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Abstract

Many outstanding problems in quantum physics, such as high-Tc superconduc-
tivity or quark con�nement, are still � after decades of research � awaiting com-
monly accepted explanations. One reason is that such systems are often di�cult
to control, show an intermingling of several e�ects, or are not easily accessible
to measurement. To arrive at a deeper understanding of the physics at work, re-
searchers typically derive simpli�ed models designed to capture the most striking
phenomena of the system under consideration. However, due to the exponen-
tial complexity of Hilbert space, even some of the simplest of such models pose
formidable challenges to analytical and numerical calculations. In 1982, Feyn-
man proposed to solve such quantum models with experimental simulation on a
physically distinct, speci�cally engineered quantum system [Int. J. Theor. Phys.
21, 467]. Designed to be governed by the same underlying equations as the
original model, it is hoped that direct measurements on these so called quantum
simulators (QSs) will allow to gather deep insights into outstanding problems
of physics and beyond.

In this thesis, we identify four requirements that a useful QS has to ful�ll,
relevance, control, reliability, and e�ciency. Focusing on these, we review the
state of the art of two popular approaches, digital QSs (i.e., special purpose
quantum computers) and analog QSs (devices with always-on interactions).

Further, focusing on possibilities to increase control over QSs, we discuss a
scheme to engineer quantum correlations between mesoscopic numbers of spinful
particles in optical lattices. This technique, based on quantum polarization
spectroscopy, may be useful for state preparation and quantum information
protocols.

Additionally, employing several analytical and numerical methods for the cal-
culation of many-body ground states, we demonstrate the variety of condensed-
matter problems that can be attacked with QSs consisting of ultracold ions or
neutral atoms in optical lattices. The chosen examples, some of which have al-
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ready been realized in experiment, include such diverse settings as frustrated an-
tiferromagnetism, quantum phase transitions in exotic lattice geometries, topo-
logical insulators, non-Abelian gauge-�elds, orbital order of ultracold Fermions,
and systems with long-range interactions. The experimental realization of all of
these models requires techniques which go beyond standard optical lattices, e.g.,
time-periodic driving of lattices with exotic geometry, loading ultracold atoms
into higher bands, or immersing trapped ions into an optical lattice. The chosen
models, motivated by important open questions of quantum physics, pose dif-
�cult problems for classical computers, but they may be amenable in the near
future to quantum simulation with ultracold atoms or ions.

While the experimental control over relevant models has increased dramati-
cally in the last years, the reliability and e�ciency of QSs has received consid-
erably less attention. As a second important part of this thesis, we emphasize
the need to consider these aspects under realistic experimental conditions. We
discuss speci�c situations where terms that have typically been neglected in the
description of the QS introduce systematic errors and even lead to novel physics.
Further, we characterize in a generic example the in�uence of quenched disorder
on an analog QS. Its performance for simulating universal behavior near a quan-
tum phase transition seems satisfactory for low disorder. Moreover, our results
suggest a connection between the reliability and e�ciency of a QS: it works less
reliable exactly in those interesting regimes where classical calculations are less
e�cient.

If QSs ful�ll all of our four requirements, they may revolutionize our ap-
proach to quantum-mechanical problems, allowing to solve the behavior of com-
plex Hamiltonians, and to design nano-scale materials and chemical compounds
from the ground up.



Resumen

Tras varias décadas de investigación, algunos problemas fundamentales de la
física cuántica, como la superconductividad de alta temperatura, o el con�-
namiento de los quarks, carecen de una explicación comúnmente aceptada. Esto
se debe en parte a la di�cultad existente para controlar y medir estos sistemas.
Para lograr una comprensión más profunda, los investigadores han desarrollado
modelos simpli�cados, diseñados para contener los fenómenos de mayor interés
en el sistema considerado. Sin embargo, debido a la complejidad exponencial
del espacio de Hilbert, incluso la resolución de algunos de los modelos cuánticos
más simples plantea grandes retos para el cálculo computacional o analítico. En
1982 [Int. J. Theor. Phys. 21, 467], Feynman propuso resolver estos modelos
mediante su simulación experimental en otros sistemas cuánticos. Diseñados
para regirse por las mismas ecuaciones que presentaba el modelo original, se
espera que la medición directa de estos llamados simuladores cuánticos (SC)
lleve a profundizar en la comprensión de algunos de los grandes problemas de
la mecánica cuántica.

En la presente tesis doctoral, identi�camos cuatro requisitos que debe cumplir
un SC para que sea útil: relevancia, controlabilidad, �abilidad, y e�ciencia. Cen-
trándonos en estos, examinaremos lo mas puntero de dos enfoques distintos: SC
digitales y analógicos.

Considerando posibilidades de aumentar la controlabilidad sobre los SC, pro-
ponemos un sistema para establecer, via espectroscopía cuántica de polarización,
correlaciones cuánticas entre un número mesoscópico de partículas con espín en
redes ópticas. Esta técnica podría ser útil en la generación de estados, o en
protocolos de información cuántica.

Por otra parte, mostraremos la gran variedad de problemas en materia con-
densada que se pueden atacar mediante SCs de átomos en redes ópticas o iones
atrapados, calculando estados fundamentales de sistemas de muchos cuerpos
mediante varios métodos analíticos y numéricos. Los ejemplos escogidos, al-
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gunos ya realizados experimentalmente, incluyen escenarios diversos como el
antiferromagnetismo frustrado, las transiciones de fase cuánticas en geometrías
exóticas, los aislantes cuánticos, las redes gauge no abelianas, el orden orbital
de fermiones ultrafrios y sistemas con interacciones de largo alcance. La real-
ización experimental de estos modelos requiere técnicas más allá de las estándar
en redes ópticas empleando, por ejemplo, modulaciones periódicas en el tiempo
de redes de geometría exótica, átomos ultrafríos en bandas excitadas, o iones
atrapados sumergidos en redes ópticas. Los modelos considerados, sugeridos por
importantes problemas abiertos en física cuántica, a pesar de ser difícilmente
resolubles para los ordenadores clásicos, podrían ser fácilmente simulables a
nivel cuántico en un futuro cercano, usando átomos ultrafríos o iones.

Pese a que el grado de control alcanzado sobre modelos importantes ha in-
crementado de forma dramática en los últimos años, la �abilidad y e�ciencia de
los SCs ha gozado signi�cativamente de menos atención. Para la segunda parte
importante de esta tesis subrayaremos la necesidad de considerar los aspectos
mencionados bajo condiciones experimentales realistas. En este contexto, estu-
diaremos situaciones especí�cas donde algunos términos que habían sido pasados
por alto en la literatura previa pueden cobrar importancia. Posteriormente, car-
acterizaremos en un ejemplo genérico la in�uencia del desorden en los resultados
de un SC analógico. Más aún, nuestros resultados sugieren una conexión entre
la �abilidad y la e�ciencia en un SC: es menos �able exactamente en aquellos
regímenes donde las simulaciones clásicas son menos e�cientes.

Si pudieran satisfacer nuestros cuatro requisitos, SCs podrían revolucionar
el enfoque a problemas en mecánica cuántica, permitiéndonos calcular el com-
portamiento de hamiltonianos complejos así como diseñar nano materiales y
compuestos químicos de gran versadilidad.
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In a vast variety of di�erent contexts, simulations have been used to learn
something that otherwise would be unaccessible to human knowledge. Impor-
tant examples include factory building, product design, complex networks of
computers or social agents, national economies, and even entire societies. But
even certain aspects of such ordinary things as using training wheels on a bicycle
can be understood as a simulation � in this case, a simulation of actually riding
a bicycle, but under better-controlled and safer conditions. In general terms,

Simulation is the process of designing a model of a real or imagined
system and conducting experiments with that model. The purpose of
simulation experiments is to understand the behavior of the system
or evaluate strategies for the operation of the system.

� Encyclopedia of Computer Science [1]

For the simulation to be useful, it should be more practical than the real
system. Often it o�ers a safer experimental environment, as for example when
letting a pilot train on a land-based device before operating a real airplane
(Fig. 1a). In other cases, the simulator permits to reduce costs in terms of
capital or time, as happens for example when using wind tunnel measurements
on a model plane (Fig. 1b) to decide the necessary dimensions and shape before
building a real airplane. In the case of quantum mechanics, simulations deliver,
e.g., solutions to problems from high-energy physics, where experiments on real
systems typically require huge accelerators, and they widen our understanding
of extraterrestrial objects such as neutron stars, which would be impossible to
investigate under laboratory conditions.

However, since the simulation should simplify things, by its very de�nition
it has to be an approximation. This implies that for all practical implementa-
tions, one �rst has to derive a model which describes the system to su�cient
accuracy, as is already expressed in the de�nition given above. Finding the rel-
evant aspects of the system that have to be included in the model is an art, as
the simulator can only answer the questions it is built for, and precisely what
�relevant� means depends on which properties of the simulated system one is
interested in. For instance, for the purpose of simulating a low-gravity environ-
ment, a water tank is adequate (Fig. 1c), but not to reproduce the low-pressure
aspects of space. As an important example in the context of quantum mechan-
ics, the Standard Model of particle physics has been extremely successful since
the mid 1970s. In particular, the experimental discovery of various predicted
particles, such as the W and Z bosons, several quarks, the tau neutrino, and �
very recently � possibly the Higgs boson [2, 3] have con�rmed its great predictive
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a) 

b) 

c) 

Figure 1: Simulators for problems from aviation and aeronautics. (a)
The �rst known �ight simulator. In this simulator for the Antoinette
monoplane from 1909, two wheels allowed a would-be pilot to familiarize him-
/herself with the steers for pitch and roll. Assistants outside would move the
device in response to the pilot's use of the steers. (b) Modern NASA wind
tunnel with the model of a plane. Wind tunnels are based on the insight
that an object �ying through air is physically the same as the air �owing around
the object. Using, e.g., the relationships between their Reynolds numbers,
experiments made on small model planes can thus be translated to real-scale
airplanes. (c) Water tank simulator for low-gravity environments. The
buoyant force of water reduces the e�ects of gravity, such that astronauts can
train for the di�cult environment outside of a space shuttle or space station.
(Pictures from http://en.wikipedia.org.)
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power. It does not, however, contain satisfactory explanations for dark matter
and dark energy, which amount to 96% of the mass-energy of the known uni-
verse. Eventually, its range of validity can only be determined by experiment,
which thus remains the �nal arbiter.

From the practical point of view, the simplest possible model (i.e., which
still displays the phenomenon one is interested in) is easiest to implement. Find-
ing this �optimal model� has, however, also fundamental implications; with it
one often has also identi�ed the necessary ingredients for a given phenomenon.
For instance, if it can be con�rmed that the Fermi�Hubbard model shares the
superconducting properties of cuprates [4, 5], one may assume that one has
discovered the mechanism behind high-Tc superconductivity.

In physics, these abstract models are expressed in the language of mathe-
matics, and the task of simulation reduces to solving the equations describing
the model. When thinking about such a simulation, at least as a scientist sit-
ting for large periods in front of a computer screen, one tends to immediately
think about �computer simulation.� However, wind tunnels, �ight simulators,
or low-gravity water tanks (Fig. 1) are only some examples for simulation de-
vices which are not based on a classical computer but on a physical system.
Such physical implementations are used if a human operator has to be present
because he needs to learn how to act in a new situation; in that case mathemat-
ical descriptions may not be necessary, but the simulator has still to be a model
setup of some sort. A physical implementation can also be advantageous if the
model is too hard to be solved on a classical computer, as is the case in airplane
design due to the di�culty of solving the equations of �uid dynamics. This
problem also occurs in quantum mechanics, where the exponential complexity
of Hilbert space makes exact calculations practically impossible for all but the
simplest systems.

To solve the complex models appearing in quantum many-body physics,
Richard Feynman suggested in his 1982 foundational article [6] to use specially-
designed physical devices, which have now become known under the name quan-
tum simulator (QS). His fundamental insight was that, in order to tackle the
complexity of quantum-mechanical problems, the simulator itself has to be gov-
erned by the laws of quantum mechanics. Following this idea, by designing a
well-controlled system from the bottom up, one could create a computer whose
constituent parts are governed by quantum dynamics generated by a desired
Hamiltonian. Measuring the properties of this nano-engineered system would
then reveal some unknown or di�cult to compute properties of a quantum many-
body model, such as the nature of quantum phase diagrams. This way, insight
may be gathered into many outstanding problems in physics and beyond, such as



6

high-Tc superconductivity or quark con�nement, which are still not completely
understood after decades of research (and in the case of high-Tc superconduc-
tivity, more than 100,000 publications). Under these prospects, scientists are
envisioning a world where special-purpose QSs are readily available at research
facilities, allowing to solve complex Hamiltonians or design nano-materials from
the ground up.

In the rest of this preparatory part, we describe the general idea of quan-
tum simulation and propose a concise de�nition (Sec. 1.1), consisting of four
parts � relevance, control, e�ciency, and reliability. In particular, this de�ni-
tion identi�es an important (and only recently recognized) stepping stone that
quantum simulation has to reach, namely the assurance of its reliability and
possibilities for its validation. We will later discuss this issue in more detail
on a few concrete examples (Part III). In Secs. 1.2 and 1.3, we review two
di�erent conceptual approaches for QSs, namely digital and analog ones. In
Chapter 2, we describe possible implementations of analog quantum simulators
with trapped ions and ultracold atoms in optical lattices. The latter are to date
maybe the best-developed quantum-simulation architecture. In Part II, we will
discuss some of our recent proposals for quantum simulations relying on these
architectures. Here, we focus in particular on new avenues opened by techniques
that go beyond standard optical lattices. Technical details of our calculations
are largely delegated to Part IV. The examples discussed in Part II are intended
to give an overview of the wealth of exotic e�ects which may be amenable to
quantum simulation.



Chapter 1

Theoretical considerations

Fueled by the prospect of solving a broad range of long-standing problems in
strongly-correlated systems, the tools to design, build, and implement quantum
simulators (QSs) [6�8] have rapidly developed and are now reaching sophisti-
cated levels, to such an extent that the journal Science appreciated the recent
evolution of QSs as a scienti�c breakthrough of the year 2010 [9]. Researchers are
making ground-breaking advances in quantum control of a variety of systems,
including ultracold atoms and molecules (see Sec. 2.1), ions (see Sec. 2.2), pho-
tons, circuit quantum electrodynamics (CQED) and polaritons, arti�cial lattices
in solid state, nuclear magnetic resonance (NMR) systems, and superconducting
qubits. Some references for recent reviews and current breakthroughs, illustrat-
ing the progress in the �eld, can be found in Table 1.1. At the current pace,
it is expected that we will soon reach the ability to �nely control many-body
systems whose description is outside the reach of a classical computer. For ex-
ample, modeling interesting physics associated with a quantum system involving
50 spin-1/2 particles � whose general description requires 250 ≈ 1015 complex
numbers � is out of the reach of current classical supercomputers, but perhaps
within the grasp of a QS.

In a �eld brimming with excitement, it is important to critically examine
such high expectations, as we pointed out in Refs. [61, 62]. Real-world imple-
mentations of a QS will always face experimental imperfections, such as noise
due to �nite precision instruments and interactions with the environment. Feyn-
man's QS is often considered as a fundamentally analog device, in the sense that
all operations are carried out continuously. However, while in a digital device
external perturbations have to achieve a certain strength to introduce an er-
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QS architecture current breakthroughs recent reviews

ultracold atoms and molecules [10�23] [24�26]

ions [27�33] [34�36]

photons [37�41] [42]

CQED and polaritons [43�47] [48]

arti�cial lattices in solid state [49]

NMR systems [50�53]

superconducting qubits [54, 55] [56�59]

Table 1.1: Common QS architectures with references for recent break-
throughs and reviews. For a general overview see the strategic report [60].

ror (for example, to �ip a classical bit typically a mesoscopic magnetization or
charge has to be changed), errors in an analog device, even small ones, can
propagate and multiply uncontrollably [63]. Indeed, Landauer, a pioneer of
the physics of information, questioned whether quantum coherence was truly a
powerful resource for computation because it required a continuum of possible
superposition states that were �analog� in nature [64].

This contrasts with the operation of a universal digital quantum computer
as envisioned by David Deutsch, in which all operations are digitized into a
�nite set of logic gates and measurements [65].1 The invention of quantum-
error-correcting codes showed that a quantum computer is in some sense both
analog and digital. Through a discrete set of unitary transformations, we can get
arbitrarily close to any superposition, and imperfections can always be projected
on a discrete set and thus can be corrected [66]. When such a digital quantum
simulation operates with fault-tolerant quantum error correction [67], we can
trust its output to a known �nite precision.

Universal digital quantum computers may serve as digital QSs (DQSs) that
mimic dynamics of some quantum many-body system of interest. While in
such a case error correction and fault tolerance is guaranteed, the question of

1We use the notion of digital QS in this sense, i.e., the digitization of operations, not in
the sense of digits of precision. In particular, the outcome of an analog QS will also yield only
a �nite digital precision, but its operations are performed continuously.
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e�ciency of such a device is highly non-trivial. The number of resources needed
for precise simulation of continuous-time dynamics of a many-body system by
stroboscopic digital applications of local gates might be enormous [68]. One can
also consider DQSs that are experimental systems that have at their disposal
only a limited, non-universal set of gates. In such a situation, the error correction
and fault tolerance are not guaranteed and the question of e�ciency is even more
pertinent.

This raises one central problem of this thesis: can we trust the results ob-
tained with a real-world QS, and under what conditions are they reliable to a
known degree of uncertainty? Although this thesis concentrates on analog QSs
(AQSs), we report also on the state of art of DQSs.

The rest of this chapter is organized as follows. Section 1.1 develops the
general concept of QSs. In the spirit of the DiVincenzo criteria for quantum
computing [69], we present one of the main points of this chapter, a de�ni-
tion of the QS based on four indispensable properties: relevance, controllability,
reliability, and e�ciency. Section 1.2 is devoted exclusively to DQSs. It con-
tains several subsections in which we review various proposals for DQSs, classify
them, and discuss the present state of knowledge concerning their controllabil-
ity, reliability, and e�ciency. Section 1.3 is organized similarly, but focused on
AQSs.

The considerations of this chapter, together with the numerical results of
Chapter 11, which serve to illustrate the need for a careful analysis of the in�u-
ence of imperfections in a real-world QS, can be found in the article [61].

1.1 De�nition of a quantum simulator

Before proceeding, we must establish a clear de�nition of a QS. Following the
considerations on p. 3f, we consider here a QS to be a device which, when mea-
sured, reveals features of an ideal mathematical model, e.g., the phase diagram
for the Bose�Hubbard model on a speci�ed lattice with speci�ed interactions.
A QS may be a special purpose device that simulates a limited class of models,
e.g., the Bose�Hubbard model simulated by atom transport in an optical lat-
tice [70�72] (see Sec. 2.1), or a universal machine that is capable, in principle,
of simulating any Hamiltonian on a �nite-dimensional Hilbert space.

In the spirit of the DiVincenzo criteria for quantum computing [69], we for-
mulate the following �working� de�nition of a QS, consisting in its core of a
few minimal conditions a QS should ful�ll. We will provide some more detailed
explanations below (see also the recent book [8]):
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De�nition

A quantum simulator is a quantum-mechanical, experimental system that mim-
ics a simple model, or a family of simple models of quantum mechanical origin,
such as from condensed matter physics, high energy physics, or quantum chem-
istry.
A useful quantum simulator should ful�ll the following four requirements:

� (a) Relevance: The simulated models should be of some relevance for
applications and/or our understanding of challenges in physics and related
�elds.

� (b) Controllability: A QS should allow for broad control of the param-
eters of the simulated model, for control of initialization and evolution of
the system, and for detection of the relevant observables.

� (c) Reliability: Within some prescribed error, one should be assured
that the observed physics of the QS corresponds faithfully to that of the
ideal model whose properties we seek to understand.

� (d) E�ciency: The QS should solve problems more e�ciently than
is practically possible on a classical computer. (Although it may be of
interest to have a QS realizing a model that is classically computable but
not accessible or realized in nature.)

In the next two sections, we characterize the state-of-the-art knowledge con-
cerning these four points of our de�nition for di�erent types of QSs. But before
that, we would like to add a few general remarks. These will in particular
show that the requirements (c) and (d), which have been largely neglected until
recently, have strong connections to each other and the other requirements.

The requirements (a) to (c) are general and can be demanded of any simula-
tor. For the examples of Fig. 1 on p. 4: (a) Direct tests on airplanes or in space
are expensive and dangerous, making simpler system necessary that can be ma-
nipulated without risk and at reduced cost. (b) Flight simulators allow relevant
operations such as adjusting speed and height, and similar considerations hold
for the simulation of outer space in water tanks. Wind tunnels allow to simulate
di�erent air speeds and measurement of �ow (visualized with smoke) as well as
forces and moments (for these, the model plane is typically mounted on a force
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balance). (c) In the wind tunnel, error bars on air speed, force measurements,
and the dimensions of the model plane have to be precisely known. For the
�ight simulator or the water tank, the conditions in the simulator have to be
realistic enough to prepare the operator adequately (although in these cases the
lack of a mathematical model does not allow to give precise error bars).

For the QS, we only made two additions to these requirements. First, in
order to solve quantum-mechanical problems, the QS has to be of quantum-
mechanical origin. Second, per requirement (d), it has to be more e�cient
than what can be done on a classical computer. Else, we cannot justify the
experimental e�ort and the large cost for building the QS. Hence, (d) is also a
necessary condition for (a): demanding that the mimicked models solve open
problems also implies that these cannot be solved by other means, i.e., they
should be computationally hard for classical computers.

This notion of �computationally hard for classical computers� may have sev-
eral meanings: (i) an e�cient (scalable, with polynomial growth in resources
as a function of problem size) classical algorithm to simulate the model might
not exist, or might not be known; (ii) the e�cient scalable algorithm is known,
but the required size of the simulated model is too large to be simulated under
reasonable time and memory restrictions. However, there might be exceptions
to the general rules. For instance, it is desirable to realize QSs to simulate
and to observe novel phenomena that so far are only theoretically predicted,
even though it might be possible to simulate these phenomena e�ciently with
present computers. Simulating and actually observing in the lab is more than
just simulating abstractly on a computer.

To understand better under which situations a QS may work more e�ciently
than a classical computer, we now discuss shortly which systems can be sim-
ulated e�ciently classically and which ones cannot. Generally speaking, an
important set of tasks for a QS includes

1. Statics of the mimicked system at zero temperature; this implies simula-
tion of ground states and their properties.

2. Statics at thermal equilibrium, i.e., Hamiltonian dynamics at low energies
or thermodynamics at non-zero, typically low, temperatures.

3. Continuous-time dynamics of the system, in particular Hamiltonian dy-
namics out of equilibrium.

4. Dissipative or open-system continuous-time dynamics.
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Classical simulations of quantum systems are currently performed using one
of the following numerical methods (see also Part IV of this thesis or the book
by Lewenstein, Sanpera, and Ahu�nger [8]):

� Quantum Monte Carlo (QMC)

� Systematic perturbation theory

� Exact diagonalizations

� Variational methods, such as mean �eld methods, density-functional the-
ory (DFT), dynamical mean-�eld theory (DMFT), tensor-network states
(TNS), density-matrix renormalization group (DMRG), tree tensor net-
work states (TTN), multiscale entanglement-renormalizationAnsatz (MERA),
projected entangled-pairs states (PEPS), . . .

Each of these methods has its limitations. Let us �rst focus on points 1 and 2
of the previous list of possible QS tasks. In those cases, QMC works for vari-
ous large systems, but fails for Fermi or frustrated systems due to the famous
sign problem [73]. Perturbation theory works only if there exists a small ex-
pansion parameter. Exact diagonalization (ED) works only for small systems
(see Chapter 12.1). In the case of 1D systems, there are special cases which can
be solved exactly via the Jordan�Wigner transform (see Chapter 12.3) or the
Bethe Ansatz [74]. For the other one-dimensional cases, DMRG, MERA, and
TTN techniques (see Chapter 12.2) scale favorably and can, in principle, treat
very large systems [75�77]. In 2D the situation is more complex � similar to ED,
DMRG and TTN work only for reasonably small systems [78�80], whereas 2D
tensor-network methods (PEPS, MERA) in principle work for arbitrarily big
systems (bosonic, and even fermionic [81] or frustrated [82]) but are biased to-
wards slightly entangled states. Mean �eld [83] (see Chapter 13), DFT [84, 85],
or DMFT [86], �nally, have other limitations. For instance, they are essentially
designed for weakly-correlated systems.

As a side remark, in part due to this computational complexity, 2D is often
the most interesting case. In 1D, many systems can be solved e�ciently nu-
merically, and often there are even no phase transitions (which happens if the
�lower critical dimension� is 1D). For large dimension (i.e., larger than or equal
to the �upper critical dimension�, which can be as low as 4D) mean-�eld theo-
ries become exact in the thermodynamic limit. It is only between these critical
dimensions that �interesting� physics happens, and since many parameters scale
as the inverse of the dimension, 2D is often the most interesting situation. For
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this reason, the systems treated further on in this thesis will be mainly in two
dimensions.

Which are then the models that are computationally hard for points 1 and 2
in the previous task list? Generally speaking, computationally hard are �strongly
entangled� models in more than 1D such as

� Fermionic models, with paradigmatic examples being the Fermi�Hubbard
[87] or t − J models for spin 1/2 fermions [4].

� Frustrated models, with paradigmatic examples being antiferromagnetic
(AFM) Heisenberg or XY models on a kagome or anisotropic triangular
lattice (Chapter 3).

� Disordered models, with paradigmatic models being quantum, or even
classical spin glasses [88].

For points 1 and 2, currently available QSs are typically not yet able to out-
perform classical computations. For example, in the temperature regimes of
current experiments, the Fermi�Hubbard model can be simulated classically
by high-temperature expansion [13]. However, as soon as experiments achieve
lower temperatures, this will cease to work and problems of fermionic simula-
tions (such as the sign problem in QMC [73]) will become relevant. In this
light, we may hope that soon QSs will be able to outperform classical comput-
ers for points 1 and 2 of the tasks list, although recent e�orts in variational
Monte Carlo [89] and fermionic tensor networks [90�94] are rapidly providing
ever better variational approximations.

When we move to points 3 and 4 of the task list, i.e., studying dynamics,
we can safely state that

� Quantum dynamics on a long time scale is generally computationally hard.

The latter statement implies that while it might be possible to simulate with
classical computers short-time dynamics in a restricted class of 1D models, such
attempts will nearly always fail at longer time scales. This fact is related to cor-
relation and entanglement spreading according to the Lieb�Robinson theorem
that states that, after a su�ciently long evolution, states can become strongly
entangled ([95�100], see also the review [101]). Recently, this complexity led to
the demonstration that a QS can outperform even the most sophisticated, state-
of-the-art classical algorithms: in an experiment based on ultracold bosonic
atoms, the controlled dynamics ran for longer times than present classical algo-
rithms based on DMRG could e�ciently keep track of [19].
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Finally, the requirement of e�ciency is interrelated with the reliability of a
quantum simulator. In fact, we could try to improve the precision of a QS by
averaging more experiments, but in hypersensitive regimes (like close to quan-
tum phase transitions) the necessary number of repetitions can grow rapidly,
possibly bringing the overall e�ciency of the QS down to the level of classical
computers. A connection between (c) and (d) could also be relevant for cross
validation [102]. In this popular approach, it has been proposed to compare the
results of two di�erent physical realizations performing a quantum simulation
of the same model. From this, one hopes to �nd universal features which then
would be ascribed to the simulated model. It may be, however, that the uni-
versal features shared by multiple platforms are robust only because they could
have been predicted e�ciently with some classical algorithm. Or, even worse,
because they are associated to imperfections which a�ect the di�erent QSs in
the same way (such as the emergence of Gri�th's phases [103] or the change of
the order quantum phase transitions [104] due to disorder).

The necessity of validation also connects requirement (c) to (d). In fact, one
would like to require su�cient control over model parameters to be able to set
them in a regime where the model becomes tractable by classical simulations.
Comparing the results from both approaches provides an elementary instance
of validating the QS. Furthermore, an important idea proposed and analyzed
in Ref. [61] (see also Ref. [62]) is a more sophisticated manner of validation,
namely the checking of the sensitivity of the quantum simulation with respect
to addition of noise and/or disorder. Such a consistency check, which is only
possible with su�cient control over the system, may allow to provide error
bounds and in some cases even an extrapolation of relevant observables to the
ideal, imperfection-free case.

Note, however, that there are alternative possibilities for a partial validation,
as pointed out to us by Z. Hadzibabic [105]. Namely, in some situations where
it is impossible to simulate the system classically, it might still be possible to
test by classical means the sensibleness of the quantum-simulation results. As
a trivial example, the measured ground-state energy should ful�ll all known
bounds, such as variational ones, and others.

Up to here, our remarks concerning the four requirements (a-d) of our de�-
nition were of quite general nature, without invoking a speci�c implementation
of the QS. In the following two sections, we explore � �rst for digital, then for
analog QSs � the state of the art concerning (b-d) in more detail.2

2Since the relevance (a) depends on the concrete model (and, indeed, the individual taste),
we do not go into much detail here.
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1.2 Digital quantum simulators (DQS)

In this section, we classify DQSs, discuss their general properties, various proto-
cols for implementing such devices, and summarize state-of-the-art knowledge
concerning their controllability, reliability, and e�ciency.

1.2.1 Universal digital quantum simulators (UDQS)

While the concept of QSs should be traced back to the proposal by Feynman [6],
these ideas were made concrete by Seth Lloyd who showed that any local many-
body unitary evolution governed by a local Hamiltonian could be implemented
by the control a�orded by a universal digital quantum computer [106]. For this
reason, in the following we will term Lloyd's DQS a �universal DQS� (UDQS).
In order to realize it in a laboratory, an experimentalist has to have to his/her
disposal a universal set of unitary quantum gates.

The task of a UDQS is to simulate the unitary time-evolution operator of
a desired quantum system, which can then be employed to extract quantities
like energy gaps and ground-state properties. The action of the global, unitary,
continuous-time evolution operator is mimicked by appropriate stroboscopic ap-
plications of various quantum gates. The mathematical basis for such a digital-
ization is given by the Trotter�Suzuki formula. Let us list below some possible
realizations and properties of UDQSs:

Realizations: While implementation of a fully-functioning large-scale digital
quantum computer is still in development, there are several physical systems
for which universal sets of quantum gates are available, and for which proof-
of-principle UDQSs exist. These systems include ultracold ions [36], ultracold
trapped atoms interacting via cold collisions [26] or the Rydberg-blockade mech-
anism [107], CQED [108], and superconducting qubits. The �rst concrete pro-
posals for realizations of UDQSs where given in Refs. [109, 110], and �rst ex-
periments were performed in NMR systems [50�52]. Using a digital trapped-ion
architecture with a stroboscopic sequence of gates, the quantum simulation of
Ising, XY, and XYZ spin models in a transverse �eld was recently demonstrated
in a proof-of-principle experiment with up to six ions [30].

Controllability: In accordance with Lloyd's pioneering work [106], with the
help of a universal set of gates a UDQS is perfectly controllable. This control
allows for simulation of practically any local Hamiltonian evolution, as well as
for the preparation, manipulation, and detection of relevant states and observ-
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ables of the system in question. Recently, Preskill's group has also proven that
the scattering amplitudes in simple relativistic quantum �eld theories can be
e�ciently (in polynomial time) simulated by UDQSs [111, 112] (see also the
Perspectives article [62]). Note, however, that not much is known about the
possibility to quantum simulate, using UDQSs, systems with long-range inter-
actions like Coulomb or dipole�dipole interactions.

Reliability: A UDQS is the only DQS which has guaranteed access to error
correction and fault tolerance [113, 114] (for the �rst proof-of-principle experi-
ments see Refs. [55, 115�119]).

E�ciency without errors: So far, the community has mostly focused on
developing requirement (b), control, for suitable relevant models, both theoreti-
cally and experimentally. The conditions (c), reliability, and (d), e�ciency, have
received considerably less attention, especially their interrelation. Most work
that has been done is focused on e�ciency in the absence of errors. For this case,
Lloyd showed that a Trotter�Suzuki decomposition of a time-evolution operator
is e�cient in the sense that each logic gate acts on a scalable Hilbert space
associated with a small subset of qubits and the total number of gates Ng scales
polynomially, Ng ∼ τ2/ε, where τ is the time of evolution to be simulated and ε
is the error in the result [106]. Aharanov and Ta-Shma showed that a UDQS is
e�cient when the Hamiltonian is �sparse,� i.e., the number of nonzero entries
in any row is at most poly(log(D)), where D is the dimension of the many-body
Hilbert space [120]. In the absence of errors, the computational complexity of
such a simulation has been well studied [121, 122].

E�ciency in the presence of errors: In the presence of errors, however, en-
suring reliability to a desired precision has profound implications for e�ciency
even in a UDQS on a fault-tolerant quantum computer [68, 123]. In the digital
approach with a �nite universal gate set, one applies error-correction schemes
that can make the whole computation fault-tolerant when the error per opera-
tion is below a certain threshold � thus UDQSs ful�ll the reliability requirement
(c). The Trotter expansion, however, can scale poorly when error correction
is included, as emphasized by Brown et al. [68]. For a given error ε, associ-
ated to b = − log2(ε) bits of precision, the number of gates in the expansion
scales as ∼ 1/ε, which corresponds to a scaling as ∼ 2b. Hence, in terms of the
required degree of precision b, in the presence of errors fault-tolerant imple-
mentation of this Trotter expansion grows exponentially in the number of gates
and the time to perform the simulation. Moreover, Brown et al. showed that
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for a small number of qubits where one might avoid error correction, analog
control errors on the logic gates can lead to faulty results, negating require-
ment (c), and robust control pulses become essential. In a similar vein, Clark
et al. [124] performed a careful analysis of the resources necessary to implement
the Abrams�Lloyd algorithm [125] to calculate the ground-state energy of the
1D transverse Ising model on a state-of-the-art fault-tolerant ion-trap quantum
computer. Again, the overhead in the number of time steps to fault-tolerantly
implement the quantum-phase estimation algorithm grows exponentially with
the degree of precision required. Assuming realistic values for gate times and
failure probabilities, they found that for 100 spins, in order to achieve b ≥ 10
bits of precision, at least two levels of concatenated error correction are neces-
sary, requiring at least 100 days of run time on the ion-trap quantum computer;
for b ≥ 18, three levels are necessary, requiring at least 7.5 × 103 years! On the
up-side, for a �xed precision, the growth of the number of resources with system
size is only weak.

1.2.2 Non-universal digital quantum simulators
(nUDQS)

A non-universal DQS (nUDQS) is in many aspects similar to a UDQS, except
that it is a special-purpose quantum computer with a restricted, non-universal
set of unitary quantum gates. This may appear, for example, in situations where
it is experimentally simpler to design a setup for a speci�c quantum simulation
which does not require a full universal set of gates. The task of a nUDQS is the
same as that of a UDQS: to simulate real- or imaginary-time quantum many-
body dynamics of a certain quantum system described by a certain Hamiltonian.
Let us list below some properties and possible realizations of such a nUDQS:

Realizations: In all systems in which the universal sets of quantum gates
are available, one can also restrict the set of gates and realize a nUDSQ. For
example, in some of the recent experiments of the Blatt group [30], only a nec-
essary subset of the available set of universal gates was used. All of the systems
discussed above (atomic, superconducting, etc.) are potentially platforms for
implementing nUDQSs. A seminal example of this approach goes back to the
so-called �Average Hamiltonian Theory� in NMR [126, 127].

Controllability: nUDQSs are typically not perfectly controllable. Still, in
most experimental realizations they should allow for a wide control of parame-
ters, which in turn should allow for simulations of wide families of Hamiltonians
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of interest.

Error correction: For nUDQSs, it is not guaranteed that error correction and
fault-tolerant computing is possible.

E�ciency and reliability: All of the above discussion concerning UDQSs
applies also to nUDQSs. But there are many novel, open problems associated
speci�cally with nUDQSs, since, e.g., sometimes giving up on universality may
result in substantial e�ciency gains. For example, universality could be sacri-
�ced in favor of a highly precise and fast gate (a simple example is an external
homogeneous �eld such as used in the experiments of Lanyon and coworkers [30],
which in a UDQS might have to be applied as a sequence of one-qubit gates).
In particular, it is possible that for some classes of nUDQSs the problems of
Trotterization are not as severe as in the case of UDQSs [107].

1.2.3 Open-system digital quantum simulators (OSDQS)

An open-system DQS (OSDQS) is quite a new concept. In contrast to DQSs
aimed at Hamiltonian evolutions, OSDQSs are designed to simulate open-system,
dissipative dynamics described in the simplest situation by a Markovian Lind-
blad master equation for the density matrix of a many-body system of interest.
OSDQSs can be aimed at continuous-time simulation of open-system dynam-
ics, or at a designed dissipative dynamics toward a speci�c stationary state, in
particular a pure, highly-entangled state [128�130].

The experimentalist who realizes an OSDQS, in contrast to a Hamiltonian
DQS, needs to have at his/her disposal some non-unitary, dissipative quantum
gates, which mathematically correspond to Lindblad super-operators acting on
the density matrix in the master equation. This fact opens a plethora of new
questions. For example, while the conditions for controllability of an open quan-
tum systems are under exploration [131], it remains an open question what the
universal sets of gates for this type of evolution are. In the case of unitary
computing, the universal set of gates allows for realization of arbitrary unitary
transformations acting on the (pure) state of the system. In the case of open-
system dynamics, a universal set of gates should allow for the realization of
an arbitrary completely positive map (CPM) acting on the density matrix of a
system. The problem of error correction in this context is unsolved as well. As
these examples indicate, in the area of OSDQSs there are more open questions
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than answers.

Realizations: In all systems in which the universal sets of quantum gates are
available, typically one can also realize dissipative gates by tracing out ancillas
and realize in this way an OSDQS. While the �rst concrete proposals for open-
system DQS concerned Rydberg gates [107], the �rst experimental realizations
have been achieved with trapped ions [31]. Good alternatives seem to be atomic
ensembles or NMR [132].

Controllability: OSDQSs are typically not universal in the sense of achiev-
ing an arbitrary quantum map. Nevertheless many experimental realizations
should allow for a wide control of parameters, which in turn should allow for
simulations of open-system (Markovian) evolutions for wide families of open
systems. As pointed out in Refs. [129, 130], due to the purely dissipative na-
ture of the process, this way of doing quantum information processing exhibits
some inherent robustness and de�es some of the DiVincenzo criteria for quan-
tum computation. In particular, there is a natural class of problems that can
be solved by open-system DQSs or AQSs: the preparation of ground states of
frustration-free quantum Hamiltonians.

Error correction: For OSDQSs, it is not known if error correction and fault-
tolerant computing is possible as for a UDQS. In fact, the standard schemes
for error correction assume that the quantum computer (i.e., DQS) follows a
unitary evolution, i.e., dissipation and decoherence are considered as sources
of errors, which the error correction is supposed to remove. To our knowledge,
there are no works where these are considered as desired, so that error correction
is supposed to restore imperfect implementations of them. However, due to the
purely dissipative nature of the process, this type of simulation has a certain
intrinsic robustness and built-in �error correction.� An example can be found in
the OSDQS implementation of Kitaev's toric code [31, 107].

E�ciency and reliability: All of the above discussion concerning (n)UDQSs
applies also to OSDQSs. However, to date most of these general aspects con-
cerning OSDQSs have not yet been investigated systematically. First results in
the Rydberg OSDQS for Kitaev's toric code [107] show that errors in the gates
result in e�ective heating. For the case of approaching the stationary (ground)
state of frustration-free Hamiltonians as in Refs. [128�130], the e�ciency de-
pends on the size of the gap between the ground state and the excited states, or
more precisely, on the real part of the �rst non-zero eigenvalue of the Lindblad
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equation, which determines the rate of approaching the stationary state.

1.3 Analog quantum simulators (AQS)

Similar to the previous section, we now classify AQSs with respect to the four
requirements of our de�nition. AQSs, as DQSs designed to mimic the quantum
dynamics of interesting quantum many-body models, typically rely on �always
on� inter-particle interactions that are augmented by fast local unitary control.
By de�nition they operate in continuous time, and thus Trotterization problems
do not concern them. On the other hand, standard error-correction methods
cannot be applied.

1.3.1 Universal analog quantum simulators (UAQS)

Sometimes known as �Hamiltonian simulation,� the goal of a universal AQS
(UAQS) is to transform � through a well-designed control sequence � a given
Hamiltonian acting on a �xed Hilbert space into an arbitrary target Hamilto-
nian. While not conceived as a practical AQS device, the concept explores an
abstract quantum-information-processing system capable of simulating unitary
evolution for all (or at least all local) Hamiltonians.

Realizations: To our knowledge there are no concrete proposals for experi-
mental realizations of UAQSs.

Controllability: While for UDQSs the issue is the access to the universal
set of quantum gates, for UAQSs the question is what the necessary resources
are (not necessarily quantum gates) that allow for the simulation of all Hamil-
tonian evolutions of interest. Universal control sets (as opposed to universal
digital logic gates) that generate an arbitrary Hamiltonian evolution have been
studied [133, 134]. Typically, such an approach using �always on� interactions
is associated with more limited control than is available in a universal digital
quantum computer.

Reliability: UAQSs do not allow for standard error correction and fault toler-
ance such as holds for UDQSs.

E�ciency and Reliability: Dür et al. studied a hybrid construction of
always-on interactions with stroboscopic digital control to achieve a univer-
sal Hamiltonian simulator via the Trotter construction [135]. They found that
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decoherence and analog timing errors can make such a device ine�cient. Other
issues concerning UAQSs are essentially the same as for non-universal AQSs, so
we leave their discussion to the next section. The only di�erence is that UAQSs,
by de�nition, are capable of performing tests of robustness of the quantum sim-
ulations that we propose in the following section. These tests are based on
adding disorder or noise in a controlled manner to the simulated Hamiltonian,
which for non-universal AQSs may require additional resources.

1.3.2 Non-universal analog quantum simulators
(nUAQS), or simply AQS

Non-universal AQSs (nUAQS, or simply AQS) constitute the most popular class
of QSs, but despite this fact there is little known about their reliability and ef-
�ciency. Therefore, we focus on them in the remainder of this thesis. AQSs are
experimental systems that can mimic continuous-time unitary Hamiltonian evo-
lution for a given family of quantum many-body models. Their characteristics
are as follows:

Realizations: The most advanced experiments with AQSs have been with ul-
tracold atoms in optical lattices (see Chapter 2.1). The degree of quantum
control is maybe even better in trapped-ion systems (see Chapter 2.2). Al-
though so far these are limited to few ions, the �rst step toward large-scale QSs
was recently achieved [136]. In the last years, there has also been substantial
progress with other possible candidates for AQS, such as photonic systems [37�
41], photonic and polariton systems [43�47], or arti�cial lattices in solid-state
systems [49, 137].

Controllability: Most, if not all, of the proposals and realizations of AQSs
allow for at least partial controllability. The paradigm examples are AQSs em-
ploying ultracold atoms in optical lattices. Here, the typical controls involve
optical lattice parameters (e.g., laser intensity or wavelength), lattice geometry
(see Chapters 3 and 4), lattice dimensionality, temperature, and other thermo-
dynamical control parameters, as well as atomic interaction strength and na-
ture (van der Waals interactions are controlled via Feshbach resonances, while
dipole interactions by the strength of the dipoles, lattice-site-potential shape,
etc.). Further, tunneling can be laser or shaking assisted and can mimic arti�-
cial Abelian or even non-Abelian gauge �elds (cf. Chapter 5). Moreover, dipo-
lar interactions may lead to non-standard terms in Hubbard models, such as
occupation-dependent tunneling (see Chapter 10), and orbital physics can also
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be quantum simulated (see Chapters 6 and 9). For more details, see Sec. 2.1 of
this thesis and Chapter 4 of the book by Lewenstein, Sanpera, and Ahu�nger [8].

Error correction: AQSs do not allow for standard error correction and fault
tolerance as applied to DQS.

E�ciency: The issues of reliability and e�ciency are essential for the usefulness
of any QS. In the context of AQSs, however, there has been little analysis of these
problems. Firm criteria on computational complexity and e�ciency for AQSs
are in general di�cult to address and have not yet been established. First of all,
they require that for the considered quantum models the classical computational
complexity of the static or dynamical properties is known. Unfortunately, in the
realm of classical computation, there are few proofs that a given computational
problem is outside the class P or not, or even if there is a clear delineation
between certain complexity classes.3

Reliability: So far, there exists no perfect and rigorous way to assess the
reliability of AQSs. There are, however, several complementary approaches.
One proposal is to cross validate a variety of di�erent physical systems (e.g.,
atoms in optical lattices, trapped ions, and superconducting qubits) [102]. The
hope is that since every platform has its own set of imperfections, they will
agree on the universal properties of the ideal quantum many-body model being
simulated. While it remains to be seen whether such universal features would
emerge, this approach has a number of shortcomings. For example, there may be
models that have only one known implementation, or di�erent implementations
may su�er in the same way from imperfections, hence consistently exhibiting
features associated with noise rather than with the ideal model.

A more systematic approach is to validate the results of a QS against analyt-
ical and numerical predictions in the regime of parameters where such compar-
ison is possible. This was recently demonstrated in experiments with ultracold
bosonic and fermionic atoms [11�13]; amazingly, in one case numerical simula-
tions helped to correct the expected experimental temperature by up to 30%.
Relying solely on validation from classical calculations, however, would restrict
QSs to models in regimes where these e�cient classical algorithms exist � that
means contradicting the relevance and usefulness requirement, point (a) of our
de�nition of a QS. In general, we desire to operate QSs in regimes whose prop-

3As described on p. 12f, in recent years there has been considerable progress in under-
standing that the ground states of 1D gapped systems can be e�ciently simulated by classical
methods [138�140], and that quantum dynamics is in general computationally hard [100, 101].
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erties are di�cult to deduce by classical methods, e.g., near or at the critical
point of a QPT, or in genuine terra incognita regimes. In these regimes, how-
ever, many relevant models become hypersensitive to perturbations [141, 142],
and even small levels of noise may spoil completely the results of the quantum
simulation. For example, the capability of an analog quantum-information pro-
cessor whose dynamics is characterized by quantum chaos (i.e., well described
by random matrix theory) can be severely impacted by imperfections [143, 144].
More importantly, this also means that successfully validating a QS in a classi-
cally accessible regime does not give certainty about its robustness in regimes
which are classically not accessible.

1.3.3 Open-system analog quantum simulators (OSAQS)

Finally, let us mention open-system AQS (OSAQSs). Similar to OSDQSs, OS-
AQSs are supposed to simulate dissipative dynamics for the density matrix of a
many-body system of interest, aimed at a simulation of open-system dynamics or
at a designed dissipative dynamics toward a stationary state of interest. Many-
body Lindblad master equations relevant for this approach have been studied in
the context of evaporative, laser, and sympathetic cooling of degenerate atomic
gases. Recently, there has been a revival of interest in such systems due to the
prospect of using them for the preparation of interesting pure, highly-entangled
states [128�130].

The experimentalist who realizes an OSAQS, in contrast to an AQS has to
have to his/her disposal some non-unitary, dissipative quantum mechanism. In
a sense, all designed cooling or entropy-reduction methods are of this sort.

Realizations: All AQS systems can, in principle, be used as OSAQSs.

Controllability: OSAQSs are typically not universal in a sense similar to
OSDQSs; they allow neither for the simulation of arbitrary (local) Markovian
dynamics nor for the preparation of arbitrary states. Nevertheless, in most
of the proposals [128�130] or experimental realizations they allow for a wide
control of parameters, which in turn allows to simulate open-system (Markovian)
evolutions for wide families of open systems.

Error correction: For OSAQSs, it is not known in how far error correction
and fault-tolerant computing is possible, similarly to OSDQSs.

E�ciency and reliability: All of the above discussion concerning AQSs ap-
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plies also to OSAQSs. But, as in the case of OSDQSs, due to the purely dis-
sipative nature of the process, this type of simulation has a certain amount of
intrinsic robustness and built-in �error correction.� Still, again as in the case of
OSDQSs, most of these general aspects have not yet been investigated system-
atically.

1.4 Summary

In Tables 1.2 and 1.3, we summarize to which extent digital and analog QSs
ful�ll the requirements (b-d) of our de�nition. From our discussion, it becomes
clear that currently these aspects are best-studied for UDQSs and nUAQSs.

All of the above considerations clearly lead to the fundamental question:
Can we trust quantum simulators? One can hope that they are at least more
robust than full-�edged quantum computers, since very often the amount of out-
put information required from a QS may be signi�cantly smaller than what one
could demand from a universal quantum computer. QSs should provide infor-
mation about phase diagrams, correlation functions, order parameters, perhaps
even critical exponents or nonlocal hidden order parameters. But a common
assumption is that these quantities are more robust than what is required for a
universal quantum computer. In fact, quantum computer algorithms will typ-
ically need to form correlations in a basis unrelated to the physical implemen-
tation (qubits). For example, Shor's algorithm [145] develops a wavefunction
where the peaks of high probability are equally spaced in the computational ba-
sis. In contrast, a QS needs to form correlations that are, in general, physically
related to the elementary components of the simulator.

Before we can address the issue of robustness of QSs in more detail, we
need to provide some background about the QS architectures considered in this
thesis, including their advantages and shortcomings. This forms the subject
of the next two chapters. The issue of robustness will also be an recurring
leitmotif in Part II, where we present � exempli�ed on several proposals and
experimental realizations � an overview of the current trends in optical-lattice
QSs. From these, we can acquire a deeper understanding of these architectures
for analog quantum simulation, which will be useful in the discussion of their
robustness, which we postpone until Part III.
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digital quantum simulators

universal non-univ. open

Realizations trapped ions, ultracold
neutral or Rydberg
atoms, CQED,
superconducting qubits,
. . .

same as
UDQS

as UDQS
(especially trapped

ions, ultracold

neutral or Rydberg

atoms)

Control full (long-range inter-
actions di�cult ?)

partial partial

Error
correction
(EC)

with exponential
overhead (Trotterization

issues)

not known not known

Reliability full not
guaranteed

not guaranteed

E�ciency e�cient without EC
(for general class of models);
much less e�cient with
EC (Trotterization issues)

at least as
UDQS,
but may not
be provable

can be better
than UDQS

Table 1.2: Classi�cation of DQSs (universal vs. non-universal, Hamiltonian
vs. open) focusing especially on the requirements (b) to (d) of our de�nition
(Sec. 1.1). Particularly well studied are UDQS. Detailed descriptions are pro-
vided in Sec. 1.2.
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analog quantum simulators

universal non-univ. open

Realizations ? many (trapped ions,

ultracold atoms, photon and

polariton systems, arti�cial

solid-state lattices, . . . )

same as nUAQS

Control full partial (but long-range
interactions �easy�)

partial

Error
correction
(EC)

no
standard
EC

no standard EC no standard EC

Reliability ? ? (partial validation schemes

available)

? (partial validation

schemes available)

E�ciency ? ? ?

Table 1.3: Classi�cation of AQSs (universal vs. non-universal, Hamiltonian
vs. open) focusing especially on the requirements (b) to (d) of our de�nition
(Sec. 1.1). Detailed descriptions are provided in Sec. 1.3. Control over a
large number of realizations has been achieved for nUAQS. Error-correction,
reliability, and e�ciency, however, are badly studied for all types of AQSs
(question marks).



Chapter 2

Ultracold atoms and ions as
analog quantum simulators

There are currently various distinct architectures which are used as AQSs (see
Table 1.3, realizations), each with its own advantages and disadvantages. In
this thesis, we are concerned with ultracold atoms in optical lattices [26] and
trapped ions [34�36], which we describe now in a non-technical manner.

2.1 Ultracold atoms in optical lattices

In 1998, Jaksch et al. recognized the possibilities for many-body quantum sim-
ulation o�ered by the recently produced Bose�Einstein condensates (BECs) of
atomic gases [70]. As they pointed out, by introducing the BEC in an optical
lattice, the Bose�Hubbard model can be simulated. This model accurately de-
scribes Cooper pairs tunneling between superconducting grains, and in the limit
of strong interaction it can be mapped to an XY quantum magnet.

Perhaps even more important is its fermionic variant, which describes � in the
most simpli�ed way � the interplay between kinematics and interactions of elec-
trons in crystal lattices. It has been suggested that this so called Fermi�Hubbard
model [87] contains the physics relevant for high-temperature superconductivity
[4]. For over three decades, the hope of achieving room-temperature supercon-
ductors, which would allow to losslessly conduct electrical current in everyday
situations, has driven intense e�orts aimed at a thorough understanding of this
e�ect. However, this understanding has not yet been achieved, in part because
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we do not know of any e�cient way to solve generic fermionic models in more
than one dimension. A reliable quantum simulation of such models may, hence,
be of extreme practical relevance.

Here, we explain brie�y how optical lattices are realized experimentally, and
we show why atoms loaded into one are well described by Hubbard models. We
also explain the possibly most common measurement technique in these setups,
namely time-of-�ight imaging. After that, we discuss current research directions
as well as the main advantages of optical-lattice experiments as compared to
other QS setups. A pedagogical introduction to optical-lattice QSs can be found
in the book [8].

2.1.1 Experimental realization of optical lattices

An optical lattice (sketched in Fig. 2.1) is a standing wave of light, created by
counter-propagating laser beams which are o�-resonant to an atomic transition.
The AC-Stark shift leads to an intensity-dependent potential for the atoms,
which can be repulsive or attractive, depending on the sign of the detuning
between the light wave-length and the atom transition. Using three pairs of
counterpropagating beams, one can create a three-dimensional, periodic poten-
tial for the atoms. Since in the far �eld of the laser the only spatial dependence
is longitudinal and monochromatic, the resulting periodic potential forms an
essentially perfect lattice structure, where the constant distance between two
lattice minima is given by the laser wavelength.

Laser Laser atom 

tunneling 

interaction U 

t 

Figure 2.1: Sketch of an optical lattice. For not too shallow lattices, atoms
are con�ned to the lattice minima, and the kinetics is exhausted by tunneling
processes between these (t). In the most standard scenario, interactions are
only important between (bosonic) atoms on the same site (U). This constitutes
the famous Bose�Hubbard model, Eq. (2.1).

The time scales achievable in optical-lattice experiments are essentially lim-
ited by heating, which can appear due to phase instabilities of the lasers forming
the lattice or spontaneous emission following absorption of lattice-laser photons
by the atoms [146]. Other sources of noise include �uctuations of the amplitudes
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of the lasers, which, however, may be possible to avoid using a dressed optical
lattice that is created with the help of an auxiliary excited atomic state [147].

2.1.2 Derivation of the Bose�Hubbard model

The motion of the atoms in the periodic optical lattice is e�ectively governed
by the Hubbard model. Therefore, nowadays it is possible to realize almost
perfectly (i.e., under well-controlled approximations) a model which was intro-
duced in the 1960s as an extreme abstraction to describe electrons in solid-state
crystals, retaining only the most essential e�ects [148]. Here, we give a short
derivation for the standard version of the bosonic variant of this model. Af-
terwards, we point out various possibilities for non-standard extensions and
improvements, which we will treat later in the thesis.

The Hamiltonian governing the bosonic atom-�eld operators Ψ̂(r) in the
optical lattice reads in second quantization

Ĥ = ∫ d3r Ψ̂�
(r)(−

h̵2∇2

2Mat
+ Vlat(r) + µ + Vtrap(r)) Ψ̂(r)

+
1

2
∫ d3r∫ d3r′Ψ̂�

(r)Ψ̂�
(r′)Vint(r − r

′
)Ψ̂(r′)Ψ̂(r) . (2.1)

Here, Mat is the atom mass, Vlat(r) the optical-lattice potential, µ the chemical
potential for the atoms, and Vtrap(r) is an external con�nement, typically har-
monic, preventing the atoms from laterally escaping the lattice. In the standard
scenario, it is su�cient to approximate the interaction between the ultracold
bosonic atoms by contact interactions

Vint(r − r
′
) =

4πash̵
2

Mat
δ(r − r′) , (2.2)

where as is the s-wave scattering length, h̵ the reduced Planck constant, and
δ(r − r′) the Dirac delta function.

In the presence of the periodic potential, it is convenient to express the �eld
operators Ψ̂(r) in terms of the lowest-band Wannier functions wi(r), which
form a basis consisting of states that are exponentially localized at the lattice
minima i. That is, we expand

Ψ̂(r) = ∑
i

wi(r)b̂i (2.3)

with b̂i the annihilation operator for a boson at site i. It is su�cient to consider
only the lowest band if all energy scales are small compared to the excitation
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energy to the second band, which in the most typical experimental situations
is the case. Expanding the �eld operators in Hamiltonian (2.1) according to
Eq. (2.3), we obtain the Bose�Hubbard model,

ĤBH = −∑
i,j

tij

2
(b̂�i b̂j + h.c.) +∑

i

Ui
2
n̂i(n̂i − 1) −∑

i

µin̂i (2.4)

where b̂i, b̂
�
i are bosonic annihilation and creation operators, and n̂i = b̂

�
i b̂i is

the corresponding number operator. The matrix elements Ui and tij , denote,
respectively, on-site interactions and tunneling between sites i and j, and µi =
µ − V trap

i captures the combined e�ects of the chemical potential µ and the
con�ning potential. We have the local trap potential

V trap
i = ∫ d3r w⋆

i (r)Vtrapwi(r) , (2.5)

and the on-site interactions

Ui =
4πh̵2as
Mat

∫ d3r ∣wi(r)∣
4
. (2.6)

Here, we took only same-site contributions into account. In most situations, this
is su�cient due to the exponential localization and the resulting small overlap
of Wannier functions associated to di�erent sites. The hopping matrix elements
read

tij = −∫ d3r w⋆
i (r)(−

h̵2∇2

2Mat
+ Vlat(r))wj(r) . (2.7)

For shallow lattices, nearest-neighbors matrix elements of tij can be large, but
the strong localization of the Wannier orbitals typically allows to neglect hop-
ping between sites at larger distances.

These terms constitute the standard Bose�Hubbard model, which � although
strikingly simple � is already di�cult to solve in many situations (see also the
discussion on p. 12f ), making its experimental quantum simulation very useful.

In its derivation, we made a number of (well-controlled) approximations.
Consistency with the lowest-band approximation requires a large energy sepa-
ration from the �rst excited band, which is achieved if the width of the Wannier
functions ζ is small compared to the lattice spacing d, i.e., ζ ≪ d. Further,
to avoid excitations to the higher bands, the interaction energy Uni(ni − 1)/2
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has to be smaller than the band gap.1 Additionally, the approximation of the
interaction potential as point-like requires as ≪ ζ.

While in typical situations these conditions can be readily ful�lled, we will
discuss in this thesis various scenarios beyond standard cubic optical lattices
where the simple Bose�Hubbard model has to be extended, opening the pos-
sibility to observe novel phenomena. For example, for large scattering lengths
as ∼ d, the Wannier functions are broadened by interaction e�ects, leading to
an admixture of higher bands. This situation can be captured by an e�ective
single-band Hamiltonian with occupation-dependent parameters, as discussed in
Chapter 9. There, we also address the situation, where higher-band e�ects be-
come important due to a large Uni(ni − 1)/2 (while as remains small). Higher
bands can also be purposefully occupied, which allows to quantum simulate
orbital physics and models similar to color models from quantum chromody-
namics. We discuss this situation in Chapter 6. We also consider cases where
the interaction potential Vint(r − r

′) is dominated by strong dipolar interac-
tions, extending the Bose�Hubbard model by non-negligible o�-site interactions
(Chapter 7) and correlated tunneling terms (Chapter 10). Finally, in Chapter 4,
we discuss an example where an exotic lattice geometry renders next-to-NN tun-
neling important.

Already in its most simple formulation, the Bose�Hubbard model shows
interesting physics. Most strikingly, it harbors a quantum phase transition
between two qualitatively very di�erent regimes. These can be accessed by
adjusting the ratio tij/Ui which is achieved simply by changing the strength of
the laser beams forming the optical lattice. Namely, increasing the lattice depth
typically decreases the tunneling matrix elements tij exponentially (due to the
decreasing overlap of the Wannier functions at neighboring sites i and j), while
it increases the on-site interactions Ui slowly (i.e., as a power law; this is due
to the stronger con�nement of the Wannier functions in deeper optical lattices
and the resulting stronger on-site overlap).

If the optical lattice is weak (tij/Ui ≫ 1), the atoms are free to tunnel
between di�erent potential wells, and they retain the long-range coherence that
they had in the free BEC cloud. The resulting state is a super�uid (SF) with
long-range phase coherence and considerable particle-number �uctuations. In
the opposite limit of a strong optical lattice (tij/Ui ≪ 1), for integer �lling, the
atoms cannot overcome the barriers between the potential wells and localize

1For deep lattices, one can obtain a good estimate for the gap by approximating the lattice
sites as harmonic potentials. The gap is then given by the frequency of the associated harmonic
oscillator, which is roughly

√
4ErecV0

/h̵, where Erec is the recoil energy and V0 the depth of
the optical lattice [70].
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at the lattice minima. Coherence between sites is lost and the atoms enter
an insulating state, a so called Mott insulator (MI). In this state, the particle
number at each site has almost no �uctuations and is �xed to an integer value.
This SF-to-MI transition has been observed in a ground-breaking experiment
[72] only a few years after the theoretical proposal [70].

2.1.3 Time-of-�ight imaging of the atom momentum dis-
tribution

A typical and well-developed measurement technique allowing to observe the
SF�MI transition is the so called time-of-�ight (ToF) imaging [24, 149, 150] of
the atom momentum distribution. The main idea for this is to abruptly remove
the optical lattice and the external con�nements holding the atoms, and to let
the atoms expand freely. The absorption images of the atom density distribution
after a su�ciently large expansion time hold then information about the in-trap
o�-diagonal correlations, as we show now.

After switching o� all con�nements, the cloud becomes very dilute very
rapidly, so that interactions play only a minor role during the expansion and the
cloud expands almost ballistically. Further, after long enough expansion times
τToF the cloud is spread out su�ciently such that the initial in-trap distribution
of the atoms does not play any role and can be approximated as point-like. Then,
the atom distribution at time τ = τToF is solely given by the initial momentum
distribution at time τ = 0,

nb (r)∣
τ=τToF

= nb (k =
Matr

h̵τToF
)∣
τ=0

. (2.8)

In other words, an atom with initial momentum k moves during time τToF from
r ≈ 0 to r = h̵kτToF/Mat. The in-trap momentum distribution can be expressed
in atom-�eld operators Ψ̂(r) as

nb (k)∣
τ=0

= ⟨Ψ̂�
(k)Ψ̂(k)⟩ = ∫ d3r∫ d3r′eik⋅(r−r

′)
⟨Ψ̂�

(r)Ψ̂(r′)⟩ . (2.9)

In the lowest-band approximation, one can again expand the �eld operators in
Eq. (2.9) in terms of the Wannier functions, Eq. (2.3), yielding for a transla-
tionally invariant system with wi (r) = w (r − ri),

nb (k)∣
τ=0

= ∣w(k)∣
2
∑
i,j

e−ik⋅(ri−rj) ⟨b̂�i b̂j⟩ , (2.10)
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where
w (k) = ∫ d3r eik⋅rw (r) (2.11)

is given by the Fourier transform of the Wannier orbitals. The Wannier envelope
∣w(k)∣

2 has a priori nothing to do with the Hubbard model, but is a non-
universal feature re�ecting the form of the lattice-site potentials.

Equations (2.10) and (2.8) map the in-trap correlations ⟨b̂�i b̂j⟩ onto the real-
space distribution nb (r) after free expansion. The resulting distribution can be
understood as the interference pattern of elementary partial waves originating
from all lattice sites. nb (r) can be measured in a straightforward manner by
shining resonant light through the expanded atom cloud. The light, which
can be observed by a CCD camera, will be attenuated corresponding to the
density of atoms. This technique requires a su�ciently large number of atoms
for good absorption pictures and su�cient space in the vacuum chamber for
reaching large expansion times. Also, the ToF measurement is destructive.
It has, however, the huge advantage that the resolution of standard imaging
systems is su�cient to observe the expanded atom cloud.

The o�-diagonal correlations ⟨b̂�i b̂j⟩ measured in this way have proven an
important observable, as they allow to distinguish the primary phenomenon
occurring in typical optical lattices, namely the MI�SF quantum phase tran-
sition [72]: In the MI phase there are no o�-diagonal correlations, and the
images reveal a smeared-out cloud with no particular features (Fig. 2.2b).2 In
the SF phase, on the other hand, the atoms condense at certain k vectors and
the resulting o�-diagonal long-range correlations appear as strong peaks at the
corresponding positions (modulo reciprocal lattice vectors) in the momentum
distribution (Fig. 2.2a and c). The contrast of the resulting ToF interference
patterns is an important observable for quantifying long-range coherence.

2.1.4 Advantages and future directions

One huge advantage of optical-lattice experiments is the large number of atoms
which can be controlled, reaching several thousands. Until recently, however,
a big handicap was that only global measurements were possible, such as the
ToF images described above. However, a few years ago single-site manipulation
and readout has been achieved [11, 152�154], allowing in-situ measurements of
many-body states. These give access to the diagonal correlations, thus yielding

2Except the features given by the Wannier envelope. In most cases, these are trivial, but in
Chapter 6.3 we show that they can allow to distinguish di�erent quantum phases of fermions
in the p-band of an optical lattice.
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a) 

b) 

c) 

SF 

MI 

SF 

Figure 2.2: Typical experimental time-of-�ight images (from the cover
of the PhD thesis of Markus Greiner [151]). (a) At low lattice depths,
the system is in a SF with coherence between sites. The atoms are condensed
at speci�c k vectors, resulting in strong peaks in the momentum distribution.
(b) For strong lattices, tunneling is suppressed, and the atoms enter a
Mott-insulating phase. Correlations between sites are lost, and the atoms
are localized at individual lattice minima, resulting in a broad, featureless
momentum distribution. (c) Ramping back to low lattice depths re-
establishes a SF state, and the characteristic peaks associated to long-range
correlations are restored. This panel demonstrates that the loss of coherence
is not due to experimental imperfections but to a quantum phase transition.
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important information complementary to the o�-diagonal correlations recorded
in ToF measurements.

Another feature of optical lattices is their extreme cleanness and regularity.
This goes so far that e�ects of disorder can only be observed if they are intro-
duced �by hand.� The control over disorder has now achieved very sophisticated
levels [155], which has allowed to observe for the �rst time Anderson localiza-
tion of matter waves [156�158], an e�ect which had been predicted theoretically
almost �fty years before [159].

A further advantage is that the dimensionality of optical lattices can be
tuned easily. By ramping up the strength of one of the counter-propagating laser
pairs, large potential barriers along 2D plains can be created, prohibiting tun-
neling along this direction, and the system becomes e�ectively two-dimensional.
Increasing similarly the strength of one of the other pairs renders the system ef-
fectively one-dimensional. Further, the concept can be easily extended to more
exotic geometries than the standard, simple cubic optical lattice. To this, the
angle between the laser beams and their polarization has merely to be cho-
sen appropriately. Current research e�ort focuses in particular on triangular
[160] (see Chapter 3), hexagonal [161, 162] (see Chapters 4 and 5), and kagome
lattices [163] (see also Chapter 5).

Since the early stages, optical lattice experiments have achieved a consider-
able maturity, making it to date possibly the most versatile QS architecture. For
a pedagogical derivation and a description of the manifold of models simulatable
in optical lattices, see the recent book [8]. The Hubbard model is perhaps the
simplest lattice model capturing the interplay between interactions and kinetics,
but in recent years, it has been extended in many di�erent directions. These in-
clude quantum simulation of quantum magnetism [16, 164, 165] (see Chapter 3),
the study of higher-band e�ects [166] (see Chapters 6 and 9), or the trapping of
atoms or molecules with permanent dipole moments [167], allowing the investi-
gation of long-range interacting systems (see Chapter 10 and also Chapter 7).
Further, neutral atoms do not feel the e�ect of a real magnetic �eld as elec-
trons do, requiring clever schemes to create �arti�cial� magnetic �elds [10, 20].
Taking this even further, also arti�cial (Abelian and non-Abelian) gauge �elds
can now been implemented [22, 23], see Chapter 5. Other recent developments
include experiments on Fermionic atoms [13, 15, 18, 87, 154, 168�171] or dynam-
ics [19, 21, 172], which also demonstrated e�ects similar to the Kibble�Zurek
mechanism [173]. In all of these arenas, exciting progress can be expected in
the next years.
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2.2 Trapped ions

Another promising architecture for quantum simulations are trapped ions. The
corresponding technology has been developed for several decades, mostly for
precision metrology such as for mass spectroscopy or atomic clocks. In the
mid-1990's, it experienced an important boost due to the increasing interest in
quantum computing, and in particular to the �rst proposal for a universal quan-
tum computer based on trapped ions, the famous Cirac�Zoller article [174]. In
2004, Porras and Cirac proposed to use this technological know-how for quan-
tum simulations of quantum spin models [175]. In a di�erent context, similar
spin models were derived earlier by Mintert and Wunderlich [176], who studied
the possibility of individual ion addressing using inhomogeneous magnetic �elds.

2.2.1 Trap setups for ultracold ions

To appropriately manipulate the ions, they have to be held stably within a
prede�ned experimental area. But how can an ion trap be realized, when Earn-
shaw's theorem forbids to create a stable potential minimum for charged par-
ticles through electrostatic forces? One way to circumvent this obstacle was
found by Paul and Steinwedel in the 1950's; they demonstrated that an e�ec-
tive potential minimum for charged particles can result as the time-average of
quickly-oscillating, time-dependent electric �elds. For this work, Paul received
the Nobel prize in physics in 1989. The trapping device relying on this idea,
known under the name �Paul trap,� is currently the standard setup for trapped-
ion QSs (although alternative trapping devices such as Penning traps or surface
traps are making giant advances in recent years, see below).

A Paul trap typically consists of four parallel rods; in one realization, one
applies an ac current on two opposing rods, while the other two are grounded
(see Fig. 2.3a). As explained in Fig. 2.3b, this can create a stable trapping
potential, con�ning the ions to a tube parallel to the rods. To prevent an
escape of the ions along the longitudinal direction, one adds end caps at a static
voltage. In a strong enough trap, and at su�ciently low temperatures, the
repulsive interactions between ions in combination with the trapping potential
will arrange them in a periodic structure, a so called Coulomb crystal. Large
enough crystals are su�ciently homogeneous to allow quantum simulation of
periodic lattice models, where the ion positions act as lattice sites. Natural
lattice structures arising this way are linear chains (indicated by red bullets in
Fig. 2.3a), zig-zag chains [177], helical structures and disk-shaped triangular
lattices [178], and even more complex patterns in three dimensions [179].
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Figure 2.3: (a) Sketch of a Paul trap. It typically consists of four rods,
with two opposing ones at ac voltage (dark) and the other two grounded (light
color). End caps at dc voltage prevent longitudinal escape of the ions. (b)
Cut through the central rods, explaining the trapping principle. The
alternating voltage leads to a periodic repetition of focusing and anti-focusing
forces (indicated by the orange ellipsoid). If the frequency is high enough, the
ions (sketched for positive charge) cannot follow the force and get trapped in
the center due to their inertia. The black lines exemplify �eld lines.

2.2.2 Advantages, disadvantages, and current directions

Trapped ions have a number of advantages. Control over state preparation,
manipulation, and read-out can exceed the one achieved in typical setups con-
sisting of ultracold neutral atoms. In particular, single-site addressability is
straight-forward, since � due to the strong electro-static repulsion � the dis-
tance between ions is on the order of micrometers. For neutral atoms in optical
lattices, this requires considerable additional e�ort involving sophisticated op-
tical instruments [11, 152�154]. Moreover, because of the long-range nature of
Coulomb-interactions, long-range interactions are achieved easily [175, 180, 181]
(see Chapter 7), without the large experimental e�ort necessary in ultracold-
atom setups.

Unfortunately, Paul traps cannot be easily scaled to large numbers of ions,
and current experiments are typically carried out with on the order of 10 ions.
A related drawback is that currently it is di�cult to extend the quantum sim-
ulation ideas to simple, regular three dimensional systems. To reach the large
numbers necessary for a useful quantum simulation, novel technologies are un-
der development, where QSs are pro�ting enormously from the e�orts aimed at
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ions Figure 2.4: Sketch of a surface
microtrap array. Engineering an
electrode design on a surface (here
sketched as individual microcoils à la
Chiaverini et al. [182]), can allow to
reach scalable trapping architectures
of arbitrary geometry.

scalable quantum computers. A particularly promising approach is the use of
micro-fabricated surface traps [182] (see Fig. 2.4), which could allow to reach
practically arbitrary lattice geometries in a scalable manner [183]. Another
promising trapping technology is Penning traps [184], where recently the �rst
step has been done towards quantum simulation with trapped ions on large
scales [136]. Further, recent developments in trapping ions solely by optical
means [185, 186] open a whole new avenue, including the possibility of bringing
neutral atoms and trapped ions together in a single setup, thus amongst others
allowing the study of charge-transfer processes.

To date, a large variety of quantum simulations employing trapped ions
has been proposed, some of which have been implemented experimentally (see
the reviews [34�36]). The list includes neural networks [187, 188], controlled
disorder [189], the Frenkel�Kontorova model [190], the Kibble�Zurek scenario
[191], relativistic e�ects related to the Dirac equation [32, 33, 192, 193], Hawking
radiation [194, 195], or unitary random quantum walks [196]. Further, the ion
vibrations can simulate Bose�Einstein condensates [197], SF�MI transitions and
the Tonks�Girardeau gas [198], and non-Abelian gauge �elds [199]. Also, new
proposals have extended the initially basic spin models, amongst others, to
spin�boson models [200], models with spins larger than S = 1/2 [201], strongly
frustrated models [202, 203] (see also Chapter 3), and models with long-range
interaction [180, 181, 204] (see also Chapter 7). And, indeed, the quantum spin
models that sparked the interest in trapped-ion quantum simulation [175] have
been realized in proof-of-principle experiments [27�29].

While this thesis focuses on AQSs, important breakthroughs are currently
being achieved on the front of trapped-ion implementations of DQSs. Perhaps
most noteworthy are the experimental implementations of a universal [30] and
of an open-system DQS [31].
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In this part of the present thesis, we discuss several new directions of quan-
tum simulations which go beyond standard optical lattices. Our aim is not so
much to treat each subject exhaustively, but rather to give an overview of the
extremely diverse and rich physics attainable in ultracold-atom and trapped-
ion quantum simulators. The presented models have in common that they pose
considerable challenges for analytical or numerical methods, thus making them
relevant targets for quantum simulation.

In particular, we describe Chapter

how frustrated lattice geometries may lead to exotic
quantum-disordered phases,

3

how spin-dependent lattices allow to tune the many-body
behavior of spin mixtures, including forced antiferromagnetic
and supersolid states,

4

how combining exotic lattice geometries with time-periodic
driving generates topological and quantum spin Hall
insulators as well as non-Abelian gauge �elds,

5

how fermions in higher bands achieve ground states which
break time-reversal symmetry,

6

how combining trapped ions and optical lattices permits to
quantum simulate long-range interactions, and

7

how one can engineer spin correlations in optical lattices, in
particular in arrays of atomic micro-ensembles, using
quantum non-demolition measurements.

8

The last chapter is an exception, as it does not describe how to realize a
speci�c model. Instead, it rather presents a generally applicable method to
manipulate quantum correlations in optical lattices. As such, it may be useful
for engineering states appearing in the models of the other chapters. We delegate
technical details to Part IV, so that the chapters contained here can focus on
presenting the considered system, its relevance in a wider context, and our
results.
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Chapter 3

Frustrated quantum
magnetism with ultracold
bosons in a triangular lattice

As described in Chapter 2.1, ultracold neutral atoms, con�ned in optical lattices
allow the quantum simulation of a large variety of strongly-correlated systems.
A particularly appealing perspective in this arena is the study of lattice-boson
models with frustration, because, as mentioned in Chapter 1.1, from a theo-
retical point of view, bosonic frustration in the presence of strong interparticle
interactions on a lattice represents a very hard problem in dimensions d > 1.
Indeed, controlled perturbative expansions are not available in the strongly cor-
related regime, semiclassical methods break down in the presence of strong
quantum �uctuations enhanced by frustration, and in QMC simulations the so
called sign problem occurs. Hence, the implementation of bosonic frustration in
optical-lattice experiments would represent a fundamental instance of a relevant
quantum simulation.

In general, one calls a system frustrated if not all constraints (in our case,
for the energy) can be optimized at the same time. In the standard situation,
bosons in an optical lattice, described by the simple Bose�Hubbard model (2.4)
are not frustrated. Geometrical frustration can arise, however, if the hopping
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matrix elements are, contrary to the usual case, positive, −tij > 0,

ĤBH = ∑
⟨i,j⟩

t̃ij

2
(b̂�i b̂j + h.c.) +

U

2
∑
i

n̂i(n̂i − 1) (3.1)

where we de�ned t̃ij = ∣t̃ij ∣ = −tij . Further, b̂i, b̂
�
i are bosonic operators, n̂i = b̂

�
i b̂i

the corresponding number operator, and ⟨i, j⟩ represents pairs of NN sites.
To illustrate how the sign change in the Bose�Hubbard model leads to frus-

tration of the kinetic energy, consider the state of a single boson spread over
two sites, i and j, ∣ψ⟩ = (∣1i,0j⟩ + eiϕ ∣0i,1j⟩) /

√
2. The interaction terms in the

Bose�Hubbard Hamiltonian (3.1) are una�ected by the relative phase ϕ, but the
tunneling term depends on it, ⟨ψ∣ t̃ij (b̂

�
i b̂j + b̂

�
j b̂i) ∣ψ⟩ = t̃ij cosϕ. For the stan-

dard situation of ferromagnetic tunneling, t̃ij < 0, the energy is minimized if the
relative phase between all sites vanishes, leading to Bose-condensation in the
zero mode. For antiferromagnetic (AFM) tunneling, t̃ij > 0, on the other hand,
the energy of each bond is minimal if the relative phase is ϕ = π.1 As illustrated
in Fig. 3.1a, on a triangle, e.g., this cannot be ful�lled for all bonds, because
the single-valuedness of the wave function demands that the phase around a
plaquette be a multiple of 2π. If, e.g., the wave function collects a phase of π
along the diagonal bonds (dashed), the phase along the horizontal bond (solid)
is 0, which is energetically maximally disfavored. Hence, the ground-state wave-
function has to �nd a compromise, which in extended lattices can lead to novel
phases with spiral order properties or even quantum-disordered phases. On the
other hand, simple square lattices with only nearest-neighbor (NN) tunneling
are not frustrated (along every bond a phase of π can be picked up, leading to a
total phase around a plaquette of 4π). The study of frustration e�ects requires
more exotic lattice geometries than that.

In an optical-lattice experiment, frustration in the intersite hopping ampli-
tudes (i.e., inversion of the sign of the hopping matrix elements) can be created,
for instance, by coupling the bosons to a (arti�cial) magnetic �eld via Raman
schemes [205, 206], where fundamental steps have recently been taken experi-
mentally [10, 20, 23]. This is formally equivalent to a description of the system
in a rotating reference frame, which implies that the system is subject to the
spontaneous appearance of vortices. Such vortices can form ordered arrays (vor-
tex crystals) coexisting with Bose condensation, which consequently takes place

1A generalization to an arbitrary number Nb of bosons is straightforward. In that case,

the SF state for two sites can be written as ∣ΨNb
⟩ ∝ (b̂�i + eiϕb̂�j)

Nb ∣0i,0j⟩. The expectation
value of the tunneling operator t̃ij (b̂�i b̂j + b̂

�
j b̂i) is also for this wave function ∝ t̃ij cosϕ.
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Figure 3.1: (a) Illustration of frustration. If the bosons pick up a phase of
π along the dashed bonds (the energetically optimal case for positive hopping
matrix elements), the relative phase along the horizontal, solid bond has to
be 0, which is energetically least favored. Therefore, not all three bonds of a
triangle can minimize their energy simultaneously. (Phases are illustrated by
blue arrows, sites by gray bullets.) (b) The geometry of the SATL is an
extrapolation of the triangle to an extended lattice, with two di�erent bond
strengths, t̃τ1 = t1 along τ1 = ex and t̃τ2,3 = t2 along τ2,3 = (ex ±

√
3ey) /2 (the

lattice spacing is set to 1). This strongly frustrated lattice exhibits quantum
disorder.

in a macroscopic wavefunction sustaining persisting circulating currents (see
Ref. [207] and references therein); or they can even disrupt condensation com-
pletely, and lead to a disordered insulating state [208]. Such disordered states
are notoriously di�cult to study theoretically, which makes them relevant tar-
gets for quantum simulators (QSs).

