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Abstract

Surface reflectance modeling is an important key to scene understanding. An accurate
reflectance model which is based on the laws of physics allows us to achieve realistic and
physically plausible results. Using such model, a more profound knowledge about the
interaction of light with objects surfaces can be established which proves crucial to variety
of computer vision application. Due to high complexity of the reflectance model, the vast
majority of the existing computer vision applications base their methods on simplifying
assumptions such as Lambertian reflectance or uniform illumination to be able to solve
their problem.

However, in real world scenes, objects tend to exhibit more complex reflections (dif-
fuse and specular) and are furthermore affected by the characteristics and chromaticity of
the illuminants. In this thesis, we incorporate a more realistic reflection model in com-
puter vision applications.

To address such complex physical phenomenon, we extend the state-of-the-art ob-
ject reflectance models by introducing a Multi-Illuminant Dichromatic Reflection model
(MIDR). Using MIDR we are able to model and decompose the reflectance of an ob-
ject with complex specularities under multiple illuminants presenting shadows and inter-
reflections. We show that this permits us to perform realistic re-coloring of objects lit by
colored lights, and multiple illuminants.

Furthermore, we propose a ”local” illuminant estimation method in order to model the
scenes with non-uniform illumination (e.g., an outdoor scene with a blue sky and a yellow
sun, a scene with indoor lighting combined with outdoor lighting through a window, or
any other case in which two or more lights with distinct colors illuminating different
parts of the scene). The proposed method takes advantage of a probabilistic and graph-
based model and solves the problem by re-defining the estimation problem as an energy
minimization. This method provides us with local illuminant estimations which improve
greatly over state-of-the-art color constancy methods.

Moreover, we captured our own multi-illuminant dataset which consists of complex
scenes and illumination conditions both outdoor and in laboratory conditions. We show
improvement achieved using our method over state-of-the-art methods for local illuminant
estimation.

We demonstrate that having a more realistic and accurate model of the scene illumi-
nation and object reflectance greatly improves the quality of many computer vision and
computer graphics tasks. We show examples of improved automatic white balance, scene
relighting, and object re-coloring. The proposed theory can be employed in order to im-
prove color naming, object detection, recognition, and segmentation which are among the
most popular computer vision trends.
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Resumen

El modelado de la reflectancia de las superficies es una clave importante para la com-
prensión de escenas. Un modelo de reflectancia preciso, basado en las leyes de la f�́sica,
nos permite alcanzar resultados real�́sticos y f�́sicamente plausibles. Además, el uso de tal
modelo nos permite establecer un conocimiento más profundo acerca de la interacción de
la luz con las superficies de los objetos, y resulta crucial para una variedad de aplicaciones
de visión por computador. Debido a la alta complejidad de los modelos de reflectancia, la
gran mayor�́a de las aplicaciones existentes de visión por computador basan sus métodos
en suposiciones simplificadoras, tales como la reflectancia lambertiana o la iluminación
uniforme para ser capaz de resolver sus problemas.

Sin embargo, en escenas del mundo real, los objetos tienden a exhibir reflexiones más
complejas (difusas y especulares), y además se ven afectados por las caracter�́sticas y la
cromaticidad de los iluminantes. En esta tesis, se incorpora un modelo de reflexión más
realista para aplicaciones de visión por computador.

Para abordar tal fenómeno f�́sico complejo, extendemos los modelos de reflectancia
de los objetos del estado-del-arte mediante la introducción de un Modelo de Reflexión
Dicromático Multi-Iluminante (MIDR). Usando MIDR somos capaces de modelar y de-
scomponer la reflectancia de un objeto con especularidades complejas bajo múltiples ilu-
minantes que presentan sombras e interreflexiones. Se demuestra que este modelo nos
permite realizar una recolorización realista de los objetos iluminados por luces de colores
y múltiples iluminantes.

Además se propone un método ”local” de estimación del iluminante para modelar
las escenas con iluminación no uniforme (por ejemplo, una escena al aire libre con un
cielo azul y un sol amarillo, una escena interior con iluminación combinada con la ilu-
minación al aire libre a través de una ventana, o cualquier otro caso en el que dos o más
luces con diferentes colores iluminan diferentes partes de la escena). El método prop-
uesto aprovecha un modelo probabil�́stico basado en grafos y resuelve el problema red-
edefiniendo la estimación como un problema de minimización de energ�́a. Este método
nos proporciona estimaciones locales del iluminante que mejoran en gran medida a los
métodos del estado-del-arte en constancia de color.

Por otra parte, hemos capturado nuestro propia base de datos multi-iluminante, que
consiste de escenas complejas y condiciones de iluminación al aire libre o de laborato-
rio. Con ésta se demuestra la mejora lograda usando nuestro método con respecto a los
métodos del estado-del-arte para la estimación automática del iluminante local.

Se demuestra que tener un modelo más realista y preciso de la iluminación de la
escena y la reflectancia de los objetos, mejora en gran medida la calidad en muchas tareas
de visión por ordenador y gráficos por computador. Mostramos ejemplos de mejora en el
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balance automático de blanco, reiluminación de escenas y en la recolorización de objetos.
La teor�́a propuesta se puede emplear también para mejorar la denominación automática
de colores, la detección de objetos, el reconocimiento y la segmentación, que están entre
las tendencias más populares de la visión por computador.
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Chapter 1

Introduction

Many Computer Vision applications deal with the object reflectance. Conventional meth-
ods often consider the Lambertian model in order to analyze the reflectance. In real world
applications, objects tend to exhibit more complex reflections due to shadows, highlights,
and are furthermore affected by the characteristics and chromaticity of their illuminant.
To address such a complex physical phenomenon, we make use of state-of-the-art object
reflection models, which being based on the laws of physics, allow us to achieve realistic
and physically plausible results. Using these models, a more profound knowledge of light
interaction with objects surfaces can be established which proves crucial to a variety of
computer vision application.

Considering advanced imaging technologies which result in high quality images and
videos, and in order to address the increasing need for precise and realistic analysis of the
images, many computer vision scientists developed more physically plausible reflectance
methods. While the classical Lambertian model ignores object specularities and high-
lights, the Dichromatic Reflection Model (DRM) proposed by Shafer [87] tries to achieve
a more realistic model by embedding a specular term in the reflection formula. State-of-
the-art approaches often need to simplify the model by making assumptions (e.g. known
illuminant, use of image sequence, controlled environment) in order to solve the model.

Furthermore, real-world objects often exhibit body and surface reflection under more
than just one illuminant. An example of multi-illuminant scenario is an outdoor scene
with a blue sky and a yellow sun, or a scene with indoor lighting combined with outdoor
lighting through a window. Conventional methods often ignore secondary illuminants
present in the scene to simplify the modeling.

The Automatic White Balance (AWB) embedded in the digital cameras is a very pop-
ular application in digital photography. Most digital cameras use statistical methods to
correct for the scene illumination. While these methods appear to perform well on many
images, they mostly fail in the case of complex scenes. As an example, the dominant
presence of one color in the scene, like a close-up of a person with a red shirt, leads many
state-of-the-art cameras to wrongfully apply a very bluish filter to compensate for what
they assume to be sunset effects. Another example is the case of having multiple illu-
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2 INTRODUCTION

minants with strong effects in an image which confuses the automatic white balancing
method that is trying to estimate one illuminant for the whole image.

In the next chapter, we briefly review the existing work and trends regarding illumi-
nation and object reflectance modeling.

In Chapter 3 we attempt to solve the model with minimal assumptions and to form a
realistic decomposition of the object reflectance. Our aim is to solve the case of an arbi-
trary uncalibrated scene with multiple specular and non-specular (diffuse) colored objects
under multiple illuminants presenting shadows and inter-reflections. The realistic decom-
position achieved will then enable us to perform highly challenging computer vision tasks
e.g., Color Naming, Object Detection, Recognition and Segmentation which are among
the most popular computer vision trends.

In Chapter 4 we propose to apply a local illuminant estimation method in order to
improve the estimations in the case of scenes illuminated by differently colored light
sources at the same time. We do so, by expressing the illuminant estimation problem as
an energy minimization which enable us to easily combine the state-of-the-art methods on
global illuminant estimation into a mathematically sound formulation. This also further
simplifies and improves the implementation and results. We propose to take advantage of
Conditional Random Fields to achieve global consistency of the illuminant estimations.
Finally, as a useful application of our framework, we demonstrate that using this local
modeling, we will be able to develop a much more intelligent automatic white balancing
method.

Further details on data acquisition and ground truth computation for our multi-illuminant
scene datasets will be presented in Chapter 5. The first part of this chapter focuses on the
data captured using camera from real scenes and followed by the details on our synthetic
image dataset constructed using graphical but physically accurate 3D modeling and ren-
dering softwares. We conclude this Chapter by comparing the two different methods
presented for constructing and collecting our datasets.

The final chapter summarizes the current work and concludes the thesis as well as
presenting ideas for the future directions of this research.



Chapter 2

Research Context

The aim of this chapter is to present the general context and overall background of the
topics which are covered during the next chapters.

2.1 Reflectance Models

Object reflectance estimation from an image is an active subject in color-vision whose
application ranges from color constancy to segmentation and classification. The main idea
is: if we would be able to build a realistic model of the light interaction with the object
surface, we could extract crucial knowledge about the object surface geometry as well as
the illuminant light. Such knowledge would then be used in order to remove the effect
of a non-white illumination (color constancy), locate and remove the areas of shadows
and highlights (essential in object segmentation), and obtain the geometrical model of the
object (improving object classi�cation).

2.1.1 Lambertian Reflection

One of the simplest and most commonly used models is the Lambertian reflectance. This
model is based on the simple assumption that the intensity of the light reflected from the
surface is independent of the viewing angle and the surface luminance is considered to
be isotropic. Some examples of Lambertian (matte) materials are chalk, soil and paper 1.
The reflected energy from the surface E is given by:

E(�; x) = mb(x)s(�;x)e(�;x) ; (2.1)

where e(�;x) is the illumination in the scene, � is the wavelength and x the spacial
coordinates of the pixel in the scene. From here on we use bold face to denote vectors.

1Here we ignore the translucency characteristic of many commonly used types of paper which is caused
by optical brightening for commercial reasons.

3



4 RESEARCH CONTEXT

Often in the literature it is assumed that the spectral distribution of the light source is
spatially uniform across the scene and it does not depend on the position; therefore the x
notation can be omitted. Here mb is the geometric part of the reflectance which depends
on the � angle between the direction of the incident light and the surface normal (mb =
cos(�)).

Now the value measured by the camera with spectral sensitivity �c(�); c = R;G;B at
position x is modeled as f c(x) by integrating over the visible spectrum !,

f c(x) = mb(x)

Z
!

b(�;x)e(�)�c(�)d� ; (2.2)

We define the body reflectance as

cb
c(x) =

Z
!

b(�;x)e(�)�c(�)d� : (2.3)

Therefore,
f(x) = mb(x)cb(x) ; (2.4)

In spite of it is inaccuracy for describing real-world scenes, still the majority of com-
puter vision methods are based on the Lambertian assumption.

2.1.2 Dichromatic Reflection Model (DRM)

A more realistic reflectance model is the dichromatic reflection model (DRM) proposed
by Shafer [86]. The model focusses on the color aspects of light reflection and has only
limited usage for geometry recovery of scenes. It separates reflectance into surface body
reflectance and interface reflectance. The model is valid for the class of inhomogeneous
materials, which covers a wide range of materials such as wood, paints, papers and plastics
(but excludes homogeneous materials such as metals). It predicts that values of a single
colored object lie on a parallelogram in color space, defined by the body reflectance and
the illuminant color.

For multiple light sources we assume that the combination can be approximated as a
single light source for the local feature.

f cx = mb (x)

Z
!

b (�;x) e (�)�c (�) d�+ms (x)

Z
!

i (�) e (�)�c (�) d� ; (2.5)

where b is the surface albedo. We assume neutral interface reflection, meaning that the
Fresnel reflectance i is independent of �. Accordingly, we will omit i in further equations.
The geometric dependence of the reflectance is described by the terms mb and ms which
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depend on the viewing angle, light source direction and surface orientation. x denotes the
spatial coordinates, and bold face is used to indicate vectors. In vector notation we can
now write:

f (x) = mb (x) cb (x) +ms (x) cs (x) : (2.6)

The reflection of the light consist of two parts: 1. a body reflection part mb (x) cb, which
describes the light which is reflected after interaction with the surface albedo, and 2. the
interface reflection ms (x) cs which describes the part of the light that is immediately
reflected at the surface, causing specularities. Both parts consist of a geometrical part
dependent on the location in the scene, and a spectral part dependent on the spectral
wavelength.

Several methods have been developed to approximate the dichromatic model of an
object. Kravtchenko and Little have introduced a spatial-based approach in their segmen-
tation method in which they approximate the two dichromatic planes for specular and
body reflectance considering the lighter and darker pixels separately [58]. Shen and Xin
have solved the model with the assumption of a known illuminant [88].

The original application to which the DRM was applied, was the separation of shad-
ing from specularities [86]. The specularities, being dependent on scene incidental events
such as viewpoint and surface normal, could be removed to simplify color image under-
standing. The removal of specularities allowed for improved segmentation algorithms
[55, 71]. Furthermore, the estimation of the specularities also provides an illuminant es-
timation, thereby allowing for color constancy. A second application field which has
benefited from the DRM is photometric invariant feature computation [42, 97].

2.1.3 Multi-illuminant

In cases that the assumptions made by the original DRM are not met, more complex re-
flectance models are required. One such case is ambient light, i.e. light coming from all
directions. Ambient light occurs in outdoor scenes where next to the dominant illuminant,
i.e. the sun, there is diffuse light coming from the sky. Similarly, it occurs in indoor sit-
uations where diffuse light is caused by reflectances from walls and ceilings. Shafer [86]
models the diffuse light, a, by a third term

c (x) = mb (x) cb (x) +ms (x) cs (x) + aC : (2.7)

Later work improved the modeling [70, 80] and showed that the ambient term results
in an object color dependent offset which could perform crucial in handling the case of
colored shadows. Furthermore, in [70] a photometric invariant with respect to ambient
light is proposed.

Another case is the presents of multiple illuminants in the scene (a more generalized
case of ambient light). A typical example of a ”multi-illuminant” is the interreflections
occurring between objects in the complex scenes.
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Figure 2.1 is a physics-based illustration of the case of an object observed under
multiple-illuminant. A main focus of this thesis in the next chapters is to present novel
approaches to model complex multi-illuminant scenarios in order to accurately estimate
and modify the illuminant chromaticity.
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Figure 2.1: Real-world objects often exhibit body and surface reflection under more than
just one illuminant (e.g., outdoor scene with blue sky and yellow sun).

