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Theoretical Overview

"Cuanto más avanzan la técnica y el
materialismo, más nos damos cuenta de que hay
algo que hemos dejado atrás sin comprenderlo".

—Enrique Moriel, La Ciudad Sin Tiempo.

2.1. Introduction

In this chapter, the fundamental principles used to study light scattering by particles are
introduced and briefly explained. For the special case of spherical particles, Mie theory is
the basic theoretical tool. We will discuss shortly this scheme following the presentation
as given by C. Bohren and D. Huffman [14]. Since the object of this thesis is centered on
the study of small particles compared with the incident wavelength, some approximations to
Mie theory will be introduced.

2.2. The Light Scattering Problem

An electromagnetic field incident on an object will be scattered in all directions. Hence,
incident and scattered fields have different properties, which depend on the physical (optical
properties) and geometrical (size and shape) characteristics of the target and its surroundings.
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30 CHAPTER 2. THEORETICAL OVERVIEW

In other words, the characteristics of the target are encoded in the scattered field. Herein lays
the interest of the classical light scattering. One can distinguish two main approaches to this
problem:

• One adapts the properties of the object in order to obtain scattered radiation with con-
venient properties.

• Or, one studies the characteristics of the scattered radiation to infer properties of the
object that is illuminated.

The second item is known as The Inverse Problem [86]. During the last years, research
in this field helped the development of new techniques enabling the analysis of different
materials, organic and inorganic, in a non-invasive way.

For our study we have considered the simplest geometry: a sphere. As we said before,
the most usual theoretical tool to handle electromagnetic scattering by a sphere is Mie theory.

2.3. Mie Theory for Light Scattering by a Sphere

Mie theory presents the solution for the electromagnetic scattering by a sphere of radius R

embedded in a homogeneous and isotropic medium illuminated by a plane wave.

2.3.1. Solutions to the Wave Equation

A time harmonic electromagnetic field [ ~E(~r, t), ~H(~r, t)] in a linear, isotropic and homoge-
neous medium, satisfies the well-known wave equation

∇2 ~E + k2 ~E = 0 ∇2 ~H + k2 ~H = 0, (2.1)

where k2 = ω2εµ, ω is the frequency of the incident field, ε and µ are the electric permittivity
and the magnetic permeability, respectively.

Since the charge density is zero, electric and magnetic fields, ~E and ~H , are divergence-
free

∇ · ~E = 0, ∇ · ~H = 0, (2.2)

Furthermore, considering the time harmonicity of the fields, Faraday’s and Ampère’s laws
become

∇× ~E = iωµ ~H, ∇× ~H = −iωε ~E. (2.3)
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The solution of the wave equation (2.1), considering the previous conditions, is not straight-
forward. Thereto, an intermediate vector function, ~M is introduced

~M = ∇× (~cψ), (2.4)

~c being a constant vector and ψ a scalar function.

This definition warrants that ~M is divergence-free since the divergence of the curl of any
vector is zero. Hence

∇ · ~M = 0. (2.5)

If the operator∇2 + k2 is applied to (2.4), we obtain

∇2 ~M + k2 ~M = ∇× [~c(∇2ψ + k2ψ)]. (2.6)

Comparing equations (2.6)) and (2.1), we see that ~M verifies the wave function if ψ is a
solution to the scalar equation

∇2ψ + k2ψ = 0. (2.7)

When this condition and the previous ones are satisfied, the intermediate function, ~M , is
equivalent with the electric or the magnetic field. To represent the other field, we can generate
another divergence-free vector function that verifies the vector wave equation

~N =
∇× ~M

k
, (2.8)

or equivalently
∇× ~N = k ~M. (2.9)

In summary, the so-called Vector Spherical Harmonics (VSHs), ~M and ~N , have all the
requirements of an electromagnetic field in vacuum:

- both satisfy the wave equation (2.1)

- both are divergence-free

- the curl of ~M is proportional to ~N
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Figure 2.1: Scheme of the geometry of the scattering problem. The spherical coordinates are
included

- the curl of ~N is proportional to ~M

But this is true only when ψ is solution of the equation (2.7). Thus, the problem of solving
the vector wave equation, equation (2.1), is reduced to solving the scalar wave equation
where ψ is called the Generating Function and ~c the guiding or pilot vector.