Alternatively, and experimentally maybe more straightforward, one can em-
ploy a periodical shaking of the optical lattice to invert the sign of the hopping
matrix elements [22, 209�211]. Using this, the group of K. Sengstock has already
realized frustrated hoppings [17] (although in the weakly-interacting, classical
regime). We will describe in the next section, how such a lattice shaking can
achieve the desired sign change. A similar model as Eq. (3.1) can also be realized
in ion traps with anharmonicities in the local trapping minima [202]. Hence, we
can expect exciting progress in this respect in the near future.

In the following, we will in particular analyze the frustrated model (3.1) in
the extreme quantum limit of in�nite repulsion U →∞ and half �lling ⟨n̂i⟩ = 1/2.
In this limit, the Holstein�Primako� transformation

n̂i → Szi + 1/2 , (3.2a)

b̂�i → S+i , b̂i → S−i (3.2b)
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maps the Bose�Hubbard model to the S = 1/2 XY Hamiltonian [212]

ĤS = ∑
⟨i,j⟩

t̃ij (S
x
i S

x
j + S yi S

y
j ) , (3.3)

where S µi is the µth component of the S = 1/2 spin operator acting on site
i. In two dimensions, frustrated spin models such as Eq. (3.3) exhibit ground
states with spiral order, the magnetic counterpart to the aforementioned Bose-
condensed states with vortex arrays. In special circumstances, the interplay be-
tween quantum �uctuations and frustration may lead to disordered spin-liquid
states, which correspond to bosonic insulating phases. XY antiferromagnets
can also describe the physics of Cooper pairs in arrays of ultra-small Josephson
junctions [213], and they can be regarded as the limiting case of AFM Hamil-
tonians with planar anisotropy in the couplings, relevant to the description of
frustrated AFM materials.2

In the next section, we explain how the sign change and thus the frustra-
tion of the hopping matrix elements in Eq. (3.1) can be achieved in optical-
lattice experiments simply by shaking the lattice. Then, as an example for
the exotic quantum e�ects expected due to frustration in the strongly interact-
ing regime, we discuss in Sec. 3.2 the ground-state phase diagram of the XY
quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL).
There, we �nd several candidate regions for exotic quantum-disordered behav-
ior. In Sec. 3.3, we study the experimentally relevant �nite-temperature phase
diagram, on which the ground-state phases clearly imprint their properties. In
Sec. 3.4, we show that a generalization of the model to the spatially completely
anisotropic triangular lattice (SCATL) can give valuable insight into the physics
and stability of the putative quantum-disordered phases. We summarize our
�ndings for these frustrated quantum spin models in Sec. 3.5. The prospect of
observing these exotic phases makes the considered models important targets
for QSs. Finally, we discuss in Sec. 3.6 the SATL in the limit of weak interac-
tions, which is relevant to current experiments with ultracold atoms. In that
section, we also provide some concluding remarks for this chapter.

2For a discussion of magnetic materials with Heisenberg interactions, see Chapter 14.2.
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3.1 Realizing the positive-hopping Hubbard mo-
del via shaking

As we explain now, a simple periodical driving of the optical lattice can invert
the negative sign typically associated with hopping matrix elements in optical-
lattice experiments, leading to the Bose�Hubbard model (3.1) with frustrated
hopping. A publication of this discussion is in preparation [214].

3.1.1 The shaken lattice system

Consider a gas of ultracold neutral atoms subjected to an optical lattice potential
Vlat(r) as well as to a uniform force Fω(τ) that for times τ ≥ 0 is time periodic,3

Fω(τ + T ) = Fω(τ) , (3.4)

with T = 2π
ω
, and that averages to zero over a period,

1

T
∫

T

0
dτ Fω(τ) = 0. (3.5)

The force has been switched on before τ = 0 in some way, after the system had
been prepared at time τp, τp < 0.

If the lattice is su�ciently deep, such that its band gap is large compared
to any other energy scale such as temperature, chemical potential, or frequency
and strength of the periodic forcing, it is justi�ed to describe the system within a
Wannier-type basis comprising a single localized state i at each lattice minimum
ri. Following the steps in Chapter 2.1 leading to the Bose�Hubbard model (2.4),
we can arrive at the driven Hubbard-type Hamiltonian [70]

Ĥ = − ∑
⟨ij⟩

tij b̂
�
i b̂j +∑

i

U

2
n̂i(n̂i − 1) +∑

i

vωi (τ)n̂i. (3.6)

Here, we assume bosonic particles described by annihilation and number opera-
tors b̂i and n̂i = b̂

�
i b̂i, respectively, acting on the lattice site i.4 For deep lattices,

the kinetics is exhausted by tunneling between pairs ⟨ij⟩ of neighboring lat-
tice sites, described by negative tunneling matrix elements −tij < 0. The second
term of the Hamiltonian comprises on-site interactions with strength U . Finally,

3We use τ for the time variable to avoid confusion with the hopping matrix elements tij .
4The restriction to bosons is not crucial and the results of this section can easily be gen-

eralized to the case of fermions or mixtures of di�erent particle species or spin states.
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the last term describes the time-periodic force in terms of the time-dependent
potential

vωi (τ) = −Fω(τ) ⋅ ri =Matẍ(τ) ⋅ r. (3.7)

A convenient way to realize such a situation experimentally is to �shake� an
optical lattice along a time-periodic orbit xω(τ), xω(τ + T ) = xω(τ), such that
in the laboratory frame of reference the particles are subjected to the potential
Vlat(r − x(τ)) [215]. As a consequence, in the reference frame co-moving with
the lattice, particles of mass Mat are subjected to the uniform inertial force5

Fω(τ) = −Matẍω(τ). (3.8)

We are interested in lattice shaking with frequencies on the order of the recoil
energy (up to a few kilo Hertz) and amplitudes on the order of a lattice constant
(a micron or less). Such a lattice motion can be achieved, e.g., via acousto-
optical modulators to control in a time-dependent fashion the detuning between
the di�erent laser beams creating the optical lattice [17, 22, 216]. If the lattice
is created by retrore�ecting laser beams at a mirror, the lattice motion can also
be achieved by mounting the mirror on a Piezo actuator and moving it back
and forth [215].

The Hubbard description (3.6) is possible only in the reference frame moving
with the lattice. This simpli�cation relies on the fact that the particles are
dragged with the minima of the deep lattice while the lattice is translated.
Particles can move relative to the lattice only via tunneling between the minima
of the deep lattice.

3.1.2 Tunnel modi�cation by o�-resonant shaking

To avoid undesired excitations and associated heating e�ects, we consider the
regime of o�-resonant forcing, with the frequency large compared to the energy
scales given by both kinetics and interactions,

h̵ω ≫ ∣tij ∣, ∣U ∣, (3.9)

5For a single particle described by the wave function ψ(r, τ) and the Hamiltonian

h(r, τ) = p2

2Mat
+ Vlat(r − x), the transformation to the co-moving frame, ψ → uψ and

h → uhu� − ih̵uu̇� = p2

2Mat
+ Vlat(r) − Matẍ ⋅ r, is accomplished by the unitary operator

u = exp ( − i
h̵ ∫

t
−∞

dτ ′
Matẍ

2
(τ ′)

2
+ i
h̵
Matẋ(τ) ⋅ r) exp ( i

h̵
x(τ) ⋅ p), with p = −ih̵∇r . The in-

teractions between many particles, depending on relative coordinates only, are not altered
when transforming to the co-moving frame.
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while still being lower than the band gap, h̵ω ≪ EG. At the same time, we allow
for strong forcing, with amplitudes Kij ∼ h̵ω that can be much larger than ∣U ∣

and ∣tij ∣. Here, Kij is de�ned as the amplitude of the potential modulations

vωij(τ) ≡ v
ω
i (τ) − v

ω
j (τ) =Matẍ(τ) ⋅ rij (3.10)

between two neighboring sites i and j, with rij = ri − rj .
At this point, it is instructive to perform a unitary transformation. If the

state ∣ψ(τ)⟩ describes the time-evolution of the system as it is determined by
the Hamiltonian (3.6), we can transform to a Dirac picture and �split o�� the
time evolution as it would be generated solely by the forcing. Namely,

∣ψ(τ)⟩ = Ûω(τ)∣ψ
′
(τ)⟩ , (3.11)

with Ûω(τ) = exp ( − i
h̵ ∫

τ
τp

dτ ′Ĥω(τ
′)), where Ĥω(τ) denotes the driving term

∑i v
ω
i (τ)n̂i of the Hamiltonian (3.6). We introduce

Aω(τ) = −∫
τ

τp
dτ ′Fω(τ

′
) =Matẋω(τ) , (3.12)

where to evaluate the integral, we have used that, before the shaking has been
switched on, the lattice had been at rest, ẋω(τp) = 0. Further, we de�ne

χωi (τ) =
1

h̵
ri ⋅Aω(τ) . (3.13)

With this, we can write

Ûω(τ) = exp( − i∑
i

n̂iχ
ω
i (τ) .) (3.14)

The time-evolution of ∣ψ′(τ)⟩ is then governed by the Hamiltonian

Ĥ
′
(τ) = Û �

ω(τ)Ĥ(τ)Ûω(τ) − ih̵Û
�
ω(τ)[dτ Ûω(τ)] (3.15)

= −∑
⟨ij⟩

tije
iχωij(τ)b̂�i b̂j +∑

i

U

2
n̂i(n̂i − 1) , (3.16)

with phases

χωij(τ) = χ
ω
i (τ) − χ

ω
j (τ) . (3.17)
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The operator Ûω(τ) has a clear physical interpretation. Namely, it trans-
lates, in a time-dependent oscillatory fashion, all particles in quasimomentum
by ∆pω(τ) = −Aω(τ). Since

1

T
∫

τ+T

τ
dτ ′Aω(τ

′
) = 0 , (3.18)

[use the de�nition of Aω(τ), Eq. (3.12), and xω(τ + T ) = xω(τ)] the induced
momentum shift averages to zero in time. Equation (3.18) is a consequence of
the fact that the forcing is created inertially by time-periodic lattice shaking,
starting from a lattice initially at rest, since we used the condition ẋω(τp) = 0
to arrive at Eq. (3.12). The property (3.18) turns out to be quite convenient.
Evaluating it for τ = 0, and again using the de�nition (3.12), we can rewrite the
integral appearing in Eq. (3.18) as

−∫

0

τp
dτ ′Fω(τ

′
) =

1

T
∫

T

0
dτ ∫

τ

0
dτ ′Fω(τ

′
) . (3.19)

We can incorporate this to be able to work without integrating over the switching
history (τp ≤ τ ≤ 0) and without specifying the way the force Fω(τ) is created,
simply by de�ning the unitary transformation (3.14) through [164]

Aω(τ) = −∫
τ

0
dτ ′Fω(τ

′
) +

1

T
∫

T

0
dτ ∫

τ

0
dτ ′Fω(τ

′
) . (3.20)

Under the assumption of o�-resonant forcing, Eq. (3.9), we can now apply a
simple approximation to the dynamics generated by Ĥ′(τ). The rate at which
the state ∣ψ′(τ)⟩ changes in time (de�ned as the rate at which occupations and
phases at a site i change) is determined by the amplitudes of the terms of Ĥ′(τ)
and, thus, of the order of ∣tij ∣/h̵ or ∣U ∣/h̵. If the frequency ω of the periodic
forcing is large compared to these rates, as assumed initially through Eq. (3.9),
one can approximately integrate out the rapid oscillations of the hopping phase
factors eiχ

ω
ij(τ) by averaging Ĥ′(τ) over a period in time,

Ĥ
′
(τ) ≈

1

T
∫

τ+T

τ
dτ Ĥ′

(τ) =
1

T
∫

T

0
dτ Ĥ′

(τ) ≡ Ĥe� . (3.21)

One �nds

Ĥe� = −∑
⟨ij⟩

te�ij b̂
�
i b̂j +∑

i

U

2
n̂i(n̂i − 1) ; (3.22)
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the dynamics is described by an e�ective time-independent Hamiltonian that
possesses the form of the undriven Hubbard model, with modi�ed tunneling
matrix elements

te�ij = tij
1

T
∫

T

0
dτ eiχ

ω
ij(τ) . (3.23)

Within this approximation, the time evolution of ∣ψ(τ)⟩ is described by

∣ψ(τ)⟩ ≈ Ûω(τ) exp(−iĤe�τ/h̵)∣ψ
′
(0)⟩ . (3.24)

In Eq. (3.24), we have achieved to separate the dynamics of the system on short
and long time scales. The state evolves slowly, on time scales determined by
tunneling te�ij and interaction U , according to the modi�ed Hubbard Hamilto-

nian Ĥe�. Superimposed to this non-trivial slow dynamics is the simple rapid
oscillatory translation of all particles in quasimomentum described by Ûω(τ).

For sinusoidal forcing, the e�ective modi�cation of tunneling as in Eq. (3.23)
has been pointed out in Refs. [217�219]. The derivation presented here takes
into account also the interactions among the particles, which are allowed to be
strong compared to the tunneling kinetics. The e�ective tunneling modi�cation
through rapid forcing as presented here, can be derived in a more systematic
fashion using quantum Floquet theory [220]. The Floquet approach gives a
transparent account also for processes beyond the e�ective hopping approxi-
mation that become relevant when h̵ω becomes comparable to tij or U [221].
Moreover, it allows to study the response of the system to slow parameter vari-
ations.

Considering the special case of sinusoidal forcing of frequency ω obtained by
shaking the lattice along the elliptical orbital

xω(τ) = xc cos(ωτ) +xs sin(ωτ), (3.25)

Eq. (3.23) gives
te�ij = tijJ0(

Kij
h̵ω

). (3.26)

In deriving Eq. (3.26), we have used the relation exp(iz sin(α)) = ∑
∞
`=−∞ ei`αJ`(z)

involving Bessel functions J`. Moreover, from Eq. (3.10) we get vωij(τ) =

Matẋ(τ) ⋅ rij ≡Kij cos(ωt − ϕij), with

Kij =Matω
2
√

(xc ⋅ rij)2 + (xs ⋅ rij)2 (3.27)

and
ϕij = atan(xs ⋅ rij/xc ⋅ rij) . (3.28)
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Equation (3.26) predicts a strong modi�cation of tunneling if the amplitude
of the forcing Kij becomes comparable to h̵ω. Because of the o�-resonance con-
dition (3.9) this is the regime of strong driving, Kij ≫ ∣U ∣, ∣tij ∣; accordingly, the
Bessel-type dependence of te�ij on the amplitudeKij re�ects the non-perturbative
in�uence of the forcing. The Bessel function J0(z) possesses its �rst zero at
z ≈ 2.4. Ramping up the strengths of the forcing Kij/h̵ω towards this value,
the tunneling can be strongly suppressed. For even stronger forcing, crossing
the �rst zero, the hopping matrix element changes sign. De�ning t̃ij = −te�ij
(> 0), this allows the promised generation of a Bose�Hubbard with frustrated
hoppings, Eq. (3.1).

The experimental control over this technique has increased considerably in
recent years. The Bessel-type modi�cation of tunneling (3.26), including the
sign change, has �rst been probed successfully via the coherent expansion dy-
namics of a BEC in a sinusoidally-shaken, one-dimensional optical lattice [216].
It has also been observed with single particles in a shaken double well [222]. The
tunnel suppression described by Eq. (3.23) has, moreover, been successfully used
as a tool to enter the regime of strong coupling and, in that way, to dynamically
control the transition of a bosonic SF to a Mott insulator [220, 223]. In the
context of frustrated magnetism, in the weakly-interacting regime of a triangu-
lar optical lattice, the sign change allowed observation of Bose condensation at
�nite quasimomentum, spontaneously breaking time-reversal symmetry [17]. In
the next section, we will discuss the exotic quantum behavior that can appear
� due to the sign change and resulting frustrated hoppings � in a triangular
optical lattice at strong interactions.

Finally, one can also interpret the unitary transformation Ûω(τ) as a gauge
transformation from a description in terms of the scalar potential Vω(r, τ),
represented by the discrete potential vωi (τ) in the Hamiltonian (3.6), to a de-
scription of the forcing by the vector potential Aω(τ) = ∫

τ
τp

dτ ′∇rVω(r, τ
′),

represented by the Peierls phase factors eiχ
ω
ij(τ) attached to the hopping matrix

elements in the new Hamiltonian (3.16). We will exploit this interpretation in
Chapter 5, where we show that the associated Peierls phase can be used to
quantum simulate topological insulators and non-Abelian SU(2) gauge �elds. A
�rst step towards the quantum simulation of gauge �elds via lattice shaking has
been done in recent experiments in Hamburg [22].
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3.2 The quantum spatially anisotropic triangular
lattice (SATL) at T = 0

A particularly interesting model in the arena of frustrated hard-core bosons,
governed by Hamiltonian (3.3), is the spatially anisotropic triangular lattice
(SATL) with NN XY interactions (see Fig. 3.1b). This model is � besides be-
ing a paradigmatic model for frustrated quantum antiferromagnetism � relevant
to the experiments in Hamburg [17]. In this section, we employ Takahashi's
modi�ed spin-wave theory (MSWT) [224] with ordering-vector optimization,
supplemented by ED and PEPS data, to compute the ground-state phase di-
agram of this model, which all give a consistent qualitative picture.6 We �nd
that the zero-temperature phase diagram includes a 1D quasi-ordered phase, a
2D Néel-ordered phase, and a 2D spiraling-ordered phase. Most notably, we
also �nd strong indications that the various ordered or quasi-ordered phases
are separated by spin-liquid phases with short-range correlations, in analogy
to what has been predicted for the Heisenberg model on the same lattice (see
Chapter 14.2.1). In Sec. 3.3, we will extend our results to the phase diagram at
low but �nite temperatures which is relevant for realistic experiments. As we
will see, it is dominated by the ground-state behavior.

For coherence with the technique used � spin-wave theory � and for a better
comparison with existing results in the literature, this section will be generally
expressed in the language of spin physics, but guidance will be provided on how
to translate the magnetic observables into bosonic ones.

The rest of this section is organized as follows. In Sec. 3.2.1, to form intu-
ition, we present the classical phase diagram and known results on the quantum
XY SATL at zero temperature. The following sections are devoted to analyz-
ing this model using MSWT, ED, and PEPS. First, in Sec. 3.2.2, we discuss
various indicators from MSWT for quantum-disordered behavior. In Sec. 3.2.3
we propose a complementary observable to distinguish ordering and spin-liquid
behavior using the ED spectra of small clusters. Then, in Sec. 3.2.4, we char-
acterize the properties of the ordered phases in more detail. We connect the
description in terms of spin language to the original hard-core boson systems
in Sec. 3.2.5, where we also present MSWT predictions for time-of-�ight pic-
tures. Finally, in Sec. 3.2.6, we summarize our �ndings on the ground-state
phase diagram of the SATL. The results presented here have been published in
Ref. [225].

6See Chapters 12.1, 12.2, and 14.1 for explanations of these methods.
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3.2.1 Classical phase diagram and previous results

The frustrated quantum spin model (3.3) on the SATL is characterized by the
parameter α ≡ t2/t1, where t1 = t̃τ1 denotes the bond strengths along the chains
and t2 = t̃τ2,3 the bond strengths along the diagonals (black and red bonds,
respectively, in Fig. 3.1). This parameter interpolates between various qual-
itatively di�erent regimes, namely an ensemble of decoupled one-dimensional
chains at α = 0, the isotropic triangular lattice at α = 1, and the square lattice
for α →∞.

A good indicator for the potential ordered phases appearing in the quan-
tum SATL is given by the classical phase diagram. It can be obtained by
replacing the quantum-XY spins in Eq. (3.3) by classical rotors in the xy-
plane. These classical spins show LRO at an ordering vector Qcl = (Qcl

x ,Q
cl
x ),

which is found as the k-vector that minimizes the Fourier transform of the cou-
pling strengths. It �xes the direction of each spin (up to a global phase) as
Si = S (cos(Qcl ⋅ ri), sin(Q

cl ⋅ ri)), where in the SATL Qcl
y = 0 and

Qcl
x = {

2 arccos (−α
2
) , 0 ≤ α ≤ 2

2π , α > 2
(3.29)

If we assume the spins to behave classically, the 2D-Néel order, present for α ≥ 2,
starts to continuously deform into spiral order at α ≤ 2 (compare Fig. 3.2a). This
spiral phase extends down to α = 0 where the chains decouple.

In Fig. 3.2b, we reproduce the quantum-mechanical phase diagram as pre-
dicted from PEPS calculations by Schmied et al. [202]. According to this study,
both the square lattice limit (α →∞) and the most frustrated case, the isotropic
triangular lattice (α = 1), display magnetic long-range order (LRO). In the limit
of decoupled chains (α = 0) the system displays quasi-LRO with algebraically
decaying correlations. However, similarly to what has been found in the Heisen-
berg model (see Chapter 14.2.1), the system seems to feature spin-liquid phases
with exponentially decaying correlations that intervene between di�erent types
of order or quasi-order. Other distinct features of the quantum model due to
quantum �uctuations are the shift to considerably smaller values of α of the
transition between 2D-Néel and spiral order, and the extension of the quasi-
ordered 1D-like state over a broad region in the phase diagram.

In the following, we compute the MSWT ground-state phase diagram of
Hamiltonian (3.3), and compare its predictions with PEPS results and ED. The
following system geometries are considered for the three di�erent methods:

� PEPS: a rhombic lattice of 20 × 20 = 400 spins with open boundary con-
ditions. PEPS is a generalization of the concept of MPS to higher di-
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a) 

b) 

c) 

Figure 3.2: (a) Classical ground-state phase diagram of the SATL with
sketches of the 1D state at α = 0, the spiral state at α = 1 and the 2D-Néel
state for α ≥ 2. (b) Quantum mechanical phase diagram from Schmied et

al. [202], hosting spin liquids (SLs). (c) Cluster of 30 spins used for ED.
The 24-spin system is equivalent, only with the top and bottom rows removed.
The clusters are chosen for large symmetry with respect to re�ection on the
axes and for a ratio of t2- (red) to t1-bonds (black) close to 2.

mensions. It has a re�nement parameter controlling the precision of the
Ansatz, the bond dimension D. PEPS is a powerful numerical tool which
goes beyond mean-�eld theory, but for small D it accounts only partially
for the entanglement in the ground state (see also Chapter 12.2). This lim-
itation becomes particularly serious close to quantum phase transitions.
However, Schmied and coworkers demonstrated that D = 2, which we use
here, is already accurate enough to e�ectively capture the most relevant
physics of the system [202].

� ED: Lanczos diagonalization [226] of clusters of 24 and 30 spins (the latter
is shown in Fig. 3.2c), again with open boundary conditions (these are
necessary to allow for the accommodation of arbitrary ordering vectors).
More details can be found in Chapter 12.1.

� MSWT: rhombic lattices of 32× 32 = 1024 and 64× 64 = 4096 spins as well
as in the in�nite-lattice (thermodynamic) limit under periodic boundary
conditions. We �nd that at these lattice sizes all quantities have essentially
reached the in�nite lattice limit except, as it can be expected, in the one-
dimensional limit and at critical points. Although MSWT dresses a classi-
cally ordered state with quantum �uctuations, as is usual for a spin-wave
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0.18 1.35 1.66 2 α0 1

spiral order ´Neel order

Figure 3.3: Parameter regions where MSWT breaks down (red) due to
the appearance of imaginary modes. These are candidate regions for quantum
disorder in the true ground state.

Ansatz, it formulates good predictions also for states with low ordering
tendencies such as quasi-ordered states. MSWT relies on a self-consistent
minimization of the free energy, which we improved by an optimization of
the ordering vector. Technical details can be found in Chapter 14.

3.2.2 Distinction of spin-liquid candidate regions

As a �rst step in our analysis, we discuss in which parameter regions MSWT
suggests LRO and in which quantum disorder. To this, we �rst investigate
if there appear imaginary modes in the dispersion relation, which would indi-
cate instabilities. Afterwards, we study the order parameter M0 and the spin
sti�ness.

Imaginary frequencies and breakdown of convergence

Convergence in the self-consistent equations of MSWT with ordering vector
optimization, Eqs. (14.11�14.13) and (14.16�14.19), cannot be achieved in se-
lected regions of the ground-state phase diagram, namely for α ≲ 0.18 and for
1.35 ≲ α ≲ 1.66, as summarized in Fig. 3.3. (Interestingly, convergence is re-
stored in the pure 1D limit, α = 0, for which the theory formulates surprisingly
good predictions.)

This breakdown of convergence corresponds to the appearance of an imag-
inary part in the spin-wave frequencies, Eq. (14.13), signaling an instability of
the ordered ground state. The breakdown of a self-consistent description of the
system in terms of an ordered ground state is strongly suggestive of a quantum-
disordered ground state in the exact behavior of the system. Hence, one can
interpret these parameter regions as candidates for the spin-liquid phases pre-
dicted by PEPS calculations [202] (compare Fig. 3.2b).
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Figure 3.4: Order parameter. The MSWT order parameterM0, Eq. (14.15),
shows little size dependence (system sizes are given in the labels). The agree-

ment to ED and PEPS results [
√
S (Q) /N from Eq. (3.30)] for α ≈ 1.66 indi-

cates that MSWT captures well the in�uence of quantum �uctuations in that
region. Here, it improves considerably over the order parameter from LSWT.
A large value indicates strong LRO, with the theoretical maximum being 0.5.

Order parameter and spin sti�ness

A fundamental indication for the validity of spin-wave theories is generally given
by the order parameter for the magnetization M0, Eq. (14.15), and the spin
sti�ness, Eq. (14.21). The in�uence of quantum �uctuations is strong where
these observables are small, and in such a case the primary assumption that
the system can be described by a semi-classical spin-wave state begins to falter.
Since MSWT only takes quantum �uctuations partially into account, a small
order parameter and/ or spin sti�ness also suggests that the true quantum
ground state could be completely disordered. We display these quantities in
Figs. 3.4 and 3.5.

To check the validity of MSWT, we compare the order parameter with results
from ED and PEPS calculations. In both cases, we can extract the ordering
vector Q as well as the order parameter M from the Fourier transform of the
spin�spin correlations, the static structure factor. For XY interactions, it is
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Figure 3.5: (a) Gaussian spin sti�ness Υ. (b) Components of the spin-
sti�ness tensor. The mixed second derivative ρxy vanishes for symmetry
reasons. The inset in (a) is a zoom on the region of small α, showing the
smallness of Υ for α ≲ 0.35. The low values at α ≲ 0.35 and upon approaching
the region 1.35 ≲ α ≲ 1.66 may indicate quantum disordered behavior in the
true ground state. The numbers behind the labels give the system sizes. The
curves labeled `partial,' obtained by Eq. (14.23), provide upper bounds on the
spin sti�ness.
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de�ned as

S (k) =
1

N
∑
i,j

e−ik⋅(ri−rj) ⟨Sxi S
x
j + S

y
i S

y
j ⟩ , (3.30)

The ordering vector Q is the vector which maximizes S (k), and the order
parameter M is given by M =

√
S (Q) /N , which in the thermodynamic limit

de�nes the magnetization of the system.
In the square lattice limit α → ∞, the order parameter attains the value

M0 = 0.435 in the thermodynamic limit, which is very close to M = 0.437
as extrapolated from quantum Monte Carlo calculations [227]. For the spin
sti�ness, Sandvik and Hamer [227] obtained ρ∥/α = 0.270; MSWT returns the
only slightly larger value ρ∥/α = 0.272. It appears that in this special case the
main quantum corrections are correctly captured by MSWT. The large values of
the order parameter (around 87% of the theoretical maximum) and of the spin
sti�ness support the assumption that the classical picture remains essentially
valid in the large-α limit. Indeed, as the comparison to ED shows (Fig. 3.4),
MSWT is quantitatively reliable in the entire Néel phase (α ≳ 1.66).

In the spiral phase, the comparison is more problematic. While ED and
PEPS con�rm the existence of an ordered spiral region for α around 1, the mag-
nitude of the order parameter appears to be largely overestimated by MSWT.
It seems implausible that the frustrated spiral phase (0.18 < α < 1.35) has an
order parameter which can be larger than that of the unfrustrated case of the
square lattice (α → ∞). In fact, around α ≈ 1, MSWT only moderately im-
proves upon LSWT for what concerns the order parameter. This discrepancy
could be due to corrections to the spin-wave expansion of third-order in the
boson operators which our approach neglects, and which can become important
in spiral con�gurations [228]. Interestingly, in both regions of largest spatial
isotropy of the interactions, i.e., at large α (isotropic square lattice) and around
α = 1 (isotropic triangular lattice), the order parameter M0 coincides with that
of linear spin-wave theory (LSWT).

In the 1D-limit (α → 0), LRO disappears due to the Mermin�Wagner theo-
rem [229]. This is re�ected in the breakdown of the order parameterM0. Within
MSWT, the breakdown occurs already at a �nite value of the inter-chain cou-
pling, α ≈ 0.18 (note that within LSWT the order parameter vanishes only for
α → 0). This coincides with the appearance of imaginary spin-wave energies
as discussed in the previous section. At small but �nite α the spin sti�ness
ρyy essentially vanishes, which is characteristic of a 1D-like state that consists
of e�ectively decoupled chains. This �nding suggests that the physics becomes
basically independent of the y-component of Q for α ≲ 0.35.
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A single XY chain can be solved exactly by Bethe-Ansatz equations, and by
use of twisted boundary conditions one can obtain the exact solution for the
spin sti�ness ρxx = 1/π ≈ 0.318 [230]. Our MSWT result of ρxx ≈ 0.308 lies
surprisingly close. For one-dimensional models it is known that a non-zero spin
sti�ness is accompanied by quasi long-range correlations with power-law decay.
The critical nature of the state in the 1D-like phase re�ects itself also in the fact
that �nite-size e�ects play an important role.

In summary, from the MSWT order parameter M0 we can derive a loss of
LRO at α ≲ 0.18, and the spin sti�ness suggests a strong weakening of inter-
chain correlations already at α ≲ 0.35. The spin-sti�ness also decreases strongly
upon approaching the parameter region 1.35 ≲ α ≲ 1.66. Together with the
appearance of imaginary spin-wave frequencies for α ≲ 0.18 and 1.35 ≲ α ≲ 1.66,
this strongly indicates the appearance of disordered phases in these regions.
The breakdown region of MSWT at 1.35 ≲ α ≲ 1.66, is only roughly consistent
with the one where PEPS calculations [202] indicate the appearance of a short-
ranged spin-liquid phase, namely 1.2 ≲ α ≲ 1.4. Nonetheless, it is tempting
to associate the breakdown of MSWT to this quantum-disordered phase. In
the rest of parameter space, magnetic LRO order seems to survive quantum
�uctuations.

3.2.3 Signatures of ordering and spin-liquid behavior in
the ED spectra of a small cluster

Before characterizing in detail the nature of the ordered phases, we derive now,
from the ED energy spectra of small clusters, a complementary signature for the
division of the SATL ground-state phase diagram into ordered and disordered
phases. The system Hamiltonian (3.3) commutes with the total magnetization
along the z axis, Stot

z = ∑i ⟨S
z
i ⟩, so that excited states can be classi�ed on the

basis of this quantum number.
Figure 3.6 shows (for a 24-spin cluster as described in Fig. 3.2c) the exci-

tation energies of the �rst excited states in each Stot
z sector (up to Stot

z = 11)
with respect to the minimum energy in each sector, E0(S

tot
z ). The absolute

ground state is located at E0(S
tot
z = 0). Upon varying α, we observe a signif-

icant evolution of the low-energy spectrum of the system, which points at the
widely di�erent regimes explored by the system. In particular, in the spirally
and Néel ordered phases � exempli�ed in Fig. 3.6 by α = 1 and α = 2, respec-
tively � in each Stot

z sector there are a few states close to the minimum energy,
and separated from the other excited states by a large gap. According to a
standard `tower-of-states' argument [231], these low-lying states are expected
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Figure 3.6: Spectra from ED on a 24-site cluster. For large α (exempli�ed
by α = 2), the spectrum in all magnetization sectors displays a low-lying state
that is well separated from the excited states. This behavior is typical of
phases that are ordered in the thermodynamic limit, where the low-lying states
of di�erent Stot

z collapse to the Néel-ordered ground state, and the higher-
energy states constitute spin-wave excitations. Similarly, around α = 1, two
closely-spaced low-lying states are separated from the higher-energy states.
Around α ≈ 1.5 and below α ≈ 0.7, the states are approximately equally spaced,
suggesting quantum disorder. Lower-right panel: the average maximal
level spacing, Eq. (3.31), can be used to quantify this behavior. The low
values around α ≈ 0.6 and α ≈ 1.4 suggest disordered phases.
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to collapse to the ground state in the thermodynamic limit, giving rise to de-
generate superpositions of all Stot

z sectors, each breaking the U(1) rotational
symmetry of the Hamiltonian and displaying spiral or Néel order, respectively.
The higher-energy states instead will in the thermodynamic limit reproduce the
true excitation spectrum.

This tower-of-states feature is on the contrary absent in other regions of the
phase diagram, in which the energy levels in each Stot

z sector are more homoge-
neously spaced. The absence of a low-lying multiplet of states separated from
the higher energy states is observed in models whose ground state is generally
considered to be a spin liquid [232]. We therefore introduce an observable aimed
at quantifying the extent to which the spectrum exhibits the expected features
in presence of spontaneous symmetry breaking in the thermodynamic limit. We
consider the average maximal level spacing ∆̄max, de�ned as

∆̄max =
1

NS + 1

NS

∑
Stot
z =0

max
i

[Ei+1(S
tot
z ) −Ei(S

tot
z )] , (3.31)

i.e., the maximal level spacing in each Stot
z sector, averaged over the NS +1 = 12

sectors considered. To extract it, we consider the lowest 10 levels Ei(Stot
z ), which

captures the behavior of the low-energy part of the spectrum. The de�nition
of ∆̄max is chosen so that it will be maximal in presence of a large separation
between the low-lying tower of states and the higher-energy spectrum, while it
will be minimal for homogeneously spaced levels in each sector.

As a function of α (see Fig. 3.6), ∆̄max has two pronounced minima, at
α ≈ 0.6 and α ≈ 1.4. Remarkably, these correspond to the regions in parameter
space where PEPS calculations predict a spin-liquid phase [202] (see Fig. 3.2b).
Hence, the lack of the tower-of-states feature in the spectra of this small cluster
is consistent with the PEPS prediction for disordered phases.

3.2.4 Analysis of the ordered phases

To characterize the long-range ordered phases in more detail, we use the order-
ing vector, which is a measure for the predominant ordering tendencies, and the
chiral correlations, which witness spiral LRO. After introducing these observ-
ables, we will describe the di�erent ordered phases in detail. As we will see,
MSWT indeed reproduces the main features of the phase diagram of Fig. 3.2b
quite accurately.

In MSWT with ordering-vector optimization, the ordering vector Q (plotted
in Fig. 3.7, where without loss of generality Qy = 0) is a direct result of the self-
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consistent optimization. In ED and PEPS, it corresponds to the peak-position
of the static structure factor, Eq. (3.30). Three limiting values are known. Intra-
chain AFM order as occurring at α = 0 is described by Q = πex. Square-lattice
Néel order (as at large α) is described by Q = 2πex. In the isotropic lattice
(α = 1), the threefold symmetry7 leads to an ordering vector of Q = 4π

3
ex.

The importance of optimizing the ordering vector is apparent in Fig. 3.7 when
comparing MSWT to the classical (and LSWT) curve.

Spiral phases carry not only a magnetic, but also a chiral order parameter.
In particular, a vector chirality [233] can be de�ned on an upwards pointing
triangle ∆ and a downwards pointing triangle ∇ with counter-clockwise labeled
corners (i, j, k) and (i, l, j), respectively, as

κ∆ =
2

3
√

3
[Si ×Sj +Sj ×Sk +Sk ×Si]z (3.32a)

κ∇ =
2

3
√

3
[Si ×Sl +Sl ×Sj +Sj ×Si]z . (3.32b)

Chirality correlations are then de�ned as [234]

ψ− = ⟨(κ∆ − κ∇) (κ∆′ − κ∇′)⟩ , (3.33)

where (∆,∇) and (∆′,∇′) denote two pairs of neighboring triangles that share
a τ1 edge. In Fig. 3.8, we plot the average chirality correlation of the central
plaquette with all other plaquettes, normalized to the theoretical maximum 4/9.
The MSWT data have been obtained by expanding the chiral correlation up to
the fourth order in the Dyson�Maleev boson operators [for technical details see
Eq. (14.3)], which is consistent with the truncation of the spin-wave Hamilto-
nian (14.4) to the same order. Including higher orders might change the result
in regions where M0 is small. In particular, the unphysical negative values for
small α are an artifact of this truncation.

Transition from 2D-Néel to spiral order

Coming from the large-α limit, for all methods (MSWT, ED, and PEPS), the
wavevector associated with the dominant correlations (see Fig. 3.7) jumps from
Q = 2πex, which is characteristic of the Néel phase, to a continuously varyingQ,
which is characteristic of a spiral phase: for PEPS this occurs at α ≈ 1.4, for ED
at α ≈ 1.44, and for MSWT when traversing the breakdown region, i.e., between

7The ED and PEPS results deviate at α = 1 because the shape of the simulation clusters
(Fig. 3.2c) breaks the threefold symmetry.
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Figure 3.7: x-component of the ordering vector, Qx. MSWT (red) com-
pares well to ED (blue) and PEPS (light green), improving considerably upon
the LSWT values (black), which are equal to the classical ones. In particular,
MSWT reproduces the strong shift of the transition between spiral and Néel
LRO, and the weak dependence on α close to the 1D limit. The numbers in
the labels are the respective system sizes. The black circle marks the isotropic
spiral ordering vector, Qx = 120○, at α = 1.

α = 1.35 − 1.66. Notably, in all three approaches Néel order persists to much
lower α than classically (αc = 2), since � due to order-by-disorder phenomena
[235] � quantum �uctuations generally stabilize states where spins are ordered
collinearly (see, e.g., Refs. [235, 236]). The onset of strong chiral correlations
(Fig. 3.8) con�rms that the new phase shows, indeed, spiral order.

The overlap ∣⟨ψα∣ψ∞⟩∣ of the ground state with the 2D-Néel ordered state
of α = ∞, as extracted from ED and plotted in Fig. 3.9, lends further support
to the stabilization of Néel order due to quantum �uctuations: it remains at
large values down to the transition Néel�spiral at α ≈ 1.44, where it drops to
essentially 0.

Persistence of 1D quasi-LRO up to �nite inter-chain couplings

As discussed above, within MSWT the magnetic order parameter breaks down at
α ≈ 0.18 (see Fig. 3.4) and the spin-sti�ness component ρyy practically vanishes
for α ≲ 0.35 (see Fig. 3.5b). These �ndings indicate a transition, occurring at
�nite inter-chain couplings, to a non-magnetic phase such as the one reproduced
in the one-dimensional limit α → 0. This is consistent with the ground-state
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Figure 3.8: Averaged chiral correlation normalized to the theoretical max-
imum 4/9. ED (blue), PEPS (light green), and MSWT (orange, dark green,
and red) consistently predict chiral LRO in a broad (but smaller than classical)
region around α = 1. The black dotted line is the classical result and the black
solid line is the classical chiral correlation that is obtained if for a given α the
Q of the MSWT calculation rather than Qcl is used.

Figure 3.9: The overlap of the ground
state at α with the 2D-Néel ground state
of α = ∞, ∣Ψα=∞⟩, is large for α ≳ 1.44, in-
dicating Néel order. The overlap with the
six-dimensional ground-state subspace of
α = 0 is large for α ≲ 0.5, indicating a 1D-
like phase. Values from ED of the 30-spin
cluster.
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overlap
√

∑
6
i=1 ∣⟨ψα∣ψi0⟩∣

2
to the subspace spanned by the six-fold degenerate8

ground-states of α = 0, computed in ED, which remains very large (almost 80
percent) up to α ≈ 0.5 (Fig. 3.9).

Other observables lend further support a quasi-1D phase at �nite inter-chain
couplings. For example, the ground-state energy and spin�spin correlations
(not shown) approach the value of decoupled chains, and the chiral correlations
(Fig. 3.8) drop strongly. Further, the ordering vector (Fig. 3.7) shows a very
weak α-dependence in the quantum case, contrary to classical results, which
exhibit a linear dependence on α. We note also that in the limit α = 0, MSWT
produces surprisingly good results. For example, the spin�spin correlations devi-
ate from the exact results from a Jordan�Wigner transformation (see Sec. 12.3)
only by 7.5%.

As we discuss in Chapter 14.2, in the same lattice with Heisenberg interac-
tions, recent works found the persistence of spiral order for all �nite inter-chain
couplings α > 0 [237, 238]. Since quantum �uctuations are more e�ective for dis-
rupting order in the Heisenberg model, we would expect a fortiori that also in
the XY spiral order persists for all α > 0. However, the �ndings of Refs. [237, 238]
are disputed [239�242]. In particular, our results presented in Chapter 14.2.1
suggest otherwise. Still, these considerations show that the existence of such a
quasi-1D phase is a subtle issue.

3.2.5 Momentum distribution of the hardcore bosons

We now wish to make contact with possible experimental observation of the
ground-state phases described above. In the introduction to this chapter, the
S = 1/2 spin Hamiltonian (3.3) resulted as a convenient description of a system
of in�nitely repulsive bosons at half �lling. Hence, it is important to match spin
observables with their physical bosonic counterparts. To this, one simply has
to invert the Holstein�Primako� transformation (3.2).9

The most important observables can now be translated as follows. A non-
zero magnetic order parameter M0 implies the appearance of o�-diagonal LRO

8This degeneracy is due to the particular geometry of the 30-spin system (Fig. 3.2c). At
α = 0, the even chains are in a singlet while the four odd chains may each be in a state with
total spin ±1/2, leading to a degeneracy of 24. Restriction to the (physical) states with total
magnetization ∑i ⟨Szi ⟩ = 0 reduces this degeneracy to a six-fold one.

9For comparison with spin-wave results, one has to take note that the lowering and raising
operators appearing in the Holstein�Primako� transformation are de�ned with respect to the
z axis, in contrast to the raising and lowering operators used in the spin-wave calculations
(see Chapter. 14.1) which act with respect to the quantization axis of a twisted coordinate
system, Eq. (14.2).
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Figure 3.10: Momentum distribution of a half-�lled gas of frustrated
hardcore bosons [corresponding to the spin structure factor S(k)], marking
the crossover from 1D-like behavior (small α) to spiral LRO (α ≈ 1), and to
square-lattice Néel order (α > 1.66). The data (on a logarithmic color scale,
scaled to the number of sites) result from a MSWT calculation on an 18 × 18
lattice. The black hexagon marks the �rst Brillouin zone and the black cross
its origin.

in the bosonic one-body density matrix,

⟨b̂�i b̂j⟩
∣rij ∣→∞
Ð→ M2

0 cos (Q ⋅ rij) . (3.34)

The ordering vector Q corresponds to the momentum at which condensation
occurs. The condensed state in the spiral phase is characterized by a pattern of
persistent currents forming a crystal of vortices, whose geometrically correlated
structure is captured by the spin chirality. Finally, the parallel spin sti�ness
ρ∥ ≡ (ρxx + ρyy) /2 corresponds to the super�uid density of the bosons, ρs = ρ∥/S.

The most common observable in cold-atom experiments is the momentum
distribution, measurable, e.g., in time-of-�ight (ToF) images as explained in
Chapter 2.1. Neglecting the trivial Wannier envelope, Eq. (2.10) becomes

nb (k)

N
=

1

N
∑
i,j

e−ik⋅(ri−rj) ⟨b̂�i b̂j⟩ = S (k) , (3.35)
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i.e., for hard-core bosons, the ToF momentum distribution measures the static
structure factor (3.30) of the associated S = 1/2 spins. Figure 3.10 shows the
MSWT prediction for the momentum distribution at various α values, spanning
all the condensation regimes of the bosons at zero temperature. At α = 0 (not
shown), the system displays quasi-condensation at �nite momenta along the
uncoupled chains, resulting in vertical ridges at Qx = ±π in the momentum dis-
tribution. These ridges corrugate as the interchain coupling increases, and true
condensation peaks emerge in reciprocal space, corresponding to a condensate
state which supports a crystalline vorticity pattern. As seen by combining Eqs.
(3.34) and (3.35), the peak height (normalized to the number of sites) is given
by the square of the order parameter M0. For α = 1, these peaks are located at
the six corners of the �rst Brillouin zone. For α < 1, the peaks are elongated in
the y direction, while for α > 1 they are elongated in the x direction, witnessing
the spatial anisotropy of the lattice. This situation persists up to the breakdown
of MSWT at α = 1.35; after recovery of the theory at α = 1.66, the momentum
distribution shows condensation at the four corners of the Brillouin zone of a
(deformed) square lattice, de�ned by the dominant diagonal bonds of the SATL.

3.2.6 Summary

Before proceeding to the �nite-temperature analysis, let us summarize the main
features of the zero-temperature phase diagram obtained via MSWT with Q-
vector optimization. The region where the system behaves like an ensemble of
decoupled chains is extended to considerable inter-chain interactions. The order
parameter indicates that inter-chain correlations set in at α ≈ 0.18; the spin
sti�ness suggests that an e�ective decoupling of the chains may even persist
up to α ≈ 0.35. At larger α, the system crosses over to a spirally-ordered
phase that persists up to α ≈ 1.35, where MSWT breaks down, suggesting a
quantum disordered ground state. At α ≈ 1.66, MSWT �nds again a self-
consistent solution, this time corresponding to a 2D-Néel state.

These results are consistent with the PEPS phase diagram of Fig. 3.2b and
ED calculations. Especially the persistence of 1D behavior to surprisingly large
values of α, the stability of spiral LRO against quantum �uctuations, and the
extension of 2D-Néel LRO to much smaller values of α than classically are repro-
duced. Further, the indications for quantum disordered behavior are consistent
with the PEPS results and signatures from ED, which suggest several spin-liquid
phases. However, there are some deviations, which are generally to be expected
from a spin-wave approach. In particular, MSWT appears to overestimate the
range of the ordered phases.
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Two improvements to MSWT have proven to be crucial: First, the mini-
mization of the free energy with respect to Q in the self-consistent equations
has enabled us to describe to a surprisingly satisfactory level the considerable
shift of the ordering vector by quantum e�ects. Second, the Gaussian spin
sti�ness, detecting regions with weak ordering tendencies, serves to detect pa-
rameter values where spin-liquid behavior may appear in the true quantum
ground state. While MSWT cannot determine the properties of such disordered
phases, it provides a fast and clear method for �nding candidates for disordered
behavior. This method can therefore serve as a guide in our search for interest-
ing quantum-mechanical lattice models which require an experimental QS for
further study of their phase diagram.

3.3 Finite-temperature phase diagram

Since real-world experiments are never carried out at exactly zero temperature,
we now investigate how the phase diagram of the XY SATL translates to �nite
temperatures. To do this, we make use of MSWT in the thermodynamic limit.

At �nite temperatures, continuous symmetries cannot be spontaneously bro-
ken in two dimensions [229, 243]. Therefore, in agreement with Berezinskii�
Kosterlitz�Thouless (BKT) theory, we �nd for the XY SATL that zero-tempera-
ture long-range-ordered phases turn into quasi-ordered phases (up to a BKT
transition temperature), while zero-temperature quasi-ordered phases become
short-range correlated at �nite temperature. At the BKT temperature TBKT,
the system undergoes a topological phase transition from quasi-LRO to an expo-
nential decay of correlations, involving the unbinding of vortex�antivortex pairs
[244�246]. The existence of a BKT transition in the XY model is in contrast
to the Heisenberg model, where vortex excitations are not topologically stable
[246], precluding a BKT transition.

The possibility of observing the BKT transition is a particular advantage of
MSWT. In contrast, LSWT predicts a stable BKT phase with algebraic order
at arbitrary temperatures. The non-linearities contained in MSWT allow the
disruption of quasi-LRO and the transition to the short-range-ordered phase.
However, vortex�antivortex excitations are not explicitly present in the theory,
preventing an accurate estimation of TBKT.
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3.3.1 Spin�spin correlations

An important observable for the analysis of a temperature-dependent phase
diagram is the two-point correlation function

Cij ≡ ⟨Sxi S
x
j + S

y
i S

y
j ⟩ / cos (Q ⋅ rij) . (3.36)

In our analysis, we focus on Cmτ1 and Cmτ2 where m is a positive integer, and
τ 1 = (1,0) and τ 2 = (1/2,

√
3/2) are the lattice vectors. The behavior of Cmτ1

captures the intra-chain correlations, while that of Cmτ2 describes inter-chain
correlations.

To locate the BKT transition, we calculate the residual sum of squares

R = ∑m [Cmτ1,2 − f(mτ 1,2)]
2
for an exponential f(r) = Ae−r/ξ, where ξ is

the correlation length, and an algebraic �t f(r) = A/rη. We �t these functions
to correlations over distances of m = 3 . . .15 lattice spacings. (The increasing
computational time with distance between spins limits the distances reasonably
reachable.) We identify a BKT transition where the R's of the exponential and
the algebraic �t become equal. This gives a rough estimate of the transition
temperature. Where we give numerical values, these are from averages of the
�ts to Cmτ1 and Cmτ2 .

Figure 3.11 shows representative log�log plots of the correlation function
Cmτ1 at α ≡ t2/t1 = 0.7 and α = 100 (where the ground states show spiral
and 2D-Néel order, respectively) for several temperatures. In these plots, alge-
braically decaying correlations correspond to straight lines. In the entire param-
eter range of the spiral phase, a clear transition from algebraic to exponential
decay occurs at the computed BKT temperature. On the contrary, at α = 100
we cannot �nd such a clear transition. Rather, the curves acquire a curvature
fairly continuously. To check how the suggested BKT line changes when tak-
ing correlations to more distant spins into account, we exemplarily computed
spin�spin correlations for α = 100 up to distances of 64 lattice spacings. The
transition temperature of TBKT/(t1 + 2t2) = 0.134, is lowered by approximately
15% from what is obtained if distances only up to 15 lattice spacings are con-
sidered. In light of the approximate nature of MSWT, we �nd that this level
of precision is satisfactory. In the spiral phase, due to the more abrupt change
in the behavior, one can expect the change in the transition temperature when
including larger distances to be even smaller.

Further, we can �nd from the correlations the temperature at which the
MSWT formalism breaks down. This temperature is characterized by the com-
plete loss of all correlations, even to the NN. This behavior, occurring at tem-
peratures on the order of the coupling strength, is clearly an artifact of the
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a) b)

Figure 3.11: Intra-chain correlations Cmτ1 , (a) for α = 0.7, and (b) for
α = 100 (on a log�log scale). From top to bottom, the lines correspond to
the normalized temperatures (a) T /(t1 +2t2) = 0.064 . . .0.078 in steps of 0.002,
and (b) T /(t1+2t2) = 0.068 . . .0.164 in steps of 0.016. The line closest to TBKT

calculated from MSWT data is bold. Above the bold line (lower temperatures),
the curves are approximately linear, witnessing algebraic correlations, while
the downwards curvature at higher temperatures indicates exponential decay.
In (b), the maximal distance m has been increased to 64 to check how the
estimated transition temperature depends on it. The change of only about
15% is a satisfactory level of precision.

method, since in real systems the complete loss of correlations occurs only at
extremely large temperatures where spin�spin interactions become negligible.
Interestingly, in the domain α close to 1, where frustration is largest, it occurs
at the lowest temperatures.

3.3.2 The phase diagram

In this section, we present the �nite-temperature phase diagram of the SATL
obtained via MSWT with ordering vector optimization.10 Our calculations en-
counter convergence problems for too low temperatures (when the chemical
potential becomes smaller than the accuracy of our numerical integrations).
Depending on the parameter region, the lowest temperatures for which proper
convergence could be achieved vary from less than one-tenth of a percent to
several percent of the coupling strengths. This pathology is not observed at
T = 0 (as calculated in section 3.2), because there the chemical potential van-
ishes exactly, allowing a special treatment of the zero-mode [see Eqs. (14.16)
and (14.17)]. We typically calculated down to T /(t1 +2t2) = 0.025, which seems

10In the following, we set the Boltzmann constant kB to unity.
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Figure 3.12: Schematical
temperature-dependent
phase diagram of the
XY SATL. The di�erent
regions are listed along with
their main characteristics
in Table 3.1. Horizontal
lines mark 1D-Néel order,
diagonal lines spiral order,
and cross-hatches 2D-Néel
order.

su�ciently low to connect the results smoothly to the zero-temperature phase
diagram. The breakdown of the calculations for too low temperature can be
clearly seen in Fig. 3.13, which displays the phase diagrams obtained from sev-
eral observables.

Before discussing these results, we �rst present a summarizing sketch of the
phase diagram in Fig. 3.12, where we introduce labels for the occurring phases
for reference in the following discussion. Table 3.1 lists the main properties
of these phases. In short, at small α, there is a phase with properties similar
to the algebraic 1D-Néel-like state found at T = 0 but with exponential decay
of intra-chain correlations (phase A). Further, the phase diagram contains two
quasi-LRO regions: a region at intermediate α corresponding to spiral quasi-
LRO (phase B), and another region at large α which is characterized by Néel
quasi-LRO (phase D). These phases undergo BKT transitions to similar phases
with short-range order, phases C and E, respectively. Moreover, between them
lies a region where imaginary frequencies occur in the spin-wave dispersion,
which can be interpreted as an indication for an extremely short-range-ordered
phase (phase F). This general structure of the phase diagram is supported by
all the observables we investigate. At large T , MSWT breaks down and does
not allow any interpretation (region G).

A natural starting point for an analysis of the temperature-dependent phase
diagram is given by the respective ground-state phases. We proceed from small
to large α.
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Figure 3.13: Observables characterizing the �nite-temperature phase
diagram. (a) Qx, (b) intra-chain correlation Kτ1 , (c) inter-chain correlation
Kτ2 , (d) partial Gaussian spin sti�ness Υpartial, and (e) and (f) partial spin
sti�nesses ρpartial

xx and ρpartial
yy , respectively. The mixed component of the spin

sti�ness ρpartial
xy vanishes for symmetry reasons. Figures (g) and (h) show the

entropy and the gap ∆. All plots are in linear color scale in dependence of α
and T / (t1 + 2t2). Points mark the BKT transition for τ 1 = (1,0) (red) and for
τ 2 = (1/2,

√
3/2) (orange), identifying the transition from quasi-LRO to SRO

(computed through the two-point correlations Cmτ1,2); also shown are the
temperature where inter-chain correlations disappear, witnessing a transition
to a 1D-like phase (yellow), and the breakdown temperature (blue). In the
gray region, imaginary frequencies appear in the spin-wave dispersion.
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Phase Qx decay of correlations

(A) 1D-like SRO π intra-chain: exponential
inter-chain: uncorrelated

(B) Spiral quasi-LRO π < Qx < 2π algebraic
(C) Spiral SRO π < Qx < 2π exponential
(D) 2D-Néel quasi-LRO Qx = 2π algebraic
(E) 2D-Néel SRO Qx = 2π exponential

(F) Unstable (imaginary modes) � �
(G) Breakdown of theory � no correlations

Table 3.1: Parameter regions of the �nite-temperature phase diagram
of Fig. 3.12. We distinguish mainly between phases with quasi-LRO, i.e.,
algebraic decay of correlations, and phases with SRO, i.e., exponential decay
of correlations. Moreover, two regions are listed where the MSWT formalism
ceases to be applicable, (F) and (G).

(A) 1D-like phase

At �nite temperature, the 1D-like quasi-ordered ground-state phase for which we
found strong indications below α ≈ 0.18 becomes a short-range-ordered phase.
It is characterized by the ordering vector (π,0) (Fig. 3.13a) and vanishing cor-
relations between neighboring chains already at low temperature (Fig. 3.13b).
Nearest-neighbors on the same chain are anti-correlated (Fig. 3.13c), and the �-
nite gap for all T > 0 (Fig. 3.13h) implies exponentially decaying intra-chain cor-
relations [247], consistent with the expected �nite-temperature behavior above
a ground state with quasi-LRO. In this phase the inter- and intra-chain correla-
tions behave qualitatively di�erently. In the rest of the phase diagram they fol-
low the same pattern, since in a truly two-dimensional structure the correlations
in one direction typically cannot disappear without a�ecting the correlations in
the other one.

The assumption that this low-α phase really describes decoupled chains is
reinforced by the component ρpartial

yy of the spin sti�ness (Fig. 3.13f), which
vanishes in this region, implying that the order properties along the y-direction
are arbitrary.

It is remarkable that, with increasing temperatures, this phase is preferred
over the quasi-ordered spiral phase. In the ground-state phase diagram, we have
seen that quantum �uctuations stabilize 1D-Néel quasi-order. The same mech-
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anism is at work here: collinear spin correlations are stabilized by �uctuations,
in this case thermal ones.

(B and C) Spiral phases

At intermediate inter-chain couplings, 0.18 ≲ α ≲ 1.35, and low temperature
we �nd a spiral phase with magnetic quasi-LRO (phase B). It can be seen as
the �nite-temperature continuation of the spirally-ordered ground-state phase.
At larger temperatures, a BKT transition to a phase with a spiral ordering
vector but with an exponential decay of correlations occurs (phase C). At large
α, phase B is delimited by region F, where imaginary spin-wave frequencies
appear. For α slightly smaller than one, there appears a transition from phase
B to a narrow strip of phase C, almost immediately followed by a transition to
phase A. For smaller α, the transition between B and A may actually be direct,
since the extent of phase C becomes extremely small in temperature, but the
�nite resolution of our data does not allow us to unambiguously identify this.

At the isotropic point α = 1, the BKT transition from B to C is approxi-
mately located at TBKT/(t1 + 2t2) = 0.0836. Quantum e�ects lower the transi-
tion temperature considerably from the classical value T cl

BKT/(t1 + 2t2) = 0.165
(from classical Monte Carlo simulations [248]). A pure-quantum self-consistent
harmonic approximation, developed by Capriotti and coworkers [249], gives
TBKT/(t1 + 2t2) = 0.0625. The fact that MSWT produces a signi�cantly higher
estimate is not surprising given that the method of Capriotti et al. [249] takes
vortex�antivortex excitations explicitly into account while MSWT does not.
Also, it is well known that mean-�eld theories typically overestimate transition
temperatures [83].

We note also a strong drop of the BKT transition temperatures around
α ≈ 0.4. In Fig. 3.12, this is marked by a dashed line which separates phase
B from a phase B' with similar properties. We believe that this behavior is a
numerical artifact and that in fact B and B' constitute a single phase.

(F) Spin-liquid candidate region

At the large-α side of the spiral phases, we �nd a region where the spin-wave
dispersion acquires imaginary modes. With increasing temperature, the width
in α of this region stays approximately constant, but it moves to smaller α,
leaving space to the collinear short-range-ordered phase (E). The spin-sti�ness
decreases upon approaching this region, which could be interpreted as a further
precursor of a short-range-ordered phase.
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This region where MSWT predicts an instability extrapolates well down to
the suspected T = 0 spin-liquid phase at 1.35 ≲ α ≲ 1.66. Given that at T = 0
MSWT breaks down at a putative spin-liquid phase due to its lack of order,
a fortiori one can expect MSWT to break down in the same parameter range
at �nite temperatures, because in that case the theory would be required to
describe not only the ground state but also the excitations on top of it.

(D and E) 2D-Néel states

As expected from BKT theory, with increasing temperature the 2D-Néel ground
state �rst changes into a low-T quasi-long-range ordered phase (phase D), which
at a temperature TBKT undergoes a transition into a high-T short-range-ordered
phase (phase E). Both are characterized by an ordering vector at the 2D-Néel
value Q = (2π,0). Furthermore, neighboring spins which share a diagonal bond
are strongly anticorrelated whereas neighboring spins which lie on the same
chain are positively correlated.

The square XY lattice, which is reached as α ≡ t2/t1 → ∞, has been ex-
tensively studied in the past. The classical BKT-temperature T cl

BKT/t2 = 0.695
(classical Monte Carlo simulations [250]) is in the quantum limit signi�cantly
lowered to TBKT/t2 ≈ 0.35 (QMC [251, 252]). Our MSWT results yield a BKT
temperature of TBKT/t2 ≈ 0.27 at α = 100, where the system has practically
reached the square lattice limit.11 Once again, this disagreement is not surpris-
ing, given that MSWT does not account properly for vortex�antivortex excita-
tions. In particular, the BKT line for α ≳ 1.6 is not very distinct, as explained
in the discussion of Fig. 3.11b. Therefore, its quantitative value should be in-
terpreted with caution. However, the qualitative behavior of the phase diagram
seems to be described correctly.

3.3.3 Observables distinguishing between LRO and SRO

In the following, we turn to observables which help to distinguish between dif-
ferent strengths of order (i.e., quasi-LRO vs. SRO), in particular the partial
Gaussian spin sti�ness Υpartial, the entropy, and the gap ∆.

The interpretation of these observable is as follows. The entropy, which can
be computed via Eq. (14.5), is large in phases with strong tendencies towards
order. The partial Gaussian spin sti�ness, in contrast, is large in phases with
strong order, as it measures the resistance of the system towards deformation

11At this value of α we computed the correlations to spins as far as 64 lattice sites away,
contrarily to the rest of the phase diagram, see Sec. 3.3.1.
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Figure 3.14: (a-b) Gap ∆. (c-d) Occupation of the zero mode nk=0.
A large ∆ and small nk=0 mean fast decay of correlations. The vertical lines
denote the BKT transitions computed from the decay of correlations Cmτ1

(red dot-dashed) and from Cmτ2 (orange long-dashed). The breakdown tem-
perature is represented by a solid blue vertical line, and the temperature where
inter-chain correlations disappear by a dotted, black one [in (b) and (d), these
coincide]. Capital letters refer to the phases of Fig. 3.12.

of the ordering vector. Indeed, as can be seen in Fig. 3.13g, the entropy is
smallest in the low-temperature spiral and 2D-Néel phases (B and D), a behavior
consistent with the quasi-ordered character of these phases. Correspondingly,
Υpartial (Fig. 3.13d) is large in these regions.

The gap ∆ = ωk=0 of the spin-wave dispersion is another useful measure
for the strength of order. It is directly imposed by the chemical potential µ
[see Eqs. (14.12) and (14.13)], and its magnitude determines the rapidity of the
decay of correlations: a �nite (vanishing) gap leads to exponential (algebraic)
correlations [247]. Hence, in principle, the onset of a gap at �nite temperatures
corresponds to the occurrence of a BKT transition. In reality, within MSWT,
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we observe typically a very gradual thermal onset of the gap, and it does not
provide a clear identi�cation of the transition, as can be seen in Figs. 3.14a
and b, where we report the gap for two representative values of α. This ob-
servation can be understood on the basis of a well-known fact: the chemical
potential of the half-�lled Dyson�Maleev boson gas, which determines the ex-
istence of a gap, cannot vanish at �nite temperature because of the absence of
Bose�Einstein condensation in two dimensions. As a consequence, we �nd a
�nite gap at any �nite temperature, and the correlations decay exponentially
at long distances. This implies that, strictly speaking, MSWT is not able to
describe the BKT transition. However, for temperatures much lower than the
BKT transition the gap is extremely small, being below our numerical precision.
For all practical purposes, such a small gap entails a decay of correlations which
is not distinguishable from an algebraical decay. Moreover, in a selected region
of the phase diagram (corresponding to the spiral phase) the gap is seen to in-
crease drastically around the estimated BKT transition temperature (Fig. 3.13h
and Fig. 3.14a), and correspondingly the correlation function decays much more
rapidly above that temperature. Hence, we conclude that MSWT still accounts
for one of the most salient features of the BKT transition, namely a discontinu-
ous behavior of correlations as the temperature is increased. Notably, whereas
in the spiral phase the gap displays a sharp increase right above the BKT tran-
sition (Fig. 3.14a), it evolves smoothly through the BKT transition in the Neel
phase (Fig. 3.14b).

We also note that in all phases, ∆ increases sharply (accompanied by a
sharp drop of Υpartial) at the breakdown temperature, where correlations are
completely lost. Finally, in phase A, we �nd that the gap is almost a linear
function of temperature up to very close to the breakdown temperature (this is
better visible for smaller of values α than the one shown in Fig. 3.14a). This is
typical of critical systems, where the temperature gives the only energy scale.

Neither entropy, spin sti�ness, nor gap present a sharp change at the BKT
transition. However, the contour lines of all of these seem to be consistent with
the shape of the TBKT curve as derived from the correlation functions.

We get further insight into the strength of correlations from the occupa-
tion of the zero-mode nk=0. It takes the role of the order parameter M0 of
the zero-temperature phase diagram when �nite temperature prevents Bose
condensation. Since, due to constraint (14.10), the average mode occupation
∑k nk/N = S is �xed by the spin length, all spin-waves which are not in the
zero mode have to occupy excited modes. Since these have a �nite k vector,
their interplay tends to destroy the order of the classical reference state given
by the ordering vector. Conversely, a large occupation of the zero mode implies
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small occupations of excited modes and, therefore, stronger order.
In Figs. 3.14c and d, we show examples for the evolution of nk=0 with temper-

ature for two values of α. Similar to what was seen for the gap, at the transition
between phases C and A, nk=0 drops from extremely large values to the order
of 1 (Fig. 3.14c). After the drop, it changes only slowly with T . The behav-
ior of nk=0 is di�erent for the 2D-Néel phase (Fig. 3.14d). At the BKT line
that we extracted from the two-point correlation functions Cmτ1 and Cmτ2 ,
nk=0 decreases strongly but smoothly. Up to the breakdown point, however,
its values are still several times larger than in the 1D-like phase A, indicating
stronger order tendencies. The strong decrease supports our identi�cation of
the BKT transition; but the smoothness of nk=0 also shows the reason why the
observables of Sec. 3.3.3 could not point out a sharp transition.

3.3.4 Summary

In summary, the �nite-temperature phase diagram is a natural extension of the
ground-state phase diagram. Zero-temperature LRO (quasi-LRO) is re�ected in
�nite-temperature phases with quasi-LRO (SRO), and at temperatures below a
few percent of the coupling strengths, the main characteristics of the ground-
state phase diagram are retrieved. These contain a short-range 1D-like phase
(A), and two quasi-ordered phases, one with spiral properties near the isotropic
triangular limit (B), and one with 2D-Néel-like characteristics at large values of
α (D). These are separated by a potential spin liquid (F). This last phase was
identi�ed by (i) the lowering of the spin sti�ness as it is approached, and (ii)
the breakdown of MSWT, which indicates that the assumption of an underlying
ordered state is invalid.

Further, we have given a rough estimate for TBKT. In our results, the BKT
transition is clearer for the spiral phase than for the 2D-Néel phase. Although
the results are to be interpreted only semi-quantitatively because MSWT does
not explicitly account for vortex-antivortex excitations, we have found agree-
ment in the magnitude where estimations from other methods exist.

3.4 The quantum spatially completely anisotropic
triangular lattice (SCATL) at T = 0

In the previous sections, we found strong indications for spin-liquid behavior
in the SATL. Initially, spin liquids were assumed to appear at strongest frus-
tration, but as we saw, they seem to rather occur at transitions between two
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Figure 3.15: Geometry of the SCATL. The spins (gray bullets) are coupled
to NNs along the lattice vectors τ 1,2,3 by the couplings t̃τ1 ≡ t, t̃τ2 ≡ t′, and
t̃τ3 ≡ t′′, which can all be mutually di�erent. The right part of the �gure
illustrates the associated square lattice. The shown geometry is the one used
in the ED of the 15-site system, chosen for maximal symmetry between all
three couplings.

di�erent types of order. It appears plausible that at these points quantum
�uctuations are most e�ective in disrupting classical order. Indeed, in classi-
cal statistical physics, thermal �uctuations typically suppress short-range order
most e�ectively just above (i.e., at higher temperature) a transition between a
commensurate and an incommensurate phase, a concept which is known under
the name disorder point [253�256]. To identify if it is a more general behav-
ior that spin liquids appear at the transition between two phases of di�erent
order, we analyze now a generalization of the SATL, the spatially completely
anisotropic triangular lattice (SCATL) with AFM XY interactions. Here, the
tunneling matrix elements t̃ij = t, t′, t′′ [see Eq. (3.3)] along all three lattice
vectors are di�erent (Fig. 3.15).

The SCATL is interesting for two reasons. First, from an experimental point
of view, it is relevant for studying the sensitivity of the spin-liquid phases pre-
dicted in the SATL towards imperfect lattice shaking, i.e., shaking which does
not create two perfectly equal couplings. Second, from a more fundamental
point of view, this model allows to investigate in a more general setting under
which circumstances spin liquids appear. As we will show, also in the SCATL
spin liquids do not occur at largest frustration but instead intervene in the tran-
sition between phases with di�erent type of order, meaning that the spiral phase
is completely surrounded (in terms of anisotropy of the couplings) by gapped
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spin liquids. This suggests that the two � supposedly di�erent � gapped spin
liquids appearing in the SATL (compare Fig. 3.1b) could actually be contin-
uously connected! As these results indicate, the additional anisotropy of the
SCATL, allowing to approach spin liquid phases from di�erent angles, can give
fundamental insight into the nature of quantum disordered phases.

Ultracold-atom experiments as by Struck and coworkers [17] and trapped-
ions implementations after the proposal by Schmied et al. [202] can easily be
generalized to this situation by choosing an elliptical driving orbit or a preferred
direction of ion vibration, respectively, that is not parallel to any of the sides
of the triangular plaquettes. In Fig. 3.15, we also sketch the associated square
lattice with an interaction along one of the diagonals. We will work in the latter
one, to simplify the interpretation of our results. The SATL is retrieved at the
lines t′/t = 1, t′′/t = 1, and t′ = t′′.

The rest of this section is organized as follows. First, to give an overview over
the ordered phases that one can expect in the quantum SCATL, we discuss the
phase diagram of its classical counterpart (Sec. 3.4.1). Section 3.4.2 contains
the discussion of the quantum-mechanical ground-state phase diagram of the
SCATL, including various observables from MSWT and ED, as well as, for a
possible comparison to experiment, the expected boson momentum distributions
at selected points of the phase diagram. We will summarize our �ndings in
Sec. 3.5 where we put them in a wider context of frustrated XY models. The S =

1/2 AFM SCATL with Heisenberg interactions, motivated by recent experiments
on magnetic organic salts, is treated in a similar way in the Chapter 14.2.2. The
results presented in this section can be found in the preprint Ref. [257].

3.4.1 Classical phase diagram

The classical phase diagram of the SCATL can serve as a guide to what ordered
quantum phases are to be expected, and it allows to appreciate the changes
brought about by quantum �uctuations. In the square lattice associated to the
SCATL, we obtain the classical ordering vectors
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Figure 3.16: Classical phase diagram of the SCATL, ordering vector.
We �nd three Néel-ordered and an extended spiral-ordered phase, as indicated
by the labels in the left panel. The limits where the system decouples into an
ensemble of independent chains are labeled �1D.� The thick red lines denote
transitions between di�erent kinds of order, and along the dashed black lines
the system is in the SATL limit.

The resulting classical phase diagram of the SCATL, plotted in Fig. 3.16,
contains several Néel-ordered phases and an extended spiral-ordered phase. The
Néel phases spread around the square-lattice limits (t′/t, t′′/t) = (1,0) with
Qcl = (0, π), (t′/t, t′′/t) = (0,1) with Qcl = (π,0), and t′/t, t′′/t ≫ 1 with Qcl =

(π,π). The spiral phase, with continuously varying ordering vector, connects
smoothly to the Néel phases, and occupies the extended region between them.
In particular, it extends down to t′/t = t′′/t = 0 [and, symmetrically, to (t′/t = 1,
t′′/t→∞) and (t′′/t = 1, t′/t→∞)], where the system decouples into an ensemble
of 1D chains.

3.4.2 Quantum-mechanical phase diagram

Now, we turn to the quantum-mechanical ground-state phase diagram of the XY
SCATL. To compute it, we use the MSWT supplemented with ordering-vector
optimization, as explained in Chapter 14, working directly in the thermody-
namic limit. We compare these results to ED of a 15-site lattice, the geometry
of which, depicted in Fig. 3.15, is chosen for its symmetry between t, t′, t′′ bonds.
As for the SATL, in small lattices it is important to leave the boundaries open
to account for incommensurate ordering vectors.
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Figure 3.17: Quantum-mechanical phase diagram of the SCATL, or-
dering vector. Upper row: MSWT data. Around t′ = t′′ = t, a part of
the classical spiral phase survives quantum �uctuations. Lower row: ED
data. The growth of the Néel phase and reduction of spiral order, as seen in
the MSWT data, can already be appreciated for N = 15 sites.

MSWT and ED results � ordering vector and order parameter

In this section, we give a �rst overview over the phase diagram, as obtained
from the ordering vector Q and the order parameter M , followed in the next
two sections by more detailed analyses.

As seen in the MSWT and ED ordering vectors, presented in Fig. 3.17,
quantum �uctuations stabilize the Néel phases compared to the classical case,
as already observed in the SATL. In the central region around t′ ∼ t′′ ∼ t, the
ordering vector indicates spiral order with a broad range of incommensurate
ordering vectors. The �nite MSWT order parameter (Fig. 3.18, left panel)
indicates that in these phases indeed long-range order survives quantum �uc-
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Figure 3.18: Quantum-mechanical phase diagram of the SCATL, or-
der parameter. ED results qualitatively con�rm the MSWT phase diagram.
In particular, the order parameter for both methods decreases rapidly upon
approaching the MSWT breakdown regions.

tuations. The self-consistent MSWT calculations become relatively unstable
for small order parameters, which results in the ragged boundary lines of the
ordered phases.

In the Néel phases, the ED order parameter (Fig. 3.18, right panel) is max-
imal, giving support to the assumption that here LRO persists. However, it is
much smaller in the spiral phase than the MSWT value, a discrepancy already
found in the SATL.

Between the ordered regions, we �nd a broad region where the MSWT the-
ory breaks down, indicating as discussed in the SATL that these regions do
not allow a description in terms of an ordered, semi-classical state. This, in
turn, hints at quantum spin-liquid phases. Therefore, it appears that it is a
quite universal feature of frustrated quantum antiferromagnets that spiral- and
collinearly-ordered phases are always separated by quantum disordered phases.
This is the main result of this section.

We obtain further support to this interpretation, which we will further cor-
roborate in the next two sections, from the strong decrease of the MSWT and ED
order parameters upon approaching this region (Fig. 3.18). Note also that both
the ED and MSWT order parameter seems to disappear relatively smoothly
when approaching the putative 1D-like spin liquid (consider, e.g., in the range
2 ≲ t′/t ≲ 3, t′′/t → 1−). Upon approaching the putative large-α spin liquid
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Figure 3.19: The partial spin
sti�ness (normalized to the cou-
pling strengths 1 + t′ + t′′) de-
creases upon approaching the
MSWT breakdown region, sug-
gesting the disruption of mag-
netic LRO.

dividing spiral from Néel LRO, on the other hand, for ED, the order parame-
ter decreases more sharply (consider, e.g., the line t′/t = 1, t′′/t → 1−). Here,
for MSWT, the breakdown occurs abruptly at �nite order parameters. This
may point at a di�erence in the type of phase transition upon approaching the
large-α spin liquid and the spin liquid at the decoupled-chains limit.

The rest of this section is devoted to �eshing out our main �nding, the
appearance of a disordered region encircling the spiral phase.

Supporting observables from MSWT � spin sti�ness and spin-wave
velocities

In the SATL, the spin sti�ness (14.21) has proven a valuable consistency check
of our MSWT calculations. Even if the order parameter is �nite, a small spin
sti�ness suggests that taking further quantum �uctuations into account than
within MSWT could disrupt the remaining order and lead to disordered phases.

In Fig. 3.19, we show the determinant of the partial spin-sti�ness tensor,
det(ρ), normalized to the coupling strengths 1 + t′ + t′′.12 As we should expect
[258], det(ρ) decreases upon approaching the phase transitions, especially from
the Néel-ordered side. At large t′ (t′′), this decrease is due to a softening of the
sti�ness in x (y) direction, and at small (t′/t, t′′/t) in the direction perpendicular
to τ1, i.e., in the direction perpendicular to the dominating chain, as we also
saw in the SATL.

12Since for our purposes it is enough to extract an upper bound for the spin sti�ness, we
use the partial spin sti�ness as de�ned in Eq. (14.23).
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Figure 3.20: Lower panels: The spin-wave velocities (normalized to the
coupling strengths 1+t′+t′′) soften in the 1D limits in the direction perpendicu-
lar to the dominating coupling strength. Di�erences in the spin-wave velocities
might allow to measure the anisotropy of the SCATL.

Another indicator for approaching disordered phases is given by the spin-
wave velocities vx,y, which are connected to the spin sti�ness via the suscepti-
bility [259]. Since the spin-wave velocities are de�ned as the leading order of
an expansion of the spin-wave dispersion relation, Eq. (14.13), around small ∣k∣,
i.e.,

vx = lim
kx→0

ωk/kx∣
ky=0

, (3.38a)

vy = lim
ky→0

ωk/ky∣
kx=0

, (3.38b)

they can be measured directly from the excitation spectrum, allowing an exper-
imental check of our �ndings.

As seen in Fig. 3.20, close to the 1D breakdown region, they, too, soften
in the direction perpendicular to the dominating coupling. On the other hand,
when approaching the putative large-α spin liquid dividing the spiral from the
Néel phase, both spin-wave velocities remain �nite. This is another (besides
the di�erent behavior of the order parameter) indication that the large-α spin
liquid may be qualitatively di�erent from the spin liquid found in the limit of
decoupled chains.
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Figure 3.21: Second derivative of ED ground-state energy for the N = 15
system. For clarity, we plot the logarithm after a shift to positive values larger
than one, L(∂2

(E/N)/∂tγ2
), where tγ is t′ or t′′, and L(x) = log(1+max(x)−x).

Strong peaks clearly mark the phase transitions from the Néel phases. The
peak around (t′/t, t′′/t) = (1,1) might be an indication of an additional phase
separating the Néel phases from the spiral one.

Supporting observables from ED � energy derivative, gap, and chiral
correlations

The ED observables investigated above (ordering vector and order parameter)
allowed to interpret the predominant ordering behavior, but did not yield clear
evidence if within ED really QPTs exist, and if yes, where their boundaries lie.
The second derivative of the ED ground-state energy, which we plot in Fig. 3.21,
can provide such an indicator. In fact, in the thermodynamic limit, it should
diverge at a QPT.

Indeed, there are clear peaks along lines similar to where in MSWT the Néel
order breaks down. Also, a peak appears around (t′, t′′) = (1,1). This might be
interpreted as the precursor of a QPT away from the spiral state, and possibly
to the spin liquid that is supposed to exist in this system.

We get further support for this phase diagram from the ED energy gap be-
tween ground and �rst excited state, Fig. 3.22. In the well-known limiting cases
of the SCATL, it behaves as expected: There is no gap close to the decoupled-
chains limits, since the system is then in a critical phase. In the Néel ordered
phases, there is a large gap which separates the ground state from closely-spaced
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Figure 3.22: Left panel: The singlet gap from ED gives support to the
MSWT phase diagram. A �nite gap separates in the Néel phases spin-wave
excitations from the ground state. In the spiral phase, the ground state is
doubly degenerate due to the ambiguity in choice of chirality. The �nite gap
surrounding the degenerate region could be a precursor of a gapped, disordered
phase. At the transitions to the Néel phases, the gap closes again. Right
panels: cuts at �xed t′′/t = 1,2,3 for triangles with increasing N (from light
to dark and thick to thin: 6,10,15). There is little size dependence in the
central gapped phase (t′′ = 2,3t with t′ ≈ t, as well as t′′ = t and t′/t ≳ 1.5).
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excitations, which in larger lattices become the spin waves, collapsing slowly to-
wards the ground state [231] (for an example of the excitation spectrum in a
Néel phase, see also the panel for α = 2 of Fig. 3.6). This is consistent with the
considerable size dependence found in our calculations, as can be seen in the
right panels of Fig. 3.22, where we plot cuts of ∆EED at �xed t′′/t = 1,2,3 for
triangular systems (similar to the one in Fig. 3.15) with N = 6,10,15.

On the contrary, there is no gap in the spiral-ordered phase, because the
ambiguity in the choice of chirality leads to a ground-state degeneracy.13 We
�nd that the vanishing of the gap depends strongly on the system geometry,
but it occurs consistently for all triangular systems considered.

Interestingly, the gapless spiral phase is surrounded by a region where the
gap attains considerable values. The very small dependence on system size in-
dicates that here it is stable towards the thermodynamic limit. A �nite gap is
not consistent with a spiral-ordered phase. On the other hand, the predomi-
nant order in this region is at incommensurate wave-vectors. Hence, the �nite
gap is clearly not due to square-lattice Néel-like physics. Optimistically, these
�ndings could therefore be interpreted as the precursors of a gapped spin-liquid
phase. This gapped region completely encircles the spiral phase, suggesting that
the low- and large-α gapped spin liquids found in the SATL could actually be
continuously connected via the additional anisotropy of the SCATL.

The gap closes again upon approaching the Néel phases, indicating a quan-
tum phase transition.

