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Summary

Cancer has traditionally been regarded as a genetic disease, but recently 
it is becoming apparent that the deregulation of epigenetic mechanisms 
greatly contributes to tumour development. At the crossing of genetics 
and epigenetics lie chromatin regulatory factors (CRFs), which are the 
focus of intense research due to their potential usefulness in anticancer 
therapy. In this thesis,  I  determine the transcriptomic state of normal 
and tumour cells based on epigenetic and regulatory information, and 
describe the existence of a global synchronisation of gene expression in 
which Polycomb regulation arises as one of the two  main components. 
I  present  an  analysis  on  how  the  under-expression  of  Polycomb 
regulated genes contributes to breast cancer progression and epithelial 
to  mesenchymal  transition.  Furthermore,  I  identify  this  under-
expression  as  a  valuable  independent  prognostic  factor.  Taking 
advantage  on  the  wealth  of  cancer  genomics  data  made  available 
recently,  I  also  evaluate  the  mutational  status  of  CRFs  across  many 
human tumours from different tissues and cancer cell lines, and find that 
39 CRFs are potential cancer drivers in at least one tissue, even though 
most  of  them  are  mutated  at  relatively  low  frequencies.  Finally,  I 
present a resource to visualise and analyse genomic alterations across 
cancer  cell  lines in  the context  of  drug sensitivity/resistance and the 
information on somatic tumour alterations.
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Resum

El  càncer  ha  estat  tradicionalment  considerat  una  malaltia 
fonamentalment  genètica,  però  recentment  s'està  fent  palès  que  la 
desregulació de mecanismes epigenètics contribueix en gran manera al 
desenvolupament tumoral. Al bell mig de la intersecció entre la genètica 
i l'epigenètica s'hi troben els factors reguladors de la cromatina (CRFs, 
en anglès), que són un focus important de recerca a causa de la seva 
potencial utilitat en teràpies contra el càncer. En aquesta tesi, determino 
l'estat  transcriptòmic  de  cèl·lules  normals  i  tumorals  basant-me  en 
informació  epigenètica  i  regulatòria,  i  descric  l'existència  d'una 
sincronització global de l'expresió gènica en què la regulació controlada 
per Polycomb es manifesta com a un dels dos components principals. 
Presento una anàlisi sobre com la baixa expressió dels gens regulats per 
Polycomb contribueix a l'avenç del càncer de mama i a la transició entre 
epitel·li i mesènquima. A més, identifico aquesta baixa expressió com a 
factor  valuós  de  pronòstic  independent.  Aprofitant  les  dades 
genòmiques de càncer que han estat posades a la disposició del públic 
recentment, també avaluo l'estat mutacional dels CRFs en molts tumors 
humans provinents de diferents teixits i línies cel·lulars de càncer. Els 
resultats  indiquen  que  39  CRFs  són  potencialment  conductors  del 
procès  cancerígen  en  almenys  un  teixit,  malgrat  que  molts  d'ells  es 
torben mutats en freqüències relativament baixes. Finalment, presento 
un recurs per a visualitzar i analitzar alteracions genòmiques entre línies 
cel·lulars de càncer  en el  context  de la  resistència  a fàrmacs i  de la 
informació sobre alteracions de tumors somàtics.
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Introduction



Chapter 1

INTRODUCTION

1.1 Preface

Epigenetics and cancer biology are nowadays two extremely broad subjects of 
study  and  have  followed  separate  research  paths  until  the  last  decade. 
Chromatin, the highest level of organization of the genome within the nucleus of 
a cell, was first described and named by Walther Flemming, back at the end of  
the  19th  century,  but  its  function  was  completely  unknown then  (Flemming 
1882).  Much later,  Conrad  Waddington coined the term “epigenetics”  as  the 
study  of  the  causal  mechanisms  intervening  between  the  genotype  and  the 
phenotype  (Waddington  1942).  Being  a  rare  combination  of  scientist  and 
philosopher,  his  most  known original  contribution was the conceptualization, 
within the  field of  developmental  biology,  of  what  he called the “epigenetic 
landscape”. The central idea was that a cell may choose amongst many possible 
paths to follow during development, defined by the expression of genes, and that 
each path led to a different phenotype (Slack 2002). This original definition of 
epigenetics changed throughout the years until  achieving its current meaning, 
being:  “the  mechanisms  that  result  in  heritable  changes  in  gene  expression 
which  are  not  coded  in  the  DNA sequence  itself”  (Probst,  Dunleavy,  and 
Almouzni 2009). In other words, epigenetics explains how cells acquire different 
phenotypes in a multicellular organism, given that their genomic DNA sequence 
is  supposed to be the same (with the obvious exception of B and T cells  in 
mammals).

The regulation of chromatin structure determines the configuration of each cell's 
epigenomic landscape, which, in turn, will greatly influence the combinations 
and quantities of proteins synthesized. By making the genes that code for those 
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proteins  more  or  less  accessible  to  the  molecular  machinery  that  transcribes 
them, chromatin conformation controls the phenotype of a cell.  It  may adopt 
more open (and thus accessible to proteins) or closed (inaccessible) compaction 
states, allowing for the recognition of DNA bases by transcription factors (TFs),  
or  blocking  their  access  by  rendering  them  not  visible.  Since  the  1970s,  
epigenetics, with its current meaning, has been a subject of intense research.

Cancer is arguably the most studied disease nowadays (or, more correctly said, 
group of diseases), and it has been thought to be exclusively a genetic disease 
for long. The sequencing of the human genome fostered hopes for the finding of 
what  exactly  caused  cancer,  and  how  it  could  be  treated.  However,  the 
oncogenomics scenario proved much more complex than expected,  and soon 
scientists  turned to  epigenetics to explain what  genomic sequence apparently 
could not. It seems now clear that higher levels of genomic regulation play a key 
role in cancer development. The two fields, genomics and epigenetics, are today 
studied  together  in  the  cancer  context.  After  the  completion  of  the  Human 
Genome  Project  in  2002,  and  owing  to  the  exponential  improvements  in 
sequencing technologies,  it  has been possible in the last  years to obtain vast  
amounts  of  data  to  characterise  individual  tumours,  and  even  track  their 
evolution  as  they  progress  (Ding et  al.  2012;  Landau et  al.  2013).  A major 
bottleneck that scientists face now is how to integrate all this novel knowledge 
and obtain useful information that can be potentially used in a clinical setting. 
The distance from the initial data to a patient's treatment is abysmal, but the pace 
at  which  our  understanding  of  cancer  biology  is  advancing  is  equally 
overwhelming.

The topics covered in this thesis are therefore very broad, and our understanding 
on them is evolving extremely fast. In this introductory chapter I focus on the  
relevant parts that affect the analyses and conclusions reported in this work. I  
begin  by  introducing  the  concepts  of  epigenetic  and  genetic  regulation  of 
transcription, and by describing the role that chromatin organization, and other 
epigenetic factors, play on them. The second part summarizes the current models 
used  to  understand  cancer  development  and  tumour  heterogeneity,  and  then 
focuses on breast cancer to explain the approaches that are being used currently  
to  characterise  tumours.  In  the  third  part  I  delineate  how the main different 
epigenetic systems are deregulated in tumorigenesis, and how this knowledge is 
being  exploited  to  develop  anticancer  agents  that  can  be  used  in  the  clinic. 
Finally, the last part focuses on the technical advances that have allowed the  
study of cancer biology and epigenetics, and on the bioinformatic approaches 
that have been developed to integrate all these large amounts of data.
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1.2 Layers of genomic regulation

DNA is  folded  multiple  times  within  the  nucleus  of  eukaryotic  cells  into  a 
structure we call chromatin. This is not simply a storage solution, but a very 
refined dynamic mechanism that stands at the very top of the regulation of gene 
expression.  Chromatin  can  adopt  an  open  (euchromatin)  or  compact 
(heterochromatin) conformation, which are spatio-temporally defined (Passarge 
1979).  It  is  basically  formed of  DNA, histone and non-histone proteins,  that  
physically determine distinct  levels of  possible interactions of the DNA with 
surrounding  molecules  by  making  it  more  or  less  accessible.  The  most  de-
condensed  chromatin  is  what  was  called  “beads  on  a  string”  by  the  first  
scientists  that  saw  it  with  an  electron  microscope.  It  consists  of  the  DNA 
molecule wrapped around two pairs of four core histones (H2A, H2B, H3 and 
H4),  which  form  the  nucleosome,  a  fibre  measuring  11nm  in  width. 
Nucleosomes are further packed into a 30nm fibre, which in turn is organized 
into  a  higher  order  structure  of  300nm.  The  highest  level  of  compaction  is 
observed in metaphasic chromosomes, during eukaryotic mitosis, and it can be 
clearly visualized in a  conventional  optical  microscope.  Figure  1.1 illustrates 
these levels of chromatin organization.

In the 1960s it became apparent that heterochromatin could be subdivided into 
facultative  (fHC) and constitutive  (cHC)  (Brown 1966),  but  it  was not  until 
some years later, with the advent of new molecular techniques, that the study of 
gene expression was made possible. Several observations in the field of cellular 
differentiation  led  to  the  identification  of  key  transcription  factors,  whose 
expression was dependent on the differentiation state of the cell. Gene activity 
had been described to correlate with euchromatic (EC) regions at that time, but 
the  understanding  of  how this  was  linked  to  the  regulation  of  transcription 
factors  during  differentiation,  or  how  transposable  elements  were  mostly 
silenced, remained elusive (Trojer and Reinberg 2007).

Nucleosomes are composed of 147 bp of DNA wrapped 1.65 times around the 
histone octamer (Luger et al. 1997). The description of nucleosomes as the basic 
unit of chromatin's organization in the decade of the 70s (Kornberg and Thomas 
1974) led  to  their  functional  study,  and  their  role  in  regulating  transcription 
started  to  be  elucidated  (Han  and  Grunstein  1988).  Soon  after,  factors  that 
intervened  in  the  positioning  and  displacement  of  nucleosomes,  such  as 
chromatin-remodelling  complexes,  were   described  for  the  first  time.  This 
provided  a  mechanistic  explanation  on  why  nucleosomes  are  not  regularly 
spaced throughout EC, and highlighted the importance of non-histone proteins 
on the regulation of chromatin structure  (B.  Li,  Carey,  and Workman 2007). 
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Post-translational  modifications  on  histone  tails  are  other  chromatin-related 
factors  that  have been associated to  the  modulation of  the  underlying genes' 
expression (Bernstein et al. 2007). Table 1.1 summarizes the general associations 
between this histone and non-histone proteins and the compaction of chromatin. 
There have been increasing efforts on the study of chromatin in the last decades, 
and it is now one of the main focuses in the field of epigenetic research.

6

Figure  1.1.  Chromatin  organization  levels. The  11nm fibre  is  the  lowest  level  of 
chromatin  organization,  and  is  composed  of  DNA  wrapped  around  arrays  of 
nucleosomes. Several factors, such as hypoacetylation at histone tails, contribute to the 
further local compaction of the 11nm fibre. A higher-order structure, termed the 30nm 
fibre, is represented on the fourth image on the top-left and third on the top-right. Even 
higher-order chromatin states exist beyond the 30nm fibre, the highest of all being the 
metaphasic chromosomes during mitosis, that can be observed with a conventional optic 
microscope (electron micrograph, bottom-left, and cartoon, bottom-right). Adapted from 
(Trojer and Reinberg 2007) and (Felsenfeld and Groudine 2003).



1.2.1 Epigenetic regulation of the genome

One  of  the  proposed,  but  not  the  only,  definitions  of  epigenetics is  “the 
transmitted inherited genome activity that does not depend on the naked DNA 
sequence”  (Manel Esteller 2012). It constitutes a higher level of regulation of 
gene expression, acting on top of the nucleotide changes and the direct binding 
of  proteins  to  the  DNA.  Epigenetic  mechanisms  explain  how  two  identical 
genotypes may give rise to different phenotypes, given the same environmental 
stimulus, and it has been a subject of intense study in the past decades in the  
field of molecular biology. Very recently, Heyn and colleagues described that  
epigenetic drift is also a driver of the normal ageing process in humans, in which 
we gradually lose genome-wide DNA methylation  (Heyn et al. 2012). Another 
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Table 1.1. Molecular features of fHC, cHC and EC. Active and repressed transcription 
is greatly influenced by the compaction state of chromatin, modulated by a number of 
factors.  These  include  histone  and  non-histone  proteins.  The  molecular  features 
described here are discussed in detail further on in this chapter. PcG: Polycomb Group; 
PRC1:  Polycomb Repressive  Complex  1;  PRC2:   Polycomb Repressive  Complex  2. 
Adapted from (Trojer and Reinberg 2007).
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study pointed out  how epigenetic  dissimilarities  between monozygotic  twins, 
arising  during  their  lifetime,  may  explain  their  different  phenotypes  (for 
instance,  the  risk  for  genetic  diseases)  (Fraga,  Ballestar,  Paz,  et  al.  2005). 
Epigenetic  mechanisms,  thus,  lie  at  the  heart  of  many  complex  regulatory 
processes that are crucial for the maintenance of normal biology.

Four main layers of epigenomic regulation maintain an optimal organization of 
the chromatin structure (Sandoval and Esteller 2012): 

i) post-translational modifications of histone tails

ii) DNA methylation

iii) Chromatin remodelling, and

iv) Non-coding RNAs

These four factors have key roles in the tight regulation of gene expression. The 
overall  structure of the epigenome is depicted in Figure 1.2, with a focus on 
DNA methylation and histone modifications. In the following sections, I will 
outline  the  main  actors  in  the  first  three,  and  the  interplay  that  has  been 
described between them under physiological conditions. The in-depth study of 
non-coding RNAs is very recent, and we are just beginning to understand how 
they  mediate  epigenetic  regulation.  How  non-coding  RNAs  take  part  in 
establishing and maintaining an epigenomic landscape is beyond the scope of 
this introduction; for recent reviews, see (J. T. Lee 2012) and (Guil and Esteller 
2012).

Histone modification

Histones  are  the  proteins  that  form  the  nucleosomes.  The  so-called  “core” 
histones  are  H2A,  H2B,  H3  and  H4;  histone  H1  serves  as  a  “clamp”  that 
stabilizes the nucleosome by keeping in place the DNA wrapped around it. H1 
has been long thought to play a minor role in genomic regulation, compared to 
the others, although recently a study proposed that it is critical for pluripotent 
stem  cell  differentiation  (Yunzhe  Zhang  et  al.  2012).  There  are  two  main 
mechanisms through which histones participate in the regulation of the genome: 
the incorporation of histone variants to nucleosomes and the post-translational 
modification of histone tails. Histone variants exist for H2 and H3, and seem to 
play  a  key  role  in  developmental  processes,  such  as  the  establishment  of  
heterochromatin at centromeres (H3 variant CENP-A), the inactivation of the X 
chromosome (MacroH2A) and germ cell  differentiation (H3.3)  (Banaszynski, 
Allis,  and  Lewis  2010).  The  extent  to  which  histone  variants  contribute  to 
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genomic  regulation  is,  nevertheless,  still  largely  under  studied.  The  second 
mechanism  through  which  histones  contribute  to  regulation  is  the  post-
translational  modification  of  their  tails.  Histone  tails  protrude  from  their 
corresponding globular part in the octamer formed by pairs of H2A, H2B, H3 
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Figure 1.2. Model of the overall structure of the epigenome in normal human cells. 
A silenced  gene  at  the  top has  its  promoter  occupied  by  a  Polycomb complex  (red 
shade), that mediates the deposition of H3K27me3, a repressive histone modification. 
Unmethylated CpG islands are represented with pale blue circles, and the methylated 
DNA state in red ones. Below the repressed gene, a region of open chromatin represents 
a fully active state, with the characteristic active H3K4me3 mark. A distant enhancer 
presents the H3K4me1 mark, typical of active enhancers.  The chromatin fibre at  the 
bottom shows a repressive and compact conformation, with compact nucleosomes, DNA 
methylation and the marks H3K9me2 and H3K9me3 characteristic of heterochromatin. 
Adapted from (Baylin and Jones 2011).



and H4, and can be modified in several ways (see Figure 1.3  for a schema on 
histone  H3  modifications);  more  than  100  have  been  described.  The  most 
relevant histone tail modifications are acetylation (at lysines), methylation (from 
one  to  three  methyl  groups,  at  either  lysine  or  arginine  residues), 
phosphorylation  (at  serine  or  threonine),  ubiquitination  (at  lysines)  and 
sumoylation (lysines) (Kouzarides 2007).

The observation that modifications at histone tails were specific to certain cell 
conditions led to the proposal of the histone code hypothesis, which states that 
“histone modifications act sequentially or in combination to form a code that 
may be read by nuclear factors” (Jenuwein and Allis 2001; Turner 2002). Thanks 
to  the  advent  of  sequencing  techniques  coupled  with  traditional  chromatin 
immunoprecipitation (ChIP-seq), this hypothesis was first proved in humans by 
Barski et al. in a seminal publication in this area (Barski et al. 2007). There, they 
described  the  genome-wide  patterns  of  20  histone  lysine  and  arginine 
methylations  in  human  lymphocytes  (CD4+  cells),  and  established  their 
association with transcriptional regulation. They further verified the preferential 
location  of  specific  marks  along  genes;  while  trimethylation  at  lysine  4  on 
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Figure 1.3. Histone tail modifications at histone H3. Histones are subject to hundreds 
of  post-translational  modifications.  A.  Structure  and  effects  of  two  histone  marks: 
H3K27  trimethylation  (repressive/brown,  left)  and  H3K4  trimethylation 
(activating/green). B. Diversity of histone H3 modifications. Adapted from (Bernstein et 
al. 2007).



histone H3 (H3K4me3) clearly surrounded the TSS of active genes, levels of 
H3K27me3 were higher at silent promoters. A year later, the same laboratory 
published a follow-up study, including 18 further histone lysine acetylations, and 
thus expanding the analysis to 39 histone modifications  (Z. Wang et al. 2008). 
The  relevance  of  those  two  publications  went  beyond  their  biological 
conclusions: they provided the first genome-wide histone modification maps in 
human cells, and thus paved the way for many analysis to come that used the 
data  sets  generated.  Other  individual  publications  have  explored  histone 
modification  maps since  then,  but  clearly the  ENCODE Consortium's  titanic 
effort to catalogue all regulatory elements in the genome stands out: to date, they 
have released maps for 11 histone modifications and the H2A.Z variant in more 
than fifteen cell lines, and they plan to expand this figures to nearly a hundred in 
the near future (The ENCODE Project Consortium 2012).

The correlation of histone modifications with transcription has been a subject of 
recent  intense  study.  It  is  now  clear  that  H3K4me3  is  deposited  at  active 
promoters  in  a  wide  range  of  organisms,  from yeast  to  human  (G.  C.  Hon, 
Hawkins, and Ren 2009). Actively transcribed genes are also characterized by 
having  H3K36me3 deposited  along the gene body.  This  mark is  specifically 
enriched at exons, rather than introns, providing a possible connection between 
the  regulation  of  splicing  and  chromatin  structure  (Kolasinska-Zwierz  et  al. 
2009; Kim et al. 2011). Highly cell  type specific,  H3K4me1 has been tightly 
associated to active enhancers, to the point that its occupancy profiles have been 
used to map novel enhancer regions in human  (Heintzman et al. 2009). Other 
active  marks  are  highly  context  specific:  H2BK5me1  and  H4K20me1  are 
specifically enriched at highly expressed exons that are close to the promoter. 
Exons towards the 3' end of the gene are increasingly enriched for H3K36me3, 
and less for those latter marks (G. Hon, Wang, and Ren 2009). Also H3K79me3 
has been associated to active transcription,  but  little  is  known of its  specific  
function  (Kouzarides  2007).  In  contrast,  three  other  methylation  marks, 
H3K9me3, H3K27me3 and H4K20me3, generally correlate with repression in 
mammals  (Z. Wang et al. 2008) and are associated to repetitive regions in the 
genome that  must  remain  silent  (Grewal  and Moazed 2003).  A summary on 
histone  methylation  effects  on  gene  expression  is  depicted  in  Figure  1.4. 
Generally speaking, histone acetylation correlates with active transcription, and 
it does not seem to have as highly specialized a function as histone methylation. 
Other modifications, including ubiquitination, sumoylation and phosphorylation, 
are far less studied, and their role in transcriptomic regulation is thought to be 
less important.  In Table 1.2 I compile the histone modifications that have been 
most studied, and for which genome-wide occupancy maps are now available.
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The fact that some active marks were found at silenced genomic regions led a 
decade  ago to  proposing  the  existence  of  a  “combinatorial  code”  in  histone 
modifications (Fischle, Wang, and Allis 2003). This concept postulates that they 
regulate each other, influencing the occurrence of subsequent modifications by 
promoting  or  preventing  them;  when  a  lysine  is  methylated,  for  instance,  it 
cannot be acetylated at the same time. A paradigmatic example are the mutually-
exclusive  H3K9me3  and  H3K9ac  (acetylation)  marks,  that  are  associated, 
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Figure  1.4.  Histone  methylation  patterns  of  active  and  silent  genes. ChIP-seq 
experiments  typically  produce  profiles  as  an  output,  which  can  be  regarded  as  the 
frequency in which every genomic position is occupied by the factor under study. This 
cartoon depicts the profiles of histone methylation at different residues, along with Pol II  
and  the  histone  variant  H2A.Z,  in  human  CD4+  cells.  Promoter  and  enhancer  or 
insulator regions are indicated. Adapted from (Barski et al. 2007).



respectively, to repressed and active transcription (Latham and Dent 2007). The 
most studied interplay between opposing histone marks is, nevertheless, that of 
H3K4me3 and H3K27me3. With the availability of histone occupancy genome-
wide maps, Bernstein  et al. described the “bivalent promoters”, that have both 
marks at the same time (Bernstein et al. 2006). Interestingly, they were found to 
co-occur at developmental genes in mouse ES cells, but resolved in either the 
activating  or  the  repressive  mark  upon  differentiation.  Bivalent  marks,  thus, 
silence developmental genes in undifferentiated cells, while keeping them poised 
for  activation.  This  finding  is  now  broadly  accepted,  and  had  important 
implications for following studies in the stem cell field.

The  availability  of  genome-wide  histone  occupancy  maps  has  provided  an 
invaluable resource for the computational study of genomic regulation. In fact, 
analyses on ENCODE's released datasets have developed models to predict the 
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Table 1.2. Function of histone modifications and variants. Some of this modifications 
typically stretch over a wide region (H3K27me3, H3K36me3, H3K79me2, H4K20me1), 
while  the  others  present  a  more  punctuated  pattern.  Adapted  from  (The  ENCODE 
Project Consortium 2012).

Histone modification 
or variant Putative functions

H2A.Z Histone protein variant (H2A.Z) associated with regulatory 
elements with dynamic chromatin.

H3K4me1 Mark of regulatory elements associated with enhancers and other 
distal elements, but also enriched downstream of TSS.

H3K4me2 Mark of regulatory elements associated with promoters and 
enhancers.

H3K4me3 Mark of regulatory elements primarily associated with 
promoters/TSS.

H3K9ac Mark of active regulatory elements with preference for promoters.

H3K9me1 Preference for the 5′ end of genes.

H3K9me3 Repressive mark associated with constitutive heterochromatin and 
repetitive elements.

H3K27ac Mark of active regulatory elements; may distinguish active 
enhancers and promoters from their inactive counterparts.

H3K27me3 Repressive mark established by polycomb complex activity 
associated with repressive domains and silent developmental genes.

H3K36me3 Elongation mark associated with transcribed portions of genes, with 
preference for 3′ regions after intron 1.

H3K79me2 Transcription-associated mark, with preference for 5′ end of genes.

H4K20me1 Preference for 5′ end of genes.



transcriptomic state of genes in different cell types (J. Ernst and Kellis 2010; J. 
Ernst  et  al.  2011;  Dong  et  al.  2012).  Their  work  has  been  based  on  the 
combination of several chromatin features and information on gene expression 
in  each  site,  directly  applying,  and  corroborating  at  the  same  time,  the 
aforementioned  histone  code  hypothesis.  These  models  are  complementary 
approaches that may aid in the functional annotation of the genome in the near  
future.

DNA methylation

The second feature of epigenetic regulation is DNA methylation. A characteristic 
feature of our genome is that the CpG dinucleotide (a cytosine followed by a 
guanine, in the 5' to 3' direction) occurs at a lower frequency than it would be 
expected if it had a random distribution. Nevertheless, half of the human gene 
promoters present CpG-rich regions that extend from hundreds to few thousand 
bases, termed “CpG islands”. Even when most of these are in house-keeping 
genes, half of the tissue-specific ones are also known to have CpG islands at 
their promoters (Bird 1986). These facts are relevant because cytosines in those 
DNA regions, almost exclusively, have been long-known to be more prone to 
methylation (McGhee and Ginder 1979; van der Ploeg and Flavell 1980), which 
plays  a  key  role  in  the  epigenetic  regulation  of  transcription.  Normally, 
promoters are unmethylated in transcriptionally active genes, and methylated in 
those that  are silenced:  housekeeping and tissue-specific  genes  fall  into each 
category,  respectively.  One described exception is  the recent  observation that 
non-CpG  methylation  occurs  in  active  promoters  in  stem  cells,  where  it 
represents around 25% of the total DNA methylation (Lister et al. 2009). There 
are two different scenarios for DNA methylation, each carried out by specific 
enzymes, called DNA methyltransferases (DNMTs). De novo DNA methylation 
is catalysed by DNMT3A and DNMT3B, while DNMT1 specifically maintains 
the methylation patterns following DNA replication (Okano et al. 1999).

Interestingly, the methylation of CpG islands is  connected to other processes 
involved in the regulation of chromatin structure, basically through the cross-
talk with histone modifications. The first component that was described to be 
involved in both epigenetic systems is the MeCP2 protein, that is responsible for 
further transcriptional repression at methylated CpG island promoters through 
the recruitment of histone deacetylases (HDACs) (P. L. Jones et al. 1998; Nan et 
al. 1998). These enzymes are responsible for the removal of acetyl groups from 
histone  tails,  leading  to  hypoacetylation  and  a  less  accessible  chromatin 
configuration,  which  is  less  favourable  for  transcriptional  activity.  The  same 
DNMTs that methylate DNA can also recruit HDACs to promoters (Robertson et 
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al. 2000; Fuks et al. 2001), and both DNMTs and MeCP2 associate with histone 
methyltransferases (HMTs) to reinforce gene silencing at methylated CpG sites 
(Fuks, Hurd, Deplus, et al. 2003; Fuks, Hurd, Wolf, et al. 2003). These findings 
provided interesting connections between repressive histone modifications and 
DNA methylation.

The study of DNA methylation and its defects has attracted a lot of attention 
lately in the scientific literature  (Schübeler 2009; Rakyan et al. 2011), since it 
may provide a partial explanation to the “missing heritability” problem; this is, 
the presence of different phenotypes in two organisms with the same genotype. 
Epidemiologists are specially interested in this epigenetic regulatory mechanism 
because it is more susceptible to be altered by external influences than the DNA 
sequence  itself,  and  may  be  a  mechanism  to  determine  environmental  risk 
factors.  But  probably  the  field  where  DNA methylation  is  more  intensively 
under study right now is oncogenomics, since there is increasing evidence for 
the  crucial  role  that  this  feature  plays  in  cancer  initiation  and  progression 
(Hansen et al. 2011). This will be discussed in depth later in this introduction.

Chromatin regulatory factors

The third epigenetic mechanism that is discussed here is chromatin remodelling 
through  Chromatin  Regulatory  Factors  (CRFs).  I  previously  described  how 
chromatin  can  be  re-arranged to  expose  or  block  certain  regions  to  external 
regulators,  such as transcription factors.  CRFs are largely responsible for the 
fine-tuning of this process, since their main function is to modify histones at 
specific  residues.  They disrupt  or  promote  DNA-histone interactions,  change 
nucleosome  positions  and  influence  chromatin  folding  to  physically  bring 
specific regions closer. These proteins can be biochemically subdivided in two 
main  groups:  ATP-dependent  chromatin  remodelers  (formed  by  the  ISWI, 
SWI/SNF,  INO80  and  NuRD/Mi-2  complexes)  and  Non  ATP-dependent 
remodelers. The latter comprises histone modifiers, although some can interact 
with  non-histone  proteins:  histone  acetyltransferases  (HATs),  histone 
deacetylases  (HDACs),  histone  methyltransferases  (HMTs)  and  histone 
demethylases (HDMs) (Boyer et al. 2000; Peterson 2002; Kassabov et al. 2003; 
Jin  et  al.  2005).  Frequently,  these  factors  interact  with  each  other  (Fry  and 
Peterson 2001). For a detailed classification of the  CRFs in humans, see Table 
S1 on Chapter 4, in the Results section.

ATP-dependent chromatin remodelers use the energy of ATP hydrolysis to make 
nucleosomal DNA more accessible to other factors. Their classification is based 
on the similarities to orthologous protein complexes in yeast and Drosophila, 
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and  the  shared  domains,  which  determine  their  functional  differences.  The 
SWI/SNF  is  usually  associated  with  transcriptional  activation  of  repressed 
genes, while many members of the ISWI and NuRD/Mi-2 complexes are more 
related to repression pathways  (Peterson 2002). The INO80 complex has been 
linked to the sliding of nucleosomes along the DNA, and may be involved in 
DNA repair  (Jin et al.  2005). Given the big changes that these enzymes may 
cause both into the local and global chromatin structure, it is evident that their 
misregulation  can  potentially  cause  great  damage,  such  as  enhanced  DNA 
recombination or defects in chromosome condensation. Thus, several layers of 
control apply to ATP-dependent chromatin remodelers; for instance, SWI/SNF is 
virtually  inactive  upon  phosphorylation,  and  also  shows  no  activity  towards 
nucleosomes with linker histones (H1) incorporated  (Peterson 2002). Globally, 
CRFs are believed to play an important role at the maintenance of chromatin 
integrity (Papamichos-Chronakis and Peterson 2013).

Non ATP-dependent  chromatin remodelers  can be roughly divided into those 
that place or remove acetyl groups, and those that do so with methyl groups. As 
previously mentioned, the acetylation of histone and non-histone proteins plays 
a pivotal role in gene regulation, since acetylated residues in histone tails mark 
transcriptionally active regions (Hildmann, Riester, and Schwienhorst 2007; Yoo 
and Jones 2006). Particularly, the acetylation of H4K16 seems to be crucial for 
the regulation of chromatin folding, and in the switch from heterochromatin to 
euchromatin (Shahbazian and Grunstein 2007). Non-histone proteins that can be 
reversely acetylated include master  regulators such as p53,  STAT and NF-kb 
(Spange et al. 2009; Buchwald, Krämer, and Heinzel 2009), that determine cell 
growth, differentiation and migration. HATs are roughly divided into three main 
families:  CBP/p300,  GNAT and  MYST.  The  reverse  reaction  of  acetylation 
correlates with transcriptional repression. There are three main HDAC families: 
class I and II HDACs, and the NAD-dependant class III, sirtuins. Most of these 
enzymes  are  part  of  big  repressive  complexes  that  include  other  CRFs  of 
different types. In general, HATs and HDACs modify more than one lysine, but a 
limited specificity has been described for some (Kouzarides 2007).

HMTs and HDMs are responsible for deposition and removal of methyl groups 
at  lysine and arginine residues  on histone tails,  and in some cases  they also 
exhibit non-histone substrate activity. Arginine HMTs are yet poorly described, 
so  current  knowledge  on  histone  methylation  is  mostly  confined  to  lysine 
residues.  A particularity  of  methylation  is  that  it  may occur  as  single  (me), 
dimethyl  (me2)  or  trimethyl  (me3)  groups,  expanding  the  combinatorial 
possibilities of modifying more than one residue in the same protein. Opposite to 
acetylation, methylation does not change the charge of lysines; rather it regulates 
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the  conformation of chromatin by attracting other  molecules  that  modify the 
degree  of  compaction  of  nucleosomes  (Nielsen  et  al.  2001).  The  activity  of 
HMTs  can  either  be  associated  to  transcriptional  activation  or  repression; 
H3K4me3  promotes  gene  expression,  while  H3K9me3  and  H3K27me3  are 
enriched in silent regions. Particularly, H3K27me3 plays an important role in X 
inactivation, and imprinting, as well as in the silencing of HOX genes, which 
highlights the importance of HMT specificity, and the broad consequences that 
can  have  its  misregulation  (Kouzarides  2007).  The  catalytic  subunit  of  the 
Polycomb complex,  EZH2,  catalyses  H3K27me3,  but  the  complexity  of  this 
regulatory system deserves a more in-depth description below. HMTs are highly 
specific  not  only  for  the  modified residue,  but  often  also for  the  amount  of 
methylation present, and may even recognize the surrounding aminoacids.

The  first  description  of  a  HDM,  LSD1  (H3K4  and  H3K9  demethylase),  is 
relatively recent (Shi et al. 2004), but even newer is the characterization of the 
long-awaited  UTX  and  JMJD3  H3K27  demethylases,  that  have  broad 
implications in the regulation of differentiation and cell identity by counteracting 
the  repressive  H3K27me3  mark  (Swigut  and  Wysocka  2007).  Many 
developmental genes present both the activating H3K4me3 and the repressive 
H3K27me3 mark at promoters in ES cells (bivalent state), but their transcription 
remains  silent.  Upon  differentiation,  some  lineage-specific  genes  need  to  be 
expressed,  and it  is  in  this  step when H3K27 demethylases  play a  key role. 
JMJD2 is another HDM that acts upon trimethylated lysines, with specificity 
towards H3K9me3 and H3K36me3  (Whetstine et al. 2006). Many HDMs are 
known now, and, like HMTs, they present a high degree of specificity towards 
the target lysine and the degree of methylation.

The particular case of Polycomb proteins

The  main  actors  in  the  regulation  of  the  chromatin  landscape  have  been 
discussed: DNA methylation, histone modifications and CRFs. Admittedly, some 
of  those  enzymes  can  be  classified  in  more  than  one  category,  but  for 
convenience this is the canonical division that is followed here. However, there 
is a group of proteins that lies at the crossroads of the three, and deserves special  
consideration for its key role in many crucial cellular processes: the Polycomb 
complex group (PcG). PcG proteins reside in two main complexes, Polycomb 
Repressive  Complex  1  and  2  (PRC1  and  PRC2),  that  have  complementary 
functions  in  transcriptional  repression.  Canonically,  PRC1  is  composed  of 
RING1  (responsible  for  H2AK119  ubiquitylation),  BMI1,  PCGF2  and  CBX 
family proteins; PRC2, on the other hand, contains EZH2 (the catalytic subunit, 
that  catalyses  trimethylation  of  H3K27),  SUZ12  (a  co-enzyme,  required  for 
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PRC2 activity), EED (that promotes the propagation of the H3K27me3 mark) 
and RBBP4/7 (Ku et al. 2008; Margueron et al. 2009; Kuzmichev et al. 2002). 
Currently, it is believed that PRC2 binds to its target genes, where it catalyses 
the trimethylation of H3K27me3. This mark is then recognised by PRC1, that 
further places the H2K119Ub modification, which then inhibits Polymerase II 
(PolII), resulting in transcriptional repression (Zhou et al. 2008) (see Figure 1.5). 
Moreover, PcG proteins also maintain genes repressed by structurally looping 
with chromatin  (Tiwari et al. 2008). Recently, PRC2 has been associated with 
the other main repression mechanism, DNA methylation, and has been proposed 
to recruit  DNMT1, DNMT3A and DNMT3B to promoters to establish stable 
chromatin silencing (Viré et al. 2005). It is not clear, however, if this might be a 
physiological behaviour, since Polycomb-mediated DNA hypermethylation has 
been  associated  with  the  initiation  of  tumorigenesis  in  several  studies 

18

Figure 1.5.  Epigenetic gene silencing by Polycomb protein complexes PRC1 and 
PRC2. Binding  of  the  PRC2  initiation  complex  to  its  target  genes  induces  mainly 
trimethylation of H3K27. PRC1 is able to recognize the H3K27me3 mark, which might 
bring neighbouring nucleosomes into the proximity of  PRC2 to facilitate  widespread 
methylation over extended chromosomal regions. Further stable gene silencing may be 
accomplished  through  inhibition  of  the  transcriptional  machinery,  PRC1-mediated 
ubiquitylation of H2AK119, chromatin compaction and recruitment of DNMTs to target 
genes by PRC2. Adapted from (Sparmann and Lohuizen 2006).



(Widschwendter et al. 2007; Ohm et al. 2007; Schlesinger et al. 2006). Thus, 
Polycomb proteins promote reversible transcriptional silencing through at least 
three  distinct  mechanisms.  EZH2  can  also  methylate  GATA4,  a  non-histone 
protein, and silence its transcription.

PRC2 was initially described as a HOX gene repressor, but  it  has now been 
assigned much wider functions, including mammalian X inactivation, regulation 
of development, establishment and maintenance of stem cell identity and cancer  
(Schuettengruber et al. 2007). EZH2 may itself be phosphorylated, in a process 
that has been associated with cell cycle regulation  (Y.-H. Chen, Hung, and Li 
2012). Through the deposition of the H3K27me3 mark, PRC2 is moreover at the 
centre  of  chromatin  plasticity,  since  that  is  the  most  prominent  modification 
found  at  facultative  heterochromatin.  The  role  of  PRC2  in  embryonic 
development relies on the placement of H3K27me3 at H3K4me3-occupied gene 
promoters  in  ES  cells,  that  form  bivalent  chromatin  domains.  This  keeps 
developmental genes silenced, whilst keeping them poised for activation (Boyer 
et al. 2006). With only the activating H3K4me3 left, the loss of H3K27me3 at 
those sites typically promotes cell differentiation (Bracken et al. 2006; Boyer et 
al. 2005; T. I. Lee et al. 2006). Given the importance of maintaining stem cell 
identity, the loss of which has been associated with oncogenesis, and the key role 
that EZH2 plays in the temporal repression of developmental genes, it  is not 
surprising that an increasing number of genomic alterations affecting EZH2 are 
described in tumours of different  origins  (C.-J.  Chang and Hung 2012). This 
topic will be covered in more detail in the next section of this introduction.

Genome-wide  PRC2  target  sites  have  been  determined  experimentally  in  a 
number of organisms, including Drosophila, mouse and human. The first efforts 
in pin-pointing their exact location were done in the array-based ChIP on chip 
technology (Squazzo et al. 2006; T. I. Lee et al. 2006; Bracken et al. 2006; Boyer 
et al. 2006), but later Ku  et al. and the ENCODE project expanded the PRC2 
maps  in  human  using  the  sequencing-based  ChIP-seq  (Ku  et  al.  2008;  The 
ENCODE  Project  Consortium  2012),  which  allows  for  a  cost-effective  real 
genome-wide coverage. Of note, as of today there are maps of EZH2 and SUZ12 
locations in fifteen and three different cell types, respectively, in the ENCODE 
data repository, and the list  is likely to grow substantially in the near future.  
Since there are no PcG sequence-specific binding sites identified in mammals, 
due to the complexity of Polycomb proteins recruitment to their targets, this data 
is  of  high  value.  The  availability  of  these  maps  makes  possible  the 
computational  study  of  Polycomb  regulation,  through  the  integration  with 
histone modifications occupancy and transcription factor maps in a number of 
cell types. This may provide new insights into the complex profile of PcG in the 
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human genome, and encourage further experimental research (Xiao et al. 2013).

Several  independent  consortia  in  recent  years  have  started  big  projects  to 
characterize  the  human epigenome.  Very  recently  the  first  results  have  been 
made available, publishing the first large-scale overview of epigenetic status in a 
large variety of cells and tissues. The first effort was conducted by the Human 
Epigenome Project, completed in 2006, which provided DNA methylation maps 
for chromosomes 6, 20 and 22 in twelve cell lines  (Eckhardt et al. 2006). The 
ENCODE consortium published last year their joint results in thirty manuscripts, 
including  histone  modification,  chromatin  conformation,  DNA methylation, 
CRF and transcriptomic data in 147 hundred normal and cancer cell lines (The 
ENCODE Project Consortium 2012). Their growing “experiment matrix” is far 
from being completed,  but  it  is  expected to keep growing in the near future  
(http://genome-
preview.cse.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html). 
Finally,  the  NIH Roadmap Epigenomics  Mapping Consortium published this 
year the maps for seven major histone modifications in human cells and tissues 
(Bernstein et al.  2010; Zhu et al.  2013). Because they produced data in non-
cultured  cells,  they  draw  intriguing  conclusions  regarding  the  existence  of 
distinct chromatin landscapes in in vivo and in vitro differentiated cells. All this 
data  burst will surely stimulate the  design of insightful computational models, 
that will allow to deepen our knowledge on the global processes that configure 
distinct epigenetic landscapes under different environments, in the line of the 
recent Dong et al. analyses (Dong et al. 2012). 

1.2.2 Regulation of gene expression

The  DNA molecule  has  been  often  referred  to  as  a  “blueprint”,  because  it 
contains  the  information necessary for  a  cell  to  survive and perform several 
basic and specialised functions. The central dogma of molecular biology states 
that DNA serves as a template to produce RNA, which, in turn, may serve to  
produce proteins. The careful regulation of the amounts of proteins and RNAs in 
a cell  is essential for the creation and maintenance of different tissues in the 
same organism.  Ultimately, the step-wise regulation of gene expression drives 
cell  differentiation  and  morphogenesis,  producing  cell  types  with  different 
expression profiles even when they have the same DNA sequence.

From transcription to translation

The RNA polymerases (RNA pol) are the molecules responsible for the initiation 
of transcription, and in eukaryotes there are three, each in charge of an RNA 
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subtype: RNA pol I (that produces most of the ribosomal RNAs - rRNAs), RNA 
pol III (small rRNAs, transfer RNAs - tRNAs - and small regulatory RNAs) and 
RNA pol II, that transcribes the messenger RNA (mRNA). Transcription starts in 
the nucleus when the RNA pol binds to the upstream sequence of a gene, the 
promoter  region.  In  RNA pol  II  genes,  the  promoter  sequence  consists  of  a 
“core”, that controls the transcription rate and lies closer to the initiation site, 
and a regulatory promoter, that contains consensus sequences to which TFs may 
bind. RNA Pol II may also be attracted to gene promoters through the interaction 
with  enhancers,  specialised  sequences  found  very  far  from  the  genes  they 
regulate, but that become close to them through DNA looping. Promoters may 
be weaker or stronger depending on their sequence, meaning that  per se they 
contribute to the regulation of the amount of RNA molecules produced for a 
gene. The exchange of gene's promoter for another may cause disease, such as in 
translocations in leukaemias, because genes that should be constitutively active 
are no more, or those that should remain silent are transcribed.

After initiation, the nascent RNA grows through a process known as elongation. 
The  termination  of  mRNA  transcription  involves  two  sequence-specific 
processes, cleavage and polyadenylation of the 3' tail, which are interdependent  
and both are required for termination (Logan et al. 1987; Connelly and Manley 
1988).

