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Chapter IV 
 

CONSIDERATIONS ABOUT THE NUMERICAL ANALYSIS 
 
 
 
 

⨳⨳⨳ 
 
 

Chapter IV pretends to resume end expose all the considerations assumed for 
the numerical model which have been progressively validated during the 

progress of this investigation. 
 

Main efforts during this research have been focused on obtaining a reliable FE 
model, capable of reproducing the structural behavior of CFT sections. This 

objective involves the use of a complex constitutive material model for concrete 
which could simulate the compressive response of concrete subjected to high 

hydrostatic pressures. 
 

Thus, after describing the different families of models which have been 
developed, this Chapter provides a detailed explanation about general features 

of them. After this, a specific description of the process of calibration of the 
geometrical and material features of the model is presented in Sections 4.4 and 

4.5. 
 

The purpose of this Chapter, apart from providing to future researchers the 
tools necessary to be capable of modeling concrete-filled tubes and composite 

sections in general, is to reflect the work done in terms of calibrating the 
numerical models and to justify the validity of the results.   

 
⨳⨳⨳ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter IV 
Considerations about the numerical analysis 
 

 122 

 

Chapter IV 
 

CONSIDERATIONS ABOUT THE NUMERICAL ANALYSIS 
 
 
 
 
4.1 The simulation method. 
 
     4.1.1 The finite element method. 
     4.1.2 Software used in the analysis. 
 
4.2 Models proposed in this investigation. 
 
     4.2.1 Preliminary elastic models to check geometry. 
     4.2.2 Models used to calibrate material nonlinearities. 
     4.2.3 Models used to compare FE results with experimental tests. 
     4.2.4 Definitive models. 
 
4.3 General features of the models. 
 
     4.3.1 Explicit formulation for dynamic analyses. 
     4.3.2 Element types used in the analysis. 
        4.3.2.1 Element types used in models done by ANSYS. 
        4.3.2.2 Element types used in models done by ABAQUS. 
 
4.4 Calibration of material models used in the analysis. 
 
     4.4.1 Material model used for steel. 
        4.4.1.1 General parameters adopted for steel. 
        4.4.1.2 Plasticity model used for steel. 
     4.4.2 Material models used for concrete. 
        4.4.2.1 General parameters adopted for concrete. 
        4.4.2.2 Previous considerations and preliminary models. 
        4.4.2.3 Elastic perfectly-plastic model with tension cutoff for concrete. 
        4.4.2.4 Damaged Plasticity Model for concrete [DPM] 
     4.4.3 Contact model to reproduce the interaction between the two components.  
        4.4.3.1 Normal contact. 
        4.4.3.1 Tangential contact. 
 
4.5 Calibration of geometrical features of the models. 
 
     4.5.1 Calibration of the mesh size. 
     4.5.2 Calibration of boundary conditions. 
     4.5.3 Calibration of the domain of the model. 
        4.5.3.1 Calibration of the size of the specimen. 
        4.5.3.2 Calibration of the symmetry condition. 
     4.5.4 Calibration of the loading conditions. 
 



Chapter IV 
Considerations about the numerical analysis 

 
 

 123 

4.1 The simulation method. 
 
This investigation has been carried out by means of numerical analyses only. Thus, the need of 
calibrating the proposed models with real experimental tests has been assumed as necessary.  
However, an experimental campaign is also proposed as a further objective in order to compare 
and validate the results obtained in this investigation. 
 
4.1.1 The finite element method [FEM]. 
 
The method of analysis used in this work is the FEM [Finite Element Method]. This methodology of 
analysis uses numerical formulations to approximate real behaviors. It is important to remember 
that this method provides only an approximation to real problems; therefore, the obtained results 
come from a simulation of material behaviors, and not from reality. Due to complexity of the 
method and the sensibility of the results to the input data, it is strictly necessary to carry out a 
preliminary process of calibration of the models. 
 
The FE method is the most powerful tool nowadays in order to analyze the behavior of structural 
elements or physical environments by means of simulation. With this purpose, a FE analysis 
requires an accurate discretization of the reality: this means a simplification of geometries and 
shapes into more or less dense meshes, formed by three-dimensional prismatic or tetrahedral 
elements. Each one of these elements disposes of a specific number of nodes, all them implemented 
in the general formulation of the problem, from which we are capable of obtaining the value of the 
resulting forces and displacements.  
 
With the aim of approximating the results to reality as maximum as possible, and in order to give 
veracity to the conclusions of this work, the calibration process of geometry and constitutive 
models is accurately described in this Chapter. All the variables which can have a direct effect on 
results have been analyzed in the following Sections, such as: the definition of the constitutive 
models for materials, the mesh size, the global size of specimens and the boundary conditions. 
 
4.1.2 Software used in the analysis. 
 
The software used is basically ANSYS, version 11, and ABAQUS version 6.10. During the initiation in 
modeling, the preliminary analyses were carried out in ANSYS, while the last ones have been done 
in ABAQUS, thanks to the possibilities of the model available for concrete in the latter1. However, 
both commercial products solve professionally any constitutive behavior. As it will be explained in 
further Sections, the fact of initiating the investigation with simple models in ANSYS has been 
extremely useful for this investigation. Previous analyses using elastic perfectly-plastic models for 
concrete have been done necessarily to understand the others. These models have become decisive 
in order to reproduce and comprehend the behavior of confined concrete, as they have provided 
not only conclusions to this Thesis, but also a different point of view to the final proposed models.  
 
Although any steel-concrete composite section can be modeled using ANSYS, it is really useful to 
dispose a constitutive material model for concrete that could take also the evolution of damage into 
account. ANSYS disposes of the element type SOLID65, which combined with the material model 
“concrete” is capable of reproducing the failure surface of the material by defining a crushing and 
cracking criteria2. However, the use of this constitutive model requires a complex calibration of 
nine different variables in order to define the mentioned yield surface, combined with the failure 
                                                                    
1 See Section 4.4.2.4 
2 See Section 4.4.2.2 



Chapter IV 
Considerations about the numerical analysis 
 

 124 

surface simultaneously. This can be relatively simple in case of flexural or tensile states –like for 
beam elements. Otherwise, the calibration of these variables may become really complex under 
states of large deformation axial loading. In this case, the difficulty will lie in matching the yield 
surface with the failure surface under compression, assuming that any small variation of the input 
data could vary their shape significantly. In addition, the lack of a damage evolutionary criterion in 
the “concrete” model of ANSYS leads directly to a bad reproduction of the post-peak3 behavior.  
 
Contrarily, ABAQUS disposes of another complex material model for concrete: “Damaged Plasticity 
for Concrete”, which allows reproducing with accurate precision the degradation process of 
concrete under compression [crushing] and the confinement effect under high hydrostatic states4. 
This model gives the possibility of reproducing the behavior of concrete much more precisely than 
the mentioned model “concrete” of ANSYS. This is the reason why this work has combined the two 
models, by using preferably the latter.  
 
4.2 Models proposed in this investigation. 
 
In the course of this investigation, and with the final purpose of obtaining results capable of giving 
reliable arguments to the initial hypothesis, different families of models have been done, depending 
on their finality, complexity and available processing hardware. 
 
4.2.1 Preliminary elastic models to check geometry. 
 
Previous to the definitive models for the final analysis, a set of different tests have been carried out 
in order to calibrate the behavior of confined concrete, really different from that under other states. 
These models have been also used to reproduce the interaction between both materials. The 
calibration of these starting models has employed the same time as the used for acquiring a 
minimum theoretical background about CFT behavior; it is really important that this process goes 
hand in hand in order to well understand the simulation used. A wrong definition of the input data 
would lead to a lack of contact between the two components involved, directly. 
 

 
 

Fig. IV.1.  First elastic models done in ANSYS. 
They have been used to verify the geometry and contact. 

 
 As it has been explained before, the first models were done in ANSYS –strictly in the elastic range, 
with the objective of detecting all the possible problems related with geometry and contact 
behavior. In these first models, only concrete was loaded to guarantee a correct bond between the 

                                                                    
3 Peak of load: Point of the load-strain diagram corresponding to the load-bearing capacity. 
4 See Section 4.4.2.4 
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two materials, thanks to its volumetric expansion. These models only worked with the assumption 
of this hypothesis, since while the elastic Poisson’s ratio for concrete ranges from 0.15 to 0.18, the 
corresponding value for steel is about 0.29. This fact implies that, in case of considering both 
components loaded together, the transversal deformation of the tube was always larger than the 
lateral expansion of the core; therefore, in this case the contact between them never appeared. 
 
This phenomenon can be easily justified through the following expression for lateral strain of a 
circular ring in the elastic range [see figure IV.2]: 
 

௧௥௔௡௦ߝ = ௟௢௡௚ߝ ·  (4.1) ߥ
  

If   ߝ௧௥௔௡௦ =
Δܴ
ܴ    being    ߝ௟௢௡௚ =

Δܮ
ܮ    , then: (4.2) 

 
Δܴ
ܴ =

Δܮ
ܮ ·  (4.3) ߥ

And, as a consequence: 
 

Δܴ =
Δܮ · ܴ
ܮ ·  (4.4) ߥ

 
being ܮ, the column length and ܴ, the radius of the section. 
 
Therefore, being the radius and the length equivalent, the largest transversal strain appears in the 
component with the largest elastic Poisson’s coefficient, ߥ [in this case the steel, with a value of 
0.29]. Even in further models where perfect-plasticity has been assumed, the Poisson’s ratio 
reached values of 0.49 in the two components simultaneously due to the plastic behavior of 
materials. However, lateral strains did not go beyond, as dilatacy was not considered. 
 
Then, in these preliminary models, the following condition was imposed: 
 

if   ߥୟ > ୡߥ       →       Δܴ′ > Δܴ (4.5) 
being: 

 ୟ Poisson’s ratio of steelߥ
 .ୡ Poisson’s ratio of concreteߥ
ܴ′ Inner radius of the steel tube. 
ܴ Radius of the concrete core. 

 

 
 

Fig. IV.2.  Mode of transversal deformation of the two components in the elastic range. 
Assuming νୟ = 0.29 and νୡ = 0.18, the contact between the two surfaces did never occur. 

R’ is the inner radius of the steel tube, and R the radius of the core; thus: ܴᇱ = ܴ. 
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Fig. IV.3.  Image of the existing gap between the two components. 
Results obtained from a preliminary elastic model, where the two components were simultaneously 

loaded. 
 
In figures IV.2 and IV.3, it can be noted how the two components never were in contact, so that the 
steel tube did not achieve to confine the core. This effect was caused by loading both components at 
the same time, and due to having defined the materials so that they were governed by their 
respective Poisson’s ratios only. As it has been explained before, really different was the response 
of the section by loading only concrete: under this assumption, only the core expanded 
transversally, guaranteeing this way full contact in the interface.   
 

 
 

Fig. IV.4.  Image of the two components fully in contact, thanks to loading only the core. 
In this case, both components got in contact as the unique one which really expanded laterally was 

the core, independently of the Poisson’s coefficients of both materials. 
 
The purpose of these preliminary models was to calibrate the geometry and the behavior of contact 
elements, in order to assure the numerical convergence before considering the full complexity of 
the material nonlinearities. It is important to point out that contact elements in the models imply 
automatically nonlinearities in the process. If the problem involves also geometrical or material 
nonlinearities, the achievement of numerical convergence may be a slow and gradual process, full 
of complexity.   
  
Once the model had enough numerical sturdiness [considering that the model and contact elements 
worked well assumed elastic], the following step in the process was to introduce the material 
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nonlinearities. The preliminary nonlinear constitutive models for steel and concrete are described 
in Sections 4.4.1 and 4.4.2.2 of this Chapter. The solution to the problem of volumetric expansion of 
concrete and the appearance of confinement effect is more complex than assuming only a yield 
criterion for concrete, as it can be derived from the following Sections.  
 
The major challenge in modeling has been to achieve a correct reproduction of the confinement 
effect of concrete by means of controlling the transversal expansion in both materials; this effect 
has to be calibrated through choosing the most suitable yield criterion for both cases, as it will be 
shown later. 
 