From the gap, it seems that there is support for the assumption of an ex-
tended gapped phase separating spiral and Néel LRO. Still, it would be desirable
to be able to exclude for this region spiral LRO in the thermodynamic limit.
To do this, we now study where chiral correlations persist, because in a spiral
phase they have to remain �nite. For the small systems used in our ED, we
generalize the chiral correlations (3.33) to

Ψ− =
4

N∆
⟨∑
c

scκc∑
a

saκa⟩ . (3.39)

Here, to minimize boundary e�ects, the sum over c runs only over the central
triangles, while a runs over all triangles of the lattice. The factors sa,c weight
the vector chiralities de�ned in Eq. (3.32) with a + (−) sign if the triangle points
upwards (downwards). The prefactor including N∆, the number of summands,
is chosen such that the chiral correlation has the same theoretical maximum of
9
4
as the usual de�nition for large lattices, Eq. (3.33) [234].

13We checked that in the spiral phase there is a gap, similar to the spin-wave gap found in
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Figure 3.23: Chiral correlations from ED. Upper left: Already for small
systems (N = 15), the chiral correlations are appreciably smaller in the Néel
phases than in the rest of the phase diagram. Upper right: From an extrap-
olation to large lattices, it appears that chiral LRO only survives in a small
central region around (t′/t, t′′/t) = (1,1), lending support to an extended dis-
ordered phase close to the 1D limits. Below: The geometries used in the
extrapolation are chosen for symmetry upon rotation by 60○ and equal number
of t, t′, and t′′ bonds.
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As can be seen from the ED results of the N = 15 lattice (Fig. 3.23, left
panel), the chirality is relatively small in the Néel phases. However, at this
lattice size, there are still appreciable chiral correlations in the rest of the pa-
rameter regime. In particular, in the 1D limit, the chiral correlations are only
a little smaller than in the spiral phase around (t′/t, t′′/t) = (1,1). There-
fore, we also plot in Fig. 3.23, right panel, an extrapolation to large lattices
by Ψ−(N) = Ψ−(N = ∞) + c1

N3/2 +
c2
N2 , where we use the known form for the

leading �nite-size behavior [260] but also include the �rst subleading correction
due to the small systems under consideration (our data comes from lattices with
N = 7,10,12,15,18, all chosen to have the same number of t, t′, and t′′ bonds,
as sketched at the bottom of Fig. 3.23). While this can not be seen as a rigorous
�nite-size analysis, which is di�cult for the small systems studied, it shows a
clear trend, namely that the chiral correlations only survive in the central re-
gion around (t′/t, t′′/t) = (1,1). From this data, it appears that while chiral
order disappears in an extended region close to the limit of decoupled chains,
it extends all the way to the Néel phases, contrary to the MSWT and PEPS
results on the SATL (see Sec. 3.2). Further studies on larger lattices or with
complementary methods seem necessary to settle this question.

With this, we have several independent observations from ED indicating the
existence of a magnetically disordered phase, some of which indicate that it
completely surrounds the spiral phase: the increase of the gap when leaving the
central region around (t′/t, t′′/t) = (1,1) suggests that there is no spiral LRO
in this region. We could corroborate this with a vanishing chirality close to
the decoupled chains. On the other hand, the predominant order is at incom-
mensurate ordering vectors, indicating that this phase is also not Néel ordered.
Therefore, it seems natural to assume that this region could host a spin-liquid
phase, possibly gapped far away from the 1D limit and gapless close to it.

MSWT predictions for the hard-core boson momentum distribution

Finally, we wish to connect our predictions to experiment. As explained in
Chapter 2.1 and Sec. (3.2.5), a well-established experimental technique for the
observation of the quantum phases of ultracold atoms is time-of-�ight (ToF)
imaging of the atom momentum distribution, Eq. 3.35. In Fig. 3.24, we present
ED predictions (for N = 15) for ToF images at various values of anisotropy,
where the uppermost row shows parameter values from the SATL, and the other
rows show from top to bottom results for increasing additional anisotropies in

the Néel phases, between the second and the third energy level.
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steps of 10%. The black lines denote the �rst Brillouin zone (1st BZ).
Commensurate spiral order appears as peaks at the corners of the 1st BZ (as

in the �rst panel of the second row), while peaks at the center of two opposing
sides of the 1st BZ mark Néel order (as in the lower two panels of the second
row). Incommensurate spiral order is characterized by peaks lying between these
two limiting cases (as in the second panel of the second row). Close to the 1D
limit, the peaks decrease in magnitude and smear strongly out along a straight
line (as seen in the �rst panel of the �rst row).

In large systems, disordered phases are characterized by a sub-extensive
growth of the peak height, but for the small system considered here it is di�cult
to draw such conclusions. However, the in�uence of the additional anisotropy
on the predominant order properties (be they of long or short range) can be
seen clearly already for the small systems considered in Fig. 3.24. In particular,
the additional anisotropy can shift the system from one phase to a qualitatively
di�erent one. For example, the momentum distributions in the �rst row pass
from an almost 1D-like spiral state to an adjacent Néel phase. Similar behavior
is found for other values of (t′/t, t′′/t). Such ToF pictures, therefore, would
allow to observe the in�uence of the additional anisotropy in experiment.

3.5 Summary for the frustrated quantum models

In this chapter, we have provided a thorough analysis of the ground-state phase
diagrams of the quantum XY SATL and its generalization, the SCATL (that has
not been considered before in the literature). To this purpose we investigated
various observables from MSWT, PEPS, and ED.

We found two main recurrent features for strongly frustrated quantum mag-
nets in two dimensions. First, collinear order is considerably stabilized by quan-
tum �uctuations against spiral order. Extending our results for the SATL to �-
nite temperatures, we found that thermal �uctuations have a similar e�ect. Sec-
ond, (quasi-)ordered phases characterized by di�erent forms of order (collinear
vs. spiral) do not continuously connect to each other, but they rather seem to be
separated by quantum disordered phases. In the SATL, this behavior possibly
leads to the appearance of one gapless and two gapped spin liquids. This e�ect
was also more recently found by Varney et al. in a frustrated XY model on the
honeycomb lattice [261].

As a consequence, in the SCATL, the spiral phase seems to be entirely sur-
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Figure 3.24: ToF predictions (corresponding to the static structure factor)
allow comparison to typical experimental results. The additional anisotropy of
the SCATL increases from top to bottom in steps of 10%, showing that it can
shift the system to phases with di�erent qualitative order. Data from ED of
N = 15 spins.
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rounded by a quantum disordered region. This result, which constitutes one
of the main �ndings of this chapter, is supported by the breakdown of MSWT
theory, together with the strong decrease of the order parameter and the spin
sti�ness. It is further corroborated by ED data, where a �nite gap makes spiral
LRO seem unlikely, while the location of the structure-factor peak at incom-
mensurate wave vectors seems to preclude Néel LRO. Also, the strong decrease
of the ED structure-factor peak appears to support this interpretation. Our ED
data remains inconclusive, however, as an extrapolation of chiral correlations
to large lattices seems to predict a breakdown of chiral order only close to the
limit of decoupled chains.

A complete encircling of the spiral phase by disordered phases could natu-
rally explain the succession of a gapped and a gapless spin liquid at the low-α
limit of the SATL (as presented in Fig. 3.2b). The gapless spin liquid would
be continuously connected to the limit of decoupled chains, while the additional
anisotropy of the SCATL would adiabatically connect the gapped spin liquids at
small and large α. This consideration shows the great potential of the additional
anisotropy to deliver new insights into the nature of these phases. Further, it
allows to approach the small-α spin liquids not only from the spiral phase, but
also from the Néel phase. We found, indeed, some indications that very close
to the 1D limit the transition from the Néel phase to the putative disordered
region could be qualitatively di�erent from what happens at larger α.

Finally, we provided ED predictions for the boson momentum distribution
in time-of-�ight pictures, a comparison to which might allow to test our �ndings
in upcoming experiments with ultracold atoms.

3.6 Connection to current experiments and sum-
marizing remarks

Before concluding this chapter, we wish to more precisely place our results into
the context of current cold-atom experiments. Currently, heating e�ects prevent
reaching the strongly-interacting regime so that experiments are carried out not
in the limit of in�nite inter-boson repulsion, but rather at weak interactions [17].
In this regime, the system behaves almost classical. To see in how far frustration
e�ects play a role in this case, we now address brie�y the phase diagram of the
SATL at weak inter-particle repulsion.

For small on-site interactions U , we can compute the ground-state behavior
of the frustrated Bose�Hubbard model (3.1) via an expansion in condensate �uc-
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tuations. This becomes possible since quantum �uctuations in this regime are
typically small, and the ground state is Bose-condensed, showing strong ordering
tendencies. Normally, the behavior of the system in this case is well captured by
a Bogolioubov�deGennes expansion, which replaces operators by (global) mean
values dressed with small �uctuations around them. However, as described in
the previous sections, in the extreme quantum limit of U → ∞, geometrical
frustration can disrupt order and lead to quantum-disordered states. We can
expect to �nd precursors of this physics in the weakly-interacting regime, such
as reduced LRO of the condensate phase. In this case, a standard Bogolioubov�
deGennes expansion is not an adequate approach, because it is based on the
assumption that the phase �uctuations remain small on a global scale (i.e.,
from one side of the sample to the other). To circumvent this limitation, we
employ a Mora�Castin expansion [262] as explained in Chapter 13.3. This type
of expansion only relies on the assumption that the variation of the phase is slow
on the order of the lattice spacing, but it may be strong on larger distances.
This generalization makes this method also applicable to systems with reduced
degrees of order. We extend the expansion of the original article [262] to include
terms up to fourth order in the �uctuations, and solve the resulting equations
self-consistently. This improvement proves crucial to capture the change of the
order properties with increasing U (i.e., with increasing �quantumness�). Our
�ndings are presented in Fig. 3.25a. Technical details can be found in Chap-
ter 13.3. The results presented here have been published in Ref. [164] without
detailed derivations. A publication including these is in preparation [214].

To characterize the phases of the weakly-interacting limit of the SATL, we
employ the ordering vector, Eq. (13.41). As it shows, the shift of the transi-
tion between Néel and spiral order, observed in the U → ∞ limit of the SATL
(Sec. 3.2), seems to set in immediately and smoothly with increasing U .

Further, to judge the strength of quantum �uctuations, and as a fundamen-
tal self-consistency check of the Mora�Castin formalism, we also compute the
phase �uctuations and the condensate fraction, using Eqs. (13.43) and (13.46),
respectively. Where the phase �uctuations become too large or the conden-
sate fraction too low, the initial assumption in the Mora�Castin formalism that
quantum �uctuations are small is no longer valid and the theory cannot be ap-
plied. In Fig. 3.25a, we include lines where the condensate fraction falls below
0.75 and where phase �uctuations along the bonds τ 1 and τ 2 rise above π/4.
We identify these lines with the onset of strong tendencies towards quantum
disorder. The values chosen are arbitrary, but they show a clear trend: order is
disrupted more easily close to the transition between Néel and spiral LRO. This
is consistent with our results from Sec. 3.2, which suggest that in this param-
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eter region a gapped spin liquid appears at large U . Considering the limit of
weakly-coupled chains, from the ordering vector, we do not �nd the extension
of a gapless 1D-like spin liquid to �nite inter-chain couplings as should happen
for strong U . However, the condensate fraction and inter-chain phase order are
less stable at small t2/t1, indicating weaker ordering tendencies. It appears that
the putative spin-liquid regions imprint precursors of their properties also on
the weakly-interacting regime.

We can tentatively interpolate our �ndings between the regime of weak inter-
actions and the extreme quantum limit from Sec. 3.2. The result is sketched in
Fig. 3.25b. While the shift of the transition between Néel and spiral LRO seems
to increase smoothly with U , the various quantum disordered phases (gapped
or gapless spin liquids) seem to set in only at �nite interaction strengths.

Although the theoretical tools that we have at our disposal all have their
shortcomings, we were able to considerably narrow down the parameter regions
where quantum spin liquids may occur. To study such exotic quantum states
with all their intriguing properties and possible applications, an experimental
quantum simulation seems indispensable, which could be realized via lattice
shaking as explained.

As we have seen in this chapter, the lattice geometry plays a crucial role
for the physics of ultracold atoms systems. In the examples above, a triangular
lattice induces geometrical frustration, leading to new quantum phases. The
particular triangular optical lattice used in the experiments of the Hamburg
group [160, 165] o�ers, however, the intriguing possibility to also explore another
geometry: simply by changing the polarization of the laser beams creating the
lattice, it can be transformed into a honeycomb lattice [161]. A lattice of such
a geometry, loaded with Fermions [162], may be used for mimicking graphene
physics. The �rst experiment in an optical honeycomb lattice together with
comparison to theoretical results is the subject of the next chapter.
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Figure 3.25: (a) Phase diagram of the SATL for weak interaction U ,
from a Mora�Castin expansion with mean occupation number n = 3.5. Quan-
tum �uctuations, quanti�ed by U/(n t1), shift the Néel�spiral transition to
lower values of t2/t1 (thick red line). The purple dotted (blue dashed) line
marks where NN phase �uctuations along the lattice vector τ1 (τ2) reach π/4,
and the thin solid line where the condensate fraction has dropped to 0.75.
Phase �uctuations and reduction of the condensate fraction are stronger at the
Néel�spiral transition and close to the 1D limit, indicating a stronger insta-
bility towards disorder. (b) Putative phase diagram of the SATL for
all interaction regimes, combining the results from panel (a) with those of
Sec. 3.2 and Schmied et al. [202]. While the shift of the transition Néel�spiral
can already be observed at arbitrarily small U , the extension of a gapless phase
with 1D-like quasi-LRO seems to happen at �nite interactions. At larger U ,
gapped spin-liquids (SLs) should emerge.
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Chapter 4

Multi-component quantum
gases in spin-dependent
honeycomb lattices

The geometry of a system fundamentally de�nes its properties. Hence, to be
generally applicable, quantum simulators have to be able to treat various ge-
ometries with widely di�erent properties. However, so far, most experiments
with ultracold quantum gases have been carried out in lattices of cubic symme-
try. Optical lattices allow, however, much more than this. Due to the prospect
of realizing a variety of novel phenomena with possible applications in quantum
information and spintronics, a strong current theoretical development [211, 263�
267] aims especially at the quantum simulation of systems with a honeycomb
geometry. This direction of research is especially spurred by the rapid develop-
ment in the last years of graphene technology [268], which has a vast spectrum of
potential applications, ranging from transistors [269] over chemical sensors [270]
to � perhaps most promising � graphene photonics [271], optoelectronics [272],
and plasmonics [273�278]. Mastering the honeycomb geometry would allow ac-
cess to the fascinating e�ects encountered in graphene, carbon nanotubes [279],
and a large number of other carbon-based compounds, including topological and
spin-Hall insulating phases [280, 281] (see Chapter 5).

In this chapter, we discuss the �rst experiments on ultracold quantum gases
in a spin-dependent optical honeycomb potential, realized by Prof. Sengstocks
group in Hamburg. The experimental results have been published together
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with our theoretical analysis in Ref. [161]. Previously, di�erent types of spin-
and/or state-dependent lattices have been implemented to study transport and
magnetic properties of ultracold lattice gases [10, 282�286]. Exotic geometries
have more recently also been achieved by other groups, such as the tunable
honeycomb lattice in the group of T. Esslinger [162] or the kagome lattice in
the group of D. Stamper-Kurn [163].

We demonstrate how the spin-dependent honeycomb lattice can be used to
tailor quantum phases and dynamics of spin-mixtures. We show that the combi-
nation of interactions between di�erent spin-states and the spin-dependent lat-
tice potential leads to novel quantum phases: a forced antiferromagnetic (AFM)
Néel order when two spin-components localize in di�erent sublattices, and a
pronounced interaction-induced modulation of the SF density, when one spin-
component is localized in one sublattice and imposes an interaction-induced
lattice on the other SF spin-component. This can be understood as a forced
supersolid. Examining the in�uence of the spin state on the SF to MI transi-
tion, we demonstrate furthermore that the mobility of particles in the lattice
can be adjusted by immersing the SF particles into a well-localized spin-crystal.
We present the phase diagrams from the Gutzwiller mean-�eld Ansatz (GMFA,
see Chapter 13.1), where we �nd good agreement with the experimental re-
sults. Our studies show the strong in�uence of the lattice geometry on e�ects
like the SF�MI transition. The realization of honeycomb lattices is a �rst step
towards the quantum simulation of graphene-like physics in an optical-lattice
architecture. As our results show, optical-lattice setups go even beyond a pure
mimicking of solid-state e�ects, opening possibilities that are not realizable in
solid-state systems.

4.1 Experimental setup

The basic structure of the spin-dependent optical honeycomb lattice used by
the Hamburg group is illustrated in Fig. 4.1. It generalizes the basic idea of
optical lattices described in Chapter 2.1. Three laser-beams derived from a
Ti:Sapphire laser running at λ = 830 nm intersect under an angle of 120○, with
each beam linearly polarized in the plane of intersection. This leads to the
formation of local potential minima in a honeycomb structure. A perpendicular
one-dimensional lattice with a di�erent frequency restricts the motion of the
atoms to two-dimensional planes. Typical potential depths of this 1D-lattice
are V1D = 44Erec. The resulting two-dimensional honeycomb lattice potential is
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Figure 4.1: Spin-dependent honeycomb lattice. (a) The lattice with
alternating σ+ (green bullets) and σ− (red bullets) polarization structure. The
upper plot shows a cut through the 2D potential (center). The lowest graph
shows the polarization distribution in the lattice ranging from fully σ+(green)
to σ−(red) polarized. (b) The potential along the orange dashed line
in panel (a) for particles in di�erent Zeeman states ∣F,mF ⟩. The modulation
depth of the potential depends on the mF -state. The lower part shows the
corresponding light polarization. For large lattice depth, atoms in the di�er-
ent substates will localize as indicated by the red, blue, and green bullets.
(c) Time-of-�ight images of SF samples prepared in di�erent Zeeman sub-
states (left) and the corresponding calculated momentum distributions (right).
The second- to �rst-order interference peak ratio (depicted at the bottom) dif-
fers between ∣1,±1⟩ atoms (which assume a triangular con�guration) and ∣1,0⟩
atoms (which assume a honeycomb con�guration).
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given by

V (x) = −2Vlat{3 − cos [(b1 − b2) ⋅x] + cos (b1 ⋅x) + cos (b2 ⋅x)} (4.1)

−2
√

3VlatαmF{ sin [(b1 − b2) ⋅x] + sin (b1 ⋅x) − sin (b2 ⋅x)}

where gF is the Landé g-factor, µB is the Bohr magneton,mF labels the di�erent
atomic Zeeman substates, b1 =

√
3/2kex+k/2ey and b2 =

√
3kex (with k = 2π/λ)

are the reciprocal vectors of the honeycomb lattice, and Vlat gives the strength
of the lattice. The constant α depends on the detuning of the lattice laser from
the atomic resonance; in the experiments of the Hamburg group, α = 0.13.

4.1.1 Basic behavior of atoms in the spin-dependent lat-
tice

In the experiments of Prof. Sengstock's group, this lattice is loaded with typi-
cally several 105 atoms of 87Rb. To achieve this, initially Bose�Einstein conden-
sates in the hyper�ne state ∣F,mF ⟩ = ∣1,−1⟩ are prepared in an optical dipole
trap. From these, pure hyper�ne- and magnetic Zeeman-states or speci�c com-
positions of di�erent such states can then be prepared with the aid of radio-
frequency and/or microwave sweeps. After these preparatory steps, the lattice
is ramped up, during which coherence between di�erent spin states is lost.

The atoms experience a potential composed of the honeycomb lattice and
the perpendicular 1D-lattice, i.e., V (x) + V1D sin2

(kz). For neighboring inten-
sity maxima of the honeycomb lattice, the local polarization alternates between
σ+ and σ− (for example, when following the dashed line in Fig. 4.1a, center; see
also Fig. 4.1a, bottom). Since atoms in a light �eld experience a polarization-
dependent ac Stark shift [287], the potential at σ+ and σ− polarized potential
wells di�ers for di�erent atomic Zeeman substates. According to the local po-
larization, we denote the two triangular sublattices constituting the bi-atomic
basis of the honeycomb lattice by σ+ and σ−.

Mapping the polarization of the light �eld P (x) (+1 for pure σ+ and −1 for
pure σ− polarizations) onto a pseudo-magnetic �eldBeff (x) ∝ −Vhex (x)P (x) /µB,
the potential V (x) can be written in the compact form

V (x) = Vhex (x) +mF gFµBBeff (x) . (4.2)

This potential consists of a spin-independent part Vhex (x) of honeycomb ge-
ometry and a state-dependent potential due to the local pseudo-magnetic �eld
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Beff (x) that acts in opposite ways for the two sublattices. Due to this energy
bipartition of the honeycomb lattice, atoms with mF ≠ 0 are preferably con�ned
to either the σ+ or the σ− triangular sublattice. In contrast, for atoms in the
mF = 0 state, the Beff term vanishes, so that they will distribute homogeneously
over both the σ+ and the σ− sublattice (Fig. 4.1b).

For typical experimental parameters, tunneling of the atoms follows predom-
inantly along channels connecting neighboring local minima of Vhex (x), because
the large central peak maxima (9Vlat) reduces a diagonal tunneling across honey-
comb plaquettes. One such nearest neighbor (NN) tunneling channel is indicated
in Fig. 4.1a by a dashed line. Figure 4.1b illustrates the spin-dependent lattice
potentials along the dashed line for the F = 1 hyper�ne ground-state manifold
of 87Rb. The potential along this line corresponds to a sinusoidal potential
with 319 nm period, modulated by a cosine function with 638 nm period. The
modulation depth f(mF )Vlat along this line depends, due to Eq. (4.2), on the
mF -state and is given by {1,1.7,2.5}Vlat for mF = {0,±1,±2} and λ = 830nm.

4.1.2 Experimental measurement methods

Due to the pseudo-magnetic �eld term in the potential (4.2), the preferred distri-
bution of the atoms over the σ± sublattices depends on the hyper�ne state. The
resulting di�erences in the structure factor were observed in the Hamburg exper-
iments by time-of-�ight (ToF) measurements, such as explained in Chapter 2.1.
Typical measurement results for states that localize in triangular and hexagonal
con�gurations (∣1,±1⟩ and ∣1,0⟩, respectively) are shown in Fig. 4.1c together
with the corresponding theoretical prediction from a one-particle band struc-
ture calculation (also due to Prof. Sengstock's group). The observed second- to
�rst-order interference peak ratio (see Fig. 4.1c bottom) is signi�cantly larger
for the hexagonal than for the triangular con�gurations. It typically ranges be-
tween 2 and 4 for the experimental parameters. This fact can be explained by
considering the Bloch functions and their quasi-momentum distribution for the
corresponding spin-dependent lattice geometry. As explained in Chapter 2.1,
the ToF measurement maps the spatial density distribution of the ensemble af-
ter a free expansion to the in-lattice momentum spectrum. The height of the
observed peaks, quanti�ed by the visibility, is a measure for the coherence of
the atoms in the lattice. It serves to distinguish the SF regime (large visibility)
from the MI regime (low visibility).

To obtain more precise information about the spatial in-trap distribution,
the Hamburg group employed a specialized method for state- and site-selective
microwave spectroscopy. It allows for in-situ investigations of the spatial spin-
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ordering and is suitable for studying di�erent regimes ranging from the SF to the
MI phase. Previously, a similar kind of polarization-dependent radio-frequency
spectroscopy method was used to study cubic lattices [284]. Here, we sketch the
main idea and refer to the publication [161] for more details. In this method, a
microwave pulse transfers population from the populated mF -states to initially
non-occupied, auxiliary mF ′ -states. The e�ciency of this transfer depends on
the detuning of the microwave energy to the energy di�erence between mF and
mF ′ , ∆EmF ,m′

F
. Therefore, this technique is sensitive to the spatial variation

of ∆EmF ,m′
F
that is generated by the pseudo-magnetic �eld Beff , given by

∆EmF ,m′
F
= ∆V (x) = µB (mF ′ +mF ) (B0 +Beff (x)) /2 +Ehfs , (4.3)

where B0 is an additional homogeneous magnetic guiding-�eld and Ehfs is the
87Rb-hyper�ne splitting. The spectroscopy signal is obtained by releasing the
sample from the lattice and performing Stern�Gerlach separation. Since the
transfer e�ciency between initial and �nal state depends on the Franck�Condon
overlap, care has to be taken to normalize the signal correspondingly. By count-
ing the fraction of transferred atoms as a function of the microwave frequency,
the spectroscopy signal reveals the relative occupations of the two sublattices
σ+ and σ−.

4.2 Theoretical model

Before discussing the experimental results for the spin-dependent honeycomb
geometry, we �rst explain how we analyze these theoretically. We model the
system by the two-species Bose�Hubbard model

Ĥ = − ∑
⟨ij⟩

(taâ�i âj + t
bb̂�i b̂j + h.c.) (4.4)

+∑
i

⎡
⎢
⎢
⎢
⎢
⎣

∑
α=a,b

(−µα +Eαi ) n̂
α
i +U

a,b
i n̂ai n̂

b
i + ∑

α=a,b

Uαi
2
n̂αi (n̂αi − 1)

⎤
⎥
⎥
⎥
⎥
⎦

,

and compute its ground state using the GMFA (see Chapter 13.1 for technical
details). This Hamiltonian is a straightforward generalization of the simple
Bose�Hubbard model (2.4) to the case of two spin components (a and b) and two
sublattices (σ+ and σ−). The operator âi (b̂i) annihilates an a (b) boson at site i,
and n̂ai (n̂

b
i ) are the corresponding occupation number operators. Angle brackets

denote pairs of NNs and tαNN = tα (α = a, b) the corresponding tunneling matrix
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elements. We will also present results including next-to-NN (NNN) tunneling.

We denote the local energy o�sets at a σ± site by Eαi = Eασ± , and U
α,α′
i = Uα,α

′

σ±
is the corresponding interaction between the spin-components ∣α⟩ and ∣α′⟩. For
convenience, we de�ne Uασ± ≡ Uα,ασ± . Similarly we will abbreviate expectation
values ⟨âi⟩ = ⟨âσ±⟩ if i ∈ σ±, where we make use of translational invariance. For
conciseness of notation, we will further index in the following the ∣1,−1⟩ state by
−1 and the ∣2,±2⟩ state by ±2. For simplicity, we implement the GMFA in the
grand-canonical ensemble, to which we introduce the chemical potentials µα.
To obtain results for �xed particle numbers, we iteratively adjust the chemical
potential until the desired particle number is reached. In most situations, this
approach works well, but there are cases where convergence is problematic.

To allow a quantitative comparison to experiment, we extract Eασ , U
α,α′

σ± , and
tα from the experimental parameters. The energy o�sets Eασ can be computed in
a straightforward manner from Eq. (4.1). For the on-site interactions, we have
to evaluate the integral Eq. (2.6). To do this, we approximate the optical lattice
potential at the bottom of each site as a harmonic oscillator, which allows to
replace the Wannier functions by Gaussians. For not too shallow lattices, this
approximation works well near the center of a site, from which the integral
obtains the largest part of its weight. In shallow lattices, on the other hand,
the interaction is weak and the tunneling term dominates, so that small errors
in the estimation of the interaction do not play any role. Therefore, also in the
case of shallow lattice the approximation of the Wannier functions as Gaussians
is acceptable. For consistency, we include also the zero-point energy of the
harmonic oscillator in the energy o�sets Eασ .

The tunneling matrix elements may be extracted from the overlap between
Wannier functions at di�erent sites, using Eq. (2.7). Contrary to the interac-
tions, for the tunneling one has to use the true Wannier functions since these
have strong oscillations in their tails. For the interactions, we could use Gaus-
sian functions and neglect these tails, because they are exponentially small.
They do have an important in�uence, however, in the overlap integral de�ning
the tunneling matrix elements. Since the calculation of the Wannier functions
for an optical honeycomb lattice is a challenging task, we estimate the tunneling
from a simpler approach. Namely, we �t exact one-particle band-structure cal-
culations of the full optical lattice to the band structure of a tight-binding model
Hamiltonian (i.e., without interaction terms). This gives a good estimate for
the tunneling matrix elements, where the agreement is improved if not only NN
tunneling terms but tunneling terms up to some larger distance are included.
In our case, the bi-atomic basis of the honeycomb lattice complicates this ap-



106 4. Quantum gases in spin-dependent honeycomb lattices

0 4 8 12 
Barrier height 𝐸rec  

0.2 

0 

0.4 

0.6 

𝑚𝐹 = 0 

±1 

±2 

0 4 8 12 

Lattice depth   𝑉lat 𝐸rec  

𝑡NN 𝐸rec  

0.2 

0 

0.4 

0.6 Figure 4.2: NN tun-
neling matrix ele-
ments for di�erent
spin states. The solid,
dashed and dot-dashed
lines represent tNN for
mF = 0,±1, and ±2.
The inset shows tNN

as a function of the
spin-dependent barrier
height.

proach, because one has to analyze the tunneling not between single sites, but
between double wells consisting of a σ+ and a σ− site.

The results for the NN tunneling matrix elements tNN are summarized in
Fig. 4.2. They decrease from mF = 0 to mF = ±1 to mF = ±2. This is due
to the increasing barrier height between neighboring wells (such as sketched in
Fig. 4.1b), as can be seen when plotting the tunneling matrix elements against
the barrier height instead of against the absolute strength of the lattice (inset).

4.3 Super�uid to Mott-insulator transition in
pure systems

The mobility of particles plays an important role in understanding, for example,
the conductivity of solid-state systems. In optical lattices, this property is
essentially governed by the interplay of the on-site interaction U with the tunnel
matrix element t, and is usually well captured in a Bose�Hubbard model such as
Eq. (4.4). As described in Chapter 2.1, in optical lattice experiments, the ratio of
t/U is directly adjustable through the power of the lattice beams. The Hamburg
group used this to drive the ensemble from the SF to the MI and observed this
transition by analyzing the visibility of ToF images. In this section, we describe
the experimental results for pure systems, and we explain the �ndings with
the help of the GMFA relying on the experimental parameters as described in
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Sec. 4.2. We discuss in the next section how mixtures of di�erent spin states
allow tuning the critical point of the SF�MI transition.

The visibility data shown in Fig. 4.3a compares di�erent single-component
samples. For the analyzed species, the SF�MI transition as a function of lattice
depth occurs in the order ∣2,−2⟩, ∣1,−1⟩, and ∣1,0⟩. The general tendency is
qualitatively con�rmed by the Gutzwiller calculations. In Fig. 4.3b, we plot our
predictions for the super�uid order parameter ∣⟨âσ+⟩∣+∣⟨âσ−⟩∣ for experimentally
relevant �lling factors between two and four per unit cell. In these calculations
we included explicitly only tunneling processes between NNs, but we will see
presently that NNN tunneling processes play an important role.

But �rst, let us explain the general tendency. The deepest optical lattice to
drive the system across the SF�MI transition is required for the mF = 0 atoms.
Since in this case the optical potential is not modulated by Beff(x), tunneling
is resonant to the three NNs, and the delocalization tendencies are strong. The
situation changes for ∣1,−1⟩ and ∣2,−2⟩ atoms. For these states, Beff(x) leads
to an energy di�erence between the σ+ and σ− sublattices, so that resonant
tunneling to NNs is not possible. The energy di�erence increases with ∣mF ∣, so
that the ∣2,−2⟩ are stronger localized. Additionally, the barrier height between
NNs increases with ∣mF ∣, see Eq. (4.2) and the sketches in Fig. 4.1b. Therefore,
we expect the SF�MI transition to occur at lower beam powers for increasing
values of ∣mF ∣, as we indeed �nd.

As Fig. 4.2, inset, shows, the tunneling matrix elements for all three species
are equal, if rescaled to the e�ective barrier height. If the di�erence in the
transition is purely due to this e�ect, we can expect the transitions to coincide
when they are rescaled accordingly. This is indeed observed in the experimental
data, as displayed in the inset of Fig. 4.3a. At second thought, however, this is an
unexpected behavior, since the NN hopping for mF = 0 is resonant while the one
for mF = ±1,±2 is not. Moreover, the o�-resonance is di�erent between mF = ±1
and mF = ±2, so that some other e�ect should be in play. Consistent with
these considerations, the GMFA with only NN tunneling does not reproduce
the behavior of the experimental data.

We �nd a simple explanation of the experimental �ndings when considering,
in addition to NN tunneling tNN, also NNN processes tNNN (sketched in the
inset of Fig 4.4b). To assess the in�uence of tNNN, we calculate the SF�MI
transition for systems with four particles per unit cell. We estimate tNN from
experimental parameters as before and �x tNNN as a given percentage of tNN.
As can be expected, the critical point of the SF�MI transition moves to larger
lattice depths with increasing tNNN (Fig. 4.4a). The relative shift of the critical
point is more pronounced for mF = ±1 and mF = ±2, because for these species
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Figure 4.3: SF to MI transition for pure atomic spin-states. (a) Exper-
imental data. As the visibility curves show, di�erent pure spin states become
insulating at di�erent lattice depths Vlat. As demonstrated in the inset, the
SF�MI transitions as a function of the e�ective tunneling barrier (sketched in
the lower right; see also Figure 4.1b) nearly coincide. The data are averaged
over typically 7-10 experimental runs, and the error bars indicate the standard
deviation. The solid lines are guides to the eye. (b) Theory. The approach
to zero of the SF order parameter (normalized to the occupation number) indi-
cates the position of the SF�MI transition. The qualitative agreement with (a)
is satisfactory. The areas represent the results for the experimentally relevant
�lling factors between two and four per unit cell.
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Figure 4.4: In�uence of NNN tunneling processes, GMFA. (a) The
critical lattice depth Vlat for the SF-MI transition increases with tNNN. To
extract the numerical values for the critical point, we assume that it is reached
when the SF density has fallen below 1% of the maximum. (b) When plotting
against the barrier height, the curves formF = ±1 andmF = ±2 roughly coincide
for all values of tNNN/tNN. For tNNN/tNN ≳ 0.6, they also coincide with the
mF = 0 curve, as is found in experiment.

the additional tNNN presents a way for direct, resonant tunneling. For mF = 0,
on the other hand, the NN tunneling is already resonant so that the in�uence of
tNNN is smaller. We can explain the experimental results presented in the inset
of Fig. 4.3a, if we �nd a reasonable NNN tunneling strength tNNN where the
critical points for all three species coincide when rescaling to the e�ective barrier
height. Indeed, for mF = ±1 and mF = ±2 this is roughly the case in the entire
considered range of tNNN. However, to make also the critical point for mF = 0
coincide with the one of mF = ±1 and mF = ±2, a relatively large tNNN ≳ 0.6tNN

is required. From this analysis it appears that in the spin-dependent honeycomb
lattice, NNN tunneling plays an important role. This is in contrast to standard
square optical lattices, where NNN tunneling can usually be neglected.

4.4 Tuning the system behavior using spin mix-
tures

Until now, we were concerned with samples of pure spin states. However, the
Hamburg experiments o�er exciting new possibilities when loading the spin-
dependent lattice with mixtures of di�erent spin states. These are the subject
of the present section.
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4.4.1 Particle distribution in mixtures and forced super-
solid

The di�erent atomic Zeeman species and di�erent mixtures of them arrange
spatially di�erent in the spin-dependent honeycomb lattice. As explained in
Sec. 4.1, for pure samples, from the form of the lattice potential (4.2), we ex-
pect that the density of mF = 0 atoms is distributed homogeneously while
∣1,−1⟩ (∣1,+1⟩) atoms should occupy exclusively σ− (σ+) sites for su�ciently
deep lattices. These expectations have indeed been con�rmed in the Hamburg
experiments using the microwave spectroscopy described in Sec. 4.1.2.

Since the experimental setup allows the preparation of arbitrary spin mix-
tures, this behavior opens intriguing possibilities for the preparation of quantum
states. For example, one can actively generate a magnetically-ordered Néel state
with prede�ned magnetization. One possibility to create such a state is to em-
ploy a mixture of di�erent spin states, such as ∣1,−1⟩ and ∣1,+1⟩, and drive
the system into the deep-lattice regime where the spins localize into the σ±

sublattices in a staggered fashion.
Even more interesting is the case of a mixture of ∣1,0⟩ and ∣1,−1⟩ atoms.

Namely, the fact that the SF�MI transition occurs at di�erent lattice-beam
intensities for di�erent values of ∣mF ∣ adds an exciting new dimension to the
honeycomb lattice geometry: it opens the possibility to create spin-mixtures
where a fully localized component is immersed in a SF bath. In pure systems,
the ∣1,−1⟩ atoms tend to localize in the σ− sites, while the ∣1,0⟩ atoms �ll the
honeycomb lattice homogeneously. In the case of a mixture, however, the repul-
sive inter-species interaction with the ∣1,−1⟩ atoms imprints a periodic density
modulation on the ∣1,0⟩ atoms. Comparison of the microwave-spectroscopy sig-
nal in such a mixture with the one for pure systems indicates that (30 ± 5)% of
the mF = 0 atoms sitting at σ− sites in the pure system are transferred to σ+

sites.
This crystalline order imprinted onto the ∣1,0⟩ atoms by the ∣1,−1⟩ atoms

can appear in two qualitatively di�erent scenarios: (i) When the lattice is deep
enough that the ∣1,0⟩ atoms are localized on the σ+ sites, the system forms an
alternating MI with ∣1,0⟩ atoms on σ+ sites and ∣1,−1⟩ atoms on σ− sites. In this
case, the mixture resembles a localized alternating spin-ordering, similar to what
we discussed above for the ∣1,−1⟩�∣1,+1⟩ mixture. (ii) At intermediate lattice
depths, one can reach a situation, where the ∣1,−1⟩ atoms are localized, while
the ∣1,0⟩ atoms remain super�uid. Figure 4.3a suggests that this will be the case
at around Vlat = 7Eref . In such a situation, the ∣1,0⟩ atoms retain o�-diagonal
LRO, as has been demonstrated experimentally by the existence of pronounced
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Figure 4.5: Forced supersolid behavior of ∣1,0⟩ atoms under mixture with
∣1,−1⟩ atoms, illustrated by the SF order parameter ∣ ⟨âσ±⟩ ∣ and occupation
number ⟨n̂σ±⟩ (insets) of ∣1,0⟩ atoms. We display GMFA results for a pure
ensemble of ∣1,0⟩ atoms (blue line) and increasing admixtures of ∣1,−1⟩ atoms
(black lines) at ratios of (a), n∣1,0⟩ ∶n∣1,−1⟩

= 4 ∶ 2, (b) 4:4, (c) 4:5, and (d) 4:6.
In a pure system, the values are identical at σ+ and σ− sites (blue line). When
one admixes ∣1,−1⟩ atoms, the ∣1,0⟩ atoms get repelled from σ− sites (dashed
lines), and accumulate at σ+ sites (solid black line). Also, an admixture of
∣1,−1⟩ atoms shifts the critical point of the MI�SF transition. These e�ects
become stronger with increasing number of ∣1,−1⟩ atoms.
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interference peaks in the ToF pictures and by the spectroscopy measurements.
On the other hand, the ∣1,−1⟩ atoms induce a density modulation on the ∣1,0⟩
atoms, so that the system also shows diagonal LRO. This state is very similar
to a supersolid [288, 289] except that the symmetry breaking for the diagonal
order is not spontaneous but forced by the interaction with the localized ∣1,−1⟩
atoms. Such a supersolid is an exotic quantum phase with crystal and SF
behavior at the same time. Until recently, there was only one claim of an
experimental realization of a supersolid in 4He [290, 291], which is still disputed
[292, 293]. Therefore, it would be interesting to �nd other systems which show
supersolid properties and are cleaner to interpret. Ultracold atoms are an ideal
playground in this respect, as shown nicely in the recent experiments at the
group of T. Esslinger, where a BEC immersed into an optical cavity displayed
spontaneous supersolid behavior [14, 294].

In the experiments of the group of K. Sengstock, by varying the depth of
the lattice, the ∣1,0⟩ atoms were driven across the SF to MI transition, and
scenarios (i) and (ii) have both been realized experimentally. We analyze this
situation theoretically in Fig. 4.5. In a pure ∣1,0⟩ system, ∣ ⟨âσ+⟩ ∣ and ∣ ⟨âσ−⟩ ∣ as
well as ⟨n̂σ+⟩ and ⟨n̂σ−⟩ coincide for all Vlat revealing the expected homogeneous
atom distribution. This changes when ∣1,−1⟩ atoms are admixed to the ∣1,0⟩
atoms. At already moderate lattice depths, the ∣1,−1⟩ particles are localized at
the σ− sites. As a consequence, the ∣1,0⟩ atoms are repelled from these sites, and
their occupation number and SF order parameter become spatially modulated,
depending on the mixture ratio. In the regime where ∣1,0⟩ remains super�uid,
the system thus, indeed, realizes a supersolid.

We also observe that the critical lattice depth for the ∣1,0⟩ MI transition
is suppressed in the mixture due to the e�ective blocking of σ− sites by ∣1,−1⟩
particles. As for the density modulation, this e�ect increases with the fraction
of admixed ∣1,−1⟩ atoms. Hence, admixing a second spin-component allows to
tune not only a spatial density modulation but also the critical point of the
SF�MI transition.

4.4.2 Super�uid to Mott-insulator transition in mixtures

To study how di�erent mixtures allow to engineer SF�MI transitions, the Ham-
burg group loaded the lattice with ∣1,−1⟩ atoms and mixed these with an equal
number of ∣2,−2⟩ or ∣2,+2⟩ atoms. The ∣1,−1⟩ atoms preferably occupy the σ−

sublattice, as do the ∣2,+2⟩ atoms, while particles in the state ∣2,−2⟩ prefer the
σ+ sublattice. It is useful to remember that the ∣2,±2⟩ atoms have stronger
localization tendencies than the ∣1,−1⟩ atoms. The pictograms in Figure 4.6a
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Figure 4.6: SF to MI transition for mixed atomic spin-states. (a)
Experiment. As the visibility curves for a pure ∣1,−1⟩ sample and 50%:50%
mixtures with ∣2,−2⟩ or ∣2,+2⟩ atoms show, the mixture ∣1,−1⟩�∣2,−2⟩ localizes
much faster than the other cases. This is explainable by the modi�cation
of second-order tunneling processes of ∣1,−1⟩ between σ−�σ+�σ− sites (little
arrows in the pictograms). The presence of ∣2,+2⟩ blocks the o�-resonant σ+

site (see the pictograms for the preferred atom distributions for the di�erent
mixtures). The experimental results are averaged over typically 7-10 runs, and
the error bars indicate the standard deviation. Solid lines are guides to the eye.
(b) Gutzwiller calculations reproduce the shift of the SF�MI transition in a
50%:50% mixture of ∣1,−1⟩ with ∣2,−2⟩ as compared to the pure ∣1,−1⟩ system.
Shown is the SF order parameter of the ∣1,−1⟩ state for �lling factors between
two and four per unit cell. (Results for a mixture with ∣2,+2⟩ are not shown
because of numerical instabilities.)
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illustrate the con�gurations for these cases as well as for a pure ∣1,−1⟩ system.

SF�MI transitions at �xed particle number

As the experimental results in Fig. 4.6a show, a considerable shift in the SF�
MI transition of the ∣1,−1⟩ atoms is observed when the admixed atoms are in
the ∣2,−2⟩. On the other hand, the transition remains practically unaltered in
the case of ∣2,+2⟩. The observed suppression of tunneling in the ∣1,−1⟩�∣2,−2⟩
mixture can be ascribed to a modi�cation of second-order hopping processes:
At su�ciently deep lattices, the ∣1,−1⟩ will almost exclusively occupy σ− sites.
Due to the large energy cost for occupying σ+ sites, they will visit these only in
virtual tunneling processes.

To understand the main principle, let us neglect entirely the occupation of
∣1,−1⟩ on σ+ sites and of ∣2,−2⟩ on σ− sites. Under this assumption, the e�ective
strength of the second-order tunneling process σ− → σ+ → σ− is

∝ t2 /[(E
(−1)
σ+ −E

(−1)
σ− ) +U

(−1,−2)
σ+ n

(−2)
σ+ −U

(−1)
σ− (n

(−1)
σ− − 1)] . (4.5)

This is the typical form for processes from second-order perturbation theory.
The numerator is the square of the transition matrix element from the state
with low energy (∣1,−1⟩ at σ−) to the excited state (∣1,−1⟩ at σ+); and the de-
nominator comes from the energy di�erence between the ground-state manifold
and the excited, virtual state. In the presence of ∣2,−2⟩ particles on the σ+ site,
the denominator is enlarged by U (−1,−2)

σ+ n
(−2)
σ+ . E�ectively, the repulsive inter-

action with ∣2,−2⟩ particles blocks second-order tunneling for ∣1,−1⟩ and thus
shifts the SF�MI transition towards lower lattice-beam intensities. We �nd this
observed shift of the SF�MI transition reproduced in our Gutzwiller compu-
tations (see Figure 4.6b). Hence, by changing the relative composition of the
mixture, the critical point for the ∣1,−1⟩ particles can be tuned.

SF�MI transitions in the grand-canonical ensemble

We can gain further insight into the underlying physical processes by considering
grand-canonical phase diagrams calculated in the Gutzwiller approximation.
This is in contrast to Figs. 4.3b and 4.6b, where we reached a desired particle
number by iteratively adjusting µ. In Fig. 4.7a, we show the phase diagram
against µ for the same experimental con�gurations as discussed in Fig. 4.6. Here,
we have chosen the chemical potential equal for both components, i.e., µ(−1) =

µ(±2). In the ∣1,−1⟩�∣2,−2⟩ mixture, this leads to an approximately 50%:50%
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Figure 4.7: Gutzwiller phase diagram of the multi-component Bose�
Hubbard model (4.4). (a) Mott lobes for realistic experimental pa-
rameters. An admixture of ∣2,−2⟩-atoms (blue dot-dashed line) strongly en-
larges the ∣1,−1⟩ Mott-lobes with respect to the pure system (red solid line)
while an admixture of ∣2,+2⟩-atoms (green dashed line) hardly a�ects the tran-
sition. (b) In a ∣1,−1⟩�∣2,−2⟩-mixture, when increasing the interaction strength

U
(−1,−2)

σ± between the spin-components, e.g., by a Feshbach resonance [295], the

∣1,−1⟩ Mott-lobes grow. For large U
(−1,−2)

σ± the standard tendency that Mott-
lobes decrease with occupation number can even be inverted.
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relationship, while in the ∣1,−1⟩�∣2,+2⟩ mixture the ∣1,−1⟩ atoms strongly repel
the ∣2,+2⟩ atoms, such that the occupation number can be heavily asymmetric.
A clear modi�cation of the MI lobes of ∣1,−1⟩ can be observed when strongly
localized atoms are present in the complementary triangular sublattice, in our
case ∣2,−2⟩. Such a strong modi�cation with respect to the pure case does not
occur when both components tend to occupy the same sites, as happens in the
mixture ∣1,−1⟩+∣2,+2⟩. This perfectly agrees with the experimental observations
displayed in Fig. 4.6a.

Until now, all parameters for the theoretical calculations were drawn from
realistic experimental parameters of the Hamburg experiment. However, other
interesting e�ects can be generated by playing with the relative interaction
strengths. Consider, for example, a mixture of ∣1,−1⟩ and ∣2,−2⟩ atoms. Using
the approximation of Wannier functions as Gaussians described in Sec. 4.2, the
interspecies interaction strength as for the Hamburg experiments with 87Rb is
U
(−1,−2)
σ+ /U (−1) = 1.1 and U (−1,−2)

σ− /U (−1) = 0.8. In this case, as is the standard
situation, the Mott-lobes decrease with occupation number. In Fig. 4.7b, we
demonstrate what happens when U

(−1,−2)
σ+ is arti�cially increased, which may

be achieved experimentally with the help of Feshbach resonances [296] � for
su�ciently large U−1,−2 the standard tendency is inverted and the Mott lobes
increase with occupation number. This implies that the SF�MI transition for
higher occupation numbers occurs at �nite tunneling, which would allow to
observe this transition in the interesting regime that interpolates between the
Bose�Hubbard regime (small occupation) and a regime described by a coupled
rotor model (large occupation). Such a coupled rotor model can be derived
as follows. In the limit of large occupation, the boson-operators in the Bose�
Hubbard model (4.4) can be rewritten in the phase representation, substituting
â�i →

√
n̄ai e

iθai , b̂�i →
√
n̄bie

iθbi , and n̂αi → n̄αi − i
∂
∂θαi

. Here, n̄αi = ⟨n̂⟩
α
i is the

mean occupation number of species α = a, b at site i. In this approximation, the
Hamiltonian reads

Ĥ = ∑
α=a,b

⎡
⎢
⎢
⎢
⎢
⎣

− 2tα ∑
⟨i,j⟩

√
n̄αi

√
n̄αj cos (θαi − θ

α
j ) −∑

i

Uαi
2

∂2

∂θα2
i

(4.6)

− i∑
i

(Uαi n̄
α
i −U

ab
i n̄

/α
i − µ

α
+Eαi +

1

2
Uαi )

∂

∂θαi

⎤
⎥
⎥
⎥
⎥
⎦

−∑
i

Uabi
∂

∂θai

∂

∂θbi
+E0 [n̄αi ]

where we de�ned /α as the species di�erent from α. E0 [n̄αi ] is a constant energy
depending on the mean occupation numbers. This coupled-rotor model is similar
to Hamiltonians encountered in arrays of coupled Josephson junctions [297].
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4.5 Summary

To summarize this chapter, qualitative and quantitative agreement between a
Gutzwiller mean-�eld analysis and the comprehensive experimental studies by
the group of Prof. Sengstock in Hamburg allowed to explain the physics appear-
ing in ultracold bosons in a spin-dependent honeycomb lattice. In particular,
we have analyzed the SF�MI transition for pure samples and spin mixtures. We
have shown that the critical point, which for pure ensembles depends only on the
Zeeman state mF , can be tuned when admixing a second spin component. We
could explain this e�ect by considering second-order tunneling processes, which
become suppressed if a second atomic species blocks sites that are left empty in
the pure system. Controlling the tunneling rate by, e.g., locally switching the
spin-states opens perspectives for the implementation of atomtronic transistor
circuits [298]. In this context, we have shown that the modi�cation of the Bose�
Hubbard parameters t/U arises from the combination of repulsive interaction
and the speci�c honeycomb lattice structure. This situation is clearly di�erent
from, e.g., Bose�Fermi mixture experiments [299, 300] where t and U are e�ec-
tively modi�ed by higher order e�ects. Further, we have shown that mixtures
of di�erent spin-components can lead to forced AFM states or states mimicking
supersolid behavior.

In our calculations, we used realistic model parameters. For the interac-
tion and energy di�erences between the two sublattices, we obtained these by
considering Gaussian Wannier functions. To estimate realistic tunneling matrix
elements, we �tted the exact band-structure for the single-particle problem to a
tight-binding model for the double wells. Comparing our theoretical analysis to
experiment, we found that NN tunneling alone is not su�cient to quantitatively
describe the experimental data, and � in contrast to standard optical lattices �
NNN tunnelings have to be taken into account.

There are many directions to explore with this quantum-simulation setup.
For example, in future experiments, one could increase the interspecies in-
teraction via Feshbach resonances, which, as we have demonstrated with the
Gutzwiller Ansatz, leads to a growth of Mott-lobes with occupation number �
contrary to the standard behavior. As promising further directions, entropy ef-
fects and entropic cooling [301] can be studied in the honeycomb system. Also,
as demonstrated by Soltan-Panahi and coworkers, unconventional multi-orbital
super�uidity can arise in this system [302]. Further, by only changing the polar-
ization of the laser beams which create the lattice, a spin-independent triangular
lattice can be created [160]. As discussed in Chapter 3, a bosonic gas in the
triangular lattice can then be used to mimic frustrated antiferromagnetism by
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employing a time-dependent lattice modulation. Particularly interesting, how-
ever, is the prospect of studying Fermi gases or Fermi�Bose mixtures in the hon-
eycomb geometry, such as is currently done in the group of T. Esslinger [162].
At half �lling, these systems will mimic the physics of graphene [266], i.e., they
will exhibit a Dirac dispersion relation and related arti�cial relativistic e�ects.
Introducing arti�cial gauge �elds in such a situation [10, 20, 303�306] will lead
to the occurrence of the anomalous quantum Hall e�ect and a whole variety
of exotic quantum phase transitions (see for instance the work of Bermudez et
al. [307]). In the next chapter, we show how these arti�cial gauge �elds can
be achieved with the shaking techniques described in Chapter 3, and how this
allows to generate the anomalous quantum Hall e�ect, topological insulators,
and more.



Chapter 5

Non-Abelian gauge �elds and
topological insulators via
lattice shaking

In this chapter, we show that the time-periodic driving techniques of optical
lattices described in Chapter 3 allow much more than �only� the quantum sim-
ulation of geometrical frustration. Combining a slightly more elaborate driving
scheme with spin-dependent lattices or lattices of exotic geometry (such as dis-
cussed in Chapter 4), we obtain an experimentally simple method to explore
various topological phenomena in optical-lattice experiments.

Topological order and topological insulators [281] are currently in the cen-
ter of interest of quantum physics, especially because of their possible appli-
cations in quantum information and spintronics [308]. For this reason, there
is an ongoing search in- and outside of solid-state physics on ways to realize
these in a feasible way. Here, ultracold ground-state atoms provide a very
promising playground [8] (although Rydberg-excited atoms [107], trapped ions
[31], and photons in nano-structured materials [40, 42] o�er interesting alter-
natives). Typically, topological e�ects require ultra-strong gauge �elds or spin-
orbit-like couplings. There are several ways to achieve these with ultracold
atoms, from trap rotation [309] to (more e�cient) laser-induced Berry-phase
imprinting [10, 303, 304]. In optical lattices, combining laser-induced tunnel-
ing with superlattice techniques allows for Abelian [205] and non-Abelian [310]
gauge-�eld �uxes of order π per unit plaquette, and for the realization of an en-
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tire toolbox for topological insulators [311]. So far, the �rst lattice experiments
led to the creation of staggered �ux lattices [20, 305, 306], and other groups
follow this direction, employing, e.g., kagome [163] or honeycomb lattices [162].

Recently, there has been a burst of interest in another, experimentally less
demanding, approach to manipulate ultracold-atoms QSs, namely periodical
lattice shaking, such as described in Chapter 3.1. Simple sinusoidal shaking
leads to a change of strength, or even sign of the tunneling [216, 220, 312] and
allows to control the Mott-insulator�super�uid transition (for a recent work in
honeycomb geometry, see also the work by Koghee et al. [313]). While in the
square lattice this introduces neither frustration nor synthetic gauge �elds, in
the triangular lattice a sign-change of the tunneling is equivalent to a π-�ux
Abelian �eld [314]. As described in detail in Chapter 3, for weak interactions,
such a system mimics frustrated classical antiferromagnetism [165], while in the
hard-core boson limit it simulates frustrated quantum antiferromagnetism [164],
and is expected to exhibit exotic spin-liquid phases [202, 225, 257]. Moreover, as
we have reported on in Ref. [22], by breaking temporal symmetries of the shaking
trajectory, arbitrary phases of the tunneling in a 1D lattice have been created
in the experiments of K. Sengstock's group. This allowed to shift the band-
structure, and, among others, to induce (quasi-)condensation at �nite quasi-
momentum. Since in that case the resulting tunneling phases can, however, be
mapped by a suitable choice of gauge to the standard situation without phases,
we will not describe these results in detail, and rather focus in this chapter on
the, from a fundamental perspective, more important case of 2D lattices.

In the rest of this chapter, we will describe in detail how time-periodic shak-
ing of 2D lattices allows quantum simulation of (non-Abelian) arti�cial gauge-
�elds, topological insulators, and related e�ects. First, in Sec. 5.1, we describe
which symmetries the driving function has to break to create non-trivial tun-
neling phases. Here, we generalize our discussion from Chapter 3.1 to include
AC-induced tunneling (ACT), which permits greatly enhanced control over the
generated phases. Then, in Sec. 5.2, we show in di�erent (spin-independent)
lattice geometries involving triangular plaquettes how staggered gauge �elds
arising through homogeneous shaking can control frustration and band struc-
tures. However, such homogeneous shaking cannot induce arti�cial magnetic
�uxes in square lattices. In Sec. 5.3, we discuss how the time-periodic modu-
lation of a superlattice added to the square lattice makes this possible. This
technique even allows to engineer the form and extent of patches of strong ar-
ti�cial magnetic �ux with the same sign. In Sec. 5.4, we demonstrate that
homogeneous shaking of spin-dependent honeycomb lattices (see Chapter 4) al-
lows quantum simulating topological and quantum spin Hall (QSH) insulators
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(c.f. [267, 281]). Finally, we show in Sec. 5.5 how simple sinusoidal shaking of
a spin-dependent square or honeycomb lattice, loaded with two di�erent spin
components that are additionally mixed on-site via magnetic or Raman-laser
�elds, generates non-Abelian SU(2) gauge �elds, leading to an anomalous inte-
ger quantum Hall e�ect [315]. We conclude this chapter with some summarizing
remarks (Sec. 5.6). The corresponding results can be found in Ref. [211].

5.1 Basic scheme and temporal symmetries

We start by discussing the scheme for the creation of arti�cial gauge potentials
in driven lattices. For this purpose, we generalize the discussion of Chapter 3.1,
where we allow for a static energy o�set between lattice sites, and consequently
ACT created by the driving [316], as it has been observed in recent experiments
[317�319]. As we will see below, this facilitates the generation of arbitrary
Peierls phases. Such an energy o�set can easily be realized in spin-dependent
lattices such as the honeycomb lattice discussed in Chapter 4. We generalize the
driven, Hubbard-type Hamiltonian (3.6) to encompass bosons and fermions, but
we work in the regime of negligible interactions.1 Further, we include, besides
the periodic driving, a constant energy di�erence between sites.

Then, the system is described by

Ĥ(τ) = −∑
i,j

tij â
�
i âj +∑

i

(vωi (τ) + νih̵ω) n̂i . (5.1)

Here, tij are the (bare) tunneling matrix elements and âi (n̂i) is the annihilation
(number) operator for a particle at site i, which now can be fermionic or bosonic.
We choose the constant local energies νih̵ω resonant with the shaking, i.e., they
are characterized by integers νi. We will see later, that the additional freedom
permitted by ACT proves extremely advantageous for the generation of arbitrary
arti�cial �uxes.

Following the reasoning of Chapter 3.1.2, we now apply the gauge transfor-
mation (3.14,3.15), but we generalize χωi (τ), Eq. (3.13), to the situation with
constant energy o�-sets,

χωi (τ) → χi(τ) = χ
ω
i (τ) + νiωτ + γi . (5.2)

1Inter-particle interactions are not necessary for our purposes of simulating gauge-�elds.
However, for several of the described e�ects it is an interesting and open question how the
topological e�ects change under the in�uence of interactions.
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Here, the constants γi represent the gauge freedom of choosing the local phase at
site i. Using this in the transformation (3.14,3.15) leads to the new Hamiltonian

Ĥ
′
(τ) = −∑

ij

tije
iχij(τ)â�i âj , (5.3)

Here, we de�ned the general shorthand Xij ≡Xi −Xj .

For large frequencies, h̵ω ≫ tij , this Hamiltonian can again be approximated
by its period average (3.21), so that we obtain the e�ective model

Ĥe� ≡ ⟨Ĥ
′
(τ)⟩T = −∑

i,j

te�ij âiâj . (5.4)

Here, we introduced the time average ⟨●⟩T ≡ ∫
T

0 ●dτ/T . The time-evolution in
Ĥe� is e�ectively governed by the modi�ed tunneling parameters

te�ij = tij ⟨e
i(χωij(τ)+νijωτ+γij)⟩T . (5.5)

In this treatment, the energy o�sets νih̵ω have been absorbed in the time-
dependence of the particle operators in Ĥ′(τ), and hence modify te�ij [compare
Eq. (3.23) for the situation without energy o�sets]. Therefore, in the absence
of periodic forcing vωij , a non-zero νij h̵ω suppresses tunneling between i and j

in Ĥe�, so that te�ij = 0. Finite driving vωij ≠ 0 in the case of νij ≠ 0 generates an
ACT, so that e�ective tunneling matrix elements are �nite, te�ij ≠ 0.

The leitmotif of the present chapter is to use this control scheme to induce
Peierls-type phases

θij = arg (⟨ei(χ
ω
ij(τ)+νijωτ+γij)⟩T ) (5.6)

that cannot be eliminated globally by choice of gauge, i.e., by adjusting the
constants γi. Such non-trivial phases correspond to arti�cial Abelian gauge
�elds. The gauge-invariant magnetic �ux φ ∈ ]−π,π] piercing a lattice plaquette
P is (modulo 2π) obtained by summing the θij around P .
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We identify the following symmetries of the driving which imply trivial θij = 0
∀i, j:2

(r) global re�ection symmetry vωi (−τ − τ
⋆) = vωi (τ − τ

⋆) with respect to a
site-independent time τ⋆ (in this case, using the choice γi = −νiωτ⋆ gives
θij = 0 ∀i, j);

or, if ACT is not involved (i.e., νij = 0),

(r') local re�ection symmetry vωij(−τ − τ
⋆
ij) = vωij(τ − τ

⋆
ij) for suitable local

times τ⋆ij (since νij = 0 implies that γij = −νijωτ⋆ij can always be ful�lled,
independent of τ⋆ij); or

(s) shift antisymmetry vωi (τ −
T
2
) = −vωi (τ) (with γi = 0).

These symmetries have to be broken to achieve arti�cial gauge �elds. From
these, we see that the driving vωi (τ) is subject to less constraints if ACT is
involved. This is nicely exempli�ed by recent proposals where already simple
sinusoidal forcing [ful�lling (r') and (s)] leads to magnetic �elds when combined
with ACT � provided the temporal phase of the driving can be made site depen-
dent [thus breaking (r)] [199, 320]. In the following, we consider experimentally
feasible scenarios where the whole system is driven in phase [such that both (r)
and (s) are broken].

5.2 Staggered �uxes in triangular plaquettes

In plaquettes that do not have pairwise parallel edges (e.g., triangular ones), ar-
ti�cial magnetic �uxes can be generated simply by a homogeneous time-periodic
force F (τ) [22, 210]. As in Chapter 3.1, we consider an inertial force obtained by
shaking the lattice along a periodic orbit x(τ) in space, resulting in the driving
potential vωi (τ) = −ri ⋅ F (τ) with site position ri. Accordingly, for νij = const
the Peierls phases θij depend only on the vector rij = ri − rj connecting the
two sites i and j, i.e., θij = fθ(rij). Here, we consider a unidirectional force
F (τ) = F (τ)eF with eF = cos(ϕF )ex + sin(ϕF )ey, and � in contrast to Chap-
ter 3.1 � a paused-sine-wave amplitude as depicted in Fig. 5.1a,

F (τ) = {
F0 sin( 2π

T1
τ) , 0 ≤ τ modT < T1

0 , T1 ≤ τ modT < T
(5.7)

This form of driving breaks both symmetries (r) and (s).

2For the special case νi = 0 see also Ref. [22].
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Figure 5.1: (a) Example for a driving function breaking symmetries (r)
and (s), a paused sine-wave, Eq. (5.7). (b-d) Lattice geometries involv-
ing triangular plaquettes pierced by an arti�cial magnetic �ux φ∇,∆ = ±φ as
indicated by + and − signs. (b) Triangular lattice. (c) Kagome lattice with
e�ective tunneling teff

1 (teff
2 ) along the solid horizontal (dashed diagonal) bonds

(see Sec. 5.2). (d) Honeycomb lattice where NN tunneling between shallow A-
sites and deep B-sites is AC-induced (solid lines) and NNN tunneling connects
only A-sites (dashed lines). The corresponding undriven matrix elements are
t and t′, respectively (see Sec. 5.4).

Inserting the relationships (3.13) and (3.20) into Eq. (5.5), and carrying out
the time integration, such a driving creates for νij = 0

te�ij

tij
=
T1

T
e−iγij [−e−iηij

T−T1
T J0(ηij) + eiηij

T1
T
T − T1

T1
] . (5.8)

Here, we de�ned the dimensionless driving amplitude ηij = rij ⋅ eFF0T1/(2πh̵).
For T1 = T , we recover the result (3.26), and for T1 = 0, relationship (5.8)

simply expresses the freedom in the choice of gauge. For the special case T1 =

T /2 (and choosing the local phases γij = 0), the Peierls phases θij are thus

tan θij ≡ tan fθ(rij) =
1 + J0(ηij)

1 − J0(ηij)
tan

ηij

2
. (5.9)

The tunable �ux threaded through a triangular plaquette ∆ as sketched in
Fig. 5.1b-c is then φ∆ = fθ(ex) + fθ(−ex/2 +

√
3/2ey) + fθ(−ex/2 −

√
3/2ey)

(and similarly for Fig. 5.1d, where the triangular plaquette is spanned by next-
nearest-neighbor tunneling). It can be non-zero since fθ(rij) is a non-linear
function of rij . The resulting �ux through the inverted plaquette is φ∇ = −φ∆,
such that one can create in the triangular or kagome lattice staggered �ux
patterns as shown in Fig. 5.1b-c.

These �uxes continuously control the degree of frustration from none for zero
�ux to maximum for π-�ux [corresponding to ferromagnetic (FM), −te�ij < 0, and
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antiferromagnetic (AFM) coupling, −te�ij > 0, respectively]. The fully-frustrated
regime gives rise to intriguing physics; for example, the �at lowest band of the
kagome lattices makes the system extremely susceptible towards interaction-
driven physics [321]; moreover, as discussed in Chapter 3, the case of hard-core
bosons can be mapped to the spin-1/2-XY antiferromagnet where spin-liquid
ground states are predicted to occur for the spatially anisotropic triangular
lattice. For the case of the kagome lattice as realized in the experiments at
the group of D. Stamper-Kurn [163], the physics of strongly frustrated XY
interactions is still unexplored, but since the Heisenberg kagome lattice hosts
quantum disordered ground states [322], similar quantum e�ects may also be
expected in the XY case.

The ability to tune continuously between zero and maximum frustration can
be a powerful tool for the adiabatic preparation of frustrated quantum phases.
In the scenarios involving simple sinusoidal driving described in Chapter 3, the
e�ective tunneling is just the bare tunneling dressed by a zero-order Bessel
function, Eq. (3.26). To tune the tunneling from FM to AFM via this sim-
ple driving involves, therefore, reducing the tunneling strength to zero before
achieving negative values. As long as the driving amplitude remains in the FM
regime (i.e., positive values of the Bessel function), the dispersion relation has
a unique (although ever shallower) minimum at the origin of the �rst Brillouin
zone. At the �rst zero of the Bessel function, the tunneling vanishes, the atoms
are perfectly localized, and the dispersion relation is completely �at. When
reaching the AFM side, new minima at �nite k appear. Therefore, when the
driving amplitude crosses the zero of the Bessel function, the peak of the atom
momentum distribution has to �jump� from k = 0 to ∣k∣ > 0, which can lead
to undesired heating. This can be avoided if, instead, the frustration is tuned
by the phase. In that case, the dispersion relation never becomes �at, and the
minimum can be moved adiabatically from k = 0 to the AFM value.

Further, the realization of tunable staggered �uxes gives rise also to inter-
esting physics in its own right. For example, in the bosonic case deviations
from π-�ux directly map to tunable Dzyaloshinskii�Moriya couplings and thus
allow to explore magnetic models with spin-orbit coupling [323]. In Fig. 5.2, we
present another possibility, namely to use a �nite �ux φ∆ = φ to manipulate the
band structure of optical lattices that host triangular plaquettes. We illustrate
this on the example of a kagome lattice with an anisotropy in the tunneling
couplings, such that ∣te�ij ∣ equal to t

eff
1 (teff

2 ) along the horizontal (other) bonds
(see Fig. 5.1c). As our �ndings suggest, the three bands of the kagome lattice
feature a complex band-touching structure whose topology can be controlled by
the driving.
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 Figure 5.2: The topology of band
touching for the kagome lattice can be
controlled by tunneling anisotropy teff

1 /teff
2

and plaquette �ux φ. The way and how
often the three bands touch is depicted by
the icons. In the green (white) region, there
are six (four) points where bands touch.
Especially interesting is the yellow bullet
to the right, where the �at lowest band
makes the system extremely susceptible to
interaction-driven physics [321].

5.3 Superlattice modulation and �ux recti�cation

In lattices with pairwise parallel bonds, such as square lattices, the homogeneous
driving discussed so far cannot create arti�cial magnetic �uxes. To generate
them, one can, however, employ inhomogeneous forcing, which can be achieved
by adding to the square lattice an oscillating superlattice like

V (r, τ) = f(τ)V0(r) = f(τ)∑
α

Vα
2

cos(qα ⋅ r − ϕα) , (5.10)

where V0(r) may be incommensurate with the host lattice. To arrive at non-
trivial Peierls phases, the driving function f(τ) = f(τ +T ) has to break symme-
tries (r) and (s). To achieve a vanishing mean, ⟨f(τ)⟩T = 0, each component α
of the lattice can be created by two non-interfering standing waves such that

f(τ)Vα cos(qα ⋅r−ϕα) = V
′
α(τ) cos(qα ⋅r−ϕα)+V

′′
α (τ) cos(qα ⋅r−ϕα+π) , (5.11)

with V ′
α, V

′′
α > 0. The resulting on-site energies read vωi (τ) = V (ri, τ), and the

Peierls phases θij will be a function θ(ηij) of the amplitude ηij of (vωi −v
ω
j )/h̵ω.

In Fig. 5.3, we show � on the example of a square lattice with a paused
sine-wave shaking function as in Fig. 5.1a (with T1/T = 0.8) � that, using dif-
ferent superlattice structures, various con�gurations of plaquette �uxes can be
engineered, including stripes or extended patches where the magnetic �eld is
approximately constant.
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Figure 5.3: Modulation of the amplitude of a superlattice can generate
strong arti�cial magnetic �uxes φ that point in the same direction within stripes
or larger patches, even in lattices with pairwise parallel bonds such as square
lattices. The examples show that various spatial patterns are possible. We
show magnetic plaquette �uxes for superlattices Vα of (a-b) one component
(α = 1), and (c-d) two components (α = 1,2), and the parameters given in
purple [see Eq. (5.10); in all cases, the modulation phase ϕα = 0]. To provide
scale, the lattice constant d of the square lattice is also indicated.

In the long-wave-length regime (∣qαd∣ ≪ π, valid for Figs. 5.3b-d) these
plaquette �uxes are approximately given by

φ(r) ≃
1

2
wxy(r) [

∂θ (wy(r))

∂wy(r)
−
∂θ (wx(r))

∂wx(r)
] , (5.12)

where wxy(r) = d2∂x∂yV (r)/(h̵ω) and wµ = d∂µV (r)/(h̵ω), with µ = x, y,
are the scaled curvature and gradient, respectively. Therefore, roughly larger
superlattice-wave-lengths imply larger patches of quasi-constant �ux.

As these consideration show, superlattice modulation can generate strong
magnetic �uxes through square plaquettes, which is not possible by homoge-
neous shaking schemes. Even more, it can create not only staggered �uxes, but
also large regions with approximately constant magnetic �eld. In these regions,
strong-�eld quantum Hall-type physics can be studied. Their inhomogeneity
and �nite extent provide a promising test ground for the investigation of robust
edge modes.
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5.4 Topological and quantum spin Hall insulator

Such plaquette �uxes open also another intriguing possibility: they can be used
to engineer topological and QSH insulators [267], which are currently receiving
much attention in the quantum physics community [281]. These systems defy
ordinary band-structure considerations. They are gapped in the bulk, i.e., they
are insulators. Yet, at their boundaries the gap closes and they host currents
localized to the edges, i.e., here they are metallic. These edge currents are ro-
bust against disorder, which makes these system interesting candidates for novel
electronic components. Further, QSH insulators, where the edge modes trans-
port only spin but no charge, are considered as possible elements for spintronic
devices. Further, certain topological insulators may also host Majorana edge
modes which may be useful as qubits for topological quantum computing [308].
Interestingly, under this novel paradigm, the integer quantum Hall e�ect with
its insulating bulk and localized edge currents can be considered a topological
insulator.

5.4.1 Mimicking the dispersion relation of a topological
insulator

To create a topological insulator via lattice shaking, we consider a spin-dependent
honeycomb optical lattice loaded with two spin components, ↑ and ↓. The lat-
tice has a bi-atomic bases, and we consider a situation where sites of the A (B)
sublattice are energetically lifted (lowered) by ∆E/2 for ↑ particles, and vice
versa for ↓ particles. In Chapter 4, we described how such a lattice has been
realized in the experiments of the group of K. Sengstock [161]. While there we
were interested in the interaction-driven SF�MI transition of bosonic mixtures,
we assume for the following discussion that we work in a regime where inter-
actions can be neglected. Further, to quantum simulate topological insulators
such as relevant for electronic solid-state systems, the honeycomb lattice should
be loaded with ultracold fermionic atoms, where the ↑ and ↓ particles could,
e.g., be atoms with mF = ±1/2 hyper�ne states. A tunable honeycomb optical
lattice with fermions has recently been realized in the experiments of Tarruell
and coworkers [162].

We �rst focus on a pure system of ↑-particles. For substantial detuning
∆E we can assume that nearest-neighbor (NN) tunneling (between A and B
sites) is energetically suppressed and that next-NN (NNN) tunneling is relevant
only between sites of the �shallow� A sublattice as sketched in Fig. 5.1d. Now
assume that the system is driven resonantly by a time-periodic homogeneous
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force of frequency νABh̵ω = ∆E (with integer νAB) that both re-establishes NN
tunneling by ACT and creates �nite arti�cial �uxes through the triangular NNN
plaquettes of the A sublattice (�+� and �−� in Fig. 5.1d).

In this case, the e�ective Hamiltonian (5.4) becomes

Ĥeff = −∑
iεA

⎛

⎝
∑
⟨i,j⟩

teff
ij f̂

�
i f̂j + ∑

⟨⟨i,j⟩⟩
t′ eff
ij f̂ �i f̂j

⎞

⎠
+ h.c. . (5.13)

Here, ⟨i, j⟩ denotes pairs of NN sites, which are connected by τ 1 = (
√

3ex+ey)/2,
τ 2 = (−

√
3ex + ey)/2 and τ 3 = −ey, and ⟨⟨i, j⟩⟩ are pairs of NNNs in sublattice

A, connected by τ 4 = τ 1 − τ 2, τ 5 = τ 1 − τ 3, τ 6 = τ 2 − τ 3, and −τ 4,5,6.
The topological nature of this Hamiltonian becomes best visible in its mo-

mentum representation. To this, we apply the Fourier transform

f̂i =

⎧⎪⎪
⎨
⎪⎪⎩

1√
N
∑k e−ikri f̂Ak , if iεA ,

1√
N
∑k e−ikri f̂Bk , if iεB ,

(5.14)

where N is the number of unit cells of the honeycomb lattice. De�ning f̂ �

k =

(f̂Ak, f̂Bk)
⊺ and introducing the corresponding Pauli matrices σ for the sublat-

tice degree of freedom, the resulting Hamiltonian can be written in the compact
matrix form

Ĥe� = ∑
k

f̂ �

kh(k)f̂k , (5.15)

where

h(k) =R (g(k))σx − I (g(k))σy + g
′
(k)

1

2
(I + szσz) . (5.16)

Here, we de�ned sz = 1 for ↑ particles, and the e�ective NN (NNN) tunnelings
te�δ (t′ e�δ ) appear in their Fourier transforms,

g(k) = − ∑
τδ=τ1,2,3

te�δ eik⋅rδ , (5.17a)

g′(k) = − ∑
τδ′=±τ4,5,6

te�δ′ eik⋅rδ′ . (5.17b)

Here, we introduced the notation t(′)
e�

δ = t(′)
e�

ij for rj = ri + rδ. Diagonalizing
h(k) gives the dispersion relations

ε± =
1

2
g′(k) ±

√
∣g(k)∣2 + ∣g′(k)/2∣2 (5.18)

for the two bands. Under appropriate shaking, this dispersion relation is that
of a topological insulator, as we discuss in the next section.
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Figure 5.4: Sketch of dispersion relations. (a) Dirac cones. At vanishing
NNN tunneling, the system can possess Dirac cones at k1,2. A �nite NNN
tunneling splits the bands, and the Dirac cones acquire the masses m1,2 =

g′(k1,2). (b) Topologically trivial system, nC = 0. If m1 and m2 have
the same sign, the resulting edge mode crosses the Fermi energy EF an even
number of times. The number of right-moving (green dot) and left-moving (red
dot) edge modes is equal and the edge current vanishes. Inset: Local changes
can deform the system into a topologically equivalent one where no edge modes
cross EF . (c) Topological insulator, nC = ±1. If m1 and m2 have opposite
sign, the edge modes cross EF an odd number of times; they are topologically
protected and conduct current.

5.4.2 Topological insulators and Haldane model

At vanishing NNN tunneling (g′ = 0), the system can possess a pair of points
where the two bands touch, i.e., g(k1,2) = 0. These so-called Dirac points have
light-cone-like dispersion relation, see Fig. 5.4a. A �nite g′ will split the bands
at these points and the Dirac-type dispersion relations found near k1,2 acquire
�nite curvatures, i.e., �masses,� m1,2 = g

′(k1,2).
Due to the gap created by g′, the system is an insulator if the lower band

is entirely �lled, i.e., if EF lies within the gap. If the system has a boundary,
however, the splitting of the Dirac cones in the bulk gives rise to modes localized
to the edge. These can conduct an e�ective current if the number of right- and
left-moving edge modes is di�erent. For each edge mode, the direction of the
localized current associated with it is determined by the group velocity vF ,
which is given by the way the dispersion relation of the edge modes intersects
the Fermi energy EF . At a boundary along the µ-direction, with µ = x, y, the
group velocity h̵vF = dε/dkµ∣EF > 0 de�nes a right-moving edge mode. On the
opposite boundary, the corresponding group velocity will have the opposite sign.

In a case where the mass terms m1,2 have the same sign, which is the stan-
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dard situation, these edge modes cross the Fermi energy an even number of
times (Fig. 5.4b). The number of right- and left-moving edge modes is then
equal at each boundary and there is no chiral current around the sample. The
topological invariant describing the conduction properties of the edge modes,
the Chern number, takes the value nC = 0. This vanishing Chern number im-
plies that the system is topologically equivalent to a trivial system without any
edge modes. The edge modes are therefore not topologically protected, and a
change of the dispersion relation, by adjusting the Hamiltonian locally near the
boundary, can entirely remove them (Fig. 5.4b, inset).

If the mass terms have di�erent signs, on the other hand, the edge modes
cross the Fermi energy an odd number of times (Fig. 5.4c), which also implies
a chiral current around the sample. A local change of the Hamiltonian can still
deform the dispersion relation, but it can not entirely remove the edge modes �
the di�erence between the number of right- and left-moving modes is preserved
under any such local changes, i.e., it is a topological invariant. In fact, it equals
the Chern number di�erence between the sample and the surrounding medium
(the vacuum has nC = 0). This surprising one-to-one relationship between a
bulk property (the Chern number) and the conductance at the boundary is
known as bulk-boundary correspondence [281]. In our case, if the masses m1,2

have opposite sign, the lowest band possesses the �nite Chern number nC = ±1.
Then, if the lowest band is �lled with ↑ fermions (this requires that the bands do
not overlap in energy), the system is a topological insulator with �nite quantized
Hall conductivity and robust chiral edge modes.

Even more, repeating the above reasoning for ↓ particles, for which the role
of A and B sites is interchanged, one obtains the same result, but with sz = −1
entering in Eq. (5.16), and inverted Hall conductivity. Filling the lowest band
for both ↑ and ↓ particles, therefore, leads to a state with vanishing net particle
current but �nite spin current, since the edge modes have opposite chirality for
the two species � the system thus realizes a QSH insulator [324].

It is instructive to compare our proposed setup to the Haldane model [325],
where this type of topological insulator was predicted �rst. The Haldane model
is a honeycomb lattice with uniform NN tunnelings t and NNN tunnelings t′ that
are equal for the two sublattices A and B. A staggered magnetic �eld induces a
phase θ which has the same chirality on both sublattices (i.e., it has for all NNN
tunnelings a positive sign if taken clockwise within one plaquette, see Fig. 5.5b).
The Hamiltonian matrix describing this situation can be written as

hHald(k) =R (g(k))σx − I (g(k))σy + 2 cos θR (g′(k)) I + 2 sin θ I (g′(k))σz .
(5.19)
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Figure 5.5: Schematic comparison of Peierls-phase patterns on the
honeycomb lattice. (a) For a uniform magnetic �eld, positive phases θ are
picked up along the directions indicated by the arrows. The corresponding
phase chiralities (denoted �+� and �−�) for the two sublattices A and B cancel
each other, leading to nC = 0. (b) In the Haldane model, a staggered magnetic
�eld leads to same-sign phase chiralities on the two sublattices, thus breaking
time-reversal symmetry. The system acquires a non-trivial nC = ±1. (c) In
our proposal, time-reversal symmetry breaking, and the associated non-trivial
Chern number, is achieved by canceling the NNN tunnelings for one sublattice
(here, B) by making its wells su�ciently deep.

