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Abstract

In this thesis, several methods for the automatic analysis of Intravascular Ultrasound
(IVUS) sequences are presented, aimed at assisting physicians in the diagnosis, the as-
sessment of the intervention and the monitoring of the patients with coronary disease.
The basis for the developed frameworks are machine learning, pattern recognition and
image processing techniques.

First, a novel approach for the automatic detection of vascular bifurcations in
IVUS is presented. The task is addressed as a binary classification problem (identi-
fying bifurcation and non-bifurcation angular sectors in the sequence images). The
multiscale stacked sequential learning algorithm is applied, to take into account the
spatial and temporal context in IVUS sequences, and the results are refined using
a-priori information about branching dimensions and geometry. The achieved per-
formance is comparable to intra- and inter-observer variability.

Then, we propose a novel method for the automatic non-rigid alignment of IVUS
sequences of the same patient, acquired at different moments (before and after per-
cutaneous coronary intervention, or at baseline and follow-up examinations). The
method is based on the description of the morphological content of the vessel, ob-
tained by extracting temporal morphological profiles from the IVUS acquisitions, by
means of methods for segmentation, characterization and detection in IVUS. A tech-
nique for non-rigid sequence alignment - the Dynamic Time Warping algorithm -
is applied to the profiles and adapted to the specific clinical problem. Two differ-
ent robust strategies are proposed to address the partial overlapping between frames
of corresponding sequences, and a regularization term is introduced to compensate
for possible errors in the profile extraction. The benefits of the proposed strategy
are demonstrated by extensive validation on synthetic and in-vivo data. The results
show the interest of the proposed non-linear alignment and the clinical value of the
method.

Finally, a novel automatic approach for the extraction of the luminal border in
IVUS images is presented. The method applies the multiscale stacked sequential
learning algorithm and extends it to 2-D+T, in a first classification phase (the identi-
fication of lumen and non-lumen regions of the images), while an active contour model
is used in a second phase, to identify the lumen contour. The method is extended
to the longitudinal dimension of the sequences and it is validated on a challenging
data-set.
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Resumen

En esta tesis, se presentan varios métodos para el analisis automético de secuencias de
Ultrasonido Intravascular (IVUS), destinados a ayudar a los médicos en el diagnostico,
la evaluacion de la intervencion y el seguimiento de los pacientes con enfermedad coro-
naria. La base para los métodos desarrollados son técnicas de aprendizaje automatico,
reconocimiento de patrones y procesamiento de imagen.

En primer lugar, se presenta un nuevo método para la deteccién automatica de
las bifurcaciones vasculares en IVUS. La tarea se aborda como un problema de clasifi-
cacion binaria (identificando los sectores angulares de bifurcaciéon y de no-bifurcacion
en las imagenes de la secuencia). Se aplica el algoritmo de multiscale stacked sequen-
tial learning, para tener en cuenta el contexto espacial y temporal de las secuencias de
IVUS, y los resultados se refinan utilizando informacion a priori acerca de las dimen-
siones de las ramificaciones y su geometria. El rendimiento obtenido es comparable
es comparable a la variabilidad intra- e inter-observador.

A continuacion, se propone un nuevo método para la alineaciéon automatica no
rigida de secuencias de ecografia intravascular del mismo paciente, adquiridas en
diferentes momentos (antes y después de la intervencion coronaria, o al inicio del
estudio y en exdmenes de seguimiento). El método se basa en la descripcion del
contenido morfologico del vaso, que se obtiene mediante la extraccion de perfiles tem-
porales morfologicos de las adquisiciones de IVUS, por medio de métodos para la
segmentacion, caracterizacion y deteccion en IVUS. Una técnica para la alineacién no
rigida de secuencias - el algoritmo de Dynamic Time Warping - se aplica a los perfiles
y se adapta al problema clinico especifico. Se proponen dos diferentes estrategias
robustas para hacer frente a la superposicion parcial entre los frame de las secuen-
cias correspondientes, y se introduce un término de regularizaciéon, para compensar
por posibles errores en la extraccion de los perfiles. Los beneficios de la estrategia
propuesta se demuestran por una amplia validacién en datos sintéticos e in vivo. Los
resultados mostran el interés de la alineacién no lineal propuesta y el valor clinico del
método.

Finalmente, se presenta un enfoque novedoso para la extracciéon automaética de la
frontera luminal en imagenes de IVUS. El método aplica el algoritmo de aprendizaje
multiscale stacked sequential learning y lo extiende en 2-D+T, en una primera fase
de clasificacion (la identificacion de regiones de lumen y no-lumen de las iméagenes),
mientras que un modelo de contorno activo se utiliza en una segunda fase, para
identificar el contorno luminal. El método se extiende a la dimension longitudinal de
las secuencias y se valida en un conjunto de datos desafiante.



Resum

En aquesta tesi, es presenten diversos métodes per a ’analisi automatic de seqiién-
cies de Ultraso Intravascular (IVUS), destinats a ajudar els metges en el diagnostic,
I’avaluacio de la intervencio i el seguiment dels pacients amb malaltia coronaria. La
base per als marcs desenvolupats son técniques de aprenentatge automatic, reconeix-
ement de patrons i processament d’imatge.

En primer lloc, es presenta un nou métode per a la detecci6 automatica de les
bifurcacions vasculars en IVUS. La tasca s’aborda com un problema de classificacio
binaria (identificant els sectors angulars de bifurcaci6 i no-bifurcacié en les imatges
de la seqiiéncia). S’aplica 'algorisme de aprendizaje de multiscale stacked sequential
learning, per tenir en compte el context espacial i temporal de seqiiéncies de IVUS, i
els resultats es refinen utilitzant informacio6 a priori sobre les dimensions i la geometria
de les ramificacions. El rendiment obtingut és comparable a la variabilitat intra- i
inter-observador.

A continuacio, es proposa un nou meétode per a la alineacié automatica no rigida
de seqiiéncies de ecografia intravascular del mateix pacient, adquirits en diferents
moments (abans i després de la intervencié coronaria, o a l'inici de I'estudi i en els
examens de seguiment). El métode es basa en la descripcio del contingut morfologic
del vas, que s’obté mitjancant ’extraccié de perfils temporals morfologiques de les
adquisicions de IVUS, per mitja de métodes per a la segmentacio, caracteritzacio i
deteccié en IVUS. Una técnica per ’alineacié no rigid de seqiiéncies - I'algoritme de
Dynamic Time Warping - s’aplica als perfils i s’adapta al problema clinic especific. Es
proposen dos diferents estratégies solides per fer front a la superposici6é parcial entre
els frame de les seqiiéncies corresponents, i s’introdueix un terme de regularitzacio, per
compensar per possibles errors en 'extraccié dels perfils. Els beneficis de 'estratégia
proposada es demostran per una amplia validacié en dades sintétiques i in vivo. Els
resultats mostran l'interés de la alineaci6 no lineal proposta i el valor clinic del métode.

Finalment, es presenta un enfocament nou per a l’extraccié6 automatica de la
frontera luminal en imatges de IVUS. El métode aplica el algorisme d’aprenentatge
multiscale stacked sequential learning i 'estén a 2-D-+T, en una primera fase de
classificacio (la identificacio de regions de lumen i no-lumen de les imatges), mentre
que un model de contorn actiu s’utilitza en una segona fase, per identificar el contorn
luminal. El métode s’estén a la dimensié longitudinal de les seqiiéncies i es valida en
un conjunt de dades desafiador.
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Chapter 1

Introduction

In the last decades, the technological advances have made numerous and sophisticated
image acquisition modalities available to physicians. The interior of the human body
can be captured and the information can be stored in the form of digital images.
Medical image analysis is the study of such digital images, performed using compu-
tational tools, aimed at facilitating measurement and visualization. Medical imaging
assists the diagnosis, the planning, guidance and evaluation of interventions and the
monitoring of the patient recovery.

The currently available imaging modalities can be divided into two categories:
anatomical and functional. Anatomical modalities, i.e., depicting morphology, in-
clude X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and
Ultrasound (US). Functional modalities, i.e., depicting information on the metabolism
of the underlying anatomy, include scintigraphy, Single-Photon Emission Computed
Tomography (SPECT), Positron Emission Tomography (PET) and functional MRI
(fMRI).

In this thesis, we are focusing on developing methods to assist physicians in
the treatment of coronary disease by using Intravascular Ultrasound (IVUS) images.
IVUS is a catheter-based imaging technique that provides accurate tomographic im-
ages of vascular structures. This goal is achieved by using machine learning, pattern
recognition and image processing techniques that will be described in the following
chapters.

In this first chapter, coronary disease and coronary interventional procedures will
be described. Then, the role of IVUS in the diagnosis, intervention and monitoring
of the patients with coronary disease will be explained and the challenges in IVUS
image analysis will be posed. Finally, the contributions of this thesis and the thesis
structure will be described. Please note that in the thesis we will introduce several
medical imaging terms that are summarized in the glossary in Appendix A.
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Adventitia
edia
Intima

(a)

Figure 1.1: The structure of the coronary artery. (a) Scheme representing the
intima, media and adventitia layers in a cross-sectional view of the artery and (b)
histology slide from a post-mortem coronary artery, indicating the lumen region (L)
and the intima (I), media (M) and adventitia (A) layers.

1.1 Medical Context

The structure of healthy coronary arteries and the evolution of the atherosclerotic
disease will be first introduced. Then, IVUS images from diseased coronary arteries
will be analyzed.

1.1.1 Coronary Circulation

The coronary arteries are the vessels providing blood to the heart muscle (myocardium).
The three main vessels that deliver oxygen-rich blood to the myocardium are the Left
anterior descending, Left Circumflex, and Right coronary arteries, and they originate
from the left side of the heart, at the beginning of the aorta.

The structure of coronary arteries is composed of three stratifications: the inner
layer (tunica intima or intima), the muscular layer (tunica media or media) and the
outer layer (tunica adventitia or adventitia), as illustrated in Figure 1.1. The cavity
within the vessel, in which the blood flows, is called the lumen (see Figure 1.1(b)).
The tunica intima, in direct contact with the blood, is lined by the endothelium, a
layer composed of simple squamous epithelial cells. The endothelium forms a flat
slick surface inside the vessel, minimizing the friction with the blood. The tunica
media, which separates the intima from the adventitia, is composed of smooth muscle
cells and elastic tissue and it is characterized by a low collagen content. The tunica
adventitia is mainly composed of loose collagen and elastic tissue.

The structure of the coronary tree is characterized by vascular bifurcations, which
can be defined as the sites where an artery diverges into two daughter vessels: the
main branch and the side branch.



1.1. Medical Context 3

1.1.2 Coronary Disease

The coronary arteries can be affected by coronary artery disease (CAD), also called
coronary heart disease, which is the leading cause of mortality and morbidity in the
developed countries [90]. CAD results from a complex process known as atherosclero-
sis, a chronic progressive condition evolving toward the formation of multiple plaques
inside the vessel wall.

Atherosclerosis starts with the pathological process of inflammation, leading to
endothelial activation and monocyte recruitment [44]. As a result, the endothelium
becomes damaged (see Figure 1.2(a)), allowing cholesterol and other cellular waste
products to accumulate in the inner layer of the arterial wall. The lipid deposits
are mainly localized in large and medium-sized coronary arteries, and are usually
focal and irregularly distributed. These deposits eventually evolve into fibrosis and
calcification. The formation of atherosclerotic plaque results from the proliferation
and successive destruction of intimal fibrosis tissue, leading to the formation of an
atheroma, i.e., a thickening of the intimal-medial segments and an overall thickening
of the vessel wall.

The atherosclerotic condition causes a narrowing of the arterial lumen, which re-
stricts the blood and oxygen flow to the heart and is the main cause of the chronic
ischemic manifestation of coronary heart disease. Moreover, plaques containing a
soft atheromatous core are unstable and may rupture [26, 36], i.e., the fibrous cap
(represented in Figure 1.2(a)) which separates the core from the lumen may disinte-
grate, so that the highly thrombogenic gruel is suddenly exposed to the flowing blood.
Such disrupted plaques are the main responsible for the acute coronary syndromes of
unstable angina, myocardial infarction, and sudden death [34].

ciral fnan artery narrowed by
alhe rosclerotic

attery plsqne
. damaged .

endothelium
endothelium

macrophages . fibrous cap
transformed 5
into foam cells lipids, calcium,
cellular debris
(a)

Figure 1.2: (a) Atherosclerosis progression: healthy artery (left) and artery nar-
rowed by atherosclerotic plaque (right). (b) Vascular bifurcation are critical locations
for plaque growth.

smeoth muscle

Bifurcations are critical vascular locations from the clinical point of view, since
they are typical sites for atherosclerotic lesions. Wall thickenings and plaque formation
in coronary arteries are frequently localized on the outer wall of one or both daughter
vessels at major bifurcations [4], as illustrated in Figure 1.2(b). Moreover, the rupture
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of vulnerable plaque may depend on anatomic parameters such as the proximity of
bifurcations. In particular, the presence of a bifurcation before and especially after the
lesion is a marker of an increased risk of plaque rupture and subsequent thrombosis
[53].

1.1.3 Percutaneous Coronary Intervention (PCI)

The process of lumen narrowing, described in the previous section, can be treated
by intervention. Percutaneous coronary intervention (PCI), commonly known as coro-
nary angioplasty, is a non-surgical procedure used to open narrowed or blocked arteries
to improve blood flow. PCI is an alternative to a pharmacological treatment and to
major surgery. The PCI procedure involves the cardiac catheterization of the patient.
PCI can be performed during a diagnostic catheterization, if a blockage is identified,
or it may be scheduled, after a previous catheterization has confirmed the presence of
coronary artery disease. Different types of interventional procedures are commonly
performed: balloon angioplasty, stent deployment, roto-ablation and cutting balloon.

e Balloon angioplasty (also called PCI or Percutaneous Transluminal Coronary
Angioplasty (PTCA)): a small balloon at the tip of the catheter is inserted near
the blocked or narrowed area of the coronary artery. When the balloon is
inflated, the fatty plaque or blockage is compressed against the artery walls
and the diameter of the blood vessel is dilated to increase blood flow. This
procedure is sometimes complicated by restenosis, i.e., the recurrence of the
vessel narrowing.

e PCI with stenting: in most cases, balloon angioplasty is performed in com-
bination with the stenting procedure. A stent is a (metal or bio-absorbable)
mesh tube that acts as a scaffold inside the coronary artery. A balloon catheter,
placed over a guide wire, is used to insert the stent into the narrowed artery.
Once in place, the balloon is inflated and the stent expands to the size of the
artery and holds it open. The balloon is then deflated and removed in such a
way that the stent stays in place permanently.

e Roto-ablation (also called Percutaneous Transluminal Rotational Atherec-
tomy or PTRA): a special catheter, with an acorn-shaped, diamond-coated tip,
is guided to the point of a narrowing in the coronary artery. The tip spins
around at a high speed and grinds away the plaque on the arterial walls.

e Cutting balloon: the cutting balloon catheter has a balloon tip with blades.
When the balloon is inflated, the blades are activated and score the plaque.
Then, the balloon compresses the fatty matter into the arterial wall. This type
of balloon may be used to treat the build up of plaque within a previously placed
stent (restenosis).
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1.2 IVUS

To capture images of the different phases of the percutaneous intervention, angiogra-
phy was the only imaging modality used until recent years. Angiography is considered
as the gold standard imaging technique for coronary artery disease, used to detect
arterial lesions, to guide percutaneous intervention and to communicate among inter-
ventionalists and surgeons. However, angiography has limitations for a precise lumen
measurement due to its projective nature, and often fails to detect those lesions prone
to thrombosis [98].

In the last decades, IVUS has evolved as a valuable supplement to the angiographic
inspection. IVUS is a catheter-based imaging modality that provides high-resolution
tomographic images of vascular structures. The procedure for acquiring an IVUS
sequence consists in inserting an ultrasonic probe, carried by a catheter, into the
arterial vessel. The rotating transducer emits an ultrasound beam, as it is dragged
from the proximal to the distal position (pullback), at constant speed, by means of
a motorized tool. A sequence of frames is acquired. The procedure is schematized in
Figure 1.3.

Guidewire artifact

’ ﬁ Plaque
Catheter

Vessel wall

Emitted beam

Guidewire

iTransdu cer

Figure 1.3: Schematic example of the IVUS acquisition procedure (adapted from
Kimura et al., Am Heart J, 1995).

The standard IVUS frame is a 360-degree cross-sectional view of the vessel walls,
denoted as short-azis view, which allows an accurate assessment of vessel morphology
and tissue composition [19]. Longitudinal views of the sequence can be generated by
considering the gray-level values of the sequence along the diameter at a chosen angle.
A longitudinal view approximates the morphology of the vessel section according to
the selected scan orientation. Figure 1.4 shows three IVUS frames, characterized by
the presence of vascular bifurcation, plaque, and stent, respectively, and a longitudinal
view of the sequence, where the frame positions are indicated by vertical lines.

Unlike angiography, which depicts a silhouette of the coronary lumen, IVUS dis-
plays tomographic, cross-sectional perspective. This facilitates direct measurements
of lumen dimensions, including minimum and maximum diameter and cross-sectional
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Figure 1.4: Three short-azis views of an IVUS sequence, showing (a) bifurcation, (b)
plaque and (c) implanted stent, respectively, and a longitudinal view of the sequence
where the longitudinal location of the three frames is indicated by vertical lines.

area, as well as the characterization of atheroma size, plaque distribution and com-
position.

IVUS is an important tool for pre/post-intervention and baseline /follow-up analy-
sis. In the clinical practice, IVUS is used for diagnosis to analyze the vessel condition,
locate the lesions and their composition and decide on the procedure (stent deploy-
ment or pharmacological treatment). During PCI, IVUS acquisitions are performed
at pre- and post-intervention. Before the intervention, IVUS can be useful for locating
the target lesion and deciding the size and type of the stent to be deployed. After the
intervention, a second IVUS sequence allows to evaluate the interventional outcome,
to assess blood flow restoration and stent apposition (detecting stent malapposition,
stent underexpansion, side-branch occlusion by deployed stent) [69]. Furthermore,
IVUS is an effective tool to monitor the status of the disease over the time, in follow-
up exams and in clinical research studies. In particular, IVUS is useful to assess
regression or progression of atherosclerosis, to identify the evolution of plaque com-
position, and to monitor restenosis [58].

1.2.1 Challenges in IVUS

Although IVUS is a sophisticated and powerful imaging modality, it is not immune
from obstacles. The application of pattern recognition, image processing and machine
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learning techniques to automatically analyze IVUS sequences is challenging, because
several artifacts hinder the automated IVUS analysis.

The ultrasound beam may be reflected by the guidewire and may result in bright
echoes and shadows in the IVUS images. The catheter produces a circular bright
artifact known as the “ring-down” effect. Calcifications cause shadows, which hide
the vessel morphology. Speckle noise is present. In Figure 1.5, these artifacts are
indicated, along with several vessel structures of interest.

Calcium

/ shadow

Ring-down
artifact

Calcium

Sk o O

A uidewire
~ " artifact

Lumén

Media-adventiti
edia ventma Border

border

Figure 1.5: Example of IVUS image, where several structures and artifacts are
indicated.

Additionally, the catheter movement and the arterial pulsation cause dynamic
artifacts. The longitudinal movement of the transducer is affected by a continuous
oscillatory movement, causing the same positions in the vessel to be sampled multiple
times (see Figure 1.6(a)). The position of the catheter is not fixed with respect to
the vessel morphology in the plane orthogonal to vessel (short-azis). The rotation
of the probe varies with vessel pulsation, therefore successive frames can be axially
rotated, resulting in a misalignment (vessel roto-translation), as illustrated in Figure
1.6(a). The catheter may follow different trajectories with respect to the vessel walls
(see Figure 1.6(b)), hence the imaged sections are not necessarily orthogonal to the
vessel walls. The catheter flexibility causes non-rigid deformations of the pullbacks.

Due to these artifacts, the automatic characterization of IVUS sequences with
morphological and pathological information is challenging. The automatic extraction
of the vessel boundaries, in particular the lumen and the media-adventitia borders,
is useful to evaluate the blood flow and the plaque burden, since plaque is localized
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Figure 1.6: (a) Scheme of an IVUS acquisition set-up, where the artifacts due to
motion are reported (image from Ciompi et al., 2010 [19]). (b) Schematic showing
different possible catheter trajectories.

between luminal and media-adventitia borders. The automatic and semi-automatic
segmentation of the luminal border in IVUS has been thoroughly studied in the liter-
ature, but it is still an open problem [50], because it is difficult to develop a method
robust to different artifacts, clinical conditions, and catheter probes. The detection of
vascular bifurcations has never been addressed in IVUS literature before the study pre-
sented in this thesis, although the same topic has been investigated in other imaging
modalities [123, 117, 56, 67]. Finally, an important aspect, both in clinical practice
and clinical research studies, is the temporal comparison of IVUS sequences. This
comparison requires the alignment, i.e., the identification of the same vessel sections
in different acquisitions. In clinical trials for plaque regression/progression, even when
using clear landmarks and identical conditions of the pullbacks during the baseline
and follow-up acquisitions, the pullback lengths in terms of number of frames will
not be identical in the majority of cases, due to the aforementioned dynamic artifacts
[58]. For accurate measurements, corresponding frames are identified manually, by
checking the sequences frame by frame.

1.3 Brief Overview of the Thesis

The aim of this thesis is to develop automatic methods that assist physicians in the
diagnosis, the evaluation of coronary intervention and the monitoring of the patients,
using IVUS images. In this thesis, two approaches for the automatic characterization
of the vessel morphology are proposed: a method for the extraction of the lumen bor-
der and a method for the detection of vascular bifurcations (identifying their position
and extension). On top of these methods, a framework for the automatic alignment
of IVUS sequences is proposed, with the goal of identifying the corresponding vessel
sections and allowing the comparison of pre/post-intervention and baseline/follow-up
cases. The approaches are based on pattern recognition, machine learning and image
processing techniques and are validated on in-vivo data-sets.
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1.4 Contributions

As discussed in the previous section, we contribute to the literature by presenting
three methods that overcome the challenges in IVUS described earlier in this chapter.

Automatic Bifurcation Detection

e A fully automatic method for the detection of vascular bifurcations in IVUS is
proposed for the first time. The method identifies every bifurcation in an IVUS
sequence, the corresponding frames, the angular orientation with respect to the
IVUS acquisition, and the extension.

e This goal is reached using the multi scale stacked sequential learning scheme
[38]. The results are then successively refined using a-priori information about
branching dimensions and geometry.

e The method is validated on in-vivo sequences and the performance is compared
to inter- and intra-observer variabilities.

e A new visualization map for IVUS sequences is presented, summarizing the
vessel characteristics in a compact representation.

Automatic Non-rigid Temporal Alignment

e An automatic approach for IVUS alignment, based on the Dynamic Time Warp-
ing (DTW) technique [94], is proposed for the first time.

e The non-rigid alignment algorithm is adapted to the specific IVUS alignment
task by applying it to multidimensional temporal signals describing the mor-
phological content of the vessel.

e A DTW-based approach is specifically tailored for the clinical task: DTW is
embedded into a framework comprising a strategy to address partial overlap-
ping between acquisitions, and a term to regularize non-physiological temporal
compression/expansion of the sequences.

e Extensive validation is performed on both synthetic and in-vivo data.

e A thoroughly automatic workflow for IVUS sequence alignment is presented,
potentially applicable to other image modalities.

e A novel strategy for multidimensional sequence alignment, robust to partial
overlapping, is proposed, which can be used in a wider range of alignment
problems.
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Automatic 2-D-+T Lumen Border Extraction

e A method for automatic extraction of the luminal border in IVUS images is
presented.

e The multi-scale stacked sequential learning scheme [38] is applied and extended
to the three dimensions of an IVUS sequence, including the temporal (longitu-
dinal) dimension. After classification, an active contour model is applied to the
binary classification map.

e Validation is performed on data-sets from different echographs.

e The results are qualitatively compared to state-of-the-art approaches for lumen
segmentation in IVUS.