4.2.2 Models used to calibrate material nonlinearities.  
 
With the objective of verifying the constitutive material models used in this investigation, specific 
models for validation purpose have been done. The input data used to determine the constitutive 
models have been calibrated independently, according to literature.  
 
The calibration of the model considered for steel is definitively much simpler than the model for 
concrete, since it is really well-described by literature and it does not show important variations. Its 
similar response under tension as well as compression, and its yielding behavior defined by a 
perfect-plasticity criterion5 lead to a model controlled by few variables. The calibration has been 
done by using a cylindrical specimen of 150 mm width and 300 mm height, with the two bases 
restricted against rotation and deformation [Fig. IV.5]. These analyses have been done under pure 
tension and pure compression states, up to the collapse in all cases. Only steels S275 and S355 have 
been used. 
 
Contrarily, the calibration of concrete is really more complex than in case of steel, being really 
crucial due to the intrinsic complexity of its behavior. Final results of this work depend on the 
accuracy of the material model used for concrete directly. Since two constitutive models have been 
used for concrete in this investigation6, the calibration has been done for the two, and especially for 
those situations involving high hydrostatic pressures [apart from uniaxial and biaxial states]. In 
order to compare the results obtained from calibration with those coming from experimental tests 
and literature, a cubic specimen of 150 mm width has been used.  
 

 
[a]                                                    [b] 

Fig. IV.5.  Specimens used for the calibration of material models. 
Specimen for concrete [a] and specimen for steel [b]. 

 

                                                                    
5 See Section 4.4.2.3 
6 See Section 4.4.2 
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To calibrate the curves obtained from this verification, the expression (2.71) proposed by del Viso 
and Carmona7 (Viso, et al., 2008) has been used. This expression is useful for determining the 
correspondence between cylindrical and cubic specimens, as the compressive strength of concrete 
always refers to the cylindrical samples. 
 
As it will be explained in Section 4.4.2, the two constitutive models used in this investigation have 
been verified by using the two different available numerical tools, ANSYS and ABAQUS. On the one 
hand, the increment of compressive strength under different hydrostatic states has been analyzed 
and on the other hand, those parameters which govern dilatancy in plasticity have been also 
calibrated; parameters which furthermore become crucial, assuming that transversal strains are 
decisive to determine the confinement effect. 
 
4.2.3 Models used to compare the FE results with experimental tests.  
 
Once the specimens used to calibrate the constitutive models for steel and concrete were accepted, 
a set of different specimens were also analyzed in order to compare the FE results with those 
obtained from experimental tests [assuming the same conditions as in the experiments]. These 
models were made by using the verified geometry and the constitutive material models, previously 
calibrated. The FE simulation of the experimental tests has been done by following the same 
boundary and loading conditions exactly, in order to obtain the most accurate results as possible. 
This was the last step before facing the complete analysis, being strictly necessary in a numerical 
investigation; the importance of this phase is especially decisive in this work, since final 
conclusions not only depend on the behavior of the two materials, but also on the interaction 
between them. For verification purpose, eight different specimens with different D/t ratios and 
different material strengths have been modeled: four circular and four square-shaped CFT sections, 
according to those used by Susantha together with Ge (Susanta, et al., 2000)8. Obtained results have 
been compared with those coming from experimental tests [Fig. IV.6].  
 
As it will be explained in further Sections, the main objective of these analyses is to determine the 
accuracy of the FE curves compared with the experimental tests, especially in the post-peak period 
up to strains of 4%-5%. Both confinement and softening periods have been calibrated using these 
eight different specimens, tested before by several researchers. However, one extra section [this 
time, CFDST9] has also been modeled in order to calibrate not only the softening behavior, but also 
the large deformation axial loading response [for strains up to 25%]. These calibration has been 
done according to the experimental tests carried out by Zhao  (Zhao, et al., 2010) [see Chapter V]. 
 
Besides, most of these analyses have been done by following the two different constitutive models 
mentioned for concrete, and using the two different commercial products, ANSYS and ABAQUS. 
These models have been also very useful for determining important factors, such as the definitive 
mesh size or the global domain of the models; all the results of these analyses are shown in the first 
Section of Chapter V. 
 

                                                                    
7 See Section 2.2.8.1 
8 See Chapter V. 
9 CFDST: Concrete-filled Double Skin Tube Section 
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Fig. IV.6.  Different examples of the models used for verifying the FE results with real tests. 
All they have been strictly modeled by following the real conditions of the tests. 

 
4.2.4 Definitive models. 
 
Finally, and after having calibrated the preliminary models up to matching the FE curves with the 
experimental ones, the definitive models have been done in order to obtain final conclusions of this 
investigation. Although more than 30 different specimens have been solved, with different D/t 
ratios and different material strengths, the analysis which has been carried out in this investigation 
pretends to be more a descriptive study than a parametric analysis, owing to the complexity of the 
models and the processing requirements. As it will be explained in Chapter VI, five different 
reticulated typologies have been analyzed: R2, R4, R9, C2 and C4, depending on the shape of the 
outer tube and the number of inner cells [see Fig. IV.7]. Two families of specimens [of 5 mm and 10 
mm of outer wall-thickness] belonging to each different typology have been analyzed, by changing 
the strength of the concrete filling [ranging from 30 to 50MPa], [see Chapter VI]. 
 
Ten more extra CFT sections have been also analyzed, equivalent in area of steel and concrete, but 
without stiffening plates. Main objective of analyzing these 10 equivalent sections, two specimens 
corresponding to each typology by couples of 5 and 10 mm plate thickness, is to determine the gain 
in strength and ductility provided by stiffening circular and square CFT sections. 
 
These models and their derived conclusions constitute the main body of this investigation; owing to 
the required complexity and precision, these models have been developed entirely in ABAQUS 
software, assuming that the material model “Concrete Damaged Plasticity” available in this software 
is the most suitable to reproduce the behavior of the concrete filling in CFT sections. 
 

 
 

Fig. IV.7.  Models of the definitive typologies analyzed 
A total of 40 different specimens have been analyzed. 
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4.3 General features of the models. 
 
The models proposed in this research show a combination of three different nonlinearities: those 
coming from the constitutive material models, those coming from geometry [local buckling] and 
finally, those coming from contact elements. In order to solve faithfully the problem, two different 
formulations have been used: on the one hand, preliminary models were analyzed using a static 
analysis based on the Newton-Rapshon algorithm. This formulation solves faithfully any kind of 
geometrical or material nonlinear problem, but it implies an important effort in defining the loading 
step size to manage the convergence of the problem. In case of having a large amount of nodes and 
elements subjected to geometrical nonlinearities and contact surfaces, this procedure becomes 
quite impractical. For this reason, the definitive models have been processed by using an explicit 
dynamic formulation, although the problems proposed are actually, static. Then, this methodology 
can be summarized in solving static problems by using dynamic formulations: the equation that 
governs displacements in this case is a second-order differential equation, which represents the 
natural equilibrium of elastic forces, damping forces and inertial forces.    
 
4.3.1 Explicit formulation for dynamic analyses. 
 
As it has been mentioned in the previous paragraph, the explicit formulation uses dynamic concepts 
such as velocity and acceleration, but it can also be used to solve static problems. The equations of 
motion for the body are integrated using the explicit central difference integration rule: 
 

ቀ௜ାݑ̇
ଵ
ଶቁ = ቀ௜ାݑ̇

ଵ
ଶቁ +

Δݐ(௜ାଵ) + Δݐ(௜)

2  (௜)ݑ̈
(4.6) 

 

(௜ାଵ)ݑ = (௜)ݑ + Δݐ(௜ାଵ) +  (4.7) (௜ାଵଶ)ݑ̇

 
Being u the displacement, ̇ݑ the velocity and ̈ݑ the acceleration. The subscript (݅) refers to the 
increment number, and (݅ + 1 2⁄ ) and (݅ − 1 2⁄ ) refer to midincrement values. The central 
difference integration operator is explicit in that the kinematic can be advanced using known values 
of  ̇ݑ(௜ିଵ ଶ⁄ ) and ̈ݑ(௜) from the previous increment. The explicit integration rule is simple but by itself 
does not provide the computational efficiency associated with the explicit dynamics procedure. The 
key to the computational efficiency of the explicit procedure is the use of diagonal element mass 
matrices, as the inversion of the mass matrix that is used in the computation for the accelerations at 
the beginning of the increment is triaxial: 
 

(௜)ݑ̈ = Mିଵ · ൫F(௜) − I(௜)൯ (4.8) 

 
where M is the diagonal lumped mass matrix, F is the applied load vector, and I is the internal force 
vector. The explicit procedure requires no iterations and no tangent stiffness matrix. 
 

Special treatment of the mean velocities ̇ݑቀ௜ା
భ
మቁ ቀ௜ିݑ̇ , 

భ
మቁ etc. is required for initial conditions, certain 

constraints, and results. For presentation of results, the state velocities are stored as a linear 
interpolation of the mean velocities: 
 

(௜ାଵ)ݑ = ቀ௜ାݑ̇
ଵ
ଶቁ +

1
2Δt(୧ାଵ)ü(୧ାଵ) (4.9) 
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The central difference operator is not self-starting because the value of the mean velocity ̇ݑቀ௜ି
భ
మቁ 

needs to be defined. The initial values (at time ݐ = 0) of velocity and acceleration are set to zero, 
unless they are previously specified. The following condition can be asserted: 
 

ቀାݑ̇
ଵ
ଶቁ = (଴)ݑ̇ +

Δt(ଵ)

2 ü(଴) 
(4.10) 

 

And finally, the substitution of this expression into the update expression for ̇ݑቀ௜ା
భ
మቁ yields the 

following definition of ̇ݑቀି
భ
మቁ: 

ቀିݑ̇
ଵ
ଶቁ = (଴)ݑ̇ −

Δt(଴)

2 ü(଴) 
(4.11) 

 
 
4.3.2 Element types used in the analysis. 
 
Element types in a FE analysis define the typology of the problem. The elements used in this 
investigation have been chosen according to the material nonlinearities, the complexity of the 
geometry and the requirements needed by the analysis. It is very important to do a good election of 
the element type for each component, in order to obtain the most accurate results as possible and 
also to avoid distortions. Since each commercial software product disposes a different collection of 
element types, the elements used in this work for each case are mentioned in the following two 
Sections. 
 
4.3.2.1 Element types used in models done by ANSYS. 
 
In models done by ANSYS software, the element type SOLID65 for concrete and the element type 
SHELL181 for steel have been chosen, according to literature (Malone, 1998), (Kachlakev, 2001); 
besides, two other additional contact types have been also implemented in the analysis: TARGE170 
and CONTA174, according to (Ferrer Ballester, 2005). 
 
The well-known element SOLID65 -widely used and commented in literature-, is a solid and three-
dimensional element of eight nodes and three degrees of freedom. It works with those constitutive 
models specific for concrete, and also available in ANSYS, such as DP+CONC or MISO+CONC10. This 
element type allows considering cracking and crushing features as well as other characteristic 
behaviors of concrete such as creep, by using the specific constitutive model known as “concrete” 
[Fig. IV.8].  
 

 
 

Fig. IV.8.  Element type SOLID65 for concrete core. 

                                                                    
10 See Sections 4.4.2.2 and 4.4.2.3 
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It is a three-dimensional brick element with eight nodes and three degrees of freedom. 
 
For modeling steel plates and shells, the element type SHELL181 is commonly used; this ET11 is a 
four-node element, with six degrees of freedom at each node. It is suitable for problems involving 
large deformations and plasticity behaviors, and it considers the change in the wall-thickness 
during the loading process [Fig. IV.9].  
 

 
 

Fig. IV.9.  Element type SHELL181 for the steel tube. 
It is a three-dimensional shell element with four nodes and six degrees of freedom. 

 
Finally, for contact surfaces, the elements TARGE170 and CONTA174 have been used for the target 
[sliding object] and the contact [surface where the target slides on], respectively [Fig. IV.10]. These 
two elements allow the possibility of defining intermediate nodes [second order surfaces] and 
analyses involving large deformations. Besides, they do not have geometric restrictions [in the case 
of this investigation, they work perfectly for cylindrical surfaces] and require a few number of 
elements -a fact that reduces notably the processing requirements. 
 

 
a)                                                                           b) 

 
Fig. IV.10  Element types TARGE170 (a) and CONTA174 (b) 

The first is used for the sliding object [steel tube], while the latter is used for the target surface 
[concrete core]. 

