (zn−µm), (6.3)
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where wm is the weight of each component in the distribution, such that
∑M

m=1wm = 1

and wm ≥ 0 ∀m. The mean vector µm and the covariance matrix Σm of the combined data

can be written in terms of those of the source and target data sets as:

Σm =







ΣXX
m ΣXY

m

ΣY X
m ΣY Y

m






, (6.4)

µm =







µX
m

µY
m






, (6.5)

where µX
m, µY

m, ΣXX
m and ΣY Y

m are the mean vectors and covariance matrices of the source

and target data respectively, andΣXY
m andΣY X

m are the cross-covariance matrices between

source-target and target-source data respectively. Using these, we build the transforma-

tion function (6.1) using the regression:

F (x) = E[y|x] =
M
∑

m=1

p(cm|x)
(

µY
m +ΣY X

m

(

ΣXX
m

)−1 (
x− µX

m

)

)

, (6.6)

where

p(cm|x) =
wmN

(

x|µX
m,ΣXX

m

)

∑M
p=1wpN

(

x|µX
p ,ΣXX

p

) . (6.7)

From equations (6.1) and (6.6), it follows that:

Wm = ΣY X
m

(

ΣXX
m

)−1
(6.8)

bm = µY
m −ΣY X

m

(

ΣXX
m

)−1
µX
m. (6.9)

For each of the densities in the GMM, we need to obtain its weight wm, mean vector µm

and covariance matrix Σm. Thus, the complete set of parameters to be estimated is θ =

{θ1, . . . , θM}, where θm = [wm, µm,Σm].

The GMM parameters are obtained by maximizing their likelihood given the input

data (Duda et al., 2000). The maximum-likelihood estimation problem consists in esti-

mating the set of parameters θ defining the density function p(z|θ) of a certain data set Z ,

drawn from this distribution. Assuming the data vectors Z = {z1, . . . , zN} independent

and identically distributed (i.i.d), the likelihood of the parameters given the data is:

L(θ|Z) = p(Z|θ) =
N
∏

n=1

p(zn|θ). (6.10)
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It is usually easier to work with the logarithmic expression of eq. (6.10), the log–likelihood:

logL(θ|Z) =
N
∑

n=1

log p(zn|θ). (6.11)

Since the data set Z is fixed, we can think of the above expression as a function of the

parameters θ. Our goal then is to find the optimal parametrization θ∗ that maximizes

logL:

θ∗ = argmax
θ

logL(θ|Z). (6.12)

Substituting eq. (6.3) into eq. (6.11), the resulting log-likelihood expression L that

needs to be optimized is given by:

L = logL(θ|Z) =
N
∑

n=1

log

(

M
∑

m=1

wm
1

(2π)d/2|Σi|1/2
e−

1
2
(x−µi)

tΣ−1
i (x−µi)

)

. (6.13)

There are a number of techniques to perform the optimization, the most widely

used being the Expectation-Maximization (EM) algorithm (Duda et al., 2000), an itera-

tive method that operates in two steps:

• Expectation step (E-step), where it calculates the expected value of the log-likelihood

function given the current estimate for the model parameters. Compute for m =

1 . . .M :

γ(l)mn =
w

(l)
m N

(

zn |µ
(l)
m ,Σ

(l)
m

)

∑M
o=1w

(l)
o N

(

xn |µ
(l)
o ,Σ

(l)
o

) n = 1 . . . N (6.14)

n(l)
m =

n
∑

i=1

γ(l)mn, (6.15)

where γ
(l)
mn is the estimated probability that the nth sample was generated by the

mth Gaussian component at the lth iteration, and n
(l)
m represents the total weight of

the mth Gaussian in the mixture.

• Maximization step (M-step), where the parameter estimations are updated maximiz-

ing the expected log-likelihood from the E-step. Calculate the new estimates for

106



6.2 Reference system

j = 1 . . . k:

w(l+1)
m =

n
(l)
m

n
, (6.16)

µ(l+1)
m =

1

n
(l)
m

N
∑

n=1

γ(l)mn zn, (6.17)

Σ(l+1)
m =

1

n
(l)
m

N
∑

n=1

γ(l)mn

(

xn − µ(l+1)
m

)(

xn − µ(l+1)
m

)′
. (6.18)

After each iteration of the M-step, the new log-likelihood L(l+1) is computed us-

ing (6.13) and the convergence of the algorithm checked:

L(l+1) =
N
∑

n=1

log

(

M
∑

m=1

w(l+1)
m N

(

zn |µ
(l+1)
m ,Σ(l+1)

m

)

)

. (6.19)

The algorithm is iterated until the relative increase of the log-likelihood is smaller than a

certain threshold δ:

∆L =
Lm+1 − Lm

|Lm|
≤ δ. (6.20)

The EM algorithm needs a good initialization in order to minimize the possibility of

converging to a local minimum. We will use the k-means algorithm (Duda et al., 2000) to

divide the data into M clusters, each of them defined by its centroid cm for m = 1 . . .M .

The initial estimations w
(0)
m , µ

(0)
m ,Σ

(0)
m can then be estimated using two the coarse estimate

of the sample n being generated by the mth Gaussian provided by the k-means algorithm.

This is done by setting γmn in (6.14) as:

γ(−1)
mn =







1, zn is in cluster m,

0, otherwise.
(6.21)

The initial values forw
(0)
m , µ

(0)
m andΣ

(0)
m are computed using equations (6.15) – (6.18). After

obtaining the initialization point for the EM algorithm, we compute the initial value of the

log-likelihood function:

L(0) =
N
∑

n=1

log

(

M
∑

m=1

w(0)
m N

(

xn |µ
(0)
m ,Σ(0)

m

)

)

, (6.22)

which is then used to initialize the EM iterations.
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6.2.2 Decision tree based voice conversion

Decision trees allow us to work with numerical data (such as spectral and glottal features)

as well as categorical data (such as phonetic features) when building an acoustic model.

Tables 6.1, 6.2 and 6.3 list the allophones and the characteristics used in this work, for

vowels, glides and consonants respectively. They can be summarized as follows:

• category: consonant, glide, vowel,

• point of articulation (consonants): alveolar, bilabial, dental, interdental,

labiodental, palatal, velar,

• manner of articulation (consonants): affricate, approximant, fricative,

lateral, nasal, plosive, tap, trill,

• height (vowels): close, mid close, mid open, open, schwa,

• backness (vowels): back, center, front,

• voicing: unvoiced, voiced.

In our system, we are using binary trees, i.e., the trees are used to classify data into

phonetic categories using yes/no questions (e.g., is bilabial true?, is mid open true?, is

consonant true?). A sample binary CART constructed using these characteristics is shown

in Figure 6.2.

Figure 6.2: Sample binary CART consisting of a root node (R), three intermediate nodes (N1, N2 and
N3) and five leaves or categories (L1 to L5). In the example, the data is divided into five categories
using four binary phonetic characteristics (vowel, front, alveolar and bilabial).

We will proceed to describe now the procedure to grow the trees. The available train-

ing data is divided into two sets: the training set and the validation set. This is important

in order to avoid over-fitting issues, where the trees are so dependent on the training data

that they lose the ability to generalize (i.e., perform well with previously unseen data). A

joint GMM based conversion system is estimated from the training set for the parent node

t (the root node in the first iteration) as explained before. We can then calculate an error
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Vowels
Height Backness Voicing

SA
M

PA
co

d
e

@ schwa center voiced
a open center voiced
e mid close front voiced
E mid open front voiced
i close front voiced
o mid close back voiced
O mid open back voiced
u close back voiced

Table 6.1: List of vocalic allophones and phonetic characteristics.

Glides
Height Backness Voicing

SA
M

PA
co

d
e

j close front voiced
uw close back voiced
w close back voiced
y close front voiced

Table 6.2: List of glides allophones and phonetic characteristics.

index E(t) for all the elements of the training set belonging to that node:

E(t) =
1

|t|

|t|
∑

n=1

D(ỹn,yn), (6.23)

where |t| is the number of frames in the node t, y is a target frame and ỹ its correspond-

ing converted frame. D(ỹ,y) is a measure of the distance between target and converted

frames that depends on the type of parameter, as will be explained later.

We then continue by evaluating all the possible questions q of the set Q at node t.

The set Q is formed by binary questions of the form is {ỹ ∈ A}, where A represents a

phonetic characteristic of the frame ỹ. For each valid question q, two child nodes (tL and

tR) are populated: the left descendant node tL is formed by all the frames which fulfill the

question and the right tR node by the rest. A question q is considered valid if a minimum

number of frames fulfill it.

For each child node, a joint GMM conversion system is estimated, and the error figures

E(tL, q) and E(tR, q) for the training vectors corresponding to the child nodes tL and

tR obtained from the question q are calculated. The increment of the accuracy for the
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Consonants
Articulation point Articulation manner Voicing

SA
M

PA
co

d
e

b bilabial plosive voiced
B bilabial approximant voiced
d dental plosive voiced
D dental approximant voiced
dz alveolar affricate voiced
dZ palatal affricate voiced
f labiodental fricative unvoiced
g velar plosive voiced
G velar approximant voiced
J palatal nasal voiced
jj palatal fricative voiced
k velar plosive unvoiced
l alveolar lateral voiced
L palatal lateral voiced
m bilabial nasal voiced
n alveolar nasal voiced
N velar nasal voiced
p bilabial plosive unvoiced
r alveolar tap voiced
R alveolar tap voiced
rr alveolar trill voiced
s alveolar fricative unvoiced
S palatal fricative unvoiced
t dental plosive unvoiced
T interdental fricative unvoiced
ts alveolar affricate unvoiced
tS palatal affricate unvoiced
x velar fricative unvoiced
z alveolar fricative voiced
Z palatal fricative voiced

Table 6.3: List of consonantic allophones and phonetic characteristics.

question q at the node t can be calculated as:

∆(t, q) = E(t)−
E(tL, q)|tL|+ E(tR, q)|tR|

|tL|+ |tR|
. (6.24)

The question q∗ corresponding to the maximum increment is selected:

q∗ = argmax
q

∆(t, q), (6.25)
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and the node is split only if the validation set accuracy for question q∗ also increases. In

this case, nodes tL and tR are added to list of nodes to be split, and question q∗ is removed

from the subset of questions Q available to the resulting sub-tree. The tree is grown until

there is no node candidate to be split or a maximum size (i.e., number of nodes) is reached.

In order to avoid over-fitting to the training data, the tree needs to be pruned by using

either a pre-pruning or post-pruning approach (Duxans, 2006). Pre-pruning consists of

using a validation dataset to compute the accuracy increment of the optimal question, and

splitting the node only when it is greater than zero. The main drawback here is that each

splitting decision is taken locally, without considering future splits (“the horizon effect”).

Post-pruning avoids this problem by starting with a complete tree and operation bottom

to top by recombining leafs and nodes to obtain smaller subtrees with better accuracy.

This is done independently for each source–target combination to find the optimal tree

corresponding to each case.

