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Preface 
 
 Microwave radiometry field has been increasing its performance with higher 

accuracy measurements, leading to a more presence in the remote sensing field. Several 

space-borne, air-borne and ground-based radiometers have been developed to perform 

measurement campaigns; however, the actual sensitivity of a radiometer is often limited 

by man-made radio emissions such as radars, broadcasting emissions, wireless 

communications and many other communication systems based on electromagnetic 

waves, limiting the improvement in the radiometers’ performance. Consequently, in 

order to maintain the accuracy in the radiometric measurements, it has been researched 

in the Radio Frequency Interference (RFI) detection and mitigation systems and 

algorithms for the microwave radiometry field. 

 

The scope of this doctoral thesis is the development, testing and comparison of 

different RFI detection and mitigation algorithms based on several methods, such as 

time and frequency domain, wavelet and statistical analysis of the retrieved radiometric 

signal; some of the algorithms studied in this thesis belong to the state-of-the-art and 

others have been developed during this thesis. The comparison of the different RFI 

detection and mitigation algorithms have the final purpose of enhancing the radiometric 

measurements performed by the Multifequency Experimental Radiometer with 

Interference Tracking for Experiments over Land and Littoral (MERITXELL). The 

MERITXELL has been developed during this thesis with the idea studying the RFI 

present in several radiometric bands and the way to mitigate it, as well as to obtain data 

from diverse frequency bands and devices in only one measurement campaign. 
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Chapter 1 
 
1. Microwave Radiometry basics 

 

 

 

 

 

 

 

 

 

 

 

This chapter provides an introduction to microwave 

radiometry and emission theory presenting and 

developing the most important concepts on these fields. 

In addition, the main applications of microwave 

radiometry, and its frequency allocations are presented. 

Finally, the most typical types of radiometers are 

presented: the total power radiometer (TPR), the Dicke 

radiometer (DR), and the noise injection radiometer 

(NIR). 
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1.1 Microwave radiometry and applications 
 

Microwave radiometry is the science that studies and measures the spontaneous 

emission of electromagnetic energy radiated by all bodies at a physical temperature 

different of 0 K (indeed all bodies are at higher temperatures). This technique was born 

in radio-astronomy to measure the electromagnetic emissions coming from the outer 

space. Since the 1960’s it has become a common and powerful tool for Earth remote 

sensing. With the study and analysis of the physical processes related with this 

spontaneous emission, it is possible to infer the atmospheric or geophysical parameters 

that have caused it. There are many microwave radiometry applications. Mainly, they 

can be included in two groups: atmospheric applications and Earth’s surface 

applications. The main applications and their suitable frequencies are listed below 

(Table 1.1). 

 
Table 1.1: Relationship between radiometry applications and their suitable frequencies [1] 

Application Frequency (GHz) 
Clouds water content 21, 37, 90 
Ice classification 10, 18, 37 
Sea oil spills tracking 6.6, 37 
Rain over soil 18, 37, 55, 90, 180 
Rain over the ocean 10, 18, 21, 37 
Sea ice concentration 18, 37, 90 
Sea surface salinity 1.4, 6.6 
Sea surface temperature 6.6, 10, 18, 21, 37 
Sea surface wind speed 10, 18 
Snow coating 6.6, 10, 18, 37, 90 
Soil moisture 1.4, 6.6 
Atmospheric temperature profiles 21, 37, 55, 90, 180 
Atmospheric water vapour 21, 37, 90, 180 

 

1.2 Basic concepts on microwave radiometry 
 

In this section the main concepts on microwave radiometry are presented and 

discussed. 
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1.2.1 Thermal Radiation 
 

All bodies receive electromagnetic energy from its surroundings. Part of this 

incident energy is reflected on the body’s surface. The rest is absorbed and, in 

thermodynamic equilibrium, re-radiated. According to Bohr’s equation, the frequency f 

of the emitted radiation by a determined body is given by: 

1 2f
h

ε ε−
=  [Hz], (1.1)

where ε1 and ε2 are different energy levels in Joules ([J]), and h is the Planck's 

constant (h = 6.63·10-34 J·s).  

 

The emission of radiation is caused by electrons changing its energy level. The 

probability of emission is a function of the density of the particles and the kinetic 

energy of their random motion. The radiated intensity increase is then proportional to 

the increase of its absolute temperature. 

 

1.2.2 Planck’s Radiation Law and black body radiation 
 

In general, part of the electromagnetic energy incident on a surface is absorbed, 

and part is reflected. In thermodynamic equilibrium the amount of absorbed energy 

reequals the amount of radiated energy. 

 

A black-body is defined as an ideal body that absorbs all of the incident 

electromagnetic energy (at all wavelengths, directions and polarizations) and, in 

thermodynamic equilibrium, reradiates it back. According to Planck’s law, a black-body 

radiates uniformly towards all directions with a spectral brightness density given by 

eqn. (1.2): 

( )
3

2

2 1

1B ph

bb hf
k T

hfB f
c

e

=

−

 [Wm-2Hz-1sr-1], (1.2)

where Bbb is the black-body spectral brightness density, h is the Planck's 

constant, f is the frequency, c is the speed of light in the vacuum 

(c = 299.792.458 [m·s-1]), kB is the Boltzmann constant (kB = 1.38·10-23 [J·K-1]), and Tph 



Chapter 1 
 

 16 

is the absolute physical temperature of the body in Kelvin. Natural surfaces absorb only 

a fraction of the incident power, the rest being reflected. 

 

 
Figure 1.1: Plank’s radiation law [2] 

 

 In order to simplify eqn. (1.2), if hf/kBTph is much lower than 1, Taylor’s 

approximation can be applied to the exponent in the denominator of eqn. (1.2): 

0

    1
!

n
x

n

xe x x
n

∞

=

= ≈∑ . (1.3)

 At low microwave frequencies the Rayleigh-Jeans law can then be used as good 

approximation of the Planck’s law and can be written as: 

 ( )
23

2 2 2

2 22 1 B ph B ph
bb

B ph

f k T k ThfB f hfc c
k T

λ
= ≈ =  [Wm-2Hz-1sr-1]. 

(1.4)

 At optical frequencies the Planck’s law reduces to Wien’s law: 

 ( )
3

2

2 B ph

hf
k T

bb
hfB f e
c

−

=  [Wm-2Hz-1sr-1]. (1.5)
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Figure 1.2: Comparison of Planck’s law with its low-frequency (Rayleigh-Jeans law) and high frequency 

(Wien’s law) approximations at 300 K [2]. 
 

 Figure 1.2 compares the approximations defined in eqns. (1.4) and (1.5) with 

Planck’s law, the higher the physical temperature, the higher the brightness and the 

frequency where the brightness reaches its maximum. The Stefan-Boltzmann law 

provides an expression for the total brightness, and it is obtained by integrating eqn. 

(1.2) over all the spectra: 

 ( )
4

0

ph
bb bb

T
B B f df

σ
π

∞

= =∫  [Wm-2Hz-1sr-1], (1.6)

where σ = 5.637·10-8 [Wm-2K-4sr-1] is the Stefan-Boltzmann’s constant. 

 

1.2.3 Brightness temperature 
 

The brightness temperature can be defined as the power emitted by a body by 

unit solid angle and by unit surface. If the emitting surface radiates with a pattern 

Ft(θ,φ), the brightness B(θ,φ) is then given by: 

 ( ) ( ),
, t

t

F
B

A
θ ϕ

θ ϕ =  [Wsr-1m-2], (1.7)

where At is the total area which is radiating. The power collected by an antenna 

surrounded by a distribution of incident power B can be computed as: 

 2 2
eff eff

t t

A A
P F BA

R R
= =      [W], (1.8)
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being Aeff the effective area of the antenna, and R the distance to the radiating 

surface. Taking into account that the solid angle Ωt subtended by the transmitting 

antenna is defined as: 

 2
t

t
A
R

Ω = , (1.9)

then, the power collected by the antenna can be computed as: 

 eff tP BA= Ω      [W]. (1.10)

Replacing the solid angle by a differential solid angle dΩ, the corresponding 

power received by the antenna from an extended source of incident brightness B(θ,φ) 

can be expressed as: 

 ( ) ( ) 2
, ,eff ndP A B Fθ ϕ θ ϕ= , (1.11)

where |Fn(θ,φ)|2 is the normalized antenna radiation pattern. The total power 

collected by the antenna is then obtained by integrating eqn. (1.11) over the space and 

over the system’s bandwidth, as brightness can vary with frequency. 

 ( ) ( )
/ 2

2

/ 2 4

1 , , ,
2

f B

eff n
f B

P A B f F d df
π

θ ϕ θ ϕ
+

−

= Ω∫ ∫∫  [W], (1.12)

where B is the bandwidth of the receiving system. Since the antenna collects 

only half of the randomly polarized thermal power emitted, the collected power must be 

multiplied by a factor of ½. 

  
Figure 1.3: Geometry of the radiation incident over the antenna [2] 

 

1.2.4 Antenna Surrounded by a Black Body 
 

Assuming a lossless antenna with a normalized radiation pattern |Fn(θ,φ)|2, a 

bandwidth B around a working frequency f, surrounded by a black-body at a constant 
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physical temperature Tph, as shown in Fig. 1.4, the power received by the antenna in 

Fig. 1.3 can be obtained using the eqns. (1.2) and (1.6), and it is described by: 

 ( )
/ 2

2

2
/ 2 4

21 ,
2

f B
B ph

bb eff n
f B

k T
P A F d df

π

θ ϕ
λ

+

−

= Ω∫ ∫∫  [W] (1.13)

The detected power is limited by the receiver’s bandwidth B. If this bandwidth is 

small enough to assume that the spectral brightness density does not change over the 

frequency range, eqn. (1.13) reduces to: 

 ( ) 2

2
4

,eff
bb B ph n

A
P k T B F d

π

θ ϕ
λ

= Ω∫∫  [W], (1.14)

which leads to: 

 2
eff

bb B ph eff B ph

A
P k T B k T B

λ
= Ω =  [W], (1.15)

when integrating the normalized antenna radiation pattern over the entire space 

and using Ωeff = λ2/Aeff. The result in eqn. (1.15) was also found by Johnson and Nyquist 

in 1928 when calculating the available thermal noise power from an electrical resistor at 

a physical temperature Tph. 

 

  
Figure 1.4: Antenna surrounded by an ideal black-body has the same delivered power than a resistor 

maintained at the same Tph (assuming each one is connected to a matched receiver of bandwidth B) [2] 
 

Equation (1.15) shows that the power in a bandwidth B received by a lossless 

antenna surrounded by a black-body is linearly dependent on the physical temperature 

of the body. Using Johnson’s and Nyquist’s results, an ideal receiver with a bandwidth 

B collects as much power from a matched resistor at a physical temperature Tph than 

from a lossless antenna connected to it. This means that, for an ideal receiver of 

bandwidth B, the antenna delivers to the load the same power as a resistor at a 

temperature TA, which is called the antenna temperature (Fig. 1.4). 
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1.2.5 Gray Body Radiation 
 

A black-body is an idealized body and it is a perfect absorber and emitter. These 

bodies absorb all the incident energy at all frequencies directions and polarizations, and 

when the thermodynamic equilibrium is reached at a physical temperature Tph, the 

energy is radiated back without any preferred direction. However, actual materials 

(usually called gray-bodies) emit less energy than a black-body, since they are not 

capable to absorb all the energy incident on them. If the emitted brightness depends on 

the direction B(θ,φ), a similar equation to eqn. (1.4) can be defined as: 

 ( ) ( )2

2, ,B
B

kB T Bθ ϕ θ ϕ
λ

=  [Wm-2Hz-1sr-1], (1.16)

where TB(θ,φ) is the equivalent temperature associated to the brightness and it is 

called the brightness temperature. Emissivity is defined as: 

 ( ) ( ) ( ), ,
, B

bb ph

B T
e

B T
θ ϕ θ ϕ

θ ϕ = = , (1.17)

where Bbb is the brightness of the black-body at temperature Tph. The brightness 

temperature emitted by a black-body coincides with its physical temperature, hence its 

emissivity is 1. Consequently the brightness temperature emitted by real bodies is less 

than the physical temperature, and then their range of emissivity values is between 0 

and 1. In conclusion, the emissivity of a perfect reflecting material is equal to zero, and 

the emissivity of a black body is one.  

 

1.2.6 Apparent Temperature 
 

In a real measuring environment, it is not possible to isolate the brightness 

temperature of the target from other sources that radiated energy. In this situation, it is 

convenient to define another magnitude, the apparent brightness temperature TAP(θ,φ) 

which accounts for different sources of thermal noise radiating over the antenna. Figure 

1.5 shows the relationship between them, in this case, the apparent temperature TAP is 

the key parameter which can be defined as: 

 ( )1
AP UP B SC

a

T T T T
L

= + + , (1.18)
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where TB is the brightness temperature of the surface under observation, TUP is 

the atmospheric upwards radiation, TSC is the atmospheric downwards radiation 

scattered reflected by the surfaces and La are the atmospheric losses. When the 

atmospheric losses are high, the apparent temperature is almost equal to the atmospheric 

physical temperature, which happens at high frequencies or at the absorption peaks of 

some gases. In the frequency range from 1 GHz to 10 GHz losses for a cloud-free 

atmosphere are very small and can be mostly neglected, consequently, in this case the 

apparent brightness temperature (TAP) can be approximated by the brightness 

temperature (TB). 

 

  
Figure 1.5: Relationship between antenna temperature, apparent temperature and brightness 

temperature [2]. 
 

According to Fig. 1.5 and taking into account the normalized antenna pattern 

|Fn(θ,φ)|2, and the antenna pattern solid angle Ωp, the antenna temperature is given by: 

 ( ) ( ) 2

4

1 , ,A AP n
p

T T F d
π

θ ϕ θ ϕ= Ω
Ω ∫∫  [K]. (1.19)

Since in reality the antenna absorbs a certain amount of the power incident on it, 

and hence it also introduces some additional noise, the resultant antenna temperature 

including losses is defined as: 

 ( )1A A phT T Tη ηΩ Ω
′ = + − , (1.20)

where TA′ is the equivalent apparent temperature at the antenna output including 

losses, ηΩ is the efficiency of the antenna, and Tph is the physical temperature of the 

antenna. 
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1.2.7 Emission theory 
 

 When an electromagnetic wave propagating through a medium with an index of 

refraction n1 reaches a surface of a different medium with a index of refraction n2, part 

of the power of the electronic wave will be transmitted through this medium, and 

another part will be reflected. If this surface is perfectly flat, the reflected wave will 

follow the specular direction only, on the other hand, if the reflection of the incident 

wave is not produced over a flat surface, the incident power will be scattered over the 

space. Some of the scattered power maintains the phase, and it is reflected in the 

specular direction (coherent term), but the rest of the radiation loses its phase and 

polarization characteristics and it is scattered. Part of the power transmitted through the 

body is absorbed, thus this power will be emitted as radiation. This radiated power 

passes through the interface surface, and it is transmitted over a range of directions, 

similar to the reflection case. In Fig. 1.6 some of these cases are illustrated. 

 

 
Figure 1.6: Specular and rough surface scattering and emission. a) specular reflection; b) diffuse 

scattering; c) diffuse emission; d) contributions to TB coming from many directions [2]. 
 

Consequently, TB(θ; p) has contributions coming from several directions of the 

inner part of the body. As it has been previously mentioned, the emissivity links the 

capability of a surface to emit and absorb radiation. Moreover its value has a 

dependency with the incidence angle, polarization, and the surface roughness. This 

section is devoted to present the emissivity of two extreme and idealizes cases: specular 

surface and completely rough surface.  
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The scattering of a rough surface can be modeled by its cross-section by the unit 

area as σ0(θ0, φ0, θs, φs, ps). This parameter relates the scatter power in the (θs, φs) 

direction with polarization ps for an incident plane wave at the (θ0, φ0) direction with 

polarization p0. When the p0 and ps are the same, σ0
pp is called horizontal or vertical 

scattering coefficient, where pp designates the same polarization. If p0 and ps are 

different, σ0
pq is called the cross-polar scattering coefficient, where pq indicates 

different polarizations (incident wave at p-polarization, scattered wave at q-

polarization). The general expression for the emissivity is presented in eqn. (1.21) [2]: 

 ( )
2 2

0 0
0 0 0

0 0 0

1, ; 1 sin
4 cos

s s

pp pq s s se p d d

π
π

ϕ θ

θ ϕ σ σ θ ϕ θ
π θ = =

 = − + ∫ ∫ . (1.21)

 

1.2.7.1 Emission from a specular surface 
 

 The scattering produced at the specular surface consists of the coherent 

reflection of the incident wave only. Consequently, the cross-polar scattering coefficient 

σ0
pq is zero, and the horizontal or vertical polarization scattering coefficients become 

delta functions:  

 ( ) ( ) ( )0 0
0 0

cos4 ;
cospp s sp s sp

sp

p θσ π θ δ θ θ δ ϕ ϕ
θ

= Γ − − , (1.22)

 where Γ is the specular reflection coefficient at p0 polarization, and the subindex 

sp in the angles denotes the specular direction: 

 0 0    and    sp spθ θ ϕ π ϕ= = − . (1.23)

 Substituting eqn. (1.22) in (1.21), and after some straightforward manipulations 

the next expression is obtained:  

 ( ) ( )0 0 0 0 0, ; 1 ;e p pθ ϕ θ= −Γ . (1.24)

 It is the ideal case, when the reflection is specular, the emissivity can be 

expressed as a function of the reflection coefficient. 
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1.2.7.2 Emission from a perfectly rough surface 
 

 When the incident wave is not reflected over plane surface it produces a diffuse 

scattering and its power is scattered over the space (Fig. 1.6b). Some of the scattered 

power remains with the same phase and the other part is changed. The extreme case is 

when the plane surface is perfectly rough. In this particular case the scattering surface is 

called a Lambertian surface, and the scattering coefficient depends only on the product 

cos θ0 cos θs. 

 0 0 0
0 0cos cospp pq sσ σ σ θ θ+ = , (1.25)

 where σ0
0 is a constant related to the dielectric properties of the scattering 

surface. Substituting eqns. (1.25) in (1.21) the emissivity is obtained:  

 ( )
2 02

0 0
0 0 0 0 0

0 0 0

1, ; 1 cos cos sin 1
4 cos 4

s s

s s s se p d d

π
π

ϕ θ

σθ ϕ σ θ θ θ ϕ θ
π θ = =

= − = −∫ ∫ . (1.26)

 Actually, natural surfaces do not have neither specular, nor Lambertian 

characteristics. They exhibit a mixed behavior depending on its dielectric properties and 

the surface roughness compared to the wavelength. Particular cases for natural surfaces 

can be found in [3]. 

 

1.3 Types of microwave radiometers 
 

 As it has been seen, if an antenna is pointing to a body, the power that is 

collected at its output (expressed in term of antenna temperature TA) is related to the 

brightness temperature TB of this body. A microwave radiometer is an instrument that 

measures the antenna temperature (TA) with highly resolution and accuracy. In fact, a 

microwave radiometer is a well calibrated and high sensitive microwave receiver. The 

performance of a radiometer is characterized by two main factors: resolution and 

accuracy [4]. The first one determines the smallest change in TA that can be detected by 

the radiometer output. The second one indicates the correspondence of the measurement 

of the true value.  

 

In order to illustrate these two aspects, the following example is analyzed; a 

radiometer is connected to an antenna which is exposed to a temperature TA′ = 200 K, 
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and the radiometric resolution requirement of the measure is of 1 K. The noise 

temperature introduced by the radiometer, like any receiver, has to be taken in account; 

a typical value will be for example TREC = 500 K. Then the aim of the radiometer is to 

perform a measurement which matches with a variation of 1 K over 700 K (200 K + 500 

K). In order to achieve this resolution, a radiometer uses an integration technique. 

Therefore, if the radiometer’s gain G and the noise temperature TREC are added in eqn. 

(1.27), the resulting output power is:  

 ( )A RECP kGB T T′= +  [W]. (1.27)

As it is shown, the stability of the power measurement depends on the stability 

of the factors in eqn. (1.27): B, G and TREC. As B is a parameter which mainly depends 

on the filter (passive device), it is assumed to be rather constant. Back to the previous 

example, if the required resolution is 1 K, it means that G and TREC have to be stable 

within ≤0.5 %, which corresponds to about 0.004 dB. Therefore the following problem 

appears that it will be difficult to get these requirements from an amplifier. After having 

seen the two main problems linked to the design of a radiometer, the main radiometer 

types and their behavior are presented in terms of resolution and accuracy. That will 

help to understand the MERITXELL design in Chapter 7. A radiometer block diagram 

consists basically of an antenna, a super-heterodyne receiver which translates the radio 

frequency signal to an intermediate frequency, a detector and a low-pass filter.  

 

1.3.1 Total Power Radiometer (TPR) 
 

The TPR is the most common radiometer used. It is easy to understand and it 

can illustrate the most important notions of the performance of such instrument. Figure 

1.7 is used to explain it with more detail. 

 

 
Figure 1.7: Total power radiometer block diagram [2]. 
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 In the radiometer of the Fig. 1.7, the gain G is represented by an amplifier and B 

is the system noise equivalent bandwidth. To measure the noisy input signal, a 

square-law detector is used. Its output is directly proportional to the input signal power 

and so to the temperature TA′. An integrator (low-pass filter) is used to reduce the 

fluctuations in the detected signal, and therefore to increase the stability of the 

measurement.  

 

In order to describe the power and voltage values in the different parts of the 

radiometer, Fig. 1.8 is included.  

 

 
Figure 1.8: Waveform and spectra of the voltage in the different stages of a total power radiometer [2]. 

 

Taking into account that the input signal is thermal noise, the voltage output of 

the IF frequency, VIF is a complex sum of two Gaussian random variables, having 0 

mean and a variance equal to the sum of variance of both Gaussian random variables, 

which can be assumed to be 2σ2, while the envelope of VIF, Ve has a Rayleigh 

distribution: 

  ( )
22

2  for 0.

0              for 0.

eV
e

e
e

e

V e Vp V
V

σ

σ
−

≥

 <

 (1.28)

 For a Rayleigh distribution, the mean value of Ve
2, which is the available power 

at the output of the IF amplifier over a 1Ω resistor, is equivalent to: 
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  2 22FI eP V σ= =     [W]. (1.29)

 After the square-law detector the detector’s voltage is: 

  2
d d eV C V=     [V]. (1.30)

 where Cd stands for the power sensibility constant of the power detector, with 

the units volts over Watts ([V/W]). In this case, Vd presents an exponential distribution, 

as the square of the complex sum of two Gaussian variables is equal to an exponential 

distribution. 

  ( ) 1 d

d

V
V

d
d

p V e
V

−

= . (1.31)

The mean value of Vd can be expressed as: 

  2 22d d e d d FI d SYSV C V C C P C GkBTσ= = = =     [V], (1.32)

On the other hand, the LPF output voltage, Vout depends on two factors, a 

constant value, dV  and a random component, Vac(t). The parameter Vac(t) accounts for 

the standard deviation of dV  and is related with the uncertainly created by the intrinsic 

noise of the system, Psys. The constant value is related with the input power PA′, thus the 

radiometric temperature TA′ using the following equation:  

  out LPF dV G V=     [V]. (1.33)

 where GLPF is the gain of the LPF. So that, the output of a TPR is proportional to 

the radiometric temperature and its value is given by the following equation: 

 ( ) ( ) ( ) ( )out out ac LPF d SYS ac s SYS acV t V V t G C GkBT V t G T V t= + = + = + [V]. (1.34)

 For an exponential distribution, the squared mean value is equal to its variance, 

which means that the standard deviation and the mean value at the output of the square 

law diode are the same: 

  1d
d d

d

V
V
σ σ= → =     [V]. (1.35)

Equation (1.35) implies that the measurement uncertainly has the same value of 

its mean, which is unacceptable. The main function of the LPF is to decrease the 

uncertainly by integrating Vd over a period of time τ (which, in fact is the time constant 

of the filter, τ = 1/2BLPF). In that way the variance of the measurement is reduced by a 

factor N = Bτ, where N is the number of independent samples used for the integration. 

Therefore, the relationship between the standard deviation and the mean value at the 

LPF is: 
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  1out out
out

out

V
V B B
σ σ

τ τ
= → = . (1.36)

Hence, assuming that the parameters of eqn. (1.36) remain constant, this 

relationship can be re-written as a function of the standard deviation associated to the 

mean value:  

  1SYS

SYS

T
T Bτ
∆

= , (1.37)

where: 

  SYS A RECT T T′= +       [K]. (1.38)

From eqn. (1.38) it is possible to infer the radiometric resolution (∆T) which is 

defined as the minimum input temperature which the radiometer is able to detect as a 

change in the output voltage. The radiometric resolution of a TPR is then computed as 

[2]: 

  SYS A REC
N SYS

T T TT T
B Bτ τ

′ +
∆ ∆ = =     [K], (1.39)

However, eqn. (1.39) does not take into account the system gain fluctuations, so 

all the real fluctuations that occur in a receiver are missing. The gain uncertainly can be 

defined as ∆GS/GS and translates into an uncertainty of the estimated system’s 

temperature: 

  S
G SYS

S

GT T
G

 ∆
∆ =  

 
    [K], (1.40)

where GS is the total receiver gain and ∆GS is the root mean square (RMS) 

variation of the detected power for a constant power input signal. Taking into account 

that the noise and the gain fluctuations are statistically independent, the final system 

resolution can be written as: 

  ( ) ( )

1
2

21
2 2 2 1 S

N G SYS
S

GT T T T
B Gτ

  ∆   ∆ = ∆ + ∆ = +       
    [K]. (1.41)

From eqn. (1.41) it can be inferred that the radiometric sensibility of a TPR has a 

strong dependence on the gain fluctuations. It is important to note that the best 

theoretical radiometric resolution can be achieved with an ideal TPR. However due to 

the gain fluctuations, an absolute calibration is frequently required. 
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1.3.2 Dicke Radiometer (DR) 
 

With the aim to correct the stability problems associated to the gain fluctuations 

of the TPR, Dicke published in 1946 a radiometer design which is named after him (Fig. 

1.9) [5]. The Dicke radiometer (DR), instead of measuring directly the antenna 

temperature, performs the measurement of the difference between TA′ and a known 

reference temperature TREF. With this method, the noise temperature instability TREC is 

filtered out and the impact of the gain is largely reduced. 

 

  
Figure 1.9: Dicke radiometer block diagram [2]. 

 

As it is shown in Fig. 1.9, a DR is a modified TPR with an input switch that 

changes of position at a given frequency fs between the antenna and the reference 

temperature TREF and a synchronous demodulator (±1 multiplier). Therefore, two 

different outputs in distinct time slots are obtained. The detector output depends on the 

half period of fs: 

  ( )    for   0
2

s
d ANT d A RECV C GkB T T t τ′= + ≤ ≤     [V], (1.42)

  ( )    for   
2

s
d REF d REF REC sV C GkB T T tτ τ= + ≤ ≤     [V], (1.43)

where TREF is the reference noise temperature, τs is the switching period, and 

TREC is the receiver’s noise temperature, including the noise of the input switch. On the 
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other hand, the synchronous demodulator has another synchronous switch. This switch 

commutes the input signal among to two unitary gain amplifiers, which have opposite 

signs, one amplifier has the  d ANTV  and the other has  d REFV . The outputs of these 

amplifiers are added, and finally low-pass filtered. If the switching frequency is 

sufficiently fast to consider the parameters TA′, TREF and G constant during an entire 

period, and also that the period is smaller than the integration time ( 1
sf τ − ), then the 

radiometer’s output can be expressed as [2]: 

  ( ) ( )  
1 1
2 2out d ANT d REF d A REFV V V C GkB T T′= − = −     [V]. (1.44)

As it can be observed in eqn. (1.44), the output of the Dike radiometer is 

proportional to the (TA′ – TREF) term. So that, the uncertainly of TREF has to be taken into 

account in the radiometric resolution calculation. The resolution of a Dicke radiometer 

can be expressed as follows: 

 
( ) ( ) ( )

1
2

2
22 2

2 2

A REC REF REC S
A REF

S

T T T T GT T TB B Gτ τ

 ′ + +  ∆ ′∆ = + + −  
  

 

[K]. (1.45)

It is said that a Dicke radiometer is balanced in the case in which the antenna 

and the reference temperatures are identical (TA′ = TREF). In this case, the resolution 

reduces to: 

 
( )2

2
A REC

TPR

T T
T T

Bτ

′ +
∆ = = ∆     [K], (1.46)

where ∆TTPR is the radiometric resolution of a TPR in the total absence of 

fluctuations. As it can be observed, in this ideal case (eqn. (1.46)), there are not gain 

fluctuations on the radiometric resolution, but the resolution is twice worse than in an 

ideal TPR, due to the integration time has been split by 2, half the period it is looking to 

the antenna and the other half the period it is looking to a reference load. 

 

In a real case, when the temperature TREF is chosen close to the antenna 

temperature TA, the impact of G in fluctuations is small. Then if (TA′ – TREF)  (TA′ + 

TREC) is fulfilled, the DR decreases the resolution respect to the TPR. Although the 

stability of the system is improved, by measuring the antenna temperature just half of 

the time, there is a loss of resolution as compared to a TPR. Indeed, on each half period, 
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the radiometer can be assimilated to a TPR pointing to the antenna or to the reference 

load, using an integration time of τ/2.  

 

1.3.3 Noise Injection Radiometer (NIR) 
 

The noise injection radiometer is a particular case of a Dicke radiometer. It has 

been optimized to ensure that its output is always independent on the gain fluctuations 

and on the receiver noise. To achieve that purpose a NIR has a feedback loop which is 

shown in Fig. 1.10. 

 

  
Figure 1.10: Noise injection radiometer block diagram [2]. 

 

The aim of the feedback loop is to balance the radiometer (obtaining the same 

result as in the ideal case of a balanced Dicke radiometer) by injecting noise in the 

system input through a directional coupler ensuring that always is fulfilling: 

 0A REFT T′′ = =     [K]. (1.47)

The amount of injected power is controlled by a variable attenuator, which is 

controlled by the feedback loop. Hence, the amount of power entering into the system 

can be calculated as:  

 11 N
A A

c c

TT T
F F

′ ′′ ′= − + 
 

    [K], (1.48)

where Fc is the coupling factor of the directional coupler, and TN′ is the amount 

of injected noise, attenuated by the variable attenuator. The voltage Vc, which controls 

the attenuation is proportional to the antenna, and the system physical (Tph≈290 K) 

temperature difference, and it is given in the following expression: 
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 ( )1c
ph A

N ph

FVc T T
T T

− ′= −
−

    [V]. (1.49)

Using this technique, the output of the NIR is independent on the gain 

fluctuations, and on the receiver’s noise. The radiometric resolution of a NIR in the case 

of Tph = TA′ can be described as it follows: 

 
( )2

2ph REC
TPR

T T
T T

Bτ

+
∆ = = ∆     [K]. (1.50)

As it can be seen in eqn. (1.50), the NIR radiometric resolution is the same as 

that of a balanced DR (eqn. (1.46)), but with the advantage that it is always working as 

in the ideal case.  

 

1.4 Conclusions 
 

In this chapter the fundamentals of microwave radiometry theory have been 

presented in addition to a revision of the radiometry applications through the spectrum. 

The brightness temperature and the apparent temperature concepts have been defined, as 

well as the black and gray-body relationships through the emissivity.  

 

Different radiometer types have been presented and discussed, and their 

advantages and disadvantages respect each other. This will help to understand the 

configuration and operation of the MERITXELL radiometer, which is the instrument 

developed to obtain some of the radiometric measurement used in this thesis. It follows 

a TPR configuration with a frequent calibration (in the order of seconds) using an 

internal matched load. 
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2. Radio Frequency Interference in 
Microwave Radiometry Measurements 

 

 

 

 

 

 

Radio-frequency interference present in microwave 

radiometry measurements leads to erroneous radiometric 

results. Sources of RFI include spurious signals and 

harmonics from lower frequency bands, spread-spectrum 

signals overlapping the “protected” band of operation, or 

out-of-band emissions not properly rejected by the pre-

detection filters due to its finite rejection. The presence of 

RFI in the radiometric signal modifies the detected 

power, and therefore the estimated antenna temperature 

from which the geophysical parameters will be retrieved. 

In this chapter several radiometric measurement missions 

will be described, where the collected radiometric data is 

somehow degraded by RFI. 
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Microwave radiometry data is obtained by measuring the power of the thermal 

noise radiated by bodies in the microwave part of the spectrum. The larger the 

sensitivity, the smaller the power variations that could be detected. The radiometric 

sensitivity, (or radiometric resolution), can be improved by reducing receiver’s noise 

and increasing the noise bandwidth, and the integration time. However, the actual 

sensitivity of a radiometer is often limited by man-made radio emissions such as radars, 

broadcasting emissions, wireless communications, and many other communication 

systems based on electromagnetic waves. All these signals present in the protected 

bands are known as Radio Frequency Interference (RFI), and are one of the main 

problems in passive remote sensing of the Earth’s surface and atmosphere. 

 

The problem created by RFI is related to the accuracy of the radiometric 

measurements. The power of the RFI signal increases the signal measured power, thus 

leading to erroneous interpretations. Since the thermal noise measured by a radiometer 

is a very weak signal, even strongly attenuated RFI sources are potentially dangerous 

for the radiometric measurements. 

 

Although there are frequency bands reserved for passive remote sensing where 

transmissions are not permitted; RFI may be present in these bands due to spurious from 

other bands, and poor out-of-band attenuation of other communication systems adjacent 

to these protected bands. 

 

Radio Astronomy suffered from RFI well before microwave radiometry [6-8], 

therefore it is correct to say that the RFI mitigation subject was firstly introduced by the 

Radio Astronomy community. 

 

Several RFI surveys and studies have been performed in different ‘protected’ 

frequency bands used to measure thermal noise radiation; in L-band [9-12], C- and X-

bands [13-15], and K-band [16-17]. 
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2.1 Soil Moisture and Ocean Salinity (SMOS) RFI 

contamination case 
 

Global maps of L-band brightness temperatures are available since November 

the 2nd, 2009, when ESA’s SMOS mission was launched, showing many RFI hot spots 

[18]. 

 

MIRAS is the single payload instrument in the SMOS mission. It consists of an 

Y-shape interferometric radiometer formed by 72 receivers called LICEF placed along 

the three arms of the Y array. Each LICEF receiver is a dual polarized L-band 

radiometer working in the protected band of 1.400-1.427 GHz [19].  

 

As it can be seen in Fig. 2.1, RFI is present mainly on Asia and Europe, but in 

some small areas of Africa and Greenland as well. Moreover, although RFI is usually 

localized in urban and industrial areas, its power is so large than the SMOS radiometer 

impulse response extend this localized RFI to the whole FOV, due to the way the 

SMOS image is processed from data obtained by a synthetic aperture array. 

 

 
Figure 2.1. Global view of RFI sources from SMOS data [18]. 

 
 
 



Chapter 2 
 

 36 

2.2 WindSat RFI contamination case 
 

WindSat is the primary payload on the Coriolis mission, a polarimetric 

microwave radiometer, designed to demonstrate the capability of polarimetric 

microwave radiometry to measure the ocean surface wind vector from space. In 

addition, WindSat is capable to measure other environmental parameters such as sea 

surface temperature, total precipitable water, integrated cloud liquid water, rain rate 

over the ocean, soil moisture and sea ice [20]. The WindSat radiometer operates at 

discrete bands at 6.8, 10.7, 18.7, 23.8, and 37.0 GHz; the 10.7, 18.7, and 37.0 GHz 

channels are fully polarimetric while 6.8 and 23.8 GHz channel are dual-polarized 

(vertical and horizontal). 

 

WindSat polarimetric data from C- and X-bands is shown in Fig. 2.2 [13]. Only 

the continental United States area is shown, however, the presence of RFI is obvious in 

both bands. Note the RFI present at X-band has been detected taking advantage of the 

third and fourth Stokes parameters, as X-band linear polarizations do not reveal 

significant RFI [13]. 

 

 
Figure 2.2. RFI present in WindSat data.  a) C-band maximum brightness temperature values at V 

polarization [K]; b) C-band maximum brightness temperature values at H polarization [K]; c) X-band 
maximum brightness temperature values for the third Stokes parameter [K]; d) X-band maximum 

brightness temperature values for the fourth Stokes parameter [K] [13]. 
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2.3 AMSR-E RFI contamination case 
 

Another example of RFI contamination at C- and X-bands, but with a different 

measurement instrument, the AMSR-E is described in this section. The AMSR-E is a 

dual polarization microwave radiometer with six different frequencies: 6.9, 10.65, 18.7, 

23.8, 36.5, and 89.0 GHz [21]. 

 

Figure 2.3 shows RFI detected by comparing AMSR-E data from different 

frequency bands. The multi-frequency feature of the AMSR-E allows this instrument to 

combine information from two different frequency bands to detect RFI present in its 

measurements. In this figure, RFI contamination is again localized in urban areas in 

Europe, Asia and North America [14].  

 

 
Figure 2.3. Global maps of standard deviations of AMSR-E brightness temperature spectral difference 
(RFI6V = TB6V + TB10V) for January 2003. The statistics are derived by aggregating data within 0.25º 

latitude and longitude bins. Color scale units are in [K] [14]. 
 

2.4 General RFI contamination cases 
 

In addition to the particular RFI examples of the radiometers explained in the 

previous sections, there are many RFI sources affecting all radiometers. The following 
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sections summarize two issues affecting several microwave radiometers produced by 

RFI sources. 

 

2.4.1 RFI originated by 24-GHz automotive radars 
 

Nowadays, new cars include short-range radars (SRR) operating near 24 GHz to 

improve road traffic safety, and make parking maneuver easier. These sensors are 

intended to operate in the frequency bandwidth of 22-29 GHz in an UWB mode, 

occupying up to a 5 GHz bandwidth [16].  

 

The frequency band used by these sensors interferes with the bands 22.21–22.50 

and 23.6–24.0 GHz from which radiometric data related to the atmospheric water-vapor 

is obtained [16]. 

 

This ‘protected’ frequency band is used by many space-borne radiometers 

already launched: WindSat, AMSR-E, the AMR of the JASON, the MWR of the ERS-2 

among others, or in preparation such as: the GMI of the GPM mission. 

  

2.4.2 RFI present in the calibration process 
 

Furthermore, RFI may be present even in the calibration data, producing a 

systematic error in the whole data set; as it has been reported with the AMSR-E at C-

band, where RFI periodically appears in the cold sky mirror calibration process, 

probably cause by Globastar 54 LEO satellite [22]. 

 

2.5 Conclusions 
 

 The problems of the RFI present in the radiometric measurements is presented, 

and some examples are shown with real radiometric data. These four cases are only one 

part of the problem that is continuously increasing as the telecommunication systems 

increase its density and frequency range.  
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Nowadays, the situation of microwave radiometry leads to the motivation of this 

thesis, as RFI detection and mitigation has become a main concern in microwave 

radiometry. In this moment, the highest radiometric resolution is useless without a RFI 

detection algorithm. 
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At the present time, man made electromagnetic 

interferences are continuously increasing as the 

telecommunication systems technology is expanding. 