The details of our h(k), Eq. (5.16), di�er from hHald(k), but in both cases
the term g(k) given by NN tunneling creates Dirac cones, and these are split
by terms proportional to σz generated by the NNN tunneling g′(k). Similarly
as in our case, given an appropriate phase structure, the resulting mass terms
proportional to σz can have opposite signs at the two Dirac cones. We compare
the lattice and phase structure of the original Haldane model with our proposal
in Fig. 5.5. In each case, for such mass terms with opposite sign to be possible,
one needs a certain amount of time-reversal symmetry breaking. For this, the
chiralities of the phases for the NNN tunnelings associated to the sublattices A
and B must not cancel. In the original Haldane model, the chiralities were set
equal using the staggered �eld. Here, we took a di�erent route and turned o�
completely the NNN tunneling for one sublattice (in our case B). For this, the
wells of the B sublattice must be much deeper than the ones of the A sublattice,
which implies a strong energy di�erence νABh̵ω. However, this energy di�erence
would contribute to h(k) a term proportional σz. This contribution, therefore,
also produces a mass term, but, since it is independent of k, with equal sign at
both Dirac points. It, hence, counteracts the opposite signs of the mass terms
created by the NNN tunneling g′(k), and thus works against a non-trivial Chern
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number. The ACT, which is employed to tune the Peierls phases of the e�ective
tunnelings, also e�ectively cancels this energy di�erence and thus allows to
achieve mass terms with opposite signs.

5.4.3 Numerical example

As a concrete example to implement the proposed scheme, we consider unidi-
rectional forcing F (τ) = F (τ)eF with unit vector eF = (cos(ϕF ), sin(ϕF ))

⊺ and
F (τ) as given by the paused sine-wave (5.7) (see also Fig. 5.1a). We use the
concrete parameters h̵ω = ∆E/2 and T1 = T /2, which yields a NNN tunneling
t′
e�
δ /t′ similar to Eq. (5.8). In this case, the NN tunneling is given by

te�δ
t

= −
1

2
iei

ηδ
2 J1(ηδ) . (5.20)

(In the direction rδ where νij = 1; in the opposite direction νij = −1 the phase
changes sign.) Here, we introduced the undriven NN (NNN) tunneling matrix
elements t (t′).

To �nd Dirac cones for these e�ective tunnelings, we �rst compute the dis-
persion relation (5.18) for t′ = 0, and �nd via numerical minimization the points
where the gap between the two bands closes. Then, we compute the masses
m1,2 = g′(k1,2) at these Dirac points (if they exist). In Fig. 5.6a, we plot the
smaller one of the two mass terms, ∣m<∣ ≤ ∣m>∣. As this shows, by varying the
angle ϕF and the dimensionless forcing amplitude η = dF0T1/(2πh̵) (with d the
lattice constant), we can access various topologically distinct phases. There are
topologically less interesting regions without Dirac points (white), and regions
where the forcing is perpendicular to one of the NN bonds (gray), suppressing
the corresponding tunneling and rendering the physics e�ectively one dimen-
sional (when neglecting NNN tunneling). Besides these, there are parameter
spaces where the two Dirac points acquire mass terms of the same sign (hatched
horizontally and diagonally) and parameter regions where the mass terms have
opposite sign (un-hatched), i.e., where the topological insulator is realized. Be-
tween these, topological quantum phase transitions occur, marked by a closing
of the gap and therefore (at least one) vanishing mass term (dark color).

As Fig. 5.6a demonstrates, changing the driving allows to manipulate the
Dirac cones. In Fig. 5.6b, we show in detail for the case of ϕF = −2π/15 how
the Dirac cones can be moved and merged, simply by increasing the driving
amplitude η. We plot the trajectory for a pair of non-equivalent Dirac points.
As can be seen, sometimes a pair of Dirac points splits and merges again at
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Figure 5.6: (a) Quantum spin Hall phase diagram. The honeycomb lat-
tice (as shown in Fig. 5.1d) is subjected to a paused-sine-wave driving with
amplitude η and direction eF = (cos(ϕF ), sin(ϕF ))

⊺, leading to a splitting of
the two non-equivalent Dirac cones with masses m<,>. The color scale denotes
the smaller one, ∣m<∣ ≤ ∣m>∣. In the diagonally (horizontally) hatched region
both masses are positive (negative). In the un-hatched region, they have oppo-
site sign. Here, the system is a topological insulator (or, for two spin states, a
quantum spin Hall insulator). In the white (or gray) regions no Dirac points are
present (or a small nearest-neighbor tunneling < 0.02t renders the physics ef-
fectively 1D). (b) Position of two Dirac points in k-space for ϕF = −2π/15,
indicating how they move and merge as a function of the driving amplitude η.

some larger η, forming a loop in k-space, while other times they merge with the
Dirac points from di�erent pairs, forming open trajectories in k-space.

As a �nal remark, in the analysis of this section, we assumed negligible
atom�atom interactions. Since general results about topological insulators in
the presence of strong interactions are limited (see, e.g., Refs. [326�328]), it
would be interesting to observe their e�ects by tuning them � e.g., via a Feshbach
resonance � in an ultracold-atom experiment.

5.5 Non-Abelian SU(2) gauge �elds

In QSH insulators as described in Sec. 5.4, the two species involved acquire
opposite phases, thus realizing a speci�c non-trivial SU(2) gauge �eld for the
species degree of freedom. The periodic driving permits, however, even more:
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it allows the exploration of arbitrary non-Abelian SU(2) gauge �elds, if the two
species additionally are mixed. To show this, we consider two species ↑,↓ with
opposite spin (say, hyper�ne states mF = ±1), which will constitute the degree
of freedom for which the SU(2) gauge �elds are created.

Quantum simulation of such non-Abelian SU(2) physics is relevant to the
electroweak interaction of the Standard Model of particle physics, and an ex-
tension to SU(3) may even give insight into phenomena from quantum chromo-
dynamics. Systems with non-Abelian anyonic excitations may also �nd useful
application in topological quantum computing [329]. For these reasons, the
prospect of quantum simulating non-Abelian gauge �elds has received increased
interest in recent years (see, e.g., the works [303, 307, 310, 315, 330�337]), but
mostly in the context of arti�cial gauge �elds induced in rotating condensates
or by laser-mediated Berry-phase imprinting. Our proposal, based on a simple
time-periodic driving of the lattice, appears experimentally more straightfor-
ward. (In a similar vein, Bermudez et al. [199] considered � among others � how
driven on-site potentials can generate non-Abelian SU(2) gauge �elds. Although
their work is motivated by trapped ions, the main ideas can be translated to
neutral atoms in optical lattices.)

5.5.1 Engineering non-Abelian SU(2) tunneling matrices

To illustrate our scheme, we assume that the two species ↑ and ↓ are loaded
into a spin-dependent square lattice as depicted in Fig. 5.7a. Such a lattice
can be created by two perpendicular pairs of counterpropagating lasers that are
polarized in plane and have a phase shift of π/2 [338]. The result is a bipartite
square lattice with alternating σ− and σ+ polarized sites, which we denote as A
and B. This situation is quite similar to the one explored in Chapter 4 for the
honeycomb geometry. We will comment on this situation further on, where, in
particular, we will show that in that case a little additional experimental e�ort
is needed in order to create non-Abelian SU(2) gauge �elds.

The hyper�ne states mF = ±1 couple di�erently to the σ+ and σ− polariza-
tions of the bipartite lattice, such that for ↑-particles (mF = +1) the σ+ wells
are shallow and σ− wells deep, and the other way around for ↓ (mF = −1). In
such a situation, the energy of ↑ particles is lifted (lowered) by ∆E/2 on A
(B) sites, and vice versa for ↓ particles. These energy shifts are summarized
by ∆Eσzsz/2, if we introduce two sets of Pauli matrices s and σ for spin (↑ or
↓) and sublattice (A or B) degree of freedom, respectively. Due to this energy
di�erence, NN hopping will be o�-resonant so that it is realized by ACT only,
providing the necessary control for our scheme.
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Figure 5.7: Creation of non-Abelian SU(2) gauge �elds. (a) Lattice
geometry. Two standing laser waves with a phase shift of π/2 and in-plane
polarization ε as denoted in the �gure create a bipartite square lattice with
alternating σ− and σ+ polarized sites (A and B). mF = ±1 particles feel an en-
ergy di�erence of ±∆E between A and B sites. (b) Resulting level scheme.
A constant B-�eld realizes an additional on-site energy splitting ∆E′ (blue ar-
row) such that ∣∆EA,B ∣ = ∣ ± ∆E + ∆E′

∣ becomes sublattice dependent. The
coupling Ω of both spin states can be realized by magnetic or microwave �elds.

Including the NN tunneling t, the Hamiltonian of this system reads

Ĥ = − ∑
⟨i,j⟩

t â�i Iâj +∑
i

â�i
1

2
∆Eσzszâi , (5.21)

with â�i = (âi↑, âi↓). At this stage, the tunneling matrix equals the 2×2-identity
matrix, which we included in Eq. (5.21) for emphasis. Our aim is to engineer
the system in such a way that it can be any arbitrary SU(2) matrix.3

For this reason, we need several additional ingredients. First, to realize
arbitrary non-diagonal matrices, additional magnetic or microwave �elds couple
the two species on site with a strength Ω. Further, to realize non-commuting
matrices, we will need a stronger distinction between the sublattices than a
mere sign di�erence of the energy splittings ±∆E. One way would be a site-
dependent coupling strength Ω. For now, we pursue a di�erent possibility,

3Our scheme works also for mixtures of species with di�erent absolute value of hyper�ne
quantum number (e.g.,mF = 0 and 1). In that case, however, the two species will have distinct
bare tunneling, realizing a tunneling matrix ≠ I in the initial Hamiltonian (5.21). This mingles
the non-Abelian physics with a spin-orbit coupling. We do not pursue here this interesting
possibility.
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namely the creation of site-dependent energy splittings. These can be induced
by a constant magnetic �eld B, which produces the site-independent energy
splitting ∆E′. These additions can be summarized in the site-independent term
∆E′sz/2+Ωsx. The absolute value of the total ↑�↓-splitting ∆Ei = ∆Eσz −∆E′

becomes then sublattice dependent. The resulting level structure is summarized
in Fig. 5.7b, where we de�ne ∆Ei = ∆EA,B if iεA,B. With these ingredients,
the Hamiltonian becomes

Ĥ = − ∑
⟨i,j⟩

t â�i Iâj +∑
i

â�i (
1

2
∆Eisz +Ωsx) âi . (5.22)

To capture their e�ect in a single matrix, we diagonalize the on-site Hamiltonian

Ĥi = â
�
i (

1

2
∆Eisz +Ωsx) âi . (5.23)

This is achieved with the transformation b̂i = u
�
i âi, where ui are time-independent

unitary 2×2-matrices. Labeling the on-site eigenvalues as ±h̵λi, with

h̵λi =
1

2

√

∆E2
i + 4Ω2 , (5.24)

we arrive at
Ĥ = − ∑

⟨i,j⟩
t b̂�iu

�
iuj b̂j +∑

i

b̂�i h̵λisz b̂i . (5.25)

Now, the tunneling matrix is described by u�iuj , and it is clear why the sublattice
dependence entering through ∆Ei/(2Ω) is necessary: it achieves generically
u�iuj ≠ u

�
iui = I.

To achieve genuinely non-Abelian physics, we require a �nal ingredient.
Namely, it is not enough to have two non-commuting tunneling matrices. In-
stead, one has to demand the stronger condition that their product around a
plaquette, the so called Wilson loop L, not simply yields a phase eiφI [315].
Namely, if L = eiφI is the case, the physics is equivalent to an Abelian magnetic
�ux φ, and one can �nd a gauge where the tunneling matrices are all individ-
ually proportional to the identity. At this point, the Wilson loop describing Ĥ
as given by Eq. (5.25) is

L = u�AuB u�BuA u�AuB u�BuA = I , (5.26)

identifying the physics of this system as Abelian. (Here, we abbreviated uiεA,B =

uA,B and �xed the convention to start at the bottom left corner of a plaquette
with sublattice A.)
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To arrive at a non-Abelian Wilson loop, we now introduce a non-linear el-
ement, namely lattice shaking realized by a simple spin-independent sinusoidal
drive vωi (τ) = −ri ⋅F0 cos(ωτ). The Hamiltonian now becomes

Ĥ = − ∑
⟨i,j⟩

t b̂�iu
�
iuj b̂j +∑

i

b̂�i [h̵λisz + v
ω
i (τ)]b̂i . (5.27)

As in the derivation preceding Eq. (5.6), the unitary transformation exp ( −

i∑i b̂
�
i [λiτsz − ηi sin(ωτ)]b̂i) with ηi = ri ⋅ F0/(h̵ω) leads to a purely kinetic

Hamiltonian
Ĥ
′
(τ) = − ∑

⟨i,j⟩
t b̂�iWij(τ)b̂j . (5.28)

Here,

Wij(τ) = e−iηij sin(ωτ)
(
cije

i(λi−λj)τ dije
−i(λi+λj)τ

−d⋆ije
i(λi+λj)τ c⋆ije

−i(λi−λj)τ ) , (5.29)

if we parametrize u�iuj as

u�iuj = (
cij dij
−d⋆ij c⋆ij

) . (5.30)

For h̵ω ≫ tij , we can approximate Ĥ′(τ) by its time average

Ĥe� = ⟨Ĥ
′
⟩T = − ∑

⟨i,j⟩
te�ij b̂

�
iMij b̂j , (5.31)

with the e�ective tunneling matrix elements

te�ij = t
√

∣det(⟨Wij⟩T )∣ , (5.32)

and the matrices
Mij ≡ ⟨Wij⟩T /

√
∣det(⟨Wij⟩T )∣ . (5.33)

This choice of normalization ensures detMij = 1 and allows to separate genuinely
non-Abelian e�ects from a mere driving-induced modi�cation of the overall tun-
neling amplitude. To achieve �nite te�ij ≠ 0 via ACT, we require

λiεB ± λiεA = ν± ω (5.34)

with integers ν±. Then, the matrix elements of Mij can be obtained from

⟨Wij⟩T = (
cijJν−(ηij) dijJν+(ηij)
d⋆ijJν+(ηij) −c⋆ijJν−(ηij)

) . (5.35)
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Here, the amplitude of the forcing ηij = (ri − rj) ⋅F0/(h̵ω) depends only on the
direction rij = ri−rj of link ij, which depends on the lattice geometry. Further,
to ensure unitarity MijMji = I, we have to impose the additional condition that
the ν± are either both even or both odd (to see this, use ν−(ji) = −ν−(ij) and
ηji = −ηij).

5.5.2 Analytic calculation of the Wilson loop

Now, we derive an analytical expression for the Wilson loop L around a fun-
damental plaquette. First, we show that it is independent of the choice of the
local phases of the two states ↑ and ↓. For this, it is convenient to write the
unitary matrices ui diagonalizing the on-site Hamiltonian (5.23) as

ui = e
i
2 Λisyei(ϕisz+βi) , (5.36)

where

Λi = arctan
∆Ei
2Ω

. (5.37)

The phases ϕi and βi generalize the γi from Eq. (5.2) to the situation of two
species; they attest the freedom in choosing the phases of the two states which
form the local basis. As these are arbitrary, physical observables such as the
Wilson loop operator L cannot depend on them. This is immediate in the
absence of periodic driving. Indeed, in that case the Wilson loop is the identity
whatever choice of the phases we take in ui, since Eq. (5.26) contains only
products of the form u�iui = I. In presence of periodic driving, the cancellation
of the phases is slightly more involved.

From the de�nition of the Mij , Eqs. (5.33) and (5.35), it can be seen that
their matrix elements have the same phases (up to multiples of π) as the elements
of u�iuj given in Eq. (5.30). (The moduli of the matrix elements of Mij , on the
other hand, are independent of the phases of u�iuj .) This implies that for two
di�erent choices of the local phases at the sites i and j, say {ϕi, βi, ϕj , βj} and
{ϕ′i, β

′
i, ϕ

′
j , β

′
j}, the e�ective hopping matrices relate as

M ′
ij = ei(∆ϕisz+∆βi)Mije

−i(∆ϕjsz+∆βj), (5.38)

where ∆ϕk ≡ ϕ′k − ϕk, and ∆βk ≡ β′k − βk. That is, the choice of the phases
commutes with the time-average procedure. It follows that, as in the time-
independent case, the phases cancel out when the hopping matrices Mij are
multiplied in the Wilson loop L. Hence, L is independent of the choice of local
phases, as it should be.
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We �nally remark that the same happens for more involved choices of the
optical lattice, as the actual form of the local Hamiltonian does not play any
role (cf. Sec. 5.5.4).

Using this result, we may choose ϕi = βi = 0, ∀i, which, together with
Eq. (5.36), implies that

u�iuj = e
i
2 (Λj−Λi)sy . (5.39)

From this, we can derive an analytical formula for the Wilson loop, which will
us help understand under which circumstances it can be non-Abelian. To do
this, we call, in all generality, M the forcing-induced non-linear map that re-
lates u�iuj to the e�ective hopping matrix Mij , Mij = M[u�iuj]. As mentioned
in the discussion following Eq. (5.35), the energy di�erences ν+ and ν− have
to be integers which are either both even (�even forcing�) or both odd (�odd
forcing�). It is convenient to characterize the action of M separately for these
two situations.

Even forcing

First, we analyze the action of M for even forcing, i.e., ν+ = 2n, ν− = 2n′. By
construction, M maps (i) unitary matrices to unitary matrices, and (ii) real
matrices to real matrices. From this, it follows, using Eq. (5.39), that

M[u�iuj] =M[eiΛijsy ] = eiΛ
′
ijsy , (5.40)

where

Λ′
ij = arctan[

J2n′(ηij)

J2n(ηij)
tan Λij] . (5.41)

Since this form ofM[eiΛijsy ] only involves the sy Pauli matrices, the hopping
matricesMij =Mδ commute for di�erent links δ. Further, Eq. (5.41) shows that
traveling a link ⟨i, j⟩ in its mirror-re�ected direction, i.e., starting from the same
site, yields M−ij = Mij (since by Eq. (5.37), Λi′ − Λj = Λi − Λj ∀i, i

′ NN of j).
On the other hand, traveling on the very same link in opposite direction gives
Mji =M

�
ij (since Λji = −Λij). These possibilities are summarized in Fig. 5.8a.

The Wilson loop on the square lattice with lattice vectors rδ=1,2 = ex,y,
sketched in Fig. 5.8b, is then

L =M1M2M−1M−2 =M1M2M1M2 = ei(Λ
′
1+Λ′

2)sy , (5.42)

where we de�ned Mij =M1,2 for rij = r1,2, and similarly for Λ1,2. This form of
the Wilson loop implies that this system can host non-Abelian phenomena.
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Figure 5.8: (a) Tunneling matrices along a link, for even forcing. If we
de�ne the tunneling matrix on a given link in a given direction as Mij (top),
the tunneling matrix in the mirror re�ected direction is the same, M−ij =Mij

(bottom). Traveling in opposite direction on the same link, however, gives
Mji = M�

ij (center). (b) The Wilson loop on the square lattice can be
non-Abelian.

Odd forcing

Similarly, for odd forcing, i.e., when both ν+ and ν− are odd numbers, ν+ = 2n+1,
ν− = 2n′ + 1, the time-averaging procedure results in

M[eiΛijsy ] = sze
iΛ′
ijsy , (5.43)

where

Λ′
ij = arctan[

J2n′+1(ηij)

J2n+1(ηij)
tan Λij] . (5.44)

This implies the relations for the tunneling matrices Mij = M−ij and Mji =

sz exp(−iΛijsy).
To compute L, we note that

sze
iΛ′
asysz = e−iΛ

′
asy . (5.45)

Simple algebra leads then to

L =M1M2M1M2 = sze
iΛ′

1sysze
iΛ′

2sysze
iΛ′

1sysze
iΛ′

2sy = ei(Λ
′
2−Λ′

1)sy . (5.46)

The di�erence Λ′
2 − Λ′

1 can take any value between zero and 2π, allowing for a
non-trivial Wilson loop.
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Figure 5.9: The trace of
the Wilson loop L (as
sketched in Fig. 5.7a), exem-
pli�ed for η2 = 1.84, shows
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viates from 2, demonstrat-
ing genuinely non-Abelian
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On the bipartite square lattice, the con�guration of tunneling matrices illus-
trated in Fig. 5.8a results in a checkerboard con�guration of L and L�, similar
to a staggered �ux in the single-species case. Both for even and odd forcing,
the traces of L and L�, however, are equal, see Eqs. (5.42) and (5.46). Also,
this limitation can be circumvented by using other geometries. For instance,
as we describe below (Sec. 5.5.4), non-trivial Wilson loops can be achieved in
honeycomb lattices, and in that case, the Wilson loops will be homogeneous
since the sublattices A and B are located in the same order in every plaquette.

5.5.3 Numerical calculation of the Wilson loop

To demonstrate that the bipartite square lattice as sketched in Fig. 5.7, com-
bined with lattice shaking, can host non-Abelian SU(2) physics, we consider
now a concrete numerical example.

We choose odd forcing ν+ = 3 and ν− = 1. Due to Eqs. (5.34) and (5.24), this
is achieved by setting ∆EB = −

√
12(h̵ω)2 +∆E2

A and Ω =
√

(h̵ω)2 −∆E2
A/4.

This leaves ∆EA/h̵ω, η1, and η2 as free parameters (where η1,2 is the amplitude
of the forcing ηij in positive x, y-direction). Further, we �x η2 = 1.84, as this
lies close to the �rst maximum of the Bessel function J1(η2), ensuring large
tunneling te�ij = t

√
∣det(⟨Wij⟩T )∣ in y-direction.

As mentioned above, we have achieved genuinely non-Abelian physics, if the
Wilson loop L yields not just a simple phase eiφI. As shown by Goldman and
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Figure 5.10: The Wilson loop
on a honeycomb plaquette is
always trivial, be it for even or odd
forcing, at least if the mixing Ω is
site-independent.

coworkers [315], this is equivalent to requiring ∣trL∣ < 2, a sine qua non for the
anomalous integer quantum Hall e�ect and fractional quantum Hall states with
non-Abelian anyonic excitations [335]. For the odd driving, we have,

∣trL∣ = 2 ∣cos(Λ′
2 −Λ′

1)∣ . (5.47)

Since the di�erence Λ′
2 − Λ′

1 can take any value between zero and 2π, we can
achieve any value between 2 and 0, as can be seen in Fig. 5.9. This proves the
presence of a strong arti�cial non-Abelian gauge �eld. Moreover, under typical
conditions, the system hosts Dirac cones, be it Abelian or non-Abelian.

5.5.4 Achieving non-trivial Wilson loop in honeycomb lat-
tices

For the honeycomb lattice, the setup described above does not su�ce to achieve
non-trivial Wilson loops. Namely, if we de�ne a plaquette by the lattice vectors
r1 = (

√
3ex +ey)/2, r2 = ey, r3 = (−

√
3ex +ey)/2, and −r1, −r2, −r3, we obtain

for even forcing the Wilson loop displayed in Fig. 5.10,

Lhex =M1M2M3M
�
1M

�
2M

�
3 . (5.48)

Using the commutativity of allMa implied by Eq. (5.40), we immediately obtain

Lhex =M1M
�
1 M2M

�
2 M3M

�
3 = I , (5.49)

For odd forcing, simple algebra using Eqs. (5.43) and (5.45) leads equally to
Lhex = I, so that the Wilson loop in the honeycomb lattice implies standard
Abelian physics in both situations.



144 5. Gauge �elds and topological insulators via lattice shaking

−𝑖𝜎𝑦 

-𝑖𝜎𝑧 

𝑖𝜎𝑧 

−𝑖𝜎𝑥 

𝑖𝜎𝑦 

𝑖𝜎𝑥 

Figure 5.11: Wilson loop L

under site-dependent mix-
ing of ↑ and ↓. Shown is
the Bloch-sphere representation
of L in a honeycomb lattice un-
der odd forcing ν+ = 3, ν− =

1 with Raman-laser wavevector
q = d(cos θq, sin θq). The pa-
rameters are chosen randomly in
the ranges θq ∈ [0,2π[, ∆EA

2Ω
∈

]5,15[, and the driving has

strengths
√
η2

1 + η
2
2 ∈ ]0,5[ and

random direction. The resulting
L's can be arbitrary SU(2) ma-
trices, covering the entire Bloch
sphere.

The triviality of the Wilson loop in the honeycomb lattice is due to the form
of Mij , which is � for a site-independent mixing Ω of ↑- and ↓-particles given
by Hamiltonian (5.23) � limited to eiϕ

′sy or szeiϕ
′sy . This limitation can be

overcome by employing position-dependent coupling via Raman-laser mixing,
Ω→ Ωi = Ωeiq⋅ri , with q the wave-vector di�erence of the Raman lasers. In this
case, the local Hamiltonian (5.23) takes the form

Ĥi = â
�
i {

1

2
∆Eisz +Ω [cos(q ⋅ ri)sx − sin(q ⋅ ri)sy]} âi , (5.50)

The main di�erence in this case is that, while still depending only on the link
direction ri −rj , the Mij for di�erent link directions do generally not commute.
Indeed, in this case the local transformation ui may be chosen as

ui = ei
q⋅ri

2 sze
i
2 arctan

∆Ei
2Ω sy . (5.51)

Hence, the products u�iuj for di�erent link directions are not commuting, and
the mapM acts highly non-trivial on them.

Analytical expression for this form of site-dependent species mixing are very
involved. To illustrate the additional liberty that it gives, we instead compute
the Wilson loop numerically for a number of randomly selected parameters. We
parametrize the results on the Bloch sphere, L = c0I+c ⋅s , with the Bloch-vector
components cα = Tr(Lsα) and c0 = Tr(L). Using L�L = I and detL = I, we can
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write ∣TrL∣ =
√

1 + ∣c∣
2. Hence, the trace of the Wilson loop is uniquely de�ned

by the Bloch vector c. In particular, ∣c∣ < 1 implies ∣TrL∣ < 2. The results,
plotted in Fig. 5.11, show that L is in general non-trivial and dense in the Bloch
sphere, i.e., we can simulate any designed L ∈ SU(2). Hence, in this way, the
Mij as well as L can be tuned to be a generic (i×) SU(2) matrix, both in square
and honeycomb lattices.

Alternatively, in a honeycomb lattice with NNN tunneling, non-trivial Wil-
son loops can appear around di�erent loops then those around the elementary
plaquettes involving only NN tunneling. For example, there is a priori no reason
for a loop involving two NN tunneling matrices MAB and MBA′ and one NNN
tunneling matrix MNNN

A′A , i.e., MABMBA′MNNN
A′A , to equal the identity. If there

exists any loop for which L ≠ exp(iφ)I, the system is subject to non-Abelian
e�ects.

5.6 Summarizing remarks and outlook

To summarize this chapter, we proposed a feasible scheme to manipulate arti�-
cial non-Abelian gauge �elds and various topological e�ects, and exempli�ed the
possibilities of the method on various lattice geometries (kagome, honeycomb,
square). The proposed scheme relies on time-periodic driving of the optical
lattice, which is experimentally relatively simple. Further, because it does not
make use of internal states of the atoms, it allows greater �exibility than alter-
native methods. In the case of fermions, e.g., since interaction can only take
place between di�erent internal states, having these at one's disposal can be
very advantageous for reaching the strongly-correlated regime.

Recently, a variety of techniques to detect topological states of ultracold
atoms in optical lattices have been developed, including Bragg-spectroscopy de-
tection of edge states [339�343] or time-of-�ight measurement of Chern numbers
[267, 344]. Speci�cally, a feasible way to measure the topological band struc-
ture of the topological insulator described in Sec. (5.4) is given by the method
of Price and Cooper [345]. It is based on semi-classical wave-packet dynamics
and can be applied thanks to the adiabatic principle for Floquet systems [346]
[see the work by Eckardt and Holthaus [221] for its application to the e�ective
Hamiltonian (5.15)]. Therefore, the topological phenomena discussed in this
chapter should be accessible to observation in near-future experiments. Besides
their importance for a fundamental understanding of solid-state physics, these
e�ects may have future applications in quantum information and spintronics.

Until now, we restricted the considerations of this thesis to the s-band of
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the optical lattice, which is a good approximation at low occupation numbers
and if all energy scales are small compared to the excitation energy to the
second band. In reality, however, there are situations where higher orbits play
an important role (see Chapter 9). For example, for the honeycomb lattice
discussed in Chapter 4, Soltan-Panahi and coworkers [302] found unconventional
super�uidity that could only be explained as a multi-orbital e�ect. In the next
chapter, we discuss how intentionally exploiting such higher bands allows to
quantum simulate orbital physics of spinless fermions.



Chapter 6

Orbital order of spinless
fermions near an optical
Feshbach resonance

In strongly-correlated solid-state systems, orbital physics of electrons plays an
important role in a variety of materials, such as transition metal oxides [347],
and orbital e�ects are needed to understand important material properties, in-
cluding colossal magnetoresistance, ferroelectricity, unconventional supercon-
ductivity, and charge ordering. In particular, novel quantum phases emerge due
to the coupling of the orbital degree of freedom to the charge, spin, or lattice de-
grees of freedom [348, 349]. Such coupling, while generating interesting e�ects,
also complicates the theoretical treatment. It is, therefore, desirable to study
simpler systems with the orbital degree of freedom decoupled from all others.
Ultracold atoms in higher bands of optical lattices provide an ideal tool for this
purpose; they allow to quantum simulate orbital dynamics in a well controlled
environment, including orbital-only models of single-species (spinless) fermions.

Traditionally, ultracold-atoms experiments have been concerned with the
lowest band (the s-band) of optical lattices, but several groups have now achieved
loading and manipulating ultracold atoms in higher (such as p-) bands [350�354].
Observation of orbital physics in optical lattices has exciting prospects (see also
the Nature Physics News and Views article by Lewenstein and Liu [166]): For
example, p-orbital bosons can form Bose�Einstein condensates at �nite mo-
mentum, apparently contradicting the conventional wisdom that Bose�Einstein
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condensation occurs at zero momentum.1 Also, using higher bands, one can go
beyond the integer quantum Hall e�ect, which � as discussed in Chapter 5.4 �
can be induced in the s-orbitals of an optical honeycomb lattice that is subject
to a synthetic gauge �eld. Namely, in the �at p-bands of such a lattice, exotic
incompressible states analogous to the Laughlin fractional quantum-Hall liquid
can be created [264].

For spinless fermionic atoms, when the chemical potential lies within the
p-band, the low temperature properties are entirely determined by the p-band
fermions, since the s-band is completely �lled and remains inert while higher
bands remain empty. The interaction between these atoms is usually weak at low
temperatures because the Pauli exclusion principle only allows scattering in high
partial-wave channels (p, f , etc.), which is however weak at low temperatures.

One way to reach the strongly-correlated regime in such a situation relies
on deep optical lattice potentials, which often means experimentally inacces-
sible low temperature [87]. An alternative is to increase the p-wave elastic
scattering cross section employing a Feshbach resonance (see, e.g., [355�361];
for a review, see [295]). Typically, this is done by coupling channels in the
electronic ground state through magnetic �elds. For the case of p-waves, how-
ever, this method usually leads to signi�cant atom losses through three-body
inelastic collisions [355�358], because the scattering state is well localized by
the angular-momentum barrier and has good Franck-Condon overlap with more
deeply bound molecules [295].2

To circumvent this problem, recently Goyal, Reichenbach, and Deutsch con-
sidered enhanced p-wave interactions via an optical Feshbach resonance (OFR)
[362, 363] between a scattering state and an electronically excited �purely-long-
range� molecule. Such molecules have inner turning points at very large dis-
tances (e.g., > 50a0 in 171Yb, where a0 is the Bohr radius), well beyond the
chemical binding region, and thus three-body recombination should be highly
suppressed [364]. Di�erently form magnetic Feshbach resonances, OFRs have
an additional loss mechanism due to spontaneous decay from the electronically
excited state. However, Ciuryªo and coworkers showed that in alkaline-earth-
metal species, unlike in alkali-metal atoms, large changes of the scattering length
should be possible while maintaining small atom losses, because the molecu-

1Such an e�ect can also occurs in the lowest band, for example due to positive hopping
matrix elements (Chapter 3) or �nite Peierls phases (Chapter 5).

2In strong three-dimensional optical lattices, with exactly one fermion per site and van-
ishing tunneling, these losses can be completely suppressed, as shown in the experiments of
Günter and coworkers [358]. From a many-body perspective, however, such a state is a trivial
insulator.
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lar photoassociation transition associated to the OFR can have a very narrow
linewidth [365]. Hence, using OFR opens the perspective of studying strongly-
correlated many-body phases of ultracold, spinless fermions. What is more, it
also provides for a high degree of control. For example, the width of the OFR
can be tuned by the laser intensity [366�368], and, in our case, the interaction
strength among di�erent p-orbitals can be tuned di�erently, as we will show
below.

Motivated by these developments, we investigate in this chapter the phase
diagram of spinless fermions on a cubic lattice near an OFR. Starting from the
microscopic scattering properties of ultracold atoms, we discuss in Sec. 6.1 the
model describing their relevant physics at low temperatures, namely a three-
color Fermi�Hubbard model with color-dependent interaction, a novel color-
changing term, and spatially anisotropic and color-dependent tunneling. We
describe how strong, color-dependent interactions can be induced by an optical
Feshbach resonance [364]. In Sec. 6.2, we derive the orbital exchange constants
at 1/3 �lling on the cubic optical lattice. Using this, we compute the phase
diagram in a Gutzwiller Ansatz (as explained in Chapter 13.1). Besides a phase
without tunneling and an �orbital Néel� phase where px and py orbitals alternate,
we �nd novel phases with �axial orbital order� in which pz and px + ipy (or
px − ipy) orbitals alternate, breaking spatial and time-reversal symmetry. In
Sec. 6.3, �nally, we demonstrate that the non-trivial Wannier envelope of the
p-band fermions allows the observation of the di�erent phases in experimentally
straightforward time-of-�ight (ToF) measurements. The results presented in
this chapter have been published in Ref. [369].

6.1 Tunable interactions using an optical Fesh-
bach resonance

At low temperatures, the spinless fermions on a cubic lattice near an OFR can
be described by the following Hubbard-like model

Ĥ = −
N

∑
i=1

∑
µ,ν=x,y,z

tµν (f̂µ �
i f̂µi+ν + h.c.) (6.1)

+
N

∑
i=1

[V1n̂
x
i n̂

y
i + V2 (n̂xi n̂

z
i + n̂

y
i n̂

z
i ) + (iV3f̂

x �
i f̂yi n̂

z
i + h.c.)] .

The number of lattice sites is N . The operators f̂µi and f̂µi+ν destroy a fermion
in the orbital pµ=x,y,z at site i located at ri and at site i + ν located at ri + eν ,
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Figure 6.1: Orbital tunneling, exempli�ed for the px orbital. Due to the ab-
sence of orbital-changing hopping, a fermion in a px-orbital (blue and red dumb-
bell) can tunnel only into neighboring px-orbitals (semi-transparent dumb-
bells). The hopping amplitude is given by the overlap of the px-Wannier func-
tions, so that under typical conditions ∣t∥∣ ≫ ∣t⊥∣, with t∥ = t

x
x and t⊥ = t

x
y = t

x
z .

Moreover, the Wannier functions change sign from one side of the lattice site to
the other, as indicated by �−� (red) and �+� (blue), so that sgn(t⊥) = −sgn(t∥).

respectively (with eν the unit vector in direction ν = x, y, z and the lattice spac-
ing set to 1). n̂µi = f̂

µ �
i f̂µi is the corresponding number operator. This model is

a straightforward generalization of the Bose�Hubbard Hamiltonian (2.4) to the
case of fermions and to a multi-orbital situation. To this, one has to expand the
(fermionic) �eld operators appearing in the original free-space Hamiltonian (2.1)
in terms of the p-orbital Wannier basis,

Ψ̂ (r) =
N

∑
i=1

∑
µ=x,y,z

wµ (r − ri) f̂
µ
i . (6.2)

Note also that, due to the anisotropy of the p-orbital Wannier wave functions,
the nearest-neighbor (NN) hopping amplitude tµν = t∥δµ,ν+t⊥ (1 − δµ,ν), sketched
in Fig. 6.1, is direction and orbital dependent [370�372]. This spatial dependence
makes the case of three dimensions interesting (additionally to the larger number
of available orbital states compared to 1D and 2D).

The interactions V1,2,3 are induced by an OFR laser [364] that couples the
electronic ground state of the atom to an excited state. The interaction can be
expressed in terms of the (p-wave) pseudo-potential V mp for two particles with
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mass Mat and relative angular momentum m,

V mp (r) = lim
s→0

3R[(amp )
3
]

2Mat

δ (r − s)

s3
∂3
rr

2 . (6.3)

The real part of the p-wave scattering volume, R[(amp )
3
], can be tuned by the

detuning and the intensity of the OFR laser (see Fig. 6.2).
The expansion (6.2) for the interaction term

Ĥint = ∫ d3r1 ∫ d3r2Ψ̂�
(r1)Ψ̂

�
(r2)V

m
p (r1 − r2)Ψ̂(r1)Ψ̂(r2) (6.4)

leads to the on-site, inter-orbital interaction

Ĥint =
N

∑
i=1

∑
µ,ν,µ′,ν′=x,y,z

Vµ,ν,µ′,ν′ f̂
µ′ �
i f̂ν

′ �
i f̂µi f̂

ν
i , (6.5)

where repeated indices are summed over. (As is standard, o�-site interactions
can be neglected to good approximation; see also the discussion after Eq. (2.6).)

The matrix elements

Vµ,ν,µ′,ν′ = ∑
m=−1,0,1

∫ d3r1 ∫ d3r2wµ′ (r1 − ri)wν′ (r2 − ri) (6.6)

×V mp (r1 − r2)wµ (r1 − ri)wν (r2 − ri)

can now be computed by separating the relative and center-of-mass coordinates.
For the purpose of estimating on-site interactions, for deep lattices, the p-orbital
Wannier functions are well approximated by the �rst excited states of harmonic
oscillators (with the oscillator length ζ controlled by the lattice depth). Then,
the only non-zero interaction terms are the ones given in Eq. (6.1), with

V1 =
1

4
(U1 +U−1) , (6.7a)

V2 =
1

8
(U1 +U−1 + 2U0) , (6.7b)

V3 =
1

8
(U−1 −U1) . (6.7c)

Here, Um = 3
√

2R[(amp )
3
]/(

√
πζ5Mat) de�nes the interaction strength in the

scattering channel with angular momentum m = 1,0,−1. A Zeeman splitting,
which may be introduced by a magnetic �eld, leads to di�erent detuning of the
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Figure 6.2: Level scheme and coupling strengths of the optical Fesh-
bach resonance (OFR). In the OFR, σ+-polarized light couples the scatter-
ing state of the ground-state potential (with the three di�erent projectionsm of
p-wave angular momentum) to the excited purely-long-range bound state. The
σ+-polarized light couples only transitions MTg →MTe + 1, where MTg (MTe)
is the projection onto the quantization axis of the total angular momentum
of the ground (excited) state. This �gure shows only the states permitted by
selection rules. The values of the real part of the scattering volume, R [(ap)

3
],

depend on the detuning to each excited level. They are given in the �gure for
each of the three transitions of the 1S0 →

3P1 intercombination line in 171Yb in
a 30-G magnetic �eld (creating an energy shift of the three excited levels), and
for an intensity of 185W/cm2 and detuning ∆ = −3 MHz below the resonance
at −355 MHz. The �gure is reproduced from the work by Goyal, Reichenbach,
and Deutsch [364].
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OFR laser for the three scattering channels (see Fig. 6.2). This makes the scat-
tering length amp dependent on m, and consequently the Um's can be di�erent
in magnitude and even in sign. Thus, the relative strengths and signs of V1,2,3

can be varied by changing the strength of the Zeeman splitting together with
the detuning of the OFR laser. By contrast, in a standard magnetic Feshbach
resonance, U−1 = U+1. In our case, breaking the symmetry between U−1 and U+1

leads to the orbital-changing term V3. Physically, it allows (px or py) particles
to move on a 2D plane, instead of along a chain only, as is the case in typical
situations where t⊥ can be neglected [373]. Since the V3 term explicitly breaks
time-reversal symmetry (TRS), we can expect it to lead to novel phases re�ect-
ing that intriguing property. As discussed in Chapter 5.4, TRS breaking can
produce topological insulators with the prospect of a wide range of applications.

Hamiltonian (6.1) generalizes the models of Refs. [373�378]. For V1 = V2,
and V3 = 0, it reduces to the SU(3) Hubbard model. One can visualize p-band
fermions as particles carrying a color index representing the px, py, and pz or-
bital state. Then, Hamiltonian (6.1) describes a three-color fermion model with
color-dependent interaction V1,2, a novel color-changing term V3, and spatially
anisotropic and color-dependent tunneling tµν .

We will show in the next section that this model hosts novel quantum phases.
For this purpose, we study the strong-coupling limit for p-band �lling 1/3, and
determine the orbital order using a Gutzwiller mean-�eld Ansatz (GMFA).

6.2 Phase diagram in the strong-coupling limit
at 1/3 �lling

An important limiting case of Hamiltonian (6.1) is the one where interactions
dominate over tunneling terms, the so called strong-coupling limit. In Hub-
bard models of spinful s-band fermions, this limit leads to the emergence of
Heisenberg and t − J models, which are relevant for high-Tc superconductivity.
Di�erent from these situations, in our case three orbital instead of two spin
states are involved.

In the strong-coupling limit of Hamiltonian (6.1),

∣t∥∣ ≪ V1, ∣t∥∣ ≪ V2 − V3, and ∣t∥∣ ≪ V2 + V3 , (6.8)

double occupancy of the lattice sites is energetically suppressed. Therefore, at
average �lling of the p-band of 1/3, the low-energy manifold consists of states
with one p-band particle per site, and density �uctuations are frozen. Since
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∣t⊥∣ ≪ ∣t∥∣, we can safely neglect perpendicular tunneling t⊥ in this limit [373],
and, for brevity, we write t = t∥.

The low-energy states are coupled via virtual hopping that induces exchange
interactions between NN orbitals (see Fig. 6.3). The resulting physics within the
low-energy manifold is captured in an e�ective Hamiltonian that can be derived
from second-order perturbation theory. For a general, pedagogic explanation
of this procedure, see Appendix A of the review by Lewenstein et al. [379].
Following this approach and treating the tunneling t in (6.1) as a perturbation,
we obtain the e�ective Hamiltonian for the low-energy manifold at 1/3 �lling

Ĥeff = −∑
i

{ ∑
µ=x,y,z

Jµn̂
µ
i (2 − n̂µi+µ − n̂

µ
i−µ) + ∑

µ=x,y
(J2 − J1) n̂

µ
i (n̂zi+µ + n̂

z
i−µ)

+J3 [if̂y �i f̂xi (n̂zi+z + n̂
z
i−z) + h.c.] } . (6.9)

To write it more compactly, we have used n̂xi + n̂
y
i + n̂

z
i = 1, and de�ned

J1 ≡ t2/V1 , (6.10a)

J2 ≡ t2V2/(V
2
2 − V 2

3 ) , (6.10b)

J3 ≡ t2V3/(V
2
2 − V 2

3 ) , (6.10c)

and Jx = Jy = J1, Jz = J2. For V3 = 0, V1 = V2, Hamiltonian (6.9) reduces to
terms of the form Jµn̂

µ
i n̂

µ
i±µ, a hallmark of the quantum 3-state Potts model.3

6.2.1 Preliminary considerations

To get insight into which orbital order is favored, we �rst discuss the simple
case of J3 = 0. For positive couplings J1,2, the �rst term of Hamiltonian (6.9)
favors any con�guration where the orbitals at neighboring sites di�er, while for
negative J1,2 it favors con�gurations where the orbitals at neighboring sites are
equal. The second term favors an alternating pattern between pz- and not-pz-
particles if J2 > J1, and an alternating pattern between px and py if J2 < J1.
This leads to the appearance of three di�erent phases:

(A) For J1 > max (J2,0), the favored con�guration is an alternating pattern
between px- and py-particles in the xy-plane.

(B) For J2 > max (J1,0), the (highly degenerate) ground state is any alternat-
ing pattern between pz and not-pz.

3Orbital order in a simpler model without OFR, and its relation to the Potts model were
discussed by C. Wu in the unpublished version of the work of arXiv:0801.0888v1.
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Figure 6.3: Sketch of the virtual hopping processes at p-band �ll-
ing one-third (one p-band particle per site) leading to the e�ective
Hamiltonian (6.9). If neighboring particles are in di�erent orbitals pµ and
pν (abbreviated by µ and ν, respectively), and if they are connected by a bond
in µ or ν direction, a particle can tunnel with amplitude t (blue) to a neigh-
boring site (leftmost column). There, it experiences on-site interaction (green
processes, second column). Due to the anisotropic tunneling, only the same
particle can tunnel back (third column). Rightmost row: for the processes J1

and J2, the �nal con�guration is the same as the initial one, but in the orbital-
changing process J3 an x-particle has changed into a y-particle (bottom row).
Neglecting t⊥, the sketched processes � plus the ones obtained by interchanging
x and y � are the only ones that can occur.
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(C) For the case J1, J2 < 0, the best con�guration is a homogeneously �lled
lattice. This case does not ful�ll the strong-coupling requirements (6.8),
however, and is therefore unstable.

Certain aspects of Hamiltonian (6.9) become clearer when we rewrite it in
terms of the generators of the SU(3) group. Introducing the Gell-Mann ma-
trices λ(n) and the so-called F -spin operators Yi = 1√

3
f̂µ �
i λ

(8)
µ,ν f̂

ν
i and T

(α)
i =

1
2
f̂µ �
i λ

(α)
µ,ν f̂

ν
i (α = 1,2,3), Ĥeff becomes

Ĥeff =
4

3
∑
i

[(J2 − J1)Yi − J3T
(2)
i + J2YiYi+z + J3T

(2)
i Yi+z + J3YiT

(2)
i+z ] (6.11)

+ 2∑
i

∑
µ=x,y

(J1T
(3)
i T

(3)
i+µ +

2J2 − J1

4
YiYi+µ +

J2

2
T
(3)
i Yi+µ +

J2

2
YiT

(3)
i+µ) ,

where we neglected constant terms. In the basis (px, py, pz), Y and T (3) are

diagonal, making the terms YiYj , YiT
(3)
j , or T (3)i T

(3)
j Ising-like. Additionally,

the orbital-changing term V3 involves T (2) = 1
2i

(T (+) − T (−)), where T (±) are
ladder operators of the T -spin.

T (3) and T (2) do not commute with each other, but both do commute with
Y . Therefore, we can replace Y by its eigenvalues − 2

3
(for ∣pz⟩) and 1

3
(for

∣px⟩ and ∣py⟩), which gives some insight into the physics of Hamiltonian (6.11).
Following the previous qualitative discussion of the phases A-C, we assume that
the ground state is bipartite with respect to the eigenvalue of Y .4 Then, there
are three di�erent cases:

(A) at all sites the eigenvalue of Y is 1
3
,

(B) the eigenvalues − 2
3
and 1

3
alternate, and

(C) all sites have eigenvalue − 2
3
.

In the last case, there is a ∣pz⟩-particle on every site. Therefore, the Pauli
exclusion principle prohibits all tunneling and the Hamiltonian equals zero. In
the sectors A and B, it reads (neglecting constant terms)

Ĥ
(A)
eff =

J1

2
∑
i

∑
µ=x,y

σ
(3)
i σ

(3)
i+µ ; (6.12a)

Ĥ
(B)
eff = −2J3∑

i∈Ω
σ
(2)
i . (6.12b)

4In principle, more complex (i.e., non-bipartite) partitions are possible, but the numerical
mean-�eld analysis (see below) shows that bipartite states are the only relevant ones.
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Here, σ denotes the usual Pauli-matrices, which act on the subspace spanned
by ∣px⟩ and ∣py⟩. Sector A is reduced to the Ising model on decoupled xy-
planes, which favors an antiferromagnetic ground state. This is just the model
found in the 2D-case treated in Refs. [373, 376]. In sector B, Ω denotes the
partition where Y has eigenvalue 1

3
. On these sites, J3 acts as a magnetic �eld

in y-direction, lifting the degeneracy between ∣px⟩ and ∣py⟩ and leading to the
ground state (∣px⟩ ± i ∣py⟩) /

√
2 (for J3 ≷ 0).

6.2.2 Gutzwiller mean-�eld analysis

Having obtained a qualitative picture of the expected phases, we now analyze
the phase diagram of Hamiltonian (6.11) quantitatively. To this, we assume
that correlations between sites are small so that the ground state can be ap-
proximated by a product over sites. Accordingly, we employ a Gutzwiller vari-
ational wave function (see Chapter 13.1) for Hamiltonian (6.11), and minimize
the energy of a cube with side length L under periodic boundary conditions.
In principle, close to phase transitions, where �uctuations become important,
such a mean-�eld Ansatz becomes problematic. In the present case of three
dimensions, however, we can expect mean-�eld methods to provide an � at least
qualitatively � reliable picture.

The energy per site for even L is smaller than for odd L, which shows that
the ground state periodicity is indeed 2.5 In agreement with the qualitative
picture from the previous section, we �nd three classes of ground states with
di�erent orbital order (summarized in Fig. 6.4):

(A) For J1 > J2+∣J3∣ /2 and J1 > 0 , we �nd an antiferro-orbital phase similar to,
e.g., the 2D-model of Zhao and Liu [373]: in each xy-plane, sites with px-
and py-orbitals alternate, see Fig. 6.4, bottom right (similar to the AFM
Néel state). Since px- and py-particles do not tunnel in z-direction, the
xy-planes are decoupled, and within our approximation (e.g., neglecting
t⊥), there is no LRO in z-direction. It is possible, however, that LRO
among the planes develops at low temperature for �nite t�.

(B) For J1 < J2 + ∣J3∣ /2 and J2 > − ∣J3∣ /2 , the ground state shows ax-
ial orbital order. The state is bipartite with ∣pz⟩ on one sublattice and
(∣px⟩ ± i ∣py⟩) /

√
2 (for J3 ≷ 0, respectively) on the other sublattice (right

panel of Fig. 6.4). The degeneracy between ∣px⟩ and ∣py⟩ is lifted by a �nite

5Further, we checked that for even L the occurring phases do not depend on L, indicating
that the ground-state periodicity is indeed 2.
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Figure 6.4: Left: The phase diagram of Ĥeff , Eq. (6.9), at 1/3 �lling shows
four phases: phase A with antiferro-orbital order (empty region), phases B+ and
B− with axial orbital order (red/orange region and J3 > 0/< 0, respectively),
and �nally phase C (blue region) with tunneling completely frozen. The gray
wedge indicates the region satisfying the strong-coupling conditions (6.8), 0 ≤

J1,2 ≪ 1, J3 ≪ J2. Right: sketch of phases A and B+. In phase B+, ∣pz⟩
and ∣px⟩ + i ∣py⟩ orbitals alternate. Phase B− can be visualized from this by
replacing ∣px⟩ + i ∣py⟩ with ∣px⟩ − i ∣py⟩.
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J3. The state (∣px⟩ ± i ∣py⟩) /
√

2 has �nite angular momentum, whence this
novel phase breaks TRS.

(C) For J1 < 0 and J2 < − ∣J3∣ /2 , virtual tunneling is energetically disadvan-
tageous. Then, the energetically most favorable situation is where Pauli
exclusion prohibits all tunneling t∥ (by �lling αβ-planes uniformly with
pα or pβ , where αβ = xy, xz, yz). This state is unstable, however, because
it cannot ful�ll the strong-coupling requirements (6.8).

Interestingly, phases A and C preserve TRS, although V3 in Hamiltonian (6.1)
breaks it explicitly.

6.3 Experimental signatures of the orbital phases
in ToF images

To distinguish the di�erent phases experimentally, one can employ standard ToF
imaging, similar to what is explained in Chapter 2.1. Generalizing Eq. (2.10)
to multi-component Fermi-gases, the free-space density distribution after a time
τToF of free expansion relates to the in-trap momentum distribution via

⟨n (r)⟩τtof
= L3

∑
µ,ν

w⋆
µ (k)wν (k) ⟨f̂

µ �
(k) f̂ν (k)⟩ , (6.13)

with wµ (k) the Fourier transform of the Wannier orbital wµ (r) of p-band state
µ. (We assume translational invariance so that wµ (r) is independent of site i.)
Further,

f̂µ(k) =
1

L3/2 ∑
i

eik⋅ri f̂µi , (6.14)

and k =Mat r/(h̵ τtof). In the analysis of the previous sections, we only consid-
ered insulating states, which dominate in the strong-coupling limit at p-band
�lling 1/3. In such states, the ToF pictures will show no peaks associated to
o�-diagonal LRO. However, signatures of the distinct phases do appear in the
momentum distribution due to the non-trivial p-orbital Wannier envelope. This
allows to distinguish phases A and B by their column density (i.e., the density
integrated along one spatial direction), as shown in Fig. 6.5.

Observation of these novel phases requires that we simultaneously achieve
strong interactions, V ≫ t, and low temperatures, kBT ≪ t2/V , for the char-
acteristic tunneling rate t and interaction energy V . At experimentally feasible
temperatures, this requires a signi�cant enhancement of the real part of the
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Figure 6.5: Predicted time-of-�ight density distributions, which would
allow to experimentally distinguish phases A and B. Lower (upper) row:
⟨n (r)⟩ttof

integrated along z (x) in arbitrary scale. When viewed along the
z-direction, phase A displays a doughnut form (lower left panel) because of
an incoherent addition of px- and py-Wannier envelopes. In phase B, the sites
occupied by (∣px⟩ ± i ∣py⟩) /

√
2 give a similar doughnut structure, but the hole

at kx = ky = 0 is �lled by the other half of the sites which are occupied by pz-
particles (lower right). Viewing along the x-direction reveals the existence of
pz-particles in phase B (upper right), contrary to phase A (upper left), where
only the dumbbell of py-particles is found.
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p-wave scattering volume via the OFR. In practice, however, and in contrast to
magnetic Feshbach resonances, this is limited by spontaneous emission, which
broadens the resonance and also leads to recoil heating. For the example con-
sidered in the work by Goyal, Reichenbach, and Deutsch [364], based on the 1S0

→ 3P1 intercombination line in 171Yb, the atomic linewidth is ≈180 kHz, which
limits the useful OFR p-wave enhancement. Other species such as 87Sr, where
the same transition has a linewidth of ≈7.5 kHz, should result in a substantial
OFR, with a reasonable linewidth. Experimental studies of OFRs in related
isotopes are currently underway [380].

6.4 Summary

To summarize this chapter, we investigated the orbital order of spinless fermions
in the p-band of a cubic lattice with interactions controlled by an OFR. Such a
system can be realized with current technology.

We analyzed the orbital order in the strong-coupling limit at p-band �lling
1/3. To this, we found an elegant expression of the model Hamiltonian in terms
of Gell-Mann matrices, which gives qualitative insight into the expected phases.
We computed the phase diagram quantitatively using a GMFA. Besides a phase
where all tunneling is blocked and an antiferro-orbital phase where px- and py-
orbitals alternate, we found a novel phase with axial orbital order which not
only breaks translational symmetry but also has macroscopic orbital angular
momentum.

We expect our results to stimulate future work on this subject. For exam-
ple, it is interesting to investigate how quantum �uctuations a�ect the phase
diagram: they might distort it [378] or even lead to disordered `orbital liquid'
states. Fluctuations may also lift the degeneracy between px- and py orbitals at
J3 = 0, and possibly lead to spontaneous TRS breaking. To treat �uctuations
and correlations between sites in a more quantitative way, future studies could
employ mean-�eld methods where interaction terms are not decoupled over sites
but instead over bonds (see, e.g., the work by Szirmai and Lewenstein [381]).
Further, the limit of small interactions, where related models show non-trivial
color-super�uidity [374, 375, 377], may also be of interest. More complex lattice
geometries, such as the triangular or honeycomb lattices discussed in Chapters 3
and 4, may host other orbital-ordered phases or even disordered ones due to frus-
tration e�ects. Finally, phase B± may have interesting topological properties.
For example, at an interface of two domains with px + ipy and px − ipy order,
chiral zero mode fermions may arise (similar to the edge states in spin-Hall
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insulators discussed in Chapter 5.4).
Considering higher orbits for quantum simulation is a relatively new avenue

in optical lattices. Traditionally, in the description of ultracold bosons in stan-
dard optical lattices, higher-orbit e�ects have been neglected, which is a good
approximation at low temperatures and weak interactions; as we will show in
Chapter 9, in the regime of strong interactions, however, orbital e�ects can
become signi�cant, and one has to consider them � if one wants to or not.



Chapter 7

Devil's staircases and
quasi-supersolids:
A trapped-ion quantum
simulation of long-range
interactions

Up to this point, the interactions in the considered models were of short range.
However, long-range interactions can lead to many e�ects which are not present
in such short-range systems [167]. Most strikingly, systems with strong long-
range interactions (where the integral over the interactions does not converge)
can exhibit counterintuitive thermodynamic behavior like super-extensive quan-
tities or breaking of ergodicity [382].

But even for weak long-range interactions (which we will consider here) novel
e�ects are expected. For instance, they lead to new ground states, such as in-
sulating states similar to the Mott insulators of the Bose�Hubbard model but
at fractional (instead of integer) �lling factors. An example of such an insulat-
ing crystal state is the checkerboard state; there, the sites of a square lattice
are alternately occupied and empty. At half �lling, this state is the ground
state at weak tunneling and strong nearest-neighbor (NN) repulsion. If repul-
sive interactions beyond NNs are present, many such insulating con�gurations
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become possible, with �lling factors other than 1/2. Since deforming one con�g-
uration into another costs a large amount of energy, these low-lying states are
metastable and have large life times [383]. The large number of such metastable
states might be useful for quantum-information storage [187, 188, 384, 385], but
it also complicates �nding the ground state.

Another example for the intriguing physics due to long-range interactions
are supersolids, which are exotic quantum states with coexistence of crystal and
super�uid (SF) long-range order (LRO). For instance, if the checkerboard crystal
state is doped with holes, these can delocalize and develop long-range phase
coherence on top of a checkerboard-like density background. For interactions
with limited range, however, such a state does not form the ground state but
is subject to phase separation [386�388]. Dipolar interactions, on the other
hand, can stabilize such a supersolid phase [389]. This combination of novel
physics with an increase in computational di�culty makes systems with long-
range interactions interesting targets for QSs.

For such long-range quantum simulations, trapped ions seem more natu-
ral candidates than neutral atoms, since dipolar interactions can be achieved
without additional experimental e�ort [175]. Ion setups have the additional
peculiarity that, contrary to ultracold-atoms architectures, not only two-body
(density�density) interactions, but also tunneling terms can be long ranged.
Furhtermore, in the trapped-ion architecture, a high degree of control over state
preparation, evolution, and readout can be achieved (see Chapter 2.2)

In this chapter, we describe how, combining trapped ions with a standing
laser wave, one can realize a quantum simulation of a one-dimensional hard-
core-boson model with dipolar o�-site interaction and tunneling. This model is
equivalent to a dipolar XXZ spin-1/2 chain. We explore its rich phase diagram
in detail, employing (see Part IV for technical details) perturbative mean-�eld
theory (PMFT), exact diagonalization (ED), and quasi-exact numerical tech-
niques (DMRG and iTEBD). We �nd that the complete devil's staircase � an
in�nite sequence of crystal states existing at vanishing tunneling � spreads to a
succession of lobes similar to the Mott-lobes found in NN Bose�Hubbard mod-
els. Further, we �nd quasi-supersolid behavior inside the insulating lobes: addi-
tionally to long-range density�density correlations, o�-diagonal correlations are
quasi-long-ranged [390], opposed to models with NN tunneling where they de-
cay exponentially. This quasi-supersolid is exceptional, since normally systems
with dipolar interactions in 1D can be described by Luttinger theory [391�393].
In that case, diagonal correlations decay with the Luttinger parameter K, and
o�-diagonal correlations with 1/K. This means that a slow decay of the �rst
implies a fast decay of the latter, and vice versa. In contrast, in our model with
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long-range tunneling both diagonal and o�-diagonal correlations decay slowly,
and Luttinger theory is not a valid description. These �ndings for the 1D system
have been published in Ref. [180]. We also present some results, derived with
QMC, for an extension of the model to a 2D triangular lattice at �nite tem-
perature. There, we �nd that long-range tunneling can stabilize true supersolid
phases (i.e., LRO in diagonal and o�-diagonal correlations). The results on the
triangular lattice can be found in the arXiv preprint [204].

We organize this chapter as follows: First, we introduce the considered model
Hamiltonian in Sec. 7.1, and explain in Sec. 7.2 how it can be implemented with
trapped ions. Then, in Sec. 7.3, we outline our expectations by discussing
previous, related results for the 1D case. The following sections are dedicated
to a thorough investigation of the ground-state phase diagram in 1D. Our most
accurate analysis comes from DMRG (Sec. 7.5). However, it is good to �rst form
intuition via analytical approaches, even if approximate. We present mean-�eld
and perturbative results in Sec. 7.4 to �nd the upper borders of the crystal lobes.
Some limitations of DMRG can be overcome with other numerical techniques.
For instance, we can study in�nite systems (as opposed to �nite sized) with the
iTEBD algorithm (Sec. 7.6), and experimentally relevant small systems can be
studied with ED (Sec. 7.7). At the end of this chapter (Sec. 7.8), we discuss
the extension to the 2D triangular lattice, and in Sec. 7.9 we o�er some �nal
remarks.

7.1 A spin model with competing long-range in-
teractions

In this chapter, we are interested in the interplay between long-range interac-
tions and tunneling, such as given in a chain of dipolar XXZ spins, described
by the Hamiltonian

Ĥ = J∑
i<j

1

∣i − j∣
3
[cos θS zi S

z
j + sin θ (S xi S

x
j + S

y
i S

y
j )] − µ∑

i

S zi , (7.1)

where the S αi are spin-1/2 operators at site i, and µ is the chemical potential
(equivalent to an external magnetic �eld), adjusting the magnetization

⟨Z⟩

N
≡
N

∑
i=1

⟨Szi ⟩ , (7.2)

where N is the chain length. Since the Hamiltonian (7.1) shows a symmetry of
up-down spins, we consider in this chapter only negative magnetization.
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In one dimension (which is the main subject of this chapter), standard an-
alytical and numerical techniques typically su�ce to reliably probe the phase
diagram. Still, the 1D limit is not only important to gain intuition, it also allows
to judge the reliability and performance of QSs. Even more relevant are studies
of two or more dimensions (see Section 7.8) or dynamics (see also our discussion
of the most relevant tasks for a QS on p. 12f ).

By varying the angle θ, we can explore all ranges of relative strength of
the interactions, e.g., the XX chain in a transverse �eld (θ = π/2), or the Ising
model (θ = 0) � but both with long-range interaction. Moreover, the model can
be tuned from negative to positive XY interaction, with the latter leading to a
deformation of the phase diagram due to frustration e�ects (for a discussion of
phenomena due to strong frustration, see Chapter 3).

The problem can be mapped to a system of hard-core bosons using the
standard Holstein�Primako� transformation, Eq. (3.2). In the following, we
will use the spin and boson pictures interchangeably, because some aspects are
better described in terms of spins, while others are more familiar in the language
of hard-core bosons. In the hard-core boson description, an up-spin corresponds
to an occupied site and a down-spin to an empty one, the ZZ terms translate to
dipolar o�-site density�density interactions, and the XX and YY interactions
become long-range tunneling terms. Since typically tunneling terms are short-
ranged, this has to be seen as an important peculiarity of the trapped-ion model.

A similar model with short-range tunneling emerges in the context of ultra-
cold polar molecules (or Rydberg atoms) [394, 395]. Placed in a one-dimensional
optical lattice, in the limit of strong on-site interaction, the cloud of polar
molecules is e�ectively described by Hamiltonian (7.1), but with NN instead of
long-ranged tunneling (the derivation is similar to the standard Bose�Hubbard
model, see Chapter 2.1). Hence, the quasi-supersolid phase (which, as we will
discuss below, is entirely due to the long-range tunneling) cannot be observed
in this system. Recently, ideas have been put forward how to achieve the long
range of the tunneling terms also in a system of polar molecules [396]. Through-
out this chapter, we draw comparisons between our model and the model with
NN tunneling and dipolar interaction, as well as with a model with both NN
tunneling and interaction (the NN-XXZ model, relevant for magnetic materials).

7.2 Experimental implementation

The Hamiltonian (7.1) can be simulated in an ion-trap experiment, as we explain
now. For more details on ion-trap experiments, see also Sec. 2.2. We base the
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discussion on the original work of Porras and Cirac [175] to which we refer for
technical details. This scenario is conceptually straightforward, but relies on
standing waves and intensity gradients. For technical reasons, however, actual
implementations usually involve polarization gradients and walking waves. We
will comment on this situation further below.

We consider a collection of N trapped ions at low temperatures, such as
depicted in Fig. 2.3a or Fig. 2.4. In such a situation, the Coulomb repulsion
(or the microtrap pattern) arranges the ions in a crystal and allows only small
oscillations, centered at the equilibrium positions. The ion equilibrium positions
will later mark the sites of the e�ective spin model. The Coulomb interaction
further couples the small vibrations around equilibrium into collective modes
(phonons), governed by the Hamiltonian

Ĥvib = ∑
α=x,y,z

N

∑
k=1

h̵ωαk â
α �

k âαk , (7.3)

where âαk and âα �

k are the phonon annihilation and creation operators, respec-
tively, of modes with energy h̵ωαk .

The main idea is now to choose two electronic hyper-�ne ground states of
each ion, which act as a pseudo-spin 1/2, and mediate � in the spirit of the
Cirac�Zoller gate [174] � an e�ective spin�spin interaction via the collective
vibrational modes of the ion chain. To describe the pseudo-spins, we introduce
the Pauli-sigma matrices σα, α = x, y, z, and we denote the eigenstate with
eigenvalue 1(−1) of σα by ∣↑ (↓)⟩α.

The chemical potential (i.e., magnetic �eld) term of Hamiltonian (7.1) can
be achieved rather easily in a number of ways. For example, one can couple the
hyper�ne states that constitute the e�ective spin 1/2 via a stimulated Raman
transition [28, 29]. To do this, one can use one of the beams that induce the
spin�spin coupling (see below) and beat it with an additional beam such that
the detuning between them is resonant with the hyper�ne transition between ↑
and ↓. Choosing the phase di�erence appropriately, one can generate terms like

Ĥmag = ∑
i

Bασ
α
i . (7.4)

A similar e�ect can be achieved by resonantly driving the transition directly
with a rf-frequency �eld [27]. This couplings generate a term proportional to
σxi , which can be mapped to the z component by an appropriate rede�nition
of the spin operators. Alternatively, an o�-resonant microwave can be used to
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Figure 7.1: Raman lasers generating the e�ective spin�spin interac-
tion. (a) Pairs of counterpropagating laser beams with Rabi frequencies Ωα↑,↓
illuminate the ion chain in the three directions of space (shown are the beams
in x direction). Their polarizations are chosen to avoid undesired interference
e�ects. (b) The lasers couple the hyper�ne-states constituting the pseudo-spin
1/2 to an auxiliary excited state. (c) For appropriately chosen phase di�er-
ences, the ∣↓⟩ state is dark. If the Raman beams are standing waves, making
the intensity and thus the light�spin coupling position-dependent, this scheme
can generate a spin�spin interaction mediated by ion vibrations.

create a state-selective potential, leading to an energy di�erence between the
hyper�ne states, creating a term proportional to σzi .

7.2.1 Porras�Cirac (2004) scenario

To achieve the e�ective coupling, one can use pairs of counterpropagating laser
beams providing Rabi frequencies Ωα↑ and Ωα↓ (Fig. 7.1a). Here, α = x, y, z
denotes the direction of propagation, and Ωα↑ (Ωα↓) couple the state ∣↑⟩z (∣↓⟩z)
o�-resonantly to an excited state ∣e⟩ (see Fig. 7.1b).

For appropriate polarizations which avoid interferences [175], these couplings
can be expressed as Ωα↑ ∣e⟩ ⟨↑∣z + Ωα↓ ∣e⟩ ⟨↓∣z. In z-direction, only the ↑ state is
addressed, Ωz↓ = 0, while in x and y we choose the relative phases Ωx↓ = Ωx↑
and Ωy↓ = iΩy↑. This way, one achieves the atom�light couplings

Ĥa−`,α = h̵Ωα↑ ∣e⟩ ⟨↑∣z +Ωα↓ ∣e⟩ ⟨↓∣z = h̵Ωα ∣e⟩ ⟨↑∣α , (7.5)

i.e., the state ∣↓⟩α is dark for the beams propagating in direction α (Fig. 7.1c).
This choice is convenient for notation, but note that in principle we could,
using the beam propagating in direction α, create this type of coupling for any
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spin component α′. For strong detuning ∆α, we can adiabatically eliminate the
excited state ∣e⟩. To this, one can insert the parameters depicted in Fig. 7.1b into
the e�ective Hamiltonian (5) of the article by Brion, Pedersen, and Mølmer [397]
(replacing from their notation δ = 0, Ωa = Ωα↑, and Ωb = Ωα↓). This leaves us
with the e�ective atom�light couplings

Ĥ
eff
a−`,α = −h̵

∣Ωα∣
2

4∆(1 + δα,z)
(σα + I) . (7.6)

Since in z-direction there is only one beam pair while in x and y there are two,
we introduced the factor (1 + δα,z).

Up to now, we only considered light forces acting on individual ions. Now, we
want to show how these can couple hyper�ne states of di�erent ions, employing
a mediation by the collective vibrational modes. To this, we assume that the
counterpropagating beams form standing laser waves, so that

∣Ωα∣
2
= ∣Ωα,0∣

2
cos(k`,αx

α
)
2 , (7.7)

with xα = x, y, z. We assume that the position of the intensity minima relative
to the ion equilibrium positions xα,0i is �xed to xα,0i = (1+2m)π/(4k`,α), with m
integer numbers, and where i numbers the ions from 1 to N . We assume that the
displacements of the ions from their equilibrium position, qαi = xαi −x

α,0
i , is small

compared to the light wavelength, i.e., k`,αqαi ≪ 1. In this so called Lamb�Dicke
regime, we can expand the cosine term (7.7) in the spin�light couplings (7.6),
leading to the spin�position coupling

Ĥs−p = − ∑
α=x,y,z

N

∑
i=1

Fα q
α
i

1

2
(σαi + I) . (7.8)

Here, we de�ned the coupling strengths Fα = h̵k`,α∣Ωα∣
2
/(2∆(1 + δα,z)) and

neglected terms that act only on the spin components. These are similar to a
homogeneous magnetic �eld and can be compensated by the terms (7.4).

It is convenient to express the ion positions qαi in terms of the phonon modes,

qαi = ∑
k

Mα
i,k

√
2Mionωαk /h̵

(âαk + â
α �

k ) , (7.9)

with Mion the ion mass. The unitary matricesMα diagonalize the vibrational
Hamiltonian, Mα

i,kK
α
i,jM

α
j,k′ = ω

α2
k δk,k′ , where K is the elasticity matrix. The
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elasticity matrix is determined by the energy it costs to elastically deform the
ion crystal,

Velast =
1

2
Mion ∑

α,i,j

K
α
i,jx

α
i x

α
j . (7.10)

This energy is given by the second derivatives of the Coulomb repulsion, so that
for an ion chain along the z direction, we get

K
α
ij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ω2
α − cα∑j′(≠i)

e2/Mion

∣z0
i −z

0
j′ ∣

3 , i = j

+cα
e2/Mion

∣z0
i −z

0
j ∣

3 , i ≠ j
(7.11)

Here, cx,y = 1, cz = −2, and the z0
i denote the equilibrium positions (x0

i = y
0
i = 0).

Further, h̵ωα is the vibrational energy of an individual ion (i.e., given solely by
the trap and without the in�uence of the Coulomb repulsion to other ions).

7.2.2 E�ective spin�spin interaction

To arrive at the promised spin Hamiltonian it is convenient to apply the canon-
ical transformation U = e−A with

A = ∑
α,i,k

ηαi,k (σ
α
i + I) (âα �

k − âαk ) , (7.12)

where

ηαi,k = Fα
Mα

i,k

h̵ωα,k

¿
Á
ÁÀ h̵

2Mionωα,k
(7.13)

parametrizes the laser-induced displacements of the ions compared to the ground-
state size of the vibrational modes. In the new basis, the Hamiltonian includes
an e�ective spin-spin interaction,

e−A (Ĥvib + Ĥs−p + Ĥmag) e
A
= Ĥvib +

1

2
∑
α,i,j

Jαi,jσ
α
i σ

α
j +∑

i

B′
ασ

α
i + Ĥres . (7.14)

The e�ective magnetic �elds have been modi�ed by B′
α = Bα + F

2
α/(Mionωα).

Further, the residual spin�phonon coupling Ĥres can be neglected in the regime
of small ηαi,k. Then, the spins are completely independent of the vibrational
modes and one is left with an e�ective spin model that governs the dynamics of
the two hyper�ne states ∣↑⟩ and ∣↓⟩.
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In this scenario, the e�ective spin�spin interaction between two sites i and
j is

Jαi,j = −∑
k

F 2
α

Mionω2
α,k

M
α
i,kM

α
j,k = −2∑

k

ηαi,kη
α
j,kh̵ωα,k

= −
F 2
α

Mion
(

1

Kα
)
ij
. (7.15)

This spin�spin coupling completes all terms in Hamiltonian (7.1).
Since the vibrational modes are due to the Coulomb interaction between the

ions, the e�ective spin-model is long-ranged. The precise spatial form of the
spin�spin interactions is determined by the ratio of the relevant energy scales,
namely the Coulomb interaction between neighboring ions on the one side and
the vibrational energy of an individual ion ωα on the other side. Their ratio
can be quanti�ed by the dimensionless parameter βα ≡ ∣cα∣ e

2/Mionω
2
αd

3
0, where

we introduced the mean inter-ion distance d0 and where we assume that the
ion chain is homogeneous. In a realistic experimental situation, if an overall
trapping potential is used, the inter-ion spacing becomes non-uniform. In the
central region of a long ion chain, however, this inhomogeneity can be neglected.
An equidistant ion chain could also be created by placing the ions in individual
microtraps [181, 182]. For these reasons, we can assume in the following that
the system is homogeneous. Then, in the sti� limit where βα ≪ 1, an evaluation
of the elasticity matrix (7.11) shows that the decay of the spin-spin interactions
obeys a dipolar power law as promised.

Note that in a linear Paul trap βα ≪ 1 can only be achieved for the radial
modes, while in the axial direction, βα ∼ 1 has to be ful�lled. Increasing the axial
con�nement increases the frequency ωα, thus reducing β, but it also reduces the
ion distances and can even lead to a deformation of the chain into a zig-zag
structure [177]. In individual microtraps, however, the condition βα ≪ 1 can be
ful�lled also for axial modes.

By choosing to which ion modes the laser couples (axial or radial), one can
change the sign of Jαi,j and thus tune the spin�spin coupling to ferromagnetic
(FM) or antiferromagnetic (AFM), as desired. To have all three couplings at the
same time FM or AFM may be experimentally challenging, since this can only
be achieved by coupling to the same types of modes (i.e., either all axial or all
radial). If, however, the pairs of laser beams acting on two di�erent spin com-
ponents σα1 and σα2 couple to the same set of modes, the transformation (7.14)
generates the additional spin�spin interactions σα1

i σα2

j . This can be avoided by
addressing individual modes. For this purpose, one can choose for each spin-
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component the detuning between the laser beams detuned by a small amount
δ to a speci�c vibrational mode. In the Lamb�Dicke regime, the trajectory in
phase space of the addressed mode follows a circle that closes after time 1/δ, so
that one can trace over the motional degree of freedom without errors. If other
modes are close in energy, however, the system evolution follows also circles in
their phase spaces. With increasing number of modes, it becomes more di�cult
to close all the circles simultaneously, so that entanglement between internal
(spin) and external (motional) degrees of freedom remains. This leads to errors
when tracing out the motional degree of freedom. Therefore, cross-talk between
the di�erent addressed modes has to be avoided, which becomes technically
challenging for large ion crystals due to the increase of the number of modes
with the ion number.

7.2.3 Scenario involving walking waves and polarization
gradients

The standing laser waves considered above are actually nothing else than an
optical lattice. Although these may be conceptually more straightforward, ex-
periments typically employ �walking� laser waves [27�29], since they have the
advantage over standing waves that one does not need to �x the position of the
ions with respect to the intensity minima (only the relative distance between
the ions) [184].

In a typical scenario, the walking waves are created by two beams almost
counterpropagating along the axial direction of the ion chain. A relative an-
gle between the beams allows to tune the e�ective wave length (i.e., measured
along the chain axis). Also, in typical experimental situations it has proven
technically advantageous to obtain the position-dependent coupling not by spa-
tial variations of the intensity but of the polarization. To this, the two laser
beams creating the walking wave are perpendicularly polarized. Since the rela-
tive phase of the two beams varies along the chain, this generates a polarization
gradient, and the polarization dependence of the hyper�ne couplings, in turn,
leads to a position-dependent force.

Further, the two beams have a small detuning ωw between them, so that the
resulting wave moves slowly (�walks�) over the ion crystal. The spatial depen-
dence of the coupling is then given by an exponential of the form exp(ik`,αx

α +

ωwt). In the Lamb�Dicke limit, this can again be expanded in terms of the ion
displacements. In the sti�-crystal limit, βα ≪ 1, the ions are almost indepen-
dent and the dispersion relation of the modes has a small band-width compared
to ωw. One can then tune the walking waves to the red sideband with respect
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Figure 7.2: Complete devil's staircase
for the trapped-ion Hamiltonian (7.1) at
θ = 0, consisting of steps of constant hard-
core boson �lling in dependence on the
chemical potential µ. In principle, the
devil's staircase is continuous and cov-
ers all rational �llings from 0 to 1, but
for clarity we show only the most promi-
nent steps (and only positive µ). For the
largest steps (�lling 1/2, 1/3, and 0), we
give the ground-state wave function.

to all vibrational modes. This yields a term similar to Eq. (7.8), and following
the same reasoning as above we obtain a state-dependent coupling similar to
Eq. (7.15) [184].

Using this type of coupling, tunable spin�spin interactions of Ising type have
been demonstrated in a number of proof-of-principle experiments [27�29]. From
now on, we neglect the ion dynamics and only consider the e�ective Hamilto-
nian (7.1) governing the hyper-�ne states. We will see that it hosts an extremely
rich phase diagram worth exploring in such experiments.

7.3 Expected behavior of the model

Before proceeding to the detailed numerical analysis of the ground-state phase
diagram of Hamiltonian (7.1), let us brie�y sketch the expected behavior of the
present model, starting from previous related results.

For θ = 0, Hamiltonian (7.1) describes a long-range Ising model, or equiva-
lently a 1D system of hard-core bosons with repulsive dipolar interaction. This
is a classical model that can be solved analytically [398]. Due to the long-range
nature of the interactions, for any given �lling factor, the particles arrange in a
periodic crystal pattern (a generalized Wigner lattice). For a given �lling factor,
these periodic patterns can be constructed by maximizing the mutual distance
between the particles. Every rational �lling factor q = m

n
occupies a �nite extent

in µ, thus giving rise to a plateau of �xed particle density, and these plateaux
cover the entire range of µ. Similar to the model considered by Bak and Bru-
insma [398], plotting the �lling factor against the chemical potential µ yields a
self-similar structure � a complete devil's staircase (Fig. 7.2). The name �devil's
staircase� derives from its surprising mathematical properties, challenging naive
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intuitions about continuity and measure: since all rational �llings are present
(in an in�nite chain), it is a continuous function; moreover, its derivate vanishes
almost everywhere (i.e., only on a set of measure zero is it non-zero, indeed,
in�nite) � and still it is not a constant, but goes over a �nite range from 0 to 1.
The devil's staircase is �complete,� because it covers all values of µ.

The stair's steps have a width

∆µ(
m

n
) = 2

3nπ2csc (π
n
)

2
− nπ2 − 3π3cot (π

n
) csc (π

n
)

2

3n3
. (7.16)

This means that �llings with a large denominator � equivalent to a large crys-
tal period � become the ground state only in a very small range of chemical
potential.