1.5 Thesis Structure

The thesis is organized as follows:

e Chapter 2 presents an overview of available methods related to the IVUS tech-
nology in medical imaging. The IVUS technology is divided into three main
areas: IVUS image acquisition techniques, compensation of artifacts due to
catheter and heart motion, and methods for automatic IVUS analysis, per-
formed using computer vision techniques.

e Chapter 3 presents the method for automatic bifurcation detection in IVUS
sequences.

e Chapter 4 introduces the purpose and the challenges of the temporal alignment
of TVUS sequences. The proposed automatic non-rigid alignment method is
presented and validated by using both synthetic and in-vivo data.

e Chapter 5 describes the proposed method for luminal border extraction in IVUS
sequences.

e Chapter 6 documents the conclusions and future work of the thesis.



Chapter 2

Background on the IVUS Technology
in Medical Imaging

2.1 Introduction

This thesis is focusing on the automatic analysis of IVUS sequences. In this chapter,
several image acquisition and analysis techniques applied to the IVUS image modality
will be described.

The chapter is organized in three sections: Section 2.2 describes the image acquisi-
tion system, including the IVUS catheter, the catheter pullback device and the image
formation. In Section 2.3, preprocessing methods that compensate for the dynamic
artifacts due to catheter motion and heart beating are illustrated. Section 2.4 presents
methods for IVUS analysis, including generic image processing and pattern recogni-
tion methods which are applied in the thesis, and the state-of-the-art methods for
quantification in IVUS. The approaches for IVUS measurements include the available
techniques for providing the lumen and media borders as well as plaque characteri-
zation. Moreover, a brief overview on bifurcation detection in medical imaging and
on alignment and fusion of data acquired from coronary imaging modalities is given,
with main focus on the IVUS technology. Finally, the commercial software available
on the main IVUS imaging systems is described. Figure 2.1 describes the schematic
of the proposed taxonomy.

2.2 IVUS Image Acquisition Techniques

Until the last decades, angiography was the only technique for planning and guidance
of percutaneous interventions. The IVUS technology was developed in the mid-1980s
and was first tested on human patients at the end of the 1980s. In the following years,
IVUS has become increasingly important in both clinical and research applications.
Images in IVUS are acquired by means of high-frequency, single-use ultrasound
probes. The probes are inserted into the vessel by a catheter, which is advanced,
along with a guidewire, within the femoral artery towards the site of interest in the

11
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IVUS Technology in Medical Imaging
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Figure 2.1: Taxonomy of the IVUS technology in medical imaging.

coronary arteries, under angiogram guidance. The catheter is 150 cm long and has
a tip size of 3.2-3.5 F (1.2-1.5 mm). The IVUS catheter allows the visualization of
segments of coronary arteries over 15 cm long.

Two technical approaches to IVUS catheter design have emerged in the years: (1)
single-element mechanically rotating transducers and (2) multi-element phased-array
transducers [33], as schematized in Figure 2.2.

The first IVUS catheter system (mechanical system) consists in a single-element
mechanically rotating piezoelectric transducer that rotates at approximately 1800 rev-
olutions/min (30 revolutions/sec) [69]. The transducer emits an ultrasound pulse and
receives the back-scattered signal, at approximately 1° angular rotation increments.
The time delay and amplitude of these pulses provide 256 individual radial scans for
each image. An electrical connecting wire needs to pass along the side of the imaging
assembly, as shown in Figure 2.2 (top). This wire produces an artifact that occupies
approximately 15 degrees of the image cross-section. Ultrasound frequencies are be-
tween 12.5 and 40 MHz, although some experimental devices use up to 45 MHz. An
example of this type of transducer is the Atlantis SR 40 imaging catheter produced
by Boston Scientific.

The second catheter system (electronic system) is a multi-element phased-array
catheter (see Figure 2.2-bottom). An electronic board controls a subset of elements
that emit synchronized US waves and receive the back-scattered signal. This circular
array system uses synthetic aperture processing to produce images with higher lateral
resolution (i.e., resolution perpendicular to both the beam and the catheter) than
single-element transducers. The used frequency for this type of catheters is in the
range of 15-25 MHz. An example is the Eagle Eye Gold imaging catheter produced
by Volcano.

In both single element and multi-element systems, it is possible to reconstruct the
360-degree cross-sectional representation of the inner vessel morphology. To form a
transverse cross-sectional image of the vessel, the ultrasound beam is rotated at 30
revolutions/sec, leading to 30 images per second. For 20 to 40 MHz IVUS transducers,
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Figure 2.2: Schematic representation of IVUS catheters: single-element mechani-
cally rotating catheter (above) and multi-element phased-array catheter (below).

the typical resolution is 80 microns axially (parallely to the beam) and 200 to 250
microns laterally (perpendicularly to both the beam and the catheter) [69]. The
original domain of acquisition is polar (p,f) and the resulting gray-scale image is
transformed to cartesian (z,y) coordinates to reconstruct a typical IVUS frame, as
shown in Figure 2.3.

Figure 2.3: IVUS frame in (a) polar and (b) cartesian representations.

The IVUS probe is connected to a pullback device and a sequence of frames are ac-
quired while the probe is dragged. There are two approaches to the catheter pullback
procedure: (1) motorized and (2) manual interrogation [69]. Important advantages
of motorized interrogation include steady catheter withdrawal, that avoids imaging
any segment too quickly, and the ability to concentrate on the images without having
to pay attention to catheter manipulation. Motorized pullbacks permit length and
volumetric measurements and provide uniform and reproducible image acquisition
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for multi-center and serial studies. However, inadequate examination of important
regions of interest can occur, because the transducer does not remain for long at any
specific site in the vessel. In both motorized and manual pullback, the acquisition
should include uninterrupted imaging of the target segment, generally including at
least 10 mm of distal vessel, the lesion sites, and the proximal vessel back to the
aorta. Many experts advocate that motorized transducer pullback be performed at a
speed of 0.5 mm/sec. Higher pullback speeds (e.g., 1 mm/sec) have the disadvantage
of imaging focal pathology too quickly, but they are commonly employed in order to
minimize imaging times.

Motorized transducer pullback and digital storage of cross-sectional images allow
longitudinal (L-mode) imaging. In an L-mode display, a set of “slices” are visual-
ized, taken from a longitudinal cut through a stack of cross-sectional IVUS images.
The resulting longitudinal view of an IVUS sequence approximates the longitudinal
morphology and appearance of the artery at a given cut angle (see Figure 1.4).

2.3 Preprocessing in IVUS Pullbacks: Compensa-
tion of Motion Artifacts

During the acquisition of an IVUS sequence, the catheter is affected by several ar-
tifacts due to the catheter and heart motion, interfering with the visualization, the
interpretation and the analysis of the sequence. These artifacts can be compensated
by imaging techniques.

Image-based Gating The most relevant artifact is caused by the heart beating,
which generates a repetitive oscillation of the catheter along the axis of the vessel
(known as swinging effect), resulting in possible multiple sampling of the same vessel
positions. The pullback presents an oscillation in the longitudinal direction that can
be easily seen in the motorized pullback video.

In order to obtain a unique reconstruction for the transversal sections of the artery,
one possible solution is the selection of the frames belonging to the same phase of the
cardiac cycle, having similar rotation. Such task can be addressed by using a gating
technique. The scope of gating methods is to sample evenly spaced and stable frames.
The stability refers to the fact that, after the gating, in subsequent frames the vessel
should have a similar position and rotation.

Gating can be performed by exploiting the electrocardiogram (ECG) signal (when
it is available) [12]. However, a new promising direction in IVUS gating is to perform
an image-based analysis of the pullback data and to infer optimal sampling points
without considering the ECG signal. Image-based gating has the advantage of be-
ing applicable also in case of arrhythmia. Several methods have been proposed in
literature.

The image-based gating algorithm presented in [126] extracts the information
on the cardiac cycle by analyzing the variation, along the image sequence, of two
properties computed on a region of interest (ROI). The properties are the Average
Intensity of the ROI and the Absolute Intensity Difference between ROIs of subsequent
frames.
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T

Figure 2.4: Image-based gating obtained by the method proposed in Gatta et al.,
2010 [37]. The same longitudinal view is shown (a) before and (b) after the gating
processing.

In [30], the authors discuss the results of their Intelligate method, showing that
the method performance is comparable to an ECG gating technique.

In [81] and [82], the basic idea of the proposed image-based gating method is to
introduce a dissimilarity matrix ® (F;, F};) that measures the dissimilarity between
the frames F; and F} of the same IVUS pullback, where ¢ and j represent temporal
variables. Once a proper measure is defined, such that ® (F;, F;) > 0, a matrix is
obtained, that exhibits a repetitive pattern of local minima and ridges of local maxima.
The pattern is repeated so that some diagonals represent the loci of local minima,
thus representing a specific interval between any two frames that present minimal
dissimilarity. The principal diagonal is obviously not considered since ® (F;, F;) = 0.
The first diagonal of local minima is displaced a number of columns; this displacement
is a clue for detecting the average heart beat along the sequence. To enhance the
sharpness of maximal ridges, the matrix ® is convoluted with an X-shaped inverted
Gaussian kernel obtaining a matrix D. Local maxima on the above defined diagonal
identify couple of frames that have a high similarity and minimal inter-frame motion.
Then, two algorithms are used to select the best frames in the path on the diagonal
that have the highest local maxima in D.

In [7], the authors propose a method to extract the cardiac phase from IVUS
sequences based on the hypothesis that the oscillation of the vessel wall is visible in
longitudinal cuts.

In [39], the authors modify the method in [81], to make it more robust and compu-
tationally efficient. The improved method uses a textural descriptor for each frame,
and computes the dissimilarity matrix in a faster and robust way; moreover, the dy-
namic programming algorithm has been substituted by a local minima search in a
1-D signal obtained from the dissimilarity matrix.

In [37], a real-time gating algorithm is proposed, based on the analysis of motion
blur variations during the cardiac cycle. The method is based on the idea that every
tissue displacement causes in the image a motion blur proportional to the speed of
the tissue movement. Figure 2.4 shows an IVUS sequence before and after gating
preprocessing, by using [37].
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Registration for Short-Axis Oscillation Reduction The second main dynamic
artifact that affects IVUS acquisitions is the short-axis oscillation and deformation.
The variations in the position of the catheter with respect to the center of the vessel
and the catheter torsion along the pullback cause a spatial misalignment of consec-
utive frames. The vessel center is not aligned with the center of the image (i.e., the
catheter position) and the arterial axis undergoes in-plane translations along the se-
quence. Moreover, the periodical rotation in the short-azis, due to heart beating, can
cause important structures (such as plaques) to appear and disappear periodically
in the longitudinal cut. With the aim of minimizing the effect of this artifact on
the longitudinal cut appearance, aligning the vessel center in successive images, and
compensating for the repetitive roto-translation of the pullback, various computer
assisted methods have been presented.

The registration of IVUS frames is challenging for two main reasons: (1) IVUS
images suffer from speckle noise and have poor definition of edges, and (2) the vessel
shape changes non-rigidly due to heart movement. As a result, the same part of the
vessel can look different if sampled at different phases of the heart cycle. Different
rigid and non-rigid registration algorithms have been proposed to tackle these two
issues.

In [3], the authors present a method for non-rigid alignment of IVUS images based
on Generalized Correlograms (GC) [48]. The method applies anisotropic diffusion to
the IVUS images and detects the vessel boundary using a snake. Then, the algorithm
samples the boundary at different locations to extract a set of local features. The
non-rigid transformation is estimated by finding the optimal set of correspondence
between landmarks (GC) of two IVUS images. The method has high computational
cost and has been conceived to perform non-rigid registration aimed at retrieval.

An alternative method to suppress IVUS image rotation based on a kinematic
model is presented in [91]. The model is used to estimate the center of rotation in the
short-axis by computing the rotation of two ellipses that fit the vessel border in the
two compared images. The method requires the detection of the vessel border with
sufficient precision using a trained neural network.

In [45], a rigid registration algorithm composed of two steps is presented. Firstly,
the method fixes the center of rotation as the center of mass of image gray-scale values.
Secondly, it estimates the rotation between the two images by spectral correlation
analysis [18]. The main limitation of this method is that the estimation of rigid
rotation heavily depends on correct estimation of the center of rotation, and the
center of mass, while robust with respect to noise and changes in image texture, may
not be a good estimate of the center of rotation.

In [24], the authors present a method based on the scale-space optical flow algo-
rithm with a feature-based weighting scheme. The algorithm is tested on a tissue-
mimicking phantom, subjected to controlled amounts of angular deviation. Although
interesting, the approach estimates only the catheter rotation, while the point of
rotation is fixed in the image center.

In [40], the authors propose a method that aims at registering subsequent IVUS
images by first aligning the center of the vessels, based on a modified version of
the Fast Radial Symmetry transform [61], and then estimate the relative rotation by
spectral correlation analysis [18]. The algorithm is efficient and robust to intra-patient
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variations.

2.4 Methods for Automatic IVUS Analysis

The state-of-the-art methods on IVUS image analysis (such as lumen border detection,
media border detection and plaque characterization methods) use image processing,
machine learning and pattern recognition techniques to perform (semi)automated
analysis. In order to understand such techniques, it is important to briefly intro-
duce several terminologies and definitions of image processing, machine learning and
pattern recognition techniques that will be used throughout the chapter.

Image Processing

e Filters: filtering is a class of signal processing, and the defining feature of
filters is the complete or partial suppression of some component or feature of
the signal. In image processing, filters can be used to extract features of interest
from an image.

e Local Binary Patterns (LBP): LBP [79] are texture operators which label
the pixels of an image by thresholding the neighborhood of each pixel (for in-
stance, by using the intensity value of the central pixel as a threshold) and by
considering the result as a binary number. Examples of different neighborhoods
are represented in Figure 2.5. The basic idea for developing LBP operators
is that textures can be described by two complementary measures: local spa-
tial patterns and gray-scale contrast. LBP are used to detect uniform texture
patterns in circular neighborhoods, with any quantization of angular space and
spatial resolution and invariant to brightness variations.
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Figure 2.5: Three neighborhoods of a central pixel, used to define a texture and
calculate a LBP.

e Gabor filters: Gabor filters [10] are a special case of wavelets and can be
defined as Gaussian functions modulated by a complex sinusoid. Gabor filters
are linear filters that can be helpful for extracting textural features from an
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image, according to a particular filter orientation. A graphic representation of
a Gabor filter is shown in Figure 2.6.

Figure 2.6: Example of a 2-D Gabor filter.

e Morphological filtering: mathematical morphology is a theory and technique

for the analysis and processing of geometrical structures, based on set theory,
lattice theory, topology and random functions. The basic idea is to probe an
image with a simple, pre-defined shape, drawing conclusions on how this shape
fits or misses the shapes in the image. This simple probe is called structuring
element, and it is a binary image [100].

Active Contour Models (snakes): active contour models [49] are energy-
minimizing splines, guided by internal constraint forces and influenced by ex-
ternal forces, used in image segmentation tasks. Given a parametric curve,
C(v) = (z(v),y(v)), representing the position of the snake having arc length v,
the energy function to be minimized is given by the following term:

B = / Eunt(C(0)) + Foue(C(v))dv. (2.1)
0

Following the original formulation [49], E;,; is the internal energy of the snake
due to bending :

Eiy = a (36(;8”))2 +8 (82;;(2”); . (2.2)
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The first-order term (agg}v)f represents the energy of the contour and makes

*C(v)
ov?
the energy of the curvature and makes the snake act like a thin plate. Large
values of o will increase the internal energy of the snake as it stretches more,
whereas small values of « will make the energy function insensitive to the amount
of stretch. Similarly, large values of 8 will increase the internal energy of the
snake as it develops more curves, whereas small values of 8 will make the energy
function insensitive to curves in the snake. The external energy FE.,; attracts
the snakes to salient features in the image, and can include constraint forces, to
be defined based on the specific application.

the snake act like a membrane, while the second-order term (8 represents

Pattern Recognition Techniques and Classifiers

e Pattern recognition techniques: in pattern recognition techniques, a func-
tion (defined as classifier) is firstly trained on a data-set of samples, previously
labeled within a given set of classes (training phase). The classifier can be bi-
nary when only two classes are defined, or multi-class. Then, the classifier is
used to discriminate among the classes of interest in new samples (test phase).
The ground-truth consists in a reliable data-set of labeled samples. Numeric
information describing each sample is computed by feature extraction (i.e., the
application of image processing filters to the image). During the training phase,
a learning algorithm learns the characteristics of the training data by analyz-
ing the extracted features and the corresponding labels, and it produces the
trained classifier, with a set of parameters learned in the process. As a result,
the classifier can analyze new samples and generate their output labels. The
performance of the classification can be evaluated by comparing the classifier
output labels to the corresponding test labels. The training and test processes
are shown in the block diagram in Figure 2.7.
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Set

Ground-truth
Collection Classifier
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Feature Test PoYerrt] Classifier
Test Set N Classification Output
Ground-truth Labels Performance
Collection Evaluation

Figure 2.7: Scheme of the training and test phases in classification.
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e Discriminative classifiers: discriminative classification methods model the

dependence of an unobserved variable y on an observed variable x, by modeling
the conditional probability distribution P(y|z) which can be used for predicting
y from x. Discriminative classifiers try to maximize the quality of the output
on a given training set. Examples of discriminative classifiers are AdaBoost,
Support Vector Machine and Random Forest.

AdaBoost: the AdaBoost classification algorithm [35] creates a strong classifier
as a linear combination of simple weak classifiers (base learners). An iterative
method allows to keep adding base learners, until either the training error be-
comes lower than a given value or the number of iterations reaches a selected
maximum number. An interesting quality of AdaBoost, when the base learner
is a decision stump, is its ability to assign a weight to the features during the
training stage, which can be related to the feature relevance and can be used to
perform feature selection, i.e., to select a subset of relevant features for building
a robust model. In fact, the decision stump selects, at each iteration, the single
feature which reduced the labeling error the most.

Support Vector Machine (SVM): the SVM classifier [23] performs binary
classification by constructing a N-dimensional hyperplane which optimally sep-
arates the samples into two categories. In the simplest case, the hyperplane is
a line. Otherwise, when the data to be discriminated are separated by a non-
linear region, instead of fitting nonlinear curves to the data SVM uses a kernel
function to map the data into a different space, where a linear hyperplane can
be used to separate them. Although SVM is considered an efficient classifier,
the training phase in case of large cardinality of the training set usually suffers
from high memory usage and computational complexity.

Random Forest: the Random Forest classifier [11] grows an ensemble of clas-
sification trees, where each tree votes for a class. The class produced as the
output by the forest is the mode of the outputs of all the individual trees. Ran-
dom Forest can robustly handle a very large number of input features. Like
AdaBoost, Random Forest can measure the relevance of the features, based on
the idea that randomly changing a relevant feature among those selected for
building the tree affects the classification, while changing an irrelevant feature
does not affect it.

Multiscale Stacked Sequential Learning (MSSL): MSSL [38] is a contex-
tual meta-classifier, i.e., an algorithm aimed at enhancing the results of a first
stage of classification. Its purpose consists in capturing and exploiting sequen-
tial label correlations extended over multiple spatial scales. In the first stage of
the MSSL algorithm, classification is based on the assumption that each pixel
of the analyzed images is independent of the others. Assuming a binary classi-
fication problem, the spatial continuity of the two regions to be discriminated
can be additionally taken into account to improve the classifier capabilities. For
this reason, the spatial neighborhood relation among the pixels of the images is
exploited in a second stage of classification. As depicted in the block diagram
of Figure 2.8, this second classification stage makes use of the feature set used
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in the first classification stage, x, and of the classification margin provided as
an output by the first classifier, mar. For each image, the classification margin
values are converted into an estimate of the likelihood that a sample belongs
to one of the two classes and organized in a pseudo-probability map, p € [0, 1].
In the MSSL scheme, the pseudo-probability map is represented according to
a multi-scale (multi-resolution) decomposition. In the original bi-dimensional
MSSL algorithm [38], given p(?) the likelihood at position ¢ = (z,y), the
multi-resolution decomposition ® is defined as follows:

®(q,5)=p(7)*G(0,7°7), (2.3)

where s € {1,2,...,5} represents the scale, G is a bi-dimensional Gaussian
with zero mean and standard deviation ¢ = ~° and ~ is the “step” of the
decomposition. The multi-resolution decomposition is then sampled following
a grid, with regular sampling step, consisting of a set of Ngjep = s?amplmg
displacements. As a result, an additional set of features z is obtained, of length
S X Nagispi- An extended feature set is created, x°* = [x,z], by joining the
original feature set and the additional features from the sampling. Finally, the
extended set is analyzed by the second classifier and classification labels are
produced. The two classifiers are trained separately and after training they can
be applied to new images in the same scheme.

Additional
Features

First Multi-scale
Feature Set Classification Classification | | Decomposition
Stage Margin +
Sampling

T
N

Extended Feature Set

Second Classification
Stage

Classified Map

Figure 2.8: Block diagram representing the MSSL scheme.

2.4.1 Morphological Vessel Quantification in IVUS

The preprocessing stages for motion artifact compensation, described in Section 2.3,
facilitate the analysis of IVUS sequences and allow meaningful and correct measure-
ments. After preprocessing, several measurements on IVUS images are of interest
for diagnosis, planning of intervention and follow-up monitoring. In particular, the
extraction of the lumen border allows to derive measurements such as the minimum
and maximum lumen diameter and the luminal area stenosis (a measure of luminal
compromise relative to a reference lumen, analogous to the angiographic diameter
stenosis). The area between the lumen border and the media-adventitia border is the
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plaque area. Therefore, the extraction of the two vessel borders allows the measure-
ments of the minimum and maximum plaque thickness and the plaque burden (the
area occupied by atheroma, regardless of lumen compromise). Finally, the evalua-
tion of the plaque composition (discriminating the different types of tissue, such as
calcified, fibrotic, lipidic and necrotic) allows to assess the vulnerability of plaque.
Following, a review of state-of-the art segmentation approaches is presented. A brief
overview is given, but some of these topics will be addressed in more detail in the
following chapters, since the author of this thesis has proposed contributions on these
themes.

Lumen Border Extraction in IVUS Several automatic methods for segmen-
tation of the arterial lumen from IVUS images have been proposed. Most of the
approaches are based on active contour models (snakes). In [115, 121, 106], pixel
intensity and gradient information (edges) combined with computational methods,
including graph search, are used. In [57, 55, 85] the authors propose solutions based
on active surfaces, active contours and neural networks.

In [16, 13, 116], the gray-level probability density function of the vessel structures,
following Rayleigh distribution, is used.

Methods based on discrete wavelet decomposition have also been proposed [84, 51].