New source vectors are classified into leafs according to their phonetic features by the

decision tree, and then converted according to the GMM based system belonging to its

leaf. This is only applied to voiced segments, unvoiced segments are used unmodified. In

order to rate the performance of the conversion, and to compare the three different set of

parameters, we will use the Performance Index as an objective measure of the conversion’s

performance:

P = 1−
D(Ŷ,Y)

D(X̂,Y)
, (6.26)

where X is the set of source vectors, Y is the set of target vectors, Ŷ is the set of converted

vectors, and D(·, ·) is the distance measure used for the conversion function training. The

performance index P ranges from 0, when Ŷ = X (i.e., no transformation or change at

all), to 1, when Ŷ = Y (i.e., completely successful transformation) 2

6.2.3 Baseline

The baseline parametrization uses line spectral frequencies (LSF) to model the vocal-tract,

derived using linear prediction analysis. The distance D(ỹ,y) used to compute the error

index from eq. 6.23 is the mean of the Inverse Harmonic Mean Distance (IHMD) (Laroia

et al., 1991):

D(ỹ,y) =

√

√

√

√

P
∑

p=1

c(p)(ỹ(p)− y(p))2, (6.27)

c(p) =
1

w(p)− w(p− 1)
+

1

w(p+ 1)− w(p)
, (6.28)

2It should be noted that P is not confined to the range [0, 1], although it usually falls within its limits. For
extremely unsuccessful conversions, it may result in negative values.
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with w(0) = 0, w(P + 1) = π and w(p) = ỹ(p) or w(p) = y(p) so that c(p) is maximized (p

is the vector dimension), weights more the mismatch in spectral picks than the mismatch

in spectral valleys when working with LSF vectors.

In this system no specific model for the residual is assumed, working with the full

waveform instead. To complete the conversion from the source speaker to the target

speaker, a target residual signal is predicted from the converted LSF envelopes. During

training, a parallel database of LSF vectors and residual waveforms using all the available

target data is constructed, mapping each LSF vector into its corespondent residual. Dur-

ing conversion, the converted LSF vector is compared to the LSF vectors in the database,

and the residual associated to the closes one is selected. Prior to the final concatenation

a smoothing step is performed on the selected residual waveforms to minimize the intro-

duction of artifacts (Duxans, 2006).

6.3 Voice conversion using source characteristics

So far we have explained the details of the voice conversion system using CART and GMM

our proposed parametrization is going to be integrated into, and we have presented the

previous LP-derived parametrization we are going to use as baseline. In this section we

address the requirements of the source features and the model training methods we have

use to grow the different trees. First we will present the corpus used during these VC

experiments.

6.3.1 Language resources

As part of the TC-STAR project, UPC produced the language resources for support-

ing the evaluation of English/Spanish voice conversion. Four bilingual speakers En-

glish/Spanish recorded approximately 200 phonetically rich sentences in each language,

from which 150 are available for training. The sentences were recorded using a mimic style

to facilitate the alignment, using high quality settings (96 kHz, 24 bits/sample), and three

channels were available (membrane microphone, close-mouth microphone and laryngo-

graph), as explained in Bonafonte et al. (2006b). For this work, the following data set was

used:

• only the Spanish subset was used,

• membrane microphone, downsampled to 16 kHz, 16 bits/sample,

• two female (speakers F1 and F2) and two male (speakers M2 and M1) voices,

• four different source-target pairs have been trained (F1→M1, F1→ F2, M2→M1,

M2→ F2).
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6.3.2 Proposed parametrization

For the purpose of voice conversion we have used the same parametrization we proposed

in the previous chapter for performing prosody modifications:

• vocal tract: N LSF coefficients θvt = (lsf1, lsf2, · · · , lsfN )′ (Section 5.1.1),

• glottal waveform: LF parameters and fundamental frequency θlf =

(Ra, Rg, Rk, Ee, F0)
′ (Section 5.1.2),

• residual: reduced set of parameters using one symmetric window from eq. (3.59),

and the parametrization technique from Section 5.1.3 with one symmetric window

to reduce the dimensionality θres = (blvl, wlvl, wc, wl)
′.

The approach we follow in this work to integrate our feature set into the reference voice

conversion paradigm is to treat each of the three parameter sets independently. This way,

we grow an individual CART for each of the parameter sets described above (vocal tract,

glottal waveform and residual), and the transformation is performed independently from

each other.

Due to the different nature of the source-filter features, we use different measures to

compute the distance between source, target and transformed frames. For the vocal tract,

we use the same IHMD distance measure from (6.27) to compute the error index (6.23).

For the glottal source and aspiration noise, we use the Euclidean distance between the

converted and target vectors by setting c(p) = 1 in eq. (6.27) above:

D(ỹ,y) =

√

√

√

√

P
∑

p=1

(ỹ(p)− y(p))2. (6.29)

Since the growing procedure is performed independently for each parameter set, the re-

sulting trees and GMM will have different size, as we will see in next section, which details

the training stage.

6.3.3 Model training

During training, a small subset of the corpus was reserved for validation purposes, as we

will see in Section 6.4. The purpose of this data was to select the appropriate number

of mixtures per GMM to use when building the transformation function, and to perform

the pruning process, as we will see next. Using the performance index as an objective

measure of the quality of the conversion, we obtained numerical results that allowed us

to identify training problems and performance bottlenecks. Although these measures

are no substitute for the subjective MOS evaluation using previously unknown test data
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described in Section 6.4 and do not give an overall figure of the conversion performance,

they are useful for the selection and adjustment of the different parameters.

For each of three parameter sets (vocal tract, glottal model and residual) we built a

number of trees as follows. With the training data we created 5 training datasets using

5, 10, 25, 50 and 100 files respectively. For each of them, we built 7 classification trees,

using a different GMM size on each of them (1, 2, 4, 8, 16, 32 and 64 mixtures). For each of

the combinations of training dataset size and GMM size, three trees were obtained: one

normally built, one used the pre-pruning method, and a third one using post-pruning.

Each of these CART was then used to classify the validation data, and a measure of the

transformation quality was obtained by computing the performing index from eq.(6.26)

(using the distance measure from eqs.(6.27) or (6.29) depending on the parameter set as

explained in the previous section). The figures showing the performance of all the de-

scribed combinations have been placed at the end of the chapter so they do not interrupt

the flow of the explanation. We will provide here detailed figures highlighting the spe-

cific issues we are dealing with. Figures 6.7 to 6.10 (pages 121 to 124) show the results for

the validation data-set for the four source–target pairs (M2 → M1, M2 → F2, F1 → M1,

and F1→ F2). Each figure shows the results of the vocal tract (top), glottal model (mid-

dle) and aspiration noise (bottom) conversions. On the x axis we have the number of files

available in training (5, 10, 25, 50 and 100). The bars are grouped in triplets of the same

color, each color indicating the number of mixtures used for the GMM. Each single-color

triplet shows the results of the basic CART without pruning (left bar), with pre-pruning

(middle bar) and post-pruning (right bar).

First we studied the effect of insufficient data on the overall performance and the issues

derived from over-fitting the models to the training data. We also wanted to evaluate

the relation between the number of mixtures in the GMM on the overall performance.

Lastly, we studied the impact of the tree pruning methods, both in terms of conversion

performance and tree size. Observing the general trend in the figures, the performance of

the conversion improves when we increase the number of files used in training. Figure 6.3

shows this effect for the case of LF training in the F1 to F2 direction. As we can see, the

more available data during the training stage, the better the performance. We can also

observe that, although overfitting still occurs, its effect is greatly diminished when we

increase the size of the training dataset. This was to be expected, since the larger the

training data set, the more representative of the overall data set it is.

As Figure 6.4 illustrates with an example of the conversion direction F1 to F2, when

we increment the number of mixtures per GMM while keeping constant the size of the

training dataset (25 files in this case), the performance of the conversion system decreases.

This is the result of overfitting, where the statistical modeling captures too much of the

specific particularities of the training data and loses the ability to generalize and perform
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Figure 6.3: Positive effect of increasing the training dataset size on the classification performance (LF
CART, F1→ F2).
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Figure 6.4: Overfitting due to reduced size of training set and positive effect of pruning (direction F1
→ F2 trained with 25 files).
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well with previously unknown data. As we can see, pruning the tree (in this particular

example with the pre-pruning technique) mostly solves this problem.

The performance vastly improves when the trees are pruned, and this improvement is

larger the less available training data we have (since the training set is then less represen-

tative of the overall data). There is a still a small degradation due to over-fitting when we

use 25 or less files for training, but once we increase this number to 50 or 100, this effect is

reduced and almost negligible in most cases. Figure 6.5 shows the relative improvement

due to pre-pruning the tree for two different dataset sizes (10 and 100 files).

100 files (pre-pruning)

100 files (base)

10 files (pre-pruning)

10 files (base)
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Figure 6.5: Relative improvement of pruning on the overall performance when increasing the size of
the training dataset (LSF CART, F1→ F2).

The resulting size of the different CART can be seen in Tables 6.4 to 6.7 (pages 125

to 128). As expected, the dimensionality of the resulting trees is greatly reduced by ap-

plying either of the two pruning algorithms. Generally, pre-pruning resulted in smaller

trees without an obvious impact on the conversion quality, which can be beneficial for

certain applications (e.g., smaller trees require less memory and processing power). We

also noticed that non-pruned CART tend to be larger (i.e., more nodes) the higher the ratio

number of training files to number of mixtures is. After pruning, the tendency continues

but with smaller differences.

In order to analyze the relevance of the different phonetic questions used in this work,

we have included a representation of the first four levels of each CART in the form of a

table. The resulting tables are in Section 6.6.3, Tables 6.8 to 6.11. This way we can gain

knowledge of what phonetic characteristics are most discriminative. As we can see, al-

though there is no clear consensus among the different conversion pairs and parametriza-

116



6.4 Evaluation and results

tion trees, there are some questions that would appear to dominate the first CART nodes.

Among the most asked questions we find consonant (or the sort of complementary vowel),

nasal, close and back. On a lesser degree, we could include such questions as alveolar, palatal

or lateral. These questions seem reasonable, since they split the corpus in two big groups

(vowels and consonants), and then each of them in large sections (close and back for vow-

els, nasal, alveolar or lateral for consonants). We can also observe that most of the GMM

used for the transformation function are relatively small, having between 1 and 4 mixtures

on average. This could also be seen in Figures 6.7 to 6.10.

Up to this point we have presented the selection criterion for finding the optimal CART

configuration for each conversion pair and feature set. Now that we have obtained the

optimal CART for each parameter and transformation pair, we will proceed with the sub-

jective evaluation of the conversion performance using an online listening test. It is worth

noting that the use of phonetic CART is also beneficial when using glottal features, as

shown by the fact the trees grow also for this feature set, although phonetic information

is usually more dependant on the vocal tract configuration.

6.4 Evaluation and results

As usual when evaluating VC algorithms, two metrics were used during this evaluation:

one for rating the success of the transformation in achieving the desired speaker identifi-

cation, and one for rating the quality. This is needed since strong changes usually achieve

the desired identity at the penalty of degrading the quality of the signal. The evaluation

was based on subjective rating by 14 human judges which were presented with examples

from the transformed speech and the target one and had to decide on two aspects:

• the similarity of the converted and target voices using a 5-point MOS scale (1 – com-

pletely different, to 5 – identical),

• the transformed voice quality using a similar 5-points MOS scale (1 – bad, 5 – excel-

lent).

