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Abstract

Many types of everyday signals fall into the non-stationary sinusoids cat-
egory. A large family of such signals represent audio, including acous-
tic/electronic, pitched/transient instrument sounds, human speech/singing
voice, and a mixture of all: music. Analysis of such signals has been in the
focus of the research community for decades. The main reason for such in-
tense focus is the wide applicability of the research achievements to medical,
financial and optical applications, as well as radar/sonar signal processing
and system analysis. Accurate estimation of sinusoidal parameters is one
of the most common digital signal processing tasks and thus represents an
indispensable building block of a wide variety of applications.
Classic time-frequency transformations are appropriate only for signals with
slowly varying amplitude and frequency content - an assumption often vi-
olated in practice. In such cases, reduced readability and the presence of
artefacts represent a significant problem. Time and frequency resolution
cannot be increased arbitrarily due to the well known time-frequency reso-
lution trade-off by Heisenberg.
The main objective of this thesis is to revise and improve existing methods,
and to propose several new approaches for the analysis of non-stationary
sinusoids. This dissertation substantially contributes to the existing sinu-
soidal analysis algorithms: a) it critically evaluates and disseminates in
great detail current analysis methods, b) provides significant improvements
for some of the most promising existing methods, c) proposes several new
approaches for analysis of the existing sinusoidal models and d) proposes
a very general and flexible sinusoidal model together with a fast, direct
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estimator.

Resumen
Muchos tipos de señales que encontramos a diario pertenecen a la categoŕıa
de sinusoides no estacionarias. Una gran parte de esas señales son sonidos
que presentan una gran variedad de caracteŕısticas: acústicos/electrónicos,
sonidos instrumentales harmónicos/impulsivos, habla/canto, y la mezcla de
todos ellos que podemos encontrar en la música. Durante décadas la co-
munidad cient́ıfica ha estudiado y analizado ese tipo de señales. El motivo
principal es la gran utilidad de los avances cient́ıficos en una gran variedad
de áreas, desde aplicaciones médicas, financiera y ópticas, a procesado de
radares o sonar, y también a análisis de sistemas. La estimación precisa
de los parámetros de sinusoides no estacionarias es una de las tareas más
comunes en procesado digital de señales, y por lo tanto un elemento funda-
mental e indispensable para una gran variedad de aplicaciones.

Las transformaciones de tiempo y frecuencia clásicas son solamente apropi-
adas para señales con variación lenta de amplitud y frecuencia. Esta su-
posición no suele cumplirse en la prctica, lo que conlleva una degradación
de calidad y la aparición de artefactos. Además, la resolución temporal
y frecuencial no se puede incrementar arbitrariamente debido al conocido
principio de incertidumbre de Heisenberg.

El principal objetivo de esta tesis es revisar y mejorar los métodos existentes
para el análisis de sinusoides no estacionarias, y también proponer nuevas
estrategias y aproximaciones. Esta disertación contribuye sustancialmente
a los análisis sinusoidales existentes: a) realiza una evaluación cŕıtica del
estado del arte y describe con gran detalle los métodos de análisis existentes,
b) aporta mejoras sustanciales a algunos de los métodos existentes más
prometedores, c) propone varias aproximaciones nuevas para el análisis de
los modelos sinusoidales existentes i d) propone un modelo sinusoidal muy
general y flexible con un algoritmo de análisis directo y rápido.



Preface

A sinusoid, by far the most appropriate mathematical function to describe
any form of vibration, occupies a rather important place in research con-
cerning acoustics and sound. It should come as no surprise that human
senses depend heavily on vibration.
Sound is a perfect example of information transmission in which sinusoids
play a central role. It is widely believed that a mixture of sinusoids and
noise (Serra, 1989) adequately describes sound signals as far as the hu-
man perception is concerned. This notion has been disputed and the idea
of transients has been proposed as an integral part of sonically complete
sound analysis (Verma and Meng, 1998, 2000). It is however also common
knowledge that acoustic vibration in most cases comes with at least a pinch
of non-linearity, causing the frequency and amplitude of the vibration to
change rather fast. Membranes, strings, stiff objects as well as air pressure
fluctuations exhibit what is often referred to as stationary vibration, only in
very limited circumstances when the excitation force is almost negligible. In
majority of real world cases however, the non-linear behaviour of vibrating
objects produces signals that differ substantially from a stable, stationary
sinusoid. At the same time it is interesting to observe how such discrepan-
cies produce sounds that enjoy great interest of musicians and music lovers.
It seems that inharmonicity and other forms of distortion caused by such
non-linear behaviour stir human minds, making it more desirable where one
would expect the opposite.
Surprisingly, a great deal of difficulties analysing acoustic sounds can be
accounted to modulations sourcing from artistic articulations. Such articu-
lations involve rapid changes of pitch and intensity. While the frequency of

xi
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the lower harmonic might not fluctuate significantly the frequency change
rate of higher harmonics changes much quicker. For example, a voice vi-
brato can exhibit a frequency change rate of thousands of hertz per second
for the 5th harmonic.
With the advent of widespread use of electronic instruments, be it analogue
or digital, the range of sounds used in music production has extended enor-
mously. Before the electronic music revolution, the amplitude and frequency
modulations of instrument sounds were confined within the limits set by
acoustical and physical properties of the instrument, as well as performer’s
skills. Later, analogue synthesisers were able to create sounds modulated
beyond what was imagined before, and the arrival of purely digital sound
sources and transformations gave musicians free hands on synthesizing vir-
tually any sound imaginable. One can imagine the difficulties in facilitating
robust and accurate analysis of such wide spectrum of sounds.
Probably the most difficult sounds to analyse are percussive ones. Such
very short duration with typically very quickly changing amplitude and un-
stable/inharmonic frequency content have arisen doubts about adequacy of
the aforementioned sinusoidal + noise model. The reason for that is the
amplitude and frequency of such percussive sounds may change significantly
in times shorter than one period of the signal. In such cases the signal does
not resemble a sinusoid any more and is commonly referred to as transient.
Dismissing the problem by labelling it as non-relevant for human percep-
tion has been largely criticised as percussive sounds - the most perceptually
prominent class of transients, have always been an indispensable part of
music in every culture around the world.
A rather unexpected family of non-stationary sinusoidal signal, commonly
found in music arises from a pair of sinusoids with very similar frequencies.
In such cases, the pair can be considered as a single sinusoid with rather
specific amplitude and frequency modulation. Very little effort have been
put into accurate resolution of such pairs of sinusoids, often called overlap-
ping. In essence, it’s an attempt to double the frequency resolution of the
transform.
It is desirable that a framework for extracting parameters of sinusoids from
a signal should be designed to deal with such non-stationary sinusoids.
Methods based on the Fourier transform (FT) have been extensively used
in such applications, but it’s easy to recognise its intrinsic limits. An at-
tempt to extend an analysis framework to include amplitude and frequency
modulated sinusoids seems natural.
Numerous methods have been developed for the problem at hand. An at-
tempt to compare and evaluate all of them would be a huge task, far beyond
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the extent of a single PhD thesis. It is important to mention that a unified
testing framework (as a set of synthetic modulated single sinusoids and ab-
solute lower achievable error) has existed for a very long time (Rao, 1947),
yet many state-of-the-art algorithms have not been tested and compared in
such framework. An algorithm, performing well in such framework would be
expected to perform well on real world examples. This mostly holds when
analysing a recording of a single quasi-harmonic sound source of not very low
frequency (relative to the length of the observation frame). Unfortunately,
in the more complex cases, when more than one sound source is present,
the single isolated sinusoid assumption can be violated to a large extent.
An effort to reach an agreement on a unified sinusoidal modelling testing
framework for such real world signals has not yet gained a widespread at-
tention of the research community, however it seems crucial to take steps in
the direction, as problem at hand.
In this thesis a specific family of non-stationary sinusoidal analysis meth-
ods will be analysed in depth. In particular, fast real-time algorithms are
preferred above off-line CPU-intensive methods, even potentially sacrificing
some accuracy. Generally, iterative improvement methods will be avoided
when possible, due to difficulties of defining the convergence region when
dealing with real world signals. Specifically, a number of state-of-the-art
kernel based methods are described, evaluated and improved. In addition,
a new family of estimators is proposed and evaluated.
This dissertation will cover two main sinusoidal models: a complex poly-
nomial amplitude modulated complex sinusoid with exponential damping
(cPACED) and the generalised sinusoid - a complex sinusoid with a log-
amplitude and frequency modulation expressed as a linear combination of
predefined model functions. Lastly, a hybrid sinusoidal model will be tack-
led by a subtle modification of existing analysis method. State-of-the-art
methods were generalized and unified, extended for accurate analysis of
transient-like signals. Next, a completely different approach of computing
closed form expressions for the FT of cPACED using symbolic computing
software is considered. The fact that multivariate polynomial systems can
many times have very simple solutions is exploited to derive an estimator
capable of accurately estimating parameters of sinusoids with extremely
similar frequencies.
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Chapter 1

Problem definition

Last years have seen a dramatic increase in demand of high-accuracy sounds
analysis (Hainsworth et al., 2001; Badeau et al., 2006; Bonada, 2008; Betser,
2009; Wen and Sandler, 2009). Many divergent fields have expressed a neces-
sity for high-accuracy analysis of non-stationary sinusoids. Prosody mod-
elling and realistic voice synthesis (King, 2010; Tokuda et al., 2013) rely
heavily on robust analysis, most of bio-acoustic signals seem to be highly
non-linear (Stowell et al., 2013), and other fields non-related to acoustics
such as seismic signal analysis (Bjerhammar, 1951), magnetic resonance
imaging (Pattichis et al., 2000), spectrometry (Hänsch et al., 1979) and
synthetic aperture radar technology (Li and Stoica, 1996) are facing, in its
core, exactly the same problems. It seems that regardless of the nature
of oscilation, be it air pressure, electro-magnetic field or heart beat - the
problem of quick frequency and amplitude changes will pose a significant
obstacle in achieving acceptable analysis results.
Since the development of the first non-stationary sinusoidal analysis meth-
ods, the well-known time-frequency (TF) ambiguity gave birth to an unex-
pected dilemma. Observing a non-stationary phenomena, the same signal
could be explained as a single highly-modulated or two moderately modu-
lated sinusoids very close in frequency. Both explanations can be equally
accurate resulting in an ambiguity that represents a problem even for meth-
ods with inherently high frequency resolution like Empirical Mode Decom-
position (EMD) (Rilling and Flandrin, 2008; Borgnat et al., 2010; WU
et al., 2011). The frequency and amplitude content of such non-stationary
signals may change rapidly enough (Wen and Sandler, 2010) for classic
time-frequency (TF) analysis methods to result in coloured distributions
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(aubechies et al., 2011). It is important to distinguish sinusoidal parameter
estimation from representation. For most analysis methods that utilise a
test function, sometimes called a kernel or an atom, the difference between
the estimation and representation can be substantially blurred. A small
set of kernels is commonly required for a single estimation. Typically the
kernels centred around certain frequency give very similar estimates - they
snap towards a nearby sinusoid, a phenomena reminiscent of the gravita-
tional pull. This way, the TF energy in vicinity of a sinusoid is squeezed
closer to the sinusoids, effectively modifying the representation by increas-
ing readability and clarity. The most common estimation method of this
kind is the reassignment method (Kodera et al., 1976).

1.1 General Considerations

This section presents mathematical definitions for the problems at hand.
Throughout this document, certain assumptions are made in order to avoid
repetitions thus preserving compactness and clarity.
A frame based parameter estimator is any method capable of estimating any
number of parameters from a single time-limited sampled sequence (frame)
of the signal under study. It is important to stress that any information
about the signal in times before or after the frame is assumed to be un-
known. That may seem a rather pessimistic assumption, however in many
practical applications such information is either unavailable or its accuracy
cannot be determined. Rather than relying on potentially inaccurate as-
sumptions, an attempt to construct a sufficiently good estimator that does
not require assumptions seems reasonable.
A non-stationary sinusoid is a sinusoid with varying amplitude and/or fre-
quency. It is very common and practical to express it in the complex domain:

s(t) = A(t)ej(φ(t)+φ0), (1.1)

where A(t) ∈ R is the amplitude function, φ(t) ∈ R the phase function,
φ0 the initial phase and t the time. A very important is the notion of an
instantaneous frequency defined as the time derivative of phase: ω(t) =
f ′(t). In cases where A(t) or ω(t) are not constant with respect to time, the
signal s(t) is said to be a non-stationary complex sinusoid. A non-stationary
sinusoid is said to be amplitude modulated (AM) if A(t) is not constant and
frequency modulated (FM) if ω(T ) is not constant. Since human perception
of sound intensity is known to be logarithmic, A(t) can be conveniently
defined as a real exponential function, producing a compact representation
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of s(t) (Wen and Sandler, 2009):

s(t) = ep(t)+jq(t) = er(t), (1.2)

where q(t) is the phase function, p(t) is commonly referred to as log-amplitude
(log-AM) and r(t) is a complex valued function of time, combining phase
and amplitude trajectories.
Until present day, the only mathematically tractable models are one of the
following:

• er(t), r(t) ∈ C where r(t) is a polynomial - generalised sinusoid

• A(t)eα+jωt, A(t) =
∑

k akt
k, ω, α ∈ R - PACED (Polynomial Amplitude-

Complex Exponential with exponential Damping if A(t) ∈ R ), or
cPACED if A(t) ∈ C and PACE/cPACE if α = 0

More models exist, for instance a sinusoidal log-AM/FM (Wen and Sandler,
2009) by simply substituting the polynomials with trigonometric functions.
Such model sadly isn’t tractable without an a-priori estimate of the modu-
lation frequency, reducing the algorithm into a grid-search type - an alter-
native was not yet proposed.
The generalised sinusoid and cPACED models encompass a wide variety of
signal families, thus an additional categorisation is welcome. A complex
sinusoid with a log-AM/FM function r(t) of a nth degree polynomial will
be denoted as a nth degree generalised sinusoid. Historically, the research
has many times focused on cases where the degree of amplitude function
is not the same as that of phase function: as it will be shown such mod-
els do not offer measurable advantage, but will be covered for the sake of
completeness. In such cases the degree of amplitude polynomial is a degree
lower than that of the phase polynomial, but equal to the degree of the
instantaneous frequency polynomial.
Similarly, a nth degree cPACED model has a nth degree polynomial ampli-
tude function A(T ). In the research community the amplitude and phase
functions are erroneously referred to as AM/FM (or log-AM/FM) for brevity
- the notation will be adopted in order to comply with the rest of publica-
tions.
Some low-degree cPACE methods (eg: up to second degree polynomial
(Pantazis et al., 2011)), require initial frequency estimates for all the si-
nusoids in the signal, which implies successful identification of all salient
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peaks. The benefit is a joint estimation in the least-square sense and en-
abling the use of a window function to minimise the inter-sinusoid inter-
ference. Alternatively, the methods based on rotational invariance require
little extra parameters apart from the signal itself. The cPACED model
was shown to be the most general one still tractable by methods based on
rotational invariance (Badeau et al., 2006). Many versions of such methods
have been successfully used in various audio coding/analysis applications
(Jensen et al., 2004; Hermus et al., 2005), the main advantage is overcom-
ing the time-frequency resolution trade-off, this is inherent in the Fourier
Transform (FT). It will be shown however, that such methods bear signifi-
cant computational burden. It is therefore desirable to construct an efficient
method, able to estimate the parameters of a high degree cPACED model.

1.2 Short Time Fourier Transform

In order to obtain frequency domain information, the Time Fourier Trans-
form (STFT) is defined as follows (Marchand and Depalle, 2008):

Sw(t, ω) =

∫ t+T
2

t−T
2

s(τ)w(τ − t) exp
(
− iω(τ − t)

)
dτ, (1.3)

where w(t) ∈ R is a time limited window function of length T : w(t) =
0, |t| > T

2 . The above expression can be represented in the common log-
polar form:

Sw(t, ω) = exp
(
λ(t, ω) + jφ(t, ω)

)
, (1.4)

λ(t, ω) being the spectral amplitude and φ(t, ω) is spectral phase, many times
referred to as the magnitude and phase spectrum. It is important to note
that λ(t, ω), φ(t, ω) are functions of frequency and time as well, where the
time variable designates the center of the observation frame, rather than a
time instant within the frame. Setting t = 0 (or equivalently, shifting the
signal, so that it always holds t = 0) gives, without any loss of generality, a
more widely used representation:

Sw(0, ω) = Sw(ω) =

∫ T
2

−T
2

s(τ)w(τ)e−jωτdτ. (1.5)

A generalisation of STFT can simply be achieved by realising equation 1.3
is in fact an inner product of the signal and a windowed stationary complex
exponential:

Sw(t, ω) = 〈s(t), w(t)ejωt〉, (1.6)
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where the window function is assumed to be non-zero only for t ∈
[
−T

2 ,
T
2

]
acting as the limits of integration in equation 1.3. It is now trivial to
generalise the complex exponential to an arbitrary kernel Ψ(t):

〈s(t), w(t)Ψ(t)〉. (1.7)

Adopting the use of an arbitrary kernel allows for a very important flexibility
when the signal under study does not correlate strongly with a stationary
complex exponential, inevitably leading to numerical problems.

1.3 Cramer-Rao bounds

Every real-world signal contains some degree of white additive Gaussian
noise which limits the best achievable accuracy of estimators. The so called
Cramer-Rao bounds (CRB) (Cramér, 1999; Rao, 1947) represent theoreti-
cally optimal accuracy achievable by any estimator. Such bounds depend on
the signal model and naturally on the signal-to-noise ratio (SNR). Specif-
ically the CRBs express the lower bound on the variance of the estimates
which in case of unbiased estimator corresponds to an inverse of the Fisher
information matrix (FIM) (Edgeworth, 1908). For model parameters θn
the FIM is defined in terms of expected values:

Fkl = −E
[
∂2Λ

∂θkθl

]
, (1.8)

where Λ denotes a log-probability density function of the signal under study
s and the assumed model x (containing the parameters θn), corrupted by
white Gaussian noise (eg: the SNR) of variance σ:

Λ = − 1

σ2
< s− x, s− x >, (1.9)

As already mentioned earlier in this section, the signal model 1.1 can be
divided in two significantly different families, for which the CRBs have
been derived (Stoica and Arye, 1989; Friedlander and Francos, 1993). It is
important to distinguish CRBs for single sinusoid and two (or more) sinu-
soids. Essentially, the multi sinusoid CRBs converge to the single sinusoid
ones when the frequency difference between the sinusoids gets large enough.
However, analytic derivation of a multi sinusoid CRB is substantially more
complex (Stoica and Arye, 1989), forcing researchers to use approximations
(Swingler, 1993). Further, the multi sinusoid CRBs depend significantly
on specific combinations of parameter values of the signal under study, not
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only on the SNR, making them rather impractical for evaluation.
Despite that, CRBs were used extensively for evaluating single sinusoid es-
timators. The main reason is the effect of model parameter values on CRBs
is negligible compared to that of SNR (Guotong Zhou, 1996). CRBs of
a traditionally very common non-stationary single sinusoidal signal model
with first degree log-AM and second degree FM (Abe and Smith, 2005;
Marchand and Depalle, 2008; Wen and Sandler, 2009; Muševič and Bonada,
2010b; Hamilton et al., 2009)

s(t) = exp
(
a0 + µ0t+ j(φ0 + ω0t+ ψ0

t2

2
)
)
, (1.10)

depend on expressions:

εk(µ0
, N) =

N−1∑
n=0

(
n− n0

N

)k
exp

(
2µ

0

n− n0

n

)
(1.11)

D1(µ
0
, N) = 2(ε0ε2 − ε21) (1.12)

D2(µ
0
, N) = 2(ε0ε2ε4 − ε21ε4 + 2ε1ε2ε3 − ε32), (1.13)

where µ
0

is the linear log-AM normalized with sampling frequency µ
0

= µ0

fs
and n0 is the sample at which estimation is made. The optimal choice is at
the centre of frame (Djuric and Kay, 1990) which is a common choice for
most estimators. The crucial piece of information is the value of εk depends
on the normalized log-AM (rather than non-normalized one), which greatly
reduces the dependence of εk on log-AM (non-normalized) as 2µ

0
n−n0
n ≈ 0.

The approximate CRB expressions are:

CRBa0,N (σ, µ) ≈ σ2ε2
D1

(1.14)

CRBµ
0
,N (σ, a0, µ) ≈ σ2ε0

a2
0N

2D1
(1.15)

CRBφ
0
,N (σ, a0, µ) ≈ σ2(ε2ε4 − ε23)

a2
0D2

(1.16)

CRBω0,N (σ, a0, µ) ≈ σ2(ε0ε4 − ε22)

a2
0N

2D2
(1.17)

CRBψ
0
,N (σ, a0, µ) ≈ σ2(ε0ε2 − ε21)

a2
0N

4D2
(1.18)

Complete derivations of above expressions is of limited significance since
they are merely an approximation. Some interesting conclusions can be
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drawn however, most notably that all CRBs (except the one for amplitude)
depend on amplitude, linear log-AM and SNR and not of FM.
In practice it is possible to compute above values numerically for much wider
family of signals via inversion of the matrix defined by the equation 1.8. Al-
though such procedure is more CPU intensive it will be used throughout
this document, as it is not a part of the estimators itself, can generally be
precomputed and will accommodate large number of different models. Un-
der more general conditions when p(t), q(t) from 1.2 are arbitrary functions,
the elements of FIM (equation 1.8) consist of:

∂Λ

θk
=

2

σ2
<
[〈
s− x, ∂x

∂θk

〉]
(1.19)

∂2Λ

θkθl
= − 2

σ2
<
[〈

∂x

∂θk
,
∂x

∂θl

〉
−
〈
s− x, ∂

2x

∂θkθl

〉]
(1.20)

(1.21)

Since E[s− x]=0, further simplification is possible:

∂Λ

θk
=

2

σ2
<
[〈

∂x

∂θk
,
∂x

∂θl

〉]
. (1.22)

In case that θk, θl are parameters of p(t), q(t) respectively, then
〈
∂x
∂θk

, ∂x∂θl

〉
is purely imaginary and the corresponding Fk,l = 0. The amplitude and
phase Fischer information matrices are therefore independent and can be
computed separately:

Fk,l =
2

σ2

∑
t

e2p(t) ∂p

∂θk

∂p

∂θl
, (1.23)

where θk, θl are both parameters of p(t) and:

Fk,l =
2

σ2

∑
t

e2p(t) ∂q

∂θk

∂q

∂θl
(1.24)

where θk, θl are both parameters of q(t). Specifically, when p(t), q(t) are
polynomials the corresponding elements of the Fischer matrix are:

Fk,l =
2

σ2

∑
t

tk+le2p(t). (1.25)

Since all the parameters are normalized with the sampling frequency, the
assumption 2p(t) ≈ 0 is not too far from the truth.
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Under such assumptions a performance of an algorithm can be summarised
in a single plot per estimation parameter.
CRBs for close frequency sinusoids are analytically far more complex even
for constant amplitude chirps (Yau and Bresler, 1992; Badeau et al., 2008a),
but still follow the same general expression 1.8.
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Chapter 2

Introduction

2.1 The energy reallocation

Many different approaches have been taken in order to tackle the TF trade-
off of such signal representations. A very old idea of the reassignment has
recently seen numerous enhancements and generalisations (Auger et al.,
2012; Auger and Flandrin, 1995; Kodera et al., 1976; Chassande-Mottin
et al., 2010; Nilsen, 2009). For the purpose of this document, a more gen-
eral notion of reallocation will be used. Reallocating spectral energy of a
1 or 2 dimensional TF distributions is the main topic of this thesis. The
purpose of such reallocation is twofold: estimation of parameters of under-
lying non-stationary sinusoids and, using the same procedure on the whole
frequency range, an enhanced TF representation of the non-stationary si-
nusoids. By enhanced representation of non-stationary sinusoids, reduction
of artefacts and compact energy representation is assumed. Different model
assumptions will lead to different estimators and representations, sharing
the same core idea of the energy reallocation.
The step from parameter estimation to representation deserves an expla-
nation. The reallocation in TF plane designates a change of the frequency
and time variable from one point to another. The reallocation of time vari-
able is often neglected and considered of a lesser importance. Frequency
reallocation is a change of initial frequency to the estimated one. This ini-
tial frequency is the only parameter of reallocation methods, and due to
CPU friendly nature the whole frequency range can be reallocated utilis-
ing fast algorithms like FFT. In practice, the frequency variable is binned
(discretized to a pre-defined value set) in order to use FFT, however reas-

13
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signed frequency values aren’t. Often, the reassigned frequency is artificially
discretized to the same resolution as the initial spectrum, however higher
resolutions with smoothing could potentially yield better results. If not
stated otherwise, the reassigned frequency will be discretized to the same
resolution as the initial FFT bins for the purpose of this thesis.
Blind assumption that certain TF region contains a sinusoid and perform-
ing the reallocation analysis regardless might result in erroneous estimates
for non-stationary parameters and phase. The overall magnitude of such
reallocation however will remain low - a very desirable feature, as bulk pro-
cessing without any a-priori knowledge and therefore no input parameters
will yield a consistent result, in a sense that no phantom energy will be
created in the TF regions that do not contain any sinusoids. Most of the
algorithms require a solution of a linear system of equations for each initial
frequency. This might seem CPU intensive, however the derivation of these
linear systems is such that matrix pivoting (used by the LU decomposition)
does not affect numerical stability and is thus not required. In such case,
block operations allow the solution of thousands of linear systems at once,
heavily relying on underlying single instruction multiple data (SIMD) CPU
architecture present in every modern processor.
The topology of reallocated distributions has only lately been explored in
(Auger et al., 2012). In some specific cases when analytical expressions for
reallocated distributions exist, an interesting, but not surprising behaviour,
similar to attraction regions in gravitational fields was observed. The en-
ergy in the vicinity (frequency wise) of a sinusoid is reallocated closer to
the sinusoids, leaving some regions completely devoid of energy. Clearly, a
sinusoid acts as a mass attracting other nearby mass.
All the algorithms considered in this thesis make use of a kernel function
and derive estimates using the inner product of the kernel with the signal
under study. Such procedure inherently limits the frequency resolution, es-
pecially when non-stationary signals are studied, thus the non-stationary
analysis methods play an important role in at least partly alleviating this
restriction.
All but one algorithm described in this thesis use the signal time derivative,
since it can be conveniently expressed as a linear combination of the mod-
ulation functions and the original signal in the case of generalised sinusoid.
For the polynomial amplitude, its derivative can expressed as a multivariate
polynomial of the model parameters, while its coefficients similarly contain
the modulation functions and the original signal. On the other hand, the
high order derivatives cancel out the effect of the polynomial AM, and a
simple pole estimator can be obtained. It is safe to say that the use of
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the signal derivative has had a major impact on non-stationary sinusoidal
analysis. In the current context, the only way to avoid using the signal
derivative is by considering the direct analytical expression for FT, which
only exists for the polynomial amplitude model. Please note that the use
of the inner product of a kernel function with the signal is not avoided even
in this case, thus the underlying resolution is only increased for the non-
stationary sinusoids, reasonably isolated in the TF domain.
To reach beyond the resolution limitation set by the inner product, one
has to abandon it, forcing the calculations to be done in the time domain.
The so called high-resolution methods, based on the matrix pencil and ro-
tational invariance methods offer one such alternative (section 2.3). Un-
fortunately, a significant increase in the CPU complexity compared to the
kernel based methods (up to 2 degrees magnitude for a single sinusoid, see
section 8.4). Importantly, these methods were not designed for the analysis
of non-stationary sinusoids, but rather a mixture of stationary ones. For-
tunately, the extension is trivial, a simple consequence to a classic result
about algebraic functions, which can however, cause certain ambiguity.
It unlikely that kernel based sinusoidal analysis methods would ever reach
the resolution of the high-resolution methods. Certain techniques allow
for the estimation of stationary sinusoids with very similar frequencies (see
chapter 7), effectively increasing the resolution, however the parameter es-
timation of a non-stationary sinusoid pair, be it generalised or polynomial
amplitude sinusoid, remains an elusive problem. If achieved, it would ef-
fectively double the resolution of non-stationary analysis methods greatly
diminishing the advantage of high-resolution methods.
The first sinusoidal models were assuming two significant parts: a sinusoidal
and noise part, sometimes referred to as the deterministic and stochastic
part. It has soon become clear that certain sonically extremely relevant
classes of signals cannot be easily classified as either. This new class of
signals was named transients, signifying a usually short lived transitional
state from stochastic to deterministic or vice versa. Such phenomena is
easily observed the very early moments of a vibrating object, to which a
sudden force has been applied. Such signals represent a very important
class of sounds called percussive sounds - great amount of effort has been
dedicated to its analysis. Apart from adaptive TF kernel based analysis, the
transient analysis has largely been tackled by brute-force type approaches,
resulting in substantially higher CPU requirements. With non-stationary
analysis methods developing rapidly in the last years, signals with very
rapidly changing amplitude can accurately be resolved (chapter 5), arriving
very close to the generally loosely defined notion of transients. Naturally, an
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interesting question of the difference between transients and highly modu-
lated sinusoids arises. In practice, it is fairly easy to adequately approximate
a transient signal with a DDM or GRM, however a small but significant de-
tailed remains unsolved. Both models, the generalised and polynomial am-
plitude sinusoid can describe a very significant drops of amplitude to near
zero values, but cannot describe a signal that is exactly zero for some ex-
tended amount of time - which is possibly the only widely accepted and well
specified feature of a transient sound. An amplitude modulation involving
the step function cannot be modelled by any of the methods presented in
this thesis directly. This comes as no surprise, as the step function isn’t a
very descriptive by itself. In addition, it exhibits a discontinuity, while it’s
derivative reaches infinitum at the same time instant, causing all sorts of
difficulties in mathematical derivations. However, the recent advancement
that introduced the hybrid model (see chapter 9) has severely widened the
class of signals that can be efficiently analysed, opening a possibility to suc-
cessfully analyse even an amplitude modulation involving a step function.
The notion of equal noise band-width (ENBW) (Harris, 1978; Nuttall, 1981)
plays an important role in practical considerations as it represents a main-
lobe width and side attenuation jointly in a single measure. In all the pre-
sented methods more than 1 window function will be required. The effective
ENBW will be defined as a ENBW of a sum of all kernels used (window
function is assumed to be a part of the kernel function). Such measure will
accommodate for the fact that in some cases the same window shifted in
frequency is used.

