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rsr-2, a new Link between splicing and transcription

l.1. Caenorhabditis elegans as a model organism

Caenorhabditis elegans is a small nematode, which lives in the soil and feeds on
microorganisms. This specie was first used in research by Sydney Brenner, who wrote the first
manuscript about the genetics of C. elegans (Brenner, 1974). In 2002, Brenner shared the
Nobel Prize of Physiology and Medicine with H. Robert Horvitz and John E. Sulston in
recognition of their studies about genetic regulation of developmental processes and

apoptosis in this animal model.

Caenorhabditis elegans is a powerful model for research in many fields including genomics, cell
biology, aging and neuroscience. Among the features that make C.elegans an important tool

for biological research these are the most relevant ones:

* It has a short life cycle.
C. elegans has two sexes: self-fertilizing hermaphrodites (XX) and males (XO).
Individuals are almost all hermaphrodites and males appear just in a 0.1% of
the total progeny of an hermaphrodite. The C. elegans life cycle consists in an
embryonic stage, followed by four larval stages (from L1 to L4) and adulthood
(Figure 1.1.). In the lab worms are cultured between 15 and 25°C and the
duration of their life cycle is temperature-dependent. For instance, 4 days and

a half are needed to complete the cycle at 15°C and only 2 days at 25°C.

* |tis easy to maintain.
Strains are cheap and can be kept as frozen stocks for a long-term storage.

When thawed, most of the worms frozen as starving L1 are viable.

* ltisatransparent animal.
Body parts can be studied at cellular level in living worms by differential

interference contrast (DIC) microscopy.

* The easiness of generating mutations in C. elegans together with its hermaphrodite
self-fertilization mode of reproduction emerges this animal as a convenient tool for
genetic analysis.

C. elegans is a diploid animal what implies that detrimental mutations can be

induced and propagated without killing the animal. Moreover, the effect of
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rsr-2, a new Link between splicing and transeription

* The disruption of the function of a specific gene by RNA-mediated interference (RNAI)
is a straightforward tecnique in C. elegans.

RNAi is a technique used to study the phenotypic effects of knocking down the

expression of a gene. RNAi produces a mRNA sequence-specific degradation

thus, providing information to infer the function of the gene of interest. To

perform RNAi, worms can be fed on genetically transformed bacteria

expressing the double stranded RNA (dsRNA) of interest. Alternatively, worms

can be soaked in or injected with a solution containing the dsRNA (Figure 1.2.).

Figure 1.2. Protocols for
performing RNAi in C.
elegans. Left, RNAi by
feeding; middle, RNAi by
injection; right, RNAi by
soaking (Taken from Kim,
2001).

Noture Aeviews | Genetics

I.1.1. Silencing gene expression in C. elegans: the RNA-mediated

interference method

Eventhough natural RNAI targets include double stranded RNA from “parasitic genes” like
viruses and transposons, the RNAi molecular machinery has also an important role in directing

development as well as gene expression.

In 2006, the C. elegans researchers Andrew Fire and Craig Mello were awarded with the Nobel
Prize of Physiology and Medicine for discovering that introduction of double stranded RNA in
the worm resulted in a specific and dramatic knockdown of the corresponding endogenous
RNA sequence (Fire, 1998). Remarkably, this silencing effect is not only efficient in the parental

generation but also can be heritable.

Briefly, introduced dsRNA is recognized by the enzymatic Dicer-RDE complex which cleaves the

dsRNA molecules into small 21-23 bp RNA fragments known as small interfering RNAs (siRNAs).
5
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The multiple siRNA molecules will trigger the target messenger RNA (mRNA) degradation. The
siRNA-Dicer complex then joins the RNA-induced silencing complex (RISC) so that the siRNA
molecules can base-pair with the complementary endogenous mRNA and eventually the target

is degradated into small fragments not translatable to protein.

As mentioned above, there are three methods to carry out RNAi in C.elegans: feeding, soaking

and injection (Figure 1.2).

I.1.1.1. RNA interference by feeding
There are two RNAI feeding libraries in C. elegans that together cover more that 94% of the
worm genome (Ahringer, 2006).

¢ Julie Ahringer’s group developed an RNAi library (Timmons and Fire, 1998) by using
PCR-amplified genomic DNA fragments as a template. Gene-specific genomic DNA
fragments were cloned into the EcoRV site of vector L4440 (between two T7 inverted
promoters which are inducible by IPTG) and transformed into bacterial strain HT115
(Fraser et al., 2000). This strain bears a transposon into the RNAse Ill gene (also named
dsRNAase), which abrogates its function allowing massive dsRNA accumulation into
the cell. The whole library comprises 16757 clones.

* Marc Vidal and collaborators have generated another library. In this case, the PCR
template was cDNA, so this library targets expressed genes only (Rual et al., 2004). The
“ORFeome” library clones have been produced by using the Invitrogen Gateway
recombinatorial system. The host bacterial strain is also HT115 and about 12000

clones have been generated.

l.1.1.2. RNA interference by injection
In this case, dsRNA is produced in vitro and a solution at a concentration of 0.2-1.0 ug/ul is
injected into young adult hermaphrodite germ lines (see MM2.2). Next, the progeny is scored

for mutant phenotypes (Ahringer, 2006).

All three methods efficiently inactivate gene expression. Which method to use depends on the
type of experiment you desire to perform. For instance, RNAi by feeding and by soaking permit
to work with big populations of worms in contrast to the more laborious method of
microinjecting single animals. However, RNAi by injection gives a stronger gene inhibition

compared to the other two approaches.

Independently of the method, observation of a phenotype is a candid indication of a positive
RNAI result since false positives are less than 1% (Kamath and Ahringer, 2003). Eventhough,

mMRNA levels and/or protein levels should be checked to further validate your result.

6
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A pool of stem cells at the distal end of each gonad arm is maintained by the somatic distal tip
cell (DTC), which signals to the germ line via the Notch-signalling pathway and controls a
network of RNA regulators. More specifically, the GLP-1 receptor, which is preferentially
expressed in the distal germ line, recieves the LAG-2 signal from the distal tip cell and

promotes mitosis at the expense of meiosis (Crittenden et al., 1994).

The choice between keep dividing cells mitotically or entering into the meiotic cell cycle is
coordinated by a network of RNA regulatory proteins, most of them transcriptionaly regulated
by the Notch signaling pathway. These RNA regulatory factors are FBF-1 and FBF-2 and are in
conjunction named FBF proteins (fem-3 Binding Factor). They belong to the PUF protein family
(Pumilio and FBF).

FBF proteins are required for continued mitotic divisions and maintenance of adult germ line
stem cells. In fbf-1; fbf-2 double mutants, all proliferating cells enter in meiosis and
differentiate to sperm (Crittenden et al., 2002). FBF bind regulatory elements in the 3’
untranslated regions (3'UTRs) of target mRNAs thus, blocking their translation. Some of these
targets are known, as gld-1 and gl/d-3, which encode factors that promote meiosis (Eckmann et

al., 2004).

Importantly, many of the regulators controlling the mitosis/meiosis switch also control the

sperm/oocyte decision indicating that these two processes are coupled.

1.2.2. The germ line sex determination pathway

The regulatory network that rules the sex determination in the germ line of C. elegans has
been well characterized in the last two decades. Sexual fate of germ cells is, in part,
determined by several regulators that also participate in the sex determination pathway in
somatic cells. However, in order to produce sperm and oocytes, there must be some specific
regulators that act exclusively in the germ line. As proof of this principle, two of the fog genes
(fog-1 and fog-3) are present only in germ cells. fog genes together with the three fem genes

(fem-1, fem-2 and fem-3) are necessary to promote sperm production.

Genetic analyses evidence that fog-1 and fog-3 act downstream of all other genes in the
pathway and probably they are directly implicated in initiating spermatogenesis (Ellis and

Schedl, 2007) (Figure 1.4.).
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Screens in search for genes that disrupt the potential to switch from sperm to oocyte
production had identified the mog genes (masculinization of the germ line) (Graham and
Kimble, 1993). MOG proteins repress fem-3 through its 3’UTR (Gallegos et al., 1998). Even so,

differently to FBF proteins, their action on fem-3 might be indirect.

Intriguingly, all MOG proteins are homologous to splicing factors (Table 1.1) (Puoti and Kimble,
2000; Konishi et al., 2008). Some of their roles within the splicing process are summarized on
Table I.1. Despite the involvement of mog genes in splicing, none of their corresponding

mutant animals in C. elegans showed any splicing defect (see D.1.2).

C. elegans mog gene  Yeast ortholog Human ortholog Splicing step/general process
mog-1 Prpl6 PRP16 Second step
mog-2 Leal U2A’ Probably first catalytic reaction
mog-3 Cwc25 CWC25 Probably first catalytic reaction
mog-4 Prp2 PRP2 Before first step
mog-5 Prp22 PRP22 Second step, spliceosome disassembly
mog-6 - CYP60 Role in splicing yet not determined

Table I.1. Orthologs of C. elegans mog genes in yeast and human and their known roles in splicing.

Kerins and co-workers found prp-17 as a factor functioning downstream of GLP-1 in the
mitotic/meiotic switch and also playing a role in the sperm/oocyte switch. prp-17 is the
ortholog of the yeast and human PRP17/CDC4 splicing factor. They performed an RNAI screen
against splicing factors and searched for phenotypes that alter these two important decisions
during germ line development. Several splicing-related genes were involved in the two critical
germ line decisions (Kerins et al., 2009). Importantly, rsr-2, the gene of study in this thesis, was
not among the tested genes. Why mutations in the splicing machinery are specifically
associated with the proliferation/meiosis switch and/or with sex determination is reviewed

and contrasted in the discussion of this thesis.

10
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I.4. Pre-mRNA splicing

Pre-messenger RNA (pre-mRNA) splicing is a central step in gene expression through which
noncoding intron sequences are accurately removed from a precursor mRNA molecule and
exons are spliced together (Grainger and Beggs, 2005). Alternative splicing (AS) occurs when
exons are spliced in different combinations leading to multiple distinct messenger RNAs from a
single gene. By this mechanism, expansion of the genome coding potential allows the
enlargement of the proteome (Nilsen and Graveley, 2010). Furthermore, the process of AS also
serves to shut off gene expression. This post-transcriptional regulatory mechanism happens
when by AS, a premature termination codon (PTC) is generated in one of the isoforms and that
specific messenger is degraded by the Nonsense Mediated Decay pathway (NMD) (Barberan-
Soler et al., 2009).

Splicing is essentially identical in C. elegans and in vertebrates. Nevertheless, there are some
differences such as shorter introns, or a not yet identified consensus branch-point sequence

(Blumenthal and Steward, 1997).

To ensure the proper removal of introns, a stepwise assembly of the spliceosome components
is needed. The spliceosome is a massive complex. The molecular nature of its members
consists of 5 small nuclear RNA-Protein (sn-RNP) complexes and over 150 proteins. After
splicing is performed, the assembled machinery disassembles, and its components are recycled

for the next round of pre-mRNA maturation (Wahl, Will and Lihrmann, 2009).

After many years of research trying to enlight the steps that build the splicing reaction, the
general layout of spliceosomal assembly and disassembly has been depicted. Still, the
understanding of how the events are arranged at the molecular level is very limited (Newman

and Nagai, 2010).

What we know to date is that the snRNP complexes, named as U1, U2, U4, U5 and U6 snRNPs,
together with several non-snRNP proteins play key roles in this process. Nuclear pre-mRNA
entails 2 transesterification reactions. The first snRNP that interacts with the immature
messenger RNA is U1 snRNP. It does it by base-pairing with the intron 5’ splice site creating the
early ATP-independent “E complex”. Then, an ATP-dependent reaction occurs when U2 snRNP
binds to the intronic branch-point and the “A complex” is formed. U4/U6 di-snRNP and U5
snRNP associates as a tri-snRNP to give rise to the “B complex”. The B complex will be
activated and primed for catalysis after assotiation of the NineTeen protein Complex (NTC in
yeast; Prp19-CDC5 complex in humans). The formation of the catalytic spliceosome “C

complex” is achieved by subsequent ATP-dependent rearrangements that involve multiple
14
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protein-protein and protein-RNA connections which eventually lead to the release of Ul and
U4 snRNPs (Madhani and Guthrie, 1994). Hence, this complex consists of U2, U5, U6 and a set
of conserved proteins such as eight DexD/H box helicases (Rocak and Linder, 2004), which

permit the 2-transesterification reactions and the final liberation of the spliced intronic lariat

(Figure 1.8).
Ul u
Corplax A [EEEINGU-——~A=AcHIINEN
L'n rcycied
| ®"
(F--t-@
\ «_Gegraced
USPrp10
Compter B Ut {mm wEND Figure 1.8. Schematic diagram
. \Pm' e Post- showi.ng the assem!)ly and
—— j skt tren comphas recycling of the spliceosome
U4 l C components (from Grainger and
| ’ Beggs, 2005). The conserved 5’
N Pos o3 P Sien 2 and 3’ splice sites represent the
“]’;’" (T 'ﬁ;,'\p = et U2 cis-spliceosomal GU and AG
- Inct:: = “tactors residues, respectively.

Actvated Spicecsome I Complex C

The easiness in performing RNA-Seq of a whole organism to identify and quantify alternative
splicing extension events, and the opportunity to perform genetic screenings that uses
transgenic worms expressing fluorescent reporters convert C. elegans an atractive model for

studies about splicing.

Protein components of the splicing machinery are well conserved in eukaryotes and several of
these components have been identified as essential for metazoan splicecosome assembly
(Blencowe, 2000; Kramer, 1996). A good example of such essential splicecosomal components

are the members of the SR protein family.
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There are many splicing factors containing RS domains that are important for protein-protein
interactions within the spliceosome, but the RS domain is not exclusive for splicing related
genes being also present in other types of proteins such as chromatin modifiers or
transcriptional regulators (Boucher et al., 2001). There is an increasing number of cis-acting
and trans-acting splicing mutations affecting RNA processing that are implicated in human
diseases (Wang and Cooper, 2007). Particularly, modification of SR protein sequences or
alteration of their target motifs may lead to diseases including cancer (Long and Caceres,

2009).

I.5.2. rsr-2 is orthologous to the yeast Cwc21 and the human

SRm300/SRMM?2 splicing factors

SR proteins have been greatly

SOCE RSy a L Corw eeaw TRO LN

conserved in metazoans but, with

few exceptions, some of them are

Moma sope™ S0 160

absent in Saccaromyces cerevisiae.

(0o Patads rlogoni KWA ¢

This is not the case of rsr-2, which
< is present from yeast to humans

(Figure 1.11).

Figure 1.11. Phylogenetic tree of RSR-2
and its orthologs. RSR-2 ortholog
sequences were aligned using ClustalW
and CLC sequence Viewer was used to
. generate the tree using the Neighbor
( ) Joining algorithm. The output group has

Y to be a group of proteins close enough to

- allow inference from sequence data, but

far enough to be a clear outgroup. In this
" case, the chosen output is formed by the
proteins RSR-1 and its orthologs in yeast
(YIRO19C) and  human  (SRm160)
(represented in blue).

The Saccharomyces cerevisiae protein Cwc21 is a 135 aminoacid protein that presents high
homology to the N-terminal region of the C. elegans RSR-2 and human SRm300/SRRM?2

proteins (Figure 1.12).

Human SRm300/SRRM2, although is a much larger protein than its yeast and worm orthologs
(2296 versus 135 and 425 aminoacids respectively) contains a highly conserved N-terminal
region. In this N-terminal region, like in RSR-2, there is also present a cwf21 motif. Regarding

the homology of this N-terminal part of the protein, the first 150 aminoacids of
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Another insight into the function of Cwc21 was given by the results of the TAP, where both

protein and RNA composition of the Cwc21-purified complexes were analyzed. Through mass

spectrometry analysis, the data obtained concerning the proteic part of the complexes was

consistent with the previous genetic data showing that Cwc21 physically interacts with

multiple spliceosomal components (Table I.2). Proteins detected in a parallel affinity

purification of Prp8 complexes are shown for comparison, since Prp8 is a conserved splicing

factor involved in the catalytic core of the spliceosome (Valadkhan and Jaladat, 2010). Notably,

Cwc21 interacts with Prp8 and viceversa (Table 1.2, rows 1 and 6), suggesting that Cwc21 could

be functionally located at the core of the spliceosome.

Number of peptides

TAP-Cwc21 TAP-Prp8
Protein Description complex complex
Spliceosomal proteins
Cwe2l Complexed with Ceflp; part of NTC 23 3
Npl3* Yeast shuttling SR-like protein; promotes co-transcriptional splicing and 5 3
mRNA export
Spp2 Promotes the first step of splicing 5 1
Cefl* Associated with Prp19p and the spliceosome 4 3
Prpd5 Required for splicing; ortholog of coactivator SKIP Rl 2
Prp8 U4/U6-U5 component; lies at the catalytic center 3 62
Cwcl6/Yju2 Following Prp2 promotes first catalytic splicing reaction; part of NTC 3 —
Cwc2 RNA splicing; part of NTC 2 -
Isy1* Helps regulate fidelity of splicing with Prp16p; part of NTC 2 —
Prp46 Protein required for splicing in vivo; part of NTC 2 1
Syf2* Involved in splicing and cell cycle progression 2 2
Cdc40 Important for catalytic step Il of splicing and cell cycle progression 1 —
Ntr2 Spliceosome disassembly (forms a trimer with Ntr1 and Prp43) 1 -
Prp6 U4/U6-U5 component; splicing factor 1 10
Snt309 RNA splicing; part of NTC 1 1
snRNP proteins
Leal* U2 snRNP component; putative homolog of human U2A snRNP 3 2
Prp21 Subunit of the SF3a splicing factor complex 2 2
Smd2 Core Sm protein; involved in snRNP biogenesis 7 13
Smd3 Core Sm protein; involved in snRNP biogenesis 5 18
Smb1 Core Sm protein; hypermethylate snRNA cap structure with Tgs1 2 9
Smd1 Core Sm protein; involved in snRNP biogenesis 2 14
Smx2 Core Sm protein; involved in snRNP biogenesis 2 -
Smx3 Core Sm protein; involved in snRNP biogenesis 1 3
Lsm5 Lsm (Like Sm} protein; part of heteroheptameric complexes 3 4
Lsm6 Lsm (Like Sm} protein; part of heteroheptameric complexes 2 4
Lsm8 Heteroheptameric complex also involved in nuclear RNA degradation 2 7
Bud31/Cwcl4 Component SF3b subcomplex of U2 snRNP 1
Helicases
Ded1 RNA helicase required for translation initiation 2 4
Brr2 RNA helicase required for disruption of U4/U6 base-pairing 1 9

Table 1.2. Proteins detected by mass spectrometry of TAP-tagged affinity-purified Cwc21 complexes (from
Khanna et al., 2009). An asterisk indicates a protein detected as having a genetic interaction with Cwc21 in the
SGA screen. All peptides for listed proteins were detected at a confidence of at least 99.6%.

Besides, RNA from Cwc21-complexes was hybridized to a tiled yeast ncRNA microarray and

Cwc21 was preferentially found

(predominantly U2 snRNA but also U5 and U6 snRNAs).

in association with snRNAs of step

spliceosomes

Interestingly, Cwc21 is not essential for viability in contrast to the observations made in C.

elegans, where rsr-2 inactivation by dsRNA microinjection gave rise to arrested animals
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1.6. Shades and lights of co-transcriptional splicing

Classically, attemps to understand the mechanism and regulation of splicing relied on the
study of cis- and trans- acting factors within the molecule of RNA. However, these signals are
not sufficient to explain how introns and exons are distinguished by the spliceosome to
eventually achieve a proper maturation of a messenger pre-mRNA, indicating that other layers

of regulation may exist (Schwartz et al., 2010).

One of these regulatory layers could be that splicing occurs co-transcriptionally. RNA
polymerases seem to be evolutionary selected to support co-transcriptional events. In E. Coli,
ribosome assembly is only achieved if the rDNA is transcribed by its own polymerase, but not if
the enzyme is substitute by the bacteriophage T7 polymerase (Lewicki et al., 1993). Similarly,

in yeast rRNA processing is abrogated if RNA polymerase | is mutated (Schneider et al., 2007).

In fact, the general pre-mRNA processing events of 5 end capping, splicing and 3’ end
formation by cleavage/polyadenylation also occur co-transcriptionally. In eukaryotes, intron
removal is tightly linked to transcription by RNA Polymerase Il (RNAP Il) as it moves along the
gene (Bentley et al., 2005). Why is important whether introns are eliminated in a co-
transcriptional manner? Some in vitro studies suggest that post-transcriptional splicing would

be less efficient (Das et al., 2007; Yu et al., 2010).

The most dominant factor implicated in the cross-talk bewteen transcription and splicing is the
RNAP Il (Hicks et al., 2006). How does RNAP Il facilitate splicing? There are evidences that
support two mechanisms. First, RNAP |l presents an exclusive C-terminal domain (CTD) that
bears a large number of heptad repeats. The CTD serves as a “landing pad” to recruit RNA
processing factors to the nascent transcript (Phatnani and Greenleaf, 2006). In particular,
splicing is functionally dependent on phosphorilation of the heptad serines 2 and 5 of the CTD.
In addition, U1 snRNP components immunoprecipitate with RNAP Il (Das et al., 2007) and the
presence of U1 snRNP at a 5’ss can promote recruitment of RNAP Il and transcription factors to
the promoter of the genes (Damgaard et al., 2008). SR proteins, which interact with U1 and U2
to regulate splicing assembly, have also been found to immunoprecipitate with RNAP Il (Das et
al., 2007). Secondly, RNAP Il kinetics can also control the splicing process. In agreement with
this model, when RNAP Il elongation rate is fast, weak splice sites are not recognized and a
putative alternative exon would be excluded from the final transcript. However, if the RNAP Il
elongation rate is slow, it would give time to the splicing machinery for recognition of weak
splice sites thus, including the anternative exon to the matured transcript. Hence, RNAP I
elongation rate impacts in the splicing efficiency (Oesterreich et al., 2011).
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Figure 1.17. Proposed model for the network of splicing regulatory
interactions (Modified from Almeida and Carmo-Fonseca, 2012). In the
splicing regulatory model, the feedforward loop consists of a chromatin
structure (Chr) that directely controls the RNAP Il transcription rate and
pre-mRNA splicing, so that both chromatin and RNP Il jointly regulate the
splicing outcome (black curves). In this model, RNAP Il feeds back to
reassemble chromatin, and splicing stimulates both transcription and
histone modification (orange curves).
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rsr-2, a new Link between splicing and transcription

The general aims of this thesis are:

* To characterize the role of rsr-2, the ortholog of the SRm300/SRRM2 human splicing
co-activator, in Caenorhabditis elegans development.

* To uncover the molecular functions of RSR-2 within the gene expression machinery.
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rsr-2, a new Link between splicing and transeription

R.1. rsr-2 is an essential gene for the development of C.

elegans

R.1.1. Deletion mutants in rsr-2

rsr-2 is a gene located at the chromosome Il and encodes a 1934-nucleotide transcript which

contains three exons and a 3’UTR (Figure R.1).

exon 3 JUTR

Figure R.1. Scale scheme of rsr-2 gene. Connecting lines, introns; inner box, cwf21 motif; outer boxes, regions
affected in rsr-2 alelles.

Upon our request, the Japanese consortium “National Bioresource Project for the
Experimental Animal Nematode C. elegans (NBP)”
(http://www.shigen.nig.ac.jp/c.elegans/index.jsp) generated two deletion alleles of this gene.
Aforementioned consortium uses a random mutagenesis method with TMP/UV (Trimethyl
Psoralen/Ultraviolet) and gene-specific primers to identify deletion alleles (Gengyo-Ando and

Mitani, 2000).

In rsr-2, the allele tm2607 presents a 196 bp deletion plus 1 bp insertion while the allele

tm2625 lacks 337 bp and has an insertion of 2 bp (Figure R.1 and R.2).

tm2607 allele

...ccgggaagctcgatggcca -[196 BP DELETION] aagaaggagaagaagcagaa... -- WT
...ccgggaagctcgatggcca C-—===———————eue—o aagaaggagaagaagcagaa... -- tm2607
tm2625 allele

...tagaggacaagggcctcga --[337 BP DELETION] gtagcagtagctcatcaga... -- WT
...tagaggacaagggcctcga GT--=-=-—=—=———e——e—e-- gtagcagtagctcatcaga... -- tm2625

Figure R.2. Genomic context of rsr-2 alelles.