2.1.4 Inverse-Intensity Chromaticity Space

Using the Dichromatic Reflection Model, Tan et al. [91] formulates the camera response
Ic(x) for each color filter c as:

Ic(x) = mb(x)Λc(x) +ms(x)Γc , (2.8)

where Λc(x) = Bc(x)/
∑

iBi(x) and Γc = Gc/
∑

iGi, i ∈ { R,G,B } are diffuse and
specular chromaticities respectively. Bc(x) and Gc are the respective camera responses
defined as below:

Bc(x) =

∫
ω

b (λ,x) e (λ)ρc (λ) dλ

Gc =

∫
ω

i (λ) e (λ)ρc (λ) dλ

Here we assume neutral interface reflection and that the color of the illumination over
the input image is uniform so that the spectral distribution of the illuminant becomes
independent of the image coordinate x.
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The image chromaticity is similarly defined as �c(x) = Ic(x)=
P

i Ii(x). Tan et al.
define the correlation between image chromaticity and illumination chromaticity as (we
will omit the spatial arguments):

�c = p
1P
Ii

+ �c ; (2.9)

where p = md(�c��c). This demonstrates that we are able to determine the chromaticity
of the illuminant, �c, using p since the image chromaticity, �c, and total image intensity,P
Ii can be obtained using the input image. Tan et al. finally conclude that in the Inverse-

Intensity Chromaticity (IIC) space (in which the chromaticity �c and inverse intensityP
Ii are the vertical and horizontal axis respectively) the diffuse pixels form a horizontal

line and the specular pixels form a diagonal line which intersect the chromaticity axis at
the illuminant chroma (�c). Figure 2.2 presents example of the IIC space.

(a) (b)

Figure 2.2: Here’s an illustration for the intensity chromaticity space: (a) Sketch of spec-
ular points of two surface colors in inverse-intensity chromaticity space; (a) Diffuse and
specular points of an image. Images are taken from Tan et al. [91].

2.2 Intrinsic Images

As mentioned in the previous section, the human vision has the ability to perceive char-
acteristics intrinsic to the scene, such as color, size, shape, distance, orientation and etc.
In 1978 the term intrinsic images has been first coined by Barrow and Tenenbaum [11]
referring to a family of images each of which contains the value of one of the intrinsic
characteristic at each point corresponding to the input image and additionally the explicit
indications of boundaries due to discontinuity in value or gradient.

Using the idea that the main variations in an image sequence of a fairly static outdoor
scene should be the illumination changes, a method for object color decomposition has
been developed in which the object surface reflectance model has been extracted, assum-
ing the camera response to be linear [102]. The author has used the assumption that when
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derivative filters are applied to natural images, the filter output tend to be sparse. Then a
maximum likelihood estimator has been used for surface reflectance recovery.

Recently an effort by Grosse et al. [50] to introduce a quantitative measure for bench-
marking and evaluating the different intrinsic estimation methods has resulted in the
widely used MIT dataset which has greatly encouraged more works on this topic. Since
then many methods have been developed and tested using this dataset. Gehler et al. [39]
developed a novel approach for intrinsic image recovering on single images by assum-
ing that the reflectance values are drawn from a sparse set of basis colors. Using their
probabilistic approach they managed to achieve quality results on MIT dataset, while
they demonstrate that adding more cues such as edge information to their model has led
to state-of-the-art results. Another method which uses probabilistic models for this task
is the work of Serra et al. [85] who also show competitive results obtained on the MIT
dataset. In this work, ridges have been used as extra cues to improve the results.

In chapter 5 we further approach this problem and introduce our own dataset for in-
trinsic image benchmarking.

2.3 Illumination Estimation and Color Constancy

Estimating the illuminant and reflectance are highly related. Having a good estimation of
the illuminant could result in much more accurate reflectance model and intrinsic image
decomposition as shown by many existing methods. So far, there have been many meth-
ods presented in different fields of computer vision and image processing which assume
the illuminant to be white or known. But in many cases the scene is much more complex
regarding the illumination. Here we start with a brief introduction on perceptual color
constancy in human vision followed with a summary of computational color constancy
methods.

2.3.1 Perceptual Color Constancy

A commonly accepted definition of perceptual constancy is the ”relative stability of the
apparent value of object properties (size, shape, orientation, movement, etc.) when the
representation at the eye (retinal image) is variant with change in observer position, pos-
ture, and movement.” [20]

Some examples of perceptual constancy in the literature are: size constancy when we
look at the object from far away or close up; lightness constancy when we do not see the
large differences in lightness even when objects are illuminated by intensities that dif-
fer in several orders of magnitude; shape constancy referring to objects being perceived
similar despite the distance and the viewing angle; identification of a musical instrument
as constant under changing timbre or conditions of changing pitch and loudness, in dif-
ferent environments and with different players; in speech the vowels or consonants are
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perceived as constant categories even if acoustically, they vary greatly due to phonetic
environment, tempo, speaker’s age, gender, or dialect. One of the interesting forms of
perceptual constancy is color constancy which could play an important role in crucial
tasks such as finding and classifying the objects. Color of an object is a valuable cue in
determining whether a fruit is ripe or an animal is poisonous.

Ebner in his book ”color constancy” [24] defines this phenomenon as the human ob-
servers’ ability to recognize the color of an object irrespective of the light used to illumi-
nate them. He further explains that since a digital camera uses a sensor to measure the
light reflected from the object surface, this measurement at pixel level varies according
to the color of the illuminant. This could result in the color of the pixels being different
from the ones perceived by the human observer. Color constancy mechanism also exists
in various animals like, honeybees, goldfish, and monkeys (the last are believed to poses
the vision which is most similar to humans).

Regarding the reasons for which color constancy could occur in human vision, there
are various studies in the literature.These studies converge in number of possibilities. For
example Goldstein in ”sensation and perception” [48] points out that color perception
can be changed by chromatic adaptation. For example, prolonged exposure to red light,
bleaches the long-wavelength cone pigment in one’s eye which decreases the sensitivity
to red light and causes the perception of the red or reddish colors to be less saturated.
Digital cameras on the other hand use sensor with fixed responsivity to wavelength and
that causes the difference in between the measured pixel colors and the human perception
of the objects in the scene.

Also the colors in the surrounding enhances color constancy which has been for many
years an important cue to deal with the problem of computational color constancy. This
phenomenon is best noticed when the object is surrounded by objects of many different
colors. While many white balancing function in commercial cameras work this way, it
is possible to trick this system to mistake a color for another because of its surrounding.
Figure 2.3 demonstrates some illusions created using this matter in the literature. Color
memory is also another reason often considered while explaining the color constancy
phenomena.

2.3.2 Computational Color Constancy

Since in many applications which deal with photos and videos consistency with the human
perception is desired, achieving computational color constancy plays an important role.
From designing better photo filters and white balancing in the art of photography, to
fundamental applications in computer vision like object classification and segmentation,
estimating and modeling the illuminant could serve as a crucial pre-processing step in
order to achieve good results.

Unlike perceptual color constancy, computational color constancy deals with the op-
tics and underlying physical laws regarding the light’s interaction with object surface
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Figure 2.3: This figure demonstrates the effect of color constancy on the perception of
colors. The first row is an example of such effect using two different surrounding colors.
Images on the second row show that the bluish tiles on the image on the top of the cube
on the left are identical to the yellowish tiles on the top of the cube in the right, and all are
in fact gray. Also the red tiles on the top of the both cubes, even though appear identical,
are in fact different colors as demonstrated in the third row. Figures are taken from Lotto
et al. [67].

rather than the reasons for which a human subject would perceive a scene in a certain
way. That is to say, the main goal in the computational color constancy is to estimate the
chromaticity of the lights illuminating the scene and transforming the input image to the
canonical image (i.e., the image of the scene taken under a neutral or white light source)
by removing the effects of the illumination color.
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Chromatic Adaptation

Using the chromatic adaptation transform, the appearance of the colors in the image is
changed in order that they would appear as if being captured under a white light source.
The simplest and most commonly used transformation of this kind is the von Kries [101]
transform which independently scales each of the cone responses or RGB channels:

0@Rc

Gc

Bc

1A =

0@dR 0 0
0 dG 0
0 0 dB

1A�
0@Re

Ge

Be

1A ; (2.10)

where di = eip
3(e2R+e2G+e2B)

; i 2 fR;G;Bg. In spite of being merely an approxi-

mation of illumination change, it is the commonly accepted model in the literature due to
its simplicity.

Since the von Kries model might not accurately be able to model photometric changes
due to disturbing effects such as highlights and interreflections, there are more accurate
models proposed for chromatic adaptation. For example, sharpening the cone responses
before transformation [18] or using and offset as in diagonal-offset model [30] (which
ideally becomes zero for von Kries model):

0@Rc

Gc

Bc

1A =

0@dR 0 0
0 dG 0
0 0 dB

1A�
0@Ru

Gu

Bu

1A+

0@o1

o2

o3

1A : (2.11)

Illuminant Estimation

The recovery of the illumination color from a single image is an under-constrained prob-
lem. Every observed image pixel represents an unknown combination of surface re-
flectance and illumination. Many color constancy algorithms try to make this problem
tractable by imposing different assumptions on the observed scene (e.g. a derivative of the
pixels sums up to 0 under canonical illumination as in gray edge algorithms [95] or that
the convex hull of the pixels in a suitably chosen color space encompasses most illumina-
tion changes as in gamut mapping [35]). Furthermore, most illuminant color estimators
typically assume globally uniform illumination. This prerequisite is essential for collect-
ing a sufficiently large number of samples from the whole image and thus increasing the
accuracy and robustness of the methodology.

Existing Illuminant estimation methods are categorized in three main groups: static
and physics-based methods, gamut-based methods, and learning-based methods. The rest
of this section presents a brief description regarding each of these categories.
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2.3.3 Static Methods Using Low-level statistics

Here we discuss a set of illuminant estimation methods which rely on low level statistics
from the image pixels. These methods are categorized as static because they use fixed
parameter setting. Popularity of these methods is mainly due to the simplicity of their
implementation and their high speed. They could obtain accurate results if used with ade-
quate parameters, while their accuracy and quality of their results would drop otherwise.

The most popular and commonly used approach in this category relies on the gray-
world assumption, that is the average reflectance in a scene under neutral light is achro-
matic [17]. Or more accurately, the average reflectance in a scene is equal for every
wave-length. Various extensions have been proposed to improve this method, e.g. com-
puting the scene average over image segments to reduce the effect of large uniformly
colored surfaces.

Similarly, white-patch [60] method assumes that the maximum response in the color
channels is caused by a perfect reflectance (reflecting the full range of light). In this
method, the perfect reflectance represents the color of the illuminant. Various works
in the literature demonstrate that smoothing the image before performing the illuminant
estimation could improve the results.

Using higher order statistics, the gray-edge method uses the average reflectance deriva-
tives in a scene to estimate the illuminant color [95]. The gray-edge hypothesis is based
on the observation that the distribution of the color derivatives in the image has a relatively
regular (ellipsoid) shape of which the long axis is in the direction of the light source.

Using the Minkovski norm, a generalized formula is introduced in the literature which
can incorporate all the above mentioned methods:

�Z ����@n(f c)�(x)

@xn

����mdx� 1
m

= k(ec)n;m;� ; (2.12)

where n is the differentiation power, and m is the Minkowski norm. � denotes the stan-
dard deviation of a Gaussian smoothing operator that is applied to the image prior to the
differentiation. e stand for the the illuminant and k is a constant. Using the generalized
formula has the advantage that the choice of the method can be reduced down to the
choice of the parameters.

The parameter n > 0 produces a higher-order color constancy method (e.g., n = 1
gray-edge and n = 2 second order gray-edge). Using higher Minkowski norm will em-
phasize larger measurements in the image, while lover values equally distributes weights
among the measurements (e.g., m = 1 for gray-world and m = inf for Max-RGB). Also
in Chapter 4 this formulation is used in order to incorporate the static methods into a
novel Conditional Random Field (CRF) framework for local color constancy.
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2.3.4 Physics-based Illuminant Estimation

Although many illuminant estimation method make Lambertian assumption (Sec 2.1.1),
using the more accurate DRM formulation (Sec 2.1.2) there has been some advancements
in this field. By assuming the neutral interface reflection, various illuminant estimation
methods have been developed which extract the illuminant chromaticity from the specular
highlights in the image [ref]. Also the Planckian illuminant assumption has led to a
physics-based illuminant estimation method by Finlayson and Schaefer [27]. In Chapter 3
we further discuss this matter.

As described in (Sec 2.1.4), the inverse intensity chromaticity space can be used in
order to extract the illuminant chromaticity as in the work by Tan et al. [91]. Although this
work has presented a very elegant formulation based on the original work by Shafer [86],
in practice the method relies on a specularity segmentation in order to identify the specular
pixels. In Chapter 4 we further extend their approach for the purpose of local illuminant
estimation.

2.3.5 Gamut-based Methods

A color gamut is a convex part of the color space which contains the complete set of colors
which can be accurately represented in a given circumstance. Gamut mapping methods
assume that only a limited set of colors can be observed under an specific given illuminant.
The gamut of the possible colors for a reference illuminant (often white) is referred to as
the canonical gamut. Canonical gamut is constructed using as many surfaces under the
refrence light as possible.

There are many different gamut mapping illuminant estimation methods in the liter-
ature all of which consist of following steps: first the canonical gamut is formed using
the training images; then the input image is used to construct a gamut that is considered a
subset of the gamut of the illuminant to be estimated (that is because the input image only
includes a very small subset of possible colors in its gamut); in the next step, the feasible
set of mappings which applied to the input gamut result in a gamut that is completely
within the canonical gamut is computed; using an estimator one mapping that best maps
the unknown illuminant to the canonical gamut is chosen; finally the chosen mapping is
applied on the input image to obtain the image of the scene under canonical illluminant.

Existing gamut mapping methods, although being based on the original work pio-
neered by Forsyth [35], differ from each other in their approach to each of the steps men-
tioned above. Several extensions of gamut mapping are aimed to simplify, improve or
reduce the costs of the implementation and execution of this algorithm like using convex
programing [32] or using a simple cube instead of the full convex hull of the pixel values
as gamut [73]. Alternatively, 2D chroma space is used instead of the original 3D color
space to reduce the complexity of the implementation and visualization of the problem.
However this conversion is known to slightly decrease the performance of the method that
is caused by the perspective distortion. Therefore, to solve this problem, the 2D feasible
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set is mapped to 3D again before choosing the best mapping.

Some approaches deal with the dependency of gamut mapping on the diagonal model
for chromatic adoption since a null solution could occur if the diagonal model fails [4, 7]
. Some approaches tried to address this problem by enlarging the input or the canonical
gamut using different heuristics [8, 28] . Others used extensions like gamut-constrained
illuminant estimation by limiting the possible set of illuminants in which one canoni-
cal gamut is learned for every possible illuminant and then the unknown illuminant is
estimated by matching each of these gamuts to the gamut of the input image, or diagonal-
offset which allows for translation of input colors along with the linear transformation
used in original method. Alternatively there are many approaches which combine these
algorithms or the results of each of them to better estimate the illuminant or use deriva-
tives [43].

Overall, gamut mapping has a very good potential for achieving high accuracy while
being based on an elegant underlying theory. However, it is quite complex for implemen-
tation and requires a large amount of training data and adequate preprocessing.

2.3.6 Local Illuminant Estimation for non-uniform illumination

Most color constancy methods assume the illumination to be uniform, while in real-world
there are many cases of multi-illuminant scenes for which this assumption results in dras-
tic artifacts. A common example of a multi-illuminant scene is a fine sunny day that
is illuminated by both the yellow sun, and blue sky. In this case different points of the
scene are illuminated by different mixture of these colors. Also another example of multi-
illuminant scene is the presents of interreflections and colored shadows.

Ebner et al. [25] proposed a method for solving the case of non-uniform illumination
by computing the local space average color in the image. Recently Bleier et al. [12] have
tried to examine the accuracy of a number of existing statistical illumination estimation
methods on the images with non-uniform illumination. To this end they first divided
the image to sub-regions, superpixels, and then applied each of the methods separately
on each superpixels. Also using a similar approach Riess et al. [79] have extended the
[91] to obtain estimate for local illumination. The work published by Gijsenij et al. [45]
presents a framework and a dataset to address the multi-illuminant scenes. In Chapter 4
a novel approach and a dataset for illuminant estimation in multi-illuminant scenes using
Conditional Random Field (CRF) is presented.