These RFI sources affect the radiometric data obtained in 

several missions leading to erroneous retrieval of 

geophysical parameters. In order to mitigate these errors, 

RFI detection and mitigation systems and algorithms are 

being developed, thus more reliable measurements can be 

obtained. In this section several RFI detection and 

mitigation algorithms are described, and examples of its 

actual uses in the radiometry and radio astronomy fields 

are presented. 
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As it has been stated in Chapter 2, radio astronomy has faced the RFI problem in 

the past, well before in Earth’s remote sensing. At this time, hereby it could be 

convenient to revise previous researches in this field. In this section RFI mitigation 

methods used in the radiometry field which almost all have been previously used in 

radio astronomy are described [23]. 

 

3.1 RFI detection and mitigation in the time and 

frequency domains 

 
RFI detection algorithms used in the time and frequency domains try to search 

for RFI components concentrated in determined parts of the frequency and/or time 

domains which present a higher power value than the clean radiometric signal. This 

finding is based in the comparison of the received data with a determined threshold 

value. 

 

Every system used to detect or mitigate RFI will require a threshold value to 

discriminate between RFI-contaminated samples and RFI-clean samples. On one hand, 

this threshold must be determined by means of an estimation of the RFI free radiometric 

signal power; in addition, a compromise between the probability to detect (probability 

of detection, Pdet), the RFI, and the probability to eliminate clean RFI data falsely 

detected as RFI (probability of false alarm, Pfa), must be accomplished. In a simple 

manner, the threshold can be defined by the following equation: 

( ) 2
fa ˆP nTh c σ= ⋅ , (3.1)

where Th represents the threshold to be used, c(Pfa) is a constant that depends on 

the probability of false detection of a RFI, and 2ˆnσ  is the RFI-free radiometric signal 

power estimation. 

 

The RFI-free radiometric signal power can be estimated using directly the 

measured radiometric power (assuming that the total RFI power is much lower than the 

clean radiometric signal power) [24] or, if an ADC and a FPGA are present in the front 

end of the radiometer, this power can be estimated by cutting off lower and/or upper 

percentiles [25,26]. 
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The probability of false alarm as a function of the threshold is a critical 

parameter to avoid the elimination of clean RFI radiometric data. An approximate 

proportion of clean RFI samples equal to the value of Pfa will be eliminated, but 

typically only the ones with the highest power, thus biasing the measured brightness 

temperature to a lower value. The c(Pfa) constant depends on the selected Pfa, and also 

on the PDF of the observable used in the RFI detection algorithm. Thus, if our 

radiometer samples directly the antenna voltage, the Probability Density Function 

(PDF) is a Gaussian function, as this voltage is Additive Gaussian White Noise 

(AGWN), but if the observable is obtained from the output of a square law detector, the 

PDF is exponential, as the power of an AGWN follows an exponential distribution, or if 

the detector is an envelope detector, the PDF will have Rayleigh distribution. Even 

more, if the observable is obtained from the output of the low-pass filter located after 

the detector, its PDF will follow the Chi-square PDF which, in some cases, can be 

approximated by a Gaussian PDF [27]. 

 

Once the concept of threshold is defined, time and frequency domain algorithms 

can now be described. 

 

3.1.1 RFI Detection in the Time domain 
 

Time-domain RFI detection and mitigation algorithms are the simplest ones to 

implement, as they only need to sample the radiometric data and compare its power 

with a determined threshold directly related to the power of the RFI-free radiometric 

signal. These algorithms are effective when dealing with short high powered bursts of 

RFI. Sampling with a sufficiently high frequency, and subsequent thresholding may 

give good results. However, when RFI is comparable or smaller than noise power, it 

becomes more difficult to detect, as it is not detected by the threshold and the estimated 

power is erroneous. In addition, since the detected power is a smoothed (averaged) 

version of the instantaneous one, if the duration of the RFI peaks is shorter than the 

integration time they may pass undetected. 
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RFI detection in time domain has been previously used in radio astronomy with 

pulsed RFI contamination such as the one coming from a radar near the Arecibo radio-

telescope [28]. 

 

In microwave radiometry, this technique also has been used to detect and 

eliminate pulsed RFI in [24]; although the time-domain RFI detection algorithms are 

usually combined with frequency-domain RFI detection algorithms as interference may 

be any kind of signal [26].  

 

3.1.2 RFI Detection in Frequency domain 
 

Usually, man-made RFI is composed by a base-band signal multiplied by a 

carrier frequency. Continuous Wave (CW) RFI is easy to detect using frequency-

domain algorithms even when its power is comparable or lower to the radiometric 

signal. 

 

Frequency-domain RFI detection algorithms are more complex than the 

algorithms in the time-domain as it is necessary a subbanding process; either digital 

(FPGA-based digital filtering [29], or FFT calculation [26]), or analog (RF filtering 

[30]). However, as digital processing hardware increases continuously its performance, 

digital subbanding is becoming the most common technique. 

 

After subbanding, RFI detection is performed by calculating the total power in 

every subband and applying a threshold directly related to the power of the radiometric 

signal which will be similar to the time domain threshold as the power is preserved. By 

this way, CW or harmonic signals will be detected if its power is higher than the noise 

in a determined subband. 
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3.1.3 RFI Detection in the combination of Frequency and 

Time-domains 
 

As it has been explained, RFI present in radiometric measurements can be 

formed by several types of signals, therefore, it is useful to combine algorithms in both 

frequency and time-domains [28, 29]. 

 

In addition, if the RFI is produced in a determined time, and only occupies a 

determined frequency band of the spectrum; blanking an entire frequency band or a 

temporal segment of data will lead to a higher radiometric data loss than the blanking of 

only the frequency band in the exact time the RFI is produced. A simulation of RFI 

localized in time and frequency, and its elimination is represented in Fig. 3.1. 
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a) b) 

Figure 3.1. Time-Frequency plane of simulated radiometric data. a) RFI is present in well localized areas 
with higher power; b) elimination of the contaminated areas, without eliminating an entire frequency or 

time segment. 
 

The most effective way to combine both domains is by means of the calculation 

of the radiometric signal spectrogram [25]. In Chapter 5 this algorithm will be explained 

in detail, as RFI detection in both domains has been one of the scopes of this Ph. D. 

 

3.2 RFI detection by Statistical Methods 
 

Radiometer signals are generated by noise and so, they are inherently zero-mean 

random Gaussian variables. In the absence of RFI, the pre-detection analog signal in a 
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microwave radiometer is generated exclusively by thermal emission sources. These 

sources include both the natural thermal emission incident on the antenna from the 

Earth and sky (antenna temperature) as well as the radiometer noise generated by ohmic 

losses and noisy active components in the hardware (receiver’s temperature). In this 

case, the PDF of the amplitude of both signals is Gaussian distributed. Signal sources 

other than thermal noise (i.e. RFI) will, in almost all cases, have non-Gaussian PDF’s. 

 

Normality analysis is the way to take advantage of this physical phenomenon to 

detect man made RFI signals present in the radiometric data, which cannot be detected 

by other RFI detection methods. Normality analysis such as the calculation of the 

kurtosis of the radiometric signal [29] and the Shapiro-Wilk normality test applied to 

the radiometric signal [31] have been previously used in radiometry. In fact, the kurtosis 

method was previously applied to detect RFI present in radio astronomy data [32]. 

 

The kurtosis (K) is a statistical parameter defined as the 4th central moment 

normalized by the square of the 2nd central moment (variance), and for a zero mean 

random variable is equal to:  
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where µ4 is the fourth order moment of random process X, and σ is the standard 

deviation of random process X. This statistical parameter has the property of having a 

value equal to 3 for Gaussian distributed signals and it is usually different from 3 for 

non-Gaussian signals. However, some examples do exist of RFI signals for which K≡3, 

e.g. a pulsed sinusoidal signal of 50% of duty cycle [33]. The kurtosis does not depend 

on the signal variance, and weak RFI can be detected even under the noise level. 

 

Another statistical method is the Shapiro-Wilk normality test, which is capable 

to detect pulsed sinusoidal signal of 50% of duty cycle. It has been previously used in 

[31], where it has been implemented in an FPGA using histograms to avoid the complex 

task of ordering the samples. 

 

In Chapter 4 of this thesis ten different normality tests are studied and compared, 

to evaluate which one has the best performance for different types of RFI signals. 
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The advantage of this technique in front of the suppression in time and 

frequency domain technique is that low level RFI’s in both domains can be detected, at 

the expense of a more complicated front-end to be able to calculate the 2nd and 4th 

moments of the received signal. However, a method to calculate an approximation of 

the kurtosis entirely by hardware is described in [34]. 

 

Nevertheless this technique is usually used subdividing the measured spectrum 

in frequency bands, as the interferences are usually not spread among the whole 

spectrum, and blanking the whole spectrum every time a RFI is detected will not be 

efficient. This process can be done by digital filtering the input radiometric signal to 

obtain a determined number of subbands [29]; or by calculating the Fast Fourier 

Transform (FFT) of the radiometric signal, and applying the kurtosis to the different 

subbands that are present in the FFT taking advantage of the fact that the Fourier 

Transform of a Gaussian signal is a complex Gaussian signal, which indeed is the RFI 

mitigation method that will be used by the upcoming SMAP mission [35].  

 

It is also useful to define the Spectral Kurtosis, which consists on the calculation 

of the FFT of the signal and calculating the kurtosis value for every frequency bin 

independently, as defined in [36]. In order to dispose of more than one sample for every 

frequency bin to calculate de spectral kurtosis, radiometric signal must be divided into 

M several blocks, hence the spectral kurtosis will be calculated with M samples, all of 

them belonging to the same frequency bin [36]. This definition of spectral kurtosis has 

been previously used in radioastronomy [37] and in radiometry [38]. 

 

3.3 Suppression using Filtering Techniques 
 

Temporally spread and strongly correlated RFI can be suppressed using 

cancellation techniques based on estimating the RFI waveform and subsequently 

subtracting it from the received signal.  

    ( ) ( ) ( )ˆ ,CLEAN RFIx t x t x t= +  (3.3)
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where ( )x t  is the received signal, ( )ˆRFIx t  is an estimation of the RFI waveform 

included in the received signal, and ( )CLEANx t  is the thermal noise, free of RFI 

components. 

 

In principle, the RFI waveform can be estimated using any available filtering 

technique (i.e. spline-moothing, Wiener filtering, wavelet denoising, parametric 

identification). Subsequently, the RFI estimate can be subtracted from the received 

signal in the temporal or frequency domains. 

 

This technique is valid when the RFI source is perfectly known or at least 

correctly estimated, and due to its complexity, fast digital signal processing hardware is 

required to deal with it. 

 

An example of a parametric identification approach of this type of RFI 

cancellation can be found in [39], where the interfering signal of a GLONASS satellite 

is represented in a parametric model with parameters (Doppler frequency, phase code 

and complex amplitude) that are calculated for each separated data block. The 

parametric model of the RFI was used to calculate an estimation of the RFI waveform 

which was subtracted from the received signal. 

 

RFI suppression methods based on wavelet denoising have also been developed 

in [40], with an increase of performance, when the sampling rate of the radiometric 

signal increases. This wavelet denoising method is explained in Chapter 6.   

 

3.4 Adaptive Interference Cancellation using 

Reference Channels 
 

A separate, dedicated reference channel is used in order to obtain an independent 

estimate of the RFI signal. This technique has been widely used in digital signal 

processing, and it is known as adaptive noise cancelling [41].  
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Figure 3.2 represents a block diagram explaining the application of this 

technique. There are two data channels: a main channel pointing to the source and 

containing the RFI signal; and a reference channel (separated antenna pointing off 

source) that contains also the RFI signal. Both channels contain the RFI signal, which 

are different due to the different propagation paths, but correlated as they come from the 

same source. Taking advantage of this correlation it is possible to, by means of 

adjusting and subtracting the RFI from the reference channel, eliminate the RFI from 

the received signal [42]. 

 
Figure 3.2. Adaptive noise cancelling concept. 

 

This procedure can be applied both in the time-domain (adaptive filtering) and in 

the frequency domain (FFT → adaptive filtering in each frequency bin → FFT-1). This 

kind of RFI cancellation is especially useful when the RFI and the signal of interest 

occupy the same frequency domain. 

 

3.5 Spatial Filtering using Multi-element Systems 
 

Spatial filtering methods use the difference in the Direction-of-Arrival (DOA) of 

the signal of interest and the RFI. The RFI emission from spatially localized sources 

could be suppressed using multi-element radio interferometers based on an adaptive 

array philosophy, forcing the zeros of a synthesized antenna pattern to coincide with the 

DOAs of undesirable signals (adaptive nulling). However, usually RFI sources will not 

be localized in only one point in the space; hence this method will work with a 

maximum number of RFI sources. 

 

Another way of RFI cancellation is the RFI estimation by means of the 

combination of the complex spectra of the different antennas. Then, this RFI estimation 
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is removed from the received signal. This method is very similar to the method 

presented in the section 3.4, but assuming a larger number of reference channels. 

 

Obviously, this technique can only be applied to interferometers, since a real 

aperture radiometer has only one antenna pointing to a given place at a given time.  

 

This technique has been used firstly in radio astronomy, applying spatial 

filtering post-processing techniques in data obtained from the Westerbork Synthesis 

Radio Telescope (WSRT) [43].  

 

In radiometry, an example of spatial filtering post-processing technique has been 

developed as a RFI detection and mitigation algorithm for Soil Moisture and Ocean 

Salinity (SMOS) data [44]. In addition DOA RFI detection algorithm has been proposed 

in [44]. 

 

3.6 Conclusions 
 

Several RFI detection methods have been exposed in this chapter, in addition to 

examples of actual measurement devices that use these methods. 

 

The problem with the RFI is that there is not a perfect algorithm able to detect 

any kind of RFI, each algorithm performs best for a determined RFI, so the best RFI 

method will be composed by a combination of two or more RFI algorithms.  

 

However, not all RFI algorithms can be used in all radiometers; as some 

algorithms require arrays of antennas (sections 3.4 and 3.5), others require an ADC to 

measure the radiometric signal without losing any feature (sections 3.1.3, 3.2 and 3.3), 

and others will also require fast digital processing hardware (section 3.3). It is obvious 

that not all the radiometers will accomplish all these hardware requirements, so the 

radiometer design must be taken into account to apply any of the RFI algorithms 

described in this chapter. 
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Chapter 4 
 
4. Normality Analysis for RFI Detection 
in Microwave Radiometry 

 

 

 

Nowadays, man-made RFI is composed by numerous 

signals using different modulations. Pulsed signals and 

tones are usually easy to detect and eliminate simply by 

thresholding either in the time or frequency domains. 

Broadband modulations distribute the power of the 

emitted signal over the time and frequency domains, 

therefore, it can remain undetectable by RFI time 

frequency-domains detection in algorithms. These 

broadband modulations are nowadays in constant 

increase so it is necessary an algorithm specialized in this 

kind of RFI. The received radiometric signal in the 

absence of RFI, must be a zero-mean Gaussian process, 

while man-made RFI usually is not Gaussian. Therefore, 

the study of the statistics of the radiometric signal can 

detect interferences which remain undetected with RFI 

detection algorithms in time and frequency domains. 
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As it is widely known, radiometric signal (thermal noise) follows a determined 

probability distribution which, in the absence of RFI, is a zero-mean random Gaussian 

variable. As a consequence, the probability density function (PDF) and the statistical 

parameters, such as the moments, are perfectly known.  

 

Therefore, it is possible to detect RFI present in radiometric data with the 

statistical analysis. The most widely used time/frequency domain statistical analysis in 

microwave radiometry is the Kurtosis (ratio of the fourth moment and the square of the 

second moment) which must be equal to 3 in RFI-free conditions [29, 45, 46]. However, 

the sixth order moment [47], and other algorithms [31, 34, 40, 48] have also been 

studied. 

 

In this Ph. D. thesis, the suitability of several normality tests for RFI detection in 

microwave radiometry has been analyzed. The normality tests involved are: Jarque-Bera 

(JB), Shapiro-Wilk (SW), Chi-square (CHI2), Anderson-Darling (AD), Lilliefors-

Smirnov-Kolmogorov (L), Lin-Muldhokar (LM), Agostino-Pearson K squared (K2), 

Cramer-von Mises (CM), in addition to the Kurtosis (K) and Skewness (S) statistical 

parameters to detect signals non-normality. The ultimate objective is to compare these 

normality tests to obtain an omnibus test to detect RFI, or at least, the best normality 

test for a determined type of RFI. Extensive Monte Carlo simulations have been used to 

compare tests performance. 

 

A brief description of these tests is given in section 4.1. Section 4.2 analyzes the 

validity of these tests in relation to its probability of false alarm. Section 4.3 shows the 

results obtained for the different tests applied to a simulated scenario of thermal noise 

signal (Gaussian) contaminated with different RFI signals. Finally Section 4.4 

summarizes the conclusions obtained from the simulation results. 

 

4.1 Normality tests 
 

The rationale behind the use of normality tests to detect RFI in microwave 

radiometry is the fact that the thermal noise signal measured by radiometers, follows a 

zero-mean Gaussian distribution, while in general, man-made RFI are not Gaussian. 
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Normality tests used in this study have been widely used in statistical literature 

and are described in this section. Some of these tests can be used with probability 

distributions different from the normal distribution. 

 

The radiometric signal must be sampled following the Nyquist theorem, which 

states that the sampling frequency fs must be at least twice the signal’s bandwidth B. In 

this study, a sample is defined as the value of the received signal amplitude obtained by 

an ADC every Ts = 1/fs seconds. Thus, the number of samples or sample size is the total 

number of values obtained in the sampling process of the signal. 

 

A brief summary of the statistical tests used in this study is provided 
 

4.1.1 Kurtosis test 
 

The kurtosis is a statistical parameter related to the shape of the PDF of a 

random variable. The kurtosis of a Gaussian random variable is always 3 independently 

of its mean and variance. Assuming a random process X, the Kurtosis (K) follows: 
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where N is the sample size, and X  represents the sample mean of X. Equation 

(4.2) defines the Kurtosis estimator K̂  used in this study. In the specific case that the 

random process is a zero-mean Gaussian process, the value of K̂  tends to 3 as the 

sample size increases. The Kurtosis test consists of comparing the estimated kurtosis 

value of the received signal with tabulated values of the cumulative distribution 

function (CDF) of the kurtosis of a Gaussian random variable of N samples; in Fig. 4.1 

contours of these CDF tabulated values are represented. The kurtosis parameter has 

been used in microwave radiometry RFI detection, although it exhibits some problems 

in detecting some particular signals [29, 40, 45, 46]. 
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Figure 4.1: Contours of the CDF for the kurtosis value as a function of the number of independent 

samples N when the samples follow a Gaussian distribution. 
 

4.1.2 Skewness test 
 

Skewness is a statistical parameter related to the asymmetry of the PDF of a 

random variable. In this case, the skewness of a Gaussian random variable is always 0. 

Assuming a zero mean random process X, the skewness (S) follows: 

[ ]( )

[ ]( )( )
3

3
3/ 23 2

E X E X
S

E X E X

µ
σ

 −
 = =
 −
 

, (4.3)

( )

( )

3

1
3/2

2

1

1

ˆ
1

N

i
i

N

i
i

X X
NS

X X
N

=

=

−
=
 − 
 

∑

∑
. (4.4)

Equation (4.4) defines the skewness estimator Ŝ  used in this study. In the 

specific case that the random process is Gaussian, Ŝ  tends to 0 as the sample size 

increases. The Skewness test is based on comparing the estimated skewness value of the 

received signal with tabulated values of the skewness of a Gaussian random variable, as 

it has been done in the Kurtosis test (Fig. 4.2). Kurtosis and skewness CDF tables have 

been computed from 216 Monte-Carlo simulations. 
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Figure 4.2: Contours of the CDF for the skewness value as a function of the number of independent 

samples N when the samples follow a Gaussian distribution. 
 

4.1.3 Jarque-Bera test (JB) 
 

JB test is a normality test based on the skewness and the kurtosis of the process, 

e.g. analyses the normality of a process taking into account both the kurtosis and the 

skewness of this process. JB test is defined as: 

( )2

2
ˆ 3ˆJB

6 4

KN S
 − = +  
 

, (4.5)

where N is the sample size, Ŝ  is the skewness estimator of the process, and K̂  is 

the kurtosis estimator of the process. In case of normality Ŝ  and K̂  are asymptotically 

independent, and hence, the JB test asymptotically follows a Chi-square distribution 

with two degrees of freedom. Unfortunately, this fact leads to an error measurement 

when the sample size is low [49-51]. 

 

4.1.4 D’Agostino K-squared test (K2) 
 

K2 test, like JB test, is also based on the skewness and the kurtosis of the 

process, with the particularity that the skewness and the kurtosis of the process must be 

first approximated to avoid the error measurements present in the JB test when the 

sample size is small. In case of normality K2 test, it follows a chi-squared distribution 
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even with a low sample size. The definition of the K2 test is complex and it can be 

consulted in [52] for the interested readers. 

 

4.1.5 Kolmogorov-Smirnov (KS) and Lilliefors (L) tests 
 

KS test is based on the empirical distribution function (EDF); given N ordered 

values of a sample X the EDF is defined as: 
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where I(·) is the indicator of the event, Xi is the ith element of the sample to be 

tested, whose values must be ordered from the lowest to the highest, and ( )ˆ
NF x  is a 

step function that increases by 1/N at the value of each ordered data point. KS test 

correlates the empirical distribution function with the normal distribution function, with 

a determined mean and variance that must be known. Since the mean and the variance 

are usually unknown parameters, this test is replaced by the L test to avoid the errors 

introduced by a wrong variance estimation. The L test is a slight modification of the KS 

test in which the mean and variance of the normal distribution are obtained from the 

sample X [53]. The L test is defined as: 
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where ( )ˆ
iF X  is the value of the ith element of the EDF of X, and ( )iF Y  is the 

value of the ith element of the normal distribution function with (L test case) mean and 

variance ( 2
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L confidence values are obtained from the CDF of the L test result when applied 

to a Gaussian distribution. Hence, these values represent the result of the test in case of 

normality [53]. A total of 216 Monte-Carlo simulations have been performed to obtain 

these confidence values, which are tabulated as the previous Kurtosis and Skewness 

tests values. Lilliefors test confidence values are represented in Fig. 4.3a. 
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On the other hand, the L test has still one limitation, it tends to be more sensitive 

near the centre of the distribution, than at the tails. In general, the probability of 

detection will be set as high as possible, making more important the tails of the 

distribution than the centre. 

 

4.1.6 Anderson-Darling test (AD) 
 

The AD test is a modification of the L test that gives more weight to the tails 

than the L test, thus, AD test is also a ECDF based test. As this test is also based on the 

comparison of distribution functions, the values of the sample to test must be ordered. 

This test consists of: 
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where Φ(·) represents the standard normal cumulative distribution function 

(CDF) operator. As it is described in [54], AD*2 must be adjusted for the sample size as 

follows:  
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Critical values can be consulted from tables [54], although an empirical 

development of these critical values for the normal case is presented in [55]. 

 

4.1.7 Shapiro-Wilk test (SW) 
 

The SW test belongs to the ECDF comparison group of tests. Again, samples 

must be sorted from the lowest to the highest values in order to be able to use this 

normality test. The SW test is defined as:  
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The main part of the SW test is the vector of coefficients ai, i = 1...N. These 

coefficients are tabulated in [56] for the case of less than 50 samples, or they can be 

analytically calculated [57]. Furthermore, to ease the application of the SW test, in [58] 

the SW test has been transformed to have a normal distribution in the case of normality 

of the tested signal. A drawback of this test is the limitation of the sample size to a 

maximum of 2,000 values [58]. Longer sample lengths can be tested by dividing it in 

several shorter length sets of samples and calculating the SW test on each set, and 

averaging the results as they are normally distributed [33, 48]. 

 

4.1.8 Cramer-von Mises test (CM) 

 
The CM test is a variation of the L test (so, it is a ECDF based test) [59]. It is 

defined as: 
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where Yi has been already defined in (4.11). Confidence values are obtained 

following the same methodology as with the L test. CM test confidence values are 

represented in Fig. 4.3b; it can be noted that these confidence values do not depend on 

the number of samples N. 
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Figure 4.3. Confidence values for the Lilliefors and Cramer-von-Mises tests to detect non-normality, 

lower Pfa require higher confidence values. a) Lilliefors test case; b) Cramer-von-Mises test case. 
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4.1.9 Lin-Mudholkar test (LM) 
 

The LM test is based on the fact that the mean and variance of a random sample 

are independently distributed, if and only if, the parent population is normal (a simple 

test for normality against asymmetric alternatives). The LM test of a sample X is 

defined as [60, 61]: 

1 RLM 0.5log
1 R
+ =  − 

, (4.15)

being R the cross-correlation between the samples X and Y: 
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The LM parameter presents a normal distribution, however it is not normalized 

neither in the mean, nor in the variance. In [61] it is specified the procedure to 

normalize the LM test. This test is sensitive only to departures from normality due to 

Skewness. As shown in [62], this procedure is generally much more powerful at 

detecting Skewness than the Skewness coefficient itself, although it has little power in 

detecting nonnormal symmetrical distributions. As an example, uniform or platykurtic 

distributions will pass this test easily, and therefore other tests such as AD test have to 

be also used in conjunction with it. 

 

4.1.10 Chi-square test (CHI2) 
 

The strong point of the chi-squared goodness-of-fit test is that it can be used to 

test if a data sample belongs to a process with a determined distribution. However, in 

our application this is not an advantage as the only distribution to be analyzed is the 
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normal one. On the other hand the CHI2 test requires a sample size large enough for the 

chi-square approximation to be valid. CHI2 test of the sample X is defined as: 

( )2

1
CHI2

N
i i

i i

O E
E=

−
=∑ , (4.18)

where CHI2 represents the result of the test, which asymptotically approaches to 

a χ2 distribution, Oi is the frequency of the ith possible outcome of the sample (assuming 

O to be an histogram of the sample X), Ei is the theoretical frequency (which in our case 

is the histogram of the zero mean unit variance random normal process), and N is the 

number of possible outcomes of each event.  

 

4.2 Validation of Normality Tests in the Absence 

of RFI 
 

In order to evaluate the performance of the different tests listed in section 2, two 

error types must be introduced first: 

 

Type I error: rejection of a true hypothesis. In our context, type I error is also 

known as probability of false alarm (Pfa). This error is produced when, in the absence of 

RFI sources, the algorithm “detects” the presence of RFI in a determined sample, 

leading to the blanking (elimination) of correct data, thus reducing the total integration 

time.  

 

Type II error: acceptance of a false hypothesis. In our context, type II error is 

known as probability of missed detection (Pmiss). This error is produced when a RFI is 

present in the signal, but it is not detected, leading to an erroneous measurement, but it 

is assumed to be correct. Probability of detection (Pdet) used in this work is defined as 

1 – Pmiss. 

 

It is obvious that the objective is to obtain a low probability of false alarm and a 

high probability of detection; but both types of errors have a strong correlation, where 

the setting of the value of one of these parameters determines the value of the other. 

This way, if it is desired to minimize the probability of false alarm, the RFI detection 
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threshold must be set to a relative high value, leading to a low probability of detection. 

On the other hand, if it is desired to maximize the probability of detection, the RFI 

detection threshold must be set to a relative low value, leading to a high probability of 

false alarm. A good way to evaluate the compromise between Pdet and Pfa, is the 

calculation of the so-called Receiver Operating Characteristic (ROC) curves Pdet(Pfa) 

[31, 38, 48]. In addition to ROC plots of the Interference to Noise Ratio (INR) as a 

function of the sample size and other parameters are shown. 

 

The INR parameter that is used to determine the performance of the normality 

tests in this Ph. D. thesis is defined as: 
2

2INR RFI

Noise

σ
σ
= , (4.19)

where 2
RFIσ  is the power of the interfering signal and 2

Noiseσ  is the thermal noise 

power. 

 

Validation of normality tests is performed to minimize the errors in the threshold 

calculation for a determined pair of values Pdet and Pfa. Normality test errors introduced 

by the different tests in the Pdet and Pfa values must be acceptable. The method followed 

to check the normality tests is the calculation of the ROC curve by means of 215 Monte 

Carlo simulations of a Gaussian signal in the absence of RFI, for every test, and varying 

some determined parameters (sample size and quantization level). The rule of thumb 

followed in this Ph. D. thesis considers a test valid when the error between the ROC 

curve of the test and the RFI free case ROC curve (Pdet = Pfa) is less than the 5% (e.g. 

for Pfa = 0.1 → 0.095 < Pdet < 0.105). 

 

Quantization has been modeled by varying the number of discretization levels 

(determined by the number of bits), and assuming a dynamic range of the ADC of ±8σ, 

where σ2 is the RFI-free noise power, to avoid signal clipping. 

 

Figures 4.4a and 4.4b represent the ROC curves for the SW test in the case of 

calculating the test in blocks of 2,048 and 4,096 samples respectively, and averaging the 

results to obtain a Gaussian distribution [58]. Test validation has been performed to 

these two sizes of the sets to obtain the largest sample size that can be used with the SW 
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test. For the 4,096 samples case, performance of the SW test decreases with the sample 

length, while in the case of 2,048 samples the SW test does not have significant 

variations with respect to the ideal behavior. Explanation of this behavior can be found 

in [57], where the performance of the SW test is guaranteed for a maximum of 2,000 

samples, but not for larger sample lengths. The number of bits has been set to 20 (220−1 

quantization levels) in both cases to avoid quantization errors. 

 

a) b) 
Figure 4.4. Comparison between the performance of Shapiro-Wilk test with block size set of: a) 2,048 

samples, and b) 4,096 samlpes. 20 quantization bits have been used to neglect quantization errors. For 
4,096 samples (>2,000 [57]) the performance degrades, while it does not for 2,048 samples. 

 

Figure 4.5 represent the validity of the SW test, as a function of the sample 

length and the quantization level. Solid lines represent the cases where the test is 

considered to be valid (error <5%), while dotted and dash-dotted lines represent invalid 

test cases. As it can be appreciated, the longer the sample size, the more the quantization 

levels are required since the quantization process introduces a discretization error of the 

PDF. Quantization makes the normal distribution to become similar to a binomial 

distribution, which is detected as non-normal. Therefore, as the sample size increases, 

the number of quantization levels must increase to avoid this “change of distribution” 

from normal to binomial. 
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Figure 4.5. Shapiro-Wilk validity test as a function of the sample length and the quantization level. 

Dotted and dash-dotted lines represent invalid test cases (error >5%), solid lines represent cases where 
the test is valid (error <5%). Lower number of bits in lines of the same color (same sample size) lead to 

sample sets “detected” as interference. 
 

Figure 4.6 shows the validity of the normality tests as a function of the 

quantization bits (and the sample size (the lower the better, except for K2 and JB test). 

Actually, the validity of the tests is more influenced by the number of quantization bits 

than by sample size, provided it is high enough. 

 

 
Figure 4.6. Minimum number of bits to neglect the quantization error, ECDF based test need more 

quantization bits as the sample size increase. As chi2 test, K2 test and JB tests are asymptotic, do not 
work properly for a low sample size. K, S and LM tests do not appear in graph as performance of these 

tests is acceptable for less than 6 quantization bits even for a sample size of 216. 
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4.3 Performance of Normality Tests for Different 

Types of RFI 
 

The performance of each normality test is calculated for different types of RFI 

representative of the ones actually encountered. 

 

Pulsed sinusoidal signal: this signal has been extensively studied in microwave 

radiometry [29, 31, 38, 45-48], as it is a common interference signal (e.g. a radar signal 

or a third order intermodulation product spurious signal). The signal model of this RFI 

is described as: 

[ ] ( ) [ ]0 0cos 2       1..sPS i A f T i H i i Nπ ϕ= + = , (4.20)

where PS[i] is the sampled pulsed sinusoidal signal, A, f0 and φ0 are the 

amplitude, frequency, and initial phase of the RFI respectively, Ts is the sampling 

period, and H[i] is a train of pulses described as:  

[ ] ( )1   mod
     1..

0   otherwise
M i M DC

H i i N
≤= =



i
, (4.21)

where N is the sample length, M is the pulse length, and DC is the duty cycle 

factor of every pulse. Hence the RFI is a train of N/M pulsed sinusoidal signals of DC 

duty cycle factor. 

 

 
Figure 4.7. Representation of H[i] function, where N is the total sample size, N/M is the total number of 

pulses and DC*M is the pulse length (in samples). 
 

Pulsed Chirp signal: A chirp consists of a linearly varying frequency sinusoidal 

signal. The signal model of the RFI chirp is described as: 

[ ] ( )( ) [ ]0 0cos 2       1..s sCH i A f T i T i H i i Nπ πβ ϕ= + + = , (4.22)

where CH[i] is the sampled pulsed chirp signal, β is the chirp rate of the linear 

frequency modulation (which corresponds to the slope of the frequency variation), A, f0 
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and φ0 are the amplitude, initial frequency, and initial phase of the RFI respectively, and 

H[i] is the train of pulses function described in eqn. (4.21). 

 

Pseudo-Random Noise (PRN) signal: a PRN signal is a signal that satisfies one 

or more standard tests for statistical randomness. This signal consists of a deterministic 

sequence of pulses with (-1 and 1 values) that repeats itself after a period, which is 

usually very long, leading to a spread spectrum behavior of the signal. Without loss of 

generality in this work, the firsts 10,230 output bits of a MLSG of 14 stages (Fig. 4.8) 

are used as the deterministic sequence of the PRN interfering signal. 

 

 
Figure 4.8. MLSG from which the PRN interfering signal used in this work is obtained. PRN interfering 

signal is composed by the repetition of the first 10,230 output bits 
 

Pulsed PRN signal: as it has been stated before, a pulsed sinusoidal signal of 

50% of duty cycle is not detected by the Kurtosis algorithm. The purpose of testing a 

pulsed PRN signal is to check a blind spot exists for this type of signals. This signal can 

be defined as: 

[ ] [ ] [ ]      1..PRN i Av i H i i N= = , (4.23)

where PRN[i] is the sampled pulsed PRN signal, A is the amplitude of the signal 

and v[i] is the bit obtained from the Maximum Length Sequence Generator (MLSG) 

described in Fig. 4.8 whose values can be 1 and -1. 

 

Telegraphic signal: this signal is a baseband digital amplitude modulated signal 

(i.e. Amplitude Shift Keying (ASK) or On-Off Shift Keying (OOSK)). Telegraphic 

signal consist of a sequence of pulses (which values can be 0 and 1 or −1 and 1) where 

every bit of the message is modulated as one independent pulse. Duration of the pulse 
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will determine the transmission speed. This signal is usually scrambled as originally it 

contents a high entropy value. 

 

Pulsed telegraphic signal: in the same way, pulsed PRN signals have been 

tested in order to search for blind spots, is also interesting to test the pulsed telegraphic 

signals. 

 

Pulsed Orthogonal Frequency Division Multiplexing (OFDM) signal: 

OFDM modulation consists of the division of the transmitted data in several parallel bit 

streams and the modulation of each of these data streams onto individual subcarriers. As 

each independent data stream must be orthogonal, adjacent carriers are separated by an 

integer multiple of the inverse of symbol duration of the parallel bit, hence multiple 

carriers can be transmitted simultaneously without problems. In other words, the entire 

channel is occupied through the aggregated sum of the narrow orthogonal subbands 

[63]. The discrete signal model of an OFDM RFI is defined as [63]: 

[ ] ( )
1

0

cos 2
CM

m m s
m

OFDM n A S f T nπ
−

=

= ∑ , (4.24)

where Mc is the number of independent carriers (i.e. data streams), Sm are the Mc 

parallel modulated source symbols, A is the amplitude of the RFI signal, and fm is the 

mth subcarrier, defined as: 

,        0,..., 1m C
Symbol

mf m M
T

= = − , (4.25)

 where TSymbol is the OFDM symbol duration. 

 

Source symbols have a determined distribution which affects the distribution of 

the OFDM modulated signal. Therefore OFDM modulated signals with differently 

distributed source symbols will present different distributions, thus different results for 

our normality tests. This is the reason to include two different OFDM modulated 

signals, the two signals used as symbols of an OFDM modulated signals are two defined 

previously, the PRN signal and the telegraphic uniformly distributed signal. 

 

The performance of the different normality tests in the detection of the described 

RFI types is measured in terms of the required INR to obtain a ROC curve with a 

Pdet = 0.9 for a Pfa = 0.1, these values have been chosen only to make a comparison of 
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all normality tests. If the INR to obtain this ROC curve by a determined normality test is 

higher than other one, it means that for a fixed INR and Pfa values, the first normality 

test will have a lower Pdet than the second one; thus, a lower INR value will indicate a 

better performance of the normality test in the RFI detection. 
 

In order to get reliable results, the performance has been calculated as the 

average of 215 Monte-Carlo simulations. In the figures which represent the performance 

of the different normality tests, some tests are not plotted due to its poor performance, 

as it is usually the case of S, LM and CHI2 tests. 
 

4.3.1 Pulsed Sinusoidal and Chirp Signal 
 

It is widely known [29, 45-47] that a pulsed sinusoidal interfering signal of 0.5 

duty cycle cannot be detected by the Kurtosis test, as this signal has a Kurtosis equal to 

3, independently of the frequency of the interfering signal. Hence, a study of different 

alternatives to detect non-Gaussian signals is performed. Figure 6a shows the 

performance of different normality tests for sample sizes of 1,024 samples (dotted lines) 

and 16,384 samples (solid lines).  

 

a) b) 
Figure 4.9. Normality test performance in the detection of a pulsed sinusoidal interference of: a) 1,024 

samples (dotted line) and 16,384 samples (solid line), and b) a chirp signal of 16,384 samples as a 
function of signal’s duty cycle. ROC curve with a Pdet = 0.9 for a Pfa = 0.1 in both cases. 
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For the generation of the simulated RFI, parameters f0 and φ0 are selected at 

random for the pulsed sinusoidal interference, while are defined as f0 = 2 × 10−5 and 

fN = 0.15 with N =16,384; and φ0 = 0º for the pulsed chirp interference.  

 

As it can be seen in Fig. 4.9, the best normality tests to detect pulsed sinusoidal 

interfering of duty cycle around 0.5 are the AD, the SW, the CM and the L tests, with 

improving performance as the sample size increases. These four ECDF based normality 

tests perform in a similar manner, having a better performance the SW test for shorter 

sample sizes, and the AD test for longer sample sizes. The CM and L tests have a 

performance in between the other tests for large duty cycle. The performance of all the 

normality tests in the detection of an interfering chirp signal with a variable duty cycle 

is very similar to the case of the detection of a pulsed sinusoidal signal, comparing 

results of Figs. 4.9a and 4.9b. 

 

However, for duty cycle values different from 0.5 and nearby values, K test and 

kurtosis-related tests outperform. In Fig. 4.9a and 4.9b skewness and kurtosis-related 

tests have a peak around 0.5 that narrows with increasing sample size. Performance of 

JB and K2 test are worse than the K test alone, since these two tests depend also on the 

skewness parameter, which is zero in the analyzed signal. 

 

In Fig. 4.10 the performance of the AD, SW, L and CM normality tests in the 

detection of a pulsed sinusoidal signal of exactly 0.5 duty cycle (Fig. 4.10a), and a chirp 

signal is compared as a function of the sample size.  

