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Abstract: This dissertation is a research about the mechanical be-

havior of the human esophagus. This work is intended to

construct a computational model to simulate forced dilata-

tions, required by esophageal diseases.

The study summarizes the previous works on esophageal

tissues by other authors. A short explanation about the

microcontinuum theory is given, as well as a summary

of the non-linear hyperelastic constitutive models (with

large deformation). This study required extensive testing

of esophageal tissue in order to characterize the in vitro

mechanical behavior. Optical motion track analysis was

used for accurate computation of the strains in the tissue.

The testing included tensile tests and inflation tests. The

results of the tests were used for adjusting the mechani-

cal properties that characterize the mechanical behavior of

esophagus; their values were used for conduct some numer-

ical simulations based on the models.

The main result is a constitutive non-linear microstretch

anisotropic hyperelastic constitutive model with large de-

formations (and with residual stresses) to characterize the

multi-layered tissue of human esophagus. This model is

suitable for numerical simulation. In addition, a number

of theoretical results were obtained. Some significant cor-

relations between anthropometric factors, such as the body

mass index, and some mechanical properties were found in

the analysis of the data.
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Summary

This dissertation is a research about the mechanical behavior of the human esoph-

agus. This work is intended to be applied in the treatment of stenosis and other

esophageal diseases that frequently require a procedure of forced dilation, that

involves high pressures on the esophagus wall. This study proposes a constitutive

model to simulate forced dilatations. This study includes the experimental char-

acterization of the mechanical behavior of human esophagus. In addition, some

theoretical questions and experimental issues were addressed and solved.

This dissertation summarizes the previous work on esophageal tissues by other

authors. Additionally, a short explanation about the microcontinuum theory de-

veloped in the last decades is given, as well as a summary of the general theory of

non-linear hyperelastic constitutive models (with large deformation). This study

required extensive testing of esophageal tissue in order to characterize the in

vitro mechanical behavior. The testing included mainly tensile tests and com-

plementary inflation tests. Optical motion track analysis was used for accurate

computation of the strains in the tissue. The results of the tests were used for

adjusting the mechanical properties that characterize the mechanical behavior of

esophagus in the proposed models of the literature. The statistical analysis of

the data revealed, some significant correlations between anthropometric factors,

such as the body mass index, and some mechanical properties were found in the

analysis of the data. The typical values of the mechanical properties were used to

perform some numerical finite element simulations based on the proposed models.

In addition, a number of theoretical results were obtained concerning the resid-

ual stress and the predictions of statistical mechanics for a system of collagenous

fibers inside a soft tissue.

The main result is a constitutive non-linear microstretch anisotropic hypere-

lastic constitutive model with large deformations (and with residual stresses) to

characterize the multi-layered tissue of human esophagus. This model is suitable

for numerical simulation.
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1
Introduction

1.1 Motivation and antecedents

A frequent pathological condition of the esophagus is the occurrence of benign

stenoses in the esophageal tract. Those stenoses make eating and swallowing

difficult. Independently of the cause of the disease, the initial recommended

treatment is an endoscopic one, often involving forced dilatation. The worst

complication of this treatment is the eventual puncture of damaged tissues, which

leads to high morbidity [21,58]. As forced dilations are performed empirically, it

is not always possible to foresee eventual punctures.

Some of the objectives of this study are:

� To find approximate values (involving the thickness of the wall and the

resistance of the tissue) that make possible to predict an eventual puncture.

� To describe the biomechanics of the esophageal tissues –both normal and

damaged– by means of stress-strain relations, which allow us to simulate

the effect of the treatment.
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� To predict the most likely effect caused by medical instruments used to

dilate the esophageal tract and to make it possible to determine in advance

if a failure of the esophageal wall it is likely to happen.

� To establish procedures regarding the loading of the esophageal wall in order

to improve the forced dilation treatments. This project has required several

tests for the in vitro characterization of the esophagus. The obtained results

can be used to assess the existent treatments.

The observation of the current treatments of forced dilation conducted by most

endoscopists, in a completely empirical way, is the origin of this study. We have

observed that occasionally, current treatments lead to some secondary problems

due to the impossibility to predict the biomechanical resistance of the esophagus

wall. Recently, some multidisciplinary studies have analyzed medical problems

with the help of numerical simulations [23,39]. In the present study, the conducted

empirical work and the theoretical analysis are intended to provide a reliable

description of the esophagus tissue, which are useful for numerical simulation.

Two main diseases can require forced dilation: stenosis and achalasia; since in

both cases there is a narrowing of the esophageal tract [9]. These two diseases

may disturb the ingestion of food and the usual emergency treatment is forced

dilation. The aim of a computational model is to predict by means of simulation

the likely effect of the medical instruments used in forced dilation. Notice that

the esophagus deformation may reach critical values at endoscopies, more rarely

by mandatory lung ventilation, closed chest traumata, etc. [27, 57,73,85].

The development of an adequate constitutive model is an important issue for

performing realistic numerical simulations. These simulations can be used to as-

sess the consequences of the different conventional treatments of forced dilation

(gastric balloons, progressive dilators, stents, ...). Thus, one of the general ob-

jectives of this dissertation is to characterize –experimentally– and to simulate

–numerically– some aspects of the mechanical behavior of human esophagus. The

mechanical properties in this study were obtained from in vitro tests. Two differ-

ent tests have been performed: uniaxial tensile tests and some additional inflation

tests. The data obtained, mainly from uniaxial tests, can be used to check the

adequacy of some proposed models of soft tissue. In addition, a new model that

includes an account of the micro-structures inside the tissues is being proposed.

The experimental data have allowed us to obtain the values of the mechanical

constants which are needed for numerical parameters in simulations.
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1.2 Physiological bases

Figure 1.1. Depiction of a human esophagus
(from Mayo Foundation for Medical Education
and Research.)

The primary function of the esoph-

agus is to impulse the bolus, i.e.

the mass of food that has been

chewed at the point of swallow-

ing, from the pharynx to the stom-

ach. This transportation of the

bolus is carried through an alter-

nating succession of muscular con-

tractions and temporal relaxations

of the lower esophageal sphinc-

ter or cardia. This transportation

process is called peristaltic trans-

portation. Peristaltic transporta-

tion consists of a sequence of con-

tractions or peristaltic waves that

hauls the bolus by an alternation

of compression and relaxation of

the esophageal wall. It is impor-

tant to highlight that peristaltic

transportation of the swallowed material is an involuntary neuromuscular func-

tion that allows us to swallow, even in the absence of gravity. Unfortunately, the

peristaltic mechanism can be affected by some diseases (dysphagia, esophageal

stenosis, achalasia) [2,15,75,76]. All the transportation from upper esophagus to

the stomach can be done in a few seconds, without any abrupt change of pressure

or interruption of respiration in any moment. Structurally, the human esophagus

is a two-layered tubular structure of 20 to 25 cm long. The two main layers are:

� The inner layer or mucosa-submocosa . The submucosa is a layer of

dense irregular connective tissue or loose connective tissue that supports

the mucosa. It joins the mucosa to the bulk of overlying the smooth muscle

(fibers running circularly within layers of longitudinal muscle), thus the

submucosa layer is placed between the mucosa and the outer layer. On the

other hand, the mucosa layer is a stratified epithelial lining covering the

submucosa. It covers completely the inner part of the esophageal cavity

and has an exterior surface adequate for the sliding of the bolus with no

difficulty.
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Figure 1.2. A cross section in upper esophagus, showing themuscularis externa (outer
part) and the mucosa-submucosa (inner part).

� The outer layer or muscularis externa is a muscle layer. It is involved

in gut movements and in peristalsis (peristaltic transportation). The mus-

cularis externa is adjacent to the submucosa membrane.

The two described layers are not completely homogeneous; a certain sub-layers

and tissue arrangements can be distinguished in histological inspection.

1.3 Research approach

One of the concerns of the methods and models used in this dissertation is the

generality of the mathematical formulation. A mathematically rigorous approach

is used for gaining in generality and clarification of the relations of the corner-

stones of the theory. A special effort has been made in order to use a convenient

notation (although some expressions are repeated in the more frequent notations

used in engineering, when there are clear equivalences). Obviously, there is some

discussion about the most convenient approach, as stated by Marsden and Hughes

(1983) [72]:
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[. . . ] researchers in elasticity are very opinionated, even when they

are wrong. During our own work in this field we have refused to fight,

and in keeping with this pacifist approach, we now issue these dis-

claimers: This book is neither complete nor unbiased. [. . . ]To a math-

ematician, a tensor t is a section of a certain bundle over a manifold.

To an engineer or physicist, a tensor 𝑡𝑖𝑗𝑘 is an object dressed in in-

dexes. This is one of the many unfortunate paper barriers that have

retarded the growth of, and interest in, mathematical elasticity. The

beginner should learn to speak both languages and to ignore notational

disputes. For example, beginners who are already trained in some ge-

ometry an who realize that ∇𝑓 is a vector, while 𝑑𝑓 is a one-form, will

recognize at once that the deformation gradient F is not a gradient at

all, but is simply the derivative of the deformation (a map of original

configuration into the environment space). They may also recognize

that the rate of deformation tensor is just the derivative of the Rie-

mannian metric on space, and that the Cauchy–Green tensor is the

pull-back of the Riemanninan metric on space by the deformation.

Usual expositions of the Theory of Elasticity (even those dealing with non-

linear solid mechanics) restrict the generality of the theory by using expressions

that are valid only in Cartesian coordinate systems or inertial frames of refer-

ence, and thus, considering only rigid changes of coordinates (translations and

rotations). A full covariant approach allows us to use general curvilinear coordi-

nates and arbitrary frames of reference (not only inertial frames). A review on

manifolds, maps between manifolds, tensorial analysis, covariant derivative and

other related topics is given in Appendix B. For many practical purposes, the

non-covariant approach keeps many things simple, but possibly some important

connections and generalizations are lost. There are clear advantages in the co-

variant approach and in the use of manifolds and the full tensorial formulation.

To support this approach, three good physical reasons can be adduced:

� Compatibility equations. Many books about elasticity present compati-

bility equations as an abstract requirement for integrability of the deforma-

tion tensor 𝜀 ensuring the existence of a displacement vector field u for the

deformed body. But in terms of Riemann manifolds there is a much more

clear interpretation, being the deformation tensor related to the metric ten-

sor of the space (see section B.7).The compatibility equations are equivalent
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to state that the environment space is Euclidean (that is, a manifold of zero

curvature) [16] (in fact, there is exactly one compatibility equation for each

component of the Riemann curvature tensor!). When considering, for exam-

ple, generalizations of elasticity in the context of Astrophysics or Einstein’s

theory of General Relativity, the compatibility equations represent the cur-

vature of the space-time. Observe that in a curved space-time, the space

does not have the structure of vectorial space as R𝑛 and the concept of

displacement vector does not make sense; but the compatibility equations

still retain their geometrical interpretation. Thus, the lack of generality de-

prives the compatibility equations of their geometric sense, disguising them

as a technical integrability condition.

� Arbitrary frames. Most books about elasticity fail to formulate the equa-

tions in an arbitrary system of reference, since it could be enough to use

inertial frames for many practical purposes. However, the formulation of

the Elasticity theory in arbitrary frames of reference and in arbitrary coor-

dinates can be useful in some specific contexts and brings a better under-

standing of the general theory of continuous media. In addition, assuming

that the environment space is Euclidean –although reasonable in most prac-

tical situations– is not a correct assumption (at lest at cosmological scale).

A physical elegant theory needs to be valid for general frames of reference,

as Einstein understood in seeking its theory of General Relativity. Indeed,

Einstein found that both issues (to have a theory completely general for

any observer or reference frame and the geometry of space) are connected.

Thus, a completely satisfactory theory of elasticity should not assume that

the space is Euclidean or that we are using an inertial frame of reference.

For this purpose, we will seek a full covariant formulation without assum-

ing any system or reference (we will assume in some cases that the space

is Euclidean, then we will proceed to a full covariant formulation removing

this particular assumption).

� Residual stress. Biological tissues are influenced by stresses since growth

depends on stress [10, 93], this leads to an interesting issue. If a part of

the tissue is surgically removed, some parts shrink but the final state is

not stress free because the newly generated cells have distorted the original

geometry and the tissue has no possibility to return to an ”original” shape.

The difficulties in dealing mathematically with this problem is interestingly

related to the problem of relativistic elasticity. In relativistic elasticity
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there is no way to separate the ”deformation” of the background space

from the deformation of the body. Thus, there is no natural way to define

the undeformed shape of the body. Mathematically the residual stress can

be treated by defining a non-Euclidean metric tensor (as it is required for

working in curved space-time).

This dissertation takes advantage of a full covariant formulation, Riemann

geometry, covariant derivative, and a manifold approach. This will allow us to

attach the right geometrical meaning to some concepts, to have a satisfactorily

general theory and, in addition, to deal with residual stresses (so common in

biological tissues in an elegant and general way). A final comment about the cho-

sen mathematical approach: nowadays mathematicians, physicists and engineers

agree that the distinction between a linear transformation and a matrix is worth

fussing over. In the same spirit, manifolds should be used:

They are unquestionably the appropriate setting for tensor analysis

and continuum mechanics. Resistance to the use of abstract manifolds

is frequently encountered, simply because most work in elasticity in

R3. In the literature, R3 is often replaced by abstract vector spaces.

This arena is not suitable for general tensor analysis. Indeed, as

Einstein has so profoundly taught us, deep insights can be gained by

removing one’s blinders to see the theory in the grander time-proven

context of covariant formulations. This is why we encourage the use

of manifolds. [72, p. xiii]

1.4 Research contributions

Every well-formulated research attempts to answer some set of well-settled and

properly formulated questions. This dissertation seeks to answer the following

questions:

1. What type of stress-strain response can be expected for a soft tissue like

the esophageal wall?

2. Being the response non-linear and anisotropic, how can we deal with these

features from a mathematical point of view?
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3. Being soft tissues complex biological structures with a lot of micro-structure,

is it possible to characterize these micro-structures by incorporating them

in a constitutive model?

4. How can we use a mathematical model for improving the medical treatments

that involve forced dilation?

A partial short response for the previous questions is the following:

The main objective of this dissertation is to formulate rigorously a complete non-

linear microstretch anisotropic hyperelastic constitutive model with

large deformations (and with residual stresses) to characterize the multi-layered

tissue of human esophagus, the model is intended to be compared with in vivo

measurement in order to predict possible failure of tissues during procedures of

forced dilation in patients with some common diseases that may require them.

As we mentioned in the previous sections, this research encloses the following

sub-goals:

� Analysis of micro-structure. The microcontinuum theory is used for

modeling small scale structure present in biological tissues (microstructure).

The micro-structure of collagenous tissues and the arrangement of fibers are

examined in order to produce a physically motivated constitutive model.

� Analysis of anisotropy. A general analysis of different types of anisotropy

based on exact mathematical results is reviewed for both classical contin-

uum models and microcontinuum models.

� Describing a complete procedure for experimentation with soft tis-

sue, sample preparation, marking and use of motion tracking for obtaining

accurate displacements and strains, reducing the dispersion of the data.

� Assessing maximal deformations and expected efforts on the esoph-

agus wall during treatments.

All details and justifications of the partial answer just quoted is the object of

the following chapters.
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Entia non sunt multiplicanda

præter necessitatem.

[”The Ockham’s Razor”]

William of Ockham (1288 – 1348)

2
Antecedents

2.1 Motivation and Antecedents

This chapter explains some details of the relevant anatomy for the mechanical

behavior of esophagus. The basics of the classical theory continuous media and

constitutive theory are summarized here. In addition, an introduction to the

theory of microcontinuoum media is given. The chapter closes with a discussion

about the possible types of anisotropy in elasticity and the general theory for

dealing with them.

2.2 Anatomy and diseases of esophagus

To understand the mechanical behavior of the esophagus for improving medical

treatments, it is necessary to know the anatomy of esophagus and its multi-

layered structure. From the anatomical point of view, the esophagus is a two-

layered tubular structure: the inner layer is the mucosa-submucosa and the outer
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layer is the muscularis externa, a muscular layer. The mucosa-submucosa layer

is constituted by two parts that are not easy to separate; for this reason we are

considering it as one single layer. In figure 2.1 the basic anatomy of esophagus

is presented. Mechanically, the mucosa-submucosa layer is rich in collagen and is

more rigid than the outer layer [33].

Figure 2.1. Left : Histological view of a typical cross section of human esophagus
(Histology page of G. M. Caplan, Owensboro Community & Technical College), Right
Multi-layered structure of the esophageal tube (after Natali, 2009, [80])

Both layers exhibit a nonlinear anisotropic viscoelastic behavior. This com-

plex mechanical behavior requires to measure many different material constants.

The value of the material constants can be obtained using in vitro testing of

tissues from animals or cadavers [99, 115]. Due to the low velocities involved in

the forced dilatation treatments 𝜀̇ ≤ 10−2, the viscoelastic effects may be ignored

for practical purposes. The anisotropy of the tissue is due to an asymmetric

disposition of the collagenous fibers within both layers (see figure 2.2)

In its intact state, the esophagus is slightly stretched along its longitudinal

direction. Moreover, this intact state is not a natural state (free-stress state) be-

cause there are residual stresses along circumferential direction of the tube. The

presence of residual circumferential stress for arteries is well established since

1983 when Vaishnav and coworkers measured it [107, 108]. For esophagus, the

works of Gregersen and coworkers established similar distributions of residual

stress [45,69]. Currently, we know that these residual stresses are typical of many

biological tissues, in fact, it is a consequence of the growth and the remodeling of

the tissue and it is modulated by mechanical factors (such as the average stress,

see Rodriguez et al. (1994) [93]). For example, in cardiac hypertrophy, alter-
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Figure 2.2. Planar representation of fiber disposition in submucosa (a) and muscularis
externa (b) (after Natali, 2009, [80]).

ations in wall stress arising from changes in mechanical loading lead to cardiac

growth and remodeling. Rodriguez proposed a general continuum formulation

for finite volumetric growth in soft tissues adequate for modeling this type of

growth. In the formulation of Rodriguez, the change in shape of a tissue dur-

ing the growing process is described by a mapping analogous to the deformation

gradient tensor. This mapping is decomposed into a transformation of the local

zero-stress reference state and a supplementary elastic deformation; this ensures

the compatibility of the total growth deformation. In these growth models, the

residual stresses arise from the uneven growth deformation.