Chapter 3

Object Recoloring based on Intrinsic
Image Estimation

Object recoloring is one of the most popular photo-editing tasks. The problem of object
recoloring is highly under-constrained, and existing recoloring methods limit their appli-
cation to objects lit by a white illuminant. Application of these methods to real-world
scenes lit by colored illuminants, multiple illuminants, or interreflections, results in unre-
alistic recoloring of objects.
In this paper, we focus on the recoloring of single-colored objects presegmented from their
background. The single-color constraint allows us to fit a more comprehensive physical
model to the object. We show that this permits us to perform realistic recoloring of ob-
jects lit by colored lights, and multiple illuminants. Moreover, the model allows for more
realistic scene relighting. Recoloring results on images captured by uncalibrated cameras
demonstrate that the proposed framework obtains realistic recoloring for complex natural
images. Furthermore we use the model to transfer color between objects and show that
the results are more realistic than existing color transfer methods.

3.1 Introduction

Recoloring refers to the modification and adjustment of color appearance in images. Ob-
ject recoloring methods are used in photo montage, image color correction, visual effects
in movies, and also to facilitate the industrial design by visualizing the final color ap-
pearance of the object before production. In the current work we focus on recoloring
of single-colored objects in images of medium quality as typically encountered on the
Internet.

One of the most popular color modification applications is the recoloring of a specific

15
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Figure 3.1: The first row is an example of the reflectance decomposition achieved by
DRM [86]. Using this decomposition, object recoloring is performed by changing the
body reflectance (the second row), and illuminant recoloring is achieved by changing the
specular reflectance (the third row).

object with another color or under different lighting condition (e.g., warm-tone sunset or
cold-tone early morning). In many circumstances, it may not be possible to create the
object in the desired color or to simulate the desired lighting condition. Another case is
when an impossible scenario is desired, for example a blue apple, and here the choices
are to either render a 3D model of the scene or to simply photograph the object and then
recolor it. Recoloring should result in physically plausible scenes and should require
minimum user interaction.

Here our main objective is to develop a physics-based method to extract the underlying
reflectance model of the object and separate the geometric characteristics from the colors
of the object and the illuminant. Such physics-based model can then be used in order to
generate an image of the object in the same lighting and viewing angles, varying only the
object and/or illuminant colors. Fig 3.1 provides an example of reflectance decomposition
as well as object and illuminant recoloring.

Images describing the underlying physical properties of the scene such as reflectance,
orientation, and illumination are known as intrinsic images and were first introduced by
Barrow and Tenenbaum [11]. Intrinsic images are more appropriate for higher-level scene
analysis than the original light intensity images, because they are less prone to scene acci-
dental events such as illuminant direction and color changes. The Dichromatic Reflection
Model(DRM) [86] models the object reflectance using two chromatic coefficients: body
reflectance cb, and specular reflectance cs:

f(x) = mb(x)cb +ms(x)cs; (3.1)

where, for each pixel x, mb and ms are the intrinsic images describing the interaction
between the light and the surface as a function of geometric parameters such as incident
angle, viewing angle, and surface normal.
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In this paper, we investigate the application of the single-colored object constraint to
derive the intrinsic images of a scene. We assume a segmented mask of a single-colored
object to be given as an input. A user working in a photo-editing environment has mul-
tiple segmentation tools to quickly segment objects [63, 82]. This single-colored object
constraint greatly simplifies the estimation of intrinsic images. We show that this con-
straint allows us to further extend the DRM to model more complex scenes with multiple
illuminants which proves crucial for outdoor scenes where two illuminants (e.g, the sun
and a blue skylight) illuminate the object.

We propose a Multi-illuminant Dichromatic Reflection model (MIDR), and provide
an algorithm for solving the case of two illuminants. This algorithm is then embedded in a
framework which is capable of recoloring complex objects in the presence of shadows and
specularities formed by two unknown illuminants (e.g, colored-shadows and interreflec-
tions) and achieving physically plausible results for uncalibrated natural scene images.
As an additional application we show that our framework applied to color transfer, han-
dles complex objects with specularity and under multiple illuminant better than existing
methods.

3.2 Related work

Intrinsic images. Several methods have been proposed to compute the intrinsic images
of Eq. 3.1 based on various constraints. A common constraint is to assume Lambertian
reflectance (ms = 0). For this case, Weiss [102] shows that for an image sequence as-
suming cb to be constant over time, and using the prior that illumination images give rise
to sparse filter outputs, estimation of the intrinsic images is achievable. Tappen et al. [92]
show that by assuming that shading and reflectance boundaries do not occur at the same
location the intrinsic images can be derived from a single image.

Fewer works have concentrated on solving the case where ms 6= 0. Klinker et al. [55]
propose a method where segmentation and intrinsic image estimation are iteratively alter-
nated. Within each segment a single DRM is estimated. Hypotheses of possible illuminant
and object colors are verified for the segments and neighboring segments. This method is
further extended to include multicolored objects in [71, 72]. The main drawback of these
approaches is that they face a chicken-and-egg problem: for a good segmentation you
need approximately correct DRM parameters, and vice versa. Furthermore, these meth-
ods are only evaluated on high-quality images taken in controlled environments, typically
without complex backgrounds, which greatly enlarges the hypothesis space to be checked,
and limits the probability of correct convergence.

Several highlight/specularity removal methods have been proposed using the assump-
tion of a known illuminant cs and that the specular pixels have the same diffuse value as
their neighboring diffuse pixels. For example, Robbie Tan et al. [90] proposed an iterative
method for reflectance decomposition of textured surfaces. Tan at al. [89] improve the
previous methods by adding spacial distribution and texture constraints when available.
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Mallick et al. [68] uses partial differential equation that iteratively erodes the specular
component at each pixel.

Object recoloring. Many colorization methods have also been used for recoloring. They
mainly consist of partial hand-coloring of regions in an image or video and propagating
the colored points (known as color markers or hot-spots) to the rest of the image using
an optimization algorithm [22, 57]. Since these algorithms are based on the luminance
image they lack the additional color information which allows to separate the Lambertian
reflectance and specular reflectance, causing them to fail in the presence of specularities.

Color transfer methods extract the color characteristics from a source image and ap-
ply it to a target image. Many color transfer methods are based on pixels color distribu-
tion [77,78]. Local color transfer [37,103] and user-interactive methods [1] try to improve
the results by providing more cues. The main issue of the color transfer is that it requires
a target scene, while here we solve the case for which no information about the target
distribution is given. Furthermore, these methods are generally applied to matte surfaces
and do not consider the presence of specularities.

The recoloring embedded in professional photo-editing applications performs by cal-
culating an offset in the hue and saturation between the source and target colors. The
source image is adjusted to produce the desired color [49]. This method is fast and capable
of producing realistic results. However, as it ignores the underlying physical reflectance,
it fails in the case of colored or multiple illuminant.

Omer et al. [74] present an image speci�c color representation robust to color distor-
tion and demonstrated a recoloring example for a Lambertian surface. A more physics-
based approach, the closest method to our own, is a DRM based color transfer method [88]
in which the object (body) color is estimated and transfered between images. And realistic
results on lab conditioned high quality images of objects under single known illuminant
are presented.

Hsu et al. [52] proposed a novel method to estimate the light mixture in a single image
illuminated by two lights specified by user while the reflectance is modeled as solely
diffuse. The method achieves good results on white balance and light color change.

3.3 Object Reflectance Modeling

In this section, we describe a physics-based reflectance model for object pixels to achieve
a high quality recolored image. We begin with an overview of the DRM and then we
extend it for the Multi-illuminant case.
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3.3.1 Dichromatic Reflection Model (DRM)

According to Shafer, pixel values for a set of points on a single colored surface must lie
within a parallelogram in the RGB space, bounded by body reflectance cb and the specular
reflectance cs [86]. Validity of the DRM has been proven for a variety of inhomogeneous
dielectric materials commonly observed in natural scenes [93]. In this paper, we assume
that color changes can be modelled by a diagonal model, or Von Kries model, which has
been proven a sufficient approximation [29]. We indicate the illuminant color by l, and
L = diag(l) is its diagonal matrix representation. In this case the DRM can be written as

f = mbcb +mscs = mbcL +msl; (3.2)

where f is the RGB triple defining the color of every pixel in the object surface, mb and
ms are the intrinsic images denoting the magnitude of the body and specular reflectance
respectively (Fig 3.1). The body reflectance is a multiplication of the material reflectance
c and the illuminant according to cb = cL. We assume neutral interface reflectance,
causing the specular reflectance to have the same chromaticity as the illuminant color
cs = l. This equation can be divided into intrinsic images and the chromaticity of the
object and illuminant in matrix notation according to

f = [mb(x) ms(x)] [L c l]T = M CT; (3.3)

where x is a vector of n�2 coordinates, f is the n�3 matrix of pixels RGB values, and the
intrinsic image matrix M = [mb(x);ms(x)] is n � 2 matrix containing intrinsic images.
The color characteristics matrix C = [L c l] contains the relevant parameters for scene
recoloring. In Section 3.4 we purpose methods to estimate the model parameters.

3.3.2 Multi-illuminant Dichromatic Reflection (MIDR) model

Real-world objects often exhibit body and surface reflection under more than just one
illuminant. An example of multi-illuminant scenario is an outdoor scene with blue sky
and yellow sun, or a scene with indoor lighting combined with outdoor lighting through
a window. Conventional methods often ignore the secondary illuminants present in the
scene to simplify the modelling. Here we extend the reflectance model to the Multi-
illuminant Dichromatic Reflection model(MIDR) to account for the secondary illumi-
nants. The MIDR for n illuminants is given by

f = [M1:::Mn]
�
C1::::Cn

�T
= MCT; (3.4)

where Mn contains the intrinsic images regarding the nth illuminant and Cn is the corre-
sponding color charactristics matrix. Note that the material reflectance c remains constant
for all intrinsic color matrices. Due to the high complexity of the model, in Section 3.5
we solve for a simplified case of the MIDR model.

The dichromatic reflection model has also been extended to include ambient lighting.
Originally Shafer [86] modelled ambient light as a constant offset over the scene. Later
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work improved the modelling [70] and showed that the ambient term results in an object
color dependent offset. For the matter of simplification, in this work we assume the
ambient illuminant to be negligible.

3.4 Dichromatic Reflection Model estimation

Since the introduction of the DRM multiple approaches to solve this model have been
proposed [55, 68, 72, 90]. In this paper, we are interested in solving the DRM for the
application of recoloring single colored objects. Users interested in object recoloring
work within a photo-editing environment, allowing them to quickly segment the object of
interest. This single-colored object constraint allows us to fit a more realistic illumination
model, allowing the object to be lit by multiple illuminants.

A successful object recoloring algorithm has to face several challenges:

� Uncalibrated images: Photo-editing software users typically work with uncalibrated,
compressed images of medium quality and unknown settings. Most previous meth-
ods experiment on high quality calibrated images taken in lab conditions [55, 72],
and known illumination [68,90]. To handle these lower quality images we propose
a robust estimator(Section3.4.1).

� Complex color distribution: several existing approaches estimate the illuminant by
fitting L and T-shapes to the color distribution [55, 72]. These methods are based
on the hidden assumption that the mb is assumed constant while ms is changing.
In real-world images we often face much more complex distribution which rather
form a plane.To tackle this problem we use the illuminant estimation described in
Section 3.4.2.

� Complex lighting conditions: the objects in real-world images are often lit by mul-
tiple illuminants, colored shadows, and interreflections. Ignoring these lighting
conditions would make the resulting object recoloring look artificial. Therefore, in
Section 3.5, we propose an iterative algorithm to solve for two illuminants.

3.4.1 Robust Body Reflectance Estimation (RBRE).

For the task of body reflectance color (cb) estimation on medium quality images we pro-
pose the Robust Body Reflectance Estimation (RBRE). Since object pixel values of the
non-specular part (ms = 0) form a line passing through the origin, fitting a line through
these pixels allows us to compute cb = cL. The fitting error of an object pixel x to a line
given by the normalized vector ĉb is

e (x) =



f (x)�

�
(f (x))T ĉb

�
ĉb




 : (3.5)
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Although the least squares (LS) orientation estimation would perform well in the case
that all pixels belong to the same orientation, in our case in which there are two main
orientations (cb and l), the LS estimation will mix the two orientations and give a wrong
result. In order to avoid that, a robust estimator [98] is constructed:

e =

Z
Ω

�(e(x))dx: (3.6)

In the current work we apply the Gaussian error norm:

�m(e) = 1� exp

�
� e2

2m2

�
: (3.7)

In a robust estimator, large deviations from the model are considered as outliers, and
therefore, they are not taken into account very heavily. While LS estimation is very
sensitive to outliers. In our application large deviations from the model are mainly due
to the mixing of two different directions, cbL and l. The error, Equation 3.6, can now be
rewritten as (we will omit the spatial arguments):

e =

Z
Ω

�m
�q

fTf � ĉT
b (ffT)ĉb

�
dx: (3.8)

A Lagrange multiplier is then used for minimization subject to the constraint ĉb
Tĉb = 1,

d

dĉb

�
�
�
1� ĉb

Tĉb

�
+ e
�

= 0: (3.9)

Using Equation 3.7 as the error function leads to

�(ĉb)ĉb = �ĉb; (3.10)

where � is defined according to

�(ĉb) =

Z
Ω

ffTGm

�q
fTf � ĉb

T(ffT)ĉb

�
dx: (3.11)

The main difference with the ordinary LS estimator is that here the matrix � is depen-
dent on ĉb. Eq 3.10 can be solved by a �xed point iteration scheme. We start iteration
with the initial estimate ĉb

0 given by the LS. Let ĉb
i be the orientation vector estimate

after i iterations. The estimate is updated as the eigenvector ĉb
i+1 of the matrix �(ĉb

i)
corresponding to the largest eigenvalue, i.e. we solve

�(ĉb
i)ĉb

i+1 = �ĉb
i+1: (3.12)

Again, points far away from the line direction ĉb are considered outliers, and therefore,
do not corrupt the estimation. Iterative application of Equation 3.12 yields the estimate
of the body reflection, ĉb. The original estimation made by ordinary LS is refined at each
iteration by changing the weights leading the method to converge to a robust, and in this
case a much better, estimation of the ĉb.
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Figure 3.2: An example of intrinsic images recovered for an object. (a) Original im-
age; Intrinsic images: (b) Body reflectance and (C) Specular reflectance; (d) An example
recoloring result.

3.4.2 Con�ned illuminants estimation (CIE)

Having the body reflectance color, there exists a set of possible illuminants which could
generate the color distribution of the object. Many of these illuminants are unrealistic. It is
shown that the chromaticity of common light sources closely follows the Planckian locus
of black-body radiators [33]. We propose to use this constraint to estimate the illuminant.

We sample Planckian colors (T � 1000 ∼ 40000) which vary from orange to yellow
to white to blue, resulting in a set of illuminants fl1; :::; lmg.We define the reconstruction
error of the intrinsic images M and intrinsic color characteristics C by

Er (f ;M;C) =
�
f �MCT

�T �
f �MCT

�
: (3.13)

Then, we perform an exhaustive search to find the best matching Planckian light. In other
words, we solve Equation 3.14 by choosing the Planckian light, which minimizes the
reconstruction error.

l̂ = arg min
l∈{l1;:::;lm}

Er (f ;M; [cL l]) : (3.14)

In the next section we will outline the computation of the intrinsic images M given C,
which are needed for the computation of the reconstruction error.