 

The K, JB and K2 tests are not present in Fig. 4.10a since they cannot detect 

sinusoidal signals of 0.5 duty cycle. The AD, L and CM tests follow almost the same 

trend while the SW test has a different trend for sample lengths of 4,096 and above, 

since blocks of 2,048 samples have to be averaged to ensure a good performance of the 

test.  On the other hand, in the 4.10b the K algorithm has the best performance followed 

by the kurtosis-based normality tests (JB and K2). In both cases the SW test 

performance does not improve as fast as the others above 2,048 samples due to 

averaging and CM test has a slightly worse performance than AD test. 
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a) b) 
Figure 4.10. Normality test performance in the detection of: a) 0.5 duty cycle pulsed sinusoidal 

interference, and b) 1 duty cycle chirp interfering signal; as a function of the signal’s sample size. ROC 
curve with a Pdet = 0.9 for a Pfa = 0.1 in both cases. 

 

4.3.2 Pseudo-random noise signal 
 

Figure 4.11 shows the performance of the different tests vs the sample size. The 

K test achieves the best performance in the detection of this kind of interfering signal, 

followed by JB and K2 tests. Hence, kurtosis based tests perform better than ECDF-

based tests (AD, L, CM, SW) in the detection of PRN signals. Performance of ECDF-

based tests is quite similar to the sinusoidal and chirp interfering signals, obtaining the 

best results with the AD and the SW tests for lower sample sizes, and with the AD and 

CM tests for higher sample sizes. SW test performance is not degraded for large sample 

size due to averaging. 
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Figure 4.11. Normality test performance in the detection of a PRN interference as a function of 

the signal’s sample size, ROC curve with a Pdet = 0.9 for a Pfa = 0.1. 
 

Figure 4.12 shows the ROC curves of the normality tests performance in the 

detection of a PRN signal of 16,384 number of samples and a INR of -5.2 dB; in this 

figure, K gets a value of Pdet = 0.9 for Pfa = 0.1. and is the only normality test to get this 

Pdet and Pfa results. In this figure it is clearly shown that the K test outperforms for the 

same INR over the rest of normality tests, followed by the two kurtosis and 

skewness-based tests (JB and K2 tests) which have almost the same behavior. The four 

ECDF-based tests (AD, CM, L and SW tests) have poorer performance. The worst 

performance is obtained by the S, LM and CHI2 tests. The S and LM tests fail as the 

interfering signal Skewness is zero. CHI2 test has a poorer performance in the RFI 

detection than the ECDF-based tests, and Kurtosis-based tests, therefore it is not 

recommended in the RFI detection. 

 

 
Figure 4.12. Normality tests performance in the detection of a PRN interference signal. 
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4.3.3 Pulsed PRN signal 
 

Figure 4.13 shows the performance of the different normality tests in the 

detection of a Pulsed PRN interfering signal. In this figure, the JB and K2 tests are not 

represented as its performance is always slightly worse than the K test. 

 

A blind spot in the Kurtosis detection algorithm can be observed, in this case for 

a duty cycle of 0.333, which is not present in the rest of the RFI detection algorithms. In 

fact, the four ECDF-based tests perform similarly; the SW tests performs slightly worse 

as it has been averaged. AD test performs better than the rest of ECDF tests. Although 

the blind spot issue, K test performs better than the others detection algorithms for duty 

cycle values outside the blind spot. 

 

 
Figure 4.13. Normality test performance in the detection of a pulsed PRN interference of 16,384 samples 

as a function of the signal’s  duty cycle, ROC curve with a Pdet = 0.9 for a Pfa = 0.1. 
 

4.3.4 Telegraphic signal 
 

For this type of interfering signal, depending on the actual message transmitted 

the performance of the different normality test is quite variable. In this study, three 

different interfering signals have been used, called messages 1, 2 and 3. Message 1 is a 

plain text file (very low randomness), message 2 is a zipped file, and message 3 is a jpg 

file (high level of randomness, as redundancy is eliminated). In Fig. 4.14 and 4.15 ROC 

curves of message 1 are presented as a function of the sample size and the INR, 

respectively. In Fig. 4.14, the INR is fixed to -16 dB, and in Fig. 4.15 the sample size is 

fixed to 2048 samples. As for other kinds of interfering signals increasing the sample 
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size increases the probability of RFI detection, while increasing the INR increases the 

probability of RFI detection. 

 

In Fig. 4.14 it is shown that the best normality tests for detecting message 1 

varies depending of the sample size: for 2,048 samples it is the SW test, while for 1,024 

samples they are the JB and the K2 tests (highest Pdet with a low Pfa), as both values of 

kurtosis and skewness are non-zero; the performance of these tests is far better than AD, 

CM and L tests. Performance of the normality tests varying the INR value is very 

similar than the case when the sample size is varied, as it can be seen in Fig. 4.15, 

where the test which perform better are the SW, the JB and the K2. 

 

In Fig. 4.16 and 4.17 the ROC curves of the three different messages are 

presented. Figure 4.16 presents the normality test performance in the detection of the 

three different messages with the same INR of -20dB and the same sample size of 

16384. Message 1 is relatively easy to detect by any normality test due to its statistical 

nature (plain text file with high redundancy) while messages 2 and 3 are undetectable 

for INR = -20dB due to the low redundancy of these messages (compressed data), 

therefore, a new simulation with a higher INR value (INR = -5.2dB) is presented in Fig. 

4.17. As it as been said in the previous figures the best normality tests for detecting 

message 1 is JB and K2 tests as both values of kurtosis and skewness are non-zero, 

followed by the SW test. 

 

Figure 4.17 presents the normality test performance in the detection of the 

messages 1, 2 and 3 with a higher INR of -5.2dB and the same sample size of 16384. 

The message 1 is detected by all normality tests as the INR is high for the detection of 

this highly redundant signal. On the other hand, messages 2 and 3 are not so easily 

detected due to its low redundancy, in this case the best normality tests to detect low 

redundant telegraphic signal is again the K test. In fact, the relative performance of the 

normality tests is exactly the same as the PRN case (Fig. 4.12). 

 

To simulate message scrambling and encryption, all 3 messages are scrambled 

by means of an XOR operation between original message and the PRN code previously 

studied in this work, using the parameters of simulation of INR = -5.2dB and sample 

size = 16384. Results obtained are shown in Fig. 4.18 which has to be compared with 
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the result obtained in Fig. 4.12. The high similarity between Fig. 4.12 and the result of 

the test detection of the scrambled signal of all three messages and the PRN signal (Fig. 

4.18), shows that the scrambling process usually employed in communications makes 

the detection of RFI more difficult. It can be observed that all ROC curves are almost 

equal for each interfering signal, deducing that if the telegraphic signal is encrypted or 

scrambled, front the point of view of detectability, it behaves as a spread spectrum 

signal 

 

 
a) b) c) 

Figure 4.14. Normality tests performance in the detection of a telegraphic interference signal 
(message 1). INR = -16 dB for the three cases;  a) 16384 samples.  b) 2048 samples.  c) 1024 samples. 

 

 
a) b) c) 

Figure 4.15. Normality tests performance in the detection of a telegraphic interference signal 
(message 1). 2048 samples for the three cases;  a) INR = -10 dB.  b) INR = -15 dB.  c) INR = -20 dB. 

 

 
a) b) c) 

Figure 4.16. Normality test performance in the detection of a telegraphic interference signal. 
INR = -20 dB and 16384 samples for the three cases; a) Message 1.  b) Message 2.  c) Message 3. 
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a) b) c) 

Figure 4.17. Normality test performance in the detection of a telegraphic interference signal. 
INR = -5.2 dB and 16384 samples for the three cases; a) Message 1.  b) Message 2.  c) Message 3. 

 

 
a) b) c) 

Figure 4.18. Normality test performance in the detection of a telegraphic interference signal scrambled 
with the PRN signal obtained with the MLSG detailed in Figure 4.8. INR = -5.2 dB and 16384 samples 

for the three cases; a) Scrambled message 1.  b) Scrambled message 2.  c) Scrambled message 3. 
 

4.3.5 Pulsed Telegraphic Signal 
 

 In this case, in order to choose a ‘message’ with the lowest entropy, the message 

sent has been substituted by an uniformly distributed stochastic process. Figure 4.19 

shows the performance of the ECFD and K normality tests in the detection of a Pulsed 

8-level ASK uniformly distributed telegraphic interfering signal, in this case K2 and JB 

tests are not included as perform slightly worse than K test.  

 

Another blind spot appears in the Kurtosis detection algorithm (duty cycle of 

0.587), which again is not present in the ECFD-based RFI detection algorithms. Also, 

the AD test performs better than the rest of ECFD tests followed by the CM test since 

the SW test performance is degraded due to averaging. Again, the K test outperforms 

for duty cycle values outside the blind spot.  
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Figure 4.19. Normality test performance in the detection of a pulsed telegraphic signal interference of 

16384 samples as a function of the signal’s  duty cycle, ROC curve with a Pdet = 0.9 for a Pfa = 0.1. 
 

4.3.6 Pulsed OFDM signal 
 

 Figure 4.20a shows the performance of the different normality tests in the 

detection of a Pulsed PRN over OFDM interfering signal which consists in a PRN 

signal OFDM modulated afterwards. In this case no blind spots are present in the 

Kurtosis algorithm, having the best performance for all duty cycle, followed by the AD 

and SW tests. 

 

Figure 4.20b shows the performance of the different normality tests in the 

detection of a Pulsed 8-level ASK uniformly distributed telegraphic over OFDM 

interfering signal (uniformly distributed telegraphic signal OFDM modulated 

afterwards). Kurtosis blind spot is present for a duty cycle of 1, therefore if the signal is 

not pulsed, it will be undetectable for the K test. In addition, the rest of the normality 

tests seem not to perform properly, as they need a very high INR to be able to detect this 

interference, (for example SW test will detect the interfering signal with an INR higher 

than 9 dB). Again, K test obtains the best results outside the blind spot, followed by the 

AD test.  
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a) b) 
Figure 4.20. Normality test performance in the detection of: a) pulsed PRN modulated over 

OFDM interference of 16,384 samples, and b) pulsed 8 level ASK Telegraphic uniformly distributed 
modulated over OFDM interference of 16,384 samples; as a function of signal’s duty cycle. ROC curve 

with a Pdet = 0.9 for a Pfa = 0.1 in both cases. 
 

4.4 Blind spot detection in Kurtosis based 

algorithms 
 

As it has been described in section 4.3, the K test and the kurtosis-based tests 

(JB and K2 tests) present blind spots for different pulsed signals. 

 

The reason of all these blind spots present in the K test is that the Kurtosis takes 

a value of 3, the same value than for a Gaussian signal. In Fig. 4.21, values of the 

kurtosis parameter of five different pulsed functions are represented in function of its 

duty cycle. It can be observed that kurtosis value is very high for low duty cycles, 

diminishing with duty cycle until a determined value which is the value of the function 

when it is not pulsed (i.e. duty cycle of 1). 
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Fig. 4.21. Kurtosis value as a function of signal’s duty cycle for 5 different signals. Note the red circles 

marking the duty cycle value where the K detection algorithm will present a blind spot. 
 

Therefore, it would be useful to determine when this blind spot detection is 

present in a determined interfering signal, making necessary the study of this situation 

mathematically.  

 

Assuming a determined zero-mean pulsed discrete signal XDC, with duty cycle 

value DC, and assuming KX as the value of the kurtosis parameter when the signal is not 

pulsed (duty cycle equal to 1), the kurtosis parameter of XDC (
DCXK ), can be computed 

as: 

( )

( )
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DC DC
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. (4.24)

As XDC is zero-mean eqn. (4.24) becomes: 
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 
 =
 
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. (4.25)

In eqn. (4.26) the expectation operator is expanded, and a number of 1-DC·N 

values are reduced to zero, as XDC is pulsed. The rest of values can be represented as 

values from X as since the duty cycle is not taken into account, XDC and X are the same 

signals: 
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Then, if the number of samples of the signal N tends to infinity (i.e. if it is high 

enough): 
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where m2 and m4 are the second and the fourth order moments of X, respectively. 

Simplifying eqn. (4.27): 

( ) ( )
4 4

2 2
2 2

· 1
·DCX

DC m mK
DCDC m m

= = , (4.28)

and taking into account that the kurtosis is equal to the fourth moment divided 

by the square of the second moment, eqn. (4.28) becomes: 

1
DCX XK K

DC
= , (4.29)

where 
DCXK  is the value of the kurtosis parameter of a determined pulsed signal 

XDC, with a determined duty cycle DC, and KX is the value of the kurtosis parameter of 

the zero-mean signal X (duty cycle of 1). 

 

As it has been demonstrated, the kurtosis of a zero-mean pulsed signal depends 

only on the duty cycle and the value of the kurtosis parameter when it is not pulsed. As 

it can be seen in Fig. 4.21, kurtosis value of a pulsed signal will always cross the value 

of 3, if the kurtosis of the signal with duty cycle equal to 1 has a value lower than 3. 

This duty cycle value can be easily calculated from eqn. (4.29), leading to: 

3
XKDC =  (4.30)

Thus, any interfering signal with a kurtosis value lower than 3 will present a 

blind spot in its detection for a duty cycle given by eqn. (4.30). 
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4.5 Conclusions  
 

In this chapter the performance of ten different normality tests has been analyzed 

in terms of their capability to detect radio-frequency interference in microwave 

radiometry. These tests have been first validated in terms of sequence length and 

number of quantization bits in the absence of interference. Their capability to detect 

sinusoidal, chirp, PRN, telegraphic and OFDM signals has then been analyzed. 

 

It has been shown that the Kurtosis is the best RFI detection algorithm for all 

kinds of continuous interfering signals, although it is known that it presents blind 

spots for pulsed sinusoidal, chirp, PRN, telegraphic and OFDM interfering signals. 

 

As compared to all the other normality tests, CHI2 normality test has a poor 

performance in analyzing all the presented RFI signals, therefore its use is not 

recommended for RFI detection. 

 

Skewness-based algorithms (S and LM) usually have a poorer performance than 

other tests as the Skewness of PRN, sinusoidal, and chirp interfering signals is almost 

zero. However, non-scrambled telegraphic signals present a higher Skewness parameter 

leading to a better performance of the S and LM tests than in case of sinusoidal, chirp, 

PRN, and telegraphic scrambled signals. Nevertheless, S and LM tests are not suitable 

for the RFI detection for its overall poor performance. 

 

Kurtosis-based normality tests (JB and K2 tests) have a good performance if 

both the kurtosis and the skewness are high enough. However, since skewness is usually 

almost zero, both tests have a performance slightly worse than the K test, except in the 

case of non-scrambled telegraphic interfering signals. Their performance is very similar, 

although the JB test has always a slightly better performance. In any case, both tests 

present the same blind spots as the K test in the detection of pulsed interfering signals. 

Hence, the use of the JB and K2 tests is redundant and not necessary if the K test is 

being used. 
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The four Empirical Distribution Function (EDF) based normality tests: AD, L, 

CM, and SW tests have a similar performance for OFDM, PRN, sinusoidal and chirp 

interfering signals. Among the AD, L and CM tests, which are based on the comparison 

of a normality distribution function with the EDF of the tested signal, the AD is the one 

that performs best as it assigns more weight to the tails than the other two tests, and the 

RFI is usually located in the tails of the distribution. For a low sample size the AD and 

SW tests perform better that the CM and L test, but as the sample size increases, SW 

test performance degrades in front of CM and L tests, as SW test must be averaged 

above 4,096 sample size to obtain a correct performance. Hence, among the ECDF tests, 

the AD and the SW tests are recommended over the L and CM tests; and in case 

that the number of samples is higher of 4096, the AD test is recommended over the 

SW test. 

  

In summary, the Kurtosis is the best RFI detection algorithm for almost all kinds 

of interfering signals, although it has a blind spot for several pulsed signals. The AD test 

is a complementary normality test that covers these blind spots, and has a very good 

performance for all the studied sample sizes. The combination of the K and the AD 

tests seems capable to detect most types of RFI. The performance of the detection 

tests improves with the sample size and depends on the duty cycle of the pulsed RFI. 

 

Future research will be devoted to the optimum combination of these statistical 

analysis with time and frequency blanking methods, since these methods outperform 

statistical analysis in some specific cases for example low duty cycle pulsed sinusoidal 

signals (short pulses are easily detected in time domain), or high duty cycle pulsed 

sinusoidal signals or a CW (a tone is easily detected in frequency domain). 
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Chapter 5 
 
5. RFI Detection and Mitigation 
Algorithms Based on Spectrogram 
Analysis 

 

 

 

 

 

The radiometric signal’s spectrogram combines the time 

and frequency domains analysis jointly, standing as a 

powerful RFI detection tool. A spectrogram is obtained 

from the Short Time Fourier Transform (STFT), thus it 

arranges the signal information in time and frequency 

domains. Therefore, RFI very localized in the time and/or 

frequency domains present in the radiometric signal 

appears more concentrated in the spectrogram and it is 

easier to detect. The main idea of this chapter is taking 

into account that the spectrogram is a two-dimensional 

intensity plot which can be analyzed as an image, thus 

having several image processing tools at our hand. 
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Combining the time and frequency domains analysis jointly, the spectrogram 

stands as a powerful tool which has been previously used in RFI detection in radio-

astronomy [25, 64]. The spectrogram consists of an intensity plot (usually on a decibel 

scale) of the STFT magnitude [65]. The STFT consists of a set of FT’s of consecutive 

windowed data segments from a longer data set. Windows usually overlap in time, thus 

data segments may have redundant information, as sketched in Fig. 5.1. The STFT 

provides time-localized spectral information of the frequency components of a signal 

varying over time, whereas the standard FT provides the frequency information 

averaged over the entire signal time interval [65]. As a spectrogram is a two-

dimensional intensity plot, it can be analyzed as an image, thus having all the image 

processing tools at our hand. 

 

1) Thermal noise sampled signal 

2) Windowing overlapped segments of 1)

3) FFT of every windowed segment of 2) 

4) A two-dimensional image created by 
ordering the FFTs in columns 

Figure 5.1. Process of obtaining a Spectrogram from a sampled signal of thermal noise. 
 

In this chapter, two different thresholding algorithms to detect and eliminate 

interference patterns in radiometric signal spectrograms are developed, and simulation 

results are presented. The simulated RFI signals are generically from the sinusoidal and 

chirp families. By adjusting the signals’ parameters, the bandwidth and temporal 

duration, many different types of signals can be obtained. A two-dimensional (2D) 

Wiener filter is then applied to the spectrogram in order to try to improve the 
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cancellation of RFI components in the radiometric signal. A brief description of the 

spectrogram calculation is given in Section 5.1. Section 5.2 describes some image 

processing algorithm proposed in this chapter, which are called “Smoothing 

Algorithm”, “Wiener Filter Algorithm”, “Edge Detection Algorithm” and 

“Frequency/time Interval Averaging and Thresholding (FIAT) Algorithm”. Section 5.3 

shows the results obtained with the application of “Smoothing Algorithm” and the 

“Wiener Filter Algorithm” to a thermal noise signal contaminated with a set of RFI 

simulated signals. Finally, Section 5.4 summarizes the conclusions of this chapter. 

 

5.1 Spectrogram calculation 
 

In this work, the radiometric signals are assumed to be sampled at an adequate 

sampling rate satisfying the Nyquist criterion, and the spectrograms are obtained from 

these discrete time signals. 

  

The spectrogram calculation depends on several parameters which are: the total 

number of signal samples, the FFT size, the window used for the FFT calculation of the 

data segments, and the overlapping between these data segments, as shown in Fig. 5.1. 

 

The spectrogram used in this paper is calculated using discrete samples, each 

one corresponding to a measurement of the pre-detected voltage signal. The number of 

samples (NS) which forms the spectrogram will determine the radiometric resolution 

obtained by each spectrogram. 

 

The FFT size is the number of samples used to compute each FFT and 

determines the spectral and temporal resolutions. If the FFT size (L) increases, the 

spectral resolution increases, while the temporal resolution decreases, since the time 

lapse between consecutive data segments increases. In contrast, smaller FFT sizes lead 

to lower frequency resolution, and higher temporal resolution. Therefore, selection of 

the FFT size must be chosen carefully depending on the RFI present in the radiometric 

measurements. 
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The FFT calculation requires the use of an analysis window function in order to 

minimize unwanted “side lobes” and ringing in the FFT resulting from abrupt 

truncations at both ends of the data segment. This situation causes an oscillatory 

behavior in the FFT called the Gibbs phenomenon [66]. Several functions can be used 

to avoid this problem, though when the data source is unknown, the Hann window is 

one of the most common windows used in spectrum analysis, because of its excellent 

roll-off rate at 18 dB/octave [67].  

 

In order to avoid loss of data when using a window in the FFT calculation, some 

overlapping (O) must exist between consecutive data segments (Fig. 5.1). In addition, 

overlapping increases the temporal resolution as the beginning of the data segments is 

reduced. However, increasing the overlap leads to an increase of the total number of 

samples to be computed and managed, complicating the hardware design. The 

recommended overlap factor is 75% for a Hann window [68, 69]; and this is the value 

used in this work. Figure 5.2 represents this 75% overlapping compared to the cases of 

0% and 50% overlapping. 

 

 

Figure 5.2. Representation of different levels of overlapping. It can be noted that low levels of 
overlapping will result in an information loss, and high levels of overlapping will lead to correlated FFT 

values on overlapped time segments. 
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The spectrograms developed for the “Smoothing algorithm” have the following 

parameters: 

 

• Number of samples: this parameter must be as high as possible to maximize 

the radiometric resolution, as a higher number of samples means a longer integration 

time. On the other hand, too large values increase the computation time required to 

perform the Monte-Carlo simulations; in addition it requires more storage capacity in 

real measurements. For simplicity, the number of samples will defined as 22(n-1). 

 

• Overlap: An overlap value of O = 75% is recommended [68, 69] to avoid 

information loss. 

 

• FFT size: The FFT size determines the frequency resolution and the number of 

FFT segments, determines the temporal resolution. For the simulations performed in 

this work, and supposing that any information of the RFI is known, the FFT size was 

chosen to be equal to the number of FFT segments, to have similar spectral and 

temporal resolutions (both resolutions may not be the optimal ones); thus the FFT size 

should be the square root of the number of samples (N). Taking into account that there 

exists a 75% overlap between consecutive Hann windows, the number of FFT segments 

has to be multiplied by 4. Thus, to equilibrate both resolutions (time and frequency), 

maintaining the original compromise, the FFT size has been selected to be L = 2n, and 

now the total number of samples is 22n (accounting for redundant points due to 

overlapping). 

 

As it has been said, the spectrogram operation consists of the power (square of 

the absolute value) of the STFT magnitude. The spectrogram operation changes the 

probability density function of the received thermal noise which is a pair of Gaussian 

distributed random variables (one for the in-phase component and the other one for the 

quadrature component). The square of the amplitude is equal to the sum of the squares 

of both Gaussian distributions, which is the definition of a chi-square distribution with 

two degrees of freedom, which is equivalent to an exponential distribution [70]. Figure 

5.3 sketches this process. 
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Figure 5.3. Transformation of the zero-mean Gaussian noise distributions (in-phase and quadrature 
components) into an exponential distribution with same standard deviation and mean [71]. 

 

5.2 Spectrogram analysis algorithms 
 

5.2.1 Smoothing algorithm description 
 

The most obvious way to detect the presence of interference in a radiometric 

signal is by detecting power peaks in the received signal that are larger than the variance 

of the measured thermal noise in the absence of RFI. This detection can be performed 

either in both the time and frequency domains. 

 

This technique can be straightforwardly extended to the spectrogram. 

Considering that a power peak is produced by an RFI signal, the threshold value must 

be a function of the thermal noise variance (power), and must maximize the probability 

of RFI detection (Pdet) while minimizing the probability of false alarm (Pfa). The 

probability of detection of RFI cannot be computed in advance since the presence of 
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RFI is unknown, but the probability of false alarm is easy to obtain as the thermal noise 

follows a known Gaussian distribution. 

 

All simulations performed in this work have been performed assuming an 

antenna temperature (TA) of 300 K, and a radiometer receiver’s noise temperature of 

100 K. In order to make a relationship between the noise power, and the RF interfering 

signal power, the INR parameter, described in eqn. (4.19) is used. 

 

The threshold value of this algorithm must be selected to limit the error in the 

estimated antenna temperature produced by false alarms. 

 

If an RFI-free spectrogram is observed (Fig. 5.1, panel 4) it is obvious that the 

noise power peaks are scattered (and usually isolated) in both frequency and time, while 

in an RFI contaminated spectrogram (e.g., Fig. 5.5a), the RFI is usually clustered in 

determined regions in the frequency-time plane. Considering the spectrogram as an 

image, noise power peaks present higher spatial frequency contents (rapid variations) 

than the RFI, which are usually clustered. Hence, applying a 2D smoothing filter (low-

pass filter) will attenuate these exponential “peaks”, while the RFI contaminated regions 

will be preserved. RFI is preserved, so it can be detected with a more restrictive 

threshold.  

 

The algorithm proposed in this Ph. D. thesis can be summarized as follows with 

the aid of Figs. 5.4 and 5.5: 

 

*

2D 
Convolution

NxN
Hanning
window

22(n-1) samples
data set

Power
Spectrogram

2n samples FFT
Hanning window
75% overlap

Frequency
equalization Thresholding RFI mitigated

Spectrogram
RFI 

mitigated TA
Σ

 
Figure 5.4. Smoothing algorithm block diagram. 
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• Power spectrogram calculation of a data segment of 22(n-1) samples using data 

segments of 2n samples, with 75% overlap, and a Hann window (Fig. 5.5a). 

 

• Convolution of the power spectrogram with a 2D low pass filter of a 

determined size (in this work the Hann window has been chosen, although a Gaussian 

or a Hamming window perform similarly (Fig. 5.5b)). 

 

• Thresholding: a threshold is used in the smoothed power spectrogram, in order 

to detect clusters of RFI-contaminated pixels (Fig. 5.5c). The optimum threshold is 

discussed in Section 5.5. 

 

• Antenna noise power is calculated by averaging all spectrogram pixels below 

the predefined threshold (RFI-free). 

 

•  Finally, TA is obtained from the antenna noise power. 
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a) b) 

  
c) d) 

Figure 5.5. Smoothing Algorithm applied to a simulated RFI contaminated radiometric signal.  a) RFI 
contaminated signal’s spectrogram, σ2

RFI = σ2
n – 5 dB;  b) Convolution of the spectrogram with a 

N × N = 15 × 15 Hann window;  c) Thresholding for Pfa = 10−4: black pixels are considered RFI; 
d) RFI-mitigated spectrogram using “blanking” of the RFI contaminated pixels. 

 

5.2.2 Wiener Filter Algorithm description 
 

As already discussed, the spectrogram of a noise signal with sinusoidal 

interference signals can be considered as a noisy image, where the noise is the 

spectrogram of the radiometric signal (the one we want to measure), and the image to be 

detected is the spectrogram of the interference (the one to be cancelled). Therefore, 

designing a filter to eliminate the noise from the image is the way to estimate the RFI, 

for a later removal of the interference without loss of the radiometric data. 

 

The Wiener filter is a well-known adaptive filter used in communications, which 

provides the best estimation of a signal, equalizes communications channel, and 

eliminates the noise present in the received signal. In this section the Wiener filter is 

used to estimate the RFI in the spectrogram image, for a later cancellation and its 
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performance is compared to the smoothing algorithm. In Fig. 5.6 a diagram of the 

Wiener filter operation id presented. 

 

 
Figure 5.6. RFI mitigation technique: an estimation ŷ(tu, fv) of the RFI signal spectrogram is 

substracted from the received signal spectrogram. 
 

In our case study, it is not necessary to know the effect of the communications 

channel in the spectrogram, thus, it will only be necessary to differentiate between the 

noise and the interfering signal. The way to perform this task is by using a Locally 

adaptive Linear Minimum Mean Square Error (LLMMSE) [72] to estimate the 

interfering signal’s spectrogram. 

 

The LLMMSE algorithm consists of an optimal linear estimator of our 

interfering signal ŷ(tu, fv) in combination with additive noise: 

( ) ( )ˆ , ,u v u vy t f s t fα β= + , (5.1)

where 

( ) ( ) ( ), , ,u v u v u vs t f y t f n t f= + , (5.2)

and y(tu, fv) is the interfering signal spectrogram, n(tu, fv) is the spectrogram of 

the Gaussian noise (independent from the interfering signal spectrogram), tu is the uth 

time point of the spectrogram, fv is the vth frequency point, and α and β are two 

parameters chosen to minimize the mean square estimation error criterion ε described in 

eqn. (5.3): 

( ) ( ) ( )( ) ( ) ( )( )2 2ˆ, =E , , E , ,u v u v u v u vy t f y t f s t f y t fε α β α β   − = + −
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The minimum error (ε) is found for: 
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where ∂ denotes partial derivative. 
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From eqns. (5.3), (5.4.a) and (5.4.b), and taking into account that the additive 

noise power of the spectrogram does not have a zero mean, eqn. (5.5) can be derived:  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

2 2

2

, ,
ˆ , , , , ,

,
s u v n u v

u v s u v n u v u v s u v
s u v

t f t f
y t f t f t f s t f t f

t f
σ σ

µ µ µ
σ

−
= − + − , (5.5) 

where µs(tu, fv) represents the local mean of s(tu, fv) around a square of L × L 

pixels, (eqn. (5.6)), σs
2(tu, fv) represents the local variance of s(tu, fv) around a square 

window of L × L pixels, (eqn. (5.7)), µn is the mean of the noise spectrogram, and σn
2(tu, 

fv) is the variance of the noise spectrogram. 
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1;   for  odd ,           
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= =  (5.8) 

and 

1 2
2 ;    ;   for  even.

2 2
L LM M L−

= =  (5.9) 

The use of different window sizes (L value, M1 + M2 + 1 = L) affects the 

resulting estimated interference ŷ(tu, fv). If L is too small, the noise filter algorithm is not 

effective. On the other hand, if L is too large subtle details of the interference will be 

lost in the filtering process. Figure 5.7 shows the simulated error in the estimation of the 

noise power as a function of the RFI power present in the received signal; assuming that 

the thermal noise power (σn
2) is perfectly known. It is observed that the value of L 

depends on the actual RFI level: if the RFI level is 17 dB lower than the thermal noise, 

the best choice is a 5 × 5 window, otherwise, a 6 × 6 window will outperform. In our 

case of study, the 6 × 6 window is chosen as the maximum value of the algorithm error 

is 0.74 K. 
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Figure 5.7. Error in the estimation of the antenna temperature as a function of the Interference 

to Noise Ratio (INR). 
 

5.2.3 Edge detection algorithm description 
 

 The Smoothing Algorithm was developed under the assumption of time and 

frequency invariance of the received brightness temperature for the set of measured 

samples used to obtain the spectrogram. This is usually attained by limiting the time 

duration of the samples set to a time in which the brightness temperature variations are 

negligible and limiting the bandwidth so that the brightness temperature variations are 

also negligible. 

 

 However, even if the time and bandwidth have been properly selected, the 

frequency response of the radiometer will also affect the measured brightness 

temperature. Therefore, the frequency response of the instrument must be flat, or at least 

must be properly pre-equalized. 

 

 Edge detection algorithm has been developed in the context of using a spectrum 

analyzer as a back end radiometer; by this way measured brightness temperature is 

automatically separated in frequency bands (more information about this architecture is 

explained in Chapter 7). Using a spectrum analyzer allows several degrees of freedom 

in the selection of the frequency band and the bandwidth to measure; in the other hand, 

frequency response of the resolution bandwidth for the spectrum analyzer must be taken 

into account, and the obtained power samples have been averaged in time and frequency 
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by the detector of the spectrum analyzer thus having a power samples with a PDF 

different than the exponential. Edge detection algorithm does not need the equalization 

of the frequency response of the hardware used to measure, neither the limitation of the 

time duration or bandwidth of the measurement to avoid noise power variations on the 

spectrogram; moreover, this algorithm is independent of the PDF of the noise power, as 

it does not use the tables used by the smoothing algorithm. 

 

 The proposed edge detection algorithm applies a 2D edge-detection wavelet-

based filtering to detect the most important part of the RFI. Then, frequency and time 

averaging techniques are used to detect residual RFI both in time and frequency, 

respectively, and to eliminate the residual RFI afterwards.   

 

The 2D filtering process consists of the sequential convolution of the 

spectrogram with two Wavelet Line Detection (WLD) filters. These filters consist of 

two different matrices, one to detect mainly frequency interferences (Frequency 

Wavelet Line Detection or FWLD), and the other to detect a temporaly peak 

(broadband) interferences (Time Wavelet Line Detection or TWLD).  

 

The FWLD filter is a matrix with a determined number of rows where every row 

is composed by the coefficient values of a Mexican Hat wavelet of 11 samples length 

(Fig. 5.8); on the other hand, TWLD filter has a determined number of columns each 

one of them being also composed by the same coefficient values. Rows of the FWLB 

filter and columns of the TWLB filter are in function of the spectrogram size: 

rows

15 280
FWLB 2 / 40 1 280 600

31 600

TP
TP TP

TP

→ <
= ⋅ + → ≤ ≤   
 → >

 (5.10) 

columns

15 280
TWLB 2 / 40 1 280 600

31 600

FP
FP FP

FP

→ <
= ⋅ + → ≤ ≤   
 → >

 (5.11) 

where ⋅    represents the round down operator and TP and FP are the time and 

frequency points of the acquired spectrogram respectively.  

 



Chapter 5 
 

 94 

The TWLB and FWLB filters have a minimum size to ensure a sufficient 

increase on the convolved value in presence of RFI, and a maximum size to limit the 

free RFI pixel elimination. 

  

 
Figure 5.8. Mexican hat coefficient values 

  

 This way, by correlating these filters with the spectrogram the vertical/horizontal 

lines whose pixels have a higher power value than its neighbours (RFI contaminated 

pixels) are enhanced. A similar technique has been performed previously in [25]. 

 

The thresholds used in the 2D filtering process must be calculated as a function 

of the standard deviation of the RFI-free thermal noise power value (σpow), so an 

estimation of this value ( powσ ) must be first obtained.  

 

The thresholds used to detect RFI in the filtered spectrograms are calculated as a 

function of powσ  by means of the central limit theorem; thus, threshold of the FWLD 

filtered spectrogram (ThFWLD) can be expressed as: 

FWLD FWLD Th = σK , (5.12) 

with: 

( ) ( )
5 2 2

FWLD i pow 6 pow
i=1

 σ = c σ 2N + c σ N∑ , (5.13) 

where K is a constant to determine the probability of false alarm (Pfa) of the 

detection algorithm, powσ  is the approximation of the standard deviation of the RFI free 

FWLD filtered signal, ci is the value of the ith coefficient of the Mexican hat wavelet of 

11 samples length and N is the number of rows of the FWLD filter; threshold of the 

TWLD filtered spectrogram can be calculated similarly. 
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In principle, the distribution of the filtered spectrogram pixels should be 

Gaussian due to the central limit theorem. In our case of study the distribution of the 

filtered pixels quite approximated to a Gaussian distribution, thus that of the FWLDσ  

parameter too. Therefore, the K parameter can be selected with the aid of the erf 

function. 

 

To calculate the retrieved power after the RFI mitigation process only RFI free 

pixels are accounted for. 

Spectrogram

*
TWLD
filter* 2D 

Convolution
FWLD
filter

FWLD
threshold

TWLB
threshold&

1st pass RFI 
mitigation

Frequency subbands
& Time sweeps

average

RFI cleaned
signal power

Any frequency subband or time 
sweep with relatively high power

(6 times above σfreq or σtime) value?

No

Yes

 
Figure 5.9. Edge detection algorithm block diagram. 

 

5.2.4 Frequency/Time Averaging and Thresholding 

(FIAT) Algorithm description 
 

This algorithm has been developed to apply directly after the result of the 

algorithms described in Sections 5.2.1 and 5.2.3, as there is residual RFI in the result of 

both algorithms that can be eliminated.  

 

After the application of one of the algorithms described in Sections 5.2.1 or 

5.2.3, frequency subbands and time sweeps are averaged independently. Thus, two 



Chapter 5 
 

 96 

arrays are obtained; one is related to the RFI present in the time domain, and the other is 

related to the RFI present in the frequency domain. After this process, a threshold which 

depends directly on the standard deviation of these vectors (σfreq and σtime) is applied. In 

this case, it is not needed to sort and eliminate the most powerful samples as it is 

assumed that the remaining RFI will not bias the result of the standard deviation in 

excess. The distribution of these vectors will be approximately Gaussian because of the 

central limit theorem. 

 

This way, low level broadband RFI is detected by means of the power 

integration in the time domain, and low level CW RFI is detected by means of the 

power integration in the frequency domain. This algorithm is actually a one-

dimensional algorithm which does not need to calculate the spectrogram, but it is 

included in this section as it is better used after a spectrogram based algorithm. In fact, a 

similar algorithm with the same functionality has been previously used in [26]. 

 

The Smoothing Algorithm and the Edge Detection Algorithm diagrams can then 

be modified to include this algorithm. Hence, with the inclusion of the FIAT Algorithm 

the Smoothing Algorithm diagram of Fig. 5.4 can be enhanced to the diagram presented 

in the Fig. 5.10. 
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Figure 5.10. Smoothing algorithm with FIAT algorithm  enhancement block diagram. 

 

 

In the same way, the Edge Detection Algorithm diagram can be enhanced to the 

diagram presented in the Fig. 5.11. 
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Figure 5.11. Edge detection algorithm with FIAT algorithm enhancement block diagram. 
 

FIAT algorithm is not recommended to use as an isolated algorithm, as it will 

eliminate a higher number of pixels than the smoothing algorithm or the edge detection 

algorithm. However, simulation results of the isolated FIAT algorithm performance 

compared with the isolated smoothing algorithm results, for determined classes of RFI 

contaminated signals will be presented.  

 

5.3 Simulation results 
 

In this section, results obtained from the simulation of two of the image 

processing algorithms presented (Smoothing and thresholding and 2D Wiener filtering) 

are shown and discussed. The other two algorithms, (Edge Detection and FIAT) have 

not been simulated, thus the results of these algorithms using radiometric data jointly 

with the results of the Smoothing Algorithm with real data will be included in the 

Chapter 8 of this Ph. D. Thesis. 
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5.3.1 Smoothing algorithm simulation results 
 

5.3.1.1 Chirp and sinusoidal RFI tests 

 

The use of the FFT implies that the Smoothing Algorithm is implicitly searching 

for sinusoidal interferences [67-69], therefore, in order to determine the correct 

performance of this algorithm, it has been tested with a set of linear chirp and sinusoidal 

interfering signals as defined in eqn. (5.14). 

[ ]
( )

( )( ) ( )

2

2

sin
1 1

2cos 2   +  cos 2 rect  1,...,
p

p

k t r r
P R

d
p p p s s p r r s r

p r r r

k
RFI k A e f T k T k A f T k k N

ν η

π πβ ϕ π ϕ
η ν

− −

= =

+ − 
= + + + = 

−  
 

∑ ∑ , (5.14) 

where P is the number of chirp signals that conform the chirped RFI, Ap, dp, tp, 

fp, φp, βp are the amplitude, effective duration, central time, initial frequency, initial 

phase, and chirp rate of the pth chirp signal respectively; R is the number of sinusoidal 

RFI signals, Ar, fr, φr, νr, ηr are the amplitude, frequency, phase, initial time and final 

time of the rth sinusoidal signal respectively; rect(·) is the rectangular function, Ts is the 

sampling period, and N is the number of samples of the RFI signal RFIsin. 