2.2 Least-Square estimators

A comprehensive summary of LS-based amplitude estimators of stationary
sinusoids in (Stoica et al., 2000) outlines a Matched Filter (MAFI) frame-
work which is shown to be more general form of LS and Weighted LS (WLS)
methods (Stoica et al., 1998) and also entails the general spectral estima-
tors such as Amplitude-Phase Estimator (APES) (Li and Stoica, 1996) and
Capon (Capon, 1969), both originating from the radar imaging research
community.
An LS estimator in its most direct form allows for joint estimation of sta-
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tionary complex sinusoids:
s[0]
s[1]

...
s[N − 2]
s[N − 1]

 =


1 · · · 1
ejω1 · · · ejωK

...
. . .

...

ej(N−2)ω1 · · · ej(N−2)ωK

ej(N−1)ω1 · · · ej(N−2)ωK




α1

α2
...

αK−1

αK

+


v[0]
v[1]

...
v[N − 2]
v[N − 1]


(2.1)

where s[n] ∈ C are the sampled signal values, v[n] residual samples, N the
length of observation frame and the signal model consist of K exponentials:

s[n] =
K∑
k=1

αke
jωk . (2.2)

The equation 2.1 can be compacted into a vector notation:

s = Ãα̃+ v, (2.3)

to allow a matrix notation for the LS estimator:

α̃ = (ÃHÃ)−1ÃHs, (2.4)

where noise vector was left out. A very attractive ability to estimate multi-
ple sinusoids on LS basis sadly implies the restriction of stationary sinusoids.
The discussion following outlines an attempt to overcome this restriction.
It is important to try at all cost to avoid approximations when designing
an estimation algorithm. Such procedure inevitably leads to inaccuracy,
however sometimes the desired model is simply not tractable in its original
form. The Quasi-Harmonic Model (QHM) (Pantazis et al., 2008, 2009a,b,
2011; Kafentzis et al., 2012) is based on a truncated 2nd degree Taylor series
approximation of a modulation function of a complex signal model:

s(t) =A(1 + γ1t+ γ2t
2)ej(φ0+ω0t+φ1t+φ2t2) (2.5)

≈Aejφ0

(
1 + (γ1 + jφ1)t+

(
γ2 −

φ2
1

2
+ j(φ+ γ1φ1)

)
t2
)
ejω0t, (2.6)

where all the parameters are real valued and ω0 is a known rough estimate
of a frequency (Kay, 1988; Stoica and Moses, 1997) and φ1 is the mismatch
that is to be estimated. Above equation can be rewritten:

ŝ(t) = (a+ bt+ ct2)ejω0t, (2.7)
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with parameters a, b, c ∈ C - a well known cPACED model is recognised.
Clearly, the initial model 2.5 drastically differs from the final approxima-
tion above, resulting in the need to iteratively re-estimate the parameter
estimations. Generally, there is no guarantee that such iterative procedure
would indeed converge to the correct values, especially when multicompo-
nent signals are analysed (Pantazis et al., 2011). By far the most important
is the frequency estimate, as the amplitude parameters can be estimated
with an arbitrary accuracy as long as the frequency estimate is sufficiently
good (Kay, 1993).
The parameters can now be estimated via LS by formulating a matrix equa-
tion:

s(t) =

E︷ ︸︸ ︷
[E1E2E3]

ab
c

 , (2.8)

where

Ek =
[
tkejω0t

]
, t ∈ [−T

2
,
T

2
]. (2.9)

It is common to apply a window function with the desired properties:

w(t)s(t) = w(t)

E
ab
c

 . (2.10)

The LS solution for a, b, c can now be obtained by matrix Moore-Penrose
pseudoinverse (Moore, 1920; Bjerhammar, 1951; Penrose, 1955):ab

c

 = ((wE)HwE)−1(wE)Hws. (2.11)

Once a, b, c are estimated the corresponding estimates of the initial model
2.5 can easily be calculated. Importantly, the frequency mismatch φ1 and
frequency change rate φ2 can be used to construct an updated matrix E
from 2.9:

Ek =
[
tkej(ω0+φt)t+jφ2t2

]
, t ∈ [−T

2
,
T

2
]. (2.12)

this effectively removes any existing frequency modulation and refines the
frequency estimate which is crucial for eventually estimating of the ampli-
tude parameters (Kay, 1993).
A major advantage of the simplified model 2.7 and the LS estimate 2.11
is a straightforward generalisation to joint estimation of multiple sinusoids.
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Such joint estimation requires a multi-component signal model, for example
a harmonic one:

s(t) =
K∑

k=−K
(ak + bkt+ ckt

2)ejkω0t. (2.13)

Joint multi-component estimator can be derived by replacing window func-
tion w with a diagonal matrix W with diagonal elements of w (Stylianou,
1996) and replacing the single component parameters a, b, c with {ak, bk, ck}, k =
−K..K yielding: ~a~b

~c

 = ((WE)HWE)−1(WE)HWs. (2.14)

Note that 2.14 includes negative frequencies to accommodate for real sig-
nals. Since ak, bk, ck are complex, the model deviates from a pure harmonic
one and it was therefore named Quasi-Harmonic. In fact, if the model 2.13
would have been modified to allow non-harmonic components the solution
2.14 expression would have not changed.
The method achieves satisfactory results analysing a synthetic harmonic
signal. The first iteration misses the target by around 50% for values bel-
low 1000Hz/s, but the accuracy quickly drops even lower when chirp rate
climbs towards 2000Hz/s. Iteration does however converge the estimate to-
wards the correct value.
It is important to note that the above example is a noiseless harmonic signal
with the sinusoids spaced quite far away from each other in the frequency
domain, thus convergence is rather unsurprising. As pointed out in (Pan-
tazis et al., 2009b) higher harmonics can potentially reach very high values
(above 10.000Hz/s, a standard limit for most of spectral energy reallocation
algorithms (Wen and Sandler, 2009)), clearly invalidating the assumption
made in 2.5 and thus possibly breaking the convergence. In (Pantazis et al.,
2009a, 2011) a first degree truncated Taylor approximation (as opposed to
the second one described above) is considered in a similar iterative process
and used for speech analysis.
The model 2.5 is a very general one, for which no direct estimation method
exists to date. An attempt to handle such model was considered in (Fried-
lander and Francos, 1993) via minimisation of the log-likelihood function
over amplitude and phase parameters, achieving near-CRB accuracy for a
single component case. It will however be shown in chapter 9 that a multi-
variate non-linear system for the model 2.5 can be constructed and solved
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harmonic chirp rate 1 iter 10 iter

1 200 55 200
2 400 194 400
3 600 353 599
4 800 457 800
5 1000 515 1000
6 1200 525 1199
7 1400 519 1400
8 1600 490 1600
9 1800 456 1799
10 2000 441 2000

Table 2.1: Estimation results of chirp rate presented in (Pantazis et al.,
2009b)

analytically without approximations of any kind.

2.3 High-resolution methods

The methods were developed in XVIII. century to study gas expansion be-
haviour is Prony’s method (de Prony, 1795; Hildebrand, 1987), later adapted
for audio analysis (Tufts and Kumaresan, 1980a,b; Kumaresan and Tufts,
1980, 1982; Laroche, 1989). The main idea is to model the signal as a sum
of L damped sinusoids

s(t) =
l=L∑
l

eαt cos(ωlt+ φl), α ∈ R (2.15)

by defining the following system:

A =


s[K] s[K − 1] · · · s[0]

s[K + 1] s[K] · · · s[1]
...

...
. . .

...
s[N ] s[N − 1] · · · s[N −K]

 , (2.16)

where s[k] = s(k4t), N is the number of observed samples and 4t =
1
fs is the length of 1 sample. System A has the following two significant
properties: it is singular |A| = 0, N −K > 2L,K > 2L and its null-space



2.3. high-resolution methods 21

(kernel) is of dimension dim(ker(A)) = p + 1 − 2L. Equivalently, for any
vector x[k] ∈ ker(A) the following holds:

K∑
k=0

s[m− k]x[k] = 0. (2.17)

Further, it can be shown (Henderson, 1981) that the K complex roots of
the polynomial

P (z) =
K∑
k=0

x[k]zk (2.18)

include 2L conjugate roots zl that correspond to ωl frequency and damping
α parameters from the model 2.15. The general outline of algorithms based
on Prony’s method is the following:

1. select N and K and derive matrix A

2. compute ker(A) via SV D or via eigenvalues/eigenvectors of AHA

3. from x ∈ ker(A) form complex polynomial P (z)

4. compute roots of P (z)

Many audio signals violate the assumptions of being a mixture of damped
sinusoids at least to some extent. Frequency modulated sinusoid is a com-
mon example clearly breaking the assumption. In such cases it will be said
that the signal contains certain number of pseudo-sinusoids. Various criteria
commonly depending on the ratio of singular values (Kumaresan and Tufts,
1982) can be employed to determine the number of sinusoids of interest.
A later development spawned by the works of Pisarenko (Pisarenko, 1973)
and Berni (Berni, 1975) successfully exploits underlying model by assuming
a mixture of damped sinusoids and Gaussian noise. On the other hand, mod-
ern high-resolution methods build on the idea of signal subspace (van der
Veen et al., 1993) and rotational invariance (Roy et al., 1986) were shown
to result in even higher resolution (Kumaresan and Tufts, 1982), especially
the generalised MUSIC algorithm (Schmidt, 1981, 1986), its variant root-
MUSIC (Barabell, 1983) and the Toeplitz Approximation Method (TAM)
(Kung et al., 1983). It was shown in (Stoica and Nehorai, 1988; Kot et al.,
1987) that the error variance of the original methods by Prony and Pis-
arenko are not close to the CRB, thus further advancement was sought.
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The latest development in the field exploit a specific property of the under-
lying Hankel and Pascal-Vandermonde matrices (Badeau et al., 2006) result-
ing in Estimation of Signal Parameters via Rotational Invariance Technique
algorithm (ESPRIT) (Roy et al., 1986; Roy and Kailath, 1987) and its vari-
ation TLS-ESPRIT (Roy and Kailath, 1987). It was shown in (Porat and
Friedlander, 1987; Stoica and Soderstrom, 1991; Eriksson et al., 1993; Hua
and Zhang, 1991) that MUSIC,ESPRIT and Matrix Pencil (MP) have an
asymptotic efficiency close to 1, with ESPRIT and MP slightly outperform-
ing the MUSIC algorithm.
Generally, above mentioned methods only worked for a mixture of sta-
tionary, rather than cPACED sinusoids (sometime referred to as quasi-
polynomials (V. Slivinskas, 1992; Badeau et al., 2008a)). In (Badeau et al.,
2006, 2008b) the currently most sophisticated high-resolution method is de-
fined, achieving a multi-component cPACED model by identifying multiple
poles corresponding to a single non-stationary sinusoid (rather than mul-
tiple stationary sinusoids) and grouping them together to derive a single,
non-stationary sinusoid.
A major advantage of the methods mentioned in this subsection is a very
high frequency resolution when compared to FT based methods. It is im-
portant to reiterate that in its core, these methods were designed to analyse
a number of stationary sinusoids. The extension to cPACED is not inherent
to the method (a LS approach is used in (Roy et al., 1986)) and can lead
to ambiguity when 2 partials are sufficiently close in frequency, as a tight
group of poles must artificially be grouped into 1, 2 or more sinusoids. The
symmetric structure of poles exhibited by a non-stationary sinusoid ease
the decision on many occasions (Badeau et al., 2006), but does not remove
inherent ambiguity. Some real-world examples include a critically damped
harmonic oscillator and involves a double pole (Serway et al., 2010), La-
guerre functions (the exponentials modulated by Laguerre polynomials) are
often used in the estimations of time delay (Sabatini, 1997; Fischer and
Medvedev, 1999) and biomedical applications for modelling the florescence
decay (Ivanova et al., 2005). Multi-pole signals also appear as solutions to
Schrödinger equation for hydrogen-like atoms (Hänsch et al., 1979), laser
physics, as transverse laser modes (Milonni and Eberly, 1988), and in fi-
nance, for modeling the evolution of interest rates (Filipovic, 2000).
An important drawback is extremely high CPU complexity when compared
to spectral energy re-allocation methods, especially when only a small num-
ber of sinusoids is of interest. Analysing a single sinusoid would result
in complexity about 200 times higher than a similar energy reallocation
method with comparable accuracy (Muševič and Bonada, 2013).
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As already mentioned, the absence of any kind of transform increases the ac-
curacy, but operating completely in the time domain, the methods become
very sensitive to the model mismatch. It is important to stress that fail-
ure to estimate the number of prominent sinusoids contained in the signal
(Kumaresan and Verma, 1987) affects the accuracy gravely. Interestingly,
this phenomena is a by-product of the ability to jointly estimate multiple
components, which can now be viewed as a advantage and a drawback,
depending on the specific application at hand.

2.4 Various

Percussion sounds can be successfully modelled using a sinusoid with Gamma-
tone amplitude envelope (Scholler and Purwins, 2011) - a desirable model
for such signals has to include an exponential damping parameter (Chris-
tensen and van de Par, 2006) to express the exponential energy loss of a
vibrating object without continuous energy supply. Lastly, the main benefit
of the complex polynomial amplitude compared to the real one is the ability
to encode frequency modulations to some extent, enabling some desirable
audio coding properties (Bartkowiak, 2007; Pantazis et al., 2011).





Chapter 3

Generalised sinusoid analysis
using derivatives

One of the most widespread sinusoidal models is a so called generalised
sinusoid. Assuming the polynomial log-AM/FM yields:

s(t) = er(t) = exp

(
K∑
k=0

rkt
k

)
(3.1)

= ep(t)+jq(t) = (3.2)

= exp

(
K∑
k=0

(pk + jqk)t
k

)
, (3.3)

where rk are complex parameters composed of log-amplitude parameters pk
and phase parameters qk and p0, q0 are the static log-amplitude and static
phase respectively.

3.1 Reassignment and derivative method

Reassignment method was first proposed in (Kodera et al., 1978, 1976)
and generalized for any time-frequency distribution (including the STFT)
in (Auger and Flandrin, 1995). Its main idea is to reassign spectrum en-
ergy from its current time/frequency location to a new one, located in the
time/frequency gravity of the energy. This fairly simple concept has proven
extremely powerful in removing spectral energy from the time frequency
regions without any sinusoidal content. Despite numerous differences, a

25
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general notion of energy reallocation can be attributed to all the methods
described in this thesis. It could be viewed as a sidelobe supression method,
especially when non-stationary frequency parameter estimates are used to
demodulate the signal. Such FM removal further improves energy conce-
tration and centres the spectral energy at the frequency of the underlying
sinusoid. This phenomena was observed and mathematicall justified in (Abe
and Smith, 2005) QIFFT algorithm.
The assumed model is linear log-AM/FM and historically, such model bears
the following notation:

s(t) = exp
(
a0 + µ0t+ j(φ0 + ω0t+ ψ0t

2)
)
, (3.4)

where parameters a0, µ0, φ0, ω0, ψ0 correspond to log-amplitude, log-amplitude
change rate, phase, frequency and frequency change rate, respectively. Note
that the last term will later be changed to t2

2 rather then t2 to accommodate
for the time derivation. By using the Gaussian window function:

w(t) =
1√
2π
σe−

1
2σ
t2 =

√
p

π
e−pt

2
, (3.5)

where σ is the standard deviation of the Gaussian and p = 1/2σ2, an ana-
lytic expression for bounded FT can be obtained (Abe and Smith, 2005)

〈s, wejω〉 = eu(ω)+jv(ω) (3.6)

where

u(ω) = a0 +
µ2

0

4p
− 1

4
log

(
1 +

(
ψ0

p

)2
)
− p

4(p2 − ψ2
0)

(
ω − ω0 −

µ0ψ0

p

)2

(3.7)

v(ω) = ψ0 +
µ2

0

4ψ0
+

1

2
arctan

(
ψ0

p

)
− ψ0

4(p2 − ψ2
0)

(
ω − ω0 +

pµ0

ψ0

)2

.

(3.8)

Above expression reaches a global maximum at:

argmax|eu(ω)+jv(ω)| = ω0 +
µ0ψ0

p
. (3.9)

Clearly, a non-zero µ0 and ψ0 introduce a bias to the frequency estimate,
if it were to be estimated by identifying a maximum in the magnitude
spectrum. Interestingly, removing either AM or FM would remove such
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bias. There are no analytical expressions for more general family of window
functions, for example the popular raised cosine windows (Nuttall, 1981;
Harris, 1978).Such non-linear behaviour drastically reduces the accuracy
of this simple frequency estimator. Reassignment was designed to surpass
such bias as long as the sinusoid under study matches the assumed model.
The family of tractable models for reassignment has been extended in the
last years. Most of additional flexibility stems from the simplification of the
definition of the method itself (Marchand, 2008). The expressions however
remain identical to classical reassignment as long as linear chirps are con-
cerned (the original model on which reassignment is based).
Detailed and compact derivation of the estimator expressions can be found
in Appendix A.1. The estimates (excluding amplitude and phase) are as
follows:

ω̂(t, ω) = ω −=
(
Sw′

Sw

)
(3.10)

µ̂(t, ω) = −<
(
Sw′

Sw

)
(3.11)

ψ̂(t, ω) =
=
(
SwSw′′−(Sw′ )

2

(Sw)2

)
<
(
Stw′Sw−StwSw

(Sw)2

) , (3.12)

where ω̂, µ̂, ψ̂ stand for the frequency, log-amplitude change rate and fre-
quency change rate estimates. Generally, the hat symbol will designate an
expression for estimate.
The derivative method was first designed as a high accuracy stationary esti-
mator (Marchand, 1998; Desainte-Catherine and Marchand, 1998) and later
generalized to a non-stationary one (Marchand and Depalle, 2008; Hamilton
et al., 2009). Summary of the derivations of the estimators (again, excluding
amplitude and phase) can be found in Appendix A.2:

ω̂(t, ω) = =
(
S′w
Sw

)
(3.13)

µ̂(t, ω) = <
(
S′w
Sw

)
(3.14)

ψ̂(t, ω) =
=
(
S′′w
Sw

)
− 2µ̂(t, ω)ω̂(t, ω)

1 + <
(
S′twSw−StwS′w

(Sw)2

) , (3.15)

which represent analogous expressions to 3.10-3.12. Importantly, the equiva-
lence of the derivative and reassignment method has been shown in (Muševič
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and Bonada, 2010b; Hamilton et al., 2009).
The complete derivations of both methods are included in Appendixes A.1
and A.2 in order to prepare necessary mathematical background for gen-
eralization to an arbitrary modulation degree and proof of equivalence of
both algorithms in such general case.

3.2 Generalised reassignment

The reassignment method has been updated to work with an arbitrary order
polynomial log-AM/FM (Wen and Sandler, 2009), that is an arbitrary K
for the model in equation 3.1. The estimates can generally be defined as
solutions to a specific linear system of equations, however for the sake of
completeness, the solutions for the 2nd degree model from 3.1 which roughly
corresponds to 3.4 follows:

r2 = p2 + jq2 = γ0 + jψ0 =
SwSw′′ − S2

w′

StwSw′ − SwStw′
⇒ (3.16)

p2 = γ0 = <
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
(3.17)

q2 = ψ0 = =
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
, (3.18)

where γ0 is the second order log-AM parameter. The parameter does not
exist in model 3.4, however if the signal does not exhibit such second order
log-AM then the expression 3.17 should be nil anyway. Estimates for first
order parameters follow:

q1 = ω0 =ω −=
(
Sw′

Sw

)
− ψ0<

(
Stw
Sw

)
(3.19)

p1 = µ0 =−<
(
Sw′

Sw

)
+ ψ0=

(
Stw
Sw

)
(3.20)

3.3 Distribution-derivative method

The distribution derivative method (Betser, 2009) belongs to the same fam-
ily of methods as the reassignment and the derivative method as it reallo-
cates spectrum energy to construct a more compact and readable represen-
tation. Its design allows departure from the Fourier transform, but before
exploring various other alternative kernels, analogous expressions to the
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others already presented in this chapter follow (full derivation in appendix
A.4):

r2 = p2 + jq2 = γ0 + jψ0 =
Sw′(ω2)Sw(ω1)− Sw′(ω1)Sw(ω2)

Stw(ω2)Sw(ω1)− Stw(ω1)Sw(ω2)
, (3.21)

where ω1, ω2 are two frequencies, in practice chosen to be as close to the
actual frequency ω0 as possible. The estimator for 1st order parameter:

r1 = p1 + jq1 = µ0 + jω0 = jω − Sw′

Sw
− r2

Stw
Sw

. (3.22)

Taking the real and imaginary part will give linear log-AM/frequency es-
timates identical to that of the reassignment and generalized reassignment
3.10,3.19. Note that the frequency variable is omitted as it can now be arbi-
trary chosen (eg: either ω1 or ω2 from 3.21 or any other appropriate value).
A notable difference compared to the reassignment and derivative method
is the necessity to use more than a single (in above case 2) frequency value.
This may seem impractical, but as will be shown offers more flexibility and
robustness.
The reassignment and derivative method can easily be redefined to avoid
using the Fourier Transform if desired. There is however little need to do so,
as far as modulations are below some reasonable bounds, keeping the corre-
lation between the signal and the kernel high enough to avoid the numerical
problems. A simple polynomial phase kernel could be used (Muševič and
Bonada, 2011) for the analysis of highly modulated sinusoids. Wavelets and
Gabor functions (Daubechies, 1990; Feichtinger and Strohmer, 1998) make
a very attractive family of kernels since much more flexible time-frequency
tiling is possible.
A very important property of the methods presented in this section is the
absence of restrictions on the kernel functions used. In the latter case of
the distribution derivative method with the Fourier kernel, the 2 frequen-
cies can be arbitrarily close, either by calculating the Discrete Time Fourier
Transform (DTFT) at arbitrary frequencies or taking bins of significantly
zero-padded Fast Fourier Transform (FFT).
Interestingly, there is no assumption in the design of any of the methods
that would require the kernels to be orthogonal or even belong to a tight
frame (Christensen, 2003) as long as they are not too similar, in which case
numerical problems would ensue.
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3.4 Estimating static parameters: amplitude and
phase

Estimation of the static amplitude and phase is not directly possible with
the mentioned methods, as computing first or higher order time derivatives
removes constants. A straight-forward, but CPU intensive way to estimate
the static parameters is based on assumption that non-static parameters
can be estimated with high enough accuracy.
The static parameter can be separated from the signal:

s(t) = er0γ(t). (3.23)

Estimates of the non-static parameters can be used to compute an estimate
γ̂(t), which can in turn be used to estimate the static parameter:

〈s, γ̂〉 = er0〈γ, γ̂〉 ⇒ (3.24)

r0 = log(〈s, γ̂〉)− log(〈γ, γ̂〉). (3.25)

A great difficulty with the above approach is the CPU heavy calculation
of γ̂ from the parameter estimates, when it must be repeated for every fre-
quency bin. It is possible to sacrifice some accuracy by simply using an
already calculated inner product, for example a bin from FFT or an aver-
age of bins around the maxima - any kernel with large correlation with the
signal will suffice (Betser, 2009).
The calculation of γ̂ could be done via Sub-band Sinusoidal Synthesis method
(Wen and Sandler, 2013) however the accuracy deteriorates in high fre-
quency band.
Importantly, the phase and amplitude estimates are not required if only re-
allocation of the original representation is desired. However, a much sharper
reallocated representation is obtained by swapping the original amplitude
with the one estimated via 3.24.
In practice the inner product is replaced with a simple sum:

〈x(t), y(t)〉 =

∞∫
−∞

x(t)ȳ(t)dt =
∞∑

k=−∞
x(kT )ȳ(kT ), (3.26)

as many times an analytical expression for above integral cannot be ex-
pressed with elementary arithmetic functions. Except for the infinite Gauss
window 3.5 when the spectral amplitude and phase indeed have analytically



3.4. estimating static parameters: amplitude and phase 31

tractable form 3.7 for log-AM/FM, the more general family of raised cosine
windows:

w(t) =
K∑
k=0

ck cos(2πkt) (3.27)

and substituting ω∆ = ω − ω0 results in the following expression:

Sw(ω) = Γw(ω∆, µ0, ψ0) =

K∑
k=0

1√
ψ0

(
1

4
+
j

4

)
cke

i(2jkπ+T (µ0+jω∆))2

2T2ψ0
√
π

Erf


(

1
4 −

j
4

)
(A)

T
√
ψ0

− Erf

−
(

1
4 −

j
4

)
(B)

T
√
ψ0


+e

4kπ(µ0+jω∆)

Tψ0

Erf


(

1
4 −

j
4

)
(C)

T
√
ψ0

− Erf

−
(

1
4 −

j
4

)
(D)

T
√
ψ0


(3.28)

A = 4kπ + T (−2jµ0 + Tψ0 + 2ω∆)
B = −4kπ + T (2jµ0 + Tψ0 − 2ω∆)
C = 4kπ + T (2jµ0 + Tψ0 − 2ω∆)
D = −4kπ + T (−2jµ0 + Tψ0 + 2ω∆)

Above expression has several problematic properties: with ψ0 = 0 it re-
sults in multiplying 0 and ∞ therefore another, different expression should
be derived for Γw(ω∆, µ0, 0):

Γw(ω∆, µ0, 0) =

K∑
k=0

cke
− 1

2
T (µ0+jω∆)T 2

(
eT (µ0+jω∆) − 1

)
(µ0 + jω∆) cos(kπ)

4k2π2 + T 2(µ0 + jω∆)2

(3.29)

Again, above term is not defined when k = 0, ω∆ = 0, µ0 = 0 therefore we
require another integral for this case:

Γw(0, 0, 0) = c0T (3.30)

In practice, numerical errors appear when mentioned values are small enough,
so we are forced to choose some threshold in each case. Even in such cases,
certain parameter combinations result in multiplying a very large and a very
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small number, leading to numerical errors.
Computing above expressions is clearly intractable and inefficient, but can
lead to more accurate estimation compared to just using equation 3.26. The
effects of noise will almost always overshadow the intricate details described
in above derivations.