3.4.3 Intrinsic images

The estimation of the intrinsic images, given an estimation of Ĉ, is based on the convex
optimization problem:

minimize
M

Er

�
f ;M; Ĉ

�
subject to mb (x) � 0;ms (x) � 0:

(3.15)

Fig 3.2 demonstrates an example of intrinsic images recovered for an object. Note that
the specular reflectance is correctly separated from the body reflectance.



3.5. Two-illuminant MIDR model estimation 23

3.5 Two-illuminant MIDR model estimation

Many real-world objects are lit by multiple illuminants. Here we propose an algorithm to
estimate the case of two illuminants. Since the problem is highly underconstraint, we need
further assumptions: Firstly, we assume one illuminant to be Planckian and demonstrate
specularities; Secondly, specularities of the secondary illuminant to be negligible. We use
this as an additional constraint (m2

s(x) = 0). Note that we make no assumption on the
chromaticity of the secondary illuminant. Hence the model is given by

f = m1
bc L1 +m1

sl
1 +m2

bc L2: (3.16)

An iterative algorithm to solve this MIDR model is given in Algorithm 1. First we will
assume pixels to be illuminated by only one of the two illuminants m1

b(x)m2
b(x) = 0 and

m1
s(x)m2

b(x) = 0. In the final Step we remove this restriction to allow for pixels being
lit by both illuminants at the same time. Here, we also use the diag-function to convert
vectors to diagonal matrices and vice versa. First an initial estimation is made based
on all pixels on the object (Steps 1-4) which gives us the initial values for the dominant
illuminant and object color. Based on this model pixels which could be described by
this model with affordable error are separated from the rest (Step 5) which are indicated
by the Mask. At each iteration the estimations and seperation mask are refined. We
estimate a Lambertian reflectance model for the pixels outside the Mask (Steps 10 and
11). Iteratively the illuminant color estimations are refined until convergence (Step 13).
The final model estimation is then given by the object material reflectance color c, the
two illuminant colors l1 and l2, and the corresponding intrinsic images m1

b , m
2
b , and ms.

Although the algorithm gives good estimates for c, l1 and l2, the constraint that pixels
can only be illuminated by a single illuminant results in artificial edges in the m1

b and m2
b

estimates. In reality there are regions where both lights illuminate the object. To solve
this, Step 14 finalizes the algorithm by keeping c, l1 and l2 and m1

s constant in Eq 3.16,
and estimates m1

b and m2
b constraining them to be positive.

In Fig 3.3 we show the results of the algorithm on an outdoor car image. The car
is illuminated by a white outside lighting as well as a greenish light caused by the light
coming from the grass field. The mask is given for several iterations of the algorithm.
The algorithm correctly separates the two illuminants. In the last row the intrinsic images
show the estimates of the body and specular reflection.

3.6 Experimental results

In the experimental section we analyze our proposed algorithm for MIDR estimation on
synthetic images. Additionally we show some results on challenging real-world images.
Here we assume images are in sRGB format; and do gamma correction. Further applica-
tions of the model are discussed in the end of the section.
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Algorithm 1 Two-illuminant MIDR model estimation
1: Consider the whole object segment as Mask
2: Estimate cb using RBRE for the pixels x 2Mask
3: Estimate the Planckian illuminant l1 using CIE method
4: c diag

�
cb L1

−1
�

5: IniciateMask to only include the pixels x for whichEr(f(x);M1;C1) < Threshold
6: repeat
7: Estimate c1

b using RBRE for the pixels x 2Mask
8: Estimate the Planckian illuminant l1 using CIE method
9: c diag

�
c1

b L1
−1
�

10: Estimate c2
b using RBRE for the object pixels f(x) =2Mask

11: L2  diag(c2
b)=diag(c) (using the c from Step 9).

12: Update Mask to only include the pixels x for which Er(f(x);M1;C1) <
Er(f(x);M2;C2)

13: until L1 and L2 estimates converge
14: Recalculate the mb

1 and mb
2 using the previous estimates for c; l1; l2 and ms

1.

Please refer to the supplementary video for more examples of the results in real-world
images.

3.6.1 Synthetic Images

Here we test our algorithm on synthetic images which satisfy the assumptions, namely
they are lit by two lights, one of which is Planckian. The groundtruth intrinsic imagesm1

b ,
m2
b and m1

s are given (Fig 3.4). With these we generate a set of 60 test images by varying
the illuminants and the object color. Some examples are given in Fig 3.4. The soundness
of our algorithm has been verified on synthetic test images on which the intrinsic image
estimation performs with an error close to zero even though a large part of the object is lit
by both lights simultaneously.

Since we want to apply our method to standard Internet images, we further investi-
gated its robustness to both Gaussian noise and JPEG compression (Fig 3.6). The com-
parison is made using the Angular Error (Ea) in radians between the ground-truth (ĉgt)
and estimated (ĉest) colors as defined below,

Ea = arccos(ĉgt � ĉest): (3.17)

As can be seen the algorithm is sensitive to Gaussian noise but relatively robust to
JPEG compression (angular error of all estimations for 60% compression is under 0.07
radian). To better interpret the results in the graphs we also provide the reconstruction
results on one synthetic object for several noise and JPEG compression settings in Fig 3.5.
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Figure 3.3: An example of the MIDR algorithm performance: (a) Original image; (b)
Object mask as the initial Mask for the illuminant l1; (c) The Mask after 1st iteration; (d)
The Mask at 3rd (final) iteration; (e) estimated m1

b ; (f) estimated m2
b (the interreflection

area,l2, has been correctly detected); (g) estimated m1
s; (h) An example recoloring (the

interreflection is preserved).

Figure 3.4: The first four images are examples of the synthetic images. The last three
images are the m1

b , m
2
b ,and m1

s ground truth.

Figure 3.5: Effect of noise and JPEG compression: (a) and (c) examples of applying
noise by sigma 4.0 and 9.0; (b) and (d) their corresponding reconstructions; (e) and (g)
examples of applying JPEG compressions of 20% and 80%; (f) and (h) their corresponding
reconstructions.

3.6.2 Real-world Images

Fig 3.8 compares MIDR-based recoloring with the one done by hue-saturation shift method.
The secondary illuminant (greenish interreflection) is correctly preserved by MIDR while
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Figure 3.6: Median angular error (in radian) as a function of: Gaussian noise sigma (left)
and JPEG compression (right) for cb, l1 and l2 estimates.

wrongfully changed to blue by the professional photo-editor. In Fig 3.9 the MIDR and
DRM has been compared for the accuracy of their recoloring results. The secondary illu-
minant (bluish shadow) is well preserved by MIDR while lost in the case of DRM. Note
that here we only modeled two illuminants and therefore the third illuminant (the small
brownish interreflection on the back of the car) is lost.

Note that theoretically the method fails to correctly make the intrinsic image decom-
position in the case object and illuminant colors are collinear. Also having no Planckian
illuminant confuses the CIE estimator. The latter is shown in the example of Fig 3.7.

Figure 3.7: An example failure case: Here the planckian light assumption is violated by
having a purple light. Since purple is not Planckian, the method wrongfully picked white
as the illuminant and purple as the object color. The recoloring shows that even though
the object itself looks realistic it does not match the scene illumination.

3.6.3 Other Applications of MIDR

Here we show two other interesting applications for the proposed framework, namely
Physics-based Color Transfer and Photo Fusion.

Physics-based Color Transfer. A popular photo-editing task is transferring the color
characteristics of an image to another. Even though color transfer methods are often
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Figure 3.8: Comparing the MIDR method performance with a professional photo-editor:
(a) Original image (containing complex interreflection); (b) Recoloring result by MIDR
(the secondary illuminant,green interreflection, has been preserved); (c) Recoloring result
using the hue-saturation shift method (the green interreflection is wrongfully changed to
blue).

Figure 3.9: Comparing the methods based on MIDR and DRM: (a) Original image; (b)
Recoloring result by MIDR (zoomed area: blue shadows have been preserved); (c) Recol-
oring result using DRM (missed the colored-shadows).

successful in transferring the atmosphere of one image onto the other, they make un-
realistic assumptions (e.g, Gaussian distribution, Lambertian objects). These shortcom-
ings become apparent when applied to the object color transfer. Fig 3.10 compares the
physics-based color transfer performed using MIDR and DRM models with the methods
from [77, 78]. We apply the color transfer only to the presegmented objects. After infer-
ring the object color and two illuminants, MIDR successfully transfers the object color.
Note that the methods of [77, 78] mixing the illuminants and object colors resulted in un-
realistic images. Furthermore, the resulting objects exhibit different colors than the target
objects.

Figure 3.10: Comparing the Color Transfer results by DRM, and [77, 78]. (a) and (f)
Original images;(b) and (g) MIDR results; (c) and (h) DRM results; (d) and (i) results
by [78]; (e) and (j) results by [77] . Note that the secondary illuminants (interreflections)
on the side of the car and the plane wing are lost in (c) and (h), wrongfully transformed in
(d), (e),(i), and (j), while being preserved in (b) and (g).
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Figure 3.11: An example of photo montage: The interreflection of the green grass
(zoomed area) in the original image is re-lighted by the red color of the carpet to match
the target scene.

Photo Fusion. Fig 3.11 is an interesting example made possible by our method. The car
in Fig 3.3 is copied into another scene. Here the object is recolored using the estimated
intrinsic images. But to match the target scene, the interreflection caused by the grass
is re-illuminated using the color of the carpet simply by changing the second illuminant
color to the red of the carpet resulting in a more realistic scene where the red carpet is
reflected in the side of the car.

3.7 Conclusion and future work

We have presented a method for recoloring single-colored objects based on intrinsic image
estimation. The single-color constraint allows us to fit more complex reflectance models
which better describe real-world images. Whereas most existing recoloring methods as-
sume a white illuminant, we presented a method to recolor objects taken under colored
illuminants, and the more complex case of multiple illuminants. Results on synthetic
images demonstrate that our algorithm correctly estimates the intrinsic parameters of the
scenes. Further we show that the proposed method is able to achieve physically realis-
tic recoloring results in challenging real-world images. In addition we present how our
method improves other photo-editing applications like Color Transfer and Photo Fusion.

As future research, we will investigate further extensions of the dichromatic reflection
model, such as the bi-illuminant reflection model recently proposed by Maxwell [70].
This model allows for the modeling of ambient light which we believe could improve the
quality of the recoloring for the low luminance regions of the image.



Chapter 4

Multi-Illuminant Estimation with
Conditional Random Fields

Most existing color constancy algorithms assume uniform illumination. However, in real-
world scenes, this is not often the case. Thus, we propose a novel framework for estimating
the colors of multiple illuminants and their spatial distribution in the scene. We formulate
this problem as an energy minimization task within a Conditional Random Field over a
grid of local illuminant estimates. To quantitatively evaluate the proposed method, we cre-
ated a novel dataset of two-dominant-illuminants images comprised of laboratory, indoor
and outdoor scenes. Unlike prior work, our database includes accurate pixelwise ground
truth illuminant information. The performance of the method is evaluated on multiple
datasets. Experimental results show that our framework clearly outperforms single illumi-
nant estimators, as well as a recently proposed multi-illuminant estimation approach.

4.1 Introduction

The vast majority of existing color constancy algorithms are based on the assumption that
there exists a single illuminant in the scene. Many images, however, exhibit a mixture
of illuminants with distinct chromaticities. Consider for example indoor scenes which
are lit by both indoor light sources and outdoor light coming through the windows. Or
an outdoor scene, where parts of the image are in direct sunlight, while others are in
shadow which is illuminanted by the blue skylight. Another example where single illu-
minant white balancing is known to give unsatisfactory results, is in pictures which are
taken using a camera-flash. Illuminant estimation methods that assume uniform illumina-
tion cannot accurately recover the illuminant chromaticity and its variations across such
scenes. Examples of multi-illuminant pictures, and the color-coded pixel-wise influence
of each illuminant, can be seen in Fig. 4.1.

29
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Figure 4.1: Sample images from our database. The bottom row shows the relative influ-
ence of the two incident illuminants color-coded in blue and red.

Extending existing color constancy methods to successfully compute multi-illuminant
estimates is a challenging problem. Consider two of the most popular branches of exist-
ing color constancy approaches: statistics-based methods and physics-based ones. The
success of statistics-based techniques [16,31, 47, 96] depends on the size of the statistical
sample. Applying these methods to small image regions introduces inaccuracies [13] and
is unlikely to yield stable results. Physics based methods either assume purely diffuse
scenes, e.g. [15, 41] which is not often applicable in real scenes, or exploit the presence
of specularities in an image, e.g [91], which occur very sparsely in an image. As a result,
a direct extension of global (image-wide) color constancy methods to region-based ones
is likely insufficient. Spatial constraints between the estimates will be required to obtain
acceptable results.

We propose a multiple illuminant estimation method which first extracts local esti-
mates. We overcome the inherent instability of local measurements by globally solving
the illuminant labelling problem by means of a Conditional Random Field (CRF). We
prove that several existing approaches, namely statistics- and physics-based methods, can
be written in the form of a CRF. The CRF formulation provides a natural way to: a) com-
bine various approaches into a single multi-illuminant estimate and b) incorporate spatial
information about the illuminant distribution. We show that representing these methods
by such a model allows us to robustly extend them to multi-illuminant estimation. Fur-
thermore, we created a new database for multi-illuminant color constancy with highly
accurate, computationally extracted (instead of manually annotated) pixelwise ground
truth. Our database contains: a) laboratory images, for evaluation under close-to-ideal
conditions and b) real-world multi-illuminant scenes, which more closely approximate
real-world scenarios.
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In summary, the main contributions of this paper are:

� The formulation of multi-illuminant estimation as a CRF model.

� The expression of existing bottom-up approaches to color constancy as an energy
minimization problem.

� The creation of a new dataset for multi-illuminant estimation.

� An extensive experimental evaluation which shows that the proposed method ad-
dresses the intrinsic challenges in multi-illuminant scenes, i.e. the estimation of the
illuminant colors and their spatial distribution, with superior accuracy compared to
prior work.

The paper is organized as follows. In Sec. 4.2, we present related work in color
constancy, and in particular methods that have been used as a foundation for the proposed
approach. The theoretical foundation of the proposed framework is introduced in Sec. 4.3.
Unary and pairwise potentials for the CRF are derived in Sec. 4.4 and Sec. 4.5, respec-
tively. In Sec. 4.6, we outline the overall algorithm for color constancy under non-uniform
illumination. Section 5.4 contains a description of the new multi-illuminant dataset, and a
derivation of the ground truth extraction. Experimental results are presented and discussed
in Sec. 4.8. We summarize the findings of this work in Sec. 4.9. Additional mathematical
details are presented in the appendix.