Approaches based on a learning process have been presented in [93, 83|, where
the lumen detection is achieved by means of the classification of blood areas in a
supervised learning fashion. The authors in [66] develop a semi-automated approach
using a parametrization of the lumen with a mixture of Gaussians PDFs. The sum of
such Gaussian functions is deformed by the minimization of a cost function formulated
using a probabilistic approach.

In [111], an automated shape-driven approach for the segmentation of the arterial
wall is proposed. In a statistical shape space, properly built through PCA by using
training data, the lumen contours are constrained to a smooth, closed geometry.
In addition to a shape prior, an intensity prior is used through a non-parametric
probabilistic energy function, with global image measurements.

A different strategy is explored in [59, 6], where the following phenomenon is
exploited: in successive frames of the IVUS sequence, the texture in the lumen region
exhibits a large variability of the speckle pattern, due to the blood flow, while the
speckle pattern changes slowly in the tissue area. Based on this observation, the
de-correlation generated by the blood flow is exploited.

In other approaches, segmentation is accomplished by the use of global region in-
formation including texture features [70, 86], gray-level variances to model ultrasound
speckle [43, 62], and contrast of regions [125].

In Chapter 5, a contribution to the research on lumen border extraction is pre-
sented. A novel method based on supervised binary classification is proposed, which
employs a multiscale stacked sequential learning scheme as a meta-classifier, thus tak-
ing into account the 2-D+T context of IVUS sequences. In a second phase, the lumen
contour is identified by applying an active contour model to the output classification
map.
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Media-adventitia Border Extraction in IVUS Various techniques have been
proposed for the detection of the media-adventitia border in IVUS. Part of these
methods rely on the particular appearance of the vessel in proximity of the media layer,
by exploiting the gray-level transition (dark-bright) in the media-adventitia interface.
Gradient-based operators and edge detectors have been used [46, 106, 85, 111, 108].
The smoothness and continuity of the vessel shape have also been taken into account,
by introducing deformable models [55, 125, 85, 42, 41, 108, 16]. In some approaches,
the information on the vessel shape and tissue properties is obtained by means of a
learning process [111, 42, 70, 22]. Finally, the idea of reproducing the human reasoning
while detecting the media-adventitia border has been exploited in [70, 9, 80, 84, 22].

A challenge aimed at comparing the state-of-the-art methods for media-adventitia
border detection and lumen border detection has been recently held in Toronto,
Canada: the “Lumen + External Elastic Laminae (Vessel Inner and Outer Wall)
Border Detection in IVUS Challenge” associated with the MICCAIT 2011 workshop on
Computing and Visualization for (Intra)Vascular Imaging?.

Plaque Characterization in IVUS An important property of the IVUS imaging
modality is its ability to describe the inner morphology of the vessel and its tissue
composition. Different tissue types show different acoustic properties and, conse-
quently, different intensities and shapes of the reflected ultrasonic wave. As a result,
in the IVUS images, areas corresponding to different tissues exhibit different gray-level
intensity and textures.

The plaque characterization task can be addressed as a pattern recognition prob-
lem. In fact, most of the plaque characterization methods proposed in the last years
follow the main steps of a pattern recognition scheme: ground truth collection, fea-
ture extraction and training of a classifier. In the tissue characterization problem, the
classifier learns from examples of different plaque types, such as the calcified, lipidic,
fibrotic and necrotic types.

Among the state-of-the-art methods on plaque characterization, it is possible to
distinguish between texture-based approaches, that rely on tissue appearance [120, 8,
14, 20], and spectrum-based approaches, that rely on the behavior of different tissues
in the frequency domain [17, 52]. In both cases, texture and spectral information
can be used as features, respectively. Other plaque characterization methods include
wavelet-based approaches [68, 72| and elastography-based approaches [27, 97, 29, 64].

2.4.2 Bifurcation Detection

The detection of vascular bifurcations is particularly important in clinical applica-
tions, such as the diagnosis of vessel stenosis, surgical planning, and medical image
registration, in which branching points can be used as landmarks.

In several studies in medical imaging, bifurcations have been identified as a means
to segment and reconstruct the entire coronary tree. For instance, in a study on
chest CT images [123], the AdaBoost learning technique is used for an automatic
detection of bifurcations, aimed at improving the segmentation of vascular structures.
In another paper [117], the Corkscrew segmentation algorithm is extended to identify

Thttps://www.cvc.uab.es/IVUSchallenge2011/
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bifurcations in a CT data-set. Similarly, the authors in [67] and [56] address the
problem of extraction and analysis of the coronary tree from X-ray angiographies by
means of bifurcation identification.

In IVUS, the task of bifurcation identification has never been addressed before
the study presented in this thesis. However, a few papers [9, 111] propose general
frameworks aimed at the simultaneous segmentation of various structures in IVUS
images, in which side branches are identified. In particular in [111], the maximum
smoothed intensity for every column of the polar IVUS image is used as a feature,
and a simple threshold is applied to identify the branches. In [9], a multi-agent
image interpretation system is applied to IVUS images, in which interacting agents
are provided manually with a set of rules. The performance of side branch detection
is not evaluated. Additionally, both studies consider single image frames neglecting
the temporal context.

In Chapter 3, a novel study on bifurcation detection in IVUS sequences is pre-
sented. The method identifies every bifurcation in an IVUS sequence, the corre-
sponding frames, the angular orientation with respect to the IVUS acquisition, and
the extension. This goal is achieved using the multi scale stacked sequential learning
scheme, thus taking into account the 2-D+T context in the IVUS sequence. Each
angular sector of the images is classified as belonging to a bifurcation or not. The
proposed approach provides a robust tool for the easy and fast review of pullbacks,
facilitating the evaluation of the lesion at bifurcation sites.

2.4.3 Alignment and Image Fusion

Multi-modal image registration techniques have been presented among IVUS and
other imaging modalities. In particular, the fusion of IVUS and angiography data can
be used to obtain a three-dimensional reconstruction of coronary vessels, while three-
dimensional reconstruction using only IVUS data is limited by the lack of information
on the vessel curvatures and catheter trajectory. Several methods have been developed
for the alignment and fusion of IVUS and angiography data.

One of the first studies was the ANGUS system [103, 104]. In this work, the IVUS
data are represented as a cylindrical stack of cross-sections. A least-square approx-
imation is used to reconstruct the 3-D path of the catheter axis from two biplane
X-ray images. The catheter trajectory is modeled in terms of a Fourier form. Then,
the stack of IVUS contours is wrapped along this catheter centerline. To establish
the correct rotational position of the slack, the authors make use of landmarks which
are visible in angiograms as well as in a simulation of the angiograms derived from
the reconstructed 3-D contour.

The method for 3-D reconstruction proposed in [118] combines the information
about vessel cross-sections obtained from IVUS with the information about the vessel
geometry derived from biplane angiography. First, the catheter path is reconstructed
from its biplane projections, resulting in a spatial model. The locations of the IVUS
frames are determined and their orientations relative to each other are calculated
using a discrete approximation of the Frenet-Serret formulas known from differential
geometry. The absolute orientation of the frame set is established utilizing the imaging
catheter itself as an artificial landmark.
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In [92], the authors present a multimedia workstation which enables the visual-
ization, acquisition and handling of both IVUS and angiograms modalities, on- and
off-line. The workstation enables DICOM decompression and browsing, video acquisi-
tion, reproduction and storage of IVUS data and angiograms with their corresponding
ECG, automatic catheter segmentation in angiography images (using fast marching
algorithm), B-Spline models definition for vessel layers on IVUS images, and a val-
idated tool to fuse information. This approach defines the correspondence of every
IVUS image with its correspondent point in the angiograms and vice-versa. The 3-D
reconstruction of the IVUS catheter /vessel enables real distance measurements as well
as three-dimensional visualization showing vessel tortuosity in the space.

In a recent study [110], a robust three-dimensional segmentation and registration
approach of X-ray angiography and IVUS/Optical Coherence Tomography (OCT) is
presented and validated. The approach starts with standard quantitative coronary
angiography of the vessel of interest in the two angiographic views (either biplane
or two monoplane views). Then, the vessel of interest is reconstructed in 3-D and
registered with the corresponding IVUS/OCT pullback series by a distance mapping
algorithm.

Finally, our group contributed to the research in this topic in [5]. In this study,
three pairs of angiographic acquisitions are used. The first two pairs of acquisitions
allow the reconstruction of the IVUS catheter path, while the third pair is used to
visualize the coronary branching and requires contrast injection. The catheter tip
is identified by the user. Starting from the user-selected point, catheter segmenta-
tion is performed using the fast marching algorithm computed in both angiographic
projections of the IVUS catheter. The catheter path is reconstructed. A biplanar
spline controlled by control points is fitted to the data following the un-distortion
corrections proposed in [15]. In a second phase, the angular rotation of the 3-D local
reference system (Frenet-Serret frame) with respect to the catheter path is estimated
by computing the angle between the main artery and a second trajectory (bifurcation
path) corresponding to a bifurcation artery. The bifurcation path is reconstructed
by manually indicating an extreme of one branching artery and applying the fast
marching algorithm until intersecting the catheter path. Successively, the user identi-
fies the torsion by selecting the angle in which the bifurcation is visible on the IVUS
longitudinal view.

The fusion of IVUS sequences with data from other imaging modalities has also
been investigated. Compared to traditional imaging modalities, such as X-ray coro-
nary angiography and IVUS, computed tomography angiography (CT) is not invasive
and it provides a true 3-D or 3-D+T expression of the coronary tree.

In [63], IVUS images are combined with CT images, to provide a detailed repre-
sentation of the coronary arteries in the CT images. The two data types are matched
using three steps. First, vessel segments are matched using anatomical landmarks.
Second, the landmarks are aligned in cross-sectional vessel images. Third, the semi-
automatically detected IVUS lumen contours are matched to the CT data, using
manual interaction and automatic registration methods.

In [113], the 3-D reconstruction of human coronary arteries is obtained by the
fusion of IVUS and coronary CT. The IVUS images, together with IVUS-derived
lumen and vessel borders, are positioned on the 3-D centerline, which is derived from
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CT. The resulting 3-D lumen and wall contours are transformed into a surface for
calculation of shear stress and plaque thickness.

IVUS has large penetration depth but the drawback of this modality is its com-
parably poor resolution. OCT is a relatively new catheter-based imaging technology
that uses light interference to offer a high resolution for a small penetration depth.

In [112], the authors develop a method for image fusion of IVUS and OCT im-
ages, to enhance quantitative analysis of coronary arteries. A computer assisted
fusion of corresponding frames from IVUS and OCT sequences is developed by a two-
phase registration. However, the method is semi-automatic, since the longitudinal
correspondences of input pairs from IVUS and OCT pullback volumes are selected
manually by the user, and an automatic longitudinal registration of IVUS and OCT
pullback sequences is stated as future work.

In Chapter 4, a novel study on temporal alignment between IVUS sequences ac-
quired at different moments is presented. The Dynamic Time Warping non-rigid
alignment algorithm is adapted to the specific IVUS alignment task. A fully auto-
matic workflow for IVUS sequence alignment is developed, potentially applicable to
other image modalities.

2.4.4 Quantification in Commercial Systems

Commercial products are available for analysis and quantification of IVUS sequences.
The two leading companies for the commercialization of IVUS imaging systems and
catheters are Boston Scientific and Volcano. Together with their IVUS equipments,
these companies provide software for measurement and review of the cases.

Volcano were the first in the market to provide automatic tissue characteriza-
tion. Volcano imaging systems are equipped with Virtual Histology - VH®) 73| (the
patented name for Volcano’s tissue characterization software). In Virtual Histology,
four tissues are discriminated: fibrous, fibro-fatty, necrotic core and dense calcium.
The latest Volcano system is the VH®) IVUS Imaging System, and it additionally
provides automatic border contours for full segment analysis. A screenshot of the
user interface is shown in Figure 2.9.

Boston Scientific is currently distributing its most recent iLab®) Ultrasound Imag-
ing System. The system is equipped with the iMap software for automatic plaque
characterization [96]. Four different types of plaque are distinguished: fibrotic, li-
pidic, calcified and necrotic. An example of this tissue characterization feature is
shown in Figure 2.10. Moreover, the software available on the iLab includes an auto-
matic tracement of the vessel borders (TraceAssist™ software).

Medis QIVUS is a commercial solution for IVUS analysis. The semi-automatic
contour detection is aimed at quickly calculating volumetric and plaque characteriza-
tion data and can be used in large clinical studies.

Finally, Table 2.1 describes the different methods for IVUS analysis using the
taxonomy defined in this chapter. The methods presented in this thesis work are also
included.
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Figure 2.9: Screenshot illustrating the Volcano user interface.

Figure 2.10: Screenshot illustrating the tissue characterization feature in iLab.



Chapter 3

Automatic Bifurcation Detection in
IVUS Sequences

3.1 Introduction

Plaque growth and rupture preferentially involve specific vessel sites. An important
example are vascular bifurcations, also named vessel branchings. Bifurcations can
be defined as the sites where an artery diverges into two daughter vessels, the main
branch and the side branch.

Bifurcations are critical vascular locations from the clinical point of view. In fact,
it has been shown that arterial hemodynamics plays a relevant role in the progression
of atherosclerosis [54]. In particular, the sites of abnormal and disturbed flow, such
as vessel branching, are key regions for plaque evolution [119]. Wall thickenings and
plaque formation in coronary arteries are frequently localized on the outer wall of
one or both daughter vessels at major bifurcations [4]. Additionally, the rupture
of vulnerable plaque may depend on anatomic parameters, such as the proximity
of bifurcations and the axial bending during the cardiac cycle. In particular, the
presence of a bifurcation before and especially after the lesion is a marker of an
increased risk of plaque rupture and subsequent thrombosis [53]. This connection
with disease formation is confirmed by the fact that a large number of bifurcation
lesions undergo PCI [71].

The detection of vascular bifurcations is particularly important in clinical appli-
cations, such as the diagnosis of vessel stenosis, surgical planning and medical image
registration, in which branching points can be used as landmarks. In several studies,
bifurcations have been identified as a means to segment and reconstruct the entire
coronary tree. For instance, in a study on chest CT images [123], the AdaBoost learn-
ing technique is used for an automatic detection of bifurcations, aimed at improving
the segmentation of vascular structures. In another paper, Wette et al. [117] ex-
tend the Corkscrew segmentation algorithm to identify bifurcations in a CT data-set.

29
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Similarly, Merle et al. [67] and Koehler et al. [56] address the problem of extraction
and analysis of the coronary tree from X-ray angiographies by means of bifurcation
identification.

Before the study presented in this chapter, the specific task of bifurcation identi-
fication has never been addressed in IVUS. However a few papers [9, 111] previously
proposed general frameworks aimed at the simultaneous segmentation of various struc-
tures in IVUS images, in which side branches were identified too. In particular in
[111], the maximum smoothed intensity for every column of the polar IVUS image
is used as a feature, and a simple threshold is applied to identify the branches. In
[9], a multi-agent image interpretation system is applied to IVUS images, in which
interacting agents are provided manually with a set of rules. The performance of side
branch detection is not evaluated. Additionally, both studies consider single image
frames neglecting the temporal context.

A typical branching appearance in the IVUS short-azis view and longitudinal view
is illustrated in Figure 3.1(b) and (c), respectively. It is worth mentioning that in
the short-axis view, in presence of bifurcations, the vessel lumen changes its shape
with respect to non-bifurcation transversal sections and the blood region tends to
an elliptical profile with higher eccentricity than in other frames (Figure 3.1(a-b)).
Moreover, the texture in the radial direction changes considerably in correspondence
to bifurcations. In the longitudinal view, bifurcations appear as lateral ramifications
of the vessel (Figure 3.1(c)).

(b)

Figure 3.1: Short-azis view of a vessel showing (a) a non-bifurcation and (b) a
bifurcation frame and (c) longitudinal view of the pullback. The lines in (b) and
(c) indicate the angular and longitudinal bifurcation localizations, respectively. The
regions displayed in red in (b) and (c) correspond to the angular and longitudinal
branching extension, respectively.

In the clinical practice, physicians report the presence of bifurcations in terms of
both frame localization and angular extension. Moreover, when analyzing a pullback,
the angular position of a bifurcation (i.e., its orientation) with respect to the IVUS
acquisition, represented in Figure 3.1(b) by a line, allows the visualization of the
longitudinal view corresponding to the best cut in which the branching is visible
(Figure 3.1(c)).
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In this chapter, a study on automatic bifurcation detection in IVUS is presented.
The proposed algorithm identifies every bifurcation in a pullback, the corresponding
frames, the angular orientation with respect to the IVUS acquisition and the exten-
sion, enabling the quick navigation of the pullback only focusing on branches. The
goal of bifurcation detection is reached by means of a pattern recognition approach, in
which a set of features provides a representation of IVUS data in a multidimensional
space, where a classifier is trained to solve the binary “bifurcation vs. non-bifurcation”
problem. The most suitable set of features for bifurcation detection is obtained by
analyzing textural features proposed in IVUS imaging studies [121, 14, 20| for charac-
terizing, detecting and quantifying vessel structures. The results of three discrimina-
tive state-of-the-art classifiers (AdaBoost, Random Forest, and SVM) are compared.
The choice of the best suited classification method for the proposed branching de-
tection framework is discussed in the chapter, along with the selection of the most
relevant features. After a first classification phase, a multi-scale stacked sequential
learning scheme is used, exploiting contextual information [38]. The first learning
level is a basic classifier which is integrated, at the second level, within a contextual
classifier. By introducing the spatio-temporal context, the continuity of the bifurca-
tion regions is considered for the refinement of the results. Finally, the classification
results are further refined by exploiting a-priori information on branching dimensions
and geometries.

The validation of the proposed method is presented on a data-set of 22 in-vivo
IVUS sequences from coronary arteries, acquired from 22 patients. The approach
provides a robust tool for the quick review of pullback sequences, facilitating the
evaluation of the lesion at bifurcation sites. In this study, a new visualization map
for IVUS sequences is presented, summarizing the vessel characteristics regarding the
branchings. Finally, the output of the method can be used to extract 1-D temporal
profiles describing the structure of the branchings along the analyzed vessel.

3.2 Bifurcation Detection Method

The method for bifurcation detection is divided into three sequential stages, as illus-
trated in Figure 3.2. First, the IVUS sequence is compensated for the artifacts due to
motion. Subsequently, each angular sector in the sequence is classified as bifurcation
or not, leading to a new visualization of IVUS pullbacks (Figure 3.2, bottom-left). The
sequence is organized in a bi-dimensional representation in the space (6,t), where 0 is
the angular position (orientation) with respect to the IVUS acquisition in the short-
azis view and t is the longitudinal (temporal) position along the pullback. Finally, the
spatial neighborhood relation among samples is exploited to refine the classification
results.
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Figure 3.2:

AUTOMATIC BIFURCATION DETECTION
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Block diagram of the proposed approach. Three main stages compose

the workflow: (1) preprocessing for motion artifacts compensation, (2) classification
of the angular sectors of each image frame, and (3) refinement of the obtained clas-
sification maps based on contextual information.

3.2.1 Compensation of Artifacts due to Motion

During the acquisition of an IVUS sequence, the catheter is affected by several artifacts
due to the heart and the catheter motion, interfering with the visualization, the
interpretation and the analysis of the acquired sequence. In order to compensate for
the swinging effect and obtain a unique reconstruction for the transversal sections of
the artery, the image-based gating algorithm proposed in [37] is applied, as described
in Chapter 2. Moreover, in order to align the vessel center with the center of the image,
an IVUS registration method [40] is applied, as detailed in Chapter 2. Figure 3.3
illustrates the results of the two successive stages of the applied artifact compensation.
The swinging effect present in Figure 3.3(a) is compensated in Figure 3.3(b) and
in Figure 3.3(c) the center of the vessel is aligned with the center of the pullback

representation.
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T

Figure 3.3: Compensation of artifacts due to motion. (a) Longitudinal view of an
IVUS sequence before motion artifact compensation, (b) after the application of the
gating technique and (c) after the successive registration.

3.2.2 Angular Sector Classification

In order to address the bifurcation detection task, a binary classification problem is
defined, aimed at distinguishing between bifurcation and non-bifurcation angular sec-
tors. The most intuitive analysis of an IVUS frame, inspired by the visual inspection
performed by physicians, consists in the study of textural changes along the radial
direction of each frame. For this reason, we choose to extract features computed along
each angular sector of the image.

The approach relies on a pattern recognition technique, in which a binary classifier
is firstly trained on a data-set of IVUS sequences, previously labeled by physicians
(training phase). Then it is used to identify the presence of bifurcations in new
sequences (test phase). For each IVUS sequence, the ground-truth, consisting in a
reliable data-set of labeled samples (separating bifurcation and non-bifurcation sam-
ples), is created. Numeric information describing each angular sector is computed by
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feature extraction.

Feature Extraction In most frames, the lumen has a pseudo-elliptical shape in the
short-axis view, which typically, in the presence of bifurcations has higher eccentricity
than in non-bifurcation frames, as shown in Figure 3.1(a-b). The radial extension of
the blood region usually increases in correspondence to bifurcation angular sectors,
as it happens, for instance, along the line in Figure 3.1(b). This property is exploited
by extracting characteristics of the image texture computed along each radius of the
IVUS frame. Since the applied rigid registration technique has aligned the center
of the vessel with the center of the image (Figure 3.4), homogeneous radial features
can be extracted. For this purpose, the region occupied by the catheter circular
“ring down” artifact is replaced with a portion of lumen texture extracted from a
frame of the sequence, as shown in Figure 3.4(b), (d). Each of the normalized images
I (z,y) € [0,1], which constitutes the sequence S (z,y,t) € [0,1], is first converted
into polar coordinates:

I(p,0)=1(p-cosB,p-sinb), (3.1)

where x and y are the horizontal and vertical coordinates in the cartesian system, p
and 6 are the radial and angular coordinates in the polar system, ¢ is the longitudinal
(temporal) coordinate along the pullback.

Following similar approaches of texture analysis applied to IVUS data [121, 20,
83|, a set of Nr texture descriptors is defined. Each descriptor specifies a mapping
function:

F: I(p,6)— M;(p,0), (3.2)

where M; (p,0) € R is the parametric feature map according to the 4t textural
descriptor, j = 1,2, ..., Np. Successively, in order to extract information on the
extension and eccentricity of the blood region, the statistics related to each column
6 of the obtained parametric maps is considered. For each angular sector (column in
Figure 3.4(c), (d), basic statistical features: (i) standard deviation, (ii) mean value,
(iii) median value, (iv) maximum value, (v) radial position of the maximum value, and
(vi) histogram are computed. To this aim, a second mapping function D is applied:

D M;(p,0) = fi(0), (3:3)

where f; (6) e R,i=1,2, ..., Np, and Np is defined as the total number of statistical
descriptors.

Two families of texture descriptors are applied, of which the first has demonstrated
its capability to characterize the tissue in IVUS images [87, 14], while the second one
has been used to characterize the blood region [59, 60]. The first group (M; (0, 9);5sue)
is composed of the following maps:
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Figure 3.4: Short-azis view of a bifurcation frame before the registration phase (a) in
the cartesian coordinate system and (b) in the polar representation. View of the same
frame after the registration phase and the “ring down” artifact compensation, (c) in
cartesian and (d) in polar coordinates. The dotted curves represent an approximation
of the typical geometry of the blood region contour in the bifurcation case.

e Gabor filters [10] can extract the textural properties of the image according to
a particular filter orientation.

e Local binary patterns (LBP) [79] are used to detect uniform texture patterns
in circular neighborhoods, with any quantization of angular space and spatial
resolution and invariant to brightness variations.