For the reference system, in this evaluation we used the utterances generated during the

last evaluation campaign of the European project TC-STAR, since the same training and

testing conditions were followed. For our system, we chose the optimal CART using val-

idation data for each pair of source target speakers and parametrization from the set of

systems trained with 100 sentences. We then used them to convert the utterances belong-

ing to the testing set. Some natural source-target and target-target examples were also

presented for calibration reasons. Obviously, the participants in this evaluation ignored

the origin of the samples they were being presented with.
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The table below presents the results of the similarity and quality tests, for both the

baseline and proposed parametrizations:

Reference Proposed Orig Src Orig Tgt

Quality 2.11 2.47 (+17%) 4.88 4.96

Similarity 2.87 3.02 (+5%) 1.62 4.79

As we can see, there is a noticeable improvement in terms of transformed voice quality as

a result of the new features used, which rises from 2.11 to 2.47 points. The speaker iden-

tity transformation is also rated as more successful (3.02 vs 2.87). The last two columns

are shown mainly for reference. We can see that the original source and target speaker

voices are judged to be different (rated 1.62), while the real target–target combinations are

naturally judged identical. Real samples are found to have an excellent quality.

Quality

Reference Proposed

Similarity

Source target pairs

f1 : f2 f1 : m2 m1 : f2 m1 : m2

f1 : f2 f1 : m2 m1 : f2 m1 : m2

1
2
3
4
5

1
2
3
4
5

Figure 6.6: Results of the quality and similarity MOS evaluation tests for the reference and proposed
methods

Figure 6.6 contains the results separated per source-target pairs. As we can see, the

proposed parametrization results in an improved quality in all four conversion directions.

In terms of similarity, we observe that the transformation towards the second female voice

F2 is more successful using the proposed parametrization, whereas in the other two cases

there is a slight decrease in the performance.
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6.5 Conclusions

Voice conversion (VC) technology transforms the voice of a source speaker so that it is per-

ceived as that of a target speaker. In this chapter we have studied the inclusion of glottal

source characteristics in voice conversion systems (Pérez and Bonafonte, 2011). We used

our previously reported glottal analysis algorithm to obtain three sets of parameters: one

for the vocal tract using LSF, another for the glottal source using the LF model, and a last

one for the aspiration noise using a parametrized envelope to modulate in amplitude high-

pass filtered AWGN noise. To evaluate the benefits of this new parametrization in voice

conversion tasks, we used a reference conversion system that estimates a linear transfor-

mation function using a joint target/source model obtained with CART and GMM. The

reference system is based on the LPC model, uses LSF to represent the vocal tract and

a selection technique for the residual. To include the new parametrization, we used the

reference system algorithm to build a VC system for each of the three parameter sets us-

ing CART and GMM. We compared both parametrizations in the framework of an intra-

lingual voice conversion task in Spanish. The tests showed that the new source/filter

representation clearly improves the overall performance, both in terms of speaker iden-

tity transformation and voice quality of the converted voice. However, the quality is still

poor compared to that of equivalent speech synthesis systems, and the voice conversion

method would need to be further researched. However, we can conclude that voice source

information can have a positive impact on voice conversion system.
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6.6 Additional figures and tables

6.6.1 Performance figures
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(a) Conversion F1 → F2: Vocal tract (LSF)
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(b) Conversion F1 → F2: Glottal model (LF)
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(c) Conversion F1 → F2: Aspiration noise

Figure 6.7: Performance evaluation of the CART conversion from F1 to F2. The results are shown for
the various combinations of training corpora and GMM sizes. For each number of mixtures per
GMM, the performance index (from 0 worst, to 1 best) is shown in triplets of the same color (left:
basic CART, middle: CART with pre-pruning, right: CART with post-pruning)
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(c) Conversion F1 → M1: Aspiration noise

Figure 6.8: Performance evaluation of the CART conversion from F1 to M1. The results are shown
for the various combinations of training corpora and GMM sizes. For each number of mixtures per
GMM, the performance index (from 0 worst, to 1 best) is shown in triplets of the same color (left:
basic CART, middle: CART with pre-pruning, right: CART with post-pruning)
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(c) Conversion M2 → F2: Aspiration noise

Figure 6.9: Performance evaluation of the CART conversion from M2 to F2. The results are shown
for the various combinations of training corpora and GMM sizes. For each number of mixtures per
GMM, the performance index (from 0 worst, to 1 best) is shown in triplets of the same color (left:
basic CART, middle: CART with pre-pruning, right: CART with post-pruning)
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(c) Conversion M2 → M1: Aspiration noise

Figure 6.10: Performance evaluation of the CART conversion from M2 to M1. The results are shown
for the various combinations of training corpora and GMM sizes. For each number of mixtures per
GMM, the performance index (from 0 worst, to 1 best) is shown in triplets of the same color (left:
basic CART, middle: CART with pre-pruning, right: CART with post-pruning)
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6.6.2 CART size after pruning

Table 6.4: Number of CART nodes in F1→ F2 conversion for the various combinations of Gaussian
mixtures and training corpora size (basic / pre–pruning / post–pruning).

Conversion F1→ F2

Vocal tract (LSF)

Files 5 10 25 50 100

GMM

1 37/1/1 47/3/3 53/7/25 53/39/39 59/43/43
2 39/1/1 47/1/7 53/13/13 53/13/31 57/35/43
4 39/1/1 47/1/1 53/3/3 53/13/17 57/13/29
8 39/1/1 47/1/1 53/1/1 53/1/7 57/23/27
16 35/1/1 45/1/1 53/1/1 53/3/3 57/5/15
32 29/1/1 35/1/1 49/1/1 53/1/1 57/5/5
64 19/1/1 27/1/1 41/1/1 51/1/1 53/3/3

Glottal model (LF)

Files 5 10 25 50 100

GMM

1 39/3/3 47/9/9 53/15/15 53/21/27 59/25/25
2 39/1/1 47/1/11 53/1/13 49/5/5 59/5/27
4 39/1/1 47/1/7 53/7/7 55/1/19 59/3/21
8 39/1/1 47/1/1 53/3/3 53/1/11 53/9/31
16 35/1/1 45/1/1 53/3/3 53/1/5 57/7/17
32 29/1/1 35/1/1 49/3/3 53/3/3 51/5/17
64 19/1/1 27/1/1 41/1/1 51/3/3 55/1/19

Residual

Files 5 10 25 50 100

GMM

1 39/3/3 49/3/3 53/9/27 53/13/13 59/19/19
2 37/3/9 47/3/3 49/3/3 51/11/11 51/7/31
4 37/3/3 45/3/3 49/3/3 51/3/3 49/3/39
8 39/3/3 47/3/3 53/5/5 53/3/3 59/5/27
16 35/1/1 43/3/3 53/5/5 53/3/13 57/23/23
32 25/1/1 33/3/3 49/3/3 53/5/5 57/15/15
64 17/1/1 29/1/1 41/3/3 51/3/3 53/3/23
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Table 6.5: Number of CART nodes in F1→M1 conversion for the various combinations of Gaussian
mixtures and training corpora size (basic / pre–pruning / post–pruning).

Conversion F1→M1

Vocal tract (LSF)

Files 5 10 25 50 100

GMM

1 37/1/1 43/9/9 51/7/25 53/33/33 55/47/47
2 39/1/1 43/1/1 51/19/19 53/21/21 55/39/39
4 39/1/1 43/1/1 51/5/9 53/13/17 55/19/35
8 39/1/1 43/1/1 51/1/1 53/5/13 55/17/27
16 35/1/1 41/1/1 51/1/1 51/1/1 55/9/17
32 25/1/1 35/1/1 49/1/1 51/1/1 53/3/3
64 17/1/1 23/1/1 37/1/1 49/1/1 51/1/1

Glottal model (LF)

Files 5 10 25 50 100

GMM

1 37/1/1 43/3/29 51/17/37 53/35/35 55/35/43
2 39/1/1 43/5/5 51/9/19 53/35/35 55/35/35
4 39/1/1 43/3/3 51/3/9 53/7/41 55/35/39
8 39/3/3 43/3/3 51/7/17 53/3/25 55/1/31
16 35/1/1 41/1/1 51/3/15 51/3/23 55/25/31
32 23/1/1 33/1/1 49/1/1 51/1/1 51/23/23
64 17/1/1 23/1/1 37/3/3 49/1/1 51/3/17

Residual

Files 5 10 25 50 100

GMM

1 39/5/5 43/11/11 51/15/15 53/15/33 55/15/37
2 39/7/7 43/7/7 51/1/23 53/13/35 53/31/31
4 39/7/7 43/7/7 51/11/15 47/15/35 55/27/31
8 39/3/3 41/5/5 51/9/9 51/9/25 55/17/35
16 33/7/7 41/7/7 51/9/13 51/11/25 55/15/35
32 25/3/3 31/3/3 49/9/9 51/11/19 53/15/23
64 17/3/3 27/5/5 37/9/9 49/13/13 51/15/23
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Table 6.6: Number of CART nodes in M2→ F2 conversion for the various combinations of Gaussian
mixtures and training corpora size (basic / pre–pruning / post–pruning).

Conversion M2→ F2

Vocal tract (LSF)

Files 5 10 25 50 100

GMM

1 37/1/1 47/7/7 55/23/23 55/35/35 59/39/39
2 37/3/3 47/1/7 55/13/13 55/21/21 59/31/31
4 37/1/1 47/1/1 55/9/9 55/17/17 59/19/29
8 37/1/1 47/1/1 55/3/3 55/5/5 59/11/17
16 35/1/1 43/1/1 55/3/3 55/1/1 57/9/9
32 25/1/1 35/1/1 47/1/1 53/1/1 55/7/7
64 17/1/1 29/1/1 41/1/1 51/1/1 53/3/3

Glottal model (LF)

Files 5 10 25 50 100

GMM

1 37/1/1 47/7/13 55/17/17 55/15/27 59/25/35
2 37/1/1 47/5/5 51/5/5 53/11/15 59/13/31
4 39/3/3 47/3/3 53/5/5 55/1/9 59/11/31
8 39/1/1 49/1/1 53/1/5 53/1/9 59/7/7
16 33/1/1 43/3/3 55/1/1 49/1/7 57/1/11
32 23/3/3 33/1/1 49/5/5 53/1/5 57/5/13
64 15/1/1 27/1/1 39/1/1 53/1/1 53/3/11

Residual

Files 5 10 25 50 100

GMM

1 39/1/7 47/1/1 55/1/29 55/3/35 59/19/39
2 33/5/5 47/5/5 51/1/29 55/3/33 59/15/43
4 37/1/1 49/3/3 51/3/15 55/7/27 59/15/35
8 37/1/5 49/3/3 55/3/3 55/3/33 57/11/21
16 33/3/3 43/1/1 53/1/1 55/3/3 59/3/33
32 25/1/1 35/1/1 47/1/1 53/3/29 57/7/27
64 17/1/1 23/1/1 41/1/1 51/3/3 53/11/15
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Table 6.7: Number of CART nodes in M2→M1 conversion for the various combinations of Gaussian
mixtures and training corpora size (basic / pre–pruning / post–pruning).