4.2 Related Work

4.2.1 Single-illuminant Estimation

Stastistics based color constancy methods derive the estimate of the illuminant color from
assumptions on the statistics of reflectances in the world. The grey-world algorithm [16]
is the most well-known method of this family, and computes the illuminant of a scene
by assuming that the average scene reflectance is grey. Another popular method is the
MAX-RGB algorithm which computes the illuminant in a scene from the maximum re-
sponses in the RGB channels [59]. It was noted by Gershon et al. [40] that it is often
beneficial to assume that the average of a scene is equal to the average reflectance of a
database. Finlayson and Trezzi [31] showed that both the grey-world and the MAX-RGB
algorithms are instantiations of the more general shades-of-grey method which estimates
the illuminant of images by computing the Minkowski norm of the pixels in a scene. Van
de Weijer et al. [96] further extended this theory to also include image derivatives. Fi-
nally, Gijsenij et al. [47] showed that weighting edges according to their physical cause
(shadow, specularity, or material transition) can further improve results.

In comparison physics-based methods exploit the interaction between light and ma-
terial to infer the illuminant color in an image. Some methods e.g. [15, 41] assume the
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scene is entirely composed of diffuse surfaces, while others e.g. [61, 91] exploit the pres-
ence of specular highlights. These latter methods are based on the dichromatic reflection
model [87] which models the reflected light as a combination of diffuse and specular
reflectance. Based on the assumption of neutral interface reflection, the color of the spec-
ular reflectance is the same as the illuminant color and therefore an important cue for
color constancy (see, e.g., [87, 91]).

Gamut based methods exploit the fact that only a limited set of RGB values can be
observed under a known canonical illuminant. This set of RGB values can be represented
by a canonical convex hull in RGB space [34]. Thus, feasible illuminants can be estimated
by computing all possible mappings from a single image’s convex hull to the canonical
convex hull. The scene illuminant is heuristically selected from the feasible illuminants.
This method was further extended by Finlayson et al. [26] by constraining the possible
illuminants to be on the Planckian locus. Gijsenij et al. [44] extended this theory to
higher-order derivative structures of the images.

For a more complete overview of color constancy, see e.g. the recent overview arti-
cles [36, 46, 64].

4.2.2 Multi-illuminant Estimation

There are illuminant estimation methods explicitly designed to handle varying illumi-
nation. In 1997, Barnard et al. [5] were the first ones to develop a methodology that
automatically detects non-uniform illumination. They then proceeded with removing the
illumination variation, at which point they could apply any gamut-based color constancy
method. Though this method was pioneering at that time, its smooth illumination as-
sumption restricts its applicability on real-world images. Ebner [23] followed a different
approach of applying a diffusion-based technique on pixel intensities. However, he too
assumes a smoothly varying illumination, which together with his underlying theory of
regional grey-world can result in inaccuracies, especially in colorful scenes [51]. More
recently, Kawakami et al. [54] proposed a physics-based method specifically designed to
handle illumination variations between shadowed and non-shadowed regions in outdoor
scenes. Due to its explicit assumption of hard shadows and sky-light/sunlight combina-
tion (or even more general Planckian illuminants), this method does not generalize well
on arbitrary images. Gijsenij et al. [45] recently proposed an algorithm for scenes with
two light sources . The reported experimental results are promising. However, it is not
clear how to extend this methodology for non-local illuminant cues. When the chromatic-
ity of the two incident illuminants is known, Hsu et al. [52] proposed an algorithm for
high quality white-balanced images. However, their assumption of two known illumi-
nants limits the applicability of the method to close-to laboratory conditions. Thus, by
construction, none of the existing multi-illuminant estimation methods can handle arbi-
trary images and as such, none of them has been extensively tested on a large variety of
real-world images.
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4.3 Methodology

As discussed in the introduction, the single illuminant assumption, which is the basis of
many existing color constancy algorithms, is often unrealistic. Quite frequently multiple
illuminants are present in a scene. In such cases, the spatial distribution of the illumination
conditions becomes very important. We propose to solve the multiple illuminant estima-
tion problem by using a Conditional Random Field (CRF) framework. The nodes in the
graph represent patches, the labels correspond to illuminant colors, and the edges connect
neighboring patches. In such a representation local illuminant estimation becomes equiv-
alent to finding the maximum a posteriori (MAP) labelling of the CRF. Such a framework
facilitates both the local computation of illuminant color, as well as the incorporation of
spatial information about the distribution of illuminants.

More specifically, a conditional random field can be viewed as an undirected graph
model, globally conditioned on observations. Let G = (V ; E) be a graph where V =
f1; 2; :::; Ng is the set of nodes representing the N patches and E is the set of edges
connecting neighboring patches. We define a discrete random field X over the graph G.
Each node i 2 V is associated with a random variable Xi 2 X , which can take on a value
xi from the illuminant-color label setL = fl1; l2; :::; lkg. At each node i 2 V we also have
a local observation Fi, which is the set of (R;G;B) values of all the pixels belonging to
the corresponding patch together with their spatial distribution. The probability P (X =
x̆jF) of a particular labelling x̆ = fx1;x2; :::;xNg conditioned on the observations F of
the entire image will be denoted as P (x̆jF). Then according to the Hammersley-Clifford
theorem

P (x̆jF) / exp

 
�
X
c∈C

�c(x̆cjF)

!
; (4.1)

where �c(x̆cjF) are potential functions defined over the observations F and the variables
x̆c = fxi; i 2 cg belonging to clique c. A clique c is a set of random variables Xc which
are conditionally dependent on each other and C is the set of all cliques in G. Finding the
labelling x̆∗ with the maximum a posteriori (MAP) probability x̆∗ is then equal to

x̆∗ = arg max
x̆∈L

P (x̆ jF ) = arg min
x̆∈L

E (x̆jF) (4.2)

where L is the set of all possible labellings on X and E(x̆jF) is the corresponding Gibbs
energy defined as

E (x̆jF) =
X
c∈C

�c(x̆cjF) (4.3)

Hence, computing the MAP labelling is equal to finding the labelling which mini-
mizes the energy E(x̆jF). In our case, this means that obtaining the MAP assignment of
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illuminants to patches can be accomplished by finding that assignment which minimizes
the corresponding Gibbs energy. Considering only up to pairwise clique potentials, the
energy function becomes:

E (x̆jF) =
X
i∈V

λ (xijFi) + �p
X

(i;j)∈E

 ((xi;xj)j(Fi;Fj)) (4.4)

where λ denotes the unary potential and  the pairwise potential. The unary potentials λ
penalize the discrepancy between the observations, i.e. the colors of the pixels in a patch
Fi, and the solution, i.e. the illuminant-color label assigned to the patch. The pairwise
potentials  provide a definition of smoothness by penalizing changes in the labels of
neighboring patches. Then the constant �p > 0 controls the balance between smoothness
and data fit. In the next section we propose various unary potentials which allow us to
represent several well-known illumination estimation algorithms as CRFs.

4.4 Unary Potentials

We show that by choosing a particular unary potential we can express several existing
color constancy methods as an error minimization problem. When we use a pairwise
potential function that enforces a single label for all patches, we obtain the same result as
traditional single illuminant estimation methods. Reducing the influence of the pairwise
potential results in multi-illuminant estimates for the scene.

4.4.1 Statistics-based Color Constancy

There exists a family of color constancy methods which is based on the statistics of re-
flectances in the world. Examples of this group of methods are grey-world, grey-edge and
max-RGB algorithm [16,31,96]. We show that several of these algorithms can be written
as an error minimization problem.

We denote f j = (f jR; f
j
G; f

j
B)T to be the j-th pixel in an image. We assume that an

image is segmented into a number of patches P = fp1; p2; :::; pNg where pi contains the
indices to the pixels in patch i. From the set of observations Fi in a patch we can obtain
an estimate of the local illuminant color i(Fi), which, for conciseness, we will denote as
ii. If the estimate is computed with the grey-world algorithm, then the local illuminant
color is determined by the average color in the patch, as defined by

ii =

P
j∈pi

f j


P
j∈pi

f j



 ; (4.5)

where k:k is the L2 norm which is applied to ensure that ii has unit length. Illuminant
estimation methods are generally evaluated based on the angular error, which for two
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normalized illuminants (typically the estimated and true illuminant) is given by

'(i1; i2) = arccos
�
(i1)Ti2

�
: (4.6)

We now define the statistics-based unary potential λs, which defines the cost for patch
i to take on illuminant xi as

λs(xijFi) = wi��
�
'(ii;xi)

�
(4.7)

where wi is a scalar weight per patch, and � is the error norm. For example, choosing
�(e) = e2 yields the least squares error. The influence of outliers on the unary potential
can be reduced by choosing a robust error norm. We discuss several choices of error
norms and weights below.

Choosing as an error norm of �(e) = 1 � cos(e) and for the weights per patch the
summed intensity of its patches wi = k

P
j∈pi f jk, we obtain the following unary potential

λs(xijFi) =



X
j∈pi

f j



�1� cos

�
'(ii;xi)

��
: (4.8)

When the illuminant given by the label, xi, and the illuminant derived directly from the
observations are equal this unary potential is zero. When they are maximally different this
unary potential is equal to the summed intensity of the patch. In Appendix A we include a
proof showing that this particular unary potential leads to the standard grey-world solution
when we enforce a single illuminant label for all patches in Eq. 4.4.

We can also use the more general class of statistics based illuminant estimation [96],
given by

in;mi � m

vuutX
j∈pi

����@nf j�GW

@xn

����m ; (4.9)

where n is the differentiation power, and m is the Minkowski norm. �GW denotes the
standard deviation of a Gaussian smoothing operator that is applied to the image prior to
the differentiation. Depending on the choice of parameters m and n the estimate is equal
to the grey-world, shades of grey, or grey-edge algorithm. As the unary potential for the
general case we propose

λs(xijFi) =







 m

vuutX
j∈pi

����@nf j�GW

@xn

����m







�

1� cos
�
'(xi; ii)

��
: (4.10)

For n = 1 and m = 1, minimizing Eq. 4.4 with this unary potential results in the standard
grey-edge algorithm [96].

We proceed by proposing several adaptations to the unary potential to adapt it for
multi-illuminant estimation. If we increase the influence of the pairwise potential, by
choosing a large �p in Eq. 4.4, we can enforce the whole image to have the same label,
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and therefore the same estimate for the illuminant. There are several choices for error
norm and patch weight which in this case lead to well-known color constancy algorithms.
If we look at the other extreme where we pick �p = 0 every patch would take on the
label of the illuminant which is closest (in an angular error sense) to its local estimate.
However, the local estimates of the statistical color constancy algorithms are very noisy
and in general this will lead to unsatisfying results. This can be countered by choosing an
intermediate �p (by means of cross validation), that enforces multiple neighboring patches
to take on the same label, and thereby reducing the noise of the statistical estimate. We
will look at two additional adaptations to the unary potential which improve robustness
with respect to noisy statistical measurements.

Robust error norm: To reduce the influence of outliers on the energy, we found the
usage of a robust error norm indispensable. Throughout the paper we use the following
error norm

��r(e) = 1� exp
�
� e2

2�2
r

�
: (4.11)

Its main effect is that outliers have less influence on the overall energy. Using robust error
norms in a CRF formulation has been found beneficial before.

Uneven color balance: Statistical methods are known to be biased towards large seg-
ments of the same color. To counter this we propose the following adaptation:

λs(xijFi) =
�
wi
�q
��r (' (ii;xi)) : (4.12)

The parameter q allows to dampen the results of uneven color balance in the image. Con-
sider the standard grey-world assumption (p = 1 and n = 0) if we then choose q = 0, the
unary potential is equal to

λs(xijFi) =
�

1� cos
�
'(xi; ii)

�
;
�
: (4.13)

which is one of the more popular implementation of grey-world where instead of each
pixel, one value for each patch is chosen. This was also proposed by Barnard et al. [6] to
counter the dominance of large uniformly colored regions in images on the outcome. In
the results we consider q 2

�
0; 1

2
; 1
	

.

4.4.2 Physics-based Color Constancy

Another family of color constancy methods is based on the physics of light and surface
interactions [15, 41, 61, 91]. In this work we focus on the approach by Tan et al. [91]
because it is very competitive performance-wise and is applicable to a wider family of
surfaces that exhibit a mixture of diffuse and specular reflectance. More specifically, we
follow the extension by Riess et al. [79] which can be applied to local regions and even
in patches that are just moderately specular.

Specularity based approaches follow the neutral interface assumption which states that
the color of pure specularities is the color of the illuminant. In general, these approaches
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are comprised of two steps: a specularity detection step where possible regions which
contain specularities are identified, and an illuminant estimation step based on the color
of the detected specular regions.

The method proposed by Tan et al. [91] exploits the inverse-intensity chromaticity
(IIC) space. IIC is a two-dimensional space where the horizontal axis represents the
inverse intensity 1=kf jk1 and the vertical axis is given by a pixel’s chromaticity. Thus, a
pixel f j = (f jR; f

j
G; f

j
B)T is mapped to

f jC !

 
1

kf jk1

;
f jC
kf jk1

!
: (4.14)

where k�k1 is the L1-norm and C 2 R;G;B.

The advantage of IIC is that the relationship between image chromaticity and illumi-
nation chromaticity becomes linear. According to [91], one generates per color channel
a scatterplot of the pixels in inverse-intensity chromaticity space. In IIC space purely dif-
fuse pixels of the same material and albedo form a horizontal cluster. Pixels of the same
material and albedo but with a specular component form a triangular-shaped cluster. The
base of the triangle intersects the diffuse horizontal cluster. The tip of the triangle inter-
sects the vertical axis. This point of intersection on the vertical axis is the corresponding
illuminant chromaticity component ijC .

Tan et al. [91] identify potential specular regions by thresholding on brightness and
saturation values, an approach that was originally proposed by Lehmann and Palm [62].
The two thresholding parameters for this method, tb and ts, were set to 0:2 and 0:8, respec-
tively. We then average the intensities of a specular pixel. A patch is considered specular
if the sum of specular intensities ssp exceeds a threshold tsp. The specularity-based il-
luminant estimate is only employed if a sufficiently large percentage of pixels within a
patch are detected as specular. Thus, the detection of specular regions is independent of
the local patches over which the illuminant color is estimated.

The actual estimation is conducted in two steps [79]. First, a set of noisy estimates is
obtained from rectangular subregions within one patch. The pixels of this region are pro-
jected in one IIC space per color channel. If the pixels do not satisfy two straightforward
shape criteria (i.e., do not exhibit an elongated shape towards the y-axis), no estimate is
obtained from this grid cell [79]. The intercept between the y-axis and the eigenvector that
is associated to the largest eigenvalue of the covariance ellipse determines the illuminant
color estimate icj for the j-th subregion in the c-th color channel.

In the second step, all estimates per patch are collected in per-color channel histograms
HR

IIC,HG
IIC,HB

IIC. and the final estimate is determined as

ip = argmax
ic
Hc

IIC(ic) 8c 2 fR;G;Bg ; (4.15)

whereHc
IIC(ic) denotes the count for ic in Hc

IIC. For further details, please refer to [79].
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Our physics-based unary potential is then defined as:

λp (xijFi) = wi��r (' (ii;xi)) (4.16)

where ��r (�) is the robust error norm introduced in Eq. 4.11. The weight wi is a binary
weight, defined on the specularity threshold tsp as

w =

�
1 if ssp � tsp
0 otherwise : (4.17)

4.4.3 Combining Statistical and Physics-based Illuminant Estimation

Both the statistical and physics-based illuminant estimation can be incorporated in a CRF
framework using different unary potentials. An advantage of defining each method as
an energy minimization problem is that there is a natural way for combining them into a
single color constancy method by defining the local potential as

λ (xijFi) = (1� �p)λs (xijFi) + �pλ
p (xijFi) : (4.18)

where �p is weighting the importance of the physics-based unary potential versus the
statistical-based unary potential. Minimizing this energy will combine information from
statistical cues as well as specularities into the final local illuminant estimate.