RNA molecules may themselves regulate transcription by hindering DNA in a 
sequence-specific manner, or they may be processed into mature mRNAs as a 
previous step for translation into proteins. In the latter case, mRNAs are read 
according to the “genetic code”, that is, the correspondence of each group of 
three nucleotides (a codon) to an aminoacid, or to a termination signal. To do so, 
first the mRNA must leave the nucleus and enter the cytoplasm, where the two 
ribosomal  subunits  assemble  on  top  of  it.  Ribosomes  contain  tRNAs,  that 
function as adaptor molecules; on one end they read the codon, and on the other  
they bind to  the  corresponding aminoacid,  that  will  be  added to the  nascent 
protein  (Crick  1958;  Chapeville  et  al.  1962).  Similarly  to  transcription, 
translation is regulated through an upstream untranslated sequence (UTR) of the 
mRNA that may be bound by proteins, affecting the rate at which translation 
occurs. Proteins are synthesized in a series of steps within the complex structure 
formed by the ribosomes and adjacent factors, and terminate at the codons UAA, 
UAG or UGA, which cannot be recognized by tRNAs and lead to the binding of 
release factors, that finally disassemble the ribosomes.
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Regulation of transcription and gene expression

Transcription  is  controlled  at  two  main  levels  in  eukaryotes:  at  chromatin 
structure, as has been reviewed in the previous section, and at the interaction 
with transcription factor proteins. A fundamental difference between prokaryotes 
and eukaryotes is that, by default, transcription is turned off in the latter, and 
requires  specific  elements  that  activate  it.  These  are  normally  TFs,  that  
recognize, usually in a combinatorial manner, specific 6 to 10 base-pair motifs at 
the promoter region of a gene (Pulverer 2005). To allow this interaction the DNA 
sequence must be accessible to those proteins, this is,  it  should lie within an 
“open”  chromatin  conformation.  Some  genes  constitutively  required  for  the 
survival of the cell, however, are unregulated and continuously transcribed.

To activate the transcription of a gene, a TF has to recruit RNA pol II to its  
promoter, since the latter cannot bind it alone (Struhl 1999). Alternatively, a TF 
may bind an enhancer,  and bring together distant  DNA regions in the three-
dimensional space of the nucleus, that will be targeted by RNA pol II. TFs may 
also repress transcription, either by binding activator proteins and hinder their 
promoter  sequence  recognition,  or  by  binding  to  the  promoter  motif  itself,  
displacing other TFs from the site. Transcriptional repressors may also be small 
non-coding RNAs, some of which have key functions such as the inactivation of 
one of the X chromosomes in female mammals.

The  transcriptome  of  a  cell  is  compartmentalised  into  many  interconnected 
functional networks, or pathways, that control different biological processes. A 
group of proteins that are part of the same macromolecular complex, or two TFs 
that cooperate to activate gene expression, are conceptually grouped within the 
same transcriptomic network (Stuart et al. 2003; Bergmann, Ihmels, and Barkai 
2003).  Only  recently  it  has  been  possible  to  study  full  pathways  and  such 
networks as a result of the advances in high-throughput analytical technologies. 
Rather  than  focusing  on  a  single  protein,  scientists  can  now investigate  the 
coordinated action of hundreds of factors that contribute to a specific cellular 
function, and consider cells as a whole, complex system that can be interrogated 
at many levels and at  different  time points  (Arvey et al.  2012;  Djebali  et  al. 
2012).  A result  of  these  studies  is  the  realization  that  gene  expression  is 
coordinated, and that different groups of genes are transcribed together during 
several cellular processes, but that those patterns may differ, for instance, during 
differentiation and cancer (Choi et al. 2005).
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1.3 Oncogenomics

Cancer is a complex disease, the result of a multi step process in which cells 
evolve progressively, acquiring malignant capabilities  (Kinzler and Vogelstein 
1996).  These  include  genetic,  cytogenetic  and  epigenetic  changes  that  drive 
tumour initiation, promotion and progression. The founding mechanisms were 
described decades ago as the loss of function of tumour suppressor genes, and 
the gain of function of oncogenes. Both types of genes have been identified, and 
several types of alterations have been described that lead to those same results. 
The alterations involved in oncogenesis are mainly of three kinds: mutations, 
copy number aberrations (CNAs) and epigenetic changes. Ultimately, they are 
responsible  for  aberrant  gene  expression  and  protein  mutations,  which  can 
further enhance them in a positive feedback loop.

The first mutation in an oncogene, c-Ha-Ras, was reported by Feinberg et al. in 
1983  (A P Feinberg et al. 1983). The technical limitations to survey the other 
types of alterations in large cell populations probably explains why tumorigenic 
mutations were the focus of very intense study for many years, while reports of 
recurrent CNAs, transcriptomic and epigenetic changes began much later. This 
fact  becomes  evident  when  one  explores  the  Cancer  Gene  Census,  which 
represents a bona fide compilation of cancer genes identified to date (Futreal et 
al.  2004).  The  oncogenic  evidence  behind  the  genes  listed  there  is  mostly 
mutation-based.  Our  current  knowledge  of  cancer  genes  is,  thus,  currently 
“mutation-biased”, but this is changing rapidly. Owing to technical advances in 
the  past  years,  over-  and  under-expression,  CNAs  in  non-haematological 
malignancies and aberrant methylation are being shown to play a prominent role 
in many tumours.

1.3.1 Models to study cancer genomics

Even when those studying the mechanisms that cause cancer have traditionally 
considered the tumour as a single entity, researchers are aware that within its  
microenvironment there are, most probably, no two cells alike. Each cell bears a 
set of genomic and epigenomic aberrations that are slightly different to those of 
its neighbours. There is need to produce models to first understand the process at 
a  global  level,  and  later  pinpoint  the  details.  On  the  other  hand,  technical 
limitations  have  yielded  a  broad  overview  of  cancer,  akin  to  being  able  to 
interpret  a  digital  image,  but  not  discerning  the  pixels  that  compose  it.  
Theoretical  models  help  us  to  understand  the  concepts  underlying  tumour 
formation. Technical limitations are being overcome at an incredibly fast pace, 
thanks in part to the refinement of high-throughput sequencing techniques.
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Hanahan  and  Weinberg  postulated  a  decade  ago  that  six  basic  acquired 
capabilities, shared amongst all cancers, conferred cells growth advantages in 
the  tumour  microenvironment  (Hanahan  and  Weinberg  2000).  These  six 
“hallmarks”  are  “sustaining  proliferative  signalling”,  “evading  growth 
suppressors”,  “activating  invasion  and  metastasis”,  “enabling  replicative 
immortality”, “inducing angiogenesis” and “resisting cell death”. Two enabling 
characteristics,  required to acquire the hallmarks, were further proposed later: 
“genome instability and mutation” and “tumour-promoting inflammation”. In a 
follow-up manuscript, new advances in the oncogenomics field led them to add 
two more emerging hallmarks,  namely “deregulating cellular  energetics”  and 
“avoiding immune destruction” (Figure 1.6) (Hanahan and Weinberg 2011). 

Regarding the “genome instability” characteristic, which leads to an increase in 
phenotypic variability,  it is interesting to highlight the recent work at Feinberg 
and Irizarry's laboratories. Based on the hypothesis that an increase in epigenetic 
and gene expression variability is a characteristic of cancer (A. P. Feinberg and 
Irizarry 2009), they proved that, in colorectal, lung, breast and thyroid tumours,  
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Figure 1.6. The hallmarks of cancer. A series of capabilities are shared amongst all 
cancer cells in all tumours. Hanahan and Weinberg described them within a framework 
that  enabled  a  global  understanding  of  carcinogenesis.  In  blue  typeface,  the  two 
“enabling characteristics” that promote the acquisition of these hallmarks. Adapted from 
(Hanahan and Weinberg 2011).



the  loss  of  well-defined  DNA  methylation  boundaries  at  CpG  islands 
distinguishes  cancer  from  normal  tissue  (Hansen  et  al.  2011).  Further,  they 
successfully created and tested a model to define diagnostic signatures based on 
those findings (Corrada Bravo et al. 2012). These findings have emphasized the 
importance  of  regarding  tumours  as  a  whole  entity,  instead  of  exclusively 
exploring  individual  genomic  aberrations  that  have  been  described  to  drive 
tumorigenesis. Moreover, this further portraits epigenetic mechanisms in some 
tumours  at  the  start  of  the  genomic aberrations  cascade that  gives a  cell  the 
potential to progressively become tumorigenic.

The clonal evolution model

The heterogeneity of tumours has been studied recurrently in the clinic since the 
development of cytogenetic tools such as FISH and SKY in the eighties. The 
first  general model for tumour progression merged this heterogeneity concept 
with Darwinian evolution  (N. E. Navin and Hicks 2010). The clonal evolution 
model  postulates  that  a  tumour  arises  through  the  accumulation  of  aberrant 
changes in the genome of a precancerous cell  that confer it a certain growth 
advantage over the rest, and undergoes a positive selection process, according to 
the laws of natural selection. On the contrary, deleterious mutations are under 
negative selection, and the process would result in the progressive conversion of 
normal  cells  into cancer  cells  (Foulds  1954;  Nowell  1976).  Clonal  evolution 
derives into two models, that differ in the number of subclones that are expected 
to  be present  simultaneously at  a  certain time point  in  the  tumour:  they  are 
known as the monoclonal and polyclonal evolution models. Several variations 
have been further proposed over the polyclonal evolution model (Figure 1.7 a-
d). All these theoretical frameworks assume that all cells in a tumour have the 
potential to proliferate indefinitely.

The cancer stem cell model

In the 1990s the idea that all cells in a tumour had no limits to proliferate was 
challenged by an alternative model, known as the cancer stem cell (CSC) model. 
Given  the  similarities  in  pathways  that  regulate  both  stem cell  renewal  and 
oncogenesis, it seemed plausible to propose that both processes were connected 
(Reya et  al.  2001).  The model  is  based on the assumption that  only a small 
population of cells in the tumour possess an unlimited proliferative potential,  
and that they are the responsible to continuously give rise to the majority of 
cancer cells, that can undergo only a limited number of divisions (Figure 1.7e). 
These  few cells  (the  CSCs)  are  now believed  to  potentially  arise  from any 
somatic cell (N. E. Navin and Hicks 2010).
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The question of which is the “right” model is a daunting one. Different tumours 
have been described to follow each of the described models, and even the same 
tumour  may  seem  so  correspond  first  to  one,  then  to  another  model,  as  it 
progresses.  Recently,  sophisticated  analysis  have  allowed  to  characterize  in 
depth  several  subclones  from Acute  Myeloid  Leukaemia  (AML) that  follow 
different  variants  of  the  clonal  evolution upon relapse  (Ding et  al.  2012) or 
through progression from Myelodysplastic Syndrome (MDS) (Matthew J. Walter 
et  al.  2012).  On the other  hand,  leukaemias  and tumours from breast,  brain, 
colon and pancreas  have  been empirically  shown to follow the  CSC model. 
These findings raise high expectations from clinicians, since they suggest the 
possibility  to  target  CSCs and eradicate  the  tumour  (N.  E.  Navin and Hicks 
2010). The fact that only small undetectable populations of cancer cells typically 
survive  treatment  and  regenerate  the  tumour  increases  the  relevance  of  the 
model.

Ultimately, the goal of modelling the mechanisms of tumour progression is to 
design targeted strategies for cancer prevention and treatment.  The two main 
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Figure  1.7.  Models  of  tumour  progression. Our  current  understanding  of  cancer 
progression can  be summarized  in  two major  models.  Several  variants  of  the  clonal 
evolution model are shown in a-d, the cancer stem cell model is shown in e. Green nodes 
represent normal cells, while different colours are the different tumour clones arising 
from  it.  The  lower panel  shows  schematic  representations  of  the  tumour  histology, 
according to the models above. Adapted from (N. E. Navin and Hicks 2010).



settings,  clonal  evolution  and  stem  cell  models,  have  different  therapeutic 
implications.  If  tumours  were  to  be  highly  clonal,  the  antitumoral  cytotoxic 
agents  would  have  to  be  designed  to  target  an  heterogeneous  population  of 
tumour cells, since any that is left would have the potential to regenerate the 
tumour. This seems to be the case for breast tumours, whose heterogeneity has 
been the focus of intense study in cell cultures, animal models and xenografts.  
The  increasing  clonality,  proportional  to  the  stage,  strongly  suggests  that 
common  genomic  aberrations  in  different  clones  recapitulate  the  evolution 
history  of  breast  cancer.  Some  haematological  cancers,  such  as  MDS  and 
secondary AML, have been experimentally shown to be highly clonal (Matthew 
J. Walter et al. 2012).

On the other hand, tumours that follow the stem cell model could be eradicated 
by designing drugs that specifically target the subset of stem cells that maintain 
the  oncogenic  process  and  promote  tumour  progression.  CSCs  have  been 
described in breast,  brain and colon cancer  (Al-Hajj  et  al.  2003;  Singh et al. 
2004; O’Brien et al. 2006; Ricci-Vitiani et al. 2006), but their existence in solid 
tumours  remains  controversial.  Two main  limitations  arise:  first,  the  lack  of 
knowledge  on  developmental  hierarchy  in  many  tissues,  which  is  very  well 
known in blood; and second, the technical difficulties of maintaining the original 
environment  and  three-dimensional  cellular  organization  in  animal  models 
(Clevers 2011). It  seems clear,  however, that haematological malignancies do 
have small populations of cells that mediate the leukaemic progression (J. C. Y. 
Wang  et  al.  1998).  Most  Chronic  Myeloid  Leukaemia  (CML)  patients,  for 
instance,  respond very well  to imatinib treatment,  that  targets the BCR-ABL 
kinase (Goldman et al. 2009). But discontinuation of the treatment often leads to 
relapse of  the  disease,  suggesting the presence of  imatinib-resistant,  dormant 
cells  that  can cause CML by themselves  if  not  kept  at  bay.  Recent  findings 
suggest that inhibition of SIRT1, a class III HDAC, depletes the CSC population 
in CML through the elevation of acetylated p53 levels (L. Li et al. 2012). This is 
an  exciting  finding  that  paves  the  way  for  further  research  on  combination 
therapy, aiming to target both the bulk of the tumour cell population and CSCs to 
eradicate cancer types that follow this model.

Both  models  of  tumour  progression  have  traditionally  been  presented  as 
mutually-exclusive,  and  waves  of  scientific  excitement  have  marked  each 
advance that seemed to advocate in favour of one or the other. Nevertheless, the 
picture may be more complex, as Hans Clevers has recently suggested (Clevers 
2011).  In  a  synthesis  of  clonal  evolution  and  CSC concepts,  he  proposes  a 
unified  model,  in  which  clonal  evolution  drives  tumour  progression,  but 
presenting within each clone some CSCs at each stage (Figure 1.8). In the most 
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Figure  1.8.  Synthesis  of  the  clonal  evolution  and  CSC  models. Hypothetical 
progression of a tumour; clonal evolution processes from top to bottom; left to right, 
CSC-like behaviour. (1) The first oncogenic hit occurs in a stem cell (or progenitor, or 
differentiated  cell)  of  a  healthy  epithelium,  resulting  in  the  growth  of  a  genetically 
homogeneous benign lesion. (2) The second hit leads to the growth of a more malignant  
and  invasive  clone  within  the  primary  tumour.  (3)  A third  hit  in  a  cell  within  the 
malignant  subclone  causes  further  transformation  and  extravassation,  leading  to 
metastasis. Genetically independent subclones can coexist within the tumour. (4) A final 
mutational hit leads to tumour being entirely taken over by cells that behave as CSCs, 
rendering the CSC concept meaningless at this stage. Note that, at each stage of this 
clonal evolution process, tumours and subclones contain CSCs. Adapted from (Clevers 
2011).



advanced tumour, all cells would behave like CSCs. The general mechanisms of 
tumour progression remain to be elucidated, and only further intensive research 
directed  at  the  dissection  of  tumour  heterogeneity  will  shed  light  on  them, 
hopefully, in the near future.

1.3.2 Cancer progression and invasion

Arguably,  the most  worrying event  associated to  tumorigenesis  is  metastasis,  
being  responsible  for  nearly  90% of  cancer  deaths  (Sporn  1996).  Moreover, 
metastatic relapse may occur, in breast  tumours,  up to two decades after  the 
initial  treatment  started  (Meng  et  al.  2004).  It  nevertheless  remains  very 
challenging  to  study,  mainly  due  to  the  difficulty  to  obtain  source  material. 
Understanding the relationship of metastasis to the primary tumour is extremely 
important to design strategies to prevent it and treat it. For instance, an unsolved 
question is whether all cells in a tumour have the potential to metastasise, or 
whether it is only a small subset that possess the capacity to do so. The existence 
of specific alterations that confer cells the metastatic potential is also not clear. 
From the observations, in a number of tumour tissues, that CGH profiles are 
very  similar  in  metastatic  cells  and  their  primary  counterparts,  it  seems that 
metastasis undergoes minimal clonal evolution (N. E. Navin and Hicks 2010). It 
remains poorly studied, however, whether those metastatic cells present a CSC 
phenotype. In a study on pancreatic cancer cells, the depletion of CSCs led to a 
loss of metastatic potential, while retaining tumorigenesis (Hermann et al. 2007). 
Another indication on the role of CSCs in metastasis is that breast cancer cells  
disseminated into bone marrow show a putative CSC phenotype  (Balic et  al. 
2006).  The connection between stemness  of  tumour cells  and their  ability  to 
metastasise  remains  poorly  understood,  and  there  is  still  a  need  for  further 
research.

Epithelial to Mesenchymal Transition (EMT)

The mechanisms that drive a tumour cell to extravasate from a primary tumour, 
travel through the blood flow and invade a distant tissue have been the focus of  
intense study over the past decade. Metastatic cells typically suffer alterations in 
their attachment to the extracellular matrix (ECM), the best characterized being 
the loss of E-cadherin (encoded in the CDH1 gene) (Figure 1.9) (Christofori and 
Semb  1999).  E-cadherin  is  a  cell-cell  adhesion  molecule  and,  through  the 
formation of adherens junctions between epithelial cells, it is key to assemble 
the epithelial sheet and maintain a quiescent cellular state. The expression of 
CDH1 has been reversely correlated with invasive and metastatic phenotypes, 
and its down-regulation is frequent in cancer. Conversely, the over-expression of 
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cell  contact  molecules  that  promote  cell  detachment  and  migration  during 
embryogenesis,  such  as  N-cadherin  in  neuronal  cells,  is  observed  in  highly 
aggressive  tumours  (Cavallaro  and  Christofori  2004).  This  alterations  are 
considered  a  hallmark  for  a  process  known  as  epithelial  to  mesenchymal 
transition  (EMT),  a  developmental  program that  has  been  shown to  broadly 
regulate metastasis and invasion (Hanahan and Weinberg 2011). Other key genes 
in EMT include Snail, Slug Twist and Zeb1/2, whose expression is abnormal in a 
number of tumours.

EMT has  been  associated  to  a  stem cell-like  phenotype  and  believed  to  be 
essential for metastasis  (Brabletz et al. 2005). Several experiments in the last 
years have further related the two by identifying key factors that induce both 
EMT and stemness, such as Twist1. In breast tumours, EMT associates closely 
with the  metaplastic  and claudin-low breast  cancer,  which are  typically  very 
aggressive,  and  correlates  negatively  with  pathological  complete  response 
(Hennessy et al. 2009). It is unclear, however, if EMT and stemness are always 
linked in all cancers (Brabletz 2012). Recent studies suggest that the reversal of 
EMT, mesenchymal  to  epithelial  transition (MET) may be a  requirement  for 
circulating cancer cells to effectively colonize a new tissue (Ocaña et al. 2012; 
Tsai et al. 2012). Growing evidence suggests that environmental conditions of 
the target organ, determined by the stroma, are crucial for colonization (Hanahan 
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Figure 1.9. Epithelial to Mesenchymal Transition (EMT) and invasion. The EMT 
process  is  associated  to  a  loss  of  cell-cell  adhesion  through  down-regulation  of  E-
cadherin (E-cad) and the over-expression of molecules that  promote cell  detachment, 
such  as  N-cadherin  (N-cad).  The  Extracellular  matrix  (ECM) greatly  influences  the 
invasive capabilities of tumour cells into surrounding tissues. Invasive cells may enter 
the vascular system by passing between vessel endothelial cells, and thus reach distal 
parts of the body. LOX, lysyl oxidase; MMPs, matrix metalloproteinases. Adapted from 
(Wirtz, Konstantopoulos, and Searson 2011).



and  Weinberg  2011).  This  second  and  last  step  of  the  metastatic  process, 
however,  remains  poorly  understood,  and  the  factors  involved are  yet  to  be 
described.

Of special interest, epigenetic factors have been described recently to mediate 
EMT  in  human  tumours.  In  lung  cancer  cells,  HDAC3  was  observed  to 
specifically de-activate transcription at mesenchymal gene promoters, including 
CDH1, via a decrease of H3K4ac levels. This was coupled with a recruitment of 
WDR5, an HMT that promoted an increase of H3K4me3 at those loci (Wu et al. 
2011).  A more  global  epigenetic  reprogramming,  involving  a  reduction  of 
H3K9me2  and  higher  H3K4me3  and  H3K36me3,  but  no  DNA methylation 
changes, has been described in a cell model of EMT (McDonald et al. 2011). 
Further,  SUZ12,  part  of  PRC2,  was  shown  to  be  required  for  E-cadherin 
repression by the EMT inducer Snail,  in ES cells  (Herranz et al.  2008). And 
EZH2 has been described to promote metastasis in breast and prostate tumours 
(Alford et al. 2012; Min et al. 2010). Altogether, epigenetic factors of different 
kinds seem to play an important role in metastasis coupled to EMT, presenting a 
very promising, yet under-explored scenario, where epigenetic drugs could be 
used to modulate the EMT mechanism to prevent tumour progression.

1.3.3 Tumour profiling approaches

Ultimately, the molecular characteristics of a tumour only have implications in 
the clinical practice if they have a prognostic value, or if they are indicative for a 
specific  treatment  option.  In  the  1990s,  tumour  progression  was  determined 
exclusively  through  histological  and  immunohistochemical  assessment. 
Karyotyping was routinely performed for haematological malignancies, because 
some leukaemias could be typified according to their profile of chromosomal  
aberrations.  The  prototypical  example  is  the  presence  of  the  Philadelphia 
chromosome, formally represented as  t(9;22)(q34.1;q11.2), which is indicative 
of the BCR-ABL gene fusion characteristic (but not exclusive) of CML (Nowell 
1962).  It  was  generally  assumed that  tumours  with  the  fewest  chromosomal 
abnormalities were in the early stages of progression, and thus were assumed to 
have fewer mutations (N. Navin et al. 2010). Back then, the first oligonucleotide 
microarrays were made available to the research community. The idea that CNV 
and  expression  changes  could  be  useful  to  determine  relevant  pathological 
characteristics of a tumour became very attractive, and some small-scale studies  
explored it. This type of inter-tumour analysis became a very intense research 
topic in the 2000s, and is currently being translated into the clinical setting. New 
sequencing  technologies  are  very  recently  making  possible  the  study  of 
heterogeneity within a tumour (intra-tumour comparison). Both are here briefly 
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reviewed,  focusing  on  breast  cancer  in  the  first  case,  given  its  successful 
translational implications.

Inter-tumour profiling in breast cancer

Breast cancer is the most frequent cancer in women: one in ten will be diagnosed 
to suffer one in their lifetime in the USA, and there are nearly half a million new 
cases per year in the European Union (of which 16000 occur in Spain) (Espinosa 
et al. 2012). The conventional clinicopathological parameters to determine the 
prognosis are histological and nuclear grades, tumour size, the involvement of 
axillary lymph nodes, the Ki67 index (a marker for proliferative activity), the 
expression of oestrogen (ER) and progesterone (PR) receptors, whether there is 
over-expression or amplification of ERBB2 (also known as NEU or HER2) and 
the  existence  of  mutations  in  the  TP53 gene.  Each  of  these  are  prognostic 
markers,  but  tumours  are  heterogeneous  and  may  present  a  spectrum  of 
phenotypes. The current classification by pathologists assigns the highest stage 
possible, even if it is only represented by a small subclone of cells. This staging 
is crucial to determine which patients need to undergo an aggressive neoadjuvant 
treatment after surgery, and which may be spared; some studies indicate that up 
to  70%  of  breast  cancer  patients  may  be  over-treated  (Early  Breast  Cancer 
Trialists’ Collaborative Group 1998).

The development of the microarray technology marked a turning point for breast 
tumour  profiling.  Two  seminal  studies  in  2000  and  2001  challenged  the 
traditional histopathological classification by using gene expression patterns to 
determine  “molecular  portraits”  in  breast  cancer.  The  authors  developed  a 
signature  of  496  genes  (the  “intrinsic”  signature)  that  distinguished  five 
clinically relevant  subtypes  from their  expression profile,  namely:  Basal-like, 
Luminal A (mostly ER positive, with good prognosis), Luminal B (presenting a 
more advanced stage and a complex genotype), ERBB2-like (mostly with the 
ERBB2 locus amplified) and Normal-like (having an expression profile more 
similar to normal tissue) (Perou et al. 2000; Sørlie et al. 2001). The PAM50 risk 
model was a later refinement that predicted the intrinsic subtype from a 50 gene 
signature  (Parker et al. 2009). The differences with the existing classifications 
for breast tumours were mainly two: the division of ER and PR positive tumours 
into  luminal  A  (sensitive  to  endocrine  therapy)  and  luminal  B  (usually 
chemoresistant and less sensitive to endocrine therapy); and the distinction of 
two  ER-  types:  basal-like  (usually  triple  negative:  ER-,  PR-,  ERBB2-)  and 
ERBB2-like.  Breast  tumours  were  the  first  cancer  to  be  stratified  using 
molecular  gene  expression  signatures,  and  major  implications  in  the  clinical 
practice were predicted.
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There  are,  however,  some criticisms  towards  this  molecular  classification  of 
breast tumours. First, many that were classified as the ERBB2-like subtype do 
not  present  ERBB2 locus  amplification,  and,  conversely,  it  does  show up in 
samples assigned to other intrinsic subtypes. This is an important distinction, 
since trastuzumab, an anti-ERBB2 monoclonal antibody, is the standard of care 
for patients with ERBB2+ tumours. In combination with chemotherapy as an 
adjuvant,  treatment  results  in  a  survival  improvement,  but  only  in  patients 
bearing this specific alteration  (Piccart-Gebhart et  al.  2005). It  then remained 
dubious  which  prognostic  implications  may  have  the  ERBB2-like  intrinsic 
subtype classification.  Second,  many questioned whether the  “basal”  subtype 
existed, since, on its own, it does not seem to be related to a poorer prognosis.  
Instead,  it  seems to to be associated to other factors which are predictive of  
patient's outcome, like being a carrier of a BRCA1 gene germline mutation (44-
80% of tumours from  BRCA1 mutation carriers are basal-like)  (Lavasani and 
Moinfar 2012). Still, the PAM50 classification of breast tumours into intrinsic 
subtypes is consistent with standard clinical markers and predictive of prognosis 
(Bastien et al. 2012).

Recently,  two further distinct  subtypes of breast  cancer have been described. 
These are the “metaplastic” tumours, which are sarcomatoid and mostly claudin-
low, and “claudin-low” tumours, that are rare, present over-expression of EMT 
genes and down-regulation of claudin genes. Both are similar to the basal-like 
profile in their  immunophenotype  (Taube et  al.  2010;  Creighton,  Chang,  and 
Rosen  2010;  Prat  and  Perou  2011),  although  claudin-low  presents  a  higher 
expression of N-cadherin, vimentin and several repressors of E-cadherin. This 
subtype also has the lowest expression of epithelial differentiation markers, such 
as CD24, and highest CD44, both associated to stem-like characteristics, which 
led to believe it derives from CSCs (Prat et al. 2010).

Overall,  inter-tumour  profiling  in  breast  cancer  has  provided  insight  into  its 
tumour biology, and has allowed the development of specific treatment strategies 
according  to  clinical  markers:  trastuzumab  and  chemotherapy  for  ERBB2+ 
tumours,  endocrine  therapy  for  ER+  PR+  disease  (with  or  without 
chemotherapy),  and  chemotherapy  for  patients  with  triple-negative  tumours 
(Podo et al. 2010). More detailed classifications based on expression profiling 
have  lead  to  a  more  refined  characterization  of  breast  cancer,  and  provide 
independent  prognostic  information.  However,  it  is  still  crucial  to  determine 
tumour and nodal stage and, as of today, all other approaches should be regarded 
as complementary. The clinical use of expression profiling for the prediction of 
chemotherapy benefit in ER- breast tumours is currently experimental, although, 
in  general,  the  implementation  of  these  methods  is  desirable  due  to  its 
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reproducibility, because they depend less on subjective assessments (Prat, Ellis, 
and Perou 2012). These profiling techniques have changed the way breast cancer 
is perceived, and it is no longer regarded as a single disease. The hope is that, in 
the near future, this type of evaluations are developed for other cancer types. 
Tumours  may  be,  then,  evaluated  mostly  based  on  their  molecular  profiles,  
regardless  of  the  tissue  where  they  were  originated,  providing  guidance  for 
treatment choice and possible resistance prediction.

Intra-tumour profiling

The comparison of  profiles across  tumours has provided insights  into cancer 
biology and guided  treatment  strategies,  but  still  a  large  number  of  patients 
present resistance or no clinical response. This can be attributed to our current  
lack  of  knowledge  on  cancer  mechanisms,  but  also  to  the  fact  that  tumour 
heterogeneity  is  typically  ignored.  The  histological  and  molecular  profiles 
usually  depict  an average state  of  all  tumoral  cells,  mainly  due to  technical  
limitations, and solid tumours include healthy cells that may constitute up to a 
50% of the total DNA and RNA extracted. For this reasons, there are growing 
efforts to determine the different populations of cancer cells within tumours, in 
the expectation that we could improve our knowledge on how to definitely target  
all malignant cells at a time, and effectively eliminate them.

Single-cell tumour profiling has been mostly focused on CNV analysis, and was 
made  technically  feasible  a  decade  ago with  the  coupling  of  whole  genome 
amplification (WGA) to array comparative genomic hybridization (aCGH)  (N. 
Navin and Hicks 2011). This type of analysis, albeit at very low coverage, could 
provide valuable cost-effective information with a potential clinical use. Early 
studies used it to profile Circulating Tumour Cells (CTCs)  (Klein et al. 1999; 
Stoecklein et al. 2008; Fuhrmann et al. 2008) and even cancer cell lines (Fiegler 
et al. 2007; Geigl et al. 2009). However, aCGH can detect amplifications and 
deletions, but not other genomic alterations such as translocations or inversions, 
and  it  requires  a  normal  genome  for  reference.  A very  recently  developed 
alternative  that  overcomes  these  limitations  is  the  use  of  sequencing  to 
determine CNVs. This technique, termed Single Nucleus Sequencing (SNS), has 
been successfully used to study tumour evolution and clonality in breast cancer 
(N.  Navin  et  al.  2011;  Baslan  et  al.  2012).  Both  approaches,  however,  are 
subjected  to  detection  biases  due  to  the  necessary  WGA step,  which  is  not 
uniform throughout the genome. Regarding single cell transcriptome profiling, 
there has been very limited success to date in mice blastocysts (Tang et al. 2009; 
Tang et al. 2010), but it has not been applied to human tumour cells yet.
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Advances  in  this  area  are  expected  to  have  wide  applications  in  the  clinic, 
including the determination of  the degree of clonality  in  a tumour  (which is 
believed to be proportional to resistance to cancer drugs), the characterization 
from easily accessible material (such as saliva, vaginal fluids and sperm) and the 
early detection of CTCs, whose presence has been already correlated with poorer 
survival in melanoma and breast cancer  (Bidard et al. 2010; Terstappen 2011). 
The expectations are high in the CTCs field, because this method will allow for 
regular, almost non-invasive testing to determine metastasis potential, targeted 
treatment  (avoiding  contamination  of  healthy cells)  and  the determination of 
models for tumour progression (N. Navin and Hicks 2011).

1.3.4 Efforts towards an in-depth characterization of cancer

The study of cancer genomics has recently undergone a profound change, owing 
to the characterization of large tumour cohorts by several  laboratories.  High-
throughput experimental methods have been pivotal in these analyses, and the 
dramatic  reduction  in  cost  and  time  of  sequencing  technologies  has  made 
possible that, currently, there are thousands of tumours sequenced genome-wide. 
The data has been generated within two main consortia: The Cancer Genome 
Atlas (TCGA) (cancergenome.nih.gov), an American initiative launched in 2005 
by  the  NIH,  and  the  International  Cancer  Genome  Consortium  (ICGC) 
(www.icgc.org),  an  umbrella  project  started  in  2007 that  agglutinates  all  the 
international  efforts  to  sequence  large  cohorts  of  tumours  (including  many 
TCGA projects).  Both  established  guidelines  to  ensure  homogeneous  data 
retrieval, although TCGA goes much further and regulates all steps, from tissue 
collection to sequencing protocols and bioinformatic data analysis. Ultimately, 
the goal  of  the ICGC is “to obtain a  comprehensive description of  genomic, 
transcriptomic  and  epigenomic  changes in  50  different  tumour  types  and/or 
subtypes which are of clinical and societal importance across the globe”. All the 
data  produced  by  TCGA and  the  ICGC  is  made  publicly  available  to  the 
scientific  community  for  further  validation  and  downstream  bioinformatic 
analysis.

Other  smaller  projects  have  produced  large  amounts  of  oncogenomics  data, 
which are now publicly available. Specialized data repositories manually curate 
individual publications that produce information that, when integrated with all 
the rest,  acquires new value. Also, recently two large projects were launched 
aiming at the characterization of cancer cell lines, which are widely used as a  
proxy to study tumour biology and, most importantly, drug testing (Barretina et 
al.  2012; Yang et al.  2012). A selection of oncogenomics databases (some of 
which also provide embedded analysis tools) is shown in Table 1.3.
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Table  1.3.  Oncogenomic  public  resources. Description  details  correspond  to  each 
database version on February 5th, 2013.

Resource Description

TCGA
cancergenome.nih.gov
(McLendon et al. 2008)

Point mutations, methylation, CNV, structural 
variants and gene expression on tumours. 
Currently has 7151 samples on 26 cancer types.

ICGC
www.icgc.org
http://dcc.icgc.org

Point mutations, methylation, CNV, structural 
variants and gene expression on tumours. 
Currently includes 42 projects from 17 cancer 
sites, totalling 7358 donors. Partially overlaps 
TCGA.

Progenetix
progenetix.net
(Baudis and Cleary 2001)

Genomic copy number aberrations in cancer. 
Includes 29743 cases manually curated from 994 
publications, including 20400 chromosomal CGH 
and 9459 array experiments (aCGH). Classifies 
tumours according to ICD-O 3 entities.

arrayMap
www.arraymap.org
(Cai, Kumar, and Baudis 2012)

Repository of aCGH-based genomic aberrations in 
cancer. Includes 44053 arrays manually curated 
from 483 publications, covering 197 ICD-O 3 
entities. Integrates probe-level data, provides 
visualization and analysis tools and allows for easy 
download.

Mitelman Database of 
Chromosome Aberrations and 
Gene Fusions in Cancer
http://cgap.nci.nih.gov/Chromoso
mes/Mitelman
(Mitelman, Johanson, and Mertens 
2013)

Manually curated data on chromosomal 
aberrations and corresponding tumour 
characteristics, based either on individual cases or 
associations. 62253 cases.

Atlas of Genetics and Cytogenetics 
in Oncology and Haematology
atlasgeneticsoncology.org
(Huret et al. 2012)

Detailed cytogenetic aberrations, including clinical 
and prognostic information. Peer-reviewed articles 
on 1135 genes in 503 leukaemias, 177 solid 
tumours and 104 cancer-prone inherited diseases.

IntOGen
www.intogen.org
(Gundem et al. 2010)

System to analyse and visualise cancer genomics 
data. Presents transcriptomic alterations, CNA and 
somatic mutations in tumour samples at gene and 
pathway levels. Assesses the likelihood of genes 
and pathways to be cancer drivers. Data is 
presented as tables or web interactive heatmaps.

Cancer Gene Census (CGC)
cancer.sanger.ac.uk/cancergenome/
projects/census
(Futreal et al. 2004)

Catalogue of 487 genes known to be involved in 
cancer, based on strong evidence from manually 
curated publications. Includes information mostly 
on somatic and germline mutations, and protein 
(Pfam) domains frequently found in cancer genes.
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Resource Description

COSMIC
cancer.sanger.ac.uk/cancergenome/
projects/cosmic
(Bamford et al. 2004; Forbes et al. 
2010)

Comprehensive compendium of manually curated 
somatic mutations in cancer from 15613 
publications. It currently includes data on 24517 
genes and 834571 mutations.

COSMIC cell lines
cancer.sanger.ac.uk/cancergenome/
projects/cell_lines
(Bamford et al. 2004; Forbes et al. 
2010)

Mutation screening of 64 selected genes from the 
CGC on 770 cancer cell lines. Currently 
generating the exome sequencing data.

Cancer Cell Line Encyclopedia
www.broadinstitute.org/ccle
(Barretina et al. 2012)

Mutations on 1651 genes in 905 cancer cell lines, 
along with the pharmacological profile of 24 
cancer drugs. Provides analysis and visualization.

Genomics of Drug Sensitivity in 
Cancer
www.cancerrxgene.org
(Yang et al. 2012)

Drug sensitivity on almost 700 cancer cell lines 
and mutations on 71 genes correlated with drug 
response, in 138 drugs.

1.4 Cancer epigenomics

The alteration of the normal epigenetic landscape is known to be behind a broad 
array of human diseases, including autoimmune diseases such as systemic lupus 
erythematosus, psoriasis and rheumatoid arthritis, and neurodegenerative ones, 
like Alzheimer's and Parkinson's.  (Ballestar, Esteller, and Richardson 2006; P. 
Zhang, Su, and Lu 2012; Vojinovic and Damjanov 2011; Chouliaras et al. 2010; 
Coppedè 2012). Also the global loss during our lifetime of DNA methylation, a 
key epigenetic regulatory mechanism, has been connected to the natural process  
of ageing (Heyn et al. 2012). The relevance of chromatin structure preservation 
in the maintenance of genome integrity has been intensively studied; it is known 
to  be  crucial  in  DNA damage  repair  pathways,  important  for  chromosome 
segregation  and  avoidance  of  chromosome  instability (polyploidy  and 
aneuploidy), and key to keep the epigenetic landscape during DNA replication 
(Papamichos-Chronakis  and  Peterson  2013). Surprisingly,  cancer  research 
focused  exclusively  on  genomic  changes  for  many  years,  and  the  role  of 
epigenetics in tumour development was largely underestimated until  a decade 
ago.

In the last decade there has been a dramatic advance in the understanding of  
cancer genomics from an epigenetic point of view. The cancer epigenomics field 
started to flourish when it became evident that the transcriptional silencing of 
bona fide tumour suppressor genes, such as p16INK4a, hMLH1 and BRCA1, 
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was associated to the hypermethylation of the CpG islands at  their  promoter 
regions  (M. Esteller 2007). The biggest efforts in the 1990s were focused on 
DNA methylation changes occurring in tumours (P. A. Jones and Baylin 2002), 
but  recently it  is  becoming clear  that  the  other  three epigenetic  mechanisms 
(histone modifications, chromatin remodelling and non-coding RNAs) may have 
a  prominent  role  in oncogenesis  (Sandoval  and Esteller  2012).  The so-called 
“cancer epigenome” is understood as the global result of heritable changes that  
have an impact on gene expression, but which cannot be described in terms of 
DNA sequence  changes  (P.  A.  Jones  and  Baylin  2007).  This  includes  DNA 
aberrant  methylation  (both  hyper-  and  hypo-  methylation),  histone  mark 
misplacement  and  mutations  in  key  chromatin  remodelling  enzymes  (Figure 
1.10).  It  is  now  becoming  evident  that  the  deregulation  of  epigenetic 
mechanisms  may  precede  classical  tumorigenic  events  such  as  mutations, 
deletions or the altered expression of tumour suppressors and proto-oncogenes.
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Figure 1.10. Global epigenomic alterations in cancer. During oncogenesis, epigenetic 
patterns  are  disrupted  at  different  layers.  The  tight  regulation  of  DNA methylation, 
histone modifications and miRNAs, crucial for normal gene regulation, is lost, resulting 
in  an  aberrant  chromatin  structure.  In  cancer  cells,  tumour  suppressor  genes  are 
hypermethylated  at  the  CpG  islands  in  their  promoters,  while  the  global  pattern  of 
histone modifications is lost. Ultimtely, these aberrant epigenetic changes result in an 
imbalance of gene expression that promotes the silencing of tumour suppressors, and the 
activation of oncogenes. From (Sandoval and Esteller 2012).



1.4.1 DNA methylation in cancer

An increase in DNA methylation in normally unmethylated gene promoter CpG 
islands  is  associated  to  gene  silencing,  and  it  has  been  the  most  studied 
epigenetic aberrations in cancer in the last three decades (Manel Esteller 2008). 
Epigenetic changes in general could be the initiators of human cancer, but, more 
specifically, it has been proposed that CpG promoter hypermethylation might be 
one of those initial triggers of tumours  (Andrew P. Feinberg and Tycko 2004; 
Andrew P.  Feinberg,  Ohlsson,  and  Henikoff  2006).  Interestingly,  it  has  been 
shown that promoter hypermethylation is tumour-specific (Costello et al. 2000); 
it is an extended tumorigenic mechanism in gastrointestinal tumours, while it is  
much less common in ovarian cancer and sarcomas (M. Esteller 2007) (Figure 
1.11). DNA hypermethylation has been associated with the stabilization of gene 
silencing  at  tumour  suppressor  gene  promoters,  suggesting  this  epigenetic 
mechanism plays a key role in tumorigenesis (Manel Esteller 2008). In analogy 
to  cancer-specific  mutations,  there  are  genes  that  are  more  frequently 
hypermethylated in some specific cancer topographies, and the impact of  the 
alterations is often determined by how they aggregate in similar pathways to 
contribute to tumorigenesis (Wood et al. 2007).
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Figure 1.11. CpG island hypermethylation profile in tumours with different origin. 
In the Y-axis, the frequency of hypermethylation for each gene is shown in each primary 
tumour. From (M. Esteller 2007).



Regional CpG island hypermethylation at tumour suppressor promoters is, thus, 
a classical cancer event. For many years, also large hypomethylated regions have 
been recognized in cancer,  but  only recently are we beginning to understand 
their biological implications. Typically, this occurs in genomic areas that are rich 
in  repetitive  elements  and  retrotransposons  but  do  not  contain  many  genes, 
leading to an increased rate of genomic rearrangements and translocations and, 
ultimately,  to  genomic  instability.  DNA hypomethylation  in  cancer  has  been 
observed to increase as the tumour progresses, providing a putative measure of 
tumour invasiveness likelihood (Sandoval and Esteller 2012).