3.5 Unified reassignment, derivative and
distribution derivative algorithm

In (Hamilton and Depalle, 2012b) it was shown that the reassignment,
derivative and distribution method can be fused into a more general method,
utilising either different kernel and signal or kernel derivatives. Interestingly,
the last step of the method is still solution of a linear system of equations,
however this equations now come from either reassignment, derivative or a
combination.
The unified view on the three methods has greatly relaxed the restrictions on
the contents of the linear system. Unfortunately, computing signal deriva-
tives is a very erroneous procedure, as it will be shown later in this chapter.
Further, the condition number of the matrix naturally plays a big role. The
amplitude of a higher degree time derivative of the kernel function (required
for generalised reassignment) is factor fs

N bigger than the previous one, caus-
ing the inner products to raise exponentially - the condition number drops
significantly. Further, kernel derivatives inherently include window func-
tion derivatives which must be zero at the start and the end of the time
frame. This poses severe restrictions on window function, forcing a subop-
timal choice in terms of TF properties. Distribution derivative method only
requires first derivative of the kernel, allowing the use of almost arbitrary
window function such as Hann window with very good TF properties. The
requirement to use more than one frequency may seem restrictive, but the
freedom to choose them very close together further extends flexibility to
control TF properties of the method.
In this section a general algorithm based on the reassignment, derivative
and distribution derivative will be outlined. The hybrid algorithm steps
beyond the historical framework of non-stationary sinusoidal analysis, in
the sense that it allows for any order of modulation with an arbitrary mod-
ulation function set and any reasonable kernel transform. In the case of
polynomial modulation function it will by shown that high order models
quickly become numerically unstable and limit the maximum modulation
degree that can be used in practice.
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The reallocation estimators use the time derivative of the signal to generate
the systems of equations. An arbitrary generalised sinusoid model:

s(t) = er(t), r(t) =
K∑
k=0

rkmk(t), (3.31)

with mk(t) an arbitrary modulation function. To arrive to a linear system
in respect to rk a time derivative must be taken:

s′(t) = r′(t)s(t) =
K∑
k=0

rkm
′
k(t)s(t). (3.32)

Above equality represents the core of all reallocation algorithms, as the
signal derivative is expressed by the linear combination of terms involving
known model functions and the original signal - the right hand side of
the equation consists of known quantities and can in practice easily be
computed. The left hand side requires more attention, as it is generally not
available in practice and must thus be computed. In (Desainte-Catherine
and Marchand, 2000) a simple approach by applying the general definition
of a function derivative:

s′(t) = lim
ε→0

s(t+ ε)− s(t)
ε

, (3.33)

directly to the discrete time sampled signal:

s[n] = s[n+ 1]− s[n], (3.34)

yields limited quality results. The error can be minimised by up-sampling
(Raspaud and Marchand, 2007) effectively sending ε close to zero. A simple
differentiator filter can be derived from sampling theorem definition (Marc-
hand and Depalle, 2008):

s(t) =
+∞∑

n=−∞
s[n]sinc(

u(t)︷ ︸︸ ︷
fs −m)⇒ (3.35)

s′(t) =
+∞∑

n=−∞
s[m]

(
cos(πu(t))

u(t)
− sin(πu(t))

πu(t)2

)
⇒ (3.36)

s′[n] = s′(n/fs) = fs
∑
m 6=n

s[m]

(
(−1)n−m

(n−m)

)
. (3.37)
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The discrete derivative s′ can thus be obtained convolving the discrete signal
s by the following filter:

h[n] = fs
(−1)n

n
for n 6= 0, and h(0) = 0. (3.38)

Evidently, the above filter has infinite time support. In practice, an addi-
tional finite time support window function is used. Figure 3.1 shows the
accuracy of the mentioned filter at various frequencies.
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Figure 3.1: Maximal estimation error for all phases, when approximating the
first derivative. Significant approximation accuracy is gained by doubling
the derivation filter length

Computing signal derivatives is a CPU intensive and error prone - it should
be avoided if possible. Luckily, using integration per-partes it is easy to
derive the so called distribution derivative rule:

〈x′, y〉 = xȳ
∣∣∞
−∞ − 〈x, y

′〉, (3.39)

and assuming y approaches 0 when t → ±∞, the distribution derivative
rule is obtained:

〈x′, y〉 = −〈x, y′〉. (3.40)



3.5. unified reassignment, derivative and distribution
derivative algorithm 35

The assumption lim
t→±∞

y(n) = 0, n = 0 · · · k − l provides a simple chain

distribution derivative rule:

〈x(k), y〉 = (−1)k−l〈x(l), y(k−l))〉. (3.41)

An arbitrary choice of k < l gives birth to as many equations as required.
It is now easy to imagine x being the signal under study and y an arbitrary
kernel including the window function. It is now assumed that any degree
time derivative of the signal can be computed with a reasonable accuracy.
The kernel function can be well-defined so any order derivative exists - the
right hand side of the equation 3.41 thus can be computed in practice.
The derivatives of the generalised sinusoid are particularly easy to express
recursively:

s(d) =
K∑
k=0

rk(m
′
ks)

(d−1). (3.42)

Using an arbitrary kernel Ψω (centred around frequency ω) and a limited
time support window function w yields the final equality:

〈s(m−b), (wΨω)(b)〉 = (−1)d+b
K∑
k=0

rk〈(m′ks)(m−d−1), (wΨω)(d)〉. (3.43)

Since model functions mk are also known a priori the inner products can
easily be computed, yielding a linear equation with respect to rk. Naturally,
at least K equations are required to estimate all rk. However, it is common
to set m0 = 1 for the model to include static phase and amplitude. In such
case m′0 = 0 and thus even the first derivative does not include r0 any more:

s′ = r′s =
K∑
k=1

rkm
′
ks. (3.44)

The expression 3.43 can be used to derive various linear systems of equations
for the estimation of the parameters of interest. A rigorous and detailed
tests would be timely, as there are numerous ways to construct a linear sys-
tem. Naturally, one would strive to use a certain construction that would
perform best in all cases, rather than adapt the process to the signal un-
derstudy. It will be shown in chapter 4 that indeed the DDM performs
equally or superior to GRM in all cases, with superior numerical stability
and an option to arbitrarily over determine the linear system. The latter
will greatly improve the analysis of sinusoids exhibiting extreme frequency
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modulation (see chapter 10). This desired property however, diminishes the
practical relevance of the unified approach described here. However a great
contribution of alleviating the assumptions that DDM, GRM and DAM
are separate, independent methods is tremendous. Algorithms outlined in
chapters 5, 6, 7, 8 and 9 were all greatly inspired by the ideas outlined in
this chapter.



Part III

Contribution

37





Chapter 4

Practical and Theoretical
Comparison of the Generalised
Reassignment, Derivative and

Distribution Derivative
methods

4.1 Theoretical equivalence of generalised
reassignment and generalised derivative
method

In this section it will be show that the reassignment and derivative method
are theoretically identical for any modulation degree (Muševič and Bonada,
2010b) as opposed to frequency slope (2nd degree FM) in (Hamilton et al.,
2009). The estimators of both methods are in fact a two special cases of the
same mathematical derivation. It will be immediately clear that computing
the signal derivative should be avoided, thus the reassignment method is
preferred, which is confirmed by the tests. The difference is can only be
detected in practice, since the mathematical derivations assume the deriva-
tive can be computed with an arbitrary accuracy.
Despite it is straightforward to see that derivative method cannot achieve
the accuracy of reassignment in practice, the mathematical derivations will
consolidate and unify the theory behind the methods, revealing details po-

39
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tentially important for the design of more advanced methods.
The definitions of spectral amplitude and phase from section 1.1 equation
1.4:

Sw(t, ω) = exp
(
λ(t, ω) + jφ(t, ω)

)
. (4.1)

Reassigned frequency and time can be expressed (for details see appendix
A.3) for a general case as:

ω̂(t, ω) =
∂

∂t
φ(t, ω) = =

(
∂Sw
∂t

Sw

)
(4.2)

t̂(t, ω) = t− ∂

∂ω
φ(t, ω) = t−=

(
∂Sw
∂ω

Sw

)
. (4.3)

And common notation for the linear-AM/FM generalised sinusoid:

s(t) = exp
(
λ0 + µ0t+ j(φ0 + ω0t+

ψ0

2
t2)
)
. (4.4)

As pointed out in (Marchand and Depalle, 2008) and (Röbel, 2002), general
log-AM and FM expressions can be written as:

µ̂(t, ω) =
∂

∂t
a(t, ω) = <

(
∂Sw
∂t

Sw

)
(4.5)

ψ̂(t, ω) =
∂ω̂

∂t̂
=
∂ω̂

∂t
/
∂t̂

∂t
(4.6)

∂ω̂

∂t
= =

(
∂2Sw
∂t2

Sw −
(
∂Sw
∂t

)2(
Sw
)2

)
(4.7)

∂t̂

∂t
= 1−=

(
∂2Sw
∂ω∂t Sw −

∂Sw
∂ω

∂Sw
∂t(

Sw
)2

)
. (4.8)

The above equations provide estimate expressions independent of the method
used and thus hold for both reassignment and the derivative method. For
reassignment, the following expressions with some restrictions apply:

∂

∂t
Sw = −Sw′ + jωSw (4.9)

∂

∂ω
Sw = −jStw (4.10)

∂2

∂ω∂t
Sw = jStw′ + jSw + ωStw (4.11)

∂2

∂t2
Sw = Sw′′ − 2jωSw′ − ω2Sw. (4.12)
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For the derivative method, slightly simpler expressions hold:

∂

∂t
Sw = S′w (4.13)

∂

∂ω
Sw = −jStw (4.14)

∂2

∂ω∂t
Sw = −jS′tw (4.15)

∂2

∂t2
Sw = S′′w. (4.16)

Substituting reassignment STFT expressions 4.9-4.12 into general equations
for parameter estimations 4.2-4.8 yields:

R

ω̂(t, ω) = ω −=
(
Sw′

Sw

)
(4.17)

R

µ̂(t, ω) = −<
(
Sw′

Sw

)
(4.18)

R

ψ̂(t, ω) =
=
(
SwSw′′−(Sw′ )

2

(Sw)2

)
<
(
Stw′Sw−StwSw

(Sw)2

) , (4.19)

which are well known reassignment expressions for estimating parameters of
log-AM/FM sinusoids. Analogously, substituting derivative method STFT
expressions 4.13-4.16 into same equations results in:

D

ω̂(t, ω) = =
(
S′w
Sw

)
(4.20)

D

µ̂(t, ω) = <
(
S′w
Sw

)
(4.21)

D

ψ̂(t, ω) =
=
(
S′′w
Sw

)
− 2

D
µ̂(t, ω)

D
ω̂(t, ω)

1 + <
(
S′twSw−StwS′w

(Sw)2

) , (4.22)

which are the derivative method expressions as given in (Marchand and
Depalle, 2008) and (Hamilton et al., 2009).
This section has clearly demonstrated that reassignment and the derivative
method are in fact analogous methods, derived from the same general lin-
ear log-AM/linear FM equations. The only difference is the definition of
STFT, which results in quite different expressions for parameter estimates.
Mathematically identical proof was already given in (Marchand and Depalle,
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2008) and (Hamilton et al., 2009), however it was given for each parameter
of linear log-AM/linear FM sinusoids separately and thus did not prove the
equivalence of the two methods for arbitrarily modulated sinusoids. Both
methods should theoretically be generalised to an arbitrary modulation de-
gree and their equivalence in such a generalised case should been shown. In
order to show that, an arbitrary order time derivatives of general linear FM
parameter expressions (equation 4.6) should be considered: ∂nω̂

∂t̂n
= ∂nω̂

∂tn /
∂n t̂
∂tn .

Such expressions would contain STFTs of the form ∂k+lSw
∂tk∂ωl

. It is possible to
transform the general expressions into reassignment ones, containing STFTs
of the form Sw(k)tl and analogously into the derivative method ones, con-

taining STFTs of the form S
(k)

tl
. It is straightforward that reassignment and

corresponding derivative method expressions are identical for all modulation
degrees. The same procedure can be performed for log-AM, concluding the
proof of equality of the two methods for an arbitrary modulated sinusoid.
The derivative method requires computation of signal time-derivatives, as
opposed to reassignment, which requires computation of the window time-
derivatives. In practice, it is impossible to avoid errors computing time
derivative of the signal in time domain. For that purpose, a derivation filter
is used, however unacceptable errors occur at high frequencies (Marchand
and Depalle, 2008). Further, using such filter increases the frame length
requirements of the STFT and raises computational complexity. When per-
forming the STFT analytical expression for window function is known in
most cases, therefore exact analytical expression for its time derivatives can
generally be computed before performing the STFT, which does not add
any computational complexity. It can be concluded that lower computa-
tional complexity and higher accuracy is expected from the reassignment
estimates compared to the derivative method ones. However, tests have
shown that in the reduced frequency range (up to 3/4 Nyquist) methods
perform comparably (Marchand and Depalle, 2008).
A recent development has provided the unification of the derivative, gener-
alised reassignment and the distribution derivative method into one single
hybrid method (Hamilton and Depalle, 2012b). Despite its high flexibility
the hybrid method suffers from the same problems as each method sepa-
rately - the unification does not provide any added value over the original
methods.
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4.2 Per-Parameter Comparison

In this section a classic comparison tests for non-stationary methods is pre-
sented. Thousands of individual tests with various test signal parameters
and white noise levels are conducted. Such tests provide a rigorous assess-
ment of accuracy, by comparing estimations to the CRBs to have a complete
picture of how close to perfection the algorithms are. It will be shown that
some of the presented algorithms indeed come very close to optimal for most
of the mid and high noise range. Since very low noise cases (high SNR) are
not very common in practice, the presented algorithms will be deemed op-
timal for all practical purposes.
Generalised reassignment and distribution derivative methods will be shown
to approach the CRB quality even for very high SNR. An interesting phe-
nomena exhibited by all the algorithms is reaching a certain plateau of
quality, when higher SNR does not improve the quality any more. It is
unreasonable to expect algorithms would be infinitely accurate, simply due
to finite representation of the numbers in computers.
Possibly more interesting is the dependence of accuracy with respect to the
actual signal parameters. The derivative method, for instance, is expected
to deteriorate at higher frequencies due to the inaccurate derivative com-
putation, which is even more evident with the second derivative. This will
limit the derivative method to about 3/4 of the Nyquist frequency range
and linear-AM/FM.
Further, the choice of window function will become increasingly impor-
tant in case of the generalised reassignment. The restriction w(k)(−T

2 ) =

w(k)(T2 ) = 0, k = 0... pose the main obstacle for very high accuracy 3rd
degree log-AM/FM model due to suboptimal TF properties of such window
functions.
The distribution derivative does not suffer from any of the aforementioned
shortcomings. Only the first window derivative w′ is required even for 3rd
degree modulation, allowing for use of the Hann window, drastically reduc-
ing the effective bandwidth of the method.
All tests are conducted in the presence of log-AM and FM. A single complex
sinusoid is analyzed, fs = 44100Hz,H = 511, Hanning window is used and
signal to noise ratio (SNR) expressed in 10 log10(σ2/a2) ranges from -20dB
to + 120dB. Frequency ranges linearly from 0 to 3/8Fs (100 different val-
ues), phase linearly from −0.8π to 0.8π (9 different values), linear log-AM
linearly from -100 to 100 (5 different values, including 0), linear FM lin-
early from -10000 to 10000 (5 different values, including 0). In (Marchand
and Depalle, 2008) the error variance is considered in its strict definition,
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that is: var[X] = E[(X − E[X])2] = E[X2] − E[X]2. The values of X are
normalized, i.e.: the square of the mean is subtracted. Variance of a consis-
tently biased estimator could be very low, as the square of the mean value
of the error (the bias) is subtracted. This makes a biased estimator appear
better, than it is. For this reason, two different measures will be computed:
E[X2] − E[X]2 denoted as normalized and E[X2] as non-normalized vari-
ance. Any difference in these two measure signals a biased estimator.
In practice the magnitude spectrum computed from the FFT is used to
find a peak. That is, a frequency FFT bin at which magnitude spectrum
reaches a maximum is looked for. Such procedure results in a significant
error in frequency estimate, even with zero-padding. Since all methods need
an initial estimate of frequency and magnitude spectrum peak is the only
available estimate, robustness to such error is very important. Denoting
ω̃ as the initial frequency estimate made from the FFT magnitude spec-
trum, the frequency and the linear log-AM/FM estimates can be written as
follows:

ω̃0 = ω̂(t, ω̃) (4.23)

µ̃0 = µ̂(t, ω̃) (4.24)

ψ̃0 = ψ̂(t, ω̃) (4.25)

Since the values of spectrum at ω̃ were already computed, above estimates
take almost no computational overhead and provide a fast way to get rela-
tively good estimates of parameters. However, new frequency estimate ω̃0

provides a better estimate than ω̃, so it can used to get new, better set of
estimates:

ω̃1 = ω̂(t, ω̃0) (4.26)

µ̃1 = µ̂(t, ω̃0) (4.27)

ψ̃1 = ψ̂(t, ω̃0) (4.28)

Note that ω0 is generally not equal to any FFT bin frequency, therefore
above procedure requires additional computations of DTFT at ω0. It is
natural to generalise this recursive run of the algorithm to any degree:

ω̃k = ω̂(t, ω̃k−1) (4.29)

µ̃k = µ̂(t, ω̃k−1) (4.30)

ψ̃k = ψ̂(t, ω̃k−1) (4.31)
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It’s important to note, that to achieve above estimates the most efficient
way would be to first compute ωk−1 and only then ω̃k, µ̃k, ψ̃k. Finally, phase
and amplitude estimates can be computed as proposed in section 3.4:

ãk =

∣∣∣∣ Sw(ω̃k−1)

〈exp(j(ω̃kt+ ψ̃kt2)), ejω̃k−1t〉

∣∣∣∣ (4.32)

φ̃k = ∠

(
Sw(ω̃k−1)

〈exp(j(ω̃kt+ ψ̃kt2)), ejω̃k−1t〉

)
. (4.33)

The continuous FT of a time-limited signal:

X(ω) =

∫ T
2

−T
2

x(t)e−jωtdt, (4.34)

must in practice be approximated by a DTFT:

X[ωl] =

T
2∑

k=−T
2

x[k]e−jωlk. (4.35)

The DTFT spectrum is evaluated only on selected bin frequencies ωl. The
error of such approximation

X(ωl)−X[ωl] =

∞∑
k=−∞
k 6=0

X(ωk + 2πk). (4.36)

Clearly the X(ωk ± 2πk) must decay quickly with k to minimise this er-
ror. For slowly varying sinusoids and a reasonable window function this
automatically holds. The signal x can however represent a derivative of a
non-stationary sinusoids which can depart from the slowly varying modula-
tion assumption and thus cause performance degradation.
In following plots, the errors are shown for 3 different runs of each algorithm:
’no DTFT’ corresponds to parameters with index 0 (ã0, µ̃0, φ̃0, ω̃0, ψ̃0), ’DTFT
1’ corresponds to parameters with index 1 (i.e.: DTFT is used once) and
’DTFT 2’ corresponds to parameters with index 2 (i.e.: DTFT is used twice
recursively). In (Marchand and Depalle, 2008), the ’no DTFT’ variant of
reassignment and ’DTFT 1’ variant of derivative was compared.
In the case of the derivative method, a derivation filter of length 1023 was
used. Further, derivatives of the signal are estimated using a larger time
frame to avoid derivation filter edge effect. Time frame was enhanced by two
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lengths of derivation filter, but only the accurate middle part was kept after
convolution with the filter. If a higher order derivative would be required
an even further frame extension would be required. Therefore derivative
method has some additional requirements, which could be used by other
two compared algorithms in some way to improve its estimates. Therefore,
it can be argued, that the comparison is not entirely fair, as reassignment
and generalized method were given a smaller time frame.
The generalized algorithm was tested using a polynomial model. To sim-
plify the implementation of the algorithm, the degree of amplitude and
phase polynomials are required to be set to the same value. In the tests,
the 2nd degree model was used. This means, that log-amplitude, linear
log-AM and second order log-AM were calculated (although the latest was
not used in comparison). As described in the appendix A.3, the corrections
arising from the time reassignment will be accounted for. Since second order
log-AM is null for all analysed signals, our log-amplitude model is of 1 de-
gree higher order then necessary. In (Wen and Sandler, 2009) it was shown
that setting the polynomial order too high introduces some additional error
due to over-fitting. Therefore, we can expect higher error in log-amplitude
and log-AM estimates. It’s interesting to speculate, that the error is caused
by afore mentioned corrections. The error in the second order log-AM es-
timate, which should be null, is propagated to lower level estimates as a
correction term.
In the tests conducted, Hanning window function was used, although its
second derivative doesn’t satisfy the assumption made in A.57. This could
cause an error in some estimates of the generalized method, however its
results improve in most cases.
In the first series of tests a reduced frequency range of up to 16kHz is used
(about 3/4 of the Nyquist frequency), in order to show comparable per-
formance of the derivative method. The results of these extensive tests
outline several interesting properties. A Firstly, the only estimates exhibit-
ing a bias (i.e., normalised and non-normalised variance differ significantly)
are the amplitude estimates for RM and DAM. Since GRM does not ex-
hibit such bias the reason should be sought in the method differences. The
reassigned-time corrections (for details see A.1,A.2 and A.3) might explain
such phenomena. The bias is significant however not particularly large and
since GRM does not suffer from it, no further attention will be given to it.
Importantly, the accuracy for all the estimators reaches a plateau at some
high SNR. That is: the accuracy does not continue to improve after certain
very low-noise level is reached. Clearly, one of the reasons is the limita-
tion outlined in equation 4.36 and another the already mentioned time-
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corrections. Importantly, no other approximations were made during the
derivation of the algorithms, thus the reasons for any potential inaccuracies
must arrise from practical and implementation issues, which are commonly
harder to detect.
The DAM requires an accurate computation of the signal derivative, which
is either time consuming or erroneous (see figure 3.1, section 3.5 and (Marc-
hand and Depalle, 2008)). However, it was shown in (Marchand and De-
palle, 2008) that in the reduced frequency range, substituting the computed
derivative with the precomputed analytical derivative of the test signal did
not affect the accuracy significantly. The tests conducted correspond to the
AM/FM case in (Marchand and Depalle, 2008). Amplitude estimation of
both DAM and RM profit greatly from re-estimation in mid-SNR region.
Clearly, the GRM is an optimal algorithm for all practical purposes. It
reaches the plateau at about 90dB SNR - well below noise levels encoun-
tered in real-world recordings. Further, re-estimation has no observable
effect on accuracy, a very desirable and expected property as the accuracy
is very close to CRB anyway.
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Figure 4.1: Reassignment method (reduced frequency range): log-amplitude
estimation error
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Figure 4.2: Reassignment method (reduced frequency range): linear log-AM
estimation error
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Figure 4.3: Reassignment method (reduced frequency range): phase esti-
mation error
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Figure 4.4: Reassignment method (reduced frequency range): frequency
estimation error
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Figure 4.5: Reassignment method (reduced frequency range): linear FM
estimation error
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Figure 4.6: Derivative method (reduced frequency range): log-amplitude
estimation error
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Figure 4.7: Derivative method (reduced frequency range): linear log-AM
estimation error
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Figure 4.8: Derivative method (reduced frequency range): phase estimation
error
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Figure 4.9: Derivative method (reduced frequency range): frequency esti-
mation error
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Figure 4.10: Derivative method: (reduced frequency range) linear FM esti-
mation error
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Figure 4.11: Generalized reassignment (reduced frequency range): log-
amplitude estimation error
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Figure 4.12: Generalized reassignment (reduced frequency range): linear
log-AM estimation error
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Figure 4.13: Generalized reassignment (reduced frequency range): phase
estimation error
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Figure 4.14: Generalized reassignment (reduced frequency range): fre-
quency estimation error
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Figure 4.15: Generalized reassignment (reduced frequency range): linear
FM estimation error

In the second suite of tests only the non-normalised variance was calculated
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(so any existing estimation bias is not removed), for DAM 2 different differ-
entiation filter sizes were used (the regular 1023 and 2047 samples), single
re-estimation was performed to get best possible accuracy for all methods
and the full frequency range up to the Nyquist frequency was used.
The GRM and RM behave similarly as in the previous tests (i.e.: the
frequency range does not affect the accuracy), DAM on the other hand
suffers from significant derivative filter accuracy degradation in high fre-
quency range, even longer derivative filter does not alleviate the problem
significantly. Although larger filters might affect the accuracy beneficially,
however the computational cost exceeds that of RM and GRM with the
original 1023 sample length filter already and any effort to improve the
performance of DAM may rightfully be deemed in vain. The GRM clearly
outperforms RM as it correctly applies the time-corrections arising from
higher order modulations to lower order parameters. Most importantly, the
model assumed matches the analysed signal exactly and thus GRM repre-
sents a perfect single sinusoid estimator
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Figure 4.16: All methods (full frequency range): log-amplitude estimation
error
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Figure 4.17: All methods (full frequency range): linear log-AM estimation
error
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Figure 4.18: All methods (full frequency range): phase estimation error
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Figure 4.19: All methods (full frequency range): frequency estimation error
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Figure 4.20: All methods (full frequency range): linear FM estimation error
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4.3 Signal-to-Residual-Ratio Comparison

In the preceding section 4.2 an extensive comparison of DAM, RM and GRM
algorithms was presented. The Distribution Derivative Method (Betser,
2009) falls into the same category as the aforementioned algorithms, an ex-
tensive per-parameter comparison of DAM, RM, GRM and DAM was con-
ducted in (Hamilton and Depalle, 2012a), suggesting the GRM and DDM
achieve similar results for the second degree polynomial model. In this
section, a more elaborate comparison of GRM and DDM with respect to
algorithm parameters was conducted. The DDM allows for an arbitrarily
overdetermined linear system, giving an extra dimension of freedom over
GRM. When considering only the bins of FFT it is expected that zero-
padding will have a more pronounced effect on the DDM than on GRM
since required frequency bins might end up very close together by the zero-
padding process, causing an ill-conditioned linear system, whereas for GRM
only 1 frequency bin is required. Naturally, it is possible to avoid such ill-
conditioning by altering the bin selection strategy, however it will be as-
sumed that choosing the frequency bins as close to each other as possible is
desired, in order to minimise the interference of any neighbouring sinusoids.
The results are based on exact same test set as the previous section 4.2 (full
frequency range). The algorithm parameters, i.e. the zero-padding and the
number of bins used (DDM), are varied to study the overall quality of the
algorithms.
To meaningfully compare the overall algorithm accuracy (in SRR) to the
CRBs, a maximum achievable SRR corresponding to CRBs for the specific
test case should computed:

maxSRR(ŝ(r2 ±
√
εr2 , r1 ±

√
εr1 , r0 ±

√
εr0), (4.37)

where εrk is the CRB for parameter rk and ŝ is the generalised sinusoid
with the specified parameters. For the following tests the equation 4.37 was
evaluated in a brute force manner for each test case in the set. The figures
below depict the average and standard deviation over all the test cases to
accommodate for variations of CRBs and algorithm accuracies across the
test cases.
For GRM the Hann window cannot be used due to specific requirements
(see section A.3), however the tests show only marginal accuracy degrada-
tion (compared to CRB) of about 5dB in the low to mid-SNR region (see
figures 4.21,4.22). In the high-SNR region (above 30dB) the effect of dis-
continuous second window derivative significantly reduces the accuracy as
the maximum SRR of about 40dB is not surpassed. It could be argued that
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such high-SNR cases aren’t very common in most real-world applications
and desirable properties of the Hann window might be of higher priority.
Using Hann2 window (figure 4.22) clearly renders GRM near-optimal in
almost all SNR cases, with less than 5dB below CRB. Zero-padding does
not significantly affect the GRM accuracy as the only benefit is that the
initial frequency estimate is generally closer to the actual value. This is in
accordance with figures 4.12- 4.15 in section 4.2, where it was shown that
the effect of re-estimation (i.e.: using the frequency estimate in the next
algorithm run) does not yield any observable improvement.
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Figure 4.21: GRM: Hann window, dgr = 2, SRR average and standard
deviation for different zero-paddings

For DDM the Hann window is used due to no specific requirements for
its desirable time-frequency properties. The terms Sw(ω) and Stkw(ω) were
computed via FFT for all the frequency bins (rather than much slower
DTFT), however only 2, 5 and 7 bins were used, thus the CPU consumption
shown on the figures might depict a higher value than the absolute mini-
mum required. Zero-padding does have a measurable effect on the estimator
when the system is overdetermined (dgr = 2, Q = 5 and dgr = 2, Q = 7).
Interestingly, 4 times zero-padding reduces the accuracy of up to 10dB,
yielding an increased computation time (shown next to the legend) and
lower quality. For the current test set and frame length, 5 frequency bins
and no zero-padding practically overlaps with the maximum SRR for CRBs
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Figure 4.22: GRM: Hann2 window, dgr = 2, SRR average and standard
deviation for different zero-paddings

computed for N = 1023. It thus seems desirable to keep the frame size at
minimum to increase the accuracy of DDM, contrary to a general consensus
that applies for most TF analysis methods.
From the figures and discussion it is reasonable to deduce that overdeter-
mined (Q = 5) DDM with Hann window, no zero-padding and GRM with
Hann2 window, no zero-padding represent near-optimal algorithms for the
3rd degree polynomial generalised sinusoid. It is important to note that
DDM Q = 5 uses 3 more frequency bins than the Q = 2 and is thus ex-
pected to be more susceptible to inter-partial interference.

4.4 Frequency dependent SRR Comparison

Naturally, lowering the frequency or shortening the analysis frame eventu-
ally decreases the accuracy. To observe the dependency of accuracy on the
frequency, the test results described recently will be averaged on all the
parameters except frequency. Figures 4.27,4.28 and 4.29 show SRR for each
tested frequency below 10kHz.
Importantly, in all the cases the frequency accuracy curves largely overlap
for majority of the SNR. As already observed in section 4.2 the accuracy
reaches a plateau at some SNR, after which no further improvement can
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Figure 4.23: DDM: Hann window, dgr = 2, Q = 2, SRR average and
standard deviation for different zero-paddings
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Figure 4.24: DDM: Hann window, dgr = 2, Q = 5, SRR average and
standard deviation for different zero-paddings

be observed. This cut-off SNR is lower with frequencies approaching 0 and
frequencies approaching fs/2 (figures 4.30,4.31 and 4.32. Frequencies above
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Figure 4.25: DDM: Hann window, dgr = 2, Q = 7, SRR average and
standard deviation for different zero-paddings

−20 0 20 40 60 80 100

0

20

40

60

80

100

120

SNR (dB)

S
R

R
 (

d
B

)

max(SSR) for CRB, Hann window

 

 

CRB,N=1023

CRB,N=2047

CRB,N=4095

Figure 4.26: CRB: SRR average and standard deviation for different zero-
paddings

20kHz were not tested and since fs/2 = 22050Hz the self-interference is not
as pronounced (2000Hz difference) as in the lower frequency region (only
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200Hz difference).
For the lowest frequency tested (200Hz) there is a significant drop for low-
noise region in all cases. The cut-off SNR and plateau level stay roughly
the same for Q = 5 and Q = 7, however the mid-noise region suffers a
bigger drop for Q = 7, signalling the effect of self-interference is starting to
dominate as the 2 extra frequency bins boost the interference slightly.
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Figure 4.27: DDM: Hann window, dgr = 2, Q = 2, no zero-padding, SRR
average for each tested frequency below 10kHz

Figures 4.33, 4.34 and 4.35 show a more compact representation of fre-
quency dependant accuracy plots. Again, the slightly overdetermined ver-
sion of DDM, Q = 5 is proven to be a good balance between low-bandwidth
requirement and high accuracy. The low frequency range is affected signif-
icantly for all cases, however comparing the Q = 2 and Q = 5 versions, the
lower bandwidth requirement of the Q = 2 does not boost the performance
noticeably, at least at the current frequency test set. A more detailed tests
focused only on low-frequency range would be required. The symmetri-
cal, bell shaped accuracy curve for the analysis of low-noise signals (SNR
¿ 80dB) can be attributed to spectral leakage (self-interference), which is
completely dominated by the effect of noise at mid and high-noise levels at
the whole frequency range excluding very low frequencies.