2.2.1 Esophageal diseases

Many people experience a burning sensation in their chest occasionally, caused

by stomach acids refluxing into the esophagus, normally called heartburn. Ex-

tended exposure to heartburn may erode the lining of the esophagus, potentially

leading to a Barrett’s esophagus which is associated with an increased risk of

adenocarcinoma most commonly found in the distal one-third of the esophagus.

Some people also experience a sensation known as globus esophagus, where it feels

as if a ball is lodged in the lower part of the esophagus. These two are the two
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most common esophageal diseases but properly none of these common conditions

constitute a dysphagia (the medical term for the symptom of difficulty in swal-

lowing), although the heartburn can lead to some other problems implying some

degree of dysphagia (see figure 2.3). In this section, we summarize two types

of diseases that frequently involve more severe dysphagia: the stenosis and the

achalasia.

Stenosis. The term stenosis (classical Greek stenōsis ’narrowing’) refers to

an abnormal or pathological reduction of the lumen of a tubular organ or an

anatomic structure. This abnormal narrowing can occur in different tubular

structures in the body, for example, we have the following types of stenoses:

� Arterial stenoses that include various subtypes: Angina pectoris (coro-

nary artery stenosis), carotid artery stenosis, and renal artery stenosis.

� Stenoses of the valves of the heart (stenosis of pulmonary, mitral,

tricuspid or aortic valves).

� Stenoses in digestive system, pyloric stenosis (gastric outflow obstruc-

tion), esophageal stenosis (it can be produced by different factors: acciden-

tal ingestion of caustic substances, chronic reflux and reflux esophagitis,

etc.), biliary tract stenosis (obstructive jaundice).

� subglottic stenosis (narrowing of the subglottic airway).

Figure 2.3. Right : Peptic stricture showing narrowing of the esophagus near the
junction with the stomach due to chronic gastroesophageal reflux (Wikimedia commons,
2006), Left acute herpetic esophagitis (Hudesman et al., 2009, [54])

In particular, esophageal stenosis consists in an internal regrowing of the

the esophageal wall reducing the lumen of esophageal tract. This can obstruct

severely the transit of the bolus, in some cases, it may provoke the complete

12
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inability for swallowing and for eating normally. The most severe cases require

emergency surgery to open the lumen. The causes of this disease are diverse.

The most common one is the chronic gastro-esophageal reflux that can lead to a

stenosis requiring forced dilatation combined with a treatment for acid reflux sup-

pression. But about 25% of the cases seem to be due to other causes (esophagitis

or inflammation of esophagus (see figure 2.4), diseases in some sphincter (cardia

or pylorus), disorders in muscular motility, hiatus hernia, ingestion of caustic

substances, regrowth of an internal scar due to a previous surgery (anastomato-

sis), secondary stenosis by irradiation in cancer treatments or rare dermatological

diseases (e. g. dystrophic epidermolysis bullosa).

Figure 2.4. Detail of esophageal tissue affected by herpetic virus, some alterations
in the cellular nucleus can be seen [marginalization (of chromatin), multi-nucleation,
molding of nuclei]

Achalasia. The achalasia is another disease that may require a treatment of

forced dilatation. The achalasia involves the loss of peristalsis in distal esopha-

gus (lower part) and impedes its normal emptying. Only when the hydrostatic

pressure of the accumulation of food exceeds a certain threshold the cardia opens

(see figure 2.5). Its annual incidence in Europe and the US is inferior to 1 case

per 100,000 people. The incidence seems to be the same for men and women,

and although it may appear at any age it is very rare during adolescence; most

of the patients are 19 to 60 years old. Since the 1930s, it is known that the

13
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disease is due to failure of the superior esophageal sphincter (cardia), which fails

to relax completely, hence, the denomination (classical Greek achalasis ‘lack of

relaxation’).

Figure 2.5. (a) Barium swallow. Dilated esophagus with retained column of barium
and “bird’s beaking” suggestive of achalasia (Wikimedia commons, 2007) (b) A trans-
verse CT image showing marked dilatation of the esophagus due to accumulation of
bolus (Wikimedia commons, 2010).

2.3 Continuum mechanics and Microcontinuum me-

chanics

The French mathematician Augustin-Louis Cauchy was the pioneer in formulat-

ing, in a rigorous, systematic way, a theory of continuum mechanics in the 19th

century, but research in the area continues today. The modern formulation of

continuum mechanics models define a deformable body as a continuous collection

of material particles, i. e. an assignment 𝑋 ∶ ℬ → R3, where ℬ is a subset of a

topological space (usually, a subset of 3-dimensional Euclidean space; in general,

a subset of a 𝑛-dimensional manifold in the case of microcontinuum mechanics).

The study of continuum/microcontinuum mechanics involves:

14
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(a) the definition of kinematics and the study of deformation and strains,

(b) the study of stress and balance principles (conservation of mass, energy, mo-

mentum, etc.),

(c) the study of constitutive theory and the relation between stress and strain

(the constitutive equations are what differentiate fluent media from solid

media, for example).

(d) the existence, the uniqueness and the properties of the solutions of different

continuum problems.

The next two sections present a brief overview for the case of classical contin-

uum mechanics, and then in the following sections present the case in microcon-

tinuum in more detail.

2.3.1 Motion, strain and compatibility equations in continuum

mechanics

A solid continuum body is modeled as an open set occupying a 3-dimensional

region (for each point in this set, a collection of physical magnitudes such as

density, temperature, velocity, exterior force, strain, stress [state], etc. is defined).

Each magnitude has its own tensorial type. Thus, density and temperature are

scalars (0-tensors), velocity and exterior force are vectors (1-tensors), and strain

and stress state are 2-tensors. “Exotic” materials such as liquid crystals, or

materials with micro-structure require an 𝑛-dimensional region (with 𝑛 > 3 and

extra degrees of freedom for describing the orientation and the internal states of

the micro-structure). In sake of conceptual clarity and to use a unified approach,

all the formulation is presented in terms of manifolds and tensorial equations (a

review of the key concepts and definitions about manifolds is given in Appendix

B).

Definition 2.3.1. A simple body is an open set ℬ ⊂ R3. A configuration of

ℬ is a mapping 𝜑 ∶ ℬ → R3. The set of all configurations of ℬ is denoted by Cℬ
(or simply by C ). Points in ℬ are denoted by capital letters.

A configuration represents a deformed state of the body. As the body moves,

a collection of configurations are obtained, depending on time 𝑡. The set of

15
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Figure 2.6. A representation of a deformation process in Cartesian coordinates: initial
configuration (or undeformed configuration) [right ], deformed configuration at time 𝑡
[left ] . 𝑃 is the initial position of a material point or particle, and 𝑝 represents the
same particle at the time 𝑡. The set of coordinates 𝑥 is a function of the time 𝑡 and
the initial coordinates 𝑋. The rôle of the two bases {𝐸1,𝐸2,𝐸3} and {𝑒1,𝑒2,𝑒3} is
explained in appendices (see B.2)

all configurations can be represented by an infinite-dimensional manifold, for

example a typical election could be Cℬ ⊂ Diff(ℬ) (the set of diffeomorphisms, see

B.3.5, of ℬ → 𝒮, where 𝒮 is a three-dimensional manifold or simply R3). A motion

or continuous deformation in time is defined as a collection of configurations:

Definition 2.3.2. A motion of a simple body ℬ is a curve in C ; that is, a

mapping 𝑡 ↦ 𝜑𝑡 ∈ C (or some open interval of R to C ). For 𝑡 ∈ R fixed, we write

𝜑𝑡(𝑋) = 𝜑(𝑋, 𝑡). The map 𝑉 𝑡 ∶ ℬ → R3 defined by:

𝑉 𝑡 = 𝑉 (𝑋, 𝑡) = 𝜕𝜑(𝑋, 𝑡)
𝜕𝑡

(assuming the derivative exists) is called material velocity of the motion, and

is a vector field over the initial configuration of the body.

In the same vein, the acceleration can be defined:

Definition 2.3.3. The material acceleration of a motion is defined by:

𝐴𝑡 =𝐴(𝑋, 𝑡) = 𝜕𝑉 (𝑋, 𝑡)
𝜕𝑡
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(assuming the derivative exists)

Remark For performing the above computation in arbitrary coordinates, we

need to use covariant derivatives (see section B.6.2) ∎.

Intuitively, a regular motion is one for which nothing “mathematically irreg-

ular” like ripping, pinching, or interpretation of matter takes place. We will

assume for convenience in all cases that the motions are regular, because some

of the commonly encountered physical magnitudes of continuum mechanics are

not well defined if 𝜑 is not regular. We need to highlight that some important

physical cases that are not regular (such as contact problems in which ℬ may

consist of two disconnected pieces that 𝜑 brings together). The velocity and the

accelerations can be represented in a different picture by using spatial coordinates

(instead of the material coordinates or labels), for this reason, we define spatial

velocities and accelerations:

Definition 2.3.4. Let 𝜑𝑡 be a 𝒞1 regular motion of ℬ. The spatial velocity
of the motion is defined by:

𝑉 𝑡 ∶ 𝜑𝑡(ℬ) → R3, 𝑣𝑡 = 𝑉 𝑡 ○ 𝜑−1𝑡

If 𝜑𝑡 is a 𝒞2 regular motion, we define the spatial acceleration by

𝑎𝑡 ∶ 𝜑𝑡(ℬ) → R3, 𝑎𝑡 =𝐴𝑡 ○ 𝜑−1𝑡

The velocities and accelerations just defined are true vectors (1-tensor mag-

nitudes) that transform according to the usual rules (see propositions B.2.1 and

B.2.2 in appendix B)

Now, our objective is to compare lengths, angles and volumes in the deformed

configuration 𝜑𝑡(ℬ) ⊂ 𝒮 of a simple body ℬ with the initial ones, in the unde-

formed configuration. We know that lengths, angles, areas and volumes are “met-

ric concepts” that require the use of a metric tensor on a Riemann manifold1.

The Euclidean space with the usual inner product E𝑛 = (R𝑛, ⋅) is the prototypical
example of Riemann manifold [with zero curvature]. In the following, we just as-

sume that the space in which a motion takes place is an 𝑛-dimensional Riemann

1A Riemann manifold is a manifod with a metric tensor defined on its tangent bundle, see
section B.5
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manifold (𝒮,g) (not necessarily the Euclidean space). Under this assumption,

the length of a curve 𝒞 ∶ (︀𝑎, 𝑏⌋︀ ⊂ R→ 𝒮 is given by the following expression:

length(𝒞) = ∫
𝑏

𝑎
⌊︀𝑔𝑎𝑏

𝑑𝑥𝑎

𝑑𝑡

𝑑𝑥𝑏

𝑑𝑡
}︀
1⇑2

𝑑𝑡 (2.1)

where the metric tensor is g = 𝑔𝑎𝑏𝑒𝑎 ⊗ 𝑒𝑏 = 𝑔𝑎𝑏𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏 of 𝒮 and {𝑥𝑎} is a set

of coordinates in 𝒮. The angle 𝛼 between two vectors 𝑉 = 𝑉 𝑎𝑒𝑎 and 𝑊 =𝑊 𝑎𝑒𝑎

is given by:

cos𝛼 = 𝑔𝑎𝑏𝑉 𝑎𝑊 𝑏

(𝑔𝑐𝑑𝑉 𝑐𝑉 𝑑)1⇑2(𝑔𝑒𝑓𝑊 𝑒𝑊 𝑓)1⇑2 =
∐︀𝑉 ,𝑊 ̃︀
∏︁𝑉 ∏︁∏︁𝑊 ∏︁ (2.2)

The 𝑛-volume is defined by the 𝑛-form dv = ⌋︂𝑔 𝑒1 ∧ 𝑒2 ∧ ⋯ ∧ 𝑒𝑛 = ⌋︂𝑔 𝑑𝑥1 ∧
𝑑𝑥2∧⋯∧𝑑𝑥𝑛, where 𝑔 = det(𝑔𝑎𝑏) is the [non-vanishing] determinant of the metric

tensor, and ∧ denotes the exterior [antisymmetric] product2. Thus, the 𝑛-volume

of a domain 𝒟 ⊂ 𝒮 is given by:

volume(𝒟) = ∫
𝒟
dv = ∫

𝒟

⌈︂
det(𝑔𝑎𝑏) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧⋯ ∧ 𝑑𝑥𝑛 (2.3)

In addition, the area of a curved surface or the𝑚-volumes of an𝑚-submanifold

(𝑚 < 𝑛) in 𝒮 can be defined in terms of of the metric tensor g. Given the previous

definitions, now we can compare deformed lengths with non-deformed lengths;

this comparison leads to the strain measures. If we select a coordinate system

{𝑥𝑎} in 𝒮 and a regular motion 𝜑𝑡, then we can compute the pull-back 𝜑∗𝑡 g of the

metric tensor3 g = 𝑔𝑎𝑏𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏, by means of the deformation gradient4 F = 𝑇𝜑𝑡:

𝜑∗𝑡 g = 𝜑∗𝑡 (𝑔𝑎𝑏𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏)
= 𝑔𝑎𝑏(𝐹 𝑎

𝐴𝑑𝑋𝐴) ⊗ (𝐹 𝑏
𝐵𝑑𝑋𝐵)

= (𝑔𝑎𝑏𝐹 𝑎
𝐴𝐹 𝑏

𝐵)𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵

= 𝐶𝐴𝐵𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 =C♭

(2.4)

2For the notion of exterior product, see definition B.4.3
3For the notion of pull-back, see section B.3 for the technical details.
4For the notion of deformation gradient, see definition B.7.1
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The (0,2)-tensor C♭ ∈ 𝑇 0
2ℬ is the full covariant associated tensor of the right

Cauchy-Green tensor5 (in the above computation, the 𝐹 𝑎
𝐴 are the components

of the deformation gradient F). By computing the difference between this tensor

and the metric tensor of ℬ, i.e. G = 𝐺𝐴𝐵𝑑𝑋𝐴⊗𝑑𝑋𝐵, we can define the material

[or Lagrangian] strain tensor:

E♭ = 𝐸𝐴𝐵𝑑𝑋
𝐴 ⊗ 𝑑𝑋𝐵 = 1

2
(𝐶𝐴𝐵 −𝐺𝐴𝐵)𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 = 1

2
(C♭ −G) (2.5)

Obviously, E♭ = 0 implies that G =C♭ and thus, we have no change in shape.

The material strain tensor is the most commonly used type of strain tensor, but

other alternative tensors are used to characterize the deformed configuration of

a body: the deformation gradient F = 𝑇𝜑𝑡, the right Cauchy-Green tensor C,

the Piola deformation tensor B, the left Cauchy-Green tensor b (also called the

Finger deformation tensor), the [forward] Cauchy tensor c (also called the Finger

tensor or the Piola tensor) and the spatial or Euler-Almansi strain tensor e (see

section for the definition of all these alternative tensors B.7). Notice that not

all these tensors are defined on the same tangent bundle6: C,B,E ∈ 𝑇 1
1ℬ but

c,b,e ∈ 𝑇 1
1 𝒮. Notice, in addition, the effect of the ♭ isomorphism (see section B.5,

for mathematical details). The pull-back and the push-forward can be used to

represent the current relations among all these deformation measures (we repeat

here the equation B.13):

C♭ = 𝜑∗(g), c♭ = 𝜑∗(G),
B♯ = 𝜑∗(g♯), b♯ = 𝜑∗(G♯),
E♭ = 𝜑∗(e♭), e♭ = 𝜑∗(E♭).

(2.6)

Examining the Euclidean case in Cartesian coordinates, it is easy to see why

there are four types of possible deformation tensors (C,c,B,b). In this particular

case the above equations imply:

C = F𝑇F, c = F−𝑇F

B = F−1F−𝑇 , b = FF𝑇 .
(2.7)

We conclude this section with an interesting mathematical question: Given

5For the notion of full covariant associated tensor, see definition B.5.2
6For the notion of tangent bundle, see details in definition B.3.2.
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a twice differentiable symmetric positive-definite tensor field C♭ ∈ 𝑇 0
2ℳ, when

C♭ is the deformation tensor of a configuration?. We can answer “locally” the

previous question: if certain compatibility equations are satisfied, then there is a

configuration 𝜑 such that C = F𝑇F with F = 𝑇𝜑. The compatibility equations

are:

𝜕Γ𝐽
𝐼𝐾

𝜕𝑋𝐿
+ 𝜕Γ

𝐽
𝐼𝐿

𝜕𝑋𝐾
+ Γ𝑀

𝐼𝐾Γ
𝐽
𝑀𝐿 + Γ𝑀

𝐼𝐿Γ
𝐽
𝑀𝐾 = 0, 1 ≤ 𝐼, 𝐽,𝐾,𝐿 ≤ 𝑛 (2.8)

where

Γ𝐾
𝐼𝐽 ∶= (𝐶−1)𝐾𝐿Γ𝐼𝐿𝐽 , Γ𝐼𝐾𝐽 ∶=

1

2
(𝜕𝐶𝐼𝐾

𝜕𝑋𝐽
+ 𝜕𝐶𝐽𝐾

𝜕𝑋𝐼
− 𝜕𝐶𝐼𝐽

𝜕𝑋𝐾
) (2.9)

Interestingly, the compatibility equations are precisely the components of a Rie-

mann curvature tensor 7 for the tensor C♭. This allows to give a quite simple

geometrical interpretation to the compatibility equations, many textbooks only

present the compatibility equation as a technical necessary condition for the

integrability of the strain tensor, but such practice disguises the well founded

geometrical and natural interpretation of these equations. This geometrical in-

terpretation is formally stated in the following proposition:

Proposition 2.3.1. Let 𝜑 ∶ ℬ → 𝒮 be a regular configuration, then:

(i) Let ℬ be an open set in R𝑛 and 𝒮 = R𝑛. Let R̂𝐴
𝐵𝐶𝐷 be the “curvature

tensor” obtained by using the deformation tensor 𝐶𝐴𝐵 in place of 𝐺𝐴𝐵.