4.4.4 Constraint Illuminant Estimation

Constraint illuminant estimation methods have been popular because they allow to in-
corporate prior knowledge about the illuminants. Several methods have been proposed
which constrain the illuminant set to be on the Planckian locus [26]. Incorporating such
constraints is straightforward in our framework. The constraints can be enforced on the
illuminant label set L. In this paper, we use a simple constraint where we exclude illu-
minants which are too saturated, i.e., f8ij' (li; iw) < λdg where iw = 1√

3
(1; 1; 1)T is the

white illuminant.

As a second constraint on the illuminants, we use the fact that in the majority of the
multi-illuminant scenes only two illuminants are present. Given a pair of labels li and lj
the optimal labeling x̆∗(i; j) for the observation F is determined with:

x̆∗(i; j) = arg min
x̆∈Lij

E (x̆jF) : (4.19)

where Lij is the set of all possible labellings on X restricting the illuminants to li and lj .
The two illuminant constrain is enforced by finding those two illuminants which minimize
the energy function. Thus, the selected illuminants are computed with:

L̂ = arg min
(li;lj)∈L2

(E(x̆∗(i; j)jF)) (4.20)

Note that this also allows for single illuminant estimation in the case that i = j.
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4.5 Pairwise Potential

The purpose of the pairwise potential function,  ((xi;xj)j(Fi;Fj)) is to ensure, when
appropriate, the smooth transition of labels in neighboring vertices. Similar to Boykov
et al. [14] we consider pairwise potentials that resemble a well. In MRFs, especially as
described in [14],  (xi;xj) = u(1 � �ij), where u is the well ”depth” and the function
(1 � �ij) controls the shape of the well. In [14], u is defined as a constant and the unit
impulse function, �ij = �(xi � xj), determines the well-shape.

In a CRF (see also [56]) the ”depth” depends on the observations h(Fi;Fj). Thus, our
pairwise potential function has the form:

 ((xi;xj)j(Fi;Fj)) = h(Fi;Fj)(1� �ij) (4.21)

We also propose the use of a smoother well function which permits small deviations in
illuminant colors between neighboring patches. Thus, our well is defined as:

(1� �ij) = (1� cos�(' (xi;xj))) (4.22)

where � controls the sharpness of the impulse-like function.

If two neighboring labels are distinct, then there are two possibilities. It can be that the
two patches, though spatially close, are illuminated by distinct illuminants, in which case,
we should allow for a transition in labels and not significantly penalize the difference in
their values. It may, however, be the case that an erroneous label was assigned and the two
patches are illuminated by the same illuminant. The depth function h(Fi;Fj) attempts to
distinguish between these two cases.

In this work, we use the insight of Logvinenko et al. [66] that the shape of an edge
(curvature, fuzziness and closedness) conveys discriminatory information about illumi-
nant versus material edges. Influenced by this idea, we use the length of the border
between two adjacent patches as an indicator of whether the patches should be sharing
incident illumination:

h(Fi;Fj) = length (boundary (Fi;Fj)) : (4.23)

Longer boundaries imply that the distinct color of the patches is due to differences in
material and, hence, the illuminant labels of the adjacent patches should be similar.

However, the proposed framework is general and allows the incorporation and/or
combination of multiple methods that can provide information on the discontinuity of
illuminants in the scene. For example, one could employ the Retinex [59] heuristic
that illumination is expected to vary slowly, thus large changes in surface reflectance
are due to differences in material. A Retinex-inspired depth function could then be
h(Fi;Fj) = exp

�
��Rk �Fi� �Fjk2

�
;where �Fi is the average (R;G;B) value in patch pi.
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Yet another option is to employ photometric quasi-invariants [94] which help distinguish
between shading edges and material edges.

4.6 MIRF: Overall Algorithm

Our algorithm which leads to multi-illuminant estimation is presented in this section.
We call it Multi-Illuminant Random Field (MIRF). In the first step we divide the image
into subregions or patches. There are several ways used in the literature for obtaining
adequate patches. We decided against using superpixels because they are more likely to
follow object boundaries rather than subtle illuminant changes. Hence, a grid provides
more diverse patch content, and thus more information for the statistical estimators.

Next, we obtain a local illuminant estimate for each patch using the Eq. 4.9 and
Eq. 4.15. To add more robustness, these illuminants are then clustered to K illuminants
based on their chroma. Additionally, we add a single illuminant estimate I0 to the illu-
minant set by applying Eq. 4.9 on the whole image. To reduce the computational cost,
we reduce the number of labels by averaging the ones whose angular distance is less than
half a degree. We calculate the unary potentials using equation Eq. 4.12 and Eq. 4.16.

In the next step, for every pair of labels we perform the expansion on the graph and
obtain the proper labeling (the assignment of the labels to patches) along with the esti-
mation error for the whole image (Eq. 4.19). The pair of two labels which minimizes the
error is then chosen (Eq. 4.20). Finally, the label colors are assigned to the patches and the
estimated illumination map M is generated. In the last step of the algorithm, a Gaussian
smoothing filter with standard deviation �p is applied to M as a post processing step in
order to reduce artifacts created by the patch boundaries. The methodology is compactly
presented in Algorithm 2.

4.7 Multi-illuminant Multi-object Dataset

Several datasets are available for single illuminant estimation. The first datasets where
taken under laboratory settings with controlled illumination [3,6]. Later datasets — often
much larger — consist of images of real-world scenes where the ground truth is computed
from a reflectance target in the scene, which is either a grey ball [19] or a Macbeth color
checker [38]. Gijsenij et al. [45] have introduced a multi-illuminant dataset. To obtain the
ground truth of each pixel, the area of every light source is manually annotated. However,
manual annotations are difficult to do on complex scenes, and prone to errors1.

1NOTE TO REVIEWERS: From correspondence with the authors of [45], we learned that the PhD stu-
dent involved in the work left with the data and is not responding to request of returning the raw data. Only
compressed version of the data are currently available. Additionally, it is also not possible to recompute the
ground truth in a higher quality, due to this reason.
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Algorithm 2 Method
1: Apply an m � m grid on the image to divide it into a set of patches P =
fp1; p2; :::; pNg

2: Extract the local illuminant colors for each patch I = fi1; i2; :::; iNg (using Eq. 4.9
and Eq. 4.15).

3: Cluster the illuminants (using K-means) and get the K centers. Add the single esti-
mate I0.

4: Reduce the number of labels by removing the ones whose angular distance is less
than .5 degrees. L denotes the set of remaining illuminants.

5: Calculate the unary potentials (Eq. 4.12 and Eq. 4.16).
6: for all li and lj 2 L do
7: Calculate x̆∗(i; j) (Eq. 4.19)
8: end for
9: Find the pair of illuminants L̂ (Eq. 4.20) which produce the lowest error when as-

signed to the image patches.
10: Back project L̂ to create an illumination map M .
11: Post processing: Apply Gaussian smoothing on M to fade out the artificial edges of

the grid.

To address these limitations, we propose two new datasets for multi-illuminant estima-
tion: one taken in a controlled laboratory setting, and one consisting of real-world indoor
and outdoor scenes. Each of the sets includes complex scenes with multiple reflectances
and specularities. A variety of lighting conditions and illuminant colors are presented
in the dataset. Instead of manually annotating the ground truth like [45], we exploit the
linearity of the camera response to compute a pixelwise ground truth for our dataset. This
way we avoid the subjective task of manually segmenting the image and obtain high-
resolution ground truth. In addition, this allows us to have a weight of each illuminant at
each pixels rather than a binary decision for each pixel on the dominant illuminant. As
can be seen in Figure 4.3 large regions in the image are lit by both illuminants.

4.7.1 Data Acquisition

We used the Sigma SD10 single-lens reflex (SLR) digital camera which uses a sensor with
the unique Foveon X3 sensor technology. We chose this camera for its Bayer-pattern-free
image sensor and lossless raw 12 bit per color high quality output. Matlab code for the
perceptual enhancement of the images has been made publicly available by Parraga et al.
[75]. We captured the images in the linear RAW format, i.e. without additional gamma
or JPEG compression. The original image size is 2304 � 1531 pixels, i.e. roughly 3.5
megapixels. Upon acceptance of the paper, the original images, together with the ground
truth, will be made publicly available.

To compute the ground truth we exploit the linearity of light: we use the fact that the
scene taken under both illuminants is equal to the sum of the two scenes taken under a
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Figure 4.2: Example input images to compute the ground truth. In the top row, from
left to right: scene under illuminant 1, 2, and a mixture of 1 and 2. In the bottom row:
scene under separate illuminants 1 and 2 again, but with a Macbeth color chart to esti-
mate the illuminant chromaticity. On the bottom right, the ground truth is shown, i.e. the
two illuminant colors with their spatial distribution. Gamma is added to the images for
visualization.

single illuminant. The basic idea is that we can use the single illuminant images to derive
the relative strength of the two illuminants for each pixel in the multi-illuminant scene. In
addition, we acquire two images with either the Macbeth color chart or a grey reflectance
target for the two single illuminant scenes, from which we can estimate the illuminant
color. The five indoor scenes taken are shown in Fig. 4.2.

Since the single illuminants sum up to the two-illuminant scene, in reality we only
need two of the three scenes to derive the third one. We use this fact for the scenes
where it was not possible to obtain the two single illuminant images. An example is an
indoor scene with indoor illuminant and outdoor light coming through the window (which
we were unable to block). Taking two images - one with both illuminants and one with
only the outdoor lightning after switching off the indoor illuminant- we can compute the
ground truth for this scene by using the linearity relation.

Consider the ground truth computation in more detail. We first obtain the colors of the
illuminants using the Macbeth color chart, or a grey reflectance target for the lab scenes,
respectively. As explained above, a pixel fab from a two-illuminant scene is equal to the
sum of the pixels from two scenes with a single illuminant, i.e. fab = fa + fb. We veri-
fied that this assumption holds for the Sigma SD10 single-lens reflex camera. Thus, for
every pixel, we compute the relative contribution of illuminant a. Using the von Kries
assumption, the images that are only exposed to a and b are divided by their respective
illuminant chromaticity to obtain scenes under white illumination. The intensity differ-
ences in these images reveal the individual influence of each illuminant. We denote a pixel
of the illumination-normalized images in the green channel as f̂a;g and f̂b;g, respectively.
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The relative difference for illuminant a in the green channel is obtained for each pixel as

ra;g =
f̂a;g

f̂a;g + f̂b;g

; (4.24)

See appendix 4.9.1 for a derivation of Eq. 4.24. In principle, any color channel could
be used. However, we found the green channel yielded the most stable (noise-resilient)
results.

The ground truth illuminant color iab of a pixel fab of the mixed-illuminant image is
then a pixelwise linear interpolation of a and b,

iab = ra;g � a + (1� ra;g)b : (4.25)

4.7.2 Controlled Laboratory Scenes

The first dataset is taken in a controlled laboratory setting. The scenes vary from simple
single-object scenes to more difficult multi-object (cluttered) scenes. The scene content
also varies between diffuse objects, specular objects, and mixtures of diffuse and specular
objects. In total, the dataset consists of 10 scenes, each under 6 distinct illumination
conditions. For computing the ground truth, each scene was captured also under only one
illuminant from each position. After removing images that are misaligned, we ended up
with a total of 58 benchmark images. We used three differently colored lights, referred
to as “blue”, “white” and “red”, with a chromatic difference of 5:9◦ between blue and
white, 6:1◦ between white and red, and 11:4◦ between blue and red. Each scene is lit from
two different angles (referred to as “left” and “right” illumination) by different pairs of
illuminants. To reduce the influence from ambient illumination, the data acquisition for
this set has been done in a box with black diffuse walls.

The left side images in the Fig. 4.1 and Fig. 4.3 show two example scenes illuminated
by a red illuminant from the left and a white illuminant on the right. The lion in Fig. 4.1
is an example of a single object scene and the toys in the Fig. 4.3 are an example of a
mixture of specular and diffuse objects. The bottom row shows the influence of the both
illuminants. A stronger blue component denotes stronger influence of the left illuminant,
while red represent the illuminant on the right.

4.7.3 Real-world Scenes

In order to test our framework on more challenging real world images, we captured 20
indoor and outdoor scenes. Here the data is converted to sRGB to mimic a more stan-
dard user setting. The scenes contain two dominant illuminants, namely an ambient light
source and a direct light. For the outdoor images, shadow regions provide ambient light.
For indoor images, the room illumination is used. The direct light source is either added
from a projector, the sun, or another additional light bulb. In Fig. 4.1 and Fig. 4.3, two
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Figure 4.3: Example images from our laboratory and real-world dataset. In the bottom
row, the relative influence of the two illuminants is shown, color-coded from blue to red.

example scenes are provided. One scene shows a two illuminant indoor scene, and the
second scene shows a strong color shadow in an outdoor scene. The main difference be-
tween the two datasets is that in the real-world scenes, the ambient illuminant is present
on almost the whole image area, while the direct illuminant covers only a part of each
scene.

4.8 Experiments

In this section we compare the performance of the proposed method MIRF to several
other approaches. As an error metric, we obtain an error per image by computing the
mean of the pixelwise angular distance (Eq. 4.6) between the estimated illuminant color
and the ground truth maps. Pixels that were too dark (i.e., for our 12 bit images, pixel
intensities below 50) have been excluded from evaluation due to their relatively large noise
component. Over these per-image errors, we computed the median and mean errors per
dataset. The evaluation was conducted on three datasets, namely our proposed laboratory
dataset, our proposed real-world dataset, and the outdoor dataset that has been used by
Gijsenij et al. [45].

As a baseline, we computed results for a number of established algorithms that address
color constancy under uniform illumination. So far, little prior work exists for estimating
non-uniform illumination. We implemented the recent method by Gijsenij et al. [45], as
it showed very competitive performance in a number of experiments.
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Both, the method by Gijsenij et al. [45] and MIRF use as input illuminant estimates
with small spatial support. Such illuminant estimates can be obtained from different es-
timators. We chose to use grey world (“GW”), which can be obtained from Eq. 4.9 by
using the parameters n = 0, m = 1; �GW = 0, white patch (“WP”, with n = 0, m = 1,
�GW = 0), first order grey-edge (“GE1”, with n = 1, m = 1, �GW = 1) and second-order
grey edge (“GE2”, with n = 2, m = 1, �GW = 1). Additionally, we use the physics-
based estimator, as presented in Eq. 4.15, denoted as “IEbV” (derived from “illuminant
estimation by voting”). We used these base estimators for comparing the performance of
the three families of methods as described above. Additionally, we provide the error if the
illuminant color is assumed to be already perfectly balanced to white. The “do nothing”
(“DN”) estimator shows these results. For the evaluation on our proposed dataset, we
resampled the images to 20% of their original size to reduce the computational load.

4.8.1 Parameters

A number of parameters have been fixed for the evaluation of MIRF. As patches we used
a rectangular grid with cells of 20� 20 pixels for the downscaled version of our proposed
dataset, and cells of 10 � 10 pixels for the outdoor images by Gijsenij et al. [45]. In
both cases, this corresponds to a cell size of about 15� 20 pixels. The number of cluster
centers k for the k-means algorithm has been set to the square root of the number of grid
cells. To obtain the physics-based estimates, we set the Lehmann and Palm parameters
tb = 0:2 and ts = 0:8, and the overall specularity threshold tsp = 10 for pixel intensities
between 0 and 1. The subgrid size for single physics-based estimates was 20� 20 pixels
with a step size of 10 pixels2, as in [79]. The settings for the CRF framework were as
follows: the saturation threshold λd for illuminant labels (see Sec. 4.4.4) is set to 15◦. The
parameter �r in Eq. 4.11 for robust thresholding on the unary potentatials has been set
to 2:5◦. Finally, the standard deviation �p for the Gaussian smoothing on the reprojected
illuminant labels has been set to 10.