Recent sequencing studies of colon cancer described a loss of DNA methylation 
in megabase-long regions compared to normal tissues, but unexpectedly found 
punctuated  hypermethylation  in  specific  CpG  island  promoters.  Importantly, 
these domains prone to gain or lose DNA methylation are frequently located in 
lamin-associated nuclear domains and late-replicating regions, which typically 
present bivalent marks in ESCs, controlled by the Polycomb protein complex 
(Issa 2011; Hansen et al. 2011). Bivalent marks control the repression of genes 
which  are  important  for  lineage  commitment,  keeping  their  promoters  in  a 
poised state,  but  not  permanently repressed,  while CpG island methylation is 
associated to a more stable repression. The current model postulates that CpG 
island hypermethylation in those regions would replace bivalent marks to lock 
the promoters into a permanent inactivation state, thus extending the adult stem 
cell compartment (Ohm and Baylin 2007; Cedar and Bergman 2009).

An interesting observation by Irizarry and colleagues is that most methylation 
differences in cancer occur at low-density CpG regions which are near (up to 
2kb) CpG islands, which they call “CpG shores”. Those regions overlap with 
sites  that  show methylation variation in  tissue differentiation,  reinforcing the 
current belief that epigenetic alterations affecting tissue-specific differentiation 
are a predominant tumorigenic mechanism  (Irizarry et al. 2009; Hansen et al. 
2011).

The accumulation of  knowledge on DNA methylation patterns  in  cancer  has 
allowed to develop diagnostic kits  which can be currently used in  the clinic 
setting. In stage I non-small cell lung cancer, the hypermethylation of CDKN2A 
and CDH13 is a biomarker that correlates with recurrence and poor prognosis.  
Identifying which patients might benefit from more aggressive treatment, and 
stratifying them from those with a milder onset of the disease would spare the 
latter from unnecessary side effects. Another gene,  MGMT, is hypermethylated 
and used in a Phase III trial as a biomarker to predict best response to treatment  
in gliomas, and it is about to be approved by the FDA to be used in the clinical 
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practice  (Manel  Esteller  et  al.  2000;  Hegi  et  al.  2005).  Recent  catalogues of 
DNA methylation patterns across tumours of different origin provide a first draft  
on genome-wide cancer methylation maps that  will  hopefully have a clinical 
application  (Fernandez et al. 2011). To properly select methylation biomarker 
candidates, corresponding genome-wide methylation maps in healthy tissues are 
being generated and made public by large consortia such as Blueprint and the 
International  Human  Epigenome  Consortium  (IHEC)  (Adams  et  al.  2012; 
Bernstein et al. 2010). Some DNA methylation biomarkers have been already 
established.  A successful  example  is  the  detection  of  GSTP1 gene  promoter 
hypermethylation in prostate cancer, which is an early event in tumorigenesis. A 
major advantage of this biomarker is that it can also be detected in urine and 
serum, allowing non-invasive diagnostic and prognostic tests. Other epigenetic 
biomarkers, based on DNA methylation detection in serum, are being established 
in  colorectal  carcinoma,  glioblastoma  and  non-small  cell  lung  carcinoma 
(NSCLC), establishing it as a promising non-invasive diagnostic tool  (Heyn et 
al. 2012).

1.4.2 Histone modifications in cancer

The  reorganization  of  the  chromatin  landscape  during  cell  differentiation  is 
largely  determined by  the  placement  of  specific  histone marks,  that  regulate 
activity at developmental genes. A pluripotent cell needs to actively transcribe 
genes that keep it in an undifferentiated state, but at the same time repress those 
that are characteristic of tissue-specific programmes. The latter, though, must be 
a  flexible  repression,  ready  to  be  removed  upon  differentiation,  and  histone 
modifications  provide this  type of  epigenetic  regulation,  in  opposition to  the 
more stable repression that DNA methylation provides. When a pluripotent cell 
starts  to  differentiate  into  a  more  specialized  cell,  lineage-specific  genes 
transition from a poised, bivalent state (marked by the simultaneous presence of 
H3K4me3 and H3K27me3) into an active state, accompanied by active histone 
marks.  Simultaneously,  alternative  lineage  and  pluripotency  genes  must  be 
silenced by repressive histone marks, such as H3K9me3 or H3K27me3 alone,  
and this process is typically reinforced by the placement of DNA methylation at  
some  promoter  sites  (Reik  2007).  The  resulting  chromatin  conformation  is 
particular for each tissue, and must be preserved for the correct functioning of 
tissue-specific transcriptional programs.

These changes in cancer development are mirrored in the progression from a 
normal into a malignant cell. Currently, it is believed that alterations in histone 
patterns  are  a  common hallmark  of  human cancer,  and  that,  in  this  context, 
bivalent  marks  constitute  a  previous  step  towards  permanent  aberrant  gene 
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silencing (Rodriguez et al. 2008). Developmental genes, normally repressed by 
H3K27me3 in pluripotent  cells,  are  permanently repressed in  cancer  through 
DNA methylation,  and  this  process  is  commonly  known  as  the  “epigenetic 
switch” (S. Sharma, Kelly, and Jones 2010; Baylin and Jones 2011). Moreover, 
during  tumorigenesis,  activating  histone  marks  that  were  enriched at  tumour 
suppressor genes are gradually substituted by repressive marks, and, conversely, 
regions that should remain silent (such as telomeres and sequence repeats) in a  
normal  context  lose  repressive histone marks and become enriched in  active 
ones  (Figure  1.12).  A  characteristic  example  is  the  global  reduction  of 
H4K20me3 (a marker of constitutive heterochromatin) and H4K16ac at repeat 
sequences  in  many  primary  tumours,  which  is  associated  to  DNA 
hypomethylation  and  results  in  de-repression  of  gene  expression  (Fraga, 
Ballestar, Villar-Garea, et al. 2005).
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Figure 1.12. Global changes in histone modification in normal and cancer cells. In 
this cartoon representation of histone octamers (grey cylinders), different histone mark 
combinations are shown in a gene-rich and in a subtelomeric region, rich in repeats (left 
and  right, respectively), in the context of a healthy and a cancer cell (top and  bottom 
panels, respectively). Histone modifications are represented as blue and green circles at  
histone tails. In healthy cells, regions that include the promoters of tumour-suppressor 
genes are enriched in histone modification marks that promote active transcription, such 
as  H3ac  and  H4ac,  and  H3K4me3.  On  the  contrary,  DNA  repeats  and  other 
heterochromatic regions are characterized by H3K27me3, H3K9me2 and H4K20me3, 
which  are  repressive  marks.  This  scenario  is  reversed  in  cancer  cells,  where  active 
histone marks are lost at tumour suppressor gene promoters, and repressive marks are 
depleted at heterochromatic regions. Ultimately, this leads to transcriptional inactivation 
of tumour suppressors, and a more relaxed chromatin conformation at sites that should 
remain  inaccessible  to  the  transcriptional  machinery,  leading  to  genomic  instability.  
Adapted from (M Esteller 2007).



Mechanistically,  histone  modifications  may  play  two  separate  roles  during 
tumorigenesis:  they  may  alter  gene  expression  programmes,  and  also  affect 
genome  integrity  and  chromosome  segregation.  Aberrant  changes  in  histone 
marks are intimately associated to the misregulation of CRF genes responsible 
for the deposition of those marks, as discussed below. As in DNA methylation 
patterns,  the  differences  in  nucleosome  occupancy  bearing  specific  histone 
marks have been studied in association with clinical parameters in several cancer 
types. A successful case is the prediction of prostate cancer risk and recurrence 
based on the levels of  H3K4me2 and H3K18ac (Seligson et al. 2005). In early 
stages of NSCLC, high levels of H3K4me2 or low of H3K9ac correlated with 
good prognosis  (Barlési et  al.  2007). Higher global  H3K9ac levels have also 
been associated to a lower recurrence in bladder cancer patients (Barbisan et al. 
2008),  and  H3K4me2  and  H3K18ac  have  been  described  as  independent 
predictors of lung and kidney cancer mortality (Seligson et al. 2009). Altogether, 
these  studies  present  histone marks as  potential  biomarkers  for  early tumour 
progression, potentially bearing as much information as DNA methylation tests. 
However,  unlike  methylation,  the  detection  of  marks  at  specific  residues  in 
histone  tails  requires  the  use  of  antibodies,  which  poses  a  major  technical  
challenge due to their variations in performance. Histone marks are also known 
to be less stable than DNA methylation, precisely because flexibility is their key 
characteristic  (Heyn and Esteller 2012). Their diagnostic potential in the clinic 
will  greatly  depend  on  technical  improvements,  and  on  the  further 
characterization of their role in tumorigenesis thanks to basic research.

1.4.3 Chromatin Regulatory Factors in cancer

It  is  becoming clear  that  many abnormal  epigenetic  events,  such as  aberrant 
histone  modification  positioning  or  altered  DNA  methylation,  may  lie 
downstream of genetic mutations in key enzymes that regulate those processes. 
Mutations in CRFs are often referred to as “epimutations” because they often 
lead to a misregulation in gene expression that may contribute to tumorigenesis 
(Elsässer,  Allis,  and Lewis 2011). That  this  is  a general  feature in cancer is, 
however, a very recent realization, and only now the scientific community is 
starting to assess the precise consequences of these mutations.

The first cancers where the misregulation of CRFs was described to play a key 
role were leukaemias.  Amongst  others,  genes  coding main HATs  EP300 and 
CREBBP,  HMTs like EZH2,  MLL and  NSD1,  or HDMs such as  KDM5A  and 
KDM6A are frequently mutated in various types of haematological malignancies, 
according to the Cancer Gene Census (CGC)  (Futreal et al. 2004). Even when 
DNMTs were known to be essential for CpG island hypomethylation in cancer 
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(M. Esteller 2007), they were thought to be not altered (Bestor 2003) until very 
recently, when DNMT3A, and later DNMT1 and DNMT3B, were found mutated 
in MDS and AML, where this alteration, moreover, predicted prognosis (Yan et 
al.  2011;  M.  J.  Walter  et  al.  2011).  Mutations  in  ATP-dependent  chromatin-
remodelling  complexes  also  have  been  described  to  be  recurrent,  amongst 
others, in ovarian and clear cell renal cancers (Elsässer, Allis, and Lewis 2011). 
Other  types  of  alterations,  such  as  translocations  (for  instance,  at  the  HATs 
EP300,  CREBBP,  NCOA2,  MYST3 and  MYST4) and aberrant expression (like 
that of  HDAC1,  HDAC2 and  HDAC6), are also found both in haematological 
and solid cancers (Rodríguez-Paredes and Esteller 2011). The components of the 
Polycomb complex, which regulates the deposition of the H3K27me3 mark, are 
also frequently altered in a variety of cancer types, including those in breast, 
bladder, pancreas, prostate and lymphomas. Interestingly, alterations in  KAT6B 
(Moore et al. 2004), SMARCC1 (Shadeo et al. 2008) and NSD1 (Quintana et al. 
2013) genes  have been described in  uterine,  cervical  and skin pre-malignant 
lesions,  respectively.  These  new  findings  would  introduce  these  proteins  as 
potential  biomarkers  for  prevention  and  early  cancer  detection,  and  thus 
expanding the possible uses of CRFs in the clinic.

Many  of  these  new  findings  that  implicate  the  misregulation  of  CRFs  in 
tumorigenesis  have  been  only  possible  thanks  to  the  recent  publication  of 
sequencing  studies  on  very  large  tumour  cohorts,  including  leukaemias, 
lymphomas,  ovarian,  renal  and  pancreatic  cancers,  and  rhabdomyosarcomas 
(Figueroa et al. 2010; Ley et al. 2010; Yamashita et al. 2010; Uno et al. 2002; 
Jiao et al. 2011; Banine et al. 2005; S. Jones et al. 2010). Some even highlighted 
the presence of inactivating mutations on proteins that regulate the epigenomic 
state  of  cells  (You  and  Jones  2012).  For  an  overview  on  currently  known 
alterations in CRF genes in cancer, see Table 1 and Table S2 in Chapter 5, in the 
Results section, which also includes transcriptomic changes described in CRFs. 
The notion that  epimutations may underlie further epigenetic aberrations that 
drive cancer development unveils a new perspective from which to study cancer.

Altogether, the newly described role of CRFs in tumorigenesis has attracted the 
attention of the scientific community, and CRFs are emerging as novel targets 
for cancer treatment. Their appeal relies on the reversible nature of epigenetic  
marks,  and much research is  currently being focused on the identification of 
potentially druggable CRFs. The idea is that, by inhibiting for instance HDAC 
enzymes, one could compensate for site-specific aberrant hypoacetylation. There 
are  currently  four  drugs  that  target  CRFs  that  have  been  approved  by  the 
American Food and Drug Administration (FDA): two are the DNMT inhibitors 
(DNMTi)  vidaza  and  decitabine  (5-aza-  and  5-aza-2′-deoxycytidine, 
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respectively),  designed for  the  treatment  of  MDS patients  that  may develop 
AML.  The  other  two  are  the  HDAC  inhibitors  (HDACi)  vorinostat  and 
romidepsin  (suberoylanilide  hydroxamic  acid  and,  formerly,  FK-228, 
respectively), approved for the treatment of the rare cutaneous T-cell lymphoma 
(Rodríguez-Paredes and Esteller 2011). More than 20 molecules of this type are 
currently  under  preclinical  and  clinical  investigation,  including  the  HDACis 
Panobinostat (Novartis) and CI-994 (Pfizer), which are in clinical phase III trials  
for the treatment of lymphomas and NSCLC, respectively (Giannini et al. 2012). 
Inhibitors of sirtuins (the class III HDACs, which are not affected by generic  
HDACis)  are  also  being  intensively  investigated,  because  they  are  likely  to 
induce apoptosis in cancer cells  by increasing p53 activity and thus stop the 
formation of tumours  (Rodríguez-Paredes and Esteller 2011). For an in-depth, 
recent review on epigenetic drugs currently under testing, and their mechanisms 
of action in cancer and other diseases, see (Arrowsmith et al. 2012).

Another field of study is the combinatorial use of different  epigenetic drugs,  
either amongst them, to achieve a synergistic therapeutic effect (such as with the 
combination  of  DNMTis  and  HDACis),  or  with  other  classical  antitumour 
molecules, as in HDACis, which recently raised hopes for their possible use to 
overcome drug resistance  (S.  V. Sharma, Haber,  and Settleman 2010). Major 
challenges in the development of epigenetic drugs include the determination of 
cancer subtypes most sensitive to them, and the restriction of their activity to 
restricted chromosome regions, in order to target specific genes or pathways and 
avoid undesirable side effects. Some of these drugs, like most HDACis, are not 
specific to certain CRFs, and affect the activity of many enzymes. Moreover, 
their mechanism of action still remains unclear, since, for instance, it is unknown 
whether their targets are histones or non-histone proteins. It is not known if the 
development of CRF-specific drugs would result in improved therapeutic results. 
More  research  on  the  antitumour  effect  mechanisms  of  these  drugs  is  still 
needed, but the fact that they work at very low doses and have few side effects is  
already encouraging  (Bannister and Kouzarides 2011). It is interesting to note 
that we are just at the start of the newly emerged pharmacoepigenomics field of 
research,  and  that  many  potentially  druggable  epigenetic  regulators  remain 
unexplored, as Patel et al. reviewed recently in depth. They identified six CRFs 
in the  CGC that  were promising candidates:  ATRX,  KAT6A,  KDM6A,  NSD3, 
PBRM1 and  SMARCA4 (Patel et al. 2013). Undoubtedly, epigenetic drugs will 
become key in the near future as therapeutic anticancer agents.

Epigenetic vulnerability mirrors oncogene addiction

An interesting notion derived from recent studies on the inhibition of several 
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altered CRFs in tumour cells is that, while malignant cells die, normal cells are 
apparently unaffected. Apparently, CRFs work in a somewhat redundant manner 
in healthy cells, but in cancer some specific ones become critical for the correct  
balance  of  the  epigenetic  regulation  required  to  maintain  the  expression,  or 
repression, of critical genes for tumour cell survival. Some have indicated that 
this “epigenetic vulnerability” mirrors the “oncogene addiction” axiom, because 
cancer cells  become dependant  on certain epigenetic pathways,  while normal 
cells can compensate deficiencies in them by activating alternative pathways that 
are intact  (Dawson and Kouzarides 2012). An example of this behaviour is the 
critical  dependency of DLBCL cells with  EZH2 activating mutations to EZH2 
enzymatic  activity,  absolutely  required  for  their  proliferation.  The  molecule 
EPZ005687, an EZH2-specific inhibitor, is able to exploit this vulnerability, and 
only selectively kills  lymphoma cells  with  activating mutations.  Those cells, 
thus, have become addicted to EZH2 activity, and its inhibition is cytotoxic to 
them,  but  inconsequential  for  lymphoma  cells  with  the  wild  type  EZH2 
phenotype (Knutson et al. 2012).

Epigenetic anticancer therapy: targeting CRFs

Epigenetic aberrations in tumours first  attracted the attention of the scientific 
community as putative prognostic factors, after the observation that some CRFs 
appeared recurrently mutated, and that altered patterns of histone acetylation and 
methylation could predict the outcome of cancer patients (Seligson et al. 2005; 
Fraga,  Ballestar,  Villar-Garea,  et  al.  2005).  Presumably,  mutations  or  other 
genetic aberrations on CRFs are responsible for those changes, presenting CRFs 
as  potential  biomarkers  to  stratify  tumours,  and,  potentially,  as  attractive 
druggable candidates. Inhibitors are designed against epigenetic factors that are 
mutated in some tumours, but moreover they are effective antitumour agents in 
cancers where other epigenetic pathways are impaired. HDACs, for instance, are 
rarely  mutated,  and  nevertheless  HDACis  have  been  shown  to  stop  tumour 
growth in cancers where HDACs are not altered. This broad activity spectrum is 
an  exclusive  property  of  epigenetic  drugs  because,  as  opposed  to  genetic 
mutations, epimutations are reversible. Most of them are “druggable”; this is, 
their  physicochemical  characteristics  and  structure  make  them,  in  theory, 
candidates to be directly targeted by an inhibitory molecule. As has been briefly 
reviewed  above,  there  are  already  some  inhibitors  of  HDACs  and  DNMTs 
approved for clinical use, and drug candidates are under development to target 
all  other  epigenetic  regulatory  systems,  including  Polycomb  proteins.  The 
downside of the efficiency of these molecules is that they may be specific of 
certain  tumour  subtypes,  which  are  yet  to  be  identified.  Moreover,  some 
epigenetic  drugs  may  even  promote  cancer  cell  survival  in  certain  tumours. 
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Clearly, much clinical research is still needed to see the full potential of these 
new class of anticancer agents, and basic functional studies will be crucial to 
determine which tumours are most vulnerable to epigenetic therapies.

1.4.4 The role of Polycomb Complex in cancer

Proteins of the Polycomb group (PcG) are essential for embryonic development 
and cell differentiation, and play a key role in maintaining the identity of stem 
and differentiated cells, principally through the regulation of H3K27me3 levels. 
Associated,  mainly,  into  two  repressive  complexes  (PRC1  and  PRC2),  PcG 
proteins repress cell fate transcription factors in pluripotent cells, while keeping 
them poised  for  activation  upon  differentiation  signals,  and  are  required  for 
silencing alternative lineage-specific genes. Given their dynamic nature and their 
importance in  the  maintenance of  a  “stemness” phenotype,  some researchers 
have  proposed  that  Polycomb  is  central  to  the  acquisition  of  stem  cell-like 
characteristics in somatic cells, leading to tumour initiation (Figure 1.13) (Valk-
Lingbeek, Bruggeman, and Lohuizen 2004; Bracken and Helin 2009). What is 
clear, according to current evidence, is that Polycomb proteins balance is critical 
for  the  maintenance  of  the  normal  chromatin  status  in  cells  (Sauvageau and 
Sauvageau 2010).

In healthy, non-malignant cells, the histone mark H3K27me3 is involved in the 
formation of repressive chromatin and gene silencing, especially at sites where 
lineage-specific genes, unwanted in differentiated cells, reside  (Bernstein et al. 
2006; Barski et al. 2007; Mikkelsen et al. 2007). This repression is, however, 
reversible.  High global  levels  of  H3K27me3 have been associated to  a  poor 
prognosis  in  oesophageal  carcinomas.  The  opposite  was  observed  in  breast, 
prostate, ovarian and pancreatic tumours, where a loss of H3K27me3 correlated 
with a shorter overall survival  (Füllgrabe, Kavanagh, and Joseph 2011). PRC2 
occupancy has also been associated to aberrant methylation in cancer at CpG 
islands,  precisely  at  the  sites  normally  bound  by  PRC2,  and  enriched  for 
H3K27me3, in stem cells.  Several  studies indicate that H3K27me3 may thus 
serve  as  a  recruiting  platform  for  DNMTs  that  catalyse  de  novo DNA 
methylation in tumour cells, leading to a permanent silencing of those loci (Viré 
et al. 2005; Widschwendter et al. 2007). However, H3K27me3 alone has also 
been reported to aberrantly silence genes in the absence of DNA methylation 
(Kondo et  al.  2008).  The role of  global  H3K27me3 levels  in cancer,  and its 
relation with DNA methylation, remains unclear, and is being actively studied.

The catalytic subunit of PRC2, responsible for the deposition of the H3K27me3 
mark,  is  coded  by  the  EZH2 gene  and  presents  also  a  puzzling  pattern  of 
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alterations in different tumour types. EZH2 is often over-expressed in a variety 
of tumours, including breast,  prostate, bladder, colon, lung, pancreatic cancer, 
sarcoma and lymphomas, and this correlates usually with more advanced stages 
and poorer prognosis (Sauvageau and Sauvageau 2010). In prostate tumours, the 
over-expression of EZH2 has been associated to deletion of the microRNA-101, 
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Figure 1.13. A model on how the gain and loss of cell  fate transcription factors 
(CFTFs) and aberrant Polycomb recruitment may lead to the formation of tumour-
initiating cells. The cartoon illustrates a loss or gain of function of two CFTFs (caused,  
for  instance,  by  mutation  and  over-expression,  respectively)  in  a  stem  and  a 
differentiated cell.  a. In the normal differentiation of a stem cell, levels of CFTF1 (a 
“stemness” TF) decrease, and those of CFTF2 (differentiation TF) and CFTF3 (repressor 
of “stemness” TF) increase. In the promoter of the differentiation gene, CFTF2 displaces 
PcG proteins to allow transcriptional activity. Conversely, CFTF3 recruits Polycomb to 
the promoter of the stem cell gene. b. Normal stem cells transform into tumour-initiating 
cells  when  the  levels  of  CFTF1  become  aberrantly  high,  leading  to  further  PcG 
recruitment and a more permanent silencing of the differentiation gene, which now is  
insensitive to differentiation signals. c. Differentiated cells may also de-differentiate and 
convert to tumour-initiating cells when CFTF2 function is lost, and the differentiation 
gene is aberrantly silenced. It may also be that  CFTF1 is then activated, and/or that  
CFTF3 is lost and the stem cell gene can no longer be repressed. Adapted from (Bracken 
and Helin 2009).



providing a mechanistic explanation for its tumorigenic role  (Cao et al. 2010). 
This over-expression results in an increase of H3K27me3, the mark laid down 
by EZH2, in most tumours (Chase and Cross 2011). Specifically in breast cancer, 
EZH2 over-expression has been associated to an increase in the breast initiating 
tumour cells population, through the epigenetic repression of DNA repair, which 
is consistent with the clonal evolution of CSCs  (Chun-Ju Chang et al. 2011). 
Some studies,  however,  have shown that  there  is  no association between the 
EZH2 over-expression and an increase of H3K27me3 in ovarian and pancreatic 
cancers  (Füllgrabe,  Kavanagh,  and  Joseph  2011).  Those  cases  may  seem to 
contradict the oncogenic role of  EZH2 and the aberrant silencing associated to 
an enrichment of H3K27me3; however, a possible explanation would be that the 
imbalance of H3K27me3 levels, in either direction, may be tumorigenic, given 
that its careful regulation is essential to maintain cellular integrity (Bannister and 
Kouzarides 2011).

Initial screenings in tumours surprisingly found mutations of  EZH2 that were 
thought  to  be  inactivating,  but  it  soon became apparent  that  there  were two 
opposite  types  of  mutations  in  EZH2. In  lymphomas,  missense  mutations  at 
Y641, within the SET domain, result in a gain of function and enhanced catalytic 
activity,  increasing  H3K27  levels  (Morin  et  al.  2010);  while,  in  myeloid 
neoplasms, mutations are often inactivating and confer poorer prognosis,  and 
EZH2 loses  its  HMT activity  (T.  Ernst  et  al.  2010;  Nikoloski  et  al.  2010). 
Mutations in other components of PRC2 have not been reported, although the 
H3K27 HDM  UTX is mutated in a number of malignancies, and this may be 
functionally equivalent to EZH2 over-expression (Haaften et al. 2009). The role 
of  EZH2 in  cancer  is  still  not  clear,  as  it  seems to  have  different  functions  
depending on the tissue of  origin of  the  tumour,  but  it  is  believed to  act  in 
growth control (You and Jones 2012). Depending on the context, thus, it behaves 
as an oncogene or as a tumour suppressor.

Given  the  success  in  developing  HDACis,  and  the  current  lack  of  HMT 
inhibitors, there is growing excitement on EZH2 as a therapeutic target. DZNep 
was the first drug reported to deplete PRC2 proteins and inhibit H3K27me3, in 
breast cancer MCF7 and colorectal HCT116 cells  (Tan et al. 2007). Further, it 
induces  tumour-selective  apoptosis  and  growth  inhibition  in  glioblastoma, 
prostate and ovarian cancer cell lines, its effects being similar to depletion of  
EZH2 using short-hairpin RNA  (C.-J.  Chang and Hung 2012).  However,  the 
inhibition of EZH2 activity by DZNep is not specific (Miranda et al. 2009), and 
it has not yet been tested  in vivo. Very recently, two different research groups 
developed  each  an  EZH2-specific  inhibitor  molecule  that  provides  a  further 
promising option for the treatment of DLBCL. The first, GSK126, is a HMT 
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inhibitor highly-selective for  EZH2 (even over  EZH1) that abolishes growth in 
DLBCL cells  with  the  activating  mutations  at  Y641  and  A677,  through  the 
lowering of H3K27me3 levels and the consequent de-repression of aberrantly 
silenced genes. GSK126 also proved its efficacy in xenografts of DLBCL cell 
lines,  improving the survival  of  the  mice  (McCabe et  al.  2012). The second 
molecule,  EPZ005687,  was shown to block H3K27me3 in DLBCL cell  lines 
regardless  of  EZH2 status,  through  the  specific  inhibition  of  EZH2,  but 
importantly only inhibited growth in cells with activating mutations (Knutson et 
al. 2012). The potential for  EZH2 inhibitors will be unravelled in the coming 
years,  when  their  efficacy  is  tested  in  a  clinical  setting.  Further  research  is 
required, however, for the detailed understanding of the role of EZH2 in tumours 
of different  origins, as the inhibition of PRC2 may have a counterproductive 
effect in malignancies where EZH2 seems to be a tumour suppressor.

Polycomb as a regulator of stemness and EMT

Several studies have noted the overlap of EZH2 targets in stem and cancer cells. 
In prostate cancer, moreover, the repression at those sites correlates with a poor 
prognosis, supporting the hypothesis that tumours revert to more and more stem 
cell-like states as they progress  (Yu et al. 2007). It is assumed that, following 
this  model,  differentiation  gene  promoters  become  aberrantly  repressed  in 
tumours, while genes that are responsible to maintain stemness are expressed. 
The  over-expression  of  EZH2 has  been  associated  to  more  aggressive 
presentations of cancer and the formation of  CSCs,  and recently it  was also 
found to be involved in the expansion of an aggressive CSC population in breast 
tumours (Chun-Ju Chang et al. 2011).

Polycomb proteins have also been described to promote angiogenesis and EMT 
during tumour development. The first is enhanced through the  EZH2-mediated 
silencing of VASH1, a negative regulator of angiogenesis, thus enhancing it (Lu 
et al. 2010). EMT, a process that tumour cells are thought to undergo prior to 
metastasis, is promoted by the recruitment of EZH2 and SUZ12 by SNAI1. This 
results  in  the  repression  of  the  epithelial  marker  E-cadherin  through  the 
deposition of the H3K27me3 mark at the CDH1 promoter (Herranz et al. 2008). 
The  contribution  of  Polycomb  proteins  to  cancer  development,  and  more 
specifically that of PRC2, seems to be at different levels and through distinct  
mechanisms,  presenting  them  as  multifaceted  elements  that  make  for  very 
attractive pharmacological targets to inhibit tumour progression.
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1.4.5 Interplay between epigenetic factors in cancer

That genetic events have a profound impact on the chromatin organization of the 
genome,  via  aberrant  regulation  of  CRFs,  has  been  now  reviewed.  The 
understanding of the implications of altered CRFs in tumorigenesis will improve 
as technologies for the interrogation of epigenetic factors evolve. However, as 
You and Jones pointed out recently, this scenario represents only “one side of a 
coin”,  as  aberrant  epigenetic  regulation  can  also  lead  to  genomic  alterations 
(mutations in key genes or disruption of signalling pathways) and, ultimately, to 
cancer development  (You and Jones 2012). Three specific cases are described. 
First, some key DNA repair genes, including MGMT,  CDKN2B and RASSF1A, 
lose their function in cancer preferentially through promoter hypermethylation, 
rather than mutation. Second,  epigenetic silencing cooperates with mutations in 
the inactivation of key signalling pathways, for instance by silencing one allele 
when the other is mutated. And finally, the observation that a third of all single 
nucleotide variants (SNVs) occurs at methylated CpG sites, and that half of the 
mutations  at  key  genes  like  TP53 occurs  at  those  sites,  suggests  that  the 
methylation epigenetic mark itself may be causing somatic mutations.

The maintenance of a normal epigenetic landscape requires a fine-tuned, cell-
specific regulation, and tipping key factors on either side may provide a suitable 
environment  for  tumorigenesis.  Usually,  each  type  of  factor  is  studied 
independently for methodological reasons; in reality, however, all parts form a 
single complex inter-dependent system that controls the life cycle of a cell. 

It  seems evident  that  the relationships between different  epigenetic factors is 
decoupled in cancer, and that an aberrant interplay between them contributes to 
tumour  development.  Hypermethylation  at  tumour  suppressor  promoters  is 
associated to a particular chromatin configuration in cancer cells, consisting on 
low levels of histone acetylation and H3K4me3, and higher levels of H3K9me3 
and  H3K27me3  (Ballestar  et  al.  2003;  Sandoval  and  Esteller  2012).  This 
suggests the existence of a cross-talk between DNA methylation and histone 
modification  that  promotes  the  aberrant  silencing  at  those  genes.  Another 
epigenomic  switch  involves  DNA  methylation,  histone  modifications  and 
Polycomb proteins: sites that become hypermethylated in cancer overlap with 
EZH2 binding sites  and  the H3K27me3 mark,  suggesting  that  the  reversible 
repression established by Polycomb may serve as a recruitment platform for a 
more stable  repression mediated by  DNA methylation  (Widschwendter  et  al. 
2007). The known association of EZH2 and DNMTs may provide a mechanistic 
explanation for this  positive  feedback loop that  ends in aberrant  silencing in 
tumours.
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1.5 High-throughput study of cancer genomes

As has been reviewed above, our knowledge on epigenetics and cancer biology 
has improved at a fast pace in recent years. All these advances would not have 
been possible without the prior development of technologies that allow scientists 
to answer complex questions,  such as:  “what  is the methylation status of all  
genes in a tumour?” or “how are somatic mutations in a gene different at two 
given tumours, and how does this affect cancer development?”. The output of 
those  experiments,  however,  needs  to  be  coupled  to  appropriate  statistical 
analyses and integrative methods to extract solid conclusions, and it is at this 
step that bioinformatics has become essential for current biomedical research.

1.5.1 Methods to extract information from biological samples

To understand how genes are regulated in a tumour, or  which histone marks 
characterise  a  specific  genomic  region,  one  must  first  extract  primary 
information from specially processed biological samples. Then, this information 
must  be  digitalised  in  order  to  allow for  its  computational  processing.  And, 
finally, different methods may be applied through ad hoc computer software to 
answer specific biological questions. Two genome-wide types of experiment that 
scientists perform nowadays in the field of genomics are the determination of the 
transcriptomic and epigenomic status in a cell. The first seeks to quantify the  
average amount of RNA (usually, mRNA) present  in a biological  sample for 
each transcript at a given time point, with the aim of obtaining a snapshot that 
shows which genes are being transcribed. Epigenomic experiments, on the other 
hand,  interrogate  some  key  regulators  of  chromatin  structure,  such  as  DNA 
methylation or histone modifications, to understand the local conformation at 
each given site. In the case of cancer genomic studies, typically one seeks to 
characterize  tumour  samples  from a  transcriptomic,  genomic  and  mutational 
perspective to obtain an overview of deregulated biological functions.

Interrogating the transcriptome

Cells present diverse protein concentrations that are essential to maintain their 
identity in different tissues. The intermediate products between the genome and 
the proteome are mRNAs, which have been routinely used as a proxy to estimate 
gene expression (the transcriptome). By comparing the transcriptional activity of 
genes in different  tissues or cell  types we deepen our understanding of what 
causes  the  characteristic  phenotypes  of  each,  and how does  gene expression 
change in disease. The development of DNA microarrays in the mid 1990s made 
possible  to  interrogate  the  expression  of  thousands  of  genes  at  once.  Those 
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consisted  initially  on  complementary,  single  stranded  DNA  copy  (cDNA) 
libraries that corresponded to a large number of mRNAs of known sequence. 
Those cDNAs are fluorescently labelled at one end and dotted onto a glass slide. 
Two cDNA libraries, for instance one from normal tissue (green fluorochrome) 
and  one  from  a  tumour  (red  fluorochrome),  are  hybridised,  and  non-bound 
molecules  are  washed  away.  Each  spot  corresponds  to  a  specific  gene,  and 
fluorescent dots indicate the expression of genes in red (higher in the tumour), 
green (higher  in  normal),  yellow (in both tissues)  and black (no expression) 
colours. The ratio of light intensities is used to estimate the relative differences 
in expression. The whole human genome can be comprehensively covered in 
tiling arrays, that systematically probe features across whole chromosomes; their 
price, however, is prohibitive to use this approach on a regular basis. There are 
now many affordable commercially available microarrays that show one or two 
colours  (single  and  dual-channel,  respectively)  and  that  come  prepared  with 
cDNA collections representing promoters, coding regions, splice sites, 3' ends or 
common single nucleotide polymorphisms (SNPs) in a single array. 

The rapid development of sequencing technologies (often called next generation 
sequencing, or NGS) has fostered the recent appearance of new techniques that 
adopt them. Levels of gene expression can also be measured by RNA sequencing 
(RNA-Seq),  which  directly  samples  and  sequences  transcripts  present  at  the 
source material, instead of probing them, and maps them back to a reference 
genome. The number of reads that map at each genomic region corresponding to 
a transcript (gene) is the direct measure of its expression levels. This method 
does not require prior knowledge on gene structure nor variants, and in fact it  
can be used in species for which the genomic sequence is  unknown for this 
reason (Schliesky et al. 2012).

Each of  these  technologies  has  its  advantages  and drawbacks,  making them 
complementary  nowadays.  They  may  have  different  uses  in  the  future,  as 
sequencing costs continue to drop. Table 1.4 summarizes their main differential 
characteristics.

ChIPping the epigenome

Chromatin immunoprecipitation is a widely used technique to detect TFs that are 
directly  or  indirectly  bound to DNA  in  vivo.  Few years  ago,  an array-based 
method, termed ChIP on chip, was developed to allow for genome-wide analyses 
of this  kind.  The coupling of NGS to ChIP led to the birth of the ChIP-seq  
technology,  which  allowed  for  truly  genome-wide  coverage.  Finally,  the 
availability  of  antibodies  with  high  specificity  towards  histones  bearing  a 
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Table  1.4.  Main  characteristics  of  microarray  and RNA-Seq technologies. Some 
practical considerations are also included.

Microarray RNA-Seq

An established technology, experimental 
biases are known after a decade of 
intensive use, and thus computational 
methods have been developed to deal 
with systematic variation across 
laboratories. (Fan et al. 2010; Luo et al. 
2010; MAQC Consortium 2010).

Still an evolving technology, has not 
established widely accepted standards.

Around 10 times less expensive (Malone 
and Oliver 2011).

Being sequencing-based, it is still more 
expensive than the array technologies.

Expression estimates are uniform 
throughout transcripts.

Sequencing heterogeneity across the 
transcript influences expression estimates (J. 
Li, Jiang, and Wong 2010).

Requires prior knowledge of the 
underlying genomic sequence.

Splicing events, exon junctions and SNPs 
can be detected without prior knowledge

Requires prior knowledge of the 
underlying genomic sequence.

Identification of transcripts that have not 
been previously annotated (gene discovery) 
(Hurd and Nelson 2009).

Very low and very high transcript 
concentrations present technical 
problems due to background noise and 
hybridisation saturation, respectively.

It can quantify both very low and very high 
transcript concentrations (Mortazavi et al. 
2008; Hurd and Nelson 2009).

Requires prior knowledge of the 
underlying genomic sequence.

May be used to determine the transcriptome 
in species for which the full genome 
sequence has not yet been determined 
(Schliesky et al. 2012).

Cross-hybridisation of related probes, 
low transcript abundance in some tissues 
and complex computational analyses 
difficult the quantification of 
alternatively spliced transcripts (Richard 
et al. 2010).

Allows for the quantification of individual 
transcripts isoforms (Richard et al. 2010).

Restricted to the non-repetitive fraction 
of the genome due to cross-hybridisation 
between similar sequences.

Does not suffer from cross-hybridization 
between similar sequences and thus may be 
used genome-wide (Hurd and Nelson 2009).

Requires more source material, in the 
order of micrograms, and PCR 
amplification,  that may introduce biases.

Requires less source material, in the order of 
nanograms, and does not require PCR 
amplification (Hurd and Nelson 2009).



specific post-translational modification opened the path to the high-resolution 
interrogation  of  chromatin  states  (Barski  et  al.  2007).  These  advances  have 
provided the scientific community with an unparalleled view of the epigenome, 
with the creation of maps of nucleosome positioning (Segal and Widom 2009), 
chromatin conformation (De Wit and De Laat 2012), TF binding sites (Farnham 
2009), histone modifications  (Rando and Chang 2009) and DNA methylation 
(Laird 2010). Given the recent realization that most of our genome is transcribed 
(The ENCODE Project Consortium 2012), defining the epigenomic landscape 
gains even more relevance for the understanding of cell molecular mechanisms.

ChIP-seq is  now the most  widely used technique to  determine genome-wide 
histone modification occupancies,  due to its  higher specificity and sensitivity 
over ChIP on chip. It critically depends on two factors: having enough factor-
bound chromatin relative to non-specific chromatin background, and obtaining 
sufficient chromatin so that each sequence is from a different molecule in the  
ChIP  reaction  (Pepke,  Wold,  and  Mortazavi  2009).  A  typical  ChIP-seq 
experiment would produce ideally a data set of around 30 million reads of 20-
50bp in length, although much smaller sets were used when the method was first 
performed some years ago.  Once the reads are produced and digitalised they 
need  to  be  mapped  to  the  reference  genome.  There  are  a  number  of 
bioinformatic  tools  available  for  this  purpose  (often  called  “mappers”),  and 
multiple  configurations,  which  will  greatly  determine  the  sensitivity  of  the 
analysis.  For  instance,  if  reads  that  do  not  map uniquely to  the  genome are 
discarded, true occupancy sites will not be detected in repetitive regions. After 
mapping both the IP and the background fractions, a model is built  to determine 
the  shape  and  size  of  each  “peak”,  that  corresponds  to  the  pileup  of  reads 
corresponding to the ChIPped factor (Figure 1.14). At this step, it is important to 
consider that reads only represent the most 5' end of the original fragment, due 
to the nature of most of the current sequencing instruments (except pair-end). 
The  enrichment  of  these  peaks  over  the  background  signal,  which  varies 
depending on the organism and the cell type, determines putative peak regions. 
The final  step involves  statistical  tests  to  filter  out  sequencing artifacts.  The 
algorithm of choice and the fine-tuning of its configuration parameters is crucial 
to obtain a meaningful result; the approach for a TF analysis is very different  
from that of some broad histone marks, such as H3K27me3. The first presents 
typically a punctuated pattern of binding sites, while the second occupies broad 
regions  throughout  the  genome,  rendering  the  “peak”  concept  meaningless 
(Barski et al. 2007).

There  are  many algorithms available  to  perform the  “peak”  enrichment  step 
(usually referred to as “peak callers”), most of them optimized to solve a specific 
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Figure 1.14. A typical ChIP-seq “peak calling” pipeline. A profile is formed via a 
census algorithm, for instance by counting the number of reads overlapping each base 
pair along the genome (upper left panel; in blue and red, negative and positive strand 
reads,  respectively.  Purple  represents  the  distribution  of  shifted  reads).  The  same 
processing is performed on the background data. The signal and background profiles are 
compared to define regions of enrichment (middle panel). Finally, peaks are filtered for 
false positives and ranked according to statistical significance. In the bottom left panel,  
P(s) is the probability of observing a location with s reads covering it. Bars represent the 
control  data distribution. A hypothetical  Poisson distribution fit  is  shown with  sthresh 
indicating a cut-off above which a ChIP-seq peak might be considered significant. In the 
bottom right panel, a schematic representation of two types of artifactual peaks: single 
strand peaks and peaks formed by multiple occurrences of only one or a few reads (also 
called “singletons”). Adapted from (Pepke, Wold, and Mortazavi 2009).



biological  or  technical  problem;  as  of  November  2012,  the  count  was  52 
bioinformatic  applications,  according  to  the  SEQanswers  community 
(http://seqanswers.com/wiki/ChIP-Seq). Given the sheer abundance of methods 
and their technical variability, the choice of a specific one may be a challenging 
task, especially taking into account that it  will  influence the final  results.  To 
provide a user-oriented guide, several authors have evaluated the performance of 
those tools using the same input data (Laajala et al. 2009; Wilbanks and Facciotti 
2010).  See  Figure  1.15  for  a  selection  of  peak  callers  and  their  main 
characteristics. A very popular open source bioinformatic application is MACS, 
that was developed back in 2008 but has been under constant improvement and, 
most importantly, providing support to users; recently, its developers have made 
available a detailed protocol to use MACS for three different data types: TFs, 
sharp histone marks and broad domains of histone mark occupancy (Yong Zhang 
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Figure 1.15. A selection of ChIP-seq peak callers. Only open source programs that can 
use control data are included. Their common features are summarized and grouped by 
their role in the peak calling procedure (coloured blocks). Programs are organised by the 
features they use (Xs) to call peaks from ChIP-seq data. The version of each program is 
shown, as the feature lists can change with program updates. References: CisGenome (Ji 
et al. 2008), Minimal ChipSeq Peak Finder (Johnson et al. 2007), E-RANGE (Mortazavi 
et al. 2008), MACS (Yong Zhang et al. 2008), QuEST (Valouev et al. 2008), Hpeak (Qin 
et al. 2010), Sole-Search (Blahnik et al. 2010), PeakSeq (Rozowsky et al. 2009), SISSRS 
(Jothi  et  al.  2008),  spp package  (Kharchenko,  Tolstorukov,  and Park 2008).  Adapted 
from (Wilbanks and Facciotti 2010).

http://seqanswers.com/wiki/ChIP-Seq


et al. 2008; Feng et al. 2012).