Once we received these alleles, rsr-2(tm2607) and rsr-2(tm2625) animals were backcrossed 3
and 5 times respectively. The backcross strategy consists in repeated crossing of the mutant
genome of interest with a wild type genome to get rid of other probable mutations generated

during the mutagenesis process.
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Moreover, the allele tm2625 was balanced with an inversion carrying a dpy mutation and a
GFP marker under the control of a pharynx specific promoter to make the strain CER004 (rsr-
2(tm2625)/min1 [dpy-10(e128) mis14(myo-2::GFP)] Il) (Edgley and Riddle, 2001). Such type of
balancer allows the researcher to discern from wild type, heterozygous and homozygous
animals by simply observing the animals under a fluorescence stereomicroscope to check the

GFP expression in the pharynx and the dumpy (Dpy) phenotype (Figure R.3).

Parental generation rsr-2(tm2625)/mint
F1 generation Genotype mini/mim rsr-2(tm2625)/min1  rsr-2(tm2625)/rsr-2(tm2625)
Phenotypes GFP pharynx GFP pharynx No GFP pharynx
Dpy wild type Lva
% of the
corresponding 25% 50% 25%
genotype

Figure R.3. rsr-2(tm2625)/min1 animals segregate a mixed population of heterozygous and homozygous
animals that can be distinguished.

The genomic fragment removed in rsr-2(tm2607) animals is not essential for the gene function
since mutant animals do not display any phenotype and the deletion/insertion is not affecting
the open reading frame. Thus, a fully functional truncated protein may be produced in these

worms.

However, the tm2625 deletion/insertion eliminates part of the cwf21 motif (mRNA splicing-
related motif) and also changes the frameshift, producing animals arrested in early larval
stages (Larval arrest (Lva) phenotype) (Figure R.4A). To further analyze these mutants, CER004
animals were grown at 25°C for 114 hours (approximately 5 days) and sizes for wild type,
heterozygous and homozygous rsr-2(tm2625) worms were measured using the NIS-Elements

Software.

We observed that the Lva phenotype was not temperature dependent. After 5 days of post-
embryonic development, either at 15 or at 25 °C, animals homozygous for the tm2625
mutation were about 0.3 mm large, the corresponding size for an L1 animals, while
heterozygous rsr-2(tm2625) or homozygous rsr-2(tm2607) worms reached the standard adult

size of 1 mm (Figure R.4B)
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R.2. rsr-2 regulates the germ line sex determination
R.2.1. rsr-2(RNAIi) animals develop masculinized germ lines

The severe larval arrest phenotype of rsr-2(tm2625) animals does not allow studies at other
developmental stages where genetic pathways are better described. Moreover, the fact that
this non-viable mutation needs to be kept in a balanced strain hampers the harvesting of a

large pure population of mutant worms that is necessary for certain assays.

The RNA interference is an alternative approach to mutations and its effect on gene silencing
could be milder allowing to track and dissect genetically the role of the gene of interest.
Previous RNAi assays have shown that rsr-2 is essential for C. elegans development. rsr-2 RNAI
by feeding and by microinjection produces a variety of phenotypes from larval or embryonic
lethality to reduced brood size or sterility (Longman et al., 2001; J. F. Rual et al., 2004; Ceron et
al., 2007).

A RNA interference by feeding protocol was established in order to get a population with
homogeneous but weaker phenotype than that observed in null mutants of rsr-2. Wild type N2
worms were synchronized following the sodium hypochloride treatment (Porta-de-la-Riva et
al., 2012) and L1 animals grown at 25°C and fed with bacteria producing gfp dsRNA (control)
and rsr-2 dsRNA (see MM.2). Indeed, we verified by semiquantitative Reverse Transcription-
PCR (sqRT-PCR) that silencing the rsr-2 expression through this technique led to a partial
reduction of the rsr-2 mRNA levels (Figure R.6A) (see MM.4). Quantification of this reduction
was also carried out through Real Time PCR (Figure R.19 in section R.6.2). rsr-2(tm2607) viable
mutants were included in this experiment and we observed that tm2607 insertion/deletion is
in frame and these mutants produce a shorter transcript (195 nucleotides less than the wild

type), which should generate a funtional truncated protein.

Although rsr-2(RNAi) worms could reach the adulthood stage, similarly to control gfp(RNAI)
worms, they were sterile. After 3 days post-L1 animals were harvested, their gonads dissected,
fixed with paraformaldehyde 4% and stained with DAPI (see MM.5). We observed that such
sterility was due to a defect in the sperm/oocyte switch that produces a masculinized

germline.

The Mog phenotype (Masculinization of the germ line) that rsr-2(RNAi) animals displayed
results in the lack of oogenesis and an excess of sperm production (Figure R.6B). The same

phenotype was observed in rsr-2(RNAi); rsr-2(tm2607) animals (not shown).
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Genotype1 Sp2+Oo2 sz only 00’ only n’
Wild type 100% 0% 0% >100
Wild type, rsr-2(RNAI) 11% 89% 0% >100
gld-3(q741) 0% 0% 100% >100
gld-3(q741); rsr-2(RNAi) 0% 100% 0% >100
fog-1(g253) 0% 0% 100% >100
fog-1(q253); rsr-2(RNAI) 0% 0% 100% >100
fog-2(q71) 0% 0% 100% 91
fog-2(q71); rsr-2(RNAi) 0% 0% 100% 111
fog-2(0z40) 0% 0% 100% 21
fog-2(0z40); rsr-2(RNAI) 0% 0% 100% 93
fem-3(e2006) 0% 0% 100% >100
fem-3(e2006); rsr-2(RNAI)  16% 2% 82% 81
fbf-1(0k91) 100% 0% 0% >100
fbf-1(0k91); rsr-2(RNAI)  72% 28% 0% 72
fbf-2(g738) 99% 0% 1% >100
fbf-2(q738); rsr-2(RNAI) 31% 50% 19% 121 Table R.2. Sperm-to-oocyte
nos-3(q650) 100% 0% 0% >100 switch defects in rsr-2(RNAi)
. 1 . °
nos-3(q650); rsr-2(RNAI)  72% 28% 0% 130  animals. “animals grown at 25°C
puf-8(0k302) 93% 3.5% 3.5% 54 except puf-8(ok302), which were
op 2 .
puf-8(ok302); rsr-2(RNAI)  16% 74% 10% 125 ~ 8rown at 20°C. “Sp, sperm; Oo,
oocytes. total number of
puf-8(q725) 90% 10% 0% 56 .
germlines scored.
puf-8(q725); rsr-2(RNAi)  25% 66% 9% 110

Once the involvement of rsr-2 in the germ line sex determination pathway was confirmed,

other germ line genes were epistatically assessed.

Concerning the analysis of fem-3, a central gene of this network, fem-3(e2006) worms produce
only oocytes (Table R.2) and rsr-2 RNAI barely rescues that phenotype (only 16% of animals
with oocytes and sperm), locating rsr-2 mostly upstream of fem-3, although it may act partially
downstream. Such an ambiguous location is frequent for genes within this germ line sex
determination genetic network, hampering the establishment of a linear genetic pathway (Ellis

and Schedl, 2007).

fem-3 is a key gene in the germ line sex determination pathway and hermaphrodites cannot
switch from the production of sperm to oogenesis unless FEM-3 activity is reduced. In the
germline, FEM-3 levels are downregulated by repression of fem-3 translation through its 3’UTR
(Ahringer and Kimble, 1991). Cytoplasmic FBF-1, FBF-2 and NOS-3, members of the Pumilio
family of translational repressors, have been implicated in this repression (Kraemer et al.,

1999).

fbf-1, fbf-2 and nos-3 are redundant and strong inactivation of two of these genes is required

to observe an “only sperm” phenotype (Kraemer et al., 1999; Lamont et al., 2004).
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To investigate the genetic interaction of rsr-2 with these three genes, fbf-1(0k91), fbf-2(q738)
and nos-3(g650) mutants, which produce both sperm and oocytes, were treated with rsr-2
RNAI. As a result, 30 to 50% of the animals made only sperm (Table R.2). Another RNA binding
protein, PUF-8, controls redundantly with FBF-1 the sperm/oocyte switch (Bachorik & J Kimble
2005). We used two puf-8 mutations with a wild type aspect to perform rsr-2 RNAI. Similarly to
the effect observed on fbf-1, fbf-2 and nos-3 mutants, rsr-2 RNAi produced just a partial
“sperm only” phenotype in puf-8 mutants (Table R.2). We conclude that rsr-2 cooperates with

fbf-1, fbf-2, nos-3 and puf-8 in the sperm/oocyte switch.

To further study the possible role of rsr-2 upstream of fem-3, we took advantage of a

transgenic reporter of fem-3 translational inhibition in intestinal cells.

R.2.3. rsr-2 is necessary for fem-3 3’UTR-mediated repression in

somatic cells

The gene fem-3 is regulating both the germ line and the somatic sex determination in C.
elegans (Zarkower, 2006). The somatic expression of a lacZ reporter transgene that was
controlled by the fem-3 3’ UTR (Gallegos et al., 1998) was used as a tool to explore the

possibility of rsr-2 being a regulator of fem-3 expression in somatic cells.

T o

lacZ::fem-3(+) 3'UTR; gfp{RNAI) Figure R.10. fem-3
expression is translationally
repressed by rsr-2 in
®» intestinal cells. Transgenic
line qlS43 [lacZ::fem-3(+)
3’UTR] fed with control gfp

o
N (RNAI) (top) and rsr-2 (RNAI)
-~ ‘ (bottom) showing the
o 3 _.".0“’ “—’g_. ‘ amount of X-gal staining in

lacZ::fem-3(+) F'UTR: rsr-2(RNaj)  the intestinal nuclei.

39



Laura Fownkrodona

Whereas animals carrying the lacZ::;fem-3 3’ UTR did not show expression of the reporter, rsr-
2(RNAi) worms showed a strong lacZ expression (Figure R.10). Thus, rsr-2 functions, either
directly or indirectly, as a translational repressor of fem-3 through its 3’ UTR. Importantly, rsr-2

RNAI did not allow the lacZ expression on lacZ::tra-2 3’ UTR transgenic animals, indicating the

molecular specificity of RSR-2 when regulating 3'UTRs (Table R.3).

Table R.3. [-galactosidase activity scoring in lacZ
transgene reporters. Strains used as a staining control
and specificity control are [lacZ::fem-3(q96gf) 3'UTR]
and [lacZ:tra-2(+) 3’UTR] respectively. For each
condition n>100 animals were scored in 3 biological
replicates. +, more than 80% of animals had > 20
intestinal nuclei with X-gal staining; -, less than 20% of
the animals had >10 intestinal nuclei with X-gal
staining.
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R.4. The mitosis/meiosis switch is not affected in

rsr-2(RNAi) animals

There are two main cell fate decisions during the C. elegans germ line development. The first is
the above-mentioned switch from spermatogenesis to oogenesis, and the second is the
transformation of proliferating cells into meiotic cells. If this mitosis/meiosis switch, which is
regulated by the GLP-1/Notch signaling pathway, fails, cells do not enter meiosis and keep
proliferating forming a tumorous germ line. A recent report has identified splicing factors
affecting the mitosis versus meiosis decision and the sperm/oocyte switch in the germ line
(Kerins et al.,, 2010). 47 out of 114 splicing factors inactivated by RNAi in a sensitized
background displayed at least one of the scored phenotypes (defect in the
proliferation/meiotic entry decision or in the germ line sex determination). Since rsr-2 was not
among the tested genes we analyzed the phenotype of rsr-2(RNAI) in the same strains suitable

to detect the implication of genes in the mitosis/meiosis switch.

In rrf-1(pk1417); glp-1(0z264) animals grown at 20°C, negative control gfp(RNAI), positive
control Ism-2(RNAI) and rsr-2(RNAI) presented tumorous germ line in 14.5%, 31.5%, and 15.6%
of the gonads respectively (Figure R.13). These results indicate that rsr-2(RNAi) does not alter
the meiotic entry decision. Since overproliferation in the germ line could be also a
consequence of a defect in meiotic progression, similar RNAi assays were performed with the
strain rrf-1(pk1417); gld-3 (q730). These experiments excluded a major role of rsr-2 in meiotic
progression (Figure R.13). According to our observations described at the end of the section
R.2.1, strong inactivation of rsr-2 by microinjection implicated that rsr-2 is irrelevant to the
mitosis-meiosis switch. Importantly, we observed the Mog phenotype (~ 40% at 20 "C) among
the non-tumorous rsr-2(RNAi) animals, confirming the effectiveness in interfering the

expression of rsr-2.

B Tumorous Wild type ™ Mog

rrf-1(pk1417); gld-3(q730), rsr-2(RNAI)
rrf-1(pk1417); gld-3(q730), Ism-2(RNAI)
rrf-1(pk1417); gld-3(q730), gfp(RNAI)
rrf-1(pk1417); glp-1(0z264), rsr-2(RNAi)
rrf-1(pk1417); glp-1(0z264), Ism-2(RNAI)

rrf-1(pk1417); glp-1(0z264), gfo(RNAI)

0% 20% 40% 60% 80% 100%
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Figure R.13. Mitosis-to-meiosis switch and meiotic progression in rsr-2(RNAi) animals. rrf-1(pk1417); glp-
1(0z264) and rrf-1(pk1417); gld-3(q730) mutants subjected to L1-feeding RNAi specific for gfp, Ism-2 and rsr-2
were grown and scored as described by Kerins et al., 2010. More than 70 germlines for each condition were
scored. Vertical axis indicates the percentage of the animals that showed each phenotype.

In addition, we detected phosphorylation of Histone 3 by inmunofluorescence and calculated
the mitotic index of gfp(RNAI) and rsr-2(RNAi) germ lines at two conditions. Neither one-day
adults grown at 15 °C nor L4 grown at 25°C showed increased mitotic index in rsr-2(RNAi)
animals (data not shown). Finally, microinjection of rsr-2 dsRNA produced diverse phenotypes
like embryonic lethality, larval arrest and sterility (data not shown). Importantly, among the
microinjected worms that reached the adult stage and became sterile, we detected the Mog
phenotype but did not observe tumorous germ lines. Thus, inactivation of rsr-2 by diverse
RNAI protocols does not affect the mitosis/meiosis decision. Therefore, the reason for the
absence of a tumorous phenotype in rsr-2(RNAi) worms is because rsr-2 is not implicated in

such process rather than due to an inefficient inactivation of rsr-2.
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R.5. RSR-2 is ubiquitously expressed in somatic cells but

presents a restricted pattern in the germ line

R.5.1. Generating rsr-2 transgenics

There are three methods described to avoid transgene silencing in the germ line: complex
arrays (Kelly et al., 1997); low-copy transgenics by gene-gun transformation (Praitis et al.,
2001) and Mosl-mediated Single Copy Insertion (MosSCl) (Frgkjaer-Jensen et al., 2008) (see
MM.9).

The germ line of C. elegans exhibits an exceptional ability to silence exogenous DNA. Besides
this difficulty, gene expression studies in the germ line also present two other issues. First,
most part of the germ line development takes place in a syncitium, which means that
transgene products can be detected far away from the place they had been initially expressed
(Hubbard & Greenstein, 2005). Second, not only promoters are important regulatory elements,

but also 3’"UTRs play a crucial role in germ line gene regulation (Merritt et al. 2008).

These considerations must be carefully taken together when designing transgenes whose
expression will be studied in this peculiar tissue. For these reasons, several transgenic animals
were generated in the laboratory to report either cellular expression of rsr-2 or subcellular

location of RSR-2 (Table R.4).

Genotype Transformation
(Extrachromosomal/Integrated) method

SEX20394 (prsr-2::GFP); dpy-5(e907) |
(Extrachromosomal)

cerEX01 (prsr-2::GFP::H2B::rsr-2 3°UTR) Complex arrays

(Extrachromosomal) (Microinjected)

cerEX04 (prsr-2::GFP::RSR-2::rsr-2 3’UTR)

(Extrachromosomal)

Characteristics

GFP diffuse pattern under the

Microinjected
control of the promoter

Silenced in one or two generations

Includes all regulatory elements

G - . .
ene-gun and the protein tagged with GFP

Table R.4. Transgenes and transformation methods used to study the expression and distribution of rsr-2.

The promoter rsr-2::GFP transgene was created by fusion of PCR products (see MM.8.1). In
particular, a rsr-2 upstream region of 1.5 kb was fused in frame upstream to the GFP ORF. The
PCR fragment was microinjected in dpy-5(€e907) mutants together with the rescue vector
pCeh361 [dpy-5(+)] (see MM.9.2). Next, phenotypically no-Dpy worms were scored for GFP
expression, as described in Hunt-Newbury et al., 2007. Because small reporter proteins such as
GFP diffuse inside the cell, this type of transgene facilitates the observation of cellular
expression in certain structures like the vulva or the nervous system. In fact, rsr-2 expression

was clearly found in various types of neurons and vulva muscles (Figure R.14).
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Figure R.14. rsr-2 expression in the soma. Two transgenic animals expressing GFP under the control of rsr-2
promoter. Left panel: arrow points to the nucleus of one ventral cord neuron. Magnified area shows GFP
expression in vulva muscles defining the vulva structure. Right panel: ventral vision of the vulva. Arrowhead

points to the axon of one ventral chord neuron.

Because this GFP-alone-fusion transgene gives a diffuse pattern, a GFP::H2B fusion was

constructed and expressed under the control of 5 and 3’ regulatory regions of rsr-2. The

transgene rsr-2 promoter::GFP::Histone2B::rsr-2 3’UTR was microinjected linearized together

with digested genomic DNA to make complex arrays, what allowed germ line expression at

least for one or two generations.

rsr-2 promoter::GFP::H2B::rsr-2 3'UTR

Figure R.15. rsr-2 is broadly expressed in somatic
tissues.

In the study of the resulting transgenics, rsr-2
was broadly expressed in somatic tissues. It
was detected in intestinal cells, hypodermal
cells, muscle cells, neurons, amongst other
types (Figure R.15). Interestingly, a restricted
pattern was observed in the germ line since
expression was low or absent in the most distal
part, where mitosis takes place (Figure R.16).
We corroborated this rsr-2 expression pattern
absent in the most distal part of the gonad
through in situ hybridization experiments

(Figure R.16).
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Figure R.17. RSR-2::GFP forms
nuclear speckles. Distribution of
RSR-2::GFP in an adult worm. (A)
RSR-2::GFP localizes at the nuclei of
several cell types. A hypodermal cell
nucleus is amplified to visualize
nuclear speckles. (B) Speckles are
visible in head neuron nuclei.

Putting together rsr-2 expression data, rsr-2 is expressed ubiquitously in somatic cells and RSR-

2 locates in the nucleus where it accumulates forming speckles. However, the restricted rsr-2
expression in the germ line where different cellular processes occur at different locations is

intriguing.
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R.6. rsr-2(RNAi) animals have a global decrease in
transcript levels but the splicing mechanism seems not to

be affected

R.6.1. Tiling arrays reveal a general decrease in transcript levels

of rsr-2(RNAI) L4 animals

As it has been shown in the previous R.3 section of this thesis, constitutive splicing is not
affected in rsr-2(RNAi) animals in a somatic lineage as the intestine at least. Still, these are the
guestions that need to be answered:

* Does rsr-2 RNAiI affect constitutive splicing in other lineages?

* Does rsr-2 RNAi affect constitutive splicing of other transcripts?

To answer these questions and shed light into the molecular functions of rsr-2 during C.
elegans development Affymetrix tiling arrays 1.0 (ref 900935) were used to examine not only

transcript levels but also intron retention and alternative splicing events.

Total RNA was extracted and purified from L4 synchronized animals grown at 25°C (36 hours
after L1) in gfp and rsr-2 RNAI plates. Under these conditions, harvested worms are in late L4
stage, when the germ line switches permanently to oogenesis. This protocol matches one of
the conditions followed by the modENCODE consortium for transcriptome analysis of different

strains done by tilling arrays and RNA-Seq (Celniker et al., 2009; Gerstein et al., 2010).

We used two experimental replicates for each condition and raw data (CEL files) was analyzed
using the Affymetrix® Tiling Analyses Software (TAS) V. 1.1.02. This analysis provided
information about the levels of 30431 transcripts. To estimate gene expression in control
gfp(RNAI) and rsr-2(RNAi) animals, we used bioinformatics tools to plot mean signal intensities
for transcripts, exons and introns by chromosomes (Figure R.18). Using the tools implemented
in the Galaxy platform (Goecks et al.,, 2010; Blankenberg et al.,, 2011) and based on the
information contained in the worm genome assembly WS180, the array signal values were
used to infer the mean signal intensity for each gene in control and rsr-2(RNAi) worms as an
indirect estimation of whole gene expression. These estimates were used to recognize up and
down regulated genes in the rsr-2(RNAi) population, and also to characterize the

transcriptional patterns of each chromosome.
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Gene clasess Upregulated > 1,2 Downregulated < 0,8

1609 2308

169 germ line-specific genes1 0 28

844 spermatogenesis genes2 1 298

1177 soma specific genes3 36 26

2215 germ line-enriched genes4 34 133

4678 germ Iine-expressed5 38 138

545 intron-retention AS° 10 16

3339 genes in operons7 35 41

551 intronless genes8 48 64

Table R.5. Gene expression group analysis in rsr-2(RNAi) animals.
1Germline—specific genes. Union of germ line-enriched and germ line SAGE (tag > 0) (Reinke et al., 2004),
intersected with SMD (Strictly Maternal Degradation) class genes (Baugh et al., 2003), subtracted any gene also
expressed (tag > 0) in muscle, gut or neuron SAGE (Wang et al., 2009; Meissner et al., 2009). Compiled by
Andreas Rechtsteiner & Susan Strome.
2Spermatogenesis genes. (Reinke et al., 2004). Compiled by Andreas Rechtsteiner & Susan Strome.
3Soma—specific genes (gut, muscle or neuron). Expressed in gut, muscle, or neuron SAGE (tag > 8) minus any gene
germ line-enriched or germ line-expressed (germline SAGE tag > 0) (Meissner et al., 2009; Reinke et al., 2004;
Wang et al., 2009). Compiled by Andreas Rechtsteiner & Susan Strome.
“Germ line-enriched genes, not including spermatogenesis-related genes (Reinke et al., 2004). Compiled by
Andreas Rechtsteiner & Susan Strome.
>Germ line-expressed genes based on SAGE data (Wang et al., 2009). Compiled by Andreas Rechtsteiner & Susan
Strome.
®Intron Retention in Alternative Splicing events (Ramani et al., 2011).
"(Allen et al. 2011)
8Extracted from www.wormbase.org (WS220)
Such a decrease in transcripts required for spermatogenesis suggests that, although rsr-
2(RNAi) animals are able to make sperm but not oocytes, sperm may not be properly

differentiated.

Sperm-enriched and germ line intrinsic genes are nearly absent from the X chromosome
(Reinke et al., 2000). Thus, the differential effect that we observed in expression levels of the
X-chromosome (Figure R.18) could be due to the strong downregulation of sperm-related
genes in rsr-2(RNAi) animals. Since most sperm-enriched genes are located in autosomes, rsr-
2(RNAi) worms with less expression of sperm genes should have a higher ratio of X

chromosome/autosomal gene expression.

To validate the tiling array data quantitative Real Time PCR (qRT-PCR) was performed to study
expression levels of a chosen subset of germ line sex determination genes. In terms of gene
expression, gRT-PCR is more sensitive than tiling arrays. In both methods, a reference value of
1 was set in the control gfp(RNAi) sample to be compared with the rsr-2(RNAi) sample. In
general accordance with results from tiling arrays (Table R.6), gRT-PCRs of three independent
experimental samples revealed that all the tested genes except fog-1 (enriched in sperm)
(Lamont & Kimble, 2008) had reduced levels of mRNA in rsr-2(RNAI) versus gfp(RNAi) animals
(Figure R.19).
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No obvious differences were observed between the regulated expression of the two splice

variants of unc-96, top-1, epi-1 and cir-1 in tm2625 enriched population versus the wild type.