 
It is important to point out that the election of the target and the object in each case is very 
important to guarantee the accuracy of the obtained results. For the case proposed in this 
investigation, the target corresponds to the steel tube [the sliding component] while the object 
coincides with concrete core [the supporting component]. It is important to define accurately the 
normal directions of each contact element in every different case, one opposite to the other. In case 
of not matching these axes, the contact does not behave properly. 
                                                                    
11 Element Type 
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4.3.2.2 Element types used in models done by ABAQUS. 
 
A unique three-dimensional brick element, called C3D8, has been used for those models done by 
ABAQUS. Both components -steel and concrete- have been modeled using the same element in 
order to get more realistic simulations, and to obtain more expressive deformed shapes. Although it 
would have been also possible to consider shell elements such as S4R for the steel tube (Xiong, et 
al., 2007), the fact of modeling also the tubes with solid elements allow a clearer representation of 
local buckling and, therefore, the mode of collapse. This criterion has been chosen thanks to the 
available processing hardware and the numerical possibilities of the element C3D8, a product by 
Simulia© [C3D8 is prepared for three-dimensional problems, involving plasticity behaviors and 
large strains]. However, it is true that the fact of modeling a plate with solid elements [more similar 
to a “shell” than to a “solid”] requires really fine meshes, with two or more elements in the wall-
thickness at least12, in order to consider the stress variations across the wall-thickness. 
 
To finally decide the appropriate element types for each component, some existing literature 
devoted to similar numerical analyses about CFT sections has been used, such as the study carried 
out by Starossek and his collaborators (Starossek, et al., 2008).  
 
As it has been already mentioned, element C3D8 is a three-dimensional brick element of eight 
nodes and three degrees of freedom at each node [Fig. IV.11]. This element is suitable for linear 
analyses and also for more complex nonlinear processes involving contacts, plasticity and large 
deformations. The reduced integration is not convenient in this analysis, since the detection of the 
variations of stress across the wall-thickness becomes crucial during local buckling; in case of using 
element types with reduced integration [in this case would be C3D8R], the measurement of stress 
would be reduced into one point per element. 

 
Fig. IV.11  Element type C3D8 used for concrete core and steel tube. 

It is a three-dimensional element of eight nodes and three degrees of freedom. 
 
It is important to point out that, apart from the qualities mentioned before about the element C3D8, 
this element also shows a notable capacity of remaining undistorted; this is one of the reasons why 
the size of the meshes proposed is relatively fine, compared with the global size of the specimens 
tested [see Section 4.6.1]. The three degrees of freedom at each node of the element C3D8, are the 
ones corresponding to a three-dimensional solid; ݑ,  ;11ߪ] and its resulting stresses are  S11 ,ݓ,߭
principal normal stress 11], S22 [22ߪ; lateral normal stress 22], S33 [33ߪ; lateral normal stress 33], 
S12 [߬12; tangential stress 12], S23 [߬23; tangential stress 23] y S13 [߬13; tangential stress 13]. 
                                                                    
12 see Section 4.6.1 
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4.4 Material models used in the analysis. 
 
Different material behaviors have been defined for the analysis carried out in this work. Nonlinear 
models have been proposed for both the steel and concrete, with different plasticity criteria for 
each material, according to the final purpose of the models. 
 
4.4.1 Material model used for steel.  
 
Steel is an isotropic material, characterized by having an extended elastic range and with an 
important ductility before the failure [See Section 2.1]. In an advanced plastic strain range after 
yielding, the material shows a hardening phase by reaching stresses up to 40% higher than its yield 
limit stress. Its plastic behavior can be perfectly defined through the von Mises yield criterion and 
its cylindrical surface [see Section 2.1.4], with an important growth during the hardening period 
from ௬݂ to 1.40 ௬݂13. 
 
4.4.1.1 General parameters adopted for steel. 
 
The representing values for the stress-strain curve of steel have been adopted from literature. The 
uniaxial stress-strain curve for structural steel has been studied by several researchers in the past, 
being nowadays really well-known by the engineering community14. 
 

 
 

Fig. IV.12  Idealized stress-strain curve for steel. 
(Kuranovas, et al., 2009) 

 
The values for the common mechanical parameters [such as the Young Modulus and the Poisson’s 
ratio in the first elastic range, up to point b of figure IV.12], are the parameters mentioned in 
expressions (2.1) and (2.2) of Section 2.1.1: 210000 MPa for the Young Modulus and 0.283 for the 
elastic Poisson’s ratio.  
 
In reference to the uniaxial stress-strain diagram, it is important to point out that for large 
deformation axial loading analyses of ductile materials, it is crucial to consider the true stress-
strain curve instead of the usual engineering one. The true stress-strain curve takes a slightly 

                                                                    
13 Being ௬݂ the yield limit stress. 
14 See Section 2.1.4 
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different form, and it is also known as the “actual or natural stress curve” in figure IV.13. For strains 
over 2.5%, the stress tends to grow up indefinitely with no descent: 
 

 
Fig. IV.13  Comparison between the actual [true] and the apparent [engineering] stress-

strain curves for structural steel. 
Important variation is observed in advanced strain ranges [curves for uniaxial tension]. 

 
This difference is caused by the important reduction [or increment] of transversal area that the 
tested specimen shows, subjected to large deformation axial loading and owing to the effect of its 
Poisson’s coefficient [see Fig. IV.14]. Usually, strain from a uniaxial compressive or tensile test can 
be calculated through: 
 

ߝ =
Lୢୣ୤୭୰୫ୣୢ − L୧୬୧୲୧ୟ୪

L୧୬୧୲୧ୟ୪
 (4.12) 

being: 
 

Lୢୣ୤୭୰୫ୣୢ Length of the deformed specimen. 
L୧୬୧୲୧ୟ୪ Original length of the undeformed specimen. 

 
By dividing the deformation in infinitesimal increments, ݀ܮ, then we get the true strain: 
  

݀߳ =
ܮ݀
ܮ  (4.13) 

 
And the total true strain for a change of the gauge length from L୧୬୧୲୧ୟ୪  to Lୢୣ୤୭୰୫ୣୢ is: 
 

߳ = න ݀߳
க

଴
= ln

Lୢୣ୤୭୰୫ୣୢ
L୧୬୧୲୧ୟ୪

 
(4.14) 

 
This last expression defines the true strain, and takes also into account the change in the gauge 
length. Therefore, as it has been expressed by Ling (Ling, 1996), we can obtain a relation between 
the true and the engineering strains under tension, through the expressions (4.12) and (4.14): 
 

߳ = ln(1 +  (4.15) (ߝ
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Then, knowing that the stress of a body can be obtained through the following expression (4.16): 
 

ாߪ =
P

A଴
 

(4.16) 

 
it can be quickly observed that for large strain ratios it becomes also necessary to update the value 
of stress, as the cross-sectional area of the tested specimen has changed notably. Then, if during a 
deformation the volume of the specimen remains constant, the true stress and the engineering 
stress can be related again through the following expression: 
 

்ߪ = ா(1ߪ +  (4.17) (ߝ

 

 
a)                                                          b) 
 

Fig. IV.14  Growth and reduction of cross-sectional area in advanced strains. 
True stress varies from the engineering one in large strain ratios. [a] compression, [b] tension 

 
Obviously, for the case of pure compression, the expressions (4.15) and (4.17) change the positive 
by a negative and then, the true stress is slightly lower than the apparent. This is caused by an 
increment of the transversal area of the sample in the middle height, contrary to the case of being 
subjected to tension. Owing to the need of analyzing specimens under large deformation axial 
loading [up to 25% strains in some cases], the true stress-strain curve for steel S355 in 
compression has been adopted. This curve is very similar to the apparent, but with a smoother 
decrease of stress respect to the first during the hardening period.  
 
4.4.1.2 Plasticity model used for steel. 
 
A common constitutive model with two different variations, according to the needed accuracy, has 
been adopted in this investigation for steel: they are basically formed by a plastic hardening curve, 
combined with the von Mises yield Criterion. Depending on the requirements of each specific 
analysis, the Bilinear Isotropic Hardening [BISO] or the Multilinear Isotropic Hardening [MISO] has 
been used; the first one is based on a bilinear stress-strain curve, with no descending branch after 
yielding, and the second one is based on a multilinear stress-strain curve, defined by a significant 
yield plateau and an important hardening period. The first model is essentially an elastic perfectly-
plastic model, whereby the collapse does never occur, while the latter is defined by an evolutionary 
stress-strain curve for the plastic hardening period. 
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Fig. IV.15  Plastic hardening curves for the bilinear model [a] and the multilinear model [b] 

 
The use of the first model [much simpler than the latter] simplifies the mathematical convergence 
of the problem notably, since it is only based on two different linear functions. Then, in the elastic 
perfectly-plastic models which are presented in Chapter V, the first bilinear model has been used. 
For the rest, a multilinear curve has been considered instead. Needless to clarify that plasticity in 
both cases is always based on the von Mises yield criterion15.  
 
To summarize, the code introduced in ANSYS to define the constitutive model used for steel [MISO, 
Multilinear isotropic hardening] takes the following form: 
 
!Multilinear Isotropic Hardening Model for steel. 
!General Parameters.  
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,2,,E  
MPDATA,PRXY,2,,nu   
TB,MISO,2,1,6,0  
TBTEMP,0 
TBPT,,0,0 
 
!Plastic Hardening curve.    
TBPT,,0.8*fy/210000,0.8*fy   
TBPT,,fy/210000,fy   
TBPT,,0.05,1.005*fy  
TBPT,,0.1,1.006*fy 
TBPT,,0.125,1.13*fy 
TBPT,,0.15,1.27*fy 
TBPT,,0.2,fy    
TBPT,,0.25,0.9*fy 
TBPT,,0.4,0.35*fy 
 
where: 

fy Yield limit stress 
E Elastic Young Modulus 
nu Elastic Poisson’s coefficient 

 
The same model defined in ABAQUS for S355 steel, is introduced through the following code: 
                                                                    
15 widely explained in Chapter II. 
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*STEEL S355 
*Material, name=Steel 
*Density 
 7.85e-05, 
*Elastic 
210000., 0.29 
*Plastic 
284.,      0. 
355., 0.00169 
356.,    0.05 
357.,     0.1 
402.,    0.125 
450.,    0.15 
350.,    0.25 
100.,    0.4  
 
Calibration of the constitutive model for steel. 
 
For verification purpose, a cylindrical specimen of 150 mm width and 300 mm height, according to 
Section 4.2.2, has been subjected to pure tension and compression tests. The results obtained can 
be observed in the following diagrams: 

 
Fig. IV.16  Stress-strain diagrams for steel of S355 and S275 strength. 

Curves obtained using ABAQUS under tension [right] and compression [left]. 
 
The behavior of steel can be considered almost symmetric under tension than under compression 
for low deformation ratios, as it can be seen from results obtained in the calibration process of 
figure IV.16. However, the large deformation axial response of steel is slightly different in each case, 
owing to the variation of the cross-sectional area. A large deformation axial test has been done, by 
using the same cylindrical specimen and assuming the apparent stress-strain curve first, and the 
true stress-strain curve later. The shape of the curves obtained is shown in figure IV.17: 



Chapter IV 
Considerations about the numerical analysis 

 
 

 139 

 
Fig. IV.17  Curves obtained using the true stress and the apparent stress-strain diagrams. 

Curves obtained from pure compression of a cylindrical simple of 150mm width. 
 
The deformed shape before the collapse of the sample under tension is really different from the 
ultimate shape under compression, as it can be seen in figure IV.18. While in the first case the 
specimen suffers a drastic reduction of area in the middle-height, in the second case, the effects of 
the Poisson’s ratio lead exactly to the opposite phenomenon. This is the reason why it is really 
important to take these increments or decrements into account, in order to reproduce the material 
behavior faithfully. 

 
[a]                                     [b] 

 
Fig. IV.18  Deformed shapes under tension [a] and under compression [b]. 

Tests of 300 mm height and 150 mm width specimens. 
 