A key challenge for peak finders is to identify regions truly occupied by the 
factor of interest,  while avoiding false positives.  Typically,  factor enrichment 
detection is an iterative process, and not the end of the experiment, as many 
parameters that influence the output are unknown until the data is processed. For 
instance,  the  ChIP-seq  may  require  further  sequencing  to  reach  enough 
sequencing depth, and thus needs to be repeated and the new data incorporated 
to the original to determine the final enriched regions.

Sequencing the cancer genome: computational issues

Thanks to the advances in NGS technologies, it is now feasible to determine full 
transcriptomes (expressed genes), whole mutation landscapes (mutations in gene 
coding or non coding regions) and genomes (structural variants and CNV) in 
cancer cells. Given that cancer is still perceived as a mostly genomic disease, it 
is crucial to use all the approaches above to profile tumours and obtain a deeper 
knowledge  of  the  mechanisms  that  sustain  them.  Special  considerations, 
however, should be taken into account given the nature of cancer genomes.

Cancer samples usually provide a much smaller amount of biological material, 
especially if they come from biopsies performed with diagnostic purposes. To 
overcome  this  limitation  often  WGA is  used,  but  it  may  cause  artifactual  
alterations in the sequence. Two other reasons for the low nucleic acid quantity 
are technical,  as many tumours are FFPE (formalin-fixed paraffin embedded) 
and this degrades the specimens,  and biological,  given the high necrotic and 
apoptotic  rates  that  lower  the  quality  of  the  DNA that  can  be  extracted 
(Meyerson, Gabriel, and Getz 2010). Moreover, tumours are an heterogeneous 
mixture of normal and cancerous cells,  which are  in  turn an arrangement of  
different  clones.  NGS  technologies  permit  the  extraction  of  meaningful 
information from such low-quality  biological  samples,  thanks to  their  digital 
nature: the same region can be sequenced many times (over-sampling) to obtain 
highly-accurate  information  (Ley  et  al.  2008).  There  are,  however,  many 
technical and algorithmic challenges. The main genomic alterations studied in 
tumours using NGS are CNVs, detected through changes in sequencing depth; 
somatic nucleotide substitutions and small insertions and deletions, identified by 
multiple  reads  that  do  not  fully  align  to  the  reference  sequence;  and 
chromosomal rearrangements,  which are evident  when pair-end reads map to 
different loci (Figure 1.16).

By far, the most common genomic alteration in cancer is nucleotide substitution 
mutations, but the rate at which they are observed varies greatly depending on 
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the  tissue  of  origin.  For  instance,  in  ultraviolet-induced  melanomas  the 
substitution rate may reach 10 nucleotides per million bases, a ten-fold increase 
compared to the average in tumours (Pleasance et al. 2009). Also, tumour cells 
of some cancer subtypes bear mutations in key DNA repair genes that result in a 
hypermutator  phenotype  (McLendon  et  al.  2008).  On  the  contrary, 
haematopoietic malignancies very rarely present frequent somatic mutations. It 
is therefore crucial that downstream statistical analyses take into account this 
inter-tumour heterogeneity aspect.  This is  also the reason why sequencing of 
matched DNA from a normal sample is essential, given our current incomplete 
knowledge of human germline variation. The analysis of nucleotide substitutions 
(“variant  calling”)  must  be  adjusted  for  the  sample-specific  background 
mutation rate, the ploidy and the copy number at each region.

Once somatic mutations, and small indels, have been detected (or “called”) in a 
tumour sample, the major challenge that  arises is  to tell  “true” (driver)  from 
passenger mutated genes; this is, those that are causative and those that occurred 
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Figure 1.16. Types of genome alterations that can be detected by NGS. Sequenced 
fragments are shown as bars, with the unsequenced portions in grey. Reads are aligned to 
the reference genome, and the colours of the sequenced ends show where they align to.  
Different types of genomic alterations can be detected, from left to right: point mutations 
(here, A to C) and small insertions and deletions (indels) (a deletion shown by a dashed 
line); copy number changes (shaded boxes represent absent or decreased reads in the 
tumour sample) and chromosomal rearrangements. Adapted from  (Meyerson, Gabriel, 
and Getz 2010).



secondary to the first and do not play a major role in cancer development and 
progression. The most common approach to determine drivers is to asses the 
frequency at  which  each  genes  is  mutated  across  a  cohort  of  tumours.  This 
method,  based  on  the  assumption  that  important  alterations  are  positively 
selected and thus appear at higher frequencies, tends however to favour early  
drivers,  and  often  fails  to  detect  drivers  that  are  preferentially  mutated  at 
advanced stages.  Nevertheless,  it  has been the strategy followed in the  great 
majority of cancer sequencing studies published recently, which assessed large 
tumour cohorts, some comprising hundreds of samples. The impact of lowly-
recurrent  drivers  (those  genes  with  rare,  but  likely  functional  mutations) is 
underestimated if only frequencies are evaluated. A recently published method, 
Oncodrive-fm (Gonzalez-Perez and Lopez-Bigas 2012), addresses this issue by 
using  existing  tools  to  predict  the  functional  impact  (FI)  of  mutations,  and 
assessing the bias towards FI mutations within each gene. Genes with few, but 
highly deleterious mutations, arise as likely drivers when this approach is used.

Future challenges in cancer sequencing driver assessment will be likely directed 
at  the  determination  of  single  cancer  cells  variants,  which  will  allow  to 
understand tumour heterogeneity and use it in the clinic (N. Navin et al. 2010). 
The prioritization of variants is also likely to improve significantly thanks to the 
advances in big projects such as the 1000 Genomes, the sequencing of thousands 
of personal genomes from patients and healthy in the very near future and the 
prospect of new approaches to determine the nature of those variants (Fu et al. 
2013).

1.5.2 Multidimensional data integration approaches

Cancer genomics data sets often consist of multi-dimensional and heterogeneous 
data that needs to be integrated to understand the full picture. Ten years ago, 
research focused on the assessment of mutations in individual genes, or the copy 
number  status  of  specific  loci,  across  few  samples.  Nowadays  microarrays, 
genomic mutations or CNVs and methylomes are interrogated across hundreds 
of tumours, usually with the aim to determine lists of genes that show significant 
differences across conditions, and investigate their role in tumour development. 
The integration of data coming from different sources has proved to be essential 
to  understand  the  complex  relationships  underlying  the  oncogenic  process 
(Chuang et al. 2012; The Cancer Genome Atlas Network 2012; R. Chen et al. 
2012). Here I highlight two integrative approaches that are key to current cancer 
genomics research: enrichment analysis and data visualization.
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Enrichment analysis

Transcriptomic experiments in tumour sample cohorts typically output a list of 
genes that are differentially expressed in two different conditions (for instance, 
normal and cancer tissue). The biological meaning of those gene lists cannot be 
manually  determined  by  annotating  known functional  characteristics  of  each 
element,  and  thus  algorithms  that  seek  over-representation  (enrichment)  of 
functional  annotations  have  been  developed  (Tavazoie  et  al.  1999).  These 
methods, typically called enrichment analyses, are an unsupervised integration 
of data, thus not assuming any prior knowledge. The general question usually is:  
“what kinds of patterns exist in this data set?”. The common assumption is that  
features that occur frequently in the data are the interesting ones, which allows 
to use this approach regardless of the nature of the data.  Signatures based on 
genes  aggregated  as  modules  are  more  stable  across  studies  than  individual 
genes,  the  expression of  which varies  substantially.  A simple  example of  an 
enrichment analysis: in a group of transcriptomic experiments from four cancer 
subtypes, one may want to determine whether genes differentially expressed in a 
specific subtype are enriched for previously defined pathways (Figure 1.17). The 
KEGG database can be used to obtain lists of genes annotated to each pathway 
(modules), and a statistical test may be used to probe for over-representation of 
down-regulated  genes  in  one  of  the  subtypes  within  a  module  (for  instance, 
using  a  binomial  test).  The  resulting  enrichment  scores  reflect  whether  the 
pathway  in  question  is  up-  or  down-regulated  in  one  of  the  four  tumour 
subtypes, which may aid in the biological characterization of those samples. A 
crucial aspect of enrichment analyses is to perform multiple test correction of the 
P values,  given  the  large  number  of  tests  performed,  which  increases 
substantially  the  false  positives  among  the  modules  that  receive  seemingly 
highly significant  P values.  A good balance between conservative (too many 
false negatives) and relaxed (too many false positives) approaches is the use of 
the Benjamini-Hochberg's false discovery rate (FDR) (Benjamini and Hochberg 
1995), that provides a new significance score (Q value) based on the expected 
fraction of false positives among the predictions.

There is a number of public databases that provide gene annotations that can be 
readily  used  for  enrichment  analyses,  the  most  popular  ones  being  KEGG 
pathways  (Kanehisa et  al.  2012),  the Gene Ontology (GO)  (Ashburner et  al. 
2000) and Reactome (Vastrik et al. 2007). An umbrella resource is the molecular 
signature  database  (MsigDB)  (http://www.broadinstitute.org/gsea/msigdb), 
which  includes  curated  gene  sets  mined  form  the  literature,  computational 
predictions and oncogenic signatures defined directly from cancer microarray 
experiments  (Subramanian et  al.  2005). A recently created resource, the gene 
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signature database (GeneSigDB) manually compiles gene signatures from the 
literature,  currently  including  more  than  1600  publications,  comprising  an 
interesting repository of clinically relevant information  (Culhane et al.  2012). 
Custom  assembly  of  gene  sets  related  to  a  particular  biological  function 
(regulatory modules) is also common, and allows for the exploratory analysis of 
specific  biological  problems.  Pioneering  work  using  regulatory  modules  in 
transcriptomic  experiments  dissected  common  and  differential  tumour 
progression mechanisms across a number of cancers  (Segal  et  al.  2004),  and 
later studies used similar approaches to delineate stemness signatures in human 
tumours  (Ben-Porath  et  al.  2008;  Wong  et  al.  2008).  A newly  developed 
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Figure 1.17. Enrichment analysis based on gene annotations to identify coordinately 
regulated functional modules. In this schema, a method is applied to define enriched 
gene sets in a hypothetical cancer signature. This approach uses a binomial distribution 
to calculate the probability that a gene set would show a given degree of enrichment in a 
cancer signature. These enrichment scores may be calculated for different types of gene 
sets  or  modules  (Gene  Ontology,  KEGG,  Biocarta,  etc.)  across  hundreds  of  cancer 
signatures  extracted  from a  cancer  genomics  database,  or  obtained  from microarray 
experiments. Adapted from (Rhodes and Chinnaiyan 2005).



approach to dissect tumour biology based on similar principles is sample-level  
enrichment  analysis  (SLEA),  that  assesses  the  transcriptional  status  of  gene 
modules as a whole in each sample, and uses the differential enrichment across 
samples  to  stratify  them  (Gundem  and  Lopez-Bigas  2012).  The  subsequent 
correlation of the sample groups created in an unsupervised manner with clinical 
features  has  proved  to  be  useful  to  gain  insight  into  complex  molecular 
interactions underlying tumorigenesis.

Data  integration  using  enrichment  analysis  approaches  is  not  an  end  point,  
though. Rather, it is designed to generate new hypotheses by finding patterns in 
an unsupervised manner, that later may be tested in supervised tests. This type of 
studies tend to encompass a large number of experimental conditions  or samples 
(even hundreds), and include also large collections of gene modules in the initial 
exploration  steps.  Many  tools  have  been  developed  to  perform  enrichment 
analyses; Hung  et al. counted 68 in their 2009 compilation  (Huang, Sherman, 
and Lempicki  2009),  and more are  likely to  exist  since then.  Most  of  those 
applications presented one or more shortcomings that have been overcome by 
Gitools  (http://www.gitools.org)  (Perez-Llamas  and  Lopez-Bigas  2011),  a 
framework designed for the analysis and visualization of genomic data. Some of 
those  features  are:  i)  the  direct  manipulation  of  the  results,  presented  as 
interactive  heatmaps  that  can  be  conveniently  annotated;  ii)  the  ability  to 
perform cross-comparison of enrichment analysis obtained from multiple gene 
lists and across several conditions; iii) the import of modules and annotations 
from existing databases, mapping gene identifiers according to the user's needs; 
iv) the ability to perform several statistical tests with the same data, and browse 
them as different dimensions on a heat-map; and v) the integration with popular 
platforms  such  as  GenomeSpace  (http://www.genomespace.org)  and  the 
integrative genomics viewer (IGV) (Robinson et al. 2011).

Visualization of data dimensions in cancer genomics

A common problem that  integrative cancer  genomic analyses face is  how to 
visually  summarize  results  that  often  comprise  several  inter-related  data 
dimensions, such as CNV, mRNA expression and mutation status. A number of 
solutions have been envisioned to overcome it, both static (necessary to report  
figures in scientific reports) and interactive (allowing for a deeper exploration of 
an analysis or reported results). The three main types of genomic visualization in 
oncogenomics, usually complementary, are genomic data coordinates, heatmaps 
and networks (Schroeder, Gonzalez-Perez, and Lopez-Bigas 2013).

Genomic coordinates browsers present the information in the context of genomic 
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loci, which is suited to inspect in detail the alterations that may be present in a  
region of interest. The UCSC Cancer Genomics browser (Sanborn et al. 2011), 
the IGV (Robinson et al. 2011) and the Savant Genome Browser  (Fiume et al. 
2012) are  three  of  the  most  popular  tools  in  this  category,  and  present  the 
genome  as  coordinates  where  the  user  may  zoom  and  scroll  to  navigate 
throughout it. Clinical information may be loaded on top of the cancer genomics 
data  to  aid  in  samples  stratification.  A  special  type  of  coordinates-based 
visualization are circular ideograms, as the ones developed by the creators of 
Circos (Krzywinski et al. 2009). This has become a frequent technique to report 
results  from  large  cancer  sequencing  studies,  thanks  to the  optimal 
summarization of very complex data associations that it offers (Figure 1.18). It is  
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Figure 1.18. Integrated visualization of genomics data: Circos plot schema. Circos 
plot (Krzywinski et al. 2009) summarizing several data dimensions from the output of a 
genomics study. From outer to inner rings: chromosome ideogram; genomic data (pale 
blue ring) showing structural variants > 50 bp in the outermost part (deletions in blue, 
duplications in red), and indels shown in the innermost as green triangles; transcriptomic 
data (yellow ring), representing the mRNA differential expression across two conditions 
in red (up-regulation) and green (down-regulation); proteomic data (light purple ring) 
representing the ratio of protein levels in two conditions; transcriptomic data (yellow 
ring) with the differential heteroallelic expression ratio of alternative allele to reference 
allele for missense and synonymous variants (purple dots) and candidate RNA missense 
and  synonymous  edits  (red  triangles,  purple  dots,  orange  triangles  and  green  dots, 
respectively). Adapted from (R. Chen et al. 2012). 



particularly well-suited to represent intra- and inter-chromosomal translocations.

Heatmaps are the most widely-used visualization used for enrichment analyses 
results, since they are designed to represent two-dimensional data regardless of 
its order, thus allowing to show data from distant genomic loci together. Usually,  
columns  correspond  to  samples  and  rows  to  gene  sets,  transcripts  or  other 
genomic  elements,  and  both  may  be  annotated  with  different  layers  of 
information, for instance clinical parameters, mutation status of key genes or the 
cancer  subtype of  samples,  which visually  stratifies  the  matrix  by  clustering 
similar elements. The colour of cells in the heatmap may follow a categorical or 
continuous scale to indicate, for instance, the P values resulting from a binomial 
enrichment  analysis,  the  normalised  expression  level  of  transcripts  or  other 
statistical parameters of interest. A main caveat of this visual representations is 
that they are not well suited to represent genomic rearrangements. Heatmaps are 
the visualisation method of choice in frameworks such as Gitools (Perez-Llamas 
and Lopez-Bigas 2011) and in oncogenomic resources such as IntOGen, where 
they are used as a means to represent cancer drivers from a transcriptomic and  
somatic mutation perspective (Gundem et al. 2010).

The  third  visualisation  approach  are  networks,  which  optimally  cover  the 
depiction of functional relationships between entities, usually genes or proteins. 
Node  attributes  in  the  network,  such  as  size,  colour  or  shape,  usually  code 
genetic features, and edges depict connections between entities, rendering the 
identification  of  highly  related  ones  very  fast  and  intuitive.  Highly 
interconnected genes in a network of oncogenomic alterations may indicate their 
higher likelihood to be drivers. Cytoscape is an open-source application that is 
widely used to visualise and analyse genomic networks  (Shannon et al. 2003), 
for which many plugins have been developed, rendering it highly customisable 
to the specific needs of each analysis. Networks are usually complementary to 
other  visualisations,  since  it  is  difficult  to  overlay  individual  tumour  sample 
features, and thus offer a more general overview.
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Part II

Objectives



In  light  of  the  concepts  reviewed  in  the  previous  introductory  chapter,  the 
general objective of this work is to elucidate the role of epigenetic factors in  
tumour initiation and progression.

More specifically, the main goals can be summarized as follows:

1. Understand  the  control  of  regulatory  epigenomics  modules  in  gene 
expression coordination in healthy and tumour cells.

2. Disentangle the role of Polycomb targets in breast tumour progression, 
integrating gene expression levels of epigenetic modules with clinical 
information.

3. Determine the influence of somatic mutations on chromatin regulatory 
factors on tumorigenesis across cancer types.

4. Provide the results of analysing tumour somatic mutations in cell lines 
to the research community.
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Part III

Results



Chapter 2

LARGE-SCALE CO-REGULATION BASED ON 
CHROMATIN STRUCTURE

In this first results chapter I introduce the concept of gene coordination in the 
context of regulatory modules. As has been described in Chapter 1, regulatory 
modules consist on groups of genes that share a common property, such as being 
bound by the same transcription factor or by nucleosomes sharing a specific 
histone mark. The observation that histone modifications and other epigenetic 
factors presented distinct enrichment patterns in tumours and normal cells led us 
to hypothesise that the changes that undergo cancer cells could be described in 
terms of a loss of synchronisation in gene expression. This analysis provides an 
overview  on  the  global  mechanisms  that  contribute  to  the  high-level 
transcriptomic regulation of genes, and serves as a proof of concept for other 
results presented further in this work. In this part, I designed and conducted the 
analysis and wrote the manuscript. This manuscript was under preparation at the 
time the thesis was submitted.
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Abstract 

Gene  expression  is  tightly  coordinated  within  cells  and  tissues.  This 
coordination is attributed to common mechanisms of regulation, e.g. the same 
transcription factor binding to the promoters, and/or a similar chromatin state 
and  spatial  positioning  in  the  nucleus  of  coordinated  genes.  However,  the 
relationship between different regulatory mechanisms is not well understood. 
Here  we define  regulatory  modules  as  sets  of  genes  that  share  regulatory 
properties (e.g. with binding sites for the same TF(s) or  similar chromatin 
marks), and we study the coordinated expression within and between those 
modules across normal tissues, tumour samples and cancer cell lines. We find 
that genes regulated by the Polycomb group of proteins exhibit a high degree 
of  co-regulation  in  normal  tissues,  which  is  lost  in  cancer  cells.  We  also 
observe that different activating regulatory modules are overall coordinated, 
but  they  are  anti-correlated  with  Polycomb  related  modules  and  modules 
characteristic of repressive histone marks. This pattern is consistent for normal 
and cancer cells, suggesting extensive cross-talk between different regulatory 
mechanisms.
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Introduction

The expression of genes within cells and tissues is largely coordinated, with 
sets of genes exhibiting co-regulation across cells. The mechanisms of this co-
expression could be the physical interaction of a protein with a set of genes that 
it directly regulates, or the spatial positioning of genes, which can be encoded in 
clusters  that  become  close  in  the  three-dimensional  organization  of  the 
chromatin in the nucleus. The study of gene co-expression across tissues and 
tumour  samples  can help  elucidate  the  mechanisms of  co-regulation and the 
relationships between those mechanisms. A common approach to study gene co-
expression is through the analysis of microarray data, where the transcriptional 
status of each gene is determined independently for every condition under study. 
Co-expression of genes across tissues or samples can be represented as edges in 
a gene network. Two independent publications  (Stuart et al. 2003; Bergmann, 
Ihmels, and Barkai 2003) compared co-expression networks in several model 
organisms and human,  and  showed that  significantly  co-expressed  genes  are 
functionally  related,  regardless  of  the  organism,  and  that  are  also  conserved 
through  evolution.  Although  the  expression  programmes  differ  between 
organisms, a characteristic of the gene expression networks inferred from these 
studies is  the significantly higher degree of modularity,  compared to random 
networks  (Bergmann, Ihmels, and Barkai 2003). The existence of transcription 
factories in the nucleus contributes to this gene association (Schoenfelder et al. 
2010),  but  they  are  not  essential  (Brown et  al.  2008).  Interestingly,  this  co-
regulation in gene expression is altered in tumours compared to normal tissue, as 
was first  observed by Choi  et  al.  (Choi  et  al.  2005).  They noted that  genes 
functionally associated to cell growth and immune activity were co-regulated in 
cancer.

A big challenge when attempting to infer co-regulated gene pairs from gene 
expression data is the dissection of relevant knowledge from background noise,  
since  the correlation between  the expression of genes may be due to multiple 
causes –often referred to as “high-dimensional” (Caldarelli, Pastor-Satorras, and 
Vespignani 2004). Moreover, the placement of probes in the microarray platform 
is known to produce correlation artefacts (Balázsi et al. 2003). The transcriptome 
is highly co-regulated (Clarke et al. 2008), and thus tailored methods have been 
developed to extract biological knowledge from high-throughput transcriptomic 
data.  For  example,  more  than  a  decade  ago,  Perou  et  al.  used  a  Pearson 
correlation  matrix  (Eisen  et  al.  1998) to  cluster  breast  tumour  samples  and 
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discover  five  new  molecular  subclasses  (Perou  et  al.  2000).  More  recently, 
Andersson  et  al.  used a  k Nearest  Neighbour approach to classify  childhood 
acute leukaemias (Andersson et al. 2007). Other approaches that have been used 
to understand gene co-regulation include bi-clustering (Ihmels et al. 2002; Prelić 
et al. 2006), association pattern discovery methods (Carmona-Saez et al. 2006; 
Creighton and Hanash 2003; Georgii et al. 2005) and other similarity measures 
(Gyenesei et al. 2007). Recently, a new method by Furlotte et al. that accounted 
for global confounding effects in gene co-expression was successfully applied to 
yeast and human data (Furlotte et al. 2011).

A typical visual representation  of the results of co-regulation studies based 
on gene expression is an undirected graph where co-regulated genes –the nodes 
of  the  network–  are  connected  through  edges.  Frequently,  only  the  most 
meaningful  pairs of genes,  i.e.  those above a given correlation threshold, are 
represented  to  facilitate  the  extraction  of  biological  knowledge.  Taking 
advantage of the vast amount of human high-throughput expression data that has 
been made available in the past decade, several approaches have classified and 
inferred  highly  co-regulated  functional  gene  groups  from  microarray  data 
(Gyenesei et al. 2007; Furlotte et al. 2011; Choi et al. 2005). Nevertheless, their 
characterization has usually been based on relatively small modules, extracted 
from public sources such as the Gene Ontology  (Ashburner et  al.  2000) and 
KEGG  (Kanehisa  et  al.  2012). Gene  regulatory  modules  derived  from 
experiments in human cells and cell lines have been previously used to decipher  
transcriptional  networks  from  expression  data  (Wong  et  al.  2008), and  are 
recently available  from big consortia  projects  like  ENCODE  (The ENCODE 
Project Consortium 2007). Especially of our interest are modules that explain 
global differences in gene co-regulation, where chromatin modification plays a 
key role  (Lee et  al.  2006). One of  the  main molecular  determinants  of   the 
transcriptional status of a gene is   the level  of  compaction of the chromatin. 
Specific chemical modifications in the aminoacid residues of the tails of histones 
strongly influence the local structure of chromatin at a given locus. Genes which 
share a common histone mark have similar levels of transcription; for instance, 
trimethylation of lysine 4 in histone H3 (H3K4me3) at proximal gene promoters 
has been shown to highly correlate with increased expression of downstream 
genes,  while trimethylation of lysine 9 at  H3 (H3K9me3) is characteristic of 
pericentromeric  and  repetitive  regions  which  remain  transcriptionally  silent 
(Barski et al. 2007).
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Here we used experimental regulatory modules to determine gene expression 
co-regulation  in  five  sets  of  samples,  comprising  normal  healthy  tissues, 
tumours,  a  mixture  of  tumours  and normal  samples  or  cancer  cell  lines.  We 
describe the most  coordinated genes to understand the key hubs within each 
condition.  Our aim is to compare the degree of co-regulation between genes 
under a particular regulatory influence, in cancer and normal cells.

Methods

Preparation of gene regulatory modules

We collected lists  of genes overlapping specific histone marks,  under the 
regulation  of  the  same   transcription  factor,  or  within  chromatin  regions 
computationally  predicted  to  be  in  the  same  state  (Table  1).  The  degree  of 
overlap between these gene lists is shown in  Figure S1. These include human 
genome-wide  occupancy  datasets  from ChIP-seq  experiments  in  several  cell 
types  (The ENCODE Project Consortium 2007; Ku et al. 2008; “H3K27me3, 
H3K79me2, and Suz12 ChIP-Seq in Human Embryonic Stem Cells (BG03).” 
2011; Wang et al. 2009; Lister et al. 2009; Maruyama et al. 2011; Barski et al.  
2007; Guelen et al. 2008; Kunarso et al. 2010) that we processed using Bowtie 
(version  0.12.5,  hg19  genome  assembly,  unique  alignments,  allowing  2 
mismatches) (Langmead et al. 2009) for short read aligning. For the detection of 
peaks from ChIP-seq data to determine transcription factors' binding sites, we 
used  MACS (version  1.4.1)  (Zhang  et  al.  2008) (nomodel  and  setting  --bw 
parameter to twice the shift size whenever a control IP was not available). For  
broad  histone  modifications  (i.e.  H3K27me3),  we  used  SICER (version  1.1) 
(Zang et al. 2009) (setting gap size to 600). Regions were assigned to protein 
coding genes (Ensembl v69) if they overlapped either to the gene body or up to 
5 kb upstream  the TSS, using BedTools (Quinlan and Hall 2010). Overall peak 
calling performance was evaluated with CEAS (Shin et al. 2009).

Other gene sets were obtained from KEGG (Kanehisa et al. 2012) and Gene 
Ontology (GO)(Ashburner et al.  2000). The list  and mappings of KEGG and 
Gene Ontology (GO) Biological Process terms were downloaded through the 
Gitools importer (Perez-Llamas and Lopez-Bigas 2011).

Preparation of expression datasets

We obtained the raw Affymetrix data of public transcriptomic datasets from 
the Gene Expression Omnibus (GEO) (Edgar, Domrachev, and Lash 2002) and 
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normalized the CEL files using the rma function in the “affy” package (Gautier 
et al. 2004) from R Bioconductor  (Gentleman et al. 2004). We then processed 
the  log2-transformed  absolute  expression  values   of  each  probe  across  all 
samples of each cohort by subtracting the median expression value of the probe 
across  the  cohort  and  dividing  the  difference  by  the  corresponding standard 
deviation. The selected datasets comprised healthy tissues (Roth et al. 2006), a 
mixture  of  cell  lines  and  healthy  tissues  (Su  et  al.  2004),  cancer  cell  lines 
(Barretina et al. 2012), tumour and normal paired samples (Hou et al. 2010), and 
tumour only samples (Ivshina et al. 2006) (see Table 2 for details).

Gene-pair correlations and correlation between regulatory 

modules

For each of the five transcriptomic cohorts we followed two separate 
approaches to  study the intra-module genes co-expression  (see  Figure 1 for a 
schematic representation), employing the Pearson Correlation Coefficient (PCC) 
as a measure of the co-regulation of a pair of genes for two main reasons. First,  
it  has  already  been  successfully  applied   to  study  gene  co-expression  using 
microarray  data (Stuart  et  al.  2003;  Allocco,  Kohane,  and  Butte  2004;  Shi, 
Derow,  and Zhang 2010).  Second,  although Furlotte  et  al.  described a  more 
sophisticated method to specifically  identify co-expression modules,  it  might 
remove true biological signals and miss the  large modules (Furlotte et al. 2011). 
Since we are precisely interested in global gene co-regulation, and very large 
modules, such as those formed by genes overlapping a specific histone mark, we 
chose PCC as a proxy to detect co-regulation in gene expression.

We first calculated the pair-wise PCC between the median-centred mRNA 
expression profiles of all probe pairs, across all the samples in the five  cohorts  
(Table 2),  and then used two approaches to characterize co-regulation. In the 
first approach  we ranked all probe pairs according to their PCC, and defined the 
most  co-regulated  ones  as  the  top  0.1%.  This  threshold  has  been previously 
observed  to  maximize  functional  similarity  in  co-expression  networks  (Shi, 
Derow, and Zhang 2010). We then mapped the probes to Ensembl v69 gene ids 
and discarded pairs of probes that corresponded to the same gene. The overlap of 
the resulting five sets of “top correlated genes” (one for each cohort) formed the 
“core” top correlated genes (Figure S2). To functionally describe this core of  
genes, we then calculated their enrichment for experimental regulatory modules 
(Table 1), GO groups (Ashburner et al. 2000) and KEGG pathways (Kanehisa et 
al. 2012). We used Gitools version 1.7.0 (Perez-Llamas and Lopez-Bigas 2011) 
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(http://www.gitools.org) to calculate the PCC of pairs of probes, and also to run 
and visualize the binomial enrichment. In the second approach we determined 
the distributions of PCCs of gene pairs within modules or combinations thereof 
(from Table 1) and compared them between normal and tumour tissues. To this 
end, for each cohort we extracted the PCC of gene pairs that were both included 
in the same module, and compared their distributions per experiment. We used 
in-house python scripts for this purpose, and the ggplot2 R package (Wickham 
2009) to generate plots. 

To  compute  the  correlations  between  regulatory  modules  (inter-module 
correlations),  we  implemented  a  pipeline  using  the  Wok  workflow  manager 
(http://bg.upf.edu/wok).  Briefly,  for  each pair  of  regulatory modules  we built 
two non-overlapping gene groups and ran Sample Level Enrichment analysis 
(SLEA)  (Gundem  and  Lopez-Bigas  2012).  Then  we  calculated  the  Pearson 
correlation coefficient across z-score values, and applied a PCC > 0.5 or PCC < 
-0.5  cut-off  to  filter  for  highly  correlated  and  anti-correlated  module  pairs, 
respectively.  We  used  Gitools  version  1.7.0  (Perez-Llamas  and  Lopez-Bigas 
2011)  for  the  statistical  calculations  and Cytoscape (Shannon et  al.  2003)  to 
visualize the co-regulation between modules.

Results and discussion

Hypothesis and rationale of the approach

In  order  to  study the  mechanisms of  gene  expression  regulation  and the 
coordination  between  these  mechanisms  we  collected  a  group  of  regulatory 
modules (Table 1), defined as sets of genes that share regulatory properties, and 
studied  the  coordinated  expression  within  (intra-module  co-regulation)  and 
between  (inter-module  co-regulation)  those  modules  across  normal  tissues, 
tumour samples, and cancer cell lines (Figure 1). We expect that the comparison 
of intra-modules co-regulation between normal and tumour samples will help us 
pinpoint  regulatory  mechanisms  that  become   altered  during  cancer 
development. On the other hand, the inter-module co-regulation should allow us 
to elucidate the level of cross-talk between different regulatory mechanisms, or, 
alternatively,  their  subjection  to  more  general  regulatory  processes  of  gene 
expression both in normal and tumour cells.

We  obtained  66  modules  from  experimental  sources,  and  six  from 
computational  predictions,  that  were  grouped  into  six  categories:  Polycomb 
Repressive  Complex  2  (PRC2),  repressive  histone  marks,  activating  histone 
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marks,  global  chromatin  dynamics,  acetylation  regulation  and  transcription 
factors  (Table  1).  While  the  vast  majority  of  these  modules  are  very  big 
(comprising  thousands  of  genes  each),  because  histone  marks  occupy  a  big 
portion of the transcriptome in a cell, we hypothesize that they will still capture 
global co-regulation changes.

Coordinated expression within regulatory modules (intra-

module co-regulation)

We first asked what are the properties of  highly co-regulated genes across 
tissues  or  tumour  samples.  For  that,  we  computed  the  Pearson  correlation 
coefficient (PCC) for each pair of genes across every dataset and retained the top 
0.1% correlated gene pairs. Next, we computed the enrichment of the retained 
genes  for  regulatory  modules  (described  in  Table  1)  and  curated  functional 
annotations from Gene Ontology and KEGG (Figure S3 and Figure S4).  We 
observed large differences among the top co-regulated genes across normal and 
tumour tissues (Figure 2).  While muscle function related and drug metabolism 
genes were the functions enriched for the most co-regulated genes in healthy 
tissues, cell cycle and immune system modules are characteristic of tissues from 
primary tumours and cancer cell lines. The latter observations are in line with a 
recent work by Shi et al. in breast cancer (Shi, Derow, and Zhang 2010) and the 
observations by Choi  et  al.,  when they compared normal and tumour tissues 
(Choi et al. 2005). On the other side, histone mark modules characteristic for 
active genes were clearly enriched among top co-regulated genes in the three 
cancer datasets but not in normal tissues (Figure 2). Since genes in the MHC 
supercluster are long-known to have an open chromatin structure  (Volpi et al. 
2000), this  observation is  in line with the  enrichment of the immune system 
function in top co-regulated genes in cancer.

Next  we  assessed  the  global  level  of  co-regulation  among  chromatin 
regulatory modules by looking at the distribution of PCCs of gene pairs within 
modules (Figure 3).  We observed that modules that share a regulatory property 
related to PRC2 are more co-regulated in non-tumour tissues,  indicating that 
preserving the tight regulation of those genes is crucial for the cell in a specific 
condition, and that this regulation is lost in cancer cells. In contrast, modules for 
histone marks characteristic in active genes (H3K4me3) present a stronger co-
regulation  in  cancer  (Figure  3).  We  did  not  observe  any  difference  in  the 
correlation of gene pairs annotated in KEGG, nor a bias in the global  PCCs 
overall  or  in  random modules.  To further  investigate the  importance of  gene 
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silencing  in  a  co-regulation  context,  we  overlapped  the  EZH2,  SUZ12  and 
H3K27me3 modules in ES cells and built a core module (Table S1). When we 
sorted all modules by the median within datasets, the Polycomb core module in 
ES cells appeared amongst the most co-regulated overall: it ranked first in both 
normal tissue cohorts, second in lung cancer, seventh in breast and ninth in the 
CCLE. These observations point out that it might be crucial for normal tissues to 
preserve the tight regulation of gene repression controlled by PRC2. Modules 
known to be repressed in  terminally differentiated cells include developmental 
genes that determine cell fate (Azuara et al. 2006), and their misregulation has 
been reported in tumours (Ben-Porath et al. 2008).

Synchronization between regulatory modules (inter-

module co-regulation)

In addition to studying the co-regulation of genes within regulatory modules, 
we  were  interested  in  the  relationships  between  regulatory  modules.  In 
particular, we wanted to elucidate which regulatory modules show coordinated 
or dis-coordinated expression. For that we computed Sample Level Enrichment 
Analysis  (SLEA)  for  each  module  and  dataset,  which  provides  a  general 
measurement of the expression status of a group of genes in each sample. Next, 
we compared the results between modules (Figure 4A and Figures S6, S7, S8, S9 
and S10),  finding two differentiated groups of modules with coordinated and 
discoordinated expression. Since regulatory modules contain overlapping genes 
(Figure S1), to better describe the relationship between modules, for each pair of 
modules  we  excluded  all  genes  in  common,  ran  SLEA and  calculated  the 
correlation, in the five different datasets. Our assumption is that, if two modules 
are  involved in  the  regulation  of  similar  processes,  their  enrichment  profiles 
would  be  similar  even  after  common elements  are  removed,  given  that  co-
expressed genes are likely to be co-regulated (Allocco, Kohane, and Butte 2004; 
Clarke et al.  2008). We actually observed similar co-regulation profiles in all 
modules (Figure S5), indicating that synchronised gene expression is maintained 
across both normal and cancer samples. 

There were two opposite regulatory groups in the modules we studied: PRC2 
and H3K27me3 had a clearly reversed enrichment pattern compared to the other 
four  (Figure  4A).  After  setting  a  threshold  for  the  correlation,  we  defined 
coordinated and dis-coordinated modules as those having positive and negative 
PCCs, respectively. We chose a network view to illustrate how the six regulatory 
groups are connected (Figure 4B). Two observations grabbed our attention from 
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the general topology of the network in all the six conditions. First, PRC2 and 
H3K27me3  regulatory  groups  were  positively  correlated,  but  anti-correlated 
with  the  rest.  Second,  activating  modules  (which  correlate  with  higher  gene 
expression) are coordinated overall, although H3K4me3, H3K9ac and H3K27ac 
seem  to  form  a  sub-cluster  connected  through  few  nodes  to  the  rest.  It  is  
interesting that synchronization between modules occurs regardless of the cell  
type of origin, in line with Dong et al. observations (Dong et al. 2012), and that 
it is maintained in normal tissues, in tumours and in cancer cell lines.

Conclusions

Here we presented an overview of  global  gene regulation in  normal  and 
cancer  tissues  and  cell  lines,  using  modules  as  a  proxy  to  determine  the 
transcriptional status of a cell, and observed general regulatory patterns that are 
maintained across  conditions.  We described two main coordinated regulatory 
components of the resulting network, which were in turn dis-coordinated from 
each other: PRC2 and H3K27me3 on one side, and mainly activation modules in 
the other.
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Tables

Table  1.  All  modules  collected  for  the  analysis.  CS:  Chromatin  State;  CS1: 
Active promoter; CS3: Poised promoter; CS13: Heterochromatin; LADs: Lamin-
Associated Domains.

Group Name Cell type Nº of 
genes Source

PRC2
EZH2 ES 1263 Ku et al. 2008 (Ku et al. 2008)
SUZ12 ES 2099 Young et al. 2010 (GEO accession GSE24463)
SUZ12 NTERA2 4178 ENCODE (The ENCODE Project Consortium 2007)

R
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ks

H3K27me3 CD4 4991 Wang et al. 2009 (Wang et al. 2009)
H3K27me3 ES 3489 Lister et al. 2009 (Lister et al. 2009)
H3K27me3 gm12878 6025 ENCODE (The ENCODE Project Consortium 2007)
H3K27me3 ES 6783 ENCODE (The ENCODE Project Consortium 2007)
H3K27me3 HUVEC 7962 ENCODE (The ENCODE Project Consortium 2007)
H3K27me3 K562 6012 ENCODE (The ENCODE Project Consortium 2007)
H3K27me3 NHEK 6486 ENCODE (The ENCODE Project Consortium 2007)
H3K27me3 breast-CD24+ 4968 Maruyama et al. 2011 (Maruyama et al. 2011)
H3K27me3 breast-CD44+ 3885 Maruyama et al. 2011 (Maruyama et al. 2011)

A
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g 
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e 
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ks

H3K4me3 CD4 12294 Barski et al. 2007 (Barski et al. 2007)
H3K4me3 ES 14103 Ku et al. 2008 (Ku et al. 2008)
H3K4me3 ES 12322 Lister et al. 2009 (Lister et al. 2009)
H3K4me3 gm12878 12627 ENCODE (The ENCODE Project Consortium 2007)
H3K4me3 ES 13251 ENCODE (The ENCODE Project Consortium 2007)
H3K4me3 HUVEC 12129 ENCODE (The ENCODE Project Consortium 2007)
H3K4me3 K562 11857 ENCODE (The ENCODE Project Consortium 2007)
H3K4me3 NHEK 13302 ENCODE (The ENCODE Project Consortium 2007)
H3K4me3 breast-CD24+ 11077 Maruyama et al. 2011 (Maruyama et al. 2011)
H3K4me3 breast-CD44+ 11649 Maruyama et al. 2011 (Maruyama et al. 2011)
H3K27ac CD4 8716 Wang et al. 2009 (Wang et al. 2009)
H3K27ac gm12878 10686 ENCODE (The ENCODE Project Consortium 2007)
H3K27ac HUVEC 10265 ENCODE (The ENCODE Project Consortium 2007)
H3K27ac K562 10950 ENCODE (The ENCODE Project Consortium 2007)
H3K27ac NHEK 11418 ENCODE (The ENCODE Project Consortium 2007)
H3K36me3 CD4 2754 Barski et al. 2007 (Barski et al. 2007)
H3K36me3 ES 4001 Ku et al. 2008 (Ku et al. 2008)
H3K36me3 ES 3593 Lister et al. 2009 (Lister et al. 2009)
H3K36me3 gm12878 6658 ENCODE (The ENCODE Project Consortium 2007)
H3K36me3 ES 5418 ENCODE (The ENCODE Project Consortium 2007)
H3K36me3 HUVEC 5664 ENCODE (The ENCODE Project Consortium 2007)
H3K36me3 K562 7466 ENCODE (The ENCODE Project Consortium 2007)
H3K36me3 NHEK 7807 ENCODE (The ENCODE Project Consortium 2007)
H3K9ac CD4 7692 Wang et al. 2009 (Wang et al. 2009)
H3K9ac ES 10787 Lister et al. 2009 (Lister et al. 2009)
H3K9ac gm12878 10849 ENCODE (The ENCODE Project Consortium 2007)
H3K9ac ES 11465 ENCODE (The ENCODE Project Consortium 2007)
H3K9ac HUVEC 11338 ENCODE (The ENCODE Project Consortium 2007)
H3K9ac K562 10822 ENCODE (The ENCODE Project Consortium 2007)
H3K9ac NHEK 12139 ENCODE (The ENCODE Project Consortium 2007)
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CS1 ES 3465 Ernst et al. 2011 (Ernst et al. 2011)
CS1 NHEK 3834 Ernst et al. 2011 (Ernst et al. 2011)
CS3 ES 1593 Ernst et al. 2011 (Ernst et al. 2011)
CS3 NHEK 978 Ernst et al. 2011 (Ernst et al. 2011)
CS13 ES 3964 Ernst et al. 2011 (Ernst et al. 2011)
CS13 NHEK 3952 Ernst et al. 2011 (Ernst et al. 2011)
LADs Fibroblasts 3345 Guelen et al. 2008 (Guelen et al. 2008)

 A
ce
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EP300 CD4 4365 Wang et al. 2009 (Wang et al. 2009)
MOF CD4 6099 Wang et al. 2009 (Wang et al. 2009)
PCAF CD4 2181 Wang et al. 2009 (Wang et al. 2009)
TIP60 CD4 5420 Wang et al. 2009 (Wang et al. 2009)
HDAC1 CD4 7185 Wang et al. 2009 (Wang et al. 2009)
HDAC2 CD4 523 Wang et al. 2009 (Wang et al. 2009)
HDAC3 CD4 2262 Wang et al. 2009 (Wang et al. 2009)
HDAC6 CD4 2107 Wang et al. 2009 (Wang et al. 2009)
HDAC8 K562 1482 ENCODE (The ENCODE Project Consortium 2007)

T
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NR4A1 K562 443 ENCODE (The ENCODE Project Consortium 2007)
SOX2 ES 3641 Lister et al. 2009 (Lister et al. 2009)
OCT4 ES 1417 Lister et al. 2009 (Lister et al. 2009)
OCT4 ES 4880 Kunarso et al. 2010 (Kunarso et al. 2010)
MYC ES 1794 Lister et al. 2009 (Lister et al. 2009)
NANOG ES 10828 Kunarso et al. 2010 (Kunarso et al. 2010)
NANOG ES 4391 Lister et al. 2009 (Lister et al. 2009)
KLF4 ES 1156 Lister et al. 2009 (Lister et al. 2009)
TAF2 ES 11053 Lister et al. 2009 (Lister et al. 2009)
JUNB K562 4656 ENCODE (The ENCODE Project Consortium 2007)
JUND K562 4512 ENCODE (The ENCODE Project Consortium 2007)
FOS K562 1849 ENCODE (The ENCODE Project Consortium 2007)
GATA2 K562 1667 ENCODE (The ENCODE Project Consortium 2007)

Table 2. Normal and cancerous transcriptome datasets used in the study.