Altogether, although we cannot discard that RSR-2 may participate in specific AS events, our

data suggests that RSR-2 does not have a key role in AS.
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R.8. Functional links between RSR-2 and transcription

R.8.1. Specificity of a novel antibody against RSR-2

Upon our request, the SDIX company generated a rabbit polyclonal antibody (Ab) against RSR-
2 in two different animals. Among the 425-aminoacid sequence of the protein, the epitope

recognized by these antibodies comprises aminoacids from positions 39 to 138 (Figure R.23).

MYNGIGLQTARGSGTNGYVQSNLSHLMOQARRKIEYNGEDDLRKMEAELNRKPNEEIMDHNRKRQIEVKC
TEFEMLLEDKGLDDEDIERKVGEYRKNLLKQLESGELNVDEELSTKESHARRRAAANNRDKMRNALGLG
EDYVPGSSMAKMNKSDVVGAAMESELPQKDDKEKLLETLRLHRKSKKKQESSSSSSSSSSSSESSSEDE
KHRKDRKKKEKKQKLKEMEKRREKLRQKERELLAVSDKVKKEEPAESSDEEDSRKDQRKPREDRRRSVE
RODOREDRRDRRRSPEDPRERRRSPEDRTVRRRSPERRRQORSPSVERRKSPOQRRDERRRRHDSSENER
RSTATASKKSRMDELEVKQEPPSDSEDYIAKTNLAPIRVEKSAEKVEKSRKSSSESSSGSSDSDSSSDS
SSSSDSSSDSE

Figure R.23. RSR-2 protein sequence. The immunogen peptide used to generate an antibody against RSR-2 is
highlighted in bold red letters.

Firstly, to validate the Ab specificity, a western blot was performed. N2 worms were grown in
parallel in rsr-2 dsRNA and L4440 empty vector-producing bacteria. Once reached the
adulthood, animals were harvested and protein fractions prepared (see MM.13). 87 ug of each
sample were loaded in a 10% acrylamide gel and western blot performed with the RSR-2
antibodies produced by two different rabbits. Two loading controls were used: actin and

histone 3.

The Ab generated in animal #1 is named Q5091 and the Ab generated in animal #2 is named
Q5092. We determined that both antibodies are specific in detecting RSR-2 and they present
the same band pattern by western blot. Importantly, RSR-2 protein levels are substantially

reduced when inhibiting rsr-2 gene expression by RNAi (Figure R.24).

Three proteins bigger than RSR-2 are also recognized by the two antibodies Q5091 and Q5092
(Figure R.24, arrows). Despite that fact, rsr-2(RNAi) can practically abolish protein levels of
RSR-2 while levels of unspecific bands are not affected, validating our RNAi targeting strategy.
Because the Ab Q5092 recognizes RSR-2 as efficiently as the Ab Q5091 but detect with less
intensity the proteins representing the unspecific bands, we chose the Ab Q5092 for further

experiments.
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rsr-2, a new Link between splicing and transcription
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rsr-2, a new Link between splicing and transeription
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rsr-2, a new Link between splicing and transeription
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rsr-2, a new Link between splicing and transeription
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rsr-2, a new Link between splicing and transeription

R.9. Transcriptome analysis exposes a functional link

between rsr-2 and prp-8

After the evidences showed above of RSR-2 linked with transcription, we decided to
investigate the relation of RSR-2 with splicing. We compared the transcriptomes of rsr-2, prp-8
and gfp(RNAi) L3 worms performing RNA-Seq. As in other RNAI assays previously described in
this thesis, L1 animals were synchronized and seeded on RNAi plates with the corresponding
HT115 dsRNA-producing clone. After 26 hours post-L1 at 25°C, late L3 worms were harvested
and total RNA extracted (see MM.4). We chose L3 stage for two different reasons. First,
transcriptomes are more stable at L3 since germ line is still relatively small. Second, being prp-
8 a highly conserved key splicing factor located at the catalytic core of the spliceosome, prp-
8(RNAi) worms showed a severe developmental delay after L3. Hence, the assay was restricted

to the mentioned developmental timepoint.
R.9.1. Common targets of RSR-2 and PRP-8

We studied differential gene expression in our rsr-2 and prp-8 RNAi samples versus the gfp
RNAi control. rsr-2(RNAi) animals showed 401 transcripts downregulated while prp-8(RNAi)
worms presented 245 (Figure R.40). We classified as “downregulated” those transcripts with

lower statistically significant expression, with a g value =< 0.05.

rsr-2(RNAI) versus gfp(RNAI)
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rsr-2, a new Link between splicing and transcription

In the last decades, the functional knowledge of splicing factors has been led by biochemical
studies since genetic analysis were hampered by the essential functions of these proteins. The
discovery of RNAI, and the possibility of modulating its efficacy, allow mimicking the effect of
hypomorphic alleles. RNAi experiments in C. elegans provide an additional layer of flexibility
since dsRNA can be administered by feeding. In that regard, we have established conditions for
a RNAi protocol to knock down rsr-2 in synchronized animals. This approach admits the
functional study of RSR-2 at different stages in which diverse developmental processes are

taking place.

D.1. rsr-2 and germ line development

D.1.1. rsr-2-mediated regulation of sex determination

To explain the variety of phenotypes observed in rsr-2 deficient animals (by RNAi or mutation)
we favor a model where the decrease of RSR-2 produces an overall reduction of transcript

levels that may be critical for some developmental processes but irrelevant for others.

Our RNAI protocol reduces rsr-2 mRNA to a certain level that causes an obvious phenotype in
the germ line sex determination. Probably, this decrease of rsr-2 levels becomes critical at one
specific developmental stage when genes that promote oogenesis, such as fbf-1, fbf-2 and nos-
3 lead the sperm/oocyte switch. As a consequence, this switch does not take place and germ
stem cells keep producing sperm eventually causing the Mog phenotype. A complex genetic
network of at least 20 genes, either promoting or inhibiting the switch, regulates the

sperm/oocyte decision (Ellis and Schedl, 2007).

We cannot explain the masculinization of germ line phenotype by pointing to specific genes
since many seem to be downregulated and we did not detect any accumulating aberrant
splicing isoforms that could provoke a straight reduction of their expression levels as

evidenced by our transcriptomic analyses of rsr-2(RNAi) L4 animals.

Regulation of FEM-3 levels by translational inhibition of fem-3 mRNA is a key step in the germ
line sex determination process that is promoted by fbf-1, fbf-2, puf-8 and nos-3 among other
genes. Hence, a simple explanation of the rsr-2(RNAi) Mog phenotype is that the sperm/oocyte
switch relies on repressive forces on FEM-3 levels and rsr-2 RNAi reduces the strength of this
repression by critically decreasing transcript levels of fem-3 repressors (Figure D.1). In fact, we
validated by Real Time PCR the reduction of fbf-1, fbf-2, nos-3 and fem-3 transcripts among
other germ line related genes. We explain the diminished levels of fem-3 mRNA in rsr-2(RNAi)
animals by suggesting that FEM-3 levels in the germ line are mainly regulated by translational
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rsr-2, a new Link between splicing and transcription

fem-3 is also a pivotal gene of the pathway that controls sex determination in the soma
(zarkower et al., 2006). We have shown in this study that rsr-2 also regulates the fem-3 3'UTR
in intestinal cells. This fact suggests a similar mechanism of action of rsr-2 in somatic sex
determination where rsr-2 RNAi may reduce levels of fem-3 translational repressors. This
functional link between RSR-2 and FBF proteins could also be behind the multivulva phenotype
(Muv) that we previously observed in rsr-2(RNAi) animals (Ceron et al., 2007), taking into

account that FBF proteins contribute to the repression of vulva induction (Walser et al., 2007).
D.1.2. rsr-2 & mogs: find the 4 differences

Although the Mog phenotype is common to all genes that fail to switch to oogenesis when
they are inactivated, there is a class of genes so-called “mog genes” associated to mog
mutations that share several features (Graham and Kimble, 1993). To date, all of the six mog
genes have already been identified (Puoti and Kimble, 1999; Belfiore et al., 2004; Kasturi et al.,

2010; Zanetti et al., 2011).

There are several similarities between mog genes and rsr-2:

* All MOG proteins with the exception of MOG-6, are homologs of spliceosome
components. Their specific involvement in splicing is not known in C. elegans (Puoti
and Kimble, 1999; Puoti and Kimble, 2000; Kasturi et al., 2010; Zannetti et al., 2011).

* RSR-2 and MOG proteins are all located in the nucleus, even though MOG proteins
have not yet been described in nuclear speckles.

* rsr-2 and mog genes are required for repression of a somatic lacZ::;fem-3 3’UTR
transgene (Gallegos et al., 1998).

* The Mog phenotype from rsr-2 and mog genes is suppressed by mutations in fem
genes but not by mutations in fog-2 (Ellis and Schedl, 2007 and this work).

*  mog mutants, similarly to rsr-2(RNAi) animals, did not show general splicing defects

(Table D.1).

However, there are differences that set apart rsr-2 from mog genes:

* Most MOG proteins are RNA-binding proteins while RSR-2 is a SR-related protein that
lacks RRM motifs found in other SR proteins.

¢ Differently from rsr-2, all mog genes are involved in germ line proliferation
functioning synthetically with g/d-3 (Belfiore et al., 2004).

* mog mutants from an heterozygous hermaphrodite are capable of reaching the adult
stage in contrast to the rsr-2(tm2625) which arrest as larvae.

* During the splicing reaction, the spliceosome forms distinct complexes that are

involved in assembly, catalytic steps, and disassembly. Thus, whereas yeast and
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human ortholog proteins of MOG-1, 2, 3, 4 and 5 function in the first and second
catalytic steps and intron excision, the orthologs of RSR-2 may act in early splicing

steps and also in the first catalytic step (Bessonov et al., 2008; Kerins et al., 2010).

C. elegans Yeast Human Splicing alterations in mutant animals
mog gene ortholog ortholog
mog-1 Prpl6 PRP16 None
mog-2 Leal U2A’ Subtle intron retention in a very few specific transcripts
mog-3 Cwc25 CWC25 None
mog-4 Prp2 PRP2 None
mog-5 Prp22 PRP22 None
Activates a cryptic splice site in the mutant dpy-
mog-6 - CYP60 10(e128) RNA but its absence is not sufficient because

a small fraction of the transcript is efficiently spliced

Table D.1. mog mutants in C. elegans do not show significant splicing defects.

Therefore, similarities and differences between rsr-2 and mog genes equally suggest both

functional relation and independent functions.

In a recent work, Kerins and co-workers conducted a feeding RNAi screen of 114 C. elegans
genes that encode orthologs of a set of yeast and human proteins implicated in pre-mRNA
splicing. rsr-2 was not among the tested genes. 11 of the 114 screened genes showed a Mog
phenotype at 20°C in a rrf-1(pk1417) background that confers RNAI resistance in the soma. Of
these 11, the Mog phenotype was found from 1 to 12.2% of animals within the total
population, with the exception of the gene W03H9.4 that displayed 31.9% of Mog. rsr-2(RNAI)
produces more than 40% of Mog animals at 20°C in a rrf-1(pk1417) background (data not
shown). There is no correlation between the step in which each factor functions in the splicing
pathway and the RNAi phenotype, which indicates that global disruption of splicing can cause
Mog phenotype (Kerins et al., 2010). In any case, rsr-2(RNAi) gives one of the most penetrant
Mog phenotypes described to date, a clue that chains it to the splicing mechanism and maybe

also something distinct.

Overall, it remains a general enigma why many splicing factors are controlling the

sperm/oocyte switch in Caenorhabidits elegans.
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D.2. rsr-2 expression pattern

We have shown that RSR-2 is expressed ubiquitously in somatic cells but it is not present in all

germ cells.

In the soma, we observed RSR-2 in the nucleus of a wide range cell types. In C. elegans many
proteins involved in pre-mRNA splicing, and in particular SR proteins, are confined in the nuclei
of almost all somatic cells in adult hermaphrodites (Kawano et al., 2000). Interestingly, we
found it forming nuclear speckles in different cell types (intestinal cells, hypodermal cells and
neurons). In fact, diverse RNA processing factors have previously been detected at nuclear
speckles (Lamond and Spector, 2003). The subcellular location of RSR-2 is conserved since
SRmM300 is also located at nuclear speckles in human CaSki cells at interphase while diffuses
during mitosis (Blencowe et al., 2000). SRm300 also localizes at nuclear speckles in Cos7 cells
(Lin et al., 2004) and in human corneal epithelial cells (HCE-T) (Zimowska et al., 2003). There
are only a few C. elegans proteins (less than 10) that have been found in these granules,
probably because protein::GFP constructs can be highly toxic, hampering the viability of
transgenic strains. In the list of proteins located in nuclear speckles we can find RNA binding
proteins as UNC-75, EXC-7 and HRPF-1 (Loria et al., 2003), or the zinc finger transcription factor
LSY-2 (Johnston and Hobert, 2005).

Something distinct happens in the germ line, indicating that rsr-2 expression may be subjected
to a different type of regulation in this tissue. As well as in the soma, we studied rsr-2
expression by generating transgenic reporter animals but additionally we also performed ISH
and immunohistochemistry on dissected gonads. The results showed that rsr-2 (mRNA) and

RSR-2 (protein) are expressed at lower levels in mitotic cells than in meiotic cells and oocytes.

Regarding the expression in sperm and sperm precursors, transgenic animals and
immunohistochemistry experiments unraveled that RSR-2 is not present in such cell types.
Discordantly, ISH signal was strong in sperm (Figure D.2A) and the signal did not disappear

when rsr-2 RNAi was performed (Figure D.2B).
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Figure D.2. rsr-2 mRNA distribution in the germ line presents a region-specific pattern where levels are lower at
mitotic cells than at the rest of the germ line cells. (A) rsr-2 mRNA distribution in a wild type gonad. (B) rsr-2
RNAi effectively removes the signal from all the gonad except for the sperm. (C) Negative detection control using
a sense probe.

We can justify this observation with two different explanations:

* As occurrs in neurons, sperm cells would be more resistant to RNAi than other cell
types (Fraser et al., 2000). For instance, in the work of Fraser et al., it is shown how
RNAi of several genes involved in sperm development (fer-1, spe-9 and spe-11)
resulted in no detectable phenotype. Thus, we can explain the strong staining at sperm
in rsr-2(RNAi) gonads simply by the inefficiency of the RNAi in these cells.

* Since we have not found RSR-2 in sperm neither in transgenic GFP::RSR-2 animals nor
in immunostained gonads, it is possible that ISH staining at this region was unspecific.
Therefore, if rsr-2 RNAi is solely targeting rsr-2 mRNA and the sperm signal is
unspecific, the signal should disappear from the whole gonad except from the sperm

upon rsr-2 RNAI treatment.

The expression pattern of rsr-2 in the germ line is region-specific. Other genes that share
features with rsr-2, namely mog genes and other splicing-related factors, are present
ubiquitously both in the soma and the germ line. For instance, genes smu-1 and smu-2, which
are the homologs of mammalian spliceosome-associated fSAP57 and RED respectively, show
broad expression in somatic cells as well as throughout the germ line, including the mitotic
region (Spartz et al., 2004). The same occurs with mog genes. In contrast, rsr-2 is not globally

present in the germ line, since it has been barely detected in the mitotic area.

Putting these data together, RSR-2 expression is nuclear and it seems to be more associated
with chromatin in the germ line than in somatic cells. We have validated this particular
distribution by specific immunostaining of RSR-2. Although the chromatin-enriched pattern of
RSR-2 is more evident in germ cells than in the somatic lineage, we have also detected RSR-2
overlapping with chromatin in intestinal nuclei. On the other hand, we have found RSR-2
forming nuclear speckles in several soma cell types. The possibility of RSR-2 also forming
speckles a in germ cells cannot be discarded since we observed nuclear granules in these cells

but in that case they were considerably smaller.

Soma and germ line are two cell lineages that require very different regulatory pathways in
terms of specification, growth and maintenance (Hubbard and Greenstein, 2005). Therefore,
the differences between soma and germ line regarding RSR-2 cellular and subcellular

distribution are not surprising.
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D.3. Tools to study transcriptomes

The transcriptome is the complete set of transcripts in a cell or in an organism, and their
guantity for a specific developmental stage or physiological condition. With the newly
developed RNA-Seq technology to profile transcriptomes, several articles stated that
microarrays are inevitably being driven to extintion. Nevertheless, both of these two
technologies could be useful, and the best suited technology will depend on the adressed
guestion. When sensitivity is not a limiting factor, DNA microarrays are a good approach due
to the short turn-around time, exceptional quantitative accuracy and ease of data generation.
When sensitivity is critical, short read sequencing technologies provide more precise
measurement of levels of transcripts and their isoforms than hybridization-based approaches

(Wang et al., 2009).

In addition, the hybridization-based methods present several limitations compared to the
sequence-based ones, which include: reliance upon existing knowledge about genome
sequence, high background levels and a limited dynamic range of detection (Royce et al.,
2007). Contrastingly, RNA-Seq can reveal the precise location of transcription boundaries to a
single-base resolution, and has very low background signal. Besides, RNA-Seq has also been
shown to be highly sensitive to gene expression levels as determined by qPCR (Nagalakshi et

al., 2008).

In this thesis we have combined both approaches to study the transcriptome of rsr-2(RNAi)
animals at two diverse developmental time points: L4 (tiling arrays) and L3 (RNA-Seq).
Nevertheless, none of the data sets unraveled major alterations in intron retention events or
in alternative splicing patterns, thus leading us to believe that the cause for the phenotypes

that we observed is not due to a dramatic failure of the splicing machinery.

The other hand, Chromatin ImmunoPrecipitation (ChIP) assays had allowed for mapping the
spliceosome recruitment on the genes since functional coupling of transcription to RNA
processing is mediated by the CTD of the large subunit of RNAP Il (Phantani and Greenleaf,
2006) and proteomic analysis of affinity purified Pol Il complexes found a number of RNA
processing and transport factors to be associated with these complexes (Das et al., 2007). As a
consequence, many RNA processing factors are in the vicinity of transcribed genes, which can
be detected by ChIP. Therefore, we took advantage of it to map RSR-2 throughout the genome

and discovered that profiles similarly to RNAP II.

81



Laura Fownkrodona

(1 Gt 20 i ClZa s 122 Emds 1221s alel Bn ARRAEIPERemE s es 1 A
r el ARR BmESAd

Btn,hi ecg B ,htvtn R Rellpc @ 1 A B vi c, Il tctn Bk BREMK v 2R
nERhtn tl Bf IEHH BRI 2 B si @ i Bevhf BV HAIERe 16R n , t covst eRIELpeln $c® i h Bh t h @i Bel
C5501 scveePM, bt v sl [Flg elsl evss 1RRACEEL N, te evd@setRellRRn t At ec EREMBS“ T
Bi 12 vE@I)BNB5“EERf n Re@Rn D55zRRRE WA B elp@RIN IBv 1B htv B h ¢ evEe@R f s 10
i fnBel, 1€ tctn BBtn, | TERelBvcEd Fcvd tn tlt 3ER. MW 1Rl sh BMpRL Bi pEE, 1€k 3R
HEh /fel®i Etel cc evilR, |fie3ERRM HRRpCH el holt hee3@i Ghtl @A ¢ & hi tlt 3cE
BMA B, 199 tctn @REMVEIpVERRE h cct et gBl ERI)BWG5/ TR HAse 3 HEl Villll )\ 5 “ Tl Rle el VERI)®
VB5“BE

i e®fHige/ERARNSE h vt Bt 1B, , Is 13t EFRFeRi g |s DFe 1@I8DR" )DFp Ecv@pCH tn t It 3E
3 e c®. [Btlc hg Bg hoRllHIn BVvEE, | etvp, cERelRRles Blc@1tBlet V@h BRI Bvi ERLf MAcvE3 )2
Bt. g BeRi Bhth hn sccg MRRE elost e 22 1236t n [WUEDEVES B [Rh ERRI Bt R
1 v MBI t381 etw, RAESh @)DER

=

=

prp-8{RNAI)

F 5 j _-I' ? , 3 I'I-Fi' In'qf_.":l, I'._,II

=

=

(i t cAIE D3RR/ ¢ [, BESbEMb@R AR 1d yRwl BsE 1i A gh. 11sLEy3REEREee3® . th
3 e /s @Fel@IDE )DEREHen Elc)z

BlRlc hge3@i BtRNn i etw, EZIg6(ARRPER thn cBi cPLEVGRES 33 cvci EVERIEE NMEh BlpERllct &
Bhia i &, |9 tctn @Bt h EBf VEbeeRt e vihdalf vet eBcPet VARICE cc evd@lIERICR vi HEE, 149 tctn

Btn,te ew)®

Bi ht f 3i @Hleckhs vin Mellpc & R gl 6/(PRRIRe 1B /s QR EAEen Blc? [HARg AxEltc 1@
vi h BEERN efhvst eRIth IBvt eci s @B v.  e@RRRINRe 1ERRRM)ER t cvit i e i 2 fell
1t. eh 3fIBv 1BxBRvi c Bv. tBnetEm 181t. eFRRENBH f elcdZZh BBt n n t eEVENB vcZlse 1 $RIvee 3R
Ci Bh 12 elvst ecBe@t evit llse3@B e AT, h ccste)i i el @AEBc hg 1A Et38i etw, EeBg6
y(ERRCE thn c® [ElslBPet Bl v BMF ec, |99 1BWHZeclls wsevit elh v ewt el g evcBERII f c B

/\a



rsr-2, a new Link between splicing and transcription

spliceosome may still be functional and the RNA processing yield being the only affected,

resulting in a reduction in the number of transcripts.

Although there are several arguments favoring the role of RSR-2 within the spliceosome
(literature, phenocopy of other splicing components, subcellular location, etc...), the presence
of RSR-2 is not critical for the processing of most of the immature transcripts. Such light
influence of RSR-2 in RNA processing or splicing may be fucntionally important during

development only for genes transcribed at high transcriptional rates.

This hypothesis is compatible with the idea of a buffering capacity of the gene expression
machinery to bypass or resist certain RNA processing defects by small deficiencies within the
spliceosome. Such buffering capacity may be insufficient in few developmental processes with

extraordinary peaks of mRNA production.

RSR-2, and its human homolog SRm300/SRRM2, are SR-related proteins containing RS domains
but lacking RNA recognition motifs (RRMs). Although the absence of RRMs may account for the
lack of RNA-binding specificity, the RS domain itself can promote spliceosome assembly by
binding to other RBPs (RNA Binding Proteins) or directly contacting the pre-mRNA via the

Branch-Point (BP) at the 5’ss (Hertel and Graveley, 2005; Long and Caceres, 2009).

In concordance with this lack of RRMs, RSR-2 seems to act rather globally than on specific
transcripts. The RS motif is not essential in RSR-2 since it is partially affected in the viable allele
tm2607. Although the RS domain is much more extended in the human protein
SRm300/SRMM2 than in yeast and C. elegans proteins, this length does not appear to be
relevant for global functions since Cwc21 and SRm300/SRMM?2 are orthologs (Grainger et al.,
2009). Hence, it is likely that core functions of rsr-2 homologs are conserved from yeast to
human at the N-terminal part of the protein independently of the RS domain extension at the

C-terminal.
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D.5. RSR-2, a novel link between transcription and splicing

The coupling between transcription and splicing is well documented by several physical
interactions connecting transcriptional and RNA processing machineries (Pandit et al., 2008).
RNA processing can occur before the completion of transcription and therefore both molecular
mechanisms need to be functionally integrated to ensure an efficient gene expression. As an
example, the mammalian protein PRP4K physically interacts with components of both splicing

and chromatin remodeling complexes (Dellaire et al., 2002).