A �nite tunneling, (θmodπ) ≠ 0, makes the problem quantum mechanical.
The tunneling allows particles to gain kinetic energy, which tends to destabilize
the crystal. It melts at some critical tunneling strength into a SF phase where
the particles are delocalized over the chain. Two possible scenarios for a tran-
sition from the crystal to the molten phase are thinkable: a direct crystal�SF
transition, or an intervening supersolid phase. The latter has been predicted to
occur in similar � but two-dimensional � hard-core boson systems [388, 399�403].
Until recently, there was only one claim of an experimental realization of a su-
persolid in 4He [290, 291], which is still disputed [292, 293]. Therefore, it would
be interesting to �nd other systems which show supersolid behavior and are
easier to interpret. One such experiment has been carried out recently [14, 294],
where an atom cloud in a cavity spontaneously breaks spatial symmetry while
at the same time showing o�-diagonal LRO.

At �nite tunneling, the points θ = ±π/2 are special, since here the ZZ interac-
tion term vanishes from Hamiltonian (7.1). The limit θ = −π/2 describes a FM
XY model. Here, the long-range tunneling can be subsumed in a renormalized
NN interaction, since, �rst, all interactions work towards the same ordering,
and, second, in one dimension the integral over dipolar interactions converges.
For θ = +π/2, the system is an AFM XY model, which displays frustration, and
the behavior is less obvious. It turns out, however, that a similar renormal-
ization to a NN interaction captures the main physics. Hence, analogies to a
NN-XY model can help understanding the behavior of the system near θ = ±π/2.
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7.4 Mean-�eld approximations

In the following, we study how the ground-state phase diagram of Hamilto-
nian (7.1) develops as a function of θ. We start with two approximative methods
to obtain qualitative insights.

7.4.1 Perturbative mean-�eld theory

A �rst understanding of the crystal�SF transition can be obtained by a PMFT,
valid for small tunneling. While not being very accurate in 1D, such a mean-�eld
treatment is generally expected to become better for longer-ranged interactions.
As explained in Sec. 13.2, the PMFT allows to compute a critical tunneling
strength where the SF order parameter becomes �nite, and the assumption that
the ground state is localized is no longer valid. This gives an estimation for the
upper border of the crystal lobes, corresponding to an instability under adding
or removing a single particle. The main disadvantage of the PMFT is that there
are potentially more complicated excitations, e.g., the addition of a particle plus
a relocation of the neighboring particles. Such a deformation of the crystal could
decrease the potential energy. In the simple PMFT Ansatz, however, this type
of excitations is not captured. Moreover, it is not the method of choice to
extract information about precise values of observables. It does, however, allow
the assessment of the appearance of meta-stable states.

For our calculations, we assumed an in�nite system with the restriction that
the states have a periodicity of 12 sites. Since the crystal phases with a large
periodicity become very small in their extent in µ [by virtue of Eq. (7.16)], this
is a reasonable restriction which still captures the most prominent features of
the phase diagram.

In Fig. 7.3, we show the insulating-lobe structure that we obtain from PMFT.
The thick line, which follows the breakdown of the ground state, gives an upper
limit for the stability of crystal states. A dotted line marks the µ where the
ground state magnetization changes, i.e., where a di�erent crystal structure
becomes lower in energy. Frustration e�ects make the crystal lobes more stable
for AFM (θ>0) than for FM XY-interaction (θ<0). Further, the data exhibit
the rich structure of metastable states (delimited by thin lines), which � as
proposed in the context of ultracold dipolar neutral atoms � could be useful as
quantum memories [187, 188]. (For clarity, states that constitute the ground
state only over a small region of the phase diagram are not displayed.)

We also computed the phase diagram within Gutzwiller mean-�eld theory
(not shown; for technical details of this method, see Chapter 13.1). The qualita-
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Figure 7.3: Stability regions of the
crystal states within PMFT, ex-
hibiting the large number of metastable
states (delimited by thin lines). Dot-
ted lines mark the µ where the crystal
ground state changes periodicity. The
thick line, tracing the melting of the
crystal state to ferromagnetic or antifer-
romagnetic super�uids (FM-SF, AFM-
SF), gives an upper limit for the stability
of crystal states. Frustration e�ects lead
to an asymmetry between the negative
(FM) and positive (AFM) θ side.

tive behavior of the phase diagram is similar to PMFT, but the lobes are some-
what smaller because PMFT considers destabilization under single-particle or
single-hole excitations, while Gutzwiller mean-�eld theory captures better more
complicated excitations.

7.4.2 Wigner-crystal melting at low �lling

For low magnetizations, we can draw an analogy to the melting of Wigner
crystals [404, 405]. As described in Sec. 7.3, at θ = 0, the hard-core bosons are
perfectly localized, with an inter-particle distance given by the �lling fraction.
At �nite tunneling, θ ≠ 0, the particles spread, but at small tunneling and low
�lling it is reasonable to assume that they remain spatially well separated.

Under this assumption, we can approximate the total wave-function by a
product of Gaussians representing the individual particles,1

∣Ψ⟩CM =

Np

⊗
p=1

∣ψp⟩ =
Np

⊗
p=1

N

∑
i=1

fp(i) ∣d0p + i⟩p , (7.17)

where the tensor product includes all particles numbered from 1 to Np and the
sum runs over all sites i. The Fock states ∣d0p + i⟩p denote the particle p at
site d0p + i, where site d0p is the center of the wave packet. For simplicity, we
assume that the wave packets as well as the distance d0 between them are equal
for all particles. Then, the particle distribution around the wave-packet center

1PMFT neglects coherence between di�erent sites, while this Ansatz neglects coherence
between di�erent particles.
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becomes particle-independent, fp(i) = f(i), and is symmetric, f(−i) = f(i).
Further, it obeys the normalization condition ∑i ∣f(i)∣

2
= 1.

In the Fock basis of the individual particles, we can rewrite Hamiltonian (7.1)
as

Ĥ = J∑
i

∑
j≠i

1

∣i − j∣
3

⎛

⎝
sin θ∑

p

∣i⟩p ⟨j∣p +
1

4
cos θ∑

p
∑
q≠p

∣i⟩p ⟨i∣p ⊗ ∣j⟩q ⟨j∣q
⎞

⎠
. (7.18)

Here, sums over indices q, p run over particles 1, ...,Np and sums over i, j over
sites 1, ...,N . Moreover, for now we �x the particle number Np, equivalent to
�xing the distance d0.

We can arrive at the variational ground state by minimizing the energy
expectation value. For the wave function (7.17), Hamiltonian (7.18) yields the
energy

⟨Ĥ⟩CM

Np
≡
ECM
Np

= J ∑
i,j;i≠j

sin θ

∣i − j∣
3
f(i)∗f(j)+

J

4
∑
p≠0
∑
i,j

cos θ

∣d0q + i − j∣
3
∣f(i)∣

2
∣f(j)∣

2
.

(7.19)
The sums in the second term obey the condition d0q + i − j ≠ 0.

Similar to the Gutzwiller Ansatz (Chapter 13.1), the energy can be min-
imized by using the Schrödinger equation [see Eq. (13.9)], followed by taking
the functional derivative with respect to the f(i).2 This procedure gives a
self-consistent equation for the f(i),

1

Np

δECM
δf(l)∗

= iḟ(l) = J∑
j≠l

sin θ

∣l − j∣
3
f(j) +

J

2
∑
p≠0

∑
j;j≠d0q+l

cos θ

∣d0q + l − j∣
3
∣f(j)∣

2
f(l) ,

(7.20)
that can be solved by imaginary-time evolution.

The spread of the wave packets increases with θ until the initial assumption
that the particles are well separated breaks down. In particular, the state ∣Ψ⟩CM

contains double occupancies of sites, which is not allowed in the original spin
Hamiltonian (7.1). For large particle separation and small wave-packet width,
the contribution of such states is small, so that we can neglect them. For more
spread-out wave-packets, however, their weight increases, and the description in
terms of independent particles, ∣Ψ⟩CM, is not valid any more. In such a situation
of large overlap between particles, we consider the crystal as molten.

2Note, however, the di�erent interpretation of the weights f in the Gutzwiller Ansatz.
There, the weights describe the probability at each site of the spin being up or down. Here,
they correspond to the distribution of a single up spin over a background of down spins.
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A measure for the particle spread is the normalized variance

V ≡
∆x

d0
=

1

d0

√

⟨x2⟩ − ⟨x⟩
2
=

1

d0

√

∑
i

∣f(i)∣
2
i2 , (7.21)

the so called Lindemann parameter [406]. We show our results for the Linde-
mann parameter in Fig. 7.4, where we truncated the dipolar tunneling at NNs.
This is a reasonable simpli�cation for low �lling, since here the melting occurs
at small θ, so that the tunneling to larger distances than NN is extremely small.
For large inter-particle spacing d0, the system behaves similar to the continuum
limit, where it is known [404] that there is a melting transition at

J tan θc = const/d0 . (7.22)

We �nd that the contour lines of the Lindemann parameter in the lattice system
follow this behavior well for d0 much larger than the lattice spacing, The physical
reason behind the behavior of the melting transition (7.22), is the weakness of
the repulsive interactions at large inter-particle distances: the larger d0, the
smaller the gain in kinetic energy needed to destabilize the crystal.

At smaller inter-particle distances, the contour lines of V deviate from the
const/d0 law. In the lattice system, the particles cannot move over arbitrarily
small distances, but have to jump at least an entire lattice spacing. For small
d0, a single jump can already mean a large increase of repulsive interaction, and
the tunneling has to be stronger than in the continuum case to overcome this.
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7.5 Density-matrix renormalization group

While mean-�eld theories can provide some physical understanding of the sys-
tem, in 1D they are not very precise. Therefore, we now turn to a thorough
numerical analysis of the phase diagram with the quasi-exact density-matrix
renormalization group (DMRG) method [407�409] (see Chapter 12.2). We con-
sider chains with open boundary conditions of up to N = 102 sites, and with a
bond dimension of D = 128. We cut o� the interaction range at half the length
of the chain.

Figure 7.5 presents the mean polarization, ⟨Z⟩ /N , Eq. (7.2). As with PMFT,
due to the long-range nature of the hopping terms, the polarization is asym-
metric with respect to ±θ, in contrast to the system with only NN tunneling
[394]. For large enough �eld µ, or strong FM ZZ-interaction (corresponding
to θ not too far from ±π), the system is in a fully polarized state, similar to
what we saw in the mean-�eld calculations. However, as expected, the general
precision of the mean-�eld Ansatz in this one-dimensional system is low: the
DMRG results indicate that the θ-range of the crystal lobes is up to an order
of magnitude smaller than the upper bounds given by PMFT. In fact, in the
global view given in the main panel of Fig. 7.5, only the plateau for 1/2 �lling
(polarization 0 in spin language) is discernible. Panel E of Fig. 7.5 shows the
small region of the phase diagram where the 1/3-�lling crystal lobe (polarization
−1/6) is located.

For the �nite systems used here, open boundary conditions play an important
role. For example, in the center of the main panel of Fig. 7.5, there appears
a broad plateau with (1/2 − 1/N) �lling (i.e., with one spin �ipped away from
half �lling). In the thermodynamic limit, this phase merges with the 1/2-�lling
plateau to a single lobe. This peculiarity is highly relevant for the correct
interpretation of future experiments, which might be carried out with open
boundary conditions for technical convenience. Moreover, boundary e�ects play
an important role in the determination of the decay of correlations, which we
now describe.

To �nd supersolid behavior, we now characterize the in-plane correlations
∣⟨σ+N/2σ

−
N/2+j⟩∣, where σ

± are the usual Pauli matrices. In a supersolid phase,
these correlations show LRO. The log�log plots in panels A to D show their
decay at some selected points in the phase diagram (�lled circles), and compare
the result to the same system but with NN hopping (solid lines). In the SF
phase (panels B and D), the decay is algebraic for both NN and dipolar hop-
ping. Panels A and C lie inside the lobes corresponding to 1/2 and 1/3 �lling,
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Figure 7.5: Main panel: DMRG phase diagram from the mean polar-
ization ⟨Z⟩ /N , for a system with dipolar hopping and N = 60. As in PMFT,
frustration leads to an asymmetry between θ < 0 and θ > 0. (A-D) Decay
of o�-diagonal correlations at the marked points of the phase diagram, in
log�log scale, for N = 102. For NN hopping (solid lines) the decay is expo-
nential, while for dipolar hopping (points), the decay is algebraic everywhere,
even within the lobes (A and C), where it follows the dipolar exponent α = 3
(dashed lines provide guides to eye proportional to j−3). (B) In the AFM-SF,
the algebraic decay is faster than for NN hopping, and (D) in the FM-SF it is
slower. (E) The crystal lobe at 1/3 �lling from a �nite-size-scaling analysis
is much smaller than predicted from PMFT (the plotted area corresponds to
the dashed section of the main panel).
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show cuts at (b) µ = 0 (1/2 �lling) and
(c) θ = π/2 (XY model). The black lines
in (b) are the exact results for the NN
XXZ model, which can be solved using the
Bethe Ansatz [74]. AFM interaction in-
duces larger exponents compared to the NN
XXZ model, while FM interaction leads to
smaller exponents. Inside the insulating
lobes, we �nd α = 3 (deviations are due
to �nite-size e�ects). Results for NN tun-
neling are shown in red [dashed line in (b),
�lled circles in (c)].

respectively, which is visible through the oscillation of the correlation function
superposed to the overall decay. For dipolar hopping, the decay is algebraic
everywhere, even within the lobes, where for NN hopping the correlations decay
exponentially. In the lobes, the decay for dipolar hopping follows the inter-
actions with exponent α = 3 [390]. A clear �t for this exponent can only be
obtained for rather large chains with N > 60 spins. Moreover, although the
strength of the XY-interactions decays rapidly with distance, the power-law de-
cay of correlations inside the lobes can only be observed if the interaction is not
truncated, because it decays exponentially after the truncation distance.

Since inside the lobes we have a crystal structure, the long-range decay
of the transverse correlations is an anomaly when compared to other models
with insulating phases. For this similarity to a supersolid, we call this phase
a quasi-supersolid. In a true supersolid, a crystal structure coexists with LRO
in the transverse correlations. However, in 1D, o�-diagonal LRO cannot be
spontaneously broken [229]. Hence, the closest analogue to a supersolid that can
exist in 1D is a state as the present one � with diagonal LRO and algebraically
decaying o�-diagonal correlations.

A change in the behavior of the correlations marks the transition from a
crystal state to the SF. For a quantitative evaluation, at each point in the
phase diagram we �t an algebraic function c0j−α to the o�-diagonal correlations
∣⟨σ+N/2σ

−
N/2+j⟩∣. The value of α for a chain of N = 60 spins is shown in Fig. 7.6.

The cuts of Fig. 7.6 at µ = 0 [1/2 �lling, (b)] and θ = π/2 [XY model, (c)] show
the wide range that the exponent of the correlations takes in this system. They
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also demonstrate the in�uence of frustration: the correlations decay faster at
the AFM side (θ > 0) than at the FM side (θ < 0). The exponents are similar to
the NN XXZ model [black line in (b)], but cover a broader range. In particular,
they are not independent of the �lling for θ = π/2 (c), where the NN XXZ model
has α = −0.5. The results for a system with dipolar ZZ-interaction but NN XY-
interaction are shown in red [dashed line in (b), �lled circles in (c)]. The main
qualitative di�erence is that inside the insulating lobes the decay is no longer a
power law, but follows an exponential.

In a �nite system, �nding the quantum phase transition (QPT) from the
crystal state to the SF is not simple, because the �nite number of spins prevents
the system from assuming arbitrary polarizations. This results in a division of
the phase diagram into stripes with di�erent �xed integer number of up spins,
which makes the crystal lobes di�cult to discern. In in�nite systems, however,
one expects a step-like behavior of the polarization only in crystal phases, while
in the SF the polarization should change smoothly with µ between −1/2 and
1/2. This observation makes it possible to extrapolate the border between the
crystal phases and the SF by the following �nite-size scaling: At �xed θ and
for a given polarization, compute the upper and lower limits of the polarization
plateau, µa (N) and µb (N), for several chain lengths N . From these, one can
extrapolate to µa,b (N = ∞). In the SF, where the polarization should be a
continuum, µa (∞) and µb (∞) should be equal. However, in the crystal lobe
there will be a �nite distance between µa (∞) and µb (∞): the width of the lobe
for that value of θ. A similar procedure is known to work well for the estimation
of Mott-lobes from �nite systems in the Bose�Hubbard model [410]. The main
di�erence is that in our model there is in principle a lobe for any rational �lling
factor, instead of only for integer �lling factors. Panel E of Fig. 7.5 shows the
result of this approach for the 1/3-�lling lobe, using chain lengths of up to 102
spins. The cusp structure is typical for one dimensional systems [411].

7.6 In�nite time evolving block decimation

To complement the results of the previous section, we study the phase diagram
with the in�nite time evolving block decimation (iTEBD) algorithm [412] (see
also Chapter 12.2), in which in�nite chains can be directly addressed without the
need of �nite-size extrapolations. Treating long-range interaction complicates
the original formulation of the iTEBD algorithm and turns out to lead to con-
vergence problems. Instead, we implement a variant of the original algorithm in
which the translationally invariant character of the problem is kept in the state
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Figure 7.7: iTEBD mean magnetization for an in�nite chain. (a-b)
Nearest-neighbor XY and next-nearest-neighbor ZZ interactions.
The phase diagram is symmetric with respect to θ → −θ. (c-d) Next-nearest-
neighbor XY and ZZ interactions. Due to frustration e�ects, the phase
diagram becomes asymmetric. The right panels show a zoom on the insulating
lobe at polarization −1/6 (1/3 �lling), as indicated by the box in (c).
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and the interactions, thanks to the use of matrix product operators [413]. In
this way, we can include interaction terms ranging longer than NNs in a much
simpler way.

By comparing the phase diagrams for di�erent ranges of XY interactions, we
may study the e�ect of the long-range hopping in the thermodynamic limit. The
method still requires a truncation of the interaction range to some �nite order,
so that it will not be possible to reproduce the power-law decay of correlations
within the crystal lobes. We truncate the ZZ interactions above next-to-NN
(NNN) interactions and compare the cases of NN and NNN tunnelings. We
observe that a small bond dimension, D = 10, provides already a good approx-
imation to the overall phase diagram. To analyze the insulating lobe at 1/3
�lling, we increase the bond dimension to D = 20.

As in the work by Burnell et al. [394] on dipolar molecules, the phase diagram
is symmetric if XX and YY interactions range only to the NN (Fig. 7.7a). This
is also seen in the zoom on the �lling-1/3 crystal lobe (Fig. 7.7b). Including one
more term in the XX-YY interactions already causes a clear asymmetry of the
phase diagram with respect to θ → −θ. This is clearly visible in the SF phases
(Fig. 7.7c), and in the zoom on the insulating lobe at �lling 1/3 (Fig. 7.7d).
The size of the lobe is larger than predicted in the �nite-size extrapolation from
DMRG. Since here we are only including the �rst term further than the NN, we
expect, however, that longer range terms correct the exact shape of the lobe, as
they will give rise to lobes corresponding to other �lling factors.

7.7 Exact diagonalization

In this section, we supplement the previous results by ED of chains of 18 spins
with periodic boundary conditions, using the Lanczos method (see Chapter
12.1). Although ED only allows investigation of very small systems, from these
one can often infer surprisingly much about the behavior of the model at larger
sizes (see, e.g., Chapter 3.2.3). Here, we show that ED results hold strong pre-
cursors of the crystal�SF transition. Moreover, an experimental implementation
with a chain of trapped ions will have to start with short chain lengths. For
such a case, ED provides a valuable validation of the trapped-ion QS.

Figure 7.8 displays the �delity susceptibility,

χF =
1 − ∣⟨ψ (θ) ∣ψ (θ +∆θ)⟩∣

2

∆θ2
(7.23)

for 1/3 �lling. At a second-order quantum phase transition, χF diverges in
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Figure 7.8: Results
for small chains (ED,
N = 18). Whereas
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the thermodynamic limit. The peaks in a �nite system are precursors thereof.
However, in the present system the divergence turns out to be relatively weak,
which makes it di�cult to extrapolate the exact critical point. The qualitative
value, however, is consistent with the DMRG and iTEBD data for large systems.
The second derivative of the energy has been proposed [414] as a substitute of
the �delity susceptibility to detect QPTs. In the present system, however, the
energy is too smooth to indicate the crystal�SF transition well.

Instead, a convenient observable turns out to be the total magnetization. In
Fig. 7.8, we compare χF to the second derivative of the total in-plane correla-
tions

Mx ≡
2

N (N − 1)
∑
i≠j

∣⟨Sxi S
x
j + S

y
i S

y
j ⟩∣ . (7.24)

Here, we sum the absolute values of the correlations to account for the di�erent
staggered con�gurations occurring at di�erent �lling factors. ∂2Mx/∂θ

2 peaks
at slightly larger absolute values of θ than χF , but the rough peak locations
are consistent. We �nd that the second derivative of the total out-of-plane
correlations ∑i≠j ∣⟨S

z
i S

z
j ⟩∣ (not shown) peaks at θ's very similar to ∂2Mx/∂θ

2.
Finally, a comparison to the results from DMRG shows a very similar peak

location, although in that case the peak is stronger due to the larger system
size. This means that already at very small chains strong precursors of the
QPT appearing in long chains can be observed.
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𝐿 

Figure 7.9: Sketch of the triangular lat-
tice with the

√
3 ×

√
3 Ising order asso-

ciated to the crystal state at polarization
−1/6 (1/3 �lling). The state at polarization
+1/6 can be visualized by interchanging ↑
and ↓ spins. These states are ground states
at low tunneling.

7.8 Dipolar ions in 2D

In this section, we extend our analysis to dimensions larger than one. Concretely,
we study Hamiltonian (7.1) on the two-dimensional triangular lattice (Fig. 7.9),
since this is the natural con�guration that trapped ions adopt in a Paul trap
(see Fig. 2.3) with a strong planar asymmetry in the trapping potential [178].3

Studying higher dimensions is relevant for a variety of reasons. First, the
in�uence of long-range interactions increases with dimensionality. As we saw, al-
ready in 1D dipolar terms strongly modify the phase diagrams of corresponding
short-range models, potentially even leading to novel phases. We can assume
that this is even more true in larger dimensions. For example, if long-range
tunneling induces quasi-supersolids in 1D, we can expect that it may change
dramatically the stability of two-dimensional supersolids. These appear, e.g., in
triangular lattices with NN tunneling at the transition between crystal and SF
phases [399�402]. Moreover, 2D is computationally considerably more di�cult
than 1D (see our discussion on p. 12), making an experimental quantum simula-
tion much more interesting. This is especially true if frustration comes into play,
since it invalidates QMC, the method of choice for many 2D lattices. Above,
we saw that already in 1D frustration has some e�ects; in 2D these should be
strongly enhanced due to the increased number of interactions in higher di-
mensions. On the triangular lattice, which we are interested in this chapter,
frustration is particularly strong due to the geometry (see also Chapter 3).

For experiments, an analysis of the �nite-temperature behavior is especially
important. First, this allows to judge the stability of the occurring phases

3But note also that in principle any geometry can be engineered in surface microtraps such
as sketched in Fig. 2.4 [183].
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towards thermal excitations that will be present in every realistic experimental
realization. What is more, recently Peter and coworkers scanned the phase
diagram of Hamiltonian (7.1) along the line µ = 0 in a square lattice [415]; the
authors found that above the SF on the FM side (i.e., θ < 0), the continuous
U(1) symmetry of the o�-diagonal correlations remains broken even at �nite
temperatures. Thus, the long-range nature of the tunneling leads to a phase
that de�es the Mermin�Wagner theorem [229].4

The computational method

To compute the phase diagram of Hamiltonian (7.1) on the triangular lattice, we
use QMC codes from the ALPS library [407]. The algorithm works by sampling
world lines in the path integral representation of the partition function in the
grand canonical ensemble. Since the frustration of AFM XY interactions in the
triangular lattice leads to a QMC sign problem, we can only access the FM side
of the phase diagram. Here, we reproduce some of our results, focusing on a
system of N = L ×L = 6 × 6 sites, with L the linear dimension. All interactions
are truncated at the �fth-nearest neighbor.5 A more detailed analysis, including
systems up to L = 12, can be found in Ref. [204].

We can expect a similar collection of quantum mechanical phases as in 1D,
namely a SF at large tunneling and crystal states at low tunneling. Further, a
supersolid phase is expected to occur in between them. To di�erentiate these
phases, we analyze several order parameters for crystal and SF behavior. Crystal
phases reveal themselves as plateaux in the polarization ⟨Z⟩ /N , Eq. (7.2), and
extensive peaks in the structure factor for diagonal (ZZ-) correlations,

Szz (k) =
1

N
∑
i,j

e−ik⋅(ri−rj) ⟨Szi S
z
j ⟩ . (7.25)

Here, we focus on the wave vector k = Q = (4π/3,0), which corresponds to the√
3 ×

√
3 order parameter that is associated with the crystal states at 1/3 and

2/3 �lling (polarization ±1/6); see Fig. 7.9 for a sketch of this state. We compare
⟨Z⟩ /N and Szz (k) to the SF sti�ness ρS , which is a measure for correlations
in the XY plane. For hard-core bosons it is related to the spin sti�ness of the
corresponding spin model (see Chapter 3.2.5). In the QMC algorithm, it can be
derived from the winding number of the world lines.

4The theorem remains valid, of course, as it applies only to short-range models.
5I.e., not �ve lattice spacings in one direction but the �fth-nearest site in absolute distance.



188 7. A trapped ion quantum simulation of long-range interactions

0 0.3 0.4 

short-range  
tunneling 

dipolar  
tunneling 

a) 

c) 

b) 

1 

2 
𝜇

𝐽
 

3 

1 

2 

0 
-0.2 -0.1 0 

3 

𝜃 

0 

d) 

0.5 

𝜌𝑠 𝑍 /𝑁 

-0.3 -0.4 -0.2 -0.1 0 𝜃 -0.3 -0.4 

0.2 0.1 0.5 0.6 0.7 0.8 

𝜇

𝐽
 

Figure 7.10: Crystal lobes for
the 2D triangular lattice
around polarization 1/6. (a,c)
Polarization ⟨Z⟩ /N , and (b,d)
SF sti�ness ρS. Dipolar XY
interactions (c-d) destabilize the
crystal phase compared to short-
range XY interactions (a-b) (in
both cases, the ZZ interactions
are dipolar). The data are from
QMC calculations for a L × L =

6 × 6 system.

The phase diagram

First, we consider the example of the FM 1/6-polarization crystal in the grand-
canonical ensemble. We set kBT /J = 0.1, which should be small enough to get
an idea of the main ground-state characteristics. As Fig. 7.10 shows, compared
to NN tunneling, dipolar tunneling destabilizes the crystal lobes of the devil's
staircase. A comparison of di�erent system sizes presented in Ref. [204] suggests
that � compared to NN tunneling � this leaves more space for the supersolid
phase that is known to exist next to the crystal lobe [399�402].

As emphasized in Chapter 1, a real-world QS always su�ers from experimen-
tal imperfections. Particularly important are thermal excitations. To charac-
terize the stability of the ground-state phases, we study how �nite temperatures
melt crystal and SF order [characterized by structure factor Szz (Q) and SF sti�-
ness ρS , respectively]. Figure 7.11 shows cuts at θ �xed to around 80% of the tip
of the crystal lobes. These cuts traverse all three important quantum phases,
the SF (large µ; �nite ρS), the crystal [intermediate µ; �nite Szz (Q)], and the
supersolid [low µ; �nite ρS and Szz (Q)]. Both order parameters decrease more
rapidly with T for short-range tunneling. This indicates that dipolar tunneling
stabilizes all three kinds of ordered phases (SF, crystal, and supersolid).
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Figure 7.11: Melting of SF-, crystal-, and supersolid order at �nite
temperature kBT /J . Data are from QMC calculations for a L × L = 6 ×
6 system, comparing short-range (a-b) with dipolar (c-d) tunneling (in both
cases, dipolar ZZ interactions). To facilitate comparison, the tunneling strength
θ is chosen in both cases to lie at around 80% of the tip of the crystal lobes
shown in Fig. 7.10 (θ = −0.23 and −0.15, respectively). (a,c) Structure factor
of the

√
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√
3 order, Szz (Q), and (b,d) SF sti�ness ρS. Dipolar XY

interactions stabilize supersolid order compared to short-range XY interactions.

7.9 Summary

To summarize this chapter, we have studied a system of hard-core bosons where
particles interact and tunnel at long distances with an algebraically decaying
strength. We have discussed how the system can be mapped onto a spin Hamil-
tonian that can be simulated experimentally using trapped ions. Unlike other
atomic QSs (such as dipolar ultracold atoms), trapped ions appear to be more
�exible in the manipulation of some parameters � e.g., the interactions and
hoppings can be changed from negative to positive by addressing di�erent vi-
brational modes of the ions.

In one dimension, the system we have studied has a rich phase diagram,
with many insulating phases �lled with (possibly long-lived) meta-stable states
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and (quasi-)LRO in all correlations � two prominent features that are induced
solely by the long-range nature of the interactions. The coexistence of diagonal
LRO and o�-diagonal quasi-LRO in the insulating lobes can be seen as a quasi-
supersolid, the closest analogue to a supersolid that can be found in 1D.

Extending our results to a two-dimensional triangular lattice, QMC calcula-
tions indicate that the dipolar tunneling � compared to short-range tunneling �
can stabilize true supersolids, in the ground state as well as at �nite temperature.
Long-range tunneling could therefore prove advantageous for an experimental
realization of supersolidity in two-dimensional lattice systems.

Since calculations are more complicated for long-range interactions, one can
consider the present model as a testbed for numerical tools. The accuracy of
the standard PMFT proves insu�cient, because it does not capture excitations
beyond the single-particle level. ED, DMRG, and iTEBD, however, all deliver
a consistent picture. Among these, DMRG is the method of choice for the
model studied. However, it is restricted to �nite systems. While iTEBD is less
accurate and restricted to shorter range of interactions, it allows to investigate
the thermodynamic limit directly. ED, �nally, while being relevant only for small
systems, can still serve for benchmarking other less accurate computational
methods and near-future experiments. Despite the small sizes treatable in ED,
it seems to correctly predict the location of quantum phase transitions.

In the future, it would be interesting to study other system properties that
could be a�ected by the long-range nature of the interactions, such as response
to excitations, dynamics of correlations, or possible changes in the universality
class of the crystal�SF transition [416]. Further, in ion-trap experiments the
precise decay exponent of the long-range interactions can be tuned (such that
it di�ers from 3) [136]. A change of the exponent may drastically a�ect the
ground-state phase diagram, in particular the frustration and supersolid e�ects
it hosts. With decreasing decay exponent, one can expect a cross-over from
weak long-range behavior to strong long-range physics.

Until now, we illustrated at several examples the variety of models that can
be quantum simulated in trapped-ion and optical-lattice setups. In the next
chapter, we will turn to a di�erent issue. As we have seen at various places
throughout this thesis, quantum phases (such as the supersolids encountered in
this chapter) are fundamentally characterized by their correlations. Therefore,
the ability to manipulate these correlations may be extremely useful for quantum
simulation purposes. In the next chapter, we will present a possible scheme to
engineer spin-correlation patterns in optical-lattice experiments.



Chapter 8

Quantum control of spin
correlations in ultracold
lattice gases

The preparation, manipulation, and detection of quantum correlations in
strongly-correlated quantum many-body systems are fundamental to future
applications of quantum physics, not only for quantum simulations, but also
for quantum computation, communication, and metrology. As we have seen
throughout this thesis, ultracold atomic gases trapped in optical lattices o�er
an unprecedented playground for studying such systems. In particular, quan-
tum states of ultracold lattice gases with spin degrees of freedom may be used
to simulate quantum magnetism (see Chapters 3 and 4), topological insulators
(see Chapter 5), or quantum phases thought to be important in high-Tc super-
conductivity [4, 231, 417�419]. Considerable progress has been made towards
engineering such systems, which is experimentally challenging because of the low
temperatures involved [87]. Here, we propose an alternative, top-down approach
to producing highly correlated quantum states using the tools of quantum spin
polarization spectroscopy (SPS).

SPS has emerged as a promising technique for the detection of the quantum
phases in lattice gases [420] via the coherent mapping of spin-correlations onto
scattered light in a quantum non-demolition (QND) measurement. In particular,
spatially-resolved SPS that employs standing-wave laser con�gurations [421]
allows direct probing of magnetic structure factors and order parameters [153,
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422�424].
In this chapter, we propose inverting the tools of spatially resolved SPS as

a means of preparing strongly correlated states of lattice gases. For the ma-
nipulation of cold (and not-so-cold) atomic ensembles, SPS has proven to be
an extremely successful tool. In particular, in recent years, spin-squeezing via
SPS QND measurements has been demonstrated in several experiments [425�
429]. These ideas where extended by Tóth and Mitchell [430], who proposed
that such a spin squeezing can create macroscopic singlet states in clouds of ul-
tracold atoms, which however, would be spatially featureless. Here, we suggest
a simple modi�cation of the detection scheme proposed by Eckert et al. [421]
that would allow the preparation of quantum states with distinct correlation
signatures. The proposed principle works in optical lattices with low particle
number per site (such as �lling-1 Mott-insulators), but � due to larger optical
depths which allow stronger correlations � is especially suited to arrays of mi-
crotraps in which each trap holds a mesoscopic number of particles, such as in
the experiments of G. Birkl's group in Darmstadt [431�433] or of T. Esslinger's
group in Zürich [154].

Control over quantum correlations, and the order parameters associated with
them, will be a central ingredient for a reliable performance of many-body quan-
tum simulators. As seen in previous chapters, understanding the correlations
of a strongly-correlated quantum system is crucial for mapping out its phase
diagram and for tracking down exotic quantum phases.

In many situations, correlations decay exponentially � on a length scale given
by the correlation length � towards a constant (the order parameter). Upon ap-
proaching a critical point, however, the correlation length diverges, and the
decay becomes algebraic [434, 435]. Hence, distinguishing between exponential
and algebraic decay allows to locate critical points, and studying how the cor-
relation length diverges gives important insight about universal behavior close
to them.

In this context, an especially interesting class of quantum phases are disor-
dered ones where the order parameter vanishes and correlations decay to zero
at large distances. In such a case, algebraically decaying correlations are related
to gapless, and hence critical, systems, which are ubiquitous in 1D systems,
but rare in 2D. Exponentially decaying correlations, on the other hand, signify
completely disordered phases. In 2D spin systems, such phases are conjectured
to appear in the vicinity of high-Tc superconducting phases [4, 231, 417�419].
These so called gapped spin-liquids have fractional excitations which could be
useful as qubits for topological quantum computation [329]. As discussed in
Chapter 3, there are paradigmatic magnetic models which might harbor such
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exotic quantum phases, but it is far from clear under which general circum-
stances these states emerge in dimensions larger than one [231, 419]. Being able
to manipulate the correlations in strongly-correlated quantum systems may al-
low the preparation of such interesting many-body states. These may then allow
to directly study their properties or, by preparing correlations which closely re-
semble a desired �nal state, serve as a starting point to ramp into phases which
are otherwise di�cult to access. Further, a particular class of correlations,
entanglement, is considered the fundamental resource in quantum computing
[436].1 Hence, manipulating correlations in the way proposed here may also
o�er a valuable tool for quantum information processing.

The rest of this chapter is organized as follows. In Sec. 8.1, we describe
how the scheme can be implemented to create a desired spin correlation func-
tion. First, we show that a QND measurement with wavevector kp induces spin
squeezing in a single atomic mode with wavevector 2kp, while leaving the other
modes almost unchanged (Sec. 8.1.1). Using this QND interaction, our strategy
to imprint spin�spin correlations consists in letting a one-dimensional lattice
gas interact with a series of such standing-wave light pulses that covers the
�rst Brillouin zone (Sec. 8.1.2). We motivate that the outcome should be ap-
proximately given by the cosine Fourier transform of the atom�light couplings.
These can be easily adjusted as demanded by altering the frequency or intensity
of each probe pulse. We also derive formulas for decoherence due to spontaneous
emission, indicating the robustness of the method (Sec. 8.1.3), and we introduce
a witness appropriate for �nding spatial patterns of entanglement (Sec. 8.1.4).
Then, in Sec. 8.2, we compute the resulting spin correlations for several funda-
mental numerical examples that use the above strategy: First, we demonstrate
that correlations with generic exponential or algebraic decay can be produced
(Sec. 8.2.1). Then, in Sec. 8.2.2, we study two cases which are more speci�c,
namely, correlations with the structure factor peaked at wave vectors k = ±2π/3
(similar to the critical phase of the bilinear-biquadratic Hamiltonian of a spin-1
chain), and correlations with a Gaussian peak at a prede�ned distance. These
widely di�erent examples show the �exibility of the proposed scheme. We �nish
the chapter in Sec. 8.3 with some summarizing remarks. The results presented
here can be found in the preprint [444].

1But see also the very recent discussion about quantum discord [437, 438] that questions the
essential role of entanglement [439, 440]. Some of the recent development is nicely reviewed in
the Nature News Feature by Z. Meraly [441]. For some recent experiments, see [38, 442, 443].
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8.1 Description of the scheme

To illustrate our proposed scheme, we consider the interaction of atoms, trapped
in a one-dimensional optical-lattice potential, with a set of standing-wave pulses
of near-resonant light with wave-numbers kp. The atoms are described by col-
lective variables

Jα,i ≡
Na

∑
m=1

j
(m)
α,i , (8.1)

where the index m runs over the Na atoms at lattice site i and α = x, y, z labels
the components of the atomic spin operators with length j. For simplicity, we
assume a �xed integer �lling per site of Na. Such a �xed �lling is routinely
produced by driving the atom�lattice system into the Mott-insulating phase
as discussed in various examples of this thesis. With Ns lattice sites, the total
number of atoms is Ntot = NsNa. The photons are described by collective Stokes
operators Sµ de�ned as

Sµ ≡
1

2
(â�+, â

�
−)σµ (

â+
â−

) , (8.2)

where the σµ are the Pauli matrices and â± are annihilation operators for the
spatial and temporal mode of the pulse with circular plus/minus polarization.
We use the labels µ = 1,2,3 to distinguish the Stokes operators from the atom
spins, which are labeled with x, y, z.

8.1.1 Atom�light interaction, measurement, and feedback

The atom�light interaction for a single pulse is then described by the e�ective
Hamiltonian [445, 446]

Ĥ = Ωp
Ns

∑
i=1

ci(kp)Jz,iS3 , (8.3)

where ci(kp) = (1 + cos(2kpri))/2 describes the standing-wave intensity pro�le
and the coupling constants Ωp are functions of the probe detuning and intensity
(we work in units where h̵ = 1). Hamiltonian (8.3) describes a QND measure-
ment that induces spin-squeezing of the Jz component of the collective atomic
modes

Jα(k) ≡
1

√
Ns

Ns

∑
i=1

Jα,ie
ikri (8.4)
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with k = 0,±2kp. For multi-level alkali atoms, this e�ective Hamiltonian can be
synthesized using multicolor or dynamical-decoupling probing techniques [425,
447].

The aim of this chapter is to employ the interaction (8.3) to engineer spin�
spin correlations in an ultracold lattice gas. We model the interaction using
methods developed for treating the Gaussian dynamics of collective-variable
systems [378, 448�450]. For this assumption to be valid, there has to be a
large number of atoms in each mode.2 The full system is then described by the
operators Rm(k) = {Jx(k), Jy(k), Jz(k), S1, S2, S3} and the covariances

Γmn(k1, k2) ≡
1

2
⟨Rm(k1)Rn(k2) +Rn(k2)Rm(k1)⟩ − ⟨Rm(k1)⟩⟨Rn(k2)⟩ . (8.5)

(Under slight abuse of notation, the covariances involving the stokes operators
Sµ drop the corresponding argument k.)

The dynamical equations for the covariances can be derived from the Heisen-
berg equation of motion for the operators, where, in the small-angle regime, an
operator changes as

Rm(k)(out)
= Rm(k)(in) − iτ[Rm(k)(in), Ĥ] . (8.6)

Here, τ is the photon transit time through the ensemble. We assume that the
initial atomic state before the procedure is completely mixed, with covariances
Γ̃
(0)
zz (r1, r2) = Γ̃(0)δr1,r2 where

Γ̃(0) =
Naj(j + 1)

3
. (8.7)

(We distinguish covariances in the spatial domain with a tilde.) This also implies
Γ
(0)
αβ (k1, k2) = Γ̃(0)δk1,−k2δαβ , α,β = x, y, z. Further, we assume that atomic and

light variables are uncorrelated before the measurement. Then, for an input
S1-polarized pulse, the only covariances that change due to the pulse are

Γ
(out)
z2 (k) =

κp

2
√
j
G(in)zz (k), and (8.8a)

Γ
(out)
22 = Γ

(in)
22 +

κ2
p

8j
[2G(in)zz (0) +G(in)zz (2kp) +G

(in)
zz (−2kp)] , (8.8b)

2This choice is for convenience of calculation. The scheme itself should also work outside
of the Gaussian limit.
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where we have introduced the coupling strength

κp = τΩpS1

√
Nsj

S0
, (8.9)

and where we have de�ned

Gzz(k) ≡ Γzz(0, k) +
1

2
Γzz(2kp, k) +

1

2
Γzz(−2kp, k) . (8.10)

Detection of S2 then transfers the correlations described in
Eqs. (8.8) to the atoms. This can be modeled as a projection [430]

Γ(M) = Γ(out)
− Γ(out)

(Π2Γ(out)Π2)
MPΓ(out) , (8.11)

where MP indicates the Moore�Penrose pseudoinverse and

Π2 = diag(0,0,0,0,1,0) . (8.12)

After the measurement, the atomic covariances are

Γ
(M)
αβ (k1, k2) = Γ

(out)
αβ (k1, k2) −

Γ
(out)
α2 (k1)Γ

(out)
2β (k2)

Γ
(out)
22

. (8.13)

Since by virtue of Eq. (8.8a) only Γ
(out)
z2 (k) is �nite, but not Γ

(out)
x2 (k) or

Γ
(out)
y2 (k), the only atomic covariances changed by the interaction�measurement

process are Γzz(k1, k2). Further, the process is highly symmetric. In par-
ticular, it preserves the symmetries Γαα(k, k

′) = Γαα(k,−k
′) for k ≠ k′ and

Γαα(k, k
′) = Γαα(k

′, k) ∀k, k′.
The orthogonal spin components Jα(2kp) can be successively measured by

coherently rotating the atomic spin between measurements. To allow the mea-
surement-induced squeezing to be repeated for each spin component, we require
⟨Jα(2kp)⟩ = 0, which allows us to avoid measurement-induced back-action due
to the Heisenberg uncertainty relation

Γαα(k1, k1)Γββ(k2, k2) = (∆Jα(k1))
2
(∆Jβ(k2))

2
≥ εαβγ

1
4Ns

∣⟨Jγ(k1 + k2)⟩∣
2
.

(8.14)
To obtain ⟨Jα(2kp)⟩ = 0, the result of the measurement of S2 can be used
as the input to an optical pumping feedback process: a weak pulse of near-
resonant light at wavevector kp with an intensity proportional to S(out)

2 will set
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probe

optical

pumping

optical lattice potential

homodyne

detection

Figure 8.1: Proposed experimental set-up. Atoms (blue bullets) trapped
in an optical lattice (black) are probed with a far-detuned, linearly-polarized
standing-wave light pulse with wavevector kp. Afterwards, the probe beam
is outcoupled to a detector, where S2 is recorded. A projection-noise-limited
measurement induces spin squeezing, introducing quantum correlations among
the atoms in spatial mode k = 2kp. Feedback is applied via optical pumping
with the same wavevector kp to set the ensemble-average magnetization in that
spatial mode to zero. Successive spin components Jα can then be separately
measured by coherently rotating the atomic spin between measurements. The
procedure is repeated for a set of wavevectors kp, with interaction strengths
weighted by the corresponding amplitude of the cosine Fourier transform of
the desired spatial correlation signature.

⟨Jz(2kp) + Jz(−2kp)⟩ = 0, and a second pulse with a half-period phase shift sets
⟨Jz(2kp) − Jz(−2kp)⟩ = 0, so that ⟨Jz(2kp)⟩ = ⟨Jz(−2kp)⟩ = 0. As shown by Tóth
and Mitchell [378], and as discussed in Sec. 8.1.3 below, this feedback introduces
spin noise that is negligible in the thermodynamic limit.3. We summarize this
interaction�measurement�feedback procedure in Fig. 8.1.

3Alternatively, data with small ⟨Jα(2kp)⟩ ∀kp could be post-selected based on the mea-
surement outcomes.
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8.1.2 Strategy for quantum correlation engineering

Our aim is to use the interaction (8.3) to systematically manipulate the spin�
spin correlation function

Γ̃αα(r1, r2) ≡ ⟨Jα(r1)Jα(r2)⟩ − ⟨Jα(r1)⟩⟨Jα(r2)⟩ (8.15)

=
1

Ns

Ns

∑
k1,k2=1

eik1r1eik2r2Γαα(k1, k2) ,

where we label the k-vectors covering the �rst Brillouin zone ]−π,π] from 1 to
Ns. Indeed, such a spatial dependence of the correlations can be transferred
from the probe beams to the atoms due to the ci(kp) term in the atom�light
Hamiltonian (8.3). Equations (8.8) and (8.13) imply that the covariances of a
given collective mode Jα(k) are only altered after a pulse with k = 2kp has been
applied. This suggests that we can manipulate Γ̃αα(r1, r2) with a sequence of
pulses with wavevectors 2kp that cover the �rst Brillouin zone. Now, we show
that this can be done by an appropriate choice of coupling constants κp.

From our assumption that the initial state is completely mixed, we have ini-
tially Γ

(0)
zz (k1, k2) = Γ̃(0)δk1,−k2 . After the pulse with 2kp has passed, Eqs. (8.8)

and (8.13) create strong correlations for the mode 2kp only for Γzz(2kp,0),
Γzz(2kp,2kp), and Γzz(2kp,−2kp). The correlations to the zero mode will in
later pulses also create correlations to other modes. These are small, however,
and for the sake of deriving a suitable strategy, we can neglect all covariances
Γαα(k1, k2) with k2 ≠ ±k1,0. Then, Eq. (8.15) becomes

Γ̃zz(r1, r2) ≈
1

Ns
Γzz(0,0) +

2

Ns
∑
p

[cos(2kpr1) + cos(2kpr2)]Γzz(2kp,0)

+
2

Ns
∑
p

[cos(2kp(r1 + r2))Γzz(2kp,2kp) (8.16)

+ cos(2kp(r1 − r2))Γzz(2kp,−2kp)] .

The spatial dependence is strongly dominated by the Γzz(2kp,−2kp) term,

which, after the pulse with kp, becomes Γ
(out)
zz (2kp,−2kp) = Γ̃(0)(1−fp/4), where

we de�ne the scaled coupling constants

fp ≡
κ2
pΓ̃
(0)

4jΓ
(out)
22

. (8.17)
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Focusing only on the dominating Γzz(2kp,−2kp) term, Eq. (8.16) becomes then

Γ̃zz(r1, r2) ≈
Γzz(0,0)

Ns
+

2

Ns
∑
p

cos(2kp(r1 − r2))Γ̃
(0)

(1 −
fp

4
) (8.18)

in which spatial dependence is given by the �nal term, which, if the kp cover
the �rst Brillouin zone, is the cosine Fourier transform of the fp.

This suggests the following strategy for manipulating the spin�spin correla-
tions Γ̃zz(r1, r2): Let

Γ̃zz(r1, r1 + δr) = Cdes(δr) (8.19)

be the desired output correlation signature. To determine the coupling strength
κp that should be used for each wavevector kp in order to create Cdes(δr),
we approximate fp in Eq. (8.17) by the inverse cosine Fourier transform of
−4Cdes(δr)/Γ̃

(0), fp → fp(Cdes). Further, in Eq. (8.17), in the expression for

Γ
(out)
22 , Eq. (8.8b), we replace the covariances Γzz(k1, k2), with the completely

mixed values Γ̃(0). A posteriori, we �nd that both approximations are valid for
realistic experimental parameters. Now, we can solve Eq. (8.17) for κp, which
yields

κp = 2
√
j

¿
Á
Á
ÁÀ

Γ
(in)
22 fp(Cdes)

1 − gpΓ̃(0)fp(Cdes)
(8.20)

where gp = 9
2
for kp = 0 and gp = 3

2
otherwise.

To create Cdes(δr) in this way, the coupling strengths κp can be adjusted
experimentally by choosing detuning ∆, intensity, and duration of the pulse
appropriately. In fact, κp =

√
NtotNphσγ/A∆, where σ is the on-resonance

cross section for the probe transition, γ the spontaneous decay rate, and A the
cross section of the atomic ensemble illuminated by the probe. With a �nite
on-resonance optical depth dop, κp is related to the probability of spontaneous
emission ηp via κp =

√
dopηp,4 giving a trade-o� between coupling strength and

decoherence.
The approximations made for arriving at our strategy (8.20) apply for not

too strong couplings. Below, we demonstrate that these are su�cient to create
clearly distinguishable correlation patterns. The general idea remains valid also
for larger couplings, but then, because one has to keep track of the changing

4This relationship is strictly true only for j = 1/2. For j = 1, if the near-resonant interme-

diate state has j = 0, one has to include a correction factor, κp =
√

9
8
dopηp [451].
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correlations over the course of the pulse sequence, the relation between the κp
and Cdes(δr) is less intuitive. Also, for given optical depth dop, a larger coupling
κp =

√
dopηp can only be achieved on the expense of an increased probability of

resonant excitation ηp, hence increasing decoherence due to spontaneous emis-
sion. The balance between created correlations and decoherence sets the opti-
mum detuning and intensity of the pulses to achieve maximum spin squeezing.
We turn to discussing the in�uence of decoherence in the next section.

8.1.3 In�uence of decoherence

In realistic experimental situations, the atoms will get partially excited by the
o�-resonant laser beam, which leads to decoherence due to spontaneous emis-
sion, thus reducing correlations. Following Refs. [430, 445, 449, 450], we consider
this as the only decoherence mechanism.

Other decoherence processes include noise introduced by the feedback, which,
however, can be neglected as shown by Tóth and Mitchell [430]. For setting
⟨Jα(k)⟩ to zero, on the order of ∼

√
Ntot atoms are a�ected, introducing extra

noise (∆Jα(k))
2
∼
√
Ntot. In the limit of large total atom number Ntot, this is

negligible relative to the initial noise of ∼ Ntot [452]. One could also, instead of
feedback, use post-selection to identify cases with low ⟨Jα(k)⟩. Alternatively,
since feedback introduces the same type of error due to spontaneous emission
as the probe pulses, it could be taken into account e�ectively by renormalizing
the probability of resonant excitation η.

To derive an approximate formula describing the e�ect of spontaneous emis-
sion on the covariances, we assume conservatively that, when an atom scatters
a photon, the atom ends up in a completely mixed state. Decoherence is a
Gaussian process, and, as shown by Giedke and Cirac [453], we can include the
entire decoherence su�ered during a pulse by simply applying its total e�ect to
the output covariances Γαα(k1, k2). After a single scattering event, their change
can be written as

Γαα(k1, k2)
sc 1

= (1 −
2

Ntot
)Γαα(k1, k2) (8.21)

+
1

Ns
γmixδk1,−k2 +

1

NsNtot

Ns

∑
l=1

Na

∑
m=1

ei(k1+k2)riγ
(m)
α,l .

Here, γ(m)α,l = ⟨(j
(m)
α,l )2⟩ − ⟨j

(m)
α,l ⟩

2
denotes the covariance of the α'th spin compo-

nent of atom m at site l before the scattering event, and γmix is the correspond-
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ing covariance in a completely mixed state. In Eq. (8.21), we took the mean
over all atoms m residing at site l, as well as over all sites l.

The following equations are greatly simpli�ed if we assume that the in-
dividual covariances before the scattering are close to the mixed ones, i.e.,
γ
(m)
α,l ≈ γmix. Then, Eq. (8.21) becomes

Γαα(k1, k2)
sc 1

≈ (1 −
2

Ntot
)Γαα(k1, k2) +

2

Ns
γmixδk1,−k2 . (8.22)

After n scattering events [i.e., inserting Eq. (8.22) into itself n − 1 times], the
covariances read

Γαα(k1, k2)
scn

≈ (1 −
2

Ntot
)

n

Γαα(k1, k2) +
n−1

∑
i=0

(1 −
2

Ntot
)

i 2

Ns
γmixδk1,−k2 .

(8.23)
Setting n = ηNtot, i.e., de�ning η as the fraction of excited atoms, and taking
the limit Ntot →∞, we arrive at

Γαα(k1, k2)
scηNtot ≈ e−2ηΓαα(k1, k2) + (1 − e−2η)Naγ

mixδk1,−k2 . (8.24)

With Naγ
mix = Γ̃(0), and in the limit of η → 0, this becomes

Γαα(k1, k2)
scηNtot ≈ (1 − 2η)Γαα(k1, k2) + 2ηΓ̃(0)δk1,−k2 , (8.25)

generalizing Eq. (20) from the work by Tóth and Mitchell [430] to a many-mode
system with several atoms at each site.

One way to reduce decoherence would consist in increasing the total atom
number. This increases the optical depth, thus allowing larger detuning which
in turn reduces spontaneous emission. Alternatively, one could counteract de-
coherence by adjusting the coupling strengths κp, e.g., by inducing stronger
correlations at those k-components which su�er stronger decoherence.

8.1.4 Entanglement witness

A special kind of correlations, entanglement is considered an indispensable re-
source for quantum information processing [436] and is of great importance in
quantum many-body systems [454�457]. To show that our proposal can cre-
ate such quantum correlations, we now derive an entanglement witness for the
multimode spatial correlations. For single spatial modes, spin squeezing is re-
lated to entanglement via spin squeezing inequalities [458�460], which have been
generalized to treat unpolarized ensembles with ⟨Jα⟩ = 0 in Refs. [461�463].
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Generalizing the strategy of Refs. [464, 465], we use the witness

W ≡
w

Na
− 1 , (8.26)

such that W < 0 implies entanglement. Here, we de�ne

w ≡ ∑
α=x,y,z

Ns

∑
i,j=1

⟨Jα,iJα,j⟩f
∗
(ri)f(rj) , (8.27)

where f(ri) is any normalized function

Ns

∑
i=1

∣f(ri)∣
2
= 1 . (8.28)

The feedback procedure sets Jz(2kp) = 0 for all modes kp, which ensures also
⟨Jα,i⟩ = 0, ∀i. Hence, we can replace ⟨Jα,iJα,j⟩ by the covariances Γ̃αα(r1, r2),
Eq. (8.15), so that W serves as an entanglement witness for multimode spatial
correlations in our scheme. The de�nition of W encompasses and generalizes
the plane waves described in Refs. [464, 465], and allows us to calculate the
entanglement witness W as a function of spatial separation, which may be of
general interest outside this particular example.

8.2 Numerical results

We illustrate our proposed technique for quantum correlation engineering by
computing the mean spatial correlations for a 1D chain of spin j = 1 atoms with
Ns = 200 sites and Na = 10 atoms per site. Note that the same results generalize
to a single atom per site, as long as we bin the chain into Ns bins with Na atoms
per bin, and rede�ne the coupling constant κp as an average over the Na atoms
in each bin.

This latter situation is relevant to the bilinear-biquadratic Hamiltonian,
which has a rich phase diagram displaying ferromagnetic, critical, dimerized,
and Haldane phases, each with distinctive spatial correlation signatures [466�
473]. There have been ideas to quantum simulate this model with spin-1 bosons
in an optical lattice [470, 472], and De Chiara, Romero-Isart, and Sanpera [424]
proposed an interesting procedure to measure its phases using polarization spec-
troscopy. Its experimental realization remains still elusive, however, since it
requires extremely low temperatures and a careful engineering of the many-
body Hamiltonian. To prepare the phases appearing in the bilinear-biquadratic
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Hamiltonian, it could prove advantageous to start from states which already
have correlations close to the phase under consideration. These correlations
could be prepared using our scheme.

While ferromagnetic phases are well-studied and -understood, a prepara-
tion of the other phases of the bilinear-biquadratic Hamiltonian seems much
more interesting: the Haldane phase is a paradigmatic example of a topological
phase [466], and the dimerized and critical phases have long eluded a clear clas-
si�cation of their phase boundaries and ground-state behavior [471, 473]. The
Haldane and dimer phases are gapped, having exponentially decaying, antifer-
romagnetic spin�spin correlations. The critical phase, on the other hand, has an
overall algebraic decay, with a structure factor peaked at k = ±2π/3 [468, 469],
leading to characteristic period-three oscillations [467].

In the following, we want to compute mean correlations for cases which
are of general interest but in particular relevant to this bilinear-biquadratic
Hamiltonian. To probe the spatial dependence of the induced entanglement,
we calculate the witness W between two sets of lattice bins rs=1...m and rw=1...n

separated by a distance δr using the function

f(ri) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if ri ∈ rs,

exp(iφ) if ri ∈ rw,

0 otherwise.

(8.29)

For given δr, W can then be minimized with respect to φ.

8.2.1 Generic examples: exponential and algebraic decay

First, we demonstrate the preparation of spin correlations Cdes(δr) with:

(a) An exponential decay e−r/ξ with a correlation length ξ, corresponding to
gapped phases; these are, amongst others, relevant to gapped spin liquids
(see Chapter 3).

(b) An algebraic decay r−ζ , corresponding to critical phases and quantum
critical points.

We illustrate case (a) with ξ = 5 and case (b) with ζ = 0.7. We compute the
fp corresponding to Cdes(δr) as described in Eq. (8.20), apply the pulses in
sequence to the atoms, and compute the resulting real-space spin-correlations
after all pulses have been applied,

C(δr) =
1

Ns/4

Ns/4

∑
i=1

∑
α=x,y,z

Γ̃αα(ri, ri + δr)

Γ̃(0)
. (8.30)
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Since the correlations are symmetric with respect to the center of the lattice, we
restrict the sum to Ns/4. The only remaining free parameter is then the max-
imum coupling strength maxp{κp}, which we set to ≈ 0.95, ensuring that the
approximations suggesting the used coupling strengths (8.20) are valid. This is
a conservative choice: we could increase κp and calculate the fp taking into ac-
count the change in the covariances Γzz(k1, k2) after each pulse in the sequence.
We then calculate the correlations for dop = 33,99,300, varying the decoherence
at �xed kp, and compare this to the decoherence-free case with dop = ∞.

Since the pulses which are applied �rst su�er decoherence from subsequent
pulses, the order of the pulses matters, although the overall behavior is relatively
robust in this respect. We �nd that the optimal order can be di�erent for
di�erent patterns of desired correlations. Here, we use for the exponential decay
the sequences kp =

pπ
Ns
, p = 1, . . . , Ns

2
and for the algebraic decay kp = π

2
−

(p−1)π
Ns

, p = 1, . . . , Ns

2
.5 We consider only positive kp, which is su�cient due

to symmetry reasons. In all the cases we consider here, since squeezing the
zero-mode only introduces a constant shift of the correlations but no spatial
pattern, we exclude it from the kp sequences. Furthermore, since many Fourier
transforms are strongly peaked, in practice one could neglect k-modes with little
weight.

The exponential and algebraic decay signatures produced this way are clearly
distinguishable in Fig. 8.2, and, at large optical depths, �ts to the desired corre-
lation signature Cdes(δr) (green dashed lines) coincide well with the data points
(blue). For case (a), moreover, the exponential decay is maintained over several
orders of magnitude. Here, �ts to the short-range behavior yield the correlation
lengths ξ = 8.4,6.9,5.7,5.1 corresponding to dop = ∞,300,99,33, which are su�-
ciently close to the desired value ξ = 5, considering the simplicity of our strategy.
For case (b), a clear algebraic decay is seen with a �tted ζ ≈ 0.4. Deviations
from the desired parameters induced by �nite optical depths could be further
compensated by adjusting the κp appropriately. For both cases (a) and (b), we
checked that an exponential (algebraic) �t performs better for a desired expo-
nential (algebraic) decay, demonstrating that the class of correlations can be
engineered as desired. In the insets, we have subtracted the constant base line
b ≡ C(δr →∞) from the correlations, b, in order to exhibit the pure exponential
and algebraic decay, respectively. In the corresponding log�linear and log�log
plots, these should thus yield straight lines. The reason for the (seemingly)

5The chosen kp-modes induce correlations which correspond to periodic boundary condi-
tions of the chain. As implied by Weyl's theorem, the precise form of boundary conditions
does not play any role in the limit of large lattices [474].
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Figure 8.2: Numerical results for two generic examples, (a) exponen-
tial decay, and (b) algebraic decay. (i) First column: After the pro-
cedure, C(δr) follows the desired pattern Cdes(δr). The lines from darker to
brighter shades of blue are for dop = ∞, 300, 99, and 33. In some cases, the
dop = ∞ data is plotted as circles to facilitate comparison to �ts (green dashed
lines). The insets in (a.i) and in (b.i) are log-linear and log-log plots, respec-
tively, where for clarity we subtracted b ≡ C(δr → ∞), extracted from a �t.
For (a), without decoherence, the decay follows an exponential �t. For �nite
decoherence (dop < ∞), C(δr →∞) cannot be reliably determined, yielding de-
viations from straight lines. For (b), the curves are straight lines for all values
of dop, and algebraic �ts are very accurate. (ii) Second column: The covari-
ances Γ(k,−k) follow the Fourier-transform of the desired correlation signature
Cdes(δr), even for small dop. Deviations occur primarily only at small k where
the pulse strength κp is high.
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Figure 8.3: Entanglement witness for (a) exponential decay, and (b)
algebraic decay. In both casesW(δr, φ) < 0 can be achieved, which witnesses
non-classical correlations. In (a) and (b), the red lines are �ts to W(δr,0) [(a)
exponential, (b) algebraic; data: black points], showing that the spatial decay
of entanglement behaves as the total correlations. The orange contour line in
(a) marks W(δr, φ) = 0.

non-monotonic curves in the inset of (a.i) is that �nite decoherence deteriorates
the correlations at large distances, which makes it di�cult to reliably extract
the extremely small base line b.

The real-space correlation signature can also be extracted by �tting the
Fourier transform of Cdes(δr) to the covariances Γ(k,−k), which are the observ-
ables that are measured and manipulated in the experiment. This is illustrated
in the second column of Fig. 8.2. The corresponding �ts for dop = ∞ are shown
as green lines, demonstrating that the data points follow the ideal cosine-Fourier
functions of Cdes(δr) closely. The parameters extracted from these �ts are very
close to those found in the spatial domain and to the desired results.

In Fig. 8.3, the entanglement witnessW, calculated for a single bin entangled
with a chain of 106 bins, is shown for the two cases (a) and (b). In both cases,
W is minimized for φ = 0, where it decays exponentially (algebraically) with δr,
thus following the spatial behavior of the total correlations. The entanglement
is considerably stronger for algebraic decay.

8.2.2 Speci�c examples: period-three critical phase, Gaus-
sian peak

So far, we discussed numerical results for two quite generic cases. Now, we
demonstrate that our scheme also works in more speci�c situations. The case
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(a) treated above can be easily extended to generate antiferromagnetic spin�
spin correlations dressed with an overall exponential decay, as occurring in the
Haldane and dimer phases of the bilinear-biquadratic Hamiltonian. To this, one
has to simply use for the coupling strengths a Lorentzian centered at k = π (or,
to include algebraic corrections, the square-root of a Lorentzian).

Here, we are more interested in the critical phase of this Hamiltonian, with its
overall algebraic decay and a structure factor which is peaked at k = ±2π/3 [468,
469], leading to characteristic period-three oscillations [467]. Heuristically, we
model this structure factor using the functional form

fp ∝

√
2

π
E(1 − ζ) sin(

πζ

2
)(∣2kp −

2π

3
∣

−1+ζ
+ ∣2kp −

4π

3
∣

−1+ζ
) . (8.31)

Here, E is the Euler gamma function. The cosine Fourier transform of the
function (8.31) has two parts, one decaying as 1/δr2 and one decaying as
cos(2πδr/3)/δrζ . For ζ < 2, this second term dominates at large distances
δr and produces the desired algebraic decay with period-three oscillations. The
form (8.31) is chosen to resemble the structure factor at the Lai�Sutherland
point of the bilinear-biquadratic model [468, 469].

As seen in Fig. 8.4(a.i), the resulting real-space correlations (for the input
value ζ = 1.1) display the characteristic period-three oscillations as desired. To
be more quantitative, we �t a function a

δr2 +
b cos(pδr+ϕ)

δrζ
+ c to the correlations

C(δr). The best �t (green dashed line) yields the desired values for the period
(p = 2π

3
), the phase (ϕ = 0), and the exponent (ζ = 1.11), thus perfectly repro-

ducing the desired result. Similarly, after the procedure, Γ(k,−k) reproduces
the desired functional form of the structure factor, as displayed in Fig. 8.4(a.ii).

Finally, we want to show that our scheme can even produce exotic real-space
correlations without known parallels in many-body systems. For example, we
can create correlations which are peaked at a prede�ned distance. This might
be useful for quantum information tasks such as state-preparation protocols or
the creation of localizable entanglement between distant qubits [457], usable for
teleportation. As an example, we shape the coupling strengths as the Fourier
transform of a Gaussian 1√

∆r
exp (−[(δr − r0)/∆r]

2) centered at a distance r0 =

20 with a small variance (∆r = 2). The result, shown in Fig. 8.4b, is � besides
the appearance of higher harmonics around δr ≈ 40 � a Gaussian peak centered
at δr = 19.95 with a width of ∆r = 2, thus accurately reproducing the desired
result.

For the examples considered in this section, we used dop = ∞ with, for the al-
gebraic period-three decay, the sequence kp =

pπ
Ns
, p = 1, .., Ns

2
, and, for the Gaus-
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Figure 8.4: Speci�c numerical examples, (a) period-three oscillations
with algebraic decay, (b) Gaussian peak. (i) First column: The real-
space correlations reproduce the desired form. Fits (green dashed lines) yield
(a) period-three oscillations with an overall algebraic decay, (cos( 2π

3
−δr))/δrζ ,

with ζ = 1.1, and (b) a Gaussian at δr = 19.95 with width ∆r = 2. (ii) Sec-
ond column: The k-space correlations follow the desired pattern given by the
coupling strengths. (iii) Third column: The witness W(δr, φ) proofs entan-
glement. At φ = 0, its spatial signature follows the total real-space correlations.

sian peak, interlaced rising and falling sequences, { π
Ns

+
2(p−1)π
Ns

, π
2
−

2(p−1)π
Ns

},

p = 1, .., Ns

4
. Here, we should note another subtlety which is relevant for these

examples: the cosine-Fourier transform can attain negative values. Since a neg-
ative coupling κp is non-physical, we use in such cases a constant o�-set which
shifts all couplings κp to non-negative values. This does not change the correla-
tion pattern, since the Fourier transform of a constant is a delta function at the
origin, thus only in�uencing the correlations between atoms on the same site.

For both of these examples, the witness W(δr, φ) proofs for all values of
φ entanglement between the single bin and the 106 reference bins. The spa-
tial signature again follows the total real-space correlations. The magnitude is
comparable to the purely algebraic decay, case (b) from Sec. 8.2.1. Notably, the
perhaps most exotic correlation pattern, the Gaussian peak, achieves the largest
absolute values of W(δr, φ).
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8.3 Summary

In this chapter, we have shown that polarization spectroscopy is not only a pow-
erful technique to measure correlations, but that � with a simple modi�cation of
the experimental scheme discussed by Eckert et al. [421] � it makes it possible to
engineer a quantum lattice gas with an arbitrary spin correlation function. We
have illustrated the �exibility of the procedure with several examples mimicking
the quantum phases of the bilinear-biquadratic Hamiltonian. In particular, we
have shown how to prepare exponentially- and algebraically-decaying correla-
tions, as well as the correlation pattern pertaining to the critical phase of this
Hamiltonian. We further considered the more exotic example of correlations
which are peaked at a prede�ned distance.

In our calculations, we make conservative assumptions about the experi-
mental parameters, leaving considerable scope for further optimization of the
procedure. Further, we have shown that the procedure is fairly robust under the
in�uence of decoherence. Moreover, we have generalized the entanglement wit-
ness proposed in Refs. [464, 465], which may be of independent interest outside
this particular example. Using this witness, we have shown that the engineered
spin-correlations entail multimode atomic entanglement.

Engineering correlations in such a way could be a valuable preparatory step
for state preparation, which is important for both quantum computing and
quantum simulation. There exist various schemes to reach interesting many-
body ground states (which are typically characterized by high entanglement),
e.g., by cooling a sample [475], or by adiabatically ramping parameters from
an easy-to-prepare initial state. If, however, the correlations in the initial state
can be engineered to be close to the correlations of a desired state, one can
hope that the probability to reach that desired state after the cooling/ ramping
is increased. Notably, our procedure is readily extendible to higher dimensions
and larger-spin systems, and does not depend on the fermionic or bosonic nature
of the atoms.

In this chapter, we saw the detrimental e�ect of decoherence, and how it
suppresses the correlations achievable. As discussed at various points of this
thesis, such error sources will always be present in realistic quantum-simulation
experiments. In the next part of this thesis, we will make an attempt at charac-
terizing more generally how imperfections compromise the results of an analog
quantum simulator.
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Part III

Quantum Simulators �
Robustness and Reliability





213

Already in the introductory Chapter 1, we saw that little is known about the
robustness of analog quantum simulators (AQSs) under realistic experimental
imperfections. This led us to the fundamental question: Can we trust quantum
simulators? Since there are no known ways for quantum error correction in
AQSs, the rigorous answer to this question should be �no;� yet in practice we
do tend to trust them, at least to some extent.

One of the aims of this thesis is addressing the fundamental issue of reliabil-
ity of AQSs and the relationship to the complexity/e�ciency of the simulation
[requirements (c) and (d) of our QS de�nition in Chapter 1.1]. For a reliable
performance of a QS, it is indispensable to ensure that no terms in the fun-
damental equations describing its behavior have been forgotten, lest the QS
simulate the wrong model. In Chapters 9 and 10, we will discuss two such cases
where conventionally neglected e�ects change the phase diagrams of systems of
ultracold atoms.

The core piece of the present part is Chapter 11, where we discuss the in�u-
ence of imperfections on a generic AQS. To this purpose, we study a paradig-
matic example, the quantum Ising chain, subject to quenched disorder. Our
analysis demonstrates how disorder suppresses correlations, modi�es universal
behavior near a quantum phase transition, and changes the dynamical response
of the system. In particular, it suggests that the reliability of an AQS and the
e�ciency of calculations are interrelated: precisely in those parameter regimes
where classical calculations become less e�cient, the AQS performs worse.

The analysis of disorder in an AQS may also inspire valuable ideas for the
validation of such devices. We proposed such a test to certify the reliability of
AQSs in Ref. [61] (see also Fig. 8.5 and Ref. [62]): This test consists of purpose-
fully adding imperfections to the QS, such as static disorder or dynamical noise.
Static disorder, e.g., can be increased in a controlled manner in AQS implemen-
tations with trapped ions [189] or ultracold atoms [155]. This would then allow
(i) to judge how strong the reaction of the QS with respect to these perturba-
tions is and thus to bound possible errors, and (ii) to extrapolate interesting
observables to the ideal, zero-disorder limit. The latter would be a workaround
to the validation, assuring that imperfections are properly accounted for. These
considerations can also be applied to DQSs, but are particularly relevant for
AQSs since in that case standard error-correction schemes are not available.
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Figure 8.5: Quantum simulators in the interplay of theory and ex-
periment. Experiments inspire the search for fundamental answers and show
where theoretical models have to be improved to agree with nature. In turn,
theorists derive simpli�ed models, the solution of which should help explain
experiments. However, even some of the most simple of such quantum models
cannot be solved e�ciently by analytical or numerical calculations on classical
computers. Large-scale quantum computers could serve this purpose, but they
are not yet available. Using existing technology, one could solve these models
with analog quantum simulators (AQSs). Before these can work reliably, how-
ever, we must bridge a crucial link � their validation. Lower right: Test for
imperfections. As proposed in Ref. [61], a strategy could be to test how the
results of the AQS depend on purposefully introduced imperfections. Here, we
show a paradigmatic case for the suppression of the correlation length in a 1D
system along the phase diagram (spanned by the parameter λ) under varying
the amount of disorder (from Chapter 11). This may allow to bound experi-
mental errors. An extrapolation of the results obtained at �nite imperfections
to the case of the ideal model (arrow) � e.g., to identify the location of a critical
point in the phase diagram (white dot) � can constitute a workaround to the
validation of AQSs.



Chapter 9

Bose�Hubbard model with
occupation-dependent
parameters

The general de�nition of a simulator given on p. 3 reminds us that � prior
to any simulation � we have to derive a faithful model for the system we
are planning to simulate. In the context of analog quantum simulation, we
then desire to solve that simpli�ed model by operating the analog quantum
simulator (AQS) in a regime where its fundamental dynamics is described by
the same equations. If, however, the e�ective equations governing the AQS are
not derived with su�cient accuracy, we are actually simulating a di�erent model,
thus provoking systematic errors. In particular, if we neglect terms which in fact
do play a role, the simulated phase diagram can change completely, and exotic
e�ects may be ascribed to a certain model when in reality they are (maybe
even trivially) due to overseen terms. On the other hand, besides being only
a nuisance, such additional terms can also be a bene�t, giving access to novel
physics not contained in the original, more simple, model.1

1For example, in the spin models of Chapter 7 � derived in trapped-ion setups as an e�ective
spin�spin interaction mediated by lattice vibrations � residual couplings between spins and
lattice vibrations can compromise the desired spin model. On the other hand, engineering
these spin�phonon interactions opens access, e.g., to quantum simulations of the Jahn�Teller
e�ect, which explains distortions and non-degenerate energy levels in molecular and solid-state
physics [200].
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In this and the following chapter, we will analyze regimes where such ne-
glected terms in optical-lattice Hamiltonians become important. We will show
how these terms modify phase diagrams that are conventionally assumed to
describe these Hamiltonians, and how they lead to novel e�ects which are of
fundamental interest on their own.

9.1 Bose�Hubbard physics at strong interactions

For many important strongly-correlated many-body states of ultracold atoms,
possible realizations rely on strong interactions. However, when the interactions
between the particles are strongly enhanced, e.g., via a Feshbach resonance, the
standard Bose�Hubbard model (2.4), which typically describes ultracold bosons
in an optical lattice extremely accurately, has to be modi�ed. Namely, such
strong interactions make e�ects of higher bands important, invalidating the
description in terms of the conventional single-band Bose�Hubbard model.

In the conventional scenario, for not too shallow lattices, the kinetics of the
atoms is exhausted by single-particle tunneling processes between lattice min-
ima. When the lattice is ramped up, an initially weak interparticle interaction
eventually becomes important with respect to the kinetics. This conventional
Bose�Hubbard model (2.4) has only two parameters, the on-site interaction en-
ergy U , and the nearest-neighbor (NN) tunneling matrix element t. As long as
the interaction is weak compared to the lattice potential, the description in terms
of the lowest-band single-particle Bloch or Wannier states as given in Eq. (2.3)
is a good approximation. Then, U and t are given by the matrix elements (2.6)
and (2.7), which are taken with respect to the single-particle Wannier states.
This approximation corresponds to degenerate perturbation theory up to �rst
order in the interaction, where couplings to higher bands are neglected.

However, if the interaction is stronger, higher-order corrections start to play
a role. One may then still describe the system in terms of lattice-site occupation
numbers nj , but the occupied Wannier-like orbitals will have admixtures from
higher bands which depend on the occupation number. The most signi�cant
e�ect of the repulsive interaction will be a broadening of the Wannier-like or-
bitals with increasing occupation, e�ectively enhancing t and decreasing U . At
this place, we take this in terms of the Hubbard description into account by
replacing t and U by functions tn̂i,n̂j and Un̂i of the number operators n̂i. At a
theoretical level, several authors have studied quantitative consequences of this
kind of modi�cation to the plain bosonic Hubbard model [476�478]. For exam-
ple, additional Mott-insulator (MI) phases have been predicted considering an
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interaction-induced modi�cation of the Wannier functions [479, 480]. Also, the
e�ect on the Mott transition of the interaction-induced coupling to the �rst ex-
cited band has been considered [481], and the interaction-induced modi�cation
of Hubbard parameters has been predicted to lead to re-entrant behavior in the
SF�MI transition [481, 482]. Finally, the e�ect of interaction on the tunneling
dynamics in one-dimensional double-well and triple-well potentials have been
studied in Refs. [483, 484], where the authors found enhanced correlated pair
tunneling near the fermionization limit. On the experimental side, occupation-
number-dependent on-site interaction has been observed in the coherent dynam-
ics of an atomic ensemble [485]. Similar occupation-dependent e�ects have been
measured in Bose�Bose [486] and Fermi�Bose mixtures [299, 300, 487], and �
in the latter case � have been explained theoretically in terms of occupation-
dependent parameters U and t [488].

Here, we show that � going beyond a mere quantitative change � even new
quantum phases can arise in Hubbard models with number-dependent parame-
ters. To do this, we �rst derive the e�ective single-band Hamiltonian for strong
interactions (characterized by the s-wave scattering length as), including the ef-
fect of the site occupation (Sec. 9.2). For later comparison, we study in Sec. 9.3
the instability of the MI phase with respect to simple particle and hole excita-
tions, leading to the usual single-particle SF. Then, in Sec. 9.4, we investigate
the instability of the Mott phase with respect to the excitation of bond-centered
pairs of particles (i.e., pairs which are extended over neighboring lattice sites).
We show that this mechanism becomes relevant when the s-wave scattering
length is increased, and that it leads to a phase transition to a SF of extended
pairs. This feature is novel, since the extended pairs emerge in a single-species
repulsive bosonic system without the presence of any long-range interaction (for
pair-SFs in systems with long-range interactions, see Chapter 10). In Sec. 9.5,
proceeding to even stronger interactions, we �nd an instability of the Mott phase
towards a SF of site-centered pairs. In this regime, the Mott phase with a �ll-
ing of two particles per site can disappear completely. Finally, in Sec. 9.6, we
focus on the regime where interaction e�ects are important not because of large
scattering lengths, but rather because of large site occupations. In this limit,
starting from the Bogoliubov approach for the homogeneous system, we �nd a
phonon instability at a critical �lling fraction. When exceeding that fraction,
the new ground state is a Bose condensate where the particle density is localized
along one spontaneously chosen spatial direction. The results presented in this
chapter have been published in Ref. [489].
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9.2 The occupation-dependent Bose�Hubbard
model

In this section, we discuss how interaction-induced orbital e�ects can be cap-
tured in an e�ective single-band Bose�Hubbard model with occupation-depen-
dent parameters. We will analyze the resulting model in the following sections.

As described in Eq. (2.1), the Hamiltonian of short-range-interacting ul-
tracold bosonic atoms in the presence of a periodic lattice potential Vlat(r) =
V0[sin

2
(πx/d)+ sin2

(πy/d)+ sin2
(πz/d)] with lattice constant d, can be written

as

Ĥ = ∫ d3rΨ̂�
(r) [−

h̵2

2Mat
∇

2
+ Vlat(r) +

g

2
∣Ψ̂(r)∣2] Ψ̂(r) , (9.1)

with bosonic �eld operators Ψ̂, atom mass Mat, and interaction strength g =

4πh̵2as/Mat. Notably, for high interactions in the presence of an optical lat-
tice, the pseudo-potential form of contact interaction can still be used when
a modi�ed scattering length instead of the bare scattering length is employed
[490�493].

Similar to Eq. (2.3), to derive a Hubbard-type description, we expand the
�eld operators Ψ̂(r) in terms of Wannier-like orbitals wi(r; n̂i) = w(r −Ri; n̂i)
localized at the lattice minima Ri (assuming translational invariance), so that

Ψ̂(r) = ∑
i

b̂iw(r −Ri; n̂i) . (9.2)

Here, b̂i creates a boson at lattice minimum Ri, and n̂i = b̂�i b̂i is the corre-
sponding number operator. In contrast to the expansion (2.3), here we take the
interaction-induced occupation-dependent broadening explicitly into account,
so that the Wannier orbitals w depend on the number operator n̂i. Keeping
only on-site interactions, which we will justify a posteriori at the end of this
section, we are led to the e�ective single-band Hamiltonian

Ĥ = − ∑
⟨ij⟩

tn̂i,n̂j b̂
�
i b̂j +

1

2
∑
i

Un̂i n̂i(n̂i − 1) −∑
i

µ n̂i , (9.3)

where the matrix elements (2.6) and (2.7) now read

tn̂i,n̂j = −∫ d3rw(r −Ri; n̂i)[ −
h̵2

2Mat
∇

2
+ Vlat(r)]w(r −Rj ; n̂j + 1) ,

Un̂i = g∫ d3rw2
(r −Ri; n̂i)w

2
(r −Ri; n̂i − 1) . (9.4)
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In Hamiltonian (9.3), we have also introduced the chemical potential µ to control
the particle number.