 
The deformed shapes of the tested specimens shown in Figure IV.18 a) and b) correspond to pure 
tension and compression tests. These tests have been done by embedding both edges and limiting 
all displacements and rotations to reproduce more reliably the real conditions of an experiment. 
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4.4.2 Material models used for concrete. 
 
Due to the cohesive essence of concrete, this is a material which tends more to plasticity and 
nonlinearity than to a linear elastic behavior16. The plastic range in concrete is characterized for 
being extended and especially sensitive to the hydrostatic stress states -as in case of other cohesive 
materials. During the plastic hardening, concrete shows a progressive loss of stiffness which is 
converted into a capacity of energy absorption through the compressive damage -called crushing.  
  
Besides, concrete is a material that clearly responds differently under tension that under 
compression. On the one hand, the description of the material response under tension requires the 
assumption of low strengths and complex cracking patterns; on the other hand, the definition of the 
evolutionary hardening law under compression may be quite complex since it is based on the 
combination of both yield and failure surfaces in the three-dimensional stress space.   
  
As it has been mentioned before, this investigation has been following a gradual process to be 
capable of understanding the plastic behavior of concrete under high hydrostatic states. This is the 
reason why preliminary models were done using constitutive models based on perfect-plasticity 
[such as the Drucker-Praguer yield criterion], and the rest were done using more complex damaged 
plasticity models. The fact of calibrating both material models to solve strictly the same problems 
and to compare the results with the experimental curves, is also one of the most interesting 
purposes of this investigation. 
 
4.4.2.1 General parameters adopted for concrete. 
 
The stress-strain curves and the maximum compressive strengths of concrete have been taken from 
those proposed in the American ACI17 code, coming from multiple analytical and experimental 
studies carried out by different researchers such as (Popovics, 1973), (Martinez, et al., 1982) and 
(Ahmad, et al., 1985). These curves summarize all their contributions in reference to the initial 
elastic modulus and the softening descending branch of uniaxial compression tests.  
 
These curves have been chosen to define the constitutive models for concrete in this investigation, 
due to their precision and veracity [for all concrete strengths of 20, 30, 40 and 50 MPa], according 
to figure IV.19. It is well-known that those concretes with lower resistances [30 MPa] show an 
important ductility ratio, compared with those characterized by high strengths. As higher is the 
characteristic strength of a concrete, lower is its residual stress after softening. 
 
As it will be explained in further Sections, the simplified stress-strain curves used in the material 
models for concrete to describe its uniaxial compressive response coincide with the curves 
proposed in the ACI American Code. These curves represent the complete stress-strain diagrams of 
different concretes, under tension and also compression. They are represented in the following 
figure IV.19 shown below: 

                                                                    
16 See Section 2.2.2 
17 State of the Art Report on High-Strength Concrete (ACI 363R-92) 
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Fig. IV.19  Uniaxial stress-strain curves coming from experimental tests. 

Curves proposed by the State of the Art Report on High-Strength Concrete (ACI 363R-92) 
 
Mechanical parameters considered for the elastic range of concrete are the initial elastic modulus 
[up to stresses of 50% of the ௖݂௞] and the elastic Poisson’s ratio, according to Section 2.2.1 and 
(Husem, et al., 2007). Assuming that the elastic Poisson’s ratio for stresses under 70% of ௖݂௞ is a 
constant value between 0.15 and 0.20 for any concrete strength, a value of 0.18 has been assumed 
for all cases. For the initial elastic modulus, the simplified expression (4.18) proposed in the ACI 
code (ACI, 1999) has been used: 
 

௖ܧ = 4700 · ඥ ௖݂௞ (4.18) 
  
 
4.4.2.2 Previous considerations and preliminary models. 
 
ANSYS provides a complex model to simulate the behavior of concrete which combines a yield 
surface18 with a failure criterion, in order to limit the resistant capabilities under different loading 
conditions. This combination depends on nine different parameters which must be calibrated 
separately, especially in cases of high hydrostatic pressures. On the one hand, the yield surface 
                                                                    
18 It is based on the failure surface defined by William Warnke. 
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determines the plastic behavior of the material, while on the other hand the failure criteria limits 
the maximum stress at specific strain values for crushing under compression and cracking under 
tension. 
 
As it has been mentioned, the “Concrete” constitutive model of ANSYS is defined by a collection of 
nine different parameters which must be calibrated separately, or adopted from other previous 
investigations instead. The calibration must be done for each stress state, and especially for those 
cases involving high hydrostatic pressures. The nine coefficients and their accepted values19 are 
shown in Table IV.1: 
 
  Table IV.1. Variables needed to define the material model concrete. 

Num.  Definition of the variable Accepted value 

    
1  Shear transfer coefficients for an open crack 0.5 

2  Shear transfer coefficients for an closed crack 0.9 

3 ௧݂  Ultimate uniaxial tensile strength 0.09 ∗ ௖݂  

4 ௖݂ Ultimate uniaxial compressive strength ௖݂ 

5 ௖݂௕ Ultimate biaxial compressive strength 1.20 ∗ ௖݂  

 ℎ Ambient hydrostatic pressure Hydr. Stress Stateߪ 6

7 ଵ݂ Ultimate compressive strength for a state of biaxial 
compression superimposed on hydrostatic stress 
state 

1.45 ∗ ௖݂  

8 ଶ݂  Ultimate compressive strength for a state of uniaxial 
compression superimposed on hydrostatic stress 
state 

1.725 ∗ ௖݂  

9  Stiffness multiplier for cracked tensile condition 0.6 

 
Two cross-sectional planes of the failure surface used by the constitutive model “concrete” –based 
on the William Warnke criterion- are shown in figure IV.20, by matching five of the nine parameters 
defined before: 

 
 

Fig. IV.20  Cross-sections of the William-Warnke failure surface. 
Graphical description of five of the parameters needed to define the constitutive model Concrete. 

 
According to some literature about modeling concrete (Rangel Paes, 2003), first preliminary 
models have been analized by using different material models existing in ANSYS. Since the 
minimum possible failure surface can be defined through two parameters [ ௧݂ , ௖݂] only, the first and 
simplest material model used for concrete in this analysis is CONC+MISO. This model consists in a 
combination of the simplified failure criteria of the model “concrete” with a hardening stress-strain 
                                                                    
19 Ansys Theory Manual, (Kohnke, 2001). 
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curve defined by the Multilinear Isotropic Hardening [MISO]. It is curious to see how several studies 
focused on concrete have used this combination, although that MISO follows the von Mises yield 
criterion. Note that this constitutive model coincides with the one used for steel: 
 

 
Fig. IV.21 MISO model  [Multilinear Isotropic Hardening] 

The von Mises elliptical curve grows up concentrically. 
 
For most numerical analyses involving concrete, in which the hydrostatic stress state is not really 
significant [such as the case of beam elements], the definition of concrete by using this combination 
may be enough reliable to reproduce its plastic behavior. 
 
Thus, using the CONC+MISO combination for concrete, parameters 3 and 4 of Table IV.1 have been 
the only defined values in order to determine the maximum uniaxial tensile and compressive 
stresses. These parameters have been combined with a multilinear hardening stress-strain curve in 
order to describe the softening behavior beyond the peak of load. Since the von Mises cylindrical 
yield surface is not sensitive to the hydrostatic stress state, the volumetric expansion of concrete 
has not occurred in these preliminary models. Concrete subjected to high compressive loads tends 
to expand much more than lateral deformation predicted by its theoretical plastic Poisson’s ratio. 
This expansion is governed by dilatancy, as a consequence of the internal microcracking20. 
 
From results obtained, it can be concluded that the fact of using a model such as CONC+MISO for 
concrete is quite hazardous for those cases involving confinement. As lateral expansion of concrete 
is not faithfully reproduced due to the implementation of a cylindrical yield surface, the concrete of 
the core does not contact the tube, and confinement effect does not take place [see Section 4.2.1]. 
The code used to define this preliminary constitutive model for concrete in ANSYS [CONC+MISO] is 
the following: 
 
!CONC+MISO model for concrete. 
!General Elastic Parameters. 
MPTEMP,,,,,,,, 
MPTEMP,1,0 
MPDATA,EX,1,,Ec 
MPDATA,PRXY,1,,Nu 
! 
!Plastic hardening stress-strain curve for concrete [MISO] 
TB,MISO,1,1,5, 
                                                                    
20 the apparent Poisson’s ratio reaches values well above its maximum plastic value of 0.49, even up to 

0.80-1.00, see Chapter II. 
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TBTEMP,0 
TBPT,,0.0005,fc*0.5 
TBPT,,0.001,fc*0.7 
TBPT,,0.0015,fc*0.85 
TBPT,,0.002,fc 
TBPT,,0.003,fc*0.8 
! 
!Failure criteria [CONC] 
TB,CONC,1,1,9, 
TBTEMP,0 
TBDATA,,.5,.9,ft,fck,, 
TBDATA,,,,1,,, 
MPTEMP,,,,,,,, 
MPTEMP,1,0 
 
In the following figure [Fig. IV.22], the deformed shape of concrete from one of these preliminary 
analyses is shown, by using the CONC+MISO model. Stresses reached by concrete coincide with its 
maximum compressive strength, and no confinement effect is detected. This is caused by the use of 
a cylindrical yield surface, which is clearly not pressure-sensitive; thus, when concrete and steel 
yields they follow their respective Poisson’s ratio until a maximum value of 0.49, and the contact of 
both components does not occur. 
 

 
 

Fig. IV.22  Deformed shape of concrete core [concrete of 30MPa strength]. 
Preliminary model using the MISO+CONC for concrete. 

 
After having evaluated the CONC+MISO combination, the response of the material model concrete 
has been also analyzed alone, by using the William Warnke yield surface and calibrating all the nine 
variables mentioned in Table IV.1. Although these parameters are relatively well described in the 
literature for usual uniaxial states, no specific studies exist for cases involving high hydrostatic 
pressures. Actually, one of the parameters [number 6 in Table IV.1] curiously coincides with the 
hydrostatic stress state, a variable really difficult to be determined, especially when this state is 
variable (Rangel Paes, 2003). 
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4.4.2.3 Elastic perfectly-plastic model with tension cutoff for concrete. 
 
In order to guarantee the contact between the two components and, consequently, a suitable 
increment of strength provided by confinement effect, the combination CONC+MISO for concrete 
was discarded. Besides, the calibration of the nine variables of the constitutive model “concrete” 
results too complex for compressive states with high hydrostatic pressures. This is the reason why 
the next step in this investigation has been to change the MISO plasticity model -based on the von 
Mises cylindrical surface- by another one, based on the Drucker-Praguer yield criterion –by using a 
conical surface. The fact of changing the cylindrical surface by a conical one is necessary in order to 
analyze cohesive materials, as this way yielding can be clearly pressure-sensitive to the hydrostatic 
state. Then, the next natural step has been to analyze the model with the combination of “concrete” 
with the Drucker-Praguer yield criterion [CONC+DP]. This model is characterized for being elastic 
perfectly-plastic, neglecting the descending branch after yielding; this is just the reason why this 
combination does not require defining a hardening law in the plastic range. 
 
General features of the model. 
 
As it has been previously explained in Section 2.2.6.2, the Drucker-Praguer yield criterion is one of 
the most suitable criteria to represent the plasticity behavior of concrete. Since it is based on a 
perfect conical surface, it is governed by its meridian which fully coincides with the Mohr-Coulomb 
linear function. The Mohr-Coulomb Criterion is defined by two variables: the internal friction angle 
(߮) and the cohesion (ܿ), according to the following expression21: 
 

߬ = ܿ − ߶݃ݐ ·  (2.33) ߪ
 
This way, the plastic behavior of the material subjected to high hydrostatic pressures can be easily 
predicted assuming that ߪଶ =  ଷ; in these cases, the compressive strength of concrete becomesߪ
considerably increased from ௖݂ to ௖݂௖, according to the postulates of Richart (Richart, et al., 1928): 
 

௖݂௖ = ௖݂ + ݉ ·  ௥ߪ
 

(2.19) 

The CONC+DP model works elastic up to the value of the maximum confined stress, ௖݂௖, from where 
it starts yielding perfectly-plastic, depending on lateral hydrostatic pressure. Since it refers to an 
elastic perfectly-plastic model, neither the descending branch nor the compressive failure of the 
material ever occurs. 