Interestingly, HiNF-P, which is a histone H4 subtype specific transcriptional regulator, has been
shown to interact with SRm300 in yeast two-hybrid, co-immunoprecipitation, and co-
immunofluorecence assays (Miele et al., 2007). This is not an isolated finding. Proteomic
analysis of SRm160 and SRm300-containing complexes identified not only several splicing-
related factors but also proteins involved in chromatin remodelling and RNAP Il transcription
(McCracken et al., 2005). These evidences suggest that one of the possibilities of SRm300
functioning in the coupling of transcription and splicing could be through interactions with

factors that bind directly to components of these two machineries.

The subcellular location of RSR-2 is conserved since SRm300 is also located at nuclear speckles
in a variety of human cell types (Blencowe et al., 2000; Lin et al., 2004; Zimowska et al., 2003).
Although diverse RNA processing factors have been detected at nuclear speckles,
transcriptional factors are also located at such structures (Lamond and Spector, 2003). In fact,
although these organelles are commonly known as RNA processing bodies, they are often in
the close vicinity of transcriptionally active chromosome territories (Spector and Lamond,

2010).

Apart from the clues that gave us the RSR-2 subcellular location at nuclear speckles and
chromatin, the analyses of ChIP-Seq provided more evidences that link RSR-2 with RNAP I
transcription. First, these two proteins, RSR-2 and RNAP Il, map very similarly throughout the
genome. Second, the enrichment of RSR-2 at the TSS is greatly comparable to the
accumulation observed for RNAP Il. Third, RSR-2 is recruited to the TSS and the CDS of
intronless genes. Fourth, we have been able to immunoprecipitate RNAP Il using the antibody
against RSR-2 (data not shown) and besides, RNAP Il phosphoisoforms rate vary upon rsr-2

RNAi treatment.

Thus, there is a clear connection of RSR-2 and RNAP Il. But does this relationship rely on a
direct interaction between them? Attempts to co-immunoprecipate RSR-2 with an anti-POL Il

antibody failed probably due to the nature of the epitope recognized by the antibody 8W16G
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(the CTD). Further experiments such as yeast-two-hybrid or in vitro protein binding assays are
needed to solve this question. However, SRm300/SRRM2 has not been found among the > 100
proteins that specifically associate with the immunopurified human RNA pol Il (Das et al.,

2007).

Our data suggests that rsr-2 inactivation produces a general decrease in the number of
transcripts without general splicing defects. Reduced levels of RSR-2 might be interpreted by
the transcriptional machinery as a sign of reduced splicing efficiency, slowing down
transcription. In accordance with this, Alexander and co-workers have recently shown how

splicing defects produce RNA polymerase pausing in yeast (Alexander et al., 2010).

If RSR-2 is functioning as a splicing factor, why is it present in one exon-containing genes
whose transcripts do not need to be spliced? The same question had been already formulated
in regard to the uridine-rich U1 snRNP (Brody and Shav-Tal, 2011). For one exon-containing
genes, where there are no introns and no splice sites, recruitment of splicing components is
not supposed to occur. Nonetheless, Brody and co-workers showed that U1 snRNP and the

U1A protein were enriched on an actively transcribing intronless gene (Brody et al., 2011).

U1 snRNP has been proposed to travel together with the RNAP Il along the DNA in search of
5’ss and when one of them is detected, U1l could trigger the spliceosome recruitment and
induce co-transcriptional splicing. It has also been revealed that SR proteins are essential for
co-transcriptional splicing, an observation that suggests that trancription is important for
splicing because it favors the recruitment of U1 snRNPs and SR proteins (Allemand et al.,
2008). In that sense, RSR-2 could be one of the preliminar splicing factors tethered at the

transcriptional complex to recruit the rest of the splicing machinery.

Chromatin structure and transcriptional activity influence splicing (Almeida and Carmo-
Fonseca, 2012). In a model in which actively transcribed genes, splicing impacts transcription
and both feedback to chromatin modification, it remains to be explored if RSR-2 would affect
the remodelation of the chromatin state. So far, our transcriptomic analysis and protein
expression studies are compatible with RSR-2 influencing and coupling splicing and

transcription.

85



Laura Fownkrodona

D.6. How is rsr-2 regulated?

D.6.1. rsr-2 and lin-35 Rb

DNA sequencing of ChIP experiments carried out by the modENCODE consortium have shown
that several transcription factors as PHA-4, DAF-16, LIN-54 or LIN-9 and not others as LIN-11 or
HLH-8 bind significantly to the rsr-2 promoter region, being this the first hint about a regulated

expression of rsr-2 (Gerstein et al., 2010; http://modencode.oicr.on.ca/fgb2/gbrowse/worm/).

Remarkably, the seed this study has arisen from is the genetic interaction between rsr-2 and
lin-35 (Ceron et al., 2007). LIN-35 ChlIPs the rsr-2 promoter (Valerie Reinke unpublished data;
http://modencode.oicr.on.ca/fgh2/gbrowse/worm/). Considering this, we wondered whether
this binding could be promoting or repressing rsr-2 expression. Thus, a synchronized
population of lin-35(n745) mutants was grown at 26°C and total RNA isolation was performed
at L1 stage to assay rsr-2 mRNA levels by Real Time PCR. We found reduced expression of rsr-2

in the lin-35 mutant background (Figure D.4).
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The diminished rsr-2 mRNA levels of lin-35(n745) mutants suggest that LIN-35 may be
promoting the expression of rsr-2 even though the reduction of mRNA levels in the mutant
background is not statistically significant at L1 stage. This positive effect of LIN-35 on rsr-2
expression may justify that rsr-2 RNAi produces a stronger phenotype in lin-35 mutants than in

wild types.

The second clue about a rsr-2 regulated expression comes from the expression pattern of rsr-2
in the germ line. This study presents an in situ hybridization experiment showing that rsr-2
MRNA is less present in the distal part than in the proximal part of the germ line. Accordingly,
we have also observed how the expression of rsr-2 promoter driving GFP::H2B::rsr-2 3’UTR is
also lower in the distal part than in the middle region of the germ line. All these data suggest
different mechanisms of regulation of rsr-2 expression in the germ line and in the soma.
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Finally, SR protein activity and subcellular location are known to be regulated by extensive
phosphorylation on serine residues of the RS domains (Lin and Fu, 2007). However, RS are not
essential in RSR-2 and by western blot we did not observe different bands corresponding to
different phosphorilation status of the protein. Therefore, future research may uncover

proteins that control RSR-2 functions to ultimately modulate developmental programs.
D.6.2. rsr-2 is the first gene of the operon CEOP2720

About 70% of mature mRNAs in C. elegans are trans-spliced, which implies the attachment of
one of the splicing leader sequences to the 5’-end (Blumenthal, 2005). There exists two splice
leaders, SL1 and SL2. The SLs are structurally and functionally related to the U snRNAs that play
a key role in intron removal (also known as cis-splicing). SL1 is used to process outrons at the 5’
exon that are thought to confer stabilility to the mRNA molecule and SL2 serves to resolve

downstream genes in operons (Blumenthal, 2005).

Mechanistically, SL trans-splicing occurs like cis-splicing, and requires most of the same
spliceosomal components except for the U1 snRNP, which is not needed (Lasda et al., 2010). In

C. elegans, polycistronic messengers are trans-spliced in a co-transcriptional manner.

rsr-2 is the first gene of the operon CEOP2720, which also contains the downstream gene sinh-
1. rsr-2 has a predicted SL1 and sinh-1 has a predicted SL2 (Figure D.5). Do the C. elegans
operons exist to ensure coordination of regulation of genes whose products function
together? In comparison to bacterial operons, genes within a C. elegans operon often show
poor co-expression and only sometimes encode proteins with related functions (Reinke and
Cutter, 2009) which suggests that operons in C. elegans are vestiges of procaryote operons. In
agreement with this, modENCODE RNA-Seq analyses indicate that sinh-1 is barely expressed
through development compared to the higher expression levels for rsr-2. The known functions
of these two genes are very distinct. In this study we showed evidences for rsr-2 to be involved
in splicing but also in controlling RNAP Il transcription. On the other hand, sinh-1 encodes the
ortholog of mammalian SIN-1, an essential component of the TORC2 complex. In C. elegans,
loss of sinh-1 activity via RNAI results in enhanced stress response, and daf-16-dependent

lifespan extension (Hansen et al., 2005).

Certain classes of genes are dramatically overrepresented in operons while other classes are
missing or nearly so from a C. elegans operon list made by Blumenthal and Gleason
(Blumenthal and Gleason, 2003). In general, tissue-specific genes are not transcribed in

operons. The most frequent operon-included genes are those that encode mitochondrial
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D.7. Our model: RSR-2 is a multitask protein that regulates

development through transcription and splicing

The existing data about RSR-2 homologs in yeast and humans classified these SR-related
proteins as components of the spliccosome. However, this thesis and the revision of the recent

literature invite us to think out of the box when talking about functions of RSR-2.

Nowadays it is already clear that different gene expression steps need to be interconnected for
an efficient performance. SR proteins are important in such crosstalk since they have been
implicated in not only constitutive and alternative splicing, but also in mRNA nuclear export,
nonsense-mediated decay and mRNA translation (Long and Caceres, 2009; Zhong et al., 2009).
Differently from other SR proteins, RSR-2 does not bear any RNA binding domain and this may
limit its capacity to do many other things in the regulation of gene expression. Still, we have
discovered that RSR-2 may have other roles outside of the spliceosome since we have been
able to pinpoint RSR-2 in chromatin areas where splicing is not happening. Moreover we have
presented data supporting a functional relation with RNAP Il in terms of similarities on their

genomic distribution.

Our rsr-2 RNAi treatment affects the phosphorylation status of RNAP II, favoring the
hyperphosphorylated active form, which accumulates at the gene 5’ ends. Studies about RNAP
II dynamics in live cells established that only one of each 90 RNAP Il complexes proceeds
through elongation to produce a complete mRNA (Darzacq et al., 2007). Interestingly, the
presence of splicing factors that associate with RNAP Il CTD stimulate transcriptional
elongation (Das et al., 2007, Lin et al., 2008; Dermody et al., 2008). Wrapping all this
information up, we propose a model where RSR-2 associates with RNAP Il to stimulate the
entering into elongation phase and therefore promoting the transcriptional activity. In this
model, reduced levels of RSR-2 induces the accumulation of active RNAP Il at the gene 5’ ends

resulting in lower transcript production.

The RNAP Il complex is probably the most important multiprotein complex of the whole gene
expression machinery. Therefore it needs to be highly regulated, but for security purposes
such regulation should rely on many different proteins. In this study, rsr-2 RNAi by feeding may
produce a slight reduction of the RNAP Il transcriptional capacity that it is critical only for
certain developmental processes. In our mild rsr-2 RNAi treatment only the germ line sex
determination is visibly affected. However, rsr-2 inactivation by mutation or by other RNAi
treatments produces additional phenotypes as Lva, growth defects or protruding vulva. We

believe that RSR-2 requirements for each developmental process should be different, but
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those developmental mechanisms requiring higher levels of mRNA production may be more

sensitive to rsr-2 inhibition.

Since splicing and transcription occur co-transcriptionally, and RSR-2 is present in both
macromolecular complexes, it is tempting to think of RSR-2 as a co-transcriptional factor. The
term “co-transcriptional factor” is a recent concept that refers to proteins that exchange
information between the RNAP Il and the spliceosome about their respective functional status.
In other words, if any of the phases of the transcription (initiation, elongation and termination)
is not working properly or is delayed, the pre-mRNA processing machinery will detect the
problem by regulating down its activity. Such functional coupling is reciprocal and therefore
the transcription will be less efficient if the mRNA processing is affected. Such is the growing

evidence about this coupling that scientists in the field have begun to talk about “co-

transcriptional RNA checkpoints” (Almeida and Carmo-Fonseca, 2010).

We think that RSR-2 levels could act as a sensor of the splicing wellness since RSR-2 is
physically and functionally related with PRP-8, which locates at the “heart” of the spliceosome.
In that case, if there are failures within the spliceosome, RSR-2 would communicate the
defects to the RNAP Il and transcription would slow down to give time to the spliceosome to

solve these problems (Figure D.6).
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rsr-2, a new Link between splicing and transcription

rsr-2, the ortholog of the yeast Cwc21 and the human SRm300/SRRM2 splicing factors,
is well conserved throughout evolution. The cwf21 motif at the N-terminal, deleted in
the tm2625 allele, is fundamental for its functions. In contrast, a central region

containing serine and arginine residues affected by the allele tm2607 is not essential.

rsr-2 is a gene necessary for Caenorhabditis elegans development and regulates the

germ line sex determination.

RSR-2 is a nuclear protein. In somatic cells can be detected forming nuclear speckles.

In germ cells, RSR-2 clearly co-localizes with chromatin.

Transcript levels are slightly diminished genome-wide when expression of rsr-2 is

inactivated. However, splicing seems not to be altered.

RSR-2 and the core spliceosome component PRP-8 have common targets in terms of

gene expression, indicating that they are functioning in common processes.

RSR-2 controls RNA polymerase Il (RNAP II) distribution along genes. When RSR-2
levels are low RNAP Il accumulates at the 5’ gene end to the detriment of a reduction

at the 3’ end.
RSR-2 is recruited to intronless genes that are actively being transcribed.

RSR-2 requirements for each developmental process could vary. However, the
developmental mechanisms requiring higher levels of mMRNA production may be more

sensitive to rsr-2 inhibition.

RSR-2 functions are compatible with RSR-2 acting as a coupling factor between

transcription and splicing.
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rsr-2, a new Link between splicing and transcription

MM.1. Strains and general methods

Standard methods are used to culture and manipulate worms (Brenner, 1974). Briefly, worms
are grown at temperatures between 15 and 25°C on NGM (Nematode Growth Media) Agar
plates (see “Recipes” at the end of this section). Plates are previously seeded with an

overgrown liquid culture of the Escherichia coli strain OP50, and air-dried.

Bristol N2 is used as wild type (WT) strain and mutant and transgenic strains used in this study

are listed in table MM.1.

JK560 fog-1(q253) | Temperature sensitive. Raise at 15 or 20°C.
TR1331 smg-1(r861) | Non-mediated decay pathway defective mutants.
TR1335 smg-5(r860) | Non-mediated decay pathway defective mutants.

Hermaphrodites have an abnormally protrusive vulva.
Reference allele. Homozygous rrf-1 deletion allele.

NL2098 rrf-1(pk1417) | RNAi interference for genes expressed in somatic
tissue is lost in rrf-1 deletion mutants.

- rrf-1(pk1417) I; gld-3(q730) Il Tumorous germ line at 25°C (from Schedl| Lab)

- rrf-1(pk1417) I; glp-1(0z264) Il Tumorous germ line at 25°C (from Schedl Lab)

gld-3(q741)/min1[mis14 dpy- Heterozygotes are WT with major GFP signal in

JK3345 10(e128)] Il pharynx. Segregates WT GFP+, Dpy GFP+ (mIn1
homozygotes) and GFP- g/d-3 homozygotes.
Heterozygotes are WT with major GFP signal in
-2(tm2625)/min1(dpy-10(e128,
CERO0O4 il Wi el ) pharynx. Segregates WT GFP+, Dpy GFP+ (mIn1

ki 2 e homozygotes) and GFP- rsr-2 homozygotes.

CER007 rsr-2(tm2607) Il Animals do not display any phenotype.
Low percent sterile, more sperm than WT, delayed

JK3022 AP oogenesis, larger broods than WT.

1K3101 fbf-2(q738) I I(:SOrZws well as a homozygote, possibly small percent
Reference allele.Grows well as a homozgyote. 0.3%

IK2589 sl sterile at 20°C (0.2% have masculinized germ lines).
100% Sterile at 25°C. Hi d 50% Emb at 20°C.

JH1521 puf-8(0k302) Ii % Sterile a im and 50% Emb a

Maintain at 15°C.

JK3231 puf-8(q725) Il Low penetrance (<10%) Mog.

Wild type at 15°C. Embryonic lethal at 25°C.
Temperature sensitive phase during embryogenesis.
Temperature sensitive Fem. Hermaphrodites al 15°C,
female at 25°C. Maintain at 15°C.

JK574 M fog-2(q71) V Male-female strain. Maintain by mating.

100% roller. Low level expression of LacZ after heat
JK2421 qls43 [lacZ::fem-3(+)] V shock at 33°C. Expression in nuclei HS::LacZ::fem-3
3'UTR(+). Maintain by picking roller. Maintain at 20°C.
100% roller. fem-3 UTR::LacZ transgene. No coding
region of fem-3, only the 3'UTR. Strong expression of
beta-Galactosidase in nuclei of intestine and other
cells. Mutant fem-3 3’"UTR. No expression in germ line.
This transgene is derepressed in mog mutants.
Maintain by picking roller. Maintain at 20°C.

100% roller. Contains integrated construct with roller,
wt8Di wt8DillacZ::tra-2(+)] Il and tra-2(+)3'UTR. Maintain by picking roller. Maintain
at 20°C.

WT. Contains integrated intron-containing GFP
contrstruct expressed in intestinal cells.

Unc. Not caused by ttTi5605. Mos1 allele generated by
NemaGENETAG consortium.

GE24 pha-1(e2123) Ili

CB3844 fem-3(e2006) IV

JK1950 qls15(lacZ::fem-3(q96gf)] V

BL3466 inls173[pNvitgfp]

EG4322 ttTi5605 II; unc-119(ed9) Il
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BC20394 SEX20394([rsr-2 promoter::GFP], WT. Contains sEX20394 and pCeh361 [dpy-5(+)].
dpy-5(907) | Maintain by picking non-Dpy worms.
cerEX01[rsr-2 . Lo

. WT. Contains cerEX07. GFP expression in the soma

CEROO1 promoter::gfp::Histone 2B::rsr-2 .

, and the germ line.
3°UTR]
B T WT. Cor.1ta|r'15 cerEX04 and myo—2::mCher'ry. (.SFP

CERO08 . , expression in the soma. mCherry expression in the
genomic fragment + rsr-2 3’UTR] S

Table MM.1. Mutant and transgenic strains used in this study and some of their characteristics.

MM.1, Recipes

Nematode Growth Media Agar (NGM)
For 1 liter of plates:

NacCl
Peptone
Agar
H,0

3g
25¢g
17 g
975 ml

Autoclave, cool to 55°C and then add the following reagents mixing after every addition:
Cholesterol (5mg/ml in EtOH)

1M CacCl,

1M MgSO,
1M Kalium phosphate buffer

1M Kalium phosphate buffer

For 1 liter:
KH,PO,4
K;HPO,
H,O

Luria Bertani (LB)

For 1 liter:
Tryptone

Yeast extract

NaCl
H,O

100

1ml
1ml
1ml
25 ml

108.3 g
35.6¢
975 ml

10 g
5g
10 g
950 ml
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MM.2. RNA-mediated interference (RNAI)

MM.2.1. By feeding

RNAI by feeding in C. elegans is a technique that permits the inactivation of a gene of interest
by administrating the interferent RNA through the food. Although RNAi by feeding produces
weaker effects than RNAi by injection, it is an advantadgeous method when large number of

animals need to be treated at once for high throughput screenings.

To induce the RNA-mediated interference (RNAI) by feeding, NGM plates were supplemented
with 50 ug/mL ampicillin, 12.5 pg/mL tetracycline, and 1mM IPTG. HT115 cells transformed
with L4440 plus the target DNA sequence can be obtained either from Vidal RNAi library
(ORFeome) or Arhinger RNAI library. If the RNAI clone of interest is not available in neither of

the 2 libraries, a new clone has to be generated by standard molecular cloning methods.

A strike of the selected clone was made on a LB-Ampicillin plate (50 pg/mL) and the bacteria
let grow O/N at 37°C. The day after, three colonies were picked and a colony PCR was
performed with L4440 forward and reverse primers (see “Primers” at the end of this section).
The PCR product was run in an agarose gel to make sure that the size of the clone was
appropriate. If a single band of the right size was detected, the clone was sequenced for a final
validation. Next, the RNAI cultures were preparated by growing a positive single colony of each
clone in 4mL LB plus 50 pg/mL of ampicillin at 37°C O/N with agitation. 60 mm plates seeded
with 400 pl of the corresponding RNAi clone induced O/N at RT were used to feed
synchronized L1 animals. Worms were grown at the desired temperature, depending on the

experiment that was performed.

Phenotype analysis was carried out every day after seeding the animals by scoring the plates

under the stereomicroscope.

MM.2.2. By microinjection

To interfere rsr-2 expression by microinjection, dsRNA was synthetized by using MEGAscript®
T7 kit (Ambion Cat. No. AM1333). The template used was the rsr-2 cDNA cloned into the
vector L4440 and flanked by two bacterial polymerase promoter sequences (T7) at each 5’ and

3’ ends. The transcription reaction was carried out following manufacturer’s instructions.

WT young adults were injected into the intestine with 1 ng/ul of rsr-2 dsRNA and grown at

25°C. Progeny was scored every 24 hours.
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MM.2, Primers

L4440 primers
Forward 5’-GTTTTCCCAGTCACGACGTT-3’
Reverse 5’-TGGATAACCGTATTACCGCC-3’
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MM.3. Sodium hypochlorite treatment

The bleaching technique is used for synchronizing C. elegans cultures at L1 stage. The principle
of the method lies in the fact that worms are sensitive to bleach while the egg shell protects
embryos from it. After treatment with alkaline hypochlorite solution, embryos are incubated in

liquid media without food, which allows hatching but prevents further development.

Worms were allowed to grow until adult stage and recovered by washing plates with M9
buffer. Then, worm pellets were washed twice with M9 until the buffer appears clear of
bacteria. After the last wash 2 ml of M9 buffer were left and 2 ml of 2x bleaching solution were
added (see MM.3 recipes). Next, samples were vigorously agitated for 5 minutes
approximately and after this time the reaction was stopped by adding M9 buffer to fill the tube
(destruction of the adult tissue was monitored under the dissecting microscope and the
reaction stopped when traces of adults were still visible). A fast centrifugation was carried out
and the pellets were washed three more times with M9 buffer. Finally, 1ml of M9 buffer was
added to pellet and samples were incubated at 15°C for 24 hours with gentle agitation (Porta-

de-la-Riva et al., 2012).

After 12 and 24 hours (time to embryonic development depends on the temperature) worms

were recovered by centrifugation and seeded on the required plates.

MM, 3, Rec:ipes

Mg buffer

For 1 liter:
NacCl 5g
KH,PO, 3g
Na,HPO, 68
1M MgSO, 1ml
H,0 975 ml

Bleaching solution (2x)
NaOH 1N 2.5 ml
Hypochlorite sodium 1ml
H,0 0.5 ml

VA VAV VA VA VA VA VA VA VA VA VA VA VI VA VA VI VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VAVA VA VAVAVAVAVAVAVAVS
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MM.4. Semiquantitative RT-PCR

WT, and several mutant worms (such as rsr-2(tm2607), smg-5(r860) and smg-1(r861) were
synchronized at L1 stage by following a sodium hypochlorite treatment and grown at 25°C on
rsr-2 and prp-8 RNAI plates to induce the silencing of these genes. In parallel, as a negative
control the same amount of animals was grown on gfp RNAI plates. After 36 hours post-L1 for
germ line experiments and after 26 hours for L3 molting experiments, animals were harvested
and washed twice with M9 buffer. Next, all populations were incubated for 30 minutes at RT to
get rid of remaining bacteria in the intestine. Total RNA isolation from rsr-2, prp-8 and

gfp(RNAJ/) worms was accomplished as follows:

Worm pellets were washed twice with M9 buffer, 7 volumes of TRIReagent (TR-118, MRC)
were added to the packed pellets and they were frozen at -80°C. Next, 5 cycles of
freezing/thawing were performed and samples were vortexed vigorously. The suspension was
allowed to stand at RT for 5 minutes to disrupt all RNA-protein complexes. Addition of 0,2mL
of chloroform per mL of Trizol used was carried out before an incubation of 15 minutes at RT
to allow the phase separation of the samples. The aqueous phase was taken and RNA was
precipitated with ethanol. RNA was resuspended in DEPC-treated water and its quality and

guantity is determined by running an agarose gel and taking spectrophotometric readings.

cDNA was synthesized from 1 ug of purified RNA with oligo(dT) primers using the RevertAid H
Minus First Strand cDNA synthesis kit (Fermentas. Cat.No. K1632) following the manufacturer’s

instructions. Sequences of primers used in the RT-PCR assay are at the end of this section.