GRM exhibits similar yet not completely identical behaviour to the DDM.
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Figure 4.28: DDM: Hann window, dgr = 2, Q = 5, no zero-padding, SRR
average for each tested frequency below 10kHz
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Figure 4.29: DDM: Hann window, dgr = 2, Q = 7, no zero-padding, SRR
average for each tested frequency below 10kHz

Accuracy at high-frequencies (see figure 4.37) resembles very much the cor-
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Figure 4.30: DDM: Hann window, dgr = 2, Q = 2, no zero-padding, SRR
average for each tested frequency above 10kHz
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Figure 4.31: DDM: Hann window, dgr = 2, Q = 5, no zero-padding, SRR
average for each tested frequency above 10kHz

responding figures 4.28 and 4.31. In contrast, the low-frequency range ac-
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Figure 4.32: DDM: Hann window, dgr = 2, Q = 7, no zero-padding, SRR
average for each tested frequency above 10kHz
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Figure 4.33: DDM: Hann window, dgr = 2, Q = 2, no zero-padding, SRR
average for each tested frequency, -20dB to 100dB SNR (designated on the
legend)
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Figure 4.34: DDM: Hann window, dgr = 2, Q = 5, no zero-padding, SRR
average for each tested frequency, -20dB to 100dB SNR (designated on the
legend)

curacy does not exhibit a significant drop in the low to mid noise range as
it is the case with DDM (figures 4.28 and 4.31).
Figure 4.38 reveals rather poor performance due to the unsuitable use of
the Hann window while figure 4.39 (Hann2 window) exhibits similar trend
as that of DDM Q = 5, Q = 7. In very low-noise cases, (SNR=100dB)
a gradual drop with increasing frequency can be observed and since the
drop starts at about 5000Hz it cannot be attributed to the spectral leakage
(self-interference).

From the figures and discussion in this section it is clear that for estima-
tion of non-stationary sinusoidal parameters zero-padding is not required.
Further, for the second degree polynomial generalised sinusoid a slightly
overdetermined DDM with Hann and GRM with Hann2 window perform
comparably in most cases.
Since both methods derive a linear system of equations, from which the es-
timates are calculated, the condition number represents an important mea-
sure for numerical stability. Figure 4.40 depicts the 2 − norm condition
number:

cond(A) =
maxSV D(A)

minSV D(A)
. (4.38)
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Figure 4.35: DDM: Hann window, dgr = 2, Q = 7, no zero-padding, SRR
average for each tested frequency, -20dB to 100dB SNR (designated on the
legend)
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Figure 4.36: GRM: Hann2 window, dgr = 2, no zero-padding, SRR average
for each tested frequency below 10kHz
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Figure 4.37: GRM: Hann2 window, dgr = 2, no zero-padding, SRR average
for each tested frequency above 10kHz
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Figure 4.38: GRM: Hann window, dgr = 2, no zero-padding, SRR average
for each tested frequency, -20dB to 100dB SNR (designated on the legend)

Above expression can be calculated for square or rectangular matrix alike
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Figure 4.39: GRM: Hann2 window, dgr = 2, no zero-padding, SRR average
for each tested frequency, -20dB to 100dB SNR (designated on the legend)

and large numbers mean badly conditioned system. An important trend
difference is observed: the system conditioning for DDM does not depend
on frequency and remains constant above 10−3. GRM on the other hand,
suffers from much more ill-conditioned system which progressively worsens
with increasing frequency. Such trend explains the asymmetric accuracy
curve observed in figure 4.38, where accuracy unexpectedly drops with in-
creasing frequency, dominating the effect of self-interference not exhibited
by the DDM.

4.5 Low-frequency analysis with GRM and DDM

In the preceding section 4.4 an accuracy overview for full frequency range
has been presented. As expected, the spectral analysis algorithms be-
have substantially different at frequencies close to 0 and fs/2, when self-
interference becomes the strongest contributing factor causing reduced qual-
ity estimations.
A frequency range between 20 and 500Hz is put into focus in this section.
At such low frequencies, the window function TF properties become crucial
as can be deduced from the following figures.
The DDM with Hann2 (figures 4.43 and 4.44) window yields superior ac-
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Figure 4.40: Linear system conditioning: dgr = 2, no zero-padding, condi-
tion number average for each tested frequency

curacy throughout the specified frequency range for the SNR range above
0dB, whereas the ultra-low SNR range (below 0dB) is not affected by the
choice of the window. The GRM with Hann2 window performs similarly to
the DDM with Hann with the exception of high-noise region (below 0dB)
where GRM performs better with frequencies down to 125Hz.

4.6 Conclusion

In the preceding section 4.5 a detailed comparison of the second degree poly-
nomial DDM and GRM in variety of situations was tested and compared. It
is easy to conclude that DDM is the most accurate and flexible method. It
is attractive to consider a 3rd order modulation model and re-evaluate the
methods the GRM might outperform DDM. It would greatly time consum-
ing to run complete tests extended to 3rd order, however initial tests for a
single frequency reveal enough information to conclude the GRM vs DDM
comparison. For 3rd degree GRM the condition number drops below 10−18,
which is well below the boundary at which the results can be considered ap-
propriate by the Matlab programming language. Indeed, initial test confirm
the estimate error rises significantly. The condition number for the DDM
however drops to about 10−6, still considered within bounds. Full test suite



72
practical and theoretical comparison of the generalised

reassignment, derivative and distribution derivative methods

0 50 100 150 200 250 300 350 400 450 500
−60

−40

−20

0

20

40

60

80

Hz

S
R

R
 (

d
B

)

N=1023, dgr=2, Q=2, Hann  window

 

 
100 dB

90 dB

80 dB

70 dB

60 dB

50 dB

40 dB

30 dB

20 dB

10 dB

0 dB

−10 dB

−20 dB

Figure 4.41: DDM - low frequency range (20-500Hz): dgr = 2, Q = 2, no
zero-padding, Hann window, SRR average for each tested frequency, -20dB
to 100dB SNR (designated on the legend)

was not performed as it is clear that DDM is significantly more numerically
stable than GRM. The GRM requires higher window derivatives with each
degree. It is trivial to see that each window derivative is of order fs/N
higher than the previous one, thus some of the entries to the linear system
matrix increase exponentially. Secondly, the higher degree polynomial terms
decrease exponentially with the same factor, forcing some of the entries to
a severely low values. Combination of both phenomena causes this rapid
drop in system condition number for GRM. The DDM on the other hand
only suffers from the second phenomena. It is easy to imagine a partial
solution to this problem, by simply normalising the model functions. Still,
DDM will exhibit higher numerical stability and it can thus be considered of
superior accuracy. In addition, the ability to arbitrarily over-determine the
linear system without side effects will prove to be of tremendous advantage
when analysing highly modulated signals, see chapter 10.
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Figure 4.42: DDM - low frequency range (20-500Hz): dgr = 2, Q = 5, no
zero-padding, Hann window, SRR average for each tested frequency, -20dB
to 100dB SNR (designated on the legend)
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Figure 4.43: DDM - low frequency range (20-500Hz): dgr = 2, Q = 2,
no zero-padding, Hann2 SRR average for each tested frequency, -20dB to
100dB SNR (designated on the legend)
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Figure 4.44: DDM - low frequency range (20-500Hz): dgr = 2, Q = 5,
no zero-padding, Hann2 SRR average for each tested frequency, -20dB to
100dB SNR (designated on the legend)
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Figure 4.45: GRM - low frequency range (20-500Hz): dgr = 2, no zero-
padding, Hann SRR average for each tested frequency, -20dB to 100dB
SNR (designated on the legend
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Figure 4.46: GRM - low frequency range (20-500Hz): dgr = 2, no zero-
padding, Hann2 SRR average for each tested frequency, -20dB to 100dB
SNR (designated on the legend





Chapter 5

Reassignment with adaptive
Fourier poly-phase kernel

It has been shown in (Betser, 2009) that extreme modulation cause reduced
estimation accuracy for the distribution derivative method due to reduced
signal to kernel correlation for FT. This makes it impossible to analyse
highly modulated sinusoids even with presented non-stationary methods if
they rely on FT as the underlying transform. As it will be shown, any num-
ber of arbitrary kernels can be used as there is absolutely no restrictions.
An appropriate selection of the set of the kernel functions is a very different
subject and depends on the signals under study.
It is highly desirable that the transform correlates well with the signal
under study - very high amounts of FM clearly lower the correlation be-
tween the signal and the stationary complex sinusoid, the Fourier kernel.
In this section an adaptive method based on reassignment for the analy-
sis of the generalised sinusoid model exp(r(t)), r(t) ∈ C (see section 1.1)
is presented. The adaptive kernel proposed is a polynomial-phase complex
sinusoid exp(j(ωt+ ψt2)).

5.1 GRM using a generic kernel

Using the integration per partes, Leibniz integration rule and the restriction
w(−T

2 ) = w(T2 ) = 0 (required by the generalized reassignment), the follow-
ing useful equality can be produced (for complete derivation see (Betser,

77
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2009; Wen and Sandler, 2009; Muševič and Bonada, 2010a)):

∂

∂t
〈s, wΨ〉 = −(〈s, wΨ′〉+ 〈s, w′Ψ〉) (5.1)

The above equality is more commonly referred to as the distribution deriva-
tive rule 〈x′, y〉 = −〈x, y′〉. Left hand side can also be expressed as:

∂

∂t
〈s, wΨ〉 = 〈 ∂

∂t
s, wΨ〉 =

〈r′s, wΨ〉 =
K∑
k=1

rk〈m′ks, wΨ〉 ⇒
(5.2)

K∑
k=1

rk〈m′ks, wΨ〉 = −(〈s, wΨ′〉+ 〈s, w′Ψ〉). (5.3)

To compute K−1 non-stationary parameters, another K−2 time derivatives
are required. Its computation can efficiently be performed by the following
pyramid-like scheme:

〈sh,Ψgw〉
↙ ↘

−〈sh,Ψ′gw〉 − 〈sh,Ψgw
′〉

↙ ↘ ↙ ↘
〈sh,Ψ′′gw〉+2〈sh,Ψ′gw′〉+ 〈sh,Ψgw

′′〉,
...

(5.4)

where h(t) stands either for h(t) = 1 to calculate right hand side or h(t) =
h′k(t), k = 1 : K − 1 to calculate the left hand side of the equation 5.3. Im-
portantly, the above derivation holds for any kernel Ψ and window function
w as long as w(k−1)

(
−T

2

)
= w(k−1)

(
T
2

)
= 0 for the desired k.

5.2 Polynomial-phase Fourier kernel

In (Betser, 2009) it was demonstrated that the estimation accuracy is in-
versely proportional to the kernel-to-signal correlation. Therefore maximis-
ing the correlation should improve the accuracy and since the signal is
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modelled as a non-stationary sinusoid, a natural choice for kernel function
would be the same as the model. The proposed kernel function follows:

Ψg(t) = ejg(t), (5.5)

where g(t) is a real polynomial of order M: g(t) =
∑K

k=1 gmt
k. Note that

g0 = 0, as any non-zero value would introduce bias in the phase estimation.
From scheme 5.4 it is clear that a (K − 1)-th degree time derivative of
the kernel function is required. The specific case of the polynomial-phase
Fourier kernel the following scheme similar to 5.4 can be used in order to
calculate the kernel function time derivatives:

Ψ′g =g′Ψg

↙ ↘
Ψ′′g = g′′Ψg + g′Ψ′g

↙ ↘↙ ↘
Ψ′′′g = g′′′Ψg + 2g′′Ψ′g + g′Ψ′′g ,

...

(5.6)

The main advantage of such algorithm is a less restricted kernel, thus the
selection of mk(t) functions can therefore be matched with appropriate ker-
nel functions to maximize correlation and avoid accuracy deterioration in
the case of extreme parameter values.
The algorithm should initially be invoked with g(t) = jω̂t, where ω̂ is a
frequency of the magnitude spectrum peak. This yields an initial estimate
of the polynomial r(t): r̂(t) =

∑K
k=1 r̂kt

k. This initial run of the algorithm
is identical to generalized reassignment as described in (Wen and Sandler,
2009). In the second iteration the kernel function can be adapted to the
signal by setting g(t) = j=(r̂(t)) = j

∑K
k=1 q̂kt

k.
From equations 5.3, 5.4 and 5.6 the following linear system can be directly
deduced:

A =

〈s,Ψgw〉 〈s,Ψ′gw〉+ 〈s,Ψgw
′〉 . . .

〈st,Ψgw〉 〈st,Ψ′gw〉+ 〈st,Ψgw
′〉 . . .

〈st2,Ψgw〉 〈st2,Ψ′gw〉+ 〈st2,Ψgw
′〉 . . .

...
...

. . .

(5.7)

Of a particular interest is the term written in bold, 〈st,Ψgw〉. When
the kernel Ψg(t) closely matches the target signal s(t) then the product
Ψ̄g(t)s(t) ≈ 1 and the following can be deduced:

〈st,Ψgw〉 =

∫
ts(t)Ψ̄g(t)w(t)dt ≈

∫
tw(t)dt. (5.8)
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For any symmetric window function w(t) and t ∈ [−T
2 ,

T
2 ] the above ex-

pression is very close to 0. Such cases occur when the signal exhibits low
or no amplitude modulation causing the linear system of equations close to
singular, rendering the algorithm essentially useless as the condition num-
ber of the matrix approaches 0. Such a drawback can simply be avoided
by artificially inducing some amplitude modulation into the signal and then
subtracting it from the estimate obtained. A very small amount of the am-
plitude modulation of magnitude around 10−10 is sufficient to stabilize the
system and significantly improve the estimates. Importantly, it is expected
that in practice the noise level will dominate the effect of the aforemen-
tioned artificial AM anyway.

5.3 Tests and Results

The tests conducted were identical to those in (Wen and Sandler, 2009).
The metric used was the signal to residual ratio (SRR):

SRR =

∑N
i=1 his

2
i∑N

i=1 hi(si − ŝi)2
, (5.9)

where si, i = 1..N are samples of the original signal s(t) (without noise),
ŝi, i = 1..N are the samples of the estimated signal and hi, i = 1..N are
samples of the weighting function - Hanning window. A model degree of
3 was chosen and the Hann2 function of length 1024 was used as the win-
dow function. The test signals analyzed were real sinusoids sampled at
44100Hz. The parameters of the test sinusoids were varied in the follow-
ing way: 10 phase values in the [0,0.45]π interval, 10 linear log-amplitude
modulation values in the [0,0.0045] /frame interval (roughly corresponds to
the [0,200] /s interval), 10 frequency values in the [255,255.9] bins inter-
val (roughly corresponds to the [10.982, 11.021]Hz) and 10 linear frequency
modulation values in the [0,27] bins/frame interval (roughly corresponds to
the [0,16.000] Hz/s). The tests were conducted in 3 separate groups for the
original reassignment (labeled GEN RM) and the one using the polynomial-
phase kernel (labeled GEN RM PPT). In group 1 (figure 5.1), the linear
frequency modulation was set to 0 while the log-amplitude modulation was
varied (x-axis) in the mentioned range. In group 2 (figure 5.2) the log-
amplitude modulation was set to 0 while the linear frequency modulation
was varied (x-axis) in the mentioned range. In group 3 (figure 5.3), both the
FM and log-AM were jointly varied (x-axis) in double the range compared



5.4. conclusion 81

to the groups 1 and 2. In the first part (labeled SNR: Inf dB in the plots)
no noise was added to the signal and in the second part (labeled SNR: 0dB
in the plots) a Gaussian white noise of the energy equal to that of the clean
signal was added. The range of the log-AM/FM for group 3 was doubled
intentionally to examine properties of both algorithms in highly modulated
cases.
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Figure 5.1: Group 1 (AM only)

5.4 Conclusion

In this chapter, an improvement of the generalised reassignment method
was described. The main idea of the improvement is the use of an adap-
tive polynomial-phase Fourier kernel in conjunction with the general reas-
signment algorithm. The algorithm exhibits a significant improvement in
accuracy compared to the original method in the case of clean signal, as
the effect of frequency modulation is minimised by the adaptive kernel. For
a stationary sinusoid, the accuracy is comparable to the original method,
however an increase in accuracy is observed in the case of non-stationary
ones, reaching almost 50dB in the most modulated case (group 3). The
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Figure 5.2: Group 2 (FM only)
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Figure 5.3: Group 3 (AM and FM )
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method does not improve the analysis of the original algorithm if 0 dB
Gaussian white noise added. The reason for this is the kernel adaptation
works in the opposite way to which is desired. This is because it uses the
estimate of the original method, which is not precise enough at such a high
noise level, therefore the error in the input parameters corrupts the final
estimate.
In group 3, the most modulated case corresponds to 32.000Hz/s change.
This may seem excessive for analysing real world music related signals.
However, a higher order modulation polynomials could exhibit even larger
linear FM values, as its contribution can be cancelled or balanced out by the
second or higher order terms. So as the kernel is adapted to the sinusoid in
question, the energy concentration of its representation in the transform do-
main is increased: the bandwidth of the non-stationary sinusoid is reduced.
This is a desirable property in the case of multicomponent signals, where
side-lobes of a sinusoid cause significant interference to the neighbouring
partials.





Chapter 6

cPACED analysis using Gamma
function

cPACED model is unique in a way that it is the only one with analytically
computable FT for wide variety of window functions. In this chapter an
algorithm based on analytical FT of the cPACED model will be described
and evaluated.
The Gamma function (Bateman Manuscript Project et al., 2006b) is the
extension of the factorial function (with its argument shifted down by 1) to
real and complex numbers. For a positive integer n, the Gamma function
is defined as:

Γ(n) = (n− 1)!. (6.1)

The Gamma function is defined for all complex except negative integers
and zero. For complex numbers with positive real part, it is defined as an
improper integral:

Γ(z) =

∫ ∞
0

tz−1e−tdt. (6.2)

One can quickly recognise similarity of the integrand with the cPACED
model (see definition in section 1.1):

s(t) = a(t)eβ0t =
K∑
k

akt
ke(α+jω0)t. (6.3)

85
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6.1 Lower incomplete Gamma function and
cPACED model

Since the analysis frame is always time limited in practice the upper bound
in equation 6.3 is inappropriate. The lower incomplete Gamma function is
conveniently defined as:

γ(k, x) =

∫ x

0
tk−1e−tdt. (6.4)

Each term of the STFT of the signal in equation 6.3 can now be expressed
in terms of equation 6.4 (assuming rectangular window):

T
2∫

−T2

t
k
e
(α+jω0)t

e
−jωt

dt =

(−1)k

(α+ j(ω0 − ω))k

−T
2

(α+j(ω0−ω))∫
T
2

(α+j(ω0−ω))

τ
k
e
−τ
dτ =

(−1)k

(α+ j(ω0 − ω))k

(
γ
(
k + 1,−

T

2

(
α+ j (ω0 − ω)

))
− γ
(
k + 1,

T

2

(
α+ j(ω0 − ω)

)))
(6.5)

Integration per-partes allows for the following expression:

γ(k, x) = (k − 1)γ(k − 1, x)− xk−1e−x. (6.6)

Together with γ(1, x) = 1−e−x and assuming k to be a non-negative integer
as required by 6.3 the following closed form expression for each term of the
STFT can be obtained:

γ(k, x) = (k − 1)!

(
1− e−x

k−1∑
n=0

xk

n!

)
. (6.7)

Substituting β0 = α+ j(ω0 − ω), the FT of signal 6.3 can be expressed:

〈s, ejω〉 =
K∑
k=0

ak〈tke(α+jω0)t, ejω〉 =

K∑
k=0

ak
(−1)k

βk0

(
γ
(
k + 1,−T

2
β0

)
− γ
(
k + 1,

T

2
β0

))
.

(6.8)

The left hand side of the above equation can be computed from the signal
and can be considered a constant. A quick glance over the above expressions



6.1. lower incomplete gamma function and cpaced model 87

it is easy to see that equation 6.8 contains a linear combination of terms each
consisting of two polynomials (in terms of T2 β0), multiplied by exp(T2 β0) and
exp(−T

2 β0) respectively. If more equations similar to 6.8 are available, the
exponential factors could be eliminated and the resulting expression would
be a multivariate polynomial system of β0 and ak, which would hopefully be
simple enough to solve. As will be shown an arbitrary number of equations
very similar to 6.8 can be obtained by using different window functions.
In order to do such computations, the above equation would have to be
manually manipulated, which is a very complex task even for small K.
Further, the expression corresponds to a square-window. Considering a
large family of raised cosine window functions adds even more complexity
to the equation 6.8:

〈s(t), cos(lπt)ejω〉 =
1

2
〈s(t), ej(ω−lπ)t〉+

1

2
〈s(t), ej(ω+lπ)tejω〉. (6.9)

Using the above expression the commonly used Hann,Hamming as well
as Blackman,Nutall, Blackman−Nutall, Blackman−Harris, F lat− top
and Cosine/Power − of − Cosine windows can be expressed as a linear
combination of expressions 6.9 and 6.8. The equalities

SwHann(ω) =
1

2
S(ω) +

1

4
(S(ω + 2π) + S(ω − 2π)) (6.10)

SwHamming(ω) = 0.54 S(ω) + 0.46 (S(ω + 2π) + S(ω − 2π)) (6.11)

hold for Hann and Hamming window respectively. Symbolic computing
software like (developers, 2013; Wolfram Research, 2013) can be used to de-
rive complete closed-form expressions and potentially simplify them yielding
a simple and computationally cheap implementation.
For the purpose of this chapter a 2nd degree cPACED model (a2t

2 + a1t+
a0)eαt is considered. For the 4 parameters to be estimated, at least 4 equa-
tions are required. All the previously described methods utilised either
signal derivatives, kernel derivatives or different kernel frequencies (see sec-
tion 3.5 ) to deduce enough linear equations to construct a linear system
with respect to the signal model parameters. Since the window function
can justifiably be considered a part of the kernel, another way to produce
equations would be to simply use a different window function.
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6.2 Pole estimator using multiple windows

The algorithm presented in this section constructs an arbitrary number of
equations containing the model parameters by using different kernels, simi-
lar to the DDM and GRM. However, rather than different kernel frequencies
(Betser, 2009) or different kernel derivatives (Wen and Sandler, 2009) a dif-
ferent window functions are used. This may offer some advantage since the
only restriction is the window functions have to be different enough not to
cause numerical problems. Further, the algorithm will use analytical closed
form expressions for the FT of a cPACED sinusoid which generally doesn’t
result in linear system of equations. It will be shown however, that only a
single non-linear term is produced, which can easily be eliminated by utilis-
ing a symbolic computing software. Such algorithms suffer from very high
CPU complexity - the Büchberger algorithm (Cox et al., 2007) for example,
commonly used for solving multivariate polynomial systems exhibits the
complexity of (n!)3 where n is the number of symbolic variables. Clearly,
it is crucial to keep the number of symbolic variables at a minimum. For
that reason the following set of window functions yields a sufficiently sim-
ple problem, so that the closed form expression for the pole in terms of FT
using the different windows can be be computed:

w1(t) = c10 + c11 cos(2πt/T ) (6.12)

w′1(t) = −c11
2π

T
sin(2πt/T ) (6.13)

w2(t) = c20 + c21 cos(2πt/T ) + c22 cos(4πt/T ) (6.14)

w′2(t) = −c21
2π

T
sin(2πt/T )− c222π sin(4πt/T ) (6.15)

The above system only uses 5 parameters, since second and fourth win-
dow are derived from the first and second respectively, thus avoiding the
introduction of new symbolic variables. It is crucial to understand that the
analytic solution can be computed in offline fashion - the resulting equations
are then evaluated in real-time. This way, the vast majority of computa-
tional load is completed before actual run of the algorithm.
By means of symbolic computing algorithms implementation (Wolfram Re-
search, 2013) the terms containing a0, a1, a2, exp(αt− ωt) were eliminated

from 6.12, resulting in a polynomial expression
∑6

k=0 µkβ
k
0 = 0 where coef-
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ficients µk:

µ0 = π
6
(−16(−c21 + c22)(4c11c20 + c10(−4c21 + c22))Sw1′ − 16c11(4c11c20+

c10(−4c21 + c22))Sw2′ )
(6.16)

µ1 = π
6
(−144ic11c20c22Sw1 + 144ic10c11c22Sw2) (6.17)

µ2 = π
4
T

2
(−12(4c11c20(c21 + 2c22)− c10(4c

2
21 + c21c22 + 4c

2
22))Sw1′ + 12c11(4c11c20+ (6.18)

µ3 = π
4
T

2
(−12ic11c22(5c20 − 4c21 + c22)Sw1 − 12ic11(−5c10 + 4c11)c22Sw2) (6.19)

µ4 = π
2
T

4
(12(c11(c20(c21 − 7c22) + 3(c21 − c22)c22)− c10(c

2
21 − 5c21c22 + 4c

2
22))Sw1′−

12c11(−c10(c21 + 2c22) + c11(c20 + 3c22))Sw2′ )
(6.20)

µ5 = −36ic11c22π
2
T

4
((c20 − c21 + c22)Sw1 + (−c10 + c11)Sw2) (6.21)

µ6 = T
6
((−c10(c21 − 4c22) + c11(c20 − 3c22))(−c21 + 4c22)Sw1′ + c11(−c10(c21 − 4c22)+

c11(c20 − 3c22))Sw2′ )
(6.22)

Since ckl are predefined constants 6 estimates β̂0 can be obtained. A lower
degree polynomial can obtained by setting a common constraint w(−T

2 ) =
w(T2 ) = 0 which in turn forces:

c10 = c11 (6.23)

c21 = c20 + c22, (6.24)

and the equation set 6.16-6.22 is simplified to:

µ0 = 48c11c22π
6(c11Sw2′ − c20Sw1′) (6.25)

µ1 = 144jc11c22π
6(c11Sw2 − c20Sw1) (6.26)

µ2 = 36c11c22π
4T 2((3c22 − c20)Sw1′ + c11Sw2′) (6.27)

µ3 = 12jc11c22π
4T 2((3c22 − c20)Sw1 + c11Sw2) (6.28)

µ4 = 0 (6.29)

µ5 = 0 (6.30)

µ6 = 0, (6.31)

and the polynomial is now reduced to the 3rd degree:

jT 2((3c22 − c20)Sw1 + c11Sw2)β3
0+

3T 2((3c22 − c20)Sw1′ + c11Sw2′)β
2
0+

12jπ2(c11Sw2 − c20Sw1)β0+

4π2(c11Sw2′ − c20Sw1′) = 0.

(6.32)

If Hann2

(
1

2
(1 + cos(2πt/T )))2 =

1

8
(3 + 4 cos(2πt/T ) + cos(4πt/T )), (6.33)
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and Hann window are selected as w1(t), w2(t) respectively the polynomial
simplifies even further to:

j2T 2Sw2β
3
0 +6T 2Sw2′β

2
0 +6jπ2(4Sw2−3Sw1)β0 +2π2(4Sw2′ −3Sw1′) = 0. (6.34)

Above equation allows for estimation of complex poles of a cPACED si-
nusoid, but not the modulation polynomial coefficients. Importantly, the
choice of window function is in fact fairly arbitrary. For instance, the fol-
lowing window function set:

w1(t) = c10 + c11 cos(2πt/T ) + c12 cos(4πt/T ) (6.35)

w2(t) = c20 + c21 cos(2πt/T ) + c22 cos(4πt/T ) (6.36)

w3(t) = c30 + c31 cos(2πt/T ) + c32 cos(4πt/T ) (6.37)

w4(t) = c40 + c41 cos(2πt/T ) + c42 cos(4πt/T ) (6.38)

can be used and a substantially more complex polynomial than 6.34 would
be obtained. The computational complexity of finding the solution using
the above system is substantially higher than the one of 6.12-6.15. For
the window configuration in 6.12-6.15 only 5 window parameters were used
whereas the function set in 6.35-6.38 uses 12, some of which might be 0 (if
one of the windows is chosen to be Hann for example). The solution for the
above system has failed to be computed on a regular computer available at
the time of writing in a reasonable time.
Generally, as far as mathematical derivations in this section are concerned,
the window functions need not exhibit any of the restrictions applicable
to DDM and GRM. The generally desired bell-shaped window is merely a
sensible choice, so the samples close the middle of the time frame are pre-
ferred over the ones close to the boundaries. Many state-of-the-art analysis
methods require the use of window derivatives as well, and by definition,
at least one, the original window or its derivative, is not bell-shaped. Since
such algorithms can achieve very high accuracy (see chapter 4 ) despite such
seemingly inappropriate windows, its use will be considered in this chapter
as well.
It is tempting to imagine an even simpler window function system with only
4 parameters:

w1(t) = c10 + c11 cos(2πt/T ) (6.39)

w2(t) = w′1(t) = −c112π/T sin(2πt/T ) (6.40)

w3(t) = c20 + c21 cos(2πt/T ) (6.41)

w4(t) = w′3(t) = −c212π/T sin(2πt/T ), (6.42)
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however the functions w2 and w4 only differ by a factor, thus effectively
removing 1 equation and rendering the system under-defined. It is now
evident that the 5 parameter window function set in 6.12-6.15 if only the
raised cosine window function family is considered.

6.3 Complex polynomial amplitude estimator

The expression 6.34 will be used to estimate the pole of a cPACED sinu-
soid. Naturally the next task at hand is the estimation of the complex
amplitude polynomial coefficients. As already mentioned in (Badeau et al.,
2006, 2008b) the pole estimation is essential for accurate polynomial am-
plitude estimation. Many LS based approaches could be employed (Stoica
et al., 2000), however a simple analytical expression can also be obtained
by assuming the pole estimate is very close to the actual value β̂0 ≈ β0:

〈s, w1e−β̂0〉 ≈ 〈a,w1〉 = a0T +
(π2 − 1)a2T

2

π2
(6.43)

〈s, w2e−β̂0〉 ≈ 〈a,w2〉 = a1T (6.44)

〈s, w3e−β̂0〉 ≈ 〈a,w3〉 =
1

8
T (6a0 +

(2π2 − 15)a2T
2

π2
, (6.45)

from which the following estimators can be deduced:

a0 =
(45− 6π2)〈s, w1e−β̂0〉+ 8(π2 − 6)〈s, w3e−β̂0〉

9T
(6.46)

a1 =
〈s, w2e−β̂0〉

T
(6.47)

a2 =
2π(3〈s, w1e−β̂0〉 − 4〈s, w3e−β̂0〉)

3πT
. (6.48)

As already mentioned, numerous methods for estimating the coefficients of
the complex polynomial amplitude exist, once the pole has been estimated.
In chapter 8, a simple and straightforward method, inspired by DDM is em-
ployed. The above estimators follow the ideas presented in this chapter by
using the analytical closed form expressions for FT rather than constructing
a linear system of equations like DDM and GRM.