Study Source Sample 
number Description of profiled samples

Su et al. 2004 BioGPS 
(GSE1133) 79 Normal tissue and 9 cell lines

Roth RB et al. 2006 
Healthy 
donors 
(GSE3256)

353
20 anatomically distinct sites of the human 
central nervous system (CNS) and 45 non-CNS 
from healthy donors

Ivshina et al. 2006 GSE4922 289 Breast cancer samples of various subtypes

Hou J et al. 2010 GSE19188 156 91 tumor (Non-small Cell Lung Cancer)- and 
65 adjacent normal lung tissue samples

Barretina J et al. 
2012 GSE36133 917 Cancer cell lines from the CCLE
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Figures

Figure 1. Schema of the approach. For each transcriptomic cohort we followed a 
pipeline to  dissect the gene co-regulation within previously known modules (left 
panel,  intra-module  co-regulation)  and  amongst  non-overlapping  gene  networks 
(right panel,  inter-module  co-regulation).  M1:  module  1;  M2:  module  2;  SLEA: 
Sample Level Enrichment Analysis; PCC: Pearson Correlation Coefficient.
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Figure 2. Top correlated genes enriched for regulatory modules. Each probe was 
mapped to non-redundant genes,  thus eliminating correlations due to probes that 
map to different transcripts from the same gene. Columns represent genes which are 
most correlated in each cohort, and are divided in three blocks. On the  left panel 
(from left to right) there are two datasets comprising normal tissues and cell lines, 
normal  tissues  only  (BioGPS  and  Healthy  donors,  respectively),  and  the  most 
correlated genes of the two which are in common. On the  central panel, columns 
represent  genes from most  correlated  gene pairs  in  three cancer  cohorts,  one of  
which (NSCLC) includes also normal samples, and the common genes amongst the 
three. The right panel corresponds to gene pairs most correlated in both tumour and 
normal samples (See Figure S2). Cells depict the enrichment significance (corrected 
right  P value)  for  every  regulatory  module  category  in  each  gene  group;  grey 
denotes P > 0.05.
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Figure 3. Connectedness within regulatory modules. Correlation coefficients 
of each pair of probes within five regulatory modules, KEGG pathways, all pairs 
in the platform or 500 randomized probes, sorted by the median,  across five 
transcriptomic data sets. Upper and lower box limits correspond to the 1st and 
3rd quartile, respectively, whiskers span one SD.
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Figure  4.  Coordinated  and dis-coordinated  modules.  A. SLEA matrix  for 
regulatory  modules  in  the  BioGPS  dataset  (Su  et  al.  2004),  grouped  by 
functional categories. B. Network view of correlations between non-overlapping 
regulatory  modules.  Nodes  represent  modules  which  are  at  least  positively 
correlated  with  another  module.  Node  size  is  proportional  to  the  number  of 
genes in each module, and colour represents the functional group to which the 
module is assigned. Edges in the network represent the correlation between two 
regulatory  modules;  line  thickness  is  proportional  to  the  PCC,  and  colour 
represents the direction of the correlation (negative correlations pictured in grey, 
positive correlations in red).
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Supplementary tables and figures

Table S1. Number of probes in each regulatory module (depending on platform).

Name
Affy

 U133A 
probes

Affy
 U133 
plus 2 
probes

Affy
 U133A 

%

Affy 
U133 plus 

2 %
Source

PRC2 CORE in ES cells 502 913 2.6 2.7 Ku et al. 2008, GEO 
GSE24463, ENCODE

H3K27me3 in k562 cells 5729 10818 30.1 31.5 ENCODE

H3K4me3 in ES cells 13905 24562 73 71.6 ENCODE

H3K27ac in CD4 cells 9295 16267 48.8 47.4 Wang et al. 2009

Lamina associated 
domains 2968 5662 15.6 16.5 Guelen et al. 2008

KEGG 8199 11570 43 33.7 KEGG

Random 500 probes 500 500 2.6 1.5 -

All probes 19052 34308 100 100 -
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Figure S1. Overlaps between regulatory modules. Regulatory modules  are 
compared for coincidences at the gene level,  and grouped into six functional 
categories.  Overlaps are represented as the maximum intersection proportion, 
which is a measure that accounts for big differences in group sizes. For detailed 
description on the individual modules, see Table 1.
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Figure S2. Grouping of the top correlated genes in the five transcriptomic 
datasets. Intersection of genes mapping to the top 0.1% most correlated probe 
pairs in each cohort. The overlap between BioGPS and Healthy donors datasets 
conforms  the  core  most  co-regulated  genes  in  normal  tissues,  here  termed 
“Common in normal”. We name genes most co-regulated in cancer as “Common 
in  cancer”.  We  defined  the  common  elements  between  the  two  previous 
intersections as a core set of genes which co-regulation is preserved in normal 
and tumour cells.
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Figure S3. GOBP enrichment in the top correlated genes in five  sample 
cohorts. See Figure 2 for details on the figure legend.
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Figure S4. KEGG enrichment in the top correlated genes in five sample 
cohorts. See Figure 2 for details on the figure legend.
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Figure  S5.  Synchronized expression of  regulatory modules  is  maintained 
across  normal  and  tumour  samples. Correlation  of  the  sample-wise 
enrichment of each pair  of  non-overlapping modules in all  the five data sets 
(CCLE was split into blood and solid primary tissue). White cells indicate that 
the enrichment analysis (SLEA) for a particular pair of modules could not be run 
due to an excessive gene overlap.
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Figure  S6.  Coordinated  and  dis-coordinated  modules  in  normal  donors. 
SLEA matrix and co-regulation network view for  regulatory modules  in  353 
normal tissue samples obtained from nine healthy donors (Roth  et  al.  2006), 
grouped by functional categories. See Figure 4 for colour legend.
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Figure  S7.  Coordinated  and  dis-coordinated  modules  in  breast  cancer. 
SLEA matrix and co-regulation network view for regulatory modules in a breast  
cancer cohort comprising 289 tumours (Ivshina  et al. 2006). See Figure 4 for 
colour legend.
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Figure S8. Coordinated and dis-coordinated modules in lung cancer. SLEA 
matrix  and  co-regulation  network  view  for  regulatory  modules  in  a  cohort 
comprising  91  NSCLC tumours  and  65  corresponding  contra-lateral  healthy 
lung tissue (Hou et al. 2010). See Figure 4 for colour legend.
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Figure S9. Coordinated and dis-coordinated modules in cancer cell  lines. 
SLEA matrix  and  coregulation  network  view  for  regulatory  modules  in  the 
CCLE (Barretina  et al. 2012). Only cell lines originated from haematopoietic 
system are shown. See Figure 4 for colour legend.
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Figure S10. Coordinated and discoordinated modules in cancer cell lines. 
SLEA matrix  and co-regulation  network  view for  regulatory  modules  in  the 
CCLE (Barretina et al. 2012). Only cell lines originated from solid tissues (non-
haematopoietic) are shown. See Figure 4 for colour legend.
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Chapter 3

EXPRESSION OF POLYCOMB TARGETS PREDICTS 
CANCER PROGNOSIS

The wealth of currently available cancer genomics data requires to be integrated 
with  other  sources  of  information  to  gain  insight  on  specific  deregulated 
pathways in tumorigenesis. Moreover, computational analyses of this kind are 
not  complete  without  experimental  validation  of  the  main  findings.  In  this 
chapter  I  focused  on  genes  regulated  by  Polycomb,  which,  as  reported  in 
Chapter 2, define a large independent component of gene expression in normal 
and  cancer  cells.  Accumulating  evidence  presents  Polycomb  proteins  as 
multifaceted regulators of normal development and differentiation, but also as 
cancer drivers in some tumours, as is reviewed in the introductory chapter. Being 
CRFs,  they  are  an  attractive  target  for  anticancer  drugs,  but  the  exact 
mechanisms through which Polycomb contributes to tumorigenesis remain to be 
fully elucidated. Here I  present  an in-depth molecular characterisation on the 
role of Polycomb in breast cancer, and I use gene expression, regulatory and 
clinical information analysed through computational approaches to this end. The 
results  were  further  experimentally  validated  in  a  laboratory  thanks  to  a 
collaboration we established. I spent 6 months in the laboratory of Dr. Elizaveta 
Benevolenskaya at the University of Illinois at Chicago, which allowed me to 
work  closely  with  the  people  that  performed  the  experimental  validations. 
Constructive, mutual feedback was essential for the completion of this project.  
In this part, I collected the regulatory information, conducted the computational  
analysis  and  co-wrote  the  manuscript.  The  following  manuscript  has  been 
submitted for publication.
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Abstract

Pathological changes in the epigenome are increasingly being appreciated as 
surrogates  to  mutations  and  chromosomal  aberrations  in  disrupting  gene 
regulation. Enhancer  of  zeste  homolog  2  (EZH2)  is  a  histone  H3K27 
methyltransferase  overexpressed  in  multiple  human  malignancies,  and 
regulates a variety of cellular processes including cell proliferation, apoptosis, 
migration, invasion, and self-renewal. Although the EZH2 status in cancer has 
been widely studied, it is not clear what the expression status of its targets are  
and how this  relates  to  patient  prognosis.  Yet,  it  is  important  to  know for 
exploring recently reported EZH2 inhibitors as a treatment strategy. Here we 
determined  the  molecular  and  clinical  characteristics  of  breast  tumors  in 
relation  to  that  of  genomic  regions  bound by  EZH2 or  nucleosomes  with 
H3K27me3 mark. We found that genes in these regions are downregulated in 
tissues  with  high  expression  of  cell  cycle  genes,  and  low  expression  of 
developmental and cell adhesion genes. Loss of EZH2 significantly increased 
expression of the top altered genes, decreased proliferation and improved cell  
adhesion. Inappropriate high EZH2 level are likely to be contributing to the 
pathogenesis  of  HER2+/ER-  and  basal-like  tumors,  and  expression  of  its 
targets  stratifies  the  patients  into  good  and  poor  prognostic  groups 
independent of known cancer gene signatures.
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Introduction

Epigenetic plasticity of cancer stem cells and progenitor cells or a mutation 
in a critical chromatin regulator (CR) can potentially cooperate with mutations 
in cancer genes. Recognizing the role of the epigenome during the formation of 
cancer genomes may help to explain aspects of tumor development such as the  
late  onset  of  most  solid  tumors,  recurrent  disease,  tumor  heterogeneity,  risk 
factors, and environmental  effects (Valk-Lingbeek,  Bruggeman, and Lohuizen 
2004;  Feinberg,  Ohlsson,  and  Henikoff  2006).  Deregulation  of  Polycomb 
repressive complex 2 (PRC2) proteins EZH2 and SUZ12 have been linked to the 
initiation of tumorigenesis through a variety of mechanisms, which ultimately 
prevent  the  expression  of  cell  fate  regulators  and  promote  a  stem  cell-like 
phenotype  (Sauvageau and Sauvageau 2010;  Sparmann and Lohuizen  2006). 
EZH2 is overexpressed in several cancers and promotes cancer progression and 
associated with worse prognosis in prostate, breast, endometrial and melanoma 
tumors (Kleer et al. 2003; Varambally et al. 2002; Bachmann et al. 2006). EZH2 
directly binds to tumor suppressor genes  INK4A/ARF,  RAD51,  CDKN1C/p57, 
RUNX3, CDH1/E-cadherin (Yoo and Hennighausen 2011), thus substituting for 
mutation-induced tumor-suppressor-gene silencing. Much evidence suggests that 
tumors  show  global  changes  in  DNA methylation  (Dawson  and  Kouzarides 
2012), yet the evidence for genome-wide changes in histone modifications is  
very rudimentary. The oncogenic function of EZH2 is believed to be mainly 
mediated through its gene silencing activity (Sauvageau and Sauvageau 2010) 
suggesting the contribution from deregulation of multiple genes.

By placing the repressive histone modification mark H3K27me3, PRC2 is 
responsible for silencing promoters of developmental regulators in mammalian 
stem cells, whilst keeping them poised for activation (Boyer et al. 2006). The 
loss of this mark at those locations typically promotes cellular differentiation 
(Bracken et al. 2006; Boyer et al. 2005; T. I. Lee et al. 2006). Therefore, as the 
important  regulator  in  the  balance  between  cellular  proliferation  and 
differentiation, PRC2 may be a critical contributor to the processes leading to 
neoplasia. Most recently, increased EZH2 has been implicated in the expansion 
of  breast  tumor  initiating  cells  (Chang  et  al.  2011).  Elevated  EZH2  protein 
expression  indicates  a  precancerous  state  in  morphologically  normal  breast 
epithelium and increases as breast cancer develops and progresses  (Ding et al. 
2006). Reduction in EZH2 level by RNA inhibition resulted in decreased cell 
proliferation  and  reduced  tumor  growth  using  xenograft  transplantations 
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(Gonzalez et  al.  2009).  These findings have highlighted an important  role of 
EZH2 in aggressive breast cancers. With this in mind, plus the development of  
the EZH2 selective inhibitor  GSK126, EZH2 is emerging as a very attractive 
target for anticancer therapies (McCabe et al. 2012). 

The location of the PRC2 complex in the human genome has been identified 
using chromatin immunoprecipitation and sequencing (ChIPseq) in several cell 
lines  (The  ENCODE  Project  Consortium  2007;  Ku  et  al.  2008) 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24463). Here we used 
systems biology approaches to study gene expression pattern in genomic regions 
occupied  by  PRC2  complex  or  enriched  in  H3K27  methylation,  and  its 
dependence on EZH2. We define gene modules as sets of  genes that  can be  
experimentally  defined  by  a  certain  molecular  characteristic,  such  as  genes 
bound by EZH2. We related the expression of such gene modules in primary 
human tumors to cancer characteristics.  The expression level  of genes in the  
EZH2  module  is  increased  in  breast  cancer  cell  lines  where  EZH2  is  lost  
therefore altering cell  proliferation and cell  adhesion. Through the expression 
analysis of several PRC2 modules, we demonstrate that patients with the worse 
and  better  prognosis  can  be  reliably  stratified,  creating  opportunities  for 
prognosis and application of EZH2 inhibitors in patients with advanced breast 
cancer.

Results

PRC2 module expression reflects the balance between 

proliferation and differentiation in normal tissues

Given the important role the PRC2 complex and its target genes play during 
cell-fate determination,  we investigated how PRC2 modules are expressed in 
different cell types. The Polycomb complex PRC2 is placing the pivotal H3K27 
trimethylation mark, with EZH2 as a catalytic component, and SUZ12 inducing 
EZH2 activity  and interacting with the  nucleosomes.  We defined the lists  of  
genes that are either targets of the PRC2 core components or those that contain 
nucleosomes with the histone mark H3K27me3 in their genomic regions (Table 
S1).  To  this  end,  we  used  whole-genome  data  from  ChIP-seq  experiments 
performed with EZH2, SUZ12 and H3K27me3 antibodies in human ES cells. 
We collectively call  these  sets  of  genes,  i.e.,  genes  where EZH2,  SUZ12 or 
H3K27me3 were detected, as PRC2 modules. While there was a large overlap 
between genes bound by EZH2, SUZ12 and genes enriched in H3K27me3, there 
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were  many  genes  that  were  identified  only  in  one  dataset  (Figure  S1A and 
Figure S1B). We analyzed expression of the genes in the PRC2 modules in a 
variety  of  sample datasets  using  Sample Level  Enrichment  Analysis  (SLEA) 
(Table S2). First, the analysis was performed using BioGPS (Su et al.  2004), 
which includes expression data from 79 different human tissues and cell lines. 
We  found  that  all  three  PRC2  modules  were  downregulated  in  cells  from 
immune system, blood, as well as in all cancer cell lines (Figure 1A). Strikingly, 
tissues from the nervous and cardiovascular system showed the opposite with a 
significant up-regulation of the PRC2 modules. Consistent with the repressive 
effects of EZH2 and SUZ12 on gene expression, their expression level in tissue 
samples and cell lines inversely correlated with the expression level of the PRC2 
modules.  We  noticed  that  the  cell  types  associated  with  down-regulation  of 
PRC2 modules contained proliferating cells, in contrast to more differentiated 
cells from nervous and cardiovascular system. Indeed, analysis of genes grouped 
according  to  the  biological  processes  (BP)  they  have  been  ascribed  (gene 
ontology (GO) terms) revealed that the first group of tissues had high expression 
of cell cycle genes and low expression of developmental genes, while the second 
group showed the opposite. Consistent with this result, the z-score values for 
PRC2  module  in  the  groups  of  samples  with  high,  intermediate  and  low 
expression of cell cycle genes were significantly different between the groups 
(Figure 1A, on the right). Second, we extended the analysis to a larger collection 
of tissue samples, dissected from ten different donors (Roth et al. 2006). The 
enrichment pattern was consistent with that in BioGPS, and clearly separated 
tissues with distinct proliferation and differentiation states (results for one donor 
are  presented  in  Figure  1B).  Therefore,  the  PRC2  module  expression  is 
significantly  different  between  various  human  tissues,  correlating  with  their 
proliferative and differentiation states, and stratifying normal from cancer cells.

Molecular and phenotypic characteristics of PRC2 

module-stratified breast tumors

Given the fact that EZH2 overexpression is common in breast, prostate and 
other  cancers,  we  asked  if  the  PRC2 modules  are  changed in  expression  in 
human cancers.  We performed SLEA on samples  from the six largest  breast 
cancer  studies  (Table  S2).  Intriguingly,  our  analysis  revealed  many  tumor 
samples that showed up-regulation of PRC2 module (i.e., P < 0.01 and positive 
z-score) as well as many samples that showed down-regulation of PRC2 module 
(i.e., P < 0.01 and negative z-score) (SLEA results for two studies are shown in 
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Figure  2A and  B).  In  order  to  better  understand  the  underlying  differences 
between the  two groups  of  samples,  we  studied  their  molecular-pathological 
characteristics (Table S3 and Table S4). 

With respect to the subtype classification and tumor grade, we noticed that 
there  is  an  overrepresentation  of  the  basal  subtype  and  grade  III  tumors  in 
samples with PRC2 module down-regulation, while tumors with PRC2 module 
over-expression are enriched in normal-like subtype (Figure 2). Consistent with 
these data, there was a direct correlation (Figure S2) in the expression of PRC2 
module  and gene expression prognostic signatures for  normal and luminal  A 
subtypes (Table S5).

To  learn  more  about  gene  signatures  that  might  correlate,  directly  or 
inversely,  in  expression with the  EZH2 module,  we analyzed by SLEA each 
sample for the expression of genes grouped in pathways (KEGG) or GO terms 
(Figure S3). To identify the GO terms and pathways most significantly changed 
in expression between samples with high and low expression of EZH2 module, 
we compared the mean z-score enrichment values for a pathway or a GO term 
between each group (Figure S4). We found that genes related to cell cycle, RNA 
transport, spliceosome, proteasome and oxidative phosphorylation are expressed 
higher  in tumors with low expression of  EZH2 or two other PRC2 modules 
(Figure 2 and Figure S3). In contrast,  genes involved in cell  adhesion, organ 
development,  anatomical  structure  morphogenesis  and  neuroactive  ligand-
receptor interaction were expressed lower in these samples. The opposite was 
true  for  the  samples  with  high  level  of  PRC2  modules.  The  later  result  is 
consistent with the notion that PRC2 localizes to genes encoding developmental 
regulators (Boyer et al. 2006). This data suggest that tumors with a certain level  
of EZH2 module have characteristic gene signatures.

As the next  step,  we collected gene expression signatures that have been 
described for  breast  cancer.  We were  interested to  know how well  the  best-
known  genes  associated  with  breast  cancer  aggressiveness  such  as  Rosetta 
dataset (Van t’ Veer et al. 2002), correlate in expression with the PRC2 modules. 
In addition, we analyzed in our breast  cancer datasets the gene signatures of  
invasiveness, epithelial-mesenchymal transition (EMT), progression to invasive 
ductal  carcinoma,  differentiation,  quiescence,  correlation  with  BRCA1  level, 
resistance to treatment, and prognosis (Table S6). When samples were sorted by 
EZH2 module gene expression into two groups, there was significant difference 
in z-scores of several signatures between the groups, as determined by Mann-
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Whitney test (Figure S5). In particular, we observed higher expression of gene 
signatures of stem cell-like and undifferentiated phenotype, EMT and metastasis 
in the group of samples that expressed low levels of PRC2 module (Figure 2 and 
Figure S5). These results are consistent with our observation of the increased 
expression of genes involved in cell  cycle and decreased expression of genes 
involved in cell adhesion, development and ligand-receptor interactions (Figure 
S5).  The same samples  are  also characterized by an active BRCA1 network 
(Pujana et  al.  2007).  This  result  is  consistent  with the  observation that  high 
EZH2  protein  levels  are  associated  with  decreased  nuclear  expression  of 
phospho-BRCA1 (Ser1423) leading to aberrant mitoses with extra centrosomes, 
and genomic instability (Gonzalez et al. 2011).

In  conclusion,  breast  cancer  patients  can  be  stratified  according  to  the 
transcription status of PRC2 module independently of clinical characteristics and 
known cancer gene signatures.

EZH2 depletion induces mesenchymal to epithelial 

transition.

The  genes  with  the  function  in  cell  adhesion  are  highly  significantly 
underexpressed in samples with lower level  of  PRC2 module,  and expressed 
much higher where the PRC2 module is increased (Figure 2 and Figure S3).  
Disregulated expression of cadherin and catenins, which mediate cell adhesion, 
has been associated with breast cancer. Loss of E-cadherin/CDH1 is a hallmark 
for epithelial to mesenchymal transition (EMT) resulting in cells exhibiting stem 
cell  characteristics and therefore the epithelial cells loose cell-to-cell  contacts 
and cytoskeletal  integrity,  contributing to their  dissemination.  The EMT core 
signature associates closely with the metaplastic and claudin-low breast cancer 
subtypes  and  correlates  negatively  with  pathological  complete  response 
(Hennessy et al. 2009). Strikingly, the PRC2 module shows the best correlation 
in enrichment with the GO terms related to cell  adhesion and with the EMT 
modules  that  were  described  in  the  previous  studies  (Taube  et  al.  2010; 
Hennessy et al. 2009) (Figure S5). These observations suggest that one of the 
PRC2  regulatory  functions  is  linked  to  induction  of  EMT.  Therefore,  we 
investigated whether EZH2 is essential in EMT and metastasis using inducible 
expression of short hairpin RNAs (shRNAs) to knock down EZH2 expression in 
breast cancer cell lines. By using the Tet-Off system in MCF7 cells, the level of 
shRNA production was essentially undetectable under the non-inducing (+Dox) 
condition, as evidenced by the absence of the RFP reporter gene expression that  
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is  linked  to  shRNA synthesis  (Figure  3A).  In  the  -Dox  condition,  RFP was 
induced proportionally to the increasing amount of the lentiviruses. In the cells 
transduced with EZH2 shRNA, the EZH2 transcript  levels were substantially 
reduced  by  70%  and  expression  of  EZH2  protein  was  detected  by 
immunoblotting  at  very  low  level  (Figure  3B).  EZH2  expression  remained 
unaltered in cells expressing a control shRNA. EZH2 knockdown decreased the 
cell  numbers compared with the control shRNA and MCF7 parental cell  line 
when transduced cells were cultured as monolayers (Figure 3C). For the analysis 
of EMT, we grew these cells as epithelial acini in three-dimensional basement 
membrane cultures on Matrigel. The size of acini formed was smaller and the  
number was much lower in EZH2 knockdown cells (Figure 3D). Upon EZH2 
depletion,  we also observed the upregulation of mRNAs of β-catenin and E-
cadherin  and  downregulation  of  vimentin  and  snail  (Figure  3E).  When  we 
analyzed the level of the corresponding proteins in by immunofluorescence, the 
acini formed from cells with EZH2 depletion showed higher levels of β-catenin 
and E-cadherin and lower level of vimentin than the control cells (Figure 3F), 
indicating  that  the  epithelial  to  mesenchymal  transition  is  reversed.  The 
MCF10A showed a similar growth inhibition by EZH2 shRNA (Figure 3G and 
Figure 3H), indicating that EZH2 depletion affects not only the growth of breast 
cancer cells but also the growth of benign mammary epithelial cells. The mRNA 
level and protein level of epithelial markers was only slightly increased (Figure 
3I and Figure 3K). Therefore, EZH2 knockdown restores epithelial markers in 
breast cancer cells.

High expression of PRC2 modules predicts better breast 

cancer outcome

We asked whether the tumor of a patient with worse prognosis would have 
any significant changes in expression of the PRC2 modules when compared to a 
patient  with a better  outcome. We collected large breast  tumor transcriptome 
datasets for which survival annotation was available (Table S2) and performed 
survival tests using SLEA stratification. Strikingly, the PRC2 modules showed 
similar  or  superior  predictive power  when compared  to  previously  described 
gene-expression  signatures  as  predictors  of  breast  cancer  survival  (Figure  4, 
Table S6 and Table S7). To test the value of early detection in reducing mortality, 
we analyzed PRC2 modules SLEA stratification within TCGA stage I, II and III 
tumors separately (stage IV was not included due to the low sample number).  
Strikingly,  we observed a significant  difference in  survival  in  stage I  tumors 
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(Table S7), which is consistent with a recent study that found that EZH2 protein 
levels were an independent predictor of distant metastases in a subset of early 
stage breast tumors with first degree of family history (Alford et al. 2012).

In a previous study, increased breast cancer invasiveness and metastasis has  
been associated with the recruitment of the PRC2 complex to new genomic loci  
and, as a result, altered H3K27 methylation and gene expression (Gupta et al.  
2010). Another study determined differentially expressed genes when EZH2 is 
depleted  (S.  T.  Lee et  al.  2011).  We used  gene  sets  derived  from these  two 
studies to stratify breast tumors according to the SLEA expression of these gene 
sets (Table S1). We found these two modules are also informative in terms of 
prognosis (Table S7), which can be explained by their significant overlap with 
H3K27me3 signature (Figure S1).

In  order  to  dissect  the  PRC2  contribution  in  patient  survival  from  the 
contribution of other expression signatures,  we explored the overlap between 
genes  in  the  PRC2  modules  with the  multicancer  gene  signatures.  Increased 
chromosomal instability (CIN) (Carter et al. 2006), high expression of cell cycle 
genes (Whitfield et al. 2002) or active myc network (J. Kim et al. 2010) were 
shown  to  correlate  with  survival.  Our  analysis  revealed  that  the  PRC2 
contribution in patient survival was not due to its overlap with the multicancer  
gene signatures (Table S8 and Figure S6). When we removed any gene from the 
PRC2  modules  that  have  been  previously  identified  among  691  genes 
influencing proliferation in HeLa cells (Whitfield et al. 2002), the SLEA results 
were almost identical to those obtained from the full set of regulatory modules 
(Table S7). In fact, we detected only a significant overlap of developmental GO 
categories  with  the  H3K27me3 module.  Therefore,  our  comparative  analysis 
shows that the PRC2 modules represent independent characteristics.

Genes that predict survival in breast cancer are directly 

regulated by EZH2

To determine the genes from the PRC2 modules that most contributed to the 
stratification of breast tumors, we first established a core set consisting of the 
167 common gene targets of EZH2, SUZ12 and H3K27me3 in a variety of cell 
types  (Table  S9).  Then  we  used  it  to  stratify  samples  in  five  breast  cancer 
datasets, and ranked the genes which expression values changed the most. We 
considered the top eight probes as a proxy for the behavior of genes associated 
with PRC2 module and which differential expression could be a biomarker of 
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patient outcome. We found that the eight probes represent six neuronal genes 
(PDE4D,  ADRA1A,  POU4F2,  SIM2,  NEUROD2 and  NTRK1)  and  two  cell-
signaling genes (PHOX2B, ULBP1).

Next we asked if the level of expression of eight genes is really dependent 
on EZH2 level. For this purpose, we performed RT-PCR experiments in MCF7 
cells with inducible expression of  EZH2 shRNA in comparison with the cells 
containing non-silencing shRNA and uninduced cells containing EZH2 shRNA. 
We found a high increase in the level of five out of eight genes specifically in 
cells depleted for EZH2 (Figure 5A). This suggests that the expression level of 
these five genes directly depends on the level of EZH2.

We have  previously  assessed the expression patterns  of  the  top genes  in 
hundreds  of  cancer  tissue  samples.  To  validate  these  microarray  results,  we 
carried out  RT-PCR on 18 breast  cancer samples.  The result  in Figure 5B is 
presented  as  a  heat  map.  As  expected,  the  transcript  level  of  these  genes  
generally decreased in the patients with increased  EZH2 mRNA (Figure 5B). 
The PDE4D and ULBP1 genes did not show correlation in gene expression with 
the rest of genes, consistent with the lack of derepression of these genes in cells 
with EZH2 depletion (Figure 5A). The  SIM2 gene, while decreased in MCF7 
cells with EZH2 shRNA, inversely correlated with EZH2 level in tumor samples. 
Therefore,  the  predicted  PRC2  module  targets  are  likely  to  be  under  direct 
control  of  EZH2 and negatively correlate with EZH2 in expression in tumor 
samples.  While  these  genes  reproducibly  reflect  negative  correlation  in 
expression with EZH2 in tumor samples as a group, the individual genes are 
subject of additional regulation, which should be investigated further.

High EZH2 protein levels are associated with aggressive 

breast cancer phenotypes

The lower expression of PRC2 modules in more aggressive breast tumors led 
us  to  hypothesize  that  EZH2  protein  level  is  increased  in  these  tumors.  To 
confirm this, we determined the expression of EZH2 in a diverse breast tumor 
samples cohort (95 patients, n = 450 samples) by immunohistochemistry using 
high-density  tissue  microarrays.  The  mean age  of  the  patients  was  56  years 
(SD=15.6). 63.7% of the patients had estrogen receptor positive tumors, 50.6% 
had progesterone receptor positive tumors, and 21.2% had HER2+ tumors. The 
distribution of breast cancer subtypes was luminal A (58.9%), luminal B (6.3%), 
HER2+/ER-  (4.2%),  basal-like  (28.5%),  unclassified  (2.1%)  (Figure  6A).  A 
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majority of the patients had high grade tumors (46.0% grade II and 47.1% grade 
III). Increased EZH2 expression was significantly associated with HER2+/ER- 
and basal-like tumor subtypes (Fisher's two tailed test P < 8e-07).

To determine whether the transcript level of EZH2 is altered in the tumor 
tissue where the IHC showed increased EZH2 staining, we isolated RNA from 
tumor and normal tissue from six different patients and analyzed it by RT-PCR. 
Consistent  with the  EZH2 IHC results,  the samples  with high EZH2 protein 
expression, displayed higher EZH2 transcript level than the samples with low or 
moderate  level  (Figure  6C).  Next  we asked if  the  EZH2 expression level  in  
tumor versus normal samples is  indicative of the expression level  of  the top 
eight genes that can stratify breast cancer patients. We found that the samples 
with higher EZH2 level generally had lower expression of the top genes (Figure 
6C).  The five genes  that  demonstrated derepression in our experiments  upon 
EZH2 depletion (Figure 5A) showed the lowest decrease in expression level. 
However, there was no single PRC2 module gene in our analysis that would 
show a perfect correlation with EZH2 level.  This indicates that the power of 
PRC2 target genes in the prediction of breast cancer survival is not limited by 
the predictive power of a few critical genes and should be considered module-
based, but with some stronger associations (e.g., the eight genes that we studied) 
that require additional analysis.

Discussion

The prevailing view of the cancer genome is that it arises through sequential 
genetic mutations, with each mutation accounting for a specific tumor property 
(i.e.,  increased  cell  proliferation,  invasiveness,  metastasis,  drug  resistance) 
supporting  selective  outgrowth  of  a  monoclonal  cell  population.  If  certain 
epigenetic changes cooperate with genetic mutations, tumors may be developing 
under the condition where multiple genes with relevant histone modifications are 
coordinately changed in expression to serve tumor properties. Our analysis of 
gene  expression  changes  in  tumor  samples  provides  evidence  that  gene 
regulation  undergoes  a  critical  shift  supported  by  the  PRC2  module.  Genes 
directly bound by the PRC2 components, such as EZH2, become underexpressed 
due to repressive histone modifications, including H3K27 trimethylation, thus 
inducing a cellular phenotype that promotes tumor growth and aggressiveness. 
We  propose  that  invasive,  highly  metastatic  behavior  of  breast  tumors  is 
sustained by high levels of EZH2, as shRNA-mediated repression of EZH2 in 
breast cancer cell line not only reduced cell proliferation but also upregulated 
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epithelial markers and suppressed mesenchymal markers.

In  an  oncogenic  context,  PRC2  overexpression  has  been  linked  to  a 
transition  from  a  quiescent  state  into  an  actively  dividing,  more  stem-cell  
resembling  phenotype.  We  found  that  cell  motility,  differentiation,  and 
developmental  pathways  were  downregulated  in  breast  tumors  when  PRC2 
targets  were  expressed  at  the  low  level.  Consistent  with  our  data  on  the 
dependence of EMT markers expression on EZH2 level in breast cancer cells,  
EZH2 has been shown to be required for gene repression by the EMT inducer  
transcription  factor  Snail  (Herranz  et  al.  2008)  and  promoting  metastasis  in 
several  tumors  (Min et  al.  2010;  Alford et  al.  2012).  The PRC2 complex is 
known to repress  genes  that  contribute  to  cell  differentiation (Sparmann and 
Lohuizen  2006),  and  the  identification  of  neuronal  genes  as  PRC2  module 
patient stratifiers is probably a reflection of the fact that a large proportion of 
neuronal  differentiation  genes  are  bound  by  PRC2  and  remain  repressed 
(Bracken et al. 2006). Conversely, genes involved in cell cycle, RNA function,  
spliceosome, and proteasome function, known as the Achilles gene sets in which 
the high activation is required for the proliferation of cancer cells (Nijhawan et 
al. 2012), are not known to be PRC2 targets, and the identification of the CRs 
involved in their regulation awaits further investigation.

 In most previous studies, it is the overexpression of gene signatures that  
have been identified as cancer-specific, indicating plausible transcription factors 
involved such as c-myc and E2F. Moreover, in our study the levels of PRC2 
modules  have  high  prognostic  value,  independently  of  other  molecular-
pathological characteristics.

High EZH2 levels were strongly associated with poor clinical outcome in 
breast cancer patients  (Kleer et al. 2003; Gong et al. 2011). In our study, we 
detected highly significant  association of different PRC2 modules,  not of  the 
EZH2 protein itself, with tumor grade and patient survival. Besides an increase 
in EZH2 protein level, dominant somatic mutations in the EZH2 gene (Yap et al.  
2011, 2) could have contributed to lower expression of EZH2 module in cancer. 
Our  findings suggest  a  new paradigm in tumor progression,  in  which EZH2 
functions to reprogram gene expression and H3K27me3 might be a major part of 
the gene silencing mechanism. Importantly, as a function linked to the catalytic 
activity  of  the  PRC2  complex,  it  may  be  targeted  with  a  small  molecule 
inhibitor. Analysis of TCGA dataset showed changes in the expression of EZH2 
module in stage I tumors, indicating its’ utility in predicting disease progression 
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in patients with early-stage cancer.

PRC2 modules enrichment predicted survival in breast cancer cohorts that 
represented a broad spectrum of tumor phenotypes. In the Ivshina et al. dataset, 
down-regulation of EZH2 targets was associated with the most aggressive breast 
cancer  phenotypes.  However,  our  analysis  has  been  limited  by  the  public 
availability of large transcriptome datasets with survival information; the method 
is  highly  study-dependent,  but  provides  a  powerful  means  to  investigate 
molecular subtypes in tumors without the need for prior knowledge. Since the 
SLEA method uses  median-centered  expression  values,  it  is  sensitive  to  the 
heterogeneity of the dataset, and the over-representation of high or low-grade 
samples can potentially affect the results. As such, PRC2 module correlated with 
survival in Ivshina et al. dataset but not in Sabatier et al. nor TCGA, which are 
biased towards higher grade tumors. We speculate that the PRC2 module has a 
predictive power in other cancers, since breast tumors tend to be diagnosed at 
earlier stages compared to many other solid tumors. It is interesting to note that  
the EMT, a process in which PRC2 may play a significant role, is a very early  
event  in  breast  tumors,  but  occurs  significantly  later  in  some  other  cancer 
subtypes  (H.  Kim et  al.  2010).  Due  to  the  nature  of  SLEA,  our  analysis  is 
sensitive  to  gene  expression  changes  across  samples,  but  does  not  take  into 
account  absolute  values.  In  particular,  a  set  of  tumors  that  are  enriched  for 
overexpressed PRC2 module does not necessarily have high transcription rates 
for the genes in the PRC2 module. It is important also to note that our study 
reflects intra-tumor variability,  since normal samples were removed from the 
original cohorts. Our aim was to determine the ability of loci associated with 
H3K27 methylation to stratify tumor subtypes, regardless of how much altered 
was gene expression compared to a non-tumorigenic reference.

The rationale behind using gene expression to stratify patients for cancer 
prognosis came from the repeated observations that intrinsic biology seems to 
play a more important role than other variables, such as age or tumor stage, in 
determining the breast cancer phenotype (Sørlie et al. 2003). We found that the 
expression of over a thousand of genes, which are normally EZH2 targets in 
cancer  cell  lines,  stratifies  breast  cancer  patients  in  two  clinically  different  
groups.  While  this  large  group  of  genes  collectively  is  linked  to  tumor 
characteristics, we have identified eight genes that are reproducibly reduced in 
expression in cancers associated with the worst prognosis. The datasets for the 
PRC2 modules were derived from human ES cells, so it is essential to look at the 
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binding of PRC2 to these genes in human primary breast tumors. Some of the  
genes are expected to be directly regulated by EZH2 in more than one cell type,  
as their expression level was sensitive to EZH2 knockdown in a breast cancer 
cell line. These findings give rise to important questions regarding the timing of 
when  changed  expression  of  EZH2  bound  genes  is  required  during 
tumorigenesis and the mechanisms by which the genes in  the PRC2 module 
become activated or repressed. An attractive model by which EZH2 can globally 
reprogram gene expression during metastasis is by tethering its target gene loci 
into chromatin domains, which is assisted by other CRs as well as lincRNAs.

Methods

Human breast cancer specimens

Tissue microarrays were constructed from 95 histologically confirmed breast 
cancer samples. To identify breast cancer subtypes, we evaluated the tissues for 
the expression of ER, PR, HER2, keratin 5 and 6 (CK5/6), and EGFR. Staining 
with vimentin served as a control to monitor the quality of tissue fixation in 
archival tumors. Breast cancer subtypes were defined as luminal A (ER+ and/or 
PR+,  HER2-),  luminal  B  (ER+  and/or  PR+,  HER2+),  basal-like  (ER-,  PR-, 
HER2-,  CK5/6+,  and/or  EGFR+),  HER2+/ER-  (HER2+,  ER-,  PR-)  and 
unclassified (negative for all five markers). EZH2 expression was measured by 
staining  using  an  anti-EZH2  antibody  (Cat.#  187395,  Invitrogen).  Staining 
quantification  was  performed  independently  by  two  pathologists  (see 
supplementary methods). 

For the transcript analysis from breast tissue microarray, RNA samples were 
prepared from 6 tumor tissues and 6 matching normal tissues. All tissue samples 
were obtained and handled in accordance with an approved Institutional Review 
Board protocol.  In addition to these six samples,  the analysis was performed 
with 18 cDNAs isolated from breast  ductal  carcinomas from the TissueScan 
Cancer Survey Tissue qPCR panel 384-1 (CSRT102, OriGene).

Cell culture and inducible shRNAmir expression

MCF7  and  293T  cells  were  grown  in  DMEM  medium  (Mediatech) 
supplemented with 10% fetal  bovine serum (FBS) (HyClone),  and MCF10A 
cells were grown in DMEM F12 medium (Mediatech) supplemented with 5% 
horse  serum,  10  µg/ml  insulin,  100  ng/ml  cholera  toxin  and  0.5  µg/ml 
hydrocortisone. All  cells were grown in 37ºC 5% CO2 incubator.  Cells  were 
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seeded in 24-well tissue culture plate at the density 3x104 cells/well in medium 
supplemented with doxocycline (Dox) at the concentration 100 ng/ml or Dox-
free medium. Cells were plated in triplicates. Media was changed every 3 days. 
As a Tet-OFF system, we used tTA-Advanced MCF7 cell line that we previously 
generated (Carr et al. 2012). The miR-30-based shRNA to EZH2 was generated 
from  pTRIPZ  V3THS-387506  (Thermo  Fisher)  by  deletion  of  sequences 
encoding rtTA3 transactivator.  The construct  was digested with BamH I  and 
religated to give pTRIPZ-OFF-EZH2-1. The same modification was introduced 
in the control non-silencing construct pTRIPZ RHS4743 (Thermo Fisher).  To 
make  the  constructs  function  as  Tet-Off,  they  were  transduced  into  tTA-
Advanced expressing cells. For virus production, 293T cells at 80% confluency 
were transfected by Lipofectamine 2000 with packaging constructs,  pMD2.G, 
psPAX2,  and corresponding  pTRIPZ vector  and  7  µg/ml  polybrene.  After  8 
hours,  the  transfection  media  was  replaced  with  growth  media.  Cells  were 
selected for integrated constructs with puromycin dihydrochloride for two days.