 
Fig. IV.23  Idealized stress-strain curve for concrete. 

Compressive response under hydrostatic pressure, according to perfect plasticity. 
 

                                                                    
21 see Section 2.2.6.1 
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This clearly elastic perfectly-plastic model is capable of reproducing the increment of compressive 
strength experimented by concrete faithfully, under confinement effect ( ௖݂௖), although plasticity 
becomes infinite in this assumption, with no compressive crushing stress. This is the reason why it 
is impossible to determine a value of crushing stress under compression, and why concrete does 
not show softening after the peak of load. On the one hand, the limit of stress under tension can be 
easily superimposed to the Drucker-Praguer yield criterion, by cutting the conical surface through a 
vertical plane coinciding with ௧݂ ; the combination of the Drucker-Praguer yield criterion with a 
minimum failure criterion defined by the parameter ௧݂ , constitutes the mentioned elastic-plastic 
model with tension cut-off, known as CONC+DP.  
 
As it can be observed in the code shown below, the maximum tensile stress of concrete has been 
limited to the 9% of the maximum compressive stress [expression (4.19)], coinciding with the third 
parameter of the nine necessary variables.  
 

௧݂ ≈ 0.09 ∗ ௖݂௞ 
 

(4.19) 

௖݂ ≈ −1 
 

(4.20) 

The problem appears in case of pretending to generalize the methodology used for tension, also for 
compression. The fact of limiting the compressive maximum strength through parameters 4, 5, 7 
and 8 becomes really impractical. The combination of the models CONC and DP in case of 
compression does not work really well, since it requires matching both yield and failure surfaces. 
This assumption becomes really complex if the aim is to succeed: the pretension of matching the 
value of  ௖݂௖ [corresponding to the confined compressive strength] with the crushing strength 
defined by the failure surface is very difficult, since it requires making coincide two surfaces which 
are extremely close and sensitive (Rangel Paes, 2003). The solution to this problem lies in using a 
model limited in tension, but voluntarily perfectly-plastic in compression -unlimited plasticity. 
Since the minimum possible failure surface is formed by the two parameters, ( ௖݂ , ௧݂), it is necessary 
to suppress the crushing capacity of the material by means of introducing the value -1 for the fourth 
parameter [expression (4.20)]. Then the code used for the CONC+DP model takes the following 
form: 
 
!DP+CONC model for concrete 
!General Parameters 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,Ecm 
MPDATA,PRXY,1,,0.2   
!* 
!Failure criteria definition 
TB,CONC,1,1,9,   
TBTEMP,0 
TBDATA,,,,0.09*fck,-1,,  
TBDATA,,,,,,,    
!* 
!Yield surface definition   
TB,DP,1,,,   
TBMODIF,1,1,c    
TBMODIF,1,2,fi   
TBMODIF,1,3,flow 
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where: 
c Cohesion 
fi Internal Friction Angle 
flow Flow Angle 

 
These three last variables become really important to calibrate the DP model, but the flow angle is 
especially decisive in case of modeling concrete-filled tubes, as this parameter governs the 
volumetric expansion of concrete. The flow angle determines the dilatancy, a parameter which is 
directly related to the volumetric expansion of the material in the plastic range. As it has been 
explained in Chapter II, the Poisson’s ratio of concrete in the elastic period ranges from 0.15 to 0.20, 
while in plasticity this interval can grow up to 0.49. From experimental results, it is known that 
reality is quite different from theory: in the last stages of loading, concrete behaves not more 
exactly as a continuum material owing to the internal microcracking; its volumetric expansion 
becomes really more important than the deformation, predicted by its plastic Poisson’s ratio. The 
apparent Poisson’s ratio can reach values of 0.90, even 1.00 in some cases, according to Susantha 
and Ge (Susanta, et al., 2000) and Allos (Allos, et al., 1981). 
 
Calibration of the determining variables. 
 
The FE Models are extremely sensitive to the input parameters considered; results coming from a 
FE analysis can be easily erroneous depending on the exactitude of the input data. This is the 
reason why the three parameters mentioned before have to be calibrated separately by means of 
experimental results. The tests used for this calibration are those carried out by Schneider 
(Schneider, 1998) and Hu (Hu, et al., 2003) for sections made of 50 MPa concrete. For sections 
made of 30 MPa concrete, the experiments carried out by O’Shea and Bridge (O'Shea, et al., 2000) 
have been also used. All these mentioned specimens are short columns, being their geometrical and 
mechanical properties summarized in table IV.2: 
 
Table IV.2. Material and geometrical features of the tests used. 

Section  D* t* D/t ࢖࢞ࢋࡺ ***࢚ࢌ ***ࢉࢌ** Tested by 

 
CU-040 200 5.00 40 27.15 265.80 2016.90 (Hu, et al., 2003) 
CU-047 140 3.00 47 28.18 285.00 893.00 (Schneider, 1998) 
CU-070 280 4.00 70 31.15 272.60 3025.20 (Hu, et al., 2003) 
        
S30CL50 165 2.82 58.5 48.30 363.30 1759.00 (O'Shea, et al., 2000) 
S20CL80 165 2.82 58.5 56.40 363.30 2040.00 (O'Shea, et al., 2000) 

 All values expressed in mm*,  kN**, and N/mm2***. 
 
Being D the diameter, t the thickness and Nexp the experimental load. 
 
To obtain the determining variables from the experimental tests mentioned before, the expression 
(2.81) provided by EC-422 has been used: for circular CFT short columns, the maximum load-
bearing capacity of steel can be obtained through the following expression:  
 

ܰ௬ = 0.75 · ௬ܣ · ௬݂ (4.21) 

 

                                                                    
22 Eurocode 4. (ENV1990-1-1, 1990) 
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As a consequence, the real strength of concrete core according to experimental tests, will be the 
following: 
 

௖ܰ = ௘ܰ௫௣ −ܰ௬ = ௖ܣ · ௖݂௖ (4.22) 
 
By comparing the experimental response of concrete with its theoretical uniaxial compressive 
strength, we can observe that the first one is much higher than the latter:  
 

௖ܰ,௨௡௜ = ௖ܣ · ௖݂ << ௖ܣ   · ௖݂௖ (4.23) 
 
Therefore, the proportion between the maximum compressive strength of confined concrete and 
the characteristic strength corresponding to unconfined concrete, can be easily calculated through: 
 

௖݂௖

௖݂
= ௘ܰ௫௣ − ܰ௬

௖ܰ,௨௡௜
 (4.24) 

 
Analyzing this value by using the mentioned expression proposed by Richart (Richart, et al., 1928): 
 

௖݂௖ = ௖݂ + ݉ ·  ௥ߪ
 

(2.19) 

and at the same time knowing the approximate value of lateral pressure ߪ௥ provided by the tube on 
the core, through the well-known expression proposed by Susantha, together with Ge (Susanta, et 
al., 2000): 
 

௥ߪ = ௥݂ = ߚ ·
2 · ݐ

ܦ − 2 · ݐ · ௬݂ 
 

(4.25) 

Where ߚ is the difference between the Poisson’s ratios of the composite section and the concrete 
core, respectively: ߚ = ௘ߥ − ௦ߥ ,  being  ߥ௦ = 0.5 [maximum plastic Poisson’s ratio for steel] and ߥ௘  
the maximum apparent Poisson’s ratio of the composite section. Lateral pressure ߪ௥ can be easily 
measured in circular CFT sections, owing to its uniformity provided by tube23. 
 
Then, according to Susantha and Ge again (Susanta, et al., 2000), the maximum apparent Poisson’s 
ratio of the composite section can be calculated by using the following expressions, derived from 
experimental tests: 
 

௘ߥ = 0.2312 + 0.3582 · ௘′ߥ − 0.1524 · ቈ ௖݂

௬݂
቉ + 4.843 · ௘′ߥ · ቈ ௖݂

௬݂
቉ − 9.169 · ቈ ௖݂

௬݂
቉
ଶ

 

 

(4.26) 

௘′ߥ = 0.881 · 10ି଺ · ܦ) ⁄ݐ )ଷ − 2.58 · 10ିସ · ܦ) ⁄ݐ )ଶ + 1.953 · 10ିଶ · ܦ) ⁄ݐ ) + 0.4011 
 
 

(4.27) 

Thus, for specimens of Table IV.2, the values of lateral pressure, ߪ௥ , the apparent Poisson’s ratio of 
the composite section, ߥ௘ , the value of coefficient, ߚ and the value of coefficient ݉ of expression 
(2.19) are the following: 
 
 
 
 
 
 
                                                                    
23 see Section 2.3.1 
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   Table IV.3. Material and geometrical features of the tests used. 

Section ࢉࡺ **࢖࢞ࢋ,ࢉࡺ **࢟ࡺ **࢖࢞ࢋࡺ *࢟ࢌ *ࢉࢌ** 

 
CU-040 27.15 265.80 2016.90 610.62 1406.28 769.78 
CU-047 28.18 285.00 893.00 275.99 617.01 397.41 
CU-070 31.50 272.60 3025.20 709.10 2316.10 1810.03 
       
Average 28.82 274.47     
       
S30CL50 48.30 363.30 1759.00 391.49 1367.51 963.38 
S20CL80 56.40 363.30 2040.00 391.49 1648.51 1124.94 
       
Average 52.40 363.30     

   All the values are in N/mm2* and  kN** 
 
 
  Table IV.4. Material and geometrical features of the tests used. 

Section ࢉࢌ/ࢉࢉࢌ e' e ࢓ *࢘࣌ ࢼ 

 
CU-040 1.83 0.83 0.82 0.32 4.54 4.95 
CU-047 1.55 0.84 0.83 0.33 4.21 3.70 
CU-070 1.28 0.81 0.83 0.33 2.64 3.30 
       
Average  0.82 0.83   3.98 
       
S30CL50 1.42 0.84 0.89 0.39 4.98 4.07 
S20CL80 1.47 0.84 0.92 0.42 5.34 4.91 
       
Average  0.84 0.90   4.49 

   The values are in N/mm2*. 
 

 

From results obtained and shown in Tables IV.3 and IV.4, we can consider a value of 4.2 for 
coefficient ݉ [the average between the obtained values for 30MPa and 50MPa concrete], which 
coincides with the values provided by several authors of  literature, such as Richart (Richart, et al., 
1928) and Chen (Chen, 1982). 
 
Assuming a value of 4.2 for coefficient ݉ in the Richart expression, and knowing the maximum 
compressive uniaxial strength of concrete, three different Mohr circles have been obtained [named 
1, 2 and 3] for 30 MPa concrete, and three more circles [4,5 and 6] for 50 MPa concrete, by 
assuming three different hydrostatic states [of 0, 3 and 5 MPa]. Then, by using the expressions 
shown in Sections 2.2.6.1 and 2.2.6.2 of this text, the parameters for internal friction angle and 
cohesion can be easily calculated in both cases: 
   

݉ =
݂′௖
݂′௧

→ ݂′௧ =
28.82

4.2 =  ܽܲܯ 6.85
(4.28) 
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݉ =
݂′௖
݂′௧

→ ݂′௧ =
52.40

4.2 =  ܽܲܯ 12.47
(4.29) 

 
using also the expressions (2.39) and (2.40): 
 

݂′௖ − ݂′௖ · ∅݊݅ݏ = 2 · ܿ ·  (4.30)  ∅ݏ݋ܿ
 

݂′௧ + ݂′௧ · ∅݊݅ݏ = 2 · ܿ ·  (4.31)  ∅ݏ݋ܿ
 
and finally equating both expressions, it is possible to calculate the value of ∅: 
 

∅ = ݊݅ݏܿݎܽ ቆ
݂′௖ − ݂′௧
݂′௖ + ݂′௧

ቇ 
(4.32) 

 
In the same way, also the value of cohesion can be obtained from expressions (4.30) and (4.31): 
 

ܿ =
݂′௖ − ݂′௖ · ∅݊݅ݏ

2 ·   ∅ݏ݋ܿ
(4 .33) 

 
Thus, we obtain for both concrete strengths a set of determining parameters which also coincide 
with those proposed by literature, (Lu, et al., 2006) and (Fujita, et al., 1998): 
 
 

Table IV.5. Material and geometrical features.  
Section    c ∅ 

 
30 MPa   7.023 38 
50 MPa   12.78 38 

                        * Cohesion expressed in N/mm2 and ∅ in degrees. 
 