 

Figures 5.12-5.14 present the retrieved error in TA as a function of the 

threshold’s Pfa, the size of the smoothing filter, and the power of the interfering signal. 

To test the performance of the Smoothing Algorithm, a 15 × 15 Hann window is 

selected. Retrieved TA [K] and error in the retrieved TA as a function of the threshold’s 

Pfa are represented in Figs. 5.13 and 5.13, respectively. Figure 5.12 shows the retrieved 

TA [K], for different interfering signal powers (and even with no interference, black 

dotted line), with a fixed smoothing filter size (in this case a 15 × 15 Hann window), as 

a function of the Pfa of the threshold used in the algorithm. The TA [K] value is obtained 

by means of 1024 Monte Carlo simulations. The actual TA value is 300 K which is 

asymptotically achieved by the black dotted line (in abscense of RFI) as Pfa decreases. 

As it can be seen, the selection of the Pfa threshold is crucial, as a low Pfa values 

decreases the probability of detection of RFI-contaminated pixels, leading to a retrieved 

temperature higher than the real antenna temperature. On the other hand, a high Pfa 

value will produce a high number of false alarms which will produce a clipping in the 
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probability distribution function of the power spectrogram pixels, leading to a retrieved 

TA lower than the real antenna temperature. 

 

 

 
Figure 5.12. Retrieved TA using the Smoothing Algorithm with a 15 × 15 Hann window as smoothing 
filter, TA

ideal = 300 K (gray line). TA is represented in Kelvin (y-axis), threshold value in Pfa (x-axis). 
Colored lines represent RFI contaminated radiometric signals with INR value determined by its label. 

Black dotted line represents a radiometric signal in abscense of RFI. 
 

In Fig. 5.13, the error introduced by the Smoothing Algorithm in the retrieved 

antenna temperature ε
AT  [K] is represented for different interfering signal powers, with 

a fixed smoothing filter size: (15 × 15 Hann window). In fact, Fig. 5.13 is the same 

figure as Fig. 5.12, but instead of plotting the measured TA for different RFI scenarios, 

plotting the absolute value of the difference between the measured TA (for different RFI 

scenarios) minus the TA
ideal (300 K), which in fact corresponds to ε

AT  [K]. It can be 

observed that RFIs with high INR values are accurately eliminated with a threshold with 

a low Pfa, while in the case of RFIs with an INR value between −5 dB and −25 dB 

applying a low threshold, leads to an important error produced by the fact that a great 

part of the RFI contaminated pixels “pass under” the threshold with low Pfa. The 

selection of the Pfa threshold is a compromise between a not too high value to clip the 

power PDF (Pfa > 7.24×10−4 in Fig. 5.13, INR = 0 dB) and not too low to leave a high 

rate of undetected RFI contaminated pixels (Pfa < 7.24×10−4 in Fig. 5.13, INR = −15 

dB). 
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Figure 5.13. Error obtained by the Smoothing Algorithm in the retrieved TA using a 15 × 15 Hann 

window as smoothing filter. Error is represented in [K] (y-axis), threshold value in Pfa (x-axis). Colored 
lines represent RFI contaminated radiometric signals with INR value determined by its label. Black 

dotted line represents a radiometric signal in abscense of RFI. 
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Figure 5.14. Error obtained by the Smoothing Algorithm in the retrieved TA using a Hann window as 

smoothing filter. a) 35 × 35 Hann window; b) 25 × 25 Hann window; c) 5 × 5 Hann window; 
d) without using Smoothing Algorithm. 

 

Combining different simulations with RFIs of different powers (INR from 5 dB 

to −30 dB compared to the noise power) it is observed that the threshold with optimum 

performance has a Pfa ~ 7.24 ×10−4 (Pfa|Opt in Fig. 5.13) with a maximum RMS error 

value of 2.33 K (Max( ε
AT ) in Fig. 5.13), and RMS error value without RFI of 1.84 K (in 

Fig. 5.13) which it will be the error obtained in case of RFI free situation; the threshold 

value associated to Pfa|Opt is equal to 1.37σ2
n. 

 

Three additional Monte Carlo sets of simulations have been performed with a 

size of the Hann window smoothing filter of 35 × 35, 25 × 25, and 5 × 5. Similar results 

have been obtained (Fig. 5.14a-c respectively) which are summarized in Table 5.1. In 

this table, the values of the threshold with the lower TA RMS error independently of the 

RFI power are presented, in addition to the Pfa associated with this threshold and the TA 

35 × 35 25 × 25 

5 × 5 1 × 1 
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RMS error obtained with this threshold in the absence of RFI. For all cases, it is 

important to have a low TA RMS error value for the most suitable threshold in the black 

dotted curve, as absence of RFI should be the most probable case. In Table 5.1 it is 

observed that, as the filter size used in the Smoothing Algorithm increases, the 

maximum TA RMS error value decreases; in addition this value also decreases in 

absence of RFI. 

 
Table 5.1. Maximum retrieved TA error [K] for the best threshold Pfa for four different cases of Smoothing 
Algorithm filtering, including the case of not applying the algorithm. Maximum retrieved TA error [K] in 

absence of RFI for the most suitable threshold is also shown. 

Filter window 35 × 35 Hann 25 × 25 Hann 15 × 15 Hann 5 × 5 Hann Without 
Smoothing 

Pfa 3.52 × 10−3 2.09 × 10−3 7.24 × 10−4 7.06 × 10−5 2.35 × 10−3 
Threshold value 1.24·σ2

n 1.37·σ2
n 1.72·σ2

n 4.04·σ2
n 6.08·σ2

n 
Max ε

AT  2.05 K 2.09 K 2.33 K 3.71 K 5.89 K 
Max ε

AT  
for RFI = 0 dB 

1.16 K 1.41 K 1.84 K 3.71 K 5.89 K 

 

The best performance is obtained with the largest window (35 × 35 Hann 

window). However, large smoothing windows exhibit a poorer radiometric resolution, 

as explained below. The radiometric resolution of an ideal total power radiometer is 

inversely proportional to the square root of the product of the noise bandwidth and the 

integrating time. 

rec AT TT
Bτ
+

∆ = , (5.15) 

where ∆T is the radiometric resolution, Trec is the receivers temperature, B is the 

noise bandwidth and τ is the integration time. Spectrogram pixels have a resolution of a 

determined bandwidth ∆B and a determined integration time ∆τ, and the sum over all 

pixels of ∆B·∆τ corresponds exactly to the product of B and τ. Pixel elimination 

produced by the Smoothing Algorithm decreases the number of pixels available for 

radiometric measurements and the radiometric resolution degrades. In eqns. (16) and 

(17), the relationship between the radiometric resolution after and before applying the 

Smoothing Algorithm is developed. 
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( )
rec A

SASA

rec A SA SA el

T T
BT B N N N

T TT B N N N N
B

τ τ
τ

τ

+

∆ ∆ ∆
= = = =

+∆ ∆ ∆ −
, (5.16) 

SA
el

NT T
N N

∆ = ∆
−

, (5.17) 

where ∆T|SA is the radiometric resolution after applying the Smoothing 

Algorithm, ∆B and ∆τ are the frequency and time resolutions of the spectrogram pixels, 

N is the number of pixels of the spectrogram, N|SA is the number of pixels of the 

spectrogram that passes the Smoothing Algorithm filtering process, and Nel is the 

number of eliminated pixels by the Smoothing Algorithm. 

 

Figure 5.15 shows the degradation of the radiometric resolution due to loss of 

radiometric data. It is observed that the degradation increases with the window size. 

When the window size increases, RFI power peaks are convolved over the spectrogram 

leading to an increase of the number of RFI-contaminated pixels. Degradation also 

increases with the RFI power as high powers are more likely to be detected by the 

algorithm even when they are smoothed, and contaminate a larger area of the time-

frequency image. Therefore, as the filter size increases, the number of eliminated pixels 

increases, degrading the radiometric resolution. 
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Figure 5.15. Radiometric sensitivity degradation due to pixel elimination as a function of the filter size. 
Eight RFI signals have been used, with total INR value labeled for each case. Thresholds used are the 

most suitable ones for each window size (Table 5.2). Radiometric sensitivity is normalized by the 
radiometric sensitivity value obtained when the Smoothing Algorithm is not applied; i.e., without the 

elimination of any pixel of the time-frequency image. 
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A Hann window arround 15×15 is therefore recommended, as for higher values, 

retrieved TA error [K] shows little improvement, while radiometric resolution may 

decrease excessively leading to a worsening of the retrieved geophysical parameters. 

Figures 5.16 and 5.17 show as the number of eliminated pixels increases with the 

enlargement of the window size when there are chirp and sinusoidal RFI signals present 

in the radiometric signal. 
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Figure 5.16. Spectrogram of a simulated chirp and sinusoidal RFI contaminated radiometric 

signal. RFI power: σ2
RFI = σ2

n − 5 dB; 
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g) h) 

Figure 5.17.  Smoothing Algorithm applied to the simulated chirp and sinusoidal RFI contaminated 
radiometric signal shown in Fig. 5.15. Convolution of the spectrogram with: a) 5×5 Hann window; c) 
15×15 Hann window; e) 25×25 Hann window; g) 35×35 Hann window; RFI-mitigated spectrogram 
using the most suitable threshold for this INR and a smoothing of a: b) 5×5 Hann window; d) 15×15 

Hann window; f) 25×25 Hann window; h) 35×35 Hann window. 
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5.3.1.2 Broadband PRN and OFDM RFI tests 

 

As broadband communication systems are increasing exponentially, it is likely 

to find broadband RFI added to the measured signal. Therefore, the Smoothing 

Algorithm has been also tested with PRN and OFDM RFI signals defined in eqns. 

(5.18) and (5.20).  

[ ] ( )cos 2    1,...,
PRN

s
PRN PRN PRN Rad s PRN

s

TRFI k A PRN k f f T k k N
T

π ϕ
 

= ⋅ − + =  
 

, (5.18) 

where APRN, 
PRNsT , fPRN, φPRN, are the amplitude, sampling frequency of the PRN 

signal, frequency, phase of the OFDM signal respectively, fRad is the frequency where 

the radiometer is measuring and PRN[k] is an ASK modulated signal composed by the 

repetition of a the sequence of the firsts 10,230 output bits of a MLSG of 14 stages 

(5.19). 

14 8 7 4 3 2 1PRNMLSG X X X X X X= + + + + + + , (5.19) 

[ ] ( )
1

0
cos 2    1,...,

CM

OFDM OFDM m m
m

RFI k A S f k k Nπ
−

=

= ⋅ =∑ , (5.20) 

where AOFDM, is the amplitude of the OFDM signal, Mc is the number of 

independent carriers (i.e., data streams), Sm is the Mc parallel modulated source symbols, 

and fm is the frequency of the mth subcarrier of the OFDM signal, defined as: 

,      0,..., 1
OFDM

m C
s

mf m M
T

= = − , (5.21) 

where 
OFDMsT  is the OFDM symbol duration. 

The retrieved error in TA as a function of the threshold’s Pfa, the size of the 

smoothing filter and the power of the interfering signal has been calculated in the same 

way that in the previous section, and it is presented in Figs. 5.18-5.20. 

 



Chapter 5 
 

 108 

10
-3

10
-2

10
-1

0

2

4

6

8

10

12

14

16

18

20

ε T A [K
]

Pfa

INR=5dB

INR=-15dB

INR=-20dB

INR=-25dB

INR=0dB

INR=-∞dB

INR=-5dB

INR=-10dB

INR=-30dB

10-3 10-2 10-1
0

1

2

3

4

5

6

7

8

9

10

ε T A
 [K

]

Pfa

INR=-∞dB

INR=-20dB

INR=5dB

INR=-5dB

INR=-15dB

INR=-10dB

INR=0dB

INR=-25dB

INR=-30dB

a) b) 
Figure 5.18. Error obtained by the Smoothing Algorithm in the retrieved TA using a 15×15 Hann window 
as smoothing filter. Error is represented in Kelvin (y-axis), threshold value in Pfa (x-axis). Colored lines 

represent RFI contaminated radiometric signals with INR value determined by its label. Black dotted line 
represents a radiometric signal in absence of RFI. RFI signal is: a) PRN interfering signal, and 

b) OFDM interfering signal. 
 

 

10
-2

10
-1

0

5

10

15

20

25

30

35

40

ε T A
 [K

]

Pfa

INR=-15dB

INR=-20dB

INR=-10dB INR=-5dB

INR=0dB

INR=-∞dB
INR=-30dB

INR=-25dB

INR=5dB

 

10-3 10-2 10-1
0

5

10

15

20

25
ε T A [K

]

Pfa

INR=5dB

INR=0dB

INR=-5dB
INR=-10dB

INR=-15dB

INR=-25dB
INR=-20dB

INR=-∞dB

INR=-30dB

a) b) 

 

10-3 10-2 10-1
0

5

10

15

20

25

30

35

40

ε T A [K
]

Pfa

INR=5dB

INR=-30dB

INR=-25dB

INR=-20dB
INR=-15dB

INR=-10dB

INR=-5dB

INR=-∞dB

INR=0dB

 

10-3 10-2 10-1
0

10

20

30

40

50

60

70

80

ε T A
 [K

]

Pfa

INR=-20dB

INR=-15dB

INR=-10dB INR=-5dB

INR=0dB
INR=5dB

INR=-25dB

INR=-30dB

INR=-∞dB

c) d) 
Figure 5.19. Error obtained by the Smoothing Algorithm in the retrieved TA when the RFI is a broadband 
PRN like signal, using a Hann window as smoothing filter. a) 35 × 35 Hann window; b) 25 × 25 Hann 

window; c) 5 × 5 Hann window; d) without using the Smoothing Algorithm. 
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Figure 5.20. Error obtained by the Smoothing Algorithm in the retrieved TA when the RFI is a broadband 

OFDM signal, using a Hann window as smoothing filter. a) 35 × 35 Hann window; b) 25 × 25 Hann 
window; c) 5 × 5 Hann window; d) without using the Smoothing Algorithm. 

 

In Fig. 5.18, the error introduced by the Smoothing Algorithm in the retrieved 

antenna temperature ε
AT  [K] is represented for different interfering signal powers, with 

a fixed smoothing filter size: (15×15 Hann window) for two different broadband 

interfering signals. It can be observed in Fig. 5.18a that a very high Pfa must be used to 

detect a PRN interfering signal. In this case, the compromise of the Pfa threshold 

selection leads to a minimum error of retrieved antenna temperature of 14.39 K, (Pfa = 

0.0384) for an INR value of 5 dB. 

 

On the other hand, Fig. 5.18b shows that an OFDM broadband signal can be 

detected with a threshold with a lower Pfa, thus leading to a minimum error of retrieved 

antenna temperature of 9.07 K, (Pfa = 0.02). 
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Following the RFI study in the same way as in the previous section, three 

additional Monte-Carlo simulations have been performed for different Hann window 

smoothing filter sizes (35×35, 25×25, and 5×5) for both broadband RFI cases; which 

are presented in Figs. 5.19-5.20. Results of Fig. 5.18 show that a Pfa|Opt does not exist for 

all INR parameter values as in Fig. 5.13 due to the fact that an increase of the INR 

parameter leads to an increase of the error in the retrieved TA; therefore higher INR 

parameter values leads to higher error in the retrieved TA values. 

 

In contrast, for the OFDM RFI case, a Pfa|Opt exists for all INR parameter values 

as in the sinusoidal RFI case (Fig. 5.20). Table 5.2 summarizes the optimal Pfa and 

threshold values and the maximum error in the retrieved TA for the OFDM RFI case; 

this table is similar to Table 5.1, but with lower thresholds values and higher error in the 

retrieved TA values. 

 
Table 5.2. Maximum retrieved TA error for the best threshold Pfa for four different cases of Smoothing 
Algorithm filtering, including the case of not applying the algorithm; for the OFDM interfering signal 

case. Maximum retrieved TA error in absence of RFI for the most suitable threshold is also shown. 

Filter Window 35 × 35 Hann 25 × 25 Hann 15 × 15 Hann 5 × 5 Hann Without 
Smoothing

Pfa 2.16 × 10−2 2.4 × 10−2 2 × 10−2 1.76 × 10−2 3.02 × 10−2

Threshold value 1.18·σ2
n 1.24·σ2

n 1.42·σ2
n 2.21·σ2

n 3.5·σ2
n 

Max ε
AT  3.8 K 5.88 K 9.07 K 21.97 K 44.5 K 

Max ε
AT  

for RFI = 0 dB 
3.51 K 5.57 K 9.01 K 21.97 K 44.5 K 

 

Detection and elimination of a PRN signal results in a high error on the retrieved 

TA as applying an FFT to a PRN RFI signal does not concentrate the RFI signal, as it 

happens with a sinusoidal signal. PRN signal behaves like noise. 

 

In contrast, error in the retrieved TA produced by the contamination of an OFDM 

interfering signal is lower than in the PRN signal’s case, as this signal is based in a 

frequency modulation, and the FFT process can concentrate the energy of the interfering 

signal. 

 

The main problem of the presence of broadband RFI is that, even if it is 

correctly detected, radiometric resolution of the measurements will be degraded due to 
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the minimum error introduced in TA and the loss of radiometric resolution due to the 

high number of eliminated pixels, as it can be seen in Figs. 5.21-5.24. Errors in the 

retrieved antenna temperatures obtained in the Figs. 5.21-5.24 are summarized in Tables 

5.3 and 5.4. 

 
Table 5.3. Retrieved TA error for the best threshold Pfa for the four different cases of Smoothing 

Algorithm filtering, shown in Fig. 5.19 with a INR value of −5 dB (equivalent to 126.5 K of interference); 
for the PRN interfering signal case. 

Filter Window 35 × 35 Hann 25 × 25 Hann 15 × 15 Hann 5 × 5 Hann 
Pfa 3.68 × 10−2 2.79 × 10−2 2.1 × 10−2 1.7 × 10−2 

Threshold value 1.15·σ2
n 1.23·σ2

n 1.42·σ2
n 2.22·σ2

n 
ε

AT  5.15 K 6.35 K 9.12 K 21.7 K 
 

Table 5.4. Retrieved TA error for the threshold value used in Fig. 5.20 for the four different cases of 
Smoothing Algorithm filtering, with a INR value of −5 dB (equivalent to 126.5 K of interference); for the 

OFDM interfering signal case. 

Filter Window 35 × 35 Hann 25 × 25 Hann 15 × 15 Hann 5 × 5 Hann 
Pfa 2.16 × 10−2 2.4 × 10−2 2 × 10−2 1.76 × 10−2 

Threshold value 
used 1.18·σ2

n 1.24·σ2
n 1.42·σ2

n 2.21·σ2
n 

ε
AT  2.7 K 4.48 K 1.45 K 22.3 K 

 

Threshold used in Table 5.3 and Figs. 5.21-5.22 is the most suitable threshold to 

detect PRN RFI signals with an INR parameter value lower or equal to −5 dB. On the 

other hand, threshold used in Table 5.4 and Figs. 5.23-5.24 is the most suitable 

threshold to detect OFDM RFI signals with any INR parameter value. 
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Figure 5.21. Spectrogram of a simulated PRN RFI contaminated radiometric signal. RFI power: 

σ2
RFI = σ2

n − 5 dB; 
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Figure 5.22.  Smoothing Algorithm applied to the simulated PRN RFI contaminated radiometric signal 
shown in Fig. 5.21. Convolution of the spectrogram with: a) 5×5 Hann window; c) 15×15 Hann window; 

e) 25×25 Hann window; g) 35×35 Hann window; RFI-mitigated spectrogram using the most suitable 
threshold for this INR (-5 dB) and a smoothing of a: b) 5×5 Hann window; d) 15×15 Hann window; 

f) 25×25 Hann window; h) 35×35 Hann window. 
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Figure 5.23. Spectrogram of a simulated OFDM RFI contaminated radiometric signal. RFI 

power: σ2
RFI = σ2

n − 5 dB 
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Figure 5.24. Smoothing Algorithm applied to the simulated OFDM RFI contaminated radiometric signal 
shown in Fig. 5.23. Convolution of the spectrogram with: a) 5×5 Hann window; c) 15×15 Hann window; 

e) 25×25 Hann window; g) 35×35 Hann window; RFI-mitigated spectrogram using the most suitable 
threshold for a smoothing of a (Table 5.3); b) 5×5 Hann window; d) 15×15 Hann window; f) 25×25 

Hann window; h) 35×35 Hann window. 
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5.3.2 Wiener filter algorithm simulation results 
 

Results obtained with the LLMMSE filter show that this algorithm is suitable for 

denoising signals (Fig. 5.25), but it has an important drawback. 

 

 
a) b) c) 

Figure 5.25. Locally adaptive linear minimum mean square error (LLMMSE) Algorithm applied to an 
RFI contaminated radiometric signal. a) RFI contaminated signal’s spectrogram, σ2

RFI = σ2
n − 5 dB; 

b) Estimation of the RFI present in the radiometric signal by denoising; c) Cleared radiometric data by 
RFI substraction. 

 

For an optimal performance, it is necessary to accurately estimate in advance the 

power of the thermal noise (TA). Error in the estimation of the thermal noise power, 

introduces an error in the denoising process which leads to an error in the retrieved TA 

itself as it can be seen in Fig. 5.26. Thus, thermal noise power must be first estimated 

for a proper extraction of the RFI from the radiometric signal. In addition, it is observed 

that the error introduced by the LLMMSE algorithm is almost equal to the error of the 

estimated noise power itself.  

 

The reason to perform a RFI extraction is to accurately estimate TA, which in fact 

is the thermal noise power. However, the LLMMSE algorithm does not improve the 

accuracy in the estimation of the thermal noise as it can be seen in Fig. 5.26, and 

therefore this algorithm is not considered suitable for RFI mitigation. 
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Figure 5.26. Error in the estimation of the retrieved temperature using the LLMMSE denoising 

algorithmin as a function of the error in the a-priori estimation of the thermal noise power. Both errors 
are represented in [K]. Coloured lines represent RFI contaminated radiometric signals with an INR 

determined by its label. Black dotted line represents a radiometric signal in absence of RFI. 
 

5.3.3 FIAT algorithm simulation results 
 

In order to observe the performance of the FIAT algorithm compared to the 

Smoothing algorithm, the same RFI contaminated signals that have been tested with the 

Smoothing algorithm have been tested with the FIAT algorithm. 

 

5.3.3.1 Chirp and sinusoidal RFI tests 

 

In the first place, the sinusoidal and chirp RFI contaminated signals have been 

tested with the FIAT algorithm, emphasizing the most important advantage of the 

Smoothing algorithm which is the capacity of detecting and eliminating clusters of 

pixels instead of entire frequency or time segments. In Fig. 5.27, the comparison 

between the performances of the FIAT and the Smoothing algorithm is presented, 

showing the inability of the FIAT algorithm to correctly detect and eliminate chirp 

signals. In fact, if different thresholds are used in the FIAT algorithm, as it is 

represented in Fig. 5.27 it can be observed that a high Pfa threshold value (Pfa = 10-1 in 

Fig. 5.27c) eliminates a very high amount of RFI free pixels, and a low Pfa threshold 

value (Pfa = 10-3 in Fig. 5.27d) fails to detect properly the RFI signal. Hence, if chirp 

signals are present in the RFI, the FIAT algorithm is not recommended. 
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c) d) 

Figure 5.27.  Comparison between Smoothing and FIAT Algorithm performances when applied to a 
simulated chirp and sinusoidal RFI contaminated radiometric signal. a) RFI contaminated signal’s 

spectrogram, σ2
RFI = σ2

n − 5 dB; b) RFI-mitigated spectrogram with Smoothing algorithm using the most 
suitable threshold for this INR and a smoothing of a 15 ×15 Hann window; c) RFI-mitigated spectrogram 

with FIAT algorithm using a threshold with a Pfa  = 10-1; d) RFI-mitigated spectrogram with FIAT 
algorithm using a threshold with a Pfa  = 10-3; 

 

On the other hand, if only sinusoidal RFI components are present in the 

radiometric signal, the FIAT algorithm will have a good behaviour, as it can be in the 

Fig. 5.28a, where the error introduced by the FIAT Algorithm in the retrieved antenna 

temperature ε
AT  [K] is represented for different interfering signal powers is represented, 

in the same way as in Fig. 5.13. The right part of the figure (Fig. 5.28b) is included for 

comparison purposes, as it exist a noticeable difference in the behaviour of the 

Smoothing and the FIAT algorithms. In Table 5.5, the comparison between errors in the 

retrieved antenna temperatures, for the Smoothing (15 × 15 and 35 × 35 Hann windows) 

and the FIAT algorithms, with only sinusoidal interfering signals is presented. 
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Table 5.5. Maximum retrieved TA error [K] for the best threshold Pfa for 2 different cases of Smoothing 
Algorithm filtering, and one case of FIAT algorithm filtering. Maximum retrieved TA error [K] in absence 

of RFI for the most suitable threshold is also shown. 

RFI detection 
algorithm 

Smoothing with 
35 × 35 Hann 

Smoothing with 
15 × 15 Hann FIAT 

Pfa 2.76 × 10−3 1.33 × 10−3 1.5 × 10−3 
Threshold value 1.27·σ2

n 1.67·σ2
n 0.16·σ2

n 
Max ε

AT  1.07 K 1.27 K 0.27 K 
Max ε

AT  
for RFI = 0 dB 

0.66 K 0.98 K 0.27 K 
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Figure 5.28. Error obtained in the retrieved TA by a) the FIAT algorithm, and b) the Smoothing Algorithm 
using a 15×15 Hann window as smoothing filter. Error is represented in Kelvin (y-axis), threshold value 
in Pfa (x-axis). Colored lines represent RFI contaminated radiometric signals with INR value determined 
by its label. Black dotted line represents a radiometric signal in absence of RFI. RFI signal is composed 

only by frequency constant sinusoidal interfering signals in both cases. 
 

5.3.3.2 Broadband PRN and OFDM RFI tests 

 

 Figure 5.29 presents the retrieved error in TA as a function of the threshold’s Pfa, 

and the power of the interfering signal, for a PRN interfering signal (Fig. 5.29a), and an 

OFDM interfering signal (Fig. 5.29b), after the application of the FIAT algorithm. 

 

It can be observed that as it happens with the Smoothing algorithm, in order to 

detect PRN interfering signals it is needed a very high Pfa, associated with a very high 

threshold value (in fact, a interfering signal with a INR higher than 0 dB does not 

appear in the Fig. 5.29a as the error obtained in the RFI elimination was too high). As it 

has been stated in Section 5.3.1.2, PRN signal behaves like noise, so a FFT-based 

algorithm will not be the best way to detect this RFI signal. 

15 × 15 
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Figure 5.29. Error obtained by the FIAT Algorithm in the retrieved TA. Error is represented in Kelvin (y-
axis), threshold value in Pfa (x-axis). Colored lines represent RFI contaminated radiometric signals with 
INR value determined by its label. Black dotted line represents a radiometric signal in absence of RFI. 

RFI signal is: a) PRN interfering signal, and b) OFDM interfering signal. 
 

On the other hand, and in the same way as in the Smoothing algorithm case, a 

Pfa|Opt exists for all INR parameter values for the OFDM RFI case, Pfa ~ 5.79 × 10−2, 

with a maximum RMS error value of 3.29 K. The threshold value associated to this Pfa 

is directly related to the erf function and the number of time and frequency segments 

(due to the central limit theorem as explained in Section 5.2.4). Table 5.6 compares 

these results with the results obtained with the Smoothing algorithm, showing that, as 

the OFDM interfering signal is composed merely by sinusoidal components, slightly 

better results are obtained using the FIAT algorithm (the same way than in the Section 

5.3.3.1 with only sinusoidal components). 

 
Table 5.6. Retrieved TA error for the threshold value used in Fig. 5.30 for the two different cases of 

Smoothing Algorithm filtering and the FIAT algorithm filtering, with a INR value of −5 dB (equivalent to 
126.5 K of interference); for the OFDM interfering signal case 

RFI detection 
algorithm 

Smoothing with 
35 × 35 Hann 

Smoothing with 
15 × 15 Hann FIAT 

Pfa 2.16 × 10−2 7.24 × 10−4 5.79 × 10−2 
Threshold value 1.18·σ2

n 1.72·σ2
n ~0.1·σ2

n 
ε

AT  2.7 K 2.33 K 2.25 K 
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Figure 5.30.  Comparison between Smoothing and FIAT algorithm performances when applied to a 
simulated PRN RFI contaminated radiometric signal. a) RFI contaminated signal’s spectrogram, 

σ2
RFI = σ2

n − 5 dB; b) RFI-mitigated spectrogram with Smoothing algorithm with a 15×15 Hann window; 
c) RFI-mitigated spectrogram with Smoothing algorithm with a 35×35 Hann window; d) RFI-mitigated 
spectrogram with FIAT algorithm. The most suitable threshold for this INR (-5 dB) has been used in all 

the cases. 
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Figure 5.31.  Comparison between Smoothing and FIAT Algorithm performances when applied to a 
simulated OFDM RFI contaminated radiometric signal. a) RFI contaminated signal’s spectrogram, 

σ2
RFI = σ2

n − 5 dB; b) RFI-mitigated spectrogram with Smoothing algorithm with a 15×15 Hann window; 
c) RFI-mitigated spectrogram with Smoothing algorithm with a 35×35 Hann window; d) RFI-mitigated 

spectrogram with FIAT algorithm. The most suitable threshold for all INR has been used in all the cases. 
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For comparison purposes, Figs. 5.30 and 5.31 include an RFI contaminated 

spectrogram (by a PRN interfering signal for Fig 5.30a and by an OFDM interfering 

signal for Fig 5.31a), the result of the Smoothing algorithm application with a 15 × 15 

Hann window (Figs. 5.30b and 5.31b), a 35 × 35 Hann window (Figs. 5.30c and 5.31c), 

and the result of the FIAT algorithm application (Figs. 5.30d and 5.31d), using the most 

suitable threshold for any INR value in both figures.  

 

It can be observed in Figs. 5.30 and 5.31 that the elimination of the whole 

frequency subbands is useful when the entire frequency subband is contaminated. 

Hence, the FIAT algorithm performs similarly to the Smoothing algorithm with a 

35 × 35 Hann window, but computationally more efficient. 

 

5.4 Conclusions 
 

 Four new RFI detection and mitigation algorithms have been presented. All of 

them are based on processing of the radiometric signal's spectrogram, and thus operate 

in the time and frequency domains simultaneously. 

 

The Smoothing Algorithm is studied and its performance is estimated using 

Monte Carlo simulations. The threshold value in the Smoothing Algorithm is the most 

critical parameter, as it minimizes the retrieved TA error depending on the filter size and 

the RFI power, which is a priori unknown. For a determined filter size, the best 

threshold can be calculated varying the RFI signal power and keeping the noise power 

constant. In case that the interference is sinusoidal, it is found that there is an optimal 

threshold value which minimizes the retrieved TA error for any RFI power. This 

threshold value diminishes with the filter size used in the Smoothing Algorithm. For a 

simulation of a sinusoidal RFI, with a threshold value of 1.37·σ2
n, the retrieved TA error 

is 2 K for a filter size of  25×25 pixels, and any INR value. 

 

In case that the RFI is broadband, two cases have been studied, which are a PRN 

RFI, and an OFDM RFI. The PRN RFI behaves like noise and it is found that there is 

not an optimal threshold value, as increasing the RFI power always increases the 
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retrieved TA error. The OFDM RFI behaves like a sinusoidal RFI, so there also exists an 

optimal threshold value, although the maximum retrieved error in the TA is higher than 

in the sinusoidal case. In addition, broadband RFI’s contaminate extense areas of the 

spectrogram, resulting in a poorer radiometric resolution as many more pixels of the 

spectrogram have been eliminated. 

 

A 2D denoising filter based on the optimum Wiener filter (LLMMSE) is also 

studied to estimate the RFI in the signal’s spectrogram and to substract it from the 

contaminated one. However, it has been found that the Wiener filter has an acceptable 

performance applied to the spectrogram to detect RFI signals for subsequent 

substraction only if the noise power of the received signal is precisely known, which is 

actually the magnitude to be determined. Therefore although the Wiener filter is optimal 

for signal denoising in signal processing, the accuracy required in the estimation of the 

noise power is much higher in microwave radiometry than in typical communications 

applications, and therefore it is suitable for RFI mitigation. In addition, if the noise 

power is known with enough accuracy before applying this algorithm, it would not be 

necessary indeed. 

 

A simpler algorithm called FIAT algorithm has been developed as a complement 

of the Smoothing algorithm; besides, it can be used isolated obtaining very good results 

in the elimination of the RFI present in the signal. However, this algorithm has two 

main drawbacks, it does not work properly if the interference varies its frequency in 

time (chirped RFI), and eliminates a high number of pixels. 

 

These three algorithms have been tested only with sinusoidal, chirp, PRN and 

OFDM like signals, testing other types of RFI signals with these algorithms will be 

performed in the future as well as processing measured data. 

 

Another algorithm has been presented, Edge Detection Algorithm. However, 

results of this algorithm with real data will be discussed in Chapter 8, in addition of 

results with real data of the Smoothing and the FIAT Algorithm. 
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Chapter 6 
 
6. RFI Mitigation in Microwave 
Radiometry using Wavelets 
 
 
 

Current mitigation techniques are mostly based on 

blanking in the time and/or frequency domains of the 

periods of time and/or sub-bands where RFI has been 

detected. However, in some geographical areas, RFI is so 

persistent in time that prevents from acquiring any useful 

radiometric data. In this chapter a wavelet-based 

technique is proposed to mitigate RFI. The interfering 

signal is estimated by using the powerful de-noising 

capabilities of the wavelet transform. The estimated RFI 

signal is then subtracted from the received signal and a 

“cleaned” noise signal is obtained, from which the power 

is estimated later. The algorithm performance is 

presented as a function of the threshold type, and the 

threshold selection method, the decomposition level, the 

wavelet type and the interference-to-noise ratio.  
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Most of the previous studies are focused in pulsed sinusoidal signals within the 

radiometer’s band. In radio-astronomy some techniques have been proposed to deal 

with GLONASS RFI [23], but since the RFI signal is much lower than the noise, some a 

priori knowledge of the interferent signal must be known. These are called “physical 

modeling” in communications’ terminology and a different model is required for each 

type of RFI.  

 

Another type of analyses belong to the so-called “statistical-physical modeling” 

category, that provide universal model for natural and man-made RFI. The main models 

are the Middleton’s class A (narrowband RFI within receiver’s band), class B 

(broadband RFI wider than receiver’s band), and class C (mixture of class A and B) 

canonical models for which the mathematical form is independent of the physical 

environment [73]. The RFI mitigation approach is then based on the estimation of the 

model parameters, and apply a linear optimal filtering (Wiener filter) or optimal 

detection rules [74]. 

 

In this Ph. D. thesis a different approach to mitigate the effect of RFI in 

microwave radiometry is proposed. It is based on the use of the power of the wavelet 

transform to denoise (remove noise from a signal) so as to estimate the interfering 

signal ˆ( )s t  (RFI) without any “a priori” knowledge of it. This signal is then subtracted 

from the received signal x(t), to obtain a quasi RFI-free noise signal ˆ( )n t  from which 

the power is detected (Fig. 6.1).  

  

 
Figure 6.1. RFI mitigation technique: an estimate of the RFI signal ˆ( )s t  is subtracted from the received 

signal x(t) = s(t) + n(t), so as to obtain a quasi RFI-free noise signal ˆ( )n t . 

 

 In the following sections the principles of denoising are briefly reviewed. The 

optimum parameters to detect and mitigate four different types of RFI (sinusoidal, 

Doppler-like, chirp, and pseudo-random noise) are studied: type of thresholding, 
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sequence length, decomposition level, and type of wavelet (among 75 different types 

[75, 76]). In order to make the study completely general and to make an homogeneous 

inter-comparison between these different signals:  

 

• The maximum instantaneous frequency has been set to be equal to 1 for all of 

them, so that the sequence length corresponds to the number of samples per signal 

period, and  

 

• The amplitude has been properly scaled so that the interfering signal power is 

also the same, and so the INR ratio.  

 

 The noise power is assumed to be equal to one, and the algorithm’s performance 

is expressed in terms of the error of the detected output power as a function of the INR. 

 

6.1 Principles of Denoising 
 

 Consider the problem of denoising an unknown signal [77-80]: 

( ) ( ) ( )x t s t n t= + , (6.1) 

 from a set of samples xi = si + ni (i = 1,…,N) corrupted by a zero mean AGWN 

ni. The Discrete Wavelet Transform (DWT) can be used for denoising a noisy signal. If 

W denotes a N by N orthonormal wavelet transformation matrix, the previous equation 

can be expressed in the wavelet domain as:  

X S N= + , (6.2) 

 where ˆX W x= ⋅ ˆS W s= ⋅  and ˆN W n= ⋅  are the wavelet transforms of x, s and n 

[79, 80]. For a smooth function with AGWN, a theoretical threshold exists that 

completely removes the noise and successfully reproduces the original function 

[79, 81]: 

1ŝ W H W x−= ⋅ ⋅ ⋅ , (6.3) 

where H is a filter characterized by eqn. 6.4 
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[ (1), (2),..., ( )]H diag h h h N= . (6.4) 
Thresholding is one method for filtering. If a limited number of the highest 

coefficients of the DWT spectrum is retained (h(i)=0 for i=m...N), and an inverse 

transform W-1 with the same wavelet basis is applied, a denoised signal is obtained. 

There are a number of ways to decide which coefficients should be retained. The two 

simplest methods are the hard and soft thresholding. The hard threshold filter Hhard 

removes coefficients below a threshold value T, determined by the noise variance [77]: 

( )Y X X T= ⋅ > . (6.5) 

 The soft threshold filter Hsoft shrinks the wavelet coefficients above and below 

the threshold T, reducing the coefficients towards zero [79]: 

( )( )Y sign X X T= ⋅ − . (6.6) 

 If the resulting signal has to be smooth, it has been shown that the soft threshold 

filter must be used [80].  However, the hard threshold filter performs better. 

 

The selection of the threshold value can also be difficult. In practice, if the 

noise-free signal s(t) is unknown, a smooth approximation of the signal is looked for.  

Small threshold values lead to noisy results, while large threshold values introduce bias.  

Experimental studies have demonstrated that for some applications, the optimal 

threshold is simply computed as a constant c times the noise variance [80]. Four 

approaches are used in this study: 

 

• One approach utilizes a selection rule based on Stein's Unbiased Risk Estimate 

or SURE (quadratic loss function). If the signal to noise ratio is very small, the SURE 

estimate is very noisy. 

 

• The Universal method assigns a threshold level equal to the noise variance 

times ( )2log N , where N  is the sample size [78].  

 

• The heuristic approach is a mixture of the two previous ones, and if the signal to 

noise ratio is detected to be very small, the fixed form threshold is used.  
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• The fourth method uses a fixed threshold selected to yield the minimax 

performance for mean square error against an ideal procedure (minimum of the 

maximum mean square error). 