Then R̂𝐴
𝐵𝐶𝐷 = 0.

(ii) Let ℬ be an open set in R𝑛 and 𝒮 = R𝑛. Let 𝐶𝐴𝐵 be a given positive-

definite symmetric two-tensor whose curvature tensor vanishes: R̂𝐴
𝐵𝐶𝐷 = 0.

Then given any point 𝑥0 ∈ ℬ, there is a neighborhood 𝒰 of 𝑥0 and a regular

map 𝜑 ∶ 𝒰 → R𝑛 whose deformation tensor is 𝐶𝐴𝐵

▶𝑃𝑟𝑜𝑜𝑓
(i) Comparing the definition of curvature, we can see that R̂𝐴

𝐵𝐶𝐷 is the pull-back

of R𝑎
𝑏𝑐𝑑, the curvature tensor of R3. But R𝑎

𝑏𝑐𝑑 = 0, so R̂𝐴
𝐵𝐶𝐷 = 0 as well.

(ii) The hypothesis states that the Riemann manifold (ℬ,𝐶𝐴𝐵) is flat. Thus, in

7For the notion of Riemann curvature tensor, see section B.5
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a neighborhood 𝒰 of 𝑥0, there is a coordinate system 𝜒 ∶ 𝒰 → R𝑛 in which the

𝐶𝐴𝐵’s are constants. By following 𝜒 with a linear transformation L, we can bring

𝐶𝐴𝐵 into diagonal for 𝛿𝐴𝐵. Let 𝜑 = L ○𝜒. Then (𝜑∗𝐶)𝑎𝑏 is the Euclidean metric;

that is, 𝐶𝐴𝐵 is the deformation tensor of 𝜑. ∎

This latter result show that the manifold approach serves to clarify the true

geometrical significance of the compatibility equations.

2.3.2 Stress and balance principles in continuum mechanics

This section presents the dynamical equations of continuum mechanics. To define

the concept of stress, we will review the Stress Principle of Cauchy. This principle

involves the notion of stress, a notion originally introduced by Cauchy himself

(1823,1827) [12] a century and a half after Newton. According to Cauchy, the

stress represents the interaction of a material point with surrounding material

in terms of surface contact forces. Following the modern formulations of the

Stress Principle of Cauchy, we postulate the existence of a vector field 𝑡(𝑥, 𝑡,𝑛)
depending on time 𝑡, the spatial point 𝑥, a unit vector 𝑛, and, implicitly, the

motion 𝜑𝑡(𝑋) itself. Physically, 𝑡(𝑥, 𝑡,𝑛) represents the force per unit area exerted

on a surface element oriented with normal 𝑛. We shall call 𝑡 the Cauchy stress

vector.

Initially, we shall assume ℬ is a simple body moving in a space 𝒮 = R𝑛.

We shall let 𝜑𝑡 be a regular C 1 motion of ℬ in 𝒮, and, as usual, let 𝑣(𝑥, 𝑡) and

𝑉 (𝑋, 𝑡) be its spatial and material velocities (introduced in the previous section).

Let 𝜌(𝑥, 𝑡) be a positive-definite function called mass density function (at some

points we shall use the “principle of conservation of mass” in the deductions).

Finally, we assume that forces other than surface contact forces (tractions) arise

form an external force field 𝑏, an example of which is the gravitational force of

the electrical force in a charged continuum. For classical continuum mechanics,

we will assume the following Stress Principle of Cauchy:

Definition 2.3.5. Consider a body ℬ occupying a region 𝜑(ℬ) ⊂ 𝒮 and

subject to applied forces represented by the force density 𝑏 ∶ 𝜑(ℬ) → 𝑇𝒮.
Assume the existence of continuous and differentiable fields: on scalar field

representing mass density 𝜌(𝑥, 𝑡) and one vector field representing the vector

stresses 𝑡 ∶ 𝜑(ℬ) × 𝑆1 → 𝑇𝒮, where 𝑆1 = {𝑢 ∈ 𝑇𝜑(ℬ)⋃︀ g(𝑢,𝑢) = ∏︁𝑢∏︁2 = 1}:
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(i) We say that the balance of linear momentum is satisfied provided

that for every nice open set 𝒰 ⊂ ℬ

𝑑

𝑑𝑡 ∫𝜑𝑡(𝒰)
𝜌𝑣 dv = ∫

𝜑𝑡(𝒰)
𝜌𝑏 dv + ∫

𝜕𝜑𝑡(𝒰)
𝑡 da

where 𝑣 denotes the spatial velocity field.

(ii) We say that the balance of angular momentum is satisfied provided

that for every nice open set 𝒰 ⊂ ℬ:

𝑑

𝑑𝑡 ∫𝜑𝑡(𝒰)
𝑥 × 𝜌𝑣 dv = ∫

𝜑𝑡(𝒰)
𝑥 × 𝜌𝑏 dv + ∫

𝜕𝜑𝑡(𝒰)
𝑥 × 𝑡 da

The integral form of momentum balance is subject to an important criticism:

it is not form-invariant under general coordinate transformations, although the

dynamical equations themselves are. Because of these the approach which departs

from energy balance as an axiom could be preferable. More specifically, the above

balances of momentum explicitly uses the linear structure of R𝑛 since vector

functions are integrated. It is correct to interpret this equation component-wise

in Cartesian coordinates 𝑧𝑖 but not in a general coordinate system. In this sense,

the balances of momentum are not a tensorial postulates. It can be proven that

the balances of momentum follow from an energy principle that does not require

𝒮 to be a linear.8 The following proposition shows that from the above principle

we can derive the existence of a stress tensor:

Proposition 2.3.2. Assume that balance of linear momentum holds, that

𝜑𝑡(𝑋) is C 1, and 𝑡(𝑥, 𝑡,𝑛) is a continuous function of all its arguments.

Then there is a unique (20) tensor field, denoted by 𝜎, depending only on 𝑥

and 𝑡 such that

𝑡(𝑥, 𝑡,𝑛) = ∐︀𝜎(𝑥, 𝑡),𝑛̃︀𝑥
In coordinates {𝑥𝑎} on 𝒮, the preceding equation reads

𝑡𝑎(𝑥, 𝑡,𝑛) = 𝜎𝑎𝑐(𝑥, 𝑡)𝑔𝑏𝑐𝑛𝑏 = 𝜎𝑎
𝑏𝑛

𝑏

8For relativistic elasticity it is essential to have a basic postulate that is covariant –such as
balance of four momentum– and for classical elasticity it is desiderable.
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▶𝑃𝑟𝑜𝑜𝑓 Let 𝑢0 be a vector in R𝑛. Then

𝑑

𝑑𝑡 ∫𝜑𝑡(𝒰)
𝜌∐︀𝑣,𝑢0̃︀ dv = ∫

𝜑𝑡(𝒰)
𝜌∐︀𝑏,𝑢0̃︀ dv + ∫

𝜕𝜑𝑡(𝒰)
∐︀𝑡,𝑢0̃︀ da

By Cauchy’s theorem, there is a vector field 𝑐 such that ∐︀𝑡,𝑢0̃︀ = ∐︀𝑐,𝑛̃︀ [16, 72].
Since ∐︀𝑡,𝑢0̃︀ depends linearly on 𝑢0, 𝑐 must also be a linear function of 𝑢0, and

so defines the required tensor 𝜎. In Cartesian coordinates, picking 𝑢0 = 𝑖̂𝑖 gives

a vector field 𝑐𝑖 such that 𝑡𝑖 = ∐︀𝑐𝑖,𝑛̃︀ = 𝑛𝑗𝜎𝑖𝑘𝛿𝑗𝑘, where 𝜎𝑖𝑘 are the components of

𝑐𝑖. Obviously, 𝜎 is uniquely determined. ∎

The tensor whose existence is asserted in the above theorem is called the

Cauchy stress tensor 𝜎 = 𝜎𝑎𝑏 𝑒𝑎 ⊗ 𝑒𝑏 = 𝜎𝑎𝑏 (𝜕⇑𝜕𝑥𝑎) ⊗ (𝜕⇑𝜕𝑥𝑏) (where {𝑥𝑎} is a

coordinate system over 𝒮). And the tensor with components 𝜎𝑎
𝑏 is the associated

tensor to 𝜎 of type (1,1). In addition we define the first Piola-Kirchhoff stress

tensor P is the two-point tensor obtained by performing a Piola transformation

of the tensor 𝜎. In coordinates:

𝑃 𝑎𝐴 = 𝐽(F−1)𝐴𝑏𝜎
𝑎𝑏 (2.10)

Here P = 𝑃 𝑎𝐴 𝑒𝑎⊗𝐸𝐴 is a function of (𝑋, 𝑡) and 𝜎𝑎𝑏 is evaluated at (𝑋, 𝑡), where
𝑥 = 𝜑(𝑋, 𝑡).

It can be proven that the balance of linear moment in 2.3.9 can be written in

terms of the first Piola-Kirchhoff stress tensor:

𝑑

𝑑𝑡 ∫𝒰 𝜌0𝑉 dV = ∫
𝒰
𝜌0𝐵 dv + ∫

𝜕𝒰
∐︀P,𝑁 ̃︀ dA (2.11)

where 𝐵(𝑋, 𝑡) = 𝑏(𝑥, 𝑡), 𝜌0 is the mass density in the material configuration,

∐︀P,𝑁 ̃︀ = 𝑃 𝑎𝐴𝑁𝐴, 𝑉 is the material velocity and dV = det(𝐺𝐴𝐵)1⇑2 𝑑𝑋1∧⋯∧𝑑𝑋𝑛

is the 𝑛-volume form in the material configuration. The last expression is called

balance of linear momentum in material configuration. Both forms of balance

of linear momentum (material and spatial) can be written locally in differential

form,as the following proposition shows:

Proposition 2.3.3. Assuming: (a) that the balance of linear momentum

in integral form holds, (b) the conservation of mass holds, (c) the functions

involved are differentiable then the following differential equations hold:

𝜌𝑣̇ = 𝜌𝑏 + div𝜎
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where (div𝜎)𝑎 = 𝜎𝑎𝑏
⋃︀𝑏. In general coordinates {𝑥𝑎}, the above equation can

be written as follows:

𝜌(𝜕𝑣
𝑎

𝜕𝑡
+ 𝑣𝑏𝜕𝑣

𝑎

𝜕𝑥𝑏
+ 𝛾𝑎𝑏𝑐𝑣𝑏𝑣𝑐) = 𝜌𝑏𝑎 +

𝜕𝜎𝑎𝑏

𝜕𝑥𝑏
+ 𝜎𝑎𝑐𝛾𝑏𝑐𝑏 + 𝜎𝑐𝑑𝛾𝑎𝑐𝑏

In terms of the first Piola-Kirchhoff tensor the local differential equation

representing the balance of linear momentum is:

𝜌0𝐴 = 𝜌0𝐵 +DIVP

where 𝐴 is the material acceleration and DIV is the divergence operator in

the material coordinates {𝑋𝐴}.

This proposition is a direct consequence of the Reynolds’ transport theorem

[72]. In this section we have found that the general notion of stress can be

represented by two types of tensors the Cauchy stress tensor, and the first Piola-

Kirchhoff stress tensor, but as in the case of strain there are other possibilities

such defined in the next proposition:

Definition 2.3.6. The Second Piola–Kirchhoff stress tensor S is

obtained by pull-back by 𝜑𝑡 of the mixed tensor P = 𝑃 𝑎𝐵 (𝜕⇑𝜕𝑥𝑎)⊗(𝜕⇑𝜕𝑋𝐵).
In coordinates:

𝑆𝐴𝐵 = (𝐹 −1)𝐴𝑎𝑃
𝑎𝐵 = 𝐽(𝐹 −1)𝐴𝑎(𝐹 −1)𝐵𝑏𝜎

𝑎𝑏, S = 𝐽F−1𝜎F−𝑇

The special convected stress tensor T̃ is the pull-back of the associate

tensor 𝜎♭. In components:

𝑇𝐴𝐵 = 𝐽𝐹 𝑎
𝐴𝜎𝑎𝑏𝐹

𝑏
𝐵, T̃ = 𝐽F𝑇𝜎F

Finally the Kirchhoff stress tensor is defined by 𝜏 = 𝐽𝜎♭. In coordinates:

𝜏𝑎𝑏 = 𝐽𝑔𝑎𝑐𝑔𝑏𝑑𝜎𝑐𝑑

The relation among deformation tensors and stress tensors is summarized in

the table 2.1.
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Table 2.1. Deformation tensors and Stress tensors.

Stress tensors Energy conjugate
deformation tensors

Material Spatial Material Spatial
S 𝜎 C♭ g

= 𝐽𝜑∗𝜎 = 𝜑∗g
T̃ 𝜎♭ B♯ g♯

= 𝜑∗𝜏 ♭ = 𝐽−1𝜏 = 𝜑∗g♯
S 𝜎 G c♭

= 𝐽−1𝜑∗S = 𝜑∗G
T̃ 𝜎♭ G♯ b♯

= 𝜑∗G♯

Mixed Mixed
P F

2.3.3 Introduction to microcontinuum mechanics

Microcontinuum mechanics is a generalization of the ordinary continuum me-

chanics (classical continuum mechanics) [72]. Microcontinuum mechanics is a

type of generalized continuum mechanics that allows to incorporate some effects

of characteristic lengths of the materials micro-structure into constitutive mod-

eling [24, 37]. In the last decades, the use of the microcontinuum approach has

become more popular and currently suitable variational formulations for Finite

Element Method (FEM) have been developed [34]. This dissertation describes

some notable findings in the field of biomechanics using FEM and microcon-

tinuum approach. For instance, it seems that a micropolar material has better

resistance to the propagation of a crack in a fragile material. In particular, bones

seem to take advantage of these properties [3, 42, 95]. This section reviews the

main characteristics of microcontinuum mechanics.

Most principles of classical continuum mechanics remain valid in microcon-

tinuum mechanics. For example, the assumption of local action (meaning that

stress at a point depends only on quantities defined at that point) remains valid in

both classical continuum mechanics and microcontinuum mechanics. For defining

a microcontinuum medium, the classical Cauchy continuum can be enhanced by

introducing 3 rotational degrees of freedom, which leads to the Cosserat mechan-

ics, very earlier introduced by the Cosserat brothers in 1909 [19]. By adding even
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more degrees of freedom, more general microcontinuum media can be defined (see

table 2.2). A comprehensive account of the mechanics of higher order continua

can be found in the references [31]. Thus, we can construct a hierarchy:

� Cauchy continuum, the type of continuum used in classical continuum

mechanics without extra degrees of freedom. There are only three degrees

of freedom: the three usual translation degrees of freedom (see for example

[105]).

� Microdilatation continuum, the type of continuum in which micro-

structure can only undergo micro-volume changes. It is the cheapest model

in terms of degrees of freedom, with only one additional degree of freedom

with respect to classical continuum mechanics (see [101]).

� Micropolar continuum, the type of continuum that appears in the Cosserat

theory (see for example [31]). It is the most extensively used model of mi-

crocontinuum type.

� Microstretch continuum, an intermediate type, combining Cosserat ef-

fects and micro-volume changes, i. e. rotation and stretch of the micro-

structure, which was proposed by Eringen (1990) in order to limit the num-

ber of additional degrees of freedom (see [30]). This is the main type of

continuum use in this dissertation.

� Microstrain continuum, the type in which the micro-structure is rep-

resentable by a parallelogram formed by the triad of (micro-)vectors that

change in form, but can not rotate. The full micromorphic theory can be

seen as the combination of the micropolar and microstrain theories.

� Micromorphic continuum, the type of continuum where the underlying

micro-structure at a material point can rotate and be deformed. Therefore,

it has 9 additional degrees of freedom. The micro-structure evolution is

represented by the deformation of a triad of vectors. (see [32,74])

The description of all these higher order continua is usually based on the first

gradient theory (as it happens with classical continuum mechanics), meaning

that the first gradient of all degrees of freedom is supposed to play a rôle in the

material response.
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Table 2.2. The hierarchy of higher order continua.

Continuum Number DoF Magnitude Reference
type of DoF type

Cauchy 3 𝑢 R3 Truesdell &
Toupin (1960)

Microdilatation 4 𝑢, 𝑗 R3,R Forest &
Sievert (2006)

— 5 —

Micropolar 6 𝑢,R R3,SO(3) Cosserat &
Cosserat (1909)

Microstretch 7 𝑢,R, 𝑗 R3,SO(3),R Eringen (1990)

Incompressible 8 𝑢,K R3,SL(3) Forest &
Microstrain K symmetric Sievert (2006)
Microstrain 9 𝑢,K R3,GL(3) Forest &

K symmetric Sievert (2006)
— 10 —

Incompressible 11 𝑢,K R3,SL(3)
Micromorphic
Micromorphic 12 𝑢,K R3,GL(3) Mindlin (1964),

Eringen (1999)

The choice of the proper higher order model for a given material depends

on the relevant microscopic deformation mechanism. The Cosserat is well-suited

for granular media made of constituents that can rotate independently from the

macromotion [79]. This continuum model is also appropriate for the description

of materials with a bending-stiff substructure, like reinforcements of composites.