6.4 Tests and Results

The tests were performed on the 2nd degree cPACED model (a2t
2 + a1t +

a0)eα+jω0 with the [a2, a1, a0] = [p2 + jq2, p1 + jq1, p0 + jq0]. The test values
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were chosen so all the terms of the amplitude polynomial have equal impact
on the amplitude/phase trajectory:

q2, p2 ∈

[
−
(
fs

2T

)2

,

(
fs

2T

)2
]

(6.49)

α, q1, p1 ∈
[
− fs

2T
,
fs

2T

]
, (6.50)

while p0 + jq0 was randomised for each test case so the following holds:

p0 + jq0 = ejφ, φ ∈ [0, 2π]. (6.51)

Essentially, the overall amplitude at t = 0 is forced to 1 and the phase is
random. A window size of 1023 samples and sampling frequency of 44100
was used.
The SRR corresponding to CRB was computed by taking the maximum
SRR achieved for a combination of specific per-parameter CRBs. Figure
6.1 depicts the overall SRR-SNR dependency averaged over the full fre-
quency range. The algorithm achieves the quality of approximately 20dB
below the CRB. Interestingly, the accuracy is not correlated to frequency,
as depicted on figure 6.2. The absence of self-interference can be explained
by the use of window functions with desirable TF properties. Compared
to GRM or DDM, only the first window derivative is used, rather than
higher order derivatives (GRM) or time-ramped windows w(t)tk (DDM).
A more detailed inspection of low-frequency behaviour 6.3 indeed reveals a
favourable behaviour, as much of the accuracy is retained even below 200Hz
(about 4 wavelengths).
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Figure 6.1: GAMMA 3rd degree cPACED - full frequency range (200-
2000Hz): Hann,Hann2, Hann′, (Hann2)′ window set, SRR average
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Figure 6.2: GAMMA 3rd degree cPACED - full frequency range (200-
2000Hz): Hann,Hann2, Hann′, (Hann2)′ window set, SRR average for
each tested frequency
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Figure 6.3: GAMMA 3rd degree cPACED - low frequency range (20-500Hz):
Hann,Hann2, Hann′, (Hann2)′ window set, SRR average for each tested
frequency

6.5 Conclusion

In this section a novel algorithm for estimation of the parameters of a
cPACED sinusoid has been presented. Specifically, a 2nd degree cPACED
model was tested and compared to the CRB. The algorithm exhibits low
bandwidth requirement resulting in relatively high accuracy in low fre-
quency regions, while general accuracy remains approximately 20dB bellow
the CRB.
Proposed method can be categorised as an energy reallocation method, as
the input frequency is used in the pole estimator, from which resulting
in a new frequency estimate, allowing for the spectral energy reallocation.
The downside of the algorithm is the estimator expressions depend on the
window function set used. It was shown that a fairly exhaustive family of
raised cosine window functions yield a desirable analytic solution. How-
ever, the use of a different window function set would require a complete
recalculation of the estimator expression. The procedure however should be
straightforward and should follow the same general guideline as the one for
the proposed system 6.12-6.15. Since the system 6.35-6.38 is too complex to
be solved on an average computer at the time of writing, a similar, simpler
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system might be imagined:

w1(t) =
1

2
+

1

2
cos(2πt/T ) (6.52)

w2(t) = a1 +
1

2
cos(2πt/T ) + (

1

2
− a1) cos(4πt/T ) (6.53)

w3(t) = a2 +
1

2
cos(2πt/T ) + (

1

2
− a2) cos(4πt/T ) (6.54)

w4(t) = a3 +
1

2
cos(2πt/T ) + (

1

2
− a3) cos(4πt/T ). (6.55)

The windows w2, w3, w4 are clearly inspired by the Hamming window and
w1 is the Hann window. Unfortunately, utilising the exact same procedure
for solving the system, all the parameters cancel out, revealing that the
above system is in fact ill-conditioned, even for distinct a1, a2, a3. The dif-
ficulty of using an automated problem solver is apparent, as most of the
calculations are hidden from the user and thus hard to track, even harder
to modify.
It is possible to imagine a modification of the proposed algorithm by replac-
ing the window function set with the evaluation of the FT 6.8 at different
frequencies. Again, the procedure of eliminating the variables reveals the
system is ill-conditioned and a closed form solution thus cannot be deter-
mined.
It seems the window function set 6.12-6.15 is somehow special, as it was the
only one resulting in a 3rd degree polynomial. From solution polynomial
coefficients 6.16 it is evident, that in general case the polynomial would
be of 6th degree. For a even more general function set 6.35-6.38 an even
higher order solution polynomial can be expected if the system is not ill-
conditioned. It is undesirable to solve such high order polynomial equations
due to numerical instabilities and sensitivity to noise. On the other hand
analysis of a real signal would only complicate the equations slightly more
and could even further improve analysis of very low frequency sinusoids.
However, as it will be shown in chapter 8, a simpler and more accurate
estimator inspired by GRM exists.





Chapter 7

Non-stationary sinusoidal
analysis using Chebyshev

polynomials and Gröbner basis

In this chapter some ideas from

The complex polynomial amplitude model (cPACE) has received much at-
tention (Pantazis et al., 2009a, 2011; Kafentzis et al., 2012) due to its simple
extension to the LS-based joint estimation. It is imperative to understand
that cPACE model describes FM via the imaginary part of the complex
polynomial amplitude. Such procedure cannot accurately describe a linear
chirp (i.e.: a generalised sinusoid) for example as the transition from cPACE
to generalized sinusoid model forces the FM function to be rather complex.
A high degree polynomial amplitude can approximate a linear FM, however
it seems futile to estimate numerous parameters just to transform them into
a single one, while clearly making a very crude approximation. In practice
however it is questionable which model better describes the signal under
study, the cPACE or generalised sinusoid? The cPACE model has been
successfully used in speech/voice analysis (Pantazis et al., 2011) therefore
no clear answer can be expected. Electronic sound sources might produce
more mathematical modulations suggesting the generalized sinusoid could
be a better fit, but no such claims can be made for voice/speech for exam-
ple.
Derivations that follow essentially extend the cPACE degree much higher
than in (Pantazis et al., 2009a; Badeau et al., 2006). A transition from
high-degree cPACE to generalised sinusoid model is performed via analyt-

97
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and gröbner basis

ical solutions of a multivariate polynomial system, arising from truncated
Taylor series. As a consequence a pair of stationary sinusoids with very close
frequencies (below 1 FFT bin) can be resolve to some extent. An impor-
tant notion is that many non-linear polynomial systems are in fact easily
solvable via Gröbner basis (using the Buchberger algorithm (Cox et al.,
2007)). Severe CPU complexity of such symbolic computing algorithms can
be avoided by computing analytical solutions in an off-line manner. These
solutions come in form of univariate polynomials (Cox et al., 2007) and are
therefore easily solvable in real-time.
For purpose of this section a complex sinusoid is defined as in (Wen and
Sandler, 2009):

s(t) = eR(t), R(t) =

M−1∑
m=0

pmαm(t) + j

M−1∑
m=0

qmψm(t), (7.1)

where R(t) is a complex function, a linear combination of 2M real functions
αm(t), ψm(t), weighted with real parameters pm, qm respectively. The func-
tion pairs αm(t) and ψm(t) can theoretically be different, however the most
straight-forward choice for both is monomials: αm(t) = ψm(t) = tm. Other
choices can be motivated by specific a priori knowledge about the signal
under study. For example, analysing vibrato sounds (e.g.: assumed sinu-
soidal modulation with frequency ωm), ψ0(t) = 1, ψ1(t) = cos(ωmt), ψ2(t) =
sin(ωmt) was proposed in (Wen and Sandler, 2009). In the monomial case,
(e.g.: αm(t) = ψm(t) = tm), p0 corresponds to the stationary log-amplitude
while pi, i > 0 corresponds to the i-th order log-amplitude modulation.
Analogously, q0 corresponds to the stationary phase, q1 to the stationary
frequency and parameters qi, i > 1 to the (i−1)-th degree frequency modula-
tion. However the only necessary condition to separate this representation
into 2 factors (e.g. a stationary and non-stationary one) is given by the
generally agreed-on definition of a stationary complex sinusoid ep0+j(q0+q1t)

which follows: α0(t) = ψ0(t) = 1 and ψ1(t) = t. In such case the following
separation can be obtained:

s(t) = ss(t)sns(t) = ep0+j(q0+q1t)eRns(t),

Rns(t) =

M−1∑
m=2

(jqmψm(t) + pmαm(t)) + p1α1(t), (7.2)

where ss, sns are the stationary and non-stationary factors respectively.
The crucial observation is that the signal sns is much less oscillatory com-
pared to ss. An example of a decomposition of a non-stationary sinusoid is
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depicted in Fig. 7.1. Most of the oscillation is captured by the stationary
factor leaving the non-stationary part easy to approximate with a polyno-
mial basis. It is expected the non-stationary parameters can be deduced
from the coefficients of the approximated polynomial. The factor sns is of

Re(s)=Re(s
S
s
SN
)

Re(s
S
)

Re(s
SN
)

Figure 7.1: Above: product (s = ssnss). Middle: stationary factor (ss).
Below: non-stationary factor (ssn).

the form ef(t) and the time derivatives needed for Taylor series expansion
can be computed with the following recursive formula:

(
ef(t)

)(k)
=
(
f ′(t)ef(t)

)(k−1)
. (7.3)

A convenient choice of the expansion point t = 0 yields the following Taylor
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series for ef(t):

ef(0)

+ef(0)f ′(0)x

+ef(0)(f ′(0)2 + f ′′(0))
x2

2!

+ef(0)(f ′(0)3 + 3f ′(0)f ′′(0) + f (3)(0))
x3

3!

+ef(0)(f ′(0)4 + f (4)(0) + 3f ′′(0)2+

4f (3)(0)f ′(0) + 6f ′(0)2f ′′(0))
t4

4!
...

(7.4)

Let’s now assume αm(t) = ψm(t) = hm(t) = tm. This assumption vastly
simplifies the expansion in equation 7.4 as most of the terms simplify to a
complex constant:

f(0) = 0,

f ′(0) = p1,

f ′′(0) = 2!(p2 + jq2),

f (3)(0) = 3!(p3 + jq3),

...

f (l)(0) = l!(pl + jql).

(7.5)

For sake of generality and compactness the equation 7.4 is rewritten as:

ef(x) = ef(0)
l=∞∑
l=0

γ[l]
xl

l!
, (7.6)

where γ[l] stand for the coefficients composed of parameters of the function
f . If the modulation functions are indeed polynomials (eg: monomials),
than the coefficients γ[l] are multivariate polynomials of the parameters
pk, qk. If the γ[l] can be estimated from signal then a system of multivariate
polynomials can be constructed and the parameter estimation problem is
solved by solving this system.
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7.1 Discrete Fourier-Chebyshev basis

This section constructs a function set necessary for accurate estimation of
the coefficients γ[l] from the signal observations. The signal under study
will be conveniently defined by combining equation 7.7 and 7.6:

s(t) = ep0+jq0ejq1t
l=∞∑
l=0

γ[l]
tl

l!
. (7.7)

Common definitions of the dot product in the space of continuous functions
and its analogous definition in discrete time are assumed:

〈p, q〉 =

∫ ∞
−∞

p(t)q̄(t)dt (7.8)

〈p, q〉 =
∞∑

l=−∞
p[l]q̄[l]. (7.9)

A peak in Fourier magnitude spectrum gives a good approximation q̂1 of
the frequency parameter q1. With definition of Fourier kernel Ψω(t) = ejωt

the following approximation can be obtained:

〈s,Ψω〉 ≈ ep0+jq0

∞∑
l=0

γ[l]

l!
〈ejq1ttl,Ψq̂1〉. (7.10)

It can now be recognized the Fourier basis must be extended to match the
terms for l > 0. It is crucial the extended function set remains orthogonal.
For a fixed frequency ω0 the following equality gives a good clue:

〈Ψω0t
n,Ψω0t

l〉 =

∫ ∞
−∞

Ψω0Ψ̄ω0t
n+ldt = 〈tn, tl〉. (7.11)

Orthogonalizing the function set Ψω0t
n is indeed identical to that of or-

thogonalizing monomials. There are numerous polynomial orthonormal
basis (Legendre, Chebyshev, Laguerre, Jacobi, Hermite...) of which the
Legendre polynomials (Bateman Manuscript Project et al., 2006a) are the
most straightforward as they can be derived from from monomials via the
Gram-Schmidt orthogonalization process. Of all the mentioned polyno-
mial basis only Chebyshev (Bateman Manuscript Project et al., 2006a) and
Legendre are orthogonal with the respect to the inner product defined in
equation 7.8 and are therefore the only candidates. A little less obvious
issue is this polynomial sets are all defined in continuous time and do not
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and gröbner basis

assure orthogonality when discrete version of the inner product (equation
7.9) is used. Using original polynomials simply sampled at equidistantly
spaced times causes unacceptable errors in practice due to reduced orthog-
onality (Mukundan et al., 2001). The solution however is straightforward
as discrete time versions of Legendre/Chebyshev polynomials were discov-
ered (Morrison, 1969)(Clenshaw and Mühlig, 1963) as well as numerically
stable methods for its computation (Aburdene and Dorband, 1996)(Mukun-
dan, 2004) extensively used in image coding applications (Liao and Pawlak,
1996)(Mukundan et al., 2000). A recursive construction over degree of the
polynomials and its time variable (Mukundan, 2004) offers sufficient stabil-
ity even for higher order polynomials. To author’s knowledge such construc-
tion is only known for discrete Chebyshev polynomials. A report on supe-
rior image coding ability of the Chebyshev over Legendre basis (Mukundan
et al., 2000), followed by the analysis of the condition number of the alter-
nant matrix (Aitken, 1956) similar to that in (Li and Wen, 2010) favoured
recursive construction of Chebyshev polynomials on degree and time vari-
able over sampled continuous Chebyshev and Legendre polynomials, due to
superior numerical stability.

Alternant matrix condition number analysis

There has been a report on superior image coding ability of the Chebyshev
polynomials over the Legendre ones (Mukundan et al., 2000). However
images are of entirely different nature as sound signals therefore a further
investigation is required. The analysis of the condition number of the al-
ternant matrix similar to that in (Li and Wen, 2010) was conducted. The
alternant matrix of a function set fl, l = 1..n is defined as in (Aitken, 1956):

A =


f1(t1) f2(t1) . . . fn(t1)
f1(t2) f2(t2) . . . fn(t2)

...
...

. . .
...

f1(tm) f2(t2) . . . fn(tm)

 . (7.12)

The condition number of an alternant matrix A gives a bound on inaccuracy
of the solution x of a system Ax = b. The condition number is defined as
follows (Cheney and Kincaid, 2007)

κ(A) = ‖A‖‖A−1‖. (7.13)

An extended comparison is depicted in figure 7.2. To compare relevant
function sets the following were tested:
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• time sampled continuous Legendre polynomials (with recursion on
degree)

• discrete Legendre polynomials

– direct formula

– with recursion on degree

• time sampled continuous Chebyshev polynomials

• discrete Chebyshev polynomials

– with recursion on degree

– with recursion on degree and time variable

• monomials

• discrete Fourier basis

The most readable and compact form of defining polynomial sets is by a re-
cursive construction formula. Explicit formulas are complex and offer little
insight, and will thus be omitted if recursive formula is known. Continuous
Legendre polynomials can be defined with recursive formula on its degree
(Bateman Manuscript Project et al., 2006a):

(n+ 1)ln+1(t) =(2n+ 1)tln(t)− nln−1(t), (7.14)

l0(t) =1, (7.15)

l1(t) =t, (7.16)

Explicit formula for its discrete version (Morrison, 1969):

Ln[k] =
n∑
l=0

(−1)l
(
n

l

)(
n+ l

l

)
k(l)

N (l)
, (7.17)

where k(l) is the backward factorial defined as:

x(l) = x(x− 1)(x− 2)...(x− l + 1). (7.18)

A recursive formula is also known (Neuman and Schonbach, 1974):

(n+ 1)(N − n)Ln+1[k] =

(2n+ 1)(N − 2k)Ln[k]− n(n+N + 1)Ln−1[k]
(7.19)

L0[k] = 1, (7.20)

L1[k] =
(N − 2k)

N
(7.21)
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Similar definitions hold for continuous Chebyshev polynomials (Bateman
Manuscript Project et al., 2006a) :

cn+1(t) = 2tcn(t)− cn−1(t), (7.22)

c0(t) = 1, (7.23)

c1(t) = t. (7.24)

A recursive formula is known for its discrete analogy (Clenshaw and Mühlig,
1963):

Cn[k] =
1

n
(2n− 1)C1[k]Cn−1[k]

− 1

n
(n− 1)

(
1− (n− 1)2

N2

)
Cn−2[k],

] (7.25)

C0[k] = 1, (7.26)

C1[k] =
2k + 1−N

N
. (7.27)

Estimation of the discrete Legendre polynomials was constructed using the
following equation (Aburdene and Dorband, 1996):

P =
(
I−((B′B) ·B)′

) (
Diag(I ′B′B)

)−1
B, (7.28)

[B]i,j =

(
i

j

)
, (7.29)

[I−]i,i =(−1)i, (7.30)

i =0..N − 1, (7.31)

j =0..N − 1, (7.32)

A ·B =C ⇒ [C]i,j = [A]i,j [B]i,j . (7.33)

The n-th row of the matrix C contains the values of the discrete Legendre
polynomial of n-th degree. Above procedure is an implementation of eval-
uation of the explicit formula 7.17 and is not considered to be numerically
stable for degrees above 8 ((Press, 1992) chapter 6.8: Spherical Harmon-
ics).
The most numerically stable construction of discrete Chebyshev polynomi-
als can be achieved by using the recursion on the degree only for the k = 0
and the recursion on the time variable for k > 1 using the recursion on the
time variable. Including normalization terms the recursions are as follows
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(Mukundan, 2004):

Ĉn[1] =

(
1 +

n(1 + n)

1−N

)
Ĉn[0] (7.34)

Ĉn[k] = β1Ĉn[k − 1] + β2Ĉn[k − 2], (7.35)

n = 1, 2, ...., N − 1; k = 2, 3, ...,
N

2
(7.36)

where

β1 =
−n(n− 1)− (2k − 1)(k −N − 1)− k

k(N − k)
(7.37)

β2 =
(k − 1)(k −N − 1)

k(N − k)
. (7.38)

The recursion can be terminated at N/2 as the symmetry can be used to
calculate the rest:

Ĉn[N − 1− k] = (−1)nĈn[k]. (7.39)

It is apparent from the figure 7.2 that discrete Chebyshev polynomial basis
constructed by the recursion on the degree for k = 0 and the recursion on
the time variable for k > 0 is numerically the most stable choice. Surpris-
ingly it seems to be marginally more stable than the discrete Fourier basis,
however there might exist a better construction of Fourier basis providing
even higher numerical stability. Please note that discrete Legendre poly-
nomial does not achieve the same performance when compared to (Li and
Wen, 2010). To authors knowledge the results presented here are correct. In
(Li and Wen, 2010) much better results for the discrete Legendre polynomi-
als were reported, however the authors were unavailable for comments and
could not provide the Matlab code mentioned to achieve reported results.
In any case, the discrete Chebyshev polynomials achieve even lower condi-
tion number that the one reported in (Li and Wen, 2010) for the discrete
Legendre polynomials.

The signal model in equation 7.1 is defined in continuous time, but the dis-
crete Chebyshev basis can be thought of as set of continuous polynomials,
sampled at equidistantly spaced times. Note that these are not equal to
continuous Chebyshev polynomials and their coefficients change with the
number of the time samples , eg: length of observation frame and degree.
It is thus safe to conclude that discrete Chebyshev decomposition can be
matched to the model defined in continuous time which concludes the jus-
tification of its use.
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Figure 7.2: Comparison of the condition number an alternant matrix de-
rived from different functions sets. Above: all function sets. Below: a
zoom-in with only discrete Fourier and discrete Chebyshev polynomials con-
structed by the recursion on the degree for k = 0 and the recursion on the
time variable for k > 0.

Decomposition of non-stationary sinusoid with discrete
Fourier-Chebyshev functions

For the purpose of decomposition motivated discrete Fourier-Chebyshev
function of order l can be defined :

Υw
l [n] = ej2π

n
N
wCl[n], w = 0...N − 1, n = 0...N − 1, (7.40)

where Cl[n] is the discrete Chebyshev polynomial of order l, w is the fre-
quency bin index, n the sample index and N the buffer length in samples.
It is now trivial to see that < Υw

l1
,Υw

l2
>= δl1l2 , where δl1l2 is the Kronecker

delta function and consequently the set Υw0
l , l = 0...N − 1 is an orthogonal

basis for some fixed w0 and normalizing the Cl yields an orthonormal basis.
A non-stationary sinusoid can therefore be represented with the following
decomposition once the nearest frequency bin q̂1 is identified:

µq̂1 [l] =< s,Υq̂1
l >, l => 0. (7.41)

An example of a non-stationary sinusoid similar to the one in Fig. 7.1 is
considered. The modulation functions are monomials of 2nd degree for the
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phase parameters and 1st degree for the log-amplitude. The specific param-
eter values are 1st order (linear) log-amplitude change rate 150/s, static log-
amplitude 0, 1st order (linear) frequency rate 5000Hz/s, frequency 440Hz,
phase 0π, sample rate 44100 and buffer length 511 samples. Parameter val-
ues can be written compactly as the log-amplitude/phase parameter vectors
respectively:

~p = [0, 230] (7.42)

~q = [0.35π, 440, 10000]. (7.43)

Fig. 7.3 shows consecutive approximations of the sinusoid with the Υw
l

with degree l = 0, 1, 2, 3. Analysis of the L1 norm of the representation
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Figure 7.3: Approximation of the non-stationary sinusoid defined by 7.42
and 7.43 with Fourier-Chebyshev functions of ascending degree.

vector µw[l] in respect to the degree l reveals how non-stationarity of the
sinusoid is encoded in the transform domain. From figure 7.4 it is easy to
conclude that there is no information included in coefficients higher than
about 25 as it reaches a plateau governed by noise. The plot in linear
scale suggest even more compressed representation as coefficients reach near
zero values at a degree below 10. More extreme modulations naturally
require more coefficients however modulations present in the example from
Fig. 7.3 and 7.4 are above the limits of standard tests in context of non-
stationary sinusoidal analysis (Marchand and Depalle, 2008) and correspond
to modulations found in real audio signals.
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Figure 7.4: L1 norm of the signal in the transform domain. Left: log scale,
first 100 coefficients. Right: linear scale, first 10 coefficients.

7.2 System of multivariate polynomials

Combining the equations of Taylor expansion of non-stationary part 7.6
with rest of the signal yields:

s(t) = ep0+j(q0+q1t)
l=∞∑
l=0

γ[l]
tl

l!
, (7.44)

where γ[l] is multivariate polynomial of the non-stationary parameters p1, p2, ...,q2, q3, ...
and can be expressed via equations 7.4 and 7.5. Estimation of γ[l] can
be achieved using the discrete Fourier-Chebyshev basis decomposition de-
scribed in section 7.1. The discrete Chebyshev polynomials can be though
of as a set of continuous polynomials sampled at equidistant times. It is
therefore possible to represent each discrete Chebyshev polynomial as a sum
of monomials and thus transform discrete Chebyshev moments into discrete
monomial moments. Such transition depends on the buffer length N and
can be performed with a matrix multiplication:

µwTN = γw, (7.45)

where the TN matrix is composed of coefficients of the discrete Chebyshev
polynomials of degree/length N . Each row of the matrix contains coef-
ficients of one polynomial, each column represents coefficient of a certain
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degree. Therefore an entry at row n, column m corresponds to a m− order
coefficient of the discrete Chebyshev polynomial of n− th degree.
To derive a simple multivariate system, the equation 7.44 can be rewritten
using the frequency q1:

s(t) = ep0+j(q0+q1t)
l=∞∑
l=0

γq1 [l]
tl

l!
. (7.46)

Inserting the terms from 7.5 (which assumes polynomial modulation func-
tions for log-amplitude and phase) into equation 7.4, matching correspond-
ing coefficients with 7.6, the following equalities are obtained:

ep0+jq0 = γq1 [0]

ep0+jq0p1 = γq1 [1]

ep0+jq0(p2
1 + 2jq2) = γq1 [2]

ep0+jq0(p3
1 + 6jp1q2) = γq1 [3]

ep0+jq0(p4
1 + 12jp2

1q2 − 12q2
2) = γq1 [4],

...

(7.47)

which is recognized as a system of multivariate polynomials of 4 parameters
(p0, p1, q0, q2). The frequency parameter q1 does not appear in the system
as it was cancelled out. In practice however, an estimate of the frequency
rather than the exact value is available yielding a slightly different system
(see subsection 7.3). The solutions of a multivariate polynomial system 7.47
are estimates of the sinusoidal parameters.

Gröbner basis and Buchberger algorithm

This subsection briefly outlines the most important aspects of the Gröbner
basis and Buchberger algorithm (Cox et al., 2007). For the sake of brevity
many concepts are simplified, and sometimes renamed to avoid lengthy def-
initions, proofs and theorems.
A specific multiplication/addition sequence, called the Buchberger algo-
rithm, can be applied to each multivariate system, in order to transform
it into a special set of polynomials, the so called Gröbner basis. The main
idea of this iterative process is to gradually eliminate variables from the sys-
tem by iteratively combining 2 polynomials and cancel out certain terms.
A crucial requirement of this process is an ability to order multivariate
monomials, the so called monomial ordering must be defined. The degree
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ordering of terms (denoted by ≺) of an univariate monomial arises nat-
urally: t ≺ t2 ≺ t3 ≺ t4. However, in case of a multivariate monomial,
additional information is required. For example, the two terms x2y, xy2

cannot be degree ordered. A lexicographic ordering requires the parameters
to be ordered in a sequence, also denoted by ≺. Assuming a parameter
ordering x ≺ y, it is possible to order the two terms in question:

x2y ≺ xy2, (7.48)

or more generally:

xk1yl1 ≺ xk2yl2 ⇔ k1 > k2 or (l1 > l2, if k1 = k2). (7.49)

Since x ≺ y, the power of x dominates the power of y. Above lexicographic
ordering rule can be easily extended to an arbitrary number of parameters.
The most important property of the Gröbner basis is that the first poly-
nomial is an univariate polynomial of the first parameter (according to the
defined parameter ordering), from which solutions for it can be directly
computed. The second polynomial contains only the first two parameters
and solutions for the first one can be directly inserted since they were com-
puted in the previous step, making the second polynomial univariate as well.
Generally, a chain of univariate polynomials can be obtained by substituting
solutions from previous polynomials into the next one (Buchberger, 1976).
This unique property of the Gröbner basis, computed with the Buchberger
algorithm using lexicographic ordering generally allows computation of all
existing solutions to a complex valued system - the existence and finiteness
of the Gröbner basis is guaranteed (Buchberger, 1976). All the computa-
tions presented in the following subsection were done with the Buchberger
implementation from SAGE open-source mathematics software (developers,
2013). As an example we approximate an unknown non-stationary sinusoid
with polynomials of increasing degrees. The roots of the polynomial with-
out the imaginary component will closely match zeros of the signal as degree
is increased. Some number of complex roots, which do not correspond to
the actual zeros of the underlying function might occur. In figure 7.5 the
lower degree approximations exhibit only real roots (top and middle), and
higher degree approximation (below) produces conjugate pairs of complex
root (marked with ’∗’) which do not correspond to an any of the zeros of
the function. According to this example it is important to conclude that as
an effect of approximation some solutions must be identified as spurious. If
the model assumes real solutions the complex solutions must be discarded.
If complex solutions are allowed, as is often the case, there is no way to dis-
tinguish acceptable solutions from spurious ones. It will be shown however
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Figure 7.5: Approximation of a function by polynomials with polynomials.
From such polynomial approximation The signal and its approximations are
plotted on the x-y plane and the same plane is used for a real-complex plots
for the roots. This way the real roots will have no y-axis component and
will closely match the zeros of the function. The real roots are marked as
’+’ and the complex ones with ’∗’.

that certain polynomials from Gröbner basis always give the right solutions
and the others the spurious ones. A more detailed explanation of the theory
of Gröbner basis and Buchberger algorithm is out of scope of this document:
a discussion on spurious complex roots and a short,condensed introduction
in the topic of computational commutative algebra can be found in (Cox
et al., 2007).

7.3 Solutions to various signal models

In this section the Gröbner basis of systems defined by various signal models
will be used to estimate the parameters of a non-stationary sinusoid. The
steps of the Buchberger algorithm will be omitted for the sake of compact-
ness. In all cases, the peak location in magnitude spectrum q̂1 was used as
a initial estimation of frequency. To get a better estimate of frequency, a
slightly different model separation to stationary - non-stationary parts than
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in 7.2 will be used:

s(t) = ss(t)sns(t) = ep0+j(q0+q̂1t)eRns(t),

Rns(t) = p1t+ j

∆q1︷ ︸︸ ︷
(q1 − q̂1) t+

M−1∑
m=2

(jqm + pm)tm. (7.50)

This way the frequency offset ∆q1 can be estimated in the same way as the
rest of the non-stationary parameters.