MM. 4, Primers

rsr-2 primers

Forward 5-CGAGGTGAAATGCACCGAAT-3’
Reverse 5’-GCCATTTTTTCGGCTCAA-3’

act-1 primers

Forward 5’-TTGAGCACGGTATCGTCACCAACT-3’
Reverse 5-TCAGCGGTGGTGGTGAAAGAGTAA-3’
rpl-12 primers

Forward 5-GTTGCGTCGGAGGAGAAGTCG-3’
Reverse 5-GATGATGTCGTGTGGGTGTTGTC-3’
gld-1 primers

Forward 5’-CGACAATGTTCCAGCGGATCGTT-3’
Reverse 5-CTTCGGGAACGTCAAATCACTTGC-3’
fbf-1 primers

Forward 5’-ATGGACCAATCAAAAATGCGC-3’
Reverse 5-CTGGGCAATGATAAGGGTGG-3’

VAV VAV AV VAV VA VA VA VA VA VA VA VA VA VA VA VA VA VAV VA VA VA VA VAV VA VAV VA VA VA VA VA VA VA VA VA VA VA VA VA VAV VA VAVE VA VAV VA VAVAVAVAVAVAVAVS
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tra-2 primers

Forward 5’-GGCTGCTGGTGAAGAGCTTTTTG-3’
Reverse 5’-CGAGAACTGCTGAATGGCCACC-3’
prp-8 primers

Forward 5’-TTGACAGAGCATCCAGATCC-3’
Reverse 5’-ATGGAATTTGGACAATGACTCC-3’
dpy-8 primers

Forward 5’-TCACCCAGAATACGCTGACG-3’
Reverse 5’-TTCTTGCGCCATTTCCTCTCG-3’
dpy-2 primers

Forward 5’-ATGAAATCGCAAACGAGTGG-3’
Reverse 5’-CTCTTGAAATTGTGGTGAATCG-3’
Y37A1B.7 primers

Forward 5’-AGTGGGGAATTATCATCCGG-3’
Reverse 5’-ATCTCTTTGGCACGTGGCC-3’
ama-1 primers

Forward 5’-TGCAGGAGTTGGTCAATCG-3’
Reverse 5’-TCGGAATGTACTCCATGGG-3’
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MM.5. Dissection of gonads

A plate full of adults was washed with PBS-0,1% Tween-20 (PBSt) and the animals placed in a
three-well glass dish from Pyrex (up to 200 worms per well). Worms were allowed to gravity
settle for a few minutes and washed twice with PBSt. Next, as much PBSt as possible was
removed and addition of 200 ul of 0,3 mM levamisole performed to paralize the animals. As
paralysis sets in, heads were cut off at level of the pharynx. To do so, the head was placed
between two 20 guage syringe needles and decapitated by moving needles in a scissors

motion. Normally at least one gonad extrudes completely.

After a maximum of 15 minutes of dissection, the paralysis reaction was stopped by diluting
the levamisole solution in which the worms were immersed with PBSt. The dissected worms
were washed 3 times and before to proceed with the fixation, excess of liquid was removed

with a pipette.

To fix gonads different fixing solutions can be used depending on the molecular nature of the
target to be detected in downstream applications. For instance, if gonads are going to be used
for mRNA distribution studies, a good fixer to maintain mRNA integrity is a combination of
glutaraldehyde and paraformaldehyde (see MM.6 for details). However, if they are going to be
immunostained, a good choice to maintain protein structures is 4% paraformaldehyde (see
MM.7. for details). In any case, fixation time should go from 20 to 30 minutes. After this time,
fixed gonads are washed 3 times and used as a template for in situ hybridization or

immunostaining experiments.
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MM.6. In situ hybridization of mRNA

In situ hybridization was performed following the protocol described by Lee and Schedl, 2006
(Lee and Schedl|, 2006). Briefly, DNA probes were synthesized with digoxigenin-11-dUTP by
repeated primer extension (DIG DNA Labeling Mix. Roche Cat. No. 11 277 065 910). The
oligonucleotides used to generate the rsr-2 sense and antisense probes are detailed in the

“MM.6. Primers” box at the end of this chapter.

Dissected gonads from adult hermaphrodites were permeabilized (50 ug/ml proteinase K) for
30 minutes at RT and fixed with a 3% paraformaldehyde/0.25% glutaraldehyde/0.1M K,HPO,
(pH 7.2) fixer for 2 h at RT. Both sense and antisense probes were diluted 5 times in
hybridization buffer and hybridised for 36 hours at 48°C in a hybridization oven. Probe
detection was carried out by incubating the samples with a 400-fold-diluted alkaline-
phosphatase-conjugated anti-DIG antibody overnight at 4°C. BCIP/NDT (Sigma Cat. No. B5655)
was used to set up the colorimetric reaction dissolved in staining solution. Gonads were also
stained with DAPI (2 pug/ml), embeded in anti-fade solution (Invitrogen Cat. No. P36930) and

mounted on a microscope slide.

MM.6, Primers

rsr-2 ISH primers
Sense 5’-GCAAGCGAGACGAAAAATCG-3’

Antisense 5’-ATCCCGGCGTTGTGGTGACT-3’

MM.6, Recipes

3% paraformaldehyde/o.25% glutaraldehyde buffer/o.1M K,HPO, (pH 7.2)

16% paraformaldehyde 25 ml
25% glutaraldehyde 0.53 ml
0.2M K,HPO, (pH 7.2) 25 ml

Hybridization buffer
5x SSC
50% deionized formamide
100 ug/ml autoclaved herring sperm DNA
50 ug/ml heparin
0.1% Tween-20

Staining solution
100mM NacCl
5mM MgCl,
100mM Tris pH 9.5
0,1% Tween-20
1mM Levamisole
VA VA VAV VA VA VA VA VA VA VA VA VA VA VI VA VA VI VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VA VAVA VA VAVAVAVAVAVAVAVS
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MM.7. Immunostaining

MM.7.1. Of dissected gonads

Dissected gonads were fixed with 4% paraformaldehyde (Electron Microscopy Sciences Cat.
No. 15710) for 20 minutes and subsequently washed 3 times with PBSt (10 minutes each
wash). Pre-incubation with PBSt and BSA (1 mg/ml) (Sigma Cat. No. A9418) was carried out for
1 hour at RT. After it, the epitope of interest was detected by incubation with the
corresponding primary antibody overnight at 4°C in a sealed humidity chamber (see Table

MM.2. at the end of this section for information about antibody nature and dilutions used).

The following day gonads were left 1 hour at RT and washed three times with PBSt plus BSA.
Addition of the corresponding secondary antibody was performed at the concentration
indicated in table MM.2. Antibody incubation was accomplished for 2 hours at RT. Finally the
antibody was washed out and gonads were counterstained with DAPI (2 ug/ml), embeded in

anti-fade solution (Invitrogen Cat. No. P36930) and mounted in a glass microscope slide.
MM.7.2. Of larvae (Freeze—cracking protocol)

For immunostaining of larvae, freeze-cracking protocol was followed as described by Duerr,
2006. This protocol provides a simple way to remove portions of the worm’s cuticle allowing

its penetration by antibodies.

Polylysine coated slides were prepared and baked in a 60°C oven for 15 minutes. In parallel,
larvae were washed and pelleted using PBS. Once the polylysine coated slides were dry and
chilled to RT, around 50 worms were placed on each slide, allowed to settle and stick on the
surface for a few minutes. Excess of liquid was removed with a pipette and a coverslip was set
so that the edge of the coverslip extended over the edge of the slide. Pressure on the coverslip
was put with the fingertips and the slides were placed on a prefrozen aluminium block on dry
ice. Slides were left on the cold block until they were frozen. Coverslips were popped off and
the slides immediately soaked in prechilled (-20°C) 100% methanol for 15 minutes, followed by
10 minutes in prechilled (-20°C) 100% acetone and three washing steps (10 minutes each) with

PBSt plus 10 mg/ml BSA.

After a 30-minute pre-incubation with PBSt plus 10mg/ml BSA, 50 ul of the primary antibody of
interest was applied, the slide covered with a parafilm coverslip and incubated at 4°C
overnight in a sealed humidity chamber. Next, three PBSt washing steps of ten minutes each

were carried out and 50 ul of the secondary antibody were spread over the fixed worms.
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Samples were left 2 hours at RT and after three more washing steps with PBSt (10 minutes

each), samples were embeded with anti-fade solution and counterstained with DAPI (2 ug/ml).

Polyclonal
Q56092 RSR-2 Rabbit | cYcona
(Primary)

lonal

A11120 GFP Mouse quoc ona
(Primary)

i |

MH33 I|'1termed|ate Mouse quoclona
filament (Primary)

A11001 (Alexa Fluor 488 IgG)  Anti-Mouse Goat Secondary
A11011 (Alexa Fluor 568 1gG)  Anti-Rabbit Goat Secondary

Table MM.2. Antibodies and dilutions used in immunostainings of this study.

1:600
1:100

1:40

1:400 in gonads
1:250 in larvae
1:400 in gonads
1:250 in larvae

Sdix
Molecular
Probes
DSHB

Molecular
Probes
Molecular
Probes
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MM.8.2. Gateway Three-fragment Cloning System

The MultiSite Gateway® Three-Fragment Vector Construction Kit (Invitrogen Cat. No. 12537-
023) facilitates rapid efficient construction of an expression clone containing the promoter of

choice followed by the gene of interest (which at the same time can be tagged), and a 3’UTR.

The system consists of three Donor vectors, pDONR P4-P1r (5’ vector), pDONR 221 (middle
vector), pDONR P2r-P3 (3’ vector), and one Destination vector, pDEST R4-R3 (expression
vector) (Table MM.3), which are used in a sequential series of recombination reactions to
eventually get the desired expression clone as it is schematized in figure MM.2. In brief, attB
and attP on one hand (BP reaction); and attL and attR on the other (LR reaction), are
recombination sites that are utilized in the Gateway technology. PCR fragments are cloned into
the apropriate Donor vectors (5, middle or 3’; see Figure MM.2) and next, the three of them
are recombined to generate an organized three-fragment DNA transgene inside the expression

vector.

* Generating Entry clones: BP reaction.

attB sites always recombine with attP sites in a reaction mediated by the BP recombinase
enzyme. Thus, when generating the PCR fragment of interest, appropriate flanking att
recombination sites must be incorporated into the primers in order to create the correct
Entry clone. To do so, genomic DNA from a mixed stage population of N2 worms was
extracted and purified with the PureLink Genomic DNA Mini kit (Invitrogen Cat. No. K1820-
01). All PCR amplifications were carried out using Phusion High-Fidelity DNA Polymerase
(Finnzymes Cat. No. F-530S). The specific primers used to produce the att-PCR fragments

and the vectors necessary for generating Entry clones are listed at the end of this section.

The recombinase reaction products were next transformed into DH5a competent cells
(Invitrogen Cat. No. 18263-012) and positive colonies selected using solid cultures with 50
ug/ml of kanamycin. The presence of the desired clone vas confirmed by PCR in which
primer combination used consisted on a transgene-specific primer together with a vector-
specific primer (M13 primer). Additionally, positive clones were sequenced (by the dye-

base sequencing method).

* Generating Expression clones: LR reaction.

Once 5, middle and 3’ Entry vectors were produced and validated, LR reaction was

performed. In this reaction mediated by the LR recombinase enzyme, attlL sites always

recombine with attR sites. Only concerning the case of the Entry vector that bears the rsr-2

genomic and 3’UTR fragment (Table MM.4.), the clone was digested with Pvull previous to
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rsr-2 Gateway 3’UTR primers

attB2r Forward 5-GGGGACAGCTTTCTTGTACAAAGTGGCCTTTTTTCTTGTGTTTTAT-3’
attB3 Reverse 5’-GGGGACAACTTTGTATAATAAAGTTGCCCAGTTTTCAGGAGATTCTTC-3’
rsr-2 Gateway ORF + 3’UTR primers

attB2r Forward 5’-GGGGACAGCTTTCTTGTACAAAGTGGTTATGTACAATGGAATCGGACT-3’
attB3 Reverse 5’-GGGGACAACTTTGTATAATAAAGTTGCCCAGTTTTCAGGAGATTCTTC-3’
M13 primers

Forward 5’-GTAAAACGACGGCCAG-3’

Reverse 5’-CAGGAAACAGCTATGAC-3’

Vectors used to generate rsr-2 reporter constructs and vectors generated in our lab to study

rsr-2 expression are listed on the following tables MM.3 and MM.4.

pDONR P4-P1R Kanamycine ccdB Invitrogen
pCM1.35 Kanamycine GFP::H2B Seydoux Lab
pCM1.53 Kanamycine GFP-no stop codon  Seydoux Lab
pDONR P2R-P3 Kanamycine ccdB Invitrogen
pCFJ150 R4-R3 Ampicillin ccdB Invitrogen
pBCN26 R4-R3 Puromycine, neomycine  ccdB Lehner Lab

Table MM.3. List of plasmids used to generate rsr-2 reporter constructs.

pCER002 pDONR P4-P1R Kanamycine rsr-2 promoter

pCEROO3 pDONR P2R-P3 Kanamycine rsr-2 3'UTR

pCEROO5 pDONR P2R-P3 Kanamycine rsr-2 ORF + 3’'UTR

pCER001 pCFJ150 R4-R3 Ampicillin Prsr-2::GFP::H2B:: rsr-2 3’UTR
pCER004 pBCN26 R4-R3 Ampicillin Prsr-2::GFP::RSR-2:: rsr-2 3'UTR

Table MM.4. List of plasmids generated to study rsr-2 expression in vivo in C. elegans.
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MM.9. Generation of GFP reporters and transgenic

animals

There are three methods described to obtain low-copy trangenic worms: complex arrays (Kelly
et al., 1997); gene-gun transformation (Praitis et al., 2001; Wilm et al., 1999) and Mos1-
mediated Single Copy Insertion (MosSCl) (Frokjaer-Jensen et al., 2008). In this study only
complex arrays and gene-gun transformation have been used to generate RSR-2 transgenic

animals.
MM.9.1. Complex arrays

This type of transformation involves dilution of the transgene with exogenous genomic DNA
prior to injection to make a “complex array”. Normally transgene DNAs are co-injected with a
positive transformation marker. Transformation markers can be either a fluorescent protein
under the control of a specific promoter such as [promoter myo-2::mCherry] or a wild type
copy of a certain gene that rescues lethal or non-lethal mutations of specific mutant strains as
transformation hosts (for instance, dpy-5(e907) mutants can be microinjected with the rescue
vector pCeh361 [dpy-5(+)]). Injected DNAs can suffer both homologous and non-homologous

recombination and behave like an extra chromosome (Mello and Fire, 1995).

To generate RSR-2 transgenic animals, the complex array strategy was used to transform the
transgene [promoter rsr-2::GFP::H2B:: rsr-2 3’UTR]. 4 ng/ul of the linearized molecular construct
were microinjected together with digested bacterial genomic DNA and linearized pRF4 2 ng/ul
(roller marker). Selection of Py roller animals was carried out and expression of the array in the
germ line of animals from F1 generation was studied, since these complex arrays allow

expression in the germ line just for a few generations until it gets silenced.
MM.9.2. DNA transformation by gene bombardment

Microparticle bombardment can induce integrative transformation in C. elegans (Praitis et al,
2001). The reporter strain expressing rsr-2 promoter::gfp::rsr-2 genomic fragment::rsr-2 3’'UTR
was generated by gene bombardment. The principle of this technique is to bind DNA onto gold
particles, which are shot into worms using a biolistic bombardment instrument also named
“gene gun”. In our lab we use the Biolistic Helium Gun (Caenotec) to perform gene

bombardment.

Recently, Lehner lab has developed an excellent and powerful antibiotic selection system for C.

elegans, such as those used in single-celled organisms and in mammalian cell cultures (Semple
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et al.,, 2010). Taking advantadge of this new system for transgenic animal selection, we
transfected the plasmid containing the transgene of interest (pCER004). The backbone vector
of this expression plasmid is pPBCN26-R4R3. pBCN26-R4R3 contains a dual resistance operon
vector, which confers resistance to neomycin and puromycin at once. This vector also bears
the gene mCherry under the control of myo-2 promoter (pharynx specific), which codes for a

red fluorescent protein that serves as an extra point of visual selection control.

Prior to bombardment, 20 ul of a N2 YA worm pellet were transferred to ice-cold 35 mm plates
containing a dry and thin bacterial layer. DNA-coated gold particles were prepared by mixing 1
mg of gold (Chempur, 0.3-3 um diameter) with 100 ul of 50 uM spermidin (Sigma, Cat. No. S-
0266) and 7 ug of DNA. Next, precipitation was carried out by adding 100 ul of 1M CacCl,.
Before resuspension with 0.1 mg/ml polyvinylpyrolidon in EtOH (Sigma, Cat. No. P-5288), gold
particles-DNA complexes were washed three times with 96% ethanol. Eight plates were shot
and the agar cut into six pieces, each being put onto a fresh 90 mm plate and incubated at
20°C. The day after (day 2 of the experiment) L1 worms were recovered and animals carrying
the transgene selected by culturing them in liquid NGM supplemented with 0.5 mg/ml of both
neomycin and puromycin plus 0.1% of Triton X-100. The recovery of L1 worms was also
performed at day 3 and worms were united with the worms from day 2 on the selection
media. At day 5, worms were plated. Finally, at day 8 animals expressing mCherry were singled

out and the F1 generation was scored in search of stable transgenic strains expressing GFP.
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MM.10. B-galactosidase reporter assays

lacZ, together with GFP, is one of the most popular reporter genes. It encodes the enzyme §3-
galactosidase. This protein makes an excellent reporter because its presence can be detected
by staining with a subtrate (X-gal) that turns blue in the presence of the enzyme. Thus, any

blue color in the worm indicates that the reporter gene is expressed in that cell.

In the B-galacotsidase assays of this thesis, animals carrying lacZ::fem-3 3’UTR and lacZ::tra-1
3'UTR integrated transgenes (both under the control of a heat shock promoter) were
synchronized at L1 stage and fed with rsr-2 and gfp RNAi clones at 25°C. Once the animals had
reached the adulthood, they were heat shocked for 2 hours at 30°C and allowed to recover for
2 hours at 25°C. After two washes with M9 buffer, worms were dehydrated in a SpeedVac up
to 2 hours. Samples were placed in the fume hood, a drop of cold acetone was added and the
samples air-dried for a few minutes. The step of acetone dehydration was repeated 3 to 5

times, until the worm pellet was completely dry.

Staining was performed by adding 200 ul of staining solution, which contains the substrate for
the B-galactosidase, and incubating the samples O/N at 37°C. The day after stained worms
were mounted onto a microscope slide to score for lacZ expression. Scoring was performed as

described by Gallegos et al., 1998.

MM.10, Recipes

Staining Solution (5 ml)

Na,HPO, 1M 830 ul
NaH,P0O, 1M 165 ul
MgCl, 1M 1ul
SDS 25% 8 ul
Ferricyanide 1M 25 ul
Ferrocyanide 1M 25 ul
Kanamycin 10 mg/ml 37.5 ul
Formamide 99% 15 ul
X-gal 4% 48 ul
H,0 375 ul
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MM.12. Quantitative PCR (qPCR)

This is an application of PCR to determine the quantity of DNA or RNA in a sample. The
measurements are made in real time and the method is therefore called real-time PCR. The
equipment used for this study was the Roche LightCycler 480 Instrument | following the two-
step RT-PCR protocol in which the reverse transcription of RNA into cDNA is separated from

the other reaction steps and is performed outside the lightcycler.

Wild type N2 hermaphrodites were synchronized at L1 stage and total RNA isolation from rsr-
2(RNAIi) and gfp(RNAi) worms was performed 36 hours past L1 arrest. cDNA was synthesized
with oligo(dT) primers as before (see MM.4). LightCycler 480 SYBR Green | Master kit (Roche
Cat. No. 04707516001) was used to determine gene expression of a chosen gene subset.

Sequences of primers used in these assays are listed at the end of this section.

To validate the tiling array data by gPCR, template cDNA was diluted 1:10 and gene expression
data was normalized to transcript levels of tbb-2 and then measured as relative to mRNA levels
in gfp(RNAi) worms control animals (which were set to an arbitrary value of 1.0 for each gene).
Three separate experiments were analyzed, with samples represented in triplicate for each

gene and condition to give a total of nine data sets.

To validate the ChIP experiment by qPCR, the amount of immunoprecipitated chromatin was
normalized to chromatin immunoprecipitated with RNAP Il from an actively transcribed gene
such as act-1 (which were set to an arbitrary value of 1.0 for each region assayed). One

experiment was analyzed, with samples represented in triplicate.

MM.12. Primers

rsr-2 primers
Forward 5’-GAGCCGAAAAAATGGCTGG-3’
Reverse 5’-CCCAGAAAATGTGGTTTTTTAGGC-3’

fog-1 primers
Forward 5-TGTGGGAACTGAACCGGTCCGAA-3’
Reverse 5’-ACTGGCGACACGGAGCCTCT-3’

gld-1 primers
Forward 5’-GCTCATTCCGGCTCCCGAGG-3’
Reverse 5’-ACACGAGCTGGGTTTGGCGA-3’

gld-3 primers
Forward 5’-AGCGCAAGGATTGCCTCTGCC-3’
Reverse 5’-CGTGATCCCCGTTGTCACTGGTC-3’

fem-3 primers
Forward 5’-TGGCAAGGCGGAACGGGAAA-3’
Reverse 5-CGGATCCGGATTGGGTAAAAATTGTCG-3’
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fbf-1 primers

Forward 5’-ACATGCCACACCCGGGCACT-3’
Reverse 5’-CGTCTTCCAGACACAGCATCACAGC-3’
tra-2 primers

Forward 5’-TGGGACGCAAATCGAAGTGGCT-3’
Reverse 5’-GGCGGCGAGGAAACCAGCAA-3’
glp-1 primers

Forward 5’-ACCAGCCGACGAAATCCCTCTCC-3’
Reverse 5’-TGGCAGCAAGCCAGTGCAGA-3’
puf-8 primers

Forward 5’-TGCGTGTCACCATCAGGAAGGATCT-3’
Reverse 5-GGATGAGTTCACGGCGCTGTTCT-3’
fbf-2 primers

Forward 5’-TGGCGCAGCATGAGACACCT-3’
Reverse 5-GGGTTGGTGGCCGCGATGTAA-3’
nos-3 primers

Forward 5’-ACTCACGTGGACATGGTGGAGGA-3’
Reverse 5-TCGGAGGAAGTTTTTGTTGTCGTTGGA-3’
C05G5.7 promoter primers

Forward 5’-GAGTAATGTATCCATGGAGCCG-3’
Reverse 5’-AGCAGATGAGGTTCCCCTG-3’
C05G5.7 CDS primers

Forward 5’-CCAACATGCGTGTCGCCTA-3’
Reverse 5’-TAGGTCCAATCGAGGTAGATGC-3’
F18E3.11 promoter primers

Forward 5’-CTGTTTCCTCGAACCGAAGAACC-3’
Reverse 5’-ATCGACGATTCGAAGTGAGAATAGG-3’
F18E3.11 CDS primers

Forward 5’-ATGTCTCACGTTCTCGCCG-3’
Reverse 5’-CGGGGAGCATCTGATGATGT-3’
F18E3.12 promoter primers

Forward 5’-TTCAGACAATCGCCAGACAC-3’
Reverse 5’-TGGGACTCCGCCTATTTTCTG-3’
ZK666.12 promoter primers

Forward 5’-TACACCCTGTTAACGCCC-3’

Reverse 5-AACGGATTTCGGATTTTTCTG-3’
ZK666.12 CDS primers

Forward 5 -TTCTTTTCTGTTTTACGGCC-3’
Reverse 5’-AACATCGGTAATATGCGGG-3’

act-1 promoter primers

Forward 5’-AGCTCACTCATCTCCACG-3’

Reverse 5-TCTGGTGTTATCTGTTCGC-3’
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MM.13. Protein extraction and analysis

Protein analysis was performed by western blot. Wild type animals were harvested after 36
hours post-L1 arrest at 25°C and washed in M9 buffer. After 30-minute incubation in M9 buffer

with agitation to get rid of the remaining bacteria, worms were packed and frozen.