In order to solve the scalar equation, equation (2.7), the use of spherical coordinates
(r, θ, φ) is very convenient since the geometry of our problem (we are considering an isolated
spherical particle) presents spherical symmetry (See Figure 2.1). The choice of the guiding

vector is arbitrary. A convenient and easy alternative is to choose ~c = ~r, where ~r is the vector
position.

In spherical coordinates, the scalar wave equation can be written as:

1

r2

∂

∂r
(r2∂ψ

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) +

1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0, (2.10)

By considering a particular form of the scalar function ψ:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(ψ). (2.11)
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And by introducing the previous function, equation (2.11), in the scalar wave equation given
by equation (2.10), three separated equations, one for each coordinate, are obtained. The
solution of these equations, must satisfy the conditions of linear independence and must be
single-valued. Hence the complete solution of the scalar wave equation (2.7) is given by

ψemn(r, θ, φ) = cosmφPm
n (cos θ)zn(kr), (2.12)

ψomn(r, θ, φ) = sinmφPm
n (cos θ)zn(kr), (2.13)

where e and o mean even and odd respectively, Pm
n are the associated Legendre functions

[4] of first kind of degree n and order m and zn represents any of the four spherical Bessel

functions: jn, yn, h(1)
n or h(2)

n . Every solution of the scalar equation, (2.7), may be expanded
as an infinite series of the functions (2.12) and (2.13).

Thus, VSH’s can be expressed as

~Memn = ∇× (~rψemn) ~Momn = ∇× (~rψomn), (2.14)

~Nemn =
∇× (~rψemn)

k
~Nomn =

∇× (~rψomn)

k
. (2.15)

The component forms of the VSHs can be consulted in [14]. The main conclusion of this
theory is that any solution of the wave equation (equation 2.1) can be written as an infinite
series of the vector harmonics given by equations (2.14) and (2.15).

2.3.2. Incident and Scattered Fields

The incident field is considered to be a plane wave linearly polarized parallel to the x axis
and propagating in the z direction, (Figure 2.1). It can be written in spherical coordinates as:

~Ei = E0e
ikr cos θêx, (2.16)
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where E0 is the amplitude of the electric field, k is the wavenumber and êx is the unit vector
in the polarization direction:

êx = sin θ cosφêr + cos θ cosφêθ − sin θêφ. (2.17)

The incident magnetic field can be obtained, directly, from the curl of the electric field (equa-
tion 2.16) using equation (2.3).

Given the incident field, it can be then expanded as an infinite series of the Vector Spher-

ical Harmonics (VHSs) as follows.

~Ei =
∞∑
m=0

∞∑
n=m

(Bemn
~Memn +Bomn

~Momn + AemnvecNemn + Aomn ~Nomn) (2.18)

Bemn, Bomn, Aemn and Aomn being the expansion coefficients. Using the orthogonality of
the vector harmonics and the finiteness of the incident field at the origin, the expansion can
be reduced to

~Ei =
∞∑
n=1

(Bo1n
~M

(1)
o1n + Ae1n ~N

(1)
e1n), (2.19)

where the superscript (1) means that the spherical Bessel function jn(kr) is used for the radial
part of the generating functions (φolm and ψelm), warranting that the incident field is finite at
the origin.

After some manipulations, we obtain the final form of the expansion coefficients

Bo1n = inE0
2n+ 1

n(n+ 1)
, (2.20)

Ae1n = −inE0i
n 2n+ 1

n(n+ 1)
. (2.21)

Substituting these expression in equation (2.19), the expansion of the incident electric field
becomes

~Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
( ~M

(1)
o1n − i ~N

(1)
e1n), (2.22)



2.3. MIE THEORY FOR LIGHT SCATTERING BY A SPHERE 35

and the corresponding incident magnetic field

~Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
( ~M

(1)
e1n + i ~N

(1)
o1n). (2.23)

In what follows, to simplify the notation, we will use En = E0i
n 2n+1
n(n+1)

.