Proliferation and EMT studies

For proliferation assays, cell viability was assessed by trypan blue exclusion 
analysis  and  was  90-100%.  Cells  were  imaged  for  RFP  using  fluorescent 
microscopy  (Leica  DM  IRB),  and  images  acquired  using  Q  Capture  PRO 
software. Matrigel assays were performed in 8-well glass chambers with 5x103 
cell/well  in growth medium containing 2% Matrigel  (BD Biosciences).  Cells 
were fed every 4 days with assay media containing 2% Matrigel,  which was  
supplemented  with  5  ng/ml  EGF for  MCF10A cells.  The  detection  of  EMT 
markers was performed with anti-rabbit antibody to β-catenin (sc-7199, Santa 
Cruz), and anti-mouse antibodies to E-cadherin (CD324, BD Biosciences) and 
vimentin (v5255, Sigma). Alexa 647 labeled anti-mouse (Invitrogen) and Cy3 
labeled  anti-rabbit  (Jackson  Labs)  antibodies  were  used  as  the  secondary 
antibodies. Nuclei were stained with DAPI. Immunofluorescent staining of acini 
cultured  in  Matrigel  was  performed  essentially  as  described  (Debnath, 
Muthuswamy,  and  Brugge  2003).  Acini  were  mounted  in  FluorSave  reagent 
(Calbiochem)  and  confocal  images  were  taken  using  Zeiss  LSM  700  laser 
scanning microscope using Zen 2009 (Zeiss Enhanced Navigation) software.

Analysis of protein and gene expression

Protein  lysates  were  resolved  on  a  6.25%  SDS-PAGE.  For  immunoblot 
analysis,  mouse  EZH2  BD43  (Millipore)  and  α-tubulin  T9026  (Sigma) 
antibodies were used and blots were developed using ECL. For gene expression 
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analysis,  total  RNA from cells  grown in  culture  were  isolated  using  TRIzol 
(Sigma).  Total  RNA  from  formalin-fixed  paraffin-embedded  (FFPE)  tissue 
samples  were  isolated  using  MagMAX FFPE total  nucleic  acid  isolation  kit 
(Ambion) and then 1.8 mg of the sample RNA was used for first strand cDNA 
synthesis  using Superscript  Vilo kit  (Life  Technologies).  Real-time PCR was 
performed using the SYBR Green PCR master mix and the CFX96 system (Bio-
Rad). Expression level of experimental genes was normalized to the geometrical 
mean of three control genes, SDHA, UBC and POLR2A. Primer sequences used 
in RT-qPCR are available in Table S10.

Transcriptome data

We used eight publicly available expression profiling data sets downloaded 
from  Gene  Expression  Omnibus  (GEO)  (Su  et  al.  2004;  Roth  et  al.  2006; 
Schmidt et al. 2008; Pawitan et al. 2005; Wang et al. 2005; Ivshina et al. 2006; 
Sabatier et al. 2010) (Table S2). Each data set consists of microarray expression 
data for primary tumors, except for GSE1133, which contains normal tissues and 
malignant cell lines, and GSE3526, which consists entirely of healthy tissues.  
The sample number varies from 159 to 533 across all cancer datasets. Data was 
pre-processed  as  previously  described  (Gundem and  Lopez-Bigas  2012)  and 
filtered for protein coding genes (according to Ensembl v60 annotations). The 
input  data  for  enrichment  analysis  was  obtained  by  median  centering  the 
expression value of each gene across all the tumor samples (row median) and 
dividing this value by the standard deviation (row standard deviation) using R (R 
Core Team 2012). For all cancer datasets, normal samples were removed before 
median centering. The obtained value is the measure of expression level for the 
gene in a sample as compared to its expression level in all other samples in the  
dataset.

Public datasets

We created  lists  of  genes  regulated  by  PRC2 from experimental  data  in 
available sources (Table S1). The degree of overlap between these gene lists is 
shown in Figure S1B. These include human genome-wide occupancy datasets 
from ChIPseq experiments in ES cells (Ku et al. 2008; The ENCODE Project  
Consortium  2007)  (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE24463) that we processed using Bowtie (version 0.12.5, hg19 genome 
assembly, unique alignments, allowing 2 mismatches) (Langmead et al. 2009) 
for  short  read  aligning.  For  peak  detection  of  transcription  factors,  we  used 
MACS (version 1.4.1) (Zhang et al. 2008) (nomodel and setting --bw parameter 
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to twice the shift size whenever a control IP was not available; the shift size was 
estimated using Pyicos (Althammer et al. 2011). For histone modifications, we 
used SICER (version 1.1) (Zang et al. 2009) (setting gap size to 600). Regions 
were assigned to protein coding genes (Ensembl v60) if they overlapped either 
to the gene body or up to 5 kb upstream from the TSS, using BedTools (Quinlan 
and Hall  2010).  Raw reads from each dataset  were checked for quality with  
FastQC (“Babraham Bioinformatics - FastQC A Quality Control Tool for High 
Throughput Sequence Data” 2012) and overall  peak-calling performance was 
evaluated with CEAS (Shin et al. 2009).

We also collected a set of breast cancer prognostic gene signatures (Table 
S6).  Other  gene  sets  were  obtained  and  classified  from  the  MsigDB  v3.0 
(Subramanian et al. 2005), KEGG (Kanehisa et al. 2012) and Gene Ontology 
(GO) (Ashburner et al. 2000). KEGG and GO terms were obtained from Biomart 
(Ensembl v65).

We annotated the intrinsic subtypes for Ivshina et al. 2006 dataset using R 
package  genefu  (http://www.R-project.org) using  the  robust  model.  Intrinsic 
subtypes from Sabatier et al. 2011 where obtained from authors’ annotations.

Sample-Level Enrichment Analysis (SLEA)

Enrichment  analysis  was  performed  using  Gitools  version  1.6.0  (Perez-
Llamas  and  Lopez-Bigas  2011)(http://www.gitools.org).  We  used  z-score 
method as described previously (Gundem and Lopez-Bigas 2012; Lopez-Bigas, 
De,  and  Teichmann  2008).  This  method  compares  the  mean  (or  median) 
expression value of genes in each module to a distribution of mean (or median) 
of 10,000 random modules of the same size. Such enrichment analysis was run 
for  each  sample  and  the  result  was  a  z-score,  which  is  a  measure  of  the 
difference  between  the  observed  and  expected  mean  (or  median)  expression 
values for genes in a module. The P-value related to the z-score was corrected 
for  multiple  testing  using  Benjamini-Hochberg  FDR  method(Benjamini  and 
Hochberg 1995)We define positively enriched modules in a sample as those with 
a positive z-score and a corrected P < 0.01, while negatively enriched modules 
have negative z-scores with corrected P < 0.01. Besides z-values for individual 
samples,  we also applied the mean z-score enrichment values,  which are the 
arithmetic  means  of  z-scores  for  individual  samples.  To  test  for  significant 
differences between the z-score means within each stratified group of samples  
we used the Mann-Whitney test  implemented in Gitools.  All  heat-maps were 
generated with Gitools.
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Survival analysis

We  used  the  logrank  test  (“survdiff”)  and  Cox  proportional  hazards 
(“coxph”) from R Bioconductor package (Gentleman et al. 2004) to calculate the 
significance and hazard ratios, respectively, and “survplot” (Aron Eklund 2012) 
for the Kaplan-Meier curves. In the survival analysis, the survival data of the 
samples with positive enrichment for the module (z-scores with corrected  P < 
0.01)  was  compared  to  that  of  the  samples  with  negative  enrichment  in  the 
dataset; the group size was at least 20 samples.
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Figures

Figure 1. PRC2 module gene expression reflects the balance between cell 
cycle and differentiation. A. SLEA analysis identifies groups of tissues and cell 
lines  BioGPS with  significantly  changed expression  of  PRC2 module.  Heat-
maps of regulatory modules (rows) and tissue samples (columns). “Cell cycle” 
and “Organ development” correspond to genes annotated under the GOBP terms 
GO:0007049 and GO:0048513, respectively. Up-regulation of a module in each 
sample is shown in red and down-regulation in blue. The bottom rows depict  
median-centered  probe-level  expression,  with  yellow  and  purple  colors 
indicating higher and lower expression, respectively. Right panels: Box-plots of 
the  PRC2  modules  z-scores  in  groups  of  samples  selected  according  to  the 
overall  enrichment  of  the  cell  cycle  module;  p-values  denote  Mann-Whitney 
one-sided  test  significance.  B.  SLEA analysis  shows  grouping samples  from 
healthy tissues of a single individual according to PRC2 module expression.
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Figure  2.  PRC2  module  expression  stratifies  samples  according  to  their 
molecular characteristics and aggressive tumor behavior. A.  PRC2 module 
stratification of breast tumor samples and enrichment of breast cancer prognosis 
signatures using gene expression data from Ivshina  et al. 2006. Samples were 
sorted  according  to  the  z-score  value  of  EZH2 module  and divided  in  three 
groups,  with  lower  (in  blue),  non-significant  (in  gray),  or  higher  (in  red) 
expression of genes in the module (z-score significance level set at  P < 0.01). 
Upper  panels,  color-coded  annotations  describe  breast  cancer  subtypes  and 
tumor grades taken from the clinical annotations of the patient samples. Middle  
panels,  SLEA analysis  of  PRC2 modules is  presented as  heat-maps for each 
tumor  sample.  Lower  panels,  the  mean z-score  enrichment  value  of  selected 
pathways,  GOBP,  and  breast  cancer  prognosis  signatures  is  presented  for 
samples  from  each  group  stratified  by  EZH2  module  enrichment.  For  all 
modules shown, z-scores were significantly different between the sample groups 
corresponding to lower and higher PRC2 modules enrichment (Mann-Whitney 
test, P < 0.01). B. The same analysis performed with samples from the study by 
Sabatier et al. 2011. See Table S6 and references (Van t’ Veer et al. 2002; Pujana 
et  al.  2007;  Hennessy  et  al.  2009;  Taube  et  al.  2010;  Liu  et  al.  2007) for a 
description of the prognostic gene signatures.
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Figure  3.  EZH2  depletion  reduces  cell  proliferation  and  induces 
mesenchymal  to  epithelial  transition. A. Induction  of  shRNAs  is  tightly 
regulated  with  doxycycline  in  Tet-Off  configuration.  MCF7  cells  stably 
expressing  the  tTA protein  were  transduced  with  a  lentivirus  expressing  the 
indicated shRNAs and treated with 100 ng/ml doxycycline (+Dox) for 6 days 
before analysis. The level of shRNA expression can be monitored by the level of 
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a TurboRFP reporter,  which is  induced proportionally to the amount of virus 
added to the cells (2x and 3x). B. Expression difference in EZH2 level upon Dox 
treatment  as  determined  by  RT-qPCR  and  immunoblot  analyses.  C. EZH2 
shRNA-mediated knockdown results in decreased proliferation in MCF7 cells. 
Error  bars:  means  +  SEM,  n=3.  D. Reduced  proliferation  of  EZH2 shRNA 
MCF7 cells grown on Matrigel. Phase contrast micrographs of  EZH2 shRNA 
acini are shown, with the relative number of acini (> 20 cells) presented in a 
graph. Error bars: means + SEM, n=2. E. EZH2 depletion changes expression of 
EMT markers in MCF7 cells. RT-qPCR data are shown for cells grown in Dox- 
versus Dox+ media.  F. Control shRNA and  EZH2 shRNA acini examined by 
fluorescent microscope for expression of EMT markers. Scale bar, 50 µm.  G. 
EZH2 shRNA-mediated  knockdown  results  in  decreased  proliferation  in 
MCF10A cells,  similar to MCF7 cells.  The shRNAs were induced in Tet-On 
configuration, which resulted in a successful decrease in EZH2 protein level as 
evidenced by immunoblotting (right panel). H. Reduced proliferation of  EZH2 
shRNA MCF10A cells grown on Matrigel. I and K. The EZH2 depletion slightly 
changes expression of EMT markers in MCF10A cells. Error bars for all RT-
qPCR assays: means + SEM, n=3.
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Figure  4.  PRC2  regulatory  modules  predict  outcome  in  breast  cancer 
patients. A. Kaplan-Meier  curves  for  PRC2  modules  and  prognostic  gene 
signatures  in  Ivshina  et  al. dataset.  HR=Hazard  Ratio.  B. Survival  analysis 
results after samples stratification according to PRC2 enrichment. The survival 
analysis results for Ivshina et al. dataset in A and three additional breast cancer 
cohorts are presented for samples up-regulated for the module (e.g.,  a  PRC2 
module or prognostic gene signature) compared to samples which are down-
regulated for the module. Red and blue indicate that the up or down-regulation 
of that module, respectively, significantly predicts better outcome (logrank P < 
0.05). Non-significant results are denoted in gray; missing analysis due to small 
sample group size is  indicated in white.  Prognostic gene signatures are as in  
Figure 2.
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Figure  5.  Genes  from  PRC2  module  which  expression  stratifies  breast 
tumor samples are regulated by EZH2. A. RT-qPCR was performed for EZH2 
and 8 top PRC2 module genes on RNA from MCF7 cells and graphed relative to 
expression in cells without shRNA production. Error bars: means + SEM, n=3. 
B.  Expression levels of  EZH2 and 8 top PRC2 module genes in breast tumors 
(TissueScan  Array).  The  heatmap  shows  expression  values  from  RT-qPCR 
experiments in a panel of human tumor samples, normalized to the reference 
gene B2M and presented relative to the mean ΔCt of each gene. Heatmaps were 
produced using  Gitools.  Yellow and purple  colors  indicate  higher  and lower 
expression, respectively. Columns represent different patient samples. Samples 
are  arranged  according  to  EZH2  level.  Correlation  coefficient  of  expression 
values of 8 genes (left panel) shows strong association in the level of 6 of these 
genes.
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Figure  6.  EZH2 protein  levels  in  breast  tumors  correlate  with  the  most 
aggressive  intrinsic  subtypes. A. Analysis  of  tissue  microarray  data.  High-
density tissue microarray containing in total 450 spots of normal and cancerous 
(190 spots of DCIS and invasive carcinomas) biopsy tissues was analyzed for 
EZH2 protein levels by immunohistochemistry. EZH2 protein levels (in blue) 
were  divided  in  four  categories,  and  are  shown  with  distribution  of  tumor 
subtypes, grade and overall  survival.  B. Representative images of biopsies of 
invasive breast carcinomas with different EZH2 level. Scale bar: 100 µm. C. The 
transcript  level  of  PRC2  module  genes  negatively  correlates  with  EZH2 
transcript and protein level. Expression level of EZH2 and 8 top PRC2 module 
genes confirmed by RT-qPCR. Gene expression of each gene was normalized to 
three control genes. Error bars: means + SEM, n=3 (PCR repeats). The table on 
the right shows EZH2 staining result and patient data.
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Supplementary Methods

Tissue microarray (TMA) construction 

Archival  formalin-fixed  and  paraffin-embedded  tissues  of  breast  cancer 
patients were obtained from the surgical pathology archive of the University of 
Chicago for TMA construction. The study was approved by local Institutional 
Review Board (IRB # 10760B). Pathologic features, including diagnosis, grade, 
tumor size, and axillary lymph node metastasis, were abstracted from pathologic 
reports.  The  histology  diagnosis,  grading  of  invasive  breast  cancer  and 
carcinoma in situ was performed separately by two pathologists (G.F.K., A.I.K.) 
and  based  on  protocols  of  the  College  of  American  Pathologists  and  World 
Health Organization (WHO) classification (Lester,  Bose,  Chen,  Connolly,  De 
Baca, Fitzgibbons, Hayes, Kleer, O’Malley, Page, Smith, Weaver, et al. 2009; 
Tavassoli  and  Devilee  2003;  Lester,  Bose,  Chen,  Connolly,  de  Baca, 
Fitzgibbons,  Hayes,  Kleer,  O’Malley,  Page,  Smith,  Tan,  et  al.  2009).  The 
histology grading of invasive carcinoma was performed using the Elston-Ellis 
modified Scarff-Bloom-Richardson method (C. W. Elston and Ellis 1991; E. W. 
Elston  and  Ellis  1993).  The  histology  grading  of  invasive  carcinoma  was 
performed using the Elston-Ellis modified Scarff-Bloom-Richardson method (C. 
W. Elston and Ellis 1991; E. W. Elston and Ellis 1993). Breast cancer subtypes 
were defined as luminal A (ER+ and/or PR+, HER2-), luminal B (ER+ and/or 
PR+, HER2+), basal-like (ER-, PR-, HER2-, CK5/6+ and/or EGFR+), HER2+ 
(HER2+, ER-, PR-), or unclassified (negative for all five markers) as described 
(Carey LA 2006). The TMAs were constructed from FFPE in situ and invasive 
carcinomas tumor samples and adjacent histological normal epithelium, which 
serve as an internal positive control. 1-mm tissue cores were arrayed into a new 
recipient  paraffin  block  using  an  automated  arrayer  (ATA-27,  Beecher 
Instruments, Sun Prairie, WI) as described (Kononen et al. 1998).

Immunohistochemistry (IHC)

4µm  TMA sections  were  deparaffinized  and  rehydrated  through  graded 
alcohols,  then  washed  in  Tris-buffered  saline.  Endogenous  peroxidases  were 
blocked  by  treatment  with  0.3% hydrogen  peroxide  for  5  min;  non-specific 
staining  was  prevented  by  incubation  in  Protein  Block  Serum-free  Solution 
(Dako,  Carpinteria,  CA).  IHC  assays  were  performed  using  a  Dako 
immunostainer. The immunoreactivity was detected using Envision+ reagents 
(Dako)  and  a  5-min  incubation  in  3-3’-diaminobenzidine  (DAB)  as  the 
chromogen,  followed  by  counterstaining  with  hematoxylin.  Slides  were 

136



counterstained with hematoxylin and mounted. Human tonsil, colorectal cancer, 
breast tissue, and commercial cell lines were used as positive controls. Isotypic 
IgG or no primary antibody served as negative controls.

IHC Evaluation

Two observers (A.I.K, G.F.K) performed quantitative analysis of the tissue 
specimen  without  knowledge  of  specimen  identification  as  described  in  our 
previous study (Khramtsov et  al.  2010).  Scoring was based on intensity  and 
percentage  of  positively  stained  cells;  all  discrepancies  were  resolved  by  a 
second examination using a multi-head microscope and Image-Pro Express 6.3 
(MediaCybernetics).  The Allred IHC score for ER and PR was calculated as 
described  (Lester, Bose, Chen, Connolly, De Baca, Fitzgibbons, Hayes, Kleer, 
O’Malley,  Page,  Smith,  Tan,  et  al.  2009;  Hammond et  al.  2010).  HER2 was 
evaluated by IHC according to ASCO/CAP guidelines (Wolff et al. 2007). EGFR 
immunostaining was evaluated according to PharmDX recommendations. The 
vimentin and CK5/6 were evaluated as described (Dabbs et al. 2006). EZH2 was 
evaluated using modified Allred IHC score as described  (Lester, Bose, Chen, 
Connolly, De Baca, Fitzgibbons, Hayes, Kleer, O’Malley, Page, Smith, Tan, et 
al. 2009; Alford et al. 2012). Low expression EZH2 was defined as scores 1-4, 
and high expression as scores 5-8.

Identification of top genes in the PRC2 module

To identify top genes from the PRC2 module where expression differences 
between the two groups of samples delineated by module expression were the 
highest, we analyzed five non-overlapping transcriptome experiments containing 
a large number of breast tumor samples (Table S2). We started by constructing a 
core PRC2 module, containing genes which were described in several EZH2, 
SUZ12 and H3K27me3 ChIPseq experiments in a variety of cell types (Table 
S9). This gave us a list of 167 unique Ensembl v60 gene IDs thus representing a 
core  set  of  genes  constitutively  bound  by  EZH2,  SUZ12  or  displaying 
H3K27me3 mark.

First, for every experiment we stratified the breast cancer samples, according 
to  overexpression  or  underexpression  of  the  core  PRC2 module,  by  running 
Sample Level Enrichment Analysis (SLEA). In particular, we sorted the samples 
using the median-centered expression values of probes for 167 genes. Second, 
we selected genes that contributed most to this stratification of samples, i.e., we 
sought to identify those probes that altered their expression the most when the 
samples were sorted according to the SLEA. For every probe in that module, we 
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took the values for the 10% most extreme samples (most up and down regulated)  
and calculated the two means. Then we subtracted the mean expression of the  
up-regulated samples from that of the down-regulated samples for each probe, 
and  obtained  a  value reflecting how much each  probe  is  contributing to  the 
observed changes in enrichment in the two groups of samples.  We used this 
value to rank the probes in the core module according to their contribution to its 
enrichment  in  every  experiment.  We  ranked  the  probes  in  each  experiment 
according  to  the  difference  in  the  means  and built  a  “total  rank”  across  all 
experiments.  Top probes  in  all  five  experiments  were nine genes:  PHOX2B, 
ULBP1, PDE4D, ADRA1A, POU4F2, SIM2, GRIK3, NEUROD2 and NTRK1 
(ENSG00000109132,  ENSG00000111981,  ENSG00000113448, 
ENSG00000120907,  ENSG00000151615,  ENSG00000159263, 
ENSG00000163873, ENSG00000171532 and ENSG00000198400). The probe 
log2 absolute readings confirmed that these genes are in fact expressed in each  
experiment, but we discarded the GRIK3 gene that showed very low detection 
level in patient samples.

Supplementary Tables

Table S1. List of datasets for PRC2 regulated genes used in the study.

Name Description Nº 
genes Source

EZH2 EZH2 target genes from ChIPseq 
experiment in ES cells 1229 (Ku et al. 2008)

SUZ12 SUZ12 target genes from ChIPseq 
experiment in ES cells 2019 GEO: GSE24463

H3K27me3 Genes with H3K27me3 mark from ChIPseq 
experiment in ES cells 6665

(The ENCODE 
Project Consortium 
2007)

PRC2 
relocalization

New targets of PRC2 upon HOTAIR 
overexpression in breast cancer cells (MDA-
MB-231)

750 (Gupta et al. 2010)

EZH2 depleted 
UP

Genes upregulated when EZH2 is depleted 
in breast cancer cells (MDA-MB-231) 332

(Lee et al. 2011)
EZH2 depleted 
DOWN

Genes downregulated when EZH2 is 
depleted breast cancer cells (MDA-MB-231) 398
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Table S2. Normal and breast tumor transcriptome datasets used in the study.

Study Source* Sample 
number

Lymph 
node 
status

Metastasis 
at 
resection

Systemic 
treatment Notes

(Su et al. 
2004)

BioGPS 
(GSE1133) 79 - - - Normal tissue and 

cell lines

(Roth et al. 
2006)

Healthy 
donors 
(GSE3256)

353 - - - Healthy tissue

(Ivshina et al. 
2006) GSE4922 289

81 pos
159 neg
49 NA

-
66 pos
183 neg
40 NA

Unselected 
population

(Sabatier et al. 
2010) GSE21653 266

140 pos
120 neg
6 NA

None None Early (ductal and 
lobular)

(Schmidt et al. 
2008) GSE11121 200 Negative None None

Selected for LN 
negative, untreated. 
Only early stage 
samples.

(Pawitan et al. 
2005) GSE1456 159 38 pos 26 76 pos

135 neg

Unselected 
population (121 
identified as “good 
prognosis”)

(Y. Wang et al. 
2005) GSE2034 286 Negative

93 pos
183 neg
10 NA

None Selected for LN 
negative, untreated

(The Cancer 
Genome Atlas 
Network 
2012)

TCGA breast 
invasive 
carcinoma

533
262 pos
258 neg
13 NA

100 pos
230 neg
203 NA

226 pos
307 neg 
(no data)

Breast invasive 
carcinoma (mostly 
ductal)

*Total datasets were used except of BioGPS, where we performed analysis on 51 
out of 79 samples, and of “Healthy donors” where we performed  analysis on 
282 out of 353 donors.
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Table S3. Clinical annotations details for samples in Ivshina et al. dataset after 
SLEA stratification using EZH2 module.  Percentages are relative to the total 
number of samples in each of the groups.

EZH2 down
(86 samples)*

None
(119 samples)

EZH2 up
(84 samples)

17% 12% 6% ER negative

38% 34% 18% Relapse

36% 18% 7% P53 mutation

36% 30% 17% Lymph node positive

28% 24% 4% Grade III

13% 13% 10% Basal-like

19% 17% 7% Her2

16% 37% 48% Luminal A

51% 24% 10% Luminal B

1% 10% 26% Normal-like

*Percentages are relative to the total number of samples in each of the groups.

Table S4. Clinical annotations details for samples in Sabatier et al. 2011 dataset 
after SLEA stratification using EZH2 module.

EZH2 down*

(70 samples)
None
(123 samples)

EZH2 up
(73 samples)

47% 48% 49% ER negative

33% 33% 26% Relapse

24% 27% 26% P53 mutation

46% 59% 49% Lymph node positive

66% 46% 30% Grade III

40% 30% 14% Basal-like

9% 11% 5% ERBB2

23% 38% 36% Luminal A

29% 18% 10% Luminal B

- 2% 36% Normal-like

*Percentages are relative to the total number of samples in each of the groups.
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Table  S5. Breast  cancer  intrinsic  subtype  signatures  from  MsigDB  used  in 
Figure S2.

Name Nº genes Description Source

Basal 475 UP / 490 DOWN Genes differentially expressed in basal 
breast cancer subtype

(Smid et 
al. 2008)

ERBB2 103 UP / 3 DOWN Genes differentially expressed in ERBB2 
breast cancer subtype

Luminal A 55 UP / 14 DOWN Genes differentially expressed in luminal 
A breast cancer subtype

Luminal B 123 UP / 392 DOWN Genes differentially expressed in luminal 
B breast cancer subtype

Normal-
like

347 UP / 3 DOWN Genes differentially expressed in 
normal-like breast cancer subtype
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Table  S6. Breast  cancer  prognostic  gene  signatures  collected  from  original 
research publications.

Name Class
Nº genes 
(Ensembl 
v60)

Description Source

Metastasis UP Prognostic 79 UP Up-regulated in metastatic 
breast tumors

(Van  ’t Veer 
et al. 2002)

Transition to 
IDC UP

Invasivenes
s

60 UP Up-regulated in invasive 
ductal carcinoma (IDC)

(Schuetz et al. 
2006)

EMT UP EMT 148 UP Up-regulated EMT-associated 
genes.

(Taube et al. 
2010)

Undifferentiated 
UP

Stemness 107 UP Up-regulated in stem cell-like 
breast cancer cells

(Liu et al. 
2007)

MBC and 
Claudin-low

EMT 21 Down-regulated in metaplastic 
breast cancer (MBC) and 
claudin-low tumors

(Hennessy et 
al. 2009)

BRCA1 
multicancer 
network

BRCA1 1184 Correlated with BRCA1 
expression in multiple cancer 
types

(Pujana et al. 
2007)

Better prognosis Prognostic 30 Up-regulated in good 
prognosis breast tumors

(Naderi et al. 
2007)

Resistance to 
treatment

Treatment 
resistance

76 Down-regulated in docetaxel 
treatment resistant breast 
tumors

(Chang et al. 
2003)

Growth-arrested Quiescence 22 Down-regulated in quiescent 
mammary cells

(Fournier et 
al. 2006)

Stemness in high 
grade

Stemness 69 Correlated with 'embryonic 
stem cell' signature, which is 
overexpressed in the high-
grade, ER-negative breast 
tumors.

(Ben-Porath 
et al. 2008)

Metastasis 
DOWN

Prognostic 37 DOWN Down-regulated in metastatic 
breast tumors

(Van  ’t Veer 
et al. 2002)

Transition to 
IDC DOWN

Invasivenes
s

233 DOWN Down-regulated in invasive 
ductal carcinoma (IDC)

(Schuetz et al. 
2006)

EMT DOWN EMT 91 DOWN Down-regulated EMT-
associated genes.

(Hennessy et 
al. 2009)

Undifferentiated 
DOWN

Stemness 87 DOWN Down-regulated in stem cell-
like breast cancer cells

(Liu et al. 
2007)

Residual disease Treatment 
resistance

30 Down-regulated in residual 
disease

(Chang et al. 
2003)

Senescence Quiescence 55 UP in sensescence (Fridman and 
Tainsky 2008)
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Table S7. Results of survival tests for PRC2 modules.

1. Results of survival tests presented for six different breast cancer transcriptome 
datasets. 
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2. Results of survival tests presented for the TCGA cohort split by tumor stage 

3.  Results  of  survival  tests  presented for  PRC2 module  excluding cell  cycle 
genes.
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Table S8. Multicancer gene signatures indicative of prognosis.

Name Nº 
genes Description Source

CIN 70 Genes that go UP in chromosome instability, 
predictive of cancer outcome 

(Carter et al. 
2006)

ES myc-related 
subnetwork

333 ES expression signature broken down into 3 
independent networks, experimentally derived

(Kim et al. 2010)

cell cycle in 
HeLa and 
fibroblasts

23 Experimentally-derived cell cycle regulated 
genes common in HeLa cells and human 
fibroblasts

(Whitfield et al. 
2002)

Proliferation in 
breast cancer

112 Proliferation genes defined in breast cancer 
expression

(Ben-Porath et al. 
2008)

Table S9. List of PRC2 modules obtained from ChIP-seq experiments.

Group Name Cell type Nº 
genes Source

PRC2

EZH2 hES 1229 (Ku et al. 2008)

SUZ12 ntera2 4075 (The ENCODE Project Consortium 
2007)

SUZ12 hES 2019 GEO: GSE24463

H3K27me3 H3K27me3

T CD4 5207 (Z. Wang et al. 2009)

hES 3411 (Lister et al. 2009)

hES 6665

(The ENCODE Project Consortium 
2007)

gm12878 6099

k562 6075

huvec 7940

nhek 6563

Breast 
CD24 4960

(Maruyama et al. 2011)
Breast 
CD44 3912
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Table S10. Primer sequences used in RT-PCR.

Gene 
Name Forward Primer Reverse Primer

CDH1
β-catenin
snail
VIM
N-cadherin
KRT19

as described in (Zhou et al. 2008)

B2M as described in (Lopez-Bigas et al. 2008)

UBC AAGATGGTCGTACCCTGTCTGACT TTCACGAAGATCTGCATCCCACCT

SDHA AGGGAAGACTACAAGGTGCGGATT AGTGCTCCTCAAAGGGCTTCTTCT

POLR2A ATCTCCCAGGTCATTGCTGTCGTT GCTTGAAGCCAAATGGAATCCGCT

EZH2 GATGCAACCCGCAAGGGTAACAAA AAACAGCTCTTCGCCAGTCTGGAT

SIM2 ACCGCCTTGTCTACCTCACAAGAA GGCCGCATTCCAGTTTGTCCATTT

ADRA1A ATCATCTCCATCGACCGCTACATC AATGGATATGACCAGGGAGAGTGC

PDE4D TACACCTGCTTTGGAGGCTGTGTT AAGCCCACAGCCAAATGATGGTTC

ULBP1 TCTGGAAAGCAGGAGTTCAAGCCT ATGAGCGAAGGTAATGAGTGGCCT

NEUROD2 TACGATATGCACCTTCACCACGAC CGGCGCGAAGTCTCAGTTATGAAA

NTRK1 ATGCCTGTGTTCACCACATCAAGC ACTCAGCAAGGAAGACCTTCCCAA

PHOX2B ACGCCGCAGTTCCTTACAAACTCT TTTGAGCTGGGCACTGGTGAAAGT

POU4F2 ACATGAGCGCTCTCACTTACCCTT AAATGGTGCATCGGTCATGCTTCC
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Supplementary Figures

Figure S1. Overlap of Polycomb regulatory modules. A. Symmetric heat-map 
representing the overlap between different PRC2 modules. Colors indicate the 
maximum intersection proportion, which is an overlap measure that takes into 
account the overlap percentage in the smaller of the two groups. B and C. Venn 
diagrams show the number of genes common between different studied PRC2 
modules. See Table S1 for references for the modules.

Figure S2. Breast cancer intrinsic subtype signatures. Heat-map of common 
cancer  prognostic  signatures  (see  Table  S5)  (rows)  and  tissue  samples  from 
Ivshina et al. dataset (columns). To avoid subjectivity in our data interpretation, 
signature  enrichment  has  not  been  filtered  for  significance.  Up-regulation  is 
shown in red, down-regulation in blue. In the left panel, the correlation matrix 
reflects  how similar  the  enrichment  is  across  breast  tumors  in  each  pair  of 
modules.  The  Mann-Whitney  test  depicts  the  significance  in  the  difference 
between z-scores when we compare samples with low and high expression of 
EZH2 module. In the upper-right panel, color-coded annotations describe sample 
clinical characteristics.
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Figure S3. GO Biological Process and KEGG enrichment in breast tumors. 
Heat-map of  different  pathways (KEGG) and GO (Biological  Process)  terms 
gene signatures (rows) and tissue samples (columns) of Ivshina et al. dataset. 
EZH2 targets  (top row) were used for  sample stratification.  Up-regulation is 
shown in red, down-regulation in blue; there's no significance threshold set for 
this enrichment. A. Gene signatures that correlate with the EZH2 module. B. 
Gene signatures that anti-correlate with the EZH2 module.
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Figure S4. Correlation between expression of gene signatures. A. Ivshina et  
al.  dataset.  B.  Sabatier  et  al.  dataset.  Symmetric  heatmap  representing  the 
Pearson Correlation Coefficient of each pair of z-score vectors resulting from the 
enrichment analysis of PRC2 modules, GO terms, pathways (see Figure S2 and 
Figure S3) and prognostic gene signatures. See Table S6 and references (Van  ’t  
Veer et al. 2002; Taube et al. 2010; Liu et al. 2007; Hennessy et al. 2009; Pujana 
et al. 2007) for a description of the prognostic gene signatures.

Figure S5. PRC2 modules stratification of breast tumor samples and breast 
cancer  prognosis  signatures  enrichment. Heatmap  of  previously  described 
gene signatures (see Table S6) (rows) and tissue samples from Ivshina  et  al. 
dataset (columns). In the left panel, the correlation matrix reflects how similar 
the enrichment is across breast tumors in each pair of modules. Analysis was 
conducted as in Figure S2. Up-regulation is shown in red, down-regulation in 
blue;  gray  denotes  no  significant  enrichment  in  the  PRC2 modules  (Z-score 
significance level is set at P < 0.01).
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Figure  S6.  Overlap  of  PRC2  modules  and  the  selected  gene  signatures. 
Symmetric heat-map representing the element counts in each module.  Colors 
indicate the maximum intersection proportion, which is an overlap measure that 
takes into account the overlap percentage in the smaller of the two groups. This 
allows comparison of two sets of elements of a large size difference. See Table  
S8 for a description on the modules.
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Chapter 4

THE MUTATIONAL LANDSCAPE OF CHROMATIN 
REGULATORY FACTORS ACROSS 3000 TUMOUR 

SAMPLES

In the last  couple of years there has been an explosion on the generation of  
cancer genomics data. Large consortia have characterised thousands of tumours 
at different levels, including gene expression, epigenetic, CNA and mutational 
profiles.  Particularly,  the  analysis  on  mutations  has  focused  on  few  genes 
previously known to be involved in cancer, or on those that appeared mutated at  
high frequencies across a tumour sample cohort. Many large projects on cancers 
from different tissues have reported that CRFs play an unprecedented important 
role  in  the  deregulation of  pathways that  leads  to  tumorigenesis.  Seeking to 
determine the overall contribution of mutations in CRFs to human cancers of 
different origin, in this chapter I report an analysis on the mutational landscape 
over many of the sequenced tumours to date and on over 900 cancer cell lines. In 
this part, I curated the list of CRFs, performed SLEA and analyses of mutations 
in cell lines and contributed to the writing of the manuscript. This manuscript  
has just been submitted for publication.
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Abstract

Background

Chromatin  regulatory  factors  (CRFs)  are  emerging  as  important  genes  in 
cancer  development  and  are  regarded  as  interesting  candidates  for  novel 
targets for cancer treatment. However, we lack a comprehensive understanding 
of the role of this group of genes in different cancer types.

Results

We have analysed close to 3000 tumour samples from eleven anatomical sites 
to determine which CRFs are candidate drivers in these different  sites.  We 
identified 39 CRFs that are likely drivers in tumours from at least one site, all 
with  relatively  low  mutational  frequency.  We  also  analysed  the  relative 
importance of  mutations in  CRFs for  the development of  tumorigenesis  in 
each site, and in different tumour types from the same site.

Conclusions

In all, we found that although certain tumours from all 11 sites show mutations 
in likely driver CRFs, these are more prevalent in tumours from certain sites, 
like  kidney.  Furthermore,  mutations  in  CRFs  reveal  as  a  rather  important 
pathway  to  tumorigenesis  in  certain  tumour  types  like  paediatric 
medulloblastomas,  but  almost  negligible  in  others,  such  as  glioblastomas. 
Finally, we also show that mutations on two CRFs, MLL and P300, correlate 
with broad expression changes across cancer cell lines, thus presenting at least 
one  mechanism  through  which  these  mutations  could  contribute  to 
tumorigenesis in cells of the corresponding tissues.
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Background

Highly  conserved  molecular  mechanisms  are  responsible  for  maintaining 
genome integrity,  which is  essential  for  cell  survival.  Those include the fine 
regulation  of  chromatin  structure,  mainly  maintained  through  three  distinct 
processes: the post-translational modification of histone tails, the replacement of 
core histones by histone variants, and the direct structural remodelling by ATP-
dependent Chromatin-Remodelling Enzymes  [1]. The proteins that control this 
system,  termed  Chromatin  Regulatory  Factors  (CRFs),  contribute  to  the 
establishment  of  chromatin  structures  that  modulate  the  expression  of  many 
downstream  genes,  either  by  establishing  more  inaccessible  regions  or  by 
placing histone marks that open the chromatin and facilitate the binding of other 
factors. These CRFs help to maintain cellular identity, and mutations in them 
(often referred to as epimutations) often lead to misregulation in gene expression 
that may contribute to tumorigenesis [2].

CRFs  are  grossly  classified  in  three  main  groups:  histone  tail  modifiers 
(including HATs, HDACs, HMTs and HDMs, that deposit or remove acetyl or 
methyl  groups,  respectively),  DNA methyltransferases  (DNMTs) and putative 
demethylases  (that  affect  cytosines  at  CpG  islands),  and  ATP-dependent 
chromatin  remodelling  complexes  (responsible  for  the  repositioning  of 
nucleosomes). Until recently, DNA methytransferase (DNMT) proteins had not 
been found to be mutated in cancer  [3], but  DNMT3A, and later  DNMT1 and 
DNMT3B, were reported as altered in MDS and AML, where they also predicted 
prognosis [4, 5]. Mutations in ATP-dependent chromatin-remodelling complexes 
are recurrent, amongst others, in ovarian and clear cell renal cancers  [2]. The 
regulation of the trimethylation of histone H3 at K27 mark (H3K27me3) by the 
Polycomb complex,  a  key  component  to  maintain  stem cell  identity,  is  also 
frequently compromised in a variety of cancer types, including those in breast, 
bladder, pancreas, prostate and lymphomas. Histone demethylases (HDMs) have 
also been implicated in the development of a wide variety of tumours. Moreover, 
recent  whole  exome  sequencing  studies  on  large  sample  cohorts  have 
highlighted as main findings the inactivating mutations on proteins that regulate 
the epigenomic state of cells  [6]. Alterations in KAT6B [7], SMARCC1 [8] and 
NSD1 [9] have  been  described  in  uterine,  cervical  and  skin  pre-malignant 
lesions, respectively. This presents these proteins as potential biomarkers, which 
adds prevention and early cancer detection to the possible uses of CRFs in the 
clinic.
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This current accumulation of evidence for the role of CRFs in cancer has 
attracted the attention of the scientific community towards CRFs as novel targets 
for cancer treatment. In 2006, the first histone deacetylase inhibitor (HDACi), 
Vorinostat, was approved by the FDA to treat a specific type of lymphoma, and 
more than 20 molecules of this type are currently under preclinical and clinical  
investigation [10]. Some DNMT inhibitors have been recently approved by the 
FDA to treat MDS, and their combination with HDACi is a subject of intense 
study in clinical trials [11]. There are studies that raise hopes for the possible use 
of HDACis to overcome drug resistance [12]. Interestingly, an in-depth review 
by Patel et al. on 46 potentially druggable, yet chemically unexplored proteins in 
the Cancer Gene Census (CGC) identified six CRFs:  ATRX,  KAT6A,  KDM6A, 
NSD3, PBRM1 and SMARCA4 [13].

Even though CRFs are emerging as important genes in cancer development 
[14–19],  to  our  knowledge  no  comprehensive  systematic  analysis  on  the 
misregulation of a comprehensive catalogue of CRFs in different tumours has 
been performed to date. Moreover, most cancer sequencing studies have focused 
their  efforts  in  the  in-depth  characterization  of  specific  genes  that  appear 
mutated  at  high  frequencies,  underestimating  the  impact  of  lowly-recurrent 
drivers (those genes which mutation is likely to be functional, but occurs in few 
samples) on tumorigenesis. For instance, a very recent report [20] focused only 
on the SWI/SNF family took into account the frequency of mutations on their 
members rather than their likelihood of driving tumorigenesis.

In this paper we carry out a systematic exploration of the role of CRFs in 
tumorigenesis  in  different  tissues.  To  that  end,  we  have  first  compiled  and 
manually curated a comprehensive list  of CRFs, for which we annotated any 
previously known implications in cancer. Secondly, we have analysed close to 
3000  tumour  samples  from eleven anatomical  sites  to  identify  which  of  the 
CRFs  are  candidate  drivers  in  these  different  sites  employing  an  approach 
recently introduced by us [21].  Finally,  we took advantage of the profiles of 
genomic alterations generated by the Cancer Cell Line Encyclopedia (CCLE) 
[22]  to  explore  the  effects  of  mutations  in  two  likely  driver  CRFs  on  the 
expression of broad gene sets across nearly 1000 cancer cell lines.
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Results and discussion

Likely drivers CRFs appear ubiquitously mutated across 

tumours from eleven anatomical sites

In order to determine which CRFs may be involved in cancer emergence and 
development in primary tumours from eleven anatomical sites, we first collected 
and  manually  curated  a  list  of  CRFs  from  the  literature.  This  primary  list 
contained 183 proteins grouped into eleven major functional classes, the most 
populated  of  which  are  the  Histone  Deacetylases  (HDACs),  the  Histone 
Acetyltransferases (HATs) and the Histone Methyltransferases. (The detailed list 
of CRFs in all functional classes is presented in Table S1.) Only 26 of them are 
included in the  Cancer  Gene  Census.  However,  sifting carefully  through the 
literature  we  found  that  many  of  these  CRFs  (115  out  of  183)  have  some 
evidence,  mainly  in  scattered  reports  from  the  past  two  years,  of  genomic 
alteration or misregulation in tumours (see Table 1 and Table S2).