The second group (M; (p,6),;,.4) consists of six maps including auto-correlation and
cross-correlation:

e Auto-correlation and cross-correlation are introduced to exploit the low corre-
lation expected in the blood region with respect to the tissue due to the flow
motion [59, 60]. Each of them is used at three scales: 6, 12, and 18 pixels rep-
resenting 1/3, 2/3, and the size of the speckle on the IVUS image, respectively.

The gray-level image T (p,0) is considered as one of the feature maps, as well, leading

to a total of 12 main maps. On the seven parametric maps I (p,6) and M; (p,0),,00a



36 AUTOMATIC BIFURCATION DETECTION

two additional transformations are applied [20], leading to the computation of fourteen
additional maps A.; (p,0), and A;; (p,d) for a total number of 26 parametric maps.
The map A.; can be related to a quantification of the blood accumulation in the range
[0 prmax], where p represents the radial depth, while the map A;; gives information
about the amount of blood accumulated in the range [1 p|:

Ymsy M (p,6)

Ae' ,9 =
i(p,0)=p OMAX — P

(3.4)

S M (p,0)
P

Aij (p.0) (3.5)

where pprax is the maximum value of the radius.

The computation of statistical features f; (f) on all the parametric maps ulti-
mately provides information about the presence of a bifurcation. For instance, the
position of the maximum value in the gray-level image usually corresponds to the dis-
tance between the vessel center and the vessel border and it increases with the vessel
eccentricity; at the same time, the standard deviation and the mean value along the
radius typically decrease, due to the presence of external vessel tissue (adventitia)
with bright appearance (see Figure 3.4). Each angular sector 6 is described by a
feature vector x (0) = [x1 (0) 22 (0) ... N, (0)], where Np = 253 is the total number
of considered features.

Classification In the proposed framework, a supervised learning approach is cho-
sen, given the availability of ground-truth data and the consequent possibility of
learning from examples. A discriminative classification method is applied in order to
avoid the need to formulate hypotheses on the feature space. A comparison among the
results of three state-of-the-art discriminative classifiers (AdaBoost, Random Forest,
and SVM) is provided, in terms of performance and computational cost. The three
algorithms have been described in Chapter 2. Beyond the classifier labeling, an addi-
tional output provided by the above mentioned classifiers is the classification margin
mar € [—o00,400], representing, in the feature space, the distance from a sample to
the decision boundary.

3.2.3 Contextual Information

Multi-Scale Stacked Sequential Learning In the learning system described so
far, the classification is based on the assumption that each angular sector of the
IVUS images is independent of the others. However, the continuity of the branch-
ings in pullback sequences can be additionally taken into account to enhance the
classifier capabilities. An MSSL scheme [38] is applied, consisting in a contextual
meta-classifier in which the first stage of classification is included, as a way of captur-
ing and exploiting sequential correlations extended over multiple spatial scales. The
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generic MSSL method has been described in Chapter 2. In this section, we report its
application into the bifurcation detection framework.

The MSSL scheme makes use of the feature set used in the previous classification
and of the classification margin provided as an output by the first classifier. For each
pullback, the classification margin values are converted into an estimate of the likeli-
hood that a sample belongs to the bifurcation class and organized in a bi-dimensional
pseudo-probability map, py (0,t) € [0, 1], being 6 the angular polar coordinate and ¢ the
longitudinal (temporal) position (Figure 3.5-a). The representation of an IVUS se-
quence in the space (6,t) is introduced to exploit the spatial coherence of neighboring
pixels. In the MSSL scheme, the pseudo-probability map is represented according to a
multi-scale (multi-resolution) decomposition. Given py, (7) the likelihood at position
q = (6,1), the multi-resolution decomposition ® is defined as follows:

®(q.5)=p (7)*G (0,771, (3.6)

where s € {1,2,...,5} represents the scale, G is a bi-dimensional Gaussian with
zero mean and o = v° and 7 is the “step” of the decomposition. The multi-resolution
decomposition is sampled to obtain a set of features. Wrap-around issues are handled
by using a circular padding in the horizontal dimension of the map and by setting
the values of the extended set outside the map to 0 in the vertical dimension as the
most conservative choice. An extended feature set is created, by joining the original
feature set to the additional features from the sampling. Finally, the extended set
is analyzed by a second classifier and final classification labels are produced. The
two classifiers are trained separately and after training they can be applied to new
sequences inside the same scheme. The multi-resolution decomposition allows to
recover the homogeneity and regularity of the bifurcation regions at different scales,
if such properties are present in the training samples. In Figure 3.5, the binary
classification output before (b) and after (c) sequential learning is illustrated for a
sequence, together with the corresponding pseudo-probability map (a). We can notice
an increase in the homogeneity of the classified regions and a decrease in the presence
of false positive errors after the second stage of classification.

A-priori Map Refinement After the classification stage, the results are refined,
by taking advantage of a-priori knowledge about the geometry of the coronary branch-
ings and the characteristic dimensions of the vessels. Different artifacts, such as the
guidewire shadow, might be confused with bifurcation regions, since their appearance
in the short-axis view may be similar. However, since the textural pattern of the
guidewire shadow is repeated along several frames of the sequence, it is possible to
discriminate between the two structures by discarding from the classification maps
the regions in which the longitudinal dimension is much more extended than the an-
gular dimension. The regions forming an angle with respect to the #-axis, which is
superior to a given threshold 7 are removed. Subsequently, in order to make the
results more homogeneous and exclude regions that are too small to be bifurcations,
a morphological filtering is performed with a rectangular structuring element of size
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Figure 3.5: (a) Pseudo-probability map for a pullback, in which the gray-level ex-
presses the likelihood of bifurcation presence. Corresponding binary label maps, after
(b) the first and (c) the second classification stages of the MSSL scheme. The detected
bifurcation regions are represented in red. The horizontal and vertical axes represent
the angular position with respect to the IVUS acquisition # and the longitudinal
position ¢, respectively.

[np nr], where np is the number of angular degrees and np is the number of frames.
A cross-validation process is applied to tune the model parameters 7, ng, and np.

3.3 Experimental Results

3.3.1 Materials: Reference Data

A set of 22 in-vivo pullbacks from human coronary arteries has been acquired from 22
patients by means of iLab IVUS Imaging System (Boston Scientific), using a 40 MHz
catheter Atlantis SR 40 Pro (Boston Scientific). The data-set and the ground-truth
of bifurcation labels are described in Appendix B. Angular sector samples have been
labeled as “bifurcation” or “non-bifurcation” samples.

The classification performance is assessed by means of Leave-One-Patient-Out
(LOPO) cross-validation technique over Np = 22 folds. LOPO can be considered as
a special case of N-fold cross-validation, where each fold contains all the data from
one patient. Further details about LOPO technique can be found in [19]. For each
fold, the training is performed on samples from all the other folds and the trained
classifier is tested on the fold itself. The performance is evaluated as an average of
the results over the Np folds in terms of:

. - TP4+TN
Accuracy: A= TP TNSFPTFN
Sensitivity: S = T%‘,‘%
Specificity: K= ﬁ
Precision: P= TIS:_%

False Alarm Ratio: FAR = Tpg_%
P 2P

F-measure: [Z5)
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where TP = True Positive, TN = True Negative, F'P = False Positive, and F'IN
= False Negative.

The positive and negative classes are strongly unbalanced, since the positive class
represents 1% of the total amount of samples. In order to achieve a good generalization
in the training phase, all the bifurcation samples are used, together with an equal
number of randomly selected negative samples. In the test phase, a normalization
of the confusion matrix is applied for the computation of all the performance scores
with the exception of the accuracy.

It is worth noticing that in a detection problem, the two most significant parame-
ters are sensitivity S and precision P, since in this case S (true positive rate) expresses
the proportion of actual bifurcation samples, which are correctly identified as such,
and P (positive predictive value) represents the proportion of samples assigned to the
bifurcation class which are correctly classified. Therefore, the F-measure can be used
as a single score to assess the overall performance of the method, since it is defined
as the harmonic mean of precision and sensitivity.

3.3.2 Bifurcation Classification

The AdaBoost, Random Forest, and SVM classifiers are compared in the bifurca-
tion vs. non-bifurcation classification. Since, among the three methods, AdaBoost
and Random Forest are able to handle efficiently a large training set and a high-
dimensional feature space, the two classifiers are firstly compared. Once the best
performing classification algorithm between the two is identified, the method is com-
pared with SVM using a selected subset of the most relevant features.

AdaBoost vs. Random Forest To ensure its convergence, AdaBoost has been
trained up to N, = 110 iterations and the classifier has been noticed to converge
after around 80 iterations. The parameters of Random Forest are set to a number of
trees Nipees = 1,000 and a number of input variables determining the decision at each
node of the tree My, =log, (Nr) + 1, as suggested by [11]. In order to corroborate
the statistical significance of the achieved results, the Wilcoxon signed-ranks test [28]
is performed. With a significance level @ = 0.05, the null hypothesis that the mean
values of the two distributions are equal can be rejected if z < —1.96, where z is
the value of the Wilcoxon statistics. The last two columns in Table 3.1 illustrate, for
each comparison, the difference between the average performance scores of AdaBoost
and Random Forest and the value of the z statistics, respectively. The presence of
the asterisk in the fifth column denotes statistical significance. For each performance
measure, the score of the technique which performs better is typeset in bold.

Random Forest is superior to AdaBoost for most of the considered performance
scores (Table 3.1) and has an excellent performance in terms of accuracy (94.85%).
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Table 3.1: Performance (MEAN+STD) of the AdaBoost and Random Forest clas-

sifiers.
| AdaBoost | Random Forest Ao 2
A (89.82 + 4.51)% (94.85 +3.49)% | +5.03% | —4.10 %
s (76.97 £ 11.94)% | (63.50 £ 22.19)% | —13.47% | —2.56 *
P (88.57 £4.69)% | (92.56 £5.50)% | +3.99% | —2.71x
K (89.96 £ 4.55)% | (95.19 £3.51)% | +5.23% | —4.10 «
FAR | (10.04 4+ 4.55)% (4.81 +£351)% | —523% | —4.10«
F (81.90 £ 7.45)% | (73.35+16.73)% | —8.55% | —2.48 %

However, the sensitivity is lower (63.50% for Random Forest when compared with
76.97% for AdaBoost) leading to a significantly lower F-Measure score. Moreover,
the computational complexity of AdaBoost with decision stumps is lower, since it is
O(Tnm) in training and O(T) in test, while for Random Forest it is O(TnMy,) in
training and O(Tn) in the worst case, O(T logn) in average in test, where T is Njter
for AdaBoost and Ni.ees for Random Forest, n is the number of training samples,
m is the number of features, and M., < m is the random subspace dimensionality.
Considering this, it can be stated that the AdaBoost classifier is the best suited for
the proposed task.

Feature Selection by Weight Analysis A feature selection study is performed,
with the aim of reducing the computational cost of the learning algorithm and possibly
enhancing the generalization capability of the classifier. Different learning algorithms
may perform better with different feature sets, since there cannot be a unique concept
of relevant features [25]. For this reason, feature selection is performed based on the
used classification algorithm. The embedded property of AdaBoost with decision
stump of assigning a weight to each weak classifier (feature) at each training iteration
is exploited. Such weights can be used to evaluate the feature relevance. Let us define
Np the number of sequences, Nr the number of initial features, k = 1,2,..., Ng the
index of each feature and af; the weight assigned to the k*" feature at the p;, LOPO
validation fold, corresponding to the py, pullback. The normalized weight assigned
by AdaBoost to each feature w; can be expressed as:

Lyt % 3.7
N . . (3.7)
g maw{ap,...,ap }

W =

The normalized weights wy are used to perform feature selection, by keeping
only the features whose cumulative weight represents a percentage of the total cu-
mulative weight set to 75%. For this reason, the initial set of Np = 253 fea-

tures X = [x1 @2 ... ] is ordered from the most to the least relevant descriptor,
creating a sorted set Xsorr = [*15 Ta2s ... Tnps] with corresponding normalized
weights wgorr = [wis was ... wnpg]. Subsequently, the feature subset Xsorr C

XSORTs XSORT = [x/l xh ... x’Ns] with corresponding normalized weights WeorT =
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[w'l wh ... wﬁvs} is selected, comprising the most relevant Ng features in xgo gy whose
partial cumulative weight cw, = ;.stl wj, sums up to 75% of the total cumulative
weight:
Ns NF
Ns: > wp=075-Y wgs (3.8)
k=1 k=1

resulting in Ng = 40 selected features.

Nomalized
weight (wy) 11 T T
0.9
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Figure 3.6: Analysis of the normalized weight for each feature. The descriptors
are organized into different categories: (a) gray-level image, (b) Auto-correlation, (c)
Cross-correlation, (d) Gabor, (e) LBP, (f) shadow transformations on the gray-level
image, shadow transformations on the (g) Auto-correlation and (h) Cross-correlation
maps.

In Figure 3.6, the normalized weight w; for each feature in x is represented,
together with a summarized description of the feature categories. Among the most
relevant descriptors are: the radial position of the maximum value, both in the gray-
level image and in its parametric representations, features computed from the Gabor
parametric maps, features computed from the gray-level image and features from the
cross-correlation maps.

The AdaBoost algorithm is applied on the extracted subset ﬁso RT, using Nyjer =
110 iterations. In Table 3.2, an overall improvement in the performance after fea-
ture selection can be observed. In particular, the statistical analysis proves that the
sensitivity, precision and F-Measure scores, which are the most relevant for the con-
sidered application, significantly increase. Moreover, the computational complexity
in training O(Tnm) decreases.
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Table 3.2: Performance (MEAN=+STD) of the AdaBoost classifier ([a]) before and
([6]) after feature selection.

[a] \ [6] | aw | = ]
A (89.82 + 4.51)% (89.79 + 4.49)% | —0.03% | —0.82
s (76.97 £11.94)% | (81.24 4+ 11.48)% | +1.27% | —2.56 *
P (88.57 + 4.69)% (89.08 £4.47)% | +0.51% | —2.06 *
K (89.96 + 4.55)% (89.90 £ 4.55)% | —0.06% | —0.82
FAR | (10.04 +4.55)% (10.10 + 4.55)% | +0.06% | —0.82
F (81.90 + 7.45)% (84.56 + 6.84)% +2.66% —3.29 %

AdaBoost vs. SVM The training set cardinality and the feature space dimension-
ality imply a high computational cost for the classification. We choose not to reduce
the number of training samples because of the imbalance between the two classes.
However, the SVM can be accelerated by applying it after feature selection, reducing
the feature space dimensionality. Hence, the performance of AdaBoost and SVM are
compared using the Ng = 40 selected features. A Radial Basis Function (RBF) kernel
is used and the parameters v and C are tuned as indicated in [89] and in this way set
to v = 0.001 and C' = 10. The results of the SVM classifier are compared in Table
3.3 with the results of AdaBoost after feature selection. As it can be observed, the
SVM classifier is superior to AdaBoost in terms of sensitivity, but it is significantly
inferior in terms of the accuracy, precision, specificity, false alarm ratio scores. The
overall performance is comparable, as shown by the F-measure scores. However, the
computational complexity of SVM is higher, since it varies between O(n?) and O(n?)
in training, depending on the number of support vectors and it is < O(nm) in test.
Additionally, the accuracy of a SVM model largely depends on the selection of the
kernel parameters, which have to be tuned implying a high computational cost dur-
ing training. By considering these results, it can be concluded that the AdaBoost
classifier is the most appropriate technique for the addressed task.

Table 3.3: Performance (MEAN+STD) of the AdaBoost and SVM classifiers, on
the set of selected features.

’ ‘ AdaBoost ‘ SVM Ay z
A (89.79 £+ 4.49)% (87.46 £ 5.51)% —2.33% | —3.23 %
S (81.24 £11.48)% | (83.26 £12.09)% | +2.02% —1.23
P (89.08 £+ 4.47)% (87.12 £ 5.34)% —1.96% | —2.77 %
K (89.90 £ 4.55)% (87.53 £ 5.57)% —2.37% | —3.23
FAR (10.10 £+ 4.55)% (12.47 £ 5.57)% +2.37% | —3.23 %
F (84.56 + 6.84)% (84.71 £ 07.37)% | +0.15% —-0.17
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Bifurcation Map Refinement After the classification of angular sectors as inde-
pendent samples, a refinement of the results is performed in two stages. First, the
contextual information is exploited using the MSSL approach. Then, the guidewire
artifact and the small detected regions are removed using a-priori information.

It is worth noticing that the MSSL scheme is independent of the classification
methods chosen for the two classification stages. The multi-scale decomposition is
applied using 5 scales, by setting the decomposition parameters to o = 2e*~1 and
s = {1,2,...,5} and using a 9 element neighborhood. The sampling leads to 45
additional features, for a total 85 features composing the extended feature set. The
AdaBoost classifier is applied to the extended feature set, performing Nji.,, = 160
iterations. The parameters of the a-priori refinement 7, np, and np are tuned by
exhaustive search by maximizing the F-Measure score using LOPO cross-validation
technique. The parameters are tuned on reasonable ranges of values chosen based on
the data analysis. In particular, the threshold 7 ranges between 25 degrees and 50
degrees, while the horizontal and vertical dimensions of the structuring element np
and np range between 5 and 20 degrees and 1 to 5 frames, respectively. The obtained
optimized parameters are 7 = 30 degrees, np = 10 degrees and nyp = 1 frame.

In Table 3.4, the overall incremental results for the successive stages of the method
are illustrated, together with inter-observer and intra-observer variability. We can
notice a steady improvement of the performance for consecutive phases of the workflow
(rows from [a] to [e]), which is reflected into the increase in the F-Measure score. The
second classification stage of the MSSL scheme is apparently in counter trend because
the F-Measure slightly decreases. At the same time, the computational complexity
additionally includes both (1) the complexity for the multi-scale decomposition +
sampling O(SNyap 10g Npap + 9SNpap), where S is the number of scales, Nyqp
is the size of the map, and 9 is the size of the sampling neighborhood, and (2)
the complexity for the second classification stage. However, this step produces a
significant decrease in the false alarm ratio score (row [¢]). The a-priori refinement
improves the performance (rows [d], [e]) without being computationally expensive,
since the computational complexity is O(R) for the first stage, where R is the number
of connected branching regions, and O(npnpNy,qp) for the second stage, where Nyqp
is the size of the map, and np, npg are the two dimensions of the structuring element.

The automatic method reaches an accuracy of 95.21%, a sensitivity of 80.66%, a
precision of 94.60% and an F-Measure of 86.35%. It can be noticed that the sensitiv-
ity score, which is critical in a detection problem, is low for inter-observer variability
(57.05%): the task of evaluating bifurcation location and extension is particularly
challenging also for trained physicians and the results suffer from substantial vari-
ability depending on the observer. The F-Measure score reached by the automatic
method is higher than for both the intra- and inter-observer variability (4+10.17% and
14.72% respectively), showing that the algorithm successfully reaches a compromise
between the two segmented ground-truths.

The performance of the method significantly decreases if only the first classifier
is used (rows[h], [i]), because the MSSL scheme helps to find connected regions on
which the first stage of refinement is based.
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3.4 Discussion

3.4.1 Results Analysis

The identification of vascular bifurcations in IVUS images is considerably challenging
due to the high variability in branching dimensions and appearance. Portions of the
vessel may look like bifurcations, when the catheter is far from the vessel center,
when the probe is close to the ostium and when the vessel is large. Additionally,
shadows can hide bifurcations, making the images with deployed stent more difficult
to classify. The images in Figure 3.7(a-c) illustrate some challenging frames in which
the existing bifurcations are correctly identified. In most cases, the errors of the
automatic method can be ascribed to a specific vessel morphology. False positive
errors are localized most frequently in correspondence to deployed stents (Figure
3.7(d-f)), in vessel sections close to the ostium (Figure 3.7(g-h)) and when a vein is
visible close to the inspected vessel (Figure 3.7(i-j)). Veins might be confused with the
extreme frames of the branches where two lumen regions are separated by adventitia.
False negative errors are mostly found in case of small bifurcations, such as the one
represented in Figure 3.7(k). Finally, the method rarely fails in large bifurcation
frames. It is worth mentioning that in several cases the method performs better than
the manual labeling, since in some cases one or both experts did not label a branching
which is actually present in the sequence, as illustrated in Figure 3.7(1). Indeed, the
physicians confirmed the presence of a bifurcation a-posteriori, given the algorithm
detection.

3.4.2 Clinical Applicability: Evaluation per Regions

For a clinical use of the proposed method, the main concern for physicians is that a
minimum amount of branching regions actually present in the IVUS sequences are
misclassified in the automatic detection. In the case of a classification method used as
an object detector, each object present in the ground-truth (in this case, a branching)
may or may not intersect a detected region. Evaluation can be performed in terms of
a “True Positive detected Object” (TPO) score, defined as the percentage of labeled
ground-truth branchings that intersect a detected region. TPO can be considered as
a measure of sensitivity computed using the regions as samples. Maximizing TPO is
fundamental in a detection application, especially in a clinical context. The obtained
TPO results (90.97%) are superior to the inter-observer TPO score (86.37%) and
comparable to the intra-observer score (91.12%), which is extremely encouraging for
the clinical applicability of the method. The graphic in Figure 3.8 shows how TPO
is influenced by the branching dimension, computed as the angular extension of the
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Figure 3.7: Analysis of bifurcation detection results. The convex angles in green
and red correspond to the angular extension of the bifurcation as identified by the
algorithm, in case of correct detection and false positive error, respectively.

branching region (angular sectors). The score is low for the small bifurcation regions
in the data-set, while it reaches a stable 100% for the large branching regions, covering
more than 40 angular sectors. Therefore, it can be stated that the method is highly
reliable for medium and large branchings.

In Figure 3.9, examples of ground-truth labels and corresponding final result maps
are illustrated. In most cases the bifurcation regions which are labeled in the ground-
truth are correctly detected, while the main limitation lies in the possible identification
of false positive branching regions.
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Figure 3.8: Average TPO score for 15 equally spaced ranges of bifurcation angular
extension. In the considered data-set, the bifurcation angle ranges between 3 and 72
degrees. The data distribution is approximated as a third-order polynomial, shown
in red.

3.4.3 Discussion on Methodology

The use of image-based gating cannot ensure that the scan line followed over the longi-
tudinal view actually represents the same orientation relative to the vessel. However,
the measurements of bifurcation angular extension and position relative to the IVUS
acquisition are clinically relevant because they are used by physicians to characterize
the branches and their position with respect to the plaque location.

The choice of introducing the 2-D+T context in the classification domain instead
of in the feature domain is motivated by the fact that along the longitudinal (tem-
poral) dimension of the IVUS sequences, bifurcations can significantly change their
appearance, so 2-D+T descriptors would not be coherent. On the contrary, the MSSL
scheme does not take into account the appearance, but the pseudo-probability of bi-
furcations.

3.5 From Detection to Signal Extraction

In this chapter, a new 2-D visualization map for IVUS sequences is presented, in the
space (6,t), where 0 is the angular position (orientation) with respect to the IVUS
acquisition and ¢ is the longitudinal (temporal) position along the pullback. This map
summarizes, in a compact representation, the vessel morphological characteristics
regarding the branchings.