Conversion M2→M1

Vocal tract (LSF)

Files 5 10 25 50 100

GMM

1 31/1/1 43/1/1 55/21/29 53/35/35 55/47/51
2 33/1/1 43/1/1 53/11/11 53/27/27 55/37/43
4 33/1/1 43/1/1 53/3/3 53/11/11 55/25/29
8 31/1/1 45/1/1 53/3/3 53/5/5 57/15/25
16 31/1/1 37/1/1 51/1/1 53/3/3 57/9/9
32 19/1/1 33/1/1 41/1/1 51/1/1 55/3/3
64 9/1/1 23/1/1 33/1/1 43/1/1 51/1/1

Glottal model (LF)

Files 5 10 25 50 100

GMM

1 31/1/1 43/1/23 55/1/27 53/15/23 55/1/45
2 27/1/1 43/1/25 55/23/27 51/1/1 55/3/33
4 31/1/7 45/3/9 53/9/9 53/1/1 57/3/31
8 31/1/1 45/3/3 53/1/7 49/1/1 53/3/19
16 31/1/1 37/1/1 51/1/13 53/1/1 55/5/31
32 19/1/5 29/3/3 41/5/5 53/1/1 55/1/11
64 9/1/1 21/1/1 31/1/1 43/1/1 53/1/5

Residual

Files 5 10 25 50 100

GMM

1 31/3/3 45/3/3 55/3/23 55/5/23 57/37/41
2 31/3/3 39/13/19 51/9/27 55/25/39 57/33/37
4 31/3/3 43/5/11 55/1/27 51/3/21 57/33/41
8 33/3/3 43/3/3 53/5/5 53/7/21 57/3/21
16 29/3/3 37/1/5 53/5/5 53/11/11 57/17/27
32 19/3/3 31/1/1 41/3/3 53/5/23 55/21/31
64 9/1/1 21/3/3 33/1/1 45/5/5 53/9/23
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6.6.3 CART phonetic questions

Table 6.8: Final CARTs used for the F1 → F2 conversion of vocal tract, glottal model and residual
(only the first 4 levels are shown). Nodes kept after the pruning are in bold; the dashes represent
empty nodes

Vocal tract (LSF)

CART: 43 nodes (leaves: 22) – GMM: 2 mixture(s)

consonant

nasal

bilabial
—
alveolar

dental
approximant

alveolar

close

glide
back

front

front
—
center

Glottal model (LF)

CART: 25 nodes (leaves: 13) – GMM: 1 mixture(s)

center

—
—

—
—

—
—
—

mid close

back
—
—

nasal
bilabial

close

Residual

CART: 23 nodes (leaves: 12) – GMM: 16 mixture(s)

vowel

close
back

—
—

mid close
front
—

nasal

bilabial
—
alveolar

fricative
palatal

alveolar
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Table 6.9: Final CARTs used for the F1→ M1 conversion of vocal tract, glottal model and residual
(only the first 4 levels are shown). Nodes kept after the pruning are in bold; the dashes represent
empty nodes

Vocal tract (LSF)

CART: 35 nodes (leaves: 18) – GMM: 4 mixture(s)

alveolar

lateral

—
—
—

nasal
—
fricative

back

close
vowel
—

nasal
bilabial

mid close

Glottal model (LF)

CART: 39 nodes (leaves: 20) – GMM: 4 mixture(s)

back

mid close
—

—
—

vowel
—
—

consonant

voiced
fricative

fricative

glide
—
close

Residual

CART: 31 nodes (leaves: 16) – GMM: 2 mixture(s)

consonant

nasal

palatal
—
bilabial

plosive
voiced
alveolar

close

back
glide

glide

back
—
open
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Table 6.10: Final CARTs used for the M2→ F2 conversion of vocal tract, glottal model and residual
(only the first 4 levels are shown). Nodes kept after the pruning are in bold; the dashes represent
empty nodes

Vocal tract (LSF)

CART: 39 nodes (leaves: 20) – GMM: 1 mixture(s)

consonant

nasal

palatal
—
alveolar

alveolar
lateral

dental

close

back
glide
glide

back
—
center

Glottal model (LF)

CART: 35 nodes (leaves: 18) – GMM: 1 mixture(s)

close

back

glide
—
—

glide
—
—

consonant

nasal
bilabial

trill

back
—
center

Residual

CART: 35 nodes (leaves: 18) – GMM: 4 mixture(s)

vowel

close

back
—
—

open
—
back

nasal

bilabial
—
alveolar

fricative
palatal
back
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Table 6.11: Final CARTs used for the M2→M1 conversion of vocal tract, glottal model and residual
(only the first 4 levels are shown). Nodes kept after the pruning are in bold; the dashes represent
empty nodes

Vocal tract (LSF)

CART: 43 nodes (leaves: 22) – GMM: 2 mixture(s)

consonant

alveolar

lateral
—
nasal

palatal
nasal

bilabial

back

mid close
—
glide

mid close
—
close

Glottal model (LF)

CART: 45 nodes (leaves: 23) – GMM: 1 mixture(s)

consonant

nasal

bilabial
—
palatal

unvoiced
alveolar

lateral

close

back
glide

glide

back
—
center

Residual

CART: 41 nodes (leaves: 21) – GMM: 1 mixture(s)

consonant

lateral

alveolar
—
—

nasal
palatal

plosive

back

close
glide

—

close
glide

center
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CHAPTER 7

Laryngeal voice quality

Voice quality (VQ) is a general term that has been used to define a broad range of vocal

characteristics depending on the field of phonetics it is being used in. In a general sense,

by voice quality we are referring to the set of attributes or characteristics of a particular

speaker’s voice that are caused by a continuous variation of the laryngeal (vocal folds)

and supra-laryngeal (vocal tract) apparatus. In this work, we are concentrating only on

the first type: the laryngeal voice quality.

7.1 Voice quality classification

According to the description in Laver (1980) of the laryngeal voice quality, several voice

types can be differentiated (after Keller (2005)):

• Modal voice, produced by a moderate adductive tension, medial compression and

longitudinal tension (see Fig. 7.1).

• Falsetto voice, characterized by a high adductive tension, large medial compression

and high longitudinal tension. It is an alternative to modal voice.

• Whispery voice, defined by a low adductive tension, moderate to high medial com-

pression and variable longitudinal tension. It produces a triangular opening of vocal

folds of variable size. This voice type can be combined with modal or falsetto voice.

• Creaky voice (a.k.a. vocal/glottal fry or laryngealization) is a type of phonation in

which the arytenoid cartilages in the larynx are drawn together (see Fig. 7.3). The

vocal folds are compressed rather tightly, becoming relatively slack and compact,

forming a large, irregularly vibrating mass. The frequency of the vibration is very

low and the airflow through the glottis is very slow.
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Figure 7.1: Speech, laryngograph (EGG) and differentiated laryngograph (dEGG) waveforms corre-
sponding to the vowel /a/ uttered in modal phonation

• Rough voice (a.k.a. ventricular, pressed or harsh), characterized by the production of

speech sounds (typically vowels) with a constricted laryngeal cavity (see Fig. 7.4).

This generally involves some kind of epiglottal co-articulation. The ventricular folds

(the false vocal cords) are used to damp the glottis. For voiced sounds, this is similar

to what happens when someone who is lifting a heavy load talks. For voiceless

sounds, the example would be clearing one’s throat.

• Breathy voice (or murmured), defined by the vocal folds being held apart while they

are vibrating. A larger volume of air escapes between them, producing an audi-

ble noise. This phonation can be heard as an allophone to the English sound /h/

between vowels, as in behold.

One of the main goals of researchers on voice quality is the automatic acquisition of re-

liable voice source measures connected with the human production system. For instance,

the European Center of Excellence in Speech Synthesis (ECESS) included the possibil-

ity of using voice quality information in modular speech synthesis systems (Pérez et al.,

2006). Depending on the application and on the amount of data to be processed, it may

be sufficient to use manual methods requiring operator interactivity. However, for many
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Figure 7.2: Speech, laryngograph (EGG) and differentiated laryngograph (dEGG) waveforms corre-
sponding to the vowel /a/ uttered in falsetto phonation

current applications there is need to process large amounts of data, thus requiring auto-

matic methods performing with a fair degree of accuracy. The more immediate measures

that can be directly obtained from the estimated glottal waveform are:

• Open Quotient (OQ): ratio of open phase duration to the fundamental period,

• Speed Quotient (SQ): ratio of the glottal opening phase to the closing phase,

• Closing Quotient (CIQ): ratio of the glottal closing phase to the fundamental period.

According to several reports, time-based measures are often prone to contain errors.

Fant and Lin (1998) presents a study of the relation between glottal parameters and spec-

tral properties. Their work compresses analyzes of both subglottal coupling effects and

covariant formant bandwidths and narrow band processing techniques benefiting of the

frequency-domain representation. They conclude that the ta parameter of the LF model,

controlling the abruptness of the closing phase (and thus the spectral tilt of the glottal

flow), can be more reliably estimated using frequency-domain techniques. Other authors

present similar conclusions (Alku and Vilkman, 1996; Arroabarren and Carlosena, 2003b;

Childers and Lee, 1991).
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Figure 7.3: Speech, laryngograph (EGG) and differentiated laryngograph (dEGG) waveforms corre-
sponding to the vowel /a/ uttered in creaky phonation

Many reported works suggest that amplitude-based measures present less difficulties

than time-derived ones (Alku et al., 2002; Gobl and Chasaide, 2003a). Fant et al. (1994)

present a new parameterRd, a normalized version of Td to the fundamental period (with a

scale factor such that Rd equals Td in milliseconds for a fundamental frequency of 110Hz):

Rd = 1000(Up/Ee)(f0/110) = (Td/T0)/0.11. (7.1)

This new Rd parameter can be used to derive default predictions of the remaining param-

eters using correlations obtained with regression methods (Fant, 1995, 1997; Fant et al.,

1994). Alku and Vilkman (1996) introduce an equivalent parameter: the amplitude quo-

tient (AQ) defined as

AQ = fac/dpeak, (7.2)

where dpeak is the maximum negative amplitude of the differentiated glottal flow and

fac is the amplitude of the glottal flow pulse (equivalent to Ee and Up in (7.1) above). A

normalized version of the AQ parameter is presented in Alku (2003):

NAQ = AQ/T0 = 0.11Rd. (7.3)
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Figure 7.4: Speech, laryngograph (EGG) and differentiated laryngograph (dEGG) waveforms corre-
sponding to the vowel /a/ uttered in rough phonation

The work of Alku and his colleagues suggests that these parameters are well suited for

discrimination of the tense-lax voice qualities (Alku et al., 2002; Alku and Vilkman, 1996;

Mokhtari and Campbell, 2003). Gobl and Chasaide (2003a) add to this parameter set some

amplitude-based approximations of the glottal skewness and the open quotient. The in-

tention is to extend the analysis to the differentiation of other voice types. The experiments

show ambiguous results and no conclusions can be extracted. They state their intention

of investigating the use of the extended set of LF parameters proposed in Fant (1995),

Fant and Kruckenberg (1996) and Fant (1997). Airas and Alku (2007) present a study of

the performance of 21 different glottal flow parameters using statistical methods. The

authors conclude that, in terms of expressing phonation type changes, NAQ (7.3) and

AQ (7.2) outperform the rest, including Rd. Although this may seem strange at first, due

to its direct relation with NAQ as expressed in (7.3), Airas and Alku argue that the dif-

ference may reside on the origin of the estimations: whereas NAQ is directly estimated

from the inverse-filtered glottal waveform, Rd is obtained from the fitted parametric LF

model.

137



Laryngeal voice quality

Campbell and Mokhtari (2003) have been working with large databases of conversa-

tional speech, studying the role of voice-quality in everyday speech 1. They report that a

significant correlation exists between the NAQ parameter and some speaker dependent

characteristics (interlocutor, speech-act and speaking-style).