The scattered field ( ~Es, ~Hs) and the field inside the particle ( ~El, ~Hl) can be obtained from
the incident one by applying the boundary conditions between the sphere and the surrounding
medium [18]

( ~Ei + ~Es − ~El)× êr = ( ~Hi + ~Hs − ~Hl)× êr = 0. (2.24)

The scattered fields are then given by

~Es =
∞∑
n=1

En(ian ~N
(3)
e1n − bn ~M

(3)
o1n), (2.25)

~Hs =
∞∑
n=1

En(ibn ~N
(3)
o1n + an ~M

(3)
e1n), (2.26)

where the superscript (3) refers to the radial dependence of the generating function, ψ, which
is given by the spherical Hankel function h(1)

n . The coefficients, an and bn, are the so-called
Mie coefficients for the scattered field. Again, by applying the boundary conditions (equa-
tion 2.24) at the surface of the sphere, we obtain four equations from which the analytical
expressions for the Mie coefficients are deduced:

an =
µm2jn(mx)[xjn(x)]′ − µljn(x)[mxjn(mx)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µlh(1)

n (x)[mxjn(mx)]′
, (2.27)

bn =
µljn(mx)[xjn(x)]′ − µjn(x)[mxjn(mx)]′

µljn(mx)[xh
(1)
n (x)]′ − µh(1)

n (x)[mxjn(mx)]′
, (2.28)

where µl and µ are the magnetic permeabilities of the sphere and the surrounding medium,
respectively. Furthermore, x is the size parameter and m the relative refractive index between
the sphere and the medium in which it is embedded, and are defined as

x = kR =
2πRn

λ
m =

nl
n

(2.29)
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respectively. In equation (2.29), R is the radius of the sphere, λ the incident wavelength and
nl and n the refractive index of the sphere and the surrounding medium, respectively.

The previous form of the Mie coefficients for the scattered field, equations (2.27) and
(2.28), can be simplified using the Ricatti-Bessel functions [14]

ψn(ρ) = ρjn(ρ), ξn(ρ) = ρh(1)
n (ρ). (2.30)

The most common case is obtained when the magnetic permeabilities of the particle and
the surrounding medium are equal to one. Under this condition, the Mie coefficients can be
expressed as

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
, (2.31)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
. (2.32)

Our interest goes mainly to the general case, when the particle present electric and mag-
netic properties. In other words the electric permittivity and the magnetic permeability can
present values different from 1. For this general situation the expressions for the Mie coeffi-
cients are [69, 39]

an =
m̃ψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

m̃ψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
(2.33)

bn =
ψn(mx)ψ′n(x)− m̃ψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)− m̃ξn(x)ψ′n(mx)
(2.34)

where m̃ = m
µl

considering µ = 1.

2.3.3. Scattering, Absorption and Extinction Cross Sections

Important physical quantities can be obtained from the previous scattered fields. One of these
is the cross section, which can be defined as the net rate at which electromagnetic energy (W)

crosses the surface of a imaginary sphere of radius r ≥ R centered on the particle divided

by the incident irradiance (Ii) [14].

To quantify the rate of the electromagnetic energy that is absorbed (Wabs) or scattered
(Wsca) by the diffuser, the absorption (Cabs) or scattering cross sections (Csca) can be defined.
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Where
Cabs =

Wabs

Ii
, Csca =

Wsca

Ii
. (2.35)

The sum of these is the extinction cross section

Cext = Csca + Cabs, (2.36)

which gives an idea of the amount of energy removed from the incident field due to scattering
and/or absorption generated by the particle.