Additionally, the output of the bifurcation detection framework can be used to
obtain 1-D longitudinal profiles which represent the angular amplitude of the branch-
ings, as a function of the position ¢ (i.e., the frame number). Such profiles are obtained
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Figure 3.9: Manual segmentations performed by the two medical experts, in red
and cyan, respectively, and their intersection, in yellow (first row). Corresponding
results of the automatic method, with the detected branchings in red (second row).
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by computing, for each longitudinal position, the corresponding total angular exten-
sion of the bifurcations. Several examples are illustrated in Figure 3.10. The angular
extension of the branchings can be related to the size of the side-branch vessels, there-
fore these profiles provide a morphological description of the vascular structure. This
information will be exploited in Chapter 4, where the proposed alignment method is
based on signals describing the vessel morphology.
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Figure 3.10: Result maps of the automatic method, with the detected branchings
in red (first row) and corresponding morphological signals of bifurcation angular
extension (second row).

3.6 Conclusions

In this chapter, a fully automatic method for identifying the longitudinal and angular
bifurcation position and extension in IVUS sequences is presented. Although the
branching detection task is particularly challenging due to the high variability in
bifurcation dimensions and appearance, as demonstrated by the F-Measure scores of
71.63% and 76.18% for inter and intra-observer variability respectively, the proposed
approach reaches an F-Measure of 86.35% (sensitivity 80.66% and precision 94.60%)
and a TPO of 90.97%. Satisfactory results are obtained in most frames, while the
performance slightly decreases when stent, vein, ostium and small bifurcation frames
are analyzed.

The proposed methodology provides a tool for the quick review of pullback se-
quences, making bifurcation inspection more intuitive and facilitating the evaluation
of the lesion at bifurcation sites. A bi-dimensional visualization of the pullback is in-



50 AUTOMATIC BIFURCATION DETECTION

troduced. Finally, the output of the method allows to extract longitudinal (temporal)
morphological signals which describe the vessel.



Chapter 4

Automatic Non-Rigid Temporal
Alignment of IVUS Sequences

4.1 Introduction

The alignment of IVUS pullbacks is required at several stages of the clinical pipeline.
First of all, after performing PCI, physicians need to assess the outcome of the in-
tervention (i.e., evaluate final lumen dimensions and blood flow restoration, inspect
stent placement and side-branch occlusion by a deployed stent, evaluate the vessel af-
ter plaque removal in case of roto-ablation). Then, at follow-up evaluation, pullback
alignment is useful to monitor re-stenosis and the evolution of plaque composition.

Despite the numerous advantages of IVUS, the post-operative analysis and the
follow-up of the patient are presently limited, because clinicians usually compare two
acquisitions by manually searching for the corresponding frames. Moreover, in clinical
studies on plaque regression/progression, the longitudinal correspondence of coronary
artery segments is currently determined manually, by identifying common landmarks,
such as bifurcations [78, 75, 102, 31, 58]. Additionally, a rigid correspondence of the
segments adjacent to the landmarks is often assumed [78, 102]. Considering all these,
the advantage brought by a technology that automatically and non-rigidly aligns IVUS
sequences is noticeable. Despite the constant speed of the catheter, the automatic
alignment of IVUS sequences is hampered by several obstacles. IVUS acquisitions are
subject to motion artifacts due to the catheter movement and the arterial pulsation,
such as the longitudinal swinging of the catheter and the roto-translation of successive
frames of the pullback. The vessel cyclically expands and contracts due to pressure
changes during the heart cycle, hence in different acquisitions diastole and systole
could not correspond to the same physical locations. The rotation of the probe with
respect to the vessel can vary and the catheter may follow different trajectories with
respect to the vessel walls, hence the imaged sections are not necessarily orthogonal
to the vessel walls. The ultrasound beam may be reflected by the guidewire and may

o1
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Figure 4.1: Pair of IVUS sequences of the same vessel: (a) longitudinal views, (b)
short-azis views of corresponding frames and (c¢) morphological signals describing the

pullbacks.
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result in bright echoes and shadows in the IVUS images [19]. Guidewire artifacts can
vary their appearance and orientation in different acquisitions. The catheter flexi-
bility causes non-rigid deformations of the pullbacks. Moreover, the probe can first
remain stuck in the vessel for some time and then accelerate. Since the pullbacks
may have different initial and final spatial positions along the vessel, the overlapping
of corresponding vascular segments is often partial (see Figure 4.1(a)). In fact, two
corresponding vessel segments may have different overall lengths (in terms of num-
ber of frames) in different acquisitions. Finally, the vessel can undergo significant
morphological changes after the intervention (for instance, stent deployment and post
dilation change the lumen and vessel area) or evolve at follow-up. As a consequence,
a one-to-one correspondence between frames of the two pullbacks cannot be found,
making image-based registration approaches inaccurate. Hence, in this chapter the
IVUS alignment task is addressed as a feature-based temporal alignment problem, in
which the morphological content of the artery is exploited. In the proposed approach
the IVUS sequences are described by temporal morphological signals, i.e., side-branch
location, vessel, lumen and plaque areas (see Figure 4.1(c)).

In different applications, such as speech recognition, chromatography, activity
recognition and shape matching, several methods have been developed for non-rigid
signal alignment, like Dynamic Time Warping (DTW), Canonical Time Warping
(CTW) and Correlation Optimized Warping (COW) [94, 122, 77]. DTW [94] min-
imizes the Euclidean distance of corresponding points of the signals. CTW [122]
extends DTW by combining it with a Canonical Correlation Analysis step (CCA),
which provides a feature weighing mechanism and allows the alignment of signals
with different dimensionality. The combined use of DTW and CCA can improve the
accuracy of the results, but may also yield worse performance than the baseline DTW
[101], and the benefits depend on the application. CTW has higher computational
complexity than DTW, due to the iterative use of CCA required by the optimization
process. COW [77] is a piecewise data alignment method. Two sequences are aligned
by dividing them into segments and allowing limited changes in segment lengths. The
final segment lengths are selected so as to optimize the overall correlation between
the sequences. The problem is solved as a segment-wise correlation optimization by
means of dynamic programming. The solution space is defined by two parameters:
the initial segment length Seg and the maximum segment length increase or decrease,
Slack.

On the other hand, different methods have been proposed for matching of symbolic
sequences, i.e., strings of characters. Some examples are the techniques for solving the
Longest Common Subsequence (LCSS) and the Approximate String Matching (ASM)
problems and the Smith-Waterman algorithm [25, 99, 105]. Given a query and a tar-
get strings, LCSS [25, 114] determines their longest common subsequence, i.e., finds
subsequences of the query and target that best correspond to each other. The dis-
tance between the two sequences is computed based on the ratio between the length
of their longest common subsequence and the length of the whole sequence. The aim
of ASM methods is to identify the subsequence of a text most similar to a given pat-
tern, i.e., whose Levenstein distance to the pattern is minimal [99, 76]. Levenstein
distance measures the difference between two strings as the minimum number of char-
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acter insertions, deletions and substitutions needed to make them equal. Finally, the
Smith-Waterman algorithm, originally proposed for identification of common molecu-
lar subsequences [105], is a local alignment algorithm that matches two sequences by
using dynamic programming. Smith-Waterman finds similar subsequences without
exhaustive search.

In order to address the non-rigid correspondence between IVUS frames, in this
chapter a DTW-based framework is adapted to the specific clinical task. The DTW
alignment technique is applied to multidimensional morphological signals. Ad-hoc
improvements are introduced into DTW: a regularization term is applied to penal-
ize significant differences in the global temporal expansion/compression of IVUS se-
quences. To tackle the problem of partial overlapping, two alternative strategies are
proposed.

A first strategy consists in the integration of the DTW algorithm into a Sliding
Window (SW) approach. The two sequences are iteratively slid one along the other
and, for each step, the alignment between the overlapping subsequences is identified.
The optimal sliding iteration is selected by minimizing a matching cost. However,
The SW approach has two main limitations. First, corresponding IVUS subsequences
must have the same length in terms of number of frames. Second, DTW is iteratively
applied to different pairs of subsequences in order to identify the optimal correspond-
ing subsequences, resulting in high computational cost. Therefore, the SW approach
is improved and completed by proposing a different solution for handling partial over-
lapping. The developed Extremes of Path Search (EPS) strategy overcomes the rigid
constraint forcing the selected matching segments to be of the same length, and it
reduces the computational complexity with respect to the SW strategy. The EPS
solution combines the DTW and ASM approaches, taking advantage of the most
suitable characteristics of both techniques while overcoming their limitations. In fact,
on one hand, DTW uses the Euclidean distance as a dissimilarity measure, which
is adequate to continuous sequences, while ASM uses the Levenstein distance, origi-
nally proposed for strings. Levenstein distance is not directly applicable to numeric
sequences, since a threshold is required to determine when two numeric values are
equal, and performance will heavily depend on the threshold setting. On the other
hand, DTW has the constraint of computing a global matching between the whole
sequences, while ASM can handle partial overlapping of sequences through an ad-hoc
initialization strategy. EPS exploits an initialization inspired by ASM to tackle par-
tial overlapping, but using the Euclidean distance as a dissimilarity measure, which
is adequate to continuous sequences, like DTW. In the EPS strategy, firstly the ex-
tremes of the corresponding subsequences are identified on the two sequences. Then,
the selected matching subsequences are aligned by means of DTW.

An extensive validation of our IVUS alignment framework is performed, both
on synthetic and in-vivo data. In the case of the in-vivo data, two different sets
with different complexity are created, consisting of 42 total IVUS pullbacks acquired
from 21 different patients. Qualitative results of the identified pairs of corresponding
frames are illustrated and the performance and robustness of the method in case
of stent deployment are discussed. To conclude the chapter, the developed tool for
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the visualization of the automatic results is described and a sample screen-shot is
displayed.

4.2 Method for IVUS Sequences Alignment

4.2.1 Multidimensional Profiles Framework

A pair of corresponding IVUS sequences is described by temporal morphological pro-
files (i.e., signals describing the evolution of morphological measurements along the
vessel) and defined as a pair of time series X € R¥"™*"= and Y € R¥™*™v of length
Ng, Ny and dimensionality dim. The morphological profiles used in this study are
listed in the following paragraphs.

Gating Preprocessing The heart beating generates undesired artifacts in IVUS
acquisitions, disturbing the computation of the morphological measurements, such as
catheter swinging effect and cyclical vessel pulsation. In this study, an image-based
gating technique is applied [37] to select the frames belonging to the end-diastolic
phase, as described in Chapter 2. The gated images provide coherent morphological
measures, since in end-diastole the arterial tissues are subject to the same blood
pressure.

Profile Extraction In this study, the following morphological measurements are
proposed: (1) vessel area, defined as the area inside the media-adventitia border, (2)
lumen area, (3) area of calcified plaque, (4) area of fibro-lipidic plaque, (5) angular
extension of vascular bifurcations. Such signals can be manually or automatically
extracted. In this study, the profiles are automatically computed using state-of-the-art
algorithms, as follows: the vessel area is computed by means of the method proposed
in [22], while the lumen area is computed by exploiting the method proposed in [6].
In the computation of the tissue areas, three classes of plaque can be discriminated
using [20]: calcified, fibrotic and lipidic. The identification of the necrotic plaque is
still not reliable in IVUS, as demonstrated by [109, 74, 95]. Hence, this class has
not been considered in the plaque characterization algorithm. Additionally, since in
the analyzed data-sets the lipidic samples are few, inhomogeneous and scattered into
the fibrotic area (no lipidic pools are present), the profiles of lipidic plaque would
not be reliable and would contain outliers. Therefore, the fibrotic and lipidic areas
are combined into a single region, to obtain a consistent representation of the vessel
morphology. Finally, a method for the automatic detection of the position and the
angular extension of vascular branching in IVUS is applied [2], as described in Chapter
3.

The chosen morphological profiles are invariant to frame rotation, thus making the
method independent of the catheter torsion. The use of multiple features is aimed to
increase the robustness with respect to 1-D alignment, by capturing different aspects
of the vessel morphology, in particular increasing the robustness to modifications due
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to surgical intervention. It might be noticed that the proposed alignment framework
is independent of the technique employed for the measurements and could potentially
be extended by using a different set of morphological profiles.

4.2.2 IVUS Alignment Framework

The DTW algorithm The proposed signal alignment framework is based on the
DTW technique. To align two sequences X = [z1,x2,...2,, ]and Y = [yl, Y2, - - yny]
DTW builds a matrix d(,, xn,), where d(3, Jj) represents a dissimilarity measure be-
tween X (i) and Y (j) [94]. In the classical DTW formulation, d(i, j) is computed as
the Euclidean distance. In the case of a multidimensional alignment, the distance

d(i, §) is:

dim
dii ) = | Y (aidim — yidim)® (4.1)

idim=1

where idim is one of the dimensions of X and Y. The different dimensions of the
sequences are normalized independently of each other. Successively, the Minimum
Cumulative Distance (MCD) matrix D is computed by dynamic programming as
follows:

D (i,j)=d(,j) +min(D(i—1,5),D(i—1,7—1),D (4,5 — 1)). (4.2)

The first row and the first column of the MCD matrix D are initialized with
cumulative values as follows:

{ D(i,1) =D(i—1,1)+d(5,1), ie{l,2,... n.} (43)

D(1,j) = D(1,j —1) +d(1,5), jef{L2,...,ny}

The last element of the matrix represents the matching cost, i.e., the minimal
cumulative distance between X and Y:

O (X,Y) = D(ng,ny). (4.4)

Finally, the algorithm finds the warping path (a mapping of the time axes of X
and Y on a common time axis, wp = ([i(k),j(k)] |k =1,...,K)) by computing a
backtracking (a path from the bottom-right cell (n,,n,) to the top-left cell (1,1) of
D by following the minimum values of the neighboring cells), as illustrated in Figure
4.2,

Regularization Cost (RC) In this study, a regularization term is introduced in
the DTW alignment framework. Such regularization strategy is inspired by the band
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Figure 4.2: Example of MCD matrix D and warping path for two sequences of
length ng, ny.

constraint used in the classical version of DTW [94], where the warping path is guided,
by limiting its acceptable domain to a band around the diagonal of the dissimilarity
matrix. Similarly, in this study, a penalization is applied to non-diagonal transitions
in the warping path (one-to-many correspondences among frames) [47, 88|, to avoid
an excessive presence of horizontal and vertical transitions, which would represent
non-physiological temporal compression/expansion of the two IVUS sequences. As a
result, the smoothness of the output warping path increases. With respect to [94],
which sets the band constraint to a constant width, thus fixing a threshold, in the
proposed solution the regularization is directly integrated into the dynamic program-
ming computation: non-diagonal transitions of the path are uniformly given a higher
cost (regularization cost, RC) in computing the MCD matrix. The MCD leading to
the entry (4, 7) is aimed to reduce the alignment error when the profiles are affected
by noise corruption, as:

D(i,j) =d(i,j) + min{(D(i - 1,5) +C,D(i — 1, — 1), D(4,j — 1)+ C}, (4.5)

where the parameter C represents the direction penalty. The value of C' is tuned
by cross-folding. The data-set is divided into N subsets (denoted as folds), and for
each fold the value of the parameter is optimized over the other (N-1) folds. Then,
the optimized value is applied to the considered fold. The proposed regularization is
aimed to reduce the alignment error when the profiles are affected by noise corruption,
as shown in Figure 4.3.

Partial Overlapping Strategy The typical limitation of the DTW approach is the
computation of a global matching between the whole sequences, forcing the extremes
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Figure 4.3: Example illustrating the alignment of noise-corrupted signals. In (a)
ground-truth, in (b) incorrect alignment obtained by the classical DTW version, in
(c) correct alignment obtained by applying RC. The blue lines represent the signals
and the red lines represent correspondences between frames.

to correspond in the warping path (boundary condition constraint) [94]. A potential
problem arises when the two sequences partially overlap, i.e., when a sequence matches
only to a subsequence of the other sequence. This is the typical condition for IVUS
pullbacks, due to the possible variation in the starting and final positions of the probe
along the vessel during acquisition (see Figure 4.1). Two strategies are possible to
tackle this issue.

Sliding Window (SW) Approach A first strategy is proposed with the goal of
increasing robustness to partial overlapping. The solution consists in the integration
of the DTW alignment algorithm into a Sliding Window (SW) approach. The two
sequences X and Y are iteratively slid one along the other (see Figure 4.4) and for each
step the alignment between the overlapping subsequences is identified by means of
DTW. The optimal sliding iteration, iteroptimai, is selected by minimizing a matching
cost:

Z.teroptimal = argminq)NORM (Xitem Yviter) 5 (46)
iter
where:
(I)NORM (Xitem Y;ter) =0 (Xitera Ytite'r) /litem (47)

being Xier and Yj., the overlapping subsequences and [;;., the overlapped length,
i.e., the length of the overlapping window at the sliding iteration iter. It can be
observed that the overlapping subsequences are constrained to have the same length
on X and Y. In order to decrease the computational cost, the number of iterations
Ngjiqe is restricted by limiting the subsequence of the shortest sequence which remains
outside the window to a maximum length, wejqs:.

Extremes of Path Search (EPS)
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Xiler

Figure 4.4: Three examples of sliding positions for an idealized couple of sequences
(X,Y) (continuous lines). At each iteration iter, X;ier and Yjter are the overlapping
subsequences of X and Y, respectively. The overlapping window is indicated by
diagonal traits.

An alternative strategy to handle partial overlapping is proposed. Extremes of
Path Search (EPS) integrates an initialization inspired by the ASM techniques [99, 76].
The ASM problem has been originally posed for discrete string matching and consists
in identifying the subsequence of a text which is most similar to a given pattern string
(as well as the starting position and the extension of the subsequence). In the dynamic
programming solution to ASM [99], the first row of the dynamic programming matrix
(Equation 4.3), corresponding to the text, is initialized with zeros so that the pattern
can start with zero error at any position in the text.

Following the same idea, in the proposed EPS technique, the first row and column
of the MCD matrix D (Equation 4.3) are initialized as follows:

D(O,j)zO, j€{1,2,...,ny} (48)

{ D(i,0)=0, ie{1,2,...,n.}

In the classical DTW approach, the end of match (i.e., the final point of the

warping path) corresponds to the last element of the D matrix (ng,n,), which repre-

sents the matching cost ®(X,Y) (Equation 4.4). Since in our case the two matching

sequences are partially overlapped, the end of match can be selected as the mini-

mum value between last row and last column of the matrix Dyogras, obtained by
normalizing the MCD matrix D by the diagonal distance L (see Figure 4.5):

Ppps (X,Y) = argmin(Dyorm (i, ny), DNorm (N, 5)),

0. (4.9)
ie{l,2,...,n.},j€{1,2,...,ny}.

In the general case of IVUS images, one of the pullbacks is not completely con-
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Figure 4.5: Detailed scheme of end of match search.

tained in the other, but there is a mutual overlap of two sequences. Both sequences
are allowed to match to only a subsequence of the other, and there is no distinction
between the roles of the two sequences, such as the text and pattern roles in ASM.

Consequently, the search of the end of match is repeated twice, first assessing
the final frames (a: fo yfy) of the match between X and Y, then inverting the signals
(X" = [®n,,Tny—-1,...,21), Y/ = [yny,yny_l, . ,yl]) and searching for the initial
frames (;,,y;,) of the match, as illustrated in the block diagram in Figure 4.6(a).

Finally, the warping path (non-linear alignment) between the selected matching
subsequences Xgup = [T, , Tiy41,---,2f,] and Yy = [yiy, Yiy+1,- - - ,yf,y} is obtained
by applying the DTW algorithm, as shown in Figure 4.6(b), between the initial
(xiz,yiy) and the final element (xfx,yfy) of the match.

EPS results in a more compact strategy for handling the partial overlapping prob-
lem with respect to the SW approach, because it is directly embedded into the DTW
technique. Additionally, the initial and ending frames of a correspondence need to be
computed only once. Hence, given that the computational complexity of the DTW
algorithm is O (nyn,), the computational complexity of EPS is O (3n,n,), while for
the SW approach it is O ((ny + ny)ngyn,), where n, and n, are the number of gated
frames of X and Y (around 100 images).



4.3. Experimental Results 61

X Y X1 Y
vy v

END OF END OF
MATCH MATCH
SEARCH SEARCH

V !
(X6 Y1) f (Xix Yiy)
X subfr f] Ysub[ U

vy

DTW
ALGORITHM

warping path(X.,Y)
(a)
Figure 4.6: (a) General scheme of the EPS approach and (b) example of output

warping path obtained by the final stage of DTW algorithm, shown superimposed to
the MCD matrix D.

4.3 Experimental Results

4.3.1 Materials

A set of IVUS sequences consisting of 42 in-vivo pullbacks from human coronary
arteries has been used in this study. The sequences have been acquired from 21
patients by means of iLab IVUS Imaging System (Boston Scientific). Sequences have
been recorded with constant pullback (0.5 mm/sec). The method has been validated
on two different clinical data-sets, consisting of sequences acquired during the same
phase of the surgical intervention (Data-set A) and at different intervention stages
(Data-set B), respectively. Pairs of corresponding frames have been labeled by a
physician. The data-sets and the ground-truth are described in Appendix B.

4.3.2 Methodological Comparison

The performance of the proposed approach is tested by applying the two developed
strategies for partial overlapping, and DTW is compared to two other state-of-the-art
techniques, CTW [122] and COW [77].

To ensure a fair comparison, all the alignment algorithms (DTW, CTW, and
COW) will benefit from the following robustness improvements: (1) adapting the
original framework [94, 122, 77| to multidimensional signals, using the same weight
for the different features, (2) integrating the alignment algorithms into the partial
overlapping strategy and (3) applying the path regularization term RC. Regarding
(2), the EPS approach has been specifically designed for the DTW technique, hence
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Table 4.1: Quantitative results (MEAN+STD) for E (number of gated frames) on
synthetic data, as a function of dim (number of morphological features).

| dim=1 | dim=2 | dim=3 [ dim=4 | dim=5 |
cTW 9.36+£9.15 | 4.24+4.28 | 2.52+2.03 | 1.87+1.18 | 1.52 + 0.63
CTW — SW 6.56-9.33 | 2.53+3.15 | 1.74+1.95 | 1.23+0.63 | 1.12+ 0.49
CTW — SW — RC 554832 | 2.23+233 | 1.55+1.05 | 1.21+0.59 | 0.98 + 0.38
cow 8.0L+L3.75 | 921 +4.16 | 951 +4.36 | 9.78 £ 4.42 | 9.45+ 4.16
COW — SW 4364544 | 24+131 | 2.13+0.94 | 2.09+0.85 | 2.16 + 0.88

COW — SW — RC 4.05 £4.95 2.33£1.22 | 2.094+0.93 | 2.02£0.89 1.98 +1.04

DTW 9.03 +£9.45 4.05 +4.16 2.4+2.21 1.6 +£1.02 1.26 £ 0.58
DTW — SW 7.54 £10.64 3.25 £5.28 1.87+2.79 1.2+£1.09 0.96 £+ 0.41
DTW — SW — RC 3.75+5.8 1.79 +£1.37 1.24£0.77 | 0.96 +0.42 0.8 +0.29

DTW — EPS — RC | 7.04410.02 [ 2.67+3.97 [ 151£2.01 [ 1.041.24 [ 0.76 +0.20

the other alignment algorithms will employ the SW strategy. A list of all possible
combinations is reported in the first column of Table 4.1.