 

It is known that the choice of the proper wavelet scaling function is always the 

most important thing. Generally, for the denoising, the wavelet scaling function must 

have mathematical properties (shape, continuity of the signal and its derivatives) similar 

to the original signal. For example, to denoise pulsed signals, the Haar wavelet (box 

scaling function) will perform well, but it will not perform as well to denoise sinusoidal 

signals. On the other hand, high order Daubechies wavelets (e.g. order 8) will perform 

well for sinusoidal signals. In the limit, if the level of decomposition increases any input 

signal could be reproduced with enough accuracy, so a trade-off exists between the 

decomposition level and the complexity to evaluate the wavelet transform. The number 

of different wavelets is very large. See [82] for a quite detailed list of wavelet types and 

their properties. The effect of the wavelet type (Haar wavelet) and the threshold 

selection method can be visually seen in Fig. 6.2 for the four different types of signals 

been analyzed in this work. In this case, the pseudo-random noise (PRN) signal (bottom 

panel) is much better reconstructed than the other three smooth and continuous signals. 
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Figure 6.2. Original noise-free signal (black), original noisy signal (crosses), and reconstructed signals 
using the Haar wavelet transform, level = 12, 32 samples per period (total 320) and threshold: SURE 

(red), universal (green), heuristic SURE (blue) and minimax (cyan).  INR = σ2
interference/ σ2

noise =10. 
 



Chapter 6 
 

 128 

6.2 Optimum Parameters Selection 
 

In this research 75 different wavelet types have been tested [82], but simulation 

results (average of 100 realizations each) are presented first only for the simplest 

wavelet: Haar wavelet or Daubechies 1. Once the trends are understood and the 

optimum parameters are found for the Haar wavelet, the optimum performance for the 

each signal type and each wavelet type is presented. 

 

6.2.1 Threshold selection and Sequence length 
 

Figure 6.3 shows the performance of the proposed RFI mitigation technique 

using wavelets using the Haar wavelet, as a function of the threshold methods described 

in Section 6.1 and the sequence length, for the four different types of interferent signals 

(sine, Doppler, chirp, and PRN), decomposition level = 12, and INR = 100.  

 

As it can be appreciated, as the sequence length increases, the estimation noise 

power error also decreases by the same factor, saturating around 3·10-4 for the PRN 

signal at sequence lengths longer than 213. 

 

In general, the fixed threshold estimation provides the worst performances, 

except for the SURE thresholding and the chirp signal for lengths between 64 and 1024.  

 

In general, for all signal types, the best performance is achieved for any 

sequence length using the heuristic SURE thresholding. Only for the PRN type of signal 

and below 256 samples, the minimax thresholding methods outperforms the heuristic 

SURE method. 
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Figure 6.3. RFI mitigation performance using the Haar transform as a function of the threshold method 

and sequence length for four different types of interferent signals, and decomposition level = 12. 
Threshold method: squares = fixed threshold with single level noise estimation, circles = soft SURE, 

diamonds = soft heuristics SURE, and triangles = minimax. RFI signal: solid line = sine, 
dashed line = Doppler, dotted = chirp, and dash-dot = pseudo-random noise. 

 

6.2.2 Decomposition level 
 

Figure 6.4 shows the performance of the proposed RFI mitigation technique 

using wavelets using the Haar wavelet, with 216 sequence length, as a function of the 

decomposition level. As intuitively expected, the more the decomposition levels, the 

better the reconstruction (slope ~-1/3 decade per unit level) and the smoother the 

function, the smaller the number of terms in the decomposition that have to be used to 

reconstruct the signal properly. The quality of the reconstruction of the sinusoidal signal 

(and later cancellation) saturates above 5 levels, the Doppler signal saturates above 6 

levels, the chirp signal saturates above 7 levels, and only the PRN signals starts 

saturating at 11 levels. In all cases the heuristic SURE thresholding method is used, 

which is the one that achieves the best performance, only matched by the fixed 

thresholding for PRN signal. 
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Figure 6.4. RFI mitigation performance using the Haar transform as a function of the threshold method 

and decomposition level for four different types of interferent signals, and sequence length 216. Threshold 
method: squares = fixed threshold  with single level noise estimation, circles = soft SURE, 
diamonds = soft heuristics SURE, and triangles = minimax. RFI signal: solid line = sine, 

dashed line = Doppler, dotted = chirp, and dash-dot = pseudo-random noise. 
 

6.2.3 RFI mitigation performance vs. interference-to-

noise ratio 
 

Figures 6.5 and 6.6 show the RFI mitigation performance using the Haar 

transform or the optimum wavelet transform respectively, as a function of the threshold 

method and INR, for a sequence length of 216 and a decomposition level equal to 12. As 

it can be appreciated, using the soft heuristic SURE thresholding the rejection is very 

good (~40 dB) for high INR = 100, decreasing with decreasing INR. Below INR 2·10-4 

the algorithm is no longer able to estimate the RFI signal (Fig. 6.5).  

  

The optimum wavelets for each signal type have found to be the wavelt symlet 3 

for the sinusoidal RFI, the reverse biorthogonal wavelets 1.5 for the Doppler signal, the 

discrete approximation of Meyer wavelet for the chirp signal, and the reverse 

biorthogonal wavelets 1.3 for the PRN signals. When using the optimum wavelet types 

for each RFI signal the performance is significantly improved for high INRs (Fig. 6.6), 

but remains stable as INR decreases so below INR~2·10-4, as in the case of the Haar 

wavelet, no improvement is seen. 
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Figure 6.5. RFI mitigation performance using the Haar transform as a function of the threshold method 
and INR for four different types of interferent signals, sequence length 216 and decomposition level = 12. 

Threshold method: squares = fixed threshold  with single level noise estimation, circles = soft SURE, 
diamonds = soft heuristics SURE, and triangles = minimax. RFI signal: solid line = sine, 

dashed line = Doppler, dotted = chirp, and dash-dot = pseudo-random noise. 
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Figure 6.6. RFI mitigation performance using the optimum wavelet type for each signal as a function of 
the INR for the heuristic SURE threshold method for four different types of interferent signals, sequence 

length 216 and decomposition level = 12. RFI signal: solid line = sine, dashed line = Doppler, 
dotted = chirp, and dash-dot = pseudo-random noise. 
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6.3 Conclusions 
 

In general, the soft heuristic SURE thresholding method is the one that best 

performs for any type of signal, except for very weak RFI (INR ~ 10-3 … 10-4) in which 

the fixed thresholding slightly outperforms.  

 

Increasing the number of decomposition levels above 6-7 does not improve the 

quality of the RFI mitigation, except for the PRN (pulsed) signals. 

 

The minimum RFI cancellation is ~40 dB for high INRs (INR~100) when using 

the Haar wavelet transform, but this value may increase up to ~60-70 dB if the optimum 

wavelet type for each signal is selected. This will allow make useful radiometric 

measurements in areas heavily corrupted by RFI. 

 

RFI cancellation algorithm can be applied in scenarios where the error induced 

by RFI is equal or larger than the measurement uncertainty (∆T). For example, if the 

antenna temperature is 100 K, the receivers noise temperature is 300 K, and the 

measurement uncertainty is ∆T = 1 K, the minimum detectable power is 1/(100+300) = 

2.5·10-3, which defines the minimum useful INR for which it makes sense to apply the 

RFI mitigation algorithm. In other applications, such as sea surface salinity retrieval, 

where the required ∆T is much smaller (∆T = 0.05 K), RFI mitigation can be useful 

down to INR of ~0.05/(100+300) ≈ 10-4, which is at the limit of the performance of the 

RFI cancellation algorithm, regardless of the wavelet type used. 

 

The algorithm presented can be applied either at intermediate frequency or for 

the in-phase and quadrature components of the demodulated signal, which reduces by a 

factor of 2 the signal bandwidth and the computing requirements. If the computing 

requeriments need to be further reduced, subbanding can be applied and the proposed 

algorithms apply to each of the subbands. 
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Chapter 7 
 
7. MERITXELL: The Multifrequency 
Experimental Radiometer with 
Interference Tracking for Experiments 
over Land and Littoral 
 

This chapter describes the design and implementation of 

a multiband radiometer covering the L, S, C, X, K, Ka 

and W bands, conceived for scientific studies and to do 

research on the presence of RFI at different bands and 

techniques to detect and mitigate it. To add flexibility and 

simplify the design, a spectrum analyzer is used as back-

end for all the bands. Moreover, the instrument includes a 

thermographic camera operating in the Thermal InfraRed 

(IR) range (8 - 14 µm), a multi-spectral camera with four 

spectral bands: Red, Green, Blue and Near InfraRed 

(NIR), a visible camera, and a GNSS reflectometer. The 

purpose of this radiometer is the study of 1) RFI detection 

and mitigation techniques, and 2) to test data fusion 

techniques to take advantage of all the simultaneous 

measurements performed. 
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Despite their poor spatial resolution, passive microwave sensors have been 

intensively employed with great success in Earth remote sensing during the last decades 

due to their accuracy and large swath. As it has been previously explained in Chapter 1, 

the measured data is the so-called antenna temperature, which is related to the amount 

of power collected by the antenna. From it, a number of geophysical parameters from 

the ocean (sea surface salinity, sea surface wind speed, ice coverage…), the land 

(vegetation, soil moisture…), and the atmosphere (rain rate, temperature profiles, water 

vapour…) can be obtained. 

 

For a given application, the antenna temperatures must be measured at particular 

frequency bands and/or polarizations. Furthermore, data obtained by other methods (e. 

g. radar and optical sensors) can also be included to develop models with improved 

accuracy. Therefore, in general, the larger the number frequencies and polarizations a 

radiometer can measure, the more geophysical parameters can be determined, and/or the 

better the retrieval accuracy that can be obtained. This is the reason why many airborne 

and spaceborne multi-frequency microwave radiometers are currently flown. Just to cite 

a few examples, the HUTRAD [83] and the PSR [84] (airborne), or the SSMI/S [85] 

and the AMSR-E [86] (spaceborne). 

 

7.1 General Overview 
 

This Chapter describes the design and implementation of a multiband dual-

polarization TPR radiometer with frequent calibration which covers eight protected 

bands usually used in Earth remote sensing: L-band (1.400 GHz - 1.427 GHz), S-band 

(2.69 GHz - 2.70 GHz), C-band (7.14 GHz - 7.23 GHz), X-band (10.6 GHz - 10.7 

GHz), K-band (18.6 GHz - 18.8 GHz and 23.6 GHz - 24.0 GHz), Ka-band (36 GHz - 37 

GHz), and W-band (86 GHz - 92 GHz); developed in the RSLab of the Universitat 

Politècnica de Catalunya (UPC) (Fig. 7.1). 

 

To add flexibility and simplify the design, a spectrum analyzer is used as a back-

end (IF stage, filter and power detector) for all the bands. In order to complement the 

radiometric measurements, the instrument includes three cameras to obtain data in the 

infrared and optical range: a thermographic camera operating in the range of 8 - 14 µm, 
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a multi-spectral camera with four spectral bands: Red (670 nm and ~40 nm BW), Green 

(540 nm and ~40 nm BW), Blue (460 nm and ~45 nm BW), and Near InfraRed (800 nm 

and ~60 nm BW) and a camera in the visible part of the spectrum. In addition, a GNSS 

reflectometer has been included in order to take advantage of the GPS reflectometry 

remote sensing techniques developed by the PAU team [87]. 

 

This radiometer has been implemented to investigate the RFI detection and 

mitigation techniques. Temporal and spectral RFI mitigation techniques will be easily 

performed with the aid of the spectrum analyzer, as it can divide the signal spectrum in 

sub-bands so that the interference can be isolated more easily in a narrow band and it 

can be easily eliminated. Besides, the cameras that are included in the MERITXELL 

will be used to test data fusion techniques with the radiometric data. 

 

The radiometer is designed as a TPR radiometer with frequent calibration [88], 

using a Rohde & Schwarz R&S-FSP40 spectrum analyzer as a back-end. Figure 7.1 

represents the radiometer block diagram, where it is shown that every specific 

frequency band is measured by an independent reception module. The radiometric 

measurements performed by the all the modules, except the W-band module, are 

multiplexed according to its polarization in order to have only one D.C. to 40 GHz input 

per polarization. In the end, only one D.C. to 40 GHz input is connected to the spectrum 

analyzer, so a switch to select the polarization is needed. Using an harmonic mixer the 

W-band output is down-converted to IF at a frequency in the range of 16 GHz, and it is 

then introduced independently through the IF input of the spectrum analyzer since the 

main input of the Spectrum analyzer only can measure up to 40 GHz.  

 

All the processes performed by the spectrum analyzer are controlled by a PC, 

which can also post-process (with the RFI detection and mitigation algorithms 

developed in Chapters 4, 5 and 6) and store all the data obtained by the radiometer. 

Besides, a temperature measurement and control system is included, and a power supply 

set is necessary to feed some DC components and the temperature control system, 

which will need a large amount of power to heat and maintain the temperature of whole 

instrument. 
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Figure 7.1: MERITXELL schematic. 

 

MERITXELL’s dimensions are approximately 84x82x176 cm and the total 

weight is larger than 250 kilograms. These weight and dimensions make the 

MERITXELL handling and management very complex, so a mobile unit has been 

designed and manufactured to transport and perform the measurements with both the 

MERITXELL and PAU-SA [89] instruments. 

 

This mobile unit consists of a NISSAN ATLEON truck with a maximum weight 

of eight tons which can be observed in Fig. 7.2. This truck has an elevator tower 

mounted on it for measurement purposes (Fig. 7.3), which is capable to rise up to 8 

meters, has an azimuth (φ) and elevation (θ) movements of  -180º ≤ φ ≤ 135º and 0º ≤ θ 

≤ 150º; and it is compatible with both instruments, but only one at a time meanwhile the 

other one is parked. The elevator tower has four positions: up or measuring, down or 

parked, calibration or looking to the internal absorber and change the radiometer. The 

commands of these movements are sent by an external computer, and finally controlled 

via a Programmable Logic Controller (PLC) located in the control panel inside the 
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truck. Moreover, the mobile unit has four stabilization legs manually controlled 

covering the maximum surface allowing to work with an instrument at eight meters high 

withstanding winds of up to 100 km/h. Both the elevator tower and the stabilization legs 

work with an hydraulic unit.  

 

 
Figure 7.2: NISSAN ATLEON truck 

 

  
Figure 7.3: Mobile unit’s elevator tower 

 
In order to have the instruments and the tower well protected, an enclosure is 

included to store and transport the instruments (Fig. 7.4). A microwave absorber area 

has been placed inside the mobile unit for hot load calibration purposes, one for each 

instrument (Fig. 7.5). In addition to these main four groups there is a diesel electricity 

generator set of 10 kVA in order to power the electronic parts of the mobile unit and the 

radiometer in operation. 
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Figure 7.4: Mobile unit’s housing mounted over the truck 

 

  
Figure 7.5: Microwave absorbers used for calibration purposes 

 

7.2 Specific Description 
 

To describe the MERITXELL is useful to differentiate five parts, in which all 

the components of the radiometer can be classified: 

 

• Radio-frequency part, composed by the RF devices (antennas, amplifiers, 

switches) which compose the front-ends of each radiometric frequency band, and the 

GPS reflectometer. 
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• Instrumental part, which includes other instruments such as the cameras, the 

Spectrum Analyzer and the personal computer among others. 

 

• Thermal control part, which includes the temperature measurement system by 

means of Peltier cells and the control system by means of a PID (Proportional, Integral, 

and Derivative). 

 

• Electrical part, which includes the power supplies control and the electronic 

circuits that feed all the RF circuits. 

 

• Structural part, including all the mechanical pieces which hold and settle all 

circuits and components present in the MERITXELL, and the aluminium structure 

which gives shape and stability to the whole hardware. 

 

7.2.1 Radio-Frequency part 
 

This part is the main part of the MERITXELL as it includes the front-ends of all 

the radiometric measurement bands before down-converting. Since the down-

conversion process is performed by the Spectrum analyzer, in this part filters, 

multipliers, and local oscillators are not included. 

 

The first hardware component of each channel is a dual polarized antenna. 

Antennas above 10 GHz are horn antennas, with Fresnel lenses at their apertures to 

achieve a Gaussian beam; these antennas have a corrugated horn in the focus in order to 

increase the bandwidth and decrease sidelobes and cross-polarization. An OMT in the 

10.7 GHz antenna or a polarization grid in the rest of the antennas (18.7 to 89 GHz) 

separate the vertical and horizontal polarizations. Figure 7.6 shows the 36 GHz horn 

antenna. It can be observed that the outputs of this antenna are two waveguides, one for 

the vertical polarization, and the other for the horizontal polarization; the rest of the 

horn antennas are quite similar. 
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a) b) 
Figure 7.6: 36 GHz lens antenna. a) front view; b) lateral view 

 

For frequencies below 10 GHz the antennas are 4x4 dual polarized patch arrays. 

These arrays have been developed following the novel architecture used in the LAURA 

radiometer, described in [90], after the excellent performance achieved. In fact, the 

antenna used for the L-band measurements is a replica of the LAURA antenna, while 

the other two are almost scaled versions of the previous one. Patch arrays are 

dual-polarization coaxial-fed patches printed in a 0.6 mm fiberglass circuit board as it 

can be seen in Fig. 7.7. The signals of the 16 patches are combined with different 

weights depending on the position in the array by means of a RF microstrip power 

combiner circuit for each frequency band and each polarization, being 6 power 

combiners in total (Figs. 7.8 and 7.9). The signal output of each power combiner is 

guided by a SMA cable to the Dicke stage. 

 

a) b) c) 
Figure 7.7: Patch antennas used for the MERITXELL low frequency bands, a 25 cm rule is included in 
order to appreciate the size differences between antennas. a) 1.4 GHz antenna; b) 2.7 GHz antenna; 

c) 7.2 GHz antenna. 
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a) b) c) 

Figure 7.8: Power combiners used for the MERITXELL low frequency bands, a 25 cm rule is included in 
order to appreciate the size differences between antennas. a) 1.4 GHz power combiner, ; b) 2.7 GHz 

power combiner; c) 7.2 GHz power combiner. 
 

 
Figure 7.9: 2.7 GHz power combiner housing box. Two combiners are stacked in this box, one for each 

polarization, hence the paired SMA connectors 
 

The implementation of the frequently calibrated TPR radiometer architecture 

follows each polarization of each antenna. For frequencies above 10 GHz this 

architecture is formed by a latching circulator and a matched load; in Fig. 7.10 four of 

these latching circulators are shown. For frequencies below 10 GHz, they are formed by 

a switch that commutes between the input from the circulator and a matched load 

followed by a circulator performing as an isolator. In Fig. 7.11 the different circulators 

are shown.  
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Figure 7.10: Latching circulators for the 18.7 to 89 GHz frequency bands. 

 

 
Figure 7.11: Circulators used for the MERITXELL low frequencies. 

 

Finally the tuned amplifiers complete each receiving channels, one for each 

polarization. All these tuned amplifiers have a gain of at least 60 dB in the band-pass 

frequency, with gain flatness ≤ 1.5 dB, noise figure ≤ 2.4 dB at the highest frequency 

band, and 1 dB compression point ≥ 5 dBm for the worse case. Figure 7.12 shows the 

complete mounted chain from the switch to the amplifier in two cases, the upper 

frequency bands except the W-band (10.6 GHz to 36.5 GHz) and the lower frequency 

bands (1.4 GHz to 7.2 GHz). 
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a) b) 
Figure 7.12: RF components mounted inside the MERITXELL. a) 7.2 GHz band switch + matched load + 

circulator + amplifier, the two polarizations; b) 18.7 GHz band latching circulator + matched load + 
amplifier, horizontal poalrization. 

 

The W-band signal is down-converted to an IF located at 16 GHz with a Rohde 

& Schwarz harmonic mixer since the spectrum analyzer only work up to 40 GHz. The 

harmonic mixer has two ports, a W-band waveguide that is connected directly to the 89 

GHz amplifier (output port), and a SMA connector and that is connected to the LO/IF 

external mixer port of the spectrum analyzer. The spectrum analyzer provides the LO 

frequency through the output port to down-convert the 89 GHz input signal. Figure 7.13 

shows the complete mounted chain from the latching circulator to the harmonic mixer. 

 

  
Figure 7.13: W-band RF components for vertical polarization mounted inside the MERITXELL, 

composed by the latching circulator (left), matched load (behind the latching circulator), amplifier 
(behind the heat sink) and harmonic mixer (right). 
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The output of each amplifier of the frequency bands of 1.4 GHz to 36.5 GHz are 

multiplexed in two different septuplexors, one for each polarization. Hence, all the 

signals ranging from D.C. to 40 GHz are multiplexed in only two K-connectors, (one 

for each polarization). Figure 7.14 shows one of the septuplexors used. 

 

 
Figure 7.14: Septuplexor used to obtain only one D.C to 40 GHz input per polarization. 

 

The next stage consists of two switches that select the polarization to be sent to 

the Spectrum analyzer. One of the switches operates from DC to 40 GHz, while the 

other one operates up to 18 GHz. This way, only two connections arrive to the spectrum 

analyzer, which comprises eight protected radiometric bands at horizontal and vertical 

polarizations. Figure 7.15 shows these two switches and Fig. 7.16 shows the integration 

of the septuplexors and switches in the MERITXELL radiometer. 

 

 
Figure 7.15: Switches used for the polarization switching: (left) D.C. to 40 GHz switch and (right) 2 GHz 

to 18 GHz switch for the IF signal coming from the W-band. 
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Figure 7.16: Septuplexors used for each polarization, stacked, and polarization switches under them. 

 

In addition to all the RF hardware dedicated to the radiometric measurements, a 

GPS reflectometer is mounted. It consists of an array of 5 LHCP GPS l1 band (1575.42 

MHz) ceramic patches, with a power combiner that assigns different weights to every 

patch depending on its position in the array, similar to the 1.4 GHz, 2.7 GHz and 7.2 

GHz radiometers. The output of the power combined is connected to a GPS amplifier 

whose output is connected to a SIGE GN3S GPS sampler module co-developed by the 

GNSS-Lab at the University of Colorado and the SiGe company [91]. This sampled 

data is processed with several algorithms developed by the RSLab group from the UPC 

to obtain GPS reflectometry data [87]. This device is intended to obtain reflectometry 

data to be combined with all the radiometric data obtained by the MERITXELL. Figure 

7.17 shows the front-end of the GPS reflectometer. 
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a) b) 

Figure 7.17: Front-end of the GPS reflectometer included in  the MERITXELL. a) Front view of the 
ground plane, the high permittivity of the ceramic patches make them quite small compared to the 

1.4 GHz fiberglass patches; the holes in the ground plane are required as the three cameras present in 
the MERITXELL are housed sharing place with the GPS reflectometer; b) Rear view of the ground plane, 

showing the power combiner, cables are carefully bended to leave place to the different cameras. 
 

7.2.2 Instrumental part 
 

In this section, all the measurement instruments included in the MERITXELL 

radiometer are described.  

 

7.2.2.1 Spectrum Analyzer 
 

As explained in the previous sections, this radiometer is designed to have a 

common power detector stage in order to simplify the overall design. This stage is 

completely performed by a Rohde & Schwartz (FSP40) Spectrum Analyzer capable to 

measure up to 40 GHz radio-frequency signals. The advantage of using a Spectrum 

Analyzer as a detector is that there is only one back-end stage (filter, local oscillator, 

multiplier and detector) in front of the 8 different back-ends that would be necessary 

instead. Moreover, it can be programmed in terms of central frequency, span, filter 

bandwidth, number of frequency points, adding versatility to all the radiometric 

frequency bands.  

 

Another important reason of this choice is the chance to employ the spectrum 

analyzer as a pre-processing stage, with ability to divide the signal into arbitrary sub-

bands that can be weighted to equalize or mimic arbitrary frequency responses of 
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different instruments, time intervals, and calculate histograms of the received signal for 

each sub-band.  

 

Furthermore, the FPS40 spectrum analyzer includes an ADC module to sample 

and store the noise input voltage signal in the I/Q modulation, for a determined central 

frequency, and a determined bandwidth; allowing a later digital post-processing of this 

sampled radiometric data. 

 

All these abilities can be used to apply the normality test algorithms explained in 

Chapter 4 and the time-frequency domain RFI detection and mitigation algorithms 

described in Chapter 5. 

 

This instrument can be programmed and controlled remotely via an Ethernet 

connection. Figure 7.18 shows the front of the spectrum analyzer with the only two 

inputs detailed in the previous section. As the spectrum analyzer has not the wake-up 

LAN function implemented, a device called “fingertron” has been designed to remotely 

“push” the ON-button. The “fingertron” can be observed at the left lower part of the 

Fig. 7.18, where the spectrum analyzer ON-button is located. 

 

 
Figure 7.18: Front view of the FSP40 Spectrum Analyzer, note the two RF inputs, left one corresponding 

to the down-converted W-band and right one corresponding from DC to 40 GHz. 
 

 

 

 



Chapter 7 
 

 148 

7.2.2.2 Cameras 
 

The MERITXELL radiometer also includes three cameras in order to obtain 

additional data to be combined with the radiometric data, giving the chance for data 

fusion of both radiometric and optic data. 

 

One of the cameras is a Flir InfraRed (IR) camera model A320 with a spectral 

range of 7.5 – 13 µm. With this camera, the physical temperature of the bodies 

measured by the multi-band radiometer can be accurately known, with a thermal 

sensitivity (radiometric resolution) of 70 mK, quantized in 16 bits, obtaining a valuable 

geophysical parameter of the medium being measured. The Field-of-View (FOV) of this 

camera is equal to 19ºx25º with 320x240 pixels, giving a spatial resolution of 1.36 

mrad. A temporal resolution of 30 frames per second is achieved by this camera in case 

that a video recording is needed. Data obtained by this camera is sent to a personal 

computer outside the MERITXELL radiometer via Ethernet. 

 

The second camera is a DuncanTech visible and Near InfraRed (NIR) 

multispectral camera model MS4100. The sensors of the camera can cover 

simultaneously three different spectral bands from the four spectral bands that are 

covered by the camera: Red (~0.62 µm), Green (~0.54 µm), Blue (~0.45 µm) and Near 

InfraRed (~0.80 µm), with a Signal-to-Noise Ratio (SNR) of 60 dB and 10 quatization 

bits. The Field-of-View (FOV) is equal to 60º but it can be zoomed in as a 14 mm, f/2.8 

lens is included. The spectral images can have a maximum number of pixels of 

1920x1080, with 10 frames per second; however, lower spatial resolutions can be 

configured, increasing the number of frames per second. To manage this camera, a PCI 

card has been installed in a PC located inside the MERITXELL; by this way, and by a 

LAN connection, this PC can be remotely controlled, thus the multispectral camera, in a 

similar way than the IR camera. 

 

The third camera is a Q series IP camera also remotely controlled by an Ethernet 

connection. This camera adds real-time imagery to all the measured data. 
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All the three cameras are placed behind the ground-plane of the GPS 

reflectometer, as it can be seen in Fig. 7.19. 

 

  
Figure 7.19: Front view of the three cameras present in the MERITXELL radiometer. The  camera at the 
top is the IP camera, the camera at the left is the multispectral camera,  and the camera on the bottom is 

the IR camera. 
 

7.2.2.3 Inclinometer 
 

As this radiometer will be installed in a mast capable to orient it in azimuth and 

elevation, the antennas can be oriented in any direction. Consequently, there must be a 

way to measure the elevation of the radiometer, as the emissivity of the bodies strongly 

depends on the incidence angle of the measuring instrument. To solve this point, a Dual 

Axis DXL360S inclinometer has been installed inside the MERITXELL, with an 

accuracy of 0.08º, a resolution of 0.01º and a measuring range of 40º for the two axes 

(360º if only 1 axis is measured). It also has a short response time, lower than 0.4 

seconds. 

 

This inclinometer is controlled by the PC that also controls the multispectral 

camera. 

 

7.2.2.4 Peripheal Interface Controller (PIC) devices 
 

There are some tasks in the radiometer that are controlled remotely by using PIC 

microcontrollers, such as the temperature and the switches control. 
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In order to periodically measure the temperatures of the matched loads and the 

amplifiers of every radiometric subband and polarization, 32 DS18B20 digital 

thermometers (one for each of the 16 amplifiers and 16 matched loads) are used. These 

electronic components are controlled by a C-programmed PIC microcontroller. This 

way, temperatures of the matched load and the amplifiers are monitored and may be 

used to calibrate and correct the radiometric measurements. 

 

Switches and latching circulators select the polarization and the radiometric 

input (antenna or matched load) for the different measurement bands. To control the 6 

switches and 10 latching circulators that select the radiometric input, and the 2 switches 

that select the polarization, another PIC microcontroller is used. 

 

Both PIC’s are of the Microchip 16F877A family and are controlled via Ethernet 

by a Mikroelektronika circuit board. In Fig. 7.20 a PIC and the control board are shown. 

 

  
Figure 7.20: Microchip 16F877A PIC and Ethernet controller board. 

 

7.2.2.5 Computer devices 
 

 In order to perform a remote control of all the devices previously described, a 

PC and a router are placed inside the MERITXELL radiometer. The PC is required to 

house the PCI card that controls the multispectral camera and the inclinometer, and to 

store the data obtained by the GPS reflectometer. 
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 In addition, a 16 port Netgear switch model JFS516 is included in the radiometer 

as there are several electronic components that are controlled by an Ethernet connection, 

such as the spectrum analyzer, two cameras, the PC, and the two PIC’s. This way, only 

an Ethernet output is needed to control all the MERITXELL radiometer. 

 

7.2.3 Temperature control part 
 

The temperature inside any radiometer must be kept as constant as possible, 

since variations of the radiometer’s physical temperature will lead to variations in the 

radiometer’s measured antenna temperature. The origin of these variations is the 

dependence on the physical temperature inside the radiometer of the gain and noise 

figure of the amplifier, the circulators’ losses, and other physical parameters.  

 

As a consequence, the radiometer must be thermally insulated, so the walls of 

the radiometer must be adiabatic, i. e. must prevent any heat interchange between inside 

and outside the radiometer. Hence, the selected walls of the radiometer are 20 mm dual-

side metallized foam boards (both for EMI and thermal insulation), and a 5.5 mm thick 

radome to cover the antennas, showing losses of approximately 0.25 dB at the 85-95 

GHz band. The metallic part of the walls is composed by two sheets of 1 mm thickness 

aluminium. 

 

Microwave radiometers usually work at a temperature higher than the outside so 

that the maximum antenna temperature will always be lower than the internal 

temperature, and because it is easier to stabilize at a slightly higher temperature. Hence, 

the MERITXELL radiometer is designed to work at a constant temperature around 

45ºC. In order to maintain constant the temperature inside the radiometer, first a set of 

heater resistors controlled by a thermostat and disseminated around the structure heats 

the radiometer’s structure up to 45ºC, when the thermostat turns off the heater resistors. 

Afterwards, the radiometer’s temperature is maintained constant with the aid of 24 

Peltier cells located at the walls of the radiometer, providing ~90W each. 
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A Peltier cell is a thermoelectric device working on the Peltier phenomenon 

principle. Peltier cells are commonly constructed of larger amount of semiconductor 

elements, which are connected in series from the electrical point of view and in parallel 

from the point of view of the heat transfer. They are mostly used for the active cooling, 

since the cell allows transferring heat from the cold plate to the warm one. Even more, 

the direction of this heat transfer can be selected with the direction of the current, 

allowing the use of these Peltier cells either to cool or heat indistinctly; thus being 

suitable to compensate the temperature variations. 

 

This way, the Peltier cells must be attached to the external aluminium sheet of 

the radiometer wall, in order to transfer heat outside or inside the radiometer when 

required. Peltier cells must be surrounded by aluminium heater sinks so that the heat or 

cold is transferred to the medium (inside or outside the radiometer) with the aid of a fan. 

Figure 7.21 shows the fan + heater sink + Peltier cell block mounted on a radiometer’s 

wall. 

 

  
Figure 7.21. Thermal control structure composed by a Peltier cell (not seen), 2 heater sinks and 2 fans. 
MERITXELL radiometer has 24 of these structures. Left heater sink and fan correspond to the outside 

part, and right heater sink and fan correspond to the inside part, note the Peltier cell feeding cable in the 
inside part. 

 

The temperature control inside the radiometer is performed by the control loop 

feedback mechanism, the 2216L Eurotherm Proportional Integral Derivative (PID) 

temperature controller. The temperature inside the radiometer is measured with a PT100 

temperature dependant resistance. With this temperature measurement, the PID is able 
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to maintain the temperature inside the radiometer at a determined constant value with 

the control of the Peltier cells. 

 

Peltier cells are feeded with a voltage of 12 V and a current of 7.3 A in order to 

get a correct performance. Obviously, this amount of current cannot be handled by the 

PID controller, so several MD03 H-bridge motor drives are used to handle this current 

from the 24 V switching power supplies needed to feed the thermal control system to 

the Peltier cells. These circuits can handle up to 50 V and 20 A so it has been decided to 

use 6 of these circuits, as 6 switching power supplies are used (in order to avoid 

interconnection between different power supplies). The MD03 device is able to reverse 

the current sent to the Peltier cells, thus allowing to heat or to cool when needed.  

 

To summarize, first of all, the radiometer is heated by heating resistors up to 

45ºC when the thermostat disconnects the heating resistors. Afterwards, the temperature 

is controlled by the PID, which manages the control of the MD03 motor drivers that 

behave as a forward and reverse relay between the switching power supplies and the 

Peltier cells. 

 

7.2.4 Electrical part 
 

Due to its dimensions and the large amount of electronic devices, this radiometer 

needs a significant amount of electric power. The maximum amount of power that this 

radiometer requires, assuming all the devices are connected, including the temperature 

control, is 5.4 kW. Table 7.1 describes more detailed the power consumption of the 

different components. 
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Table 7.1: Power consumption of the different components of the MERITXELL radiometer 

Components Power consumption (W) 

Linear power supplies 

(amplifiers and switches) 
505 

Switched power supplies 

(Peltier cells, fans, cameras and PICs) 
2885 

Heater resistors 1000 

Spectrum Analyzer 300 

Personal Computer 600 

Switch 10 

Total 5400 

 

The radiometer only has an electrical input at 220V 50Hz AC, in order to be 

possible to connect directly to the electrical grid. Usually, the MERITXELL radiometer 

will be feeded by a diesel generator located in a trailer pulled by the truck. In this 

aspect, it has been tried to isolate power supplies from different devices in order to 

avoid current peaks in the most sensible ones. Therefore, all components can be 

classified in four different groups, every one separated of the rest with a Residual-

Current Circuit Breaker: 

 

• RF active devices (amplifiers and switches) need a very stable voltage input, so 

linear power supplies have been chosen to feed these components, as ripple present in 

the switching power supplies could produce gain fluctuations in the amplifiers. 

 

• Electronic instruments (cameras, spectrum analyzer, PC, switch and two PICs) 

are delicate electronic devices and must be isolated from high current peaks that can be 

produced by Peltier cells and heating resistors. Some of them work connected directly 

to the electrical grid (Spectrum analyzer, PC and switch), and others are connected to 

switching power supplies as they are not affected by the ripple present in this kind of 

power supplies. 

 

• Fans and Peltier cells operate with DC, but consume very high current values, so 

independent switching power supplies have been used for these components. 
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• Heating resistors are feed directly with 220V AC, so no extra power supplies are 

needed. 

  

Finally, 6 linear power supplies and 9 switched power supplies are used to feed 

all the DC components. In Fig. 7.22 several switched power supplies (Fig. 7.22a) and 

linear power supplies (Fig. 7.22b) mounted on the MERITXELL structure are shown. 

 

a) b) 
Figure 7.22: Power supplies housed in the MERITXELL radiometer. a) Switching power 

supplies; b) Linear power supplies. 
 

Another complexity that has to deal the MERITXELL electrical power supply 

system is that some of the amplifiers need negative voltage values. Table 7.2 details the 

voltage and maximum current of these amplifiers. Consequently, electronic circuits 

have been developed in order to feed the proper voltage and enough current to every 

amplifier, and additionally redundant voltage rectifiers are included in these circuits in 

order to ensure a constant feed to the amplifiers. Figures 7.23, 7.24, and 7.25 show the 

electronic schematics of the three different circuits used to feed all the different 

amplifiers. 

 
Table 7.2: Suitable voltage and current for the different amplifiers of the MERITXELL radiometer. 

Frequency (GHz) Voltage (V) Current (mA) 
1.4 15 200 
2.7 15 200 
7.2 15 250 
10.6 15 275 
18.7 15 300 
23.8 15/-15 300/-50 
36.5 15/-15 275/-50 
89 8 300 
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Figure 7.23: Electronic schematic of the circuit feeding the 23.8 GHz and 36.5 GHz amplifiers. Four of 

these circuits are needed as there are two amplifiers for each frequency band. 
 

 
Figure 7.24: Electronic schematic of the circuit feeding the 89 GHz amplifiers. Two of these circuits are 

needed as there are two 89 GHz amplifiers. 
 

 
Figure 7.25: Electronic schematic of the circuit feeding the 1.4 GHz, 2.7 GHz, 7.2 GHz, 10.6 GHz and 
18.7 GHz  amplifiers. Ten of these circuits are needed as there are two amplifiers for each frequency 

band. 
 

 Furthermore, electrical circuits that drive all the switches and latching circulators 

present in the radiometer have been designed. As explained in the instrumental part, the 

latching circulators and the switches are managed by a PIC, but a feeding circuit is 

required for these RF devices. As the latching circulators switches its circulation 

direction with a high current peak, it is recommended that these RF devices are isolated 

from the other RF devices; in order to handle this situation, an optocoupler is used in 



MERITXELL
 

 157

these circuits. Figures 7.26, 7.27, 7.28, and 7.29 show the electronic schematics of the 

four different circuits used to feed all the different switches and latching circulators. 

 

 
Figure 7.26. Electronic schematic of the circuit that controls the antenna/load latching circulators. Five 

of these circuits are needed as each circuit can switch the two latching circulators of each frequency 
band. 

 

 
Figure 7.27. Electronic schematic of the circuit that controls the antenna/load switches of the 1.4 GHz, 

2.7 GHz and 7.2 GHz bands. Six of these circuits are needed as there are two switches for each frequency 
band. 
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Figure 7.28. Electronic schematic of the circuit that controls the 89 GHz band polarization switch. 

 

 
Figure 7.29. Electronic schematic of the circuit that controls the D.C. to 40 GHz polarization switch. 

 

7.2.5 Structural part 
 

 In all radiometric devices of considerably high dimensions, the structure must be 

designed carefully to ensure the properly operation and long duration of the radiometer. 

In our case, as the entire radiometer has an approximated dimensions of 180x90x90 cm, 

and it will be mounted in an elevator mast which can move it up to 8 meters above the 

ground, the structure must be as solid as possible. This elevator mast, the cabinet where 

MERITXELL is placed and the MERITXELL aluminium structure itself have been 
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designed by the GUTMAR company to stand in adverse climatological conditions 

(strong winds up to 100 km/h, humidity, rain, and temperatures between -10ºC – 50ºC) . 

 

 The main structure is composed by 40x40 mm and 80x40 mm aluminium ITEM 

bars, as this kind of bars allows a modular design. In Fig. 7.30 the MERITXELL 

structure is shown.  

 

 
Figure 7.30: Aluminium internal structure of the MERITXELL radiometer with the horn and the patch 

antennas. 
 

 In addition to the main structure, several ITEM bars and aluminium pieces have 

been added afterwards in order to hold and settle all the different electronic instruments, 

RF components and all the components forming the MERITXELL radiometer. 
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 The structural part also includes the cover walls of the radiometer, which are 20 

mm dual-side metallized foam boards (for electric and thermal insulation) and a 5 mm 

radome to cover the antennas. In these walls several Peltier cells are distributed in order 

to control the temperature inside the radiometer. One of these walls is shown in 

Fig. 7.31. 