In order to estimate the occupation-number dependence in a mean-�eld ap-
proach, we make a Gaussian Ansatz for the Wannier-like wave functions,

w(r −Ri;ni) = e−(r−R)
2/∆w(ni)2 , (9.5)

where the width ∆w(ni) is a variational parameter. For simplicity, we replaced
the dependence on the particle operator n̂i by a dependence on the particle
number ni = ⟨n̂i⟩. From this, we can minimize the Gross�Pitaevskii energy
functional for the Ansatz (9.5). The idea to employ the width of the Wan-
nier function as a variational parameter has also been used in Refs. [494�496].
Taking into account the full lattice potential (i.e., not employing a quadratic
approximation for the lattice minima), for a given ni this leads to

(
∆w(ni)

∆w,0
)

5

exp(−π2 ∆2
w(ni)

d2
) =

∆w(ni)

∆w,0
+
√

2π (
V0

ER
)

1/4 as
d

(ni − 1) .

(9.6)

Here, we use ∆w,0/d = (V0/ER)
−1/4

/π to denote the width of w in the limit
V0 ≫ ER, where ER = π2h̵2/(2Matd

2) is the recoil energy. Note that Eq. (9.6)
has a solution only as long as

√
V0/ER ≫ ∆2

w(ni)/∆
2
w,0. Using the variational

result, the tunneling parameter between two adjacent sites can be approximated
by

tni,nj
ER

≈ (
π2

4
− 1)

V0

ER
exp(−

d2

2 [∆2
w(ni + 1) +∆2

w(nj)]
) . (9.7)

When calculating the tunneling strength, the Gaussian approximation (9.5)
generally results in a lower value than the exact calculation; the exact Wannier
orbital has an exponential tail which decays slower than a Gaussian. Never-
theless, our simple approximation provides us with reasonable numerical values
and with a suitable model for the occupation dependence of tunneling in the
regime under consideration. This allows us to get a qualitative understanding
of the physics at work.

For the number-dependent on-site interaction strength, the variational result
gives

Uni
ER

=
√
π (

V0

ER
)

3/4
(

4∆2
w,0

∆2
w(ni) +∆2

w(ni − 1)
)

3/2
as
d
. (9.8)
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In principle, the expansion of the quartic interaction in Hamiltonian (9.1) in
terms of Wannier functions, Eq. (9.2), gives additionally rise to terms propor-
tional to b̂�i n̂j b̂j (occupation-induced single-particle tunneling) and b̂

�
i b̂

�
i b̂j b̂j (pair

tunneling). However, these terms are exponentially smaller than t(ni, nj), ap-

proximately by a factor of exp (−π2
√
V0/ER/4)as/d for the occupation-induced

single-particle tunneling and by exp (−π2
√
V0/ER/2)as/d for the pair tunneling.

Since we are in the limit of V0/ER ≫ 1, we can neglect these terms in Hamilto-
nian (9.3). As shown in Chapter 10, however, if strong long-range interactions
are present, such terms can become important.

9.3 Insulator to single-particle super�uid transi-
tion

Having derived a suitable model Hamiltonian describing the regime of strong
interaction, we now study the instability of the MI (with occupation number
ni = n for all sites i) towards a SF of single particles/holes. In later sections,
we will study its instability towards more exotic pair-SFs (PSFs), to which the
present analysis is an important point of comparison.

For this purpose, we use a Gutzwiller-type product Ansatz ∏i ∣Φ⟩i for the
many-body state (see Chapter 13.1), with the variational coherent spin-represen-
tation state [497, 498]

∣Φ⟩i = cos θ∣n⟩i + sin θ sinψ∣n + 1⟩i + sin θ cosψ∣n − 1⟩i (9.9)

at each site i. Here, ∣ni⟩i denote the occupation-number basis states. In this
Ansatz, we assume that the state is translationally invariant, and we truncate
the Fock-state representation at one additional particle or hole, which in the
Mott phase and close to the transition to the SF, where particle �uctuations are
small, is su�cient. Accordingly, the variational mean-�eld energy is given by

Ess

N
= −

zEt
4

sin2 2θ + (
EU
2

+ µ cos 2ψ) sin2 θ , (9.10)

where z = 6 is the coordination number for the cubic lattice and

Et =
√

n2 + n tn,n sin2 ψ/2 + (n + 1)tn+1,n sin2 ψ + n tn,n−1 cos2 ψ, (9.11a)

EU = n(n − 1)Un cos2 θ + n(n + 1)Un+1 sin2 θ sin2 ψ

+ (n − 1)(n − 2)Un−1 sin2 θ cos2 ψ . (9.11b)
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Minimizing the energy (9.10) determines θ and ψ. The value θ = 0 corre-
sponds to an incompressible MI state, where the number of particles n per site
is an integer that stays constant within a �nite interval of the chemical potential
µ. In contrast, for θ ≠ 0, the state is a SF with order parameter ⟨b̂i⟩ ∼ sin 2θ,
and the average particle number per site depends smoothly on the chemical
potential via the parameter ψ.

Thus, when Ess minimizes for non-zero θ, the Mott state becomes unstable
with respect to single particle and hole excitations, which is the usual scenario
of instability of the MI. For interaction strength as/d = 0.15 and n = 1 , this
happens at the black lines (solid or dotted) in the plane spanned by µ/V0 and
t0,1/V0 in Fig. 9.1. For small ψ, the transition to the SF occurs mainly via the
creation of holes, while for ψ near π/2 the MI is destroyed mainly by the creation
of particles. In the latter case, the MI becomes unstable when the energy cost
of creating an additional particle at one site, namely Un+1n(n + 1)/2 − µ, is
overcome by the reduction in energy due to tunneling of that particle. This
gain in tunneling energy is on the order of z(n + 1)tn+1,n.

9.4 Super�uidity of extended (bond-centered)
pairs

So far, we have described the usual scenario where the Mott phase becomes
unstable with respect to single particle and hole delocalization, as it is also found
for non-number-dependent Hubbard coupling t and U . We will now show that �
as a consequence of occupation-dependent hopping and on-site interaction � the
MI can also become unstable with respect to the creation of pairs of particles,
and this already at smaller tunneling strengths than where the creation of single
particles becomes favorable.

On top of a n = 1 Mott background, consider a pair excitation with one
additional particle at site i and another one at the neighboring site j, as sketched
in the upper left corner of Fig. 9.2a. This situation corresponds to the state

∣P⟨ij⟩⟩ ≡
1

2
b̂�i b̂

�
j ∣{ni = 1}⟩ . (9.12)

Such a bond-centered or extended pair excitation at ⟨ij⟩ can tunnel coherently
to a neighboring bond, say ⟨ik⟩, where k ≠ j is another neighbor of site i.
(Generally, bonds are considered neighbors if they share a common site.) Such
a pair tunneling process occurs in second order with respect to single-particle
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Figure 9.1: MI�SF transition for as/d = 0.15. Inside the darker shaded
region (enclosed by the black solid and the blue dashed line), the system is a
MI with n = 1 particles per site. Leaving this region by crossing the black solid
line, a simple SF of single particles or holes is formed. In contrast, crossing
the blue dashed line into the lighter shaded region, one enters a SF phase of
extended (bond-centered) pairs (ePSF), where no single-particle super�uidity
is present. In technical terms of our variational approaches: outside the shaded
regions (i.e., the Mott lobe if only single-particle/hole excitations are present)
the energy (9.10) is minimized by θ ≠ 0, and on the right of the blue dashed
line expression (9.19) is minimized by θep ≠ 0.

tunneling via the virtual, site-centered pair state

∣Pi⟩ ≡
1

√
3!
b̂�i b̂

�
i ∣{ni = 1}⟩ , (9.13)

which remains almost un-occupied due to its larger energy. According to second-
order degenerate perturbation theory, the amplitude of the pair tunneling pro-
cess is given by

teff = 6t22,2/(3U3 − 2U2) . (9.14)

On the same footing, perturbation theory gives the binding energy of −2teff

for the bond-centered pair due to number �uctuations within the pair (i.e.,
processes where a particle tunnels on top of its partner particle (with which it
is bound in a pair) and back to its initial site; such �uctuation processes do not
change the state but can reduce the energy).
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Figure 9.2: Lattice geometries emerging due to di�erent pair-hopping
processes. (a) Original square lattice. Excitations on top of a n = 1
Mott background (olive bullets) can lead to double-occupied (upper left, dark
blue bullets) and triple-occupied sites (�site-centered pairs;� lower right, orange
bullet). At strong interactions, correlated hopping can bind double-occupied
sites into bond-centered pairs (dark blue box). These move via second-order
processes teff (upper left; faint blue boxes denote the �nal state after tunneling).
This can give rise to (b) a checkerboard lattice where the bond-centered
pairs live. The bonds of (a) constitute the sites of this e�ective lattice (blue
boxes). Second-order tunneling connects the e�ective sites if the corresponding
bonds in the original lattice (a) share a site. (c) E�ective lattice for bound
pairs. At even stronger interactions, bond-centered and site-centered pairs
have similar energy, making them coexist. They can transform into one another
via single-particle tunneling tpair, as sketched in the lower right of (a). The
pairs then move on the decorated square lattice (c), where sites are marked by
blue boxes and orange bullets, and bonds by orange lines. (In this chapter we
study the three-dimensional cubic lattice, but generalizing the �gures to that
case is straightforward.)

If the initial lattice of sites has cubic symmetry, the bond-centered pair
excitations live on an exotic lattice of coordination number z′ = 10 that is a
generalization of the two-dimensional checkerboard (CB) lattice (see Fig. 9.2b)
to three dimensions. This allows the pair to reduce its energy by 10teff when
delocalizing. Collecting these contributions, the bond-centered pair can gain
an energy of −(10 + 2)teff . In contrast, two particles that do not form a pair
delocalize on the original cubic lattice (coordination number 6), which reduces
their energy by 2 × 6 × 2t1,2.

Thus, according to perturbation theory, the formation of a bond-centered
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pair is favorable if
−(10 + 2)teff < −24t1,2 , (9.15)

or, equivalently,

t22,2 >
1

3
t1,2(3U3 − 2U2) . (9.16)

For certain scattering lengths as, this condition can be ful�lled, since theWannier-
broadening with increasing scattering lengths leads to an increase of both U2/U3

(thus bringing 3U3 − 2U2 closer) and t2,2/t1,2. Then, the creation of bond-
centered pairs is energetically more favorable than the creation of single-particle
excitations. If further the energy the pair excitations gain by delocalizing,
−10teff , overcomes the cost to create them, 2(U2 − µ) − 2teff , they destabilize
the MI state. It is interesting to note that an equivalent scenario does not hap-
pen for hole excitations, since these decrease the occupation number and with
that the tunneling amplitudes.

To evaluate the boundary of the n = 1 MI phase, we construct a model for
the bond-centered pair excitations, which we can solve within Gutzwiller mean-
�eld theory (see Chapter 13.1). When the number of pairs is small compared
to the number of sites, the Hamiltonian for the pairs living on top of a n = 1 MI
state can be written as

Ĥpair = −teff ∑
⟨ll′⟩

p̂�l p̂l′ + 2(U2 − µ − teff)∑
l

n̂pl . (9.17)

Here, l = ⟨ij⟩ labels the bonds of the cubic lattice (olive lines in Fig. 9.2a and
blue boxes in b), and ⟨ll′⟩ denotes pairs of NNs of these bonds (in Fig. 9.2b:
the blue boxes connected by blue lines). In the e�ective Hamiltonian (9.17), we
have de�ned the bosonic creation and destruction operators for bond-centered
pair excitations, p̂�l and p̂l, and the corresponding number operator n̂l = p̂

�

l p̂l. As
a consequence of the diluteness assumption, we have neglected the interaction
between pairs, which arises if pairs occupy neighboring bonds. Since the transi-
tion to a PSF will happen with the creation of a single pair, this approximation
will not in�uence the phase boundary.

The energy of a condensate of bond-centered pairs can now be estimated
in a similar fashion as Eq. (9.9) by making a Gutzwiller-type product Ansatz
∏l ∣Φep⟩l, where we restrict the ∣Φep⟩l to superpositions of zero and one pair at
each bond,

∣Φep⟩l = cos θep∣0⟩l + sin θep∣1⟩l . (9.18)

The order parameter of the pair condensate for this wave function is ⟨p̂l⟩ =
1
2

sin(2θep). According to this Ansatz, the variational mean-�eld energy per site
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is
Eep

3N
= −

z′teff

4
sin2 2θep + 2(U2 − teff − µ) sin2 θep , (9.19)

where z′ = 10 is the coordination number of the three-dimensional CB lattice
(see Fig. 9.2). The mean-�eld approach gives the same phase boundary for the
appearance of a pair condensate as the perturbation-theory considerations of
the previous paragraph. The equivalence of both approaches is generally given
for an Ansatz like Eq. (9.18) which includes only two states per site.

In Figure 9.1, we plot the results of the minimizations of Ess and Eep with
respect to θ and θep, respectively, for as/d = 0.15. The part of the Mott phase
which is stable with respect to single-particle and hole excitations (characterized
by θ = 0) is given by the interior of the black solid and dotted lines. On the
right of the blue dashed line, one �nds a region where min[Eep] < min[Ess] and
θep ≠ 0. Thus, here the system is characterized by ⟨p̂l⟩ ≠ 0 and ⟨b̂i⟩ = 0, i.e., the
state is a SF of extended pairs (ePSF).

Condensates of extended pairs have also been proposed in the context of
dimer models of reduced dimensions which describe frustrated magnets like
SrCu2(BO3)2 [499]. By approximating triplet excitations as hard-core bosons,
Bendjama, Kumar, and Mila [500] argue that in the presence of correlated
hopping these bosons can condense in pairs. Such pairing processes also bear
resemblance to molecular condensation due to Feshbach resonances in an optical
lattice [501].

At this point, we would like to point out that triple, quadruple, or higher-
order excitations do not play any important role. The e�ective tunneling matrix
element of such excitations will be very small since it appears in third- or higher-
order perturbation theory. Therefore, inside a n = 1 phase, triple and higher
excitations cannot lower their energy e�ciently by delocalization. We can, thus,
exclude a SF of triples or higher-order objects.

However, there is another possible competitive scenario. Instead of exciting
a triple or quadruple, one can create a large cluster of extra particles, i.e., a
big spatial domain with doubly occupied sites. In this case, within each cluster,
the energy of the additional particles (on top of the n = 1 Mott background) is
not lowered by delocalization, but rather by the e�ective attractive interaction
between them as it appears in second-order perturbation theory. In the bulk
of such a cluster, this gives a binding energy of −6te� per extra particle. In
comparison, in the PSF, each particle can lower its energy by te� because of
binding and by another 5te� because of delocalization (i.e., Bose condensation),
which in total gives the same energy gain of −6te�. Accordingly, in leading
order, a SF of bond-centered pairs on top of the n = 1 MI is equally favorable as
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a state that is phase separated into spatial domains hosting MIs of �lling n = 1
and MIs of �lling n = 2. As a consequence, we cannot reliably exclude phase
separation by means of simple variational arguments.

Finally, let us brie�y discuss another issue: in this chapter, we are working
with a �xed chemical potential rather than with �xed particle number. This
approach is suitable for the description of experiments with ultracold atoms,
provided the atoms are trapped by a su�ciently shallow potential. In such a
situation, the local-density approximation applies and di�erent regions in the
trap correspond to di�erent values of the chemical potential. However, if the
trap is too steep for the local-density approximation to hold, it might introduce
new physics. Consider the following example. The phase-separated state de-
scribed in the preceding paragraph might not be favored in the homogeneous
system. But, because it is energetically very close to the PSF, it can be fa-
vored already when a slight potential di�erence is introduced, helping to form
n = 2 Mott domains in the region of slightly lower potential energy. Such a sce-
nario can spoil the local-density approximation already for a very weak trapping
potential.

9.5 Super�uidity of local (site-centered) pairs

Increasing as/d further, site-centered pair excitations on top of the n = 1 Mott
background, described by ∣Pi⟩, Eq. (9.13), can become more favorable than the
bond-centered excitations described by ∣P⟨ij⟩⟩, Eq. (9.12). This occurs when the
ratio U3/U2 is reduced enough, so that 3U3 ≤ 2U2, i.e., the energy to create a pair
of particles on the same site is smaller than the energy to create a pair of particles
on neighboring sites. Equation (9.6) shows that such a situation is possible: in
the limit of large V0 ≫ ER and as/d, we can write ∆w(n)/∆w,0 ≈ (gni)

1/5,
resulting in 3U3 − 2U2 ≈ −0.02U0.

Particularly interesting is the regime where bond- and site-centered pairs
have only a small energy di�erence, i.e., where ∣3U3 − 2U2∣ is comparable to
or smaller than t2,2. In that case, a bond-centered pair ∣P⟨ij⟩⟩ can transform
to a site-centered pair ∣Pi⟩ by a single-particle tunneling process, given by the
matrix element tpair =

√
6t2,2. In this regime, the pairs occupy the lattice given

by both the sites and the bonds of the cubic lattice, which forms a decorated
square lattice (see Fig. 9.2c). By delocalizing on this lattice, a pair can reduce
its kinetic energy by 12tpair. The pair is stable towards breaking as long as this
energy is greater than what two non-paired particles can gain by delocalization,
which amounts to 24t1,2. Thus, the pair is stable for t2,2 >

√
3/2t1,2. The binding
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mechanism of the pair is based solely on the delocalization of its center of mass.
The regime ∣3U3−2U2∣ ≈ 0 is given, e.g., for as/d ≈ 0.21 when V0/ER ≈ 16. In that
case, the n = 1 MI becomes unstable with respect to this type of pair creation
when the delocalization energy 12tpair exceeds the energy 3U3 − 2µ needed for
the pair creation.

If the scattering length is increased further, such that 2U2 − 3U3 ≫ t2,2,
site-centered pair excitations ∣Pi⟩ will be created rather than bond-centered
pairs ∣P⟨ij⟩⟩. The site-centered pair excitations can then tunnel from site to
site coherently via the occupation of a virtual bond-centered pair excitation. In
second-order perturbation theory, the corresponding tunneling matrix element
reads

t′eff = 6
t22,2

2U2 − 3U3
= −teff . (9.20)

Additionally, the pair has a binding energy of 6t′eff (stemming from a small per-
turbative admixture of the 6 neighboring bond-centered pair states). Therefore,
a site-centered pair is more favorable than two single-particle excitations if

3U3 − 12t′eff < 2(U2 − 12t1,2) . (9.21)

or, equivalently,

t22,2 >
1

72
(2U2 − 3U3) [24t1,2 − (2U2 − 3U3)] . (9.22)

If this condition is ful�lled, the MI becomes unstable towards the creation of
site-centered pairs rather than to the creation of single particles. As in Sec. 9.4, a
mean-�eld calculation leads to the same phase boundary. We plot the boundary
of the n = 1 Mott phase for as/d = 0.3 in Fig. 9.3. The instability towards the
creation of single particles is hardly important. It is predominantly the creation
of single holes or site-centered pairs of particles which destroys the Mott phase.

Similar site-centered pairs have been found in a variety of optical-lattice
systems. For example, in the limit of U1 ≫ t0,1, metastable repulsively-bound
pairs of ultracold bosons have been observed [502, 503]. Also, two-species mix-
tures of bosons with inter-species attraction have been shown to give rise to pair
super�uidity [504]. In the context of dipolar atoms in a two-leg ladder, when
no tunneling is present between the two legs, pair super�uidity arises due to
attraction between the dipolar atoms in di�erent legs [505, 506]. Also, using
a state-dependent optical lattice, a correlated tunneling of on-site pairs can be
created, which gives rise to a PSF [507, 508]. In our present study, we �nd that
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Figure 9.3: MI�SF phase transition for as/d = 0.3. Inside the darker shaded
region (enclosed by the black solid and the blue dashed line), the system is a
MI with n = 1 particles per site. Crossing the blue dashed line, one enters a
SF of local, site-centered pairs (PSF), and crossing the black solid line, a SF
of single holes. The black dotted line delimits the instability towards single
particle or hole excitations in the absence of occupation-dependent e�ects, and
the shaded regions mark the corresponding Mott lobe.

such local pairing can emerge simply due to the strong occupation-dependence
of tunneling and on-site interaction.

After having studied the phase boundaries of the n = 1 Mott state, we now
discuss the one with n = 2. In the limit of vanishing tunneling, this state is
favorable for U2 < µ < 3U3 − U2. The lower border of this interval is given
by the energy di�erence between �lling a site with 2 or with 1 particles, and
the upper border by the energy di�erence between �lling a site with 3 or 2
particles. However, the upper border can, in fact, become smaller than the
lower one, which is the case if 3U3 − 2U2 < 0. Then, the n = 2 MI phase is
never stable with respect to the creation of particle-hole pairs, irrespective of
the tunneling strength; it ceases to exist. In the limit of vanishing tunneling,
the disappearance of the n = 2 MI coincides with the point where site-centered
pair excitations become more favorable than bond-centered ones.

Note that within the Gaussian approximation 9.5 the MI phases with higher
�lling, n ≥ 3, do not disappear, even for large interaction as/d. These phases do
not share the fate of the n = 2 MI, because the broadening of the Wannier-like
functions w in response to adding one particle to a site becomes less pronounced
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with increasing occupation,

U2/U3 ≥ U3/U4 ≥ U4/U5 ≥ . . . . (9.23)

However, for strong interaction, sites occupied by three and more particles su�er
strong dissipation due to three-body collisions [509, 510].

Since there is no n = 2 Mott phase for 3U3−2U2 < 0, one might wonder what
else the system's ground state is at �xed �lling n = 2. At vanishing tunneling, the
ground state is highly degenerate; all Fock states are equal in energy where half
of all sites have occupation ni = 1 and the other half ni = 3. Alternatively, one
might say that on top of a n = 1 MI, half of the sites are occupied by additional
site-centered pairs in an arbitrary pattern. For small but �nite hopping, this
degeneracy will be lifted. One might think of three possible scenarios: (i) the
pairs gather in one region in space; this corresponds to a phase segregation
between the n = 1 and the n = 3 Mott phases; (ii) the pairs delocalize to form a
SF; and (iii) the pairs form a CB-type insulator avoiding pairs on neighboring
sites.

In order to decide which of these will be the ground state, we consider an
e�ective Hamiltonian for the site-centered pairs,

Ĥpair = −t
′
eff ∑
⟨i,j⟩

ĉ�i ĉj + (t′eff −D) ∑
⟨ij⟩

n̂ci n̂
c
j −∑

i

(2µ − 6t′eff)n̂
c
i , (9.24)

with bosonic pair annihilation and creation operators ĉi, ĉ
�
i , and where we as-

sume a hard-core constraint (ĉ�i)
2 = 0. The NN repulsion described by the last

term, where

D = 2
t23,3

6U4 +U2 − 6U3
, (9.25)

stems from super-exchange processes between neighboring pairs.
Since these are hard-core bosons, this model can be mapped to a spin-1/2

XXZ model using the standard Holstein�Primako� transformation (3.2). In that
case, the �rst term corresponds to the XX coupling, the second term to the ZZ
coupling, and the last one to a magnetic �eld. The XXZ model is well studied
(see, e.g., the book by Th. Giamarchi [74]). It can be solved using Bethe Ansatz
equations, from which we know that, since always (t′eff −D) ≤ t′eff , the system
will neither form the CB pattern (iii) (corresponding to an antiferromagnetic
state of the XXZ magnet) nor show the phase segregation (i). The system forms
the SF of site centered pairs (ii).
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9.6 Weakly-interacting limit

Finally, we investigate the limit where interaction e�ects are important not
because of a large scattering length but because of large site occupation; i.e.,
as/d ≪ 1, but the mean number of particles per site n0 ≫ 1. We assume small
on-site number �uctuations δn ≪ n0, i.e.,

√
Un0/(n0tn0) ≪ 1. Expanding the

occupation-dependent tunneling and on-site interactions (9.4) in that limit, we
can rewrite the modi�ed Hubbard Hamiltonian (9.3) as

Ĥ = −tn0 ∑
⟨ij⟩

b̂�i [1 + α(δn̂i + δn̂j)] b̂j

+
Un0

2
∑
i

n̂i(n̂i − 1) [1 + β − 2β(n̂i − 1)] −∑
i

µ n̂i , (9.26)

where δn̂i = n̂i − n0,

β =
3

5

√
π

2
(
V0

ER
)

1/4 as
d
, (9.27a)

α =
π5/2

10
√

2
(
V0

ER
)

3/4 as
d
, and (9.27b)

tn0

V0
= (

π2

4
− 1) exp

⎛

⎝
−
π2

4

√
V0

ER
[1 −

2
√

2π

5
(
V0

ER
)

1/4 as
d
n0]

⎞

⎠
. (9.27c)

Notably, the Hamiltonian (9.26) shows some similarity to the quantum Ablo-
witz�Ladik model for q-deformed bosons [511], given by

ĤAL = −∑
i

[B̂�
i B̂i+1 + B̂

�
i+1B̂i +

1

2γ
ln(1 −QB̂�

i B̂i)] , (9.28)

where Q = 1 − exp (−2γ) and B̂i (B̂
�
i ) creates (annihilates) a particle at site

i. These operators ful�ll the deformed-boson commutation relation [B̂i, B̂
�
i ] =

exp (−2γN̂i). In the limit of γ → 0 and γ ⟨N̂i⟩ ≪ 1, the quantum Ablowitz�

Ladik model (9.28) with the substitution B̂i → (1−γδn̂i)b̂i reduces in �rst order
in γ to the occupation-dependent modi�ed Hubbard model (9.26) with α = −γ,
µ = 1, and Un0 = 0. In one and higher dimension, the Ablowitz�Ladik model
contains localized solutions [512, 513].

Inspired by this, we now investigate the possibility of localized solutions in
Hamiltonian (9.26). To do so, we �rst �nd the ground state in the SF limit,
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where one has the order parameter ⟨b̂i⟩ =
√
n0. To look for �uctuations around

the ground state, we convert the Hamiltonian (9.26) to momentum space by
de�ning

b̂i = ∑
i

b̂ke−ik⋅ri , (9.29a)

εk = 4 ∑
ν=x,y,z

sin2 kνd

2
, and (9.29b)

γk = 4 ∑
ν=x,y,z

cos2 kνd

2
. (9.29c)

Neglecting correlations arising from the three-body interaction term Hamilto-
nian (9.26), one arrives at the equation

Ĥmod = −
n2

0Un0

2
+∑

k

tn0εk b̂
�

k b̂k (9.30)

+ ∑
k

{
n0Un0

2
[1 + β − 2β(n0 − 1)] − αtn0n0γk}(2b̂�k b̂k + b̂

�

k b̂
�

−k + b̂k b̂−k) .

This quadratic Hamiltonian can be diagonalized via a Bogoliubov transfor-
mation, which gives the excitation spectrum ωk of the SF,

ω2
k = t

2
n0
ε2k + 2tn0Un0n0 [1 + β − 2β(n0 − 1) − 2α

tn0

Un0

γk] εk . (9.31)

One can �nd dynamical instabilities by studying the normalized phonon velocity
vph, which is obtained in the limit k → 0 of ωk via ωk/

√
2tn0Un0n0 = vph∣k∣d. In

a cubic lattice,

vph =

√

[1 + β − 2β(n0 − 1)] − 2α
tn0

Un0

γ0 . (9.32)

In the non-interacting limit, this expression tends towards 1. In Fig. 9.4, we plot
the phonon velocity vph as a function of the �lling fraction n0 for as/d = 0.01.
Initially, the phonon velocity increases with increasing n0. Due to the attractive
e�ect of the occupation-dependent tunneling term, however, the phonon velocity
starts decreasing for higher n0, until it becomes imaginary for some critical n0.
This results in a dynamical instability of the SF [as long as we are within the
limit as

d
n0 < 1, which was a crucial ingredient for deriving Hamiltonian (9.26)].
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Figure 9.4: Phonon velocity
vph as a function of the SF
occupation number n0 (for
as/d = 0.01 and V0/Erec = 10).
After a critical occupation num-
ber, the phonon velocity be-
comes imaginary, marking a dy-
namical instability.

To understand the nature of this instability, we make a transition from the
discrete Hubbard model to a continuous model with a continuous �eld φ(r),
applicable for kd≪ 1,

Ĥcont = −∫ d3rφ∗(r)∇2φ(r) +
U

2
∫ d3r d3r′Veff(r − r

′
)∣φ(r)∣2∣φ(r′)∣2 . (9.33)

Here, the distance is expressed with respect to the lattice constant d, and the
e�ective interaction potential is given by

Veff(r − r
′
) = FT−1

[1 + β − β(n0 − 1) − 2α
tn0

Un0

γk] . (9.34)

where FT−1 stands for the inverse Fourier transform.
Using an Ansatz wave-function that is Gaussian along one direction, say

x, and uniform in the other directions, φ(r) = 1/π1/4∆
1/2
s exp(−x2/2∆2

s), the
energy functional for the self-trapped state reads

Esol =
1

∆2
s

+
Un0

tn0

√
2π

[1 + β − 2β(n0 − 1) − α
2tn0

U0
(5 + e

− 2
∆2
s )]

1

∆s
. (9.35)

When n0 exceeds a critical density, Esol is minimized for a �nite width ∆s ≫ 1
(instead of ∆s = ∞). Thus, the homogeneous SF becomes dynamically unstable
towards a state which is localized only in one direction and uniform in the other
two, forming a 2D slab.2

2We found that instabilities which are additionally localized in one or both of the other two
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9.7 Summary

To summarize this chapter, we have analyzed how the results of an AQS for
the Bose�Hubbard model, consisting of ultracold atoms in an optical lattice,
are modi�ed in the regime of strong interactions. In particular, to describe
interaction-induced band mixing, we have derived a modi�ed bosonic Hubbard
model with occupation-dependent parameters. This model comprises an e�ec-
tive interaction-induced broadening of the Wannier-like single-particle orbitals,
and, thus, captures also the situation when the s-wave scattering length becomes
comparable to the lattice spacing, as/d→ 1.

Using this model, we have shown for speci�c, experimentally relevant pa-
rameter values that the n = 1 MI state can become unstable towards a SF which
consists of bond-centered pair excitations. This scenario is novel, since the pairs
emerge due to the occupation dependence of tunneling strength and on-site in-
teraction. For even higher interaction, the nature of the SF pair excitations
that destroy the MI changes. The pairs can now occupy both the sites or bonds
(i.e., two neighboring sites) of the lattice; in that way, a decorated square lattice
emerges. Increasing the interaction further, eventually the pairs live only on the
sites of the lattice. In this regime, the entire n = 2 Mott phase is destabilized by
the site-centered pair �uctuations. It is fascinating to observe the emergence of
exotic lattice geometries as a consequence of pair creation.

We have also investigated the regime where interaction-induced Wannier-
broadening arises from large �lling n ≫ 1 at small scattering lengths, as ≪

d. In this limit, we found that the SF becomes dynamically unstable due to
the attractive nature of the occupation-dependent tunneling. The system then
transforms from a uniform SF state to an asymmetric state which is localized
in one direction and extended in the other two.

To connect to experiment in a more quantitative fashion, one could consider
extensions in various directions, such as a more accurate determination of the
number dependence of the Hubbard parameters tni,nj and Uni . Further, it
would also be worth studying in detail the role of a trapping potential as it
is present in experiments. Finally, to judge the robustness of the ground-state
phase diagram, it would be interesting to characterize the role of dissipation,
which can be expected to be enhanced by strong interactions.

directions have a higher energy. They can only become lower in energy for (unrealistically)
high interactions.
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Chapter 10

Dipolar molecules in optical
lattices revisited

In the previous chapter, we saw that the simple Bose�Hubbard model (2.4)
describing ultracold atoms in optical lattices has to be modi�ed in the regime
of strong on-site interactions. In a similar vein, the presence of strong dipolar
interactions between ultracold molecules makes it necessary to include novel
occupation-dependent-tunneling and pair-tunneling processes, which have typ-
ically been neglected. As we show in this chapter, these terms can change the
conventionally accepted phase diagram of dipolar bosonic molecules in optical
lattices, and destroy for example checkerboard (CB) phases in favor of pair-
super�uids (PSFs).

10.1 Description of the system

As discussed in Chapter 2.1, in the simplest case, ultracold atoms in optical
lattices are well described by the Bose�Hubbard model (2.4), where the phase
diagram is determined by the interplay of only two parameters: a tunneling t and
an on-site interaction U . A natural extension of the Bose�Hubbard model comes
from including long-range interactions between the particles, such as discussed
in Chapter 7. In recent years, experiments on ultracold polar molecules have re-
newed interest in such extended Bose�Hubbard models [514�517]. Because of the
strong electric dipole moment of polar molecules, long-range interactions play a
crucial role in the collective behavior of the system, leading to the appearance
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of novel ground states, such as various structured insulating states, supersolids,
Wigner crystals, pair-supersolids, and more [167, 389, 505, 506, 518�520].

In this chapter, we study dipolar molecules in a 2D square optical lattice with
a harmonic trapping along the polarization direction of the dipoles. We derive a
modi�ed Bose�Hubbard model which includes additional occupation-dependent
nearest-neighbor (NN) hopping processes arising from long-range dipolar inter-
actions in the lowest Bloch band. Usually, interaction-induced hopping terms
are neglected when discussing dipolar bosonic molecules. Here, we show that
these terms considerably change the physics of dipolar soft-core bosons. Such
soft-core bosons in square and one-dimensional lattices have been discussed in
the literature within the extended Hubbard model, focusing on the presence of
stable supersolidity [387, 521]. In these systems, in the usual case with only
NN interaction and at su�cient dipolar strength, the ground states at half- and
unit-�lling are CB insulating states. Here, we show that interaction-induced
hopping can destroy these CB states at large dipole moments. To illustrate
this, we study a one-dimensional extended Hubbard model including the novel
occupation-dependent hopping processes, using exact diagonalization (ED) and
the multiscale entanglement-renormalization Ansatz (MERA). We �nd that,
with increasing dipolar interaction, the system enters from the CB phase to a
novel state which has one-particle SF and PSF properties. In particular, we
�nd a region where these coexists. In this region, the SF order parameter has
alternating sign at consecutive sites.

The rest of this chapter is organized as follows. First, we derive the ex-
tended Hubbard model describing dipolar molecules in optical lattices, where
we emphasize the appearance of two additional terms for large dipolar inter-
actions (Sec. 10.2). Then, we discuss how these additional terms change the
phase diagram of the extended Hubbard model (Sec. 10.3), using ED at �xed
�lling (Sec. 10.3.1), as well as MERA and ED in the grand-canonical ensemble
(Sec. 10.3.2). For better contact to experiment, we discuss in Sec. 10.3.3 the
phase diagram for the same model but with the full long-range part of dipolar
interactions taken into account. In Sec. 10.4, �nally, we give a summary of this
chapter. The results presented in this chapter have been published in Ref. [522].
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Figure 10.1: The system. Bosonic molecules (red bullets) with dipole moment
p are polarized by an electric �eld (sketched in the upper-leftmost molecule).
An external potential (characterized by the dimensionless parameter κ) con-
�nes the molecules to the xy plane, where they live on a square optical lattice.
The e�ective Bose�Hubbard model consists of �ve terms, sketched in panel
(a): well known are the terms of the extended Bose�Hubbard model, colored
in green, the NN tunneling t, the on-site interaction U , and the NN repulsion
V ; for strong p, new terms become important (blue), namely, pair tunnel-
ing P and in particular correlated hopping Q. (a-c) Illustrations of the
states occurring from low to large p (at approximately half �lling and
for the parameters given in the text). (a) At low p, single-particle tunneling t
dominates, and the system has super�uid long-range order (LRO) and density
short-range order. (b) Increasing p, the repulsion V suppresses tunneling and
leads to density-LRO � the system is a checkerboard insulator. (c) At large p,
V still suppresses single-particle hopping but the correlated hopping Q allows
the particles to tunnel if they are bound into pairs � the system is a pair-SF.
This phase is entirely due to the previously neglected term Q.

10.2 Bose�Hubbard physics for strong dipole mo-
ment

Our system consists of dipolar bosons polarized by an external electric �eld
along the z direction and con�ned in a square optical lattice, as illustrated in
Fig. 10.1. The corresponding Hamiltonian reads

Ĥ = ∫ d3r Ψ̂�
(r) [−

h̵2

2Mmol
∇

2
+ Vlat(r)] Ψ̂(r)

+
1

2
∫ ∫ d3r d3r′Ψ̂�

(r)Ψ̂�
(r′)Vint(r − r

′
)Ψ̂(r)Ψ̂(r′) , (10.1)
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where Ψ̂�(r) (Ψ̂(r)) are the creation (annihilation) �eld operators for bosonic
molecules of mass Mmol. The external lattice potential

Vlat(r) = V0 (sin2 2π

λ
x + sin2 2π

λ
y) +MmolΩ

2
zz

2
/2 (10.2)

of lattice depth V0 is generated by a laser �eld of wave-length λ, and an addi-
tional external harmonic potential in z direction, the strength of which is charac-
terized by Ωz. The dipole�dipole interaction is denoted by Vint(r). Throughout
this chapter, we measure all lengths in units of the laser wave length λ and
all energies in recoil energies ER = 2π2h̵2/(Mmolλ

2). Accordingly, we de�ne
the dimensionless parameter κ = h̵Ωz/2ER characterizing the con�nement in z
direction.

Generalizing the derivations in Chapter 2.1 to strong dipolar interactions,
we now compute the lowest-band extended Bose�Hubbard model e�ectively gov-
erning the physics at not too small lattice depths. For this purpose, we �rst �nd
the lowest Bloch band for a single particle moving in the potential Vlat(r), and
construct the (exact) corresponding Wannier functions w2

i (x, y)e
−κz2

localized
at site i [523]. By expanding the �eld operator Ψ̂(r) = ∑iwi(x, y)e

−κz2/2 b̂i in
the corresponding basis, and by restricting ourselves to on-site and NN terms,
we arrive at the extended Bose�Hubbard model

Ĥ = −t∑
⟨ij⟩

b̂�i b̂j +
U

2
∑
i

n̂i(n̂i − 1) + ∑
⟨ij⟩

[V n̂in̂j −Qb̂
�
i (n̂i + n̂j) b̂j +

P

2
b̂�i b̂

�
i b̂j b̂j] ,

(10.3)
where b̂i (b̂

�
i ) annihilates (creates) a particle on lattice site i, n̂i = b̂

�
i b̂i is the

corresponding density operator, and angle brackets denote NN bonds.

The standard tunneling coe�cient is denoted by t, U is the on-site inter-
action, and V is the NN interaction arising from a truncation of the dipolar
interactions to the dominating NN term. These are the terms which have been
typically taken into account in the literature to describe molecules with perma-
nent dipole moment in optical lattices (green terms in Fig. 10.1a).

Strong dipole moments render two additional terms in Hamiltonian (10.3)
important which typically have been neglected (purple terms in Fig. 10.1a):
The term proportional to Q describes one-particle tunneling induced by the
occupation of a neighboring site, and the term proportional to P is responsible
for NN pair tunneling [524�526]. Explicitly, the correlated hopping Q and the
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pair-hopping P read

Q = ∫ ∫ d3rd3r′w2
i (x, y)e

−κz2

Vint(r − r
′
)wi(x

′, y′)wj(x
′, y′)e−κz

′2
, (10.4a)

P =
1

2
∫ ∫ d3rd3r′wi(x, y)wj(x, y)e

−κz2

Vint(r − r
′
)wi(x

′, y′)wj(x
′, y′)e−κz

′2
.

(10.4b)

These terms can become important if Vint(r−r
′) is strong for NNs (and if there

is a �nite overlap of the Wannier functions).
The matrix elements U , V , Q, and P are given by a sum of dipolar and

δ-like contact interactions,1

Vint(r − r
′
) = g δ(3)(r − r′) + γ (

1

∣r − r′∣3
− 3

(z − z′)2

∣r − r′∣5
) . (10.5)

Here, we de�ned the dimensionless coupling constants describing contact and
dipolar interaction, g = 16π2as/λ and γ = Mmolp

2/(h̵2ε0λ) (where as is the s-
wave scattering length, ε0 is the vacuum permittivity, and p is the electric dipole
moment of the bosons).

10.3 The phase diagram at strong dipole moment

To compute the ground-state phase diagram for a concrete example, we consider
ultracold dipolar molecules with a mass of Mmol = 220a.m.u and con�ned in an
optical lattice of lattice depth V0 = 6ER and wave length λ = 790 nm (this is
the value relevant for RbCs, which has a strong dipole moment [527]). For the
s-wave scattering length of the molecules, we assume as ≈ 100a0, where a0 is
the Bohr radius. For these parameters, g ≈ 1.06 is approximately constant. We
consider dipole moments p up to ∼ 3 D (γ up to ∼ 470), which can be achievable
for molecules like bosonic RbCs or KLi [528].

To illustrate the relative strengths of the di�erent parameters, we compare
in Fig. 10.2 at �xed γ = 52 the tunneling t with the dipolar contribution to the
parameters U , V , Q, and P (we denote the dipolar contribution by the subscript
D).2 The strength and sign of UD can be tuned by changing κ: a small κ allows

1The contact interactions alone typically do not give rise to appreciable correlated tunnel-
ing due to the small Wannier overlap between neighboring sites, see also last paragraph of
Chapter 9.2.

2The chosen γ corresponds to p = 1D. Note that, by virtue of Eq. (10.5), the plotted
dipolar contributions scale linearly with γ.
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Figure 10.2: Dependence of the model parameters on the z-
con�nement κ. Plotted is (for V0 = 6ER and γ = 52) the contribution of
the dipolar interactions (subscript D) to (a) the usual terms of the extended
Bose�Hubbard model U and V , and (b) the novel terms Q and P . For the
chosen parameters, Q and P are one order of magnitude smaller than V , but
they can dominate for large γ. The interaction-induced tunneling Q can have
opposite sign to t, thus opening the possibility of counteracting the e�ect of t.

the molecules to explore the region within a lattice site where they are aligned
on top of each other, where the dipolar interaction is attractive; a large κ does
not permit this, and therefore the molecules predominantly feel the repulsive
part of the dipolar interactions. For the parameters chosen, QD and PD are
one order of magnitude smaller than VD. On the other hand, QD can dominate
over t for large γ. In addition, QD and t can have opposite sign, as seen in Fig.
10.2.

For concreteness, we work in the following at the z-con�nement parameter
κ = 1.95, making (additionally to t) the on-site interaction U almost independent
of the dipole moment (UD ≈ 0). In this case, for large enough γ, we expect that
with increasing p the parameters V , Q, and P determine the system properties.
In the following, we illustrate the e�ect of the novel terms on the example of a
1D chain of N lattice sites with periodic boundary conditions.

10.3.1 Exact diagonalization at half-�lling

To get a �rst understanding of the system, we compute the ground state ∣ψ(p)⟩
as a function of the dipole moment p using ED of a half-�lled system with N = 8
sites. The results are presented in Fig. 10.3, along with calculations for N = 12
and 16 to check for system-size dependence.

Without the occupation-dependent tunneling terms Q and P , we observe the
usual scenario with only two phases, a single-particle SF and a CB phase (as
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sketched in Fig. 10.1a and b). The transition happens at p ≈ 0.4 D. It is marked
by an increase of the contribution of the checkerboard states to the ground state
to almost 100% (dotted line in Fig. 10.3a). Also, the one-particle correlation
function φi = ∑jNN of i⟨b̂

�
j b̂i⟩ almost vanishes, indicating the transition to an

insulating state (dotted line in Fig. 10.3b). The transition occurs in the half-
�lled system because for large enough V the particles can decrease their energy
by avoiding every second site. If we neglect Q and P , the situation will not
change by further increasing p, since this only increases V even more.

However, the situation changes signi�cantly when we take into account the
density-induced tunneling Q and the pair tunneling P . In this case, for p ≈ 1.1 D,
a second phase transition occurs, destroying the CB order. Previous studies
have completely neglected such a possible destruction of CB order at large p.
At the transition, the contribution of the CB state to the ground state decreases
rapidly (solid line in Fig. 10.3a), and the one-particle as well as the two-particle
NN correlation function Φi = ∑jNN of i⟨b̂

�
j b̂

�
j b̂ib̂i⟩ (solid and dashed-dotted lines

in Fig. 10.3b) attain �nite positive values, indicating that the new phase shows
single-particle as well as pair super�uidity. To understand which of the terms
is responsible for this PSF, we also studied the e�ects of Q and P alone (not
shown). From these arti�cial cases, we found that PSF is mainly generated due
to the correlated tunneling term Q (in interplay with the NN interaction V ),
and not as one might expect due to the pair-tunneling term P . In this PSF
region, we also �nd that the correlation function ⟨b̂�j b̂i⟩ for ∣i − j∣ ≤ 6 decays
slowly with alternating sign at consecutive sites. This suggests the appearance
of some antiferromagnetic (AFM) order due to the positive hopping Q. For even
larger electric moments (p ≈ 1.5D), a third phase transition occurs, where φi
changes sign and Φi increases strongly, indicating another PSF phase.

The appearance of pair super�uidity has previously been predicted in bi-
layer dipolar systems where the particles are bound by an attractive interaction
between the layers [505�507], although in these systems the state is a true PSF
as Φi ≠ 0, whereas φi ≡ 0. In the present system, the pairs are created due
to the occupation-dependent tunneling terms in Hamiltonian (10.3) (similar to
Chapter 9), in spite of repulsive interactions.

We also note that for very low dipolar strength Φi has a small nonzero value,
irrespective of the presence of Q and P , as seen in Fig. 10.3b. This behavior
can be traced back to second-order processes due to t, which can also give rise
to pair correlations at small distances and with small magnitude.

To con�rm that the observed transitions are indeed quantum phase transi-
tions (QPTs), we compute � for di�erent chain lengths N � the ground-state
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Figure 10.3: ED for a half-�lled system. (a) Contribution of the
checkerboard (CB) states to the ground state for N = 8. Finite Q and P
destroy the CB state at large p (solid line), while neglecting Q and P predicts
that the CB state remains the ground state (dotted line). (b) One-particle
and two-particle correlation functions φi and Φi. Neglecting Q and P ,
φi goes to zero after the transition SF�CB (dotted line). When Q,P ≠ 0, φi
(solid line) and Φi (dash-dotted) attain �nite values, indicating the coexistence
of one- and two-particle super�uidity. The sign change of φi is a consequence
of the dominance of the (positive) correlated hopping Q. (c) Fidelity sus-
ceptibility χ at half-�lling. Three distinct peaks, increasing with system size,
suggest QPTs, from SF to CB, from CB to an intermediate phase, and �nally
to a pair-SF. (d) Structure-factor S(q)/N at half �lling for N = 16. After
the point where χ attains its �rst peak, the dominant structure factor is at
the CB ordering vector q = π. Between the second and third peak of χ, the
dominant q changes stepwise. It reaches q = π/2 at the third peak, indicating
that the particles are in a structure with larger period than in the CB state.
Large contributions from other ordering vectors suggest that the order is only
over short range.
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�delity susceptibility [529�531]. It is de�ned equivalently to Eq. (7.23), but now
with p as the control parameter,

χ(p) =
1 − ∣⟨ψ (p) ∣ψ (p + δp)⟩∣

2

δp2
. (10.6)

Divergences in χ are e�cient indicators of QPTs. In Fig. 10.3c, we present
χ(p) for di�erent chain sizes. There are three clear peaks located at the QPTs
found from the correlation functions (as presented in Fig. 10.3b). The positions
of the transition points do not signi�cantly depend on the number of sites,
especially for the �rst and third one, which correspond to the transition from
single-particle SF to CB and the transition between the two types of PSF,
respectively. The middle peak in Fig. 10.3c refers to the transition from the
CB to the AFM SF. The magnitude of the �delity susceptibility at all three
transitions increases with chain length, which suggests that the transitions will
survive in the thermodynamic limit.

Additional insight into the properties of the observed phases comes from the
static structure factor, which in this context is de�ned as3

S(q) =
1

N

N

∑
j,k=1

eiq(j−k) (⟨n̂j n̂k⟩ − ⟨n̂j⟩⟨n̂k⟩) , (10.7)

with q = 2πm/N , and 0 ≤ m ≤ N − 1 integer. A peak in the structure factor at
�nite momentum points towards the presence of periodic density modulation in
the system.

In Fig. 10.3d, we present S(q)/N for a half-�lled system with N = 16 sites. In
the CB phase (between the �rst and second peak of the �delity susceptibility χ),
the dominant peak of S(q) is at q = π, and its magnitude is almost independent
of system size. Above the third peak of χ, the system is in a phase where φi has
an inverted sign and Φi is large. Here, states dominate where bosons occur in
pairs (their contribution to the ground state is about 95%). Since, due to the
dipolar interactions, boson pairs do not occupy neighboring sites, the system has
some local structure, leading to a predominant structure-factor peak at q = π

2
.

The intermediate phase (between the second and third peak of χ) has interesting
properties: the ground state of the �nite system deforms its structure stepwise,
changing the dominant q from π to π/2 by one quantum ∆q = 2π/N at a time.
For N = 16, this leads to three changes in the dominant q. Since in an in�nite
system q can take every value between 0 and 2π, we expect in large chains a
continuous change from the CB (q = π) to the two-particle SF (q = π/2).

3See also Eq. (7.25), where we introduced it for hard-core bosons in terms of spin language.
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Figure 10.4: ED phase diagram (a) without and (b) with additional
terms Q and P . To visualize the phase diagram, the color scale encodes a
weighted sum of the correlations φi and Φi. (a) Neglecting Q and P , at large
p and µ the system is always in an insulating phase and the average number
of particles is a multiple of 1/2. CB (CB2) denotes the checkerboard phase
where sites with 0 and 1 (2) particles alternate. (b) Including the new terms,
the insulating phases are replaced by a PSF for large enough p. We truncate
the Hilbert space at a maximal occupation of 4 particles per site, and exclude
data points where the occupation becomes too high (white region).

10.3.2 Grand-canonical phase diagram

In a realistic ultracold atom QS, a trapping potential is used to con�ne the
atoms, resulting in a changing atom density across the trap. If the trapping
potential changes slowly, one can invoke the local-density approximation, which
assigns to each site a local chemical potential. Then, one can directly translate
results obtained in the grand-canonical ensemble to the in-trap situation: a ra-
dial cut through the trapping potential corresponds to a line of varying chemical
potential in the grand-canonical phase diagram.

In Fig. 10.4, we present the grand-canonical phase diagram for ED calcu-
lations of 4 sites with occupation truncated at 4 particles per site.4 In the
conventional phase diagram which occurs if one sets Q = P = 0 (Fig. 10.4a), the
system is SF at small µ/U and at low p, while it is always insulating at large
p. When the additional terms Q and P are included, a large p destroys the CB
phase, making place for a PSF (Fig. 10.4b). These three main phases �SF, CB,
PSF � are sketched in Fig. 10.1.

4This cut-o� can be justi�ed by the non-linear increase of interaction energy with site-
occupation, see Chapter 12.1.
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Figure 10.5: MERA phase diagram including the additional terms Q
and P . (a) Occupation, constant in CB phases. (b) SF order parameter.
(c) PSF order parameter. (d) NN density correlations. The MERA
data (averaged over the chain) with re�nement parameter mr = 8 for N = 128
reveal that checkerboard (CB and CB2) order is replaced, due to the novel
terms, by a pair-super�uid (PSF). SF denotes a normal super�uid also found
in the model with Q = P = 0. SF' is a super�uid with very small NN density
correlations, implying that it has supersolid-like properties.

ED can only solve small systems. To get information about large systems,
we compute the phase diagram within MERA [532, 533]. The MERA is a
quasi-exact variational method that consists in postulating a speci�c, layered
tensor-network structure for the low-energy states of a given Hamiltonian, which
in particular yields good results in critical phases, where other methods such as
DMRG are very costly [532, 533]. In Chapter 12.2, we explain the method and
the particular tensor-network structure that we used.

Our results are presented in Figs. 10.5a-d, where we show, averaged over the
chain, the occupation ⟨n̂i⟩, the SF order parameter ⟨b̂i⟩, the PSF order param-
eter ⟨b̂ib̂i⟩, and NN density�density correlations ⟨n̂in̂i+1⟩. The phase diagram
extracted from these observables is indicated in Fig. 10.5a. At low p, there is a
single-particle SF, which for not too small µ gives way to CB phases at increas-
ing p. For higher µ, we get a CB with two particles in the �lled site (CB2 phase),
which is possible due to the low on-site repulsion U . Increasing p further, the
system undergoes a transition to another SF phase, where initially (for a range
of ≈ 0.2D) one-particle super�uidity dominates (similar to the ED results), and
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afterwards pair super�uidity. At a few points in the PSF region, we also checked
that the SF correlations have an alternating sign as a function of distance, as
seen in the ED calculations. This reinforces the assumption that the PSF phase
has AFM behavior due to the positive sign of Q. As our numerical calculations
are carried out in one dimension, the various SF correlations decay as a power
law with distance.

Additionally, at low µ, we �nd a phase (SF') which has SF order (i.e., a �nite
⟨b̂i⟩) but where NN density�density correlations almost vanish. Hence, it has a
local structure where sites with high and low occupation alternate, reminding
of CB order. We checked that this phase is not due to phase separation. Such a
coexistence of a �nite SF order parameter with CB order (if it is of long range)
implies supersolidity. This is remarkable, because in the usual extended Bose�
Hubbard model with soft-core interactions stable supersolidity appears only at
the particle-doped region of the CB phase [387, 521].

The main result of this analysis is that � as already indicated by ED � the
new terms Q and P drastically change the phase diagram, destroying CB order
in favor of PSF phases. Hence, these terms cannot be neglected when describing
QS experiments of ultracold molecules with strong dipole moments.

10.3.3 ED at half-�lling for full long-range interactions

To make better contact with experiment, we now examine the disappearance of
the CB pattern when the full dipolar interactions are taken into account, i.e.,
we replace the NN interaction term in Hamiltonian (10.3) with

∑
⟨ij⟩

V n̂in̂j →∑
i≠j

V

∣i − j∣3
n̂in̂j , (10.8)

where now we sum over all pairs of sites i and j.
Using ED at half-�lling for N = 16 (see Fig. 10.6), we �nd that qualita-

tively the phase diagram does not change much with respect to our previous
calculations with the simpli�ed Hamiltonian (10.3) (see Fig. 10.3b). When the
occupation-induced tunneling terms Q and P are neglected, the CB phase re-
mains stable for arbitrarily large p (Fig. 10.6a). In contrast, when taking into
account the tunneling terms Q and P , it disappears, making way for a PSF
phase (Fig. 10.6b). This happens even at smaller p than when truncating the
interactions at NNs. Namely, the PSF phase appears for p ≥ 0.7D. Also in this
situation, we have checked that counter-intuitively PSF arises predominantly
due to the correlated tunneling Q, not the pair-tunneling P as one might ex-
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Figure 10.6: Half-�lled system with full dipolar interactions (ED with
N = 16). The one-particle and two-particle correlation functions φi (solid line)
and Φi (dotted line) behave qualitatively similar to a system with interactions
truncated at NNs (Fig. 10.3). (a) Neglecting Q and P , the system is always
in a CB phase for large enough p (φi = Φi = 0). (b) Including Q and P , the
large Φi and negative φi indicate the break down of the CB phase to a PSF.

pect. Without this term, the PSF phase can not be reached for reasonable
electric moments.

We also note that in Fig. 10.6b there is a kink in φi around p ∼ 0.5D. This
kink corresponds to the appearance of a crystal-like phase with modulation
∣. . .2 0 0 1 0 0 2 0 0 1 0 0 . . .⟩, which may be an indication for a novel phase.

10.4 Summary

In summary, we have shown how the extended Bose�Hubbard model describing
ultracold polar molecules in an optical lattice has to be modi�ed at strong
dipolar interactions.

In that regime, occupation-dependent- and pair-tunneling terms can no
longer be neglected. Based on ED and MERA, we calculated for a speci�c
choice of optical-lattice parameters how these additional terms destroy insu-
lating CB phases for su�ciently large electric moments p, leading to a novel
pair-SF phase. MERA results suggest also that a supersolid phase could appear
for 1/2 �lling even in the hole-doped case. Our calculations are based on realistic
parameters, experimentally achievable in the near future. Hence, these modi-
�cations to the extended Bose�Hubbard model have to be taken into account
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in future quantum-simulation experiments using ultracold polar molecules, and
they may even allow to access novel phases.



Chapter 11

Robustness of quantum
simulators against disorder

In the previous two chapters, we discussed terms in model Hamiltonians that
have typically been disregarded but which can change the response of an ana-
log quantum simulator (AQS) in certain parameter regimes. In this chapter,
we turn to another type of error that can compromise the results of an AQS,
namely statistical errors. This analysis serves to substantiate our discussion
from Chapter 1 concerning the reliability of AQSs and its relationship to the
complexity/e�ciency of the simulation.

For this, we study the statics and dynamics of a generic example, the quan-
tum Ising chain, where for simplicity we assume quenched disorder as the only
possible imperfection. In the future, it will be in particular interesting to also
investigate the e�ects of dynamical noise, and the decoherence and relaxation
that occurs due to coupling with an environment. Concerning statics, we explore
how disorder a�ects the universal behavior around the second-order quantum
phase transition (QPT) of the transverse Ising model. In general, the regions
around QPTs are both the most interesting and most sensitive parts of quan-
tum phase diagrams. Here, we show that the expectation values of certain local
observables appear fairly robust under disorder, while this need not be true
for the global many-body state of the AQS. In particular, disorder can have
a signi�cant e�ect on relevant quantities describing the behavior of the model
near the QPT, such as critical points and exponents [534], or � if the system
is described by a conformal �eld theory � its central charge [434]. Further, we
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brie�y address the relationship between robustness and complexity by studying
the dynamics of di�erent thermal states after a quench of the Hamiltonian. Our
results suggest that AQSs appear to work better in regimes that are classically
easier to solve or simulate (high-temperature states, large distance to QPTs),
thus hinting at a connection between the amount of quantum correlations and
the robustness of an AQS.

The rest of this chapter is organized as follows. In Sec. 11.1, we introduce
the model system, which we analyze in detail in the rest of the chapter. Sec-
tion 11.2 is concerned with its static ground-state properties, while we discuss
its dynamical behavior in Sec. 11.3. The presented results, together with the
general considerations of Chapter 1, have been published in Ref. [61] (see also
Ref. [62]).

11.1 The transverse Ising model � an exactly solv-
able model

To illustrate the in�uence of disorder on an AQS, we study the example of a
paradigmatic model, the transverse Ising chain

Ĥ = − ∑
⟨ij⟩

Jijσ
x
i σ

x
j −∑

i

hiσ
z
i , (11.1)

where σx,zi are the usual Pauli spin matrices and ∑⟨ij⟩ means sum over nearest
neighbors (NNs). The system is subject to quenched disorder in both the inter-
action and �eld terms. We denote the NN spin coupling and the transverse �eld
by Jij = J(1 + r δJij) and hi = h(1 + r δhi), respectively, where δJij and δhi are
independent random variables with a Gaussian distribution of mean zero and
variance r.

The transverse Ising model, even under the presence of disorder, is e�ciently
solvable � by which we mean that the eigenstates and eigenenergies of the system
can be found using a classical computer, and that the cost of the algorithms (in
time and hardware) is polynomial with the size (number of particles) of the
system. The transverse Ising model, in particular, can be solved by using a
Jordan�Wigner transformation to a system of non-interacting fermions � and
the cost of solving the non-interacting fermion system is the cost of diagonalizing
a matrix with rank equal to twice the number of spins in the chain [535] (see
Chapter 12.3). While such a solvable model, per se, is not of interest for quantum
simulation, it can be expected that general properties, such as the in�uence of
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disorder on second-order phase transitions, are valid in a broader class of models
that share the main characteristics of the transverse Ising model, such as being
integrable or having a QPT of second order.

The transverse Ising model is well studied, since as early as the 1960's [536].
For low �elds, the ground state is a ferromagnet, while for large �elds it is a
paramagnet. At zero temperature and disorder, the system undergoes a QPT
when the dimensionless control parameter λ = h/J approaches the critical value,
λc = 1, i.e., when the �eld intensity equals the interaction strength.

The in�uence of disorder can have dramatic e�ects on this phase diagram:
imperfections can create new phases, or even destroy the ones we want to in-
vestigate. Indeed, in the transverse Ising model when the disorder strength
is comparable with the interactions, the critical point disappears and is re-
placed by a so called Gri�ths phase [103], which extends across a region of
size proportional to the disorder strength. Even more, in this Gri�ths phase
observables become non-self-averaging, i.e., �uctuations increase with system
size, and hence dominate the thermodynamic limit. In this study, we consider
small disorder strengths, which allows us to ignore the Gri�ths phase, espe-
cially in �nite-size systems. Moreover, a state-of-the-art AQS can achieve very
low levels of disorder, whence this is the experimentally relevant regime. Note
that while the transverse Ising model has been studied extensively in the limit
of large disorder [537] there are few studies addressing directly the in�uence of
small disorder on the universal properties near QPTs. However, it is well known
that even small disorder can lead to novel quantum phases such as Bose [538] or
Fermi [539] glasses (see also the section on disorder in the review by Lewenstein
et al. [379] and references therein). In the following, we analyze the robustness
of relevant observables to disorder in static and dynamic situations.

11.2 In�uence of disorder on quantum simulation
of statics

First, we investigate static properties of the AQS and their robustness to dis-
order, where we focus especially on the interesting region around the QPT.
A description for solving the transverse Ising model using the Jordan�Wigner
transform and a derivation of the observables can be found in Chapter 12.3. As
is usual in the presence of statistical errors, we average all analyzed quantities
over many realizations of disorder.
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Figure 11.1: In�uence of quenched dis-
order on the static simulator �delity,
for a chain of 400 spins and disorder level
r = 0.1 (averaged over 5000 realizations of
disorder). Local �delities (f1 and f2) are
more robust than the total simulator �-
delity F , which gives hope that local quan-
tities can be reliable even if disorder dete-
riorates the overall ground state. As ex-
pected, disorder has more severe e�ects
close to the QPT.

11.2.1 Simulator �delities

One can quantify how the results of the AQS degrade due to disorder using the
simulator �delity, see Eq. (12.12). For pure states, we de�ne it as the overlap
between the state obtained with a perturbed simulator, ∣Ψr(λ)⟩, and the ideal
state ∣Ψ0(λ)⟩,

F (r, λ) = ∣ ⟨Ψ0(λ)∣Ψr(λ)⟩ ∣ . (11.2)

Although we de�ne the simulator �delity for any possible target state, we focus
on the ground state.

As Fig. 11.1 shows, this overlap is considerably suppressed near the QPT,
reaching values as low as 55% (for r = 0.1 in a chain of L = 400 sites). When
scaling to larger systems, F (r, λ) will typically vanish exponentially fast, simply
due to the exponential growth of the dimension of the Hilbert space (a kind of
�orthogonality catastrophe�). In a universal quantum computation, the �delity
would have to be very close to 1 for the quantum computer to work fault-
tolerantly. However, QSs have the advantage that we do not necessarily demand
of the entire state to be robust. Often, it is enough if we can distinguish the
relevant phases by measuring faithfully local observables (local in the quantum
information sense that few sites are involved, although they may be physically
far apart).

To quantify the robustness of local observables, we investigate the single-
site �delity f1(r, λ) and the NN two-site simulator �delity f2(r, λ), as de�ned
in Eqs. (12.13) and (12.14), respectively. As the one- and two-particle den-
sity matrices will generally be mixed when the overall pure many-body state is
entangled, these are de�ned as the Uhlmann �delity [540] between the single-
or two-site reduced density matrices of the ideal state and the one at disorder

strength r, f ≡ Tr
√√

ρ̂(0)ρ̂(r)
√
ρ̂(0). It can be assumed that �delities of the
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reduced system decrease more or less monotonically with the number of sites
involved. As seen in Fig. 11.1, the reduced simulator �delities are much more
robust to disorder than the global one. Near the phase transition, f2(r, λ) de-
creases to approximately 0.998, and f1(r, λ) remains above 0.999. This gives
optimism that local quantities are robust enough to allow a faithful distinction
between di�erent quantum phases.

11.2.2 Correlations, gap, and critical point

From the discussion in the previous paragraph, it seems that local quantities
are relatively robust in the presence of disorder. However, one is often more
interested in extracting non-local properties from the AQS that characterize
the critical point and quantify its universality class.

One step beyond local properties of the ground state are the correlation
lengths dictating the exponential decay of long-distance correlation functions.
We investigate the correlation length extracted from the correlation function

C(i, j) = ⟨Ψr ∣σ
(i)
z σ(j)z ∣Ψr⟩ − ⟨Ψr ∣σ

(i)
z ∣Ψr⟩⟨Ψr ∣σ

(j)
z ∣Ψr⟩ , (11.3)

which can be computed exactly via Eq. (12.10). Away from criticality, the
correlations decay as C(i, j) ∝ exp(− ∣i − j∣ /ξ) with correlation length ξ. At the
critical point, in the absence of disorder and for in�nite systems, ξ diverges,
because at criticality collective phenomena emerge that involve in�nite degrees
of freedom at all length scales. In practice, we can only deal with �nite systems
so that we cannot observe real criticality but only smoothed out signatures of it,
a phenomenon called �pseudo-criticality.� For example, the correlation length ξ
is bounded by the system size. Still, its peak gives a reliable signature for the
location of the critical point. In Fig. 11.2 we show ξ computed from �ts to part of
the wings of C(i, j). The data are for L = 400 and 10000 realizations of disorder
of variable strength. As this �gure shows, disorder suppresses correlations and
broadens the peak of ξ, thus making an extraction of the critical point much
less reliable.

Another criterion to locate the QPT is provided by the energy gap ∆ between
ground and �rst excited state. It is intrinsically connected to the correlations
(e.g., in harmonic-lattice systems with gap, the correlations decay necessarily ex-
ponentially [247]). At criticality, the low-energy spectrum of the Hamiltonian is
gapless in the thermodynamic limit. In �nite systems, it presents non-vanishing
gaps that decrease in a systematic way with increasing system size. Due to this
characteristic scaling of physical observables such as the gap ∆ as a function
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Figure 11.2: In�uence of quenched disorder on the statics of an AQS.
The correlation length ξ decreases with disorder r, and its peak broadens
(shown for a chain of 400 spins). The critical point (as extracted from a �nite-
size scaling of the energy gap ∆, labeled �λc�) shifts to larger λ with increasing
disorder (black line). However, the change begins relatively smoothly.

a) b) 

Figure 11.3: Inverse gaps for di�erent chain lengths. (a) For low disorder
(r = 0), the scaled curves 1/(L∆(L)) cross perfectly at the location of the
critical point, λ = 1. (b) With increasing disorder (r = 0.2), the crossing point
moves to larger values of λ and becomes less well de�ned. At large disorder
there appears a second crossing point below λ = 1. The insets show zooms on
the crossing points.
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of system size, criticality can be detected by studying sequences of increasingly
large but �nite systems, a technique called �nite-size scaling [541]. For the ex-
ample of the gap: for close-by chain lengths L the rescaled curves 1/(Lζ∆(L))
(where ζ is the dynamical critical exponent) cross at a series of pseudo-critical
points. With increasing L, this series tends rapidly to the real critical point of
the thermodynamic limit [542]. Assuming that the dynamical critical exponent
ζ does not change much from the disorder-free value 1, we use the scaling of the
disorder-free case also for �nite disorder. Accordingly, we approximate the crit-
ical point as the mean of the points where the rescaled curves 1/(L∆(L)) cross.
For this analysis, we use L = 100,150,200,300,350,400 with 10000 realizations
of disorder each.

As displayed in Fig. 11.3 for two examples of disorder strength, the crossing
point moves to larger values of λ with increasing disorder. This analysis implies
that computing the location of the QPT in a real-world AQS without correcting
for disorder can yield erroneous results. On the other hand, as can be appre-
ciated in the black line of Fig. 11.2), which includes more values of disorder
strength, the change sets in smoothly at small disorder. We also note that the
crossing points show more scatter with increasing disorder, showing the e�ect
of the neglected change of ζ.

Finally, at large disorder, a second crossing point appears at λ < 1. The two
crossing points open up to a V-like structure with increasing disorder. This could
be interpreted as an indication of the Gri�ths phase (the crossing points are
qualitatively consistent with the extent of the Gri�ths phase found by Jacobson
et al. [543]). For a more quantitative analysis, however, one would need to
account for a change of ζ with increasing disorder.

11.2.3 Universal quantities: Critical exponents and cen-
tral charge

Perhaps of more fundamental interest than the exact location of a critical point
is its universality class. All models within a given universality class give rise to
the same collective behavior at large distances, irrespective of their microscopic
details [434]. In fact, all relevant thermodynamic quantities for all models within
a class are characterized by the same small set of critical exponents. These
describe the power-law decay of the correlation functions of local observables in
the large-distance regime, a property that allows to di�erentiate among di�erent
emerging collective behaviors.

To characterize the robustness of the universal behavior, we investigate as an
example the critical exponent for the correlation length, ν. It can be extracted
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a) b) 

Figure 11.4: Spin�spin correlations for di�erent chain lengths. (a) For
low disorder (r = 0), the curves C(i, j)L2ν for di�erent L, plotted as functions
of ∣i − j∣ /L, collapse perfectly for the physically correct value of the critical
exponent, ν = 1 (dots of di�erent color correspond to di�erent L). (b) With
increasing disorder (r = 0.2), the collapse worsens, and the best collapse is
obtained for some ν > 1.

from a collapse of the correlations, taking advantage of another scaling law:
without disorder, the correlations follow the law

C(i, j)L2ν
∝ f(∣i − j∣ /L) (11.4)

with some universal function f [434], as can be seen in Fig. 11.4a.
Hence, we can �nd ν as the value for which the correlations scaled as in

Eq. (11.4) collapse best onto a single curve. The ν resulting from this analysis
is shown in Fig. 11.5. Here, we used the following lengths: L = 100 to 190 in
steps of 10 (106 disorder realizations), L = 200, 250, 300 (5 × 105 realizations),
and L = 350, 400 (105 realizations). Already for a few percent of disorder, ν
increases strongly from its ideal value 1. Hence, using the scaling (11.4) on
a disordered AQS yields a too large critical exponent compared to the ideal
model. Moreover, the quality of the collapse worsens with increasing disorder
(see Fig. 11.4b), demonstrating that a naive application of the scaling (11.4) is
unjusti�ed if disorder is large. Therefore, if one simply neglects the in�uence of
disorder, the extraction of critical exponents yields wrong results.

As another fundamental quantity, we analyze the central charge c, which
characterizes the QPT if it is described by a conformal �eld theory (a spe-
ci�c subclass of one-dimensional critical systems). In these systems, the central
charge appears ubiquitously [544]. It, e.g., governs the temperature dependence
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Figure 11.5: In�uence of quenched dis-
order on universal quantities of an
AQS. Left axis, full circles: central charge
c, extracted from the part-chain entropy.
Right axis, open circles: critical exponent
ν, extracted from a collapse of the corre-
lations for di�erent chain lengths. Both
c and ν change with disorder, which can
lead to erroneously assigning the QPT to
an incorrect universality class. However,
the change begins smoothly.

of the free energy (Stefan�Boltzmann law), the Casimir e�ect in �nite geome-
tries, but also the scaling of the entanglement entropy of sub-regions of the
ground state of the corresponding quantum models. Models with di�erent cen-
tral charge have di�erent emerging collective behavior. For example, models
whose collective behavior is that of a free Majorana fermion (as in the disorder-
free transverse Ising model) have central charge c = 1/2, while models whose
collective behavior is that of a free boson have central charge c = 1.

Strictly speaking, the transverse Ising model has an underlying conformal
�eld theory only in the disorder-free case, but there have been e�orts to extract
an e�ective central charge also for the disordered model [537], e.g., from the
von Neumann entropy S of the reduced density matrix of a part of the chain
of size l. At criticality, this entropy scales (for open boundary conditions) as
[456, 545, 546]

S =
c

6
log (

L

π
sin(

lπ

L
)) +A, (11.5)

where A is a constant that is not important for our purposes. Using this scaling,
we extract c by �tting S for several subchain lengths l in a chain of size L =

300. We exclude small l to avoid boundary e�ects, and we use 10000 disorder
realizations. As seen in Fig. 11.5, an increase of disorder suppresses the e�ective
central charge, indicating the decrease of entanglement (this is also re�ected
in the decrease of correlations, see Fig. 11.2). Again, applying the analysis
that is correct in the disorder-free case without adjustments to the disordered
system yields results which deviate from the desired ideal case. Already a small
deviation of the central charge would indicate a completely di�erent universality
class.

Fortunately, for all the extracted static quantities (except the global simula-
tor �delity), the levels of disorder for appreciable changes to occur are at least
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a few percent. If the AQS can be operated below such a value, its results seem
to be robust, at least in this simple model system. In many experimental situ-
ations, one can hope to reach such low levels of disorder. Frequently, however,
changing parameters from the regime where validation via classical simulation
is possible to the regime of terra incognita might lead to uncontrolled disorder
or noise.

11.3 In�uence of disorder on quantum simulation
of dynamics

As described in the list of possible tasks for a QS on p. 11�., e�cient classical
algorithms for computing static properties of quantum systems are more devel-
oped than for computing dynamics (the di�culty arises mainly because entropy
and correlations grow rapidly with simulated time). Therefore, one can assume
that in the absence of disorder, a quantum simulation of dynamics can much
more easily outperform classical computers. Indeed, in a recent experiment
based on ultracold bosonic atoms, the controlled dynamics ran for longer times
than present classical algorithms based on MPS could e�ciently keep track of
[19]. We thus turn to the issue of how disorder a�ects the reliability of quantum
simulations of dynamics. Again, the dynamical behavior can be computed with
the Jordan�Wigner transform, as explained in Chapter 12.3. As with statics,
we investigate the behavior of the simulator �delity, but now also as a function
of time, initial state, and external driving.

Typically, we expect that the simulator �delity will decay with time, and
eventually reach an asymptotic �nite value. The e�ect of disorder in both the
decay rate and the asymptotic saturation value can, in general, be understood
from established techniques such as Fermi's Golden rule, and random matri-
ces [547]. On the other hand, the e�ect of the initial state and the external
driving is known to be nontrivial and of particular interest for our purposes.
For example, it is known that numerical techniques such as the time-dependent
density-matrix renormalization group (tDMRG) can simulate e�ciently the dy-
namics after a sudden quench of the �eld h, as long as the quench is restricted
to a few sites on the chain. However, if the quench is global, it has been shown
that the computational resources needed to keep a �xed amount of error grow
exponentially with time [548, 549]. Generically, solving for the dynamics of
a quantum many-body system is a hard problem for classical algorithms. Our
model is special because it can be solved exactly for all cases, although it remains
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hard for the tDMRG algorithm. We use this to our advantage to study how this
class of classical algorithms behaves when solving for quantum dynamics.

We studied the behavior of the full simulator �delity under the following
driving. As initial state we prepare the ground state of the Hamiltonian for a
given value of the external �eld. At time zero, the �eld is quenched instanta-
neously to a larger strength, and the system is allowed to evolve. In Fig. 11.6a-b,
we compare the short- and long-time behavior of the �delity for the case of a
global and a local (single-site) quench. The AQS keeps a high �delity in the case
of a local quench, while it performs poorly for the global quench, with �delities
reaching lows of 0.8 even for small systems of 50 spins. We also observe that
the AQS performs worse when the quench crosses the critical point, as shown
in Fig. 11.6c, where we �x the strength of the quench and vary the initial �eld
value.

The initial state can also have an e�ect on the e�ciency of classical algo-
rithms. Using the same setup with a global quench, but starting from a thermal
initial state, tDMRG becomes e�cient for high temperatures [548] where the
state and its correlations are almost classical. However, it becomes exponen-
tially ine�cient with time for low-temperature initial states. For initial thermal
states, we can still compute the dynamics exactly, although computationally
it becomes too expensive to calculate the full many-body �delity between the
evolved states. In this case, therefore, we focus on the reduced simulator �delity.
For the regimes of disorder that we studied, we observe that the time dependent
�delity decays with a rate roughly proportional to the strength of the disorder
squared (typical of a Fermi golden rule [547]). For this reason, we show in
Fig. 11.6a a rescaled form of the �delity, (1−f1)/r

2, that exempli�es the typical
behavior for all disorder strengths, as a function of time and temperature of the
initial state.

As with the classical algorithms [548], the AQS remains faithful when the
state is almost classical (high temperatures). The simulator �delity decreases
rapidly for low temperatures, although it saturates at a fairly high value. In
terms of distinguishability, the values we �nd imply that a fair observer would
have only a 4% chance of distinguishing the 1-spin reduced state of the AQS
from the ideal state. In the inset of the top panel we show the average asymp-
totic �delity as a function of temperature of the initial state. Again, for low
temperatures �delity worsens, but it saturates to a few percent. For high tem-
peratures, it is simple to perform an expansion of the �delity which shows that
f1 ≃ 1 − T −2.
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a) 

b) c) 

𝜏 

𝜏 

Figure 11.6: Simulator �delities for dynamics of a disorder-a�ected
AQS. (a) Evolution in time τ of the average reduced simulator �delity as a
function of the temperature of the initial state. The system is an Ising spin
chain of length 50, the initial state is a thermal state at criticality (λ = 1),
and at time zero the �eld is suddenly quenched to λ = 2. In the vertical axis,
we show the in�delity (one minus �delity) normalized by the disorder strength
r squared. For larger temperatures (where there are less correlations), the
state is more robust. In the inset, we show the average asymptotic in�delity
as a function of temperature. For large temperatures it decays as 1/T 2. (b)
Evolution of the full simulator �delity for an initial state equal to the ground
state at λ = 0.75 after a sudden quench to λ = 1.25. For a local quench in a
single site, �delity saturates rapidly at large values, but decreases strongly for a
global quench. (c) Asymptotic value of the total simulator �delity as a function
of the initial value of the �eld λ, with a �xed quench strength of δλ = 0.25.
The system is much less robust for global quenches and near criticality (λ = 1).
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11.4 Discussion and Outlook

A key issue for future investigation is the relationship between the robustness of
an AQS and its computational power. For the model we have considered here,
the physically relevant correlation functions are robust for a reasonable degree
of disorder. This suggests that such an AQS could perform well in a laboratory
demonstration. But, the transverse Ising model that we considered here is
simulatable on a classical computer. Is this connection between robustness and
classical simulatability coincidental, or does it re�ect a deeper relationship?

Disorder reduces the correlation length of the spin chain. Because less-
correlated quantum states can be described with fewer parameters, there is
reason to suspect that certain aspects of weakly disordered quantum many-
body systems could actually be easier to simulate on classical computers than
their clean idealized versions. This happens, for example, in the realm of digital
quantum computation, where a quantum circuit becomes classically simulatable
for noise above the level where quantum gates lose their entangling power [550�
552]. In the context of many-body physics, the success of DMRG in, e.g., 1D
spin chains, is rigorously related to the existence of e�cient MPS representa-
tions [456]. These take advantage of the small amount of quantum correlations
in such systems, thus compressing the O(exp(n)) parameters needed to describe
a general n-particle state to O(n) �nite-dimensional matrices (see also Chap-
ter 12.2). In higher-dimensional lattices, states which obey the so-called �area
law� [101, 553], where quantum correlations are smaller than in generic states,
may still be amenable to a classical simulation using state-of-the-art techniques
such as tensor networks [77, 79, 80, 409, 554], density-functional theory [84], or
quantum Monte Carlo [73].

We thus arrive at the fundamental question: Do the �nite imperfections of
an analog quantum simulator reduce the correlations, and thus the number of
parameters needed to describe the system, so as to render the device simulatable
by classical means? We know that for noise above certain levels a digital quan-
tum circuit is classically simulatable and for levels below a certain threshold it
can be rendered fault tolerant. Is there an intermediate regime for which noise
is too great to allow fault-tolerant universal quantum computation, but small
enough that an AQS accesses physics beyond classical simulation? The exis-
tence of an intermediate regime would imply that there exists a whole class of
problems outside P that we can access in the near future, even without a fully
functioning quantum computer.

The results we present here, in particular those for dynamics, are an initial
attempt � albeit in a trivial model � at understanding the above problem. We



262 11. Robustness of quantum simulators against disorder

can see how an AQS works well when a classical solution is e�cient, and wors-
ens (but only in a limited way) when the problem becomes classically hard to
simulate. Even though the underlying model is actually solvable, this may be
positive evidence for the existence of an intermediate regime of noise, and the
e�ciency of AQSs in more complex situations.

Our main discussion focused on AQSs, but similar issues pertain to DQSs.
Since to date there exists no known way to fault-tolerantly error-correct AQSs,
there is a natural tendency to explore the advantages of DQSs, where error
correction is possible. The above discussion shows, however, that a digital im-
plementation of a quantum simulation does not, in itself, guarantee an e�cient
and more powerful simulation than one that is carried out classically. As in
any quantum algorithm, initialization, evolution of the state, and measurement
must be performed e�ciently, i.e., with a polynomial use of physical resources
(space and time). Digital quantum simulation is no exception. Indeed, as dis-
cussed in Chapter 1.2, a fault-tolerant implementation of the standard approach
based on the Trotter expansion [106] comes at the cost of an overhead in the
number of gates and time required that grows exponentially with the degree of
precision [68], possibly letting the time needed for fault-tolerant, digital quan-
tum simulation explode [124]. If we can guarantee the reliability of AQSs while
avoiding such exponential costs, many open problems from all areas of physics
could suddenly come into the reach of being solved.