These parameters can be expressed as a function of the Mie coefficients as follows [14]

Csca =
Wsca

Ii
=

2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (2.37)

Cext =
Wext

Ii
=

2π

k2

∞∑
n=1

(2n+ 1)Re(an + bn), (2.38)

Cabs = Cext − Csca. (2.39)

By dividing these cross sections by the geometrical cross area of the particle projected
onto a plane perpendicular to the incident beam, G, we obtain the scattering, extinction and
absorption efficiencies. For a sphere, G = πR2, and the expressions for the efficiencies
become

Qsca =
Csca
G

=
2

x2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (2.40)

Qext =
cext
G

=
2

x2

∞∑
n=1

(2n+ 1)Re(an + bn), (2.41)

Qabs = Qext −Qsca. (2.42)
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2.3.4. Scattered Intensity

The light intensity scattered by the particle, can also be expressed as a function of the Mie
coefficients described above.

The expansion of the scattered field (equations (2.25) and (2.26)) can be truncated. If a
high enough number of terms are taken into account, the error can be made arbitrary small.
Using this truncation, the transverse components of the scattered electric field can be written
as

~Esθ ∼ E0
eikr

−ikr
cosφS2(cos θ), (2.43)

~Esφ ∼ −E0
eikr

−ikr
sinφS1(cos θ). (2.44)

The terms S1 and S2 relate the incident and the scattered field amplitudes in the following
way (

~E||s
~E⊥s

)
=
eik(r−z)

−ikr

(
S2 0

0 S1

)(
~E||i
~E⊥i

)
(2.45)

and are expressed as [14]

S1 =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn), (2.46)

S2 =
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn). (2.47)

A scheme that includes the polarizations of the scattered electric field is depicted in Fig-
ure 2.2. πn and τn are called "the angle-dependent functions" because they introduce this
dependence in the Mie coefficients through the scattering angle, θ, and are defined as

πn =
P 1
n

sin θ
, τn =

dP 1
n

dθ
. (2.48)

Remember that P1
n is the associated Legendre function of first kind of degree n and first order

(equations (2.12) and (2.13)).

To perform numerical computations in an efficient way, it is useful to apply the known
recurrence relations of which we give the expressions for clarity. Considering that π0 = 0
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Figure 2.2: Scheme of the polarized components of the scattered field by a sphere illuminated
by a linearly polarized plane wave.

and π1 = 1 the higher order functions can be obtained as follows

πn =
2n+ 1

n− 1
cos θπn−1 −

n

n− 1
πn−2, (2.49)

τn = n cos θπn − (n+ 1)πn−1, (2.50)

and
πn(− cos θ) = (−1)n−1πn(cos θ), τn(− cos θ) = (−1)nτn(cos θ). (2.51)

The polarized components of the scattered irradiance (normalized to the incident inten-
sity) are [14]

i|| = |S2|2 = |
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn)|2 (2.52)

if the incident light is polarized parallel to the scattering plane
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i⊥ = |S1|2 = |
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn)|2 (2.53)

if the incident light is polarized perpendicular to the scattering plane

2.4. Scattering by Small Particles compared with the

Incident Wavelength: Rayleigh Approximation

During the last years, researchers have focused their attention on very small objects and
more precisely on systems at the nanometer scale. Mie theory, as described above, is valid
for all particle sizes and incident wavelengths. However, for very small particles compared
to wavelength, some approximations can be applied, which simplify the expressions given
in the previous section. Since in this work we have analyzed such "small" systems, we will
discuss the most common approximations.

2.4.1. Scattering by Dipole-Like Particles

Light scattering by a very small particle compared with the incident wavelength (λ) can
be calculated using an approximation of Mie theory known as the Rayleigh approximation.
Here, the particle scatters as an electric and/or magnetic dipole, depending on its optical
properties.

Two important conditions must be fulfilled by the scatterer in order to be valid the
Rayleigh approximation:

• x� 1

• |m|x� 1

where m is the refractive index of the particle relative to the surrounding medium and x the
size parameter (equation 2.29).

Under the previous conditions, the expressions of the scattered electric and magnetic
field, (2.25) and (2.26), are reduced to the first term of the expansion, and higher order terms
can be neglected.