Mokhtari et al. (2003) propose a statistical approach using Principal-Component Anal-

ysis (PCA) for modeling the (derivative) glottal volume-velocity waveform. The database

presented by Laver (1980), containing sentences uttered with different phonation types,

is used in the experiments. Acoustic processing is performed by means of an unsuper-

vised algorithm that detects centers of measurement reliability (details in Mokhtari and

Campbell, 2003). The authors report that four principal components are needed to achieve

discrimination among the thirteen voice qualities. They are interpreted in terms of du-

ration of the fundamental period, convexity/concavity of the open phase, speed of the

opening and closing phases.

Childers and Lee (1991) presents a study of the laryngeal vocal quality of four different

voice types (modal, breathy, falsetto and vocal fry). They report that, among the differ-

ent characteristics of the glottal flow, four factors are important for discerning among the

studied voice types: glottal pulse width and skewness, noise component and the duration

of the closing phase. First, the closure instants of the glottis are located using the peaks

of the prediction error. These epochs are then used to perform a closed-phase LP analysis

for each pitch period. The glottal volume-velocity waveform is obtained by inverse filter-

ing the speech signal with the estimated vocal tract filters and integrating the result. The

method is validated using a cascade formant synthesizer (Klatt, 1980) excited with wave-

forms generated using the LF model (Fant et al., 1985). The reported listening tests show

that the aforementioned factors are sufficient for synthesizing the four voice types (a new

three-poles glottal flow model is proposed for generating the synthetic voice types). The

research is a continued and an extended article is presented in Childers and Hu (1994)

using some of the previous results. The authors use statistical multiple linear regression

analysis and others techniques to determine which LF parameters are more significant for

each voice type. As a result, simple rules are introduced to synthesize each type using the

formant synthesizer and the LF model as presented in (Fant et al., 1985; Klatt and Klatt,

1990).

A new parameter for the parametrization of the spectrum of the glottal flow, the

Parabolic Spectral Parameter (PSP), is introduced in Alku et al. (1997). The PSP value

is computed from the width a of a parabolic curve y = a · t2 + b to the lower part of the

glottal spectrum. A least squares error criterion is followed to obtain the best parabolic

estimation. The a value is also computed from the hypothetical DC-flow, modeled us-

ing a rectangular window of length to the fundamental period, to obtain amax. Thus, the

1Details of the recording process can be found in Campbell (2002).
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definition of PSP is:

PSP =
a

amax
. (7.4)

The authors argue that with the new method the dependency on the correct identifica-

tion of the harmonics is avoided. Moreover, PSP analysis allow the comparison of voices

with different fundamental frequencies, since the main spectral dependency is with the

spectral decay (tilt). Further studies by Arroabarren and Carlosena (2003a) comparing the

NAQ and PSP parameters using the LF model conclude that in spite of the different def-

inition, both parameters are equivalent. They conclude that the NAQ is a more reliable

measure than the PSP, since the later depends on the accuracy of the glottal flow period

extraction.

For our work on voice quality analysis, we will use the LF parameters resulting from

our parametrization algorithm Ra, Rg, Rk and fundamental frequency F0. They are re-

lated the standard open quotient OQ and asymmetry coefficient or speed quotient SQ

measures explained before as:

• OQ = Te
T0

= 1+Rk
2Rg

,

• SQ =
Tp

Te−Tp
= 1

Rk
.

This relation will allow us to compare our results with those previously reported in the

literature.

7.2 Voice quality analysis using glottal measures

A small corpus was recorded to study glottal extracted parameters across different voice

qualities or phonation modes. A professional female speaker was asked to produce sus-

tained vowels for each of the following voice qualities: modal, falsetto, rough and creaky.

The recordings for breathy and whispery were discarded for this experiment due to the

lack of useful laryngograph information, necessary for our decomposition algorithm. For

each of the modes, the five Spanish vowels were recorded in isolation, averaging 1.5 sec-

onds long. The sentences were recorded in a professional studio using a high-quality

membrane microphone, at 96 kHz and 24 bits/sample. It was later reduced to 16 kHz and

16 bits/sample for the experiment. The corpus was then analyzed using our decomposi-

tion and parametrization algorithm as explained in Chapter 3. As a result, 16 LSF coef-

ficients representing the vocal tract, 4 LF parameters (Ra, Rg, Rk and Ee) for the glottal

source (plus the fundamental frequency F0), and 4 parameters for the aspiration noise or

residual (blvl, wlvl, wc and wl) were obtained.

Figures 7.5 and 7.6 below show boxplots of the four different LF and residual parame-

ters respectively, for five vowels uttered in modal (i.e., normal), falsetto, rough and creaky
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modes. Prior to analyzing and comparing the different voice qualities as produced by our

particular speaker with those reported in the literature, one must consider that the dif-

ferences between the different voice qualities are often small. We are not dealing with

extreme or pathological phonation types and, in principle, a regular speaker with a nor-

mal apparatus should be able to produce and control each of them (Laver, 1980). Out

analysis focuses on the glottal source features, and its impact on the production of each

voice quality, and residual or aspiration noise characteristics will only be mentioned when

being particularly important.

The rough or harsh voice quality is usually very difficult to analyze, due to the large

variations from cycle-to-cycle, as can be seen in figure 7.5. All the parameters have larger

boxes (the bottom and the top represent the 25th and 75th percentile respectively) in the

boxplots. The duration of the open phase is generally much shorter than in the modal case,

as shown in the open quotient figure 7.5f. The fundamental frequency is approximately

5% lower than its modal counterpart, and the asymmetry coefficient Rk (figure 7.5b) is

on average larger, but with higher variance. Our results generally agree with those used

in Gobl and Chasaide (2003b) to study the relationship between voice quality and the

communication of emotion. The values for the open quotient were approximately 40%,

lower than for modal voices (60%). The fundamental frequency used was approximately

the same in both cases. The main differences are in the values for Rk and Ra. Gobl and

Chasaide report using higher speed quotient SQ (i.e., lower Rk) for the harsh voices, as

opposite to our findings. Furthermore, they use less attenuation for the higher frequen-

cies in the case of harsh voices, which translates into more abrupt closures of the glottis.

In our case we have the opposite case: rough voices usually have higher Ra values; in

other words, the closure in the rough case is smoother than in the modal case. We can

also observe in figure 7.6 that there is more aspiration noise present than in other modes,

specially modal. The values for the levels blvl and wlvl in figs. 7.6a and 7.6b are higher in

this voice quality.

Creaky voice is usually characterized by irregular pulse amplitudes and F0, which is

usually lower than in modal voice. Our analysis shows that the open quotient (figure 7.5f)

is similar, but slightly lower, to that corresponding to modal phonation, which seems to

agree with the majority of studies (Gobl, 1989; Gobl and Chasaide, 2003b; Nı́ Chasaide

and Gobl, 1997). On the other hand, Childers and Lee (1991) reports shorter pulses for

creaky voices. In general, Ra is found to be lower than in the modal case, although in

our case the values are very similar, slightly higher in the creaky case (figure 7.5c). This

may be to the double pulsing phenomenon explained below. Regarding the asymmetry

coefficient Rk shown in figure 7.5b, our results seem to confirm those previously reported

in the literature: the pulses in creaky phonation have lower Rk values, and are thus more

skewed.
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One of the main characteristics of creaky voice is its diplophonia or double pulsing:

each consecutive glottal pulse is different, with every second pulse looking similar, al-

though not identical (Gobl, 1989; Karlsson and Liljencrants, 1996). Due to the averag-

ing nature of the results presented in figure 7.5, this phenomenon is not clearly reflected

there, since it is caused by a cycle-to-cycle variation. This diplophonia can be clearly seen

in figure 7.7, where several waveforms corresponding to the vowel /a/ in creaky phona-

tion are shown. Observing the laryngograph waveforms in the upper figures, the double

pulses are clearly defined there. In the lower portion of the figure, the corresponding sec-

tions of the inverse-filter and parametrized glottal waveforms are plotted and the same

effect can be clearly seen. There we see that the larger pulses (larger amplitude Ee) have

shorter return phases, as opposite to the shorter pulses, that show smoother return phases

and lower amplitudes. This coincides with the results reported in Nı́ Chasaide and Gobl

(1997). The KLSYN88 formant synthesizer (Klatt and Klatt, 1990) contains a parameter

addressing this particular phenomenon, allowing the user to alter every second pulse,

reducing its fundamental frequency and amplitude (Gobl and Chasaide, 2003b).

For the falsetto voice, as expected, the values of the fundamental frequency F0 (fig-

ure 7.5e) are higher than in the modal phonation (approximately 330Hz, whereas they

normally are 170Hz in the modal case). We can also see that the open quotient OQ (fig-

ure 7.5f) is larger than for the modal case in four of the five analyzed vowels. As figure 7.5a

shows, the asymmetry coefficient Rk is clearly larger (and has a higher variability) for

the falsetto voice quality. These results are in general agreement with those reported in

the literature. Childers and Lee (1991) reported a tendency towards larger pulse widths

(i.e., open quotient), less pulse skewing (i.e., more symmetrical pulses) the and relatively

smooth and progressive closure. Kaburagi et al. (2007) reports similar results, but their

method tends to underestimate the open quotient, probably due to using a different model

for the glottal waveform (a polynomial model derived from the Rosenberg (1971) one).

The following list summarizes our findings (the changes are noted with respect to the

modal phonation):

• rough phonation: larger variations of all parameters, shorter Oq, slightly lower F0,

higher Rk, higher Ra, higher noise levels

• creaky phonation: irregular pulse amplitudes andF0, diplophonia (first pulse: large

Ee, low Ra; second pulse: low Ee, large Ra), similar Oq, lower Rk,

• falsetto phonation: higher F0, higher OQ, higher Rk (larger variability), slightly

higher Ra (larger variability).
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7.3 Experiments

To complement the analytical study of the voice quality corpus detailed in the previous

section, we conducted two experiments, first addressing here the issue of whether our

voice source parametrization algorithm is able to accurately capture the characteristics of

each of the voice qualities, and then exploring the utility of our parametric model in the

field of emotion recognition. The next sections present the details of the experimental

procedures.

7.3.1 Voice quality identification

This experiment was design to assess whether or not our glottal parametrization algo-

rithm was able to capture all the details of the different voice qualities. Ideally, all the

VQ information should be contained in the LF and aspiration noise parameters, since we

are dealing with laryngeal characteristics. We designed an experiment aimed at assess-

ing whether our glottal parametrization algorithm was capturing the characteristics of

the different phonation types as predicted by the theory. For each of the non-modal VQ

(rough, creaky and falsetto), each of the five vowels analyzed in the previous section were

resynthesized using the extracted glottal LF and residual parameters, but using the vocal

tract filter computed in the modal case. The filter frames were interpolated or discarded

in order to obtain the appropriate number for each mode. The set of samples used in the

test was:

• utterances representing the modal, rough, creaky and falsetto VQ, resynthesized

using the original vocal tract,

• modified utterances representing the non-modal qualities (rough, creaky and

falsetto), resynthesized using the vocal tract corresponding to the same vowel in

modal phonation.

The mixing of modified and normally resynthesized utterances was done for calibration

purposes.

An on-line test was then conducted in which 10 test participants were asked to lis-

ten and classify 15 utterances according to the perceived VQ (modal, rough, creaky or

falsetto). As a reference, a table with the original vowels as uttered by the professional

speaker in the different modes was included. Each participant was asked to familiarize

her- or himself with the examples prior to completing the test, and was allowed to listen to

them again during the evaluation. The participants ignored the origin of the utterances.