 

 
Fig. IV.24  Circles of Mohr 1,2 and 3 calculated for concrete of 30MPa.  
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Fig. IV.25  Circles of Mohr 4,5 and 6, calculated for concrete of 50MPa.  

 
Fig. IV.26  Hydrostatic states considered for each circle of Mohr. 

  .ଵ corresponds to the confined strength of concrete ௖݂௖ߪ
 
From the values obtained in the experimental tests, and using the expressions provided in Section 
2.2.6.1, it is possible to represent the hexagonal surface of the Mohr-Coulomb yield criterion in the 
three-dimensional stress space. This surface can be drawn by using the key points which define the 
characteristic uniaxial tensile and compressive strength of concrete, as well as under biaxial states. 
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Fig. IV.27  Three-dimensional matching of the Mohr-Coulomb hexagonal surface. 

Values obtained from experimental tests of CFT sections presented in Table V.2. 
 
 
To convert the Mohr-Coulomb hexagonal surface [represented in fig. IV.27] into the Drucker-
Praguer conical surface on the ߠ = 60º angle, two constants derived from the internal friction angle 
and cohesion are needed [α and ݇]. The expressions used to calculate their value vary depending on 
the considered points of the Mohr-Coulomb surface; in case of the cone on the ߠ = 60º plane, 
matching points are ݂′௕௧  and ݂′௖: 
 

α =
2 · ∅݊݅ݏ

√3 · (3− (∅݊݅ݏ
 (4.34) 

 

݇ =
6 · ܿ · ∅ݏ݋ܿ

√3 · (3− (∅݊݅ݏ
 (4.35) 

 
Then, for 30MPa concrete: 
 

α = 0.298       and     ݇ = 8.04 (4.36) 
and for 50MPa concrete: 
 

α = 0.298       and     ݇ = 14.63 (4.37) 
 
 
To replace the hexagonal surface of figure IV.27 by a conical surface, the obtained values (4.36) and 
(4.37) coming from the available experiments have been used, The final conical surface in the 
biaxial plane, according to the Drucker-Praguer yield criteria, has the following form of Fig. IV.28: 
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Fig. IV.28  Three-dimensional matching of the Drucker-Praguer conical surface. 

Generalization of the hexagonal Mohr-Coulomb surface shown in figure IV.27. 
 
Its representation in the three-dimensional stress space: 

 
 

Fig. IV.29  Tridimensional representation of the obtained Drucker-Praguer conical surface. 
 
Although these values work really well for the previously mentioned cases, it is important to point 
out that the defined yield surface is very sensitive to the input parameters. To finalize the process, a 
numerical verification has been carried out by using a cubic specimen of 150 mm width. The test 
has been repeated under five different hydrostatic compressive states [where ߪଶ =  .[ଷߪ
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Fig. IV.30  Calibration of the Drucker-Praguer constitutive model by ANSYS 

It is shown how results are sensitive to the hydrostatic ambient state. 
 
To calibrate the third variable [the flow angle], the expression (4.27) for lateral deformation ratio 
and proposed by Susantha (Susanta, et al., 2000) has been used. The values of the apparent 
Poisson’s ratio obtained in Table IV.4 range from 0.81 to 0.84: it is obvious that these values are well 
above the maximum plastic Poisson’s coefficient, derived from theory [0.49]. We know that the flow 
angle is decisive to determine the volumetric expansion of concrete in plasticity; a cubic specimen 
of 150 mm width has been analyzed under different hydrostatic pressures, in order to obtain the 
ratio of lateral deformation respect to vertical strain. 

 
Fig. IV.31  Diagrams ࢜࢖࢖ࢇ −  .for 50MPa concrete ࢿ

Curves of the apparent Poisson’s ratio depending on vertical strain, in a uniaxial stress state. 
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Fig. IV.32  Diagrams ࢜࢖࢖ࢇ −  .for 50MPa concrete ࢿ

Curves of the apparent Poisson’s ratio depending on vertical strain, under pressure of 5 MPa. 
 
By assuming that the apparent Poisson’s ratio under a hydrostatic pressure of 5MPa ranges from 
0.81 to 0.84 [as it is derived from experimental tests in Table IV.4], the unique curve of figure IV.32 
which tends to these values in advanced plasticity is that corresponding to a flow angle of 30º. 
According to literature, for a non-associative flow rule, the dilatancy angle is always lower than the 
internal-friction angle of the material, (Mirmiran, et al., 2000); thus, a flow angle of 30º coincides 
accurately with theory and experimental tests. This is the reason why a value of 30º has been 
considered for the flow angle in the models done with the Drucker-Praguer yield criterion. 
 
4.4.2.4 Damaged Plasticity Model for Concrete [DPC] 
 
A second constitutive model has been used for concrete with the final objective of achieving the 
most realistic reproduction of the cohesive material as possible, especially to incorporate also 
crushing and softening behaviors to the yield criteria. The principal difference between this model 
and the elastic perfectly-plastic models, based on the Drucker-Praguer criterion, is the precision of 
the first one in the definition of concrete behavior beyond the peak of load. The fact of introducing 
an evolutionary damage criterion in the model does not provide any extra information about the 
load-bearing capacity of concrete, but it is crucial to determine the post-peak behavior24. 
  
This second model has been implemented by using the commercial software ABAQUS Explicit, 
through the constitutive material model known as “Plasticity Damage for Concrete”. This model 
available in ABAQUS is tridimensional, and it is based on the damage plasticity model proposed 20 
years ago by Lubliner and Oller (Lubliner, et al., 1989), and modified later by Lee and Fenves (Lee, 
et al., 1998). It is capable of simulating the material behavior under high compressive hydrostatic 
states, and also under tension. To define this model it is necessary to determine the determining 
parameters of the yield surface and the two stress-strain curves of plastic hardening, under the 
assumptions of pure tension and pure compression; besides, two evolutionary damage laws have to 

                                                                    
24 see Section 2.2.7 
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be also defined under both states. This way, the behavior of concrete can be widely determined: in 
the first range [up to 50% ௖݂௞], the material behaves elastic, from where yielding occurs involving a 
damage process, due to the progressive appearance of crushing. The descending branch under 
compression tends to be parabolic, while this descent under tension is clearly exponential25.      
 
Definition of the determining parameters of the yield surface. 
 
The yield surface can be easily governed through two known variables:  ܭ௖ and ߪ௕௢ ⁄௖଴ߪ . The first 
one describes the shape of the deviatoric plane [Fig. II.9], while the latter describes the proportion 
between the maximum biaxial compressive strength and the maximum uniaxial strength. The 
model uses a non associative flow rule26 to describe the plastic strain increments, and flow 
potential is governed by the Drucker-Praguer hyperbolic function. To finalize the definition of the 
complete material behavior, three more variables are needed: the dilation angle, the eccentricity 
and the viscosity parameter. No doubt that the decisive variable of these last three values is the 
dilation angle, since it determines the dilatancy in plasticity, being crucial in those cases in which 
confinement effect is involved. In this study, a dilation angle of 31º has been used, coming from the 
analysis of the previous paragraph and several experimental studies of existing literature, such as 
those of Starossek (Starossek, et al., 2008) and (Kuang, et al., 2010). The assumed value for the 
dilation angle can vary considerably depending on the purpose of the analysis: in case of concrete 
subjected to high hydrostatic states, this parameter must be considered according to its maximum 
value, which is about 31º (Prato, et al., 2003). This value coincides accurately with the results 
obtained in the previous paragraph.    
 
The two other parameters come directly from literature, (Starossek, et al., 2008). They have been 
validated experimentally by other researchers: the aim is to achieve the most accurate model for 
concrete in order to solve the proposed problems, with the minimum processing effort and the 
maximum mathematical convergence. A value of 0.1 has been taken for eccentricity and even lower 
values for viscosity, in order to maximize the mentioned convergence. Thus, the final code 
introduced to define the yield surface of concrete in the DPC model is: 

 
*Concrete Damaged Plasticity 
31., 0.1, 1.16, 0.65, 0.01 
 

Definition of the plastic hardening curves. 
 
The behavior of concrete under tension is completely opposite to its behavior under compression, 
in terms of strength and damage evolutionary process. Under uniaxial compression, the material 
reaches its maximum strength by following a parabolic function, decreasing afterwards smoothly 
through the absorption of an important amount of energy of fracture; otherwise, under tension, the 
growth is completely linear and the descent follows an exponential function, instead. These two 
behaviors have been accurately described through experimental tests by Jankowiak and 
Lodigovsky (Jankowiak, et al., 2005) among others, and reformulated by Castro (Castro Medina, 
2011)27, using the energetic method.  
 
The DPC constitutive model available in ABAQUS allows defining both behaviors separately, by 
specifying a different plastic hardening descent under compression than under tension. Although 
the behavior of concrete under both uniaxial states is clearly determined by these hardening laws, 
the post-peak behavior is not so simple. It is known that concrete collapses sharply under tension, 
                                                                    
25 see Section 2.1.7.1 
26 see Section 2.2.5.2 
27 see Section 2.1.7.1 
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by following an exponential function; however, this collapse does not occur exactly in this way 
under compression, where concrete can have different descending branches depending on the 
hydrostatic stress state28. From curves presented in figure IV.19, it can be derived that high 
strength concretes [corresponding to strengths over 40 MPa] tend to show a sharper descent of 
stress, and a lower residual stress (ߙ) about 10%-15% of its maximum compressive strength; 
however, this assumption is true for uniaxial tests only, but not for those cases of concrete 
subjected to confinement. 
 
The Japanese researcher Susantha (Susanta, et al., 2000) proposed a set of simplified expressions to 
determine the angle of descending branch Z, and the value of the residual stress, α, under different 
hydrostatic states, derived from several experimental tests done by other researchers. Thus, this 
analytical model has been compared to the stress-strain curves obtained in this investigation with a 
surprising agreement of results. 

 
Fig. IV.33  Idealization of the plastic hardening descent of confined concrete. 

(Susanta, et al., 2000) 
 
Then, the codes introduced in ABAQUS to define the compressive and the tensile hardening laws 
take the following form: 
 
For concrete of 30 MPa strength: 
 

*Concrete Compression Hardening 
15., 0 
18., 0.0003 
22., 0.0005 
25., 0.0007 
30., 0.0013 
27., 0.0023 
15., 0.0043 
 
*Concrete Tension Stiffening 
2.7.,        0. 
0.1,         0.002 
0.01,       0.003 

 
For concrete of 40 MPa strength: 
 

*Concrete Compression Hardening 

                                                                    
28 see Section 2.2.7 
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20.,     0. 
25., 0.0004 
30., 0.0006 
35., 0.0008 
40., 0.0010 
40., 0.0014 
16., 0.0250 
 
*Concrete Tension Stiffening 
3.6., 0. 
0.1, 0.002 
0.01, 0.003 

 
For concrete of 50 MPa strength: 
 

*Concrete Compression Hardening 
20.,     0. 
25., 0.0003 
30., 0.0005 
35., 0.0007 
40., 0.0009 
45., 0.0011 
50., 0.0015 
 1., 0.0250 
*Concrete Tension Stiffening 
 4.,    0. 
0.1, 0.002 
0.01, 0.003 

 
Obviously, the behavior of concrete in the first stage of loading up to the first point of the hardening 
law under compression [corresponding to the 50% of the compressive strength] is governed by the 
elastic Young modulus and the elastic Poisson’s ratio. From this point, concrete starts a damage 
process which will be more accurately described in the following Section. 

 
Fig. IV.34  Complete plastic hardening law considered [compression and tension].  

Obviously, the plastic softening and the residual stress will depend on the steel recipient. 
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Definition of the evolutionary damage ratio laws. 
 
Laws for the plastic hardening behavior under tension and compression are not enough to 
reproduce the complexity of the structural response of concrete. From a value of stress of the 50% 
of the maximum compressive uniaxial strength, concrete starts a damage process which is 
characterized for its irreversibility. From an advanced point of loading process, concrete initiates a 
crushing process due to microcracking of the cement paste, characterized by absorbing a high 
percentage of energy; the percentage of damaged material is not capable of being reloaded.  
 