However, in porous media like soils, polymers and metal foams, the rotation

of cells is not the unique deformation mode so the full micromorphic theory

is required. The micromorphic approach was also used recently in the case of

the deformation of crystals [47]. A good trade-off in terms of numerical efficiency

and precision of microstructure description is to use the microstretch approach, as

done in soft biomaterials [95]. The mechanics of higher order continua is especially

relevant to address nonlinear phenomena like large deformations and nonlinear

behavior. Geometrically nonlinear formulations of the micropolar, micromorphic

and microstretch theories are available since the early 1970s.
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Figure 2.7. Representation of different planar deformations in a micropolar contin-
uum. In the horizontal axis the parameter 𝜀 is the shear and in the vertical axis the
parameter 𝜃 is the micropolar angle rotated by the micro-structure, here the micro-
structure are the red/blue squares (after Tarantola, 2006) [102].
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2.3.4 Experimental results supporting microcontinuum theo-

ries

The main goals of any physical theory (or scientific model) is to explain ade-

quately the experimental data, offer a good representation of empirical phenom-

ena, and make correct predictions. Although in many practical situations the

predictions of classical continuum mechanics seem to be in good accordance with

data, the microcontinuum mechanics predicts new phenomena that have been

verified experimentally.

Figure 2.8. Dispersion relations for different
types of planar waves. The acoustic modes (LA,
TA) are predicted by classical elasticity, but
the observed optical modes (LO, TO) are not
predicted by means of classical elasticity (after
Chen, 2004) [14].

This section summarizes some

relatively new experimental re-

sults that confirm the utility and

suitability of microcontinuum me-

chanics in materials where mi-

crostructure is present. The cur-

rent evidences justify the increas-

ing use of this microcontinuum ap-

proach in biomechanics (and other

areas).

One impressive success of mi-

cropolar theory is the prediction

of two “optical branches” (TO and

LO) or modes of elastic waves

present in certain crystalline mate-

rials, such as ferroelectric crystals.

Micropolar effects become impor-

tant in high-frequency and short

wavelength regions of waves. In

order to display these effects and

the new physical phenomena predicted, some researchers studied the dispersion

of plane harmonic elastic waves in isotropic solids.

This also provided a base for experimental observations of the relevancy and

necessity of micropolar theory in such contexts. According to the experimental

findings and the micropolar elasticity, four different wave propagating modes exist

with four different phase velocities for plane harmonic waves. The dispersion
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curves show that two modes are scalar waves and the other two are coupled

vector waves. Longitudinal and transversal acoustic branches are also predicted

by classical elasticity, but the other two (a longitudinal optic branch LO and

a transversal optic branch TO are the two new branches that fall outside the

domain of classical elasticity). The fact that these new optical branches are also

observed in phonon dispersion experiments has been crucial for the acceptance of

micropolar elasticity. Obviously the new optical branches are due to additional

degrees of freedoms not present in all crystalline solids.

Figure 2.9. Schematic representation of longitudinal and transversal, optical and
acoustic modes of propagation (after Chen, 2004) [14].

Other interesting case in biomechanics is the stress concentration around

cracks or holes. It is long suspected that the osteons are involved in the stress

concentration reduction in order to avoid the propagation of cracks. A primary

mechanism for the stress concentration reduction appears to be the softening by

embedding it in a compliant region; and a reinforcing ring that increases the stiff-

ness, and the presence of a ring of lamellar bone along the foramen inside edge,

which might serve to reduce the chance of cracks forming there [44]. An early

work that studied the possibility of using the micropolar theory for describing

the microstructure around osteons is Yang (1982) [113], this study found size

effects in quasi-static bending of compact bone. The effects seem consistent with

micropolar theory. A similar study is that of Rosenberg (2003) who studied the

stress concentration around circular holes (mechanically an osteon present a hole

in its center) by means of micropolar theory [95]. A well know result of classical

elasticity is that the stress concentration factor around a circular hole is 𝐾𝜎 = 3,

but micropolar elasticity predicts lower stress concentration around a circular hole

(see figure 2.10), being 𝐾𝜎 a function of 𝑅⇑𝑐, being 𝑅 the radius of the hole and

𝑐 =
⌈︂
𝛾(𝜇 + 𝜅)⇑𝜅(2𝜇 + 𝜅) a characteristic length associated to the microstructure

(𝜇 is the second Lamé coefficient and the remaining 𝜅, 𝛾 are additional moduli

occurring in the constitutive linear equations used).

As a last example we will cite the work of Goda et. al (2012) which explains

how to model a biological tissue with a regular random microstructure by means of

an homogeneous microcontinuum model [42]. The use of homogeneous materials
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Figure 2.10. Stress concentration factor around a circular hole, according to linear
elasticity theory and micropolar elasticity theory (after Rosenberg, 2003) [95].

that take into account the microstructure allows to treat these materials from a

macroscopic point of view.

Figure 2.11. (after Cowin and Doty, 2007) [20].

If we take a look at the trabecular structure or the cancellous bone tissue,

as in figure 2.11, it is clear that in addition to the Euclidean displacement the

reorientation of the porous microstructure needs to be represented.
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Figure 2.12. Periodical unit cell ar-
rangement used for representing the ran-
dom structure of cancellous bone, the geo-
metric parameters ℎ, ℓ, 𝑡, 𝜃 are related to the
elastic constants of the micropolar model
(after Goda et al., 2012) [42].

Goda and co-researchers tried to

use a micropolar model. They studied

linear plane strain problems and con-

sidered the bone as the microcontin-

uum limit of a set of unit cells (a typ-

ical cell is shown in figure 2.12). They

modeled each solid part as a Timo-

shenko beam and related the displace-

ments and gyrations with the forces

and torques existing at the nodes of

the unit cell. Then, using the classi-

cal matrix method of rigidity and the

homogenization procedure of Dos Reis

for periodical media [25, 26], the au-

thors obtained the following constitutive equation:

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑦𝑥
𝜇𝑥𝑧

𝜇𝑦𝑧

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

=

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝐾11 𝐾12 0 0 0 0

𝐾21 𝐾22 0 0 0 0

0 0 𝐾33 𝐾34 0 0

0 0 𝐾43 𝐾44 0 0

0 0 0 0 𝐾55 0

0 0 0 0 0 𝐾66

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝜀𝑦𝑥
𝜅𝑥𝑧
𝜅𝑦𝑧

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

(2.12)

where the 𝜎𝑖𝑗 are components of the stress tensor (not symmetric in the mi-

cropolar case 𝜎𝑥𝑦 ≠ 𝜎𝑦𝑥), the 𝜇𝑖𝑗 are components of the couple stress tensor, the

𝜀𝑖𝑗 components of the macrostrain tensor, and the 𝜅𝑖𝑗 are components of the

microstrain tensor. The constants 𝐾𝑖𝑗 are functions of the microscopic elastic

moduli 𝐸𝑚,𝐺𝑚 (used for modeling the Timoshenko beams) and the geometric

parameters ℎ, ℓ, 𝑡, 𝜃. Goda et al. compared the results of stress distribution for

this mircropolar continuum across the cracks with the corresponding distribution

obtained for a Cauchy continuum. A significant stress concentration reduction

was observed for the micropolar medium (a reduction of 50.7% for the normal

stress 𝜎 = 𝑆11, and a 39.2% for the tangent stress 𝜏 = 𝑆12, the distribution for 𝑆11

is shown in figure 2.13). This suggest that bones reduce fragility by the presence

of micro-structure.
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Figure 2.13. Simulation of a planar stress problem: a square with a small crack
in the center. Uniform traction forces perpendicular to direction are applied on the
upper and lower sides of the square. The figure shows the stress distribution of 𝑆11 of
(a) a micropolar medium and (b) a classical Cauchy medium (based on Goda et al.,
2012) [42].

2.3.5 Motion, strain and compatibility equations in microcon-

tinuum mechanics

Figure 2.14. Cubic strcutre
of a cell of Cesium Chloride

We start this section explaining the physical pic-

ture associated to microcontinuum theory. In the

atomic scale, crystalline solids possess primitive

cells in the form of geometrical structures (lattice

structures) like cubes, hexagons, etc. For example,

cesium chloride (CsCl) has a cubic structure with

Cs+ located at the center of the cube and Cl− at

the eight corners of the cube (see figure 2.14). This

spatial distribution of atoms of different masses al-

lows new modes of propagation of elastic mechanic

waves. The additional degrees of freedom need to

be incorporated for the elastic problem where the

typical length scale is comparable with the microstrucutre. In biological tissues,
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Figure 2.15. A representation of a deformation of a microparticle of a microcon-
tinuum medium: initial configuration (or undeformed configuration) [right ], deformed
configuration at time 𝑡 [left ] . 𝑃 is the initial position of the centroid of a microparticle
(a material point with microstructure), and 𝑝 represents the same point after at the
time 𝑡 (macrodeformation). 𝑄 is another point insider the microparticle (Ξ is a tangent
vector of 𝑇𝑋 ℬ̂, after the microdeformation the of the microparticle the same point will
be 𝑞 (the vector Ξ changes to 𝜉). The coordinates (𝑥, 𝜉) are a function of time 𝑡 and
the initial coordinates (𝑋,Ξ).

micro-mechanically we observe fibers and discrete microstructures inside the tis-

sues, if these microstructures show an organized arrangement new additional

degrees of freedom for describing the relative motion of these microstructures are

needed. In addition, there are fluids with oriented molecules, for example, the

liquid crystals used in many technological applications (most contemporary elec-

tronic displays use liquid crystals.). The liquid crystals possess dipolar elements

in the form of short bars and platelets. The classical example, 𝑝-azoxyanisole

(PAA) is composed of rigid bars of length approximately Å.

The following formulation was partially based on Eringen [31], although this

author presented the theory for R3. Here a first attempt to present the theory

in the manifold approach. This allows to identify and properly formulate the

objects of the theory as mappings over the tangent bundle of a manifold (being

the dots the position of particles and the additional degrees of freedom elements
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of a vector bundle). In this sense, this exposition goes a little beyond the cited

source.

A solid microcontinuum body can be modeled as an open set of a the tangent

bundle (see for a definition), this implies that locally the a solid can be seen as

a set 𝒰 × R3, where 𝒰 is an open set of a 3-dimensional manifold (all tensorial

physical magnitudes are defined over this tangent bundle):

Definition 2.3.7. A microcontinuum body is an open set ℬ̂ = 𝑇ℬ ≈ ℬ ×R3,

where ℬ is a simply body. A configuration of ℬ̂ is a mapping 𝜑 ∶ ℬ̂ → Lin(𝒮)
(where Lin(𝒮) is the linear bundle of 𝒮, a 3-dimensional manifold, see B.8.1,

usually one has 𝒮 = R3). The set of all configurations of ℬ̂ is denoted by Ĉ
ℬ̂
= Cℬ×

GL+(𝑛) (or simply by Ĉ ), i.e. the product of the set of simply body configurations

Cℬ with the set of linear invertible mappings for describing the microstrucre.

Points in ℬ̂ are denoted by pairs, formed by a capital Latin letter and a capital

Greek letter, e.g. (𝑋,Ξ).

Given the fact that the microstructure is microscopic in relation to the di-

mensions of the body, the microstructure is represented only by vectors in a

neighborhood of the origin of coordinates of the tangent space at the point. For

these reasons, the deformation of the microstructure has ben represented by an in-

vertible linear transformation, i.e. a member of the General Linear group GL(3).
More specifically, the deformation of the microstructure is a member of a con-

nected Lie subgroupGL+(3) with positive determinant . The following definition,

analogous to definition 2.3.2, takes into account this latter restriction:

Definition 2.3.8. A motion of a microcontinuum body ℬ̂ is a curve in Ĉ ; that

is, a mapping 𝑡 ↦ 𝜑𝑡 ∈ Ĉ (or some open interval of R to Ĉ ). For 𝑡 ∈ R fixed,

we write 𝜑𝑡(𝑋) = (𝜑(𝑋, 𝑡), 𝜒(𝑋,Ξ, 𝑡)), where 𝜒(𝑋, ⋅, 𝑡) is an invertible linear

map in L (𝑇(𝑋,Ξ)ℬ̂), the only restriction on 𝜑(𝑋, 𝑡) is to be regular. The map

(𝑉 𝑡,𝛽𝑡) ∶ ℬ̂ → R3 ×R3 defined by:

𝑉 𝑡 = 𝑉 (𝑋, 𝑡) = 𝜕𝜑(𝑋, 𝑡)
𝜕𝑡

, 𝛽𝑡 = 𝜈𝑎𝑏𝜒𝑏
𝑐Ξ

𝑐 𝜕

𝜕𝑥𝑎

(the velocity is well defined if 𝜑𝑡 regular and if 𝜒 ∈GL(3), the vector 𝑉 𝑡 is called

[translational] material velocity of the motion, and is a vector field over the initial

configuration of the body. The 2-tensor 𝜈 = 𝜈𝑎𝑏 𝑑𝑥𝑏 ⊗ 𝜕
𝜕𝑥𝑎 is called microgyration

tensor:

𝜈𝑎𝑏 = 𝜒̇𝑎
𝐴(𝜒−1)𝐴𝑏
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If we consider “partial” coordinates (𝑥, 𝜉) over the deformed configuration,

the motion can be represented as:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥𝑎 = 𝜑𝑎(𝑋, 𝑡)
𝜉𝑎 = 𝜒𝑎(𝑋,Ξ, 𝑡) = 𝜒𝑎

𝑏(𝑋, 𝑡)Ξ𝑏
(2.13)

Then the 𝑥𝑎 and 𝜉𝑎 can be considered as real functions over the manifold ℬ̂.
These coordinates allow to rewrite the velocity field simply as 𝑉 𝑎 = 𝑥̇𝑎 and the

mycrogiration tensor is characterized by 𝜉𝑎 = 𝜈𝑎𝑏 𝜉𝑏 9. In addition, it is easy to

see that the exterior derivatives 𝑑𝑥𝑎 and 𝑑𝜉𝑎 represent the (co)vectors of three-

dimensional spaces then one can consider the function:

𝜋(0) ∶ 𝑇 ∗
𝑃 ℬ̂ → R3

(𝑑𝑥𝑎, 𝑑𝜉𝑎) ↦
⎛
⎝
𝑑𝑥𝑎

𝑑𝑍𝑗
+
𝑑𝜉𝑎

𝑑𝑍𝑗

⎞
⎠
𝑖̂𝑗

This means that the increments in the position 𝑥 of a point, and the other

degrees 𝜉 can be added, i.e this is the recognition that the total velocity of the

microstructure is the translational velocity (macrovelocity) and the local rate of

change (microvelocity). This latter composition is possible because the cotangent

bundle 𝑇 ∗ℬ̂ is a trivial bundle isomorphic to the product manifold ℬ̂ ×R6 (that

is the cotangent space 𝑇 ∗
(𝑋,Ξ)
ℬ̂ = R3 ⊕R3 in a point (𝑋,Ξ), i. e. the direct sum

of two copies of the three dimensional space, that allows to define the function

𝜋(0)).

𝑑𝑍 = 𝑑𝑥 + 𝑑𝜉 = 𝑑𝑥 + 𝑑(𝜒𝐾Ξ
𝐾) ∈ 𝜋(0)

(𝑋,Ξ)
(𝑇 ∗

(𝑋,Ξ)
ℬ̂),

𝑑𝑍𝑎 =
𝜕𝑥𝑎

𝜕𝑋𝐾
𝑑𝑋𝐾 + 𝜒𝑎

𝐾𝑑Ξ
𝐾 +

𝜕𝜒𝑎
𝐽

𝜕𝑋𝐾
Ξ𝐽𝑑𝑋𝐾

Using the abbreviated notation {⋅}⋃︀𝐴 = 𝜕(⋅)⇑𝜕𝑋𝐴 we have:

9The linear aplication with matrix components 𝜈𝑏𝑎 can be interepted as an element of Lie
algebra of GL(3), that is, 𝜈 ∈ gl+(3)
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𝑑𝑍𝑎 = 𝑥𝑎
⋃︀𝐾𝑑𝑋

𝐾 + 𝜒𝑎
𝐾𝑑Ξ

𝐾 + 𝜒𝑎
𝐽 ⋃︀𝐾Ξ

𝐽𝑑𝑋𝐾 (2.14)

Note that the above expression can be rewrite as 𝑑𝑍𝑎 = 𝐹 𝑎
𝐵𝑑𝑋

𝐵 +𝜒𝑎
𝐶𝑑Ξ

𝐶 . For

a particular point the components 𝐹 𝑎
𝐵 and 𝜒𝑎

𝐶 can be put together for assembling

a 3 × 6 matrix F̃ = (︀𝐹 𝑎
𝐵 ⋃︀𝜒𝑎

𝐶⌋︀. Taking the 𝑍𝑎 as Cartesian coordinates we can

assemble the metric tensor:

𝑔 = 𝛿𝑎𝑏𝑑𝑍𝑎 ⊗ 𝑑𝑍𝑏 = (︀𝑥𝑎
⋃︀𝐴
𝑥𝑎⋃︀𝐵 + 2(𝑥𝑎

⋃︀𝐴
𝜒𝑎𝐶⋃︀𝐵 + 𝑥𝑎⋃︀𝐵𝜒𝑎𝐶⋃︀𝐴)Ξ𝐶 + . . .