In order to validate the method, the performance of the automatic alignment is
evaluated in terms of the alignment error E, defined as the distance between the
ground-truth reference and the output warping path. E is computed as the average
error for all the ground-truth points and is expressed in number of gated frames. The
evaluation is performed using both synthetic data with applied controlled distortion
and in-vivo data.

4.3.3 Experiments on Synthetic Data

Synthetic Morphological Signals Pairs of sequences (X,Y) are synthetically
generated by modifying the morphological profiles extracted from in-vivo pullbacks.
The scheme in Figure 4.7 summarizes the applied types of distortion:

1. Amplitude distortion: additive zero-mean random noise is applied to the mor-
phological profiles. The noise amplitude w; is computed as a percentage of the
mean value of the signal (Figure 4.7(a)).

2. Partial overlapping: a portion of the original sequence is selected, whose length
is a percentage ws of the initial profile (Figure 4.7(b)).

3. Temporal distortion: a temporal expansion/compression generates vertical or
horizontal transitions in the warping path, i.e., multiple correspondences be-
tween the frames of X and Y. Three cases can be distinguished, in which are
randomly introduced:

(a) the same number (ws) of multiple correspondences from X to Y and vice-
versa (Figure 4.7(c)). A randomly generated time transformation matrix
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for time warping is used, Mr, as in [122]. My is initialized as My = I,,,
where n is the length of the matching portions of the signals. Then, ws
columns of M7 are randomly chosen and replicated and w3 columns are
randomly chosen and deleted.

(b) w4 additional multiple correspondences from X to Y (Figure 4.7(d)).
(¢) ws additional multiple correspondences from Y to X (Figure 4.7(e)).

X
Before Y

X m
After Y4

Before

After

Figure 4.7: Idealized pairs of sequences (X,Y) (continuous lines), and frame-to-
frame correspondences (dotted lines), before and after the distortion simulation: (a)
amplitude distortion, (b) partial overlapping, (c), (d) and (e) temporal distortions.

The parameters wy, ws, ws, wg, ws model the signal distortion simulation. Their
default values and ranges, which represent average in-vivo conditions and realistic
variations, respectively, are suggested by a medical expert and empirically measured
on the whole ground-truth: w; = (100 + 100)%, we = (75 + 25)%, ws = 60 (0 — 120)
frames, wq =5 (0 — 20) frames, ws = 0 (0 — 20) frames.

The tuning of the parameters of the alignment methods, Seg, Slack, weiqs: and
C, is performed by minimizing the mean value of E over N¢y, = 40 experiments,
setting the distortion parameters to default values. The parameters are estimated
by exhaustive search: Seg € [16,30], Slack € [6,Seg — 9], Weiast € [0,35] and C €
[0,0.1]. It is worth noticing that both DTW and CTW are fully automatic, while
COW requires the setting of the initial segment length Seg and the maximum segment
length variation Slack.

A first synthetic experiment focuses on assessing the robustness of the framework
to variations in the number of morphological features. A second experiment evaluates
the robustness to each of the previously described simulated distortions.

Multidimensional Alignment In order to evaluate the robustness of the frame-
work as a function of the number of morphological profiles, E is computed by varying
the number of acquired signals dim in the range [1,5]. Pairs of synthetic signals
are generated by setting wi, ws, ws, wy, ws to default values. For each value of
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dim € [1,5], all the possible feature combinations are tested and then the error is
computed as the average by repeating the test Ve, = 40 times. As expected, Table
4.1 shows that FE decreases at the increase of dim. The error reduction is particu-
larly significant when more than one signal are considered, confirming the interest
of a multidimensional extension of the method. Similarly, all the methods improve
their robustness when combined with RC and partial overlapping strategies (SW or
EPS). As observed by comparing the last two columns of Table 4.1, when the number
of features is high (more than four) the DTW-SW-RC and the DTW-EPS-RC ap-
proaches have comparable performances and they are both superior with respect to
CTW-SW-RC and COW-SW-RC. On the other hand, for a low number of features
DTW-SW-RC' is the most robust approach.

Robustness to Signal Noise and Distortion In the second set of experiments,
the robustness of the framework to noise and distortion is assessed. Figure 4.8 shows
E as a function of the distortion parameters wi._ 5. When one of the distortion
parameters is varied in the chosen range, the others are set to default values. In
general, COW shows the highest error, indicating that a segment-wise alignment
is the least suited for the IVUS pullback alignment. The performance of CTW is
comparable to DTW, but this latter is computationally less expensive, since CTW
requires the iterative use of CCA. It is worth noticing that, in this study, the two
sequences have the same dimension (i.e., the same number of morphological profiles),
therefore the advantage given by CTW of aligning signals with different dimensionality
is not relevant in this application. Moreover, this experiment demonstrates that the
partial overlapping strategy is effective, since CTW and COW are robust to partial
overlapping only when integrated in the SW framework. Similarly, DTW improves its
robustness only when combined with the SW or EPS strategies (see Figure 4.8(b)).
The synthetic experiments show that both versions of DTW (embedded into the
SW and EPS strategies) are the most performing among state-of-the-art algorithms.
Regarding the partial overlapping solution, as observed in Figure 4.8(d) and (e), EPS
is advantageous over SW in case of temporal distortion of different intensity in the two
pullbacks, since it is extremely robust to variations of w4 and ws. The performances
of SW and EPS are similar with respect to the additive noise w1, and only for a large
amount of noise the SW strategy is slightly superior (Figure 4.8(a)).

4.3.4 Experiments on In-Vivo Data

The in-vivo validation is performed on Data-set A, used to reliably validate the pro-
posed method, and on Data-set B, created to reflect the clinical application. The
parameter tuning is performed by means of Leave-One-Patient-Out (LOPO) cross-
validation technique in each data-set, over N folds corresponding to different patients
(pullback pairs). For each fold, one of the pullback pairs is iteratively used as test set
and the parameters are optimized by minimizing E over all the other pairs.
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Table 4.2: Quantitative in-vivo results (MEAN+STD) for E (number of gated
frames) on Data-sets A and B.

’ ‘ Data — set A ‘ Data — set B ‘

CTW 2.75+4.11 2.33 £1.99
CTW — SW 1.33+1.11 2.37£2.92
CTW — SW — RC 1.08 £0.72 1.56 +£1.27
cow 6.94 +£8.19 5.92 £3.92
CoOwW — SW 2.15+£0.98 1.88 £0.98
COW — SW 4+ —RC 1.83 £0.79 2.08£0.8
DTW 2.63 £ 3.72 2.07+2.38
DTW — SW 1.19 £ 0.62 2.17+2.72
DTW — SW — RC 1.21 £0.55 1.47 £1.02

| DTW —EPS—RC | 085+037 | 153+£092 |
’ inter — observer ‘ ‘ 1.2+1.41 ‘

Quantitative Results Table 4.2 reports the in-vivo results of the compared ap-
proaches. Similarly to what observed in the synthetic experiments, DTW can be
selected among state-of-the-art alignment techniques for reasons of superior perfor-
mance and lower computational cost. The statistical significance of the results is eval-
uated according to the Wilcoxon side-ranks test [28]. At a significance level a = 0.05,
the null hypothesis that the mean values of the two distributions are equal can be
rejected if z < =1.96, where z is the value of the Wilcoxon statistics. The results of
the DTW-EPS-RC and DTW-SW-RC approaches are comparable in both data-sets.
Moreover, both DTW-EPS-RC and DTW-SW-RC reach performances comparable
to the inter-observer variability, assessed by using side-branch locations labeled by a
second physician, in Data-set B. The direct comparison between the two approaches
can be appreciated in Figure 4.9, where the warping paths, computed by means of
DTW-SW-RC (Figure 4.9(a)) and DTW-EPS-RC (Figure 4.9(b)), respectively, are
superimposed to ground-truth annotations (blue crosses). It can be noticed that er-
rors of the DTW-SW-RC alignment are located at the extremes of the warping path
(where the path becomes vertical in the top-left corner of the image), while in the
DTW-EPS-RC' alignment the warping path is smoother and closer to the manual an-
notation (blue cross in the top-left corner). The incorrect solution is due to the rigid
constraint of the SW technique, which forces the matching windows selected on each
pullback to be of the same length, in terms of number of frames. Additionally, the
computational cost of DTW-EPS-RC is lower with respect to DTW-SW-RC. Indeed
in DTW-SW-RC, the DTW algorithm is iteratively applied Ngj;qe times, whereas in
DTW-EPS-RC, only three times.

The quantitative results illustrated in these Sections (both on synthetic and in-
vivo data) show that the algorithms based on the DTW approach are superior to
other state-of-the-art methods. Although comparable performances are obtained by
averaging the results of DTW-SW-RC and DTW-EPS-RC, it can be stated that
EPS is the best suited partially overlapping strategy because of its robustness at the
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Figure 4.9: Ground-truth and automatic warping path for an in-vivo pullback pair
in Data-set B, computed (a) by DTW-SW-RC and (b) by DTW-EPS-RC. Note that
the closer the red line is to the blue crosses, the smaller the error.

boundary of the matching (Figure 4.9) and for the lower computational cost, hence
the most appropriate solution for the IVUS alignment task.

The performance of the chosen method can be further appreciated in Figure 4.10,
illustrating the results of the alignment on several pullback pairs from Data-set A
(first and second rows) and B (third and fourth rows). The mean value for E is
0.85 gated frames in Data-set A and 1.53 gated frames in Data-set B, which can be
estimated as approximately 0.43 and 0.77 mm, respectively.

Qualitative Results The images in Figures 4.11 and 4.12 illustrate several exam-
ples of frame-to-frame correspondences identified by DTW-EPS-RC in Data-sets A
and B, respectively. In order to qualitatively assess the interest of the proposed non-
linear alignment method, the automatic results are compared to frames identified by
considering a linear correspondence between pullbacks.

In Data-set A, the rigid matching between frames is simulated by estimating a
linear warping path as linear regression of the ground-truth landmarks coordinates.
Since in Data-set B the landmarks are limited to few side-branch positions, the linear
fitting is performed on the non-linear warping path.

Figures 4.11 and 4.12 qualitatively compare the automatic and rigid matching
results on Data-sets A and B, respectively. The first column of Figures 4.11 and
4.12 reports, for each pair of pullbacks (P1 and P2), a warping matrix in which the
ground-truth, the non-linear warping path and the linear alignment are depicted.
The analyzed frame on P1 is indicated by a green horizontal line. The selected frame
of P1 (second column), is compared versus the frames of P2 which are identified by
non-linear (third column) and by linear (fourth column) alignment, respectively. As
it can be qualitatively observed in Figures 4.11 and 4.12, the DTW-EPS-RC tech-
nique correctly identifies corresponding frames in both data-sets. A higher similarity
between the columns two and three can be visually assessed. In particular, the pres-
ence of the same calcifications (Figure 4.11(row 3), Figure 4.12(row 1)), bifurcations



AUTOMATIC NON-RIGID TEMPORAL ALIGNMENT

Data-set A

X e Automatic

Xs‘s‘ X Ground-truth
20

S ----Automatic
Sy X Ground-truth|

©® o
S 8
)('
A
X
(2]
o

Pullback 1 (gated frame number)
)

Pullback 1 (gated frame number)

© IN

o o

X, | Automatic
20 p X Ground-truth

. - Automatic
o, X Ground-truth

50- .

100 .,
%

150+ ”"&

50 100 150 20 40 60 80 100 120 140
Pullback 2 (gated frame number) Pullback 2 (gated frame number)

- o
N O
[ =]
7
X *
&

Pullback 1 (gated frame number)
Pullback 1 (gated frame number)

Data-set B

----- Automatic
207%, X Ground-truth

™ - Automatic
X Ground-truth |

-
o
K

)
P33

o

o a A W N
Q Q ¢
-

120 "
A %

20 40 6 80 100 20 40 60 80 100 120

Pullback 2 (gated frame number) Pullback 2 (gated frame number)

Pullback 1 (gated frame number)
o
Pullback 1 (gated frame number)

o
21
XX

----- Automatic
X Ground-truth

x, - Automatic
X Ground-truth |

A
=)

N

e

N
o
.‘

IS
o
&

N
=)
T
0
[o2]
e

o
e
p
o
@
S
n"
b

(o2}
o

Pullback 1 (gated frame number)
Pullback 1 (gated frame number)

20 40 60 20 40 60 80 100
Pullback 2 (gated frame number) Pullback 2 (gated frame number)
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(Figure 4.11(row 1), Figure 4.12(rows 2 and 3)), external vessels (Figure 4.11(row 4)),
and a similar shape of the vessel structures (Figure 4.11(row 2), Figure 4.12(row 4))
can be recognized.

4.4 Discussion

It must be noticed that in some challenging cases in Data-set B, the morphological
changes induced by stent deployment make it impossible to visually compare the
corresponding frames extracted from the pullbacks P1 (pre-operative) and P2 (after
stent deployment), even for an expert physician. For instance, such ambiguity can be
observed in the frames of Figure 4.13, where the changes in vessel appearance caused
by stent placement prevent from estimating which of the two frames of P2 (third and
fourth columns) is more similar to the corresponding frame of P1 (second column).
If we observe the position along the pullback of the two analyzed frames of P1 (first
column), it can be noticed that the first frame lies close to the manual landmarks
(first row), while the second frame is located in a segment where the landmarks are
less dense (second row). In the first case, it is reasonable to believe that the non-linear
warping is correct, while in the second case it is extremely difficult to assess if the non-
linear deformation computed by the algorithm is real or if it is an artifact produced
by the algorithm. This issue cannot be directly addressed, because of the lack of
visual or morphological landmarks. However, it can be noticed that the non-straight
path obtained between frames 45-80 and 80-100 of P1, approximately, corresponds to
the portion of the vessel where the stent has been implanted (red region in Figure
4.10(first column)), hence it is presumable that the non-linear behavior is actually
induced by stent deployment.

Moreover, in order to assess if the non-linearity in Data-set B is excessive or lies in
an acceptable range, the amount of non-linearity in both Data-sets A and B (VL 4 and
N Lp, respectively) can be assessed. To do so, the reference amount of non-linearity
(NL,) is estimated as the average distance between the linear fitting and the ground-
truth landmarks. Since in Data-set B the number of manual annotations is too low,
NLp is computed as the average distance between the linear fitting and the DTW-
EPS-RC warping path. The amount of non-linearity is estimated as NLy =1.79+1
gated frames and NLg = 2.4 £ 1 gated frames. As expected, in Data-set B the
non-linearity of the warping path is slightly (but not excessively) higher than the
reference measurement N L4, since the vessel dilations and the stent deployment
have a higher impact on the catheter path. However, it is interesting to note that
N L, is non-negligible, demonstrating that a non-linear alignment is necessary for
pullback alignment.

4.5 Tool for Results Visualization

An interface has been developed for displaying the automatic results of the method,
similarly to the interface that facilitates the manual labeling of pairs of corresponding
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Figure 4.11: Examples of frame-to-frame correspondences in Data-set A. A matrix
reporting the ground-truth, the automatic warping path and the linear alignment
(first column), a frame on P1 (second column), the corresponding frames on P2 iden-
tified by automatic alignment (third column) and by linear fitting (fourth column)
are shown.
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Figure 4.12: Examples of frame-to-frame correspondences in Data-set B. A matrix
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Figure 4.13: Frame-to-frame correspondences in a vessel segment pre/post stent
deployment. A matrix reporting the ground-truth, the automatic warping path, the
linear alignment and the extension of the stent segment (first column), a frame on P1
(second column), the corresponding frames on P2 identified by automatic alignment
(third column) and by linear fitting (fourth column) are shown.

frames, which is described in Appendix B.

The proposed visualization tool allows physicians to easily inspect the correspon-
dences identified by the automatic method. The interface shows, for both pullbacks,
a short-axis view of the frames and two longitudinal views of the sequences, perpen-
dicular to each other. The two pullbacks can be navigated manually by the user, in
both longitudinal and angular directions. Moreover, the correspondences which have
been automatically identified can be displayed in a sequential order, moving in both
the proximal and the distal directions by using the buttons for the automatic warp-
ing path visualization. In Figure 4.14, the automatic alignment results are visualized
through the interface.

4.6 Conclusions

In this chapter, a fully automatic framework for the temporal alignment of IVUS
acquisitions of the same vessel is presented. This goal is reached by identifying a
continuous non-rigid frame-to-frame correspondence between the two pullbacks. The
IVUS sequences are described by means of multiple temporal profiles representing
their morphological content. The DTW technique for non-rigid alignment is em-
bedded into a multidimensional framework, specifically developed for addressing the
challenges of IVUS alignment. The proposed solution includes two alternative robust
strategies to handle the partial overlapping problem and a regularization term to
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avoid a non-physiological temporal compression/expansion of the two sequences and
to compensate for possible noise in the acquired signals.

An exhaustive validation is performed, both on synthetic data and on two in-vivo
data-sets, one of which consists of multiple acquisitions of the same vessel without
any morphological change, while the other contains pre/post intervention cases. The
proposed approach reaches an average alignment error of approximately 0.43 and
0.77 mm on the two data-sets, respectively. Synthetic and in-vivo results show the
robustness increase obtained by the proposed solutions with respect to the baseline
DTW alignment. Qualitative in-vivo results illustrate the interest of the proposed
non-linear alignment and show the clinical value of the method. An ad-hoc interface
facilitates the visualization of the automatic results by physicians.

The alignment framework is robust to morphological changes induced by stent
deployment and post dilation and is invariant to rotations of the probe and to the
catheter or imaging system employed.

Moreover, given the extracted morphological profiles, the average computational
time is less than 0.2 seconds per sequence pair, making the application suitable for
intra-operative procedures. The method has been implemented in MATLAB and it
has been executed on a PC equipped with an Intel Core 2 Duo 2.13 GHz processor and
4 GB RAM. It is worth noticing that, when fully automatic segmentation methods are
employed, the morphological signals can be extracted in a first moment (in an offline
segmentation), for instance after acquiring an IVUS sequence, while the proposed
method for sequence alignment can be run in almost real-time, for instance when
comparing two IVUS pullbacks.
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Chapter 5

Automatic 2-D+T Lumen Border
Extraction in IVUS Sequences

5.1 Introduction

The lumen is the interior part of the vessel, containing the blood. The luminal border
or tunica intima is the innermost layer of the vessel and it is in direct contact with the
blood flow. The intima is composed of simple squamous epithelial cells, that form a
flat slick surface inside the vessel, minimizing the friction as the blood moves through
the lumen.

The extraction of the lumen boundary from IVUS sequences is important for
assessing the lumen size and consequently the severity of the atherosclerotic disease.
In particular, detecting the lumen border allows to derive measurements such as the
minimum and maximum lumen diameter and the luminal area stenosis (a measure
of luminal compromise relative to a reference lumen, analogous to the angiographic
diameter stenosis). For this reason, the segmentation of the luminal border in IVUS
frames is crucial. Due to the high number of images in IVUS sequences (typically
thousands of frames), manual annotation is extremely time-consuming. An automated
analysis can reduce the time for manual interaction and at the same time can limit the
subjectivity of the measurements, which is due to different interpretations by different
physicians. Figure 5.1 illustrates an example of lumen segmentation in the cartesian
and polar representation of an IVUS frame.

Several automatic methods for segmentation of the arterial lumen from IVUS
images have been proposed since the early 1990s. In this chapter, we limit the bibli-
ography to the most recent contributions. Most of the proposed approaches are based
on active contour models (snakes). In [115, 121, 106], pixel intensity and gradient
information (edges) combined with computational methods, including graph search,
are used. In [57, 55, 85], the authors propose solutions based on active surfaces, active
contours and neural networks. Downe et al. [32] presented a method based on active

(0]
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Figure 5.1: IVUS image in (a) cartesian (z,y) and (b) polar (p,0) domains. The
luminal border is shown by a red line.

contour models, which provides an initial segmentation for a 3-D graph search, while
Principal Component Analysis (PCA) is used for image pre-processing.

Ad-hoc solutions, statistical and probabilistic models which include a-priori knowl-
edge about the vessel geometry have also been considered. In [16, 13] the gray level
probability density function of the vessel structures, following Rayleigh distribution,
is used.

Cardinal et al. [16] proposed a 3-D segmentation model based on the fast-marching
method, which uses gray level probability density functions (PDFs) of the vessel struc-
tures, including the lumen. The gray level distribution of the whole IVUS pullback is
modeled with a mixture of Rayleigh PDFs. With a multiple interface fast-marching
segmentation, the lumen, intima plus plaque structure and media layers of the vessel
wall are computed simultaneously. The fronts are initialized from manually traced
lumen and media borders, and then they propagate with different speeds proportional
to each PDF. Successively, Wennogle et al. [116] presented some improvements with
respect to the method in [16], consisting in a pre-processing step to remove motion
artifacts, a new directional gradient velocity term and a post-processing method based
on level-sets.

In Taki et al. [108], the IVUS images are de-speckled by an anisotropic diffusion
filter. Then, the initial locations of the borders are roughly estimated using ordinary
edge detection methods. The final borders are successively identified using both
geometric and parametric deformable models.

Methods based on discrete wavelet decomposition have also been proposed. Pa-
padogiorgaki et al. [84] used wavelet analysis to generate texture information which,
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combined with intensity information, initializes the contour. Similarly, Katouzian et
al. [51] presented a method where texture information is obtained by wavelet anal-
ysis. A multiscale expansion approach uses wavelet packet analysis to differentiate
between blood and non-blood regions of the IVUS images. The multi-channel texture
segmentation algorithm based on discrete wavelet packet frames (DWPF) is used. A
k-means clustering algorithm is employed to partition the extracted textural features
into blood and non-blood regions, in an unsupervised fashion. Finally, the geometric
and statistical information of the segmented regions is used to estimate the closest
set of pixels to the lumen border and a spline curve is fitted to the set.

Another approach based on a learning process was presented in Rotger et al. [93],
where the lumen detection is achieved by means of the classification of blood areas in a
supervised learning fashion, by using AdaBoost. O’Malley et al. [83] presented a 3-D
supervised classification approach (one-class SVM) for blood detection using spatial,
temporal and spectral features, extracted on 3-D windows of fixed size. Mendizabal
et al. [66] presented a semi-automated approach using a parametrization of the lumen
with a mixture of Gaussians PDFs. The sum of such Gaussian functions is deformed
by the minimization of a cost function formulated using a probabilistic approach. An
optimization method is developed that linearly combines the descent directions of the
steepest descent technique and the Broyden-Fletcher-Goldfarb-Shanno optimization
method within a trust region that improves convergence. Successively, the same group
presented a robust approach based on the RF signal processing [65].

Unal et al. [111] presented an automated shape-driven approach for the segmen-
tation of the arterial wall from 2-D IVUS images in the polar domain. In a statistical
shape space, properly built through PCA by using training data, the lumen contours
are constrained to a smooth, closed geometry. In addition to a shape prior, an in-
tensity prior is used through a non-parametric probabilistic energy function, with
global image measurements. A detection step is included to address the challenges
introduced by side branches and calcifications.

A different strategy is explored in [59, 6], where the following phenomenon is ex-
ploited: in successive frames of the IVUS sequence, the texture in the lumen region
exhibits a large variability of the speckle pattern, due to the blood flow, while the
speckle pattern changes slowly in the tissue area. Based on this observation, Kudo et
al. [59] introduced a model-based approach, exploiting the de-correlation generated
by the blood flow. The feasibility of this approach is illustrated by an in-vitro exper-
iment, using an acrylic tube phantom, but not in-vivo. Balocco et al. [6] presented
an extension of this approach along with validation on in-vivo cases. This method
combines model-based temporal information extracted from successive frames of the
sequence with spatial classification using the Growcut algorithm. Spatio-temporal
information provides discriminative features for blood speckle.