With the objective of completing the definition of the input data for the Concrete Damaged Plasticity 
model [DPC], it is necessary to introduce also two evolutionary damage laws under tension and 
under compression [according to figure II.12, see Section 2.2.7]. The energy of fracture is really 
much more important under compression [especially in confined concrete] than under tension. The 
percentage of damaged concrete is represented by the scalar factor, ݀௖ , ranging from 0 to 1. As in 
case of the stress-strain hardening laws in plasticity, those curves which define the evolutionary 
damage ratio are also different for tension than for compression. As it is explained in Chapter II, 
parameter ݀௖  affects the plastic stress and the material stiffness in the following form [see Section 
2.2.7.1]: 
 

E୮ = (1− ݀௖) ·  ଴ (4.38)ܧ
 
The evolution of the damage evolutionary ratio has been investigated by several authors, such as 
Karsan and Girsa (Karsan, et al., 1969), Sadrnjad (Sadrnjad, 2012), (Liu, et al., 2009) and (Ludovic, 
et al., 2004), all them with different purposes. In this analysis, the values proposed by the first 
author have been used for concrete of 30MPa, and they have been extrapolated to other concrete 
strengths by using the correlations obtained by Susantha (Susanta, et al., 2000). The evolutionary 
damage ratio is also pressure-sensitive, as in case of the evolutionary stress laws: 

 
Fig. IV.35  Damage evolutionary analysis of concrete, coming from experimental tests. 

(Karsan, et al., 1969) 
 

Then, the code introduced in ABAQUS in order to define the curves corresponding to the 
evolutionary damage ratio for each different concrete: 
 
For concrete of 30 MPa: 
 

*Concrete Compression Damage 
0., 0. 
0.25, 0.0012 
0.60, 0.0250 
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*Concrete Tension Damage, compression recovery=0.95 
0., 0. 
0.25, 0.0005 
0.60, 0.0020 
0.95, 0.0030 

 
For concrete of 40 MPa: 
 

*Concrete Compression Damage 
0., 0. 
0.20, 0.0014 
0.60, 0.0250 
*Concrete Tension Damage, compression recovery=0.95 
0., 0. 
0.25, 0.0005 
0.60, 0.0020 
0.95, 0.0030 

 
For concrete of 50 MPa: 
 

*Concrete Compression Damage 
0., 0. 
0.20, 0.0015 
0.60, 0.0250 
*Concrete Tension Damage, compression recovery=0.95 
0., 0. 
0.25, 0.0005 
0.60, 0.0020 
0.95, 0.0030 

 
It is important to highlight that to have a point of view about the evolution of damage is more 
accurate than having an isolated tensional conception alone. Once concrete is crushed, the material 
becomes irreversibly damaged although it can keep vertical load completely constant, or even 
increase it due to confinement effect. This phenomenon will be widely explained and shown in the 
next two Chapters. 
 
Calibration of the DPC29 model. 
 
Finally, this complex constitutive model has been calibrated using two cubic specimens of 150 mm 
width with 30 and 50MPa strengths, like for the case of elastic perfectly-plastic constitutive models. 
To verify that this model is really sensitive to hydrostatic stress states, the mentioned specimen has 
been subjected to different triaxial compressive states of 3, 5, 8, 10 and 15 MPa pressures. The 
obtained results have been compared with those coming from the unconfined uniaxial stress-strain 
curve. 

                                                                    
29 Damaged Plasticity Model for Concrete. 



Chapter IV 
Considerations about the numerical analysis 

 
 

 161 

  
Fig. IV.36  Calibration of the Damaged Plasticity model for concrete in ABAQUS.  
Different stress-strain curves under different hydrostatic states, for 30MPa concrete. 

 

 
IV.37  Calibration of the Damaged Plasticity model for concrete in ABAQUS 

Different stress-strain curves under different hydrostatic states, for 50MPa concrete. 
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Besides, singular points of the complete failure surface of concrete have been checked using the 
DPC model, described before. Two complete stress-strain curves for uniaxial and biaxial states of 
50MPa concrete have been obtained from pure compression and tension tests. It is evident that the 
angle of the descending branch [as well as residual stress] depends directly on confinement; this 
assumption can be observed in figures IV.36 and IV.37, where the analyses corresponding to higher 
hydrostatic pressures show smoother descents after the peak of load. 
 
The case of concrete subjected to a compressive biaxial stress state has been also calibrated 
separately. Note that the increment of compressive strength is about 16% more, and that softening 
of concrete is drastically reduced by means of biaxial pressure [see figure IV.38]. 

 
IV.38  Uniaxial and Biaxial complete stress-strain curves. 

The analysis has been done for a 50 MPa concrete. 
 
The characteristic values of stress, obtained from the FE analysis, have been superimposed on the 
biaxial plane; full coincidence is observed with the experimental curve: 

 
IV.39  Full coincidence is observed between the obtained results and the experimental 

failure surface in the biaxial plane. 
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4.4.3 Contact model to reproduce the interaction between components.  
 

To reproduce the contact interaction between the two components in case of concrete-filled tubes, 
two different criteria have been established: one for the normal component and other for the 
tangential component. 
 
4.4.3.1 Normal contact. 
 
The model used to represent the normal component of contact is really simple and it is known in 
ABAQUS software as “Hard Contact”: the algorithm identifies whether the two components are in 
contact or not without any implemented criteria for physical or chemical adherence. The truth is 
that this adherence between components really exists, but it is not definitively significant over the 
compressive response of the composite section. This is the reason why most authors of the existing 
literature do not take this adherence into account. 
 
In the analysis, no gap has been considered between the steel tube and the core initially. The two 
materials have been loaded simultaneously, being in contact from the first moment, and the 
hypothetic detachment of components is due to the difference in transversal strain experimented 
by each different material, in any case. 
 
4.4.3.2 Tangential contact. 
 
Otherwise, tangential contact must be considered separately, by assuming a specific friction 
coefficient. Sliding of one material respect to the other may be significant, especially when local 
buckling occurs. Tangential component of contact has been defined by using the available model 
“Penalty”, of ABAQUS and ANSYS libraries. The use of a specific model for tangential contact leads to 
consider the friction forces generated in the interface, governing the sliding of one component 
respect to the other. The magnitude of tangential stresses appeared on the interface can be 
obtained by using the following expression: 
 

߬ = ௦௧ߤ ·  ௡௢௥௠௔௟ (4.39)ߪ

 
where ߤ௦௧ is the static friction coefficient, defined as 0.2 between steel and concrete, according to 
Eurocodes and the existing literature. 
 
The value of the friction coefficient is especially decisive in the case of loading steel and concrete 
separately. Then, the difference between the percentages of load absorbed by each component has 
to be transferred by tangential forces of the interface; on the contrary, shear connectors are needed 
on the internal surface of the tube. As it is proposed in the Eurocodes, the limit of tangential 
stresses which are admitted on the interface is different for rectangular tubes than for circular 
sections [as it is shown in Table IV.6], owing to the evident difference in confinement effect [see 
Section 2.3]. As higher is the pressure on the core, higher are the tangential stresses transferred by 
the interface. 
 

  Table IV.6. Maximum ߬ proposed by EC-4*  
Section      Max  ࣎ 

 
Rectangular      0.40 
Circular     0.55 

                         * All the values are expressed in N/mm2. 
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Although tangential contact has been also considered in the model by means of a constant friction 
coefficient, the fact of loading both components simultaneously does not imply almost influence of 
these forces on results. 
 
4.5 Calibration of geometrical features of the models. 
 
4.5.1 Calibration of the mesh size. 
 
Mesh size is a decisive variable to be calibrated in order to obtain the most accurate results as 
possible. A coarse discretization of the mesh, especially in case of the tube, leads directly to quite 
wrong or inappropriate results due to the geometrical nonlinearities involved in the problem. The 
slenderness of the plates implies bending in double curvature, and also local buckling effects.  
 
The curvature of the plates generates important stress variations across the wall-thickness, a factor 
which has to be seriously considered. This is the reason why element type C3D8, with no reduced 
integration, has been used in the analysis, and why the analogous element C3D8R [with one unique 
integration point] has been discarded.  The fact of using a brick element with reduced integration 
optimizes the time of process, but implies at the same time to obviate stress variations across the 
wall-thickness of the plate. 
 
The use of reduced integration does not allow stress variations across the plate thickness, owing to 
have one integration point only; this fact can lead to false or inaccurate results easily, although it 
reduces considerably the time of process and simplifies the convergence of the problem. As it is 
shown in figure IV.40, the reduced integration consists in replacing each element by one integration 
point only, and this makes the resolution of nonlinearities much more simple, similar to the case of 
a compressed slender bar with initial eccentricity. However, this assumption results too much 
simple to reproduce problems involving important geometrical nonlinearities, since it can lead to 
an excess of distortion or false “buckling” of the plates due to the system becomes really sensitive to 
any lateral pressure. 
 

 
Fig. IV.40  Undeformed and deformed shape of the plate with one-element thickness and 

reduced integration. 
Eccentricity may be overestimated, and this fact can lead to the distortion of the geometry. 

 
Instead of using reduced integration, this investigation proposes the use of the solid element C3D8, 
fully integrated. The difference between the two elements is quite important, as the integration in 
the latter is done at eight different points inside each brick element. This way, the model becomes 
much more sensitive to the stress variations across the thickness, and the appearance of buckling is 
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also much more justified. Even if the discretization is really finer [with two or more elements across 
the wall-thickness] the analysis becomes much more accurate, (Kim, et al., 2007). 
 

 
Fig. IV.41  Idealized wall-thickness of the plates, modeled with one and two elements. 

Both models do not consider reduced integration, avoiding distortion this way. 
 
Although a finer mesh implies less distortion, it requires more processing capabilities too. The 
objective of the calibration process presented below is to find the optimal proportion and number 
of elements in order to reproduce the plate behavior. With this aim, a set of nine analyses have been 
carried out, by using a slender plate of 200x500x1mm, with different mesh sizes. The influence of 
dividing the plate thickness into one, two or four elements and the influence of the mesh shape and 
size on results have been analyzed. To have an idea of the behavior of each solution beyond the 
maximum load-bearing capacity, the mode of buckling of each case has been compared to the 
theoretical one, strictly in the elastic range.  
 
The different cases considered are the following: 
 
 
Element Size 

 
One-element thickness 

 
Two-element thickness. 

 
Four-element thickness. 
 

 
 
 
 
 

B/20 
H/40 

   
 
 
 
 
 

B/40 
H/80 
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B/20 
H/80 

   
 

Fig. IV.42  Different mesh sizes and proportions which have been calibrated. 
The columns indicate the number of elements, and the rows, the proportion of the elements. 

 
The corresponding deformed shapes, obtained from a buckling analysis, take the forms shown in 
figure IV.43, with some light differences related with the half wavelengths. This buckling analysis 
has been done by combining a uniform axial load with an insignificant distributed lateral pressure.  
 
 

 
Element Size 

 
1-element thickness. 

 
2-element thickness. 

 
4-element thickness. 
 

 
 
 
 
 
 
 
 
B/20 
B/40 

 

  
 
 
 
 
 
 
 
 
B/40 
B/80 
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Element Size 

 
1-element thickness. 

 
2-element thickness. 

 
4-element thickness. 
 

 
 
 
 
 
B/20 
B/80 

  
 

Fig. IV.43  Deformed shapes obtained from a buckling analysis. 
The proportion which matches with theory more accurately, is B/40 by B/80. 

 
Note that, according to the Theory of Classical Elasticity30, the elastic half wavelength of a 
rectangular plate clamped in the two loaded edges and restricted against rotation in the other two, 
tends to be similar to the shortest edge. Thus, a buckling analysis of the mentioned thin plate in the 
elastic range should lead to a sinusoidal deformed shape with a value of the half wavelength close 
to B [200mm in this case]. A larger or shorter value of the wavelength may be caused by a slight 
distortion of the mesh. The buckling analysis has been done by applying an axial distributed load on 
two of the edges of the plate, and a minimal uniform distributed pressure on one of the lateral faces. 
 