 

  
Figure 7.31: Cover wall of the MERITXELL radiometer. 

 

7.3 Conclusions 
 

A detailed description of the MERITXELL radiometer has been presented in this 

Chapter. With this hardware radiometric measurements in different frequency bands can 

be acquired to test different RFI detection algorithms at different frequency bands; 

results of these algorithms will be presented in Chapter 8. 
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However, all the capabilities of the MERITXELL radiometer have not fully been 

exploited in the development of this Thesis. This radiometer jointly with the PAU-SA 

radiometer will be used for future field experiments. 
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8. RFI detection algorithms applied to 
radiometric data 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the results obtained by the RFI 

detection algorithms described in Chapters 4 and 5 

applied to the radiometric data obtained with the 

MERITXELL radiometer described in Chapter 7. 

Normality tests will be applied to radiometric data 

measured on the 1.4 GHz, 2.7 GHz, and 10.65 GHz and 

GPS L1 bands, in addition, spectrogram analysis will be 

applied to radiometric data measured at 1.4 GHz. 
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 The RFI detection algorithms described and simulated in Chapters 4 and 5 have 

been tested to determine their performance for RFI detection in microwave radiometry. 

Normality tests and spectrogram analysis are first tested with RFI-free radiometric noise 

to ensure that the tables with threshold values used on the simulations also are valid 

with real radiometric data. After this proof, both RFI detection methods will be tested to 

determine in which case which method is best, and the best combination of methods 

described in Chapters 4 and 5 will be looked for. 

 

8.1 Description of the method to retrieve the 

radiometric measurements 
 

 The MERITXELL radiometer described in Chapter 7 has been used to obtain all 

the radiometric data used in this Chapter. 

 

 In Chapter 7 Section 7.2.2.1 the Spectrum Analyzer programmed to obtain the 

different measurements was described. The Spectrum Analyzer includes an ADC 

module that can sample the input data. In addition, the measured Spectrum Analyzer 

data can be stored in the frequency and time domains as data vectors of different time 

traces can form a matrix equivalent to a spectrogram. Thereby, the radiometric data has 

been retrieved by these two ways to prove the RFI detection and mitigation algorithms 

developed in this Ph. D. Thesis. 

 

8.1.1 Using the ADC to retrieve data 
 

 Firstly, radiometric measurements have been acquired using the ADC from the 

Spectrum Analyzer, in order to have voltage I/Q data. This I/Q data is imperative to 

apply the normality tests based RFI detection algorithms (as this radiometric I/Q data is 

Gaussian in the absence of RFI), and to apply the Smoothing Algorithm, since the 

spectrogram used in this algorithm is obtained by means of the application of the STFT 

to this I/Q voltage data. 
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 The maximum number of consecutive I/Q data samples that can be collected by 

the ADC is 65536 samples, thus the time interval and the bandwidth of the radiometric 

signal will be quite limited in this case.  

 

As an example, the measurement bandwidth used for the L-band is limited to 2 

MHz, using 21 adjacent measurements to cover the protected L-band and a non-

protected adjacent bandwidth around this band. Therefore, the time duration of the 

radiometric measurement is limited to 32.77 ms. After this period, the measurement 

must be interrupted. Furthermore, these 65536 samples data units occupy an amount of 

approximately 1 Megabyte (MB), so long time measurements will need a huge data 

storage capacity.  

 

Thereby, this method of data acquisition may be appropriate to test and evaluate 

the RFI methods developed in this thesis, but obviously it is not the optimal one for real 

time radiometric measurements. 

 

8.1.2 Using the Spectrum Analyzer to acquire data 
 

 On the other hand additional radiometric measurements have been taken by 

storing several temporal traces of a determined span in order to form a time-frequency 

matrix of power values, each one corresponding to the integrated power along the 

selected resolution bandwidth during the selected sweep time. This way, the 

spectrogram is obtained by storing 500 temporal traces as columns each one separated 

in 501 frequencies; thus, the spectrogram is formed by a 501x500 matrix of independent 

power measurements. 

 

However, the Spectrum analyzer has an important drawback in the measurement 

of each time trace as introduces a delay equivalent to 41ms, independently of the sweep 

time value. Hence, the time sweep should have a value at least longer than 41 ms in 

order to have enough efficiency, but this time cannot be too long in order to be to detect 

RFI temporal pulses.   
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Nevertheless, the radiometric measurements obtained have longer time duration, 

wider frequency bandwidth, and occupy much less space in disk. 

  

8.2 RFI detection algorithms with I/Q data 
 

 First of all, RFI-free radiometric data must be captured by the MERITXELL 

radiometer in order to prove that in RFI free conditions the data is actually thermal 

noise without any trace of RFI. This way, the RFI free radiometric data must 

accomplish the condition that the probability of false alarm (Pfa) must be equal to the 

probability of detection (Pdet), no matter if they are normality test-based, spectrogram 

analysis-based, or wavelet-based. 

  

8.2.1 Normality test-based algorithms 
 

For the normality test-based algorithms, the RFI-free measurements have been 

captured by the MERITXELL setting the circulator of every measured band to the 

reference load, so the spectrum analyzer measures only the matched load thermal noise, 

which corresponds to a zero-mean Gaussian signal. Therefore, if an algorithm detects 

any interferences it will be clearly a false alarm.  

 

It is worth noting that in real systems the isolations of the latching circulators the 

circulators and the switches are never ideal (isolation is approximately 30 dB), hence 

the acquired measures may not be totally interference free.  

 

8.2.1.1 Normality tests in RFI free radiometric data 
 

To prove the correct performance of the normality tests, matched load 

measurements have been sampled. Then, all the normality tests described in Chapter 4 

have been applied to this data. So, the detection ratio values (obtained Pdet), which is the 

ratio of the total number of interference detections generated by a test (both phase, I and 

quadrature, Q components), and the total number of measurements is calculated. 
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Ideally, without the presence of interferences and approximation errors, the 

detection ratio is equal to the fixed Pfa. On the contrary, in real cases, the obtained 

values differ slightly from the ideal one, as the RFI-free noise input signal may have 

RFI attenuated by the circulator, but still present. In addition, if the frequency response 

of the radiometer is not completely flat, the Gaussian white noise may get ‘coloured’, 

affecting its Gaussianity. The radiometer’s part which affects more its frequency 

response is the R&S Spectrum Analyzer signal processing block presented in Fig. 8.1. 

 

 
Figure 8.1: Block diagram illustrating the R&S FSP signal processing [92].  

 

As it can be seen in Fig. 8.1, the radiometric signal arriving to the R&S 

Spectrum Analyzer signal processing block passes through an IF filter first, whose 

Resolution Bandwidth (RBW) corresponds to a Gaussian filter. Then, data is sampled at 

32 MHz, and I/Q demodulated. After the demodulation process, data is decimated to the 

sampling rate selected by the user, and a decimation filter is applied. The bandwidth of 

the acquired signal is determined by the decimation filter, not by the RBW. 

 

The RBW filter is Gaussian, with 3 dB attenuation at the selected RBW 

frequency, while the decimation filter has a more flat frequency response instead. 

Therefore, is interesting that the RBW be as high as possible (the maximum is 10 MHz) 

in order to have a less ‘coloured’ white noise, thus less affecting to the normality tests. 

In Fig. 8.2 the frequency response of the 1.4 GHz band of the MERITXELL is 

presented for two different values of the RBW (1 MHz in Fig. 8.2a, and 10 MHz in Fig. 

8.2b) and only one value of the decimation filter (1.6 MHz). The RBW parameter is 



Chapter 8 
 

 168 

configured to 10 MHz for all the measurements taken with the ADC present in the 

spectrum analyzer. 
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a) b) 
Figure 8.2. Frequency response of the 1.4 GHz band MERITXELL radiometer with 2 Mega samples per 

second ADC’s frequency sampling and: a) 1 MHz RBW; b) 10 MHz RBW 
 

According to the previous results, the best choice to have the flattest frequency 

response of the noise is to have the maximum value of RBW (10 MHz), and a 

decimation filter bandwidth value so low that the Gaussian shape of the RBW does not 

affect the shape of the noise spectrum. To verify the normality tests performance in 

absence of RFI, a set of 1000 RFI-free measurements has been performed. The Pdet has 

been calculated with the results of the normality tests, which must be Pdet = Pfa in 

absence of RFI. The parameters’ values selected to perform these measurements are: 

 

• A set of probability of false alarm of: Pfa = [0.001 0.005 0.01 0.05 0.1]. 

 

• A set of number of samples of: N = [216 215 214 213 212 211 210]. 

 

• Resolution bandwidth of RBW = 10 MHz. 

 

• Sampling frequency of fs = 2 MHz for the L-band (1.395 – 1.437 GHz), the S-

band (2.685 – 2.707 GHz) and the X-band (10.659 – 10.701 GHz); and sampling 

frequency of fs = 0.5 MHz for the GPS band (1.57275 – 1.57825 GHz). 
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With these parameters, the white noise behaves well when passed through the 

normality tests as shown in tables 8.1 to 8.8; which exhibit a good overall performance 

(measured Pdet very close to specified Pfa). However, there are individual cases with 

slightly differences between Pdet and Pfa, as the S, K and CM tests at L-band, but having 

a correct performance in the rest of the bands. 

 
Table 8.1: Normality test performance (Pdet) on L-band RFI free radiometric data as a function of the Pfa 

with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,000 0,003 0,003 0,003 0,003 0,003 0,002 0,000 0,002 0,002
0.005 0,001 0,007 0,006 0,005 0,006 0,009 0,009 0,005 0,005 0,006
0.01 0,005 0,014 0,009 0,009 0,009 0,011 0,010 0,010 0,007 0,010
0.05 0,055 0,038 0,047 0,042 0,043 0,032 0,035 0,063 0,043 0,063
0.1 0,118 0,085 0,097 0,093 0,088 0,083 0,079 0,125 0,096 0,114

 
Table 8.2: Normality test performance (Pdet) on L-band RFI free radiometric data as a function of the 

sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.118 0.085 0.097 0.093 0.088 0.083 0.079 0.125 0.096 0.114
215 0.115 0.093 0.107 0.103 0.096 0.096 0.092 0.119 0.098 0.107
214 0.116 0.089 0.098 0.092 0.101 0.099 0.097 0.108 0.109 0.103
213 0.117 0.088 0.102 0.096 0.089 0.093 0.090 0.116 0.103 0.104
212 0.113 0.098 0.092 0.083 0.096 0.101 0.098 0.086 0.114 0.105
211 0.111 0.089 0.090 0.077 0.091 0.096 0.092 0.097 0.093 0.111
210 0.095 0.074 0.080 0.068 0.091 0.099 0.093 0.097 0.088 0.108

 
Table 8.3: Normality test performance (Pdet) on S-band RFI free radiometric data as a function of the Pfa 

with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,001 0,002 0,002 0,002 0,002 0,000 0,000 0,002 0,000 0,001
0.005 0,006 0,005 0,003 0,003 0,003 0,000 0,001 0,006 0,003 0,004
0.01 0,015 0,008 0,01 0,009 0,011 0,005 0,005 0,011 0,007 0,008
0.05 0,053 0,056 0,058 0,053 0,052 0,045 0,040 0,053 0,049 0,045
0.1 0,104 0,103 0,103 0,100 0,108 0,099 0,103 0,113 0,091 0,098
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Table 8.4: Normality test performance (Pdet) on S-band RFI free radiometric data as a function of the 
sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.104 0.103 0.103 0.100 0.108 0.099 0.103 0.113 0.091 0.098
215 0.088 0.102 0.105 0.101 0.083 0.088 0.086 0.126 0.091 0.096
214 0.114 0.114 0.120 0.117 0.100 0.106 0.105 0.108 0.095 0.089
213 0.095 0.100 0.103 0.102 0.095 0.095 0.110 0.106 0.094 0.115
212 0.091 0.091 0.090 0.079 0.096 0.109 0.122 0.097 0.084 0.104
211 0.095 0.102 0.087 0.075 0.082 0.078 0.085 0.088 0.096 0.111
210 0.104 0.108 0.110 0.098 0.113 0.104 0.112 0.107 0.099 0.119

 
Table 8.5: Normality test performance (Pdet) on X-band RFI free radiometric data as a function of the Pfa 

with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,001 0,002 0,002 0,001 0,001 0,001 0,000 0,001 0,001 0,000
0.005 0,007 0,004 0,008 0,006 0,008 0,005 0,006 0,005 0,004 0,007
0.01 0,015 0,006 0,011 0,011 0,012 0,014 0,013 0,010 0,007 0,01 
0.05 0,050 0,040 0,051 0,046 0,046 0,054 0,057 0,050 0,047 0,051
0.1 0,097 0,090 0,092 0,092 0,097 0,102 0,100 0,105 0,101 0,107

 
Table 8.6: Normality test performance (Pdet) on X-band RFI free radiometric data as a function of the 

sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.097 0.090 0.092 0.092 0.097 0.102 0.100 0.105 0.101 0.107
215 0.110 0.096 0.112 0.106 0.098 0.113 0.113 0.103 0.104 0.117
214 0.086 0.083 0.087 0.080 0.112 0.107 0.106 0.098 0.109 0.115
213 0.118 0.109 0.097 0.093 0.111 0.112 0.114 0.105 0.109 0.104
212 0.099 0.119 0.106 0.103 0.108 0.109 0.112 0.105 0.127 0.111
211 0.108 0.102 0.101 0.089 0.100 0.099 0.097 0.103 0.110 0.117
210 0.107 0.109 0.097 0.085 0.097 0.101 0.105 0.114 0.106 0.107

 
Table 8.7: Normality test performance (Pdet) on GPS L1 band RFI free radiometric data as a function of 

the Pfa with sample size of 216 samples (RBW = 10 MHz, fs = 500 kHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,001 0,003 0,001 0,001 0,005 0,003 0,003 0,000 0,000 0,001
0.005 0,005 0,005 0,007 0,005 0,008 0,007 0,008 0,004 0,002 0,001
0.01 0,009 0,008 0,011 0,011 0,011 0,011 0,011 0,015 0,011 0,006
0.05 0,051 0,044 0,050 0,048 0,047 0,049 0,050 0,053 0,049 0,049
0.1 0,106 0,095 0,106 0,104 0,104 0,108 0,099 0,106 0,112 0,095
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Table 8.8: Normality test performance (Pdet) on GPS L1 band RFI free radiometric data as a function of 
the sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 500 kHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.106 0.095 0.106 0.104 0.104 0.108 0.099 0.106 0.112 0.095
215 0.103 0.105 0.105 0.102 0.114 0.099 0.103 0.102 0.109 0.115
214 0.114 0.114 0.105 0.098 0.117 0.114 0.113 0.101 0.098 0.111
213 0.093 0.090 0.093 0.090 0.091 0.098 0.105 0.102 0.102 0.103
212 0.093 0.090 0.093 0.084 0.086 0.085 0.087 0.089 0.103 0.092
211 0.098 0.085 0.084 0.077 0.104 0.096 0.097 0.095 0.088 0.098
210 0.099 0.085 0.080 0.073 0.116 0.102 0.105 0.094 0.074 0.105

 

8.2.1.2 Normality tests in RFI contaminated radiometric data 
 

As stated in the previous chapter, in absence of RFI the Pdet is approximately 

equal to the Pfa, and as the measured radiometric data are real radiometric 

measurements, i. e. the RFI contamination level is not known; the best normality test 

will be the one that detects more RFI contaminated data, thus, the one with the highest 

RFI detection ratio for the same input RFI contaminated radiometric data. The RFI 

detection ratio is the ratio of the number of measurements flagged as RFI, divided by 

the total number of measurements. 

 

Thus, a set of 630 RFI contaminated radiometric data measurements in the L-

band and X-band cases, and 330 measurements in the S-band and GPS L1 band cases 

have been performed. RFI detection ratio as a function of different Pfa has been 

calculated with the results of these data applied to the normality tests. The parameters’ 

values selected to perform these measurements are the same used in the Section 8.2.1.1. 

 

Results of RFI contaminated data measurements are represented in Tables 8.9 to 

8.16 :  

 
Table 8.9: Normality test performance (RFI detection ratio) on L-band RFI contaminated radiometric 

data as a function of the Pfa with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,559 0,003 0,548 0,532 0,451 0,524 0,511 0,430 0,003 0,186
0.005 0,608 0,010 0,586 0,578 0,489 0,538 0,538 0,481 0,006 0,241
0.01 0,629 0,016 0,610 0,603 0,522 0,560 0,552 0,500 0,017 0,263
0.05 0,675 0,071 0,662 0,659 0,589 0,627 0,614 0,600 0,060 0,349
0.1 0,722 0,127 0,692 0,692 0,632 0,675 0,654 0,646 0,113 0,406
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Table 8.10: Normality test performance (RFI detection ratio) on L-band RFI contaminated radiometric 
data as a function of the sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.722 0.127 0.692 0.692 0.632 0.675 0.654 0.646 0.113 0.406
215 0.651 0.114 0.635 0.633 0.567 0.613 0.590 0.568 0.116 0.362
214 0.579 0.127 0.570 0.562 0.538 0.575 0.554 0.513 0.127 0.325
213 0.524 0.100 0.494 0.481 0.406 0.476 0.448 0.454 0.121 0.292
212 0.448 0.138 0.449 0.440 0.311 0.397 0.363 0.398 0.117 0.271
211 0.383 0.122 0.362 0.340 0.244 0.286 0.283 0.316 0.117 0.240
210 0.305 0.108 0.273 0.233 0.213 0.233 0.229 0.267 0.108 0.208

 
Table 8.11: Normality test performance (RFI detection ratio) on S-band RFI contaminated radiometric 

data as a function of the Pfa with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,636 0,006 0,636 0,636 0,633 0,636 0,636 0,636 0,006 0,473
0.005 0,636 0,018 0,636 0,636 0,633 0,636 0,636 0,636 0,015 0,527
0.01 0,639 0,024 0,636 0,636 0,639 0,636 0,636 0,636 0,018 0,548
0.05 0,667 0,073 0,664 0,664 0,645 0,645 0,645 0,661 0,052 0,603
0.1 0,682 0,115 0,679 0,676 0,661 0,658 0,655 0,697 0,106 0,636

 
Table 8.12: Normality test performance (RFI detection ratio) on S-band RFI contaminated radiometric 

data as a function of the sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 0.682 0.115 0.679 0.676 0.661 0.658 0.655 0.697 0.106 0.636
215 0.670 0.124 0.652 0.652 0.658 0.667 0.658 0.676 0.106 0.621
214 0.658 0.142 0.670 0.670 0.633 0.667 0.667 0.664 0.115 0.564
213 0.661 0.118 0.682 0.679 0.594 0.639 0.615 0.609 0.127 0.464
212 0.645 0.136 0.633 0.624 0.439 0.576 0.533 0.579 0.121 0.367
211 0.548 0.139 0.524 0.509 0.342 0.421 0.391 0.467 0.103 0.318
210 0.442 0.148 0.406 0.394 0.273 0.336 0.330 0.367 0.115 0.300

 
Table 8.13: Normality test performance (RFI detection ratio) on X-band RFI contaminated radiometric 

data as a function of the Pfa with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 0,238 0,010 0,238 0,237 0,068 0,167 0,138 0,208 0,008 0,005
0.005 0,252 0,014 0,246 0,244 0,111 0,186 0,159 0,224 0,011 0,021
0.01 0,262 0,024 0,254 0,254 0,135 0,195 0,183 0,235 0,022 0,029
0.05 0,322 0,068 0,313 0,306 0,219 0,238 0,227 0,294 0,063 0,081
0.1 0,367 0,117 0,360 0,354 0,265 0,292 0,276 0,340 0,121 0,133
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Table 8.14: Normality test performance (RFI detection ratio) on X-band RFI contaminated radiometric 
data as a function of the sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
2^16 0.367 0.117 0.360 0.354 0.265 0.292 0.276 0.340 0.121 0.133
2^15 0.343 0.117 0.335 0.333 0.221 0.267 0.251 0.330 0.114 0.127
2^14 0.300 0.127 0.308 0.306 0.187 0.227 0.202 0.308 0.119 0.110
2^13 0.287 0.122 0.279 0.278 0.110 0.148 0.137 0.271 0.124 0.110
2^12 0.248 0.162 0.244 0.233 0.110 0.113 0.111 0.221 0.113 0.103
2^11 0.198 0.124 0.190 0.176 0.117 0.105 0.110 0.179 0.129 0.108
2^10 0.178 0.130 0.179 0.167 0.105 0.098 0.103 0.157 0.143 0.114

 
Table 8.15: Normality test performance (RFI detection ratio) on GPS band RFI contaminated 

radiometric data as a function of the Pfa with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

216 K S JB K2 L AD CM SW LM CHI2
0.001 1,000 0,006 1,000 1,000 1,000 1,000 1,000 1,000 0,000 0,915
0.005 1,000 0,021 1,000 1,000 1,000 1,000 1,000 1,000 0,003 0,945
0.01 1,000 0,027 1,000 1,000 1,000 1,000 1,000 1,000 0,006 0,964
0.05 1,000 0,109 1,000 1,000 1,000 1,000 1,000 1,000 0,067 0,982
0.1 1,000 0,161 1,000 1,000 1,000 1,000 1,000 1,000 0,139 0,988

 
Table 8.16: Normality test performance (RFI detection ratio) on GPS band RFI contaminated 

radiometric data as a function of the sample size with a Pfa = 0.1 (RBW = 10 MHz, fs = 2 MHz). 

0.1 K S JB K2 L AD CM SW LM CHI2
216 1,000 0.161 1,000 1,000 1,000 1,000 1,000 1,000 0.139 0.988
215 1,000 0.158 1,000 1,000 1,000 1,000 1,000 1,000 0.130 0.976
214 1,000 0.152 1,000 1,000 0.985 0.997 0.997 0.994 0.118 0.891
213 0.997 0.224 0.997 0.997 0.897 0.979 0.961 0.970 0.152 0.758
212 0.970 0.200 0.961 0.955 0.633 0.812 0.758 0.858 0.161 0.497
211 0.827 0.218 0.797 0.773 0.379 0.567 0.512 0.733 0.155 0.397
210 0.558 0.185 0.518 0.494 0.245 0.327 0.291 0.482 0.142 0.324

 

By comparing Tables 8.9 to 8.16, it is easy to arrange the different normality 

tests according to their RFI detection ratio, with a fixed Pfa, sample size, and frequency 

band. As it can be seen in the previous tables, the RFI detection ratio of every normality 

test increases with the sample size and the Pfa (if the contribution of false alarms, equal 

to the Pfa value, is excluded), except for the Skewness and Lin-Mudholkar tests, which 

do not work properly for RFI detection on the four different bands. On the other hand, 

the Kurtosis test and the kurtosis-based tests (Jarque-Bera and K-squared tests) are the 

ones that perform better, but as the Skewness test is not suitable to detect RFI, Kurtosis 

test work better than the kurtosis-based tests. The ECDF based tests perform similarly, 

being the two best of this kind the Shapiro-Wilk test for low number of samples (212 or 

lower) and both the Shapiro-Wilk and the Anderson-Darling tests for a large number of 
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samples (213 or higher). Finally, the Chi square test performs properly, but with worse 

performance than the Kurtosis-based tests and the ECDF-based tests. 

 

An important conclusion that can be extracted from the Tables 8.9, 8.11, 8.13, 

and 8.15 is that when Pfa is increased from 0.01 to 0.05 or from 0.05 to 0.1 the RFI 

detection ratio increases almost the same value as the Pfa increases, thus, the main part 

of the RFI is detected with a Pfa of 0.01, and an increase of Pfa just translates into an 

increase of the false alarms without increasing substantially the detected RFI’s. With 

this information it can be concluded that a reasonable good Pfa value for the normality 

tests with these measurements is Pfa = 0.01, in order to minimize the false alarm rate, 

and keeping a good compromise with the probability of RFI detection. However, if a 

high probability of RFI detection is mandatory, high Pfa values must be used, as it will 

be better to have lesser data that RFI contaminated data. 

  

Also, it is observed that as the number of samples increases, the RFI detection 

ratio also increases, due to the fact that the normality tests become more accurate with 

longer data sets, as explained in Chapter 4 Section 4.3. However, in case that the RFI is 

present only in a few samples (an impulsive RFI); a higher number of samples will only 

lead to an elimination of a higher number of RFI-free samples. Moreover, a false alarm 

will lead to discard a longer data set. 

 

As it is observed, at L- and S-bands the probability of being affected by RFI is 

quite high while at X-band, detected RFI the probability of RFI detection is lower, and 

in the GPS L1 band, RFI is present in the whole measured spectrum. 

  

The problem of RFI detection with normality tests is that if RFI is detected, the 

whole measurement must be discarded. This situation will leave a lower part of the 

radiometric data as valid. In order to see the RFI detection more precisely, these 

measurements can be performed separatedly in different sub-bands.  

 

Tables from 8.17 to 8.20 show the RFI detection on a radiometric measurement 

for the different normality tests separated in sub-bands, for a Pfa = 0.01, and a number of 

samples of N = 216, for the L-, S-, X-, and GPS L1 bands. In these tables, the value of 1 

represents that the normality test has detected a RFI in any of the in phase or quadrature 
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components, and a 0 represents that the normality test has not detected any RFI. This 

way, only the contaminated sub-bands are discarded, and the remaining radiometric 

signal can be used as an RFI-free measurement. 

 

For the different measurement bands, the bandwidth of the sub-bands 

corresponds to the sampling frequency, according to Nyquist, so, the L-band, S-band 

and X-band sub-bands have a bandwidth of 2 MHz, and the GPS L1 band sub-bands a 

bandwidth of 0.5 MHz. 

 
Table 8.17: Normality test RFI detection results in the L-band divided in 2 MHz sub-bands, with 

sample size of 216 and Pfa = 0.01 (RBW = 10 MHz, fs = 2 MHz). 

1400 MHz +   
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

K 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

JB 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 
K2 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 
L 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 

AD 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 
CM 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 
SW 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 
LM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CHI2 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 
 

 As it can be seen in Table 8.17, Kurtosis and kurtosis-based tests detect RFI in 

the same sub-bands; ECDF tests also detect practically on the same sub-bands, but 

slightly different from kurtosis based tests. In fact, an RFI is detected by the four ECDF 

based tests (low probability of false alarm) in the 1400 MHz sub-band (left column 

Table 8.17), while it is not detected by the kurtosis-based tests; On the other hand, 

kurtosis-based tests detect RFI in the 1418, 1420 and 1422 MHz bands while ECDF 

based tests do not clearly detect RFI in these bands, therefore both normality-tests 

groups complement themselves. Surprisingly chi-square test has a poor performance as 

it detects only a part of the cases detected by the other normality tests, and Skewness 

and Lin-Mudholkar test do not work at all with these parameters (all elements in the 

row are zero).  

 

 The main conclusion that can be obtained from Table 8.17 is that the best chance 

to detect RFI with the normality tests is by combining the Kurtosis test (the 
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kurtosis-based test which performs better), with one of the ECDF based tests, e.g. the 

Anderson-Darling test (however all four perform similarly). This way, the sub-band in 

which both tests are satisfied is accepted. Therefore, RFI that cannot be detected by the 

Kurtosis test, will be detected by the other one (e.g. the case of the 1400 MHz sub-

band). 

 

 In order to have more results of the normality tests in other measurement bands, 

S-band radiometric data has been tested with the same parameters as the L-band. 

Results of this test can be observed in Table 8.18, in which the kurtosis-based tests and 

the ECDF-based tests have the same performance for this case, this is due to the fact 

that the RFI has a high power compared to the radiometric signal’s power.  

 
Table 8.18: Normality test RFI detection results in the S-band divided in 2 MHz sub-bands, with sample 

size of 216 and Pfa = 0.01 (RBW = 10 MHz, fs = 2 MHz). 

2686 MHz +   
0 2 4 6 8 10 12 14 16 18 20 

K 0 1 1 1 1 1 1 1 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 0 

JB 0 1 1 1 1 1 1 1 0 0 0 
K2 0 1 1 1 1 1 1 1 0 0 0 
L 0 1 1 1 1 1 1 1 0 0 0 

AD 0 1 1 1 1 1 1 1 0 0 0 
CM 0 1 1 1 1 1 1 1 0 0 0 
SW 0 1 1 1 1 1 1 1 0 0 0 
LM 0 0 0 0 0 0 0 0 0 0 0 

CHI2 0 1 1 1 1 1 1 1 0 0 0 
 

 The number of samples used to detect RFI in the S-band radiometric data is 

changed to 213 samples, in order to decrease the Pdet for all the normality tests to a level 

which only the best normality tests will detect the RFI. Results of this new test can be 

observed in Table 8.19. These results confirm the results obtained in Table 8.17, where 

kurtosis-based tests detect RFI with more probability than the rest of the tests, and best 

ECDF based test is SW. L test has a lower probability of detection for this low 

probability of false alarm (Pfa = 0.01), as L test tends to be more sensitive near the 

center of the distribution not in the tails, as AD and CM test are more sensitive in the 

tails, they perform better than the L test (see Chapter 4, Sections 4.1.5, 4.1.6 and 4.1.8). 
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Table 8.19: Normality test RFI detection results in the S-band divided in 2 MHz sub-bands, with sample 
size of 213 and Pfa = 0.01 (RBW = 10 MHz, fs = 2 MHz). 

2686 MHz +   
0 2 4 6 8 10 12 14 16 18 20 

K 0 1 1 1 1 1 1 1 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 0 

JB 0 1 1 1 1 1 1 1 0 0 0 
K2 0 1 1 1 1 1 1 1 0 0 0 
L 0 0 0 1 0 1 0 1 0 0 0 

AD 0 0 1 1 1 1 1 1 0 0 0 
CM 0 0 1 1 1 1 1 1 0 0 0 
SW 0 1 1 1 1 1 1 1 0 0 0 
LM 0 0 0 0 0 0 0 0 0 0 0 

CHI2 0 0 0 0 0 1 0 1 0 0 0 
 

X-band RFI measurements have also acquired. In this case, with the initial 

values of sample size of 216 and Pfa = 0.01 fewer detected RFI are obtained as compared 

to the case of sample size of 216 and Pfa = 0.1. Results of the normality tests for both 

cases are shown in Tables 8.20 and 8.21. For the X-band measurements, RFI is best 

detected with higher Pfa values because of the reduced power of the RFI present in this 

band, as it can be observed in the spectrograms of the 2nd, 8th and 14th sub-bands shown 

in Fig. 8.3. Although it seems that any RFI is present in these three sub-bands, applying 

the FIAT algorithm (a spectrogram based algorithm explained in Chapter 5 Section 

5.2.4) shows that the error in the retrieved brightness temperature is higher than in the 

RFI-free case. Comparing Figs. 8.3 and 8.4 where spectrograms of three sub-bands 

from X-band (Fig. 8.3) and L-band (Fig. 8.4) measurements are presented; low RFI 

power in the X-band case is obvious (RFI in the L-band case is easily “seen” while in 

the X-band case not); hence, a higher Pfa value is needed to detect RFI with normality 

tests for the X-band than for the L-band.  
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Table 8.20: Normality test RFI detection results in the X-band divided in 2 MHz sub-bands, with 
sample size of 216 and Pfa = 0. 01 (RBW = 10 MHz, fs = 2 MHz). 2nd (16602 MHz), 8th (16614 MHz) and 

14th (16626 MHz) sub-bands are high-lighted. 

10660 MHz +   
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

K 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

JB 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
K2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
L 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

AD 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
CM 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
SW 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
LM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CHI2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
Table 8.21: Normality test RFI detection results in the X-band divided in 2 MHz sub-bands, with 

sample size of 216 and Pfa of 0. 1 (RBW = 10 MHz, fs = 2 MHz). 2nd (16602 MHz), 8th (16614 MHz) and 
14th (16626 MHz) sub-bands are high-lighted. 

10660 MHz +   
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

K 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 
S 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

JB 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 
K2 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 
L 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 

AD 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 
CM 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 
SW 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
LM 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

CHI2 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 
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Figure 8.3: Spectrograms of the a) 2nd (10.662 GHz), b) 8th (10.674 GHz) and, 
c) 14th (10.686 GHz) sub-bands of the X-band measurement. 

 

RFI measurements in the GPS L1 band have also taken in order to see if RFI 

could be detected in case of developing a radiometer in this band [87]. In Tables 8.15 

and 8.16 is obvious that RFI exists in the entire measured GPS L1 band, so using 

normality tests to eliminate RFI present in this bandwidth will be useless, as all the 

bandwidth would be eliminated. 

 

The fact that the normality tests based RFI detection algorithm eliminate a high 

amount of data, leads to a recommendation of combining these algorithms with 

spectrogram based algorithms. Even more, normality tests can fail to detect RFI 

compared to the spectrogram based algorithms as it can be seen in Fig. 8.4, where 

spectrograms of three 2 MHz sub-bands of the L-band centered at 1.4 GHz, 1.402 GHz 

and 1.412 GHz respectively are shown. For these three sub-bands, the Kurtosis based 

algorithms has failed to detect any RFI, and the ECDF based algorithms only have 

detected RFI in the sub-band centered at 1.4 GHz (Fig. 8.4a). However, the spectrogram 

analysis shows that there are RFI tones present in these sub-bands. 
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Figure 8.4: Spectrograms of the a)1st (1.400 GHz), b)2nd (1.402 GHz) and c)7th (1.412 GHz) sub-bands of 
the L-band measurement.  

 

In order to show the correct performance of the normality tests, if Pfa is increased 

from Pfa = 0.01 to Pfa = 0.05, the 2nd (1402 MHz) and 7th (1412 MHz) sub-bands appear 

to be detected at least by the Kurtosis, and by the ECDF based tests (AD test). Results 

are shown in Table 8.22.  

 
Table 8.22: Normality test RFI detection results in the L-band divided in 2 MHz sub-bands, with sample 
size of 216 and Pfa = 0.05 (RBW = 10 MHz, fs = 2 MHz). 2nd (1402 MHz) and 7th (1412 MHz) sub-bands 

are high-lighted. 

1400 MHz +   
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

K 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

JB 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 
K2 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 
L 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 

AD 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 
CM 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 
SW 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 
LM 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

CHI2 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 
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Consequently, these spectrogram-based algorithms must be studied. 

 

8.2.2 Spectrogram-based algorithms 
 

I/Q sampled data has been used to test the spectrogram-based algorithms, in the 

same way than the normality test based algorithms. However, at it has been commented 

on Section 8.1.2, spectrogram-based algorithms can be applied with power data instead 

of I/Q data. 

 

As it has been performed previously with the normality test based algorithms, 

the RFI free measurements have been obtained measuring directly to the reference load. 

 

8.2.2.1 Spectrogram-based algorithms with RFI-free radiometric 

data 
 

In the case of the Spectrogram-based RFI detection, Pfa can also be selected to 

reduce the false RFI detections thus avoiding a high clipping level in the PDF of the 

radiometric data. In this case, as Spectrogram-based algorithms treat the spectrogram of 

the signal as an image, only the contaminated pixels are flagged as RFI and eliminated, 

thus the quantity of radiometric data eliminated is much lower than in the normality 

tests based RFI detection. 

 

Regarding the Spectrogram analysis, the method to ensure that the algorithm is 

performing correctly in the absence of RFI is testing a RFI-free radiometric 

measurement applying a determined Pfa; hence if the number of pixels flagged as RFI 

(Pdet) is equal to this Pfa, the algorithm works properly. On the other hand, it is useful to 

calculate the retrieved antenna temperature (TA), before and after the application of the 

RFI algorithms in order to obtain the error produced by the pixel elimination in the 

retrieved TA in RFI free data. Therefore, configuration parameters of these algorithms 

must be selected in order to have a compromise between the TA error in absence of RFI 

and the elimination of the maximum number of RFI contaminated pixels. 
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The TA error should be lower than the desired radiometric resolution. The TA 

error of the different algorithms must be compared with the radiometric resolution of 

the MERITXELL radiometer in order to put it into scale.  

 

After a preliminary calibration of the MERITXELL radiometer, the radiometer 

temperature has been measured as TREC = 41 K with a reference load temperature of 

TREF = 301 K; thus, the radiometric resolution of this band when the radiometer works 

as an ADC with 65536 samples is defined as: 

L-band
301 41 1.34K

65536 65536
REF REC REF REC

s s

T T T TT
B f Tτ
+ + +

∆ = = = ≈  (8.1)

where fs is the sampling frequency of the ADC (which is equal to the ADC 

bandwidth) and Ts is the sampling period.  

 

The first algorithm to be tested is the Smoothing Algorithm. 

 

8.2.2.1.1 Smoothing Algorithm behaviour with RFI-free data 

 

After testing the Smoothing Algorithm the same RFI-free data as the normality 

tests, the RFI Pdet as a function of Pfa for the L-band are represented in Table 8.23. In 

this case the number of samples of the radiometric data is set to 216 in order to have a 

sufficiently large spectrogram, with a size of 512x509 pixels in our case of study. Each 

row in Table 8.23 represents the Pdet as a function of the Smoothing algorithm Pfa (Pfa|S) 

for a determined size of the bi-dimensional filter used to smooth the spectrogram (see 

Chapter 5, Section 5.2.1). These results have been obtained by the averaging of 500 

RFI-free measurements. 
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Table 8.23: Smoothing Algorithm performance (Pdet) on L-band RFI free radiometric data as a function 
of the Pfa|S and the 2-D filter size with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

 0.1 0.05 0.01 0.005 0.001 
1x1 0.1001 0.0501 0.0100 0.0050 0.0010 
3x3 0.0996 0.0498 0.0099 0.0050 0.0010 
5x5 0.0994 0.0497 0.0100 0.0050 0.0010 
7x7 0.0991 0.0496 0.0099 0.0050 0.0010 
9x9 0.0986 0.0493 0.0099 0.0049 0.0010 

11x11 0.0982 0.0491 0.0098 0.0049 0.0010 
13x13 0.0976 0.0488 0.0098 0.0049 0.0010 
15x15 0.0971 0.0486 0.0097 0.0049 0.0010 
17x17 0.0966 0.0483 0.0097 0.0049 0.0010 
19x19 0.0961 0.0480 0.0096 0.0048 0.0010 
21x21 0.0956 0.0477 0.0096 0.0048 0.0010 
23x23 0.0951 0.0475 0.0095 0.0048 0.0010 
25x25 0.0945 0.0472 0.0095 0.0048 0.0010 
27x27 0.0939 0.0469 0.0095 0.0048 0.0010 
29x29 0.0934 0.0467 0.0094 0.0048 0.0010 
31x31 0.0928 0.0464 0.0094 0.0048 0.0010 
33x33 0.0923 0.0461 0.0094 0.0048 0.0011 
35x35 0.0917 0.0459 0.0094 0.0048 0.0011 

 

 The Pdet observed in Table 8.23 is almost equal to the Pfa|S having a higher error 

value in case of enlarging the smoothing filter; which can be a result of the first 

approximation of the mean value of the RFI free power. However, the Smoothing 

Algorithm behaviour with RFI-free radiometric data can be considered quite acceptable. 