Linear FM, first order AM complex sinusoid

The first model considered is the most common one in the context of non-
stationary sinusoidal modelling:

s(t) =ep0+p1t+j(q0+q1t+q2t2)

=ep0+j(q0+q̂1t)ep1t+j(∆q1t+q2t2)

=ejq̂1ter0+r1t+r2t2 ,

r0 =p0 + jq0,

r1 =p1 + j∆q1,

r2 =jq2,

(7.51)

The corresponding multivariate system:

er0 − γq̂1 [0] = 0 (7.52)

er0r1 − γq̂1 [1] = 0 (7.53)

er0
(
r2

1 + 2r2

)
− 2γq̂1 [2] = 0 (7.54)

er0
(
r3

1 + 6r1r2

)
− 6γq̂1 [3] = 0 (7.55)

er0
(
r4

1 + 2r2
1r2 + 2r2

2

)
− 24γq̂1 [4] = 0 (7.56)

...

The set of univariate polynomials that give direct means of solving above
system depend on the degree and can be obtained using the Buchberger
algorithm. The minimum number of polynomials in the original set must
naturally be equal or greater to the number of unknown variables, in this
particular case 3. The Buchberger algorithm returns the following solutions
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for r2, r1 for system consisting of equations 7.52,7.53 and 7.54:

2r2(γq̂1 [0])2 + (γq̂1 [1])2 − 2γq̂1 [0]γq̂1 [2] = 0 (7.57)

r1γq̂1 [0]− γq̂1 [1] = 0. (7.58)

Note that in this simple example, the solution equations can be obtained by
a few algebraic operations on the system, eg: the Buchberger algorithm can
be performed by hand. As the modulation degree increases, human capacity
of solving the system is quickly surpassed. Note that above equations also
hold for the case of r2 = p2 + jq2, e.g.: log-AM and FM are polynomials of
the second order. The degree of the model can be arbitrarily increased and
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Figure 7.6: Relative error of the estimators with respect to non-stationarity.
The FM/log-AM is jointly increased with higher values on the x-axis. The
dashed line corresponds to 1% accuracy.

the Gröbner basis will provide the solutions for higher order parameters
as well. For instance, the relevant univariate polynomial for 3rd degree
log-AM/FM parameter r3:

3r3(γq̂1 [0])3 − (γq̂1 [1])3+

+3γq̂1 [0]γq̂1 [1]γq̂1 [2]− 3(γq̂1 [0])2γq̂1 [3] = 0.
(7.59)

Deriving above solution by hand would be time consuming and error prone
procedure, whereas the Buchberger algorithm derives it in fraction of a
second.



114
non-stationary sinusoidal analysis using chebyshev polynomials
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Two complex sinusoids, no FM, first order AM

The following twin sinusoid model is considered:

s(t) =ep10+p11t+j(q10+q11t) + ep20+p21t+j(q20+q21t)

=ep10+j(q10+q̂t)ep11t+j∆q11t + ep20+j(q20+q̂t)ep21t+j∆q21t

=ejq̂t(er10+r11t + er20+r21t),

(7.60)

r10 =p10 + jq10,

r11 =p11 + j∆q11,

r20 =p20 + jq20,

r21 =p21 + j∆q21,

∆q11 =q11 − q̂,
∆q21 =q21 − q̂,

where q̂ is an estimate of frequency close to both q11, q21 preferably between
these values. The resulting multivariate system:

er10 + er20 − γq̂[0] = 0 (7.61)

er10r11 + er20r21 − γq̂[1] = 0 (7.62)

er10r2
11 + er20r2

21 − 2γq̂[2] = 0 (7.63)

er10r3
11 + er20r3

21 − 6γq̂[3] = 0. (7.64)

...

The quadratic equation from its Gröbner basis, contaning only parameter
r21:

r2
21a2 + r21a1 + a0 = 0, (7.65)

where

a2 =γq̂[1]2 − 2γq̂[0]γq̂[2]

a1 =6γq̂[0]γq̂[3]− 2γq̂[1]γq̂[2]

a0 =4γq̂[2]2 − 6γq̂[1]γq̂[3].

(7.66)

A closer look at the equations 7.61-7.64 reveals the following symmetry : if
the parameters r11 ↔ r21 and r10 ↔ r20 are swapped, the system remains
the same: the system is invariant to the mentioned variable swap. By
swapping r11 ↔ r21 in equation 7.65, the quadratic equation for r11 can be
derived. The solutions of r11 are therefore identical to those of r21, which



7.3. solutions to various signal models 115

appears to be counter intuitive. In practice however it has been observed,
that one of the two solutions to equation 7.65 corresponds to r21 and another
to r11. Similar holds for the r10,r20 pair, thus it is reasonable to rewrite 7.65
by swapping r21 with a new variable r1, leaving out the notion whether the
parameter belongs to the first or the second sinusoid:

r2
1a2+r1a1 + a0 = 0

a2 =γq̂[1]2 − 2γq̂[0]γq̂[2]

a1 =6γq̂[0]γq̂[3]− 2γq̂[1]γq̂[2]

a0 =4γq̂[2]2 − 6γq̂[1]γq̂[3].

(7.67)

The example in Fig. 7.7 shows frequency error for two complex station-
ary sinusoids with frequencies close to 1760Hz. In practice, the magnitude

−14

−12

−10

−8

−6

−4

−2

0
Overlapping stationary sinudoids (1760Hz ± 2% )

r
e
l
.
 
f
r
e
q
.
 
e
r
r
o
r
 
(
l
o
g
1
0
)

 

 

freq. err. 1

freq. err. 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−14

−12

−10

−8

−6

−4

−2

0

r
e
l
.
 
f
r
e
q
.
 
e
r
r
o
r
 
(
l
o
g
1
0
)

frequency diff (%)

Figure 7.7: Error of joint estimation of the frequencies of two complex
stationary overlapping sinusoids of equal amplitude. The relative phase
difference at time 0 remains constant. Above: the q̂ was set to the mag-
nitude peak of the spectrum. Bottom: the q̂ was set to the average of the
frequencies of the sinusoids. The dashed line marks the 1% accuracy limit.

peak of the spectrum would be chosen for the required frequency estimate
q̂. Severe zero-padding would eventually place the spectrum peak very close
to middle frequency of the overlapping partials, assuming the amplitudes
are almost equal. It is also informative to see how the estimator behaves
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when frequencies other than the FFT bins are used, therefore an average
frequency q̂ = (q1 + q2)/2 was tested. Both plots in Fig. 7.7 exhibit roughly
the same accuracy, rendering the use of the FFT bin value nearest to the
spectrum peak appropriate for use in practice.
Above promising example serves merely as a proof-of-concept, more rigor-
ous tests and comparison is required to establish the overall accuracy and
usefulness in practice.

Practical considerations

In practical audio applications, a minimal accuracy requirement of a sinu-
soidal parameter estimator would generally correspond to the loudness and
frequency resolution of human perception. If the analysis stage is followed
by transformation/resynthesis, the accuracy requirement might rise well be-
yond human hearing abilities, as transformations might amplify the error.
Model based estimators suffer accuracy degradation for two main reasons:
presence of Gaussian noise and discrepancy between the assumed model and
reality. The single sinusoid estimators fail to take into account a neighbor-
ing sinusoid, however estimators normally implicitly limit this effect. Any
FFT bin value arising from a time limited signal (which is always the case,
since time infinite signals cannot be analyzed in practice) is largely affected
by a bandwidth corresponding to the main lobe of the window function
used, assuming the effect of the side lobes is negligible. Generally, the
inter-sinusoid interference largely depends on the window function used. A
sinusoid pair with frequencies sufficiently close would produce a single peak
in magnitude spectrum for an arbitrary window function, suggesting high
inter-sinusoid interference. A model based estimator, assuming 2 (or more)
sinusoids inside the main lobe bandwidth would greatly improve accuracy
in such cases.
It is interesting to note that non-stationary parameter estimators incur
higher bandwidth. For example the Quadratically Interpolated FFT (QIFFT)
(Abe and Smith, 2005) method requires 3 FFT bin values rather than just
one, effectively increasing its bandwidth and making it more sensitive for
interference. Similar holds for the distribution derivative method (Betser,
2009), whereas generalized reassignment (Wen and Sandler, 2009) requires a

closer look. The use of various window functions (w(t), tw(t), ∂w(t)
∂t ) at the

same frequency seems to avoid increasing the bandwidth. A close inspection
reveals that is not the case. Figure 7.8 shows a magnitude spectrum of all
the window functions required by reassignment, assuming the original one
is Hanning window. Clearly, the side lobe attenuation is largely reduced in
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all cases. It is also evident that energy concentration around the base fre-
quency is reduced. In case of w′(t), w′′(t) most of the energy is confined in
the region bounded by the Hanning window main lobe (±2 frequency bins),
whereas the time ramped window functions w′(t)t, w(t)t cross that bound
slightly. Evidently, time ramping increases the main lobe energy scatter,
whereas time derivation decreases the side lobe attenuation. Simple mathe-
matical deduction would generalize this observation to an arbitrary window
function, however it would be out of scope of this chapter. In the definition
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Figure 7.8: Magnitude spectrum of the original Hanning window function,
it’s time derivative, and time ramped versions, all required by reassignment.

of the proposed method a simple square window was implicitly used. It is
however trivial to introduce an arbitrary window function by substituting
s(t) with s(t)w(t). Such substitution introduces a slight change in the sys-
tem and its solutions, however the same methods for solving it apply. Using
again the Hanning window as an example, figure 7.9 shows magnitude spec-
trums of the original window and its multiplications with the Chebyshev
polynomials of various degrees. Similarly as in the case of reassignment,
energy concentration and side lobe attenuation is observed for derived win-
dow functions. The higher the Chebyshev polynomial degree, the better
approximation and accuracy, therefore a tradeoff is required to balance ef-
fect of inter-sinusoidal interference. Comparing figures 7.8 and 7.9 suggest
the required bandwidth is lower in case of reassignment, making it more
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Figure 7.9: Magnitude spectrum of the original Hanning window function
multiplied by Chebyshev polynomials

suitable for a single sinusoid analysis. However, the proposed method can
resolve overlapping sinusoids which is inherently impossible with reassign-
ment. Nevertheless, reducing bandwidth requirement by using a specially
designed window function would be of great benefit.

7.4 Tests and results

Single sinusoid

Single sinusoid tests conducted were identical to those in (Wen and Sandler,
2009),(Muševič and Bonada, 2011) with an exception of a modified Signal-
to-Noise Ratio (SNR) range. The metric used was Signal-to-Residual Ratio
(SRR) defined by:

SRR =

∑
i his

2
i∑

i hi(si − ŝi)2
, (7.68)

where si, ŝi are discrete time samples of the original (excluding noise) and
estimated signal respectively, while hi are samples of the weighting func-
tion - in this case the Hanning window. The test signals analysed were real
sinusoids sampled at 44100 Hz, window length of 1023 samples. The param-
eters of the test sinusoids were varied in the following way: 10 phase values
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in the [0,0.45]π interval, 10 linear log-amplitude modulation values in the
[0,0.0045] /frame interval (roughly corresponds to the [0,200] /s interval), 10
frequency values in the [255,255.9] bins interval (roughly corresponds to the
[10.982, 11.021]Hz) and 10 linear frequency modulation values in the [0,27]
bins/frame interval (roughly corresponds to the [0,16.000] Hz/s). The tests
were conducted in 3 separate groups. In group 1 (subfigures 7.10a,7.10b and
7.10c), the linear frequency modulation was set to 0 while the log-amplitude
modulation was varied (x- axis) in the mentioned range. In group 2 (sub-
figures 7.10d,7.10e and 7.10f) the log-amplitude modulation was set to 0
while the linear frequency modulation was varied (x-axis) in the mentioned
range. In group 3 (subfigures 7.10g,7.10h and 7.10i), both the FM and log-
AM were jointly varied (x-axis) in double the range compared to the groups
1 and 2. The SNR levels of 50dB, 25dB and 0dB were considered. The
frequency range was selected around half of Nyquist frequency in order to
avoid self-interference.
It is evident from results on Fig. 7.11 that the reassignment is more suitable
for single sinusoid analysis. There is approximately 15dB SRR drop of for
proposed method when compared to reassignment. Additionally, for groups
2 (FM only) and 3 (AM and FM), 50dB SNR the approximation degree of
15 suffers a severe drop of accuracy due to inability of Chebyshev polynomi-
als of this degree to capture the modulations. A similar decrease of quality
is also observed for the approximation degree of 20 for some higher modula-
tion levels. This results are in accordance with the example from 7.1, where
Fig. 7.4 demonstrates that the proposed representation reaches noise level
for a highly modulated sinusoid at a degree around 25. More importantly,
the same accuracy drop is not observed in group 1 (AM only), suggesting
that frequency modulation is a much more difficult to model as amplitude
modulation. A perhaps surprising fact is that lower degree approximations
generally perform better than higher ones, which can be explained with the
effect of noise which is amplified with each added degree of approximation.
Results not presented suggest that accuracy analysing clean signal is ex-
actly the same for all approximation degrees above 25 (sufficient to code
the non-stationarities considered).

Two overlapping sinusoids

To author’s knowledge a standardized test for evaluating joint estimations
have not yet been developed. Tests were performed on a pair of synthesized
stationary sinusoids with a difference between frequencies varying from 0 to
2.5 bins (26 values), relative phase difference varying from 0 to π (11 val-
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Figure 7.10: SRR for single sinusoid model analysis.

ues), frequency range from 200 Hz to 22000 Hz, while amplitudes were kept
equal. Various window lengths and approximation degrees were studied.
During initial testing it was discovered that approximation degree affects
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accuracy to much bigger extent than the length of the window, therefore
only results for N = 1023 are presented. Tests were performed in pres-
ence of Gaussian noise, various SNRs were considered, analytic signal was
computed via discrete Hilbert transform (Marple, 1999). Fig. 7.11a, 7.11b,
7.11c and 7.11d reveal that increasing approximation degree improves re-
sults for higher frequency differences and deteriorates those for very low
frequency differences. A combination of frequency difference (a property of
the signal) and the approximation degree (a parameter of the algorithm)
significantly affects the accuracy, which is generally considered undesirable
and poses a drawback in this case.

7.5 Discussion

In practice, very little computational overhead is needed to derive lower
approximation degree results from the higher ones, therefore an algorithm
based on iteratively lowering the approximation degree should be efficient,
would improve the overall accuracy and at the same time remove the need
to predefine the approximation degree parameter. The presented method
seems promising for the analysis of overlapping sinusoids and should be
evaluated using real world musical signals. One drawback of the presented
models is the assumption of the availability of the analytical signal, which
were computed via discrete Hilbert transform (Marple, 1999). To avoid
this problem a change of the analytical signal model to non-analytical one
is required. Experimenting with such non-analytical models proved to be
significantly harder, as the Gröbner basis for single non-stationary sinusoid
failed to be found with the original version of the Buchberger algorithm in
a reasonable time on an average desktop computer. Importantly, the same
goes for joint estimation of two complex non-stationary sinusoids. Further,
the symbolic computing algorithms for solving multivariate systems fail to
exploit the inherent repetitive structure of the systems, caused by their
intricate connection to Taylor series. Further, the property of invariance
to variable swap in case of twin sinusoid model is not preserved, which is
believed to increase the total computational cost enormously. The exact
effect of breaking the invariance depends heavily on the structure of a spe-
cific system and is hard to predict. It is crucial to note that Gröbner basis
of all mentioned models do exist and, if known, would provide means to
accurate joint multiple-sinusoid non-stationary overlapping sinusoid analy-
sis. Importantly, the Gröbner basis need not be computed in real-time -
once known, they can be hard-coded in the algorithm and optimized for
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Figure 7.11: SRR for twin sinusoid model.

maximum performance.



Chapter 8

Reassignment for cPACED

This chapter presents a new method for the analysis of cPACED sinusoids
using high order derivatives. The polynomial amplitude is cancelled out to
derive a closed form expression for the pole estimation. Since a high degree
derivative is used it bears resemblance to the GRM, however the estimator
is defined in the form of roots of a polynomial, more reminiscent to the
high-resolution method (Badeau et al., 2006). It is of great importance
that the accuracy indeed reaches that of the high-resolution methods, but
exhibits superior performance. It is by no means an attempt to supersede
the frequency resolution of the high-resolution methods, which remains by
far the highest at 1 FFT bin.

8.1 cPACED model

The cPACED model is defined as follows:

s(t) =a(t)e(µ0+jω0)t, (8.1)

a(t) =p(t) + jq(t) =
∑
k=0

(pk + jqk)t
k, (8.2)

where a(t) is the complex polynomial amplitude with real polynomials
p(t), q(t) and its real coefficients pk, qk respectively, while µ0, ω0 are the
exponential damping and frequency parameter respectively, referred to as
pole when combined into a complex number µ0 +jω0. Such model covers all
the parameters of a Gamma-tone envelope except the exact transient time
inside the observed time frame as it is described in (Christensen and van de
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Par, 2006).
Since the polynomial coefficients are complex, they affect AM as well as FM.
Transforming the polynomial into the polar form yields the exponential AM
and FM separately:

s(t) =
√
p(t)2 + q(t)2 exp

(
(µ0 + jω0)t+ j arctan

q(t)

p(t)

)
, (8.3)

= exp ((µ0t+ α(t)) + j(ω0t+ φ(t))) ,where (8.4)

α(t) =
1

2
log(p(t)2 + q(t)2), (8.5)

φ(t) = arctan
q(t)

p(t)
. (8.6)

The Taylor series of φ(t), α(t) suggest a certain degree of ambiguity is ex-
pected. By denoting the phase and log-amplitude power series respectively

Mα(t) =

∞∑
k=0

α(l)(0)

l!
tl, (8.7)

Mφ(t) =

∞∑
k=0

φ(l)(0)

l!
tl, (8.8)

the actual linear phase parameter (i.e. frequency) is a sum of ω0 and φ′(0)
and the actual exponential damping parameter is a sum of µ0 and α′(0). It
is crucial to recognise this duality when assessing the accuracy of the algo-
rithm. Figure 8.1 shows an example of such duality. Evaluating estimations
of amplitude polynomial and exponential damping separately shows signif-
icant discrepancies, however the cumulative amplitude envelope is much
more accurate.

8.2 Pole estimator using derivatives

A Fourier Transform of signal s(t) at frequency ω, using a window function
w(t) is defined as an inner product:

Sw(ω) = 〈s, wΨjω〉 , (8.9)

where Ψx = exp(xt). The FT of signal time derivative is designated as

S′w(ω) =
〈
s′, wΨjω

〉
= (8.10)

−
〈
s, w′Ψjω

〉
+ jω 〈s, wΨjω〉 , (8.11)



8.2. pole estimator using derivatives 125

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0.5

1

1.5

2

2.5

3

3.5
Amplitude envelope

time (s)

 

 

Polynomial Amplitude

Exponential Damping

Polynomial Amplitude (estimated)

Exponential Damping (estimated)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−3

−2

−1

0

1

2

3

4

time (s)

 

 

Amplitude

Amplitude (estimated)

Signal

Figure 8.1: Amplitude polynomial and exponential damping estimates sep-
arately (above) and cumulative (below).

where the second equality follows from the distribution derivative rule (Betser,
2009) and implies w(−T

2 ) = w(T2 ) = 0, where T is the length of the obser-
vation window. Higher signal derivatives can be easily derived using higher
window derivatives, and further restrictions on window function apply: for
l− th signal derivative w(l−1)(−T

2 ) = w(l−1)(T2 ) = 0. The FT of the deriva-
tive of cPACED model follows:

S′w(ω) =
∂

∂t
〈aΨβ0 , wΨjω〉 = (8.12)

〈a′Ψβ0 , wΨjω〉+ β0Sw(ω)⇒ (8.13)

〈a′Ψβ0 , wΨjω〉 = S′w(ω)− β0Sw(ω), (8.14)

where the pole is designated as β0 = µ0 + jω0 for compactness. Time
derivatives of both hand sides of 8.14 yield:

〈a′′Ψβ0 , wΨjω〉+ β0〈a′Ψβ0 , wΨjω〉 =

S′′w(ω)− β0S
′
w(ω)⇒ (8.15)

〈a′′Ψβ0 , wΨjω〉 = S′′w(ω)− 2β0S
′
w(ω) + β2

0Sw(ω). (8.16)

A general expression can easily be proven:

〈a(k)Ψβ0, wΨjω〉 =

k∑
l=0

S(l)
w

(
k

l

)
(−β0)k−l. (8.17)
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Proof by induction: for k = 1 the above expression simplifies to 8.14. As-
suming 8.17 for some k, its derivative is:

〈a(k+1)Ψβ0 , wΨjω〉+ β0〈a(k)Ψβ0 , wΨjω〉 =

k∑
l=0

S(l+1)
w

(
k

l

)
(−β0)k−l. (8.18)

Inserting the induction assumption and rearranging the indexes yields:

〈a(k+1)Ψβ0 , wΨjω〉 =

k∑
l=0

S(l+1)
w

(
k

l

)
(−β0)k−l −

k∑
l=0

S(l)
w

(
k

l

)
(−β0)k+1−l =

k+1∑
l=0

S(l)
w (−β0)k−l

((
k − 1

l

)
+

(
k − 1

l − 1

))
=

k+1∑
l=0

S(l)
w (−β0)k−l

(
k

l

)
, (8.19)

concluding the proof. Assuming the degree of the amplitude polynomial is

K and using the fact that for polynomial p(x) of degree D, ∂D+1p(x)
∂xD+1 = 0,

the following equation can be obtained:

〈a(K+1)Ψβ0 , wΨjω〉 =

K+1∑
l=0

S(l)
w (−β0)k−l

(
k

l

)
= 0, (8.20)

which is a (K + 1)th degree polynomial in respect to β0 and it’s K roots
β̂0,k, k = 1..K are the estimates for the pole β0. Note that both α0 and ω0

are estimated jointly. The K estimates will in general not be equal even
in a noise-less case as already outlined in (Badeau et al., 2006). All the
poles should in theory give the correct result. The pole estimate is used to
estimate the coefficients of the polynomial. In such setting even a inaccurate
pole estimation leads to acceptable SRR, since the polynomial amplitude
coefficients make up for a inaccurate pole estimate. Nonetheless, the best

estimate can be chosen by maxk

∣∣∣〈s, ej=(β̂0,k)〉
∣∣∣.
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8.3 Complex polynomial amplitude estimator

Pole estimates can be used to construct a simple linear system Ax = b:

A =


〈tKΨβ̂0

, wΨjω1 〉 · · · 〈tΨβ̂0 , wΨjω1 〉 〈Ψβ̂0 , wΨjω1 〉
〈tKΨβ̂0

, wΨjω2
〉 · · · 〈tΨβ̂0 , wΨjω2

〉 〈Ψβ̂0 , wΨjω2
〉

.

.

.
.
.
.

.

.

.

〈tKΨβ̂0
, wΨjωR 〉 · · · 〈tΨβ̂0 , wΨjωR 〉 〈Ψβ̂0 , wΨjωR 〉

 (8.21)

x =


aK
aK−1

.

.

.
a1
a0

 b =


Sw(ω1)
Sw(ω2)

.

.

.
Sw(ωR−1)
Sw(ωR)

 , (8.22)

where β̂0 = α̂0 + jω̂0 is the pole estimation acquired as described in section
8.2. Solutions of above linear system give estimates for coefficients of the
complex amplitude polynomial. The window function does not have to be
the same as the one used for pole estimation - restriction on edge values does
not apply. Each row of matrix A corresponds to an arbitrary frequency, the
most reasonable choice being the ones carrying most of the energy of the
sinusoid in question, eg: as close to magnitude peak frequency as possible.
An efficient algorithm implementation can utilise FFT bin values and zero-
padding to avoid costly computation of DTFT at specific frequencies and
to adjust inter-bin frequency difference. Matrix A need not be square,
many times an overdetermined system is desired: the number of estimation
frequencies R can be larger than the number of unknowns K. Such systems
can solved on least-square basis via Moore-Penrose matrix pseudo-inverse
A+:

A+ = (A∗A)+A∗ = (A∗A)−1A∗, (8.23)

where A∗ designates a conjugate transpose of matrix A and A−1 = A+ if A
is square.

8.4 Tests and results

A polynomial amplitude of degree 3 was studied and the polynomial denoted
as: [a3, a2, a1, a0] = [p3 + jq3, p2 + jq2, p1 + jq1, p0 + jq0]. The test values
for p3, p2, p1 were chosen so all the terms of the amplitude polynomial have
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equal impact on the final value:

p3 ∈

[
−
(
fs

2T

)3

,

(
fs

2T

)3
]

(8.24)

p2 ∈

[
−
(
fs

2T

)2

,

(
fs

2T

)2
]

(8.25)

p1 ∈
[
− fs

2T
,
fs

2T

]
. (8.26)

The exact same value sets were used for the imaginary part of the polyno-
mial q(t). A Hann3 window function of length 512 samples was used for
pole estimation and Hann window for the complex polynomial coefficients
estimation. Damping factor was varied in the bounds [-100,100] and only
one frequency of 1000Hz was considered. For each parameter except fre-
quency, only the 2 extreme values and 0 have been tested in order to keep
computational time reasonable. The comparison to a 3th degree (i.e. 4
poles and amplitudes) simple high-resolution method implementation from
DESAM Toolbox (Lagrange et al., 2010) (section 5.1.2.) without whitening
was conducted. The signal tested is the real part of the complex cPACED
signal, reflecting the real world scenario when analytical signal isn’t avail-
able.
To measure accuracy, the commonly used Signal-to-Residual-Ratio (SRR)
metric was used:

SRR =
〈s, ws〉

〈s− ŝ, w(s− ŝ)〉
, (8.27)

where s, ŝ are the original signal (without noise) and the estimated signal
respectively, and w the Hann window. The Signal-to-Noise-Ratio (SNR)
range from [50,-20] was studied. The total computation times for both
methods follow:

Proposed method 28s

High-resolution 5400s
(8.28)

Since HRM involves singular value decomposition of correlation matrix of
size N/2×N/2 the computation cost is significantly higher as the proposed
method only requires K − 1 FFTs for the pole and K DTFTs for the com-
plex polynomial estimates.
The classic Cramer-Rao bounds (CRBs) parameter-by-parameter compari-
son would total to 10 plots (8 for the real/imaginary polynomial coefficients
and 2 for the pole), overcomplicating the results and obscuring the overall
accuracy. A more intuitive approach would involve only one SRR/SNR plot,
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thus a different upper accuracy bound is required. A near perfect estima-
tor can be constructed by substituting the pole estimates with actual poles
and solving the linear system 8.21. The mean and variance of the SRR,
computed with the aforementioned estimator represents a good upper SRR
bound. Figure 8.2 depicts the mean and variance of the baseline estimator,
proposed method and HRM. At low SNR the methods perform roughly the
same, HRM reaching the upper bound while proposed method performing
2dB below. For high SNRs both methods reach a plateau, however the
proposed method’s plateau is about 10dB higher.
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Figure 8.2: SRR: Mean and variance

8.5 Discussion

In this chapter a novel method for analysing cPACED signals was repre-
sented, tested and compared to the HRM. In conducted tests the HRM
performs marginally better in high noise cases, while the proposed method
performs significantly better in low-noise cases. More rigorous testing, in-
volving multicomponent signals is required, but is out of scope of this doc-
ument.
While HRM is a computationally intense method and is designed to jointly
estimate parameters of multiple cPACED sinusoids in the entire frequency
range, the proposed method focuses on a narrow frequency range to estimate
a single cPACED sinusoid. The flexibility of HRM is a huge overkill for the
tests conducted, which is reflected in substantially higher (about 2 degrees
of magnitude) computational costs. However the proposed method could be
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invoked on different frequency ranges, effectively covering the whole spec-
trum. The advantage of the proposed method in this case is the ability to
process only certain frequency regions of interest, reducing the final com-
putational cost.
The pole estimator is inspired by the generalised reassignment method (Wen
and Sandler, 2009), imposing significant requirement on the number and
type of the window function. Such window set usually exhibits subopti-
mal time-frequency properties and quickly reduces the condition number of
the resulting linear system to a value too low to handle even using very
high precision computation. The distribution derivative method (Betser,
2009) circumvents this problem by constructing the linear system using FT
values at different frequencies, rather than using a single FT value, but
using different windows. A version of the proposed method that does not
impose the window requirement would enable an extremely accurate, very
high degree cPACED analysis and would, analogously, correspond to the
distribution derivative method. cPACE model is well suited for analysis of
close frequency non-stationary sinusoids, as the amplitude beating function
can be much better approximated with a polynomial than a generalised si-
nusoid, thus coding such signals is expected to be of higher accuracy with
the proposed method when compared to the generalised reassignment.