~Es = E1(ia1
~N

(3)
e11 − b1 ~M

(3)
o11), (2.54)
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~Hs = E1(ib1 ~N
(3)
o11 + a1

~M
(3)
e11). (2.55)

where E1 = 3i/2E0 (see equations 2.22 and 2.23). Only the first two Mie coefficients, a1

and b1 have been considered. Furthermore, their expressions can be simplified, such that
only the smallest power of the size parameter (xn with n < 5) is kept.

a1 = −i2x
3

3

ε− 1

ε+ 2
+©(x5), (2.56)

b1 = −i2x
3

3

µ− 1

µ+ 2
+©(x5), (2.57)

an ≈ bn ≈ 0;n ≥ 2 (2.58)

We see, from those expressions, that the scattered radiation is similar to the one emitted
by either an electric or a magnetic dipole. The values of the electric permittivity and/or the
magnetic permeability establish the electric or magnetic behavior of the scattered radiation.

The electric behavior of the scattered radiation is commonly associated to an coefficients,
while the magnetic one is related with bn coefficients. For instance in relation (2.56) and
(2.57), a1 includes only the electric permittivity, ε, and b1 includes only the magnetic per-
meability, µ. For this reason, we may refer to the an and bn terms as electric and magnetic
terms, respectively.

By using the previous relations, the expressions of the efficiencies and scattered inten-
sity [(2.40), (2.41), (2.42), (2.52) and (2.53)] can be simplified. Extinction, scattering and
absorption efficiencies are now expressed as

Qext =
6

x2
Re(a1 + b1), Qsca =

6

x2
(|a1|2 + |b1|2) Qabs = Qext −Qsca. (2.59)

From equations (2.49) and (2.50), we obtain the first order terms of the angular functions

π1 = 1, τ1 = cos(θ), (2.60)
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Now the components of the scattered intensity can be written as

i‖ = |3
2

(a1 + b1 cos θ)|2 i⊥ = |3
2

(a1 cos θ + b1)|2 (2.61)

2.5. Second Order Approximation of Mie Theory

In 1990, G. Videen and W. Bickel [139] showed that very small particles, not satisfying the
second condition of the Rayleigh approximation (|m|x � 1), present interesting features in
the way they scatter light. These authors considered a dielectric and non magnetic (ε > 0 and
µ = 1) spherical particle whose size and optical properties are such that x � 1 but mx ≮ 1.
For this situation, the expressions derived in the last section are no longer valid.

To analyze this kind of systems, the authors developed a second order approximation of
Mie theory. This approximation consists in retaining the first four Mie coefficients, a1, b1, a2

and b2, in the series expansion of the scattered field (equations (2.25) and (2.26)). Starting
with equations (2.31) and (2.32), simplified expressions were derived.

The Ricatti-Bessel functions with n = 1, 2 appearing in the Mie scattering coefficients
are expressed as

ψ1(ρ) =
sin(ρ)

ρ
,

ξ1(ρ) = eix(−iρ−1 − 1,

ψ2(ρ) = (
3

ρ2
− 1) sin(ρ)− 3

ρ
cos(ρ),

ξ2(ρ) = eix(−3iρ−2 − 3ρ−1 − i).

(2.62)

When x � 1, sin(x), cos(x), and exp(x) can be replaced by the first term of their
power expansion. However, for spheres which don’t verify |m|x� 1, the functions sin(mx),
cos(mx), and exp(mx) cannot be simplified as just described. After these considerations,
the authors present in [139] new approximate expressions for the four first Mie coefficients:

a1 ∼
cos(mx)[x(1+2m2

3m
)− x3(1+4m2

30m
)] + sin(mx)[−(1+2m2

3m2 ) + x2(1+14m2

30m2 )]

cos(mx)[x−2(−i+im
2

m
)− ( i+im

2

2m
)] + sin(mx)[x−3( i−im

2

m2 ) + x−1( i−im
2

2m2 )]

b1 ∼
cos(mx)(x− x3/6) + sin(mx)[−1/m+ x2(1+2m2

6m
)]

cos(mx)(−i+ x) + sin(mx)[x−1( i−im
2

m
)− 1/m− x( i+im

2

2m
)]