Worm lysis was performed by adding 2 volumes of 2x lysis buffer directely onto frozen worms.
Protein from worms was extracted by 3 cycles of freezing in liquid nitrogen and boiling for 15
min. Next, a 10-minute centrifugation at 4°C was performed and total protein in the lysate was

guantified using the Bio-Rad DC protein assay (Bio-Rad Cat. No. 500-0112).

Then, protein was loaded in sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) at different
percentages and gels were run in TGS buffer. Proteins were transferred to a nitrocellulose
membrane (Protran, Cat. No. BA85, 0.45 um) for two hours at 200 mA using transfer buffer
(TB). Membranes were blocked with 5 % non-fat milk in TBS-t for one hour. Primary antibody
was added to fresh blocking solution or prepared in 3 % bovine serum albumin (BSA)-TBS-t
(see Table MM.5 for details on Ab and dilutions used) and incubated O/N at 4°C. After three
ten-minute washing steps with TBS-t-milk, secondary antibody peroxidase-combined (HRP)
was incubated (in the same solution) for one hour at RT. Two more ten-minute washes were

performed with TBS-t prior to developing.

Membranes were developed using a substrate for HRP (luminol, which exhibits
chemiluminescence when mixed with an appropriate oxidizing agent). Membranes were
incubated with luminol plus enhancer for one minute and exposed to autoradiographic films

(CL-xposure films, Cultek S.A.).

Antibodies and dilutions used for protein analyses of this study are listed in table MM.5. The
RSR-2 antibody was raised in rabbit against the immunogen sequence of the RSR-2 protein,

which comprises aminoacids 39 to 138, and was affinity purified (Sdix, Strategic Diagnostics

Inc. USA).

~ Antbody  Epitope  Host  Nature  Dilution  Source
Q5092 RSR-2 Rabbit  Polyclonal (Primary) 1:500 Sdix
C4 (69100) Actin Mouse Monoclonal (Primary)  1:500 MP biomedicals
10799 Histone 3 Mouse Monoclonal (Primary)  1:2000 mAbcam
8W16G (MMS-126R) CTD RNAP II Mouse Monoclonal (Primary)  1:500 Covance
N-20 (sc-899) N-ter RNAP Il Rabbit Polyclonal (Primary) 1:1000  Santa Cruz Biotech

P0260 (HRP conjugated)  Anti-Mouse Rabbit  Polyclonal (Secondary) 1:2000 Dako
P0448 (HRP conjugated)  Anti-Rabbit Goat Polyclonal (Secondary) 1:2000 Dako

Table MM.5. Antibodies and dilutions used in western blots of this study.
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MM. 13, Recipes

TGS Transfer buffer
25mM Tris OH pH 8.3 50mM Tris OH
192mM glycine 386 mM glycine
0.1% SDS 0.1% SDS

20% MeOH

Sample buffer for proteins (Laemmli, 1x) Lysis Buffer 2x
60mM Tris-HCI pH 6.8 4% SDS
2% SDS 100mM Tris-HCl pH 6.8
5% B-mercaptoethanol 20% glycerol
0.005% bromophenol blue Proteases and phosphatases inhibitors
5% glycerol (Roche, Cat. No. 1187350001)

Ponceau TBS
0.5% Ponceau (w/v) 25mM Tris-HCl pH 7.5
1% glacial acetic acid 137mM NaCl

Luminol (500 ml) TBS-t
125 mg luminol sodic (Sigma A-4685) TBS
33.25 ml 1.5M Tris-HCI pH 8.8 0.1% tween
466.8 ml H,0

155 ul hydrogen peroxide

Enhancer p-CU (25 ml)
27.5 mg p-cumaric acid (Sigma C-9008)
25 ml DMSO 99.5% (Sigma 41639)
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MM.14. Chromatin Immunoprecipitation - Sequencing

(ChIP-Seq)

ChIP-Sequencing, also known as ChlP-Seq, is used to analyze protein interactions with DNA.
ChIP-Seq combines chromatin immunoprecipitation (ChIP) with massively DNA sequencing to
identify the binding sites of DNA-associated proteins. Moreover, it has also been used to map

spliceosome recruitment on genes (Sapra et al., 2009).

Therefore, we took advantage of this technique to map RSR-2 recruitment across the genome.
ChIP assays were carried out as described previously by Zhong et al., 2010 with minor

modifications:

Worms were collected at L4 stage and 0.5 ml of packed larvae were resuspended in 3 ml of FA
buffer plus protease inhibitors and crosslinked with 2% formaldehyde for 30 minutes at room
temperature. Quenching of formaldehyde was carried out by addition of 1M Tris (pH 7.5).
Next, samples were sonicated on ice using a Branson sonifier microtip (100% amplitude, 10
seconds on, 10 seconds off) avoiding overheating of the samples. After sonication, cell extracts
containing DNA fragments with an expected range between 200 and 800 bp were
immunoprecipitated using anti-RSR-2 (Sdix, Q5092) and anti-POL Il antibodies (Covance,
8WG16). To do so, 2.2 mg of protein were treated as described in Zhong et al., 2010, input
samples were set apart and 10 ug of each antibody were added to each sample. ChIP was

performed O/N at 4°C with rotation.

Then, 25 ul of protein G conjugated to sepharose beads (Amersham Biosciences) were added
to each ChIP sample and washed four times with 1 ml FA buffer. After the washes, beads were
suspended in one bed volume of FA buffer, and 40 ul of the bead slurry was added to each
ChlIP sample and rotated at 4°C for 2 h. Next, beads were washed as follows: 2 washes with FA
buffer for 5 minutes, 1 wash with FA-1M NaCl for 5 minutes, 1 wash with FA-500mM NaCl for

10 minutes, 1 wash with TEL buffer for 10 minutes, 2 washes with TE buffer for 5 minutes.

To elute the immunocomplexes, 150 ul of elution buffer were added to the samples and the
tubes incubated at 65°C for 15 minutes, with brief vortexing every 5 minutes. The beads were
spun down and the supernatant transferred to a new tube. The elution was repeated and
supernatants combined. At this point, input samples were thawed and treated with the ChIP
samples. To each sample, 2 wl 10 mg/ml Rnase A were added and incubated at room
temperature for 1-2 hours. Then, 250 ul of elution buffer with 1 ul of 20 mg/ml proteinase K

were added to each sample and incubated for 1-2 hours at 55°C. Samples were transferred to
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65°C for 12-20 hours to reverse crosslinks. The DNA was purified with the Qiaquick PCR
purification kit (Qiagen), and eluted with 50 ul H,0. The enriched DNA fragments and input
DNA were used to prepare libraries for sequencing by the Illumina GA platform. In order to run
four samples in one flow cell, sequencing libraries were barcoded and multiplexed as

described in Lefrancois et al., 2009.

Calling binding peaks from ChlIP-Seq data was performed usign Seq-Solve software. First, ChIP-
Seq fastq files obtained from the ModEncode consortium were processed in Galaxy mapped
against the Caenorahabditis elegans WS220 genome version to generate SAM Files. SAM files
were converted to BAM files also in Galaxy (Blackenberg et al., 2010). BAM files we analyzed

with the Seqg-Solve software using default settings.

In these default settings, the output from the peak caller was filtered by using a False
Discovery Rate (FDR) larger than 0.1. Thus, peaks having a FDR larger than 0.1 (10%) were
filtered out. Peak calling p-value cutoff was 10°°. Seqg-Solve Peak Calling analysis uses the
MACS algorithm (Zhang et al, 2008) to identify those regions of the genome having higher read
counts in the ChIP samples than in the input sample. At these conditions, 6889, 5451 and 412
peaks were called for anti-POL Il, anti-RSR-2 and input respectively. The numbers of reads after

the ChIP were about 2.3, 2.2 and 7 millions for anti-POL II, anti-RSR-2 and input respectively.

MM.14. Primers

Barcoded adapter primers

MPLEXA1

Forward 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTAT-3’

Reverse 5’phosphate-TACAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG-3’
MPLEXA6

Forward 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATT-3’

Reverse 5’phosphate-ATGAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG-3’
MPLEXA8

Forward 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGT-3’

Reverse 5’phosphate-CGTAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG-3’
MPLEXA9

Forward 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCT-3’

Reverse 5’phosphate-GCAAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG-3’
lllumina PCR primers

PCR1.1 5’-AATGATACGGCGACCACCGACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’
PCR 2.1 5’-CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT-3’
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MM 14, Rec:ipes

FA buffer

50mM HEPES/KOH pH 7.5
1mM EDTA

1% Triton X-100

0.1% sodium deoxycholate
150mM Nacl

TEL buffer

0.25M LiCl

1% NP40

1% sodium deoxycholate

1mM EDTA (10mM Tris HCl pH 8.0)
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MM.15. Transcriptome sequencing (RNA-Seq)

RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-

sequencing technologies.

Wild type worms were fed on rsr-2, prp-8 and gfp dsRNA-expressing bacteria at 25°C. After 26
hours, the three populations were harvested and frozen with Tri Reagent (MRC Inc, Cat. No.
TR-118) in order to proceed with the RNA extraction previously described in section MM.4 of

this thesis.

Processing of the simple after total RNA and sequencing was performed at the CIBIR
sequencing facility (http://www.cibir.es/cibir-investigacion/plataforma-tecnologica/genomica).
Total RNA was purified, including small RNAs, with the mirvana miRNA isolation kit (Ambion).
RNA quality and integrity were evaluated with the Experion Bioanalyzer (Biorad). Ribosmal
RNA was depleted with the RiboMinus Eukaryote Kit (Invitrogen). Efficiency of rRNA depletion

was checked in the Experion Bioanalyzer (Biorad).

Libraries for sequencing were made by using the lllumina TruSeq RNA Sample Preparation Kit.
Resulting libraries were quantified and its quality was verified. These libraries were run
through a Genome Analyzer lix Ultrasequencer (lllumina), multiplexing three times in a single
channel, in a single read run of 100 cycles to generate = 100 nt reads. Each of the samples yield
more than 10 millions reads. The resulting fastq files were trimmed and mapped to the version
WS225 of the C. elegans genome by using TopHat to generate BAM files. TopHat is a fast splice
junction mapped for RNA-Seq reads that first use the aligner Bowtie, and then analyzes the

mapping results to identify splice junctions between exons.

BAM files were analyzed in SeqSolve using default settings (False Discovery Rate, FDR; of 0.05
was used) and using WS220 as Reference Genome. Reads displaying multiple mapping were
filtered out. SegSolve was used for a Differential Transcript Expression Analysis between rsr-2
RNAi and gfp RNAi samples, and between prp-8 RNAi and gfp RNAi samples. Transcripts
covered by more than 5 reads were tested. This analysis uses Cufflinks/Cuffdiff (Trapnell et al,
2010) to quantify and identify transcripts with a significant level of expression between
different conditions. In this analysis expression values were normalized in FPKM (Fragments

Per Kilobase of exon per Million fragments mapped).

To analyze intron retention, a file containing intron sequences (excluding those introns with

internal genes or ncRNAs) was used as reference genome.
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MM.16. Computational tools

Sequence alignments were performed using either Clustal W algorithm (Thompson et al.,
1994) or the application of Basic Local Alignment Search Tool (BLAST) to compare several
known sequences.

* (ClustalWw. http://www.ebi.ac.uk/Tools/msa/clustalw2/

e BLAST. http://www.ebi.ac.uk/Tools/sss/ncbiblast/

Once the alignment was performed, CLC sequence viewer was used to generate the
cladogram.
* CLCsequence viewer software. http://www.clcbio.com/

For primer design, the following on-line appliations were used.

* Oligo Calc. http://www.basic.northwestern.edu/biotools/OligoCalc.html

* OligoAnalyzer http://eu.idtdna.com/analyzer/applications/oligoanalyzer/default.aspx
C. elegans tools and data: general resources.

e  Wormbase http://www.wormbase.org/
* modENCODE http://www.modencode.org/

e  WormMart http://caprica.caltech.edu:9002/biomart/martview/
ChIP-Seq and RNA-Seq analyses.

* Galaxy http://galaxy.tuebingen.mpg.de/root

* Bowtie http://bowtie-bio.sourceforge.net/index.shtml

For Venn diagram generation.

* Venny http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Summary

14-3-3 proteins have been extensively studied in organisms ranging from yeast to mammals and are associated with multiple roles,
including fundamental processes such as the cell cycle, apoptosis and the stress response, to diseases such as cancer. In Caenorhabditis
elegans, there are two 14-3-3 genes, fit-2 and par-5. fit-2 is expressed only in somatic lineages, whereas par-5 expression is detected in
both soma and germline. During early embryonic development, par-5 is necessary to establish cell polarity. Although it is known that
par-5 inactivation results in sterility, the role of this gene in germline development is poorly characterized. In the present study, we used
a par-5 mutation and RNA interference to characterize par-5 functions in the germline. The lack of par-5 in germ cells caused cell cycle
deregulation, the accumulation of endogenous DNA damage and genomic instability. Moreover, par-5 was required for checkpoint-
induced cell cycle arrest in response to DNA-damaging agents. We propose a model in which PAR-5 regulates CDK-1 phosphorylation
to prevent premature mitotic entry. This study opens a new path to investigate the mechanisms of 14-3-3 functions, which are not only
essential for C. elegans development, but have also been shown to be altered in human diseases.

Key words: 14-3-3, par-5, C. elegans, Germline, DNA damage response, Checkpoint, wee-1.3, cdc-25.1, cdk-1

Introduction

14-3-3 proteins are an evolutionarily conserved family implicated
in diverse cellular processes, such as apoptosis or cell cycle
regulation, that are associated with pathologies such as cancer
(Fig. 1A) (Porter et al., 2006; Tzivion et al., 2006). They bind
mainly to serine phosphorylated motifs of other proteins and
regulate their subcellular localizations, stability or activity. In
mammals, there are seven 14-3-3 proteins corresponding to the
isoforms encoded by individual genes (designated B, v, €, 1, G, T
or {). This redundancy has hindered the study of their cellular
functions, and there is still little knowledge about the
consequences of 14-3-3 misfunction at the organism level
(Porter et al., 2006).

14-3-3 proteins are necessary for proper cell cycle arrest
following DNA damage in yeast, flies and mammals (Hermeking
and Benzinger, 2006). This function is mediated by interactions
with several cell cycle regulators, including Chkl (Chen et al.,
1999; Dunaway et al., 2005), Cdc25 (Kumagai and Dunphy,
1999; Lopez-Girona et al., 1999) and Cdks (Laronga et al., 2000).
Checkpoint-related functions for this protein family were first
discovered in fission yeast, where two 14-3-3 proteins, namely
Rad24 and Rad25, regulate the G2-M checkpoint by controlling
Cdc25 and Chkl localization (Ford et al., 1994; Lopez-Girona
et al., 1999; Dunaway et al., 2005). In Drosophila melanogaster,
two 14-3-3 proteins ( and €) function in cell cycle regulation
during development by inhibiting entry into mitosis through the

inactivation of Cdk-1 activity (Su et al., 2001). Such 14-3-3
function in controlling M-phase entry is conserved in mammals,
but the contribution of each isoform separately is still under
exploration.

The Caenorhabditis elegans germline is a powerful model for
the study of the genes involved in cell cycle regulation and DNA
damage response (DDR) (Gartner et al., 2004). In the C. elegans
germline, exposure to DNA-damaging agents [e.g. ionizing
radiation (IR) or ultraviolet C light] and replicative stress [e.g.
hydroxyurea (HU)] triggers the checkpoint response through
conserved pathways (Fig. 1B). This response leads to cell cycle
arrest in the proliferative region and, in some cases (e.g. after IR),
also to an increase in the proportion of apoptotic cells in the
late pachytene region of the germline. The underlying DDR
molecular pathway, conserved from yeast to mammals, acts
through the ATL-1 and ATM-1 kinases (ATR and ATM
homologs) (Garcia-Muse and Boulton, 2005) as well as several
sensor proteins, such as HUS-1 (Hofmann et al., 2002), MRE-11
(Garcia-Muse and Boulton, 2005) and WRN-1 (Lee et al., 2010).
CHK-1 and CHK-2, are the effector kinases (Kalogeropoulos
et al., 2004; Stergiou et al., 2007; Bailly et al., 2010; Lee et al.,
2010), but other proteins, such as RAD-5, act in parallel with this
canonical pathway to promote checkpoint responses (Ahmed
et al., 2001; Collis et al., 2007).

In C. elegans, two 14-3-3 genes, par-5 (also named fit-1) and
fit-2, encode 14-3-3 proteins, and these share 86% of the amino
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Fig. 1. Phylogenetic tree of 14-3-3 family proteins and the DNA damage response in the Caenorhabditis elegans germline. (A) 14-3-3 ortholog sequences
were aligned using ClustalW, and CLC Sequence Viewer was used to generate the tree using the Neighbor Joining algorithm. Names in red correspond to 14-3-3
members, which have been either related to cell cycle control or shown to interact physically with checkpoint and/or cell cycle proteins (Hermeking and
Benzinger, 2006). At, Arabidopsis thaliana; Ce, C. elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; Gg, Gallus gallus; Hs, Homo sapiens; Sc,
Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe; and X1, Xenopus laevis. (B) The upper part of the figure shows germline organization in the adult
worm stage. In the distal germline, cells proliferate to produce new germ cell precursors (green zone). Next, cells abandon the proliferative region to pass into the
transition zone (in orange) before starting the meiotic phase (in blue) to give rise finally to the oocytes in the most proximal region (diakinesis stage). During
development many meiotic cells are eliminated by physiological apoptosis. After the induction of DNA damage by different agents, a checkpoint response is
activated in the germline. DNA damage induces a molecular response pathway that includes several conserved transducer and effector proteins, as shown in the
middle of the figure. The activation of this pathway is reflected in two germline phenotypes: cell cycle arrest in the proliferative region and, in some cases, an
increase in apoptotic cells in the pachytene region (bottom of the figure).

acid sequence. Despite this high identity, the expression pattern is
distinct because only PAR-5 is expressed in the germline (Wang

in the embryo and so studies of the asymmetric cell division
mechanism have focused on other members of the PAR family

and Shakes, 1997). Caenorhabditis elegans 14-3-3 proteins have
been linked to lifespan extension and the stress response (upon
oxidative and heat stimuli) by interacting with SIR2.1
deacetylase and the forkhead transcription factor, DAF-16
(Berdichevsky et al., 2006). However, this role has not been
ascribed to par-5 (Li et al., 2007).

par-5 belongs to the partitioning defective PAR family, which
regulates the asymmetry in the first embryonic cell division.
During this process, par-5 is required for the proper distribution
of asymmetrically localized PAR proteins (Morton et al., 2002).
Uniquely for a PAR protein, PAR-5 is homogeneously distributed

(Suzuki and Ohno, 2006). Intriguingly, PAR-5 is also present in
the adult germline (Morton et al., 2002), but its function in germ
cells remains unknown. Despite the conservation of 14-3-3
checkpoint-related functions from yeast to mammals, this study is
the first to provide evidence of a role in DDR for a 14-3-3 protein
in the key model organism C. elegans.

Results

par-5 is required for proper germline development

par-5 mutations or par-5 RNA interference (RNAi)-mediated
knockdown [par-5(RNAi)] produces low brood size, embryonic
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lethality and sterility (Morton et al., 2002). However, although
the role of par-5 in embryonic development has been established,
its function in the adult germline is poorly understood. To
investigate the role of par-5 in the adult germline, we studied
phenotypes in the par-5 mutants iz55 (allele with a single amino
acid substitution that reduces the protein expression level)
(Morton et al., 2002) and par-5(RNAi) worms. In the 1-day
adult stage, the number of germ cells and gonad size were
reduced in the mutant strain, and such a reduction was found not
to be temperature dependent (supplementary material Fig. S1).
This germline proliferation defect was even more pronounced in
par-5 RNAi-fed worms (Fig. 2A). In contrast to wild type (WT)
and par-5 mutants, par-5(RNAi) germlines showed some small
fragmented nuclei, indicating mitotic catastrophe and genome
instability in the proliferative region. By performing a time-
course analysis of the germline development, we found that the
proliferative defect in par-5-defective worms started at the L4
stage when hypercondensed and fragmented nuclei become
apparent. After this stage, the number of germ cells decreased in
par-5(RNAi) germlines in contrast to the continuous proliferation
observed in the WT and par-5(it55) (Fig. 2B). Despite the
important reduction in germ cells in par-5(it55) worms, nuclei
fragmentation was not as abundant in par-5 mutants as it was in

A
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L3 L4fYA 1 day
400+

germ cells / gonad

0 24 48 T2

par-5(RNAi) animals (Fig. 2A). The difference between par-
5(it55) and par-5(RNAi) phenotypes implies that the iz55 allele is
hypomorphic rather than null (Morton et al., 2002). Indeed, par-
5(it55) fed with par-5 RNAI presented a par-5(RNAi) phenotype
(Fig. 2A).

The germline proliferation defect observed after par-5
knockdown could be explained by the influence of the somatic
gonad on germline proliferation (Killian and Hubbard, 2005).
However, par-5 RNAI treatment in the rrf-1(pk1417) background
(a strain with defective RNAi in somatic cells) showed the same
germline phenotype as that of WT animals (supplementary
material Fig. S2). Therefore, the par-5 knockdown effect on the
germline is independent of the somatic functions of par-5.
Additionally, most of the par-5(RNAi) gonads showed either a
reduction in the number, or an absence, of oocytes. This
observation suggests that par-5 is implicated not only in
germline proliferation, but also in meiotic progression, which is
in agreement with the meiotic arrest phenotype previously
described (Morton et al., 2002).

par-5 shares ~80% homology with fit-2, which is the other
14-3-3 C. elegans gene (Wang and Shakes, 1997). To test whether
the observed RNAI phenotype was par-5 specific, we quantified
par-5 and fit-2 transcript levels using quantitative RT-PCR after

par-5(ita5)
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Fig. 2. par-5 inactivation affects germline proliferation. (A) Representative images of DAPI-stained germlines from WT or par-5(it55) mutant worms (1-day-
old adults) fed with par-5 RNAI or the RNAi empty vector. The proliferative regions of germlines are shown enlarged in rectangles. Arrows indicate
hypercondensed and fragmented nuclei. (B) Graph showing the number of germ cells per gonad at different developmental stages for WT, par-5(it55) and par-5
RNAi-fed worms. L1 larvae grown at 20°C were fixed and stained with DAPI at the indicated times. Error bars indicate standard deviations from the mean.
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par-5 RNAIi treatment. This experiment showed that par-5
RNAi depleted par-5 mRNA, whereas fit-2 transcript levels
were unaffected (supplementary material Fig. S3). All these
observations indicate that par-5 is required for the proliferation,
genomic stability and meiotic progression of the germline.

Inactivation of par-5 promotes endogenous DNA

damage accumulation

Because we found a reduced number of germ cells and DNA
fragmentation after par-5 inactivation by RNAi (Fig. 2A), we
further investigated the role of par-5 in the maintenance of DNA

atl-1{tm853)

stability. We examined the abundance of RAD-51 foci, which
acts as a marker of processed double-strand breaks (DSBs) and
stalled replication forks (Alpi et al., 2003; Ward et al., 2007).
Interestingly, we observed a tenfold increase in the number of
RAD-51 foci at the proliferative region of par-5(RNAi) worms
(Fig. 3A,B; supplementary material Fig. S10). This increase is
similar to that obtained with the checkpoint defective strain atl-
1(tm853) (Garcia-Muse and Boulton, 2005).