Chapter 9

DDM for a Hybrid Sinusoidal
Model - Generalised Sinusoid

with Complex Amplitude
Modulation

The generalised sinusoid and cPACED models differ substantially in the
way they encode AM/FM. While cPACED model yields analytically much
more tractable FT (see chapter 6) the generalised sinusoid seems to encode
FM much more naturally. It would appear that inability of cPACED model
to describe a linear frequency sweep easily is a significant disadvantage. On
the other hand, it is unclear whether a polynomial or exponential AM is
preferred. That said it is a rather hard decision on which model to use for
a specific application.
In (Friedlander, 1993) a model with real polynomial amplitude and polyno-
mial phase function, half cPACED, hald generalised sinusoid has been used.
The estimation method however is based on iterative improvement and is
thus CPU intensive and rather unpredictable due to unknown convergence
region topology.
It is easy to imagine a hybrid sinusoidal model as a product of complex
polynomial amplitude and a generalised sinusoid. Such model would suffer
a certain amount of ambiguity (see section 8.2), but the flexibility to adapt
to various signals is much more preferred. It is expected that parameter-by-
parameter accuracy might not be very high due to ambiguity, however the
flexibility would surpass that of the model employed in (Friedlander, 1993).
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In this chapter an analysis method for the hybrid model inspired by the
DDM and methods used for solving multivariate polynomial systems (Cox
et al., 2007).
The hybrid sinusoidal model will be defined as follows:

s(t) = a(t)er(t), (9.1)

a(t) =
∑
k=0

akmk(t), ak ∈ C (9.2)

r(t) =
∑
l=0

rlnl(t), rl ∈ C (9.3)

where mk, nk are the complex amplitude and log-AM/FM model functions
respectively. To accommodate for the static amplitude and phase, m0 =
n0 = 1 is assumed. A most common, but by no means mandatory selection
for the model functions are polynomials: mk = nk = tk.
The above model 9.1 is ambiguous with respect to parameters r0 and a0.
To show this, the following derivation is considered:

s(t) = a(t)er(t) = a0ã(t)er0+r̃(t) (9.4)

= ã(t) exp(

r̃0︷ ︸︸ ︷
log(|a0|) + j∠(a0) + r0 +r̃(t)), (9.5)

Clearly a0 and r0 are in fact the same parameter in either Cartesian or
polar coordinates. The decision seems irrelevant, however as will be shown
in section 9.1, using the Cartesian form would result in a rank-deficient
system, therefore the model will be constrained to a0 = 1.
It is important to note that since modulation functions are complex they
both contribute to overall AM/FM. If the same model functions are used
(mk = nk) that can lead to some ambiguity, especially when the energy
of mk, nk declines fast with k. Such ambiguity can be demonstrated when
using polynomials for the modulation functions mk = nk = tk:

a(t)er(t) = exp(log(a(t)) + r(t)) (9.6)

≈ exp(a1t+ (2a2 − a1
2)t2 + r(t)), (9.7)

using the 2nd degree truncated Taylor expansion. It is expected that an
estimator for the model in 9.1 could be inaccurate when separate parame-
ter estimates are considered, but generally much more flexible due to twin
AM/FM functions. A potentially problematic situation is encountered when



ddm for a hybrid sinusoidal model - generalised sinusoid with
complex amplitude modulation 133

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−10

−8

−6

−4

−2

0

2

4

6

8

10
SRR: 24 dB

 

 

s
1
 = (190 t

2
 +100 t + 1) exp( 880 t

2
 +20 t + 0 + j (4500 t

2
 + 1500 t +  0.11))

s
2
 = (2290 t

2
 +135 t + 1) exp( 880 t

2
 −5 t + 0 + j (4500 t

2
 + 1500 t +  0.11))

Figure 9.1: SRR between two sinusoids with significantly different parame-
ters 24dB.

estimations are made in consecutive time frames. While overall accuracy
could be satisfactory the frequency and amplitude parameters would not
necessarily connect due to aforementioned ambiguity. It is easy to envisage
a method that uses the ambiguity to translate a set of parameter estimates
into another, while keeping the overall signal estimate approximately the
same by keeping a certain degree of truncated Taylor series coefficients equal
(see equation 9.6). In such case parameter trajectories would be easy to con-
nect.
An example is shown in figure 9.1, where 2 hybrid model sinusoids with
significantly different a1, r1 reach SRR of 24dB. To reach higher SRR the
parameters would have to eventually match exactly, however in noisy con-
ditions a relatively high SRR is achievable with substantial error in per-
parameter estimates. From figure 9.1 is also evident that the proposed
model includes sinusoids with negative amplitude, suggesting good coding
abilities for sinusoid pairs with close frequencies (i.e.: beating partials). The
negative amplitude can only occur when =[a(t)] = 0, since overall ampli-
tude corresponds to:

√
a(t)ā(t)e<[r(t)]. The notion of negative amplitude is

purely artificial (
√
a(t)ā(t)e<[r(t)] cannot be negative), as it does not have

a natural, physical meaning, however it comes handy as a mathematical
generalisation. If negative amplitude is not allowed and =[a(t)] = 0, the
derivative of

√
a(t)ā(t)e<[r(t)] = |a(t)|e<[r(t)] is not continuous for all roots

of a(t). In such cases the absolute value can be easily dropped and negative
amplitude introduced, leading to a mathematically sound model.
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9.1 Non-linear multivariate polynomial system of
equations

A non-linear system can be derived by manipulating the signal time deriva-
tive in the following way:

s′(t) =a′(t)er(t) + r′(t)a(t)er(t),⇒ (9.8)

a(t)s′(t) =a′(t)s(t) + a(t)r′(t)s(t). (9.9)

The last row can be rewritten in a more verbose form that reveals the
non-linearity of the system:

m0s
′ +

K∑
k=1

akmks
′ =

K∑
k=1

akm
′
ks+

(
m0 +

K∑
k=1

akmk

)
L∑
l=1

rln
′
ls, (9.10)

where time variable t was omitted for compactness and a0 was set to 1. The
only non-linear terms arise from the last - double sum expression. Multiply-
ing both sides with a window function w(t) and taking a Fourier Transform
(FT) at frequency ω yields:

S′wm0
(ω) +

K∑
k=1

akS
′
wmk

(ω) =

K∑
k=1

akSwm′k(ω) +
L∑
l=1

rlSwm0n′l
(ω) +

K∑
k=1

L∑
l=1

akrlSwmkn′l(ω), (9.11)

where Sf (ω) = 〈s(t)f(t), ejωt〉 is FT of the signal s multiplied by a function
f and S′g(ω) = 〈s′(t)g(t), ejωt〉 is FT of the signal derivative multiplied by
a function g at frequency ω. Note that n′0 = m′0 = 0 and thus the sums
on the right-hand side start at index 1 rather than 0. Above equation
can be viewed as a (non-linear) multivariate polynomial with respect to
parameters ak : k = 1 . . .K, rl : l = 1 . . . L. The expressions S′f , Sg can be
considered constants for any f, g as they can be directly computed from the
signal. To calculate S′f accurately sample difference in time domain should

be avoided (Marchand and Depalle, 2008). A common approach is the use of
the distribution derivative rule 〈x′, y〉 = −〈x, y′〉 and a real window function
w as part of the kernel y:

S′gw(ω) =〈s′g, wψω〉 = 〈s′, ḡwψω〉 (9.12)

=− 〈s, ḡ′wψω〉 − 〈s, ḡw′ψω〉+ jω〈s, ḡwψω〉 (9.13)

=− 〈sg′, wψω〉 − 〈sg, w′ψω〉+ jω〈sg, wψω〉 (9.14)

= −Sg′w(ω)− Sgw′(ω) + jωSgw(ω), (9.15)
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where ψω is generally a kernel function with FT centred around frequency
ω and for the last equality to hold the kernel is set simply to the Fourier
kernel: ψω(t) = ejωt. Higher time derivatives can accurately be computed
by chaining the above expression. Rearranging the equation and collecting
together the model parameters yields:

S′wm0
(ω) =

K∑
k=1

ak(Swm′k(ω)− S′wmk(ω))+

L∑
l=1

rlSwm0n′l
(ω) +

K∑
k=1

L∑
l=1

akrlSwmkn′l(ω). (9.16)

Taking the FT at different frequencies close to the peak provides as many
equations as necessary. Considering a set of frequency values ω1, . . . , ω(K−1)(L−1),
the following system of equations can be deduced:

Aa(ω) =(Swm′1
(ω)− S′wm1

(ω) Swm′2
(ω)− S′wm2

(ω) . . . Swm′
K

(ω)− S′wmK (ω)) (9.17)

Ar(ω) =(Swm0n
′
1
(ω) Swm0n

′
2
(ω) . . . Swm0n

′
L

(ω)) (9.18)

Aar(ω) =(Swm1n
′
1
(ω) . . . SwmKn′1

(ω)Swm1n
′
2
(ω) . . . SwmKn′2

(ω) . . . SwmKn′L
(ω)) (9.19)

A =


Aa(ω1) Ar(ω1) Aar(ω1)
Aa(ω2) Ar(ω2) Aar(ω2)

.

.

.
.
.
.

.

.

.
Aa(ω(K−1)(L−1)) Ar(ω(K−1)(L−1)) Aar(ω(K−1)(L−1))

 (9.20)

x =(a1, a2, . . . , aK,r1, r2, . . . , rL, a1r1, . . . , a1rL,a2r1, . . . , a2rL, . . . , aKr1, . . . , aKrL) (9.21)

b =(S
′
wm0

(ω1), S
′
wm0

(ω2), . . . , S
′
wm0

(ω(K−1)(L−1))). (9.22)

Solving Ax = b estimates the parameters of the model and the cross-
products. The above system is general enough to be applied to a variety
of model functions. If K = 0 the model corresponds to the generalised
sinusoid and the algorithm is identical to the classical DDM. Analogously,
if L = 1, the model corresponds to the cPACED and the algorithm the
DDM version of the method described in section 8. GRM and DDM, origi-
nally designed for the analysis of the generalised sinusoid model, have been
modified to work with cPACED models. Moreover, the DDM was adapted
for the hybrid sinusoidal model, combining the cPACED and generalised
sinusoid model.

9.2 DDM for cPACED

To compare the proposed method to the current state-of-the-art methods,
the scope should be limited to either generalised sinusoid model or cPACED
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model. The accuracy for the generalised model has been studied in depth.
This section will compare the accuracy of a single sinusoid of the adapted
DDM method described in the preceding section with the HRM and GRM
for cPACED (see section 8). The model functions in equation 9.16 must be
replaced with polynomials:

S′w(ω) +

L∑
l=1

alS
′
tlw(ω) =

L−1∑
l=1

lalStl−1w(ω)

+
L∑
l=1

al

K−1∑
k=0

(k + 1)rk+1Stl+k(ω) +
K−1∑
k=0

(k + 1)rk+1Stk(ω) (9.23)

For a cPACED sinusoids with polynomial amplitude of degree 3 (ie: K=1,
L=3) the following special case can be deduced:

S′w(ω) + a1S
′
tw(ω) + a2S

′
t2w(ω) + a3S

′
t3w(ω) =

a1Sw(ω) + 2a2Stw(ω) + 3a3St2w(ω) + a1r1Stw(ω)

+ a2r1St2w(ω) + a3r1St3w(ω) + r1Sw(ω) (9.24)

Grouping the linear and non-linear terms in respect to al, r1 gives:

S′w(ω) = a1(Sw(ω)− S′tw(ω)) + a2(2Stw(ω)− S′t2w(ω))+

a3(3St2w(ω)− S′t3w(ω)) + r1Sw(ω) + a1r1Stw(ω)

+ a2r1St2w(ω) + a3r1St3w(ω). (9.25)

The distribution derivative rule can be applied to the S′ terms:

S′tlw(ω) = −lStl−1w(ω)− Stlw′(ω) + jωStlw(ω),

for l > 0 (9.26)

S′w(ω) = −Sw′(ω) + jωSw(ω),

for l = 0 (9.27)

Following the approach of the distribution derivative method and consider-
ing FT at 7 different frequencies results in:

A =



Sw(ω1)− S′tw(ω1) · · · Sw(ω7)− S′tw(ω7)
2Stw(ω1)− S′t2w(ω1) · · · 2Stw(ω7)− S′t2w(ω7)
3St2w(ω1)− S′t3w(ω1) · · · 3St2w(ω7)− S′t3w(ω7)

Sw(ω1) · · · Sw(ω7)
Stw(ω1) · · · Stw(ω7)
St2w(ω1) · · · St2w(ω7)
St3w(ω1) · · · St3w(ω7)



′
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’

x =



a1

a2

a3

r1

r1a1

r1a2

r1a3


, b =



S′w(ω1)
S′w(ω2)
S′w(ω3)
S′w(ω4)
S′w(ω5)
S′w(ω6)
S′w(ω7)


.

Solving the linear system Ax = b is the estimator for the model parame-
ters. For high parameter values, the frequency spread of the signal might
be large - a small number of frequency bins (in above case 7) might not
suffice to cover all the information in the Fourier domain. In such cases
more frequency bins can be considered, forcing the matrix A to be overde-
termined, resulting in a least-squares solution via Moore-Penrose pseudoin-
verse: x = (AHA)−1AHb.

9.3 Tests and results

A polynomial amplitude of degree 3 was studied and the polynomial denoted
as: [a3, a2, a1, 1] = [p3+jq3, p2+jq2, p1+jq1, 1]. The test values for p3, p2, p1

were chosen so all the terms of the amplitude polynomial have equal impact
on the final value:

p3 ∈

[
−
(
fs

2T

)3

,

(
fs

2T

)3
]

(9.28)

p2 ∈

[
−
(
fs

2T

)2

,

(
fs

2T

)2
]

(9.29)

p1 ∈
[
− fs

2T
,
fs

2T

]
. (9.30)

The exact same value sets were used for the imaginary part of the poly-
nomial q(t). A Hann window function of length 511 samples was used for
pole estimation and Hann window for the complex polynomial coefficients
estimation. Damping factor was varied in the bounds [-100,100] and only
one frequency of 1000Hz was considered. For each parameter except fre-
quency, only the 2 extreme values and 0 have been tested in order to keep
computational time reasonable. The comparison to a 3th degree (i.e. 4



138
ddm for a hybrid sinusoidal model - generalised sinusoid with

complex amplitude modulation

poles and amplitudes) simple high-resolution method (HRM) implementa-
tion from DESAM Toolbox (Lagrange et al., 2010) (section 5.1.2.) without
whitening and the cPACED reassignment method (cPACED-RM) (Muševič
and Bonada, 2013) was conducted. The signal tested is the real part of the
complex cPACED signal, reflecting the real world scenario when analytical
signal is not available.
To measure accuracy, the commonly used Signal-to-Residual-Ratio (SRR)
metric was used:

SRR =
〈s, ws〉

〈s− ŝ, w(s− ŝ)〉
, (9.31)

where s, ŝ are the original signal (without noise) and the estimated signal
respectively, and w the Hann window. The Signal-to-Noise-Ratio (SNR)
range from [50,-20] was studied. The total computation times for both
methods follow:

cPACED-RM 15s

cPACED-DDM 26s

High-resolution 5400s

(9.32)

Since HRM involves singular value decomposition of correlation matrix of
size N/2×N/2 the computation cost is significantly higher as the proposed
method only requires K − 1 FFTs for the pole and K DTFTs for the com-
plex polynomial estimates.
The classic Cramer-Rao bounds (CRBs) parameter-by-parameter compari-
son would total to 10 plots, overcomplicating the results and obscuring the
overall accuracy and . A more intuitive approach would involve only one
SRR/SNR plot, thus a different upper accuracy bound is required. For each
test case the CRBs for each parameter were computed. Denoting a CRB
for parameter a0 as εa0 , the minimum SRR for the specific CRB set can be
defined:

minSRR(ŝ(a3 ± εa3 , a2 ± εa2 , a1 ± εa1 , r0 ± εr0 , r1 ± εr1). (9.33)

The mean and variance of the minimum SRR represents a good upper SRR
bound. Figure 9.2 depicts the mean and variance the upper SRR bound,
proposed method (cPACED-DDM), cPACED-RM and HRM. At low SNR
the methods perform roughly the same, HRM reaching the upper bound
while cPACED-DDM and cPACED-RM performing 2dB below. For high
SNRs the methods reach a plateau, however the plateau for cPACED-DDM
and cPACED-RM is about 10dB higher than the plateau for HRM.
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Figure 9.2: SRR: Mean and variance

9.4 Discussion

In this section currently the most flexible sinusoidal method for TF energy
re-allocation analysis has been described. The concept used in the distribu-
tion derivative method is used to solve a non-linear multivariate system of
polynomials obtained by the first signal derivative. It is important to note
that higher signal derivatives would provide enough equations for a solution
to exist, however a significantly more complex system would be obtained.
Even if solution could eventually be obtained, it is desirable to avoid higher
signal derivatives due to ill conditioning.
The method was compared favourably to the high-resolution method for
the cPACED signal model, however much more flexible models are possible
with the proposed method. Further, the proposed sinusoidal model seems
promising for the analysis of overlapping partials, as the beating function
corresponds to real value amplitude/frequency modulated sinusoid - a sub-
family of signals described by the proposed model.
On the other hand high-resolution methods’ intrinsic frequency resolution
of 1 frequency bin (Porat and Friedlander, 1987; Hua and Zhang, 1988)
for damped sinusoids has not been surpassed, as common window function
mainlobe width (several bins) and significant sidelobe amplitude both re-
duce the frequency resolution.
It is important to note that the test conducted in this chapter do not fully
exploit the flexibility of the hybrid model. Unfortunately it has bee ob-
served that introducing linear FM term into the model severely decreases
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the condition number of the system. It is crucial to locate the problem-
atic coefficients and improve the algorithm by stabilising the system. Since
there is no restrictions on the choice of the model functions it potentially
represents a way to solve the problem.



Chapter 10

Variable bandwidth DDM for
bird song analysis

In this chapter non-stationary sinusoidal analysis methods will be tested
on real world signals. Analysing bird chirp sounds represents a significant
challenge as frequency change can reach 100kHz/s (Stowell and Plumbley,
2012b). Successful detection of the frequency slope is crucial for high ac-
curacy analysis necessary for machine recognition of bird sounds, a very
important tool that can facilitate unattended monitoring and other appli-
cations (Walters et al., 2012) in the field of bioacoustics and ecology. For
birdsongs, important tasks include recognition of species and individuals
(Cheng et al., 2012). Particularly important is successful application of
current methods to songbird mixtures, rather than monophonic cases as
singing often occurs within flocks or dawn choruses.
The methods described in previous chapters were not explicitly designed for
the analysis of sound mixtures, however the use of window functions with
desirable TF properties allows for high accuracy analysis of sinusoids with
reasonably different frequencies. Importantly, high AM/FM drastically in-
crease the bandwidth a sinusoid occupies, making resolution of sinusoids
close in frequency even harder. Figure 10.1 depicts 2 spectrograms using
different window length of a relevant part of a bird chirp. Clearly, none
of the TF resolution combinations yield satisfactory results for an accurate
chirp rate estimation. Further, it is unlikely that any TF resolution combi-
nation would result in a readable spectrogram.

A peak-tracking algorithm (T.F.Quateri, 1993) would have experienced
severe problems avoiding the spurious peaks generated by the extreme FM
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Figure 10.1: Birdchirp, approximately 100kHz/s

(AM), but it is safe to assume that with some modifications specifically
tailored for this particular case an acceptable result could be obtained. An
example can be seen on figure 10.2. However, such specialisation is unde-
sired as it tends to spawn numerous sub-algorithms limited to a very specific
task only. In the present case, a high-level algorithm is employed to fix the
problem of a low-level one, i.e.: the inherently low resolution of FT in cases
of highly modulates sinusoids. Methods described in the previous chapters
have been designed for cases like the bird chirp sounds. It has been shown 5
that extreme AM/FM cases can be tackled with GRM by an adaptive ker-
nel and re-estimation (see chapter 5). However, the upper tested FM value
was about 35kHz/s, while the bird chirps under study exhibit modulations
up to roughly 3 times higher.
Rather than using the GRM based approach employed in chapter 5 a sim-
ilar, more straightforward approach using DDM can be envisaged. The
re-estimation procedure using the polynomial-phase kernel requires compu-
tation of the kernel, a costly operation that should be avoided if possible.
The key to successful estimation of signals occupying an extended amount
of bandwidth is to force the set of kernels used by the estimator to cover a
significant amount of the signal’s bandwidth. Using the polynomial-phase
Fourier kernel is one way to modify a single kernel to cover more bandwidth
- the use such kernel with GRM is straightforward. Another simple way
to achieve the same goal is to use a number of Fourier kernels or simply
multiple FFT bin values - a technique inherent to DDM.
A simple practical example demonstrates the usefulness of the ability to
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(a) Spectrogram

(b) Mag. spectrum located at the middle of the above spectrogram

Figure 10.2: Bird sound, high FM and stationary sections show

construct and arbitrarily overdetermined linear system for DDM (for de-
tails see appendix A.4). Rather than DDM spectrogram (short for DDM
reassigned spectrogram), where all the non-stationary parameter estimates
are discarded, the frequency trajectory estimates are plotted for each bin.
To asses the effect of the afore mentioned procedure, the amplitude infor-
mation was discarded and the non-stationary parameters are superimposed
on the spectrogram, the results are shown on figures 10.3-10.6. Each suc-
cessive figure depicts an increasing number of FFT bins used for DDM. As
expected, the TF regions without any sinusoidal content exhibit random
frequency trajectory estimations, whereas in the parts containing the bird
chirp the trajectories align and are clearly correlated. Such representations
are well suited for regression shrinkage algorithms to further enforce spar-
sity (Siedenburg and Dörfler, 2011). Using only 2 frequency bins causes
inconclusive results for the initial part with extreme FM, while using 32
bins largely solves the problem. The figures 10.3-10.6 have proved that
using a larger number of FFT bins for DDM successfully resolves all the
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Figure 10.3: Bird chirp: DDM, Q=2

Figure 10.4: Bird chirp: DDM, Q=8

parts of selected bird chirp sound. For the plots the amplitude estimate
has been discarded to asses the structure of the frequency trajectory field.
Introducing the amplitude estimate results in, what is many times referred
to as a sparse representation, higher amplitude trajectories are plotted with
darker colours. Figures 10.7 and 10.8 clearly show how using 16 FFT bins
DDM significantly improves the sparsity and reduces ambiguity to arguably
an acceptable level.
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Figure 10.5: Bird chirp: DDM, Q=16

Figure 10.6: Bird chirp: DDM, Q=32

All throughout this thesis the theoretical degree of the non-stationary mod-
els has not been specifically limited. In theory, an estimator for any modu-
lation order exists, either for a generalised or cPACED sinusoid. In practical
tests however only 2nd degree generalised and 3rd degree cPACED model
were considered. In the present case of birdsong analysis, the results for the
2nd degree DDM (generalised sinusoid) can be deemed acceptable as figure
10.8 exhibits reasonable amount of sparsity and compactness. Further, the
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Figure 10.7: Bird chirp: DDM, Q=2, sparse representation

linear FM rate estimates (the angle of each frequency line) seem to agree
on the underlying value, i.e. on most occasions the estimates aren’t too far
apart.
The figure 10.9 depicts the 3rd degree DDM spectrogram. Comparing it
to the 2nd degree DDM (figure 10.7) there doesn’t seem to be a significant
improvement in either sparsity or compactness - linear FM isbe flexible
enough model for the description of this specific sound. Certain parts in-
deed profit from the added flexibility, resulting in smoother transitions.
However, the result is rather inconclusive - a firm decision that either of the
models outperforms another cannot be made with certainty. The discus-
sion in this chapter has been focused on a single bird syllabus, comprised
of a single modulated sinusoid. The technique proposed has been, however,
successfully applied to improve multiple birdsong tracking using mixtures of
Markov renewal processes to separate syllables and segregate event streams
(Stowell et al., 2013).
The task of inferring the temporal evolution of multiple sources is generally
based on a model in which the sources are continuously observable, in the
sense that the expected signal does not exhibit intermittent bursts of energy
(Van Gael et al., 2008). Unfortunately, in the case of bird sounds, the signal
consists of multiple sources exhibiting short bursts of energy and its tempo-
ral structure can thus be characterised as a point process. Examples of such
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Figure 10.8: Bird chirp: DDM, Q=16, sparse representation

Figure 10.9: Bird chirp: DDM degree 3, Q=16, sparse representation

signals include sound event sequences like bird calls or footsteps (Wang and
Brown, 2006), internet access logs (Arlitt and Williamson, 1997), pulsars
activity (Keane et al., 2009) and neural firing patterns (Bobrowski et al.,
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2009).
Present task of detecting the syllables and clustering them into sources has
only been considered recently (Stowell and Plumbley, 2012b,a; Stowell et al.,
2013). The problem is two-fold: firstly, correctly identifying and isolating a
syllabus and secondly, grouping the syllables together.
The essence of the algorithm is to use a time-frequency template deduced
from real bird recordings which is then convolved with the spectrogram
of the signal in question. Importantly, the process is based purely on the
spectrogram. The original algorithm (Stowell and Plumbley, 2012b,a) has
been adapted to work with the extra information provided by DDM: the 1st

degree FM, essentially captured in figures 10.3-10.8. The algorithms were
tested for the ability to correctly detect the syllables and separate them
into sources. Figure 10.10 (from (Stowell et al., 2013)) shows significant

Fig. 2. F-measure statistics for signal-noise separation (FSN, top row) and recovery of transitions (Ftrans, bottom row). The
three columns show results using the three different signal representations: standard STFT spectrogram (left), DDM (middle),
and DMM including first-order FM information (right). The solid black line shows performance using the standard encoding
of each detection as a single value, while the dashed black line shows performance using the more detailed encoding with five
frequency values per syllable. Means and standard errors are shown, five-fold crossvalidation.

ideal case that detections from an audio mixture are the same
as those from the separate audio signals. However, our main
point of comparison was between the different underlying
representations, to examine whether the improved spectro-
gram and/or the more detailed output improves performance.

As in [10], we performed five-fold crossvalidation, with
the standard F-measure as our evaluation statistic applied in
two ways: FSN is the F-measure for signal/noise separation,
and Ftrans is the F-measure for recovering true event-to-event
transitions (i.e. segregating the signal correctly into sources).

Results are shown in Figure 2. It is evident from the graphs
that performance improves from the left plots to the right
plots: using DDM rather than the STFT spectrogram im-
proves performance, and using DDM with the FM informa-
tion included in the detection step improves it further still.
This applies for both FSN and Ftrans. (Interestingly, the use
of DDM with FM information also improves the performance
of the baseline non-MMRP inference.) However, the effect of
passing the more detailed state representation in to the MMRP
inference (the solid lines vs. the dashed lines) appears to im-
prove FSN without notably changing Ftrans.

We confirmed these observations using a repeated-
measures ANOVA test. For each evaluation measure we en-
tered three factors: the spectrogram type, the state represen-
tation, and the number of signals in the mixture. For FSN,
significant effects were found for all three factors (each sig-
nificant at p < 0.006). For Ftrans, significant effects were
found for the spectrogram type and the number of signals in

the mixture (each p < 0.007), but the state representation was
not significant (p = 0.056). For both evaluation measures, a
significant two-way interaction was also found for spectro-
gram mode combined with number of signals (p < 0.007).

Overall, in this experiment we achieved around 20 percent-
age point improvements in both FSN and Ftrans, using a com-
bination of the DDM spectrogram, the use of FM information
in template-matching, and passing a more detailed state rep-
resentation to the source-segregation stage.

5. CONCLUSIONS

We have considered a maximum-likelihood technique for
tracking multiple singing birds in an audio recording, and
demonstrated that it can benefit strongly from an improved
underlying spectrogram representation. We applied a variant
of the DDM technique, using a range of spectral bins to infer
fine detail about modulated sinusoids, which is particularly
pertinent in the case of birdsong because of the presence of
rapid pitch modulations. We also demonstrated that passing a
rich feature representation to the later inference stage also im-
proves tracking. Altogether, our modifications yield approxi-
mately 20 percentage point improvement in the F-measure.
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Figure 10.10: F-measure statistics for signal-noise separation (FSN, top
row) and recovery of transitions (Ftrans, bottom row), i.e. segregating the
signal correctly into sources. The three columns show results using the three
different signal representations: standard STFT spectrogram (left), DDM
(middle), and DMM including first-order FM information (right). The solid
black line shows performance using the standard encoding of each detection
as a single value, while the dashed black line shows performance using the
more detailed encoding with five frequency values per syllable. Means and
standard errors are shown for the five-fold cross-validation (for details see
(Stowell et al., 2013) )
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improvement in correctly detecting the syllables, about 20% on average,
when using FM information obtained from the DDM. The reader is referred
to (Stowell et al., 2013) for further details on the machine learning tech-
niques used and evaluation methods, as the topic is out of the scope of this
dissertation.
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Chapter 11

Conclusion

This dissertation significantly contributes to the field of non-stationary ker-
nel based sinusoidal modelling. Several algorithms for non-stationary sinu-
soidal analysis have been unified, thoroughly tested, compared, improved
and advanced - new relevant algorithms have been proposed.

• In chapter 3 the state-of-the-art algorithms (GRM, DDM, DAM) us-
ing signal derivatives are presented, the section 4.1 unifies the GRM
and DAM methods for any modulation degree. This crucial step has
resulted in eventual unification with DDM (see section 3.5) to con-
struct a GRM-DDM-DAM hybrid method. As shown in chapter 4,
the DDM exhibits advantageous properties, thus the use of the hybrid
method does not offer any practical advantage. Nonetheless, the idea
of arbitrarily constructed linear system relaxes previously assumed
restrictions and allows for new, more flexible algorithms.

• Chapter 4 presents extensive comparison between GRM, DDM and
DAM. It is shown that DDM clearly outperforms the rest in all the
cases. Such decision can be drawn since DDM exhibits superior nu-
merical stability and flexibility while slightly outperforming in param-
eter estimate accuracy.

• An improvement of the GRM for analysis of extremely modulated,
transient like sinusoids is proposed in chapter 5. The technique em-
ployed is shown to remove the unwanted effect of AM/FM and suc-
cessfully estimate even the highest AM/FM sinusoids.
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• A novel estimator for the polynomial amplitude model is presented
in chapter 6. Complex analytical expressions for FT of the model
are manipulated using symbolic computing software. In contrast with
DDM and GRM, the algorithm proposed uses multiple window func-
tions, allowing for very low required bandwidth. Despite highly com-
plex FT expressions, the pole estimates are shown to be roots of a
sufficiently low degree polynomial for the case when a specific set of
window functions is used.

• Chapter 7 exploits the theory of computational algebraic geometry
as a tool for solving a multivariate polynomial systems arising when
converting a polynomial amplitude to the generalised sinusoid model.
Various non-linear systems can be constructed and solved, including
stationary sinusoids with very close frequencies. The ability to resolve
stationary sinusoids with frequency difference bellow 1 FFT bin has
not been observed even in high-resolution methods.