In IntOGen, during the past year, we have collected and analysed datasets of 
cancer  somatic  mutations  produced  by  different  research  groups  across  the 
world.  Some  of  them  have  been  generated  within  the  framework  of  large 
international initiatives like The Cancer Gene Atlas [23] and the International  
Cancer  Genomes Consortium [24],  while  others  are  the  fruit  of  independent 
laboratories. Taken together, these datasets (26) contain the somatic mutations 
detected in almost 3000 primary tumour samples obtained from eleven different  
anatomical  sites  (see  Table  2  for  details).  Each  dataset  has  been  analysed 
separately,  to  compensate  for  differences  between  tumour  histologies  and 
subtypes,  and  between  sequencing  analysis  pipelines.  We  used  an  approach 
recently developed by us [21] to detect genes that, across the cohort of tumour 
samples, tend to accumulate functional mutations. We give the name “FM bias” 
to this significant trend towards the accumulation of functional mutations. The 
FM bias is a sign of positive selection during cancer development and therefore  
FM biased genes are likely candidates to drivers. We have also combined the P 
values of FM bias of individual genes across the datasets of tumour samples 
obtained from the same anatomical site. With this approach, we have obtained a 
measurement of FM bias for each mutated gene at the level of one dataset of 
tumour samples (or project), and also at the level of each anatomical site (or 
tissue).

This catalogue of likely driver genes has allowed us, for the first time, to 
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systematically explore the involvement of epigenetic mechanisms (via mutations 
in  CRFs)  in  tumorigenesis  in  almost  3000  tumour  samples  from  eleven 
anatomical sites. After an exhaustive search within the list of all likely driver 
genes, we found that 39 CRFs from our manually curated list are FM biased in at 
least  one  site.  The  mutational  frequency of  these  39  FM biased  CRFs  is  in 
general low across all sites (Figure 1), which suggests  that, as a rule, they are 
implicated in tumorigenesis in a relatively small number of patients. Only few 
exceptions show mutational frequencies above 10% in at least one site: ARID1A, 
MLL2, KAT8, SETD2, PBRM1, NSD1 and ARID4A.

Figure 2A illustrates  the MutationAssessor  [25] Functional  Impact  scores 
(FIS)  of  the  mutations  that  are  included  within  the  FM  bias  calculation 
(synonymous,  non-synonymous,  stop  and  frameshift  causing  indels)  in  these 
genes in all the tumour samples with at least on mutated CRF. The accumulation 
of  high-scoring  mutations  (red-shifted)  in  genes  like  PBRM1 or  KDM5C 
(kidney) and NCOR1 (breast) in tumour samples from specific sites account for 
their driverness specificity  in these tumours. On the other hand, spread high-
scoring mutations in, for instance, MLL3, explains why it is identified as a likely 
driver in five tissues (Figure 2C). Figure 2B, on the other hand, summarizes the 
frequency of PAMs sustained by these genes across all tumour samples.

The repertoire of likely driver CRFs per site appears on Figure 2C. Eight of  
them are likely drivers in  tumour  samples from at  least  two sites.  The most 
salient conclusion that can be extracted from this repertoire of mutations is that  
mutations to proteins that participate in the general mechanisms of chromatin 
maintenance  are  ubiquitously  associated  to  tumorigenesis  in  all  cancer  sites 
studied, probably via a contribution to overall genomic instability [26].

A concurrent observation was made by a very recent analysis  [20], which 
found recurrent mutations in SWI/SNF proteins across more than 650 tumour 
samples of 10 anatomical sites. Here, we have widened this landscape to 183 
CRFs and almost  3000 tumour  samples.  Furthermore,  by using the FM bias 
analysis rather than the count of mutations, we have focused on the most likely 
driver CRFs.

Three  CRFs  that appear  as  likely  drivers  in  more  than  one  site  (CHD3, 
KDM3A and  KAT8)  are  not  annotated  in  the  Cancer  Gene  Census  [27]  and 
constitute, therefore, interesting candidates for novel epigenetic drivers (Figure 
2C). Many of these genes are also frequently mutated –an accumulation that may 
be attributed in most of them to germ line variants– across the cancer cell lines 
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sequenced by  the  CCLE initiative  [22]  (see  Figure  S1).  Interestingly,  CHD3 
appears significantly FM-biased in stomach cancer, and was found to be mutated 
in gastric tumours with high microsatellite instability [28].

The importance for tumorigenesis of mutations in CRFs 

strongly depends on the anatomical site and the tumour 

type

From the data in IntOGen, we computed the number of likely driver genes in 
general,  and  likely  driver  CRFs  in  particular,  that  bear  potentially  protein 
sequence  affecting  mutations,  or  PAMs  (non-synonymous,  stop,  frameshift 
causing indels and splice-site mutations) in each of nearly 3000 tumour samples. 
The simplest  way of  representing the relative  importance of  the  mutation of 
CRFs in tumorigenesis in the different sites consists in counting the number of 
samples with at least one FM biased CRF bearing a PAM (Figure 3A). In this 
metric, kidney tumours stand out, with more than 60% of the samples with at 
least  one  mutated  CRF,  whereas,  on  the  opposite  extreme,  brain  and 
haematopoietic tumours contain less than 10% of the samples with mutated FM 
biased CRFs. We then computed the fraction of CRFs with PAMs with respect to 
all FM biased genes with PAMs in each sample (CF ratio) (Figure 3B). This 
measure  gives  an  indication  of  the  relative  importance  of  CRFs  in  the 
tumorigenesis process in each sample.

This  result  can  be  visualized  at  sample-depth  in  Figure  S2. While,  as 
observed, a large fraction of kidney tumour samples have mutated CRFs, most 
of them present a low CF ratio (light gray or white in the colour annotation bar  
on top of the heatmap), probably implying that various mechanisms cooperate 
towards tumorigenesis in these cells. Brain or lung tumours with mutated CRFs, 
on the other hand, are rather scarce (see Figure 3A), but the mutation of CRFs 
appears to be very important for tumorigenesis in these patients (as shown in the 
corresponding boxplots of Figure 3B). A closer look at the repertoire of mutated 
drivers in the samples of the three brain tumour datasets currently in IntOGen 
reveals  that  these  samples  with  high  CF  ratio  (black  shifted  in  the  colour 
annotation  bar  on  top  of  the  heatmap)  correspond  almost  exclusively  to 
Paediatric medulloblastomas (Figure 4).  Conversely, the samples of the other 
two datasets (glioblastomas) exhibit a repertoire of mutated “classical” tumour 
suppressors  and oncogenes.  These differences  probably highlight  two diverse 
pathways towards tumorigenesis: the first, more frequent in medulloblastomas, 
probably  relies  heavily  on  genomic  instability,  whereas  the  second  occurs 

163



through a combination of the classical hallmarks of sustained proliferation and 
resistance  to  cell  death.  Actually,  the  classification  of  Medulloblastomas  has 
been recently standardised in four main subtypes; two are well-characterized, 
have  a  mostly  adult  presentation  and  good  or  medium prognosis,  while  the 
remaining (termed groups 3 and 4) are mostly paediatric, with poorer outcome, 
high chromosomal  instability (CIN),  and unknown genomic causative factors 
[29, 30]. In the light of this knowledge, our observations suggest that mutations 
in  CRFs  could  be  implicated  in  the  mechanisms  of  CIN   in  at  least  some 
medulloblastoma samples.

Taken together, our results suggest that CRFs mutations, which may affect 
chromatin maintenance, and probably contribute to overall genomic instability, 
are  indeed  a  ubiquitous  phenomenon  across  tumours  from  different  tumour 
types.  Nevertheless,  they  appear  to  be  circumscribed  to  a  relatively  small  
number of tumour samples, although future reviews of the catalogues of CRFs 
may increase the proportions calculated here. Therefore, with some exceptions,  
this  genomic  instability  seems  to  be  one  amongst  a  set  of  well-known 
tumorigenic mechanisms, rather than the unique causative factor.

CRFs mutations correlate with transcriptomic alterations 

of gene modules in cancer cell lines

The Cancer Cell  Line Encyclopedia project  has sequenced 1,651 protein-
coding genes, of which 43 are CRFs according to our curated list (see Table S1 
for a detailed classification). We used this data to further explore the possible 
effects of CRFs mutations on comprehensive transcriptomic changes as a step in 
their contribution to tumorigenesis. A SLEA over cancer cell lines using GOBP 
terms  altered  in  specific  cancer  tissues  captured  the  primary  site-specific 
transcriptional  characteristics  typical  of  each  tumour  (see  Figure  S3).  Gene 
expression patterns in cancer cell lines, thus, are similar to the primary cancer 
cells from which they were derived. 

We then functionally assessed the transcriptional impact of PAMs on EP300 
and MLL3 (the only CRFs sustaining PAMs in sufficient cell lines: 115 and 191, 
respectively) to further determine whether the impact of this PAMs on epigenetic 
regulation   translated  into  broad  transcriptomic  changes.  The  underlying 
hypothesis  was  that  genes  whose  transcription  was  modulated  by  specific 
histone marks that became affected by PAMs on these two genes would present 
expression  changes  detectable  when  analysed  as  a  group.  To  this  end,  we 
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collected regulatory modules of histone modifications in three cell  types (see 
Table S3) and ran SLEA separately on cell lines originated from blood and solid 
tissues (Figure 5). In general, both EP300 and MLL3, when mutated (see Table 
1), were associated to a lower expression of repressed chromatin gene modules 
(H3K27me3 and late replication timing) and to an enrichment in active genes 
(marked  by  H3K4me3  and  H3K9ac).  H3K27me3  module  under-expression, 
regulated by Polycomb, has been associated to a stem cell-like signature and 
more aggressive tumours [31]. Moreover, cell lines with a mutation in MLL3 had 
a  higher  expression  of  cell  cycle  related  modules.  In  samples  derived  from 
haematological cancers the mutational status of CRFs did not determine a bias in 
expression,  probably  due  to  the  global  gene  over-expression  in  acute 
lymphoblastic B and T leukaemias compared to the rest, which masked other 
transcriptomic changes. Considering this evidence, there seems to be a spectrum 
on protein functional impact in mutations found in CRFs, and some cancer cell 
lines accumulate them in comparison to all other mutations. This may indicate 
that epigenomic regulation is more determinant of oncogenesis in some specific 
tumours, and also highlights the differences across cancer cell lines derived from 
the same tissue.

Conclusions

In this paper we  present the first  systematic approach to characterise the 
repertoire of CRFs that could constitute mutational cancer drivers in tumours 
from eleven anatomical  sites.  We have found that  likely driver CRFs appear 
ubiquitously across tumour samples from these 11 sites, although the number of 
affected  samples  is  in  general  low,  except  in  the  case  of  kidney  tumours. 
Mutations on CRFs appear to be in general  only one of several  contributing 
mechanisms towards tumorigenesis in most cancer samples, although in some 
cases they appear to drive cancer emergence through genomic instability without 
significant intervention of many other hallmarks. Finally, we have proved that  
mutations on two CRFs correlate with broad expression changes across cancer  
cell lines, thus presenting at least one mechanism through which these mutations 
could contribute to tumorigenesis in cells of the corresponding tissues. We think 
that  our  results  and  those  of  similar  systematic  analysis  on  the  alterations 
undergone by CRFs will help us to better understand the mechanisms of tumour 
emergence. They may also, in the long run, aid in the stratification of patients'  
tumours. Also, the analysis of mutated CRFs in cancer cell lines constitutes a 
first step to understand tumour’s sensitivity or resistance to particular drugs, thus 
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helping to draw personalised treatments.

All  the  results  presented  here  are  available  for  browsing  at  IntOGen 
(http://beta.intogen.org) and IntOGen-CL [32].

Materials and methods

Chromatin Regulatory Factors (CRFs)

We manually compiled a list of 183 genes coding for CRF proteins from the 
literature,  based  on  protein  function  and  known  essential  association  to 
complexes  important  for  the  regulation  of  chromatin  structure.  A  detailed 
classification of these CRFs is shown in Table S1. The relevant proteins for the 
purpose of this analysis are described in Table 1 and Table S2.

FM biased genes in primary tumours

FM  biased  genes  exhibit  a  bias  towards  the  accumulation  of  functional 
mutations across a cohort of tumour samples and are therefore candidate cancer 
drivers.  We  have  compiled  twenty-six  datasets  of  tumours  from  eleven 
anatomical sites (see Table 2) and detected the FM biased genes in each of them 
with the approach described in [21]. Finally, we have combined the gene-wise P 
values obtained for datasets of the same anatomical site,  to obtain a single  P 
value that measured the bias of the gene towards the accumulation of functional 
mutations in different tumours from the same site. The corrected genes FM bias  
P values in these eleven tissues are stored in the IntOGen knowledge base [33]. 
The dataset  collection of tumour somatic mutations,  their  processing and the 
results storage in IntOGen are thoroughly described in a manuscript currently in  
preparation. Details of the 26 tumour somatic mutations datasets are presented in 
Table 2.

We downloaded the data employed in the analyses of FM biased genes that 
are described in the Results and Discussion section from IntOGen. This includes 
a) the corrected P values of all genes that were FM biased in at least one of the 
eleven anatomical sites, and b) the list of potentially protein-sequence affecting 
mutations  (PAMs)  detected  in  these  genes.  We  defined  PAMs  as  mutations 
predicted as stop, frameshift indels, non-synonymous and splice site mutations.

Cancer cell lines data processing

Expression  arrays  from  the  CCLE  were  downloaded  from  the  Gene 
Expression Omnibus (GEO, id GSE36133) as raw CEL files, and pre-processed 
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it  as  previously  described  [34].  The  input  data  for  enrichment  analysis  was 
obtained by median centring the expression value of each gene across cancer cell 
lines and dividing this value by the standard deviation. The obtained value is the 
measure  of  expression  level  for  the  gene  in  a  sample  as  compared  to  its  
expression level in all other samples in the dataset. We built separate expression 
matrices  for  cancer  cell  lines  obtained  from haematological  system or  solid 
primary cells, since the expression profiles of these two groups were shown to 
clearly differ in the original publication [22].

Sample Level  Enrichment  Analysis (SLEA) was performed using Gitools 
version 1.6.0  [35]. We used z-score method as described previously  [36]. This 
method  compares  the  mean  (or  median)  expression  value  of  genes  in  each 
module to a distribution of mean (or median) of 10,000 random modules of the 
same size. Such enrichment analysis is run for each sample and the result is a z-
score, which is a measure of the difference between the observed and expected 
mean (or median) expression values for genes in a module. We applied the mean 
z-score  enrichment  values,  which  are  the  arithmetic  means  of  z-scores  for 
individual samples, separately in cell lines obtained from haematological system 
or in those obtained from solid primary cells. To test for significant differences 
between the z-score  means between groups of  cell  lines we used the Mann-
Whitney test  [37] implemented in Gitools. All heat-maps were generated with 
Gitools.

To detect  potentially  protein-sequence affecting mutations in genes within 
the  list  of  CRFs  (see  Table  S1),   we  downloaded  processed  mutations  data 
(single  nucleotide  variants,  SNVs  and  small  indels)  for  1651  protein-coding 
genes (7th May, 2012 version, excluding common polymorphisms and SNVs 
with an allelic fraction > 10%) from the CCLE website [38]. We computed the 
consequence  types  of  these  variants  using  the  Ensembl  (v69)  Variant  Effect 
Predictor  (VEP)  wrapped  within  the  IntOGenSM  pipeline  (manuscript  in 
preparation).

The consequence type of all  analysed variants in cancer cell  lines can be 
browsed through the IntOGen-CL website [32].

Public gene regulation datasets

We collected lists of genes occupied by a specific histone mark or bound by 
a  regulatory  factor,  and  computationally  predicted  chromatin  states,  from 
available sources (see Table S3). These include human genome-wide occupancy 
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datasets  from  ChIP-seq  experiments  in  several  cell  types  [39–43] that  we 
processed using Bowtie  [44] (version 0.12.5,  hg19 genome assembly,  unique 
alignments, allowing 2 mismatches) for short read aligning. For peak detection 
of transcription factors we used MACS [45] (version 1.4.1, settings: --nomodel 
and --bw parameter set to twice the shift  size whenever a control IP was not 
available). For broad histone modifications (i.e. H3K27me3), we used SICER 
[46] (version 1.1,  setting gap size to 600).  Regions were assigned to protein 
coding genes (Ensembl v69) if they overlapped either to the gene body or up to  
5  kb  upstream  from  the  TSS,  using  BedTools  [47].  Overall  peak  calling 
performance was evaluated with CEAS [48].

Other gene sets were obtained from KEGG[49] and Gene Ontology (GO)
[50]. The list and mappings (in Ensembl v67 IDs) of KEGG and Gene Ontology 
(GO)  Biological  Process  terms  were  downloaded  through  the  Gitools 
importer[35].
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Tables

Table 1. Described oncogenic alterations in Chromatin Regulatory Factors FM-
biased in at least one tissue.  This is an exhaustive compilation of alterations(*) 
reported in CRFs showing FM bias in  at  least one tissue (see Figure 2B). Gene 
names correspond to  HUGO HGNC approved symbols.  In  bold  typeface,  genes 
included in the Cancer Gene Census (CGC) [27]. Genes not previously reported to 
be  altered  in  cancer  are  marked  with  an  asterisk  (*).  ALL:  Acute  Lymphocytic 
Leukaemia;  AML:  Acute  Myeloid  Leukaemia;  B-NHL:  B-cell  non-Hodgkin 
Lymphoma;  CLL:  Chronic  Lymphocytic  Leukaemia;  ccOC:  Clear  Cell  Ovarian 
Carcinoma;  ccRCC:  clear-cell  Renal  Cell  Carcinoma;  CMML:  Chronic 
Myelomonocytic  leukemia;  CRPC:  Castration-Resistant  Prostate  Cancer;  ESCC: 
Esophageal  Squamous  Cell  Carcinoma;  HCC:  Hepatocellular  Carcinoma;  HL: 
Hodgkin  Lymphoma;  MCL:  Mantle  cell  Lymphoma;  MDS:  Myelodysplastic 
Syndrome;  MSI:  Microsatellite  instability;  MPN:  Myeloproliferative  Neoplasm; 
MRC-AML: AML with  Myelodysplasia-related  changes;  NMSC: Non-Melanoma 
Skin Cancer;  NSCLC: Non-Small Cell  Lung Carcinoma; OSCC: Oral  Squamous 
Cell Carcinoma; PCLBCL: Primary Cutaneous Large B-Cell Lymphoma; PCNSL: 
Primary Central Nervous System Lymphomas; RCC: Renal Cell Carcinoma.

*Evidence  based  solely  on  cancer  cell  lines  is  excluded  from  this  table.  Only 
evidence in human samples have been used. Effects of pharmacological inhibition 
are not included. Germline polymorphisms are also excluded.

Gene Literature evidence

MLL3 Mutated in medulloblastoma (CGC), HCC [51], bladder [52], prostate cancer 
[53], colorectal cancer [54], gastric adenocarcinoma [55], NSCLC [56], breast 
cancer [57] and pancreatic cancer [58].
Deleted in leukemia [59].

PBRM1 Mutated in ccRCC, breast (CGC) and pancreatic cancer [60].

MLL2 Mutated in medulloblastoma, bladder [52], renal cancer (CGC), DLBCL [61].
Over-expressed in breast and colon tumours [62].

ARID1A Mutated in ccOC and RCC (CGC), bladder [52], HCC [51], endometrium [63], 
colorectal [64], gastric adenocarcinoma [55], pancreatic cancer [58], lung 
adenocarcinoma [65], Burkitt lymphoma [66] and aggressive neuroblastoma 
[67].
Down-regulated in aggressive breast cancer [68],

SETD2 Mutated in ccRCC (CGC).
Down-regulated in breast tumours [69].

SMARCA4 Mutated in NSCLC (CGC), lung adenocarcinoma [65], medulloblastoma [70] 
and Burkitt lymphoma [66].
Over-expressed in glioma [71] and in melanoma progression [72].
Gained in lung [73].

NCOR1 Mutated in breast [74] and bladder cancer [52].
Down-regulated in aggressive breast tumours [75].

CHD4 Mutated in high MSI gastric and colorectal cancers [28].
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Down-regulated in gastric and colorectal cancers [28].

KDM5C Mutated in ccRCC (CGC).

EP300 Mutated in colorectal, breast and pancreatic cancers, ALL, AML, DLBCL 
(CGC), bladder [52], SCLC [76] and endometrium [63].
Up-regulated in esophageal squamous cell carcinoma [77] and advanced HCC 
[78].
LOH in glioblastoma [79].

MLL Mutated in AML, ALL (CGC), bladder [52], SCLC [76], HCC [51] and gastric 
tumours [55].

ARID1B Mutated in breast tumours [74].

TET1 Mutated in T-ALL [80].
Down-regulated in prostate and breast tumours [81].

BAP1 Mutated in uveal melanoma, breast, NSCLC and RCC (CGC).
Over-expressed in NSCLC with good prognosis [82].

NSD1 Mutated in AML (CGC) and NMSC [9].
Gained in lung adenocarcinoma of never-smokers [83].

EP400* -

ASXL1 Mutated in MDS and CMML (CGC), MPN [84], MRC-AML [85] and CRPC 
[86]. 

ARID4A* -

INO80* -

CHD3 Mutated in high MSI gastric and colorectal cancers [28].

KDM6A Mutated in kidney, oesophageal SCC, MM (CGC), lung cancer [73], 
medulloblastoma [70], ccRCC [87], bladder [52] and prostate [53].
Over-expressed in breast tumours with poor prognosis [88].
Deleted in lung cancer [89].

KDM3A Over-expressed in prostate cancer [90] and RCC [91].

CHD1 Mutated in high MSI gastric and colorectal cancers [28].
Deleted in prostate cancer [92].

TBL1XR1 Over-expressed in SCC [93].
Deleted in ALL [94] and PCNSL [95].

SMYD1* -

HNF1A Mutated in neuroendocrine tumours [96], endometrial cancer [97], high MSI 
CRC [98] and hepatocellular adenoma [99].
Down-regulated in aggressive HCC [100].

KAT8 Down-regulated in breast carcinoma and medulloblastoma [101].

KDM6B Over-expressed in HL [102].

ACTL6A* -

DPF3* -

ING4 Down-regulated in HNSCC [103], melanoma [104], gastric adenocarcinoma 
[105], lung tumours [106] and colorectal cancer [107].
Deleted in HNSCC [103] and breast tumours [108].

MUM1 Over-expressed in aggressive PCLBCL [109] and CLL [110], DLBCL and HL 
[111].

SUV39H2* -
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SMARCD1 Mutated in breast tumours [74].

RTF1* -

SMARCC1 Over-expressed in prostate cancer [112] and precancerous cervical lesions [8].
High expression correlates with good prognosis in colorectal cancer [113].

IKZF1 Mutated in ALL, DLBCL (CGC).
Deleted in aggressive paediatric B-ALL [114].

CBX3 Over-expressed in osteosarcoma [115], myxoid liposarcoma, colon, breast, 
esophageal, cervical, and lung tumours [116].

SIRT6 Down-regulated in pancreas and colorectal cancer [117].
Deleted in colorectal cancer [117].

Table 2: Description of the datasets of tumour somatic mutations that we have 
collected and analysed to detect  FM biased genes. The results of all the analyses 
may be browsed and retrieved through IntOGen.

Site Project name Institution Obtained from Pubm
ed Type of study Tumour 

samples

brain

GBM (TCGA) TCGA TCGA Data 
Portal [23] Selected Genes 144

316GBM (JHU) Johns Hopkins 
University ICGC DCC [118] Protein-coding 

genes 89

BRTM 
(DKFZ) DKFZ ICGC DCC [119, 

120]
Exome 
sequencing 113

breast

BRCA (JHU) Johns Hopkins 
University ICGC DCC [121] RefSeq genes 42

896

BRCA (WTSI) Welcome Trust/ 
Sanger Institute ICGC DCC [74] Protein-coding 

genes 100

BRCA (BC)
University of 
British 
Columbia

Supplementary 
Material [122] Genome/Exome 

sequencing 65

BRCA 
(TCGA) TCGA Firehose [123] Exome 

sequencing 510

BRCA 
(BROAD)

BROAD 
Institute

Supplementary 
Material [124] Exome 

sequencing 103

BRCA (WU) Washington 
University

Supplementary 
Material [57] Genome/Exome 

sequencing 76

colo-
rectal

CLR (JHU) Johns Hopkins 
University ICGC DCC [121] RefSeq genes 35

161
CLR (TCGA) TCGA Firehose [64] Exome 

sequencing 126

hemato-
poietic

CLL 
(MICINN)

Spanish 
Ministry of 
Science

ICGC DCC [125, 
126]

Genome/Exome 
sequencing 109

199

CLL (DF) Dana Farber 
Cancer Institute

Supplementary 
Material [127] Genome/Exome 

sequencing 90

kidney KIRC (TCGA) TCGA Firehose

tcga-
data.n
ci.nih.
gov

- 299

liver LICA (INCA) IACR ICGC DCC [128] Exome 
sequencing 24

lung LUCA (TSP) Washington 
University 

ICGC DCC [129] Selected genes 160 438
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Figures

Figure 1. Frequency of somatic mutations in FM biased CRFs across eleven 
anatomical sites in IntOGen. Genes are sorted according to their frequency of 
mutations across all the analysed tumours.
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Figure 2.  Mutational state of tumour samples in CRFs across the eleven 
anatomical sites studied. A. The list of genes in the heatmap corresponds to all 
FM biased CRFs detected at the beginning of the study. Each cell in the heatmap 
represents a CRF in a tumour sample; grey cells indicate that the CRF is not  
mutated.  Colours  indicate  mutations  with  its  MutationAssessor  Functional 
Impact score (MA FIS), colour-coded following the scale at the bottom. In bold 
typeface, genes annotated in the Cancer Gene Census (CGC). Genes not detected 
previously to be altered in cancer are marked with an asterisk (*). B. Frequency 
of mutations (PAM) for each gene across all tumour samples. (Note that since 
MA FIS  can  only  be  assigned  to  some  PAMs,  the  mutational  frequencies 
presented  in  this  histogram  do  not  correspond  exactly  with  the  number  of 
mutations in genes in the heatmap in panel  A.)  C. FM bias of CRFs in eleven 
anatomical sites. The cells represent the corresponding P values.
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Figure 3. Comparison of the fraction of mutated CRFs in tumour samples 
from eleven anatomical sites. A. Histograms of the fraction of samples with 0 
(red)  or  one  or  more  (green)  FM biased  CRFs  in  each  site.  B.  CF  ratio  of 
samples from each site with at least one mutation in a CRF (green fraction in 
panel A).
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Figure 4. Mutational state of tumour samples from the three brain datasets 
included in IntOGen. The genes represented in the heatmap comprise all FM-
biased CRFs that bear one mutation in at least one brain tumour sample (in bold 
typeface) plus the top 15 FM biased genes in brain obtained from IntOGen.
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Figure  5.  Effect  of  PAMs  in  EP300  and  MLL3  on  regulatory  modules 
transcription across cancer cell lines.  Cancer cell lines originated from solid 
tissues (see “primary tissue” colour legend) are enriched (SLEA) for regulatory 
modules (see Table S1) and selected pathways from KEGG. Left and right SLEA 
panels  correspond  to  cells  wild  type  or  with  a  protein  affecting  mutation, 
respectively. The difference between the two enrichment groups, assessed with a 
Wilcoxon-Mann-Whitney group comparison test,  is  indicated on the right.  A. 
EP300 mutation status. B. MLL3 mutation status.
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Supplementary tables

Table S1. Classification of Chromatin Regulatory Factors.

Gene name(a) Description Function(b)

Polycomb Repressive Complex 2

EZH2* Catalytic 
subunit

H3K27me1/me2/me3 HMT. Major role in stem cell 
identity maintenance. Also methylates GATA4. 
Interacts with DNMTs.

SUZ12 EZH2 
coenzyme

Required for PRC2 H3K27 HMT activity [1]. Interacts 
with SIRT1.

EED Different isoforms determine PRC3 or PRC4 PRC2 
variants.

RBBP4 (RBAP46)* Required for the association of PRC2 to the histone tail 
[2]. Binds Rb to regulate cell proliferation.

RBBP7 (RBAP48)* Interacts with BRCA1 and may regulate cell 
proliferation and differentiation.

PHF1 (PCL1) Mediates PRC2 intrusion into active H3K36 chromatin 
regions [3].

PHF19 (PCL3) Mediates interaction of PRC2 with H3K36me3, essential 
for full PRC2 activity [4].

ASXL1 Associates with PRC2 to promote gene repression [5].
MTF2 (PCL2) Required for PRC2-mediated Hox repression [6].

JARID2 (JMJ)* Essential in embryonic development, inhibits 
H3K27me3 by PRC2.

YY1*
Interacts with PRC2, and it is required for EZH2-
mediated H3K27me3 [7]. Also part of chromatin 
remodelling INO80 complex.

SIRT1* Class III 
HDAC

Transiently interacts with PRC2. Histone and protein 
deacetylase activity.

Polycomb Repressive Complex 1

EZH1 Catalytic 
subunit

H3K27me1/me2/me3 HMT. Less critical for 
H3K27me3 formation than EZH2.

BAP1 Catalytic component of the PR-DUB complex, that 
specifically deubiquitinates H2AK119ub1.

BMI1 Maintenance of transcriptional repression of key genes 
during development. H2AK119ub.

RING1 H2AK119ub.
RNF2 (RING1B) H2AK119ub. Acts as the main ub ligase in PRC1.
CBX2

CBX3 Part of PRC1-like complex 4 [8]. Binds the nuclear 
lamina through lamin B receptor.

CBX4
CBX6

CBX7 Promotes H3K9me3. Regulates cellular lifespan by 
repressing CDKN2A.

CBX8

PCGF1 (NSPC1) BCOR 
complex

Represses CDKN1A expression in a RARE-dependent 
manner.

PCGF2 (MEL18)
PCGF6 (MBLR)
PHC1
PHC2
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PHC3
AEBP2
L3MBTL1 Specifically recognizes me1 and me2 lysines.
Histone deacetylases

HDAC1*

Class I

Controls embryonic stem cell differentiation (but not 
HDAC2) [9]. Modulation of cell growth and apoptosis by 
down-regulation of p53. Also part of NuRD/Mi-2 ATP-
dependent chromatin remodelling complex.

HDAC2*
Relevant role in haematopoiesis. Also part of 
NuRD/Mi-2 ATP-dependent chromatin remodelling 
complex.

HDAC3 Modulation of cell growth and apoptosis by down-
regulation of p53.

HDAC8
HDAC4

Class Iia
HDAC9 Protects neurons from apoptosis.
HDAC5
HDAC7
HDAC6

Class Iib
HDAC10

SIRT1*

Class III, 
NAD-
dependent

Interacts with PRC2, non-histone deacetylase activity. 
Involved in normal ageing through resistance to cellular 
stress. Deacetylates p53. Located in nucleus and 
cytoplasm [10].

SIRT2 Deacetylates alpha-tubulin. Located in the cytoplasm 
[10].

SIRT3
Located in the mitochondria [10].SIRT4

SIRT5

SIRT6 Located in the nucleus [10]. H3K9 and H3K56 
deacetylase activity.

SIRT7 Located in the nucleus [10].
HDAC11 Class IV
ARID4A Bridging molecule to recruit HDACs.
TBL1XR1 Associates with HDAC3 [11].
NCOR1 Forms complex with HDAC1.

TRIM28 (KAP1)* Proposed to be a transcriptional repressor. Mediates 
apoptosis. through degradation of p53 [12].

Histone acetyltransferases

EP300 Type A, 
CBP/P300 
family

Acetylates all four core histones, and non-histone proteins 
like p53 and MyoD [13].

CREBBP (CBP) Critical role in embryonic development, acetylates 
both histone and non-histone proteins.

NCOA3
Type A

HAT activity not studied in detail.
BRPF1 (TAF250)
ATF2 Specifically acetylates H2B and H4 in vitro.
KAT6A (MOZ)

Type A, 
MYST family

Component of the MOZ/MORF complex, which has a 
histone H3 acetyltransferase activity.KAT6B (MORF)

KAT5 (TIP60)
KAT8 (MOF)

KAT7 (HBO1) Responsible for the bulk of histone H4 acetylation in 
vivo.

KAT2A (GCN5) Type A, 
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GNAT familyKAT2B (PCAF)
HAT1 Type B

ING4 Facilitates targeting of HBO1-mediated acetylation to 
H3K4me3 sites [14].

SET HAT inhibitor Promotes apoptosis. Inhibits p300/CBP and PCAF-
mediated acetyltransferase.

Histone methyltransferases
ASH1L (ASH1) H3K36 HMT. 
ASH2L H3K4 HMT. Complex with MLL

ATF7IP (MCAF)* Required to stimulate SETDB1 activity, couples 
H3K9me3 with DNA methylation.

DOT1L (KMT4) H3K79 HMT.
EHMT2 (G9a) H3K9me1/me2, H3K27me HMT.
EHMT1 H3K9me1/me2 HMT.

EZH2*
H3K27me1/me2/me3 HMT. Major role in stem cell 
identity maintenance. Also methylates GATA4. 
Catalytic subunit of PRC2 complex.

MEN1
H3K4 HMT. Essential component of a MLL/SET1 
HMT complex. Represses telomerase expression. Role 
in TGFB1-mediated inhibition of cell-proliferation.

MLL H3K4 HMT. Key regulator of development and 
haematopoiesis.

MLL2
H3K4 HMT. 

MLL3

MLL4 H3K4 HMT. Required to control the bulk of 
H3K4me3 during oocyte growth and preimplantation.

MLL5 H3K4me1/me2 HMT. Key regulator of 
haematopoiesis.

NSD1 (KMT3B) H3K36, H4K20 HMT. May influence transcription 
positively or negatively.

PRDM2 (RIZ1) H3K9 HMT.
PRDM9 H3K4me3 HMT. Essential for meiotic progression.
RBBP5 Complex with MLL.

RTF1 Required for H3K4me3 HMT on stem cell 
pluripotency genes.

SETD1A (SET1A) H3K4 HMT.
SETD1B (SET1B) H3K4 HMT.
SETD2 (KMT3A) H3K36 HMT.
SETD7 (SET7) H3K4 HMT.
SETD8 (KMT5A) Trimethylates H4K20 [15].
SETDB1 (ESET) H3K9 HMT.
SETDB2 H3K9 HMT.
SMYD1 H3K4 HMT [16].

SMYD2 (KMT3C) H3K4me, H3K36me2 HMT. Also methylates TP53 
and RB1.

SMYD3 H3K4me2/me3 HMT.
SUV39H1 (KMT1A)

H3K9me3 HMT, uses H3K9me1 as substrate.
SUV39H2 (KMT1B)
SUV420H1 (KMT5B) H4K20me3 HMT. Key in constitutive heterochromatin 

formation at pericentormeric regions.SUV420H2 (KMT5C)
TRIM28 (KAP1)* Mediates silencing by recruiting SET1 H3K9me3 HMT 

and HDAC NuRD complex. Mediates apoptosis through 
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degradation of p53 [12].
WDR5 Complex with MLL.
Histone demethylases

KDM1A (LSD1)* H3K4me2/me1, H3K9 HDM, also demethylates and 
stabilizes DNMT1. 

KDM1B (LSD2)*
H3K4me2/me1 HDM. Required for de novo DNA 
methylation of a subset of imprinted genes during 
oogenesis.

KDM2A H3K36me2 HDM. Required to maintain 
heterochromatic state at centromeres.

KDM2B HH3K4me3, H3K36me2 HDM. Represses rRNA 
genes.

KDM3A H3K9me2/me1 HDM.
KDM3B H3K9 HDM.
KDM4A H3K9me3, H3K36me3 HDM.
KDM4B H3K9me3 HDM.
KDM4C H3K9me3, H3K36me3 HDM.
KDM4D H3K9me3/me2 HDM.

KDM5A (RBP2) H3K4me2/me3 HDM. Prominent role in cell 
differentiation and senescence [17].

KDM5B (PLU1) H3K4me3/me2/me1 HDM.

KDM5C (SMCX) H3K4me3/me2 HDM. Participates in the repression of 
neuronal genes.

KDM5D (SMCY) H3K4me3/me2 HDM.
KDM6A (UTX) H3K27me2/me3 HDM. Regulation of HOX gene 

expression.KDM6B (JMJD3)

JHDM1D (KDM7A) H3K9me2, H3K27me2, H4K20me1 HDM. Required 
for brain development.

KDM8 (JMJD5) H3K36me2 HDM. Required for G2/M cell cycle 
progression.

JMJD1C (TRIP8) H3K9 HDM.

JMJD6 H3R2, H4R3 HDM. Key regulator of haematopoietic 
differentiation.

PHF2 H3K9me2 HDM.

PHF8 H3K9me1/me2, H3K27me2, H4K20me1 HDM. Key 
role in cell cycle progression.

UTY H3K27me3/me2/me1 HDM [18].

JARID2 (JMJ)* Essential role in embryonic development, inhibits PRC2 
trimethylation of H3K27 [19].

DNA methyltransferases

DNMT1 Maintainins methylation patterns established in 
development.

DNMT3A Genome-wide de novo methylation, essential for the 
establishment of DNA methylation patterns during 
development.DNMT3B

DNMT3L Catalytically inactive, but essential for DNMT3A and 
DNMT3B function.

MECP2
Essential for embryonic development. Specifically 
bind methylated DNA and repress transcription at 
methylated promoters.

MBD1
MBD2*
MBD4

ATF7IP (MCAF)* Mediates MBD1 transcriptional repression, couples 
H3K9me3 with DNA methylation.
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KDM1A (LSD1)* HDM, also demethylates and stabilizes DNMT1. 

KDM1B (LSD2)* HDM, required for de novo DNA methylation of a 
subset of imprinted genes during oogenesis.

DNA demethylases
TET1 Converts 5mC 

to 5hmC Putative role in DNA demethylation [20].
TET2
AICDA (AID) May play a role in DNA demethylation.
TDG Essential for DNA demethylation [21].
ATP-dependent chromatin remodelling
SMARCA2 (BRM)

SWI/SNF 
complex is 
required for 
transcriptional 
activation of 
genes normally 
repressed by 
chromatin [22].

Catalytic component of SWI/SNIF complex [23].

SMARCA4 (BRG1) Essential for the maintenance of multipotent neural 
stem cells.

SMARCB1 (BAF47)
SMARCC1
SMARCC2
SMARCD1
SMARCD2
SMARCD3
SMARCE1 (BAF57)
ARID1A
ARID1B (BAF250B)

ARID2 (BAF200) Required for the stability of the SWI/SNF chromatin 
remodelling complex SWI/SNF-B.

ACTL6A (BAF53A) Required for maximal SMARCA4 activity and for the 
association of the SWI/SNF complex with chromatin.

ACTL6B (BAF53B)
DPF1 (BAF45B)
DPF2 (BAF45D)
DPF3 (BAF45C)
EP400 Regulates nucleosome stability during DNA repair [24].
PBRM1 Regulator of cell proliferation.
PHF10 (BAF45A) Required for the proliferation of neural progenitors.
MTA1

NuRD/Mi-2 
complex has 
ATP-
dependent 
chromatin 
remodelling 
activity and 
HDAC 
activity

MTA2

MTA3
Maintenance of the normal epithelial architecture 
through the repression of SNAI1 transcription in a 
HDAC-dependent manner.

CHD3 (Mi-2α)
CHD4 (Mi-2β) Main component of the NuRD/Mi-2 complex.
GATAD2A
GATAD2B
HDAC1*
HDAC2*

MBD2* Essential for embryonic development. Also bind 
methylated DNA.

RBBP4 (RBAP46)*
Also part of PRC2 complex.

RBBP7 (RBAP48)*
INO80 INO80 

complex has 
DNA- and 
nucleosome-

TFPT Putative regulatory component of the INO80 complex
YY1* Also interacts with PRC2 and is required for EZH2-
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activated 
ATPase 
activity and 
catalyzes ATP-

mediated H3K27me3 [7].

SMARCA1 (SNF2L)

ISWI complex 
mobilizes 
mononucleoso
mes away from 
DNA ends 
without 
changing the 
arrangement of 
DNA on the 
surface of the 
histone 
octamer [22].

SMARCA5 (SNF2H) Required for replication of pericentric heterochromatin 
in S-phase specifically in conjunction with BAZ1A.

BAZ1A (ACF1)

BAZ1B (WSTF)

Acts as a mark that distinguishes between apoptotic 
and repair responses to genotoxic stress. Maintenance 
of chromatin structures during DNA replication 
processes.

BAZ2A (TIP5)
BPTF Binds H3K4me3.
CHRAC1
POLE3
RSF1
RBBP4 (RBAP46)*

Also part of PRC2 complex.
RBBP7 (RBAP48)*

CHD1 Required for the maintenance of open chromatin and 
pluripotency in ESC.

CHD2 SNF2-related helicase/ATPase domains.

HNF1A Possible regulation of transcription through chromatin 
remodelling [26].

IKZF1* Targets NuRD/Mi-2 and SWI/SNF complexes in a 
single complex.

Global chromatin regulators
LMNA lamin A/C Global heterochromatic changes induced by lamin 

perturbation are often mirrored by altered levels of 
chromatin-associated epigenetic histone marks [27].

LMNB1 lamin B1
LMNB2 lamin B2
Other chromatin regulators

BAG6 Complex 
EP300

p300-mediated p53 acetylation upon DNA damage. 
May mediate H3K4me2.

ATRX ATRX-DAXX 
complex

Thought to regulate deposition of H3.3 at heterochromatic 
regions of the genome, including telomeres [28].DAXX

MUM1 Opens chromatin to facilitate DNA damage repair [29].
*Genes with more than one function in chromatin remodelling appear more than 
once in the table.

(a) HGNC HUGO gene names. In parenthesis, common alternative gene names.

(b) Gene function provided by Uniprot, unless otherwise stated.[30]
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Table  S2.  Described  oncogenic  alterations  in  Chromatin  Regulatory 
Factors. This is an exhaustive compilation of alterations(*) reported in CRFs 
not included in Table 1. Gene names correspond to HUGO HGNC approved 
symbols. In bold typeface, genes included in the Cancer Gene Census (CGC) 
[31].  ALL: Acute Lymphocytic Leukaemia; AML: Acute Myeloid Leukaemia; 
B-ALL:  B  Acute  Lymphoblastic  Leukaemia;  B-NHL:  B-cell  non-Hodgkin 
Lymphoma; CLL: Chronic Lymphocytic Leukaemia; ccOC: Clear Cell Ovarian 
Carcinoma;  ccRCC:  clear-cell  Renal  Cell  Carcinoma;  CMML:  Chronic 
Myelomonocytic  leukaemia;  ESCC:  Oesophageal  Squamous  Cell  Carcinoma; 
FL:  Follicular  Lymphoma;  HCC:  Hepatocellular  Carcinoma;  HL:  Hodgkin 
Lymphoma; HNSCC: Head and Neck Squamous Cell Carcinoma; MCL: Mantle 
cell  Lymphoma;  MDS:  Myelodysplastic  Syndrome;  MSI:  Microsatellite 
instability; NMSC: Non-Melanoma Skin Cancer; NSCLC: Non-Small Cell Lung 
Carcinoma;  OSCC:  Oral  Squamous  Cell  Carcinoma;  RCC:  Renal  Cell 
Carcinoma; T-ALL: T Acute Lymphoblastic Leukaemia.