To corroborate the role of par-5 in preserving genomic
stability, we used a transgenic strain expressing the fusion protein
HUS-1::GFP, which is a DNA damage sensor protein that forms
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o
=1

ye
50

150

=
=

RAD-&1 doci ini the profferative reglon

— -

wT afa T parS ot T8
fmisT) eSS ANAL

at-1{tmB53)

D WT

par-5{it55)

par-5 RNAI

par-5 RNAI

-ﬂl"'l:|

Fig. 3. Lack of par-5 results in DNA damage accumulation and CHK-1 activation. (A) par-5 suppression promotes RAD-51 accumulation. Representative
images of the germline proliferative regions from worms of the indicated genotypes and/or RNAi, immunostained with a RAD-51 antibody and counterstained
with DAPI. Distal proliferative regions enlarged in squares show the RAD-51 foci nuclear localization. (B) The graph shows RAD-51 foci quantification in all the
stacks within 30 pm of the distal end of the gonad. Error bars indicate the standard deviation of the mean from at least 15 germlines for each experiment.
(C) HUS-1::GFP foci increase after par-5 knockdown. Representative images of the meiotic germ cells from a transgenic strain expressing a HUS-1::GFP fusion
protein with or without par-5 RNAI treatment. (D) CHK-1 phosphorylation is detected in pre-meiotic germ cells after par-5 RNAi knockdown. Representative
images of the pre-meiotic germ cells (cells between the proliferating and the transition region) from the worms of the indicated genotypes/RNAi, immunostained
with a phosphorylated CHK-1 (Ser345) antibody and counterstained with DAPI. The percentage of germlines positively stained (at least 45 stained germ cells per
gonad) with phosphorylated CHK-1 was: 5% for WT, 50% for atl-1(tm853), 10% for par-5(it55) and 75% for par-5 RNAI.
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defined foci at DSBs (Hofmann et al., 2002). The meiotic region
of WT animals showed a few HUS-1::GFP foci as a result of
transient DSBs that occurred during meiotic recombination.
However, par-5 RNAi showed a marked increase in the number
of HUS-1::GFP foci, indicating a higher accumulation of DSBs
(Fig. 3C). These results link par-5 with the DDR pathway.

In addition to the increase in DNA damage markers (RAD-51
and HUS-1 foci), par-5(RNAi) worms showed constitutive
phosphorylation of the checkpoint kinase CHK-1 (at Serine
345) in germ cells localized at the proximal side of the
proliferative region (Fig. 3D; supplementary material Fig. S11).
This modification has been associated with recombination
defects that trigger meiotic checkpoint activation (Jaramillo-
Lambert et al., 2007). Notably, the same pattern was also
observed in the atl-1(tm853) strain, whereas this phenotype was
rarely present in WT worms and par-5(it55) mutants. Therefore,
the RNAi depletion of par-5 seems to cause pre-meiotic
checkpoint activation similar to the effect of inactivating genes
that control DNA stability, such as at/-1. Taken together, these
results suggest that par-5 is necessary for proper DNA
maintenance because its inhibition promotes DNA damage
accumulation both in proliferating and meiotic germ cells.

par-5 function is necessary for S and G2—M checkpoint
responses

The accumulation of RAD-51 foci and the nuclei fragmentation
observed in the proliferative region of par-5 RNAi germlines
(Fig. 2A, Fig. 3A) resemble the effect of mutations on the
genes of the checkpoint pathway, such as atl/-1 and chk-1
(Kalogeropoulos et al., 2004; Garcia-Muse and Boulton, 2005).
Thus, we tested whether par-5 is actively implicated in the DDR
under replication stress induced by HU. HU inhibits the activity
of the ribonucleotide reductase enzyme, causing the depletion
of deoxyribonucleotide triphosphate (dNTP) levels and so
hampering DNA replication (Kim et al.,, 1967). After HU
treatment, cells in the proliferative region of the germline
arrested in the S-phase as a result of checkpoint activation. This
cell cycle arrest was evidenced by fewer nuclei with larger sizes
(Gartner et al., 2004). Interestingly, after HU treatment, these
checkpoint response marks were absent in par-5(RNAi) worms
and par-5(it55) mutants (Fig. 4A). Such incapacity to arrest the
cell cycle after HU treatment was also observed in mutants for
the checkpoint gene atl-1.

The C. elegans embryo is another scenario in which the
checkpoint response induced by replication stress has been
widely studied. In particular, the presence of HU causes a delay
in the mitotic entry at the first embryonic division (Brauchle et al.,
2003). Through video recordings of the first embryonic division,
we observed that par-5(RNAi) and par-5(it55) embryos rescued
the HU-induced cell cycle delay (supplementary material Fig.
S4). Therefore, par-5 is also required for the embryonic DNA
replication checkpoint, as are other checkpoint genes previously
described (Brauchle et al., 2003; Moser et al., 2009).

To clarify whether the checkpoint role of par-5 is exclusive for
the S-phase, we investigated its role in the IR-induced G2-M
checkpoint. par-5(RNAi) and par-5 mutant germ cells bypassed
the cell cycle arrest induced by IR and showed some fragmented
and hypercondensed nuclei (Fig. 4B). These experiments indicate
that par-5 is an essential gene for cell cycle arrest in response to
diverse exogenous insults, participating in both the S and the G2—
M checkpoints.

par-5 prevents premature entry into mitosis
While testing the germline response to HU after par-5 inhibition,
we observed many germ nuclei that presented hypercondensed
chromatin and smaller sizes (Fig. 4A). This effect, observed
both in par-5(RNAi) and in par-5(it55) animals, was likely
to be because of cells entering prematurely into mitosis before
the DNA was properly replicated, thereby causing DNA
fragmentation. To study this phenotype, we used an antibody
against phosphorylated histone 3 (H3) as a mitotic marker
(Fig. 4C). Although the number of mitotic germ cells was
reduced in WT animals as a result of the S-phase checkpoint
activation, the inactivation of par-5 (either by RNAi or mutation)
caused an increase in the number of mitotic cells after HU
treatment. Therefore, this result indicates that HU-treated germ
cells, in which par-5 function is impaired, are able to enter
mitosis, thereby bypassing the S-phase checkpoint. Consistently,
a similar phenotype was also observed in the atl-1(tm853) strain.
Although par-5 activity in controlling premature mitotic entry
becomes obvious after HU treatment, we also observed a slight
increase in the number of phosphorylated H3-positive cells in
par-5(RNAi) and par-5(it55) unchallenged worms (Fig. 4C).
Using a time-course experiment, we detected an increase in the
number of mitotic figures and DNA fragmentation at the L4
stage, which is the developmental stage chosen to expose worms
to HU in our checkpoint assays (supplementary material Fig. S5).
All these results suggest that par-5 is required to prevent
premature entry into mitosis, both upon replicative stress and
during normal germ cell proliferation. Such a function is the
hallmark of checkpoint genes.

PAR-5 accumulates in germ cell nuclei after checkpoint
activation

14-3-3 proteins are known to regulate the subcellular localization
of their substrates in response to DNA damage (Lopez-Girona
et al.,, 1999; Dunaway et al., 2005). To further explore the
mechanism by which par-5 acts in the checkpoint response, we
examined PAR-5 expression and subcellular localization by
confocal microscopy in normal and HU-treated germlines.
Previous studies demonstrated that PAR-5 is expressed in the
germline syncytium (Morton et al., 2002). In agreement with this,
we found PAR-5 localized around the nuclei of germ cells.
Interestingly, after HU treatment, we observed a large amount of
PAR-5 protein inside the large S-phase-arrested nuclei (Fig. 5A).
This nuclear localization could be important for its role in the
DDR, because no changes in protein expression levels were
observed after treatment with HU (Fig. 5B).

par-5 is required for CDK-1 phosphorylation after DNA
damage

It has been demonstrated that par-5 homologs in yeast, flies and
mammals (14-3-3 proteins) regulate G2-M transition through
interactions with the cell cycle regulator proteins Weel, Cdc25
and Cdkl1 (Cdc2) (Peng et al., 1997; Chan et al., 1999; Kumagai
and Dunphy, 1999; Zeng and Piwnica-Worms, 1999; Laronga
et al.,, 2000; Lee et al., 2001). As a canonical cell cycle
progression mechanism, Cdc25 dephosphorylates Cdk1 to allow
entry into mitosis. However, after DNA damage, Cdkl and
Cdc25 are inactivated by phosphorylation (by the Weel and
Chkl1 kinases, respectively) in a checkpoint-dependent manner,
leading to cell cycle arrest. In C. elegans, CDK-1 is also
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Fig. 4. Cell cycle arrest induced by DNA damage depends on par-5 function. (A) par-5 is required for HU-induced cell cycle arrest. Representative images of
germline proliferative regions from the worms of the indicated genotypes and/or RNAI, treated with (+HU) or without (-HU) HU and stained with DAPI. The
graph shows germ nuclei quantification. Error bars indicate standard deviations from the mean. (B) par-5 is also necessary for IR-induced responses.
Representative images of germline proliferative regions from the worms of the indicated genotypes and/or RNA, irradiated (+IR) or not (-IR) with y-rays. The
graph shows germ nuclei quantification and error bars indicate standard deviations from the mean. (C) par-5 inactivation leads to premature mitotic entry. Worms
were treated with HU as for A, and then the germlines were immunostained with a phosphorylated H3 antibody and counterstained with DAPI. The graph shows
the quantification of phosphorylated H3-positive cells in all the stacks within 50 pum of the distal end of the gonad. Error bars indicate the standard deviation of the
mean from at least 30 germlines for each experiment.
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Fig. 5. PAR-5 location and expression after replication stress induced by
HU. (A) Representative confocal images showing a single Z stack of
germlines from WT worms treated with (+HU) or without (-HU) HU,
immunostained with a PAR-5 antibody and counterstained with DAPI.

(B) Protein extracts from WT worms fed with the par-5 RNAI or the RNAi
empty vector (control) and treated with (+) or without (-) HU were blotted
using a PAR-5 antibody. The blotting was performed using extracts from two
biological replicates.

phosphorylated in the Tyrl5 inhibitory residue upon DNA
damage (Moser et al., 2009; Bailly et al., 2010).

Given that we observed premature entry into mitosis in par-
5(RNAi) and in par-5(it55) worms after DNA damage, we
investigated whether par-5 inactivation affected CDK-1
phosphorylation. Similar to HU, treatment with camptothecin
(CPT) produced CDK-1 phosphorylation and the consequent cell
cycle arrest in the proliferative region of the WT germline
(Fig. 6A). However, after par-5 RNAi knockdown,
phosphorylated CDK-1 staining was strongly reduced in the
proliferative region. The same effect was observed in atl-
1(tm853) strains, suggesting that lack of phosphorylated CDK-1
is a consequence of deficient checkpoint activation. par-5
mutants revealed some germ cells with phosphorylated CDK-1
staining after CPT treatment, reflecting the milder par-5
inactivation compared with the par-5(RNAi) animals (Fig. 6A;
supplementary material Fig. S12).

To further investigate the link between PAR-5 and CDK-1
phosphorylation, we examined the functional relation between
par-5 and cdc-25.1. In yeast and mammals, Cdc25 phosphatase

removes the Cdkl inhibitory phosphorylation (Tyrl5) to
promote mitosis entry. Accordingly, we observed that cdc-25.1
suppression enhances CDK-1 phosphorylation upon DNA
damage in C. elegans (Fig. 6A). Moreover, cdc-25.1 RNAIi
produces cell cycle arrest in the proliferative region of the
germline that mimics the checkpoint response (Fig. 6B). This
cdc-25.1 RNAI phenotype effect was rescued in a par-5(it55)
background, pointing towards an opposite function for par-5 and
cdc-25.1 in cell cycle control. A similar antagonism to regulate
the cell cycle has been described in fission yeast for Weel and
Cdc25 (Raleigh and O’Connell, 2000). In that model, Cdkl
phosphorylation relies on the balance between the activities of
the kinase Weel and the phosphatase Cdc25. Consequently, we
assessed whether par-5 could be acting in the same pathway as
wee-1 to counteract cdc-25.1 function. In C. elegans, there are
two wee-1 genes, wee-1.1 and wee-1.3. wee-1.3 regulates cdk-1
function in the germline (Burrows et al., 2006) and we observed
that wee-1.3 partially suppressed the cdc-25.1 arrest phenotype
(supplementary material Fig. S6). We then tested whether wee-
1.3, similar to par-5, was necessary for HU-induced cell cycle
arrest. As with par-5 RNAI, wee-1.3 knockdown inhibited the
checkpoint induced by replication stress, leading to aberrant
mitosis and nuclei fragmentation (Fig. 6C).

These results suggest that PAR-5 controls entry into mitosis
in the same manner as does WEE-1.3 to promote CDK-1
phosphorylation and counteract CDC-25.1 function. Such a
model would place PAR-5 downstream of the checkpoint
pathway as part of the effector proteins required for DNA
damage-induced cell cycle arrest (Fig. 7).

Discussion

The ability of 14-3-3 proteins to interact physically with many
proteins offers PAR-5 the potential to be involved in several
developmental processes. In this study, we dissected two separate
functions for par-5 in the germline, one in germ cell proliferation
and another responding to DNA damage. Although both
functions might be related and influenced by the role of par-5
in preventing premature mitotic entry, the pathways regulating
these two processes as the level of PAR-5 might be different.

par-5 and germline development

The decrease in the number of germ cells in par-5-defective
animals could be explained, at least partially, by abnormal and
uncontrolled entry into the M-phase, which leads to mitotic defects
(Fig. 4C). After par-5 knockdown, we detected some nuclei that
showed hyperfragmented chromatin. These cells probably suffered
mitotic catastrophe and so were unable to continue dividing,
contributing to the strong decrease in germ cell precursors after
par-5 RNAi administration (Fig. 2A,B). This phenotype was
rarely observed in par-(it55) animals, in which, although the
proliferation rate was affected, reduced PAR-5 levels are sufficient
to maintain the dividing of germ cells without mitotic catastrophe.
The nuclei fragmentation observed in par-5(RNAi) germ cells
was accompanied by an accumulation of RAD-51 foci in the
proliferative region of the germline. Both phenotypes have
previously been related to defects in the maintenance of
replication stability and the consequent aberrant mitosis, which
has also been observed after the suppression of key checkpoint
genes, such as atl-1, wrn-1 and chk-1 (Kalogeropoulos et al., 2004;
Garcia-Muse and Boulton, 2005; Lee et al., 2010). In addition,
budding yeast 14-3-3 proteins negatively regulate Exol nuclease
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Fig. 6. par-5 regulates CDK-1 phosphorylation. (A) par-5 is required for CDK-1 phosphorylation after DNA damage. Representative images of germline
proliferative regions from the worms of the indicated genotypes and/or RNAI, treated with CPT or vehicle control (DMSO) immunostained with a phosphorylated
CDK-1 (Tyrl5) antibody and counterstained with DAPI. (B) par-5 counteracts cdc-25.1 function. Representative images of the proliferative region of germlines
from WT or par-5(it55) worms (1-day-old adults) fed with the RNAi empty vector or cdc-25.1 RNAI (from the L3 stage) stained with DAPI. The graph shows
germ nuclei quantification. Error bars indicate standard deviations from the mean. (C) wee-1.3 suppression mimics par-5 RNAi phenotype upon HU treatment.
Representative images of germline proliferative regions from WT worms fed with wee-1.3 or par-5 RNAI, treated with (+HU) or without (-HU) HU and stained
with DAPI. The nuclear fragmentation shown was observed in 90% of the wee-1.3 and par-5 RNAi-treated germlines.

activity, which is involved in the pathological process of stalled
replication forks that produces the accumulation of single-strand
DNA gaps (Engels et al.,, 2011). Nevertheless, it is unknown
whether this interaction occurs in C. elegans.

The lack of oocytes observed in par-5(RNAi) worms also
highlighted that par-5 has a role in meiotic progression.
Interestingly, after par-5 knockdown, we observed an increase
in HUS-1::GFP foci, reflecting the accumulation of unrepaired
DSBs in the meiotic region. This observation, together with the
accumulation of RAD-51 foci in proliferating cells, suggests
that par-5 is required to repair endogenous DNA damage.
However, we cannot rule out the possibility that par-5
depletion causes additional DNA damage (directly or
indirectly) through a different mechanism. The increase in
DNA damage in the germlines of par-5(RNAi) worms was also

accompanied by constitutive phosphorylation of CHK-1
(Ser345) in pre-meiotic germ cells. Given that we observed
the same phenotype in atl-1(tm853) mutants, CHK-1
phosphorylation is probably mediated by ATM-1 instead of by
ATL-1. In agreement with this hypothesis, it has been suggested
that atm-1 controls meiotic checkpoint activation (Bhalla, 2010;
Jaramillo-Lambert et al., 2010). Both the accumulation of DSBs
(HUS-1::GFP foci) and constitutive meiotic CHK-1 activation
could contribute to the absence of oocytes after par-5 RNAI,
because the damaged meiotic cells might not progress to reach
proper oocyte differentiation.

We conclude that the altered mitosis and meiosis observed
in the germlines of par-5-defective worms are related to an
accumulation of DNA damage in germ cells, which is compatible
with the role of par-5 in the DDR pathway.
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Fig. 7. Model of par-5 function within DNA damage-induced cell cycle
arrest. After the detection of endogenous or exogenous DNA damage,
checkpoint sensor proteins (e.g. HUS-1 and MRT-2) activate ATL-1 and
ATM-1, which in turn phosphorylate the CHK-1 and CHK-2 kinases. The
contribution of ATL-1-ATM-1 and CHK-1-CHK-2 to the response depends
mainly on the DNA damage that triggers the response. However, ATL-1 and
CHK-1 are considered to be the main actors in the pathway. Downstream of
CHK-1, the cell cycle can be arrested by promoting CDK-1 inactivation by
phosphorylation. According to our results, CDK-1 phosphorylation status
relies on the balance between the activities of the WEE-1.3 kinase and those
of the CDC-25.1 phosphatase. Therefore, checkpoint signaling would favor
WEE-1.3 activation and CDC-25.1 inhibition (which is likely to be by CHK-
1-mediated phosphorylation). In this context, we propose that PAR-5 is
necessary to promote and/or maintain CDK-1 phosphorylation (inactive form)
and so to induce cell cycle arrest properly upon DNA damage.

Function of par-5 within the checkpoint pathway
We demonstrated that, in C. elegans, the 14-3-3 gene par-5 is
required to promote proper cell cycle arrest after DNA damage.

Interestingly, although only par-5(RNAi) worms showed
endogenous DNA damage accumulation and nuclei
fragmentation, both par-5(it55) and par-5(RNAi) worms

presented similar checkpoint defects in response to exogenous
DNA damage. Therefore, taking into account the fact that the
mutant strain retains some protein expression (Morton et al.,
2002), it is clear that a mild decrease in PAR-5 level is enough
to affect the extrinsic DNA damage-induced checkpoint
response, whereas a stronger depletion of the protein [as
shown in our RNAi experiments (Fig. 5B)] affects germ cell
cycle progression and DNA stability.

PAR-5 belongs to the PAR family, which controls the
asymmetric first cell division in the embryo. This process
includes the tight regulation of the cycling time in the posterior
and anterior cells (Suzuki and Ohno, 2006). However, worms fed

with RNAI against par-2 and par-3 (members of the anterior and
posterior complexes that drive asymmetry in the embryo) showed
normal cell cycle arrest after HU treatment (supplementary
material Fig. S7). Moreover, when we studied the cell cycle of
the first embryonic division, we found that par-5-defective
embryos presented a shorter S-phase and a longer M-phase
(supplementary material Fig. S4). By analyzing videos from the
Phenobank (http://www.worm.mpi-cbg.de/phenobank/cgi-bin/
MenuPage.py), such cell cycle alterations seem to be unique
among PAR family members (supplementary material Fig. S9).
These experiments indicate that participation in DDR is a rare
feature of the PAR family, but one that is specific for PAR-5.

PAR-5 has also been shown to act as a target of MPK-1 (the
ERK pathway) to govern pachytene cellular organization in the
germline (Arur et al., 2009). As in the case of the PAR proteins
examined, the inhibition of MPK-1 did not affect cell cycle
arrest, even though the worms were sterile (supplementary
material Fig. S7). Therefore, the role of par-5 in DDR is
unrelated to its described function in the mpk-1 pathway,
underscoring the multifunctional role of this gene.

Several 14-3-3 protein partners that could help explain the role
of par-5 in cell cycle arrest that is induced by DNA damage have
been reported in several organisms. These interactions, together
with the functional evidence provided in this study, are compiled
and depicted in Fig. 7. In yeast, 14-3-3 proteins interact with
Chkl to regulate cell cycle arrest upon DNA damage (Dunaway
et al,, 2005). Chkl phosphorylates Weel, which in turn
phosphorylates Cdkl (Tyrl5) to stop the cell cycle (O’Connell
et al., 1997), and 14-3-3 proteins are required for proper Chkl
nuclear localization and function (Chen et al., 1999; Dunaway
et al., 2005). Therefore, the hypothesis that PAR-5 is necessary
for CHK-1 function could explain the defect in CDK-1
phosphorylation and cell cycle arrest after par-5 knockdown.
However, it seems that PAR-5 is not strictly necessary for CHK-1
activation because we observed the CHK-1 active form
(phosphorylated at Ser345) and its proper nuclear localization
in  par-5(RNAi) worms (Fig. 3D). Nevertheless, as this
observation was carried out in pre-meiotic cells, we cannot rule
out a functional interaction between PAR-5 and CHK-1 in
proliferating germ cells. Downstream of Chkl, 14-3-3 proteins
have been shown to interact with the Cdc25 phosphatase,
preventing its interaction with Cdkl (Peng et al., 1997; Lopez-
Girona et al., 1999; Zeng and Piwnica-Worms, 1999). Cdc25
eliminates the Cdkl (Tyrl5) inhibitory phosphorylation
(executed by Weel), thereby allowing Cdkl to promote
progression into mitosis. Therefore, Cdkl phosphorylation and
activity depend on the kinase and phosphatase activities of Weel
and Cdc25, respectively (O’Connell et al., 2000). Accordingly,
our results are compatible with the idea of par-5 collaborating
with wee-1.3 and counteracting cdc-25.1 to promote proper cell
cycle arrest upon DNA damage. However, wee-1.3 depletion, in
contrast to par-5, does not seem to affect germline proliferation
in the absence of HU (supplementary material Fig. S8).
Therefore, par-5 functions in the germline are not always
coupled with wee-1.3.

Finally, 14-3-3 proteins have been shown to regulate Cdkl
localization and function directly (Chan et al.,, 1999; Laronga
et al., 2000; Su et al., 2001). In mammals, phosphorylated Cdk1
is sequestered in the cytoplasm upon DNA damage in a 14-3-3-
dependent manner to prevent mitotic catastrophe (Chan et al.,
1999). However, in C. elegans (similar to yeast), phosphorylated
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CDK-1 is located inside the nucleus (Boxem et al., 1999).
Therefore, if PAR-5 regulates CDK-1 function, the mechanism
should be different from that of cytoplasmic sequestration.
Moreover, we showed that PAR-5 is localized in the nucleus
upon replication stress, suggesting that the relevant interactions
for DDR occur inside the nucleus. Further experiments are
needed to identify PAR-5 interactions and their impacts on
checkpoint responses and germline proliferation.

C. elegans as a model to study 14-3-3 regulation and
function

Although mammalian 14-3-3 homologs have diverged into seven
genes, we verified that the basic functions of 14-3-3 in cell cycle
control have been conserved in C. elegans. Indeed, the mitotic
catastrophe observed in par-5(RNAi) worms has already been
noted in human cells lacking 14-3-3c after the induction of DNA
damage (Chan et al., 1999). However, C. elegans, in contrast to
mammals, has only one 14-3-3 protein (PAR-5) expressed in the
germline, which could explain why par-35 is essential to maintain
the proliferation and genomic stability of the germline. By
contrast, the single knockdown of mammalian 14-3-3 has less
influence on the cells in the absence of exogenous DNA damage,
probably because of functional redundancy (Hermeking and
Benzinger, 2006).

DNA fragmentation in the germ cells of par-5-knockdown
worms treated with different DNA-damaging agents (i.e. CPT,
HU or IR) implies the increased sensitivity of proliferating cells
to these agents. This observation is in agreement with multiple
reports showing that 14-3-3 overexpression is related to
chemotherapy resistance in cancer cell lines, and also that
14-3-3 downregulation sensitizes cells to therapy-induced cell
death (Porter et al., 2006; Tzivion et al., 2006; Neal and Yu,
2010). Indeed, 14-3-3 proteins have been suggested as possible
therapeutic targets in cancer treatment.