Finally, we can turn the problem of quantum simulation on its head and
ask, what does Nature do? For any real material, like a high-Tc cuprate, has
imperfections. Does Nature access highly correlated states that cannot be e�-
ciently simulated on a classical computer? Certainly, in some cases we believe it
does, as for example in high-Tc superconductors [5] or in certain ground states
of frustrated quantum antiferromagnets which are believed to carry topological
order [419]. If noise is low enough, does Nature protect quantum correlations
to a degree that classical methods cannot e�ciently represent the physically
interesting quantities? And, can we exploit this capability with a quantum
simulator? If Nature does it, we should take advantage of it!
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In the preceding parts of this PhD thesis, we have theoretically analyzed
possibilities as well as limitations for quantum simulation of selected many-body
models. To a large extent, the relevance for quantum simulation of systems as
these derives from the computational complexity of their many-body ground
states, preventing exact and e�cient classical calculations in many important
cases. From circumstances where such calculations can be carried out, we can
hope to derive universal features that can be carried over to more di�cult cases.
But even in cases where the results are only approximative, calculations allow
us to shape the expectations that we can have towards the quantum-simulated
systems: How will they most probably behave? Is it likely that they will host
fundamentally important properties?

To be useful, such theoretical analyses require accurate techniques. This is
the subject of the following chapters, where we describe methods that are espe-
cially useful in the context of (but not restricted to) trapped ions and ultracold
atoms in optical lattices. Instead of going into technical detail, we will motivate
the advantages and limitations of the methods used in the preceding chapters.
For a concise discussion of the possible tasks demanded from a quantum simu-
lator and how the di�erent methods perform therein, see also pages 11�.

We start in Chapter 12 by explaining some techniques that are (quasi-)exact,
but which have their own restrictions (be it due to the small system sizes treat-
able, due to being restricted to low dimensions, or due to biases towards slightly-
entangled states). In Chapter 13, we review mean-�eld methods which are more
approximative, but which can, e.g., treat very large systems and are not re-
stricted to low dimensions. In this sense, they have properties complementary
to the (quasi-)exact techniques. For another approach that falls into the cat-
egory of mean-�eld methods, Takahashi's modi�ed spin-wave theory [224], we
devote the separate Chapter 14. In that chapter, we also show the validity of
this method by computing ground-state phase diagrams of frustrated quantum
models relevant to magnetic compounds, and we discuss exotic quantum states
of matter that may be found in such materials.
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Chapter 12

(Quasi-)Exact methods

In this chapter, we review some of the most common (quasi-)exact methods used
to analyze phase diagrams of quantum many-body systems. We discuss �rst in
Sec. 12.1 exact diagonalization (ED), which allows to �nd the ground state
exactly but is restricted to very small systems. In Sec. 12.2 we review shortly
the quasi-exact density-matrix renormalization group (DMRG) methods, which
are a powerful tool to describe approximate ground states and dynamics in 1D
(and since recently also in 2D) with polynomial instead of exponential resources.
In Sec. 12.3, we sketch the Jordan�Wigner transformation, which allows to map
a certain class of one-dimensional spin models to free-fermion systems, which
can then be solved analytically.

12.1 Exact diagonalization

Naively, one might think that the best way to �nd the ground state of a many-
body system is to simply diagonalize its Hamiltonian. However, normally this
can be done only for very small systems. The problem results from the expo-
nential scaling of Hilbert space. For example, for a spin-1/2 Hamiltonian of N
lattice sites, counting all possible states, the Hilbert space dimension is given
by

DH(N) = 2N . (12.1)

This exponential scaling leads to drastic demands in terms of computational
memory capacities.
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To illustrate what this means: for N = 16 spins of length 1/2, a matrix with
DH ×DH = 216 × 216 = 4,294,967,296 complex entries has to be diagonalized.
This corresponds to 16Gb of RAM (assuming double precision), which may eas-
ily be stored in a modern computer. With only a couple of spins more, only
powerful supercomputers can o�er the required memory capacities. For exam-
ple, for 20 spins, 220 × 220 = 1,099,511,627,776 complex entries require already
4Tb of RAM. Hence, if no additional tricks are employed already, systems with
only around 20 lattice sites are too big for practical systematic investigations.
And with another few spins more, even the most powerful computers cannot
store the full Hamiltonian matrices into memory. (For example, with N = 24 one
arrives already in the petabyte range.) In many cases, we would, however, like
to characterize the behavior of models relevant for realistic solid state systems.
These can have on the order of 1023 degrees of freedom, which is essentially the
limit of an in�nite number particles, i.e., the thermodynamic limit. Even if the
exponential growth of computer resources from previous decades (the famous
Moore's law [555]) persists, the resulting improvement in terms of simulatable
system sizes is only incremental. It is therefore extremely unlikely that a simple
improvement of computer power can lead to ED of systems that are su�ciently
large so that its observables are close to the thermodynamic limit.

To overcome these limitations at least to some extent, several improvements
have been devised. A simple one is to take advantage of the sparse nature of
the Hamiltonian matrix (for short-range interactions) and only store non-zero
matrix elements, which considerably reduces memory requirements. Second, one
can often reduce the e�ective Hilbert space by introducing a suitable cut-o�.
In the Bose�Hubbard model (2.4), e.g., one typically restricts the maximally
allowed occupation of each site.1 This cut-o� can be justi�ed by the quadratic
growth of the interaction energy Un(n + 1) with the site occupation n. For
example, in the calculations of Chapter 10, we employed this cut-o� to reduce
the Hilbert space of an ensemble of bosons with on-site and dipolar interactions
to tractable sizes. The improvement achieved this way is, however, rather small.

More memory can be economized when the system Hamiltonian has some
symmetry, i.e., when there exists some operator Ô which commutes with the
Hamiltonian. In this situation, one can �nd a basis which consists of simulta-
neous eigenstates of the Hamiltonian and the operator Ô, and the Hamiltonian
matrix can be written in the form of independent blocks, each corresponding to
a subspace with de�nite eigenvalue of Ô. The problem then reduces to the sepa-

1Such a cut-o� is used in many numerical and analytical techniques, such as DMRG and
quantum Monte Carlo schemes, or the Gutzwiller mean-�eld Ansatz (see Chapter. 13.1).
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rate diagonalization of each block. This is especially convenient if it is known in
which sector one has to search for the ground state. We used this simpli�cation
for the spin models of Chapters 3, 7.7, and 14, where the system Hamiltoni-
ans contain only terms of the form Szi S

z
j and Sxi S

x
j + S

y
i S

y
j = (S+i S

−
j + S

−
i S

+
j )/2.

Both types of terms commute with the total magnetization, Ô = ∑i S
z
i , so that

our calculations could pro�t from working at �xed polarization. (Similarly, for
the calculations in Chapter 10.3.1, we worked at �xed �lling, Ô = ∑i n̂i, of an
extended Bose�Hubbard model.) Even more, separating the eigenstates of the
Hamiltonian Ĥ with regard to such a symmetry [Ô, Ĥ] has additional advan-
tages. A good example can be found in Chapter 3.2.3, where we classi�ed the
excitation spectrum of a frustrated spin Hamiltonian with respect to the mag-
netization. This allowed to estimate the order properties that the system will
attain at large sizes.

Another huge reduction of memory cost can be realized by never actually
storing the Hamiltonian matrix in memory. This can be done because of the way
the most e�cient ED algorithms, such as the Lanczos method [226], work. In
general, to �nd the largest eigenvalue of a matrix A, these algorithms iteratively
apply the action of A to a set of vectors. This procedure allows to extract the
(practically) exact eigenvectors of A with largest eigenvalues (except in patho-
logical cases, which can, however, be taken care of by careful implementation of
the algorithm). In our case, to �nd the ground state ψ (the state with largest
negative eigenvalue) of a quantum mechanical Hamiltonian Ĥ, one simply uses
A = −Ĥ (if the spectrum crosses the zero, a constant energy o�set may be nec-
essary to really arrive at the ground state and not the highest excited state).
Now, to �nd the ground state in these algorithms, all one needs is the action of
Ĥ on the vectors x of the Hilbert space, i.e., x′ = Ĥx, but not actually Ĥ itself.
For this, however, it is not necessary to actually store Ĥ into memory. Rather,
one can implement the action of Ĥ onto a wave-function by, e.g., using if- and
while-loops. Instead of a DH -dimensional matrix with DH ×DH entries, one
then only needs to store the DH entries of the wave function. Although this
method only allows to extract the few lowest-lying states, this is often su�cient,
as one often is only interested in the low-energy properties of a Hamiltonian.
On the down-side, the required loops can considerably increase the run times
of the algorithm. The starting vectors can be completely random, but substan-
tial speed-up of the convergence procedure can be achieved if one can use prior
knowledge. For example, if the ground state ψ(λ) at some point λ of the phase
diagram of Ĥ is known, one can obtain the ground state at a near-by point λ+δλ
by using ψ(λ) as the starting vector of the Lanczos optimization. This assumes
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that the state does not change much when proceeding from λ to λ + δλ, which
is a good assumption far away from quantum phase transitions (QPTs). Using
these improvements, modern ED can reach up to 40 lattice sites in spin-1/2
systems (see, e.g., the work by Richter and Schulenburg [556]).

From ED of such small systems, one can often learn surprisingly much about
the bulk behavior of a model Hamiltonian. This is especially true, if an adequate
�nite-size scaling is employed, which can allow to extract a wealth of informa-
tion about the thermodynamic limit [541]. Further, it is particularly valuable as
a complementary method to techniques as mean-�eld theory, which treat large
systems, but often under un-controlled approximations. This makes ED, despite
its limitations, an extremely valuable tool. Nowadays, sophisticated ED algo-
rithms are readily available based on open-source packages such as ARPACK
[557].

12.2 Density-matrix renormalization group
(DMRG) methods

As discussed in the previous section, ED is limited to very small systems, because
it essentially considers all possible states of the Hilbert space. New ideas �
inspired from quantum-information theory � have, however, in recent years led
to the understanding that actually physical states occupy only a small �corner� of
Hilbert space [75]. If one can �nd an e�cient representation of these physically
accessible states, then the computational resources needed for �nding ground-
states or describing time-evolution of strongly-correlated systems can decrease
drastically.

12.2.1 Matrix-product states (MPS) and DMRG

An e�cient representation of quantum many-body states can be derived by
considering the matrix-product states (MPS) formulation. For a system of N
lattice sites, any wave function can be written as

∣ψ⟩ = ∑
σ1,...,σN

Aσ1Aσ2 . . .AσN−1AσN ∣σ1, . . . , σN ⟩ , (12.2)

where the Aσi are matrices (Aσ1,N are vectors) encoding the information of
the dloc-dimensional local state spaces σi (for a spin-1/2 system: dloc = 2 and
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σi =↑, ↓). In all generality, the maximal dimension of the Aσi is dN/2−1
loc ×d

N/2
loc ,2 so

that in principle the matrices A blow up exponentially with the system size N ,
which is the same problem as faced in ED. However, it turns out that in several
physically relevant Hamiltonians the exact ground state is a MPS with small di-
mension, such as in the AKLT model [558] or the Majumdar�Ghosh chain [559].
In other cases, as long as the system ful�lls the so-called area laws [101, 553],
the singular values of the Aσi decay exponentially [101, 560]. Therefore, one can
retain only theD largest singular values (the so-called bond dimension) while as-
suring exponential precision, thus allowing to e�ciently represent ground states
within well controlled error bounds.

In general, the accuracy of this representation is connected to the eigenvalue
spectra of reduced density operators, implying that a decrease of D limits the
amount of entanglement present in the system, which means that good knowl-
edge of the entanglement properties of quantum many-body states is necessary.
In this light, insights from the quantum-information perspective have shown
that standard MPS methods are less e�cient at QPTs and in critical phases,
where correlations decay algebraically, and that in two dimensions unrealisti-
cally large bond dimensions become necessary. Therefore, MPS methods are
particularly successful in one dimensional gapped systems, where already rela-
tively small values of D are su�cient for extremely good accuracy. To give an
example (described in Chapter 7), we used this representation to compute the
ground state of a long-range interacting spin chain with over a hundred sites.

To �nd the ground state within the MPS representation, one typically uses
iterative algorithms which start from a random MPS, apply the action of the
Hamiltonian on it, and then truncate the new MPS again to bond dimension D.
This procedure is, in fact, closely connected to the DMRG method [561�565].
In these renormalization methods, one starts from a small 1D chain that can
be exactly diagonalized. Then, a new lattice site is added, the Hamiltonian
that couples the new site to the chain is renormalized by disregarding all physi-
cally irrelevant couplings, and the resulting Hamiltonian is diagonalized. This is
repeated iteratively until convergence [409, 566]. Östlund and Rommer demon-
strated that, if the renormalization converges to a �xed point, the attained
quantum states in the thermodynamic limit (with periodic boundary condi-
tions) can be represented by a MPS [561]. Due to this connection, the names
MPS and DMRG are often used interchangeably for these techniques. The cur-
rent body of knowledge concerning the use of these techniques has reached very

2Which Aσi attains the maximal dimension depends on the decomposition used to reach
the matrix-product representation.
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sophisticated levels. For a recent pedagogical review, see, e.g., the article by U.
Schollwöck [75].

Renormalization group methods have also been generalized to in�nite sys-
tems, as for example in the in�nite time-evolving block-decimation (iTEBD)
method [412]. This method exploits the translational invariance of most quan-
tum many-body models and the possibility to parallelize the local updates of the
renormalization procedure (instead of sweeping through the chain, as is done in
conventional DMRG algorithms). This allows the treatment of quantum many-
body models directly in the thermodynamic limit. An example where we used
the iTEBD method can be found in Chapter 7.

12.2.2 Limitations of MPS in 2D and their extension to
PEPS

In dimensions larger than one, the DMRG algorithm is unpractical, as the bond
dimension D needed to accurately represent the ground state can become ex-
tremely large. This can be understood from the area law [101, 553], which states
that � under quite general circumstances � the entanglement between a block
of spins and its environment scales as the boundary of the block. In one dimen-
sion, this boundary is a single site, while in two dimensions it is a chain of spins.
The number of relevant degrees of freedom D that have to be retained grows
exponentially with this boundary, so that calculation in two dimensions become
much more problematic. Despite this restriction, recent years have seen spec-
tacular progress in applying DMRG methods to 2D (see especially the works by
S. White and coworkers [78, 238, 567, 568]). This is mainly possible by comput-
ing the ground states in quasi-one-dimensional ladder geometries followed by a
�nite-size scaling. Still, the restrictions in memory are considerable, since such
a procedure forces the method to work outside of its natural �habitat.�

A more natural representation to overcome these restrictions has been de-
veloped in recent years, the so called projected entangled-pair states (PEPS)
[554, 569�572]. These can be understood as a natural extension of MPS to ar-
bitrary dimensions, which are therefore � even in 2D � quite accurate already
at small bond dimension D. Examples can be found in Chapters 3.2 and 14.2,
where we used the PEPS algorithm to characterize the ground-state phase di-
agram of strongly frustrated spin systems. For such frustrated systems, PEPS
are particularly suited as the standard method of choice for 2D, QMC, fails due
to the famous sign problem [73].
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12.2.3 Limitations of MPS at criticality and MERA

Another weak point of standard MPS algorithms are QPTs or critical phases,
where correlation lengths diverge [435]. This implies that entanglement at large
distances is important [457], and the truncation in the MPS has to be done at
high levels. This means that MPS methods perform worst precisely at the most
interesting points of a phase diagram.

To overcome this limitation, in recent years the multiscale entanglement-
renormalization Ansatz (MERA) has been developed [532, 533]. This is a quasi-
exact variational method which in particular yields especially good results in
critical phases. It consists in postulating a layered tensor-network structure
for the low-energy states of the studied Hamiltonian. (MPS methods can be
understood as such a tensor network with a single layer.) The tensor network
T has the following properties. (i) It is built from elementary tensors belonging
to two di�erent families, isometries Ii and disentanglers Di that are isometric,

IiI
�
i = I , DiD

�
i = I . (12.3)

(ii) The tensor network T has a layered structure, T = ∏i Ti, such that each layer
Ti performs an entanglement-renormalization transformation [573, 574] from a
lattice Li with lattice spacing di to a lattice Li+1 with spacing di+1 = ndi, where
n is an integer. Property (ii) is at the origin of the ability of the MERA to
describe in�nite critical states with �nite computational resources. Symmetries
of the Hamiltonian can be encoded in the structure of the tensors. For example,
in order to encode translational invariant states of chains with periodic bound-
ary conditions, one uses inside each layer the same isometry and disentangler
as many times as required to complete the entanglement-renormalization trans-
formation from the lattice Li to the lattice Li+1. When all the isometries and
disentanglers inside a given layer are chosen to be the same, the factor n not
only characterizes the blocking factor of the entanglement-renormalization pro-
cedure (we call this an n to 1 MERA) but it also de�nes the size of the unit
cell of the state.

In particular, we used MERA to study modi�cations of extended Hubbard
models by strong dipolar interactions, as presented in Chapter 10.3.2 . In that
model, ED indicates the presence of checkerboard (CB) patterns in some parts
of the phase diagram, which suggests that we need an Ansatz that can naturally
encode at least a unit cell of two sites. This can be accomplished by a 2 to 1
MERA, i.e., by blocking two sites into one at each step of the entanglement-
renormalization procedure. However, this MERA is computationally more ex-
pensive than the 3 to 1 MERA. Unfortunately, the translationally invariant 3
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Figure 12.1: 4 to 1 MERA. Tensors Ii (isometries) and Di (disentanglers)
are represented by circles with trailing legs representing their indices. Lines
connecting two tensors represent tensor contractions over the involved indices.
(i) The tensors are chosen such as to ful�ll the isometry constraints (12.3).
(ii) A layer Ti of the 4 to 1 MERA tensor network T that maps operators and
states de�ned on a lattice Li with lattice spacing di to operators and states
de�ned on a lattice Li+1 with lattice spacing 4di [532].

to 1 MERA does not easily accommodate a CB pattern, whence we choose a
4 to 1 MERA that both naturally accommodates the two-site unit cell of a
CB phase and reduces the computational cost of the 2 to 1 MERA [533]. In
Fig. 12.1ii, we show a layer of the TN structure for the 4 to 1 MERA that we
used in our calculations. Similarly to DMRG methods, MERA has a re�nement
parameter mr, larger values of which provide more accurate results but imply
larger simulation time, because the complexity of the algorithm is O(m5

r) in
memory and O(m8

r) in the number of operations per iteration [533]. However,
modest values of mr, such as mr = 8, are often enough to acquire qualitatively
correct results.

This results in an exponential speed-up compared to ED, combined with
excellent accuracy. This advantage makes MERA and related methods such as
TEBD and MPS, as well as their extension to 2D, PEPS, enormously useful
tools for the analysis of strongly-correlated quantum systems.
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12.3 The Jordan�Wigner transformation

In some particular cases, exact analytical results exist to solve the ground-
and even excited-state behavior of a quantum many-body system. Whereas
these are rare exceptions (and typically only work in 1D), they often serve to
benchmark numerical techniques, and one can hope that insights derived from
such analytical solutions carry over to a larger family of similar models.

One example of such an exact analytical solution is given by the celebrated
Jordan�Wigner transformation. It allows to solve a particular class of 1D spin
systems, the nearest-neighbor (NN) XY model in a transverse �eld, and works
even if the model is disordered [435]. This XY model is described by

Ĥ = −
N

∑
j=1

Jj [
1 + γ

2
σxj σ

x
j+1 +

1 − γ

2
σyj σ

y
j+1) +

N

∑
j=1

λjσ
z
j , (12.4)

where σ are the usual spin-1/2 Pauli matrices, and γ interpolates between XX
and Ising couplings. Via the Holstein�Primako� transformation (3.2), the XX
model (which is often equally called XY model) is equivalent to a system of
hard-core bosons, such as bosonic atoms in optical lattices with strong contact
interactions.

The main idea of the Jordan�Wigner transformation is to map the spin
degrees of freedom to a system of free fermions, which can then be solved ana-
lytically (meaning in this context that a matrix has to be diagonalized, the size
of which grows at most polynomially with the chain length).

The mapping to fermionic operators is inspired by the fact that spins ful-
�ll fermionic commutation relations on site, i.e., {σ+j , σ

−
j } = 1 and {σ+j , σ

+
j } =

{σ−j , σ
−
j } = 0. For di�erent sites, however, this is not true, since one has

[σ+j , σ
−
j ] = [σ+j , σ

+
j ] = [σ−j , σ

−
j ] = 0. Hence, a simple identi�cation of spin op-

erators with fermionic operators is not possible. The basic insight of Jordan
and Wigner [575] was that such a mapping between spins and Fermions can
be achieved if the non-local operator ∏m<j eiπσ

+
i σ

−
i is included. The correct

transformation that retains the spin commutation relation is then de�ned by

f̂j = ∏
m<j

eiπσ
+
mσ

−
mσ−j (12.5a)

f̂ �j = σ+j ∏
m<j

eiπσ
+
mσ

−
m , (12.5b)

where the f̂j are now spinless fermion operators. Inserting the inverse relations
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σ+j = f̂ �j

j−1

∏
m=1

(1 − 2f̂ �mf̂m) , (12.6a)

σ−j =

j−1

∏
m=1

(1 − 2f̂ �mf̂m) f̂j , (12.6b)

σzj = 2f̂ �j f̂j − 1 (12.6c)

(where we have used eiπσ
+
mσ

−
m = 1− 2f̂ �mf̂m) into Hamiltonian (12.4), one arrives

at the NN, free-fermion (i.e., quadratic in fermion operators) Hamiltonian

Ĥ = ∑
ij

[f̂ �i Aij f̂j + (f̂ �i Bij f̂
�
j + h.c.)] −

1

2
∑
j

Ajj , (12.7)

where

Aij = −Jj (δj,i+1 + δj,i−1) − 2λiδj,i , (12.8a)

Bij = −Jjγ (δj,i+1 − δj,i−1) . (12.8b)

Here, the relationship (1 − 2f̂ �mf̂m) (1 − 2f̂ �mf̂m) = 1 has canceled all non-local

terms (to see this, use the fermionic commutation relations together with f̂mf̂m =

f̂ �mf̂
�
m = 1).
Hamiltonian (12.7) can now be diagonalized to

Ĥ =
N

∑
k=1

Λkη̂
�

kη̂k +E0 , (12.9)

where Λ = Φ (A −B)Ψ⊺ is diagonal, and where E0 = −Tr (Λ) /2 is a constant
energy o�set. Λ, Φ, and Ψ can be obtained from the singular value decompo-
sition of Z ≡ A −B. The normal modes are η̂k = ∑

N
j=1 (gk,j f̂j + hk,j f̂

�
j ), where

g = (Φ +Ψ) /2, and h = (Φ −Ψ) /2. From this, one can in principle compute all
observables of interest.

For example, the excitation spectrum, including the gap ∆ to the �rst excited
state, is simply contained in the normal mode spectrum Λk. Other important
observables, such as ground-state expectation values, can be computed using
the fact that the ground state ∣ψ⟩ of Hamiltonian (12.9) is the vacuum of the
normal modes (i.e., η̂k ∣ψ⟩ = 0, ∀k). For the ZZ-correlations, for instance, this
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yields

C(i, j) ≡ ⟨ψr ∣σ
(i)
z σ(j)z ∣ψr⟩ − ⟨ψr ∣σ

(i)
z ∣ψr⟩⟨ψr ∣σ

(j)
z ∣ψr⟩

= 4⟨ψr ∣f̂
�
i f̂if̂

�
j f̂j ∣ψr⟩ − 4⟨ψr ∣f̂

�
i f̂i∣ψr⟩⟨ψr ∣f̂

�
j f̂j ∣ψr⟩

= 4 (h⊺h)
ij

(g⊺g)
ij
− 4 (h⊺g)

ij
(g⊺h)

ij
. (12.10)

Unfortunately, the Jordan�Wigner transformation allows only the exact so-
lution of a very restricted class of spin models. For one, the non-local operators
∏
j−1
m=1 (1 − 2f̂ �mf̂m) only cancel for NN spin�spin interactions. Including next

NN interactions leads to a system of interacting fermions (i.e., the Hamilto-
nian includes terms quartic in the fermion operators), which cannot be solved
analytically. Similarly, the standard Jordan�Wigner transformation fails in di-
mension higher than one, although there are many e�orts to generalize it to
higher dimensions (see, e.g., the work by Verstraete and Cirac [576]; for a brief
review of other such attempts, see also Chapter 19 in A. Tsvelik's book [577]).
Still, the specialized class of models the Jordan�Wigner transform can solve is
quite fundamental, and one hopes that results derived for them are of universal
nature.

Interestingly, the Jordan�Wigner and Holstein�Primako� transformations,
Eqs. (12.6) and (3.2), imply that, in 1D, there is no fundamental di�erence
between spins, fermions, and hard-core bosons. The crossover from bosonic
to fermionic behavior upon increasing repulsion has been nicely shown � more
than 40 years after the theoretical analysis by M. Girardeau [578] � in the recent
ultracold-atoms experiments in I. Bloch's group [579].

In this thesis, we applied the Jordan�Wigner transformation to compare the
results of an ideal AQS simulating the XY model (12.4) to the performance of
a real-world, disorder-a�ected AQS (Chapter 11). Meaningful observables for
this purpose are the global simulator �delity F (the overlap to the disorder-free
ground state) and reduced simulator �delities.

Ground-state �delities. In general, the overlap between the ground states
of two realizations of Hamiltonian (12.7), parametrized by Z and Z̃, is [530]

F (Z, Z̃) =

√

det
1 + T −1T̃

2
, (12.11)

with T = (Φ−1ΛΦ)
−1
Z. We de�ne the simulator �delity F as the overlap at

�xed λ between the ideal, disorder-free state and the state at disorder strength
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r,
F (r, λ) ≡ F (Z(λ)r, Z(λ)0) . (12.12)

This is a global quantity. In our analysis of the disorder-a�ected QS, one can
expect that local observables are more robust. A measure for the change of local
quantities is the single-site simulator �delity

f1(r, λ) =
L

∑
i=1

tr

√√

ρ̂
(0)
i (λ)ρ̂

(r)
i (λ)

√

ρ̂
(0)
i (λ) , (12.13)

where ρ̂(r)i = trC/{i}ρ̂ is the reduced density matrix of site i under disorder r,

and ρ̂
(0)
i is the one in the disorder-free case. Here, C/ {i} denotes the chain

without spin i. Since one can expand ρ̂i = 1
2
(I +∑µ=x,y,z ⟨σ

µ
i ⟩σ

µ), the single-
site reduced density matrix is completely determined by the expectation values
of σµi . In Chapter 11, we also analyzed the NN two-site simulator �delity

f2 =
L

∑
i=1

tr

√√

ρ̂
(0)
i,i+1(λ)ρ̂

(r)
i,i+1(λ)

√

ρ̂
(0)
i,i+1(λ) . (12.14)

Here, ρ̂(r)i,i+1 = trC/{i,i+1}ρ̂ is the reduced density matrix of sites (i, i + 1) under

disorder r, and ρ̂(0)i,i+1 is the one in the disorder-free case.

Time dependent �delities. For time evolution, we distinguish between the
zero- and �nite-temperature �delities, although the underlying technique is the
same. We start by rewriting the fermionic Hamiltonian (12.7) as

Ĥ =
1

2
⃗̂
Ψ�

⋅H ⋅
⃗̂
Ψ, (12.15)

where ⃗̂
Ψ� = (f̂ �1 , ..., f̂

�
N , f̂1, ..., f̂N) is a length-2N vector composed of all creation

and annihilation operators present in Ĥ, and H = A⊗σz + iB ⊗σy is a 2N × 2N
matrix with complex coe�cients.

For computing �delities, we use the convenient Levitov's formula [580, 581],
which relates traces of operators in the Hilbert space of the fermions to de-

terminants of much smaller matrices (like H). For example, let P̂ =
⃗̂
Ψ� ⋅ P ⋅

⃗̂
Ψ

and Q̂ =
⃗̂
Ψ� ⋅ Q ⋅

⃗̂
Ψ be two operators in the space of fermions, with P and Q

complex-valued 2N × 2N matrices. Then,

Tr(eP̂ eQ̂) = det (1 + ePeQ) . (12.16)
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Similar formulas hold for a larger or smaller number of operators.
In the zero-temperature case, when the initial state remains pure after evo-

lution, the �delity takes the form of an overlap

F = ∣ ⟨ψ0(t)∣ψr(t)⟩ ∣, (12.17)

where ∣ψ0(t)⟩ = e
−iĤ0t ∣ψ0⟩ is the initial state evolved with the target Hamilto-

nian of the simulation, Ĥ0, and ∣ψr(t)⟩ = e
−iĤrt ∣ψ0⟩ is the same state evolved

with an imperfect Hamiltonian Ĥr = Ĥ0 + rV̂ . Rewriting the �delity,

F = Tr ρ̂0e
iĤrte−iĤ0t, (12.18)

with ρ̂0 = ∣ψ0⟩ ⟨ψ0∣, we can use Levitov's formula and obtain

F = det (1 −G0 +G0e
iHrte−iH0t) , (12.19)

with G0 = ⟨ψ0∣ Ĝ ∣ψ0⟩, and Ĝ the correlation matrix of the original fermionic
operators, Ĝi,j = Ψ̂�

i Ψ̂j .
If the initial state is not pure but a thermal state, the state remains mixed

even if the evolution is unitary. In this case, we cannot compute the �delity for
the full many-body state, but only the �delity of the reduced density matrix
for a few spins. For this we must evaluate the correlation functions of the
Pauli operators at di�erent sites of the chain. For the case of a single spin, the
symmetry of the system ensures that at all times the reduced density matrix can
be written as ρ̂ = (1 + ⟨σix⟩σ

i
x)/2. Since ⟨σix⟩ = ⟨f̂ �i f̂i⟩, we only need to compute

the evolution of the diagonal terms in the G correlation matrix.
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Chapter 13

Mean-�eld methods

Nowadays, a large variety of approximative analytical methods exists that are
complementary to (quasi-)exact methods. Many of these analytical techniques
have reached excellent levels of re�nement, allowing to not only form intuition
but also to obtain quantitatively reliable predictions at strongly reduced cost in
terms of numerical resources. In this respect, mean-�eld approaches are partic-
ularly widely used, because they give � despite their simple implementation �
good qualitative and even quantitative results.

The unifying concept behind mean-�eld theories is to neglect some kind
of correlations, thus typically decoupling higher-order expectation values into
products of lower order. A simple example is the �rst mean-�eld theory, the one
of magnetism introduced by P. E. Weiss. It treats Hamiltonians of the form

Ĥ = J ∑
⟨ij⟩
SiSj + h∑

i

Si , (13.1)

where J denotes the coupling between spins Si and Sj occupying neighboring
sites i and j, and h is an external magnetic �eld. To �nd an approximation to
the ground state, one decouples interaction terms between spins as

∑
⟨ij⟩

⟨SiSj⟩ → ∑
⟨ij⟩

⟨Si⟩ ⟨Sj⟩ . (13.2)

The energy

E ≡ ⟨Ĥ⟩ = ∑
i

⟨Si⟩
⎛

⎝
h + J ∑

jNN i

⟨Sj⟩
⎞

⎠
(13.3)
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can now be minimized in a self-consistent way. As the expression for E shows,
the decoupling (13.2) amounts to regarding spin Si as sitting in a magnetic
�eld generated by the external �eld h plus a NN contribution, the �mean �eld�
∑jNN i ⟨Sj⟩ (also called �molecular �eld�). Historically, mean-�eld theory was
for a long time the only theory of phase transitions. Since its beginnings, it has
been generalized to a great number of applications, and even today mean-�eld
theory is typically the �rst tool to sort out the essential physics when confronted
with an unexplored many-body problem.

The reliability of mean-�eld theory increases with the dimensionality of the
system (in four dimensions, it gets exact for conventional systems with short-
range interactions), but many re�nements have been devised to improve its
performance also in low dimensions. As a big advantage, many formulations of
mean-�eld theory work naturally in the thermodynamic limit so that one can
nicely confront their approximate results on large systems to, e.g., ED results
on small systems. It is tempting to accept features that appear in both limits
as the true behavior of the model under consideration.

In this chapter, we discuss several mean-�eld methods which are useful for
treating ultracold atoms in optical lattices. First, in Sec. 13.1, we discuss the
Gutzwiller mean-�eld Ansatz (GMFA), which is one of the most simple mean-
�eld methods, entirely neglecting correlations between sites. Despite its simplic-
ity, this Ansatz exactly solves the Bose�Hubbard model (2.4) at integer �lling in
the limit of in�nite interactions U/t → ∞, where the system is perfectly Mott-
insulating. A related method is to start from the insulating ground state of
U/t →∞ and take tunneling terms t into account perturbatively (the so called
strong-coupling expansion). As a simpli�cation, the tunneling terms can then
be treated � in the so called perturbative mean-�eld theory (PMFT), discussed
in Sec. 13.2 � at a mean-�eld level. This technique allows to trace an upper
limit for the insulating phase, and also allows to �nd meta-stable insulating
states in a straightforward fashion. Finally, we discuss a method valid in the
opposite limit of weak interactions, namely an expansion in the �uctuations of
a Bose�Einstein-(quasi-)condensate due to Mora and Castin [262] (Sec. 13.3).
Contrary to GMFA and PMFT, this method is valid if correlations do not decay
too rapidly, which in 2D is the case at low temperatures and weak interactions.
For another mean-�eld Ansatz, the modi�ed spin-wave theory, which we used
extensively for our calculations presented Chapter 3, we reserve the separate
Chapter 14.
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13.1 The Gutzwiller mean-�eld Ansatz

Maybe the simplest mean-�eld method, the Gutzwiller mean-�eld Ansatz
(GMFA) [582, 583], is � despite its conceptual and numerical simplicity � a
reliable tool to get a qualitative picture of ground-state phase diagrams of
many-body systems. In particular, it predicts quite correctly the quantum crit-
ical points separating the Mott phase from the SF phase in the Bose�Hubbard
model in 3D, or even in 2D. Its accuracy, however, decreases dramatically for
1D systems.

13.1.1 General formalism

A relatively general model amenable to a treatment with the GMFA is the
extended Bose�Hubbard Hamiltonian,

Ĥ = −∑
ij

tij b̂
�
i b̂j +∑

i

Ui
2
n̂i (n̂i − 1) +∑

ij

Vij n̂in̂j +∑
i

µ n̂i . (13.4)

Here, b̂i (b̂
�
i ) annihilates (creates) a boson at site i, and n̂i = b̂

�
i b̂i is the corre-

sponding number operator; tij denotes the tunneling amplitude between sites i
and j, µi is the chemical potential controlling the �lling, Ui the on-site interac-
tion, and Vij an o�-site interaction. The GMFA can be applied in a straight-
forward manner to systems with long-range interactions Vij or tunnelings tij ,
where other methods such as DMRG become considerably more complex. Such
models are relevant to, e.g., dipolar atoms in optical lattices (Chapter 10) or
trapped-ion quantum simulations of spin systems (Chapter 7).

In its simplest version, the GMFA is based on neglecting correlations between
di�erent sites, i.e., it approximates the many-body wave function by a product
over single-site contributions

∣ψGMFA⟩ =⊗
i

nmax

∑
n=0

f (i)n ∣n⟩i . (13.5)

Here, ∣n⟩i denotes the Fock state of n atoms in the i-th lattice site with its

corresponding amplitude f (i)n ; nmax is a (system-size independent) cut-o� for

the number of atoms per site. The amplitudes are normalized to ∑n ∣f
(i)
n ∣

2
= 1.

One can �nd the variational ground state of Hamiltonian (13.4) within this
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Ansatz by minimizing its energy expectation value,

E ≡ ⟨Ĥ⟩ = −∑
ij

tij ⟨b̂
�
i ⟩ ⟨b̂j⟩ +∑

i

Ui
2

⟨n̂i (n̂i − 1)⟩ +∑
ij

Vij ⟨n̂i⟩ ⟨n̂j⟩ +∑
i

µ ⟨n̂i⟩ .

(13.6)
Inserting the expectation values

⟨b̂i⟩ =
nmax−1

∑
n=0

√
n + 1f

(n)∗
i f

(n+1)
i , and (13.7a)

⟨n̂qi ⟩ =
nmax

∑
n=0

nq ∣f
(n)
i ∣

2
, (13.7b)

we obtain

E = −∑
ij

tij
nmax−1

∑
n,n′=0

√
n + 1

√
n′ + 1f

(n)∗
i f

(n+1)
i f

(n′)∗
j f

(n′+1)
j (13.8)

+∑
i

nmax

∑
n=0

[
Ui
2

(n − 1) + µ]n ∣f
(n)
i ∣

2
+∑
ij

Vij
nmax

∑
n,n′=0

nn′ ∣f
(n)
i ∣

2
∣f
(n′)
j ∣

2
.

The variational ground state can now be found by minimizing E with respect
to the f (n)i . A convenient way to do this is via the Schrödinger equation,

Ĥ ∣Ψ⟩ = i
∂

∂t
∣Ψ⟩ . (13.9)

Multiplying from the left by ⟨Ψ∣, we can rewrite it in the form

E = i ⟨Ψ∣
∂

∂t
∣Ψ⟩ = i⊗

i
∑
n

f
(n)∗
i ⟨n∣i ∑

l

⊗
j≠l
∑
n′
f
(n′)
j ∣n′⟩j ⊗∑

n′′
ḟ
(n′′)
l ∣n′′⟩l . (13.10)

Invoking ⟨n∣i ∣n
′⟩i = δn,n′ and the normalization of the f (n)i , this yields

E = i∑
l

∑
n

f
(n)∗
l ḟ

(n)
l , (13.11)

and therefore, taking the functional derivative of E,

δE

δf
(n)∗
l

= iḟ
(n)
l . (13.12)

Finally, expressing the left-hand side in terms of the f (n)i , using the expectation
value of the energy (13.8), gives a self-consistent equation for the amplitudes
f
(n)
i . This equation can be solved by imaginary-time evolution, leading to the
Gutzwiller variational ground state.
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13.1.2 Example: standard Bose�Hubbard model

As an example, let us consider the homogeneous NN Bose�Hubbard model,
corresponding to Eq. (13.4) with tij = 0 ∀ ∣i − j∣ > 1, Ui ≡ U , and Vij ≡ 0. At
an integer number of particles per site n0, this model undergoes the SF to MI
transition. In the GMFA, this is identi�ed as the point t/U = (t/U)c where
the SF order parameter ⟨b̂i⟩ becomes �nite. For t/U < (t/U)c, the amplitudes
are f (i)n = δn,n0 (resulting in ⟨b̂i⟩ = 0), implying that the wave function is a
single Fock state, ∣ψGMFA⟩ = ∣n0, n0, ...⟩. Hence, the Gutzwiller wave function
reproduces the exact behavior in the limit t/U → 0. It is also possible to argue
that the di�erences between the exact result and the GMFA (13.5) are negligible
in the limit of a large lattice and t/U →∞ [584]. Therefore, one may hope that
the GMFA also reasonably interpolates between these two extreme limits and
gives a qualitatively reliable overview of the entire phase diagram.

To quantitatively evaluate the reliability of the GMFA, we compare its pre-
dictions for the SF�MI transition to other, more sophisticated methods. Ac-
cording to the GMFA, the critical point (t/U)c for the n0 = 1 MI�SF transition
is located at 1/(5.8z) [584]. Here, the dimensionality of the system only enters
via the coordination number z (i.e., the number of NNs). A comparison of
the critical tunneling with precise predictions from state-of-the-art-methods is
displayed in Table 13.1a. In 3D, the agreement is satisfactory (considering the
simplicity of the GMFA), but in 1D there are huge discrepancies.

This is mainly due to the fact that mean-�eld lobes such as predicted by the
GMFA are always rounded o� at their tip, as can be seen in the color data of
Fig. 13.1b. In 2D and 3D, this behavior is correct, but in 1D the true lobes have
strongly pointed cusps, as can be seen in the data from Freericks and Monien
(black lines and dots in the foreground of Fig. 13.1b) [411]. Due to this property,
the tip of the lobe actually extends to much larger values than predicted by the
GMFA.

13.1.3 Advantages and limitations

Despite its limitations, the Gutzwiller Ansatz is attractive for a number of rea-
sons. First, the numerical demand is quite low and convergence is achieved
easily as long as the system is reasonably homogeneous and metastable states
do not hinder reaching the ground state (these can become problematic, e.g., in
extended Bose�Hubbard models such as encountered in Chapter 7). In homo-
geneous situations, since the Gutzwiller Ansatz does not host any correlations
between sites, there is no length scale in the system and calculations for a single
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a)

z GMFA benchmark
value

3D 6 0.0287 0.034

2D 4 0.0431 0.061

1D 2 0.0862 0.29
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b) 

Figure 13.1: Benchmarking GMFA. Table (a) Comparison of GMFA
predictions to state-of-the-art results, for the critical point of the n0 = 1
SF�MI transition on a cubic lattice (coordination number z). In 3D GMFA
performs satisfactorily, while in 1D huge discrepancies become apparent. The
reference results are as follows. 3D: perturbative expansions [411] and QMC
[585], 2D: QMC [586], 1D: DMRG [587]. Figure (b) Mott lobes with n0 = 1
and 2 for the 1D Bose�Hubbard model. The GMFA (color data) traces
reliably the boundaries of the Mott lobes for low tunneling t/U , but at their
tips the lobes are rounded o�. The true lobes are pointy as shown by the green
data in the foreground, taken from Freericks and Monien [411] (dashed and
solid lines: 3rd order strong-coupling expansion and extrapolation to in�nite
order; dots: QMC from Batrouni and Scalettar [588]).
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site correspond already to the thermodynamic limit (i.e., if there are no density
waves, in which case one has to take as many sites as needed to accommodate the
periodicity of the ground state). For inhomogeneous situations, the simplicity
of the GMFA still allows to treat extremely large lattices. For instance, calcula-
tions in experimentally realistic three-dimensional systems of ultracold atoms,
including trapping potentials, have been done for up to 653 lattice sites [589].
Second, the Gutzwiller approach can be easily extended to a variety of systems,
such as Bose�Bose [590, 591] or Bose�Fermi mixtures [592�594], systems with
long-range interactions (see Chapters 7 and 10), or occupation-dependent terms
(Chapters 9 and 10). It even allows to treat time-dependent problems [590].

However, the simplicity of the GMFA also leads to a variety of problems. For
example, only in the limit t/U = 0 is the Mott insulator really given by a single
Fock state ∣ψ⟩ = ∣n0, n0, ...⟩. At �nite t/U ≠ 0, there are correlations between
sites, and the Mott insulator acquires small occupation-number �uctuations.
Another drawback of the Ansatz (13.5) is the missing distance-dependence of
correlations. This implies a vanishing correlation length, which should, how-
ever, diverge close to a QPT. This consideration shows that one cannot expect
quantitatively reliable results close to such quantum critical points. In fact,
being a mean-�eld theory, the GMFA always predicts mean-�eld exponents for
the universal critical behavior of the system. Related to this, the Gutzwiller
approach in general underestimates �nite-size e�ects. For instance, it predicts
QPTs in systems of any size, while these can � strictly speaking � only occur
in the thermodynamic limit. Also, GMFA is usually formulated in the grand-
canonical ensemble, because it is not simple to apply it in the canonical ensemble
with �xed number of particles. This problem can be solved by a projection of
the Gutzwiller wave function (13.5) onto the subspace of �xed atom number
[583, 590], but the subsequent calculations become more complicated. Finally,
while the ground-state phase diagram can be obtained easily, the calculation of
excited states is not possible in the standard Gutzwiller formalism.

While there exist various improvements over the GMFA, for the purpose
of quickly reaching an intuitive understanding, it proved to be su�cient in a
variety of systems treated in this thesis (see Chapters 4, 6, 7, and 9).

13.2 Perturbative mean-�eld theory

Another mean-�eld method that works well at small tunneling is the perturba-
tive mean-�eld theory (PMFT). It is a relatively simple analytical tool which
can give upper bounds for critical points between insulating and SF phases.



288 13. Mean-�eld methods

However, it is not the method of choice to predict further properties of the
involved phases, such as correlations or the precise values of order parameters.

Let us exemplify how this Ansatz works at the example of the extended XXZ
model,

Ĥ = ∑
i<j
Jij [S

z
i S

z
j + λ (S xi S

x
j + S

y
i S

y
j )] − h∑

i

S zi , (13.13)

where h is a magnetic �eld, and the S αi are spin-operators at site i. We have
analyzed this Hamiltonian in detail in Chapter 7 (where Jij = cos θ/ ∣i − j∣

3,
λ = tan θ, h = µ/ cos θ).

Within PMFT, one decomposes the Hamiltonian into an interaction part
Ĥ0 and a tunneling part Ĥper, such that Ĥ = Ĥ0 + Ĥper. Typically, the ground
state of Ĥ0 is an insulating state that is known exactly, to which Ĥper is then
introduced as a perturbation.

For Hamiltonian (13.13), we choose

Ĥ0 = ∑
i<j
JijS

z
i S

z
j − h∑

i

S zi . (13.14)

The ground states of this Hamiltonian are insulating states with a �lling de-
pending on h (see Chapter 7.3). To this, we introduce the perturbation

Ĥper = ∑
i<j
Jijλ (S xi S

x
j + S

y
i S

y
j ) = ∑

i<j
JijλS

+
i S

−
j . (13.15)

The aim is now to �nd the tunneling strength λ where the expectation value
of the SF order parameter becomes �nite. That point provides an estimation of
the upper bound for the break down of the insulating phase. In general, the SF
order parameter of site i is

⟨S−i ⟩ = Tr (ρ̂S−i ) , (13.16)

where S−i is the spin lowering operator at site i and ρ̂ is the density matrix of
the system, given by

ρ̂ = e−βĤ/Z , (13.17)

with Z the partition function and β = 1/ (kBT ) the inverse temperature.
For small tunneling, i.e., small Ĥper, we can approximate ρ̂ using the Dyson

expansion

e−βĤ ≃ e−βĤ0 − e−βĤ0
∫

β

0
dτeτĤ0Ĥpere

−τĤ0 . (13.18)
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Now, we make a convenient simpli�cation, namely we treat Ĥper in a mean-�eld
approximation,

Ĥper ≃ ∑
i<j
Jijλ (S+i ⟨S−j ⟩ + ⟨S+i ⟩S

−
j − ⟨S+i ⟩ ⟨S

−
j ⟩) . (13.19)

We insert this together with Eqs. (13.17) and (13.18) into the expectation
value (13.16). Further, since we are interested in ground-state properties, we
take the limit β → ∞. Then, the partition function goes to Z → e−βE0 , where
E0 is the ground-state energy. These steps yield a self-consistent equation for
the SF order parameter,

⟨S−l ⟩ = −eβE0
∫

β

0
dτTr{S−l e−(β−τ)Ĥ0 (−

λ

2
∑
i

S+i ⟨S
−
i ⟩) e−τĤ0} , (13.20)

where we introduced the abbreviation

⟨S−i ⟩ ≡ ∑
j,j≠i

Jij ⟨S
−
j ⟩ . (13.21)

One �nds that in the trace appearing in Eq. (13.20) only one-hole excited states
and the ground state yield �nite contributions.

For small λ, Eq. (13.20) has only the trivial solution ⟨S−i ⟩ = 0. At some
critical tunneling, however, SF order develops, i.e., ⟨S−i ⟩ ≠ 0. An easy way
to compute the critical tunneling for �nite systems of size N , is to write the
self-consistent equation (13.20) in matrix form, i.e.,

ÐÐ→
⟨S−⟩ = A ⋅

ÐÐ→
⟨S−⟩ , (13.22)

where
ÐÐ→
⟨S−⟩ = (⟨S−1 ⟩ , ⟨S

−
2 ⟩ , . . . , ⟨S

−
N ⟩)

⊺. When detA ≠ 0, the self-consistent equa-

tion (13.20) admits a non-trivial solution
ÐÐ→
⟨S−⟩ ≠ 0. Within second-order pertur-

bation theory, the tunneling term for this solution contributes a non-vanishing,
negative amount to the energy of the Mott-insulating state, contrary to the

trivial solution
ÐÐ→
⟨S−⟩ = 0, where the tunneling contribution vanishes. There-

fore, without having to know its precise form, we are assured that the solution
ÐÐ→
⟨S−⟩ ≠ 0 forms the new ground state, and the λ at which detA becomes �nite
identi�es the QPT to the SF phase.

Remarkably, the properties of PMFT and the GMFA (discussed in Sec. 13.1)
complement each other. For example, within PMFT, the mechanism for the
break down of the insulating phase is an instability under adding or removing
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a single particle. Potentially, there are, however, more complicated excitations
than that. For instance, in extended Bose�Hubbard models with interactions
which go beyond on site, the addition of a particle plus a relocation of neighbor-
ing particles can be a relevant excitation for insulating crystals. In the simple
PMFT, this type of excitations is not captured, which is an important disad-
vantage compared to the GMFA. Also, PMFT is more easily implemented to
compute the transition between SF and insulating phases, but not their precise
properties. An important advantage of PMFT is, however, that it allows to
�nd the extent of metastable insulating states in a straightforward manner. To
this, one simply perturbs around a di�erent insulating state than the actual
ground state. We used this property of PMFT in Chapter 7 to characterize
the manifold of metastable states that Hamiltonian (13.13) with long-range Jij
accommodates at small tunneling.

In the opposite limit of weak interactions, LRO develops, and a mean-�eld
Ansatz that neglects correlations between sites is no longer valid. In the next
section, we discuss a method that poses a convenient alternative in such a
regime.

13.3 Mora�Castin expansion in �uctuations of a
BEC

For typical scenarios in the Bose�Hubbard model (2.4), the bosons become su-
per�uid at small interactions U . They then transmit long-range correlations,
and the ground state is characterized by LRO of density as well as phase. In that
case, a description in terms of a Bogolioubov�deGennes expansion of the con-
densate wave function gives a good quantitative description of the ground-state
behavior. Here, �eld operators are replaced by mean values dressed with small
�uctuations around them. However, at increasing interactions such ordering
tendencies are suppressed, leading in the large-U limit to the MI state without
long-range correlations. This disruption of order is strongly enhanced by geo-
metrical frustration, as described in Chapters 3.2 or 3.4. It can be expected that
frustration reduces order also in the weakly-interacting regime, at least for the
condensate phase ϕ̂, which is subject to stronger �uctuations than the density.
Since the standard Bogolioubov�deGennes expansion assumes the smallness of
long-range phase �uctuations, it is in such a situation not an adequate approach.

This problem is overcome by the expansion due to Mora and Castin [262],
which relies on the much less stringent assumption that not long-range but only
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NN phase �uctuations are small. This Ansatz, in particular, also allows the
description of quasi-condensates.

In the Mora�Castin formalism, the bosonic operators in the Bose�Hubbard
Hamiltonian (2.4) are rewritten as

b̂i → eiϕ̂i
√
n̂i , (13.23)

with the phase ϕ̂i, and where one assumes ϕ̂i ≈ ϕ̂
�
i . The site-dependence of phase

and density is due to the AFM nature of the couplings tij ; in a FM system it
would be energetically favorable to have at all sites the same phase and density
(see introduction to Chapter 3). Now, one divides

n̂i → ni + δn̂i and (13.24a)

ϕ̂i → ϕi + δϕ̂i (13.24b)

in local mean values (quantities without hat) and �uctuations around them (δn̂i,
δϕ̂i). Relative density �uctuations δn̂i/ni are typically small, as are �uctuations
δϕ̂ij of NN phase di�erences ϕ̂i − ϕ̂j → ∆ϕij + δϕ̂ij , even in quasi-condensates.
Their smallness justi�es an expansion of Hamiltonian (2.4) in δn̂i/ni and δϕ̂ij .

For the calculations presented in Chapter 3.6, we applied this method to the
spatially anisotropic triangular lattice (SATL), where it is particularly suited
due to the strong frustration and low dimensionality of that model. In their
original paper [262], Mora and Castin considered a BEC in free space, which
they had to discretize by hand to avoid divergences due to commutations of the
�eld operators. In our case, this discretization is given naturally by the optical
lattice.

Also, Mora and Castin conducted the expansion in the �uctuations only up to
second order. Here, we also include fourth-order terms, which in the frustrated
SATL, where the in�uence of quantum �uctuations is strongly enhanced, proves
to be a straightforward but essential improvement. In fact, in the quantum
limit of the SATL (Chapter 3.2), quantum �uctuations considerably shift the
critical point between spiral and square-lattice Néel order from the classical
value αcl = 2 to α ≈ 1.4. Interestingly, the on-site interaction U in the Bose�
Hubbard Hamiltonian interpolates between these two limits, where the classical
spin model is reached at U = 0 and the quantum spin-1/2 model at U → ∞.
Hence, we can expect that an increasing U smoothly shifts αcl from 2 to 1.4. We
�nd, however, that an expansion only up to second order in the �uctuations does
not describe any shift of αcl � optimizing the type of order immediately renders
the expansion instable. An expansion up to fourth order, where interactions
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are treated in a self-consistent mean-�eld Ansatz, however, does describe such
a shift.1 In the rest of this section, we explain � for a general Bose�Hubbard
Hamiltonian as given by Eq. (2.4) � how the approximate ground state can be
extracted from such a fourth-order expansion.

13.3.1 Expansion in phase and density �uctuations

In the following, we will assume a constant mean density ni = n, since under
short-range interactions density waves are not to be expected. In this case,
expanding the interaction term of Hamiltonian (2.4) in terms of mean values
with small �uctuations, Eq. (13.24), yields

Ĥint ≡
U

2
∑
i

n̂i (n̂i − 1) =
U

2
∑
i

n2
[1 + 2

δn̂i
n

+ (
δn̂i
n

)

2

−
1

n
−

1

n

δn̂i
n

] . (13.25)

Similarly, for the tunneling term, we get

Ĥtun ≡
1

2
∑
i,j

tij b̂
�
i b̂j (13.26)

=
1

2
∑
i,j

tij
√
ne−iϕi

√
neiϕj (1 − iδϕ̂ij −

1

2
δϕ̂2

ij +
i

6
δϕ̂3

ij +
1

24
δϕ̂4

ij +O (δϕ̂5
ij))

× [1 +
1

2

δn̂i
n

−
1

8
(
δn̂i
n

)

2

+
1

16
(
δn̂i
n

)

3

−
5

128
(
δn̂i
n

)

4

+O ((
δn̂i
n

)

5

)]

× [1 +
1

2

δn̂j

n
−

1

8
(
δn̂j

n
)

2

+
1

16
(
δn̂j

n
)

3

−
5

128
(
δn̂j

n
)

4

+O ((
δn̂j

n
)

5

)] ,

where we Taylor-expanded the square roots and exponentials in Eq. (13.23) up
to fourth order in δn̂i/ni and δϕ̂ij .

The �uctuations ful�ll the commutation relation [δn̂i, δϕ̂i] = i, but it is more
convenient to work with modes which have bosonic commutation relations. To
arrive at such a description, we introduce the bosonic annihilation and creation
operators

d̂i =
√
n(

1

2

δn̂j

n
+ iδϕ̂i) , (13.27a)

d̂�i =
√
n(

1

2

δn̂j

n
− iδϕ̂i) , (13.27b)

1Similarly, in spin-wave theory, second-order expansions cannot describe such a shift of the
order properties, while self-consistent fourth-order expansions do (see further Ref. [595] and
Chapter 14).
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yielding

Ĥint =
U

2
∑
i

[n(n − 1) + 2n3/2d̂i + 2n3/2d̂�i + n d̂id̂i + n d̂
�
i d̂i + n d̂id̂

�
i + n d̂

�
i d̂

�
i ] ,

(13.28)

Ĥtun =
1

2
∑
i,j

tijn e−i∆ϕij
⎡
⎢
⎢
⎢
⎣
1 +

d̂j
√
n
+
d̂�i√
n
−
d̂id̂i
4n

+
d̂j d̂j

4n
−
d̂�i d̂i

2n

+
d̂�i d̂j

n
−
d̂�j d̂j

2n
+
d̂�i d̂

�
i

4n
−
d̂�j d̂

�
j

4n
+O

⎛

⎝
(
d̂

√
n
)

4
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (13.29)

At this moment, we only show terms up to second order in the �uctuations, since
the generalization to fourth order is straightforward but the formulas become
very unhandy. The �nal results can be written more compactly, and we will
state them including fourth-order terms.

13.3.2 Minimization of free energy

Our aim is to �nd the ground state of Hamiltonian (2.4), which is attained
at the minimum of the free energy F = E − TS, where E = ⟨Ĥ⟩ is the energy
expectation value and S = 1

N ∑k(n
(α)
k +1) ln(n

(α)
k +1)−n

(α)
k lnn

(α)
k the entropy.2

This is best done via subsequent Fourier and Bogolioubov transforms, i.e.,
âk =

1
N ∑i eikri d̂i, where N is the number of sites, and

α̂k = cosh θkâk + sinh θkâ
�

−k (13.30a)

α̂�

−k = cosh θ−kâ
�

−k + sinh θ−kâk , (13.30b)

where a priori, modes k and −k can be di�erent. To treat the fourth-order
terms, we restrict the variational manifold to Gaussian states. Then, we can
apply Wick's theorem, which allows to decouple fourth-order terms into prod-
ucts of second-order terms [596],

⟨d̂k1 d̂k2 d̂k3 d̂k4⟩ → ⟨d̂k1 d̂k2⟩ ⟨d̂k3 d̂k4⟩ + ⟨d̂k1 d̂k3⟩ ⟨d̂k2 d̂k4⟩ + ⟨d̂k1 d̂k4⟩ ⟨d̂k2 d̂k3⟩ ,
(13.31)

2The following treatment is very similar to MSWT explained in Chapter 14, only that in
that case the bosonic modes describe quantum �uctuations of spin degrees of freedom, while
here they describe �uctuations of density and phase of a bosonic SF.
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and similarly for any combination of four d̂ and d̂� operators. With this sim-
pli�cation, the minimum of the free energy can be found as the self-consistent
solution of a quadratic theory.

Using Wick's theorem, Eq. (13.31), we obtain the energy expectation values3

⟨Ĥint⟩ =
U

2
∑
i

{n(n − 1) + n
1

N
∑
k

[(1 + 2n
(α)
k ) cosh θ2

k

−2 (1 + 2n
(α)
k ) cosh θk sinh θ−k + (1 + 2n

(α)
−k ) sinh θ2

k]} ,(13.32)

⟨Ĥtun⟩ =
1

2
∑
i,j

tijne−i∆ϕij {1 +
1

N
∑
k

1

n
[n
(α)
k cosh θ2

k (ei(ri−rj)k − 1)

+(ei(ri−rj)k − 1) (1 + n
(α)
−k ) sinh θ2

k]} +O
⎛

⎝
(
d̂

√
n
)

4
⎞

⎠
(13.33)

where we introduced the occupation number of Bogolioubov particles n(α)k ≡

⟨α̂�

kα̂k⟩ = 1/ (exp(ωk/T ) − 1). Here, T is the temperature and ωk the dispersion
relation of the Bogolioubov particles. Later, we will put T to 0, since we are only
concerned with the ground state. This will give n(α)k = 0. At this point, however,
we keep the T dependence because this gives a convenient way to minimize the
system's energy E with respect to ωk, because ωk/T enters in E through n(α)k .

Now, we make the assumption that the mean value of the phase is given by
an ordering vector Q, i.e.,

ϕi =Q ⋅ ri . (13.34)

Classically, if the underlying lattice is a Bravais lattice, the ground state can
always be described by such an ordering vector. In that case, Q is just the wave
vector which minimizes the classical dispersion relation ∑δ tδe

ik⋅δ, where δ are

3Here, only even-order terms play a role. The reason is that all odd-order terms can, by
virtue of Wick's theorem, be decoupled in products of second-order and �rst-order expectation
values, and the �rst-order terms vanish at the free-energy minimum. In principle, third order
terms should be reintroduced via second-order perturbation theory, since these are of order

O(n0) [the product of two third order terms gives O(√n2), these are divided by an energy
di�erence of O(n2), and summing over all states which are coupled by the third-order terms
gives another O(n)]. These terms are of the same order in 1/n as the direct fourth-order
terms which we did keep, so that in principle we would have to account for them. However,
this treatment is extremely involved and beyond the scope of this thesis.
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the vectors connecting NN sites.4 Since we are working in the limit of small U ,
we can assume that the quantum-mechanical ground state is close to a classical
state, and that therefore the ordering-vector concept is applicable. Then

E =
U

2
n(n − 1) + n∑

δ

tδ cos(Q ⋅ δ)

+
1

2

1

N
∑
k

{nU(1 + 2n
(α)
k ) (cosh θ2

k − 2 cosh θk sinh θ−k + sinh θ2
k) (13.35)

−2∑
δ

tδ [cos(Q ⋅ δ) − cos((Q + k) ⋅ δ)] (n
(α)
k cosh θ2

k + sinh θ2
k + n

(α)
−k sinh θ2

k)}

+O
⎛

⎝
(
d̂

√
n
)

4
⎞

⎠
.

The fourth-order terms, which are not given here, involve double sums over k
and k′.

To �nd the ground state, we now minimize F with respect to θk, ωk, and Q.
This yields a set of self-consistent equations. The �rst of these minimizations,
dF/dθk = 2 (Ak cosh(2θk) +Bk sinh(2θk)) = 0, yields

tanh(2θk) = −Ak/Bk , (13.36)

where we de�ned, now including the fourth-order terms,

Ak ≡ −nU +
1

4n
∑
δ

tδ { [cos((Q − k) ⋅ δ) + cos((Q + k) ⋅ δ)] [1 − F (0) +G(0)]

−2 cos(Q ⋅ δ) [1 − 2F (0) + F (δ) + 2G(0) −G(δ)] } (13.37a)

Bk ≡
bk + b−k

2

= nU +
1

4n
∑
δ

tδ { [cos((Q − k) ⋅ δ) + cos((Q + k) ⋅ δ)] [2n + F (δ) −G(0)]

−2 cos(Q ⋅ δ) [2n + F (0) − 2G(0) +G(δ)] } , (13.37b)

4In the particular case of the SATL, δ = ±τ1,2,3 with τ1 = ex, τ2 = (ex +
√

3ey) /2, and
τ3 = (ex −

√
3ey) /2, as de�ned in Fig. 3.1b. The associated couplings are t±τ1 ≡ t1, t±τ2,3 ≡ t2.



296 13. Mean-�eld methods

with

bk ≡ nU +
1

2n
∑
δ

tδ {cos((Q + k) ⋅ δ) [2n + F (δ) −G(0)]

− cos(Q ⋅ δ) [2n + F (0) − 2G(0) +G(δ)]} (13.38)

and the correlators (de�ned using translational invariance)

F (r) ≡ 2 ⟨d�ridri+r⟩ + δ(r) (13.39a)

= 2
1

N
∑
k

eikr cosh(2θk) (n
(α)
k +

1

2
) = 2

1

N
∑
k

eikr
Bk

√
B2
k −A

2
k

(n
(α)
k +

1

2
) ,

G (r) ≡ −2 ⟨d�rid
�
ri+r⟩ = −2 ⟨dridri+r⟩ (13.39b)

= 2
1

N
∑
k

eikr sinh(2θk) (n
(α)
k +

1

2
) = 2

1

N
∑
k

eikr
−Ak

√
B2
k −A

2
k

(n
(α)
k +

1

2
) .

By virtue of Wick's theorem (13.31), all expectation values can be represented
by these correlators.

The spectrum ωk is determined by the derivate dF/dωk = 0,

ωk =
bk − b−k

2
+

√

B2
k −A

2
k . (13.40)

One can show easily that at k = 0 (where k is the wave vector relative to the
ordering vector Q) the gap vanishes, as it should in a quasi-condensed phase.5

Now, since we are only interested in the ground state, we can put T = 0 (and
therefore n(α)k = 0).

In the Bose�Hubbard model, quantum �uctuations are driven by the inter-
action U . Therefore, at U = 0, the classical results should be recovered. Indeed,
in this case sinh θk = 0, and Eq. (13.39) becomes F (r) = δ(r) and G(r) = 0.
Hence, the expectation values of the �uctuations vanish. In that case, the order-
ing vector takes the classical value, which in the SATL is given by Eq. (3.29). To
describe a change of the ordering vector Q = (Qx,Qy) compared to the classical
value, we have to include its optimization, dF/dQx = 0 and dF/dQy = 0 in the

5This is also the case if terms only up to second order are included, both in the Mora�
Castin formulation as well as in the usual Bogolioubov expansion (in fact, at second order
the spectrum coincides for both). In the latter, however, the spectrum acquires a gap when
including fourth-order terms. This artifact is due to the neglect of third-order contributions.
Notably, in the expansion due to Mora and Castin the gaplessness is preserved, indicating
that the division in third- and fourth-order terms is better behaved.
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self-consistent iteration. In the special case of the SATL, these equations are
solved by Qy = 0 and

Qx = ±2 arccos(−
t2
2t1

R(τ2)

R(τ1)
) , (13.41)

where we de�ned

R(δ) = 4n [2n + 1 − F (0) + F (δ)] + [1 − F (0) +G(0)] [F (0) − 2G(0) + 2G(δ)]

+G(0) [F (0) − 2F (δ)] + F (δ)2
− F (0) , (13.42)

and where we used G(δ2) = G(δ3) and F (δ2) = F (δ3). One could, in principle,
apply the optimization of the ordering vector also to second-order expansions.
However, in that case a shift of the ordering vector leads to imaginary modes in
the dispersion relation ωk, meaning that the state becomes unstable. At fourth
order, these instabilities are usually not present. We expect them to possibly
occur only close to quantum disordered phases (see Chapter 3.2).

Now, the knowledge of the correlators F and G � as obtained by solving self-
consistently Eqs. (13.37-13.39), and (13.41) � allows, in principle, to compute
the ground-state expectation value of any desired observable. For example, for
the calculations of Chapter 3.6, we used the variance of the phase and the con-
densate fraction to quantify the degree of order of weakly-interacting ultracold
bosons loaded into an optical lattice. Where the phase �uctuations are large or
the condensate fraction is small, the initial expansion in small condensate �uctu-
ations is no longer justi�ed. This fundamental consistency check also identi�es
regimes where quantum-disordered behavior may be expected. The NN phase
�uctuations read

∆ϕ(δ) ≡

√

⟨(δϕi+δ − δϕi)2⟩ − ⟨(δϕi+δ − δϕ2
i ⟩

=

√
1

2n
[F (0) +G(0) − F (δ) −G(δ)] . (13.43)

The condensate fraction nc, on the other hand, can be computed from the long-
distance behavior of the correlations. These read

⟨b̂�i b̂j⟩ = ψ
∗
i ψj exp [−

1

n
I3 (ri − rj)] , (13.44)

where

I3 (r) =
1

N
∑
k≠k0

(1 − cosk ⋅ r) [(cosh θ2
k + sinh θ2

k)n
(α)
k + sinh θ2

k] . (13.45)
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Here, we de�ned ψi ≡
√
neiϕi . In the limit of large distances the correlations

tend towards the condensate fraction,

nc ≡ lim
r→∞

∣⟨b̂�i b̂i+r⟩∣ /n = exp
⎛

⎝
−

1

n

1

N
∑
k≠k0

A2
k

B2
k −A

2
k

⎞

⎠
. (13.46)



Chapter 14

Formalism of the modi�ed
spin-wave theory with
ordering-vector optimization

Spin-wave theories are typically the �rst method applied to spin Hamiltonians
because of their low numerical cost and because they are easily generalizable
to a huge class of magnetic models. These theories generally take a classical,
ordered state as a starting point, which they dress with quantum �uctuations
in a perturbative manner. Spin-wave theories often give a good qualitative
overview over occurring ordered phases, but they are not adequate to describe
the properties of disordered ones. Still, often a breakdown of the theory, or a
weakening of magnetic order, can announce at least the appearance of quantum
disordered phases in the true ground-state phase diagram.

An especially versatile variant is Takahashi's modi�ed spin-wave theory
(MSWT) [224] as it not only satisfactorily describes systems with LRO but also
such with quasi-LRO, making it especially suited to describe low-dimensional
or frustrated models. Compared to the classical reference states, such systems
generally present strong quantum corrections to the predominant type of or-
der. To account for these quantum corrections, we extended the MSWT by
an optimization of the ordering vector [597], as we will describe below. This
improvement allows to satisfactorily describe the most salient features of the
phase diagrams of various frustrated quantum models.

Such frustrated systems are prime targets for QSs, because they may display
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exotic quantum-disordered behavior, and because it is di�cult to �nd accurate
theoretical descriptions of disordered quantum lattice models. On the other
hand, this di�culty makes it hard to tell a priori which systems will present in-
teresting phases in an experiment. Therefore, it would be highly desirable to dis-
pose of a fast tool that can outline quantum-mechanical phase diagrams, point
out candidate regions for disordered phases, and thus classify model Hamiltoni-
ans according to their potential relevance for experimental quantum simulation.
We propose that MSWT with ordering-vector optimization will serve this very
purpose. We have seen the good performance of MSWT in our calculations in
Chapter 3, where we treated models with XY interactions, which are relevant
in the context of QSs consisting of ultracold hard-core atoms in optical lattices.

In this chapter, we �rst review the MSWT formalism for general XXZ inter-
actions. After that, we will illustrate the possibilities of the MSWT on selected
examples of frustrated Heisenberg models.

14.1 The formalism

Our aim is to determine the phase diagrams of several incarnations of the fol-
lowing general Hamiltonian that describes a large variety of spin systems,

ĤS = ∑
⟨ij⟩

tij (S
x
i S

x
j + S yi S

y
j + λS zi S

z
j ) . (14.1)

Here, S µi is the µ'th component of the spin-operator at site i, and spins on sites
i and j interact with a strength of tij . We denote the length of the spins by S
and use throughout this chapter units where h̵, the reduced Planck constant,
as well as the lattice spacing equal unity. At λ = 0, this Hamiltonian describes
XY interactions, while at λ = 1, it describes a Heisenberg magnet, so that it
comprises both the models of Chapter 3.2 that arise in the context of hard-
core bosonic atoms in optical lattices and the models of Chapter 14.2 that are
relevant to magnetic materials.

In the following, we discuss the formalism of the MSWT for calculating
ground-state and �nite-temperature properties of Hamiltonian (14.1). For more
details, see my Diploma thesis [595]. The MSWT has been introduced by Taka-
hashi about 20 years ago to describe low-dimensional Heisenberg magnets [224].
Here, we extend the formulas to encompass both Heisenberg and XY interac-
tions. It can be expected that the validity of the spin-wave approach is even
better justi�ed for XY interactions, since here quantum �uctuations are reduced
by the anisotropy in the spin�spin coupling.
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14.1.1 Expansion around classical reference state

A fundamental assumption of spin-wave theory is that the ground state is
well approximated by a classical state, which shows long-range order (LRO),
dressed with quantum �uctuations. Without restriction of generality, we can
assume that in the classical reference state the spins lie in the xy-plane.1 For a
translationally invariant system, like the ones under investigation, the ordered
ground state is then characterized by a well-de�ned ordering vector Q [see also
Eq. (13.34)]. Under this assumption, it is convenient to rotate the local refer-
ence system of each spin from (x, y, z) to (η, ζ, ξ) so that the ground state in the
new reference frame has all spins aligned in the same direction. This is achieved
by the following transformation:

S xi = − sin (Q ⋅ ri)S
η
i + cos (Q ⋅ ri)S

ζ
i , (14.2a)

S yi = cos (Q ⋅ ri)S
η
i + sin (Q ⋅ ri)S

ζ
i , (14.2b)

S zi = −S ξi . (14.2c)

Then S ζi , which will be the quantization axis, lies parallel to the classical spin
Si = (cos (Q ⋅ ri) , sin (Q ⋅ ri) ,0). Unlike in ordinary spin-wave theories, we do
not make any assumption on the ordering vector Q. In particular, it may well
di�er from the one exhibited by the system in the classical limit S →∞, Qcl.

Spin waves around the classical reference state can be described via the
Dyson�Maleev transformation [598, 599], which maps the physical spins to in-
teracting bosons,

S −
i →

1
√

2S
(2S − â�i âi) âi , (14.3a)

S +
i →

√
2S â�i , (14.3b)

S ζi → −S + â�i âi , (14.3c)

where S ±
i ≡ S ξi ± iS

η
i . The Dyson�Maleev transformation is an exact mapping

between spins and bosons as long as projectors are retained which keep the
system in the physical subspace, i.e., the subspace where at each site only 2S
Dyson�Maleev bosons are present at most. It can be shown that these projectors
have the form P = 1 +O[n/(2S)]3 where n is the Dyson�Maleev boson density
[600]. Hence, under the assumption of diluteness of the Dyson�Maleev boson

1Without magnetic �eld, this is trivially true for XY interactions; and for Heisenberg
interactions one can, in great generality, �nd classical ground states which ful�ll this condition.
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gas, n/(2S) < 1 (in fact ⟨n⟩ = S, see Sec. 14.1.3), we can safely neglect the P
projectors.

14.1.2 Mean-�eld approximation

Applying Eqs. (14.2) and (14.3) to Hamiltonian (14.1) one arrives at the bosonic
Hamiltonian

Ĥ =
1

4
∑
⟨ij⟩

tij { [2S (â�i âj + âiâ
�
j) − â

�
i â

�
j âj âj − â

�
i âiâiâ

�
j] (λ + cos (Q ⋅ rij))

+ [2S (â�i â
�
j + âiâj) − âiâ

�
j âj âj − â

�
i âiâiâj] (λ − cos (Q ⋅ rij))

+4 [S2
− S (â�i âi + â

�
j âj) + â

�
i âiâ

�
j âj] cos (Q ⋅ rij) } . (14.4)

Here, we have dropped the terms with six boson operators, which are of order
O[n/(2S)3] and are negligible for n/(2S) < 1. Moreover the truncation of the
Hamiltonian to this order is consistent with neglecting the the projectors P
which amounts to discarding terms of the same order.

MSWT relies on the minimization of the free energy F = E − TS , where

S = ∑
k

[(nk + 1) ln (nk + 1) − nk lnnk] (14.5)

is the entropy of a set of harmonic oscillators.2 To compute the expectation
value E ≡ ⟨Ĥ⟩, we make the assumption that the ground state is Gaussian. This
approximation allows to make use of Wick's theorem, Eq. (13.31), to decou-
ple the boson�boson interaction terms, i.e., the terms consisting of four boson
operators. The energy expectation value can then be written as

E = ⟨Ĥ⟩ =
1

2
∑
⟨ij⟩

tij { [S +
1

2
− F (0) + F (ri − rj)]

2

(λ + cos (Q ⋅ rij))

− [S +
1

2
− F (0) +G (ri − rj)]

2

(λ − cos (Q ⋅ rij))} . (14.6)

2This treatment is formally very similar to the self-consistent fourth-order Mora�Castin
expansion explained in 13.3.2.
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Here, we have de�ned the correlators

⟨â�i âj⟩ = F (rij) −
1

2
δij , (14.7a)

⟨âiâj⟩ = ⟨â�i â
�
j⟩ = G (rij) . (14.7b)

These correlators can be rewritten in terms of independent particles by �rst
Fourier transforming âk = 1√

N
∑i âi e−ik⋅ri , where N is the number of sites, and

then applying a Bogoliubov transformation

α̂k = cosh θk âk − sinh θk â
�

−k , (14.8a)

α̂�

−k = − sinh θk âk + cosh θk â
�

−k . (14.8b)

Requiring that the Bogoliubov particles be non-interacting imposes ⟨α̂kα̂k′⟩ =

⟨α̂�

kα̂
�

k′⟩ = 0. This condition also removes the anti-Hermitian part of the Hamil-
tonian that has been introduced by the Dyson�Maleev transformation (14.3).

The correlators are then

F (r) =
1

N
∑
k

cosh (2θk) e
−ik⋅r

(nk +
1

2
) , (14.9a)

G (r) =
1

N
∑
k

sinh (2θk) e
−ik⋅r

(nk +
1

2
) , (14.9b)

with nk = ⟨α̂�

kα̂k⟩ = 1/ (exp (ωk/T ) − 1) being the occupation number of Bogoli-
ubov mode k at temperature T (with the Boltzmann constant kB set to unity).
The dispersion relation ωk is determined self-consistently in the section after
the next one.

14.1.3 Takahashi's constraint

So far, we have essentially formulated a standard Hartree�Fock theory for the
gas of interacting Dyson�Maleev bosons. A very important modi�cation to this
theory, due to Takahashi [224], is the constraint of zero magnetization at each
site,

⟨S ζi ⟩ = −S + ⟨â�i âi⟩ = −S −
1

2
+ F (0) = 0. (14.10)

This constraint e�ectively reduces the Hilbert space dimension available to the
Dyson�Maleev bosons by �xing their average density to the spin length S. For
S = 1/2-spins in a bipartite lattice, one can in fact show a reduction of the
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Hilbert space dimension from ∞ (linear spin-wave theory) to 4
π

2N

N
(MSWT)

which restores, up to logarithmic accuracy, the physical value of 2N [601].
Takahashi's constraint imposes that ⟨n⟩/(2S) < 1, and it guarantees the cor-

rectness of the truncations of high powers of n/(2S). Finally, if the Hamiltonian
is Z2×U(1) symmetric because of a uniaxial anisotropy, as in the case of interest
in this work, one expects ⟨S ζi ⟩ = 0. The constraint (14.10) elegantly restores
this re�ection symmetry of the ground state with respect to the quantization
axis.

If the spin Hamiltonian (14.1) with λ = 0 is obtained as the hardcore limit of
the Bose�Hubbard Hamiltonian (2.4), it is important to distinguish the Dyson�
Maleev bosons â from the physical b̂-bosons from which the e�ective spin Hamil-
tonian originated. The Dyson�Maleev bosons at a site i quantify the deviation
of the ith spin from the local direction in the xy plane set by the ordering vector
Q. On the other hand, the physical bosons correspond to the spin deviations
with respect to full alignment of the spin along the z axis. The particle-hole
symmetry of the bosonic Hamiltonian (2.4) in the hardcore limit leads to half
�lling of the physical bosons, which accidentally coincides with the average �ll-
ing imposed by Takahashi's constraint on the Dyson�Maleev bosons for S = 1/2.
Yet, all other properties are in general quite di�erent. In Chapter 3.2.5, one can
�nd an instruction to translate spin observables to hard-core boson observables.

14.1.4 The self-consistent equations

The correct spin-wave description is found by minimizing the free energy F
with respect to θk and ωk under the constraint (14.10). This leads to a set of
self-consistent equations,

tanh 2θk =
Ak
Bk

(14.11)

with

Ak =
1

N
∑
⟨ij⟩

tij (λ − cos (Q ⋅ rij))Gij eik⋅rij , (14.12a)

Bk =
1

N
∑
⟨ij⟩

tij [(λ − cos (Q ⋅ rij))Gij − (λ + cos (Q ⋅ rij))Fij (1 − eik⋅rij)]

−µ , (14.12b)

where µ is the Lagrange multiplier for the constraint (14.10) corresponding to
the chemical potential for changing the total magnetization.
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In Eqs. (14.12), we have abbreviated Fij = F (rij), and Gij = G (rij). The
spin-wave spectrum reads

ωk =
√

B2
k −A

2
k , (14.13)

and the correlators at the minimum of the free energy take the form

Fij =
1

N
∑
k

Bk
ωk

cos (k ⋅ rij) (nk +
1

2
) , (14.14a)

Gij =
1

N
∑
k

Ak
ωk

cos (k ⋅ rij) (nk +
1

2
) . (14.14b)

Note that in the classical limit S → ∞ one gets Gij , Fij ≈ S, and Eqs. (14.12)
become analogous to their linear spin-wave theory (LSWT) counterparts.