Besides these globally fixed parameters, we determined three parameters via two-fold
cross validation on each dataset. These were the weighting between unary and pairwise
potentials �p (see Eq. 4.4), the power q (see Eq. 4.12) for computing the unary potentials,
and finally, if datacosts from different estimators are combined, �p (see Eq. 4.18) for the
relative influence of physics-based and statistical estimators.

4.8.2 Comparing Single- and Multi-illuminant Methods

In Tab. 4.1, we present the mean and median errors on our proposed laboratory dataset. In
the column “single-illuminant”, these results are based on a single global illuminant es-
timate. The columns “Gijsenij et al.” and “MIRF” report results for the multi-illuminant

2Note that for the downscaled images from our dataset, this leads to only one estimate per patch, i.e.
the voting part is effectively clamped off. However, if the method is applied on larger images (or patches,
respectively), the histogram voting is used.
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Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 10:6◦ 10:5◦ - - - -
GW 3:2◦ 2:9◦ 6:4◦ 5:9◦ 3:1◦ (-3%) 2:8◦ (-3%)
WP 7:8◦ 7:6◦ 5:1◦ 4:2◦ 3:0◦(-41%) 2:8◦(-33%)
GE1 3:1◦ 2:8◦ 4:8◦ 4:2◦ 2:7◦(-13%) 2:6◦ (-7%)
GE2 3:2◦ 2:9◦ 5:9◦ 5:7◦ 2:6◦(-19%) 2:6◦(-10%)
IEbV 8:5◦ 8:3◦ - - 4:5◦(-47%) 3:0◦(-64%)

Table 4.1: Comparative results on the proposed laboratory dataset.

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 8:8◦ 8:9◦ - - - -
GW 5:2◦ 4:2◦ 4:4◦ 4:3◦ 3:7◦(-16%) 3:4◦(-19%)
WP 6:8◦ 5:6◦ 4:2◦ 3:8◦ 4:1◦ (-2%) 3:3◦(-13%)
GE1 5:3◦ 3:9◦ 9:1◦ 9:2◦ 4:0◦(-25%) 3:4◦(-13%)
GE2 6:0◦ 4:7◦ 12:4◦ 12:4◦ 4:9◦(-18%) 4:5◦ (-4%)
IEbV 6:0◦ 4:9◦ - - 5:6◦ (-7%) 4:3◦(-12%)

Table 4.2: Comparative results on the perceptually enhanced real-world images.

methods by Gijsenij et al. [45] and our proposed algorithm “Multi-Illuminant Random
Field”. It turns out, that some single-illuminant estimators, namely GW, GE1 and GE2, al-
ready perform relatively well on our dataset. This comes from the fact that in many cases,
the ground truth illuminant colors are not very distant from each other. Thus, the overall
error can be small, even if only one of the two illuminants (or a color in between both
illuminants) is reported as global estimate. However, in all cases, MIRF improves over
these estimates. The physics-based estimates for IEbV yield a considerably weaker per-
formance in the mean error, which might be due to the fact that the individual patches are
relatively small, such that the voting becomes ineffective. The method by Gijsenij et al.
performed surprisingly weak, even worse than the single-illuminant estimators. We inves-
tigated this case more closely. It turned out that relatively often, weak candidate estimates
are selected by the method, which penalizes the overall algorithm. MIRF avoids this
particular problem, as the remaining energy from the energy minimization is used as a
criterion for the quality of a solution. In Sec. 4.8.3, we excluded this source of error, to
directly compare the performance for determining only the distribution of illuminants.

Table 4.2 shows a similar tendency in the results, but this time on our proposed real-
world dataset. Note that the overall errors are higher, which is mainly due to the fact that
the images have been perceptually enhanced, such that the overall spread of the colors in
the image is larger. The largest gain is obtained using localized estimates of the physics-
based estimates. This performance gain comes mostly from the robust error metric, which
suppresses gross outliers in the physics-based estimates.

In Tab. 4.3, we report results on the outdoor dataset by Gijsenij et al. [45]. Note
that the reported numbers for the method by Gijsenij et al. deviate from what the authors
reported in their paper. When investigating their method, we noted that the evaluation
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in [45] was conducted on the non-gamma-corrected images3. In our implementation,
we performed gamma correction on the input images, as it was also originally intended
by [45]. The overall errors are higher than in the previous two experiments. First, the
images of this dataset are relatively small snippets, consisting mostly of two relatively
homogeneous regions in sunlight and shadow. Thus, the underlying localized illuminant
color estimators have to estimate on relatively uninformative input. Note that we did not
evaluate on the laboratory data by Gijsenij et al., as we found upon manual inspection
that the ground truth for these images is not very reliable.

4.8.3 Benchmarking Separate Components of the Algorithm

Estimating multiple illuminants can be considered as two interleaved tasks, namely es-
timating the illuminant colors and their spatial distribution. The recovery of the spatial
distribution was not required for single-illuminant estimators. Hence, we empirically in-
vestigated the capability of finding the proper spatial distribution, by providing the meth-
ods in this experiment the ground truth illuminant colors. The results on our laboratory
dataset are shown in Tab. 4.4. In the left two columns, it can be seen that the performance
of the method by Gijsenij et al. greatly improved, compared to Tab. 4.1. Thus, we con-
clude that the selection of the correct illuminant color is one of the major challenges in
the method of Gijsenij et al.. In the right columns, we show the performance of the pro-
posed method. The best performing method is first order grey edge, with a median error
of 1:7◦. This shows that the spatial distribution of the illuminants is well approximated
by our proposed framework.

In another experiment, we investigated the relative gain of the various improvements
we have introduced (see Tab. 4.5). As an example illuminant estimation algorithm, we
used the grey world (“GW”) estimator. If we remove the constraint of two illuminants
and allow an arbitrary number of illuminants, the error increases significantly on our
two datasets. Similarly, the robust error norm (see Eq. 4.11) yields an important per-
formance gain on both our datasets. Removing the parameter q which counters uneven
color balances only effects results on the Gijsenij dataset. Finally, removing the saturation
constraint on the illuminants results in a performance drop on all datasets.

3Without gamma correction, we obtain the same numbers as reported in [45].

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 4:4◦ 3:6◦ - - - -
GW 15:0◦ 13:8◦ 12:2◦ 13:8◦ 10:0◦(-18%) 10:1◦(-27%)
WP 10:3◦ 11:3◦ 10:0◦ 8:4◦ 7:7◦(-23%) 6:4◦(-24%)
GE1 10:1◦ 10:1◦ 8:5◦ 7:6◦ 7:1◦(-16%) 4:7◦(-38%)
GE2 8:7◦ 8:5◦ 8:1◦ 7:4◦ 7:2◦(-11%) 5:0◦(-32%)
IEbV 10:0◦ 7:3◦ - - 9:3◦ (-7%) 7:3◦ (-0%)

Table 4.3: Evaluation results on the gamma corrected version of the outdoor dataset by
Gijsenij et al. [45]
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Gijsenij MIRF
Mean Median Mean Median

GW 2:4◦ 2:3◦ 2:3◦ 2:3◦

WP 2:2◦ 2:1◦ 2:0◦ 1:9◦

GE1 2:1◦ 2:0◦ 1:8◦ 1:7◦

GE2 2:2◦ 2:1◦ 1:9◦ 1:8◦

Table 4.4: Performance on our laboratory data for recovering the spatial distribution. The
ground truth illuminant colors are provided to the methods.

4.8.4 Combination of Statistical and Physics-based Estimates

Table 4.6 demonstrates another benefit of the framework. By defining the unary potentials
as a weighted sum of the physics-based and the statistical unary potentials, we are able
to combine cues from multiple methods in a natural way. To determine the parameters,
we performed a full cross-validation over �p, q and �p (see Sec. 4.8.1). It turns out, that
a combination of physics-based and statistical estimates can indeed further improve the
results (confer Tab. 4.6 (left) and Tab. 4.1), in particular for the white patch and first order
grey edge estimates. On the other hand, the performance of the combination of IEbV
with GE2 slightly dropped, thus there is no guarantee that a combination of the unary
potentials brings a performance gain.

The right columns of Table 4.6 show the performance on our proposed real-world
dataset. It is interesting to note that the impact of combined unary potentials on the
overall performance is quite different from the experiments on the laboratory data. Here,
the majority of the results is slightly worse than the results reported in Tab. 4.2. This
behavior, however, is not consistent. For instance, the mean error of IEbV-WP lies slightly
below the reported error in Tab. 4.2, similarly the median error for IEbV-GE2. From these
results, we conclude that the framework is general enough to allow the straightforward
integration of multiple cues. However, whether such a combination indeed brings the
desired performance gain has to be investigated on a case-by-case basis.

Laboratory data Real-world data Gijsenij et al.
Mean Median Mean Median Mean Median

MIRF 3:1◦ 2:8◦ 3:7◦ 3:4◦ 10:0◦ 10:1◦

all lights 4:6◦ 4:0◦ 4:2◦ 4:0◦ 10:0◦ 10:2◦

w/o Eq. 4.11 3:9◦ 3:7◦ 4:3◦ 4:0◦ 10:1◦ 10:1◦

q = 1 3:0◦ 2:8◦ 3:6◦ 3:3◦ 10:7◦ 10:3◦

w/o λd 3:6◦ 3:3◦ 4:6◦ 3:2◦ 11:2◦ 10:1◦

Table 4.5: Grey-world results for different configurations of the proposed framework for
each dataset.
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Laboratory data Real-world data
Combination variant Mean Median Mean Median
IEbV-GW 3:0◦ 2:8◦ 4:2◦ 4:3◦

IEbV-WP 2:6◦ 2:5◦ 4:0◦ 3:4◦

IEbV-GE1 2:6◦ 2:4◦ 4:5◦ 4:2◦

IEbV-GE2 2:8◦ 2:8◦ 4:7◦ 3:9◦

Table 4.6: Combination of physics-based and statistical methods on our laboratory data.

4.8.5 Automatic White Balance

Example results for automatic white balancing are shown in Fig. 4.4. All images are con-
trast enhanced for improved visualization. In the top row, from left to right, the input
scenes “toys”, “lion”, “camera”, and “detergents” are presented. The second row shows
perfectly white balanced output using the computed ground truth. The third row shows
white balancing results for a single global grey world estimator. The resulting images
suffer from a color cast, as both illuminant colors in the scene are corrected with only one
estimate. Using the same estimator within the framework by Gijsenij et al. [45] (fourth
row) clearly improves over the global estimator. However, the images look more greyish
and with faded colors as the local estimations were not able to fully separate the effect
of illumination from the object color. Also the “lion” is more reddish on the right side.
Finally, in the last row, the output of the proposed MIRF is shown. In this case, the im-
proved performance results from the improvement in the selection of the illuminant color,
thus the global color cast is removed. Some inaccuracies in the estimation of the spatial
distribution of the illuminants may lead to local color casts (e.g., several bluish “blobs”
overlay considerable regions of the “camera” image). However, the overall performance
of MIRF is in general quite solid, as demonstrated in the “toys” and “detergents” images.

4.9 Conclusions

We proposed the algorithm “Multi-Illuminant Random Field” (MIRF) as an approach for
color constancy under non-uniform illumination. In scenes that are exposed to multiple
illuminants, it is required to estimate the illuminant colors and their spatial distribution.
In our approach, these two tasks are jointly solved within an energy minimization frame-
work. At the same time, the framework is general enough to a) allow the natural com-
bination of different illuminant estimators, like statistical and physics-based approaches,
and to b) allow the incorporation of additional cues if they are available, like, for instance,
estimates for illuminant edges.

For quantitative evaluation, we present a highly accurate, per-pixel ground truth dataset
for scenes under two illuminants. It consists of 58 laboratory images and 20 real-world
images. In contrast to prior work, the spatial distribution of the illuminant colors is com-
puted from multiple, spatially aligned input images. Evaluation results on these images
and on the real-world dataset by Gijsenij et al. are promising. MIRF outperforms single-
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3.1 2.9 10.6 6.8 

2.7 6.6 8.3 4.5 

2.0 2.6 8.7 3.7 

Figure 4.4: Example for the automatic white balance (WB). From top to bottom the rows
present: original image from the camera, the WB images using the ground truth, global
grey world, Gijsenij et al. [45], and MIRF. Note that the images are enhanced to sRGB for
visualization. The captions on the images denote their estimation error.

illuminant estimators. Additionally, we show that MIRF’s joint estimation of the illu-
minant color and its spatial distribution consistently outperforms the recently proposed
method by Gijsenij et al. [45], which solves these two steps separately. In an experi-
ment with ground-truth illuminant colors, we show that also the individual tasks of color
estimation and localization perform superiorly. A combination of physics-based and sta-
tistical estimates yields competitive results.

As a future extension to this work, it is worth investigation the incorporation of top-
down semantic cues into the framework [83,99]. Recognition of common materials in the
scene such as grass, stone, and faces could further improve multi-illuminant estimation.

Appendix

In this appendix we prove that the actual choice for the unary potential as given by Eq. 4.8
leads to the same estimate as standard grey-world algorithm in the case of a large θp, which



4.9. Conclusions 51

forces the method to find a single illuminant estimate for all patches.

If the energy cost of label changes is chosen large enough (large �p), no label changes
will be allowed between the patches. As a consequence all patches will have the illumi-
nant estimate, which will essentially be determined by the unary potential. The solution
will be that illuminant which yields, summed over all patches, the lowest energy. Con-
sider x the illuminant choice for all patches (we drop the subscript on x since it is equal
for all patches), the energy can be written as

E(xjF) =
X
i∈V

λ(xjFi) =
X
i
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f j
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�
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where we used cos (' (ii;x)) = iTi x. Filling in Eq.4.5 for ii we find that
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where only the second part depends on x. Since we want to compute argminxE (xjF),
this is equal to maximizing the second part of the equation
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since the inner product is distributive over vector addition. From this it follows that

x∗ /
X
i

X
j∈pi

f j (4.29)

which is the solution of the grey-world for the whole image. In conclusion, we have seen
that by choosing the particular unary potential of Eq. 4.8, standard grey-world can be
written as a energy minimization problem. Hence, when �p is chosen large enough, min-
imizing Eq. 4.4 leads to the same result as the grey-world algorithm. It should be noted,
that this is only true when the solution of the grey-world algorithm is in the illuminant
label set L. In practice this can easily obtained by choosing the solution of the grey-world
as one of the labels.

A similar derivation could be given to prove that minimizing Eq. 4.4 with the unary
potential of Eq. 4.10 yields the grey-edge algorithm. Enforcing exactly one label leads to
the same answer as the single illuminant in case p = 1 in Eq. 4.9.