*Evidence  based  solely  on  cancer  cell  lines  is  excluded  from  this  table.  Only 
evidence in human samples have been used. Effects of pharmacological inhibition 
are not included. Germline polymorphisms are excluded.

Gene Literature evidence

AEBP2 Deleted in AML [32].

ARID2 Mutated in hepatocellular carcinoma (CGC), melanoma [33], NSCLC [34] and 
pancreatic cancer [35].
Deleted in NSCLC [34].

ASH1L Mutated in lung cancer cell lines [36].
Gained in hepatocellular carcinoma [37].

ATF2 Over-expressed in melanoma [38].

ATRX Mutated in paediatric glioblastoma, neuroendocrine pancreatic tumours (CGC) 
and high grade adult gliomas [39].

BAZ1A Amplified in ESCC [40].
Deleted in papillary type 2 RCC [41].

BAZ2A Over-expressed in CLL [42].

BMI1 Over-expressed in B-NHL, leukaemia, MCL, medulloblastoma, neuroblastoma, 
NSCLC [43] and prostate tumours [44].

CBX2 Over-expressed in breast cancer [45].

CBX7 Over-expressed in lymphoma [46].
Down-regulated in bladder [47], and aggressive gastric [48], pancreatic [49] 
and thyroid cancer [50].

CHD2 Mutated in high MSI gastric and colorectal cancers [51] and CLL [52].
Down-regulated in relapsed colon cancer [53].

CREBBP Mutated in AML, ALL, DLBCL, N-NHL (CGC), bladder [54], 
medulloblastoma [55] and SCLC [56].
LOH in lung [57].
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DAXX Mutated in paediatric glioblastoma and neuroendocrine pancreatic tumours 
(CGC).
Over-expressed in prostate cancer [58].

DNMT1 Over-expressed in AML [59], gliomas [60] and pancreatic tumours [61].

DNMT3A Mutated in AML (CGC), ALL and lung cancer [62].
Over-expressed in ovarian aggressive tumours [63].

DNMT3B Over-expressed in breast [64], colorectal and stomach [65], prostate cancer 
[66], advanced stages of DLBCL [67].

DNMT3L Over-expressed in testicular embryonal carcinoma [68].
Loss of methylation and consequent over-expression in cervical cancer [69].

EHMT2 Over-expressed in bladder [70], resistant cervical [71] and aggressive lung 
tumours [72].

EPC1 Mutated in pancreatic cancer [35].

EZH1 Over-expressed and amplified in myeloproliferative neoplasms [73].

EZH2 Mutated in DLBCL (CGC), MDS [74].
Over-expressed in bladder, breast, colon, liver, melanoma and prostate 
tumours; DLBCL, HL and MCL [43].

GATAD2B Deleted in OSCC [75].

HDAC1 Over-expressed in HCC [76].
Down-regulated in aggressive breast tumours [77].

HDAC2 Mutated in colon cancer with microsatellite instability [78].
Over-expressed in gastrointestinal tumours [79], prostate [80], aggressive HCC 
[81], lung [82], cervical [83], ovarian and endometrial endometrioid 
carcinomas [84].

HDAC3 Over-expressed in gastrointestinal tumours [79], b-cell lymphomas [85] and 
CLL [86].

HDAC4 Mutated in melanoma [87] and breast cancer [88].
Over-expressed in T-ALL [89] and treatment-resistant ovarian tumours [90].

HDAC5 Over-expressed in B-ALL [89] and aggressive medulloblastoma [91].

HDAC6 Over-expressed in HCC [92], cisplatin-resistant NSCLC [93] and breast 
tumours with good prognosis [94].
Down-regulated in CLL [86].  

HDAC7 Over-expressed in pancreatic adenocarcinoma [95] and aggressive childhood 
ALL [89].

HDAC8 Over-expressed in aggressive neuroblastoma [96].

HDAC9 Over-expressed in high grade medulloblastoma [91] and childhood ALL with 
poor prognosis [89].
Amplified in OSCC [75].

HDAC10 Down-regulated in adrenocortical tumours [97], CLL [98] and aggressive 
NSCLC [99].

JARID2 Mutated in NSCLC [34].
Deleted in AML [32].

JMJD6 Over-expressed in aggressive breast tumours [100].

KAT5 Down-regulated in gastric cancer [101], aggressive melanoma [102] and 
advanced colorectal carcinoma [103].

KAT6A Translocated in AML [104].

KAT6B Translocated in AML [104] and benign uterine tumours [105].

KAT7 Over-expressed in testicular, breast, ovarian, bladder, oral and esophageal 
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carcinomas [106].

KDM1A Over-expressed in NSCLC [107], highly malignant sarcomas [108], bladder 
[109] and aggressive prostate tumours [110].
Down-regulated in breast carcinoma [111].

KDM2A Down-regulated in prostate cancer [112].

KDM3B Over-expressed in ALL [113] and prostate cancer [114].

KDM4A Over-expressed in breast [115] and prostate cancer [114].
Down-regulated in bladder tumours [116].

KDM4B Over-expressed in gastric cancer [117].

KDM4C Over-expressed and amplified in breast cancer [118].

KDM5A Mutated in AML (CGC).
Down-regulated in melanoma [119].
Over-expressed in breast tumours with good prognosis [120].

KDM5B Over-expressed in breast tumours, prostate cancer [114] and uveal melanoma 
[121].

LMNA Over-expressed in aggressive colorectal cancer [122].
Down-regulated in DLBCL [123], ALL and NHL [124].

LMNB1 Over-expressed in HCC [125] and colorectal tumours [126].

MBD4 Mutated in sporadic colon cancer [127] and HNPCC with MSI [128].

MECP2 Over-expressed in breast tumours [129].

MEN1 Mutated in pancreas, parathyroid (CGC) and in lung carcinoids [130].
MLL-fusion partner in leukaemias [131].

MLL5 Down-regulated in poor prognosis AML [132].

MTA1 Over-expressed in OSCC, ESCC, early NSCLC, HCC, osteosarcoma, and 
colorectal, pancreatic, endometrial, ovarian, prostate, breast and gastric 
cancers. It is one of the most commonly over-expressed genes in human 
tumours [133].

MTA2 Over-expressed in NSCLC [134], aggressive HCC [135] and epithelial ovarian 
cancer [136].

NCOA3 Over-expressed in HCC, breast [137], urothelial carcinoma of the bladder 
[138], NSCLC [139] and prostate tumours [140].
Amplified in breast cancer [141].
Fusion partner of KAT6A in AML [142].

PCGF2 Over-expressed in aggressive medulloblastoma [143].
Down-regulated in breast tumours [144] and high-grade prostate cancer [145].

PHC1 Over-expressed in ALL [43].

PHC3 Mutated and lost in osteosarcoma [146].

PHF8 Over-expressed in prostate cancer [114].

PHF19 Over-expressed in colon, skin, lung, rectal, cervical, uterine and hepatic 
tumours [43].

PRDM2 Mutated in endometrial, gastrointestinal [147] and colon tumours with MSI 
[148], melanoma [149].
Over-expressed in ALL [150].
Down-regulated in ESCC [151], neuroblastoma [152], HCC [153], epithelial 
ovarian carcinoma [154], thyroid carcinoma [155] and AML [150].
Deleted in parathyroid tumours [156].

RBBP4 Over-expressed in HPV-positive oropharyngeal tumours [157].
Down-regulated in mucoepidermoid carcinoma [158].
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RBBP5 Amplified in glioblastomas [159].

RBBP7 Over-expressed in NSCLC [160] and breast tumours [161].

RING1 Over-expressed in prostate tumours [44].

RSF1 Over-expressed in NSCLC [162], urinary bladder [163], colon [164], 
gallbladder [165], nasopharyngeal [166] and ovarian aggressive carcinomas 
[167].
Amplified in aggressive ovarian carcinoma [168].

SET Mutated in AML (CGC).
Over-expressed in colorectal adenocarcinoma [169] and paediatric B-ALL and 
T-ALL [170].

SET8 Over-expressed in aggressive breast tumours [171].

SETDB1 Over-expressed in melanoma [172].

SETDB2 Deleted in CLL [173].

SIRT1 Over-expressed in leukaemia, prostate, skin and colon cancers [174]
Down-regulated in breast tumours and HCC [175].

SIRT2 Down-regulated in gliomas [176].

SIRT3 Down-regulated in HCC [177].

SIRT7 Over-expressed in breast [178] and thyroid carcinoma [179].

SMARCA2 Mutated in NMSC [180] and CLL [181].
Down-regulated in lung adenocarcinoma [182] and gastric cancer [183].
Amplified in AML [184].

SMARCB1 Mutated in malignant rhabdoid tumours (CGC).

SMARCD3 Over-expressed in advanced neuroblastoma [185].

SMARCE1 Over-expressed in aggressive endometrial carcinoma [186].

SMYD2 Over-expressed in ESCC [187].

SMYD3 Over-expressed in colorectal cancer [188].

SUZ12 Mutated in endometrial stromal tumours (CGC).
Over-expressed in breast, colon, liver [43] and ovarian tumours [189].
Amplified in MCL [190].

TET2 Mutated in MDS (CGC), CMML and AML [191].

TFPT Mutated in pre-B ALL (CGC).

TRIM28 Over-expressed in colorectal tumours [192], gastric cancer cell lines [193], 
NSCLC and breast [194]. Over-expression predicts better survival in early lung 
tumours [194].
High expression indicates good prognosis in gastric cancer [193].

YY1 Over-expressed in prostate, colon, ovary, breast, bone, liver, lung, bladder, 
cervix, skin and blood (DLBCL, AML, CML, ALL, HL, BL, MCL, CLL and 
FL) cancers [195].
Down-regulated in melanomas, paediatric osteosarcomas and urothelial 
carcinomas [195].
There are contradictory results on the prognostic significance of YY1 in cancer 
[195].
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Table S3. Gene regulatory modules collected for the analysis.

Group Name Cell type Nº of 
genes Source

EP300
EP300 ES ES 1191 Lister et al. 2009 [196]

EP300 CD4 CD4 3792 Wang et al. 2009 [197]

Activating 
histone 
marks

H3K4me3 ES ES 12312 ENCODE [198]

H3K4me3 CD4 CD4 11423 Barski et al. 2007 [199]

H3K4me3 
gm12878 gm12878 11771 ENCODE [198]

H3K9ac ES ES 10489 ENCODE [198]

H3K9ac CD4 CD4 6906 Wang et al. 2009 [197]

H3K9ac 
gm12878 gm12878 9918 ENCODE [198]

Repressive 
histone 
marks

H3K27me3 ES ES 6665 ENCODE [198]

H3K27me3 CD4 CD4 5207 Wang et al. 2009 [197]

H3K27me3 
gm12878 gm12878 6099 ENCODE [198]

Replicatio
n Timing

Late RT ES ES 918 Hansen et al. 2010 [200]

Late RT 
lymphoid lymphoid 260 Hansen et al. 2010 [200]

202



Supplementary figures

Figure S1.  Fraction of mutated CRFs across cancer cell  lines. The list  of 
genes  in  the  heatmap  correspond  to  all  FM  biased  CRFs  detected  at  the 
beginning of the study which have been sequenced in the Cancer Cell  Lines 
Encyclopedia. Each cell in the heatmap represents a CRF in a primary site, and 
colours correspond to the frequency of potentially protein sequence affecting 
mutations (PAMs) in these genes across 905 cancer cell lines, grouped by their 
corresponding primary tissues.
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Figure S2. Mutational state of tumour samples with PAMs in CRFs across 
the  eleven  anatomical  sites  studied. The  list  of  genes  in  the  heatmap 
corresponds to all FM biased CRFs detected at the beginning of the study. Every 
sample is a column of the heatmap, and every cell reflects the mutational state of  
a CRF (symbols at the extreme right) through their MutationAssessor Functional 
Impact (FI) scores (only samples with at least one mutated CRF are included in 
the heatmap), colour-coded following the bottom scale. Gray cells indicate that 
the CRF is not mutated. The top colour annotation above the heatmap represents 
the  CF  ratio  of  each  tumour  sample  and  follows  the  bottom  colour  scale; 
samples with CF ratios above 0.5, thus appear black-shifted.
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Figure  S3.  Cancer  cell  lines  show  tissue-specific  highly  expressed  genes 
depending on their primary source. Cancer cell lines from solid tumours are 
represented in  columns,  and GO Biological  Process modules in  rows.  SLEA 
results show an over-expression (in red) of tissue-specific genes in concordance 
to the cell lines derived from them.
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Chapter 5

INTOGEN-CL: LARGE-SCALE ANALYSIS OF 
MUTATIONS IN CANCER CELL LINES

The analysis reported in Chapter 4 produced a large amount of multidimensional 
data that required a tailored resource for visual exploration. Having previously 
developed IntOGen, a system to analyse and explore cancer genomics data, it 
was logic to include the somatic mutations there. Cancer cell  lines mutations 
data, however, presents unique characteristics (such as having drug sensitivity 
information and being called without a normal reference). In this chapter I report 
the design of a resource to present it and browse it intuitively, conceived as a 
sister  site  of  the  original  IntOGen  to  allow  for  a  seamless  communication 
between the two. IntOGen-CL is currently in beta version, but we plan to expand 
it in the near future to become a central repository of genomics data on cancer  
cell lines and drug information. In this part, I collected the data, performed the 
analysis,  contributed to the design of the resource and wrote the manuscript. 
This manuscript was under preparation at the time the thesis was submitted.
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Summary

We have previously developed IntOGen, an integrative genomics system and 
web discovery tool focused on the analysis of data from primary tumours. In 
order to complement IntOGen, we have now developed IntOGen-CL, which 
contains results from analysing genomic profiling of cancer cell  lines. The 
current  version  contains  basically  data  from  the  Cancer  Cell  Line 
Encyclopedia  (CCLE),  a  large  and  useful  resource  to  study  the  molecular 
characteristics  of  tumours  and  their  response  to  cancer  drugs.  We  have 
performed a large-scale analysis of the mutations detected over 900 cell lines 
by the CCLE project to assess the impact of mutations on protein function and 
to  identify  genes  with  a  significant  bias  towards  mutations  with  high 
functional impact in distinct primary sites. All the results of this analysis are 
available at IntOGen-CL (beta.intogen.org/web/cell-lines), and together with 
the information contained in IntOGen provides a useful portal for assessing 
the importance of genes and mutations in cancer and their possible implication 
with drug sensitivity.

Availability and implementation

The IntOGen-CL browser is freely available at beta.intogen.org/web/cell-lines.
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Introduction

Cancer cell lines present an extremely useful model for the investigation of  
tumour development, but it is not clear whether they faithfully recapitulate the 
characteristics  of  the  cancer  type  they  correspond  to,  which  is  the  basic 
assumption  (Holliday and Speirs, 2011). The correspondence of an established 
cancer  cell  line  to  a  tumour  type may be assessed by comparing expression 
profiles  or  common  genomic  alterations.  Recent  large-scale  efforts  have 
systematically  characterised drug sensitivity  on hundreds of  cancer  cell  lines 
(Barretina et al., 2012; Yang et al., 2012; Mathew J. Garnett et al., 2012), which 
will  be  a  useful  resource  for  researchers  to  determine  the  molecular 
characteristics of tumours and their response to cancer drugs. One of them, the  
Cancer Cell Line Encyclopedia (CCLE), sequenced 1651 genes on over 900 cell 
lines  to  connect  distinct  pharmacologic  vulnerabilities  to  genomic  patterns 
(Barretina  et  al.,  2012).  As  most  sequencing  studies,  to  identify  relevant 
mutations  from  single  nucleotide  variants  (SNVs)  it  relies  heavily  on  their 
overall recurrence or in pre-existing knowledge of a gene's oncogenic role, being 
thus basically descriptive. Moreover, this wealth of data requires to be organized 
in an intuitive manner and in connection to other cancer and genomics resources 
in order to facilitate the extraction of  new knowledge from its mining.

We used the IntOGen-SM pipeline (Gonzalez-Perez  et al.,  In preparation) 
following a similar approach as with the somatic mutations in tumours reported 
in IntOGen (Gundem et al., 2010) to detect functionally important mutations in 
cancer  cell  lines  from  the  CCLE.  IntOGen-SM  pipeline:  i)  identifies  the 
consequences  of  mutations,  ii)  computes  the  functional  impact  of  non-
synonymous variants  (using TransFIC  (Gonzalez-Perez  et  al.,  2012)) and iii) 
identifies genes and pathways with a bias towards the accumulation of mutations 
with high functional impact (using OncodriveFM (Gonzalez-Perez and Lopez-
Bigas, 2012)).  Here, we present IntOGen-CL (Cell Lines),  a web resource to 
intuitively browse genomic alterations in cancer cell lines within the context of 
previously identified somatic mutations in their corresponding cancer sites.

Implementation and data browsing

IntOGen-CL provides two initial  entry points for the user: a gene-centred 
search in the “Search” tab, that accepts single or multiple inputs (gene lists) as 
symbol,  Ensembl or Refseq ids,  and cell  line names,  tissues or drugs;  and a  
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“Browser” tab,  that  shows all  the  available  information in  the database.  The 
browser's  navigation  is  organised  mainly  around  two  entities,  individual 
mutations  and  genes,  as  seen  in  the  schema  represented  in  Figure  1.  The 
Functional Impact (FI) of mutations has been assessed with three well-known 
tools, SIFT  (Ng and Henikoff, 2003), PolyPhen2  (Adzhubei  et al.,  2010) and 
MutationAssessor (Reva et al., 2011). To allow a detailed exploration of SNVs, 
FI scores are reported in three ways:  as raw output,  as transformed transFIC 
scores (a method that ranks the FI of mutations in cancer taking into account the 
baseline tolerance to germline SNVs)  (Gonzalez-Perez  et  al.,  2012) and as a 
custom  colour-coded  categorical  scale  (High,  Medium,  Low,  None  impact). 
Using  the  Oncodrive-fm  method  (Gonzalez-Perez  and  Lopez-Bigas,  2012), 
genes are assessed for the accumulation of functional mutations within primary 
sites  (groups  of  cell  lines  derived  from the  same  tissue)  and  within  KEGG 
pathways (Kanehisa et al., 2012). Note that the FI bias was only calculated for 
those  primary  sites  represented  by  at  least  20  different  cell  lines.  Lastly, 
IntOGen-CL also includes drug sensitivity information, reported as the median-
centred activity area across all cancer cell lines.

The browser allows for a seamless navigation between the different layers of 
information,  and  intuitive  filters  can  be  easily  applied  to  gene  lists  and 
individual genes, cell lines, cancer sites, drugs and pathways. The data may be 
visualised as tables or in the form of interactive heatmaps provided by jHeatmap 
(bg.upf.edu/jheatmap).  The  IntOGen-CL  browser  communicates  with  the 
original IntOGen, containing information from primary tumours, enabling the 
comparison of mutations in cancer cell lines with those found in cancer samples. 
This communication is possible thanks to the implementation of both resources 
with Onexus (www.onexus.org), a modular system to create web browsers for 
complex data.

Discussion

The development of IntOGen-CL was motivated by the observation that the 
wealth of data on cancer cell lines needed to be processed along with that from 
primary tumours to be most useful to the scientific community. Other existing 
resources present it in an independent manner,  lacking integrative methods to 
compare the FI of mutations in cell lines derived from different primary sites or 
with primary tumours. We have implemented a browser to navigate the data on 
cancer  cell  lines  focused  on  usability  for  potential  researchers  interested  in 
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comparing those cell lines with each other or with primary tumour data from 
patients. Currently, the browser only contains CCLE mutation data, but we plan 
to expand it with new sources of information and/or other types of genomic data, 
such as differential gene expression.

Conclusions

Here we have presented IntOGen-CL, an intuitive browser to explore the 
wealth  of  data  provided  by  the  original  authors  of  the  CCLE  study  after 
integrating it using Oncodrive-fm. The resource can communicate with IntOGen 
thanks  to  the  Onexus implementation and it  has  been  designed to allow the 
inclusion of further sources and genomics data types from cancer cell lines. We 
believe it will help researchers that seek to compare genomic profiles amongst 
cancer  cell  lines,  or  that  want  to  correlate  those with corresponding somatic 
tumours from cancer patients.
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Figures

Figure 1. Schema of IntOGen-CL organization. The site is centred towards 
the  navigation  on  two  main  entities:  mutations  and  genes,  which  can  be 
visualised at the level of cancer cell lines (optionally grouped by primary tissue) 
or at  gene level.  The FI of mutations is  represented as a colour code for an  
intuitive  identification  of  relevant  results.  Gene  FIs  and  FM-bias  may  be 
browsed in the form of tables (that can be searched and filtered for a number of  
elements)  or  interactive  heatmaps,  which  are  also  available  for  the 
pharmacological activity of cell lines and for the pathway-level FM bias. Filters 
applied are maintained in IntOGen to allow for a transparent navigation between 
websites  and  the  comparison  of  mutations  in  cancer  cell  lines  and  somatic 
tumours.
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Discussion



Chapter 6

DISCUSSION

This thesis is broadly divided into two main topics, each of them covered by two 
chapters  in  the  Results  section.  First,  it  contributes  to  the  understanding  of 
regulatory  epigenomics  modules  in  the  coordination  of  gene  expression  in 
cancer, and more specifically in breast tumours, as is reported in Chapter 2 and 
Chapter 3. Second, this work presents an overview on the impact of somatic 
mutations  on  chromatin  regulatory  factors  in  tumours  arising  from  different 
human tissues, providing, to our knowledge, the first report of this kind. This 
second part is described in Chapter 4 and Chapter 5.

6.1 Dissecting tumour progression through regulatory 
epigenomic modules

That  chromatin  plays  a  key  role  in  the  regulation  and coordination  of  gene 
expression has been thoroughly reviewed in the introductory Chapter 1. Thanks 
to the histone occupancy maps and other regulatory data that has been generated 
recently  by  large  consortia  such  as  ENCODE,  it  is  now possible  to  explore 
epigenetic changes in a variety of cell types. A very attractive approach that has  
emerged to study transcriptomic differences across conditions, aside from the 
well-established differential gene expression, consists on collapsing genes into 
modules,  and  assess  their  overall  expression  changes  as  a  single  entity. 
Regulatory modules are thus defined as groups of genes that share a biological  
property; for instance, “genes over-expressed in condition A”, “genes that code 
for kinase proteins” or “genes annotated in the cellular differentiation pathway in 
the KEGG database”. The rationale behind grouping genes into modules is to 
allow the assessment of their transcriptional status as a block across conditions.
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Gene modules in the coordinated regulation of gene expression

Gene pairs that present a similar transcriptional profile are often referred to as 
“co-regulated”. Usually, it is assumed that two co-regulated genes are under the 
control of the same transcription factor (Allocco, Kohane, and Butte 2004), but 
this does not necessarily have to be the case (Gerstein et al. 2012). It may also be 
that  both  genes  are  physically  close  in  the  three-dimensional  chromatin 
structure,  and  thus  are  regulated  through  the  same  epigenetic  factors,  be  it 
activators or repressors of transcription. What seems clear, however, is that co-
regulation is intimately related to having a common function in most organisms 
(Bergmann, Ihmels, and Barkai 2003; Stuart et al. 2003).

In Chapter 2 we conducted an analysis on the large-scale coordination of gene 
expression as a proof of concept on the effectiveness of epigenetic regulatory 
modules  to  dissect  pathway  deregulation.  We  sought  to  determine  which 
epigenetic factors are most crucial to maintain the coordinated regulation of gene 
expression,  both  in  normal  and cancer  conditions.  One  may argue  that  each 
histone  mark  is  responsible  for  a  high-level  control  of  gene  expression  that 
encompasses too many genes to produce any interesting modules. However, we 
observed that this is not the case, and reproduced previous results that reported a 
higher co-regulation of immune system pathways in tumours. Using the sample 
level enrichment analysis (SLEA) approach to collapse regulatory modules and 
assess  their  expression bias  across  samples,  we  established  PRC2 as  a  main 
regulatory hub in normal cells and cancer. In line with the first objective of this 
work, this exploratory analysis served to interrogate the cross-talk of epigenetic 
pathways in large cohorts of transcriptomic data.

A main interesting finding of this work is the definition of large coordinated 
patterns  between  epigenetic  regulatory  modules.  Far  from  being  static, 
chromatin  organisation  has  been  previously  described  to  contribute  to  the 
regulation  of  gene  expression  in  a  highly  dynamic  fashion,  establishing  a 
compartmentalisation within the nucleus that varies across cell types and cellular 
states  (Bártová et al. 2008). For instance, regions close to the nuclear lamina 
have  been  associated  to  inactive  transcription,  mediated  by  the  anchorage 
through lamin proteins,  that  provide mechanical  stability to the nucleus.  The 
histone code has been associated to the organisation of chromatin architecture at 
several  levels;  for  instance,  inactive  chromosome  X  (Xi)  is  enriched  in 
H3K27me3 and H3K9me2, both repressive, and localised at the most peripheral 
nuclear region (Bártová et al. 2008). A more direct example on the influence of 
histone modification patterns over nuclear compartmentalisation was reported in 
Hutchinson-Gilford progeria syndrome (HGPS), where mutations in the lamin A 
gene (LMNA)  result  in  a  global  reduction of  H3K9me3 levels  and a  loss  of 
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H3K27me3 at the Xi chromosome  (Scaffidi and Misteli 2006). Thus, it seems 
that  histone modification patterns  play an important  role  in  the  definition of 
nuclear compartments.

There is another aspect of chromatin organisation that remains underexplored, 
but may have relevant implications on cancer pharmacological studies. HDAC 
inhibitors, the first class of epigenetic drugs approved for clinical use, have a 
strong effect on heterochromatin. After TSA (an HDACi) treatment, centromeric 
regions are repositioned at the nuclear periphery, through a process that involves 
the loss of ability to bind HP1 (heterochromatin protein 1) (Taddei et al. 2001; 
Bártová et al. 2007). This has been related to an increase of H3K9ac at those 
regions  (Robbins  et  al.  2005).  A deeper  elucidation of  the  changes  in  the 
compartmentalisation of the genome may help in understanding the mechanisms 
through which HDACis exhibit antitumour activity, which are currently largely 
unknown.

Finally,  a  study  has  recently  yielded  insightful  results  that  connect  histone 
modifications and nuclear architecture, by generating genome-wide epigenetic 
maps across several cell types and differentiation stages (Zhu et al. 2013). They 
found that growth factors added to the culture medium triggered macro-scale 
chromatin  state  changes  in  cells  that  were  not  observed under  physiological 
conditions. These changes mostly consisted on an increase of H3K9me3 levels 
at  lamin-associated  domains,  which  promoted  alterations  in  the  nuclear 
architecture. This report raises intriguing questions regarding the interpretation 
of previous experiments that studied those chromatin marks in cultured cells,  
and pose the necessity to further explore the contributions of the histone code to 
determine and maintain chromatin organisation within the nucleus. 

The  observation  we  made,  described  in  Chapter  2,  that  there  is  large 
synchronization  between  regulatory  modules,  opens  questions  on  how  this 
general  coordination  in  gene  expression  is  achieved.  The  elucidation  of  the 
mechanisms that compartmentalise chromatin within the nucleus may shed some 
light  on the subject.  Future  follow-up experiments  could further  address  this 
question.

Polycomb-regulated genes in breast tumour progression

Knowing that Polycomb proteins play a relevant role in tumorigenesis, and that  
their occupancy maps define genes with distinct properties in cancer samples, 
we sought to integrate PRC2 regulatory modules with transcriptomic data and 
clinical  information  from  breast  tumours.  The  rationale  behind  using  gene 
expression was that it has been described to play a more important role than 
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other variables, such as age or tumour stage, in determining the breast cancer 
phenotype (Sørlie et al. 2003). In Chapter 3, I present an in-depth analysis on the 
misregulation of EZH2 in breast  tumours,  where I  used clinical  features and 
genomic signatures  to  further  elucidate  the  role  it  plays  in  the  promotion of 
EMT. We found that EZH2 targets were down-regulated in breast cancers with 
poor prognosis in several independent experiments, but, importantly, only when 
sample cohorts were  homogeneous and representative of all tumour stages. The 
early  timing at  which  EZH2-regulated  genes  change  their  expression  during 
tumorigenesis suggests that it might contribute to cancer initiation. This notion 
was reinforced by our experimental validations, where we found that the loss of 
EZH2 decreased proliferation and promoted cell adhesion, consistent with the 
role it plays in inducing EMT.

This analysis has been limited by the availability of large, good quality gene 
expression experiments on breast tumours, and by the difficulty to find clinical  
annotations  for  samples.  The  results  are,  nevertheless,  encouraging,  and 
highlight the potential for this type of studies. Surely, exploratory data analysis  
employing gene regulatory modules and gene expression, such as enrichment 
analyses,  frequently  report  too  broad  pictures  on  the  underlying  biological 
processes  that  may  be  causing  the  observed  patterns.  However,  they  are  an 
attractive starting point to find the right question to ask  (Kelder et al. 2010). 
After  an  initial  exploration,  and  with  the  clear  hypothesis  that  Polycomb-
regulated  genes  may  define  relevant  tumour  subtypes,  we  dissected  the 
molecular characteristics of breast tumours, bearing in mind that diverse gene 
signatures (e.g. response to drugs, high-grade tumours or a number of cellular 
processes) have been defined in the literature and could be used for this purpose. 
Our  approach  would  not  be  complete  without  coupling  it  to  experimental 
validation, which provided solid support to our conclusions. Further experiments 
may be designed in a similar manner, thus computationally exploiting the wealth 
of cancer data already available (modules, signatures and gene expression) to 
identify potential  biomarkers  and drug candidates,  which will  hopefully  spur 
further research.

6.2 The mutational landscape of epigenetic regulators across 
human tumours

The recent exponential growth of large cancer genomics projects has generated 
invaluable data, presenting the opportunity to mine it  collectively and extract 
new knowledge that may aid in our understanding of the mechanisms of cancer 
and the identification of biomarkers. A major challenge is to identify interesting 
candidates that drive tumour development amongst all this information; in other 
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words, to “find the needle in a haystack”. In this regard, CRFs have emerged as  
a particularly interesting gene group, given their potential druggability and their 
broad  functional  role  in  a  number  of  key  cellular  processes.  In  Chapter  5  I 
present an in-depth exploration of the mutational landscape of CRFs across close 
to  3000 available  sequenced tumours,  encompassing eleven anatomical  sites, 
and more than 900 cancer cell lines. To take full advantage of the sequenced 
tumour's data, we used OncodriveFM, an approach that identifies both frequent 
and lowly-recurrent drivers. Our unbiased identification of driver CRFs is based 
on the detection of events that may cause a selective advantage to the tumour 
cell.  The  underlying  assumption  is  that  genes  that  accumulate  functional 
mutations  (this  is,  that  have  an  FM  bias)  are  more  likely  to  be  drivers  of 
tumorigenesis, regardless of the frequency at which they appear mutated across 
samples.

Our study to identify cancer drivers amongst CRFs, however, possesses some 
limitations. The method may underestimate, for instance, the functional impact 
of  mutations  that  result  in  a  gain  of  function,  given  that  these  may be  less  
deleterious,  and  lower  FI  scores  may  be  assigned  to  them  in  consequence. 
Moreover, we are not currently scoring mutations in splice junctions, which may 
affect splicing and produce aberrant transcripts. The possible effect of these on 
tumorigenesis remains, although, unclear. Future improvements may include the 
development  of  strategies  to  overcome  these  limitations,  and  thus  capture  a 
fuller picture of the mutational landscape in human tumours.

This is, to our knowledge, the first analysis of this kind, and others will surely 
follow as  more tumours  are  sequenced.  What  seems clear  is  that  the  cancer 
genomics  data  that  is  currently  available  will  not  be  doubled,  but  instead 
increase by one or two orders of magnitude in the coming years. The integration 
of  different  types  of  information  is,  and  will  be  even  more,  paramount  to 
translate the efforts on tumour characterisation into prognostic and diagnostic 
tools  that  may  be  of  use  in  a  clinical  setting.  It  is  becoming  apparent,  for 
instance, that traditional  histochemical  assessments cannot  distinguish tumour 
subtypes that  may benefit  from specific  treatments,  as in the case for EZH2 
activating mutations in lymphomas (Morin et al. 2010). Approaches such as ours 
are  a  first  step  towards  a  full  molecular  profiling  of  cancer,  an  essential 
prerequisite to develop personalised medicine strategies.

IntOGen-CL: a resource to explore genomic alterations in cancer 
cell lines

The mutations in primary tumours results presented in Chapter 5 were included 
within the original IntOGen system, but cancer cell line data required a tailored 
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and more specific portal. With this idea we designed IntOGen-CL (cell lines), 
the first  sub-site of  IntOGen, which is briefly described in Chapter 6 of this  
work. It currently includes mutation data from the CCLE, not only for the 43 
CRFs sequenced in that project, but also for the rest of the genes they analysed  
(1651,  in  total).  There  are  two  main  ideas  behind  this  resource:  first,  it  is 
designed,  like  IntOGen,  to  detect  likely  drivers  in  cancer,  and  thus  may  be 
considered an extension of it in this sense; and second, it is meant to serve as a  
guide  for  researchers  to  identify  cancer  cells  lines  that  are  best  suited  to  
reproduce a specific cancer phenotype. As discussed previously, the molecular 
characteristics of tumours may determine novel subtypes with specific prognosis 
and distinct treatment responses. A tumour bearing a particular mutation in a 
driver, or in a combination of them, may distinguish patients that would benefit 
from being treated with a drug from those that would not. When a researcher 
studies the effect of a drug on a cancer model, thus, it is essential that the cell  
lines of choice mirror the phenotype of the original tumour. The idea behind 
IntOGen-CL is to serve, in the future, as a resource that may aid in this task by  
integrating the knowledge on drug sensitivity and mutations in cancer cell lines 
along with those detected in somatic tumours. The latter is possible thanks to the 
transparent communication of the site with the original IntOGen.

IntOGen-CL has plenty of room for improvement, and also to include more data 
and new types of data. It has been conceived with this in mind, as the system is 
flexible  and  easy  to  update.  New sources  of  cancer  cell  lines  data  are,  for  
instance,  the  recently  created  COSMIC  Cancer  Cell  Lines  Project 
(cancer.sanger.ac.uk/cancergenome/projects/cell_lines),  that  provides 
information  on  mutations,  and  the  CelLineNavigator,  which  collects  gene 
expression profiles  (Krupp et al. 2012). The Genomics of Drug Sensitivity in 
Cancer  (GDSC)  project  also  provides  a  wealth  of  data  on  pharmacological 
response associated to mutations in few selected genes that is very valuable to  
profile  cancer  cell  lines  (Garnett  et  al.  2012;  Yang  et  al.  2012).  Moreover, 
transcriptomic and CNA data has also been generated within the CCLE project. 

Our goal is to provide all the information currently available on cancer cell lines, 
integrated with previous knowledge. A major hurdle of the mutations assessment 
on  cancer  cell  lines  is  the  absence  of  a  normal  control  to  discard  germline 
variants.  By  comparing  the  reported  mutations  with  prior  knowledge  this 
problem  could  be,  at  least  partially,  overcome.  Three  different  sources  on 
sequence variants could aid in this task: the CGC and OMIM, to identify known 
associations of genes with cancer and Mendelian diseases; COSMIC, to verify 
whether a variant has been previously detected in cancer; and dbSNP and 1000 
genomes, to detect miscalled mutations that might be germline variants. The idea 
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is that users will be able to navigate cancer cell lines mutations alongside with 
the information on variations, and assess each case in particular.

Exploiting large amounts of data to extract new knowledge

The  work  presented  in  this  thesis  is  largely  based  on  the  analysis  of  data 
previously generated by other researchers and/or consortia, including ENCODE, 
ICGC and TCGA, to extract new knowledge. Thanks to the generalised use of 
high-throughput technologies, and to the existence of large projects that generate 
and make available large amounts of data in specific topics, the development and 
use  of  methodologies  to  extract  relevant  knowledge  out  of  mining  public 
information is becoming more important. This has led to a paradigm shift in the 
way genomics research is currently conducted. It  may be compared, to some 
extent, to the dramatic change caused by the creation of GenBank some years 
ago  (Benson et  al.  1994), or  to  the  availability  of  the  complete  first  human 
genome reference sequence (Lander et al. 2001). Before that, researchers had to 
clone  and sequence  their  gene  or  region  of  interest,  as  in  the  case  for  HTT 
(huntingtin), a project that took ten years to complete (MacDonald et al. 1993). 
By the time the human genome draft was made available, it  was common to 
fetch  gene  sequences  from  databases  and  then  further  refine  them  in  the 
laboratory if their quality was not optimal.

In comparison,  the scenario today is  that  overwhelming amounts  of data  are 
publicly  available.  Large  consortia  sequence  full  human  genomes,  including 
those  from  tumours,  and  many  researchers  generate  genome-wide  gene 
expression  profiles  on  a  regular  basis  and  deposit  it  on  public  repositories. 
Currently,  thus,  it  is  possible  to  address  many  biological  questions  without 
producing any new data, but instead fetch it from databases. The results obtained 
by extracting patterns and integrating large amounts of data may be regarded as 
new hypotheses, that later require follow-up experiments to be validated in the 
laboratory.  A specific  line  of  research  that  may  benefit  much  from  these 
approaches is the elucidation of the exact mechanisms through which mutations 
on  CRFs  contribute  to  tumorigenesis  (Ryan  and  Bernstein  2012). These  are 
largely unknown, but the task is crucial because they have emerged as important 
drug candidates for anticancer therapy, even though their precise mechanism of 
action is not known; CRFs act upon a large number of genes, but probably only 
a subset are relevant to promote disease. This is currently a major challenge for 
cancer  research,  and  will  certainly  require  multidisciplinary  research,  in  the 
intersection  of  computational  biology,  molecular  biology  and 
pharmacogenomics. Our contribution in this regard is presented in Chapter 5.
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The future of cancer genomics and precision medicine

Precision  medicine  is  often  defined  as  “coupling  established  clinical–
pathological  indexes  with  state-of-the-art  molecular  profiling  to  create 
diagnostic,  prognostic,  and  therapeutic  strategies  precisely  tailored  to  each 
patient's  requirements”  (Mirnezami,  Nicholson,  and  Darzi  2012).  It  is  a 
blooming field that arose from the explosion of molecular information owing to 
dramatic biotechnological advances in the last years. The main contributions of 
current basic computational biology research to it are basically two: first, the 
definition of molecular profiles that determine cancer subtypes, susceptible to 
respond differently  to  a  treatment  or  with  specific  associated prognosis;  and 
second, the identification of drivers that may be pharmacologically targeted in 
personalised anticancer therapies. The work presented in Chapter 3 and Chapter 
4 can be broadly framed within each of these two broad research directions.

Cancer  genomics,  as  a  field,  is  advancing  towards  a  personalised  medicine 
direction (Stratton 2011). The implications are likely to be far-reaching, and may 
probably include the establishment  of  a new rational  classification of  human 
cancer,  based  on  genomic  abnormalities  (Committee  on  a  Framework  for 
Development a New Taxonomy of Disease; National Research Council 2011), 
that  ideally  will  reflect  the  key  characteristics  of  a  tumour  behaviour 
(progression  and  response  to  therapy),  regardless  of  the  tissue  where  it 
originated. The ultimate goal of this thesis is not to have an effect on medical 
practise and personalised medicine, yet it has been conceived in the context of 
cancer genomics, which main objective is to better understand the mechanisms 
underlying tumorigenesis to have an impact on the clinic.
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Part V

Conclusions



My  main  interest  in  this  study  was  to  gain  insight  into  the  epigenetic 
mechanisms that drive tumour progression. In the first part of this thesis I have 
mined available  sources  of  experimental  regulatory data,  mainly histone  and 
CRFs occupancy maps, and applied bioinformatic approaches to integrate it with 
genome-wide  gene  expression  changes  across  tumours.  Being  key  in 
tumorigenesis and in the maintenance of the epigenomic landscape, I explored 
more in detail the Polycomb complex proteins. The second part of this work has 
focused on the identification of CRFs that function as drivers in primary tumours 
and cancer cell lines. The main contributions of this thesis can be summarized as 
follows:

1. Gene regulatory modules may be used to determine the transcriptional 
status of a cell. These modules are largely coordinated in normal tissues, 
but  this  characteristic  is  at  least  partially  lost  in  cancer  cells.  
Specifically,  the  genes  regulated  by  Polycomb  show  distinct 
coordination patterns in cancer when compared to normal tissues. 

2. A shared, global pattern of co-regulated expression becomes clear when 
normal and cancer cells are analysed within the framework of epigenetic 
regulatory modules.  It  consists  in two main anti-correlated groups of 
modules:  Polycomb  and  repressive  histone  marks,  and  transcription 
factors and activating histone marks.

3. Upon  analysis  of  the  molecular  and  clinical  characteristics  of  breast 
tumours,  we  found  that  genes  in  regions  bound  by  EZH2  or  by 
nucleosomes  presenting  trimethylation  of  histone  3  at  lysine  27 
(H3K27me3) are down-regulated in tissues with high expression of cell 
cycle  genes,  and low expression  of  developmental  and  cell  adhesion 
genes.  Furthermore,  the  expression  of  EZH2  targets  successfully 
stratified breast cancer patients into good and poor prognostic groups, 
independent of known cancer signatures.

4. We experimentally validated our findings on the role of EZH2 in breast 
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tumours  through  collaboration.  Top  altered  EZH2-regulated  genes 
decreased  their  expression  upon  loss  of  EZH2,  which  diminished 
proliferation  and  improved  cell  adhesion.  This  is  consistent  with 
mesenchymal to epithelial transition, the reverse of the EMT process. 
Moreover, high protein levels of EZH2 are associated with aggressive 
cancer phenotypes in breast tumour samples.

5. We determined the mutational landscape of CRFs in almost 3000 human 
tumours from eleven anatomical sites, using an approach that assesses 
the accumulation of functional mutations in each gene, regardless of the 
frequency at which it appears mutated across all samples. We identified 
39 CRFs that are likely drivers in the tumours from at least one site, all 
with relatively low mutational frequencies.

6. Mutations in CRFs reveal as an important pathway to tumorigenesis in 
certain tumour subtypes such as paediatric medulloblastomas, but appear 
almost negligible in others, such as glioblastomas.

7. Mutations in MLL and EP300 correlate with broad expression changes 
across cancer cell  lines, providing insight  on the possible mechanism 
through  which  they  might  contribute  to  tumorigenesis  in  the 
corresponding tissues.

8. We have provided the results on our analysis on the functional impact 
and  frequency  of  mutations  across  some  900  cancer  cell  lines  in 
IntOGen-CL, a portal specifically designed for this purpose. Together 
with the information contained in IntOGen, it is a useful resource for  
assessing the importance of specific genes and mutations in cancer and 
their possible implication in drug sensitivity/resistance to drugs.
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