⋅ ⋅ ⋅ + 𝜒𝑎
𝐶⋃︀𝐴

𝜒𝑎𝐷⋃︀𝐴Ξ𝐶Ξ𝐷⌋︀𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 + . . .
⋅ ⋅ ⋅ + (𝑥𝑎

⋃︀𝐴
+ 𝜒𝑎𝐿 + 𝜒𝑎

𝐵𝜒𝑎𝐶⋃︀𝐴)(𝑑𝑋𝐴 ⊗ 𝑑Ξ𝐵 + . . .
⋅ ⋅ ⋅ + 𝑑Ξ𝐴 ⊗ 𝑑𝑋𝐵) + 𝜒𝑎

𝐴𝜒𝑎𝐵𝑑Ξ𝐴 ⊗ 𝑑𝑋𝐵)

(2.15)

The notation ⋃︀𝐴 is used for the components of derivatives (see the end of

section B.6.2). Although we have mentioned the Cartesian coordinates the final

expression remains valid in any coordinate system. The components of this metric

tensor provide the strain measures needed for a microcontinuum theory. If the

same computation is done for a continuum theory only 𝜒𝑎
𝐵 = 0 and the only

surviving term is the right Cauchy-Green 𝐶𝐴𝐵 = 𝑥𝑎
⋃︀𝐴
𝑥𝑎⋃︀𝐵 = 𝑔𝑎𝑏𝑥𝑎⋃︀𝐴𝑥𝑏⋃︀𝐵 (see [16,105]).

But microcontinuum is a more general theory and two other strain measures are

needed, according to the last expression:

𝐾̂𝐴𝐵 ∶= 𝑔𝑎𝑏
𝜕𝑥𝑎

𝜕𝑋𝐴
𝜒𝑏
𝐵 = 𝑥𝑎

⋃︀𝐴𝜒𝑎𝐵, Γ̂𝐴𝐵𝐶 ∶= 𝑔𝑎𝑏
𝜕𝑥𝑎

𝜕𝑋𝐴

𝜕𝜒𝑏
𝐵

𝜕𝑋𝐶
= 𝑥𝑎

⋃︀𝐴𝜒𝑎𝐵⋃︀𝐶 (2.16)

(where we have used 𝑔𝑎𝑏 for the components of the metric tensor, if we use

Euclidean coordinates 𝑔𝑎𝑏 = 𝛿𝑎𝑏). Using these measures of strain the equation 2.15

can be rewritten as:

𝑔 = (︀𝐶𝐴𝐵 + 2Ξ𝐶Γ̂𝐴𝐵𝐶 +Ξ𝐶Ξ𝐷Γ̂𝐸𝐶𝐵Γ̂𝐹𝐷𝐴(𝐶−1)𝐸𝐹 ⌋︀𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 + . . .
⋅ ⋅ ⋅ + (︀𝐾̂𝐴𝐵 +Ξ𝐶𝐾̂𝐷𝐵Γ̂𝐹𝐶𝐴(𝐶−1)𝐷𝐹 ⌋︀(𝑑Ξ𝐴 ⊗ 𝑑𝑋𝐵 + 𝑑𝑋𝐴 ⊗ 𝑑Ξ𝐵) + . . .
⋅ ⋅ ⋅ + 𝐾̂𝐶𝐴𝐾̂𝐷𝐵(𝐶−1)𝐶𝐷𝑑Ξ𝐴 ⊗ 𝑑Ξ𝐵

(2.17)
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Thus, the change of length can be accounted for in terms of the three strain

measures C, K̂, Γ̂. For the undeformed configuration one has:

𝐶𝐴𝐵 = 𝐾̂𝐴𝐵 = 𝛿𝐴𝐵, Γ̂𝐴𝐵𝐶 = 0

The set of strain measures C, K̂, Γ̂ form a complete set, but there are some other

possibilities. Eringen [31, p. 15] recommends this other set of measures:

𝐷𝐴𝐵 ∶= 𝑥𝑎
⋃︀𝐴(𝜒−1)𝐵𝑎, 𝐾𝐴𝐵 ∶= 𝜒𝑎

𝐴𝜒𝑎𝐵, Γ𝐴𝐵𝐶 ∶= (𝜒−1)𝑎𝐴𝜒𝑎𝐵⋃︀𝐶 (2.18)

The set D,K,Γ is also a complete set that leads to somewhat simpler re-

sults, particularly in the constitutive equations. We will call these tensors: the

macrodeformation tensor (or Cosserat deformation tensor), the microdeformation

tensor, and the wryness tensor.

Particularization The above equations are valid for the most general type

of microcontinuum theory. For micropolar, microdilatation, microstretch and

microstrain theories (being particular cases of micromorphic continuum) some

simplifications can be made. Here we center our attention in micropolar and mi-

crostretch cases. A microstretch continuum is a microcontinuum continuum,

if the angles between two pair of directors remain unchanged, mathematically

this implies:

(𝜒−1)𝐴𝑎 = 1

𝑗2
𝜒𝑎
𝐴 (2.19)

Where 𝑗 = det𝜒𝑎
𝐴 = 1⇑det(𝜒−1)𝐴𝑎 and consequently we have:

𝜒𝑎
𝐴𝜒

𝐴
𝑏 = 𝑗2𝛿𝑎𝑏 , 𝜒𝑎

𝐴𝜒
𝐵
𝑎 = 𝑗2𝛿𝐵𝐴

A micropolar continuum continuum is a microstretch 𝑗 = 1. For a mi-

crostretch continuum the deformation tensors satisfy:
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𝐷𝐴𝐵 ∶= 𝑗−2𝑥𝑎
⋃︀𝐴(𝜒)𝐵𝑎, 𝐾𝐴𝐵 ∶= 𝑗−2𝛿𝐴𝐵, Γ𝐴𝐵𝐶 ∶= 𝑗−2𝜒𝑎

𝐴𝜒𝑎𝐵⋃︀𝐶 (2.20)

For microstretch and micropolar continua we can decompose the wryness ten-

sor as:

Γ𝐴𝐵𝐶 = 𝛿𝐴𝐵Γ𝐶 − 𝜖𝐴𝐵𝐷Γ𝐷𝐶 ,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Γ𝐴 = 𝑗−1𝑗⋃︀𝐴
Γ𝐴𝐵 = 1

2𝜖𝐴𝐶𝐷𝜒𝑘𝐶
⋃︀𝐵
𝜒𝐷
𝑘

(2.21)

The general non-linear compatibility conditions for a general microcontinuum

are:

𝜖𝐾𝑃𝑄(𝐷𝑃𝐿⋃︀𝑄 +𝐷𝑃𝑅Γ𝐿𝑅𝑄) = 0

𝜖𝐾𝑃𝑄(Γ𝐿𝑀𝑃 ⋃︀𝑄 + Γ𝐿𝑅𝑄Γ𝑅𝑀𝑃 ) = 0

𝐷𝐾𝐿⋃︀𝑀 − (Γ𝑃𝐾𝑀𝐾𝐿𝑃 + Γ𝑃𝐿𝑀𝐾𝐾𝑃 ) = 0

(2.22)

For non-Euclidean geometries the above expressions need to be modified tak-

ing into account the Riemann tensor (see appendix B.5.1). Obviously, for mi-

crostretch or micropolar continuum these equations can be further simplified.

For example, for a microstretch linear media the compatibility equations are only

slightly different from those of classical continuum mechanics:

− 𝜖𝑘𝑝𝑞 𝜕𝜀𝑝𝑙
𝜕𝑥𝑞

+ 𝛾𝑝𝑝𝛿𝑘𝑙 − 𝛾𝑘𝑙 = 0, 𝜖𝑘𝑝𝑞
𝜕𝛾𝑙𝑞
𝜕𝑥𝑝

= 0 (2.23)

Where 𝜀𝑖𝑗 and 𝛾𝑘𝑙 = 𝜑𝑘⋃︀𝑙 are the infinitesimal strain deformation and the in-

finitesimal micro-strain deformation.
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2.3.6 Stress and balance principles in microcontinuum me-

chanics

In micropolar continuum mechanics, the micro-structural contact forces give rise

to a Cauchy second-order tensor 𝜎 = 𝜎𝑖𝑗 𝑒𝑖 ⊗ 𝑒𝑗 and, in addition, a couple stress

tensor 𝜇 = 𝜇̂𝑖𝑗 𝑒𝑖 ⊗ 𝑒𝑗. The acting forces on a microcontinuum body can be

represented by a force density field 𝑏 = 𝑏𝑖𝑒𝑖 and a couple density field 𝑙 = 𝑙𝑖𝑒𝑖.

For a general micromorphic body, the formulation is slightly more complex; a

third-order tensor 𝜇̂ = 𝜇𝑖𝑗𝑘𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 replaces 𝜇 and a second-order tensor

field replace 𝑙̂ replaces 𝑙 . Eringen provides an intuitive justification for these new

magnitudes in terms of the micro-structure of a material particle [31]. Intuitively,

the magnitudes 𝜇̂ and 𝑙̂ are interpretable as the surface and volume averages a

the particle (which contains several microparticles or “molecules”):

𝜇𝑖𝑗𝑘 = ∐︀𝜎′𝑖𝑗𝜉𝑘̃︀𝑠𝑢𝑝, 𝑙𝑘𝑖 = ∐︀𝑏𝑖𝜉𝑘̃︀𝑣𝑜𝑙 (2.24)

where ∐︀⋅̃︀𝑠𝑢𝑝 and ∐︀⋅̃︀𝑣𝑜𝑙 represent the surface and volume averages in a particle

(the average is taken over all the micro-particles contained in the particle). In

this interpretation, the primed quantities refer to magnitudes of the micro-element

contained in a particle. Eringen leaves undefined these quantities because, for-

mally, it is sufficient to use the tensors 𝜎 and 𝜇̂ for all purposes (disregarding

the notion of micro-particle). Given a coordinate system {𝑥𝐴, 𝜉𝐵} on 𝑇𝒮 we can

define:

𝜇̂ ∶= 𝜎′ ⊗ 𝜉, 𝑙 ∶= 𝑏′ ⊗ 𝜉 (2.25)

For the formulation of dynamic equations we need to introduce a new key

concept: microinertia. In the same way that in continuum mechanics we need

to substitute the notion of mass by a local magnitude, that we call mass den-

sity 𝜌. In microcontinuum mechanics we need to substitute the notion of inertia

tensor of micro-structure, by a local magnitude representing it. This local mag-

nitude is the microinertia tensor, a second-order tensor. The material and spatial

representations of microinertia are given by:

𝜌0𝐼𝐴𝐵 ∶= ∐︀Ξ𝐴Ξ𝐵̃︀𝑣𝑜𝑙 = ∫part 𝜌′0Ξ𝐴Ξ𝐵 dV′

𝜌𝑖𝑎𝑏 ∶= ∐︀𝜉𝑎𝜉𝑏̃︀𝑣𝑜𝑙 = ∫𝜑(part) 𝜌′𝜉𝑎𝜉𝑏 dv′
(2.26)

Formally, we assume that there are a scalar field 𝜌0(𝑋, 𝑡) and a 2-tensor field
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Î = 𝐼𝐴𝐵 𝐸𝐴 ⊗𝐸𝐵, representing the material density and the material microin-

ertia. In can be proven that the mass conservation implies the existence of the

corresponding spatial descriptions of 𝜌0 and Î, that is, the conservation of mass

allows to define the scalar 𝜌(𝑥, 𝑡) and the 2-tensor field i = 𝑖𝑎𝑏 𝑒𝑎 ⊗ 𝑒𝑏.

The kinetic energy is computed as the sum of the translational kinetic energy

and the “rotational” kinetic energy of the micro-structure. Thus, the total kinetic

energy per unit of mass is given by:

𝑒𝐾 = 1
2𝑣 ⋅ 𝑣 + 𝑓(𝜈 ⊗ 𝜈)
= 1

2𝑔𝑎𝑏𝑣
𝑎𝑣𝑏 + 1

2𝑔𝑎𝑏𝑖
𝑐𝑑𝜈𝑎𝑑𝜈

𝑏
𝑐

= 1
2𝑔𝑎𝑏(𝑣𝑎𝑣𝑏 + 𝑖𝑐𝑑𝜈𝑎𝑑𝜈𝑏𝑐)

(2.27)

Analogously, as the energy balance of section 2.3.6 we define the principle of

energy balance for microcontinua:

Definition 2.3.9. Consider a microcontinuum body ℬ̂ in a state 𝜑(ℬ̂) ⊂
Lin(𝒮) and subject to applied forces represented by the force density 𝑏 ∶
𝜑(ℬ) → 𝑇𝒮 and couple density 𝑙 ∶ 𝜑(ℬ) → 𝑇 0

2 𝒮. Assume the existence of the

following continuous and differentiable fields: one scalar field representing

mass density 𝜌(𝑥, 𝑡), a second-order tensor field representing the stresses 𝜎,

and a third-order tensor field representing the couple stresses 𝜇̂:

We say that the balance of energy is satisfied provided that for every nice

open set 𝒰 ⊂ ℬ̂

𝑑

𝑑𝑡 ∫𝜑𝑡(𝒰)
𝜌(𝑒𝐾 + 𝑢) dv = ∫𝜑𝑡(𝒰)

𝜌(𝑏𝑘𝑣𝑘 + 𝑙𝑖𝑘𝜈𝑘𝑖 + ℎ) dv + . . .
⋅ ⋅ ⋅ + ∫𝜕𝜑𝑡(𝒰)

(𝜎𝑖𝑘𝑣𝑘 + 𝜇𝑘
𝑖𝑗𝜈

𝑗
𝑘 + 𝑞𝑘) da𝑖

where 𝑣 = 𝑣𝑘𝑒𝑘 denotes the spatial velocity field and 𝜈 denotes the the mi-

crogiration tensor (𝑒𝐾 , 𝑢 are the kinetic energy and the internal energy per

unit of mass, 𝑞 = 𝑞𝑘𝑒𝑘 represents the heat flux and ℎ the heat generation).

To find the equilibrium equation for a microcontinuum body we need to define

a microcontinuum analogue of the torque. This magnitude is called the spin

inertia [per unit of mass], denoted 𝜁. It is related to the derivative of the angular

momentum:

𝜁𝑎𝑏 = ∐︀𝜉𝑎𝜉𝑏̃︀𝑣𝑜𝑙 = 𝑖𝑏𝑐(𝜈̇𝑎𝑐 + 𝜈𝑎𝑑𝜈𝑑𝑐 ) (2.28)
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With this definition, it is a simple exercise to show that the following identity

involving the material derivative holds:

𝜁𝑎𝑏 𝜈
𝑏
𝑎 =

1

2

𝐷

𝐷𝑡
(𝑖𝑎𝑏𝑔𝑐𝑑𝜈𝑐𝑎𝜈𝑑𝑏 ) (2.29)

It can be proven that the previous principle entails the following local conser-

vation laws:

Proposition 2.3.4. Assuming: (a) that the balance of energy in integral

form holds, (b) that the conservation of mass and micro-inertia hold, (c) the

functions involved are differentiable, then the following differential equations

hold:

𝜌𝑣̇ = 𝜌𝑏 + div𝜎

𝜌𝜁 = 𝜌𝑙 +𝜎 − (𝜎) + div𝜇̂

where (⋅) denotes the symmetrization of a two tensor.

Another useful differential equation for the formulation of microcontinuum

constitutive is the “local form” of the energy balance principle 2.3.9:

𝜌𝑒̇ = 𝜎𝑏
𝑎(𝑣𝑎⋃︀𝑏 − 𝜈𝑎𝑏 ) + 𝑠𝑏𝑎𝜈𝑎𝑏 + 𝜇𝑎𝑏𝑐𝜈𝑎𝑏⋃︀𝑐 + 𝑞𝑎⋃︀𝑎 + 𝜌ℎ (2.30)

For a microstretch continuum some additional simplifications are possible.

First, we define:

𝜇𝑎𝑏𝑐 =
1

3
𝜇𝑎𝑔𝑙𝑚 −

1

3
𝜖𝑏𝑐𝑑𝜇𝑎𝑑, 𝑙𝑏𝑎 =

𝑙

3
𝛿𝑏𝑎 −

1

2
𝜖𝑎𝑑𝑐𝑔𝑏𝑑𝑙𝑐

𝜈𝑏𝑎 = 𝜈𝛿𝑏𝑎 − 𝜖𝑎𝑑𝑐𝑔𝑏𝑑𝜈𝑐 𝜁𝑎𝑏 =
𝜁

3
−
1

2
𝜖𝑎𝑏𝑐𝜁𝑐

(2.31)

where 𝑔𝑎𝑏 are the components of the inverse of the metric tensor of 𝒮, and

g♯ = 𝑔𝑎𝑏𝑒𝑎 ⊗ 𝑒𝑏. And 𝛼𝑎𝑏 are the components of the spin inertia. In Cartesian

coordinates the equilibrium equations in propsition 2.3.4 can be written as:

𝜌(𝑏𝑎 − 𝑣̇𝑎) + 𝜎𝑎𝑐
⋃︀𝑐
= 0

𝜌(𝑙𝑎 − 𝜁𝑎) + 𝜇𝑎𝑏
⋃︀𝑏
+ 𝜖𝑎𝑚𝑛𝜎𝑚𝑛 = 0

𝜌(𝑙 − 𝜁) + 𝜇𝑏
⋃︀𝑏
+ 𝑡 − 𝑠 = 0

(2.32)
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2.4 Constitutive models for soft tissues

The aim of constitutive theories is to develop models for representing the real

behavior of matter, being thermodynamically consistent as well as mathemati-

cally convenient. Constitutive theories of materials are at the heart of modern

non linear continuum mechanics. As Noll and Coleman (1963) [18] showed there

is a thermodynamical basis for arguing that every elastic material is indeed a hy-

perelastic material (also called Green-Elastic material). This means that for

such material there exists a function called Strain-Energy Density Function

(SEDF) from which elastic energy as well as stress-strain relations can be de-

rived. Thermodynamically SEDF is a Helmholtz free-energy function W , which

is defined per unit reference volume rather than per unit mass. This SEDF can

be expressed as a function of deformation gradient or, equivalently, as a function

of other strain measures (and the coordinates of points, if the material is het-

erogeneous). SEDF needs to satisfy some reasonable mathematical conditions in

order to represent a physically reasonable material. The following short list is

just a non exhaustive example of such conditions [51]:

� Polyconvexity is a condition required for the existence of global solutions

(for an extensive discussion it can be seen ) [16,72]. Polyconvexity of SEDF

is weaker requeriment on SEDF than convexity. Ball established that a con-

vex SEDF leads to unphysicall results, it also established some interesting

existence results by requiring polyconvexity [6].