4.9.1 Estimation of the Two-illuminant Ground Truth

We add details on Eq. 4.24. Let analogously to Eq. 4.24 fa;g and fb;g denote aligned
pixels from the green channels of two images, exposed to illuminant a and to illuminant
b, respectively. We seek the influence of a and b in fab;g where both illuminants are
additive, i.e. fab;g = fa;g + fb;g. Intuitively, if a pixel is brighter in fa;g than in fb;g,
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then the influence of a is stronger in fab;g. The brightness difference comes from a) the
intensity of the illuminant and b) from different angles between the light source and the
surface normal (for instance, the laboratory lights are located left and right of the scene).
Thus, we seek per pixel a weighting factor w, such that

iab = w � a + (1� w) � b ; (4.30)

i.e. the illumination chromaticity iab;g in this pixel is a weighted sum of the chromaticities
of the two illuminants.

To obtain w, we first compute illumination-normalized versions f̂a;g, f̂b;g using the
von Kries assumption. Thus, fa;g and fb;g are divided by the green chromaticities of a

and b, respectively. w is then obtained by computing the relative contribution of f̂a;g with
respect to f̂b;g,

w =
f̂a;g

f̂a;g + f̂b;g

: (4.31)

Assuming Lambertian reflectance and sharpened sensors, f̂a;g = !aka�g, where !a and ka

denote scaling factors due to geometry and the intensity of the light source, respectively.
�g denotes the intensity of the pixel’s surface albedo. Note that the illuminant color is
omitted, as it has been neutralized. Expanding Eq. 4.31, the ratio of the pixel under both
illuminant corresponds to the ratio of their scaling factors !a and ka,

w =
!aka�g

(!bkb + !aka)�g
=

!aka

!bkb + !aka

; (4.32)

as albedo and neutral illuminant are identical in f̂a;g and f̂b;g. This leads directly to the
formulation in Eq. 4.24.

In practice, we clip the weight w if one of the illuminants is tB times brighter than the
other, i.e.

w =

8<:
1 if f̂a;g=f̂b;g > tB
0 if f̂b;g=f̂a;g > tB

~wf̂a;g=f̂b;g otherwise
; (4.33)

where ~w normalizes the range of values between 0 and 1. For our dataset, we empirically
determined tB = 40 as a reasonable threshold.

In real-world images, the assumption of sharpened sensors and Lambertian reflectance
are typically violated. We alleviate this issue with two “engineering decisions”. First, we
use only the green channel, as an approximation to a sharp sensor. Second, some pixels
contain specular reflectance, i.e. are not fully Lambertian. In such cases, the intensity of
the specularity often exceeds the clipping range, which assigns the respective pixel fully
to the specular illuminant (which agrees with the neutral interface assumption [87]). Fi-
nally, note that interreflections are in general not well modeled by this approach. Despite
these shortcomings, we manually investigated all scenes, and concluded that the cases
that violate our assumptions are rare or do not considerably influence the result. Thus,
the proposed approach is a economic, feasible way to obtain pixelwise multi-illuminant
ground truth on real-world scenes.



Chapter 5

Dataset

Datasets play an important role in many computer vision and image processing applica-
tions. Often developed algorithms need to be validated not only qualitatively but also
quantitatively using a relatively large number of examples to prove their performance.
Various existing methods make use of prior knowledge to train their parameters in order
to achieve better results. In this case the quality, content, and size of the dataset is a de-
cisive factor to avoid over-training the parameters. Here we present our synthetic scenes
dataset for intrinsic image decomposition.

5.1 Gray Paint Spray Technique for Ground Truth Ex-
traction

A common technique for ground truth estimation used in developing existing shape and
intrinsic image estimation datasets is using gray paint. That is, first the scene is captured
under all the desired lighting conditions. Then using a matte gray paint spray, all the
surfaces are covered by a diffuse gray layer and the scene is captured again under the
very same lighting conditions. It is assumed that using these gray-painted scenes one
does construct the shading image for that scene from which is possible to obtain also the
shape.

Often this task is down for scenes which consist of only one single object in order to
simplify the problem. One popular example of datasets made using this technique is the
widely used collection of MIT by Grosse et al. [50] for intrinsic images. Also recently
Bleier et al. [12] have proposed a dataset for local illuminant estimation.

One of the main advantages of these datasets is their relatively high accuracy and
resolution. However, there are several drawbacks regarding this method above which is
the slow and cumbersome task of constructing and capturing these images one by one.
Since an exact matching between the captured scenes and the ground truth is required,
each object should be placed exactly at the same position during the whole process of
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capturing that scene which could in practice require a lot of care and repetition. In practice
these issues does highly reduce the number of images and variations in the dataset.

Another important shortcoming of such technique is that using the matte gray paint,
capturing the ground truth information is only limited to the diffuse reflectance while es-
sential material characteristics such as specularities are omitted. Grosse et al. have used
polarizing filters to separate specular from Lambertian reflectance and provided some
specularity decomposition, while most of the objects on the MIT dataset are mainly dif-
fuse. As acknowledge by Bleier et al., gray paint reduces the captured ground truth illu-
mination information from the scene to direct lighting, losing crucial information such as
inter-reflections.

To overcome the shortcomings of the existing datasets in intrinsic image decomposi-
tion, and to encourage research also into more complex reflectance models, we propose a
synthetic dataset for intrinsic image decomposition.

5.2 3D Object Modeling and Physics-based Renderers

Recent advancements in digital 3D modeling programs have enabled the users to rely on
these methods for graphical use, from digital animations and visual effects in movies to
computer aided industrial design.

Rendering is the process of generating a 2D image from a description of a 3D scene
which is often done using computer programs by calculating the projection of the 3D
scene model over the virtual image plane. Both the commercial and open-source ren-
dering programs are moving toward achieving more realistic results and accuracy using
physics-based models in optics. There are currently various softwares available which
embed the known illumination and reflectance models [76].

Due to the increased accuracy with which 3D renderers visualize the world, using
synthetic data to train and test complex computer vision tasks has attracted growing at-
tention. In addition synthetic data allows for easy access to the groundtruth, making it
possible to prevent the expensive manual labeling process. Marin et al. [69, 100] show
that a pedestrian detector trained from virtual scenarios can obtain competitive results on
real-world data. Liebelt and Schmid [65] use synthetic data to improve multi-view object
class detection. Finally, Rodriguez et al. [81] generate synthetic license plates to train
recognition system.

In the current work we have used Blender to model the scenes. Yafaray, is used as a
renderer for its photo-realism and physically plausible rendering. Both of these applica-
tions are free and open source which makes them suitable for scientific use.
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5.3 Global Lighting

In order to obtain more photo-realistic lighting results for 3D scene rendering, a group
of rendering algorithms have been developed with are referred to as global illumination.
These methods, in addition to taking into account the light which riches the object surface
directly from a light source, direct lighting, also calculate the energy from the same light
source which is reflected by other surfaces in the scene. The later is also known as indi-
rect lighting. This indirect lighting is what causes the reflections, refractions, shadows,
ambient lighting, and inter-reflections. Figure 5.1 presents the competitive quality and
photo-realism for synthetic scenes rendered using global illumination.

Figure 5.1: The above examples compare the real-world photographed scenes versus ren-
dered scenes from our dataset. The first two images on the left are examples of diffuse
inter-reflections, while the images on the right present colored shadows. Similar effect
can be observed in the synthetic images (the first and the third from the left) as in the
real-world photographs (the second and the last images from left).

There are many popular algorithms for rendering global illumination (e.g, radiosity,
raytracing, and image-based lighting). One of the most popular methods of such is photon
mapping [53] developed by Henrik Wann Jensen. To achieve physically sound results
and photo-realism in our dataset we make use of the photon mapping method embedded
in Yafaray. Figure 5.2 shows the importance of indirect lightning in scenes. For this
purpose we compare the final renderings of our data set to the renderings which only
consider direct lighting (one bounce). Here the global illumination is achieved using
photon mapping which appears more realistic due to preservation of the diffuse inter-
reflection.

5.4 Intrinsic Image Datasets

Intrinsic image algorithms and datasets can be distinguished by their assumptions on the
underlying reflectance models. Consider the reflection model which models the color
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Figure 5.2: Comparing the different rendering methods: direct lighting (left) and photon
mapping (right) on an example scene from our dataset.

Figure 5.3: An example of a synthetic scene. From left to right: the rendered scene,
reflectance component, and shading.

observation f c with c 2 fR;G;Bg as:

f c (x) = m (x)

Z
!

s (�;x) e (�;x)�c (�) d� (5.1)

where the integral is over all wavelengths � of the visible spectrum !. The material re-
flectance is given by s (�;x) and m is a scalars depending on the scene geometry (view-
point, surface normal, and illuminant direction). The camera sensitivity is given by �c.

We will use this basic reflection model to demonstrate the differences between ex-
isting datasets and our dataset. In the MIT dataset [50] the illuminant is considered to
be independent of x and white, i.e. e (�;x) = 1. This assumption is shared by most
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of the intrinsic image methods [9] [39] [84]. Recently, Barron and Malik [10] relaxed
this assumption: they allow the illuminant color to vary but only consider direct illu-
minantion (ignoring interreflections). Their assumption on the illuminant is given by
e (�;x) = e (�; n (x)), where n (x) is the surface normal at location x. They construct a
dataset by synthetically relighting the real-world MIT dataset [10].

In this paper, we go one set further and create a synthetic dataset by using rendering
techniques from the computer graphics field. This allows us to remove the restriction
other dataset put on e (�;x). The illuminant color and strength can change from location
to location. This allows us to consider more complex reflection phenomena such as self-
reflection and inter-reflections. To the best of our knowledge this is the first intrinsic
image dataset which considers these more complex reflection models. In the next section
we analyze rendering accuracy for such reflection phenomena.

Note that the above reflection model assumes that the materials are Lambertian re-
flectances. Even though specular materials can be accurately rendered, we exclude them
from this dataset because most existing intrinsic image algorithms are not able to handle
non-Lambertian materials . The MIT dataset [50] applies polarizing filters to provide both
images with and without specular reflection.

5.5 Analysis Color Rendering Accuracy

For synthetic datasets to be useful to train and evaluate computer vision algorithms, they
should accurately model the physical reality of the real-world. Therefore, in this section,
we analyze the accuracy of color rendering based on the diagonal model as is typical in
computer graphics. To prevent propagating the full multispectra data, which is computa-
tionally very expensive, rendering engines approximate Eq. 5.1 with

f̂ c =

Z
!

s (�)�c (�) d�

Z
!

e (�)�c (�) d�: (5.2)

Here we removed the dependence on x, and the geometrical term m and focus on the
color content of f . In vector notation we could write this as

f̂ = s � e (5.3)

where we use bold to denote vectors, and � is the Hadamard product, and we replaced
s =

R
!

s (�)�c (�) d� and e =
R
!

e (�)�c (�) d�. In real scenes the light which is coming

from objects in the scene is not only caused by direct lightning of the illuminant but
part of the light is reflected from other objects in the scene. Considering both direct and
interreflection from another surface we can write:

f̂ = s1 � e + s2 � s1 � e (5.4)

where the superscript is used to distinguish the material reflectance of different objects.
The accuracy of the approximations in Eq. 5.3 and Eq. 5.4 is dependent on the shape and
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the number of sensors c considered. Typically rendering machines apply three sensors c 2
fR;G;Bg, however it is known that the rendering accuracy increases when considering
more sensors [21] [2].

To test the accuracy of f̂ c we perform a statistical analysis. We use the 1269 Munsell
color patches and we compute both f c and f̂ c. For sensors �c we use Gaussian shaped sen-
sors which are equally spaced over the visible spectrum. We compare the reconstruction
error

" =




f (x)� f̂ (x)



.kf (x)k (5.5)

for the cases of three, six and nine sensors. We consider both single bounce (Eq. 5.3) and
two bounce situation (Eq. 5.4). As illuminant we have taken the standard D65 daylight
illuminant. Dark patches where discarded because the reconstruction error is unstable for
these cases.

In Table 5.1 the results of the experiment are provided. For single bounce the three
sensor approximation which is common in graphics is acceptable and only leads to a max-
imum error of 2:88%. However, if we consider interreflections the maximum error reaches
the unacceptable level of 22:7%. Based on these results we have chosen to use a 6 sensors
system to propagate the multispectral color information, resulting in a maximum error of
7:7%. This can be conveniently achieved by running existing rendering software (build
for 3 channel propagation) twice for three channels [21] [2]. The final 6-D result image
is projected back to an RGB image using linear regression. In the only available intrinsic
image data set for multi-illuminants [10], illuminants where introduced synthetically by
using a 3 channel approximation. Since this data set only considers direct lightning, our
analysis shows that this suffices. However, in the case of interreflections, synthetically
relightning of real-world scenes would introduce significant errors.

One bounce Two bounces
sensor Mean (%) Max (%) Mean (%) Max (%)

3 0.53 2.88 1.26 22.70
6 0.18 1.25 0.51 7.70
9 0.11 0.86 0.32 3.40

Table 5.1: Reconstruction error for single and two bounce reflection for 3,6, and 9 sensors.



Chapter 6

Conclusions and Future Directions

In this thesis, we aim at improving the modeling of the illumination and its interaction
with object surface. The first part of this chapter summarizes the work. In the second part
we discuss possible directions for future work.

6.1 Conclusions

In this thesis, we have investigated various models for illumination and object reflectance
modeling. We have extended the existing reflection models to account for real-world
Multi-illuminant scenes. In the first part we have presented a framework to estimate the
chromaticity of the lights illuminating the scene using specular highlights and decompo-
sition of a color image to a set of images capturing its intrinsic characteristics (e.g. diffuse
and specular components). We have demonstrated results on challenging real-world im-
ages with complex illumination and reflectance in the presence of colored shadows and
inter-reflections. Moreover, we showed some examples for the possible applications of
our framework in order to improve automatic and semi-automatic photo-editing tasks (e.g,
photo-fusion and color transfer).

In Chapter 4 we further improved over state-or-the-art illuminant estimation methods
by formulating the scene’s illumination as an energy minimization combining bottom-up
color constancy methods for global illuminant estimation into a mathematically sound
formulation which embeds both the statistical and physics-based method. Using Con-
ditional Random Fields (CRF) we achieved global consistency of the illuminant estima-
tions. Using an extensive experimental evaluation we demonstrated that the proposed
method addresses the intrinsic challenges in multi-illuminant scenes, i.e. the estimation
of the illuminant colors and their spatial distribution, with superior accuracy compared to
prior work. Therefore, we show that proposed framework is able to perform high quality
automatic digital white balancing in complex scenes.

As discussed in Chapter 5 We have created two main datasets which are explained in
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Chapter 5. To our knowledge our multi-illuminant scene dataset captured from both lab-
oratory controlled scenes and real-world indoor and outdoor scenes is most general and
complex among the existing dataset for multi-illuminant color constancy which includes a
highly accurate estimated ground-truth. This chapter further presents our synthetic scene
dataset for intrinsic image decomposition using physically sound 3D modeling and ren-
dering programs. We have used this synthetic dataset to perform a benchmarking on
state-of-the-art intrinsic image estimation and decomposition methods.

6.2 Future Directions

As an extension to our multi-illuminant estimation method, we proposed to include gamut-
mapping approaches as an extra cue for our estimation framework, as well as combining
various statistical methods in order to improve the bottom-up local estimations. Further-
more, we acknowledge the necessity of expansion of our datasets to include more variety
of the scenes and illumination conditions.

We propose as our future work, to investigate material characteristics based on their
reflectance in order to perform material classification from which both science and indus-
try could benefit. Also by removing the effect of complex illumination facilitates other
Computer Vision tasks (segmentation, classification, etc.). Moreover, the illumination
and reflectance modeling could be applied to image forensics approaches.
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