We have separated the results of the two sets of utterances in two tables. The following

table shows the confusion matrix of the different VQ when the evaluators were presented

with the resynthesized utterances:
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Selected VQ

Modal Rough Creaky Falsetto

A
ct

u
al

V
Q Modal 83.33 16.67 0.00 0.00

Rough 0.00 90.00 10.00 0.00

Creaky 0.00 5.00 95.00 0.00

Falsetto 0.00 5.00 0.00 95.00

These results can be used as reference when analyzing the results of the modified utter-

ances:

Selected VQ

Modal Rough Creaky Falsetto

A
ct

u
al

V
Q Rough 5.00 95.00 0.00 0.00

Creaky 5.00 10.00 85.00 0.00

Falsetto 0.00 5.00 0.00 95.00

As we can see, with the resynthesized utterances the confusion between modal and rough

is relatively high, and the listeners confused them in almost 17% of the cases. As expected

from other reported studies, the confusion between rough and creaky is higher than in the

other two cases (rough–falsetto, creaky–falsetto). These two qualities present some sim-

ilarities in terms of aspiration noise levels and irregularities, that make them sometimes

difficult to discern.

As the falsetto mode can be easily discerned, among other things due to the higher

pitch involved, we devised a second experiment specifically addressing this mode. The

idea was to see whether a simple change of pitch, arguably the single most important

characteristic of this mode, would suffice to transmit the same voice quality or if, on the

contrary, more glottal information would be needed to convey it. The experiment was

implemented using a modified ABX test. The test subjects were presented with the five

vowels uttered in falsetto mode. For each of the examples, two options were given: one

corresponding to the modal utterance with modified pitch, and the other to the modified

utterance used in the previous experiment (glottal source and residual extracted from the

falsetto utterance, and vocal tract obtained from the modal one). The test subjects were

asked to select which option (A or B) was closest to the original (X). The results of this test

show that 98% of the time the test subjects preferred the source-modified utterance over

the pitch-modified one. This clearly indicates that modifying the pitch only is not enough

to convey the characteristics of the falsetto voice.
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Figure 7.5: Boxplot of the LF parameters (Ra, Rg, Rk and Ee), the fundamental frequency (F0) and
the open quotient (OQ) for five isolated vowels uttered with different voice qualities (modal, rough,
creaky and falsetto). From left to right: /a/ (red), /e/ (yellow), /i/ (green), /o/ (blue) and /u/ (purple).
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Figure 7.6: Boxplot of the residual parameters for five isolated vowels uttered with different voice
quality (modal, low F0, high F0 (falsetto), creaky and rough). From left to right: /a/ (red), /e/
(yellow), /i/ (green), /o/ (blue) and /u/ (purple).
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Figure 7.7: Upper plot: speech, laryngograph (EGG) and differentiated laryngograph (dEGG) wave-
forms corresponding to the vowel /a/ in creaky phonation. Lower plot: inverse-filtered (IF) and
parametrized KLGLOTT88 (KL) and LF glottal waveforms.
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7.3.2 Emotion classification

The recognition of emotions from voice, although a young field in comparison with the

more established fields of automatic speech recognition or speaker identification, has been

gaining considerable interest in the last decade. Emotion recognition is being researched

for a wide spectrum of applications, for instance human-machine interfaces or human-

robot communication. The reliability of emotion classification systems is highly depen-

dent on the set of features extracted from the speech signal. Initial efforts focused on

speaker-dependent emotion recognition, using a small set of prosodic features to train

statistical classifiers using HMM or GMM with good results (Amir, 2001; Jiang and Cai,

2004; Nogueiras et al., 2001; Schuller et al., 2003). When working on speaker-independent

emotion recognition using real emotions recorded in a natural environment, as opposed

to studio generated (i.e., acted) emotions, hundreds and even thousands of features are

used. Current focus is on the selection and reduction of the feature set, and on the com-

bination of the different features (Lee et al., 2011; Luengo et al., 2010; Lugger and Yang,

2007). In general there is no clear consensus on the best set of parameters and how to com-

bine them, since the requirements and definition of what best means highly depends on

the task at hand. On a similar note, different studies on emotion recognition use different

definitions of what constitutes an emotion, making the method comparison difficult and

often meaningless. Recent efforts like the 2009 Interspeech Emotion Challenge (Schuller

et al., 2009) are aimed at providing a common framework within which different classifi-

cation methods and parametrizations could be tested and compared.

The relation between voice quality and the transmission of affect or emotion has been

long since established by researchers in the field of expressive speech and transmission

of affect (Cahn, 1990; Ryan et al., 2003; Schröder, 2001) and some authors have named

it “the 4th prosodic feature”, the first three being pitch, power and duration (Campbell

and Mokhtari, 2003). The differences in speaker affect can be achieved by changing the

voice quality, deeming fundamental frequency alone ineffective (Gobl et al., 2002), and

although certain voice qualities have been found to be associated to specific affective at-

tributes, no direct one-to-one mapping has been found (Gobl and Chasaide, 2000, 2003b).

Burkhardt and Sendlmeier (2000) presented an emotion-synthesizer based on the formant

synthesizer KLSYN88 (Klatt and Klatt, 1990), including specific VQ settings related to the

phonation type, used to modify the voicing source. They later conducted perceptual ex-

periments showing that the different types were distinguished by the listeners, leading to

an emotional impression agreeing with the reported literature (Burkhardt, 2009). Recent

work in emotion recognition has shown that adding voice quality derived features to the

set of spectral and prosodic features improves the accuracy of the classification (Lugger

and Yang, 2006, 2007; Schuller et al., 2003).
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We will present now our work in the field of speaker-dependent emotion classifica-

tion using voice quality information derived from glottal measures. For these experi-

ments, we used the INTERFACE Emotional Speech Synthesis Database (Tchong et al.,

2000), a database designed for the study of emotional speech and the analysis of emo-

tion characteristics for the purpose of speech synthesis. This same database was used

in Nogueiras et al. (2001) to conduct preliminary studies on emotion recognition using

prosodic features with good results. The database contains recordings in four different

languages (English, French, Slovenian and Spanish), two speakers for each language (one

female and one male). The speakers were professional actors simulating neutral style

and six emotions, as defined in the MPEG-4 standard (anger, disgust, fear, joy, sadness

and surprise). The Spanish corpus contains approximately 5000 utterances and includes

numbers, isolated words, sentences in affirmative, exclamatory and interrogatory form

and paragraphs. The utterances were recorded in two sessions in our recording facili-

ties at the university. The original sampling frequency was 32 kHz and the signals were

later downsampled to 16 kHz for the purposes of this work. As usual with our studio

recordings, a two channel setup was used to obtain both the speech, using a high-quality

electrodynamics microphone AKG 320, and the laryngograph signals.

For the purpose of this work, we have used 450 samples of each of the above emotions

to the GMM training, containing a balanced number of samples of both speakers and ses-

sions. We reserved 10% of this training corpus for validation purposes (i.e., choosing the

optimal set of model parameters for each emotion and classifier). The remaining utter-

ances of the database (approx. 1900) have been all used for evaluating the performance

of the emotion classifiers.

The emotion classifier is built by individually modeling each of the emotions using a

GMM trained with features extracted from the speech utterances corresponding to that

particular emotion. As we have seen in Chapter 6, Section 6.2, a GMM models a proba-

bility density function using a mixture of M Gaussian densities:

p(xn|θ) =

M
∑

m=1

wmN (xn|µm,Σm)

=
M
∑

m=1

wm
1

(2π)d/2|Σm|1/2
e−

1
2
(xn−µm)tΣ−1

m (xn−µm), (7.5)

where xn is the feature data, wm is the weight of each component in the distribution

(
∑M

m=1wm = 1 and wm ≥ 0 ∀m), µm is the mean vector, Σm the covariance matrix and

θ = {θ1, . . . , θM}, where θm = [wm, µm,Σm], is the complete set of parameters to be esti-

mated. The estimation is performed as before, using the Expectation-Maximization algo-

rithm from eqs.(6.14)–(6.18) so that the the log–likelihood of the model parameters given
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the input data X = {x1 x2 · · · xN} is maximized:

logL(θ|X ) =
N
∑

n=1

log p(xn|θ). (7.6)

For this work we have opted for a standard GMM classifier in which a GMM per emo-

tion has been trained using all the available training data for each emotion, resulting in

a total of 7 GMM. To classify a new utterance, the log-likelihood of each of the 7 GMM

given the utterance is computed using eq.(7.6) and the model resulting in the maximum

value is selected as detected emotion. The whole procedure is depicted in Figure 7.8: the

training stage for a generic emotion denoted with the letter k is illustrated in the upper

part, and the classification process at the bottom.

Feature

Extraction

Samples

emotion

k

GMM

Modeling

Mk

GMMk

(a) Generic GMM training for each emotion “k” using Mk mixtures

Utterance
detected

emotion

Feature

Extraction
.

.

.

arg

max

Log-likelihood

Log-likelihood

Log-likelihood

GMMa

GMMd

GMMt

logL(θa)

logL(θd)

logL(θt)

(b) Generic GMM classification of unknown samples

Figure 7.8: Block diagram of the training and testing schemes for emotion classification using GMM
(only three emotions shown for illustration purposes)

The described procedure corresponds to a standard generic GMM classification

paradigm, independent of the signal parametrization used for the feature extraction.

Since our purpose with this work is to evaluate the effect of adding voice quality informa-

tion in emotion classification, we have built a classification system using both spectral and

prosodic features to be used as baseline system. We have then constructed new classifiers
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extending this baseline parametrization with glottal features, and we have compared their

performance with respect to the baseline. For the baseline system, we have used 20 MFCC

representing the spectrum and fundamental frequency information (logF0 and ∆ logF0).

The MFCC parameters are extracted at a constant frame rate of 5 ms, using a Hamming

window and frames of 25 ms. The fundamental frequency F0 is computed independently

using our glottal parametrization algorithm as the inverse of the glottal period length.

The idea now is to add glottal information to the baseline classifier and evaluate its

performance. For this work, we have used the LF parameters resulting from our analysis

to compute the following three glottal measures:

• open quotient OQ = Te
T0

= 1+Rk
2Rg

,

• speed quotient SQ =
Tp

Te−Tp
= 1

Rk
,

• basic shape parameter Rd = 1
0.11 (0.5 + 1.2Rk)

(

Rk
4Rg

+Ra

)

.

We have then combined these features to train the following set of classifiers:

1. base, baseline classifier using standard mel-cepstral coefficients and fundamental

frequency information (F0 and ∆F0).

2. base+oq, adding the open quotient (OQ) to the baseline parametrization,

3. base+loq, adding the logarithmic open quotient (logOQ),

4. base+sq, adding the speed quotient (SQ),

5. base+lsq, adding the logarithmic speed quotient (logSQ),

6. base+rd, adding the LF model shape parameter (Rd),

7. base+lrd, adding the logarithmic LF model shape parameter (logRd),

8. base+oq+sq+rd, adding the combination of OQ, SQ and Rd,

9. base+loq+lsq+lrd, adding the combination of logOQ, logSQ and logRd.