� Objectivity/Covariance (also called frame indifference condition), ac-

cording to this condition, if two different observers, with different frames

of reference, measure a physical magnitude the physical components of this

magnitude are related by a change of frames/coordinates. Most authors,

define mathematical objectivity as the invariance under rotation/orienta-

tion of coordinate axes (i.e. under rigid-solid movements or isometries),

but frame indifference objectivity can be extended to arbitrary coordinate

changes, in this form all the equations need to be covariant, i.e., invariant

in form for different observers.

� Invariance/Symmetry, this means that under the action of the adequate

subgroup of rotations upon the tensorial arguments of SEDF, the value of

the scalar SEDF does not change. For example, for an isotropic material
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the SEDF is invariant under the full group of rotations, but for a transver-

sally isotropic material the SEDF is invariant only under rotations (whose

rotation axis coincides with the normal direction to the plains of isotropy).

Mathematically this implies that the SEDF needs to be a function of some

scalars that are invariant under some subgroup of the orthonormal group

O(3) [118]

� Minimality, for a material with a natural reference configuration or stress

free configuration then the SEDF attains a minimum at this configuration.

In addition, Ball (1977) [6] demonstrated that the solutions of some kinds

of general non-linear elastic problems like pure displacement problems and

displacement-traction problems are also a minimum of the energy functional.

In this section, attention is restricted to homogeneous materials (i.e., material

properties are the same at all points). For this type of ideal material the SEDFΨ

can be expressed only in terms of the deformation gradient F and the microde-

formation gradient 𝜒 . For such a hyperelastic material, the stress tensor can be

expressed as a derivative of the SEDF:

P = 𝜕𝑊 (F,𝜒)
𝜕F

, or 𝑃𝑎𝐴 = 𝜕𝑊

𝜕𝐹𝑎𝐴

(2.33)

where P is the first Piola-Kirchhoff (or nominal) stress tensor, and in a

similar way the Cauchy stress tensor, i.e. 𝜎 = 𝐽−1PF𝑇 = 𝜎𝑇 , can be expressed in

the following way:

𝜎 = 𝐽−1𝜕𝑊 (F,𝜒)
𝜕F

F𝑇 , or 𝜎𝑎𝑏 = 𝐽−1𝐹 𝑏
𝐴
𝜕𝑊

𝜕𝐹𝑎𝐴

(2.34)

Additional useful relationships are:

P = 2F
𝜕𝑊 (F,𝜒)

𝜕C
, or 𝑃 𝑎

𝐴 = 𝐹 𝑎
𝐵

𝜕𝑊

𝜕𝐶𝐴
𝐵

(2.35)

2.4.1 Constitutive classical models

Soft biological tissues are composed of fibrous components embedded with an

isotropic ground substance. The distribution of elements usually determines an
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overall anisotropic configuration.

Three classical constitutive models are summarized in this section: Yang et al.

(2006), Natali-Gregersen (2009) and Holzapfel-Kroon-Gasser model (2000, 2008).

The three models were developed for soft collagenous tissues. The models are

increasing in complexity an reliability. It is a well established fact that empirically

the stress-strain curve in uniaxial tests has a convex shape with highly increasing

apparent Young modulus 𝐸𝑎𝑝 = 𝑑𝜎⇑𝑑𝜀 > 0 (being 𝜎 a measure related to axial

tension and 𝜀 a measure of strain). Lu & Gregersen (2001) studied porcine

esophagi and found that empirical curves adjust well to relations of type [69]:

𝑆𝐿 = 𝐴𝐿(𝑒𝛽𝐿𝐸𝐿 − 1), 𝑆𝑡 = 𝐴𝑡(𝑒𝛽𝑡𝐸𝑡 − 1) (2.36)

Where 𝑆𝐿,𝐸𝐿 are the first Piola-Kirchhoff) stress and the (Green) strain in the

longitudinal direction of the esophageal tube, and 𝑆𝐿,𝐸𝐿 the same magnitudes in

the transversal direction. The constants 𝐴𝐿,𝐴𝑡, 𝛽𝐿, 𝛽𝑡 are mechanical properties

of the model. Although a reasonably good fit with the data was found, this

model does not seem well physically grounded, and no reason is provided for the

occurrence of an “exponential law”. In addition, this model does not take into

account the near incompressibility of the esophageal tissue, and polyconvexity

does not hold, and the SEDF from which is derived is not given.

All the other models supply this criticism: they are explicitly written in terms

of the invariants of deformation tensors, showing the explicit symmetries/invari-

ances and for the same reason the constitutive equations are objective.

Yang-Gregersen-Deng model [22, 114]

This model was originally devised by Deng et al. (1994) for arteries, but was

subsequently applied for Yang et al. to esophageal tissue. This is one of the

simplest “exponential” models used for soft tissue. The SEDF is an exponential

of a quadratic polynomial in strains:

𝑊 (E) = 𝐶
2
𝑒𝑄(𝐸𝑖𝑗) (2.37)

where 𝐶 is an elastic constant and the polynomial 𝑄 is:

𝑄(𝐸𝑖𝑗) = 𝑏𝜃𝐸2
𝜃𝜃 + 𝑏𝑧𝐸2

𝑧𝑧 + 𝑏𝜃𝑧𝐸𝜃𝜃𝐸𝑧𝑧 + 𝑐𝐸2
𝜃𝑧 (2.38)
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This model is quite simple and provides a slightly better fit to the experimental

data than the Lu–Gregersen model previously mentioned. The stresses are given

by:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑆𝑧𝑧 = 𝐶(𝑏𝑧𝐸𝑧𝑧 + 𝑏𝜃𝑧𝐸𝜃𝜃)𝑒𝑄(𝐸𝑖𝑗)

𝑆𝜃𝜃 = 𝐶(𝑏𝜃𝐸𝜃𝜃 + 𝑏𝜃𝑧𝐸𝑧𝑧)𝑒𝑄(𝐸𝑖𝑗)

𝑆𝜃𝑧 = 𝐶𝑐𝐸𝜃𝑧𝑒𝑄(𝐸𝑖𝑗)

(2.39)

For uniaxial tensile test in longitudinal (𝑧 direction) or transversal (𝜃 direc-

tion) one has:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑆𝐿 = 𝑆𝑧𝑧 = 𝐶
⎛
⎝
𝑏𝑧 −

𝑏2𝜃𝑧
𝑏𝜃

⎞
⎠
𝐸𝐿𝑒𝑄(𝐸𝑖𝑗) = 𝐴𝐿𝐸𝐿 exp(𝛽𝐿𝐸2

𝐿)

𝑆𝑡 = 𝑆𝜃𝜃 = 𝐶
⎛
⎝
𝑏𝜃 −

𝑏2𝜃𝑧
𝑏𝑧

⎞
⎠
𝐸𝑡𝑒𝑄(𝐸𝑖𝑗) = 𝐴𝑡𝐸𝑡 exp(𝛽𝑡𝐸2

𝑡 )
(2.40)

Where 𝐴𝐿 = 𝐶(︀𝑏𝑧−(𝑏2𝜃𝑧⇑𝑏𝜃)⌋︀,𝐴𝑡 = 𝐶(︀𝑏𝜃−(𝑏2𝜃𝑧⇑𝑏𝑧)⌋︀, 𝛽𝐿 = 𝐴𝐿⇑𝐶,𝛽𝑡 = 𝐴𝑡⇑𝐶. These
relations allow to adjust the constants 𝐴𝐿,𝐴𝑡, 𝛽𝐿, 𝑏𝑡 by means of linear regression

by taking logarithms:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

ln
⎛
⎝
𝑆𝐿

𝐸𝐿

⎞
⎠
= ln𝐴𝐿 +

𝐴𝐿

𝐶
(𝐸2

𝐿) ⇒ 𝑌𝐿 = 𝛼𝐿 + 𝛽𝐿𝑋𝐿

ln
⎛
⎝
𝑆𝑡

𝐸𝑡

⎞
⎠
= ln𝐴𝑡 +

𝐴𝑡

𝐶
(𝐸2

𝑡 ) ⇒ 𝑌𝑡 = 𝛼𝑡 + 𝛽𝑡𝑋𝑡

(2.41)

It is interesting to note that uniaxial tensile tests are insufficient to com-

pute all the constants of the model 𝑏𝑧, 𝑏𝜃, 𝑏𝜃𝑧, 𝑐,𝐶, in particular no information

is obtained about 𝑐 (this require tests with shearing). Worse still, the exper-

imental 𝐴𝐿,𝐴𝑡, 𝛽𝐿, 𝛽𝑡 from uniaxial tensile tests are insufficient even to deter-

mine the four parameters of the model 𝑏𝑧, 𝑏𝜃, 𝑏𝜃𝑧,𝐶 [the best we can have is

𝐶 = 𝐴𝐿⇑𝛽𝐿 = 𝐴𝑡⇑𝛽𝑡, 𝑏𝑧 = (𝐴𝐿⇑𝐴𝑡)𝑏𝜃, and 𝑏2𝜃𝑧 = 𝑏𝜃(𝑏𝜃(𝐴𝐿⇑𝐴𝑡) − 𝛽𝐿)]. In addi-

tion, this model is not explicitly formulated in terms of invariants, and it is not

clear how to generalize this model for incompressible materials.

Holzapfel-Kroon model [52, 59]

46



2.4. CONSTITUTIVE MODELS FOR SOFT TISSUES

The article of Holzapfel, Gasser and Kroon (2000) develops a detailed constitutive

model for arterial wall mechanics and compares it with other material models.

This model has been taken as a basis in a certain number of other studies, in-

cluding the generalization of Kroon and Holzapfel (2008). We will focus on the

description of this last generalization (although it is interesting to consult [52] for

a detailed theoretical justification). The model summarized here is an anisotropic

incompressible hyperelastic constitutive model for arterial tissue (other studies

have shown that the model is applicable to other collagenous soft tissues such

as the esophagus walls). In this model the artery is modeled as a thick-walled

nonlinearly hyperelastic circular cylindrical tube consisting of two layers corre-

sponding to the media and adventitia (the solid mechanically relevant layers in

healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers

corresponding to the collagenous component of the material and symmetrically

disposed with respect to the cylinder axis. The strain energy density function

(SEDF/HEDF) is defined by:

Ψ(C) = 𝑈(𝐽) + Ψ̄(C, . . . ) (2.42)

which is based on the kinematic assumption

C = 𝐽2⇑3C̄, 𝐽 = (detC)1⇑2, det C̄ = 1 (2.43)

of the right Cauchy-Green tensor C, where 𝐽 is the volume ration (or the

“Jacobian”) and C̄ is the modified right Cauchy-Green tensor. In equation 2.42

the function 𝑈 describes the volumetric elastic response of the material. Holzapfel

and Kroon consider the collagenous tissues as incompressible, as it is the case

for arterial walls within the physiological range of deformation, implying 𝐽 = 1.

For this case, 𝑈 serves as a penalty function which is motivated mathematically

[52]. The mechanical response of collagenous tissues is very much dominated by

the fibrous components, i.e. elastin and collagen. According to Holzapfel and

Weizsäcker [53], the Kroon-Holzapfel model an additive decomposition of Ψ̄ in a

contribution due to elastin Ψ̄𝑒𝑙𝑎𝑠 and due to collagen Ψ̄𝑐𝑜𝑙𝑙, i.e:

Ψ̄ = Ψ̄𝑒𝑙𝑎𝑠𝑡 + Ψ̄𝑐𝑜𝑙𝑙 = 𝜇(𝐼1 − 3) + 𝑘1
2𝑘2

∑
𝑖=4,6

(exp(︀𝑘2(𝐼𝑖 − 1)2⌋︀ − 1) (2.44)

where 𝐼4 =C ∶ 𝑎⊗𝑎 = 𝐶𝐴𝐵𝑎𝐴𝑎𝐵 and 𝐼6 =C ∶ 𝑏⊗ 𝑏 = 𝐶𝐴𝐵𝑏𝐴𝑏𝐵, being 𝑎,𝑏 unitary

vectors appointing in dominant direction of fiber arrangements.
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Figure 2.16. The structure of the tissue is as-
sumed to be multi-layered consisting on 𝑛 layers.
Dominant arrangement for 𝑖 is given by angle 𝜑𝑖

(after Kroon & Holzapfel, 2008) [59].

The term containing 𝜇 is the

elastin term, and it seems to

be of little significance for the

data considered by Kroon and

Holzapfel. For the collagenous

part the model consider 𝑛 dis-

crete and distinct layers that

form a laminate. Within a layer,

labeled with index 𝑖, coherent

bundles of straightened collagen

fibers are perfectly aligned in

the direction characterized by

the angle 𝜑𝑖, and defined with

respect to a 2D in-plane refer-

ence coordinate system, as indi-

cated in figure 2.16. The angles

of the collagen fibers are defined

according to

𝜑𝑖 =
𝑖 − 1

𝑛
𝜋, 1 ≤ 𝑖 ≤ 𝑛 (2.45)

and the fiber orientation are thus uniformly distributed over the whole az-

imuthal range. The value 𝑛 ≥ 2 provides the even number of tissue layers. Hence

in this model the layers consists of bundles of collagen fibers with different mean

alignments for each layer. The contribution to the strain energy of each colla-

gen fiber layer is derived from the constitutive response of collagen under axial

extension, which experimentally is of the form:

𝜓𝑓 =
𝑘

8𝑎
(exp(𝑎(𝜆2 − 1)2) − 1) , 𝜆 ≥ 1, (2.46)

where 𝜆 is the stretch acting on the collagen fibers, and 𝑘 ≥ 0 and 𝑎 > 0 denote

the mechanical properties. The exponent 𝑎 describes the amount of of nonlinear-

ity that the collagen fibers exhibit. It is assumed that the fibers can not sustain

any load in compression implying that 𝜑𝑓 = 0 for 𝜆 < 1. In order to introduce
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Figure 2.17. (a) Example of uniformly distributed collagen fibers illustrated for eight
distinct tissue layers 𝑛 = 8, (b) The principal directions {𝜁′𝑖} if the collagen fabric is
rotated by an angle 𝛽 with respect to the reference coordinate system {𝜁𝑖}. The axis
of rotation is 𝜁3. Example of a stiffness distribution for the eight layers (after Kroon
& Holzapfel, 2008) [59].

anisotropy in a convenient way, we assume that the in-plane principal directions

1 and 2 of the tissue are associated with the fiber directions characterized by

through angles 𝜑1 and 𝜑𝑛⇑2+1, respectively. The coefficients 𝑘𝑖 are then defined

by two given stiffness 𝑘1 and 𝑘𝑛⇑2+1 (associated with the respective directions 𝜑1

and 𝜑𝑛⇑2+1) according to

𝑘𝑖 = 𝑘1 +
𝑘𝑛⇑2+1 − 𝑘1

𝑛⇑2 (𝑖 − 1), 2 ≤ 𝑖 ≤ 𝑛⇑2

𝑘𝑖 = 𝑘𝑛⇑2+1 +
𝑘1 − 𝑘𝑛⇑2+1

𝑛⇑2 (𝑖 − 𝑛⇑2 − 1), 𝑛⇑2 + 2 ≤ 𝑖 ≤ 𝑛
(2.47)

Note that for the case 𝑛 = 2 no additional stiffness are required. The orien-

tation of the principal coordinate system {𝜁𝑖} of the collagen fabric with respect

to a reference coordinate system is defined by angle 𝛽 (see figure 2.17). By using

the constitutive equation 2.46 for the collagen the contribution 𝜓𝑐𝑜𝑙𝑙 to the strain

energy due to collagen may then be formulated as

𝜓𝑐𝑜𝑙𝑙 =
𝑛

∑
𝑖=1

𝑘𝑖
8𝑎

(exp(︀𝑎(𝐼4𝑖 − 1)2⌋︀) , 𝐼4𝑖 = C̄ ∶A(𝜑𝑖, 𝛽) (2.48)
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where the index 𝑖 denotes layer-specific entities, and A(𝜑𝑖, 𝛽) = 𝑚 ⊗𝑚 is a

structural tensor (see section 2.5.1 for a general discussion of the concept), where

𝑚 = (cos(𝜑𝑖 + 𝛽), sin(𝜑𝑖 + 𝛽),0)𝑇 . We impose the requirements that 𝑘𝑖 ≥ 0 and

𝑎 > 0. In addition, fibers will only contribute to the strain energy if 𝐼4𝑖 ≥ 1,

otherwise contribution is zero. Finally, using equations 2.44 and 2.45, it can be

deduced that the isochoric part 𝑝𝑠𝑖 of the strain-energy function:

𝜓 = 𝜇(𝐼1 − 3) +
𝑛

∑
𝑖=1

𝑘𝑖
8𝑎

(exp(︀𝑎(𝐼4𝑖 − 1)2⌋︀) (2.49)

It is straightforward to obtain the second Piola-Kirchhoff stress tensor S:

S = 2
𝜕𝜓

𝜕C
= 2(𝜕𝑈(𝐽)

𝜕C
+ 𝜕𝜓𝑒𝑙𝑎𝑠

𝜕C
+ 𝜕𝜓𝑐𝑜𝑙𝑙

𝜕C
) (2.50)