 

 The advantage of the Smoothing Algorithm is that, while Pdet remains almost 

constant for the different sizes of the smoothing filter, the error in the retrieved TA 

diminishes with the 2-D filter size of the smoothing algorithm, as it can be seen in the 

Table 8.24, where the error in the retrieved TA due to the radiometric data elimination is 

represented. The reason of this is all the pixels are averaged with the neighbouring 

pixels, therefore, some pixels with low power are flagged as RFI if neighbouring pixels 

have high power value; besides, some pixels with high power value will not be flagged 

avoiding a pronounced clipping of the PDF of the radiometric signal. 

 

Results of Table 8.24 are essential to select the suitable 2-D filter size and Pfa|S 

parameters of the RFI detection algorithm as this retrieved TA error will be always 

present in our measurements (as they are produced by false alarms), and this error must 

be selected taking into account our radiometric resolution objective. 
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Table 8.24: Error [K] in the retrieved TA produced by the application of the Smoothing algorithm on L-
band RFI free radiometric data, as a function of the Pfa|S and the 2-D filter size with sample size of 216 

samples (RBW = 10 MHz, fs = 2 MHz). 

 0.1 0.05 0.01 0.005 0.001 
1x1 89,40 55,14 16,29 9,34 2,42 
3x3 78,55 49,21 14,93 8,62 2,24 
5x5 63,84 39,95 12,29 7,14 1,91 
7x7 51,18 31,65 9,59 5,55 1,49 
9x9 41,70 25,48 7,55 4,35 1,15 

11x11 34,73 20,99 6,09 3,48 0,92 
13x13 29,50 17,67 5,04 2,87 0,75 
15x15 25,51 15,17 4,27 2,42 0,62 
17x17 22,39 13,23 3,67 2,07 0,53 
19x19 19,89 11,68 3,21 1,81 0,47 
21x21 17,84 10,42 2,85 1,60 0,41 
23x23 16,13 9,40 2,55 1,43 0,37 
25x25 14,70 8,54 2,30 1,29 0,34 
27x27 13,48 7,81 2,10 1,18 0,31 
29x29 12,43 7,19 1,93 1,08 0,29 
31x31 11,51 6,65 1,78 1,00 0,26 
33x33 10,71 6,18 1,66 0,93 0,25 
35x35 10,01 5,76 1,54 0,87 0,23 

 

8.2.2.1.2 FIAT Algorithm behaviour with RFI free data 

 

This algorithm is also tested with the same L-band RFI-free data as the 

Smoothing Algorithm, and also with the same number of samples (65536). The RFI Pdet 

as a function of the Pfa for the L-band is presented in Table 8.25, and the error in the 

retrieved TA due to the radiometric data elimination is presented in Table 8.26. In both 

Tables the FIAT algorithm performance (Table 8.25) and error (Table 8.26) are shown 

in the first row; while second and third rows show the performance and error of the 

independent frequency and time thresholding respectively (Section 5.2.4). 

 

Table 8.25 shows that the Pdet coincides with the FIAT algorithm Pfa (Pfa|FIAT) in 

the absence of RFI, thus proving that the FIAT algorithm works properly with RFI-free 

radiometric data. If Tables 8.24 and 8.26 are compared, it can be seen that the error in 

the retrieved TA in the FIAT algorithm is much smaller than the one in the Smoothing 

Algorithm. The reason is the FIAT algorithm is similar to the Smoothing Algorithm 

with a large 2-D filter size (but with time and frequency intervals); hence, segments 
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eliminated contain mixed high and low power values, avoiding a hard clipping of the 

Gaussian noise PDF. This clipping would lead to a decrease in the mean retrieved TA 

value, and therefore an increase in the retrieved TA error. 

 
Table 8.25: FIAT Algorithm performance (Pdet) on L-band RFI free radiometric data as a function of the 

Pfa|FIAT with sample size of 216 samples (RBW = 10 MHz, fs = 2 MHz). 

 0.1 0.05 0.01 0.005 0.001 
Combined Frequency and  

Time thresholding (FIAT) Pdet 
0.1093 0.0589 0.0142 0.0078 0.0021 

Frequency thresholding Pdet 0.0567 0.0301 0.0072 0.0040 0.0011 
Time thresholding Pdet 0.0558 0.0297 0.0070 0.0039 0.0010 

 
Table 8.26: Error in the retrieved TA produced by the application of the FIAT algorithm on L-band RFI 

free radiometric data, as a function of the Pfa|FIAT with sample size of 216 samples (RBW = 10 MHz, 
fs = 2 MHz). 

 0.1 0.05 0.01 0.005 0.001 
Combined Frequency and  

Time thresholding (FIAT) [K] 5,29 3,12 0,90 0,53 0,16 

Frequency thresholding [K] 2,70 1,58 0,46 0,27 0,08 
Time thresholding [K] 2,64 1,55 0,44 0,26 0,08 

 

8.2.2.1.3 Combined Smoothing and FIAT algorithms behaviour with 

RFI-free data 

 

As stated in Chapter 5, the combination of both the FIAT and the Smoothing 

algorithms gives a better performance than these algorithms separated, so the same data 

used in the previous cases has been tested with both combined algorithms, and Pdet and 

the error in the retrieved TA for this case are presented in Tables 8.27 and 8.28.  

 

In this case, the 2-D filter size of the Smoothing algorithm is presented only for 

four values due to the fact of the high quantity of obtained data, constructing a Table 

with four separated quadrants to represent it. Table 8.27 represents the Pdet after 

applying to the RFI free data the Smoothing Algorithm and the FIAT Algorithm; hence, 

the Pdet depends on three parameters, the 2-D filter size, which is represented in the 

upper-left part of every quadrant, the Pfa|S (columns in each quadrant), and the Pfa|FIAT 

(rows in each quadrant). 
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 It can be noted that after applying two different algorithms, the Pdet is not equal 

to any of the two Pfa‘s as in the two algorithms applied separately, because both 

algorithms eliminate different data, hence after the Smoothing algorithm RFI detection 

and elimination, the FIAT algorithm will present a lower rate of RFI detection. 

 
Table 8.27: Combined performance of the Smoothing Algorithm and the FIAT Algorithm (Pdet) on L-band 

RFI free radiometric data as a function of the Pfa of the Smoothing Algorithm (columns), the Pfa of the 
FIAT Algorithm (rows) and size of the 2-D filter with sample size of 216 samples (RBW = 10 MHz, 

fs = 2 MHz). 

Pfa|S Pfa|S 1x1 0.1 0.05 0.01 0.005 0.001 5x5 0.1 0.05 0.01 0.005 0.001
0.1 0,1008 0,0597 0,0679 0,0799 0,0982 0.1 0,1120 0,0766 0,0799 0,0871 0,1007
0.05 0,1001 0,0521 0,0344 0,0394 0,0507 0.05 0,1048 0,0592 0,0413 0,0447 0,0527
0.01 0,1001 0,0501 0,0132 0,0109 0,0118 0.01 0,1012 0,0509 0,0149 0,0124 0,0124
0.005 0,1001 0,0501 0,0114 0,0077 0,0066 0.005 0,1006 0,0503 0,0124 0,0087 0,0070P f

a|
FI

A
T
 

0.001 0,1001 0,0501 0,0102 0,0056 0,0024
P f

a|
FI

A
T
 

0.001 0,0999 0,0499 0,0104 0,0058 0,0024

Pfa|S Pfa|S 15x15 0.1 0.05 0.01 0.005 0.001 31x31 0.1 0.05 0.01 0.005 0.001
0.1 0,1444 0,1133 0,1023 0,1037 0,1068 0.1 0,1607 0,1290 0,1100 0,1088 0,1088

0.05 0,1176 0,0777 0,0566 0,0562 0,0575 0.05 0,1254 0,0870 0,0621 0,0600 0,0589

0.01 0,1008 0,0537 0,0196 0,0161 0,0142 0.01 0,0992 0,0548 0,0215 0,0176 0,0148

0.005 0,0991 0,0510 0,0148 0,0108 0,0081 0.005 0,0960 0,0505 0,0157 0,0116 0,0085P f
a|

FI
A

T
 

0.001 0,0977 0,0491 0,0109 0,0063 0,0028

P f
a|

FI
A

T
 

0.001 0,0935 0,0474 0,0110 0,0065 0,0030

 
Table 8.28: Total error [K] in the retrieved TA produced by the application of the Smoothing Algorithm 
and the FIAT Algorithm on L-band RFI free radiometric data as a function of the Pfa of the Smoothing 
Algorithm (columns), the Pfa of the FIAT Algorithm (rows) and size of the 2-D filter with sample size of 

216 samples (RBW = 10 MHz, fs = 2 MHz). 

Pfa|S Pfa|S 1x1 0.1 0.05 0.01 0.005 0.001 5x5 0.1 0.05 0.01 0.005 0.001
0.1 89,43 55,56 18,89 12,78 7,04 0.1 64,52 41,21 15,51 10,97 6,67 
0.05 89,40 55,24 17,52 11,09 5,01 0.05 64,18 40,46 13,89 9,18 4,61 
0.01 89,40 55,14 16,48 9,71 3,10 0.01 63,98 40,03 12,60 7,61 2,63 
0.005 89,40 55,14 16,38 9,52 2,80 0.005 63,94 40,00 12,46 7,39 2,32 P f

a|
FI

A
T
 

0.001 89,40 55,14 16,30 9,38 2,53 

P f
a|

FI
A

T
 

0.001 63,89 39,97 12,32 7,20 2,02 

Pfa|S Pfa|S 15x15 0.1 0.05 0.01 0.005 0.001 31x31 0.1 0.05 0.01 0.005 0.001
0.1 28,05 18,39 8,71 7,16 5,74 0.1 16,50 11,77 7,23 6,55 5,93 

0.05 26,74 16,79 6,74 5,12 3,61 0.05 14,59 9,68 4,97 4,26 3,59 

0.01 25,78 15,52 4,90 3,13 1,46 0.01 12,96 7,81 2,77 1,97 1,23 

0.005 25,66 15,35 4,61 2,82 1,11 0.005 12,72 7,52 2,40 1,59 0,84 P f
a|

FI
A

T
 

0.001 25,56 15,22 4,36 2,53 0,77 

P f
a|

FI
A

T
 

0.001 12,51 7,28 2,06 1,23 0,45 
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Table 8.28 represents the error in the retrieved TA due to the radiometric data 

elimination; and in this table is more clear how to tune the three different parameters in 

order to have an acceptable error in the radiometric measurements in a RFI-free 

situation. As in the Smoothing Algorithm alone case, configuration parameters must be 

selected as the TA error is lower than our radiometric resolution goal. 

 

The Pdet parameter represented in Tables 8.23, 8.25 and 8.27 also gives 

information on the fraction of the signal that is eliminated, thus losing radiometric data 

and decreasing the radiometric resolution; following the eq. (5.17) defined in Chapter 5. 

Therefore, the Pdet parameter must be taken into account as the error in the retrieved TA.  

 

8.2.2.2 Spectrogram-based algorithms with contaminated data 

 

The same algorithms tested with RFI free data in the previous section will be 

used with real radiometric data with RFI present on it. This way, the sampled data 

segments have a size of 65536 samples, obtaining a spectrogram with a size of 512x509 

pixels (equivalent to an overlapping of 75% in the STFT calculation) 

 

The L-band radiometric measurements used with the normality tests-based 

algorithms have been used with the spectrogram-based algorithms. However, measured 

antenna TA in the absence of RFI has a higher value than the matched load TA, 

(approximately TA = 327 K for a Tmatched load = 301 K) probably due to the fact that the 

measurements have been performed in the UPC Remote Sensing Laboratory (RSLab) 

and there is RFI coming from the surroundings. 

 

The L-band data is separated in sub-bands some of them are highly RFI 

contaminated, some of them are slightly RFI contaminated and a few ones are not RFI 

contaminated at all. One radiometric measurement of each of these three cases will be 

studied in order to study the algorithms performance. 

 

First of all the Pfa|S, the 2-D filter size and the Pfa|FIAT parameters must be 

selected, as these parameters characterize the error value produced by false alarm 

detections. In this work, a maximum error value in the absence of RFI is considered to 
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be 5 K, thus the values selected for the three different parameters are: 2-D filter size = 

15x15, Pfa|S = 0.01 and Pfa|FIAT = 0.01 (Table 8.28). The maximum error in absence of 

RFI corresponds to the combined Smoothing and FIAT algorithms, while both 

algorithms working separately will have lower error value (4.3 K for the Smoothing 

algorithm and 0.9 K for the FIAT algorithm, as shown in Tables 8.24 and 8.26 

respectively). 

 

8.2.2.2.1 Spectrogram-based algorithms behaviour with low RFI 

contaminated radiometric data 

 

The selected low RFI contaminated sub-band has the centre frequency equal to 

1.408 GHz. Normality tests applied to this sub-band failed to detect any RFI, as it can 

be seen in the 5th column of the Table 8.17 which corresponds to the sub-band centred 

around 1.408 GHz. In addition, a quick examination of this sub-band spectrogram (Fig. 

8.5a) does not reveal any RFI present in this radiometric data. However, if an average is 

applied to the Spectrogram’s rows (to obtain a frequency domain average vector) and 

columns (to obtain a time domain average vector), it can be easier to “see” the RFI in a 

figure, as it can be seen in Figs. 8.5b (average of the rows to obtain only one frequency 

column) and 8.5c (average of the columns to obtain only one time row), where a tone 

1.5 dB above the noise can be observed. 

 

 

 

 

 

 



RFI detection algorithms applied to radiometric data 
 

 189

Time [ms]

Fr
eq

ue
nc

y 
[M

H
z]

 

 

0 5 10 15 20 25 30

1407

1407.5

1408

1408.5

1409

-90

-80

-70

-60

-50

-40

-30

 
a) 

1407 1407.5 1408 1408.5 1409
-43

-42

-41

-40

-39

Po
w

er
 [d

B
m

]

Frequency [MHz]
0 10 20 30

-42.5

-42

-41.5

-41

-40.5

Po
w

er
 [d

B
m

]

Time [ms]
b) c) 

Figure 8.5: Data of the 5th sub-band of the L-band measurement (1.408 GHz) before application of the 
RFI algorithms, RBW = 10MHz. a) Spectrogram of the data, formed by 509 time points per 512 

frequency points. b) Frequency domain average data (512 points). c) Time domain average data (509 
points). 

 

First of all the Smoothing algorithm is tested, with the configuration parameters 

exposed in the previous section. In Fig. 8.6 is represented the result of the application of 

the Smoothing algorithm to the selected data. Figure 8.6a is equal to the Fig. 8.5a, and is 

included for comparison purposes with the Fig. 8.6b which corresponds to the previous 

spectrogram with the pixels marked after the application of the RFI detection algorithm 

(Smoothing algorithm in this case); Fig. 8.6c and 8.6e correspond to the average of the 

different frequency and time segments of the spectrogram before the application of the 

Smoothing algorithm (and also are equal to the Figs. 8.5b and 8.5c), and Figs. 8.6d and 

8.6f correspond to the average of the different frequency and time segments of the 

spectrogram after the application of the RFI detection algorithm (Smoothing algorithm). 

 



Chapter 8 
 

 190 

The randomly eliminated clusters of pixels observed in the Fig. 8.6b probably 

correspond to false alarms. After the application of the Smoothing algorithm, a tone 1.5 

dB over the noise power can be observed in both Figs. 8.6c and 8.6d, stating that the 

Smoothing algorithm has not been able to eliminate this tone, however, the algorithm 

has attenuated its power.  

 

In Table 8.29 the most important results of the application of the RFI detection 

algorithms to this data are presented. These results are the TA after the RFI detection 

algorithm application (final TA [K]), the difference between the TA initially measured by 

the antenna and the TA after the RFI detection algorithm application (initial TA − final TA 

[K]), the proportion of eliminated pixels of the spectrogram (flagged pixels [%]), and 

the proportion of increase in the radiometric resolution due to this pixel elimination (∆T 

increase [%]). 

 
Table 8.29: Most relevant results obtained after the RFI detection algorithms application to the 5th 
sub-band of the L-band measurement. The TA initially measured by the antenna is TA = 327.82 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

Smoothing 322.89 4.93 1.11 0.56 
FIAT 326.48 1.34 1.37 0.69 

Smoothing 
and FIAT 321.97 5.85 2.24 1.14 

 

As seen in Table 8.29, the error in the TA for the Smoothing algorithm is 4.93 K, 

similar to the error obtained with RFI free data (4.29 K). The worsening of the 

radiometric resolution is negligible. 
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Figure 8.6: Results of the application of the Smoothing Algorithm with the parameters Pfa|S = 0.01 and 
2-D filter size = 15 to the 5th sub-band of the L-band measurement, RBW = 10MHz. Data before the 

application of the Smoothing algorithm:  a) Spectrogram;, c) Frequency domain average data; e) Time 
domain average data.  Resulting data after the application of the Smoothing algorithm:  b) Spectrogram 
with flagged pixels detected as RFI; d) Frequency domain average data; f) Time domain average data. 

 

The next tested algorithm is the FIAT algorithm; in this case, the tone located at 

1.408 GHz has been detected and eliminated, in addition to other tones with a power 

higher to the mean power estimation. In Fig. 8.7 results obtained by the application of 

the FIAT algorithm are presented. This figure follows the same structure than the Fig. 

8.6, only substituting the Smoothing algorithm by the FIAT algorithm.  
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Figure 8.7: Results of the application of the FIAT Algorithm with the parameters Pfa|FIAT = 0.01 to the 5th 
sub-band of the L-band measurement, RBW = 10MHz. Data before the application of the FIAT 
algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  

Resulting data after the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected 
as RFI; d) Frequency domain average data; f) Time domain average data. 

 

In the FIAT algorithm case, the obtained TA error (1.34 K) is also very close to 

the error obtained with RFI free data (0.9 K). The increase in radiometric resolution is 

also negligible. 
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Finally, both algorithms are tested jointly, first the Smoothing algorithm and 

then the FIAT algorithm. The data presented in Fig. 8.8 corresponds to the original 

spectrogram before the RFI analysis (Fig. 8.8a), the spectrogram with marked pixels as 

RFI after the Smoothing algorithm application (Fig. 8.8b), and the spectrogram with 

marked pixels as RFI after the Smoothing and the FIAT algorithms application (Fig. 

8.8c). Following these three captions, Figs. 8.8d and 8.8g correspond to the average of 

the different frequency and time segments of the spectrogram before the application of 

both RFI detection algorithms; Figs. 8.8e and 8.6h correspond to the average of the 

different frequency and time segments of the spectrogram after the application of the 

Smoothing algorithm and Figs. 8.8f and 8.8i correspond to the average of the different 

frequency and time segments of the spectrogram after the application of the both 

Smoothing and FIAT algorithms. 

 

The 1.408 GHz tone has been eliminated, (Fig. 8.8f), but all the Smoothing 

algorithms false alarm spots are present (Figs. 8.8b and 8.8c). In the combined 

algorithms case, the TA error (5.85 K) is also close to the TA error obtained with RFI free 

data (4.9 K). Again, the radiometric resolution increase due to the pixel elimination is 

negligible. 
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Figure 8.8: Results of the application of the Smoothing and FIAT algorithms combined with the 
parameters Pfa|S = 0.01, 2-D filter size = 15 and Pfa|FIAT = 0.01 to the 5th sub-band of the L-band 

measurement, RBW = 10MHz. Data before the application of the Smoothing and FIAT algorithms:  
a) Spectrogram; d) Frequency domain average data; g) Time domain average data. Resulting data after 

the application of the Smoothing algorithm:  b) Spectrogram with flagged pixels detected as RFI; 
e) Frequency domain average data; h) Time domain average data. Resulting data after the application of 
the Smoothing and FIAT algorithms:  c) Spectrogram with flagged pixels detected as RFI; f) Frequency 

domain average data; i) Time domain average data. 
 

8.2.2.2.2 Spectrogram-based algorithms behaviour with medium RFI 

contaminated radiometric data 

 

For this section, the sub-band centred around 1.418 GHz (10th column) has been 

selected for the Kurtosis-based algorithms to detect RFI, although the ECDF based 

algorithms fail to detect it (Table 8.17), hence an spectrogram analysis can be useful. 

 

In this case, the spectrogram of this sub-band (Fig. 8.9a) shows some RFI 

present in the measurement, a tone at a frequency near 1.4175 GHz, and two pulsed 
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tones at 1.417 GHz and 1.419 GHz respectively. In Fig. 8.9b interferences can be 

observed more clearly. Figure 8.9 follows the same distribution as the Fig. 8.5. 

 

Table 8.30 presents the same values as the Table 8.29, but in this case with the 

10th sub-band of the L-band measurement, centered at 1.418 GHz. 

 
Table 8.30: Most relevant results obtained after the RFI detection algorithms application to the 10th 

sub-band of the L-band measurement. The TA initially measured by the antenna is TA = 390.75 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

Smoothing 358.8 31.95 4.92 2.55 
FIAT 358.2 32.55 6.6 3.47 

Smoothing 
and FIAT 353.77 36.98 8.41 4.49 

 

Analysing the Table 8.30, the FIAT algorithm flags a higher proportion of pixels 

than the Smoothing algorithm may be due to the complete elimination of the tones as it 

can be observed in Fig. 8.11d. On the other hand, while, the retrieved final TA is equal 

for both algorithms, but lower in the combined case that may be due to the sum of false 

alarms of both algorithms which are different as it can be seen in Figs. 8.10b, 8.11b and 

8.12c.  
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Figure 8.9: Data of the 10th sub-band of the L-band measurement (1.418 GHz) before application of the 
RFI algorithms, RBW = 10MHz. a) Spectrogram of the data, formed by 509 time points per 512 

frequency points. b) Frequency domain average data (512 points). c) Time domain average data (509 
points). 

 

First the Smoothing algorithm is applied, with the same configuration 

parameters as in the previous case. In this case the Smoothing algorithm detects several 

of these tones and pulsed tones, however, in Fig. 8.10d several undetected tones can still 

be observed. 
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Figure 8.10: Results of the application of the Smoothing Algorithm with the parameters Pfa|S = 0.01 and 
2-D filter size = 15 to the 10th sub-band of the L-band measurement, RBW = 10MHz. Data before the 

application of the Smoothing algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time 
domain average data.  Resulting data after the application of the Smoothing algorithm:  b) Spectrogram 
with flagged pixels detected as RFI; d) Frequency domain average data; f) Time domain average data. 

 

The application of the FIAT algorithm shows a better detection of the tones, 

however, the drawback is that the frequencies where the pulsed tones are located, are 

completely flagged. 
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Figure 8.11: Results of the application of the FIAT Algorithm with the parameters Pfa|FIAT = 0.01 to the 
10th sub-band of the L-band measurement, RBW = 10MHz. Data before the application of the FIAT 

algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected 

as RFI; d) Frequency domain average data; f) Time domain average data. 
 

The combination of both algorithms seem to share good points of both 

algorithms as all the tones have been flagged (Fig. 8.12f), and frequencies with pulsed 

tones have not completely eliminated (Fig. 8.12c). 
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Figure 8.12: Results of the application of the Smoothing and FIAT algorithms combined with the 
parameters Pfa|S = 0.01, 2-D filter size = 15 and Pfa|FIAT = 0.01 to the 10th sub-band of the L-band 

measurement, RBW = 10MHz. Data before the application of the Smoothing and FIAT algorithms:  
a) Spectrogram; d) Frequency domain average data; g) Time domain average data. Resulting data after 

the application of the Smoothing algorithm:  b) Spectrogram with flagged pixels detected as RFI; 
e) Frequency domain average data; h) Time domain average data. Resulting data after the application of 
the Smoothing and FIAT algorithms:  c) Spectrogram with flagged pixels detected as RFI; f) Frequency 

domain average data; i) Time domain average data. 
 

8.2.2.2.3 Spectrogram-based algorithms behaviour with high RFI 

contaminated radiometric data 

 

Sub-bands with high RFI values can have a large part of the time-frequency 

domain contaminated (Fig. 8.13a). In this case, the 3rd sub-band of the L-band (Table 

8.17) with a centre frequency of 1.404 GHz has an important RFI component 

concentrated between 1.4035 and 1.404 GHz (Fig. 8.13a and 8.13b), in addition, RFI 

varies in time (Fig. 8.13c) having more power during the first 30 ms. 
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Table 8.31: Most relevant results obtained after the RFI detection algorithms application to the 3rd 
sub-band of the L-band measurement. The TA initially measured by the antenna is TA = 799.05 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

Smoothing 392.56 406.49 24.09 14.78 
FIAT 383.51 415.54 27.33 17.31 

Smoothing 
and FIAT 380.66 418.39 28.19 18.01 
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Figure 8.13: Data of the 3rd sub-band of the L-band measurement (1.404 GHz) before application of the 
RFI algorithms, RBW = 10MHz. a) Spectrogram of the data, formed by 509 time points per 512 

frequency points. b) Frequency domain average data (512 points). c) Time domain average data (509 
points). 

 

The application of the two RFI detection algorithms (Smoothing and FIAT), 

separately and jointly, has not provided very good results, as still some residual RFI has 

not been eliminated from the data (Figs. 8.14, 8.15 and 8.16). This is specially present 

in the frequency domain representations (Figs. 8.14d, 8.15d and 8.16f). Table 8.31 

presents the same data as the Tables presented in the previous sections. However, as the 

RFI detection algorithms seem not to perform correctly, it would be better to slightly 
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change the design of the RFI detection algorithms and apply them on the highly RFI 

contaminated data again in order to have better results. 
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Figure 8.14: Results of the application of the Smoothing Algorithm with the parameters Pfa|S = 0.01 and 
2-D filter size = 15 to the 3rd sub-band of the L-band measurement, RBW = 10MHz. Data before the 

application of the Smoothing algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time 
domain average data.  Resulting data after the application of the Smoothing algorithm:  b) Spectrogram 
with flagged pixels detected as RFI; d) Frequency domain average data; f) Time domain average data. 
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Figure 8.15: Results of the application of the FIAT Algorithm with the parameters Pfa|FIAT = 0.01 to the 
3rd sub-band of the L-band measurement, RBW = 10MHz. Data before the application of the FIAT 

algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected 

as RFI; d) Frequency domain average data; f) Time domain average data. 
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Figure 8.16: Results of the application of the Smoothing and FIAT algorithms combined with the 
parameters Pfa|S = 0.01, 2-D filter size = 15 and Pfa|FIAT = 0.01 to the 3rd sub-band of the L-band 

measurement, RBW = 10MHz. Data before the application of the Smoothing and FIAT algorithms:  
a) Spectrogram; d) Frequency domain average data; g) Time domain average data. Resulting data after 

the application of the Smoothing algorithm:  b) Spectrogram with flagged pixels detected as RFI; 
e) Frequency domain average data; h) Time domain average data. Resulting data after the application of 
the Smoothing and FIAT algorithms:  c) Spectrogram with flagged pixels detected as RFI; f) Frequency 

domain average data; i) Time domain average data. 
 

With all these data it can be stated that the Smoothing algorithms seem not to 

work properly in case of a high level of RFI contamination. Then, something in the 

algorithms is not performing correctly. The most important issue is the approximation 

of the standard deviation of the noise power, which is strongly contaminated by RFI. 

The way to approximate it has been the elimination of the 25% of the pixels with higher 

values (in a similar way as in [25]), assuming that the RFI will not affect to the rest of 

the 75% of the pixels, which is not the case when RFI is strong. 

 

8.2.2.2.4 Improvements of the Spectrogram-based algorithms for large RFI 

contaminated radiometric data 
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In order to address the problem, a recurrent algorithm has been developed. First, 

the approximated standard deviation is approximated by the average in the absence of 

RFI, as the noise power follows an exponential distribution, thus the approximated 

mean of the noise power is calculated and taken as the approximated standard deviation. 

This standard deviation is used to calculate the thresholds used in the RFI detection 

algorithms. This standard deviation will be larger than in the RFI-free case, but will be 

enough to detect the most RFI contaminated pixels.  

 

After these pixels have been detected, the mean is computed again not taking 

them into account, obtaining a lower value which is used as the new threshold. RFI 

detection algorithms are applied to the original data, increasing the performance as more 

RFI contaminated pixels are flagged, thus being able to calculate a more accurate RFI 

free mean/standard deviation value. This process is stopped when difference between 

the ith and the (i−1)th computed mean have a difference in the brightness temperature 

value lower than a predefined threshold, for example, 1 K. This iterative process can 

increase the TA error produced by false alarms, but for the Pfa value of 0.01 this increase 

has been found to be negligible. This increase is equal to 20% for Pfa = 0.05. 

 

In addition to this recurrent design in both algorithms (and in the combined 

version), it has been decided to use a 2-D filter size of 31x31 pixels, thus eliminating 

more pixels, but achieving a better performance. The other two parameters Pfa|S and 

Pfa|FIAT have not been changed. This way, the error in the retrieved TA for the Smoothing 

algorithm decreases to 1.78 K, and in the combined case, error in the retrieved TA 

decreases to 2.77 K (almost equal to the sum of errors of both RFI detection 

algorithms). Hence, the modified Smoothing and FIAT algorithms are applied to the 

same segment of data belonging to the 3rd sub-band of the L-band, at 1.404 GHz. 
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Figure 8.17: Results of the application of the iterative Smoothing Algorithm with the parameters Pfa|S = 
0.01 and 2-D filter size = 31 to the 3rd sub-band of the L-band measurement, RBW = 10MHz. Data before 

the application of the Smoothing algorithm:  a) Spectrogram; c) Frequency domain average data; 
e) Time domain average data.  Resulting data after the application of the last iteration of the Smoothing 

algorithm:  b) Spectrogram with flagged pixels detected as RFI; d) Frequency domain average data; 
f) Time domain average data. 
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Figure 8.18: Results of the application of the iterative FIAT Algorithm with the parameters Pfa|FIAT = 0.01 
to the 3rd sub-band of the L-band measurement, RBW = 10MHz. Data before the application of the FIAT 

algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after application of the last iteration of the FIAT algorithm:  b) Spectrogram with flagged 

pixels detected as RFI; d) Frequency domain average data; f) Time domain average data. 
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Figure 8.19: Results of the application of the iterative Smoothing and FIAT algorithms combined with the 

parameters Pfa|S = 0.01, 2-D filter size = 31 and Pfa|FIAT = 0.01 to the 3rd sub-band of the L-band 
measurement, RBW = 10MHz. Data before the application of the Smoothing and FIAT algorithms:  

a) Spectrogram; d) Frequency domain average data; g) Time domain average data. Resulting data after 
the application of the last iteration of the Smoothing algorithm:  b) Spectrogram with flagged pixels 

detected as RFI; e) Frequency domain average data; h) Time domain average data. Resulting data after 
the application of the last iteration of the Smoothing and FIAT algorithm:  c) Spectrogram with flagged 

pixels detected as RFI; f) Frequency domain average data; i) Time domain average data. 
 

Figures 8.17 to 8.19 represent the results obtained by the application of this 

enhanced algorithms, and Table 8.32 presents the same data as Table, 8.31 but using the 

enhanced algorithms, in order to compare the Smoothing and FIAT algorithms, 

combined and their iterative versions. 

 
Table 8.32: Most relevant results obtained after the iterative RFI detection algorithms application to the 

3rd sub-band of the L-band measurement. The TA initially measured by the antenna is TA = 799.05 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

Smoothing 369.06 429.99 34.67 23.72 
FIAT 369.80 429.25 35.35 24.66 

Smoothing 
and FIAT 365.19 433.86 36.64 25.63 
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Comparing the data presented in Table 8.32 with the data presented in Table 

8.31, it can be observed that the Smoothing algorithm performs similar to the FIAT 

algorithm with the enhancement described, which is not the case for the original 

Smoothing algorithm that had a higher retrieved TA value. In both Tables, the combined 

algorithms have a lower retrieved TA value, but most probably due to the sum of false 

alarms. The proportion of flagged pixels is obviously higher in all cases of Table 8.32 

than the same cases of Table 8.31, as a more accurate and lower approximated mean 

power has been obtained, flagging more pixels. However, the difference in the 

radiometric resolution increase is around a 10%, which is acceptable if a more accurate 

TA is obtained. 

 

It can be seen that with the recurrence of the RFI detection algorithms, the RFI 

present in the frequency responses of the results of the three different RFI detection 

algorithms seems to be completely eliminated. However, the resulting TA has a very 

high value in the three cases (Table 8.32). With the observation of the retrieved TA 

(Table 8.32) it can be stated that both Smoothing and FIAT algorithms have a similar 

behaviour, thus it will be better to use to simplest one (FIAT algorithm) in order to 

implement it in future hardware developments. In order to compare the results of the 

three algorithms, the retrieved TA after the algorithm application and the received TA 

before the algorithm application of the three different algorithms are presented in Table 

8.33, for the 14 different 2MHz sub-bands that compose the radiometric L-band. In this 

table, results of the three algorithms are quite similar except in bands from 1420 to 1424 

GHz, which is due to several tones present in these sub-bands (Fig. 8.20), tones that the 

Smoothing algorithm is not able to detect. 
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Table 8.33: Brightness temperature values before and after the application of the three RFI detection 
algorithms for all the protected L-band, separated in 2 MHz wide sub-bands. 

Center 
Frequency 

[GHz] 

Original 
TA [K] 

TA after 
Smoothing 

algorithm [K] 

TA after FIAT 
algorithm [K] 

TA after Smoothing 
and FIAT algorithms 

combined [K] 
1400 1230.33 432.56 417.1 414.73 
1402 364.38 351.2 350.86 346.76 
1404 799.05 369.06 369.8 365.19 
1406 392.83 329.51 329.99 328.75 
1408 331.98 329.67 330.27 327.88 
1410 345.5 342.86 342.6 340.39 
1412 382.38 352.9 349.53 350.62 
1414 374.68 372.18 370.69 369.3 
1416 979.24 379.81 380.1 377.01 
1418 388.82 356.61 355.19 348.85 
1420 661.13 404.84 357 323.64 
1422 410.75 407.49 360.5 312.75 
1424 620.32 414.4 385.64 368.8 
1426 475.82 392.89 392.71 387.62 
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Figure 8.20: Spectrograms analysis to the 13th sub-band of the protected L-band centered at 1.424 GHz. 

a) Original spectrogram; b) Spectrogram with flagged pixels after the application of the iterative 
Smoothing algorithm; c) Spectrogram with flagged pixels the after application of the iterative FIAT 

algorithm; d) Spectrogram with flagged pixels after the application of the iterative Smoothing and FIAT 
algorithms combined. 
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The advantage that the three recurrent algorithms have is that it is not necessary 

to sort all the samples of the data to calculate the approximated mean with the 75% 

samples with lower value. Sorting is a very complicated algorithm to develop in real 

time processing. 

 

8.3 RFI detection algorithms with the power 

spectrograms 
 

As in the case of the ADC data, RFI-free radiometric data must be first tested to 

ensure that the RFI detection algorithms perform correctly, i.e. the probability of false 

alarm is equal to the probability of detection RFI-free conditions. Thus, RFI-free 

thermal noise from a matched load is first measured and tested. 

 

A fact that must be taken into account is that the two algorithms developed for 

the Spectrum Analyzer data are Spectrogram based, as the data is directly acquired as a 

power value. 

 

In order to eliminate possible distortion effects introduced by the frequency 

response of the radiometer, a matched load has been measured to equalize the 

radiometer’s frequency response. 

 

The advantage of using the data obtained from the Spectrum Analyzer instead of 

the ADC sampled data is that the time duration of the spectrogram can be much longer, 

and the measured bandwidth can be increased. The drawback of increasing the 

bandwidth is the smaller spectrogram’s frequency resolution; as the number of 

frequencies in every measurement is fixed to 501 frequencies. In addition, a higher 

resolution bandwidth (RBW) of the Spectrum analyzer is required, as it must 

accomplish the eqn. (8.2) [92]: 

Span 500
RBW

<  (8.2)

This fact, it will not be a problem in RFI-free measurements, but if any RFI is 

present, it will be dispersed through a bandwidth equivalent to the resolution bandwidth.  
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8.3.1 Algorithms using power spectrograms with 

RFI-free radiometric data 
 

 As previously described in Chapter 5 Section 5.2.3, the Edge Detection 

Algorithm is used with data obtained by means of ordering the different time traces 

obtained by the Spectrum Analyzer of the MERITXELL radiometer in columns.  

 

 The FIAT algorithm is also implemented to be used with spectrum analyzer data. 

In fact, the Smoothing algorithm could also be used. Three different measurements are 

performed, each one with different configurations of the spectrum analyzer. The first 

measurement comprises the entire protected L-band. In order to try configurations with 

higher resolution, a new measurement is performed, but in this case with a span of only 

2 MHz, same as the 3rd sub-band of the L-band used in Sections 8.2.2.2.3 and 8.2.2.2.4. 

An additional measurement is performed with a sweep time of 500 ms, longer than the 

recommended in Section 8.1.2 (50 ms). The configuration of the spectrum analyzer for 

these three different configurations is detailed in Table 8.34. 

 
Table 8.34: Spectrum analyzer configuration parameters to obtain perform the three different 

measurements for this Section. 

Configuration parameter 1st Config. 2nd Config. 3rd Config. Units 
Center Frequency 1413.5 1404 1413.5 [MHz] 

Span 27 2 27 [MHz] 
Resolution Bandwidth 100 10 100 [kHz] 

Video Bandwidth 10 10 10 [MHz] 
Time Sweep 50 50 500 [ms] 

Detector Sample Sample Sample [-] 
Frequency points 501 501 501 [-] 

Time traces 500 500 500 [-] 
 

8.3.1.1 Edge Detector algorithm with RFI-free radiometric data 
 

Data tested is different from algorithms of Section 8.2 as the data is directly 

power, obtained by different means, but the representation of the results is quite similar. 

First, the Edge Detector algorithm performance is tested with RFI-free data as the other 

RFI detection algorithms. The Pdet as a function of the Pfa for the L-band is represented 

in Table 8.35. In this case spectrogram is formed by 500 consecutive traces composed 
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by 501 power values, corresponding to 501 frequencies. This way, a 501x500 pixels 

spectrogram is obtained. Table 8.35 is very simple and only indicates the Pdet as a 

function of the Edge Detection algorithm Pfa (Pfa|ED), Table 8.36 indicates the Edge 

Detection error in TA as a function of the Pfa|ED,. These results have been obtained by the 

averaging of 50 RFI-free measurements. 

 
Table 8.35: Edge Detection Algorithm performance (Pdet) on L-band RFI free radiometric data as a 

function of the Pfa|ED (Configuration data from Table 8.34). 

 0.1 0.05 0.01 0.005 0.001 
Edge Detection Pdet 0.1124 0.0492 0.0083 0.0040 0.0008 

 
Table 8.36: Error in the retrieved TA produced by the application of the Edge Detection algorithm on 

L-band RFI free radiometric data, as a function of the Pfa|ED (Configuration data from Table 8.34). 

 0.1 0.05 0.01 0.005 0.001 
Edge Detection error in TA [K] 20,02 10,13 2,15 1,13 0,27 
 

8.3.1.2 FIAT Algorithm behaviour with RFI-free radiometric 

data 
 

This algorithm is also tested with the same L-band RFI-free data as the Edge 

Detection Algorithm is Section 8.3.1.1. The Pdet as a function of the Pfa for the L-band is 

represented in Table 8.37, and the error in the retrieved TA due to the radiometric data 

elimination is represented in Table 8.38.  

 

Results are very similar as the obtained with the I/Q voltage data, described in 

Section 8.2.2.1.2. For the algorithm performance this case and the Section 8.2.2.1.2 case 

have almost the same results; however, for the error in the retrieved TA, in this case is a 

bit lower than in the Section 8.2.2.1.2 case but they are of the same order. 