To combine the different sets of features we use an early fusion approach, concatenating

them in new feature vectors to train a single model. We follow this approach because our

classification problem is well-conditioned and of moderate size, using a relatively large

database of acted emotional speech, recorded in a controlled environment by two pro-

fessional actors. More complex classification tasks (e.g., dealing with bigger databases,

natural emotions occurring in spontaneous human or man-machine interactions, multi-

modal recordings or larger number of speakers) would require a different and much larger
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number of features and accordingly different ways of combining them and reducing the

problem dimensionality (Lee et al., 2011; Luengo et al., 2010; Lugger and Yang, 2008).

Since the MFCC analysis is performed at a constant rate, using fixed-length frames, there

is no direct correspondence between glottal cycles and MFCC frames. In order to add

the necessary glottal information, each MFCC frame is projected into the glottal analysis

timeline, to find the overlapping glottal frames. Figure 7.9 illustrates this procedure with

an example in which MFCC frame m partially overlaps with glottal cycles k, k + 1 and

k + 2. In this particular case, the glottal feature vector for MFCC frame m, θ̂m, is con-

structed as the weighted average of the feature vectors corresponding to glottal cycles k,

k + 1 and k + 2:

θ̂m =

∑k+2
l=k ωl θl
100

, (7.7)

where θl is the glottal vector corresponding to the l-th cycle, and the weights ωl corre-

spond to the percentage of MFCC frame overlapping with the l-th glottal cycle, so that
∑k+2

l=k ωl = 100.

MFCC

frames

glottal

cycles

ωk = 18 ωk+1 = 45 ωk+2 = 37

θk θk+1 θk+2

m

m+ 1

m− 1

Figure 7.9: Addition of glottal information to MFCC frame m, using a weighted average of the pa-
rameters corresponding to glottal cycles k, k + 1 and k + 2, using weights ωk, ωk+1 and ωk+2

respectively

Prior to the evaluation with the test data, the optimal size of the GMM has been indi-

vidually determined for each system using a subset of the training data kept for validation

purposes. Figure 7.10 shows the performance of the GMM classifier using the different

parametrizations on the validation corpus, for different number of mixtures in the GMM.

For each of the parametrizations, the optimal number of mixtures in the GMM was se-

lected as the one resulting in lower classification error using the validation corpus.

Once the size of each GMM is determined, we proceed to rate the different systems by

evaluating its classification performance using a previously unseen corpus of test data.

Figure 7.11 contains the results of the evaluation for all the systems. Figure 7.11a shows
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Figure 7.10: Emotion classification error for the validation dataset of the GMM systems for a different
number of mixtures. base: baseline system (mel-cepstral coefficients plus pitch information, logF0

and ∆logF0), oq: open quotient OQ (loq: logOQ), sq: speed quotient SQ (lsq: logSQ), rd: LF
shape parameter Rd (lrd: logRd). In parenthesis: optimal number of mixtures in the GMM.

the overall accuracy of the different systems ordered from worst (top) to best (bottom).

In figure 7.11b we have the relative reduction of the error with respect to the the base-

line system (0 in the x axis). As we can see, adding glottal information to the baseline

parametrization improves the performance of the classification. The best classification

system is the one using the open quotient OQ in linear form. It achieves an overall accu-

racy of 93.2% and a relative error reduction of more than 20% w.r.t. the baseline system.

As we can see, using the log-scaled versions of the VQ parameters does not have a clear

advantage, with linear parameters outperforming them except in the Rd case, where it

slightly improves the accuracy, although the difference is small. The combination of all

three parameters results in a good overall accuracy and relative error reduction, but the

classifier is outperformed both by the OQ and SQ alone.

Table 7.1 shows the test results categorized by system and emotion. As we can see,

most of the systems follow the same pattern. Sadness, surprise and the neutral state are

correctly classified in more than 95% of the cases by all systems. The emotion most sys-

tems struggle to identify is disgust, which gets a correct decision 86.5% of the time on

average. Anger and joy follow in terms of difficulty, with an average of 88.5% across all

the systems, and fear achieves an average of 90% accuracy. As we can see, adding voice

quality related parameters has a larger impact on the classification of disgust, joy and

surprise.

It is interesting to see which emotions are more often mistaken by which ones. For
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Figure 7.11: Ranking of the different GMM parametrizations using the optimal GMM size, evaluated
on the test dataset.
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Table 7.1: Correct classification rate of the different systems for each emotion

Emotion
Anger Disgust Fear Joy Surprise Sadness Neutral

P
ar

am
et

ri
za

ti
o
n

base 89.05 85.46 89.79 86.59 95.64 97.37 97.51
base+loq 87.59 87.94 89.08 89.13 98.18 97.74 96.44
base+rd 89.42 84.40 90.14 89.86 97.45 97.37 97.86
base+lrd 87.59 88.65 89.44 87.32 96.73 98.87 98.22
base+loq+lsq+lrd 85.77 87.23 92.25 88.77 98.55 98.87 97.15
base+lsq 88.32 86.52 91.20 88.41 98.91 98.50 97.51
base+oq+sq+rd 89.05 86.17 91.90 89.49 98.91 98.50 96.44
base+sq 90.51 85.11 91.90 87.68 99.64 97.37 98.93
base+oq 88.69 88.65 90.85 90.94 98.55 98.50 97.15

Table 7.2: Confussion matrix for the baseline classification system (in percentage)

Detected emotion
Anger Disgust Fear Joy Surprise Sadness Neutral

A
ct

u
al

em
o
ti

o
n Anger 89.05 0.73 0.00 7.30 2.55 0.36 0.00

Disgust 0.71 85.46 4.61 3.19 1.77 3.55 0.71
Fear 0.00 1.06 89.79 1.76 6.34 1.06 0.00
Joy 2.17 1.09 0.72 86.59 8.70 0.36 0.36
Surprise 0.00 0.00 0.36 4.00 95.64 0.00 0.00
Sadness 0.00 0.00 2.63 0.00 0.00 97.37 0.00
Neutral 0.00 0.00 0.00 0.00 0.00 2.49 97.51

Table 7.3: Confussion matrix for the base+oq (best) classification system (in percentage)

Detected emotion
Anger Disgust Fear Joy Surprise Sadness Neutral

A
ct

u
al

em
o
ti

o
n Anger 88.69 1.46 0.00 7.30 2.55 0.00 0.00

Disgust 0.00 88.65 4.61 1.77 1.42 2.84 0.71
Fear 0.00 0.70 90.85 1.06 6.34 1.06 0.00
Joy 0.00 0.00 1.09 90.94 7.25 0.36 0.36
Surprise 0.00 0.00 0.36 1.09 98.55 0.00 0.00
Sadness 0.00 0.00 1.50 0.00 0.00 98.50 0.00
Neutral 0.00 1.07 0.00 0.00 0.00 1.78 97.15

154



7.4 Conclusions

Table 7.4: Confussion matrix for the subjective evaluation presented in Nogueiras et al. (2001) (in
percentage)

Perceived emotion
Anger Disgust Fear Joy Surprise Sadness Neutral

A
ct

u
al

em
o
ti

o
n Anger 66.41 3.91 1.56 10.94 3.91 1.56 11.72

Disgust 1.56 82.81 3.91 0.78 2.34 1.56 7.03
Fear 0.78 3.91 80.47 0.78 10.16 3.12 0.78
Joy 5.47 1.56 0.00 89.84 1.56 0.00 1.56
Surprise 0.78 2.34 12.50 2.34 78.91 0.78 2.34
Sadness 5.47 4.69 0.00 15.62 1.56 69.53 3.12
Neutral 1.56 3.12 0.78 1.56 0.78 0.00 92.19

this reason, we have computed the confusion matrices for the baseline and optimal sys-

tems, presented in tables 7.2 and 7.3 respectively. Table 7.4 summarizes the results of

the emotion informal subjective evaluation carried on in Nogueiras et al. (2001) during

their experiments with HMM and prosodic features for emotion recognition. As we can

see, the listeners could correctly identify with high accuracy the utterances belonging to

either the neutral state or the joy emotion. The majority of the problems occurred with

anger, mostly misclassified as either joy or neutral, and sadness, mostly mistakenly recog-

nized as joy or, in fewer cases, as either anger or disgust. The baseline classifier performs

very well with the surprise-sadness-neutral set, achieving accuracies over 95% for all of

them. This is similar to our best proposed classifier, which also has high classification

accuracy for surprise, sadness and neutral, outperforming the baseline system in the first

two cases by approximately 3% and 1.2% in absolute accuracy. Most of the problems are

with anger, often misclassified as joy, and disgust, labeled as fear in less than 5% of the

cases, although in both cases the accuracy is very good (close to 89%). The baseline system

performs worse in this case (disgust), distributing the classification mistakes between the

fear-joy-sadness trio. The other two emotions, fear and joy, are often labeled as belonging

to the surprise class by both the baseline and proposed systems.

7.4 Conclusions

In this section we have presented our study of the voice source characteristics associated to

the different laryngeal voice qualities (modal, rough, creaky and falsetto) and its relation

to different emotions (anger, disgust, fear, joy, surprise and sadness). The chapter has been

divided in two main parts: voice quality analysis and emotion recognition.

We have first analyzed a small corpus of sustained vowels recorded using a female
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professional speaker in Spanish uttered with different phonations, and analyzed each of

the source parameters (LF and residual) by means of boxplots. As we have seen, the results

mostly correlate with those previously reported in the literature, with some differences

that may be attributed to the reduced size of the speech corpus and the fact that contains

utterances of only one speaker. We have then presented an online evaluation designed

to asses whether the source parametrization algorithm was successfully capturing the

laryngeal characteristics of the different phonation types. As we have seen, the results of

the test are very satisfactory and show that our analysis/synthesis algorithm succeeds in

the task of capturing the different VQ.

We have then evaluated the performance of an automatic emotion classifier using glot-

tal measures. The classification is performed by statistical GMM classifiers trained for

each emotion using different features. We have compared our parametrization to a base-

line system using spectral (MFCC) and prosody (F0 and logF0) characteristics. The results

of the test using an emotional database of almost 5000 utterances and two speakers were

very satisfactory, showing a relative error reduction of more than 20% with respect to the

baseline system. The accuracy of the different emotions detection was also high, improv-

ing the results of previously reported works using the same database. Overall, we can

conclude that the glottal source parameters extracted using our algorithm have a positive

impact in the field of automatic emotion classification.
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CHAPTER 8

Conclusions and further work

The objective of this dissertation was to study and develop techniques to decompose the

speech signal into its two main components: voice source and vocal tract. We wanted to

explore the utility of this model in different areas of speech processing: speech synthesis,

voice conversion or emotion detection among others. Thus, we have studied different

techniques for prosodic and spectral manipulation. Our efforts have been focused on the

automatic extraction and parametrization of the glottal source from high-quality speech

databases used in the fields of speech synthesis and voice conversion. In the next section

the main conclusions from the studies carried out in the previous chapters are presented.

To end the dissertation, we will outline some lines of investigation that continue the work

presented in this dissertation.

8.1 Conclusions

The focus of this thesis was the extraction of the glottal source information. We used a

speech production model in which the glottal flow produced by the vibrating vocal folds

goes through the vocal (and nasal) tract cavities and its radiated by the lips. According

to this model, a source-filter decomposition should be possible, in which the two main

contributions (from the glottis and the vocal tract) could be independently analyzed and

modified.