Natali-Gregersen model [80]

The model of Natali, Carniel and Gregersen (2009), summarized here, is similar

in many aspects to the Holzapfel-Kroon model, although it uses a large number of

inveriants and tries to represent the interaction of the two main families of fiber

arrangements in mucosa-submocosa layer. In addition, it is a little more complex

and include a greater number of adjustable parameters. The Natali-Gregersen

model is like the Holzapfel-Kroon model an anisotropic incompressible hyperelas-

tic constitutive model. According to the theory of fiber-reinforced materials, the

strain energy density function (SEDF) is defined by different contributions from

the ground substance and fibrous components [51,100]:

𝑊 (C) =𝑊𝑖𝑠𝑜(C) +𝑊𝑓(C,M𝑖) (2.51)

whereC is the right Cauchy–Green strain tensor andM𝑖 are the structural tensors

(fabric tensors) depending on fibers organization. The high liquid content of

ground substance defines an almost incompressible behavior and the isotropic

contribution 𝑊𝑖𝑠𝑜 is split into volumetric 𝑈𝑣𝑜𝑙 and iso-volumetric 𝑊̃𝑖𝑠𝑜 terms:

𝑊𝑖𝑠𝑜(C) = 𝑈𝑣𝑜𝑙(𝐼3) + 𝑊̃𝑖𝑠𝑜(𝐼1, 𝐼2) (2.52)

𝑈𝑣𝑜𝑙(𝐼3) = ⌊︀
𝐾𝑣

2 + 𝑟(𝑟 + 1)}︀ [︀(𝐼
1⇑2
3 − 1)2 + 𝐼−𝑟⇑23 + 𝑟𝐼−1⇑23 − (𝑟 + 1)⌉︀ (2.53)
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𝑊̃𝑖𝑠𝑜(𝐼1, 𝐼2) =
𝐶1

𝛼1

(𝑒𝛼1(𝐼1−3) − 1) + 𝐶2

𝛼2

(𝑒𝛼1(𝐼2−3) − 1) (2.54)

where 𝐼1 = tr(C̃), 𝐼2 = 1⇑2 (︀𝐼21 − tr(C̃)2⌋︀ are the two principal invariants of the iso-

volumetric part of the right Cauchy–Green strain tensor, as C̃ = 𝐽2⇑3C and the

third invariant is related to the deformation Jacobian 𝐽 , as 𝐼3 = 𝐽2. Constitutive

parameters 𝐾𝑣 and 𝑟 are related to the tissue volumetric behavior and define the

tangent volumetric modulus:

Parameters 𝐶1 and 𝐶2 specify the tissue shear stiffness as 𝐺 = 2(𝐶1+𝐶2) while
parameters 𝛼1 and 𝛼2 regulate the non-linearity of the material response, with

reference to experimental results. On the other hand, the specific formulation

of fibrous network term 𝑊𝑓 depends on the fibrous components conformation

and distribution (see [51] or [100], for a general explanation of the invariants

𝐼1, 𝐼2, . . . , 𝐼9 involved in the theory of fiber-reinforced materials.). Esophageal tis-

sue, with particular regard to submucosa and muscularis externa, is characterized

by fibrous elements mainly oriented along two principal directions 𝑎0 and 𝑏0 (see

figure 2.18). The following formulation is adopted:

Figure 2.18. Planar representation of fiber arrangement in submucosa (a) and mus-
cularis externa (b) (after Natali, 2009, [80]).

51



CHAPTER 2. ANTECEDENTS

𝑊𝑓(C,M𝑖) =𝑊𝑓(C,𝑎0 ⊗ 𝑎0,𝑏0 ⊗ 𝑏0) =𝑊𝑓(𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9) =
𝑊𝑎(𝐼4) +𝑊𝑏(𝐼6) +𝑊𝑎𝑏(𝐼8, 𝐼9)

(2.55)

𝐾𝑇 = 𝜕
2𝑈

𝜕𝐽2
= 𝐾𝑣

2 + 𝑟(𝑟 + 1)(︀2 + 𝑟(𝑟 + 1)𝐼−(𝑟+2)⇑23 ⌋︀ (2.56)

where: )︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑊𝑎(𝐼4) =
⎨⎝⎝⎝⎝⎪

𝐶4

𝛼2
4

(𝑒𝛼4(𝐼4−1)𝛼4(𝐼4 − 1) − 1)
⎬⎠⎠⎠⎠⎮

𝑊𝑏(𝐼6) =
⎨⎝⎝⎝⎝⎪

𝐶6

𝛼2
6

(𝑒𝛼6(𝐼6−1)𝛼6(𝐼6 − 1) − 1)
⎬⎠⎠⎠⎠⎮

𝑊𝑎𝑏(𝐼8, 𝐼9) = 𝐶89(𝐼8 − 𝐼9)2)

(2.57)

The fourth and sixth invariants 𝐼4 = C ∶ (𝑎0 ⊗ 𝑎0) = 𝑎0 ⋅ C𝑎0 = 𝐶𝑖𝑗𝑎𝑖0𝑎
𝑗
0 =

𝜆2𝑎0
, 𝐼6 = C ∶ (𝑏0 ⊗ 𝑏0) = 𝑏0 ⋅ C𝑏0 = 𝐶𝑖𝑗𝑏𝑖0𝑏

𝑗
0 = 𝜆2𝑏0 depend on the tissue stretch

along fiber directions 𝑎0 and 𝑏0 (namely, 𝜆𝑎0 and 𝜆𝑏0). The fifth an seventh

invariants are similar but use the square of the Cauchy tensor: 𝐼5 = C2 ∶ (𝑎0 ⊗
𝑎0), 𝐼7 =C2 ∶ (𝑏0⊗𝑏0), these invariants specify the fiber contribution to the overall

tissue mechanical response, when complex strain conditions are applied, such as

shearing. With regard to esophagus, Natali el al.(2009) suggest to neglect the

contribution of the fifth and the seventh invariants due to the weakness of the

fiber-matrix interaction. Finally the eighth and ninth invariants 𝐼8 = (𝑎0 ⋅𝑏0)(︀C ∶
(𝑎0 ⊗ 𝑏0)⌋︀, 𝐼9 = (𝑎0 ⋅ 𝑏0)2 specify the influence of mutual interactions between the

two fiber families [51,64].

For obtaining the [first Piola] stress tensor we will use equation 2.35, then we

obtain:

P = P𝑣𝑜𝑙 + P̃𝑖𝑠𝑜 +P𝑎 +P𝑏 +P𝑎𝑏 (2.58)

P𝑣𝑜𝑙 = 2F
𝜕𝑈𝑣𝑜𝑙

𝜕C
= 𝐾𝑣

2 + 𝑟(𝑟 + 1)(︀2𝐽(𝐽 − 1) − 𝑟𝐽−𝑟 + 𝑟𝐽⌋︀F−𝑇 (2.59)

P̃𝑖𝑠𝑜 = 2F
𝜕𝑊̃𝑖𝑠𝑜

𝜕C
= 𝐶1𝑒

𝛼1(𝐼1−3) (2𝐽−2⇑3F − 2𝐼1
3

F−𝑇) (2.60)

P𝑎 = 2F
𝜕𝑊𝑎

𝜕C
= 𝐶4

𝛼4

𝑒𝛼4(𝐼4−1)F(𝑎0 ⊗ 𝑎0) (2.61)
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P𝑏 = 2F
𝜕𝑊𝑏

𝜕C
= 𝐶6

𝛼6

𝑒𝛼4(𝐼6−1)F(𝑏0 ⊗ 𝑏0) (2.62)

P𝑎𝑏 = 2F
𝜕𝑊𝑎𝑏

𝜕C
= 𝐶89

⌈︂
𝐼9(𝐼8 − 𝐼9)F(𝑎0 ⊗ 𝑏0 + 𝑏0 ⊗ 𝑎0) (2.63)

For uniaxial tensile test the deformation gradient F can be represented by a

diagonal matrix with eigenvalues 𝜆1, 𝜆2, 𝜆3. If 1 and 2 denote longitudinal and

transversal directions then 𝜆1, 𝜆2 are the relevant variables for measuring strain in

the uniaxial testing (being 𝜆3 the stretch in the radial direction, i.e. the reduction

of thickness). Histological evidence suggests to take:

𝑎𝑠𝑚
0 = (cos 𝜃, sin 𝜃,0), 𝑏𝑠𝑚0 = (− cos 𝜃, sin 𝜃,0) (2.64)

for the layer composed of submucosa and mucosa, and

𝑎𝑚𝑒
0 = (1,0,0), 𝑏𝑚𝑒

0 = (0,1,0) (2.65)

for muscularis externa. Thus, the stress term P𝑎𝑏 disappears for muscularis ex-

terna because the fiber directions 𝑎𝑚𝑒
0 and 𝑏𝑚𝑒

0 = (0,1,0) are orthogonal and

therefore 𝐼9 = 0 (see figure 2.18). Note the above equations define the first Piola–

Kirchhoff stress tensor as a function of the invariants 𝐼1, 𝐼3, 𝐼4, 𝐼6, 𝐼8, 𝐼9 that, in

turn, are functions of all the principal stretches 𝜆1, 𝜆2, 𝜆3, so the stretches that are

not measured directly (in particular 𝜆3) can be evaluated by analytical methods;

we have: )︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑃𝑖𝑖(𝜆𝑒𝑥𝑝𝑖 , 𝜆𝑗, 𝜆𝑘) =
𝐹𝑡

𝐴0

𝑃𝑗𝑗(𝜆1, 𝜆2, 𝜆3) = 0 𝑖 ∉ {𝑗, 𝑘}
(2.66)

Where 𝑖 = 1 (longitudinal tests) or 𝑖 = 2 (transversal tests), accounting for the

experimental value 𝜆𝑒𝑥𝑝𝑖 , the solution of the system 2.66 leads to the other com-

ponets of stretch 𝜆𝑗, 𝜆𝑘.

Remark. Although the above classical constitutive models fit the data rea-

sonably, are empirically satisfactory and are well developed; no physical reason

is given in the literature for the occurrence of exponential functions [99]. One of

the theoretical results of this dissertation is the construction an explanation for

its occurrence based on statistical mechanics.4.2.1∎.
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2.4.2 Constitutive microcontinuum models

Up to now, the use of microcontinuum models in biomechanics is mainly limited

to the linear microcontinuum elasticity. This theory is adequate, for example, for

small deformations and a number of authors have used this kind of approaches

for studying the hard tissue of the bones. Its use for soft tissue is less devel-

oped although we can find some interesting works [55, 70]. More over, there are

works using microcontinuum theory of fluids [94]. We restrict here to the general

microcontinuum constitute theory, summarized in [31].

A general constitutive model for a thermoelastic microcontinuum is a func-

tional relation among the “independent” variables and the “dependent” variables.

The independent variables are:

ℐ(𝑥, 𝑡) = {D(𝑥, 𝑡),K(𝑥, 𝑡), Γ̂(𝑥, 𝑡),∇𝜃(𝑥, 𝑡), 𝜃(𝑥, 𝑡), 𝜃(𝑥, 𝑡), Î(𝑥, 𝑡), 𝑥, 𝑡} (2.67)

that its, the macrodeformation tensor, the microdeformation tensor, the wryness

tensor, the temperature gradient, the rate of change of the temperature, the

temperature, the microinertia tensor, the point location and the time. The set of

dependent variable is:

𝒟(𝑥, 𝑡) = {𝜎(𝑥, 𝑡), 𝜇̂(𝑥, 𝑡), s(𝑥, 𝑡),𝑞(𝑥, 𝑡), 𝑒(𝑥, 𝑡)} (2.68)

The balance laws form a system of 20 partial differential equations and one

inequality (for entropy production). Given the external loads 𝑏, 𝑙̂ and the heat

generation ℎ, there are 67 unknowns 𝜌,𝑣, j,𝜈,𝜎, 𝜇̂, s,𝑞, 𝑒, 𝜂 and 𝜃 (density, veloc-

ity, traceless microinertia, microgyration, stress, couple stress, symmetric tensor,

heat flux, total energy, entropy and temperature). Clearly then, the system is

highly indeterminate. Forty-seven independent additional equations are needed

for the determination of motions and temperatures of a micromorphic body. It

is assumed that the dependent set 𝒟, at (𝑥, 𝑡) is a functional of the independent

variable set. Symbolically:

𝒟(𝑥, 𝑡) = ℱ(︀ℐ(𝑥, 𝑡)⌋︀, 𝑥 ∈ 𝒮, 𝑡 ∈ R (2.69)

This functional is assumed to be coherent with the material-frame indifference

axiom or more in general covariance axiom. For a usual elastic theory fur-

ther requirements are necessary for example the locality axioms or the memory-
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independent material restriction. We assume here the usual locality and time-

independence requirements; then the above equation can be simplified to 𝒟(𝑥, 𝑡) =
ℱ(︀ℐ⌋︀. For a viscoelastic continuum, we need to remove the time-independence

and assume a relation of type 𝒟(𝑥, 𝑡) = ℱ(︀ℐ(𝑡 − 𝑡′)⌋︀ with 𝑡′ ∈ R+. As discussed

at the beginning of this dissertation for practical purposes we can ignore the

viscoelastic effects in the type of problems addressed in this research.

To formulate the constitutive elastic laws, we need the local second law of

thermodynamics:

𝜌𝜂̇ −∇𝑘 (
𝑞𝑘

𝜃
) − 𝜌ℎ

𝜃
≥ 0 (2.70)

where 𝜂 is the entropy by unit of mass, 𝑞 = 𝑞𝑘𝑒𝑘 the heat flux, 𝜃 the absolute

temperature, and ℎ the heat generation. Introducing the Helmholtz energy density

function (HEDF)

𝜓 = 𝑒 − 𝜃𝜂

and eliminating ℎ from the last equation and the local energy balance (equation

2.30), we obtain the generalized Clausius-Duhem inequality:

− 𝜌(𝜓̇ + 𝜂𝜃) + 𝜎𝑎𝑏𝑎𝑎𝑏 + 𝜇𝑎𝑏𝑐𝑏𝑎𝑏𝑐 + 𝑠𝑎𝑏𝑐𝑘𝑙 +
𝑞𝑘𝜃⋃︀𝑘

𝜃
≥ 0 (2.71)

where the following abbreviations have been used:

𝑎𝑎𝑏 = 𝑔𝑎𝑐(𝑣𝑐⋃︀𝑏 − 𝜈𝑐𝑏), 2𝑐𝑎𝑏 = 𝑔𝑎𝑐𝜈𝑐𝑏 + 𝑔𝑏𝑐𝜈𝑐𝑎
𝑏𝑎𝑏𝑐 = 𝑔𝑎𝑑(𝜈𝑑𝑏⋃︀𝑐)

(2.72)

Postulating that the HEDF is a function of the independent variables 𝜓 =
𝜓(D,K,Γ,∇𝜃, 𝜃, 𝑥), the time derivative of 𝜓 is given by:

𝜓̇ = 𝜕𝜓

𝜕𝐷𝐴𝐵

𝐷̇𝐴𝐵 +
𝜕𝜓

𝜕𝐾𝐴𝐵

𝐾̇𝐴𝐵 +
𝜕𝜓

𝜕Γ𝐴𝐵𝐶

Γ̇𝐴𝐵𝐶 +
𝜕𝜓

𝜕𝜃⋃︀𝐴
𝜃⋃︀𝐴 +

𝜕𝜓

𝜕𝜃
𝜃 + 𝜕𝜓

𝜕𝜃
𝜃 (2.73)

Computing the expressions for 𝐷̇𝐴𝐵, 𝐾̇𝐴𝐵 and Γ̇𝐴𝐵𝐶 , we have:

𝐷̇𝐴𝐵 = 𝑎𝑎𝑏𝑥𝑎⋃︀𝐴𝜒̄𝑏
𝐵, 𝐾̇𝐴𝐵 = 𝑐𝑎𝑏𝜒𝑎

𝐴𝜒
𝑏
𝐵, Γ̇𝐴𝐵𝐶 = 𝑏𝑎𝑏𝑐𝜒̄𝑎

𝐴𝜒
𝑏
𝐵𝑥

𝑐
⋃︀𝐶 (2.74)

where 𝜒̄ = 𝜒−1.