 
Table 8.37: FIAT Algorithm performance (Pdet) on L-band RFI free radiometric data as a function of the 

Pfa|FIAT. 

 0.1 0.05 0.01 0.005 0.001 
Combined Frequency and  

Time thresholding Pdet 
0.1044 0.0543 0.0126 0.0065 0.0014 

Frequency thresholding Pdet 0.0509 0.0253 0.0060 0.0033 0.0009 
Time thresholding Pdet 0.0617 0.0307 0.0068 0.0033 0.0005 
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Table 8.38: Error [K] in the retrieved TA produced by the application of the FIAT algorithm on L-band 
RFI free radiometric data, as a function of the Pfa|FIAT. 

 0.1 0.05 0.01 0.005 0.001 
Combined Frequency and  

Time thresholding [K] 4,22 2,36 0,65 0,36 0,09 

Frequency thresholding [K] 1,95 1,08 0,31 0,18 0,06 
Time thresholding [K] 2,38 1,30 0,35 0,18 0,03 

 

8.3.1.3 Behaviour of the combined Edge Detection and FIAT 

algorithms with RFI-free radiometric data 
 

This section is similar to 8.2.2.1.3 where the performance of the combined RFI 

detection algorithms is evaluated. The Pdet and the error in the retrieved TA for this case 

are presented in Tables 8.39 and 8.40.  

 

Table 8.39 represents the Pdet after applying the Edge Detection and the FIAT 

Algorithms to the RFI free data, having two parameters that affect to the Pdet, the Pfa|ED 

(columns), and the Pfa|FIAT (rows). 

 

 As in Section 8.2.2.1.3, Pdet of the combined algorithms is not equal to any of the 

two Pfa‘s as in the two algorithms applied separately, as both algorithms eliminate 

different pieces of data. 

 
Table 8.39: Performance of the combined Edge Detection and FIAT algorithms (Pdet) applied to L-band 
RFI-free radiometric data as a function of the Pfa of the Edge Detection algorithm (columns) and the Pfa 

of the FIAT Algorithm (rows). 

Pfa|ED  
0.1 0.05 0.01 0.005 0.001 

0.1 0.1499 0.1107 0.1010 0.0994 0.1016 
0.05 0.1271 0.0772 0.0550 0.0528 0.0528 
0.01 0.1139 0.0538 0.0167 0.0143 0.0131 
0.005 0.1131 0.0509 0.0126 0.0093 0.0068 

Pfa|FIAT 

0.001 0.1124 0.0496 0.0091 0.0051 0.0021 
 

Table 8.40 represents the error in the retrieved TA due to the radiometric data 

elimination; and in this table is more clear how to tune both Pfa in order to have an 

acceptable error in the radiometric measurements in a RFI-free situation. Like in the rest 
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of the cases, Pfa’s must be selected as the TA error is lower than our radiometric 

resolution aim. 

 
Table 8.40: Total error in the retrieved TA produced by the application of the Edge Detection algorithm 
and the FIAT algorithm (Pdet) on L-band RFI free radiometric data as a function of the Pfa of the Edge 

Detection algorithm (columns) and the Pfa of the FIAT Algorithm (rows). 

Pfa|ED [K] 
0.1 0.05 0.01 0.005 0.001 

0.1 21.73 12.68 5.88 4.96 4.34 
0.05 20.77 11.41 4.18 3.24 2.54 
0.01 20.12 10.39 2.60 1.66 0.91 
0.005 20.07 10.23 2.39 1.42 0.61 

Pfa|FIAT 

0.001 20.02 10.16 2.21 1.20 0.36 
 

8.3.2 Algorithms using power spectrograms with RFI 

contaminated radiometric data 
 

Now, the Edge Detection and FIAT algorithms are tested with real radiometric 

data in the presence of RFI.  

 

8.3.2.1 Behaviour of the power spectrograms based algorithms 

with an entire L-band measurement 

 

Figure 8.21 shows a measurement performed from 1.400 GHz to 1.427 GHz 

covering the whole protected L-band and presenting a high level of RFI contamination. 

The frequency resolution of this measurement is equal to 54 kHz, thus RFI frequency 

sharp tones present in the L-band can be more difficult to detect as they will be 

averaged with the thermal noise. However, the RFI is high as the measurements have 

been taken in the city of Barcelona. 

 

Also, as in the spectrograms computed from I/Q data, the measured antenna TA 

in the absence of RFI was higher than the matched load Tph, (approximately TA =  315 K 

for a Tmatched load = 301 K), and also probably because the measurements have been 

performed in the UPC RSLab, which is plenty of electronic devices. 
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In order to compare results obtained with the power spectrograms and the ones 

computed from the I/Q data, the Edge Detection Pfa (Pfa|ED) is selected to have a similar 

TA error value as with the Smoothing algorithm (and not so different from the FIAT 

algorithm). For Pfa|ED = 0.01, the retrieved TA error value is 2.15 K, which is quite 

similar to the 1.78 K for the Smoothing algorithm with a 2-D filter size of 31x31. 

Hence, Pfa|ED has been selected to have the value Pfa|ED = 0.01. On the other hand, 

Pfa|FIAT is set to the same value (Pfa|FIAT = 0.01). 
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Figure 8.21: Data of the entire protected L-band (1.400-1.427 GHz) before the application of the RFI 
detection and mitigation algorithms, RBW = 100 kHz. a) Spectrogram of the data formed by 500 time 

points per 501 frequency points; b) Frequency domain average data (501 points); c) Time domain 
average data (500 points). 
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Figure 8.22: Results of the application of the Edge Detection algorithm with the parameter Pfa|ED = 0.01 
to the entire L-band measurement, RBW = 100 kHz. Data before the application of the Edge Detection 

algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after the application of the Edge Detection algorithm:  b) Spectrogram with flagged pixels 

detected as RFI; d) Frequency domain average data; f) Time domain average data. 
 

 The result of the application of the Edge Detection, the FIAT, and both 

algorithms combined is shown in Figs. 8.22 (Edge Detecion), 8.23 (FIAT), and 8.24 

(combined algorithms). In Table 8.42 the main values obtained by the application of the 

RFI detection algorithms are presented, in the same way as the previous sections. 
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Figure 8.23: Results of the application of the FIAT algorithm with the parameter Pfa|FIAT = 0.01 to the 
entire L-band measurement, RBW = 100 kHz. Data before the application of the FIAT algorithm:  

a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  Resulting data after 
the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected as RFI; d) Frequency 

domain average data; f) Time domain average data. 
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Figure 8.24: Results of the application of the Edge Detection and FIAT algorithms combined with the 
parameters Pfa|ED = 0.01 and Pfa|FIAT = 0.01 to the entire L-band measurement, RBW = 100 kHz. Data 

before the application of the Edge Detection and FIAT algorithms:  a) Spectrogram; d) Frequency 
domain average data; g) Time domain average data. Resulting data after the application of the last 

iteration of the Edge Detection algorithm:  b) Spectrogram with flagged pixels detected as RFI; 
e) Frequency domain average data; h) Time domain average data. Resulting data after the application of 
the last iteration of the Edge Detection and FIAT algorithm:  c) Spectrogram with flagged pixels detected 

as RFI; f) Frequency domain average data; i) Time domain average data. 
 

Table 8.41: Most relevant results obtained after the RFI detection algorithms application to the entire 
L-band measurement. The TA initially measured by the antenna is TA = 342.68 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

ED 329.46 13.22 2.38 1.21 
FIAT 318.7 23.98 10.16 5.5 

ED and 
FIAT 315.92 26.76 11.45 6.27 

 

 Observing Figs. 8.22 to 8.24, and Table 8.41, again the FIAT algorithm has the 

best performance. The frequency domain average data of the Edge Detection algorithm 

(Fig. 8.22d) reveals that although it eliminates the major part of the RFI, there is some 

residual RFI resulting in a poor behaviour of this algorithm. 
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On the other hand, the FIAT algorithm eliminates all tones, although the 

frequency response is not perfectly flat. The FIAT algorithm and joint Edge Detection 

and FIAT algorithms have a very similar performance, taking into account the 

difference between the errors due to false alarms. Therefore, it is more efficient to use 

only the FIAT algorithm, as the best RFI detection algorithm for the power 

spectrograms obtained from the spectrum analyzer. 

 

8.3.2.2 Behaviour of the power spectrogram based algorithms 

with a 2 MHz sub-band of the L-band (3rd sub-band) 

 

The next measurement comprises the 2 MHz sub-band centered at 1.404 GHz. 

The advantage of using a more stretch Span is having a higher frequency resolution 

(4 kHz). RFI present in the measurement is quite similar to the I/Q data case (Fig. 8.25). 

Same Pfa parameters have been selected for the application of the RFI detection 

algorithms in this measurement. 

 

The result of the application of the different RFI detection algorithms can be 

consulted in the Figs. 8.26 (Edge Detection), 8.27 (FIAT) and 8.28 (combined 

algorithms) as in the previous section. Table 8.42 presents the main values obtained by 

the application of the RFI detection algorithms. 
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Figure 8.25: Data of the 3rd sub-band of the L-band measurement before the application of the RFI 
algorithms, RBW = 10 kHz. a) Spectrogram of the data formed by 500 time points per 501 frequency 
points. b) Frequency domain average data (501 points). c) Time domain average data (500 points). 
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Figure 8.26: Results of the application of the Edge Detection algorithm with the parameter Pfa|ED = 0.01 
to the 3rd sub-band of the L-band measurement, RBW = 10 kHz. Data before the application of the Edge 

Detection algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after the application of the Edge Detection algorithm:  b) Spectrogram with flagged pixels 

detected as RFI; d) Frequency domain average data; f) Time domain average data. 
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Figure 8.27: Results of the application of the FIAT algorithm with the parameter Pfa|FIAT = 0.01 to the 3rd 
sub-band of the L-band measurement, RBW = 10 kHz. Data before the application of the FIAT algorithm:  
a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  Resulting data after 
the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected as RFI; d) Frequency 

domain average data; f) Time domain average data. 
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Figure 8.28: Results of the application of the Edge Detection and FIAT algorithms cobined with the 

parameters Pfa|ED = 0.01 and Pfa|FIAT = 0.01 to the 3rd sub-band of the L-band measurement, 
RBW = 10 kHz. Data before the application of the Edge Detection and FIAT algorithms:  

a) Spectrogram; d) Frequency domain average data; g) Time domain average data. Resulting data after 
the application of the last iteration of the Edge Detection algorithm:  b) Spectrogram with flagged pixels 
detected as RFI; e) Frequency domain average data; h) Time domain average data. Resulting data after 

the application of the last iteration of the Edge Detection and FIAT algorithm:  c) Spectrogram with 
flagged pixels detected as RFI; f) Frequency domain average data; i) Time domain average data. 

 
Table 8.42: Most relevant results obtained after the RFI detection algorithms application to the 3rd 
sub-band of the L-band measurement. The TA initially measured by the antenna is TA = 375.55 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

ED 352.35 23.2 3.6 1.85 
FIAT 315.82 59.72 25.9 16.17 

ED and 
FIAT 313.89 61.65 26.32 16.5 
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8.3.2.3 Behaviour of the power spectrogram based algorithms 

over an entire L-band measurement with a long sweep time 

 

Another measurement which covers the entire protected L-band is performed 

(Fig. 8.29), but in this case with a longer sweep time (Table 8.34) to have a larger 

fraction of the time measuring vs. the time the spectrum analyzer waits for the next 

measurement (~ 41 ms), thus increasing the efficiency. This measurement has a similar 

level of RFI than the 1st measurement studied in the Section 8.3.2.1, although, more 

pixels are flagged as several RFI tones are present between 1.400 and 1.410 GHz. It also 

presents similar final TA values. 
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Figure 8.29: Data of the entire L-band measurement before RFI algorithms application, RBW = 100 kHz. 
a) Spectrogram of the data formed by 500 time points per 501 frequency points. b) Frequency domain 

average data (501 points). c) Time domain average data (500 points). 
 

However, the time duration of the entire measurement is a bit long, 275 s. vs. 

47.5 s. of the 1st measurement, thus temperature drifts will affect more. These drifts are 
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noticeably when comparing Fig. 8.21f (belonging to the 1st measurement after RFI 

elimination) with Fig. 8.29f (belonging to the 3rd measurement after RFI elimination), 

where these drifts present in the retrieved power can be observed in the 3rd 

measurement, which are not present in the 1st measurement. On the other hand, in an 

airborne or space-borne instrument, radiometric measurements will have changed 

during 47.5 s. or 5 min., so this problem will affect in the same way for both time 

durations. 

 

Finally, the results (Figs. 8.30 to 8.32, and Table 8.43) are similar to the two 

previous measurements, and the FIAT algorithm has the best performance again. This 

way, it is strongly recommended to use the FIAT algorithm despite of its higher number 

of eliminated pixels compared to the rest of the algorithms. In fact, as many RFI 

consists of tones that are present for long periods of time, or short time duration 

broadband RFI, RFI flagged pixels usually contain RFI indeed. 
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Figure 8.30: Results of the application of the Edge Detection algorithm with the parameter Pfa|ED = 0.01 
to the entire L-band measurement, RBW = 100 kHz. Data before the application of the Edge Detection 

algorithm:  a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  
Resulting data after the application of the Edge Detection algorithm:  b) Spectrogram with flagged pixels 

detected as RFI; d) Frequency domain average data; f) Time domain average data. 
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Figure 8.31: Results of the application of the FIAT algorithm with the parameter Pfa|FIAT = 0.01 to the 
entire L-band measuremen, RBW = 100 kHz t. Data before the application of the FIAT algorithm:  

a) Spectrogram; c) Frequency domain average data; e) Time domain average data.  Resulting data after 
the application of the FIAT algorithm:  b) Spectrogram with flagged pixels detected as RFI; d) Frequency 

domain average data; f) Time domain average data. 
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Figure 8.32: Results of the application of the Edge Detection and FIAT algorithms combined with the 
parameters Pfa|ED = 0.01 and Pfa|FIAT = 0.01 to the entire L-band measurement, RBW = 100 kHz. Data 

before the application of the Edge Detection and FIAT algorithms:  a) Spectrogram; d) Frequency 
domain average data; g) Time domain average data. Resulting data after the application of the last 

iteration of the Edge Detection algorithm:  b) Spectrogram with flagged pixels detected as RFI; 
e) Frequency domain average data; h) Time domain average data. Resulting data after the application of 
the last iteration of the Edge Detection and FIAT algorithm:  c) Spectrogram with flagged pixels detected 

as RFI; f) Frequency domain average data; i) Time domain average data. 
 

Table 8.43: Most relevant results obtained after the RFI detection algorithms application to the entire 
L-band measurement. The TA initially measured by the antenna is TA = 344.23 K 

Algorithm Final TA [K] initial TA − final TA 
[K] 

flagged pixels 
[%] 

∆T increase 
[%] 

ED 333.92 10.31 2.34 1.19 
FIAT 319.58 24.64 15.71 8.92 

ED and 
FIAT 316.69 27.53 16.57 9.48 
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8.4 Optimal Pfa for the FIAT algorithm 

performance  
 

 As it has been observed in Sections 8.3 and 8.2.2, the FIAT algorithm has the 

best performance among the different RFI detection algorithms for spectrograms. It is 

the recommended algorithm for future works regarding RFI detection and mitigation. 

However, the Pfa|FIAT which has been taken as a constant value (Pfa|FIAT = 0.01) may be 

modified in order to observe the variations introduced in the detection of RFI. 

 

 Consequently, four different values of this parameter have been used to observe 

the TA after RFI elimination, and compare these results with the values of TA error in 

RFI free measurements. This way, assuming errors present with RFI free data, the TA in 

case of RFI present could be more accurate. 

 

 As the analysis of the different spectrogram based RFI detection algorithms is 

differentiated between the spectrograms computed from I/Q data and those from power 

spectrograms, two Tables analyzing data from both cases are computed.  

 

In the first table (Table 8.44), the TA after the RFI detection algorithm 

application, the proportion of increase in the radiometric resolution, and the TA error 

with RFI free data, for 4 different values of Pfa|FIAT between 0.005 and 0.05, and for the 

three different measures studied in the Section 8.2.2 is presented. Higher values of 

Pfa|FIAT have not been taken into account because of the recurrence of the FIAT 

algorithm, which can lead to errors in the TA produced by false alarms and the Pfa|FIAT 

value too. On the other hand, the TA error produced by false alarms has been 

recalculated (RFI free TA error column in Tables 8.26 and 8.36) taking into account 

recurrence of the FIAT algorithm; in fact, TA increases a 20% for a Pfa|FIAT = 0.05, but 

for lower values of Pfa|FIAT this increase is negligible. 
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Table 8.44: Most relevant results obtained after the application of the FIAT algorithm to three 2 MHz 
sub-bands of the L-band measurement previously analyzed in Section 8.2.2.2 for different values of the 

Pfa|FIAT value. 

 Pfa|FIAT Final TA [K] RFI free TA 
error [K] ∆T increase [%] 

0.05 364.65 3,86 30.08 
0.02 368.5 1.77 25.71 
0.01 369.8 0,98 24.37 

3rd sub-band 
fc = 1.404 GHz 
BW = 2MHz 

Initial TA = 799.05 K 0.005 370.62 0,54 23.63 
0.05 323.61 3,86 3.67 
0.02 325.51 1.77 1.59 
0.01 326.47 0,98 0.69 

5th sub-band 
fc = 1.408 GHz 
BW = 2MHz 

Initial TA = 327.82K 0.005 326.6 0,54 0.59 
0.05 348.49 3,86 10.73 
0.02 353 1.77 5.99 
0.01 355.19 0,98 4.12 

10th sub-band 
fc = 1.418 GHz 
BW = 2MHz 

Initial TA = 390.75 K 0.005 355.88 0,54 3.59 
 

Differences between Final TA values for different Pfa|FIAT values on the 5th sub-

band (Table 8.44) are equal than differences between RFI free TA, because with a Pfa|FIAT 

= 0.005 all RFI can be eliminated. On the other hand, in the other two cases (3rd and 10th 

sub-bands), important differences are observed for Pfa|FIAT = 0.05 respect the rest of 

Pfa|FIAT values, (approximately 4 K difference between Pfa|FIAT = 0.05 and Pfa|FIAT = 0.02 

when in RFI free difference is 2 K), this fact indicates that more RFI is detected when 

Pfa|FIAT value is increased. However it must be taken into account that data clipping 

produced by the false alarm elimination decreases the final TA value too, due to the fact 

that the time/frequency segments with larger power values will be eliminated and the 

ones with lower power values will remain. On the other hand, it must be taken into 

account that 3.86 K can be a very high value for determined applications. 

 

Figures 8.33 and 8.34 present the frequency response of the 3rd and 10th sub-

band measurements respectively for different Pfa|FIAT values in order to observe the 

impact of the selection of this parameter. In the case of the 3rd sub-band, (Fig. 8.33) the 

borders of the main RFI component between 1403.4 MHz and 1404.2 MHz tend to be 

completely eliminated as the Pfa|FIAT value increases, additionally increasing the 

elimination of higher power components of the thermal noise; however, possible RFI 

contribution located between 1404.6 MHz and 1404.8 MHz could not be detected as the 

frecuency response is not perfectly flat. The main conclusion obtained from Table 8.44 

and Fig. 8.33 for the 3rd sub-band is that while the Pfa|FIAT value increases, more low 
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level RFI components are eliminated, however, almost same RFI components are 

eliminated with a Pfa|FIAT = 0.02 (Fig. 8.33d) and Pfa|FIAT = 0.05 (Fig. 8.33e); so it is 

better to use Pfa|FIAT = 0.02, since better results are obtained in RFI free conditions.  

 

Figure 8.34 represents the 10th sub-band of the L-band, and shows the presence 

of several RFI contributions with a low level value, being eliminated as Pfa|FIAT value 

increases. For values higher than Pfa|FIAT = 0.01 (Figs. 8.34c, 8.34d and 8.34e) seems 

that all RFI components are eliminated, although it is very difficult to differentiate a 

small RFI tone from a high power value of thermal noise. 

 

From Figs. 8.33 and 8.34, and Table 8.44 it can be concluded that the 

appropriate Pfa|FIAT value depends on the RFI present in the signal. Therefore, Pfa|FIAT 

value can only be selected by the TA error that introduces in the RFI free measurements, 

as stated in Chapters 4 and 5. 
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Figure 8.33: ADC based frequency domain average data after the application of the FIAT algorithm on 
the 3rd sub-band of the L-band (1.404 GHz) for different Pfa|FIAT values, RBW = 10 MHz: a) Pfa|FIAT = 0 
(before the application of the FIAT algorithm); b) Pfa|FIAT = 0.005; c) Pfa|FIAT = 0.01; d) Pfa|FIAT = 0.02; 

e) Pfa|FIAT = 0.05.  
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Figure 8.34: ADC based frequency domain average data after the application of the FIAT algorithm on 
the 10th sub-band of the L-band (1.418 GHz) for different Pfa|FIAT values, RBW = 10 MHz: a) Pfa|FIAT = 0 
(before the application of the FIAT algorithm), b) Pfa|FIAT = 0.005; c) Pfa|FIAT = 0.01; d) Pfa|FIAT = 0.02; 

e) Pfa|FIAT = 0.05.  
  



Chapter 8 
 

 234 

Table 8.45 is based in the spectrum analyzer data, and it has the same structure 

as in the previous Table, but with the three different measurements used in Section 8.3. 

 
Table 8.45: Most relevant results obtained after the application of the FIAT algorithm to three spectrum 

analyzer measurements previously analyzed in Section 8.3 for different values of the Pfa|FIAT value. 

 Pfa|FIAT Final TA [K] RFI free TA 
error [K] ∆T increase [%] 

0.05 315.58 2,5 9.42 
0.02 317.38 1.04 7.06 
0.01 318.7 0,59 5.5 

1st Measurement 
BW = 27MHz 

Sweep time = 50ms 
Initial TA = 342.68 K 0.005 319.14 0,34 5.04 

0.05 312.03 2,5 21.53 
0.02 314.38 1.04 18 
0.01 315.82 0,59 16.17 

2nd Measurement 
BW = 2MHz 

Sweep time = 50ms 
Initial TA = 375.55 K 0.005 316.08 0,34 15.86 

0.05 314.49 2,5 15.84 
0.02 318.21 1.04 10.61 
0.01 319.58 0,59 8.92 

3rd Measurement 
BW = 27MHz 

Sweep time = 500ms 
Initial TA = 344.23 K 0.005 320.27 0,34 8.16 

 

In this case, differences between Final TA values for different Pfa|FIAT for the 

three measurements (Table 8.45) are very similar between them. Again, using Pfa|FIAT = 

0.05 will eliminate more RFI than the rest, having a higher decrease in the final TA value 

than the one produced by the false alarms only. Comparing Tables 8.44 and 8.45, RFI 

free TA error is lower for the same Pfa|FIAT value in the Spectrum analyzer measurements 

than in the spectrogram computed from I/Q measurements. Hence, taking measurements 

with the spectrum analyzer has an additional advantage. 

 

Figures 8.35 and 8.36 present the frequency response of the 1st and 2nd 

measurements respectively in order to observe the impact of the Pfa|FIAT value chosen, in 

the same way as Figs. 8.33 and 8.34. In Fig. 8.35 high values of Pfa|FIAT eliminate low 

level of RFI adjacent to the main RFI contributions at the edges of the protected band 

(1.400 GHz and 1.427 GHz); but on the other hand, the number of false alarms 

increases. Again, the main RFI peaks are eliminated with a Pfa|FIAT of 0.01, and higher 

values eliminate equally RFI peaks, and thermal noise peaks. 

 

Figure 8.36 represents the same 2 MHz band as Fig. 8.33, and results are very 

similar, where low level RFI components between 1403.4 MHz and 1404.2 MHz tend 
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to be completely eliminated as the Pfa|FIAT value increases, additionally increasing the 

removal of higher power components of the thermal noise. In this case, the Pfa|FIAT value 

that best fits is the highest, Pfa|FIAT = 0.05, as this value eliminates the largest part of the 

low level RFI components at both sides of the main RFI (1403.4 MHz and 1404.2 

MHz). 

 

Again, the conclusion that can be extracted from Figs. 8.35 and 8.36, and Table 

8.45, is that the best Pfa|FIAT value will depend on the RFI level present on the 

measurement, so, this value must be selected depending on the TA error that introduce in 

RFI free measurements. However, in this case the RFI-free TA error for Pfa|FIAT = 0.02 

for spectrum analyzer data is almost equal than the RFI-free TA error for Pfa|FIAT = 0.01 

for the spectrograms computed from I/Q data, both around 1 K. 
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Figure 8.35: Spectrum analyzer based frequency domain average data after the application of the FIAT 
algorithm on the data obtained from the 1st configuration (Table 8.45) for different Pfa|FIAT values, 
RBW = 10 kHz: a) Pfa|FIAT = 0 (before the application of the FIAT algorithm); b) Pfa|FIAT = 0.005; 

c) Pfa|FIAT = 0.01; d) Pfa|FIAT = 0.02; e) Pfa|FIAT = 0.05. 
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Figure 8.36: Spectrum analyzer based frequency domain average data after the application of the FIAT 
algorithm on the data obtained from the 2nd configuration (Table 8.45) for different Pfa|FIAT values, RBW 

= 10 kHz: a) Pfa|FIAT = 0 (before the application of the FIAT algorithm); b) Pfa|FIAT = 0.005; 
c) Pfa|FIAT = 0.01; d) Pfa|FIAT = 0.02; e) Pfa|FIAT = 0.05. 
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8.5 Conclusions  
 

Different RFI detection algorithms have been tested and results obtained. 

 

From all the 10 normality test-based algorithms only 7 work properly, the 

Kurtosis-based algorithms (K, JB and K2), and the ECDF-based algorithms (AD, CM, 

SW and L). The CHI2 test had a Pdet in case of RFI contaminated signal noticeably 

lower than the previous seven algorithms; and the LM and S tests had a Pdet = Pfa in case 

of RFI contaminated signal; thus these three normality test-based algorithms are not 

suitable for RFI detection.  

 

Since the algorithms’ performance from these two groups (Kurtosis-based and 

ECDF-based algorithms) is similar, the best algorithm of each of these two groups is 

enough to properly detect RFI by means of normality analysis. Hence the Kurtosis (K) 

test and the Anderson Darling (AD) or the Shapiro-Wilk (SW) tests are the most 

appropriate normality tests algorithms. In addition, all the normality tests perform better 

for data segments with a larger number of samples, hence the number of samples of 216 

is recommended. For this case, the AD test works better than the SW test. 

 

Kurtosis is simpler than the AD and test, as it does not require sorting the 

sampled data, thus it should be the first option. However, the best option would be a 

combination of both algorithms, as each one can detect RFI that cannot be detected by 

the other one. 

 

However, normality tests eliminate all the data analyzed if RFI is detected, and 

let all the RFI present if they fail to detect it. On the other hand, the spectrogram based 

algorithms converts the radiometric data in STFT components (pixels of the 

spectrogram), detect and eliminate RFI contaminated pixels present in the spectrograms 

but leaving RFI-free pixels apart. 

 

In addition, data used in spectrogram-based algorithms can be obtained by 

sampling process like the normality tests or by stacking temporal power traces obtained 

by a spectrum analyzer, which gives versatility to this kind of algorithms. 
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Three different spectrogram-based algorithms have been compared, the 

Smoothing and the FIAT algorithms for I/Q sampled data, and the FIAT and the Edge 

Detection algorithms for the spectrum analyzer data. In both cases the algorithm with 

the best performance is the FIAT one, so this algorithm is recommended to be used in 

front of the other two. In addition, the FIAT algorithm is the simplest one to be 

implemented, so for FPGA-based RFI detection systems this is the most suitable 

algorithm. 

 

Among the two ways to obtain the data, I/Q sampled data has the advantage of 

letting us apply normality tests and spectrogram-based algorithms, while the temporal 

and frequency resolutions are much greater than the spectrum analyzer data. On the 

other hand, the spectrum analyzer data can cover a wider frequency span and time 

lapses, and these ones can be easily configured. In addition, the spectrogram-based data 

has the issue that a ~41 ms delay is introduced after each temporal trace. The error in 

the TA produced by false alarms is lower for spectrum analyzer based data for the same 

Pfa value. 

 

Summarizing, I/Q sampling is the recommended option. However, if the 41 ms 

delay could be eliminated, the option of using directly the spectrum analyzer will be 

quite interesting due to its fully configurability.  

 

The best probability of false alarm value has been found depending on the 

amount of RFI present in the measurement, so there is not an optimal probability of 

false alarm value however values of Pfa = 0.01 for spectrograms computed from I/Q data 

and Pfa = 0.02 for spectrum analyzer based data give in general good results. 

 

A final conclusion of this Chapter is that The FIAT algorithm is the best RFI 

detection and mitigation algorithm as it can be used with the two configuration of the 

MERITXELL radiometer, gives the best results for the lower Pfa values, and it is the 

most computationally simple of the spectrogram-based algorithms. However, if sampled 

data is available, FIAT algorithm can be combined with normality tests (Kurtosis and 

Anderson Darling). This way, K and AD tests can be applied to the radiometric data 
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with high Pfa values (Pfa ≥ 0.1), and those data segments that fail the test could be 

analyzed by the FIAT algorithm, having a more efficient algorithm. 
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Conclusions obtained from this Ph. D. and future research 

lines are sumarized in this Chapter. 
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9.1 Conclusions and Summary 
 

 The present Ph. D. Thesis is a contribution to the RFI detection and mitigation in 

microwave radiometry Several RFI detection algorithms have been developed, that can 

be classified in different groups based on the approach: normality tests, time/frequency 

domains, and wavelet domain. These algorithms have been tested with real radiometric 

data obtained with a dual-polarized multi-band radiometer (MERITXELL) developed in 

the framework of this Ph. D Thesis for this purpose. This thesis is divided in three parts. 

 

9.1.1 Background presentation  
 

 The first part comprises the Chapters 1 and 2 and it is related to the theoretical 

background and review of the state of the art. First of all, the microwave radiometry 

theory is introduced summarizing the most important concepts related to microwave 

radiometry and emission theory fields, in order to present the basics to the reader, 

including the main applications and the most common radiometer configurations.  

 

Then, the problems created by RFI present in radiometric measurements are 

described, and several current radiometry missions with RFI problems are presented. 

 

9.1.2 RFI detection algorithms  
 

The second part first presents a summary of the state-of-the-art algorithms for 

RFI detection (Chapter 3). Then, the different RFI detection algorithms studied and 

developed in this thesis are presented. Furthermore, these RFI detection algorithms are 

classified in three different groups, depending on the approach used to discriminate 

between RFI and thermal noise.  

 

The first group embraces the normality test based algorithms, which are based in 

the fact that the sampled thermal noise follows a Gaussian distribution, and usually, 

man-made RFI does not follow this type of distribution. Thus, a way to detect the 
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presence of RFI consists of applying normality tests to this data set. If RFI is detected, 

the whole set is eliminated. In this Ph. D. thesis 10 normality tests have been reviewed, 

described and tested, concluding that the best normality tests are the Kurtosis test which 

usually has the better performance among all the others, and the Anderson-Darling test, 

which has a better performance than the Kurtosis test in case of some RFI signals with 

determined duty cycles (e.g. sinusoidal signals with 50% duty cycle). 

 

The elimination of all the samples of a data set can be too restrictive if the RFI is 

not present in all the samples. On the other hand, normality tests cannot be applied to 

the power samples of the radiometric data (which follow an exponential distribution, not 

a Gaussian one). The second group of RFI detection algorithms are based on the 

detection of high power values of the radiometric signal in the time-frequency domains, 

thus sampled voltage data is not required. 

 

This second group is based on the calculation of the spectrogram of the 

radiometric signal, which can be obtained by means of the Short Time Fourier 

Transform of the sampled data, or by capturing data from a spectrum analyzer. Another 

advantage of the spectrogram based RFI detection algorithms is that they can 

discriminate more deeply RFI from thermal noise, as RFI usually appears as a cluster of 

abnormal high power values in the time-frequency domain which can be more easily 

detected and discriminated as RFI. 

 

The third group of RFI detection algorithms is based on denoising the interfering 

signals in order to substract them from the sampled thermal noise leaving the thermal 

noise signal. With this technique, the RFI signals must be very well estimated, since 

errors in the estimation will lead into errors in the resulting thermal noise. This group of 

algorithms is based in the wavelet decomposition to obtain the main components of the 

RFI signal, and the truncation of the components series at a given threshold. 

 

These three different groups of RFI detection algorithms are extensively 

described in Chapters 4, 5 and 6, respectively. 

 

 



Chapter 9 
 

 244 

9.1.3 Experimental results 
 

 In the frame of this Ph. D. Thesis, a dual-polarized multi-band radiometer has 

been designed and implemented (Chapter 7). This radiometer covers eight protected 

bands usually used in Earth remote sensing and houses three cameras in order to obtain 

data in the near and thermal infrared and optical range. In addition, a GPS reflectometer 

has been included. 

 

 This hardware has been used to obtain the radiometric data used to test the RFI 

detection algorithms described in the Chapters 4 and 5, as this radiometer has a 

spectrum analyzer as a back-end which can create spectrograms with the received data 

and can also sample the I/Q components of the signal. Only one back-end is needed 

with this configuration, hence, the implementation of the multi-band radiometer is 

simpler. 

 

However, this configuration also has some drawbacks as:  

 

• Sampling process of the radiometric data only permits to sample 65536 samples 

in a row, which is enough to apply RFI detection algorithms, but is a bit poor for 

obtaining the radiometric resolution, as the ADC stops sampling data every time that 

performs a new measurement. 

 

•  Distance between the different front-ends of every band and the spectrum 

analyzer can increase the attenuation in the radiometric signal in the high frequency 

(> 20 GHz) bands degrading the radiometric resolution of these bands. Moreover, the 

spectrum analyzer’s internal noise increases with frequency. 

 

• A ~41 ms delay exists between successive temporal traces, that decreases the 

efficiency of the radiometer. This efficiency can be enhanced by increasing the number 

of temporal traces, although if the time is too long, the system may have drifted. 

  

These drawbacks could be addressed by using one ADC and FPGA module per 

band and polarization, but this configuration will also require additional filters, mixers 
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and local oscillators. Besides, the measurements of the highest frequency bands cannot 

be performed for the whole bandwidth, as it would require sampling frequencies of the 

order of GHz. On the other hand, the spectrum analyzer configuration permits to 

construct the multiband radiometer, and even apply RFI detection algorithms to its data. 

 

 Real radiometric data acquired with the MERITXELL instrument has been used 

in order to test the normality tests and the spectrogram based RFI detection algorithms, 

(Chapter 8). 

 

 Normality tests results with real data are quite similar to the results obtained 

with simulated data: kurtosis and ECDF-based tests perform similar, and the best tests 

of both groups are the Kurtosis and the AD tests. Tests perform better with long 

segments of data, and with higher probabilities of false alarm, however, these 

requirements increase the number of RFI-free samples being eliminated, either due to 

RFI-free segments eliminated as false alarms, and the methodology of this algorithm 

itself, which a segment must be entirely eliminated if a RFI is detected. 

 

On the other hand, among the spectrogram-based algorithms the FIAT 

algorithms is the most efficient in the RFI detection and elimination followed by the 

Smoothing algorithm, and the FIAT algorithm is the simplest one from the 

computational point of view. However, this algorithm eliminates the entire frequency or 

time segment even if a RFI does not occupy the whole frequency or time segment. 

Nevertheless, the FIAT algorithm is the recommended one to be used, as it is preferable 

to eliminate a larger number of time-frequency bins than leaving corrupted ones, to 

obtain a more accurate brightness temperature. The probability of false alarm used in 

the spectrogram-based algorithms must be low: lower than 0.05 for the FIAT algorithm, 

or even lower for the rest of the spectrogram based algorithms, in order to avoid errors 

in the estimated antenna temperature. These errors are caused by the thresholding 

process as high power values are eliminated while low power ones remains, leading to a 

decrease in the mean value of the brightness temperature. 

 

  

Finally, the best RFI detection and mitigation algorithm studied in this Ph. D. 

Thesis is the FIAT algorithm as it can be used with both hardware configuration of our 
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MERITXELL radiometer, and gives the best results for the lower Pfa values. However, 

if sampled data is available, FIAT algorithm can be combined with the Kurtosis and 

Anderson Darling tests. This way, K and AD tests can be applied to the radiometric data 

with high Pfa values (Pfa ≥ 0.1), and those data segments that fail the test could be 

analyzed by the FIAT algorithm, having a more efficient algorithm. 

 

9.2 Future research lines 
 

  In the moment that this Ph. D. is concluded, some problems have been 

encountered. Therefore future research lines could be defined in order that other Ph. D. 

students can research in this field. 

 

• VHDL implementation of the FIAT algorithm with I/Q sampled data in order to 

have a hardware based RFI detection algorithm. This system should form part of 

the front-end of a narrowband radiometer in order to try to obtain a real-time 

RFI detection and mitigation algorithm that will reduce the amount of data to be 

saved. 

 

• A combination between normality tests (Kurtosis test, AD test or both), and 

spectrogram-based algorithms (FIAT algorithm) should be developed. A first 

step detection performed by a combination of Kurtosis and AD tests with a high 

probability of false alarm (0.1 or higher) in order to detect very low RFI values 

in data segments. A next step, applying the FIAT algorithm to segments that 

have not passed the tests, composed by RFI contaminated segments and false 

alarms. 

 

• Wavelet-based algorithms described in Chapter 6 should be tested with real data. 

A RSLab Ph. D. student is working in this line at the present time. 

 

• Installation of the MERITXELL radiometer in the truck. 

 

• Development of data fusion algorithms to combine radiometric data and data 

obtained from the three cameras housed in the MERITXELL. 
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• Performing field experiments alone (e.g. RFI surveys) or in conjunction with the 

PAU-SA radiometer in order to take the full potential of the MERITXELL 

radiometer (8 bands, 3 cameras and a GPS reflectometer). 

 

9.3 List of publications 
 

 Publications developed during this thesis are detailed in this section. 

Publications are sorted in function of the participation, classified in two groups: journal 

articles and conference proceedings. 

 

9.3.1 Journal articles 
 

• J. M. Tarongi and A. Camps "Normality Analysis for RFI Detection in 

Microwave Radiometry ", Remote Sens., Vol. 2(1), pp. 191-210, Jan. 2010. 

 

• J. M. Tarongi and A. Camps "Radio Frequency Interference Detection 

and Mitigation Algorithms Based on Spectrogram Analysis", Algorithms, Vol. 

4(4), pp. 239-261, Oct. 2011. 

 

• A. Camps and J. M. Tarongi, "RFI Mitigation in Microwave 

Radiometry Using Wavelets", Algorithms, Vol. 2(3) pp. 1248-1262, Sep. 2009. 

 

• A. Camps, X. Bosch-Lluis, I. Ramos-Perez, J. F. Marchán-Hernández, 

N. Rodríguez, E. Valencia, J. M. Tarongi, A. Aguasca and R. Acevo, "New 

Passive Instruments Developed for Ocean Monitoring at the Remote Sensing 
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10189, Dec. 2009. 

 

• A. Camps and J. M. Tarongí, "Microwave Radiometer Resolution 
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