In figure IV.43, the results obtained from considering different mesh sizes and proportions are 
shown. Note that for the first row corresponding to elements of [ܤ 20⁄ ] by [ܪ 40⁄ ] size, the value of 
the half wavelength is larger than the shorter edge of the plate. On the contrary, the second row 
corresponding to elements of [B/40] by [H/80] size, gives values of the half wavelength much 
closer to the plate width. The third case corresponding to a rectangular shape formed by elements 
of [B/20] by [H/80] size tends to reduce the length of the wave owing to geometry, more dense in 
the vertical axis than in the horizontal one. Besides, in figure IV.42 it is shown how the 
discretization of the wall thickness into 1, 2 or 4 elements is also decisive in order to reflect the 
geometrical nonlinearities, as it has been explained before. 
 
To determine how important the influence of the mesh size and the reduced integration is, two 
different analyses are presented below for the same specimen 4LN31, with the same boundary and 
loading conditions. While in the left case of figure IV.44 [a], the element size corresponds to a 
ܤ] 20⁄ ] by [ܪ 40⁄ ] element size, in the right case, it is [ܤ 40⁄ ] by [ܪ 80⁄ ]. Besides, only one element 
is considered in the wall-thickness in the first case, while four different elements are assumed in 
the latter. Needless to point out that differences in behavior are explicit, especially knowing that the 
B/t ratio for this section is about 37.50, and buckling effects should not appear. Thus, the deformed 
shape in case [b] is much more approximated to reality than the shape of case [a], assuming that 
only the lower face is embedded. This is a clear effect of distortion of the elements, owing to a 

                                                                    
30 See Section 3.3.2.1 
31 This is a square-shaped specimen, analyzed by (Susanta, et al., 2000), and defined in Table V.7. 
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coarse meshing size: under this assumption, a thick-walled plate behaves as thin-walled, providing 
a false lecture of its axial response: 
 

Table IV.7. General features of specimen 4LN, (Susanta, et al., 2000). 
Section  D* t* D/t fy** fc** fy/fc 

 
4LN 150.00 4.00 37.50 279.9 18.1 15.46 

* All values expressed in mm* and N/mm2** 
 

 
[a]                                               [b] 

Fig. IV.44  Different deformed shapes of the tube, depending on different meshes. 
                                  [a] One single element of [ܤ 20⁄ ] by [ܪ 40⁄ ] size in the wall-thickness. 
                                  [b] 4 different elements of [ܤ 40⁄ ] by [ܪ 80⁄ ] size in the wall-thickness. 
 
Therefore, a combination of 3 elements in the wall-thickness of [B/40] by [H/80] size has been 
adopted in the whole analysis, assuming that this proposal is enough fine to guarantee the veracity 
of results. In conclusion, it is obvious that the element size has a clear influence on results, but this 
is not the unique decisive factor; boundary conditions and the domain of the model may also have a 
significant influence on the magnitude of the output data. 
 
4.5.2 Calibration of boundary conditions. 
 
Boundary conditions which have been considered in the analysis are also decisive in order to 
obtain the closest results as possible to experimental tests. The fact of using isolated samples as a 
part of theoretical infinite columns implies to consider boundary conditions really seriously. It is 
very different to analyze a specimen pinned at the two extreme faces, than doing the same analysis 
by considering this specimen completely embedded. In order to validate the model used for the rest 
of the analyses, four different cases have been compared with different boundary conditions 
[Figure IV.45]. On the one hand, the first two have been defined restricted against rotation and 
displacement at the base: one of them with the upper face completely free [a], and the other one 
with its upper face restricted against rotation only [b]. On the other hand, in the other two cases, 
the two extreme faces have been restricted against rotation [d], by adding the restriction of 
displacement also in case [c]. 
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Fig. IV.45  Different deformed shapes of the tube, according to different boundary conditions 

The rotations and displacements shown are those permitted by the different models. 
The image on the right part of the figure comes from a real experiment, where the two outer faces 

are supposed completely embedded. 
 
Needless to say that the case which more accurately fits with available experiments is case [c], since 
under compression tests, the two loading edges become almost embedded owing to friction forces. 
Boundary conditions are not only important to match with the existing tests, but they are also 
important to predict the mode of failure of the samples. Results from the four different loading 
cases shown in figure IV.46 [by using the same specimen 4LN, mentioned in the previous Section] 
are presented in diagrams of figure IV.46: 

 
Fig. IV.46  Axial load-strain curves corresponding to different cases of Fig. IV.45 for 4LN. 
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The curve which matches more accurately with the experimental test is that of case C. 
 

From the curves derived of the four different analyses, it is obvious that the fact of considering the 
specimens completely embedded in their two bases clearly enhances the ductility of the section. 
These conditions and their corresponding results are closer to the experimental tests made in 
laboratory than to the real behavior of a continuum column as a part of a whole structure. However, 
case [c] has been chosen for all the cases analyzed this investigation, since results have been 
compared to real experimental tests made with short specimens.   
 
4.5.3 Calibration of the domain of the model. 
 
The domain of the model refers to those limits adopted in the model, in order to represent the 
whole reality through a reduced part of it. The simplification must reflect the entire complexity of 
the problem and it should not have influence on results. 
 
4.5.3.1 Calibration of the size of the specimen. 
 
Assuming that the portion of reality which has to be simulated is a theoretical part of an infinite 
column, the first step in deciding the domain of the model is to choose the global size of the sample. 
Obviously, this election is conditioned by boundary conditions. For the case [c] adopted in the 
previous Section, the size of the sample must be at least two times the width of the section. 
 
 

 

 

 
Fig. IV.47  Different sizes analyzed of specimen 4LN. 

A height equal to the width [a], one time and half the width [b] and two times the width [c]. 
 
Knowing that a large deformation axial loading analysis goes beyond the collapse of the sample and 
that one of its purposes is to describe the mode of failure, the size of the tested specimen should be 
as large as possible. The simplification of the column into a short sample, with a height equivalent 
to the width, leads to an excessive gain of strength, as it can be seen in figure IV.48. The fact of 
having the two embedded faces really close to the failure plane in case [a] leads to overestimate the 
final compressive strength and the ductility of the specimen.  
 
Therefore, and derived from the curves shown in figure IV.48, the global size which has been 
adopted for specimens in this investigation corresponds to a height equivalent to two times the 
width of the cross-section. This way, a representative portion of the column is included in the 
analysis, and restrictions applied to the bases should not affect the deformed shape in the failure 
plane. 
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Fig. IV.48  Comparison between the curves obtained from different sizes of the specimen. 

Cases [a] and [c] from figure IV.47 of specimen 4LN, are compared in the previous figure. 
 
 
 
4.5.3.2 Calibration of the symmetry condition. 
 
The other geometrical parameter which determines the domain of the model is the condition of 
symmetry. Sections proposed in this work show a clear condition of theoretical symmetry in the 
two axes, “y” and “z”, strictly due to geometry. This fact allows carrying out the analysis by using 
only half part of the model, provided that symmetry conditions were defined in the common plane. 
 

 

      
 

 Fig. IV.49  Condition of symmetry of the sections proposed, case of specimen 4LN. 
All sections analyzed in this investigation do show symmetry condition in the cross-sectional plane. 
 
However, although this assumption would work perfectly well in order to determine the peak of 
load of the composite section, it does not represent the plastic hardening behavior and the collapse 
faithfully. This phenomenon is mainly due to the essence of the explicit analysis. As it can be seen in 
figure IV.50, the fact of considering a symmetric plane coinciding with one axis of the section 
reduces considerably the ductility of the whole section. Then, the fact of reducing the domain of the 



Chapter IV 
Considerations about the numerical analysis 
 

 172 

model through the existing condition of symmetry would be useful for short deformation analyses, 
but not for large deformation axial loading. 

 
Fig. IV.51  Influence of the symmetry condition on the stress-strain curve. 

Comparison of curves obtained for specimen 4LN. 
 
 
 4.5.4 Calibration of the loading conditions. 
 
In general, this analysis is characterized for being materially and geometrically non linear; this is 
the reason why the load must be divided into different steps, according to an amplitude. This step 
fragmentation is decisive to solve the problem and to achieve the convergence of the solution, in 
models involving plasticity and buckling.  
  
As the analyses done in this investigation imply large deformation axial loading, most part of the 
obtained results belong to the plastic hardening period, where small loading increments 
correspond to large deformation increments. Besides, it is important to take into account that this 
analysis aims to achieve the final collapse of the samples, and this is the reason why the descending 
branch after the peak of load must be also considered; the presence of a softening period implies 
considering also the possibility of a decent of the load-strain curve. This requirement of sensibility 
in front of small deformations implies a slower stepping of the load, or an extraordinary control of 
the process instead.    
 
In case of loading the specimens through a distributed axial pressure applied on their upper face, 
the process tends to diverge when strains become important: for small load increments, vertical 
strains are really large [for instance, Δε in Step 7 of figure IV.51]. This is the reason why the load 
has been applied through imposed strain increments, in order to have an accurate control of the 
process and to simplify the convergence. 
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Fig. IV.51  Definition of the loading steps by using a uniform distributed pressure. 

Due to the inversion of the predominant axis of the curve beyond the peak of load, the increment of 
strain in step 6 is much larger than that of the previous steps.  

 
In case of loading through a uniform pressure at the upper face, as it is shown in figure IV.51, it is 
really difficult to achieve the convergence of the problem beyond the peak of load in Step 6. As it is 
shown in the previous figure, strain increments of steps 1 to 5 are small and almost identical; the 
strain increment of step 6 starts to be larger, although this fact does not distort the results; but 
finally, the strain increment of step 7 is much larger than the increment of step 6, and this fact leads 
necessarily to a lack of convergence of the problem. Besides, and owing to the descending branch 
after the peak of load, there is a “blind zone” of the load-strain curve very difficult to detect and 
control by using pressure increments only. 
    
Thus, instead of pressure increments, all the specimens have been loaded by using increments of 
deformation. The concept is based on changing the reference axis of the increments, from the 
ordinates to the horizontal axis. This way, those results corresponding to the yield plateau [often 
coinciding with a descending branch] can be easily controlled, since the large axial deformation test 
tends to be more a horizontal curve than to a vertical diagram. Thus, equally spaced increments 
have been defined, by defining a specific amplitude. 
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Fig. IV.52  Definition of the loading steps by increments of imposed displacement. 

Thanks to loading the specimens by using increments of strain, the convergence of the solution is 
guaranteed.  

 
Using this methodology, as it is shown in figure IV.52, main axis of the curve is the horizontal one; 
this way, every strain increment has its corresponding value of load, even it was negative. For 
instance, in figure IV.52, the load increment of Step 8 is almost identical than that of Step 20. This 
fact simplifies the process considerably and guarantees the convergence of the solution. However, 
although most part of the diagrams works really well by using strain increments, there is a reduced 
period in the beginning where the section behaves elastically. In the first step of figure IV.53, the 
increment of load is much higher than in the rest; besides, different load transferences take place 
between the steel and the core during this elastic phase [see Chapter V]: therefore, the description 
of the compressive behavior of CFT sections is impossible, if a detailed description of this first 
phase is neglected. 
 
To maximize the precision of the obtained results in the elastic period, two different amplitudes of 
substeps have been defined, the first finer than the other. From steps one to twenty in figure IV.53, 
the increment of deformation is ten times finer than the rest, with the purpose of describing the 
volumetric expansion of concrete and the confinement of the core accurately. From step 20, the 
load is introduced much quickly, since the curve at this point becomes basically horizontal. This 
variation of the amplitude is represented in figure IV.53.  
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Fig. IV.53  First part of the loading process has been divided into finer steps. 

The elastic-plastic behavior corresponding to the first period of loading of a CFT section cannot be 
detected by using one incremental step only. 

 
Thus, two different linear functions have been defined in order to relate loading steps with 
displacements. This differentiation guarantees a correct density of results in all loading phases, 
included the first elastic-plastic period. According to Figure IV.54, up to the 20th step, a deformation 
of 0.10 mm per step is implemented, while from this point this strain increment grows up to a value 
of 1.50 mm. 
 

        
Fig. IV.54  Two linear functions have been defined for introducing the loading steps. 

The elastic-plastic period is more slowly loaded than the rest. 
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