Inserting Eq. (14.12) into the dispersion relation (14.13) shows that a �nite
µ entails a gap at k = 0. This is in contrast to LSWT where the spectrum
always has a gapless Goldstone mode at k = 0. At T = 0, one �nds nk = 0 ∀k ≠ 0
and a vanishing µ. This implies also the disappearance of the gap at k = 0,
which is a necessary requirement for the appearance of the Goldstone mode
associated with magnetic LRO, and it enables Bose condensation of the Dyson�
Maleev bosons in the k = 0 mode. This condensate is depleted by interactions of
the Dyson�Maleev bosons. The larger this depletion, the more Dyson�Maleev
bosons reside at momenta di�erent from zero, thus decreasing magnetic LRO.
Because of this special role, it is convenient to separate out the contribution of
the zero mode,

⟨â�k=0âk=0⟩ /N = ⟨âk=0âk=0⟩ /N ≡M0 . (14.15)

M0 corresponds to the order parameter measuring the total spiraling magne-
tization for the quantization axes given by the ordering vector Q. Then, one
arrives at the zero-temperature equations

Fij = M0 +
1

2N
∑
k≠0

Bk
ωk

cos (k ⋅ rij) , (14.16a)

Gij = M0 +
1

2N
∑
k≠0

Ak
ωk

cos (k ⋅ rij) , (14.16b)

and the constraint (14.10) becomes

S +
1

2
=M0 +

1

2N
∑
k≠0

Bk
ωk

. (14.17)
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14.1.5 Optimization of the ordering vector

It is not a priori clear that the classical ordering vector Qcl correctly describes
the LRO in the quantum system. To account for the competition between states
with LRO at di�erent ordering vectors Q, we extend the MSWT procedure by
optimizing the free energy with respect to this quantity. This procedure, �rst in-
troduced by Xu and Ting [597], signi�cantly improves the predictions of MSWT.
It amounts to �nding the best ordered reference state with in-plane ordering vec-
tor Q (spiral state) whose free energy is minimized not at the classical level, but
including the e�ect of quantum �uctuations self-consistently within MSWT.

The minimization of F with respect to Qx and Qy yields two additional
equations

∂

∂Qx
F = −

1

2
∑
⟨ij⟩

tij sin (Q ⋅ rij) r
x
ij [F

2
ij +G

2
ij] = 0 , (14.18a)

∂

∂Qy
F = −

1

2
∑
⟨ij⟩

tij sin (Q ⋅ rij) r
y
ij [F

2
ij +G

2
ij] = 0 . (14.18b)

In the SATL (treated in Chapters 3.2 and 14.2.1), one �nds Qy = 0 and

Qx = 2 arccos(−
α

2

F 2
τ2
+G2

τ2

F 2
τ1
+G2

τ1

) . (14.19)

Here, τ 1 = (1,0) and τ 2 = (1/2,
√

3/2) are the primitive lattice vectors, as
de�ned in Fig. 3.1b, with associated interactions t1 and t2. For Fij = Gij =

S, attained when S → ∞, this reduces to the classical ordering vector, Qcl
x =

2 arccos (−α/2), Qcl
y = 0.

The values of Fij and Gij can now be calculated by solving self-consistently
Eq. (14.18) together with Eqs. (14.10, 14.11�14.14). At zero temperature,
Eqs. (14.10) and (14.14) have to be replaced by Eqs. (14.17) and (14.16), re-
spectively. Through Wick's theorem the knowledge of the quantities Fij and
Gij allows for the computation of the expectation value of any observable. For
example, the in-plane two-point correlation function reads

Cij ≡ ⟨Sxi S
x
j + S

y
i S

y
j ⟩ / cos (Q ⋅ rij) =

1

2
(F 2

ij +G
2
ij) . (14.20)

14.1.6 Spin sti�ness

The optimization of the ordering vector allows for a straightforward calculation
of the spin sti�ness. This additional information, complementary to the order
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parameter, helps us in identifying candidate regions for spin-liquid behavior.
MSWT always returns a single ordering vector Q0, the optimal one. How-

ever, if the true ground state is only short-range ordered, we might expect the
Q-minimum to be relatively shallow, and that a slight change of the ordering
vector barely a�ects the free energy F . This means that the order is not very
stable against twists of the spin con�guration, which can be quanti�ed by the
spin sti�ness tensor

ραβ =
1

N

d2F

dQαdQβ
∣
Q=Q0

. (14.21)

Particular important are two coordination-system-independent quantities, the
parallel spin sti�ness ρ∥ ≡

1
2

Trρ = 1
2
(ρxx + ρyy) and the Gaussian spin sti�ness

Υ = detρ . (14.22)

The spin sti�ness not only yields deeper insight into the order properties of the
system, it also provides a fundamental self-consistency check of our approach.
In fact, a small spin sti�ness casts doubt on the reliability of the spin-wave
approach in describing such a strongly �uctuating state, and hence suggests
that the true ground state might be quantum disordered.

Since a change in Q a�ects the correlators Fij and Gij , we must compute Υ
self-consistently. After �nding the optimal Q0, we calculate 1

N
F (Qx,Qy) self-

consistently for several �xed ordering vectors Q =Q0 +∆Q and �t a quadratic
form to the results. Since the minimum in the free energy can be very shallow,
this procedure can be a�ected by numerical noise. As an approximation to the
true spin sti�ness, the partial spin sti�ness ρpartial

αβ can be computed via the
partial derivatives, i.e., without recalculating the self-consistent equations. It
reads

ρpartial
αβ ≡

1

N

∂2

∂Qα∂Qβ
F = −

1

2N
∑
⟨ij⟩

tij cos (Q ⋅ rij) r
α
ijr

β
ij [F

2
ij +G

2
ij] . (14.23)

We de�ne Υpartial analogously to Υ [Eq. (14.22)] as the determinant of the
partial spin-sti�ness tensor. The system can lower its energy by adjusting Fij
and Gij to the new ordering vector, and therefore Υpartial is an upper bound to
Υ. In some cases, the partial spin sti�ness Υpartial gives a good estimate of the
total spin sti�ness Υ, but there are cases where it is considerably larger. We �nd
that the partial spin sti�ness is su�cient to extract the location of disordered
phases, but it may not be able to distinguish gapped from gapless spin liquids
(see Chapter 14.2.1).



308 14. Modi�ed spin-wave theory

In the following, we present the zero-temperature phase diagram of several
frustrated Heisenberg models, relevant to experiments on magnetic organic salts.
These examples will show the surprisingly good performance of MSWT with
ordering-vector optimization in describing order properties of strongly frustrated
systems. Hereby, an advantage of MSWT theory is that it allows computation in
the thermodynamic limit, simply by replacing �nite sums over the �rst Brillouin
zone with integrals.

14.2 Example: MSWT on frustrated Heisenberg
magnets

Low-dimensional frustrated quantum spin systems can display an intriguing in-
terplay between order and disorder (see Chapter 3): classical order has been
shown to be quite resilient in two or three dimensions [419, 602�604]; frustra-
tion, however, can lead to the melting of magnetic LRO and the emergence
of quantum-disordered states like valence-bond solids or resonating valence-
bond states [605, 606]. Understanding such magnetically-disordered quantum
phases is important for the search for fractionalized excitations in two dimen-
sions [605], as well as for the understanding of the behavior of layered magnetic
insulators/metals in which magnetism is disrupted by charge doping, leading
to dramatic phenomena such as superconductivity at high critical temperature
[4, 607, 608]. Since such quantum-disordered states in strongly-correlated lat-
tice systems are notoriously di�cult to describe theoretically, it is hoped that
QSs can help to further our understanding of magnetic quantum phases.

A large variety of magnetic materials can be described by the Heisenberg
Hamiltonian

ĤS = ∑
⟨ij⟩

Jij Si ⋅Sj , (14.24)

where Si is a quantum spin-S operator at site i. The Heisenberg Hamiltonian is
the special case with λ = 1 of the more general XXZ Hamiltonian (14.1). Note
that in the general derivations in Sec. 14.1 we denoted the couplings by t's, but
in this section we use J 's to be more consistent with the language of magnetism.

In this section, we will focus on the antiferromagnetic (AFM) case for S =

1/2 in two-dimensional frustrated lattices. These are relevant to a variety of
compounds, realizing the spatially anisotropic triangular lattice (SATL) (e.g.,
in Cs2CuCl4 [609] and κ-(BEDT-TTF)2Cu2(CN)3 [610, 611]), or the frustrated
(J1J2) square lattice (e.g., in Li2VOSi(Ge)O4, VOMoO4 [612], BaCdVO(PO4)2
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[613]). For both lattice geometries, the Heisenberg model is expected to display
spin-liquid phases for particular values of the frustrated couplings, although the
extent and nature of these spin-liquid phases is still under theoretical debate,
both for the SATL [237�242, 614�618] and for the frustrated square lattice [619�
627].

In the following, we investigate � using MSWT with ordering-vector opti-
mization � the Heisenberg SATL and its generalization, the spatially completely
anisotropic triangular lattice (SCATL), as well as the square lattice with nearest,
next-to-nearest, and next-to-next-to-nearest neighbor (NN, NNN, NNNN) cou-
plings (the J1J2J3 model [624, 628�630]). We �nd that these models feature a
very complex T = 0 phase diagram, with spirally and collinearly ordered regions,
whose ordering vector is subject to strong quantum corrections with respect to
the classical (S → ∞) limit. They also feature extended breakdown regions for
MSWT, pointing at the possible spin-liquid nature of the true ground state of
the system. Comparison with numerical results coming from ED and PEPS
calculations show that MSWT correctly accounts for some of the most salient
features of the quantum phase diagram of these systems, and that it hence rep-
resents a very versatile tool to probe the robustness (or the breakdown) of a
semi-classical description of the ground state of frustrated quantum magnets.
As such, it requires a relatively low e�ort to �nd parameter regions which might
harbor exotic quantum phases, and which are therefore good candidates for a
useful application of a quantum simulator. The results presented in this chapter
also give important insight into the location of quantum-disordered phases. In
fact, similar to what we have seen in the XY models treated in Chapter 3, in
all considered models disordered phases do not occur at strongest frustration,
but intervene in transitions between di�erent types of (quasi-)order. We pro-
pose that this might be a general behavior, which could facilitate the search for
spin-liquid ground states.

The remainder of this chapter is organized as follows: Section 14.2.1 presents
the ground-state phase diagram of the SATL with NN Heisenberg interactions.
Motivated by recent works that point out the insu�ciency of the SATL to
describe some magnetic compounds, we consider its generalization to the SCATL
in Sec. 14.2.2. In Sec. 14.2.3, we calculate the ground-state phase diagram of
the J1J2J3 model. Finally, in Sec. 14.2.4 we present a short summary of our
�ndings. The results presented in this chapter can be found in the published
article [241] and in the preprint [631].
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Figure 14.1: (a) Classical ground-state phase diagram of the Heisen-
berg SATL with a sketch of the 1D state at α = 0, the spiral state at α = 1, and
the 2D-Néel state for α ≥ 2. (The horizontal black bonds have strength J , and
the diagonal red bonds have strength J ′.) (b) The quantum-mechanical
phase diagram changes considerably due to order-by-disorder e�ects and the
appearance of spin liquids (from [239, 614]).

14.2.1 MSWT on the SATL

The triangular lattice with Heisenberg interactions has been considered as one of
the �rst candidate systems for quantum-disordered behavior in the ground state
[605]. It is de�ned in Fig. 14.1a, where the interaction strength J is associated to
bonds along the ex coordinate vector, and J ′ to bonds along the 1/2ex±

√
3/2ey

vectors, and we de�ne α = J ′/J .
There are a few well-established limiting cases of the quantum SATL. For

α ≫ 1, one recovers the square lattice limit, where Néel order at the classical
ordering vector persists also in the quantum case [632]. Similarly, in the isotropic
triangular lattice, α = 1, spiral LRO survives quantum �uctuations [633]. The
limit α → 0 corresponds to ensembles of decoupled, critical Heisenberg chains,
with algebraic correlations along individual chains but no correlations between
them.

In the classical limit of S →∞ (Fig. 14.1a), the spiral phase spans the entire
region from α > 0 to α = 2, where the transition to the Néel phase happens.
Quantum e�ects change this classical phase diagram considerably, possibly even
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giving rise to disordered spin liquids. At the low-α side of the spiral phase,
many previous works predict such a disordered phase, which could extend to
as large α as ≈ 0.8 − 0.9 [239, 240, 242, 615]. In the following, we term this
predicted disordered region �small-α spin liquid.� It is associated to a spread
of the gapless spin-liquid phase of the isolated chains (J ′ = 0) to �nite coupling
[239�242], possibly followed by a gapped spin liquid [239�241]. This double-
nature of the disordered region is still under debate, since some works only �nd
a gapless spin liquid [242]. Consistently, however, all these methods predict that
quantum �uctuations disrupt ordering tendencies between the chains even for
relatively large inter-chain couplings, leading to an extended quasi-1D critical
phase. But consent about the physics in this region seems far from reached. For
example, recent DMRG studies entirely question the existence of the small-α
spin liquid(s) [238]. And a recent renormalization-group analysis [237] found
collinear AFM long-range order in the region α ≤ 0.3 (see also [618]), and at
larger α spiral order. The extreme weakness of the latter leaves the possibility
of observing a disordered phase in the true ground state in the parameter range
0.3 − 0.5.

Coming from the large-α limit, it is commonly accepted that order-by-
disorder e�ects due to quantum �uctuations stabilize the Néel phase consid-
erably compared to the classical model, moving the point where Néel order
disappears downwards from the classical value α = 2 to values between α ≈ 1.1
to 1.67, depending on the method used [238, 241, 242, 614, 634, 635]. Fur-
ther, several methods predict that quantum �uctuations spread the transition
point between the Néel and the spiral phase into a quantum-disordered phase
[241, 614, 615, 634]. In the following, we term this predicted disordered region
�large-α spin liquid.� The classical phase diagram is contrasted with the quan-
tum mechanical one (composed from Refs. [614] and [239]) in Fig. 14.1. It is
interesting to notice that it is qualitatively very similar to the one on the SATL
with XY interactions, as described in Chapter 3.2 (see also Refs. [202, 225]).

A variety of experiments have been carried out on magnetic compounds
described by the Heisenberg model on the SATL, with results that are still con-
troversial. For instance neutron scattering experiments of Coldea and coworkers
[609] on Cs2CuCl4, where α ≈ 1/3, claimed evidence that the low-energy physics
is governed by spinons, fractionalized excitations with S = 1/2 which repre-
sent the elementary excitations in the case of uncoupled chains. Yet, Kohno,
Starykh, and Balents [617] showed that, for a �nite inter-chain coupling, spinons
tunnel between chains in bound pairs with S = 1 (so-called triplons), so that
the fractionalization in two dimensions is strictly speaking not present. Kohno,
Starykh, and Balents [617] argue that the spinons in Cs2CuCl4 are descendants
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of the excitations of the individual 1D chains and not characteristic of any exotic
2D state. This further reinforces the idea of a quasi one-dimensional behavior up
to relatively high inter-chain interactions mentioned in the previous paragraph.

In the following, we discuss the ground-state phase diagram of the S = 1/2
SATL with NN Heisenberg interactions. We apply the MSWT in the thermo-
dynamic limit, and, in order to assess its validity, compare its predictions with
ED, for which we compute (using the Lanczos method) the ground state of small
clusters of 14, 24, and 30 spins. The considered geometry for the 30-spin system
can be found in Fig. 3.2c. The 24-spin system can be obtained from it by remov-
ing the top and bottom rows. The 14-spin cluster is an equivalent system with
rows of 2, 3, 4, 3, and 2 spins. The clusters are chosen for their symmetry with
respect to re�ection along the coordinate axis, and for their ratio of the number
of J ′-bonds (red) to the number of J-bonds (black), which lies close to the bulk
value of 2. We use open boundary conditions to allow for the accommodation
of incommensurate spiral order.

MSWT ground-state energy in comparison with previous results

As a �rst step in our analysis, we compare the energy from MSWT to other
methods. We �nd quite good agreement to data that were obtained by Yunoki
and Sorella by variational QMC methods [239], shown in Fig. 14.2. This agree-
ment suggests that MSWT yields reliable predictions despite its simplicity. For
comparison, we also show in Fig. 14.2 the data that Yunoki and Sorella obtained
with a projected-BCS (p-BCS) wave-function [239]. To further judge the qual-
ity of the MSWT predictions, we now compare them to ground-state energies
derived with various other methods, focusing on a few special values of α. The
corresponding data can be found in Table 14.1.

In the isotropic triangular lattice, the MSWT energy compares favorably
to the data from the Green's function Monte Carlo method with stochastic
recon�guration (GFMCSR) by Capriotti, Trumper, and Sorella [633], but both
energy and order parameter lie closest to the variational QMC calculation from
Weber et al. [636], who used a mixture of a BCS wave-function and a wave
function with spiral order as their starting point (BCS+spiral). MSWT predicts
a smaller energy than LSWT as well as 1/S expansion [228, 640], but since
neither of these methods is variational this does not rigorously mean that the
MSWT ground state is better.

At α = 0, the MSWT value E0 (α = 0) = −0.4647 is relatively close to the
exact result of the one-dimensional case, −(ln 2−1/4) = −0.44315. However, it is
located below the exact value. Again, this is due to the non-variational nature
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Figure 14.2: Ground-state energy for the quantum Heisenberg SATL.
MSWT results lie close to those from previous studies. Shown are the data
due to Yunoki and Sorella [239] of a variational QMC (VMC) Ansatz with a
projected BCS wave-function (p-BCS) and the improved FN e�ective Hamil-
tonian method (FNE); the value obtained for α = 1 by Weber et al. [636] using
a VMC method with a mixture of a BCS and a spiral ordered wave-function
(BCS+spiral); and the exact result of the 1D limit. The numbers in the labels
are the respective system sizes.
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of MSWT. We also notice that the ground-state energies derived from ED of
the 30-site system lie close to the predictions from other methods except in the
1D-like phase, α ≲ 0.5. This could be attributed to the small system size: if for
small α the Heisenberg SATL is in a 1D-like phase with algebraic correlations,
�nite-size e�ects naturally play an important role in that region. This would
explain the strong deviation of the ED energy in that parameter region.

On the square lattice (α → ∞), Takahashi showed already twenty years
ago the extremely good performance of MSWT [224]; its ground-state energy
per spin is −0.6699, which is in excellent agreement with the QMC result
−0.669437(5) [638].

Parameter regions where MSWT fails to converge

Convergence in the self-consistent equations of MSWT with ordering-vector
optimization, Eqs. (14.11�14.17, 14.19), cannot be achieved in selected regions
of the ground-state phase diagram, namely for α ≲ 0.65 and for 1.14 ≲ α ≲

1.3. (Interestingly, convergence is restored in the pure 1D limit, α = 0, for
which the theory formulates surprisingly good predictions.) This breakdown of
convergence corresponds to the appearance of an imaginary part in the spin-
wave frequencies (14.13), signaling an instability of the ordered ground state.

As discussed in Chapter 3.2, the breakdown of a self-consistent description
of the system in terms of an ordered ground state is strongly suggestive of the
presence of a quantum-disordered ground state in the exact behavior of the sys-
tem. Hence, one can interpret these parameter regions as candidates for the
spin-liquids predicted from Refs. [239, 614] (see Fig. 14.1b). The breakdown
regions of MSWT appear to be fully contained within the regions of spin-liquid
behavior estimated in Refs. [239, 614]. Hence, MSWT is seen to possibly un-
derestimate the width of the quantum-disordered regions in the phase diagram,
which is to be expected due to the partial account of quantum �uctuations given
by MSWT.

Order parameter and spin sti�ness from MSWT

Our next, complementary step is to determine the regions where the presence
of a �nite order parameter M0 and spin sti�ness Υ reveal magnetic LRO. Even
when these are �nite, a caveat is still in order: a �nite order parameter with
a very small sti�ness might suggest that taking quantum �uctuations more
completely into account than in MSWT could lead to a completely disordered
state.
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Figure 14.3: The or-
der parameter from
MSWT decreases to-
wards α → 0.65+, α →
1.14−, and α → 1.3+

indicating the destabi-
lization of magnetic or-
der. For comparison, re-
sults from LSWT and
ED are also included.
The numbers in the la-
bels give the respective
system sizes.

A �nite order parameter M0 (Fig. 14.3) and spin sti�ness (Fig. 14.4) show
that magnetic LRO is present in the intervals 0.65 < α < 1.14 and α > 1.3. Both
order parameter and spin sti�ness decrease upon approaching the regions 1.14 ≲
α ≲ 1.3 and α ≲ 0.65, which are the parameter regimes where the self-consistent
description breaks down. This �nding further corroborates the assumption that
in these regions magnetic LRO disappears in the true quantum ground state.
This is to be contrasted with LSWT, which predicts the breakdown of magnetic
order only for α ≲ 0.3 [642]. Further, the vanishing ρxx at α → 0.65+ is not
consistent with a gapless spin liquid, since in such a critical phase, the spin
sti�ness along the chains remains �nite. This gives support to the assumption
that the quantum ground state hosts a gapped spin liquid in this region (see
Fig. 14.1b).

In the square lattice limit, α → ∞, on the other hand, MSWT attains a
�nite staggered magnetization of 0.303 (coinciding with the LSWT value), which
compares favorably with the most recent estimates M0 = 0.30743(1) from QMC
calculations [643]. For the spin sti�ness, MSWT gives in this limit ρ∥/α = 0.216,
somewhat overestimating the value from QMC ρ∥/α = 0.175(2) [638].

In the isotropic case, α = 1, the spin sti�ness from MSWT is ρ∥/α = 0.113.
This value falls between the LSWT prediction, ρ∥/α = 0.122 [644], and the
estimate obtained from ED calculations after �nite-size extrapolation, ρ∥/α =

0.075 [644]. The large-S expansion result, ρ∥/α = 0.070 [640], on the other hand,
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Figure 14.4: (a) The Gaussian spin sti�ness Υ vanishes at α = 0.65+ and it
drops signi�cantly when approaching α = 1.14 from below, suggesting the weak-
ening of magnetic order. (b) Components of the spin sti�ness tensor.
ρyy vanishes at α = 0 and when reaching α = 0.65 from above. ρxx decreases
strongly when approaching α = 0.65+ and α = 1.14−, suggesting the onset of
gapped spin-liquid phases. The mixed second derivative ρxy vanishes for sym-
metry reasons. The curves labeled `partial' were obtained via Eq. (14.23).
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is closer to the ED result than the MSWT value. Notably, at this value of α, the
MSWT order parameter is considerably higher than what is predicted by LSWT.
Comparison to the best numerical estimates, which are presented in Table 14.1,
shows that in this respect MSWT performs worse than other analytical methods,
like Schwinger-boson mean-�eld theory (SBMFT) [641] or 1/S expansion [228,
640]. Nonetheless we notice that among all analytical predictions surprisingly
LSWT gives the one which is the closest to the more recent numerical estimates.
This strongly suggests that an adequate account of quantum corrections to the
magnetization is a hard task for theories accounting for spin-wave interactions
at a perturbative or mean-�eld level, and that non-perturbative approaches or
approaches beyond mean-�eld theory would be necessary. Another explanation
of this discrepancy could lie in corrections to the spin-wave expansion of third-
order in the boson operators. These are neglected in our approach, but they
can become important in spiral con�gurations [228].

In the limit of decoupled chains, α = 0, MSWT achieves convergence (which
was lost in the interval 0 < α < 0.65) and provides a spin sti�ness ρxx/α = 0.309
in the thermodynamic limit. As for the ground-state energy, this value lies
relatively close to the exact result in the thermodynamic limit, ρxx/α = 1/4
[230].

Ordering vector and chirality correlations from MSWT

Now, we describe the ordered phases found by MSWT for the Heisenberg SATL
in more detail. To this end, we analyze the the ordering vector Q, given by Eq.
(14.19), and the chiral order parameter Ψ−, de�ned in Eq. (3.33). The chiral
order parameter is �nite in spiral phases. For the ordering vector, three limiting
values are known. For α = 0, intra-chain AFM (Néel) order is described by
Q = πex. For α → ∞, square-lattice Néel order is described by Q = 2πex. In
the isotropic lattice (α = 1), the threefold symmetry forces the ordering vector
to Q = 4π

3
ex.

A comparison of these quantities (Figs. 14.5 and 14.6) shows a spiral phase
at around 0.65 ≲ α ≲ 1.14 and a 2D-Néel ordered phase for α ≳ 1.3. Moreover,
when approaching α ≈ 0.65 from above, the spin�spin correlations (not shown),
the ordering vector, and the ground-state energy approach their respective 1D
values. This is an indication that below α ≈ 0.65 the true ground state of the
system may enter a 1D-like spin-liquid phase. Nonetheless, as mentioned before,
the vanishing of the spin sti�ness ρxx for α → 0.65+ is not consistent with the
onset of a gapless 1D spin-liquid phase, for which the spin sti�ness should remain
�nite. Hence, the MSWT results rather suggest that the phase appearing below
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Figure 14.5: Ordering vector. (a) Qx from MSWT [Eq. (14.19)] shows a
considerable shift with respect to the the classical and the LSWT results. The
black circle marks the order vector Qx = 120○ of the isotropic triangular lattice.
(b) For ED, Qx depends strongly on whether it is derived from Mx or from
Mz. Also, the di�erence between the 24 and the 30 site cluster is signi�cant.

α = 0.65 is a gapped spin liquid, and that the gapless 1D spin-liquid phase,
connected continuously with the limit α = 0, is only attained for even smaller
α. This seems consistent with the prediction of Yunoki and Sorella [239] that a
gapped spin-liquid phase separates the spirally ordered phase from the 1D-like
gapless one.

Order parameter and correlations in comparison with ED

In the case of ED, the static structure factor

Sµµ (k) =
1

N
∑
i,j

⟨Sµi S
µ
j ⟩ e

−ik⋅rij (µ = x, y, z) (14.25)

allows to extract the order parameter Mµ =
√
Sµµ (Q) /N , where Q is the

ordering vector associated with a peak in Sµµ (k). In the thermodynamic limit,
this is equivalent to M0 from MSWT. A comparison of both quantities can
be found in Fig. 14.3. We �nd that, due to the peculiar geometries chosen,
there exist parameter ranges where the ED ground state falls into the threefold
degenerate triplet with total spin equal to unity. Nonetheless, we restrict our
calculations to the M total

z = 0 subspace (with M total
z being the z component

of the total spin), and the M total
z = ±1 states are excluded. This results in an

apparent breaking of the x�z symmetry (the x�y symmetry is preserved). This
symmetry would be recovered by averaging over the whole triplet subspace.
The reason for such an apparent symmetry breaking resides in the particular
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Figure 14.6: Chiral
correlations, normal-
ized to the theoretical
maximum of 4/9.
MSWT and ED results
suggest the survival of
chiral correlations in
a range around α = 1,
but their breakdown for
α ≲ 0.6.

geometry of the clusters considered, which complicates the comparison between
di�erent system sizes. This triplet physics might play an important role for
bigger systems, although we cannot draw conclusions about the thermodynamic
limit from the small clusters considered. A non-trivial triplet physics could be
especially an issue for variational methods restricting their focus to the singlet
subspace.

Discontinuous jumps in the ED magnetizations are due to the change of the
spin sector hosting the ground state, going from the singlet sector (characterized
by Mx = Mz) to the triplet sector (characterized by Mx ≠ Mz). We observe
severe deviations between the ED data on the one side and the predictions from
LSWT and MSWT on the other side. In particular, apart from the deviations
between Mx and Mz, the ED data appears to be almost constant over a large
α interval. The strong di�erence between ED results on the one hand and
MSWT/LSWT predictions on the other can also be attributed to signi�cant
�nite-size corrections to the ED data, which are particularly pronounced here,
due to the open boundary conditions of the ED clusters. Nonetheless, for α = 1
the magnetization of the 30-site cluster gives Mx = Mz ≈ 0.13, lying close to
recent Monte Carlo estimates [240].

From the location of the peak of the structure factor one can extract the
vector of predominant ordering, Q, the x-component of which is plotted in
Fig. 14.5. For MSWT, we observe a signi�cant shift with respect to the classical
and LSWT results (Fig. 14.5a). Remarkably, for ED of the 30-site cluster, the
ordering vector corresponding to Mx (labeled Qx in the �gure) indicates a
transition from spiral to Néel order at around α ≈ 1.4, which lies well below
the classical threshold α = 2 (Fig. 14.5b). On the contrary, the ordering vector
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corresponding to Mz (labeled Qz) increases smoothly up to α ≈ 2, where it
undergoes a discontinuous transition to the square-lattice Néel value. However,
increasing the system size from 24 to 30 spins shifts signi�cantly the curves of
Qx and Qz to the left, suggesting that for even larger sizes both curves might
exhibit a discontinuous transition to the Néel ordering vector for a value of α
close to the transition indicated by MSWT, α ≈ 1.3. Finally, we notice that at
α = 1 the ED results deviate from the isotropic value Qx = 120○ because the
threefold symmetry is broken by the shape of the simulation cluster, Fig. 3.2c.

Finally, we focus on the chirality correlations. Comparing such correlations
for the 14, 24, and 30 spin clusters shows that they are strongly suppressed for
α ≲ 0.5 and for α ≳ 1.4 when going to larger lattice sites. This indicates that a
non-spiral phase appears in this region in the thermodynamic limit, in agreement
with our MSWT calculations. The persistence of signi�cant correlations in the
region 0.5 ≲ α ≲ 1.4 indicates that spiral order in the ground state might persist
in a portion of this parameter range.

In summary, despite the signi�cant deviations in the magnitude of the order
parameter, both ED and MSWT give a coherent picture, both qualitatively
and quantitatively, of the evolution of the nature of spin-spin correlations upon
increasing α, going from quasi-1D to spiral to Néel.

Discussion

Despite its limitations, MSWT with ordering-vector optimization reproduces
faithfully the main characteristics of the phase diagram of the quantum SATL
as sketched in Fig. 14.1b, and thus remarkably improves on the results that
were previously obtained for this model with conventional spin-wave theories.
A breakdown of magnetic order � along with a variety of observables like the
ordering vector or NN spin�spin correlations � indicates that a 1D-like spin
liquid might be attained below α ≈ 0.65. Due to the partial account of quantum
�uctuations provided by MSWT, we can safely take this as a lower bound for
a spin liquid in the true ground state. Furthermore, we �nd a relatively small
region with spiral LRO between 0.65 ≲ α ≲ 1.14. For α ≳ 1.30 the system is
ordered at the 2D-Néel wave-vector. Between 1.14 ≲ α ≲ 1.30 the breakdown of
convergence suggests another candidate region for spin-liquid behavior.
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14.2.2 MSWT on the spatially completely anisotropic tri-
angular lattice (SCATL)

As seen in the last section, there are strong indications that the AFM Heisenberg
SATL harbors spin-liquid phases. Initially, these were assumed to appear at
strongest frustration, but they seem to actually occur at transitions between
two di�erent types of order. To identify if this is more general, we here analyze
� again using Takahashi's MSWT complemented by ED � a generalization of
the SATL, the spatially completely anisotropic triangular lattice (SCATL).3

In the SCATL, the NN couplings Jij along all three lattice directions are
di�erent, see left side of Fig. 3.15 (with t's replaced by J 's). For simplicity, we
will work throughout this section in the associated square lattice (right side of
Fig. 3.15), where the vectors connecting NN sites are τ 1 ≡ (1,1), τ 2 ≡ (0,1),
and τ 3 ≡ (−1,0), and de�ne Jτ1 ≡ J , Jτ2 ≡ J

′, and Jτ3 ≡ J
′′. An advantage of

the SCATL geometry is the possibility, given by the additional anisotropy, to
approach the putative spin-liquid phases from di�erent angles, possibly revealing
crucial information not only about their location in parameter space, but also
about their nature. Indeed, the results presented in this section suggest that
the gapped spin liquids of the SATL, apparently two distinct phases, might
actually be continuously connected via the additional anisotropy of the SCATL.
Studying the persistence and characteristics of the putative spin-liquid phases
with respect to this additional anisotropy is the �rst main aim of the present
section.

The second main aim is related to experimental �ndings in magnetic ma-
terials. While the SATL has found considerable attention in recent years, to
our knowledge the ground-state phase diagram of the Heisenberg SCATL has
never been thoroughly investigated. Recent �rst-principles calculations, how-
ever, show that some magnetic materials that are well described by weakly-
coupled 2D triangular lattices, such as the organic salts Me4−nEtnPn[Pd(dmit)2]2
(abbreviated Pn − n) [645], TMTTF [646], or BaAg2Cu[VO4]2 [647] can have
considerable anisotropies between all three intra-plane couplings.4 Typically, to
locate the material within the well-studied SATL model, the two closer bond
strengths have been averaged. However, this places materials such as Sb-0 and
As-2, which are experimentally found to be AFM ordered, into a region of the
phase diagram, where according to many theoretical studies [239�242, 615] no

3The S = 1/2 AFM SCATL with XY interactions, motivated by recent experiments with
frustrated bosonic atoms in optical lattices, is treated in a similar way in Chapter 3.4.

4Although in the last material the physics is dominated by a superposition of antiferro-
magnetic and ferromagnetic 1D chains.
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LRO should exist. The second aim of this section, therefore, is to show that the
additional anisotropy between the couplings could explain this discrepancy nat-
urally, since it shifts the parameter values corresponding to these materials into
an ordered phase. This also suggests that the spin-liquid state is quite sensitive
to this additional anisotropy, which therefore has to be taken into account when
interpreting experiments.

Known limiting cases

Before proceeding to the computation of the phase diagram of the quantum
Heisenberg SCATL, let us �rst discuss brie�y some well-known limiting cases.
This helps us to assess which phases and quantum e�ects are to be expected in
the phase diagram of the SCATL.

For (J ′/J, J ′′/J) = (1,0), (J ′/J, J ′′/J) = (0,1), and J ′/J, J ′′/J ≫ 1, one
recovers the square lattice limit. Here, Néel order at the classical ordering vector
persists also in the quantum case [632]. Similarly, in the isotropic triangular
lattice, J ′ = J ′′ = J , spiral long-range order survives quantum �uctuations [633].
The limits (J ′ = J ′′ = 0), (J ′ → ∞ with J ′′ = const), and (J ′′ → ∞ with
J ′ = const) correspond to ensembles of decoupled Heisenberg chains. In this
limit, each chain is critical with algebraic decay of correlations along the chains
but no correlations between di�erent chains. For J ′ = J ′′ ≡ αJ (or, equivalently,
J ′ = J or J ′′ = J), one recovers the SATL discussed in the previous section (see
Fig. 14.1 for its phase diagram).

The classical phase diagram (equivalent to S →∞) can give some further in-
tuition about possible ordered phases. For Heisenberg interactions, it is equiva-
lent to the solution for XY spins (3.37a) as obtained in Chapter 3.4.1, if (without
loss of generality) we focus on the classical solution where the spins are oriented
in the xy-plane. The classical phase diagram can be found in Fig. 3.16. The
Néel phases spread around the square-lattice limits [(J ′/J, J ′′/J) = (1,0) with
Qcl = (0, π), [(J ′/J, J ′′/J) = (0,1) with Qcl = (π,0), and J ′/J, J ′′/J ≫ 1 with
Qcl = (π,π)]. The spiral phase, with continuously varying ordering vector con-
nects smoothly to the Néel phases, and occupies the extended region between
them. In particular, it extends down to J ′/J = J ′′/J = 0 [and, symmetrically, to
(J ′/J = 1, J ′′/J → ∞) and (J ′′/J = 1, J ′/J → ∞)], where the system decouples
into an ensemble of 1D chains.

From our experience with the frustrated spin systems treated in this the-
sis, we can expect appreciable changes to the classical phase diagram due to
quantum �uctuations. To compute the quantum phase diagram, we again make
use of Takahashi's MSWT (in the thermodynamic limit). We compare these
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approximate results to ED of a 15-site lattice, as depicted in Fig. 3.15. Again,
we leave the boundaries open to account for incommensurate ordering vectors.

MSWT and ED results � ordering vector and order parameter

We obtain an overview of the quantum-mechanical phase diagram of the SCATL
from the ordering vector Q and the order parameter M . Afterwards, we will
analyze complementary observables. For Heisenberg interactions, we de�ne the
magnetization for ED as

MED
≡
√
S(QED)/N =

√

∑
α=x,y,z

Sα(QED)/N , (14.26)

where the ED ordering vector QED is located at the peak of the structure fac-
tor S(k), as de�ned in Eq. (14.25). As seen in the MSWT and ED ordering
vectors, presented in Fig. 14.7, quantum �uctuations stabilize the Néel phases
compared to the classical case, as already observed in the SATL. In the central
region around J ′ ∼ J ′′ ∼ J , the ordering vector indicates spiral order with a
broad range of incommensurate ordering vectors. The �nite MSWT order pa-
rameter (Fig. 14.8, left panel) suggests that in these phases indeed long-range
order survives quantum �uctuations. (Note that the self-consistent MSWT cal-
culations become relatively unstable for small order parameters, which results
in the ragged boundary lines of the ordered phases.)

In the Néel phases, the ED order parameter (Fig. 14.8, right panel) is max-
imal, giving support to the assumption that here LRO persists. However, it is
much smaller in the spiral phase than the MSWT value, a discrepancy already
found in the SATL, Sec. 14.2.1, and the XY models treated in Chapter 3.

Between the ordered regions, we �nd a broad region where the MSWT theory
breaks down, indicating as usual that these regions do not allow a description
in terms of an ordered, semi-classical state. This, in turn, hints at quantum
spin-liquid phases. Therefore, it appears that it is a quite universal feature of
frustrated quantum antiferromagnets that spiral- and collinearly-ordered phases
are always separated by quantum disordered phases. This is the �rst main result
of this section.

We obtain further support to this interpretation (which we will further cor-
roborate in the next two sections) from the strong decrease of the MSWT and
ED order parameters upon approaching the breakdown region (Fig. 14.8). Note
also that both the ED and MSWT order parameter seem to disappear smoothly
when approaching the putative 1D-like spin liquid (consider, e.g., in the range
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Figure 14.7: Phase diagram of the quantum Heisenberg SCATL, or-
dering vector. Upper row: MSWT data. Quantum �uctuations stabilize
the Néel phase. Around J ′ = J ′′, a part of the classical spiral phase sur-
vives quantum �uctuations. Labels for the ordered phases can be found in the
upper left panel. The solid symbols (upper right panel) denote some experi-
mental materials (see Table 14.2). (For clarity, we show only symbols in the
lower right part of the �gure, excluding points which are connected by sym-
metry between J , J ′, and J ′′.) ▲: magnetically disordered; �: charge-ordered;
∎: AFM LRO. Note especially the two ∎ at (J ′/J, J ′′/J) = (1.44,0.84) and
(J ′/J, J ′′/J) = (1.36,0.82) marking the materials As-2 and Sb-0, which lie well
inside a Néel ordered phase. Neglecting the asymmetry between the couplings
would put As-2 into the supposedly disordered region and Sb-0 just at its
boundary (◻). Lower row: ED data for N = 15 sites. Already at this small
system size, it can be appreciated that the Néel phase grows at the expense of
spiral order.
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Figure 14.8: Phase diagram of the quantum Heisenberg SCATL, or-
der parameter. ED results qualitatively con�rm the MSWT phase diagram.
In particular, the order parameter for both methods decreases rapidly upon
approaching the MSWT breakdown regions.

2 ≲ J ′/J ≲ 3, J ′′/J → 1−). Upon approaching the putative large-α spin liquid
dividing spiral from Néel LRO, on the other hand, for ED the order parameter
decreases sharply (consider, e.g., the line J ′/J = 1, J ′′/J → 1−), and for MSWT
the breakdown occurs abruptly at �nite order parameters. This points at a dif-
ference in the type of phase transition upon approaching the large-α spin liquid
and the spin liquid at the decoupled-chains limit.

The second main result of this section concerns experimental measurements
of ground-state behavior of some materials, taken from the article by Scriven and
Powell [645] (see also the reviews [648, 649]), as well as from the works by Coldea
et al. [650] (Cs2CuCl4) and by Ono el al. [651] (Cs2CuBr4). For reference, the
corresponding data are presented in Table 14.2, and included as solid symbols in
the upper right panel of Fig. 14.7. We mark magnetically disordered materials
(spin liquids, resonating valence-bond states, or valence-bond solids) with trian-
gles, charge-ordered materials with bullets, and antiferromagnetically ordered
materials with squares. Including the full anisotropy of the triangular lattice, all
ordered materials lie within the ordered phases from MSWT theory.5 In particu-
lar, the AFM ordered materials As-2 and Sb-0 [at (J ′/J, J ′′/J) = (1.44,0.84) and

5Some magnetically disordered materials are erroneously found in ordered regions of the
MSWT phase diagram. However, it is known that MSWT overestimates ordered phases.
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material (J ′/J, J ′′/J) state

N-3 (10, 9.1) AFM
P-2 (2.63, 1.89) AFM
Sb-2 (2.08, 1.79) CO
Sb-1 (1.72, 1.49) SL
κ-CN (1.41, 1.41) SL
P-1 (1.32, 1.32) VBS
Cs (1.16, 1.16) CO
Sb-0 (0.74, 0.60) AFM
Cs2CuBr4 (0.74, 0.74) AFM
As-2 (0.69, 0.58) AFM
Cs2CuCl4 (0.34, 0.34) RVB

Table 14.2: Some relevant materi-
als for which the ground state has been
measured in experiment, together with
the coupling strengths, and the state
they are found to be in (from Refs. [645,
650, 651] and references therein). AFM
stands for antiferromagnetic LRO, CO
for charge ordered, SL for spin liquid,
VBS for valence-bond solid, and RVB
for resonating valence-bond state.

(J ′/J, J ′′/J) = (1.36,0.82)] lie well inside a Néel ordered phase. If one neglects
the anisotropy between J ′ and J ′′, taking the mean of both couplings as is usu-
ally done, they would lie at the position of the empty squares at (J ′/J, J ′′/J) =
(1.57,1) [equivalent to (J ′/J, J ′′/J) = (0.64,0.64)] and (J ′/J, J ′′/J) = (1.50,1)
[equivalent to (J ′/J, J ′′/J) = (0.67,0.67)] � inside a phase where many methods
[239, 240, 242, 615] predict disorder; speci�cally, within MSWT, symmetriz-
ing the couplings puts Sb-0 just at the border to the breakdown region (which
should be a lower limit for disorder in the true ground state) and As-2 within it.
The appearance of AFM Néel LRO in these experiments might �nd, therefore, a
simple explanation in the full anisotropy of the SCATL. This second main result
of this section shows how crucial the full anisotropy is for the interpretation of
experimental data. The rest of this section is devoted to �eshing these main
�ndings out.

Supporting observables from MSWT � spin sti�ness and spin-wave
velocities

In Chapters 3 and 14.2.1, the spin-sti�ness tensor has proven a valuable con-
sistency check of our MSWT calculations, because it characterizes how sti� the
magnetic order is under change of the ordering vector. Since for our purposes
it is enough to extract an upper bound for the spin sti�ness, we here use the
partial derivative (14.23). While it may not be able to distinguish gapped from
gapless spin liquids, it still seems adequate to capture the location of disordered
regions. In Fig. 14.9, we show the determinant of the spin-sti�ness tensor,
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Figure 14.9: The partial spin
sti�ness (normalized to the
coupling strengths 1 + J ′ +
J ′′) decreases upon approach-
ing the MSWT breakdown re-
gion, suggesting the disruption
of magnetic LRO.

det(ρ), normalized to the coupling strengths 1 + J ′ + J ′′. As we should expect
[258], det(ρ) decreases upon approaching the phase transitions, especially from
the Néel-ordered side. At large J ′ (J ′′), this decrease is due to a softening of the
sti�ness in x (y) direction, and at small (J ′/J, J ′′/J) in the direction perpen-
dicular to τ1, i.e., perpendicular to the dominating coupling strength (as can
also be seen in the SATL, Chapter 14.2.1).

Another indicator for approaching disordered phases is given by the spin-
wave velocities vx,y, as de�ned in Eqs. (3.38). Since they can be measured
directly from the spin-wave dispersion, they allow an experimental check of our
�ndings. As seen in Fig. 14.10, close to the 1D breakdown region they, too,
soften in the direction perpendicular to the dominating coupling. On the other
hand, when approaching the putative large-α spin liquid dividing the spiral
from the Néel phase, both spin-wave velocities remain �nite. This is another
(besides the di�erent behavior of the order parameter) indication that the large-
α spin liquid is qualitatively di�erent from the spin liquid found in the limit of
decoupled chains.

Supporting observables from ED � energy derivative, gap, and chiral
correlations

The ED observables investigated above, order parameter and ordering vector,
allowed to interpret the predominant ordering behavior, but did not yield clear
evidence if within ED really quantum phase transitions (QPTs) exist, and if
yes, where their boundaries lie. The second derivatives of the ED ground-state
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Figure 14.10: The spin-wave velocities (normalized to the coupling strengths
1 + J ′ + J ′′) soften in the 1D limits in the direction perpendicular to the dom-
inating coupling strength. Di�erences in the spin-wave velocities might allow
to measure the anisotropy of the SCATL.

energy, which we plot in Fig. 14.11, can provide such an indicator. In fact, in
the thermodynamic limit, it should diverge at a QPT.

Indeed, there are clear peaks along lines similar to where in MSWT the Néel
order breaks down. Also, a peak appears around (J ′, J ′′) = (1,1). This might
be interpreted as the precursor of a QPT away from the spiral state, and to
an intermediate phase, possibly the spin liquid that is supposed to exist in this
system.

From the ED energy gap between ground and �rst excited state, Fig. 14.12,
we get further support for the phase diagram that has emerged so far. In the
well-known limiting cases of the SCATL, it behaves as expected: There is no gap
close to the decoupled-chains limits, since the system is then in a critical phase.
In the Néel-ordered phases, there is a large gap which separates the ground state
from closely-spaced excitations, which in larger lattices become the spin waves,
collapsing slowly towards the ground state [231]. This is consistent with the
considerable size dependence found in our calculations, as can be seen in the
right panels of Fig. 14.12, where we plot cuts of ∆EED at �xed J ′′/J = 1,2,3
for triangular systems (similar to the one in Fig. 3.15) with N = 6,10,15.

On the contrary, there is no gap in the spiral-ordered phase, because the
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Figure 14.11: Second derivative of ED ground-state energy for theN = 15
system. For clarity, we plot the logarithm after a shift to positive values larger
than one, L(∂2

(E/N)/∂Jγ2
), where Jγ is J ′ or J ′′, and L(x) = log(1+max(x)−

x). Strong peaks clearly mark the phase transitions from the Néel phases. An
additional peak around (J ′, J ′′) = (1,1) might be an indication of an additional
phase separating the Néel phases from the spiral one.

ambiguity in the choice of chirality leads to a ground-state degeneracy.6 We
�nd that the vanishing of the gap depends strongly on the system geometry,
but it occurs consistently for all triangular systems considered.

Interestingly, the gapless spiral phase is surrounded by a region where the
gap attains considerable values. The very small dependence on system size indi-
cates that here it may be stable towards the thermodynamic limit. A �nite gap
is not consistent with a spiral-ordered phase. On the other hand, the predomi-
nant order in this region is at incommensurate wave-vectors. Hence, the �nite
gap is clearly not due to square-lattice Néel-like physics. Optimistically, these
�ndings could therefore be interpreted as the precursors of a gapped spin-liquid
phase. This gapped region completely encircles the spiral phase, suggesting that
the low- and large-α gapped spin liquids found in the SATL could actually be
continuously connected via the additional anisotropy of the SCATL.

Upon approaching the Néel phases, the gap closes, indicating a QPT.
Comparing the left and right panels of Fig. 14.8, the lateral extent of the

putative spin liquid is qualitatively di�erent between MSWT and ED. Scanning

6We checked that in the spiral phase there is a gap, similar to the spin-wave gap found in
the Néel phases, between the second and the third energy level.



14.2 Example: MSWT on frustrated Heisenberg magnets 331

J’/J 

0 

1 

2 

3 

0 1 2 3 

0 
1 2 3 

2 

0 

4 

0 

4 

0 

4 

10  ΔE 
2 ED 

0.1 0 

J’’= J 

J’’=2J 
2 

2 

J’’=3J 

Figure 14.12: Left panel: The singlet gap from ED gives support to the
MSWT phase diagram. A �nite gap separates in the Néel phases spin-wave
excitations from the ground state. In the spiral phase, the ground state is
doubly degenerate due to the ambiguity in choice of chirality. The �nite gap
surrounding the degenerate region could be a precursor of a gapped, disordered
phase. At the QPTs to the Néel phases, the gap closes again. Right panels:
cuts at �xed J ′′/J = 1,2,3 for triangles with increasing N (from light to dark
and thick to thin: 6,10,15). There is little size dependence in the central gapped
phase (J ′′ = 2,3J with J ′ ≈ J , as well as J ′′ = J and J ′/J ≳ 1.5). Also, for
J ′ = 3J the transition points do not show any appreciable size dependence,
while for J ′ = 2J the one around J ′/J = 1.5 does.
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along J ′ = J , within MSWT it is smallest around J ′′ = 2J , while for ED it
decreases monotonously with increasing J ′′. As the right panels in Fig. 14.12
indicate, this discrepancy could be due to �nite-size e�ect. Indeed, we �nd in
ED that for J ′/J = 2 the transition point at J ′′/J ≈ 1.5 shows an appreciable
size dependence, while the transition points for J ′/J = 3 do not. This leaves
the possibility open that the lateral extent of the putative spin liquid at around
J ′/J = 2 decreases with N , making the MSWT and ED pictures consistent.

From the gap, it seems that there is support for the assumption of an ex-
tended gapped phase separating spiral and Néel LRO. Still, it would be desirable
to be able to exclude for this region spiral LRO in the thermodynamic limit. To
do this, we now study where chiral correlations persist. The chiral correlations
generalized for the small systems used in our ED have been de�ned in Eq. (3.39).

As can be seen from the ED results of the N = 15 lattice (Fig. 14.13, left
panel), the chirality is relatively small in the Néel phases. However, at this
lattice size, there are still appreciable chiral correlations in the rest of the pa-
rameter regime. In particular, in the 1D limit, the chiral correlations are only
a little smaller than in the spiral phase around (J ′/J, J ′′/J) = (1,1). There-
fore, we also plot in Fig. 14.13, right panel, an extrapolation to large lattices
by Ψ−(N) = Ψ−(N = ∞) + c1√

N
+ c2
N
+ c3
N3/2 , where we use the known form for

the leading �nite-size behavior [260] but also include subleading corrections due
to the small systems under consideration (our data comes from lattices with
N = 7,10,12,15,18, all chosen to have the same number of J , J ′, and J ′′ bonds,
as sketched at the bottom of Fig. 14.13). While this can not be seen as a rigor-
ous �nite-size analysis, which is di�cult for the small systems studied, it shows
a clear trend, namely that the chiral correlations only survive in a small region
around (J ′/J, J ′′/J) = (1,1), which roughly corresponds to the region where the
vanishing gap indicated the spiral phase.7 If further studies can con�rm this
analysis, it means that outside of this region, there is no spiral LRO.

With this, we have several independent observations from ED indicating the
existence of a magnetically disordered phase surrounding the spiral phase: the
increase of the gap when leaving the central region around (J ′/J, J ′′/J) = (1,1)
and the disappearance of chiral LRO when extrapolating to large lattices both
suggest that there is no spiral LRO in this region. On the other hand, the
predominant order is at incommensurate ordering vectors, indicating that this
phase is also not Néel ordered. Therefore, it seems natural to assume that this

7The smaller peaks around (J ′/J, J ′′/J) = (3,1) and (J ′/J, J ′′/J) = (1,3) are results of the
strong geometry dependence of observables for the small lattices used. It can be understood
that these peaks are artifacts of the extrapolation, because it is highly implausible that the
chiral LRO �rst disappears when increasing the one-dimensionality and then �nds a revival.
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Figure 14.13: Chiral correlations from ED. Upper left: Already for small
systems (N = 15), the chiral correlations are appreciably smaller in the Néel
phases than in the rest of the phase diagram. Upper right: From an extrap-
olation to large lattices, it appears that chiral LRO only survives in a small
central region around (J ′/J, J ′′/J) = (1,1), lending support to an extended
disordered phase surrounding a spiral phase. Below: The geometries used
in the extrapolation are chosen for symmetry upon rotation by 60○ and equal
number of J , J ′, and J ′′ bonds.
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region could host a spin-liquid phase, possibly gapped far away from the 1D
limit and gapless close to it.

MSWT spin-wave dispersion relations

Finally, we present the spin-wave dispersion relations ωk, which can be measured
by inelastic neutron scattering [652], thus providing another experimental probe
of the physics associated to the additional anisotropy.

In Fig. 14.14, we show the dispersion relation as computed from MSWT,
Eq. (14.13), for parameters corresponding to a point from the spiral phase and
the magnetically ordered materials listed in Table 14.2. We provide (where ap-
plicable) a comparison to the dispersion relation which would result if two of the
couplings were equal. These comparisons can be seen more quantitatively in the
cuts (c.i-iii) shown in the lowest row of Fig. 14.14. For the point from the spiral
phase (a.i), the symmetrization (b.i) does not signi�cantly change the dispersion
relation, but for P-2 and, especially, for Sb-0, the di�erences are considerable.
The latter in particular changes even qualitatively since a symmetrization would
put it instead of into a Néel phase into a spiral phase. These di�erences seem
signi�cant enough to be measurable in experiment. Such a measurement could
allow to quantify the actual magnitude of coupling anisotropies.

Summary of the SCATL

To summarize this section, we have provided a thorough analysis of the ground-
state phase diagram of the quantum Heisenberg SCATL, which has to the best of
our knowledge not been considered before � despite its relevance to experiments
on magnetic compounds.

Using various observables from MSWT, supported by ED, we have found
this model to behave qualitatively similar to its XY counterpart (Chapter 3.4).
In particular, quantum �uctuations stabilize Néel order with respect to the
classical phase diagram. Further, they reduce the extent of the spiral phase,
which seems to be entirely surrounded by a quantum disordered region. This
result, which constitutes our �rst main �nding, is supported by the breakdown
of MSWT, together with the strong decrease of the order parameter and the
spin sti�ness. It is further corroborated by ED data, where a �nite gap and a
vanishing chiral correlation make spiral LRO seem unlikely, while the location
of the structure-factor peak at incommensurate wave vectors seems to preclude
Néel LRO. Also, the strong decrease of the ED structure-factor peak appears to
support this interpretation.
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Figure 14.14: Spin-wave dispersion from MSWT, normalized to the cou-
pling strengths 1 + J ′ + J ′′. Top row: Parameters corresponding to (a.i) a
completely anisotropic point in the spiral phase, and (a.ii-iv) the magnetically
ordered materials cited by Scriven and Powell [645]. Middle row: (b.i-iii)
Symmetrizing the two closer couplings can change the dispersion relations.
(b.iv) Dispersion relation for Cs2CuBr4. Bottom row: Cuts along the path
indicated in (b.i). In (c.ii-iii) the dispersion relation taken from (a.ii-iii), thick
line, di�ers considerably from the corresponding symmetrized one taken from
(b.ii-iii), thin line.
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A complete encircling of the spiral phase by disordered phases could natu-
rally explain the succession of a gapped and a gapless spin liquid at the low-α
limit of the SATL. The gapless spin liquid would be continuously connected to
the limit of decoupled chains, while the additional anisotropy of the SCATL
would adiabatically connect the gapped spin liquids at small and large α. This
consideration shows the great potential of the additional anisotropy to deliver
new insights into the nature of these phases. Further, it allows to approach the
small-α spin liquids not only from the spiral phase, but also from the Néel phase.
We found, indeed, some indications that very close to the 1D limit the transi-
tion from the Néel phase to the putative disordered region could be qualitatively
di�erent from what happens at larger α.

Our second main �nding is connected to experimental results: measurements
�nd magnetic LRO in materials which theoretical analyses on the SATL predict
to be magnetically disordered. We show that this discrepancy �nds a simple ex-
planation in the additional anisotropy of the SCATL, which is neglected in the
SATL. Taking it into account, we predict these material to lie in magnetically or-
dered phases, in accordance to experiment. These �ndings show the importance
of the complete lattice anisotropy for the explanation of recent experiments.

Finally, we provided spin-wave dispersion relations, a comparison to which
might allow to probe the additional anisotropy experimentally.

14.2.3 MSWT on the J1J2J3 model

In the SATL and its generalization, the SCATL, commensurate and incommen-
surate order seem to be never directly connected, but spin-liquid phases appear
to separate them. To see if this is a more universal feature, we investigate in
this section another paradigmatic frustrated spin model, the J1J2J3 model on
the square lattice. It involves couplings between nearest-neighbors (NN), J1,
next-nearest-neighbors (NNN), J2, and next-next-nearest-neighbors (NNNN),
J3. A sketch of the geometry of the system may be found in Fig. 14.15a. This
model allows to continuously tune the Hamiltonian from an unfrustrated AFM
square lattice to a highly frustrated magnet.

Classical and quantum mechanical phase diagram of the J1J2J3 model
at T = 0

The classical phase diagram of the J1J2J3 model [630, 653�655] can provide valu-
able intuition about the expected ordered phases. It is sketched in Fig. 14.15b.
One identi�es:



14.2 Example: MSWT on frustrated Heisenberg magnets 337

J1

J3

J2

a)

IV

0.25

0.5

1

0.5

0.25

10.5
O

J3 /J1

J2/J1

III
I II

b)

Figure 14.15: (a) Geometry of the J1J2J3 model on a square lattice. NNs
are coupled with bonds of strength J1 (black), NNNs (along the diagonals)
with J2 (blue) and NNNNs with J3 (red). (b) The classical phase diagram
of the J1J2J3 model shows four ordered phases. Phase I is characterized by
Néel order on the square lattice. In phase II the system decouples into two
independently Néel ordered sublattices with a doubled unit cell each. Phases
III and IV are spirally ordered with Q = (q, π) and Q = (q, q), respectively.

I) A 2D-Néel phase with Q = (π,π) just as in the unfrustrated square lattice.
It is delimited by the classical critical line (J2 + 2J3) /J1 = 1/2;

II) A phase where the system decouples into two independent J2−sublattices
with a doubled unit cell. Both sublattices are Néel ordered individually.
This phase is in�nitely degenerate because the relative spin orientation
between the two sublattices can be rotated without a�ecting the energy;

III) A spiral phase with ordering vectorQ = (q, π), where q varies continuously
over the phase diagram;

IV) A second spiral phase, with Q = (q, q); q → π/2 for J3 →∞, attaining the
limit of two decoupled, Néel-ordered J3−sublattices.

This phase diagram is believed to change considerably in the quantum limit
[624, 628�630]: In phase II quantum �uctuations select the columnar ordered
states with Q = (π,0) or Q = (0, π) from all the possible classical states. Fur-
thermore, the Néel phase I increases in size considerably and Néel order persists
up to near the line (J2 + J3) /J1 = 1/2. In the vicinity of this line, the classical
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order is believed to be destabilized and to be replaced by a non-magnetic state.
The controversy about the exact nature of the ground state in this highly frus-
trated region, however, is still not settled. In particular, it has been suggested
that it could have the nature of a columnar valence-bond crystal [656] with both
translational and rotational broken symmetries, of a plaquette state with no bro-
ken rotational symmetry [624], or of a spin liquid with all symmetries restored
[567, 657�660].

In the following, we investigate the quantum model using MSWT with a
lattice size of N = 32×32. In most of parameter space, this is essentially already
converged to the in�nite lattice, except close to quantum critical points. We
compare the MSWT data to recent results from PEPS calculations from V. Murg
and coworkers [661]. We focus on the extrapolations to the thermodynamic limit
contained in that work, except if stated otherwise.

We �rst discuss in more detail the special cases of the J1J2 model (i.e.,
J3 = 0) and the J1J3 model (i.e., J2 = 0). Both models have been studied
before within MSWT [597, 601, 662�666]. On the one hand, we con�rm existing
results on the J1J2 case, for which the optimization of the ordering wave-vector
returns only two possible values (corresponding to Néel order [Q = (π,π)] or
columnar order [Q = (π,0) or Q = (0, π)]), and we give further insight into the
spin sti�ness and the dimer�dimer correlation functions. On the other hand,
we analyze the J1J3 model with optimization of the ordering wavevector, which
proves crucial to correctly capture the quantum e�ects on the classical spiraling
phases appearing in this case [597]. Finally, we give an overview of the entire
quantum ground-state phase diagram of the J1J2J3 model.
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Ground state properties of the J1J2 model

Figure 14.16 reports the ordering vector for the J1J2 model from MSWT as well
as from PEPS calculations. For the PEPS results, we extract the wave vector
of dominant spin correlations QPEPS from the location of the peak of the static
structure factor, analogous to Eq. (14.26). Up to J2/J1 = 0.6, QPEPS is located
at the Néel value (π,π), while above this it lies at the value of columnar order
(π,0). In agreement with PEPS and other methods, e.g., ED [632, 667, 668] or
Schwinger bosons [669], MSWT �nds Néel order with Q = (π,π) at small J2/J1

and columnar order with Q = (π,0) or Q = (0, π) at large J2/J1.
As is well known from previous studies, there is a region between 0.56 ≲

J2/J1 ≲ 0.62 where the 2D-Néel ordered and the columnar state are both stable
solutions within MSWT. The starting point of the self-consistent calculations de-
termines which type of order is returned as the solution. However, the solutions
di�er in energy and therefore one of them is only a local free-energy minimum
of the self-consistent equations. As can be seen from the energies, Fig. 14.17a,
the transition from 2D-Néel to columnar order takes place at J2/J1 ≃ 0.6.

For comparison, we also plot the values for the energy and magnetization
that where obtained by Schulenburg and Richter [632] from diagonalization of
small clusters. We �nd a remarkable correspondence of the ground-state energy
per spin between the MSWT prediction and these ED results [632], as well as
with the PEPS results, both extrapolated to the in�nite-lattice limit. Especially
the noticeable kink associated at J2/J1 ≃ 0.6, marking clearly a transition point,
is exhibited by all three methods.

For the magnetization, MSWT delivers extremely reliable predictions deep
in the Néel phase. As shown in Fig. 14.17b, at small J2/J1, the �nite size extrap-
olation of the ED staggered magnetization from Schulenburg and Richter [632]
lies very close to the MSWT results, and, as already mentioned in the context
of the S(C)ATL, in the unfrustrated square lattice limit (J2 = 0) the MSWT
valueM0 = 0.303 [224] is very similar to QMC results, for which the most recent
estimates give M0 = 0.30743(1) [643]. For the PEPS calculations a quantity
analogous to the magnetization can � similar to Sec. 14.2.1 � be derived from
the peak height of the static structure factor, Eq. (14.26). We show its �nite
size extrapolation in Fig. 14.17b. In the Néel phase PEPS agrees very well
with MSWT, considerably better than ED, which decreases faster towards the
strongly frustrated region.

In the other limit, deep in the columnar phase, MSWT seems to overestimate
the order parameter as compared to ED and PEPS. In comparison to ED, this
remains true also close to the transition, but in that region agreement to PEPS
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Figure 14.17: For the J1J2 model, MSWT data compares favorably to
other methods. We show PEPS data extrapolated to the thermodynamic
limit and ED by Schulenburg and Richter [632] for a 40-spin cluster (`exact
40') and extrapolated to the thermodynamic limit (`exact ∞'). (a) Ground-
state energy of the central spin. (b) Order parameter from MSWT,
compared to ED results and the PEPS magnetizations M (π,π) (Néel) and
M (π,0) (columnar). For MSWT, the curves obtained when starting the self-
consistent iteration from a Néel state (thick red line) and from a columnar
ordered state (thick dot-dashed green line) are both included. Magnetic order
weakens at the transition from the Néel to the columnar phase, and the ED
data even suggest an extended quantum-disordered region.
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Figure 14.18: For the J1J2 model, the MSWT spin sti�ness indicates
a weakening of magnetic order close to the transition between the Néel and
the columnar phase. (a) Gaussian spin sti�ness. (b) Components of
the spin sti�ness tensor. In the Néel phase ρxx = ρyy by symmetry. The
partial spin sti�nesses ρpartial

αβ equal the total ones, ραβ . For MSWT, the curves
obtained when starting the self-consistent iteration from a Néel state (thick red
line) and from a columnar ordered state (thick dot-dashed green line) are both
included.

becomes better.
Although upon approaching the Néel-to-columnar transition the order pa-

rameter decreases for both MSWT and PEPS, neither method �nds a quantum-
disordered region. This contradicts the ED data, which predicts a magnetically
disordered region in the range 0.35 ≲ J2/J1 ≲ 0.66 [632]. Recent results based on
tensor product states [626] and DMRG [627] seem to prove without doubt that
the region around 0.4 − 0.5 ≲ J2/J1 ≲ 0.6 hosts a quantum-disordered ground
state without magnetic nor valence-bond-solid order.

For MSWT, this discrepancy is not surprising: since it is based on an ordered
classical reference state, it often overestimates magnetic order. In the previous
Chapters 3.2, 3.4, 14.2.1, and 14.2.2, however, the spin sti�ness (see Sec. 14.1.6),
has proven a valuable tool to �nd regions where this magnetic order softens. It
can be assumed that in such regions quantum �uctuations may overcome all
ordering tendencies, leading to spin-liquid behavior in the true ground state.
Such a suppression of the spin sti�ness has been observed in previous results
coming from ED of �nite clusters [667] or from the Schwinger-boson approach
[669, 670]. In Fig. 14.18, we plot for our MSWT calculations the Gaussian
spin sti�ness Υ as well as the individual components of the spin-sti�ness tensor,
Eq. (14.21). Although the spin sti�ness remains �nite for any considered value of
J2/J1, it is strongly suppressed in the region 0.3 ≲ J2/J1 ≲ 0.6. As a consequence,
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even though MSWT admits a stable solution with magnetic order for any J2/J1

value, for J2/J1 = 0.6 it exhibits a clear transition from soft Néel order to a
sti� columnar order, suggesting that this transition could actually separate the
columnar state from a quantum disordered phase.

We further investigated the nature of the state in the transition region be-
tween Néel and columnar order, where magnetic order is strongly reduced,
through the study of the dimer�dimer correlations (the results can be found
in Ref. [241]). Remarkably, around J2/J1 ≈ 0.7, MSWT shows a short-range
modulation in the dimer correlations whose structure is compatible with that of
a valence-bond crystal. Although MSWT is not appropriate to characterize such
non-magnetic states, it is remarkable that it identi�es a columnar valence-bond
structure as the dominant form of dimer correlations at short range. This indi-
cation is consistent with, e.g., PEPS results [661], which point towards columnar
valence-bond order in the non-magnetic region of the J1J2 model. The short-
range nature of this dominant dimer�dimer correlations is consistent with the
recent results from Refs. [626, 627], which predict the absence of long-range
valence-bond-solid order.

Ground state properties of the J1J3 model

We now turn to the J1J3 model. As a �rst check, we compare the ground-state
energy from MSWT to PEPS results (Fig. 14.19). We �nd extremely good
agreement in the entire range of J3/J1 where MSWT converges.

To analyze the phase diagram of the J1J3 model, we �rst study its ordering
vector (Fig. 14.20a), comparing again MSWT to PEPS as well as to the classical
results. Classically, this model has a transition from Néel to spiral order at
J3 = 0.25J1. For S = 1/2, recent PEPS calculations show that Néel order persists
up to approximately J3/J1 = 0.3 [661]. Above this point the peak of the structure
factor is still at the Néel ordering vector (π,π) but its height appears to vanish
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Figure 14.20: Comparison of MSWT and PEPS results for the J1J3

model. (a) Ordering vector. Quantum �uctuations stabilize Néel order,
as compared to the classical result. For MSWT and classically, Qx = Qy. (b)
The order parameter decreases towards the MSWT breakdown region. For
PEPS we show in (a) the position (Qx,Qy) of the structure-factor peak, and
in (b) its height at Q = (π,π) (Néel) and Q = (q, q) (spiral).

in the thermodynamic limit, which suggests a complete loss of magnetic LRO.
A di�erent type of LRO arises anew at approximately J3/J1 = 0.6 with an
ordering vector Q = (q, q) that tends to (π/2, π/2) in the limit of large J3. For
large enough J3, the nature of the ordered phase becomes similar to that of
the classical limit. Within MSWT with ordering-vector optimization, coming
from small J3/J1, quantum �uctuations stabilize Néel against spiral order, so
that Néel order persists up to J3/J1 = 0.39. Coming from the opposite limit
of J3 ∼ J1, we observe a spiral phase with continuously varying pitch vector
Q = (q, q), where q approaches π/2 for J3/J1 → ∞, and increases up to q ≈

0.7π for J3/J1 → 0.52+. In the region 0.39 < J3/J1 < 0.52, convergence of the
MSWT calculations breaks down, which points at a possible spin-liquid phase,
in agreement with the predictions from PEPS.

This indication of a disordered phase is further corroborated by the MSWT
order parameter M0 (Fig. 14.20b), which decreases strongly for J3/J1 → 0.39−

and for J3/J1 → 0.52+. Again, the PEPS order parameter deep in the Néel
phase is similar to the MSWT data, but in the spiral phase the MSWT order
parameter lies well above the PEPS result. Despite quantitative di�erences, the
PEPS order parameter vanishes in the range 0.3 ≲ J3/J1 ≲ 0.5 and thus con�rms
the destabilization of magnetic order.

The MSWT spin sti�ness (Fig. 14.21) gives additional credibility to the
assumption of a disordered phase in the J1J3 model: it is drastically reduced
when approaching J3/J1 = 0.39 from below and J3/J1 = 0.52 from above. The
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Figure 14.21: For the J1J3 model, the MSWT spin sti�ness softens to-
wards the region between Néel and spiral order. (a) Gaussian spin sti�ness.
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xy ≡ 0.)

Gaussian spin sti�ness is extremely small already for J3/J1 ≳ 0.3 (Fig. 14.21a),
which corresponds to the value where PEPS predicts a vanishing magnetization.
Our results are also consistent with the ED of a system of 20 sites by Bon£a et
al. [671], where it was found that the spin sti�ness vanishes at J3/J1 = 0.35.

The precise nature of the state in the candidate region for quantum-disordered
behavior cannot be determined reliably by the use of MSWT. From an analysis
of the dimer�dimer correlations in the convergence regions, we can �nd no indi-
cations of any exotic disordered quantum state. On the contrary, PEPS results
indicate a plaquette state in the region of maximal frustration J3 ≈ J1/2 [661].

As a �nal remark, we note that in our calculations, despite using the same
equations as Xu and Ting [597], we �nd a considerably larger breakdown region.
However, the region where our calculations do not yield a result is very stable,
i.e., it does not depend much on system size nor on the exact algorithm for
solving the self-consistent MSWT equations.

MSWT phase diagram of the J1J2J3 model

After having investigated the two limiting cases of the J1J2 and the J1J3 models,
we now consider the more general J1J2J3 model. We �rst present the MSWT
data, and compare them afterwards to PEPS predictions.

As already seen in the case of the J1J3 model, we observe a sizable parameter
range over which the convergence of MSWT breaks down, and which is then
pointed out as a candidate region for non-magnetic behavior (see Fig. 14.22).
We notice that, while convergence is achieved for any J2/J1 ratio at J3 = 0,
a region of convergence breakdown opens up by adding a small J3 component
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Figure 14.22: MSWT phase diagram of the quantum J1J2J3 model. (a)
Ground state energy per spin E0, (b) order parameterM0, (c) Gaussian
spin sti�nessΥ, and (d) partial Gaussian spin sti�nessΥpartial calculated
via Eq. (14.23). Note that Υ and Υpartial rise beyond the linear scale in the
upper half of the plot. The blue lines are the classical phase boundaries, and
in the gray areas convergence of the self-consistent equations could not be
reached, suggesting disordered behavior in the true quantum ground state.
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Figure 14.23: Ordering vector for the J1J2J3 model in linear color scale. In
the gray area convergence of the self-consistent equations could not be reached.
(a) x-component and (b) y-component of the classical ordering vector, di�er-
entiating four classical phases (blue lines are the classical phase boundaries);
(c) x-component and (d) y-component of the quantum mechanical MSWT
ordering vector, identifying only three ordered quantum phases.
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Figure 14.24: The PEPS order
parameter M suggests a desta-
bilization of magnetic LRO in a
broad asymmetric v-shaped re-
gion, marked by low values (cal-
culations for a 8 × 8 lattice with
auxiliary dimension D = 3).

around J2/J1 ≈ 0.5. The energy per spin increases when approaching this region,
showing the increased in�uence of frustration (Fig. 14.22a). The indications for
a quantum disordered phase in the breakdown region is corroborated by the
decrease of the order parameter (Fig. 14.22b) and the spin sti�ness (Fig. 14.22c
and d) when approaching the breakdown region.

The nature of the phases where MSWT reaches convergence can be seen
in the ordering vector, which we display in Fig. 14.23 in comparison with the
classical one. We �nd three ordered phases. (1) For small J3/J1 and J2/J1 we
�nd a Néel ordered phase. Its boundary is pushed upwards to higher values
of J3/J1 with respect to the classical limit. (2) A columnar phase is found at
small J3/J1 but larger J2/J1 ≳ 0.6. (3) For large J3/J1, a spiral phase arises
with an ordering vector Q = (q, q) that approaches Q = (π/2, π/2) for large
J3/J1. As a consequence, a dramatic e�ect of quantum �uctuations seems to
be the disappearance of phase III of the classical phase diagram, characterized
by magnetic order at a pitch vector Qcl = (q, π) with continuously varying q, in
favor of the columnar phase and of a potentially quantum-disordered phase.

Comparison to PEPS calculations

To validate the MSWT results with a complementary approach, we now compare
its predictions to data coming from PEPS calculations on a 8 × 8 lattice with
auxiliary dimension D = 3.

In Fig. 14.24, we display the PEPS order parameter as extracted from the
peak height of the static structure factor [see Eq. (14.26)]. We observe a broad
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Figure 14.25: The PEPS ordering vector shows three phases, Néel (π,π),
columnar (π,0), and spiral (q, q) order. From this data, it is not clear if the
classical phase with (π, q), found in between the columnar and spiral phases,
survives quantum �uctuations. (Calculations for a 8 × 8 lattice with D = 3.)

asymmetric v-shaped region in which the magnetic order, quanti�ed by the
height of the peak in the structure factor, is strongly suppressed. This region is
strongly reminiscent of (albeit broader than) the breakdown region of MSWT.
In particular, the asymmetry is due to the fact that the bottom of the �v� lies
at J2/J1 > 0.5, a characteristic which is shared with the MSWT phase diagram.

While a thorough �nite-size scaling analysis of the PEPS data would be nec-
essary to determine the precise boundaries of the possible magnetically disor-
dered regions, a quantitative information can be extracted even from the �nite-
size PEPS data concerning the location of the pitch vector of the dominant
magnetic correlations. As seen in Fig. 14.25, similarly to what happens in the
above spin-wave calculations, a pronounced peak at the Néel ordering vector
(π,π) appears if both J2/J1 and J3/J1 are small, while at large J2/J1 but small
J3/J1 the structure factor is peaked at the columnar ordering vector (π,0). For
large J3/J1, the peak is located at (q, q), where q tends to π/2. From the order-
ing vector, we �nd in between the columnar and spiral phases remainders of the
second classical spiral phase with Q = (π, q). This phase, however, lies in the
region where the PEPS order parameter is small. Therefore, the associated LRO
may possibly not survive quantum �uctuations in the thermodynamic limit.

In summary, in the J1J2J3 lattice a large region with weak order proper-
ties separates the Néel-ordered region for small J2 and J3, from the columnar-
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ordered region for J2 > J1/2 and small J3, and from the spiral phase at large J3.
Further, quantum �uctuations stabilize Néel order while they possibly suppress
one of the two spiral phases of the classical phase diagram. These features are
con�rmed in the calculations of Reuther et al., who used three di�erent methods
(dynamical functional renormalization group, high-order coupled cluster calcu-
lations, and series expansion) [672].

14.2.4 Summary

In this chapter, we illustrated the performance of Takahashi's MSWT with
ordering-vector optimization. For this purpose, we studied the ground-state
phase diagram of the AFM S = 1/2 Heisenberg model on several two-dimensional
frustrated geometries, the SATL, its generalization to the SCATL, and the
J1J2J3 lattice. Quantitative comparisons with more accurate methods (ED,
variational Ansätze based on projected BCS states, PEPS) reveal that MSWT
with ordering wave-vector optimization goes well beyond LSWT in dealing with
quantum e�ects. It correctly accounts for the quantum correction to the order-
ing wave-vector of the ordered phases, and for the strong suppression (or total
cancellation) of magnetic order in correspondence with the candidate regions
for quantum-disordered behavior. Given its �exibility and its modest numerical
cost, MSWT serves therefore as a unique tool for the identi�cation of novel
quantum phases in strongly frustrated quantum antiferromagnets.

In all studied models, we �nd two general trends. (i) Collinearly ordered
states (Néel or columnar order, 1D-like quasi-order) are promoted against spi-
raling ones. (ii) Two phases with di�erent (quasi-)order properties (spiral vs.
collinear) are always separated by extended quantum-disordered spin liquids.
We propose that this is a universal feature of frustrated quantum magnets,
which may have far-reaching consequences for the search of spin-liquid phases.
Interestingly, from our results in the SCATL it seems that two such gapped
spin-liquids, which appear as distinct in the SATL, are actually adiabatically
connected by an additional anisotropy in the couplings.

Finally, our �ndings may have important implications for experiment. In
general, since our calculations give strong suggestions for candidate regions of
spin-liquid behavior, experiments can focus on the most relevant parameter
regimes. Further, our results on the SCATL may have great relevance for mag-
netic organic salts hosting triangular spin lattices. If there exists an anisotropy
in all three coupling directions, previous studies typically averaged the two closer
coupling strengths. The resulting parameters can then be compared to theo-
retical predictions from the SATL. There are, however, examples where this
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procedure locates magnetically ordered materials in regions of the SATL phase
diagram that are magnetically disordered. In contrast, we �nd that the parame-
ter values that take the additional anisotropy into account are located in ordered
regions of the SCATL phase diagram, so that the experimental observations �nd
a natural explanation in the threefold anisotropy.



Conclusion

In this thesis, we considered quantum simulators (QSs) on a theoretical level.
In an attempt to put this �eld onto more stable theoretical foundations, we
identi�ed a de�nition consisting in its core of four requirements: relevance, con-
trol, reliability, and e�ciency. We emphasized the lack of careful studies of
the reliability and e�ciency, and their interplay, in particular for analog QSs,.
As a �rst step in this direction, we characterized the in�uence of disorder on
the static and dynamic behavior of a paradigmatic quantum model. We also
studied quantum-simulation architectures where the models that are commonly
accepted as describing their fundamental behavior have to be modi�ed in cer-
tain, experimentally relevant parameter regimes.

Studying possibilities to improve control over QSs, we presented several fea-
sible proposals for the analog quantum simulation of important phenomena,
covering so widely di�erent situations as orbital order of fermions, supersolids
in systems with long-range interactions, spin liquids in frustrated quantum spin
models, or quantum phase transitions, topological insulators, and non-Abelian
gauge �elds in exotic lattice geometries. To compute the expected behavior of
these models, we employed a variety of theoretical techniques, some of which we
had to adapt and extend to make them applicable to the theoretically challeng-
ing situations posed by these complex many-body models. We also presented a
scheme to control quantum spin correlations in optical lattices with a mesoscopic
number of particles at each lattice site. These examples were selected to provide
a kaleidoscope of the multifaceted physics amenable to quantum simulation in
non-standard optical lattices.

If we can guarantee that analog quantum simulators ful�ll all four require-
ments of our de�nition, including above all the reliability of their results, we can
expect them to deliver, in the medium term, valuable insights into a variety of
outstanding quantum problems, such as quark con�nement, high-Tc supercon-
ductivity, protein design, nano-material engineering, and much more.
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354 Acronyms

Used acronyms
� in alphabetical order

ACT: AC-induced tunneling

AFM: antiferromagnetic

AQS: analog quantum simulator

BEC: Bose-Einstein condensate

BKT: Berezinskii�Kosterlitz�
Thouless

CB: checkerboard

CQED: circuit quantum
electrodynamics

DFT: density-functional theory

DMFT: dynamical mean-�eld
theory

DMRG: density-matrix
renormalization group

DQS: digital quantum simulator

ED: exact diagonalization

FM: ferromagnetic

iTEBD: in�nite time evolving block
decimation

LRO: long-range order

MERA: multiscale entanglement-
renormalization

Ansatz

MI: Mott-insulator

MSWT: modi�ed spin-wave theory

NMR: nuclear magnetic resonance

NN: nearest neighbor

NNN: next-to-nearest neighbor

NNNN: next-to-next-to-nearest
neighbor

nUAQS: non-universal analog
quantum simulator

nUDQS: non-universal digital
quantum simulator

OSAQS: open-system analog
quantum simulator

OSDQS: open-system digital
quantum simulator

PEPS: projected entangled-pairs
states

PMFT: perturbative mean-�eld
theory

PSF: pair super�uid

OFR: optical Feshbach resonance

QPT: quantum phase transition

SATL: spatially anisotropic
triangular lattice

SCATL: spatially completely
anisotropic

triangular lattice

SF: super�uid

SPS: spin polarization
spectroscopy

tDMRG: time-dependent
density-matrix
renormalization group

TNS: tensor-network states

ToF: time of �ight

TTN: tree tensor network states

UDQS: universal digital quantum
simulator

UAQS: universal analog quantum
simulator

QMC: quantum Monte-Carlo

QND: quantum non-demolition

QS: quantum simulator
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