Although many studies on 14-3-3 proteins have been
published, few have shown the 14-3-3 up- and/or down-
regulatory effects in animal models, and most have focused on
one isoform (14-3-3c) (Porter et al., 2006). Hence, the present
study paves the way for the use of C. elegans as a model to study
14-3-3 functions and expression regulation, and as a high-
throughput platform to test new drugs targeting 14-3-3 proteins
and to perform genome-wide RNAIi screening to identify new
14-3-3 interactors and suppressors.

Materials and Methods

Worm strains and culture conditions

Caenorhabditis elegans strains were cultured and maintained using standard
procedures (Stiernagle, 2006). Bristol N2 was used as a WT strain. The following
alleles were used during the study: atl-1(tm853) (strain DW101); hus-1(op241)
opls34 [HUS-1:GFP] (strain WS1433); par-5(it55) (strain KK299); rrf-1(pk1417)
(strain NL2098); and rrf-3(pk1426) (strain NL2099). The experiment using the
hus-1(op241) and opls34 [HUS-1:GFP] was performed at 25°C to maximize the
transgene expression. The remaining experiments were carried out at 20°C.

RNAi

To induce RNAi by feeding, nematode growth medium (NGM) plates were
supplemented with 100 pg/mL ampicillin, 12.5 pug/mL tetracycline and 3 mM
IPTG. The RNAI clones used for the experiments were obtained from either
the ORFeome library (Rual et al., 2004) (par-5, mpk-1, cdc-25.1 and wee-1.3) or
the Ahringer library (Kamath et al., 2003) (par-2 and par-3). Plates seeded with the
corresponding RNAi clones were used to feed WT synchronized L1 worms (unless
another stage is stated). All RNAi clones were verified by sequencing. The WT
strain fed with a clone carrying the L4440 empty vector was used as an RNAi
negative control.

Germline dissection and quantification

To quantify the cells in the proliferative region, gonads were dissected, fixed
(formaldehyde 3%, methanol 75%, K,HPO, 6.2 mM) and stained with DAPI
(0.6 ug/mL) after the corresponding treatments. The stained gonads were
photographed using a Leica DM5000B microscope. Digital pictures were used
for germ cell quantification in a single Z stack within 50 pm of the distal end of
the gonad. For the germline time-course experiment, germ nuclei from the distal
part to the bend of the gonad were scored in a single Z stack. At least 15 germlines
were quantified for each experiment.

DDR assays

To perform all the cell cycle arrest assays, L4 stage worms (42—46 hours post-L1)
of the corresponding genotypes or RNAi were treated with different DNA-
damaging agents. For the HU assay, worms were transferred onto NGM plates
containing HU (25 mM; SIGMA, cat # H8627) for 20-24 hours before dissection.
For the CPT assay, worms were transferred onto NGM plates containing CPT
(40 uM; Sigma-Aldrich, cat # C9911) or DMSO 0.1% for 20-24 hours. The
dissected gonads were used for immunostaining with a phosphorylated CDK-
1(Tyrl5) antibody. For the IR assay, worms were irradiated with y-rays (120 Gy)
using a Cesium137 source (model IBL-437-C H). Dissection was performed
12 hours post-irradiation.

Embryo cell cycle timing

Embryos for video recordings were obtained from worms treated as follows: L4 stage
worms, grown at 20°C, were transferred onto plates containing the indicated RNAi or
the RNAi empty vector L4440. After 24 hours, half of the adult worms were
transferred onto plates containing HU (75 mM). The other half was used as a control.
HU-treated embryos were recorded from 5.5 hours to 10 hours after HU treatment.
Video recordings were performed using Nomarski optics at 21°C with continuous
video acquisition at one frame per second. The cell cycle timing of the first embryonic
division was determined as described by Antonia Holway (Holway et al., 2006).

Immunostaining

For immunostaining, adult worms were immobilized in Levamisole 0.3 mM (in
PBS). Their gonads were then dissected and fixed in a manner appropriate for the
primary antibody. For antibody staining against RAD-51 (a gift from Anton
Gartner), gonads were fixed for 10 minutes in PFA 2% (diluted in PBS). For
antibody staining against phosphorylated H3 (Ser10) (Millipore, cat. # 04-817) and
phosphorylated CDK-1 (Tyrl5) (Calbiochem, cat. # 219440), gonads were fixed in
FA 3% (diluted in K,HPO,4 6.2 mM) for 10 minutes. For antibody staining against
PAR-5 (a gift from Andy Golden), gonads were fixed for 30 minutes in 2% PFA
followed by a post-fixation incubation in cold methanol (5 minutes). Primary
antibody dilutions were as follows: RAD-51 (1:200); phosphorylated H3 (1:1000);
PAR-5 (1:800); and phosphorylated CDK-1(Tyr15) (1:50). Primary incubations
were performed overnight in 0.1% PBS Tween and 1% BSA. After fixation and
antibody incubations, gonads were washed three times with PBS Tween 0.1%. A
secondary antibody, Alexa-Fluor-568-conjugated goat anti-rabbit antibody
(Molecular Probes, Invitrogen) was used to label the gonads. All samples were
counterstained with DAPI (0.6 pug/mL) to visualize the nuclei. Staining conditions
for phosphorylated CHK-1 (Ser345) (Cell Signaling Technology, cat. # 2348) were
as previously described by Se-jin Lee and collaborators (Lee et al., 2010).

Western blotting

Adult worms were washed off plates with M9 buffer and rocked for 30 minutes.
They were then washed twice with M9, and the pellets mixed with Lysis buffer 2X
(4% SDS, 100 mM Tris-HCI pH 6.8, 20% glycerol, 1 x protease inhibitor cocktail
(CalBioChem), 1 mM orthovanadate, 2 mM NaF, 10 mM glycerol 2-phosphate
disodium and 500 nM sodium pyrophosphate). Once mixed, the pellets were
incubated in boiling water for 15 minutes. The obtained lysates were
electrophoresed on SDS 12% polyacrylamide gels and electroblotted onto
nitrocellulose membranes. Blotting was carried out using the primary antibodies
for PAR-5 (from Andy Golden), tubulin (Developmental Studies Hybridoma Bank,
cat. # E7) and secondary horseradish-peroxidase-conjugated anti-rabbit and anti-
mouse (DAKO). Primary antibody dilutions were 1:4000 and 1:10,000, respectively.

Quantitative RT-PCR

Adult worms were washed off plates with M9 buffer and rocked for 30 minutes.
They were then washed twice with M9, and the pellets were mixed with TRI
REAGENT (MRC Technology) to extract RNA following the manufacturer’s
instructions. For ¢cDNA synthesis, a High Capacity Retro Transcription kit
(Applied Biosystems) was used. SYBR-GREEN (Applied Biosystems) reagent
was used to perform the amplification reaction followed by a real-time
quantification using the ABI PRISM 7500 system. The -fold change expression
of the corresponding genes was based on the ddCT method and normalized relative
to the amplification obtained using act-1 (actin) primers. Primer sequences were as
follows: par-5 (FW: ACCGCGTCAAGGTTGAGCAAGA, RV: ACAACGGCA-
GCGCGATCCTC); fit-2 (FW: TCCGGAGACGACAGAAACTCGGT, RV:
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CTGGCAAGCCTTGTCCGGGG); and act-1 (FW: CCGCTCTTGCCCCATCA-
ACCA, RV: CGATGGATGGGCCGGACTCG).
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Research into the molecular and developmental biology of the nematode Caenorhabditis elegans was begun in the early seventies by Sydney
Brenner and it has since been used extensively as a model organism '. C. elegans possesses key attributes such as simplicity, transparency and
short life cycle that have made it a suitable experimental system for fundamental biological studies for many years 2. Discoveries in this nematode
have broad implications because many cellular and molecular processes that control animal development are evolutionary conserved 3.

C. elegans life cycle goes through an embryonic stage and four larval stages before animals reach adulthood. Development can take 2 to 4 days
depending on the temperature. In each of the stages several characteristic traits can be observed. The knowledge of its complete cell lineage 4°
together with the deep annotation of its genome turn this nematode into a great model in fields as diverse as the neurobiology 8, aging 78, stem
cell biology ® and germ line biology °.

An additional feature that makes C. elegans an attractive model to work with is the possibility of obtaining populations of worms synchronized at a
specific stage through a relatively easy protocol. The ease of maintaining and propagating this nematode added to the possibility of
synchronization provide a powerful tool to obtain large amounts of worms, which can be used for a wide variety of small or high-throughput
experiments such as RNAI screens, microarrays, massive sequencing, immunoblot or in situ hybridization, among others.

Because of its transparency, C. elegans structures can be distinguished under the microscope using Differential Interference Contrast

microscopy, also known as Nomarski microscopy. The use of a fluorescent DNA binder, DAPI (4',6-diamidino-2-phenylindole), for instance, can
lead to the specific identification and localization of individual cells, as well as subcellular structures/defects associated to them.

Video Link

The video component of this article can be found at http://www.jove.com/video/4019/

Protocol

1. Protocol A: Culturing worms for bleaching 1!

Large populations of C. elegans can be obtained by culturing them either in liquid media or on solid media in plates. They are usually grown on
solid NGM (Nematode Growth Media) and fed with E. coli bacteria, which is added to the plates either alive or dead (killed by UV'2, by heat'3 or
by cold'). The most common procedure uses live OP50 E. coli, which is defective in the synthesis of uracil and cannot overgrow into a thick layer
that would obscure the worms.

1. Mix 3 g of NaCl, 17 g of agar and 2.5 g of peptone and add 975 ml of H2O. Autoclave for 50 min

2. Cool the flask to 55°C

3. Add 1 ml of 1 M CaClz, 1 ml of 5 mg/ml cholesterol in ethanol, 1 ml of 1 M MgSO4 and 25 ml of 1 M KPOg4 buffer (all of them but cholesterol
previously autoclaved)

4. Using sterile procedures dispense the NGM solution into petri plates; fill plates up to 2/3 of their volume

5. Once dry, it is advisable to leave plates at room temperature for 2-3 days before use for detection of contaminants. Prepare a streak of OP50
E. coli from a glycerol stock (OP50 can be obtained from the Caenorhabditis Genetics Center)

6. Pick a single colony and grow it in LB overnight at 37°C with agitation

7. Allow excess of moisture to evaporate from the plates by removing the lid in the laminar flow and add OP50 to the center of the plates with a
sterile Pasteur pipette

8. Allow the OP50 E. coli lawn to grow overnight at room temperature or at 37°C for 8 hours

9. Add the desired amount of worms to the plates (if incubated at 37°C plates should be cooled at room-temperature before use)

TIPS:

» the pouring of the same amount of media in the plates with a pipette or a pump dispenser ensures the same volume of agar to the plates and
facilitates the shifting of plate without need to refocus the stereomicroscope

Copyright © 1 Not Set| |e4019 | Page 1 of 8
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» plates (both seeded and unseeded with bacteria) can be used several weeks after prepared when stored in a container at room temperature
or4°C

» avoid plating the bacteria to the edge of the plate. If the lawn extends to the edges of the plate the worms may crawl up the sides, dry out and
die

+ worms live longer if the bacteria seeded on the plates are already dead '°

2. Protocol B: Treatment with alkaline hypochlorite solution ("bleaching")!!

The bleaching technique is used for synchronizing C. elegans cultures at the first larval stage (L1). The principle of the method lies in the fact that
worms are sensitive to bleach while the egg shell protects embryos from it. After treatment with alkaline hypochlorite solution, embryos are
incubated in liquid media without food, which allows hatching but prevents further development.

1. Allow worms to grow until adult stage

2. Recover gravid adults in 15 ml tubes by washing plates with M9 buffer

3. Pellet worms by centrifuging for 2 minutes at 400xg (~1500 rpm on a standard table centrifuge) at room-temperature and discard supernatant

4. Perform 1-3 washes until the buffer appears clear of bacteria

5. Add the desired bleaching solution (Table I) and agitate for some minutes (destruction of the adult tissue should be monitored under the
dissecting microscope and the reaction stopped when traces of adults are still visible, which typically takes between 3 and 9 minutes
depending on several issues, such as the volume of worm pellet, mentioned in the discussion) (fig. 3)

6. Stop reaction by adding M9 buffer to fill the tube

7. Quickly centrifuge (since treatment may still be active) for 1 minute at 400xg and discard supernatant

8. Wash pellet three more times by filling the tube with M9 buffer

9. Add 1ml of M9 buffer to the pellet, or place the eggs to unseeded NGM plates, and incubate at the desired temperature with gentle agitation.
Proper aeration should be provided (fig.4).

TIPS:

» there are different bleaching solutions, choose the one that works better in your hands (table 1, fig. 1)

» eggs already laid on the plates can be recovered by scrapping the surface of the agar with a soft material such as a piece of an X-ray film

* too many remains of adult animals may impair synchronization as they constitute a food supply for the recently hatched larvae

» higher temperatures slightly speed up the development which is inconvenient if any worm skips synchronization because the difference in
development between synchronized and unsynchronized worms will be greater at higher temperatures

» bleaching solution must be performed just prior to its use. In addition, bleach loses potency after it has been open for a while, in part due to its
photosensitivity. We suggest to aliquot each new bottle into small amber bottles to prevent such loss and minimize exposure to light

3. Protocol C: Worm plating

1. Wait between 12 and 24 hours (time to complete embryonic development depends on the temperature) after bleaching was performed and
recover worms by centrifugation (2 minutes at 400xg)

2. Discard supernatant, seed worms on the required plates and let remaining liquid dry

3. Place plates at the required temperature

TIPS:

* L1 larvae in M9 buffer can be kept at 15 °C rocking at least for one week without obvious alterations
» be careful when calculating the worms you will seed because too many may exhaust the food faster than expected and ruin your experiment.
Approximately 500 L1 can reach adulthood in a 55 mm plate without running out of food.

4. Protocol D: C. elegans observation

D.1 Nomarski observation

Differential interference contrast microscopy is an optical microscopy illumination technique used to enhance the contrast in unstained
transparent samples. The word Nomarski refers to the prism used, named after his inventor. By observing animals alive we are able to examine
the physiology of the animal with the only alterations derived from immobilization. In addition, as no fixative is added, fluorescent markers can be
observed in vivo. This fact and the possibility of fusing fluorescent markers to a gene of interest make it feasible to follow processes in which the
protein of study may be involved. By using the technique described in this protocol, not only live worms can be observed, but they can also be
recovered and plated again.

Agar pad preparation (just before use):

Prepare agarose 2% in water and melt. Keep melted at 65°C

Place two slides with a piece of tape on them at both sides of a third, clean slide

Using a Pasteur pipette place a drop of agar onto the clean surface

Cover the agar with another clean slide placed on top of the three slides perpendicularly

Press gently so the agar drop is flattened to the thickness of the tape spacers

Once the agar solidifies, gently pull out the taped slides and separate the two remaining slides by sliding one relative to the other

S hrWON =

Mounting live animals

7. Place one drop (10 pl) of levamisole 1mM or sodium azide 10-30 mM onto the center of the pad
8. Transfer animals into the drop using a worm pick
9. Gently place a coverslip over the animals and fix it at both sides with some nail polish or silicone

TIPS:

Copyright © 1 Not Set| |e4019 | Page 2 of 8
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» keep aliquots of agarose 2% at 4°C

* melted agarose can be kept at 65 °C for at least one day

* note: Levamisole is a nicotinic receptor agonist which elicits spastic muscle paralysis'®
* be cautious, Sodium Azide is extremely toxic!

D.2 Ethanol fixation and DAPI staining

The protocol described here represents a fast way of dyeing worms with DAPI, however because of the dissecation of the worm some structures
may present some alteration. There are several other methods to fix worms previous to DAPI staining such as fixation with Carnoy's solution or
formaldehyde that preserve better the integrity of the worm 7,

Ethanol fixation (modified from '8)

1. Place ~10 pl of M9 buffer (or water) on a microscope slide

2. Using a worm pick carefully transfer 10-25 worms to the drop

3. Using filter paper or a micro-pipette remove as much M9 buffer as possible without removing the worms or letting them dry
4. Add ~10 pl of 90% ethanol and let it dry

5. Repeat step 4 once or twice

4' 6-diamidino-2-phenylindole (DAPI) staining

6. Mix DAPI with the desired mounting media to a final concentration of 2 ng/pl

7. Once the ethanol has evaporated completely, add 7 pl of the DAPI:mounting media mixture

8. Place a coverslip and fix it at both sides with some nail polish or silicone. Slides will be ready for observation approximately 5 min after the
addition of DAPI

TIPS:

» the mounting media contains glycerol, so a small amount is enough to cover the whole preparation

» there exists a wide variety of commercial mounting media (Fluoromount or Prolong, for example), their quality and price depend on how long
you want to store your sample

*  Be careful, DAPI is a known mutagen which binds strongly to A-T rich regions in DNA

Recipes

Nematode Growth Medium (NGM)

1.7% (w/v) Agar

50 mM NaCl

0.25% (w/v) Peptone

1 mM CaClz

5 pg/ml Cholesterol

25 mM KPO4

1 mM MgSO4

M9 buffer

22mM KH2PO4

42 mM NazHPO4

86 mM NaCl

1 mM MgSO4

Bleaching solutions tested

recipe #1 recipe #2 recipe #3 recipe #4 recipe #5
water (ml) 2.75 3.5 0.5 0.5 1.5
sodium hydroxide (ml) 1.25 (1M) 0.5 (5M) 2.5 (1M) 2.5 (2M) 2.5 (1M)
sodium hypochlorite ~ 4% (ml) 1 1 1 2 1
total (ml) 5 5 4 5 5

Table I. Different bleaching solution recipes tested for this article. Recipes #3 and #4 are 2x, and should be added to the same volume of M9.
Recipes for #1, #2 and #5 have been previously reported 2 - 19, Final concentrations: #1 NaOH 0.25M, NaOCl ~0.8%, #2 NaOH 0.5M, NaOCI
~0.8%, #3 NaOH 0.625M, NaOCI ~1%, #4 NaOH 1 M, NaOCI ~1.6%, #5 NaOH 0.5M, NaOCI ~0.8%.
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5. Representative results

Bleaching solution

recipe #1 | recipe #2 recipe #3 recipe #4 recipe #5
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Figure 1. Comparison of five different bleaching solutions at two different incubation times. N2 worms washed twice with M9 were split
into five 15 ml conical tubes containing each bleaching solution. Tubes were shaken vigorously and 1 ml transferred to a new tube with M9 to stop
the reaction after the time specified. After bleaching procedure worms were incubated with 1 ml of M9 at 20 °C for 24 hours. In each case, lower
picture was taken just after bleaching, upper picture 24 hours later.
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Figure 2. Temperature of bleaching solution affects the effectiveness of the treatment. Equal volumes of N2 worms were bleached with the
same bleaching solution either previously chilled on ice for 20 minutes or kept at 25 °C for the same time. The two columns on the left show
pictures just after bleaching. After treatment worms were incubated in 15 ml conical tubes with 1 ml of M9 at 20 °C for 24 hours. Columns on the

right display pictures 24 hours later.
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Figure 3. The ratio worm pellet:time of alkaline hypochlorite incubation affects the effectiveness of the treatment. 50, 100, 250 and 500
pl of worm pellet were incubated with 2 ml of bleaching solution #3 for 3, 6 and 9 minutes. Hatched L1, dead embryos and remains of adult
fragments were quantified after incubation at 20 °C for 24 hours in 15 ml conical tubes with 1 ml of M9 buffer. Approximately three confluent 55
mm plates with adult worms are needed to get a 100 yl worm pellet.
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Figure 4. Proper aeration is required for hatching and survival of C. elegans embryos. A 100 pl pellet of N2 worms were bleached for 6
minutes and incubated in 15 ml conical tubes with 1, 5 or 10 ml, as specified, of M9 at 20 °C for 24 hours. The upper part of the figure displays
pictures of the cultures after 24 hours, where arrows indicate eggs that did not hatch. At the bottom, there is a graph depicting the amount of
larvae (light grey) and dead embryos (dark grey) 48 hours after bleaching at the stated conditions.
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1315 2426 34 39 48 52 58 65 78 91 hrsat20'C
b 1011 1820 26 30 35 45 45 50 60 70 hrsat25°C

modified from http://protocols.mmmi.nl

Figure 5. Life cycle of C. elegans. a . Approximate length of the worms at different stages. Hours required to reach each stage depending on
the temperature (modified from 20). b. Nomarski (up) and DAPI (down) pictures of different worms at the indicated developmental stages. Most
significant features in each phase are magnified. L1: arrow indicates the precursors of the somatic gonad and the germ line. Early L4: black
arrow (Nomarski) indicates the developing vulva; white arrows (DAPI) indicate the two gonadal arms. Mid-late L4: arrow indicates the developing
vulva at the so-called Christmas tree stage. Young Adult: black arrow indicates an embryo inside the uterus, arrowhead points to the
spermatheca, white arrow indicates an oocyte. Gravid adult: arrowhead (DAPI) points out fertilized embryos. Arrow in DAPI image indicates
spermatheca.
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Figure 6. Vulva morphology at L3, L4 and Adult stages. At the L3 stage only a small lumen where the vulva is formed can be observed. At L4,
this lumen expands forming the so-called "Christmas tree". In the adult the vulva is already closed. Yellow lines indicate the location of the vulva
at these three stages.

Figure 7. DAPI staining at L3, early L4, late L4 and Adult stages. At L3, germ line is elongated. At L4, gonad arms present U-shape
morphology. At late-L4 stage sperm can be observed in the distal part of the gonad. Young Adults present oocytes. The Adult germ line presents
oocytes and embryos. Yellow lines delimitate germ lines at the different stated stages.
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Figure 8. C. elegans development at 15 and 25 °C. N2 worms were bleached, incubated overnight in M9 and agitation at 15°C, transferred to
plates and grown the indicated times at the stated temperatures.

NEMATODE SYNCHRONIZATION

Several bleaching solutions have been described. We tried five different recipes (table I) and, in our hands, they did not show significant
differences in the synchronization of worm populations (fig. 1). However, our experiments did show that parameters such as temperature (fig. 2),
the ratio bleaching solution:volume of worms (fig. 3) and the volume of M9 with which the embryos are incubated for hatching (fig. 4) do affect the
survival of the worms, being related to proper aeration of the culture. In our shaking conditions, while in a tube of 15 ml a volume of 1 ml allows
survival of all worms, a volume of 5 ml is already too much to allow proper egg hatching and comparable to the maximum volume of 15 ml (not
shown).

C. elegans DEVELOPMENT

During its development, C. elegans goes through four larval stages (fig. 5) prior to the adult stage. The germ line is a good indicator of the
developmental stage of C. elegans. The easiest feature of C. elegans development that can be observed under Nomarski optics is the
development of the vulva, which starts to form at early L4 stage. At first, only a small lumen is observed, which later expands to the so called
"Christmas tree" shape, by mid-late L4. Finally, by the end of L4 the vulva closes (fig. 6). On the other hand, DAPI staining allows the observation
of the development of the gonad. From the four cells in L1 to the dividing cells and elongating gonad in L2 and L3. At L3 the distal tip cells can be
observed, starting to migrate dorsally. Meiosis also starts by the end of L3. At L4 distal tip cells reach their definitive position and germ cells
differentiate to sperm. By the end of L4 sperm production ends and oocyte production starts. In adult worms embryos can be observed inside the
uterus (fig. 7).

DEVELOPMENT AND TEMPERATURE

C. elegans develops at a different rate depending on the temperature: while it takes about 90 hours from the moment the egg is laid until the new
worm starts to lay its own eggs at 15°C, 45 hours are enough when grown at 25°C (fig. 6). The study of the differential developing rate at diverse
temperatures leads to relative flexibility in setting up conditions and performing experiments. Additionally, it offers the possibility not only to
monitor the effects of a particular treatment or alteration (for example temperature sensitive alleles), but also to establish the best conditions in
which carrying out a particular experiment.
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