In other approaches, segmentation is accomplished by the use of global region in-
formation including texture features [70, 86], gray level variances to model ultrasound
speckle [43, 62], contrast of regions [125]. Finally, Zhua et al. [127] recently proposed
an approach where a linear-filtered gradient vector flow drives the deformation of a
balloon snake, while Sun et al. [107] presented a two-step method which first detects
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the contours of interest on a number of L-mode cuts of the sequence and then evolves
contours on the B-mode images until they reach the target points given by the first
step.

Despite the relevant contributions in the literature, lumen segmentation is still an
open problem in IVUS [50]. In particular, there is the need of a robust method able to
perform well also with the most challenging data. With this motivation, in this chapter
we propose a novel approach for lumen detection based on supervised learning. The
recently proposed MSSL method [38] is applied and adapted to the specific clinical
problem. Moreover, the difference in the temporal correlation of blood and tissue is
exploited, as in [6]. The method presented in this chapter is fully automatic and does
not require any initialization.

The approach is based on MSSL, consisting in a two-level stacked classification
scheme, used for distinguishing between lumen and non-lumen regions of the IVUS
frames. The lumen detection methodology takes into account the 2-D-+T context of
the IVUS sequences in a two-fold way: (1) by using the cross-correlation between
successive frames of a sequence, as a feature for the binary lumen vs. non-lumen
classification and (2) by exploiting the spatial and temporal neighborhood relation
among the pixels, using the MSSL algorithm as a meta-classification technique. After
the classification stage, the luminal border is identified by applying an active contour
model to the output classification map.

The method has been validated on a large and challenging data-set, composed
of sequences from 7 different patients, all characterized by the presence of deployed
stent. Quantitative and qualitative results show the behavior of the framework in
different clinical cases. Moreover, the algorithm has been tested on the data-sets pro-
vided during the “Lumen + External Elastic Laminae (Vessel Inner and Outer Wall)
Border Detection in IVUS Challenge” associated with the MICCAI 2011 workshop on
Computing and Visualization for (Intra)Vascular Imaging (CVII). The participation
to the challenge was aimed at obtaining a quantitative comparison with state-of-the-
art methods on lumen segmentation in IVUS. Such analysis is still pending, since
the results of the challenge have not been disclosed yet. Meanwhile, a qualitative
comparison with the state-of-the-art is provided in this chapter.

5.2 Method for Lumen Border Detection

The proposed framework for lumen border detection is divided into two main se-
quential stages. A binary classification problem is defined, aimed at distinguishing
between lumen and non-lumen regions of the IVUS images. The binary classification
task is addressed by means of a two-level stacked classification scheme. Then, the lu-
minal border is identified by applying an active contour model to the obtained binary
classification map.
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5.2.1 Classification

The approach relies on a pattern recognition technique, in which a binary classifier is
firstly trained on a data-set of IVUS images, previously labeled by physicians (training
phase). Then it is used to identify lumen and non-lumen regions in new images (test
phase). The ground-truth consists in a reliable data-set of labeled samples (lumen vs.
non-lumen pixels of the IVUS images). Numeric information describing each pixel of
the frames is computed by feature extraction.

In this study, a discriminative classification method (i.e., a classification method
which aims to maximize the quality of the output on a given training set) is applied, in
order to avoid the need to formulate hypotheses on the feature space. The AdaBoost
algorithm [35] with decision stumps is used as the base classifier, in the context of the
two-level stacked classification scheme (applied as a meta-classification technique).
Apart from the classification labels, an additional output provided by AdaBoost is
the classification margin mar € [—oo,+00], representing, in the feature space, the
distance from a sample to the decision boundary.

Feature Extraction The cartesian IVUS image I (z,y) is first converted into polar
coordinates:

I(p,6)=1I(p-cosb,p-sinb), (5.1)
where x and y are the horizontal and vertical coordinates in the cartesian system, p
and 6 are the radial and angular coordinates in the polar system.

The description of blood and tissue properties is obtained by extracting a set of
textural features, obtained from previous studies on borders segmentation and tissue
characterization in IVUS [21, 22, 20, 6]. The following features are extracted from
the polar image:

e Gabor filters [10] can extract the textural properties of the image according to
a particular filter orientation. A set of 4 configurations of Gabor filters, which
have demonstrated their ability to characterize the tissue in IVUS images [21],
are used.

o External accumulation (A.) [20] can be related the cumulative gray level of the
polar image, and therefore to the blood accumulation, in the range [p parax],
where ppsax is the maximum value of the radial coordinate in the image:

PMAX I
Ac(p,0) = XIPJMAX(,U). (5.2)

o Internal accumulation (A;) [20] gives information about the amount of blood
accumulated in the range [1 p]:

" I(p,t‘))

(5.3)
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Figure 5.2: Examples of features used for the lumen vs. non-lumen classification:
(a) original image and maps obtained by using (b) Gabor filter, (c) external accumu-
lation, (d) cross-correlation.

()

e Cross-correlation between the considered frame and the previous and successive
frames of the sequence is used to exploit the low correlation expected in the
blood region with respect to the tissue, due to the flow motion [59, 60, 6].

e The gray level value in the original IVUS image is used as a feature as well.

As a result, for each pixel of the polar image, a feature vector x € R® is obtained.

MSSL  In this chapter, the MSSL scheme [38] is applied, as a way of capturing and
exploiting spatial and temporal sequential label relationships, extended over multiple
scales. Details on the methodology presented in [38] and on its application to the
lumen detection task are reported in this section. The generic MSSL method has
been described in Chapter 2.

In the first stage of the MSSL algorithm, classification is based on the assumption
that each pixel of the IVUS images is independent of the others. The continuity of the
luminal region in IVUS sequences can be additionally taken into account to enhance
the classifier capabilities. For this reason, the spatial and temporal neighborhood
relation among the pixels of IVUS sequences is exploited in a second stage of clas-
sification. The second classification stage makes use of the feature set used in the
first classification stage x (p, 8) and of the classification margin provided as an output
by the first classifier, mar (p,#). For each image, the classification margin values are
converted into an estimate of the likelihood that a sample belongs to the lumen class
and organized in a pseudo-probability map, p; (p,0) € [0,1]. In the MSSL scheme, the
pseudo-probability map is represented according to a multi-scale (multi-resolution) de-
composition. In the original formulation [38] the MSSL algorithm is bi-dimensional.
Given py (7) the likelihood at position ¢ = ,0), the multi-resolution decomposition
® is defined as follows:

®(q,8)=p(q)*G (0,771, (5.4)

where s € {1,2,...,S} represents the scale, G is a bi-dimensional Gaussian with
zero mean and o = v® and + is the “step” of the decomposition. The multi-resolution



5.2. Method for Lumen Border Detection 81

decomposition is then sampled following a grid, with regular sampling step, consisting
of a set of Ngjspr = sgamplm , displacements. As a result, an additional set of features
z is obtained, of length S X Ng;sp. Wrap-around issues in the polar IVUS image
are handled by using a circular padding in the horizontal (angular) dimension and
by setting the values of the extended set outside the map in the vertical (radial)
dimension to 1 (lumen) on the top and 0 (non-lumen) on the bottom. An extended
feature set is created, x®5* = [x, z], by joining the original feature set to the additional
features from the sampling. Finally, the extended set is analyzed by a second classifier
and classification labels are produced.

The two classifiers are trained separately and after training they can be applied to
new images inside the same scheme. In both MSSL stages, the AdaBoost algorithm
with decision stumps is used as a base classifier.

In Figure 5.3, the binary classification output at the first (b) and second (c) stages
of sequential learning is shown for a sample frame, together with the corresponding
pseudo-probability maps (e), (f).

Figure 5.3: A frame in (a) cartesian and (d) polar representations; classification
maps, after (b) the first and (c) the second classification stages of the MSSL scheme,
where the luminal region is represented in blue; (e) and (f) pseudo-probability maps
corresponding to the two stages, respectively.
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2-D+4+T MSSL The originally bi-dimensional MSSL approach is extended in this
study to three dimensions: the radial, angular and temporal (longitudinal) dimen-
sions of the pullback. This latter is introduced to exploit the temporal coherence of
successive frames. Only the gated frames, belonging to the same phase of the cardiac
cycle, are considered along the longitudinal dimension. Such frames are selected from
the IVUS sequence by applying the image-based gating technique proposed in [37], as
described in Chapter 2.

Three-dimensional positions in the IVUS sequence, 7 = (p,0,t), are considered,
where t is the temporal coordinate. The pseudo-probability values of a 2-D+T vol-
ume in the three dimensions are analyzed when computing the decomposition and
the sampling for the pixels of each image. The multi-resolution decomposition uses
a three-dimensional Gaussian kernel. The sampling is performed in the three dimen-
sions, therefore the number of displacements is Ng;sp = sg ampling” In the longitudinal
dimension, wrap-around issues are tackled by setting the values of the extended set
outside the map equal to those of the corresponding pixels in the most external frames
of the sequence. Figure 5.4 shows an example of multi-resolution decomposition for
the pixels of a given frame of the sequence (represented in the second column), at
three different scales reported in the three rows.

5.2.2 Active Contour Model

An active contour model (snake) is applied to the binary classification map. Snakes
[49] (introduced in Chapter 2) are energy-minimizing splines, guided by internal con-
straint forces and influenced by external forces, used in image segmentation tasks.
Given a parametric curve describing the luminal border, C(v) = (p(v), 8(v)), repre-
senting the snake having arc length v, the energy function to be minimized is given
by the following term:

B = / Bt (C(0)) + Bone(C(v))do. (5.5)
0

Following the traditional formulation [49], E;,; is the internal energy of the snake
due to bending :

Bt = a (agff’))z +8 ((9286;(21)))2. (5.6)

2
The first-order term (%Ef)) represents the energy of the contour and makes

2 2
the snake act like a membrane, while the second-order term (83%”)) represents

the energy of the curvature and makes the snake act like a thin plate [49]. Large
values of o will increase the internal energy of the snake as it stretches more, whereas
small values of « will make the energy function insensitive to the amount of stretch.
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s=3

Figure 5.4: 2-D+T Multi-scale decomposition at three different scales: s =1 (first
row), s = 2 (second row), s = 3 (third row). Given the analyzed frame at position ¢;
in the sequence (second column), the previous and successive frames of the sequence
at distance v° will be sampled (first and third columns, respectively).
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Similarly, large values of 8 will increase the internal energy of the snake as it develops
more curves, whereas small values of § will make the energy function insensitive to
curves in the snake.

FE..+ represents the external energy of the active contour model, which in this
study is computed as:

By = 2008 COCun) |

o +8(Ml(ﬂa9)g§(070acm)) |(nl~>l) +
O(M;(p,0)*G(0,04cm))
+ 56 |

(5.7)

(I—=nl)>»

where M;(p, ) is the output classification map obtained in the previous stage,
G(0,04cm) is a bi-dimensional Gaussian, (I — nl) and (nl — ) represent “lumen (1)
to non-lumen (nl)” and “non-lumen to lumen” transitions, respectively. E.,; is com-
puted as the first derivative of the classification map, previously blurred by Gaussian
filtering, in both the vertical (radial) and the horizontal (angular) dimensions (see
Figure 5.5(a)). Vertical derivatives of non-lumen to lumen transitions are discarded,
since they do not represent lumen borders.

The fitting of a snake is repeated twice. In the first stage, a rough detection is
achieved by initializing the snake horizontally, along the radius where the cumulative
sum of the derivative image over all the angular positions reaches its maximum value,
and by using a large window for Gaussian blurring (see Figure 5.3(b)). In the second
stage, the first results are refined (see Figure 5.3(c),(e)); the snake is initialized in the
final position reached in the previous stage and og¢p, is halved.

(a)

Figure 5.5: (a) The map used as the external energy Fe,: of the active contour
model; (b) first results and (c) refinement of the luminal contour, superimposed to
the classification map, where the luminal region is represented in blue; (d) refinement
superimposed to the original IVUS image.

5.3 Experimental Results

The proposed approach for luminal border detection has been validated on a data-
set provided by the Hospital “German Trias i Pujol” (Data-set A), consisting in 7
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sequences from 7 different patients, acquired with an iLab IVUS Imaging System
(Boston Scientific) using a 40 MHz catheter Atlantis SR 40 Pro (Boston Scientific).
For each pullback, a vessel segment of 60 successive gated frames has been considered,
for the validation of the proposed 2-D+T approach. Moreover, the method has been
tested on two data-sets, provided in the “Lumen + External Elastic Laminae (Vessel
Inner and Outer Wall) Border Detection in IVUS Challenge” associated with the
MICCAT 2011 workshop on Computing and Visualization for (Intra)Vascular Imaging
(CVII). The data-sets have been acquired with a Boston Scientific iLab IVUS Imaging
System (Data-set B) and a Volcano Imaging System (Data-set C), respectively. The
data-sets are described in detail in Appendix B.

5.3.1 Experiments on Data-set A

Data-set A is characterized by the presence of stent in all the sequences. Stent covers
a significant portion of the pullbacks, for a total 221 stent frames over 420 frames. It
is worth noticing that a challenging data-set has been created for this study, aimed at
reflecting the clinical application of lumen border detection. In particular, detecting
the lumen in stent frames is important to identify stent malapposition and stent
under-expansion.

In this data-set, the lumen border has been labeled in the gated frames by a
clinician. The performance is assessed by means of Leave-One-Patient-Out (LOPO)
cross-validation technique over Np = 7 folds, corresponding to the patients. For each
fold, the training is performed on samples from all the other folds and the trained
classifier is tested on the fold itself. The parameters of the MSSL algorithm have been
set to the values: S =5, v = 2, Ssampling = 3, while the parameters of the active
contour model have been set to the weights: o = 0,2 and 8 =0, 5.

The first part of the method, i.e., the classification of lumen and non-lumen regions
of the images, is validated by using classification performance measures, in terms of:

Accuracy: A = s
Sensitivity: S = T}%ﬁ
Specificity: K = WJ’]_\;']D
Precision: P = %
False Alarm Ratio: FAR = TPIZ%

where TP = True Positive, TN = True Negative, FFP = False Positive, and FIN
= False Negative.

Table 5.1 reports the overall performance (MEAN+STD) of the lumen vs. non-
lumen classification. In order to demonstrate the advantage given by the use of con-
textual information, the results achieved by applying the MSSL scheme are compared
to the results obtained by only using the first stage of the scheme, where each pixel
of the sequence images is classified independently. As it can be observed in Table 5.1,
the second MSSL step yields an overall performance improvement. The Wilcoxon test
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proves that, with a significance level @ = 0.1, the performance in the second stage is
significantly better than in the first stage in terms of accuracy, precision, specificity,

false alarm ratio, and it is comparable in terms of sensitivity.

Table 5.1: Classification performance (MEAN+STD) on Data-set A, at the first

and the second classification stages of the MSSL scheme.

Stage 1 Stage 2
A (%) 92.49+1.98 | 94.99 + 1.55
S (%) 92.24+5.01 | 90.42 +4.76
P (%) 81.73 £7.49 | 90.52 +6.25
K (%) 92.81+2.06 | 96.62 + 1.96
FAR (%) | 21.66 £11.45 | 9.95+7.07

The complete framework for luminal border detection, leading to the definition of

the lumen border contour, is validated by using the following error measures:

e Jaccard Measure (JM), is the Jaccard measure computed over the two vessel

areas defined by the automatic (Rguyt0) and the manual curve (Ryuan):

— |Raut0 m Rm,an‘
|Rauto U Rman‘ ’

where R,,qn and Rgyto are the regions of the manually annotated contours Ciy,qp,
and of the automatic contours Cy,;0, respectively.

JM(Rautm Rman) (58)

Percentage of Area Difference (PAD), is the difference between the lumen areas
for the automatic (Aguto ) and manual (A4, ) borders, expressed as a measure
relative to the manual annotation:

|Aauto - Aman l

PAD =

(5.9)

Hausdorff Distance (HD) between the automatic and the manual curve annota-
tion, computed as follows:

HD(Cauto; Cman) = MaZXgeC, (510)

auto

[d (a,b)]},

where a and b are points of the curves Cyy1o and Chan, respectively, and d (a, b)
is the euclidean distance.

{maxbecmm

Mean radial distance (mrd), is the average absolute distance between the auto-
matic and the manual curve, computed over all the radii in polar coordinates.

In Table 5.2, the performance of the framework is illustrated. The results on the
whole data-set (considering all the frames) are reported in the second column. It is
worth noticing that, in an IVUS pullback, not all the frames have the same segmen-
tation complexity, since echographic reflexions, vascular bifurcations, artifacts due to
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the guide-wire, stent, and plaque appearance may make the segmentation task more
challenging. For this reason, the performance of the method can be evaluated by
considering different image categories. Table 5.2 additionally reports the results of
the algorithm by grouping the frames according to their morphological and clinical
condition, in the 3rd to 6th columns. The following categories are considered: stent,
bifurcation, calcified plaque, and catheter touching the lumen (i.e., “eccentric” lu-
men). The presence of the asterisk in the third to sixth columns of Table 5.2 denotes
a statistically significant difference between the performance on these categories and
the same measures computed on all the frames, by applying the Wilcoxon test with
significance level &« = 0.1. It can be observed that the method is robust to presence of
deployed stent, with results comparable to those on the whole data-set. In presence
of calcifications and eccentric lumen, the performance is comparable for most of the
parameters, while the results are significantly worse in bifurcation frames.

Table 5.2: Performance of lumen border detection (MEAN+STD) on Data-set
A. The columns represent the following cases: all the frames, stent, bifurcation,
calcification, and eccentric lumen (i.e., catheter close to the luminal border).

all stent bifurcation calcium eccentric
JM (%) 81.08 £11.93 | 81.64 4+ 12.57 | 75.08 £15.76 % | 79.67 & 10.43 = | 78.03 & 14.03 =
HD (mm) 0.31 +£0.28 0.33+0.31 0.51 +£0.4 = 0.27 £0.17 0.36 +0.36
PAD (%) 13.93 £12.52 | 13.91 + 10.76 | 18.55 £+ 12.93 x 15.90 £ 14.40 13.77 £12.33
mrd (mm) 0.15+ 0.1 0.16 £ 0.12 0.22 +£0.15 = 0.14 £ 0.08 0.16 £0.12

A further analysis is performed on the scores obtained on the whole data-set. We
consider a certain value for each of the performance parameters, and compute in how
many frames, as a percentage of the data-set, the selected requirement is fulfilled. The
characteristic profiles are depicted in Figure 5.6, where the performance measures are
represented on the horizontal axis and they vary from the value 0 to the maximum
value, obtained when 100% of frames are considered. For example, an mrd measure
< 0.3 mm is obtained in 91% of the frames (see Figure 5.6-d).

In Figure 5.7, qualitative results of lumen detection are illustrated. As it can be
observed, the proposed method performs well in case of stent deployment (Figure
5.7(d-f)). In bifurcation frames, the tendency of the method is to identify a smaller
contour than the ground-truth, i.e., to delineate only the lumen of the main vessel,
without segmenting the side-branch vessel (Figure 5.7(g-h)). It can be noticed that,
in our data-set, the manual annotation in bifurcation frames always includes the side-
branch lumen into the segmented lumen, but this interpretation is subjective. The
method is robust to the guidewire artifacts (Figure 5.7(i)), although few errors can
be noticed (Figure 5.7(1)). Errors can be observed in case of large vessels (Figure
5.7(m)), or when a vein close to the inspected artery resembles the appearance of a
bifurcation (Figure 5.7(n)).



88 AUTOMATIC 2-D+T LUMEN BORDER EXTRACTION

100 100
80| 80 i : .

5 8 :

¢ B0r ¢ 60 : .

I g :

G k]

= 401 2 40 R

201 20 : R
0 i i i i 0 ; i
0 20 40 60 80 0 0.5 1

1-JM (%) HD (mm)
(a)

w w

[ @

£ £

I =

b -

[=] o

® ®

0 i i ; i
0 20 40 60 . . 0.6

PAD (%) mrd (mm)

(c) (d)

Figure 5.6: Performance of the proposed methodology with respect to the JM, HD,
PAD, and mrd measures. Profiles detailing the number of frames (y-axis) that fulfill
the performance measures (a) (1-JM), (b) HD, (c¢) PAD, and (d) mrd (z-axis) are
shown for the automatic detection.

5.3.2 Experiments on Challenge Data-sets

In the MICCAI Challenge, the MSSL approach has been applied in 2-D+T only
on Data-set C (Volcano images), where consecutive gated frames have been provided,
while in Data-set B (iLab images) the technique has been applied only in the radial and
angular dimensions. Both data-sets have been divided into a training set, representing
25% of the data, and a test set, representing 75% of the data, as required for the
Challenge. The binary classifier has been trained separately for each data-set, by
using a ground-truth for the luminal border labeled by physicians, which defines lumen
and non-lumen regions of the images.

Since a journal article describing the results of the MICCAI Challenge is currently
under review, the results could not be reported in this thesis. The test results of
all participants, the different sets of lumen contour labels annotated by different
physicians, and the inter- and intra-observer variability have not been disclosed yet.
For this reason, in this chapter the algorithm performance is only briefly described
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(h) bifurcation

(1) guidewire (m) large (n) vein

Figure 5.7: Segmented images from Data-set C. The automatic and manual con-
tours are depicted with a continuous and dotted line, respectively. Frames belong to
the following categories: (a-c) no-stent, (d-f) stent, (g-h) bifurcation, (i-1) guidewire
artifact, (m) large vessel, (n) vein close to the inspected artery.
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from a qualitative point of view.

The overall performance is better in Data-set C than in Data-set B. This can
be due to different factors. First, the penetration is higher for the 20 MHz images
of Data-set C: the 20 MHz transducer allows higher tissue penetration while losing
details, but also artifacts, in the image formation. Instead, the 40 MHz probe produces
more speckle noise. The guide-wire effect is not present in Volcano data. Moreover,
Data-set B is more challenging from the clinical point of view. Finally, the method
is applied in 2-D+T only in Data-set C, where successive gated frames are available.
The proposed approach provides acceptable segmentation of the lumen contour in
frames belonging to both data-sets. The method is robust and particularly suited for
challenging clinical cases. Robustness to artifacts, such as the guide-wire artifact in
Data-set B, is high. In case of errors, the general tendency of the automatic method
is to provide a smaller contour than the actual luminal border. This is particularly
evident in the presence of bifurcations.

5.3.3 Comparison with State-of-the-Art

Finally, a qualitative comparison with state-of-the-art methods on lumen segmenta-
tion is presented, by considering for our method the validation performed on Data-set
A. Several of the most recent methods described in the first section of the chapter have
been chosen, by selecting the techniques that are representative of different families
of approaches. Following, the specifications and results of the different methods are
reported: the IVUS technology (20/40 MHz catheter), the level of automation, the ad-
vantages, the limitations, the validation data-sets, the performance. The comparison
is summarized in Table 5.3.

The semi-automated method proposed in Cardinal et al. [16] is applied to 9 in-vivo
IVUS pullbacks and to a simulated IVUS pullback. On in-vivo IVUS, the average
distance between segmentation results and manually traced contours is less than 0.16
mm, while the HD is less than 0.4 mm.