• A high order derivative of the signal can be used to eliminate the effect
of any existing polynomial amplitude and thus can be used as a pole
estimator. In chapter 8, the 3rd order of aforementioned method, remi-
niscent of GRM is compared to the high-resolution method, exhibiting
very comparable results, however for analysis of a single sinusoid the
proposed method is 2 magnitudes faster.

• An efficient, novel algorithm for a very flexible sinusoidal model, a hy-
brid between generalised and polynomial amplitude sinusoid, is pre-
sented in chapter 9. Such models have only been tackled using ap-
proximate, iterative improvement type algorithms and a fast, direct
algorithms is designed using techniques derived from the ideas used
in solving multivariate polynomial systems, largely used in chapter 7.

• Finally, an arbitrarily overdetermined DDM is successfully used in
a practical application for the analysis of a birdsong. Modulations,
significantly exceeding even those tackled in chapter 5 are quite often
found in bird chirps. Chapter 10 briefly demonstrates the flexibility
of DDM can be used to construct a favourable TF representation,
improving the performance of high-level machine learning algorithms
for bird chirp clustering and identification.

The list of relevant papers and article by the author written during the
period of the PhD study resulting in this dissertation:
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• S. Muševič and J. Bonada, ”Comparison of non-stationary sinusoid
estimation methods using reassignment and derivatives”, in Proc. 7th
Sound and Music Computing Conf., Barcelona, Spain, Jul. 2010.

• S. Muševič and J. Bonada, ”Generalized reassignment with an adap-
tive polynomial phase Fourier kernel for the estimation of non-stationary
sinusoidal parameters”, in Proc. 14th Int. Digital Audio Effects,
Paris, France, Sep. 2011.

• S. Muševič and J. Bonada, ”Sinusoidal Analysis Using Discrete Fourier-
Chebyshev Functions and Grobner Basis, IEEE Transactions on Acous-
tics, Speech, Signal Processing [in review: rewrite requested by review-
ers]

• D. Stowell, S. Muševič, J. Bonada and M. Plumbly, ”Bird chirp analy-
sis using Distribution Derivative Method and Markov renewal process
clustering, ICASSP 2013

• S. Muševič and J. Bonada, ”Derivative Analysis of Complex Polyno-
mial Amplitude, Complex Exponential with Exponential Damping,
ICASSP 2013

• S. Muševič and J. Bonada, ”Distribution Derivative Method for Gen-
eralised Sinusoid with Complex Amplitude Modulation”, IEEE Signal
Processing Letters [in review: pre-screening passed]

11.1 Future Work

The future of non-stationary sinusoidal analysis represents some significant
challenges. Importantly more research is required to achieve significant
benefits of non-stationary methods in practice. The following topics should
receive a great deal of attention:

• numerically stable algorithm for the hybrid model (as suggested in
section 9.4)

• joint estimation

• transient analysis

• overlapping non-stationary sinusiods
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Joint estimation of non-stationary sinusoids has been researched (Fried-
lander and Francos, 1993; Pantazis et al., 2011) , however algorithms less
reliant on statistical modelling and iterative improvement would be greatly
appreciated. A direct, possible LS based algorithm for the joint estimation
of a mixture of generalised sinusoids has not yet been proposed.s
Further, a robust and fast algorithm for the analysis of transients has also
not yet been proposed. Iterative approaches (Christensen and van de Par,
2006) have been proposed, however in chapter 9 a big step towards a fast
FFT based algorithm has been made.
Last but not least, the ever elusive problem of overlapping non-stationary
sinusoids could be tackled by multivariate polynomial system solving al-
gorithms. An appropriate representation of the problem as a multivariate
system would enable similar procedure used in chapter 9 to derive a closed
form estimator using only signal derivatives.
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Appendix A

Proofs of equations

A.1 Reassignment

In this appendix a formal proofs of the integral equations used by the re-
assignment method are presented. Please note that the following proofs
differ from the original derivations in (Kodera et al., 1978) as they are, by
author’s opinion, a simpler and more compact representations (Hainsworth
et al., 2001; Hamilton and Depalle, 2012a,b; Muševič and Bonada, 2010b;
Marchand, 2008). Expression for frequency reassignment can be obtained
directly from 1.4:

ω̂(t, ω) =
∂

∂t
φ(t, ω) = =

(
∂

∂t
log
(
Sw(t, ω)

))
(A.1)

Polynomial model is implicitly assumed: initial phase is the static phase
parameter and frequency is the first order phase parameter. It may seem
counter-intuitive to think of a frequency as function of time and frequency
itself, but note, that ω̂ represents the reassigned frequency. The same pro-
cedure can be used on spectral amplitude function to derive the expression
for linear log-AM:

µ̂(t, ω) =
∂

∂t
λ(t, ω) = <

(
∂

∂t
log
(
Sw(t, ω)

))
(A.2)
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Again, polynomial model is assumed. Luckily, above time derivatives are
easily computable:

∂

∂t
logSw(t, ω) =

∂
∂tSw(t, ω)

Sw(t, ω)
(A.3)

∂

∂t
Sw(t, ω) =

∂

∂t

∫ ∞
−∞

s(τ)w(τ − t) exp(−jω(τ − t))dτ = (A.4)

∫ ∞
−∞

s(τ)

w′(τ−t)︷ ︸︸ ︷
∂

∂t
(w(τ − t)) e−jω(τ−t)dτ +

∫ ∞
−∞

s(τ)w(τ − t)

−jωe−jω(τ−t)︷ ︸︸ ︷
∂

∂t

(
e−jω(τ−t)

)
dτ =

(A.5)

− Sw′(t, ω) + jωSw(t, ω)⇒ (A.6)

∂

∂t
logSw(t, ω) = jω − Sw′(t, ω)

Sw(t, ω)
⇒ (A.7)

ω̂(t, ω) = ω −=
(
Sw′(t, ω)

Sw(t, ω)

)
(A.8)

µ̂(t, ω) = −<
(
Sw′(t, ω)

Sw(t, ω)

)
, (A.9)

where Sw′ is STFT using time derivative of the window function, rather
than the original window. Without going into further details of (Kodera
et al., 1978) and (Auger and Flandrin, 1995) we state, that above procedure
reassigns our parameter estimations from time instant t to a new, reassigned
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time instant t̂:

t̂(t, ω) = t− ∂

∂ω
φ(t, ω) (A.10)

= t−=(
∂

∂ω
logSw(t, ω)) = t−=

(
∂
∂ωSw(t, ω)

Sw(t, ω)

)
(A.11)

∂

∂ω
Sw(t, ω) =

∂

∂ω

∫ ∞
−∞

s(τ)w(τ − t) exp(−jω(τ − t))dτ (A.12)

=

∫ ∞
−∞

s(τ)w(τ − t)

−j(τ−t)e−jω(τ−t)︷ ︸︸ ︷
∂

∂ω

(
e−jω(τ−t)

)
dτ (A.13)

= −jStw(t, ω)⇒ (A.14)

=

(
∂
∂ωSw(t, ω)

Sw(t, ω)

)
= −<

(
Stw(t, ω)

Sw(t, ω)

)
⇒ (A.15)

t̂(t, ω) = t−<
(
Stw(t, ω)

Sw(t, ω)

)
, (A.16)

where Stw is STFT computed using time ramped window function rather
than original one. Therefore in practice, the parameters are estimated not
at desired time, but reassigned time. Some additional steps are needed
to bring them back to desired time instant. That is, the time difference
t− t̂ has to be accounted for, but only for parameters which are considered
to change with time. In above case, log-AM/FM do not change in time,
but log-amplitude, initial phase and frequency do. Because the polynomial
model was implied and the time difference is known to be ∆t = t − t̂, the
following corrections can be made:

µ̂R0 = µ̂ (A.17)

âR0 = â+ µ̂∆t (A.18)

ψ̂R0 = ψ̂ (A.19)

ω̂R0 = ω + ψ̂∆t (A.20)

φ̂R0 = φ̂+ ω∆t+
ψ̂

2
∆t2 (A.21)

where ∆t = t− t̂ = <
(
Stw(t, ω)

Sw(t, ω)

)
(A.22)

Above is only possible, when all estimates are made, however as Marchand
states in (Marchand, 2008) that time difference ∆t is generally smaller than
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sampling rate except for very low SNRs. In such cases, noise causes esti-
mation errors much larger than those caused if we simply ignore the time
difference. Therefore, the above corrections were not covered in the tests.
In order to express linear frequency modulation in terms of STFT of the
signal, it’s reassigned time derivative has to be derived:

∂ω̂

∂t̂
=
∂ω̂
∂t

∂t̂
∂t

(A.23)

∂ω̂

∂t
=

0︷︸︸︷
∂ω

∂t
−=

(
∂
∂tSw′Sw − Sw′

∂
∂tSw

S2
w

)
(A.24)

∂t̂

∂t
=

1︷︸︸︷
∂t

∂t
+<

(
∂
∂tStwSw − Stw

∂
∂tSw

Sw2

)
(A.25)

To complete above equation, time derivative of STFT using time ramped
window (Stw) has to be computed:

∂

∂t
Swt =

∂

∂t

∫ ∞
−∞

s(τ)(τ − t)w(τ − t)e−jω(τ−t)dτ (A.26)

=

∫ ∞
−∞

s(τ)
∂

∂t

(
(τ − t)w(τ − t)e−jω(τ−t)

)
dτ (A.27)

=

∫ ∞
−∞

s(τ)
∂

∂t
((τ − t)w(τ − t)) e−jω(τ−t)dτ+ (A.28)

∫ ∞
−∞

s(τ)(τ − t)w(τ − t)

jωe−jω(τ−t)︷ ︸︸ ︷
∂

∂t

(
e−jω(τ−t)

)
dτ (A.29)

=

∫ ∞
−∞

s(τ)

−1︷ ︸︸ ︷
∂

∂t
[(τ − t)]w(τ − t)e−jω(τ−t)dτ+ (A.30)

∫ ∞
−∞

s(τ)(τ − t)

−w′(τ−t)︷ ︸︸ ︷
∂

∂t
[w(τ − t)] e−jω(τ−t)dτ + jωStw (A.31)

=− Sw − Stw′ + jωStw (A.32)
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It is easy to generalize A.32 and A.16 to get higher order time and frequency
derivatives of STFT using window derivatives, multiplied by tl:

∂

∂t
Stlw(k) = −lStl−1w(k) − Stlw(k+1) + jωStlw(k) (A.33)

∂

∂ω
Stlw(k) = −jStl+1w(k) (A.34)

Terms Stlw(k) involved in above equation should not be hard to compute, as
window function is known in advance and can be chosen in such a way it
exhibits desired properties despite high order derivatives and multiplication
with tl. However, overall effect of window function properties and properties
of it’s derivatives on parameter estimation might be questionable.
We can use A.33 and A.34 to finalize A.24 and A.25 to finally get expression
for linear frequency modulation:

∂ω̂

∂t
==

(
Sw′′

Sw

)
−=

((
Sw′

Sw

)2
)

(A.35)

∂t̂

∂t
=<

(
Sw′Stw
S2
w

)
−<

(
Stw′

Sw

)
(A.36)

∂ω̂

∂t̂
=
∂ω̂
∂t

∂t̂
∂t

=

=
(
Sw′′
Sw

)
−=

((
Sw′
Sw

)2
)

<
(
Sw′Stw
S2
w

)
−<

(
Stw′
Sw

) (A.37)

Above expressions give estimations for linear log-AM and FM parameters.

However, with help of A.34 and A.33 the expressions for ∂kφ
∂tk

and ∂kλ
∂tk

for ar-
bitrary k should eventually be derived. Such procedure might result in very
long and complicated expressions, but could generally be done in practice
with use of some symbolic programming techniques.

A.2 Derivative method

Presented derivation of algorithm is slightly different than in (Marchand and
Depalle, 2008), but it arrives at the same expressions for parameter. The
algorithm exploits the fact, that a time derivative of complex exponential is
still a complex exponential with the same frequency. Consider the generally
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modulated signal from 3.1:

s′(t) = (p′(t) + jq′(t))s(t)⇒ (A.38)

=
(
s′(t)

s(t)

)
= q′(t) (A.39)

<
(
s′(t)

s(t)

)
= p′(t) (A.40)

Taking STFT of both sides results in:

S′w(t, ω) =

∫ ∞
−∞

w(τ − t)(a′(τ) + jϕ′(τ))s(τ)e−jω(τ−t)dτ

= F
[
a′(t) + jϕ′(t)

]
∗ Sw(t, ω),

(A.41)

where S′w signifies a STFT of a time derivative of the signal, rather than
original signal. In case when a(t) an iϕ(t) are polynomials, above expression
changes to:

S′w(t, ω) =
K−1∑
k=1

k(pk + jqk)F
[
tk−1

]
∗ Sw(t, ω)

=

K−1∑
k=1

k(pk + jqk)(j)
kδ(k−1)(ω) ∗ Sw(t, ω)

=
K−1∑
k=1

k(pk + jqk)(j)
k ∂

k−1

∂ωk−1
Sw(t, ω)

=
K−1∑
k=1

k(pk + jqk)

1︷ ︸︸ ︷
(j)k−1(−j)k−1 Swtk−1(t, ω)

=

K−1∑
k=1

k(pk + jqk)Swtk−1(t, ω)

(A.42)

Evidently, the STFT of time derivative of the non-stationary sinusoid is a
linear combination of frequency derivatives of STFT of original signal. In
case of linear log-AM/FM model 3.4, a specific case of A.42 for K = 3 and
p2 = 0:

S′w(t, ω) =
(
µ0Sw(t, ω) + jω0Sw(t, ω)

)
+ 2jψ0Swt(t, ω) (A.43)
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In practice, first approximation of the frequency is made by locating a peak
in magnitude spectrum, that is an extrema in ‖Sw‖ =

√
SwS∗w. This ex-

trema intuitively corresponds to centre of energy in frequency domain. Fur-
ther, derivative of magnitude spectrum in respect to frequency is nil at
the peak location. It is crucial to investigate behaviour of the frequency
derivatives of real/imaginary parts of the magnitude spectrum separately:

‖Sw‖ =
√
SwS∗w =

√
<(Sw)2 + =(Sw)2 ⇒ (A.44)

∂ ‖Sw‖
∂ω

=
1√

<(Sw)2 + =(Sw)2

(
2<(Sw)

∂

∂ω
<(Sw) + 2=(Sw)

∂

∂ω
=(Sw)

)
(A.45)

It would be very difficult to derive an analytic expression for above terms
even in case of linear log-AM/FM. However, some helpful assumptions
about behaviour of some terms in above expression can be made. Mag-
nitude spectrum reaches very large values around sinusoid frequency ω0,
thus

√
<(Sw)2 + =(Sw)2 will not be zero around ω0. Further, it is safe to

assume that generally both <(Sw) and =(Sw) will not reach zero at ω0. In
practice it can be observed, that ratio between values of real/imaginary part
depends on the instantaneous phase. In fact, the commonly used expression

for instantaneous phase ∠(Sw(t, ω)) = arctan
(
=(Sw(t,ω))
<(Sw(t,ω))

)
confirms this as-

sumption, e.g.: it is a function of ratio between imaginary and real parts of
FT spectrum. Thus it can be written:

∂ ‖Sw(t, ω0)‖
∂ω

= 0⇔ (A.46)

∂

∂ω
<(Sw(t, ω0)) =

∂

∂ω
=(Sw(t, ω0)) = 0 (A.47)

This assumption should be taken with precaution: at some very specific
phase values either of <(Sw(t, ω0)),=(Sw(t, ω0)) could be 0, which in turn
would not make previous conclusion necessary. It will however be assumed,
that even in such cases A.47 holds. This fact has an useful effect:

∂

∂ω
<(Sw(t, ω0)) =

∂

∂ω
=(Sw(t, ω0)) = 0⇒ (A.48)

∂Sw(t, ω0)

∂ω
=

∂

∂ω
<(Sw(t, ω0)) + j

∂

∂ω
=(Sw(t, ω0)) = 0⇒ (A.49)

∂Sw(t, ω0)

∂ω
= Swt(t, ω0) = 0 (A.50)
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This finally gives the expression for linear AM and frequency estimates of
sinusoid using A.43:

ω̂0(t, ω) = =
(
S′w(t, ω)

Sw(t, ω)

)
(A.51)

µ̂0(t, ω) = <
(
S′w(t, ω)

Sw(t, ω)

)
(A.52)

To derive linear FM estimation expression, 2nd derivative of the signal needs
to be computed:

s′′(t) = (µ2
0 − ω2

0 − 2ω0ψ0t− ψ2
0t

2 + j(ψ0 + 2µ0ω0 + 2µ0ψ0t))s(t) (A.53)

Using same assumptions used to derive A.47, we can express linear frequency
modulation as follows:

ψ̂0(t, ω) = =
(
S′′w(t, ω)

Sw(t, ω)

)
− 2ω̂0(t, ω)µ̂0(t, ω) (A.54)

Accuracy of estimates relies greatly on equation A.43, particularly on the
last term Swt(t, ω), which is assumed to be zero at the frequency of the
sinusoid ω0. This was in fact concluded in A.47. However Swt(t, ω) depends
on our initial frequency estimate ω̃ therefore Swt(t, ω̃) does not reach exact
0 at least for this reason.

A.3 Generalized reassignment

Generalized method described in (Wen and Sandler, 2009) essentially uses
signal derivatives to derive expressions for estimating signal parameters,
thus it is derived from derivative method. However, integration-by-parts
is exploited to represent STFT of signal time derivative with reassignment
operators. This technique is used to Such procedure poses some restrictions
to the window function, but avoids computing signal derivatives, which
is indeed a computationally costly and erroneous operation. Further, the
method can be used recursively to estimate higher order modulations. An
arbitrary order time derivative of 3.1 can be expressed:

s(l)(t) = (r′(t)s(t))(l−1) =
K∑
k=1

(
s(t)

(
pk + jqk

)
ktk−1

)(l−1)
(A.55)
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After applying STFT to both sides and assuming t=0 we get:

S(l)
w (0, ω) =

K∑
k=1

∫ T
2

−T
2

w(τ)
((
pk + jqk

)
kτk−1s(τ)

)(l−1)
e−jωτdτ (A.56)

For l = 1 above expression is trivially computable. However, for k > 1 the
procedure is not straight forward if computation of signal derivatives is to
be avoided. Further, it will be shown that an arbitrary window derivative is

needed for such recursive operation, therefore S
(k)
w is swapped with S

(k)

w(l) in
the left-hand side of A.56, to get more general expression. Using integration-
by-parts on it gives:

S
(l)

w(k) =

∫ T
2

−T
2

∂v︷ ︸︸ ︷
∂

∂τ
s(l−1)(τ)

u︷ ︸︸ ︷
w(k)(τ)e−jωτd τ

= s(l−1)(τ)w(k)(τ)e−jωτ |
T
2

−T
2

−∫ T
2

−T
2

s(l−1)(τ)
(
w(k+1)(τ)e−jωτ − jωw(k)(τ)e−jωτ

)
dτ

=

=0 if w(k)(−T
2

)=w(k)(T
2

)=0︷ ︸︸ ︷
s(l−1)(τ)w(k)(τ)e−jωτ |

T
2

−T
2

−S(l−1)

w(k+1) + jωS
(l−1)

w(k)

= −S(l−1)

w(k+1) + jωS
(l−1)

w(k)

(A.57)

The first term in A.57 must be eliminated, if signal derivatives are to be
avoided. Luckily, the only restriction is to choose a window function, whose
desired order time derivative reaches 0 at it’s both borders, eg: w(k)(−T

2 ) =

w(k)(T2 ) = 0 . Above rule can be generalized for any signal. For the sake of
clarity it is rewritten in more generic form, for signal x(t):

X
(l)

w(k) = −X(l−1)

w(k+1) + jωX
(l−1)

w(k) (A.58)

For left/right hand side of A.56 substituting x(t) = s(t) and x(t) = s(t)r′(t)
will give a system of complex linear equations. A very efficient algorithm
can be designed, based on equation A.58 using pyramid like data flow, as
described in section 3.1 of (Wen and Sandler, 2009). From the complex
equation A.56 with the use of A.58 it is possible to derive a system of
equations, linear in respect to rk by letting the degree of the derivative l
go up to the desired modulation degree K, constructing K − 1 equations
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from which all parameters except r0 (log-amplitude and phase) which can
be eventually estimated in some manner.
If the model of generalized method is assumed to be polynomial, the degree
of log-amplitude polynomial is 1 and the degree of phase polynomial is 2,
this exactly corresponds to the assumptions, implicitly taken in the original
reassignment and derivative methods. For such low degrees, we can solve
the system of linear equations defined by A.56:

r2 = p2 + jq2 = γ0 + jψ0 =
SwSw′′ − S2

w′

StwSw′ − SwStw′
⇒ (A.59)

p2 = γ0 = <
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
(A.60)

q2 = ψ0 = =
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
, (A.61)

where γ0 denotes second order log-AM. There is a slight difference between
classic reassignment and above expression, even if p2 = γ0 = 0 is assumed.
Generally, any assumed model does not fit the signal under inspection ex-
actly and since ψ0 is assumed to be a real number, only the imaginary
part of right hand side of A.59 is considered. If the signal fits well the as-
sumed model, γ0 will be nil anyway, but it does not affect the expression
A.61. After evaluating linear FM parameter, the result can be used to solve
the following complex equation in order to derive expressions for frequency
(q1 = ω0) and linear log-AM (p1 = µ0):

p1 + jq1 =− jq2
Stw
Sw

+ jω − Sw′

Sw
⇒ (A.62)

q1 = ω0 =ω −=
(
Sw′

Sw

)
− q2<

(
Stw
Sw

)
(A.63)

p1 = µ0 =−<
(
Sw′

Sw

)
+ q2=

(
Stw
Sw

)
(A.64)

In order to compare above expressions to reassignment parameter estimates,
they should be rewritten with additional notations: ’RM’ for reassignment
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method and ’GRM’ for generalized method.

ψGRM0 ==
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
(A.65)

ψRM0 =

=
(
Sw′′
Sw

)
−=

(
S2
w′
S2
w

)
<
(
StwSw′
S2
w

)
−<

(
Stw′
Sw

) (A.66)

ωRM0 =ω −=
(
Sw′

§w

)
(A.67)

ωGRM0 =

ωRM0︷ ︸︸ ︷
ω −=

(
Sw′

Sw

)
−ψGRM0

t∆︷ ︸︸ ︷
<
(
Stw
Sw

)
= ωRM0 − ψGRM0 t∆ (A.68)

µRM0 =−<
(
Sw′

Sw

)
(A.69)

µGRM0 =

µRM0︷ ︸︸ ︷
−<

(
Sw′

Sw

)
+ψGRM0 =

(
Stw
Sw

)
= µRM0 + ψGRM0 =

(
Stw
Sw

)
(A.70)

(A.71)

The time difference t∆ was defined in A.22. The only difference in frequency
estimates is the correction factor, which corresponds exactly to the correc-
tion defined by A.20. Linear log-AM is assumed to be constant with time,
therefore no correction arising from t∆ are applied as expected. However

another correction term ψGRM0 =
(
Stw
Sw

)
is present. Interestingly, linear FM

estimation is used in expression for linear log-AM estimation. The other

factor =
(
Stw
Sw

)
is in fact equal to ∂

∂ωλ(t, ω), which can be quickly deduced

from A.16.
It was shown, that one difference between generalized and reassignment
method are the corrections, defined in equations A.17, A.18, A.19, A.20
and A.21. That is, solving the system of linear equations already implies
the corrections. As already mentioned in section A.1, these corrections only
boost the accuracy significantly at very high SNRs. Therefore, we expect
the generalized method to behave similarly to the reassignment in low to
mid SNRs. There is an additional correction term entering expression for
linear log-AM, which depends on linear FM. It can be considered as a cancel-
lation of the effect the second order FM has on first order log-AM estimate.
It is interesting to investigate further how higher degree model estimator
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depend on the lower degree estimates and how the lower degree estimates
change when the model degree is increased. Since AM/FM effect on spec-
trum is highly non-linear in terms of energy distribution (at least peak fre-
quency exhibits complex behaviour in respect to AM/FM, (Kodera et al.,
1978; Abe and Smith, 2005)). Adding another degree of modulation is thus
expected to update all lower degree estimates.
The following notations will come handy: the generalized method of degree
1 (stationary frequency, linear log-AM) will be notated as ’GM1’ and the
one of degree 2 (linear FM, 2nd order log-AM) will be notated as ’GM2’.
Generally, the generalized method of degree D will be labeled ’GMD ’. First
degree expressions will be studied first. From A.56 using the rule from A.58,
the linear log-AM and frequency expressions are:

Sw = rGM1
1 Sw′ = rGM1

1 (−Sw′ + jωSw)⇒ (A.72)

rGM1
1 = jω − Sw′

Sw
⇒ (A.73)

pGM1
1 = <(rGM1

1 ) = µGM1
0 = −<

(
Sw
Sw′

)
(A.74)

qGM1
1 = =(rGM1

1 ) = ωGM1
0 = ω −=

(
Sw
Sw′

)
(A.75)
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The estimates of second order generalized method can now be expressed
with above expressions:

rGM2
2 = pGM2

2 + jqGM2
2 = γGM2

0 + jψGM2
0 =

SwSw′′ − S2
w′

StwSw′ − SwStw′
⇒ (A.76)

pGM2
2 = γGM2

0 = <
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
(A.77)

qGM2
2 = ψGM2

0 = =
(

SwSw′′ − S2
w′

StwSw′ − SwStw′

)
(A.78)

rGM2
1 = pGM2

1 + jqGM2
1 = µGM2

0 + jωGM2
0 = (A.79)

=

rGM1
1︷ ︸︸ ︷

jω − Sw′

Sw
−rGM2

2

Stw
Sw

= rGM1
1 − (pGM2

2 + jqGM2
2 )

Stw
Sw

= (A.80)

= rGM1
1 − (γGM2

0 + jψGM2
0 )

Stw
Sw
⇒ (A.81)

ωGM2
0 = ωGM1

0 − ψGM2
0

t∆︷ ︸︸ ︷
<
(
Stw
Sw

)
−γGM2

0 =
(
Stw
Sw

)
=

= ωGM1
0 − ψGM2

0 t∆ − γGM2
0 =

(
Stw
Sw

) (A.82)

µGM2
0 = µGM1

0 + ψGM2
0 =

(
Stw
Sw

)
− γGM2

0

t∆︷ ︸︸ ︷
<
(
Stw
Sw

)
=

= µGM1
0 − γGM2

0 t∆ + ψGM2
0 =

(
Stw
Sw

) (A.83)

Above derivations suggest that lower degree parameters are indeed affected
by higher degree estimates. A straightforward correction arises from the
simple time shift (or reassigned time), where lower degree parameter µ0 is
adjusted by the corresponding higher one γ0 multiplied by the time shift.
Clearly, the corrections are more important when high order modulations
are of bigger values. It is however important to realise that these corrections
do not significantly affect the accuracy of generalised reassignment at mid
to low SNR when modulation parameters are in some reasonable range,
assuming the analysed signal fits well the underlying model.



172 proofs of equations

A.4 Distribution derivative method

The distribution theory (Schwartz, 1966) defines the derivative of a distri-
bution with the respect to a test function ψ (also referred to as atom):

〈s′, ψ〉 = −〈s, ψ′〉, (A.84)

where s is the distribution under study and 〈 , 〉 is a L2 inner product:

〈x, y〉 =

∫ ∞
−∞

x(t)ȳ(t)dt. (A.85)

The time derivative of the model 3.1 can therefore be expressed with a
combination of such inner products:

〈s′, ψ〉 =
K∑
k=1

rk < stk−1, ψ >= −〈s, ψ′〉. (A.86)

It is interesting to compare above expression to equation A.55. A special
case when ψ(t) = w(t) exp(−jωt) allows comparison of both expressions:

S′w(ω) = 〈s′(t), w(t) exp(−jωt)〉 (A.87)

=
K∑
k=1

krk〈stk−1, w(t) exp(−jωt)〉 (A.88)

=

K∑
k=1

krkStk−1w(ω), (A.89)

which is exactly the right hand side of equation A.55 for l = 1. With
− < s, ψ′ >= −S′w + jωSw a specific equation corresponding to model 3.4
can be obtained:

r1Sw(ω) + 2r2Stw(ω) = −S′w(ω) + jωSw(ω). (A.90)

It is now possible to use two different Fourier atoms at different frequencies
yielding two equations with two unknowns:

r1Sw(ω1) + 2r2Stw(ω1) = −S′w(ω1) + jω1Sw(ω1) (A.91)

r1Sw(ω2) + 2r2Stw(ω2) = −S′w(ω2) + jω1Sw(ω2). (A.92)

Above system is trivially solvable. The main difference compared to the
(generalized) reassignment is that in order to obtain enough equations,
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STFTs at different frequencies rather, than higher order derivatives are
considered. Such mechanism keeps the equations simple, as well as doesn’t
pose additional constraints on the window function (as it is the case with the
generalized reassignment). The frequencies ω1, ω2 can be arbitrarily close,
but far apart to avoid numerical problems. A generic system of equations
to solve any polynomial degree log-AM/FM is easily deduced from A.87:

Ar = b, (A.93)

where

A =


〈s, ψ1〉 2〈st, ψ1〉 · · · K〈stK−1, ψ1〉
〈s, ψ2〉 2〈st, ψ2〉 · · · K〈stK−1, ψ2〉

...
...

. . .
...

〈s, ψM 〉 2〈st, ψM 〉 · · · K〈stK−1, ψM 〉

 (A.94)

r =

 −S
′
w + jωSw

...
rK−1

 (A.95)

b =

 −〈s, ψ
′
1〉

...
−〈s, ψ′M 〉

 . (A.96)
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