(2.63)
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and similarly for the second-order coefficients:

a2 ∼
Anum
Aden

(2.64)

Anum = cos(mx)[−x(
2 + 3m2

5m2
) + x3(

6 + 29m2

210m2
)]+

+ sin(mx)[(
2 + 3m2

5m3
)− x2(

2 + 19m2 + 14m4

70m3
)]

Aden = cos(mx)[x−4(
18i− 18im2

m2
) + x2(

3i− 3im2

m2
)]+

+ sin(mx)[x−5(
18i− 18im2

−m3
) + x−3(

−3i+ 9im2 − 6im4

m3
)]

b2 ∼
cos(mx)[−/m− x3(3+2m2

30m
)] + sin(mx)[−1/m2 − x2(1+4m2

10m2 )]

cos(mx)[x−2(3i−3im2

m
) + (3i−im2

2m
)] + sin(mx)[x−3(3im2−3i

m2 ) + x−1(3im2−3i
2m2 )]

(2.65)

However, the authors limited their study to dielectric (ε > 0) and non-magnetic (µ = 1)

spherical particles. Following their idea, we have generalized this approximation to very
small particles with arbitrary values of the optical constants.

Considering the general expressions for the Mie scattering coefficients, equations (2.33)
and (2.34), and those of the first and second order Ricatti-Bessel functions, equation (2.62),
we have rewritten the first four Mie coefficients, a1, b1, a2 and b2. To do this, we have
considered the Taylor expansion of sin(x), cos(x), and exp(x) up to the second order instead
of the first one. After substituting these approximations in equations (2.33) and (2.34), we
have checked the contribution of each term in order to eliminate those whose value can be
neglected. The resulting equations are as follows
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Figure 2.3: Plot of Qext for three different expressions of the Mie coefficients: Exact (solid
line), approximate using (2.66) and (2.67) (AC1) and approximate using more terms in the
expansion of the functions sine and cosine (AC2). In (a) we consider a metallic particle
(ε < 0) and in (b) a dielectric particle (ε > 0) with a radius R = 0.01λ

Due to the spherical symmetry of the particles, an and bn are related in the following way

an(m̃,m, x) = bn(
1

m̃
,m, x) (2.68)

Since both coefficients an and bn are related by the previous expression, we only present the
results for an.

In order to show the reliability of our expressions, we show in Figure 2.3, in semi-
logarithmic scale, the extinction efficiency as a function of the electric permittivity for a
small particle of radius R = 0.01λ with nonmagnetic properties (µ = 1) and a resonant be-
havior. As can be seen, in the metallic range (Figure 2.3a) our expressions for the scattering
coefficients reproduce very accurately the resonance (position and shape). In the dielectric
range (Figure 2.3b), both the position and shape of resonances are well reproduced. Out-
side the resonances, the values of Qext calculated using the reduced expression (AC1), differ
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a
1
∼

m̃
m
x

3
(m
x

co
s(
m
x

)
−

si
n
(m
x

))

co
s(
m
x

)[
−
m̃
m

2
x

2
−
im̃
m

2
x

2
+
im
x

3
+
im
x

]+
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n
m
x

[m̃
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x
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+
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+
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+
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slightly from the exact values. To reproduce more accurately the exact extinction, it is nec-
essary to include additional terms in the Taylor expansion of sine, cosine and exponential
functions. In Figure 2.3, we have included the extinction efficiency using the first four terms
of the power expansion of these functions to approximate Mie coefficients (AC2). As can be
seen, these other approximate coefficients reproduce more accurately the exact values in and
outside the resonances in both ranges (metallic and dielectric). However, these expressions
are more complex than our expressions, (2.66) and (2.67). As our purpose is to obtain the
simplest expressions allowing a qualitative analysis of the scattering features, such as the ex-
citation of resonances, we prefer to use the formulas proposed by us and given by equations
(2.66) and (2.67).
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