Mendizabal et al. [66] presented a semi-automated approach which is evaluated on
a set of 100 IVUS images acquired with a 20 MHz catheter. The average accuracy is
98.28%40.49%, the average true negative rate is 99.43%40.29%, and the average true
positive rate is 95.57%+1.69%. The authors remark that on higher-frequency IVUS
images (i.e., 30-40 MHz) the speckle noise will be higher, making it difficult to use
this method, since it employs only gray level histograms to compute the likelihoods.

In Taki et al. [108], a 20 MHz technology is used. The automated method is tested
on 7 cases totaling 60 IVUS images and it reaches an absolute difference of the areas
of 6.26+1.72 mm?, a HD of 0.740.25 mm and an average distance of 0.2+0.15 mm,
by using the (better performing) geometric deformable model.

In Unal et al. [111] an automated approach segments the arterial wall from 2-D
IVUS images in the polar domain. By testing the method on 20 MHz images, the
mean distance statistics is 0.08 £ 0.10 mm and the maximum distance is 0.44 £ 0.76
mm in an easier data-set, which excludes large calcifications and side-branch openings,
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while, in a more challenging data-set, the two statistics become 0.09 & 0.12 mm and
0.65 £+ 1.27 mm, respectively.

The fully automatic method proposed in Katouzian et al. [51] is tested on 40 MHz
images. The data-set consists of three in-vivo cases and two cadaver cases. The results
show that manual and automated luminal borders are well correlated (r = 0.9854).

O’Malley et al. [83] presented a 3-D supervised classification approach (one-class
SVM) for blood detection. Three cases, acquired in-vivo in swine with a 40 MHz
catheter, are used for training and testing, each case consisting of 30 frames. Statistics
related to the classification accuracy (sensitivity S and specificity K) are reported:
(1) S =97% and K = 82.3% and (2) S = 95.4% and K = 100%, for two cases.

Balocco et al. [6] presented an automated method. Performance is evaluated
on 300 in-vivo frames acquired from three sequences with a 40 MHz catheter. The
average segmentation error in alll the frames, stent frames and bifurcation frames is
0.17 £ 0.08 mm, 0.18 £ 0.07 mm and 0.31 £ 0.12 mm, respectively.

When comparing our method to the state-of-the-art, it can be observed that the
validation proposed in this chapter is among the most extensive, using 420 images
from 7 patients (see Table 5.3, 5th column). Moreover, our data-set is particularly
challenging due to the signicant presence of stent. The method is fully automatic,
and validation is performed on the most challenging type of images, acquired with a
40 MHz catheter (see Table 5.3, 3rd column). It is important to note that the use of
different types of catheters, the different level of automation, and the different perfor-
mance measures limit the possibility of a direct quantitative comparison between our
method and state-of-the-art methods, as discussed at the beginning of this chapter.
However, it can be observed in Table 5.3 that the obtained Hausdorff distance is lower
than in Cardinal et al. [16] and Taki et al. [108]. Moreover, the mean radial distance
is lower than in Cardinal et al. [16], Taki et al. [108], and Balocco et al. [6], but
higher than in Unal et al. [111].

5.4 Conclusions

In this chapter, the problem of lumen segmentation is addressed by means of a novel
pattern recognition approach, which uses a two-level stacked classification algorithm.
The methodology is extended in 2-D+T and takes advantage of the continuity of
the luminal region in IVUS sequences to enhance the results. The method is fully
automatic. The framework is independent of the acquisition system of the machine
and has been tested on images from two different echographs. The results show
robustness to different challenging clinical cases. The main limitation of this approach
consists in the application of the active contour model in 2-D. The extension of this
last step of the framework to the temporal dimension is pending, and it has been
planned for the next months investigation.

The method has been implemented in MATLAB and it has been executed on a PC
equipped with an Intel Core 2 Duo 2.13 GHz processor and 4 GB RAM. The average
execution time for every frame is 8 seconds for feature extraction, 0.44 seconds for
classification and 4.5 seconds for luminal border identification.
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Table 5.3: List of state-of-the-art lumen segmentation

fications and performance.

algorithms, and their speci-

Authors [Ref.], Implemented technique Freq. Automation Data Performance Results
Year (MHz) level measures
A 94.99% + 1.55%
S 90.42% + 4.76%
P 90.52% + 6.25%
K 96.62% + 1.96%
Proposed method 3-D, MSSL, deformable model 40 aut. 7 cases (420 images FAR 9.95% + 7.07%
tot.) Jaccard Measure 81.08% + 11.93%
Hausdorff distance 0.31 4+ 0.28 mm
PAD 13.93% + 12.52%
mrd 0.15 £ 0.1 mm
(a) (b)
average distance 0.16 + 0.1 mm 0.072 £+ 0.062 mm
Cardinal et al. 3-D, Rayleigh mixture PDFs, 20 semi-aut. (a) 9 in-vivo cases,
Hausdorff distance 0.4 +0.25 mm 0.226 + 0.074 mm
[16], 2006 fast marching (b) 1 simulated case
area difference 0.4+ 2.1 mm?
accuracy 98.28%
Mendizabal et al. 2-D, mixture of Gaussians 20 semi-aut. 100 images true negative rate 99.43%
[66], 2008 PDFs, Bayesian cost function, true positive rate 95.57%
novel minimization
average distance 0.2 +0.15 mm
Taki et al. [108], 2-D, statistical analysis, 30 aut. 7 cases (60 images Hausdorff distance 0.7 £ 0.25 mm
2008 deformable model tot.) absolute area diff. 6.26 + 1.72 mm?
(a) (b)
Unal et al. [111], 2-D, statistical shape model 20 aut. (a) easy data-set, (b) average distance 0.08 £ 0.10 mm 0.09 £ 0.12 mm
2008 challenging data-set maximum distance 0.44 + 0.76 mm 0.65 £ 1.27 mm
Katouzian et al. 2-D, Multiscale 40 aut. 3 in-vivo cases, 2 correlation coefficient 0.9854
[51] , 2008 cadaver cases
sensitivity 97% 95.4%
O’Malley et al. 3-D, one-class SVM 40 aut. 3 cases (30 frames
specificity 82.3% 100%
[83], 2007 each ) from swine
(a) (b)
0.17 + 0.08 mm 0.18 + 0.07 mm
0.57 + 0.24 mm 0.62 + 0.19 mm
Balocco et al. temporal correlation, Growcut 40 aut. 3 cases (300 images average distance

2011

algorithm

tot.):
(a) all,
(b) stent,

(c) bifurcation

maximum distance

(c)

0.31 £ 0.12 mm

1.12 + 0.44 mm




Chapter 6

Conclusions and Future Work

In this thesis, several methods for automated analysis of IVUS sequences are pre-
sented, aimed at assisting physicians in the treatment of coronary disease. The first
section of this chapter summarizes each main chapter, by revisiting the contributions,
strengths and weaknesses of the proposed methods. Then, a brief overview of the
future research possibilities opened by this thesis in the area of IVUS analysis is
presented.

6.1 Summary and Contributions

Chapter 1 introduces the medical context of this thesis and the IVUS technology.
First, coronary disease and coronary interventional procedures are described. Then,
the role of IVUS in the diagnosis, the planning and evaluation of the coronary inter-
vention, and the patient monitoring is illustrated, along with the challenges in IVUS
image analysis.

In Chapter 2, the background in IVUS is delineated. The taxonomy of the IVUS
technology in medical imaging is defined according the thesis scope, by analyzing:
(1) the image acquisition techniques, (2) the preprocessing methods that compensate
for the dynamic artifacts due to catheter motion and heart beating, and (3) the ap-
proaches for automatic IVUS analysis, which include methods for segmenting lumen
and media-adventitia borders and different plaque types, bifurcation detection ap-
proaches, and alignment/fusion of data acquired from coronary imaging modalities.
A literature review in each of these topics is presented, along with our contributions
to the state-of-the-art.

In Chapter 3, a novel approach for automatic bifurcation detection in IVUS is
presented. The method identifies every bifurcation in an IVUS sequence, the corre-
sponding frames, the angular orientation with respect to the IVUS acquisition, and
the extension. This goal is reached using the multi scale stacked sequential learning
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scheme, and the results are then refined using a-priori information about branching
dimensions and geometry. The method is validated on in-vivo sequences and the per-
formance is compared to inter- and intra-observer variability. Satisfactory results are
obtained in most frames, while the performance slightly decreases when stent, vein,
ostium and small bifurcation frames are analyzed. This study presents a new visual-
ization map for IVUS sequences, summarizing the vessel characteristics in a compact
representation. The proposed framework for automatic bifurcation detection is an
accepted US patent, commonly signed with Boston Scientific Corporation.

In Chapter 4, we propose an automatic approach for IVUS alignment, based on
the DTW technique. The non-rigid alignment algorithm is adapted to the specific
IVUS alignment task by applying it to multidimensional temporal signals describing
the morphological content of the vessel. DTW is embedded into an ad-hoc framework,
comprising two alternative robust strategies to address partial overlapping between
acquisitions. Extensive validation is performed on both synthetic and in-vivo data.
The results show the robustness increase obtained by the proposed solution with
respect to the baseline DTW alignment. Qualitative results illustrate the interest of
the proposed non-linear alignment and show the clinical value of the method. An ad-
hoc interface facilitates the visualization of the automatic results by physicians. The
alignment framework is robust to morphological changes induced by stent deployment
and post dilation, and it is invariant to rotations of the probe.

In Chapter 5, the problem of lumen segmentation in IVUS is addressed by propos-
ing a novel pattern recognition approach. The classification of lumen and non-lumen
regions of the images is performed by using the two-step multi scale stacked sequen-
tial learning algorithm. The methodology is extended in this study to three dimen-
sions, including the longitudinal (temporal) dimension of the sequence. Therefore the
method takes advantage of the continuity of the luminal region in IVUS sequences.
The framework is fully automatic. The method is independent of the acquisition sys-
tem of the machine. It has been validated on a challenging data-set, representitive of
the range of conditions in the clinical practice, and it has been tested on images from
two different echographs. The results show robustness to different challenging clinical
cases.

6.2 Future Work

Throughout this thesis, various approaches to IVUS analysis are proposed. The con-
tributions and limitations of each of these methods are opening future research lines:

Automatic Bifurcation Detection The bifurcation detection framework could be
extended to additionally provide a characterization of the identified bifurcations. In
particular, a future research direction could involve the automatic identification of the
optimal longitudinal view for each bifurcation in an IVUS sequence, i.e., the optimal
longitudinal cut from which the angle of incidence (the angle between the main vessel
and the side-branch) is visible. Moreover, information about the angle of incidence
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could be automatically provided, for instance by defining several discrete classes for
the amplitude of the angle, and then assigning each bifurcation to one of these classes.
In fact, it might be noticed that an accurate identification of the angle of incidence
cannot be achieved using only the IVUS modality, since it is impossible to recover
the 3-D geometry of the vessel. A three-dimensional vessel reconstruction using X-
ray and IVUS imaging techniques could contribute to the fluid dynamic analysis of
the vessel, with main focus on bifurcation sites. Finally, the automatic bifurcation
detection method can be applied in large clinical studies investigating the correlation
between bifurcation and plaque.

Automatic Non-rigid Temporal Alignment Although satisfactory performances
have already been obtained, the framework can be extended in future studies, by in-
vestigating the use of different weights for the various morphological features. More-
over, image-based measurements (for instance, entropy) could complete the set of
profiles. The developed framework can be applied in clinical studies on atheroscle-
rotic plaque regression/progression by IVUS, to automatically align cases acquired at
different times. This method can be a baseline in the research on alignment and fusion
of coronary data. Future work can be addressed towards automatic inter-modality
alignments, for instance between IVUS and angiographic or Optical Coherence To-
mography (OCT) data. Finally, the proposed EPS strategy for partial overlapping has
been applied solely to the alignment of the IVUS temporal morphological profiles. As
a further step, it would be interesting to apply this generic method to other sequence
alignment problems, characterized by partial overlapping between sequences.

Automatic 2-D-+T Lumen Border Extraction The main limitation of the lu-
men detection method consists in the application of the active contour model in 2-D.
A future step in this study deals with extending also the last step of the method, i.e.,
the identification of the luminal contour (which follows the classification phase), to
2-D-+T, thus taking into account the lumen continuity in the longitudinal dimension
of the sequence. Such study has been planned for the next months investigation.
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Appendix A

Medical Imaging Glossary

e Angiography: Angiography or arteriography is a medical imaging technique
used to visualize the lumen of vessels and organs of the body, with particular
interest in the arteries, veins and heart chambers. This is traditionally done by
injecting a radio-opaque contrast agent into the blood vessel, and imaging using
X-ray based techniques such as fluoroscopy.

e Atherosclerosis: A condition in which an artery wall thickens as a result of
the accumulation of fatty materials such as cholesterol. It is a chronic inflam-
matory response in the walls of arteries, caused largely by the accumulation of
macrophage cells and promoted by low-density lipoproteins (LDL, plasma pro-
teins that carry cholesterol and triglycerides) without adequate removal of fats
and cholesterol from the macrophages. It is commonly referred to as a harden-
ing of the arteries. It evolves with the formation of multiple plaques within the
arteries.

e Blood speckle: The ultrasound reflection from aggregated blood cells.

e Collagen: Elastic protein of the connective tissue, stiffer than elastin. It is
responsible for the elasticity of the skin.

e CT: X-ray computed tomography, also computed tomography (CT scan) or
computed axial tomography (CAT scan), is a medical imaging procedure that
uses computer-processed X-rays to produce tomographic images or “slices” of
specific areas of the body. These cross-sectional images are used for diagnostic
and therapeutic purposes in various medical disciplines. Digital geometry pro-
cessing is used to generate a three-dimensional image of the inside of an object
from a large series of two-dimensional X-ray images, taken around a single axis
of rotation.

e DICOM: DICOM (Digital Imaging and Communications in Medicine) is a
standard for handling, storing, printing, and transmitting information in medi-
cal imaging. It includes a file format definition and a network communications
protocol.
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Echogenicity: The tendency of a tissue to reflect ultrasound. The higher the
echogenicity, the brighter the tissue will appear.

Elastin: Protein in connective tissue that is elastic and allows tissues to resume
their shape after stretching or contracting.

Elastography: Method using stiffness or strain images of soft tissue for detect-
ing soft tissue tumors. A tumor or cancerous growth is normally 5 to 10 times
harder than a normal soft tissue. When a mechanical compression is applied,
the tumor is deformed less than the surrounding tissue.

Fibrous cap: A layer of fibrous connective tissue, which is thicker and less
cellular than the normal intima. The fibrous cap contains macrophages and
smooth muscle cells. The fibrous cap of an atheroma is composed of smooth
muscle cells, macrophages, foam cells, lymphocytes, collagen and elastin.

Follow-up: A series of periodic checks after an intervention.

Infarction: Infarction refers to tissue death (necrosis) caused by an obstruction
of the tissue blood supply, which leads to a local lack of oxygen.

OCT: Optical coherence tomography (OCT) is an optical signal acquisition
and processing method. It captures micrometer-resolution, three-dimensional
images from within optical scattering media (e.g., biological tissue). Optical
coherence tomography is an interferometric technique, typically employing near-
infrared light.

Thrombus: A thrombus, or blood clot, is the final product of the blood co-
agulation step in hemostasis. A thrombus is normal in cases of injury, but
pathologic in instances of thrombosis. When a thrombus occupies more than
75% of the cross-sectional area of the lumen of an artery, blood flow to the tis-
sue supplied is reduced enough to cause symptoms because of decreased oxygen
(hypoxia) and accumulation of metabolic products like lactic acid. More than
90% obstruction can result in anoxia, the complete deprivation of oxygen, and
infarction, a mode of cell death.

Ultrasound: Sound waves having a frequency 20,000 cycles per second (i.e.,
above the audible range). For medical diagnostic purposes, ultrasound frequen-
cies in the range of millions of cycles per second (MHz) are used.

Ultrasound transducer: A device that converts energy into ultrasound. Med-
ical ultrasonic transducers (probes) come in a variety of different shapes and
sizes, for acquiring images of different parts of the body. The principle behind
the technology is that the transmit signal consists of short bursts of ultrasonic
energy. After each burst, the electronics looks for a return signal within a
window of time.



Appendix B

IVUS Data-sets

In this Appendix, the data-sets of IVUS images used for the validation of the proposed
methodologies are described in detail.

B.1 Data-set for Bifurcation Detection

The data-set consists in 22 in-vivo pullbacks of coronary arteries, acquired from 22
patients. The sequences have been recorded by means of the iLab IVUS Imaging Sys-
tem (Boston Scientific), available in the Hospital “Germans Trias i Pujol”, Badalona
(Spain), using a 40 MHz catheter Atlantis SR 40 Pro (Boston Scientific).

The data have been chosen randomly without any exclusion criteria from the
hospital database. 14 patients have been monitored pre-operatively, and 8 after PCI.
The patient population is composed of 18 men and 4 women ranging in age from 31
to 81 (median 54); there are 4 diabetic patients.

In order to validate the proposed method for bifurcation detection, ground-truth
bifurcation labels have been created by manual segmentation performed by two med-
ical experts. To this aim, an ad-hoc interface has been developed, where the user
can navigate into the sequence in both longitudinal and angular directions (see Fig-
ure B.1). The interface displays the short-axis view and the longitudinal view of the
pullback. The physicians selected the angular sector comprising the bifurcation in
the short-azis view, by selecting the extremes of the angular sector, using the buttons
“ALPHA1” and “ALPHA2” in the interface (see Figure B.1). The observers were care-
ful to choose the smallest possible angular extension, thus ensuring the correctness
of the training samples for the bifurcation class. Moreover, the interface allows the
annotation of the initial and final bifurcation frames (by using the two buttons “INIT”
and “END”, respectively).

The intersection between the two physicians’ segmentations has been used as
ground-truth, hence making the most conservative choice. The most experienced
of the two observers performed the segmentation of the whole data-set twice, to allow
the computation of intra-observer variability.

Each IVUS frame is composed of 360 angular sector samples, corresponding to
angular degrees and to columns in the polar representation, leading to an average
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Figure B.1: The interface for labeling the longitudinal and angular posi-
tion/extension of vascular bifurcations in IVUS.

32,645 data samples per gated sequence. The ground-truth contains a total amount
of 72 bifurcation regions, with an average 3.2 bifurcations per sequence. Given that
the amount of samples and the variety of bifurcation structures and sizes are large,
the data-set can be considered as representative of the possible range of vascular
branchings.

B.2 Data-set for Sequence Alignment

The data-set consists of 42 in-vivo IVUS pullbacks from human coronary arteries,
from 21 patients. The sequences have been acquired in the Hospital “Germans Trias
i Pujol”, Badalona (Spain) by means of iLab IVUS Imaging System (Boston Scien-
tific). Sequences have been recorded with constant pullback (0.5 mm/sec) using a
40 MHz catheter Atlantis SR 40 Pro (Boston Scientific). All the acquisitions have
been performed strictly following the clinical protocol approved by the hospital ethical
committee and informed consent for the study has been obtained from all patients.
The clinical data have been randomly chosen without any exclusion criteria. The
study population is composed of patients ranging in age from 32 to 82 (median 70);
there are 3 diabetic patients. In particular, 37 of the 42 sequences contain a stent,
resulting in 20 of the 21 pullback pairs containing stent. In some patients stent is
present from previous interventions, while in others it has been deployed during PCI.
The 42 sequences constitute two data-sets aimed at different purposes:

o Data-set A is specifically used for the validation of the sequence alignment
method only. It consists of 8 pairs of corresponding IVUS pullbacks (16 se-
quences) acquired at the same stage of the percutaneous intervention (i.e. an-
gioplasty, stent deployment, and/or stent post-dilatation), either before or af-
terward. Since there are no morphological changes due to intervention, a high
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number of manually annotated ground-truth landmarks could be defined. To
this aim, the presence of morphological structures, such as small calcifications
and external vessels, and the initial and end positions of deployed stent have
been considered.

e Data-set B reflects the clinical application of the IVUS sequence alignment
study, and it contains 13 pairs of corresponding pullbacks (26 sequences), all
characterized by significant morphological changes due to percutaneous inter-
vention. Following the same validation strategy employed in [102, 31], only
bifurcation locations (initial and end positions) are used as ground-truth. In-
deed side branches are the only immutable landmarks, since lumen and media
size, stent and plaque might vary due to surgical artery dilatation or stent de-
ployment.

Short axis mage

OPEN PULLBACK 2

FRANE NUMEER. 8

OPEN PULLBACK 1

FRAME MUVEER: 4

Figure B.2: The interface for labeling pairs of corresponding frames in two IVUS
sequences.

Manual annotations have been performed by an expert clinician. The interface
for navigating in two pullbacks and visualizing the corresponding frames is shown
in Figure B.2. For each sequence, both short-azis view and longitudinal view are
displayed and, in each sequence, the user can navigate in the longitudinal and angular
dimensions.

Finally, the in-vivo ground-truth consists of a total 98 landmarks in Data-set A
(averaging 12.2 landmarks per sequence) and 60 side-branch locations in Data-set B
(4.6 landmarks per sequence).

B.3 Data-set for Lumen Border Extraction

The approach for luminal border detection is validated on a data-set provided by
the Hospital “German Trias i Pujol” (Data-set A), consisting in 7 sequences from 7
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different patients, acquired with an iLab IVUS Imaging System. For each pullback,
a vessel segment of 60 successive gated frames, extracted by the image-based gating
method proposed in [37], has been considered, for the validation of the proposed
2-D+T approach. Data-set A is characterized by the presence of stent in all the
sequences. Stent covers a significant amount of frames in the pullback, for a total of
221 stent frames over 420 frames. A challenging data-set has been created for the
lumen border detection study, aimed at reflecting the clinical application of lumen
border detection. Detecting the lumen in stent frames is particularly important to
identify stent malapposition and stent under-expansion. The reference annotation of
the luminal border has been manually performed by a physician.

Moreover, the approach has been tested on two data-sets, provided in the context
of the “Lumen + External Elastic Laminae (Vessel Inner and Outer Wall) Border
Detection in IVUS Challenge” associated with the MICCAI 2011 workshop on Com-
puting and Visualization for (Intra)Vascular Imaging (CVII).

The data-sets contain data extracted from in-vivo pullbacks of human coronary
arteries performed during PCI, acquired with a 40 MHz probe (Data-set B) and with
a 20 MHz probe (Data-set C), respectively:

e Data-set B is composed of 77 frames, from 22 patients. The data are obtained
from a digital iLab IVUS Imaging System (Boston Scientific) equipped with a
40 MHz catheter Atlantis SR 40 Pro (Boston Scientific). The images have been
used in DICOM (40 MHz) format. For each frame, four adjacent images (two
previous and two successive to the extracted frame) are also provided. The
groups of adjacent frames have been chosen at random instants of the cardiac
cycle (not gated).

e Data-set C is composed of 435 frames, from 10 patients. The data are obtained
from a 20 MHz Volcano IVUS scanner (Volcano Corporation) equipped with a
20 MHz 2.9 F Eagle Eye monorail catheter. The images have been provided
in DICOM (20 MHz) format. For each frame, four adjacent images are also
available. The data-set contains 2-D+T gated sequences, consisting of 20-50
frames extracted at the end diastolic phase, which provide sufficient spatial
context for the proposed 2-D+T methodology.

Ground-truth labels have been created by manual segmentation of the luminal border
performed by two observers.
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