Most of our efforts were focused on the analysis and synthesis algorithm, a key ele-

ment on the posterior applications. The analysis methodology and algorithms have been

detailed in Chapter 3. Traditional inverse filtering approaches based on closed-phase lin-

ear prediction have the problem of having to work only with samples corresponding to

the glottal closed phase, which in some cases can be quite short. This results in a large
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amount of noise present in the estimated inverse-filtered waveforms, which poses further

problems when parameterizing them. We overcome this problem by using a parametric

model for the glottal waveform and thus including the glottal open phase in the esti-

mation. As a result of the source-filter decomposition, we not only obtain a better (i.e.,

less noisy) inverse-filtered glottal estimation, but also a first parametrization using the

KLGLOTT88 model. This parametrization is then used to initialize the LF estimation, a

crucial step due to the non-linear nature of the required optimization using least-squares,

that should otherwise need to be done by performing measures on the noisy glottal es-

timation. A parametric model for the residual comprising the aspiration noise was also

proposed as part of the parametrization, and was estimated from the glottal residual af-

ter the LF modeling. The original residual was first filtered using a high-pass whitening

filter to eliminate some artifacts, its envelope was extracted using the Hilbert transform

and then it was parametrized using our proposed function for the synthetic envelope.

As part of this work, we recorded a small database consisting on the five Spanish vow-

els uttered in isolation and sustained for approximately 1.5–2 seconds, in order to study

the stable part of the utterance. The vowels were recorded in four different phonations

(modal, rough, creaky and falsetto) and were later also used in our study of voice qual-

ity. In order to validate the accuracy of the parametrization algorithm, we designed a

synthetic corpus using LF glottal parameters reported in the literature, complemented

with our own results from the vowel database. Synthetic was generated using the glottal

information, synthetic noise added at different SNR and a vocal tract constructed with

known formant central frequencies and bandwidths, and was subsequently analyzed us-

ing our source-filter decomposition algorithm. Since the parameters used in synthesis

were known a priori, they were used as reference to compute the parametrization error

with the estimated parameters. The results show that our method gives satisfactory re-

sults in a wide range of glottal configurations and at different levels of SNR.

We also conducted an on-line evaluation in which the quality of the resynthesized

speech was rated by a group of listeners by means of a MOS test. We proposed two meth-

ods for this evaluation: one consisting of the parametrized residual explained before, and

another using the whitened residual waveform. A third method (STRAIGHT) was in-

cluded as reference. Our method using the whitened residual compared favorably to this

reference, achieving high quality ratings (Good-Excellent). Our full parametrized system

scored lower than the other two ranking in third place, but still higher than the acceptance

threshold (Fair-Good). We are quite satisfied with these results, since both parametriza-

tions are suited for different applications.

Next we proposed two methods for prosody modification, one for each of the residual

representations explained above. The first method used our full parametrization system

and frame interpolation to perform the desired changes in pitch and duration. Since the
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fundamental frequency is already part of this representation, changing the pitch involved

only updating the corresponding parameter. Frame interpolation was then used to ob-

tain the desired duration. The second method used the residual waveform and a frame

selection technique to generate a new sequence of frames to be synthesized. The selected

residual waveforms were then resampled to obtain the target pitch duration. Both options

were again evaluated, using two standard algorithms as reference (STRAIGHT as in the

resynthesis test, and the PSOLA-like algorithm as implemented in our speech synthesizer

Ogmios). The results showed that the resampling method outperformed the parametriza-

tion one, scoring very similarly to the two reference methods. Our full parametrized sys-

tem scored lower than the other three, but still higher than the acceptance threshold (Fair-

Good).

Our speech production model was incorporated into an existing voice conversion (VC)

system to evaluate the specific impact of our proposed parametrization on the conversion

performance. The system used for VC uses CART to incorporate phonetic features into the

conversion model, dividing the data into phonetic classes prior to the conversion function

training, which is performed by means of GMM. This conversion system was developed

in our group as part of the TC-STAR project, and it has participated in several evaluation

campaigns. In order to obtain meaningful comparisons of the results, the same testing

conditions were replicated and used with our parametrization model. We used the full

parametrized residual for the voice conversion experiments. Three independent CART

were trained, one for each of the production model parameter sets (glottal pulse, vocal

tract and aspiration noise or residual). The optimal configuration of each CART (pho-

netic features, number of nodes, size of the GMM) was individually determined using a

small subset of the training dataset kept for validation purposes. Once all the models were

trained, voice conversion was performed on the test utterances, and the resulting wave-

forms were compared with those obtained with the original VC system. The comparison

was performed using an online MOS evaluation, in which both the speaker similarity

and the utterance quality were rated. The results showed that the evaluators preferred

our method over the original one, rating it with a higher score in the MOS scale in both

quality and similarity. Nevertheless, the quality of both methods needs to be improved,

since the ratings were still relatively low. Further research is needed in this regard.

As part of this dissertation, we conducted some research in the field of voice quality

analysis and identification. First the main studies and methodologies in this field were

reviewed and the more relevant findings were presented, concentrating on the impor-

tance of the different glottal pulse parameters in each voice quality. For this purpose, we

recorded a small database consisting of the five Spanish vowels, uttered in isolation and

sustained for two to three seconds each. The database contains samples of four different

voice qualities (modal or normal, rough, creaky and falsetto). Each of them was analyzed
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using our decomposition and parametrization algorithm, and boxplot of the glottal and

residual parameters were produced. The LF parameters were compared with those re-

ported in the literature, and we found them to generally agree with previous findings.

Some differences existed, but they could be attributed to the difficulties in comparing

voice qualities produced by different speakers. We also conducted an experiment aimed

at assessing whether our glottal parametrization algorithm was able to capture all the in-

formation related to the laryngeal voice quality. For each of the non-modal VQ (rough,

creaky and falsetto), each of the five vowels analyzed in the previous section were resyn-

thesized using the extracted glottal LF and residual parameters, but using the vocal tract

filter computed in the modal case. The filter frames were interpolated or discarded in or-

der to obtain the appropriate number for each mode. An on-line test was then conducted

in which 10 test participants were asked to listen and classify 15 utterances according to

the perceived VQ (modal, rough, creaky or falsetto). As a reference, a table with the orig-

inal vowels as uttered by the professional speaker in the different modes was included.

Each participant was asked to familiarize her- or himself with the examples prior to com-

pleting the test, and was allowed to listen to them again during the evaluation. The par-

ticipants were able to correctly identify each of the voice qualities in the majority of the

cases, thus validating our glottal parametrization algorithm. The results showed that the

different voice qualities were. As expected from other reported studies, the confusion

between rough and creaky is higher than in the other two cases (rough–falsetto, creaky–

falsetto). These two qualities present some similarities in terms of aspiration noise levels

and irregularities, that make them sometimes difficult to discern.

We have also evaluated the performance of an automatic emotion classifier using voice

quality related glottal measures. The classification was performed using statistical GMM

models trained for each emotion using different features. We the experiments on emotion

recognition we have used the Spanish subset of the INTERFACE Emotional Speech Syn-

thesis Database, consisting of almost 5000 utterances uttered by two professional speak-

ers, who simulated the six emotions defined in the MPEG-4 standard (anger, disgust, fear,

joy, sadness and surprise) plus the neutral state. We have compared our parametrization

to a baseline system using spectral (MFCC) and prosody (F0 and logF0) characteristics.

We tried different features, both individually and combined (open quotient, speed quo-

tient and LF basic shape parameter). The optimal size of each GMM was individually

determined for each feature and emotion using a subset of the training corpus kept apart

for validation purposes. The results of the test were very satisfactory, showing a relative

error reduction of more than 20% with respect to the baseline system. The accuracy of the

different emotions detection was also high, improving the results of previously reported

works using prosodic features on the same database. Overall, we can conclude that the

glottal source parameters extracted using our algorithm have a positive impact in the field
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of automatic emotion classification.

8.2 Further work

Improvements of the parametrization algorithm One of the main causes of the degra-

dation of the synthetic speech is the relatively simple model used to represent the as-

piration noise present in the original signal. A different paradigm should be followed

to improve the quality of the resulting speech, perhaps using codebooks of prototypical

residual waveforms (Kim, 2003) or applying some of the residual selection and smooth-

ing techniques used in voice conversion (Duxans, 2006). The algorithm should also be

extended to work with speech-only databases, since this would allow its use on a wider

range applications. The main problem is the location of glottal epochs, although the same

epoch optimization procedure could be combined with initial estimation procedures us-

ing the speech signal alone (Drugman et al., 2009a).

Voice conversion Our work in the field of voice conversion (VC) was aimed at studying

the performance of our parametrization model compared to traditional Linear Prediction

(LP) models. The results of the listening tests show that the model works, outperforming

traditional LP models. However, the VC system used for the comparison was based on

GMMs, a relatively successful technique with some drawbacks, like the oversmoothing

of the converted spectrum (Stylianou et al., 1998; Toda et al., 2001b). Newer conversion

paradigms exist that overcome these problems (Qiao and Minematsu, 2009; Toda et al.,

2007; Villavicencio et al., 2009; Yutani et al., 2009), and they could be extended with our

parametrization paradigm. Furthermore, our prosody modification experiments show

that the resampled residual performs better than its parametrized counterpart. New ap-

proaches based on residual selection techniques could be adopted to incorporate the for-

mer method into VC.

Expressive speech The field of expressive speech is a young and promising one, and is

expected to play a key role in the near future. Traditional speech synthesis paradigms do

not cope well with the incorporation of emotion and its associated higher variability in

terms of prosody and voice quality (VQ). The relation between VQ and the transmission of

affect has been proved in several studies (Campbell and Mokhtari, 2003; Gobl et al., 2002;

Gobl and Chasaide, 2000). Our work on emotion recognition shows promising results for

the inclusion of glottal features in automatic emotion classifiers. Given the unsupervised

nature of our source-filter decomposition and parametrization algorithms, they could be

applied to the analysis of larger emotional speech databases. Rules could then be extracted

linking the variability of the source parameters to the corresponding degree of emotion.
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Work in this area already shows promising results (Burkhardt, 2009; Mokhtari et al., 2003;

Ryan et al., 2003).

HMM-based speech synthesis HMM-based speech synthesis is statistical parametric

method based on hidden Markov models. HMMs are used to simultaneously model the

fundamental frequency, the vocal tract and the duration of speech. A maximum likeli-

hood criterion is used to synthesize the speech waveforms (Tokuda et al., 2000). The voice

source is usually only represented with the fundamental frequency, and current work fo-

cused on extending this paradigm using better models shows promising results (Cabral

et al., 2007; Lanchantin et al., 2010; Raitio et al., 2011). Our group is currently working on

integrating HTS into our speech synthesizer Ogmios (Bonafonte et al., 2006a). A continu-

ation work would be to replace the standard source parametrization with our improved

model.
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Eysholdt U, Tigges M, Wittenberg T and Pröschel U (1996). Direct evaluation of high-

speed recordings of vocal fold vibrations. Folia Phoniatrica et Logopaedica, 48:163–170.

15

Fant G (1970). Acoustic theory of speech production. The Hague: Mouton, 2nd edn. 2, 5

Fant G (1995). The LF-model revisited. transformations and frequency domain analysis.

Tech. Rep. 2-3:119–1, STL-QPSR. 12, 13, 15, 136, 137

Fant G (1997). The voice source in speech communication. Speech Communication, 22:125–

139. 15, 136, 137

Fant G and Kruckenberg A (1996). Voice source properties of the speech code. TMH-

QPSR, 4:45–56. 137

Fant G, Kruckenberg A, Liljencrants J and Båvegård M (1994). Voice source parameters in
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