55



CHAPTER 2. ANTECEDENTS

Substituing these derivatives into equation 2.71, we obtain:

−𝜌
⎛
⎝
𝜕𝜓

𝜕𝜃
+ 𝜂

⎞
⎠
𝜂̇ +

⎛
⎝
𝜎𝑎𝑏 − 𝜌

𝜕𝜓

𝜕𝐷𝐴𝐵

𝑥𝑎
⋃︀𝐴
𝜒̄𝑏
𝐵

⎞
⎠
𝑎𝑎𝑏+

+
⎛
⎝
𝜇𝑎𝑏𝑐 − 𝜌

𝜕𝜓

𝜕Γ𝐴𝐵𝐶

𝜒̄𝑎
𝐴𝜒

𝑏
𝐵𝑥

𝑐
⋃︀𝐶

⎞
⎠
𝑏𝑘𝑙𝑚 +

⎛
⎝
𝑠𝑎𝑏 − 2𝜌

𝜕𝜓

𝜕𝐾𝐴𝐵

𝜒𝑎
𝐴𝜒

𝑏
𝐵

⎞
⎠
𝑐𝑘𝑙−

−𝜌
𝜕𝜓

𝜕𝜃⋃︀𝐴
𝜃⋃︀𝐴 − 𝜌

𝜕𝜓

𝜕𝜃
𝜃 +

𝑞𝑘𝜃⋃︀𝑘

𝜃
≥ 0

(2.75)

This inequality is linear in 𝜃, 𝑎𝑎𝑏, 𝑏𝑎𝑏𝑐, 𝑐𝑎𝑏 and 𝜃⋃︀𝐴. It must remain in one sign for

all independent variations of these quantities. But this is impossible unless:

𝜎𝑎𝑏 = 𝜌
𝜕𝜓

𝜕𝐷𝐴𝐵

𝑥𝑎
⋃︀𝐴
𝜒̄𝑏
𝐵, 𝑠𝑎𝑏 = 2𝜌

𝜕𝜓

𝜕𝐾𝐴𝐵

𝜒𝑎
𝐴𝜒

𝑏
𝐵 𝜇𝑎𝑏𝑐 = 𝜌

𝜕𝜓

𝜕Γ𝐴𝐵𝐶

𝜒̄𝑎
𝐴𝜒

𝑏
𝐵𝑥

𝑐
⋃︀𝐶

𝜂 =
𝜕𝜓

𝜕𝜃

𝜕𝜓

𝜕𝜃⋃︀𝐴
= 0,

𝜕𝜓

𝜕𝜃
= 0

−𝜌𝜂𝜃 +
𝑞𝑘𝜃⋃︀𝑘

𝜃
≥ 0

(2.76)

The above equations are the most general possible constitutive laws for a mi-

cromorphic continuum. We can particularize them for a microstretch continuum,

defining 𝑗 = det𝜒 then the stress tensor take the special forms:

𝐷𝐴𝐵 = 𝑗−2𝑥𝑎⋃︀𝐵𝜒𝑎𝐵, 𝐾𝐴𝐵 = 𝑗2𝛿𝐴𝐵, Γ𝐴𝐵𝐶 = 𝑗−2𝜒𝑎
𝐴𝜒𝑎𝐵⋃︀𝐶 (2.77)

These tensors are possible candidates for strain measures, but the are coupled

and they do not constitute an independent set. For simplify computations it is

useful to define 𝜒̃ = 𝑗−1𝜒 and then redefine the macrodeformation, the microde-

formation and the wryness tensors as:

𝐷̃𝐴𝐵 = 𝑥𝑎⋃︀𝐵𝜒̃𝑎𝐵 = 𝑗𝐷𝐴𝐵, 𝐾̃𝐴𝐵 = 𝑗2𝛿𝐴𝐵 =𝐾𝐴𝐵

Γ𝐴
𝐵 = 1

2𝜖
𝐴𝐶𝐷𝜒̂𝑎

𝐶⋃︀𝐵
𝜒̂𝑎𝐷, Γ𝐴 = 𝑗−1𝑗⋃︀𝐴

(2.78)

Obviously, we have the decomposition Γ𝐴𝐵𝐶 = Γ𝐶𝛿𝐴𝐵 − 𝜖𝐴𝐵𝐸Γ𝐸
𝐶 . Then repeating

the procedure used for 2.76, we obtain for a microstretch continuum the following
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constitutive equations:

𝜎𝑎𝑏 = 𝜌
𝜕𝜓

𝜕𝐷̃𝐴𝐵

𝑥𝑎
⋃︀𝐴
𝜒̃𝑏
𝐵, 𝑠 − 𝑡 = 3𝜌𝑗

𝜕𝜓

𝜕𝑗

𝜇𝑎𝑏 = 𝜌𝑗−2
𝜕𝜓

𝜕Γ𝐵
𝐴

𝑥𝑎
⋃︀𝐴
𝜒̃𝐵𝑏 𝜇𝑎 = 𝜌

𝜕𝜓

𝜕Γ𝐴

𝑥𝑎
⋃︀𝐴

(2.79)

[We have omitted the purely thermodynamic restrictions]. These equations are

the key equations for deriving the constitutive laws from a proposed HEDF. They

will be used in section 4.5.

2.5 Representation of anisotropy

As previously discussed, constitutive equations are easier to represent by means

of a Strain-Energy Density Function (SEDF). This SEDF is a scalar function

whose arguments are different tensors (strain tensor, micro-strain tensor, etc.)

In the isotropic case, the SEDF for a material needs to be a function of invari-

ants under geometrical transformations of the whole three dimensional orthogo-

nal group O(3) (formed by three dimensional rotations SO(3), reflections and

spatial inversions, see section A.3 for a definition). The above fact is a straightfor-

ward consequence of the representation theory for tensor functions; this section

discusses the anisotropic case more extensively. In particular, complete and irre-

ducible forms for anisotropic tensor functions are treated. These representations

allow general consistent invariant forms for nonlinear constitutive equations and

specify the number and type of the scalar variables involved Zheng (1994) [118, p.

545]. These representation have proved to be even more pertinent in attempts

to model mechanical behavior of anisotropic materials, since invariant conditions

predominate and the number and type if independent scalar variables cannot be

found by simple arguments.

For introducing some elementary ideas, consider for example an elastic ma-

terial for which the SEDF (here denoted by 𝑊 ) exists and is expressible as a

scalar-valued function of a strain tensor (e.g. the Green deformation tensor) E

or its six independent components 𝐸𝑥𝑥,𝐸𝑦𝑦,𝐸𝑧𝑧,𝐸𝑥𝑦 = 𝐸𝑦𝑥,𝐸𝑦𝑧 = 𝐸𝑧𝑦,𝐸𝑧𝑥 = 𝐸𝑥𝑧.

If the material is isotropic, then the symmetry imposes the restriction that 𝑊 is

expressible as a function of three principal traces trE, trE2, trE3 (or equivalently,
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the three principal invariants 𝐼E1 , 𝐼
E
2 , 𝐼

E
3 of E:

𝑊 =𝑊 (tr E, tr E2, tr E3) (2.80)

For a transversely isotropic material with the preferred direction 𝑛, the material

symmetry imposes the restrictions that𝑊 depends on five invariants in the form:

𝑊 =𝑊 (tr E, tr E2, tr E3,n ⋅E𝑛,𝑛 ⋅E2𝑛) (2.81)

rather than the six components of the strain tensor. The material symmetry, i.e.,

the isotropy is precisely and automatically satisfied in 2.80 or 2.81.

The material symmetry (isotropy, transverse isotropy, orthotropy, crystal sym-

metries, etc.) imposes definite restrictions on the forms of the tensor functions

in constitutive relations. These restrictions are precisely one aspect treated by

the representation theory which specifies the type and number of independent

scalar variables involved in constitutive relations to be observed in experiments.

Representations for tensor functions are thus valuable and even indispensable

form modeling of nonlinear constitutive laws, particularly when the material is

anisotropic and when the mechanical response of the material depends on more

than one tensor argument (as it happens in micro-continuum mechanics). The

theory of representation for tensor functions is well established since the 1990s,

including a number of essential theorems and a large amount of complete and

irreducible representations for both isotropic and anisotropic tensor functions.

The modern developments in both the general approach to nonlinear constitutive

equations and in representation theorems date largely from the work of Rivlin and

Reiner (1945, 1948) [90] on finitely strained isotropic compressible hyper-elastic

materials. Since the work of Rivlin and Ericksen (1955) [28, 91], the representa-

tion theory for tensor polynomials has been extensively developed, as described

by Spencer (1971, 1987).

2.5.1 Theory of representation for tensor functions

The theory of representations proposed by Rivlin and Ericksen is a theory of

representations of tensor polynomials, and corresponds to the assumption that

the tensor functions in the constitutive relations are polynomials, or that they

can be approximated with sufficient accuracy by tensor polynomials of arbitrarily

58



2.5. REPRESENTATION OF ANISOTROPY

high degree. This assumption is a matter of mathematical convenience. It may be

even misleading if the constitutive equations are not analytic. But this “defect”

is partly removed by the significant works of Pipkin and Wineman (1963) and

Wineman and Pipkin (1964) [87,111]. They proved that complete representations

for tensor polynomials can be regarded as complete representations for general

tensor functions.

Numerous isolated instances by Cauchy (1850) [13], Rivlin and Ericksen (1955),

Rivlin (1955) [28,91], Pipkin and Rivlin (1959) [88] and Noll (1967) [81], of com-

plete and irreducible representations for isotropic tensor fucntions could be found

in the literature (note that an irreducible representation is a nonzero representa-

tion that has no proper closed sub-representations). A new period was opened by

the works of Boehler (1978, 1979) [7, 8] to deal with anisotropic tensor functions

and constitutive equations of anisotropic material. In these works the elegant

concept of structural tensors or structural tensors (Lokhin & Sedov, 1963 [66];

Boehler 1978-79) which characterize the anisotropy was extended to join the so

called principle of isotropy of space that an anisotropic tensor function is express-

ible as an isotropic one with the structural tensors as additional tensor agencies

(see Liu (1982), [65], see Holzapfel-Kroon and Natali models of section 2.4.1,

where structural tensors were used). By this principle the known isotropic ten-

sor function representations can be used to immediately yield representations for

anisotropic functions. Along this line, constitutive laws of transversely isotropic,

orthotropic and clinotropic materials for complex irreversible mechanical phe-

nomena such as yielding, failure, creep and damage can be formulated in terms

of invariants and structural tensors. Furthermore, we can see three potential

additional significant benefits of above Boehler’s idea in formulating constitutive

equations of anisotropic materials:

� First, this concept allows constitutive equations to be formally expressed in

isotropic forms irrespective of the actual anisotropy of materials in consid-

eration.

� Second, the effects of anisotropy in the constitutive equation become more

clear via the structural tensors.

� Third, the constitutive equation has a coordinate free-form, however, it is

a tensorial type law.

The modern theory of representation for tensor functions address the following

fundamental problems:
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� Could all kinds of anisotropy be described and classified?

� Weather every anisotropy could be characterized in terms of enough simple

tensor(s) or not?

� Assert the existence of complete tensor function representations in finite

forms.

� Develop effective and simple new methods of determining not only complete

but also irreducible representations for anisotropic tensor functions.

Zheng (1994) summarized important mathematical results concerning these fun-

damental problems [118]. Among these results are the Zheng-Boehler classifica-

tion theorem, the structural tensor theorem and the isotropicization theorem. We

begin with some basic definitions:

Definition 2.5.1. Any function whose arguments are tensors and whose

values are scalars is called a tensor function. The tensorial arguments

will be referred simply as agencies. The tensor functions with any finite

number of tensor agencies S(1), . . . ,S(𝐴) will be denoted 𝜙(S(𝑎)), and the set

of all such tensor functions as Φ.

The next definitions allowsto formalize the notion of change of reference frame

by means of transformations of O(𝑛) (rotations, reflections or combinations of

both). The set of all these transformations forms the Lie group O(𝑛) (see section
A.3 for an overview of Lie groups):. We begin with the concept of tensorial

representation of the Lie group O(𝑛):

Definition 2.5.2. A tensorial representation of the matrix Lie group

O(𝑛) of type (𝑟, 𝑠) over the inner product vector space 𝑉 is a mapping

∐︀⋅̃︀ ∶O(𝑛) → 𝑇 𝑟+𝑠
𝑟+𝑠 𝑉 , given an orthonormal basis the components are:

∐︀Q̃︀ = 𝑄𝑚1
𝑖1
⋯𝑄𝑚𝑟

𝑖𝑟
𝑄𝑗1

𝑛1
⋯𝑄𝑗𝑠

𝑛𝑠

This representation allows to define a mapping 𝑇 𝑟
𝑠 𝑉 → 𝑇 𝑟

𝑠 𝑉 given by T ↦
∐︀Q̃︀T, using components, we have:

∐︀Q̃︀𝑇 𝑖1...𝑖𝑟
𝑗1...𝑗𝑠

= 𝑄𝑚1
𝑖1
⋯𝑄𝑚𝑟

𝑖𝑟
𝑄𝑗1

𝑛1
⋯𝑄𝑗𝑠

𝑛𝑠
𝑇 𝑖1...𝑖𝑟
𝑗1...𝑗𝑠

where 𝑇 𝑖1...𝑖𝑟
𝑗1...𝑗𝑠

are the components of a tensor of type (𝑟, 𝑠) over 𝑉 . The

tensor ∐︀Q̃︀T is called the transformed tensor or the “rotated tensor”.

60



2.5. REPRESENTATION OF ANISOTROPY

A transformation such as Q relates the change in orientation of the frame

bases used by two different observers. The above formula for a vector 𝑣 is simply

the ordinary matrix vector product ∐︀Q̃︀𝑣 ∶=Q𝑣, for a linear application or (0,2)-
tensor A the above formula is ∐︀Q̃︀A ∶= QAQ𝑇 , and for a general (0, 𝑛)-tensor
(∐︀Q̃︀T)𝑖𝑗...𝑘 ∶= 𝑄𝑚

𝑖 𝑄
𝑛
𝑗⋯𝑄

𝑝
𝑘𝑇𝑚𝑛...𝑝

As we discussed in section 2.4 about constitutive theory, the SEDF is a scalar

function of the strain tensor (and in microcontinuum theory, the tensors defining

the different types of deformation). For an anisotropic materials, the mechanical

properties measured by different observers need to be related by a kind of tensor

transformation such as the examined in definition 2.5.2. The following definition

refers to the changes of such a scalar function (SEDF or other similar functions)

under rotations or reflections of the group O(𝑛):

Definition 2.5.3. An action the orthogonal group O(𝑛) on the set

of tensor functions Φ is a mapping O(𝑛) ×Φ→ Φ, such that

(Q, 𝜙(S(𝑎))) ↦ 𝜙(∐︀Q̃︀S(𝑎))

where the adequate representation type (𝑟, 𝑠) is used for each S(𝑎).

A transformation of O(𝑛) is called a symmetry transformation of 𝜙 if:

𝜙(∐︀Q̃︀S(𝑎)) = 𝜙(S(𝑎))

In this case it is said that 𝜙 is invariant under Q.

The set of all symmetry transformations of 𝜙 form the symmetry group

of 𝜙.

It can be proven that the symmetry group of a tensor function is a point group,

i.e. a subgroup of the full orthogonal group O(𝑛). A tensor function is said to

be isotropic if its symmetry group is the full orthogonal group itself; hemitropic

if its symmetry group is the group of rotations SO(𝑛); otherwise, anisotropic.
Relative to a point group 𝒢, we refer to tensor polynomial functions as invariants

if their symmetry groups include this 𝒢. For example,

� the scalar product 𝑢 ⋅ 𝑣 of any two vectors and the trace tr(A) of any

second-order tensor are isotropic invariants.10

10When the metric tensor of the manifold is not Euclidean, there are differences between

61



CHAPTER 2. ANTECEDENTS

� the mixed product (︀𝑢,𝑣,𝑤⌋︀ ∶= (𝑢 × 𝑣) ⋅𝑤 is a hemitropic invariant.

Finally, we can introduce the notion of tensor representation for a given sym-

metry group. This is a fundamental object in the formulation of constitutive

laws, in particular, a constitutive law for a certain type of anisotropic hyperelas-

tic material is a function of the invariants contained in the tensor representation:

Definition 2.5.4. A complete representation for a symmetry group 𝒢
and a set of agencies S(𝑎) is a set {𝐼𝑖} of invariants relative to 𝒢 such that

any polynomial tensor function with symmetry group 𝒢 can be expressed as:

𝜙(S(𝑎)) = 𝜙(𝐼1, 𝐼2, . . . , 𝐼𝑁)

A complete representation is also irreducible if none of the invariants in

the representation is expressible as a single-valued function or polynomial

of the remainders, thus, if any proper subset of the representation fails to

be a representation.

For example, an isotropic tensor function whose only argument is a vector

𝑣 admits a unique representation in terms of only one scalar, namely 𝑣 ⋅ 𝑣, i.e.
𝜙(𝑣) = 𝜙(𝑣 ⋅𝑣) [this the only possible functional form for 𝜙 in order to be a scalar

invariant tensor function].

2.5.2 Isotropic tensor functions

The isotropic problems have had most priority in theoretical and applied me-

chanics. Since the isotropic materials possess the simplest form comparing with

those of anisotropic materials. In addition, the isotropicization theorem allows

to reduce anisotropic cases by adding the anisotropic structural tensors to the

formulation.

The complete and irreducible representations for three-dimensional isotropic

of any finite number of second-order tensors and vectors were achieved by Wang

(1970, 1971) [109,110] and Smith (1971) [97] and simplified by Zheng (1993) [117].

The results are shown in table 4.1. The table shows complete and irreducible

three types of second-order tensors (of types (1,1), (2,0) and (0,2), thus the trace is: tr𝑔(A) =
𝑔𝑖𝑗𝐴𝑖𝑗 = 𝑔𝑖𝑗𝐴

𝑖𝑗 = 𝐴𝑖
𝑖
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lists of isotropic invariants necessary for representing isotropic and hemitropic

tensor functions, i.e functions with symmetry groupsO(3) and SO(3), any tensor
functions with that symmetry groups need to be a function of the given invariants.

In all tables for representations in this section the following abbreviations are

employed; the symmetric 2-tensors are denoted:

A =A𝑖, B =A𝑗, C =A𝑘

where 𝑖, 𝑗, 𝑘 ∈ {1, . . . ,𝑁} and 𝑖 < 𝑗 < 𝑘. The antisymmetric 2-tensors are denoted:

W =W𝑝, V =W𝑞, U =W𝑟

where 𝑝, 𝑞, 𝑟 ∈ {1, . . . , 𝑃} and 𝑝 < 𝑞 < 𝑟. The vectors are denoted:

𝑣 = 𝑣𝑚, 𝑢 = 𝑣𝑛, 𝑤 = 𝑣𝑙

where 𝑚,𝑛, 𝑙 ∈ {1, . . . ,𝑀} and 𝑚 < 𝑛 < 𝑙. Note that for classical continuum

mechanics the usual deformation tensors are symmetric (and some types of stress

tensors). But in microcontinuum mechanics neither macrodeformation tensor is

symmetric nor microdeformation tensor is symmetric. For this reason we need to

explore symmetric and antisymmetric parts:

(A)𝑆 ∶= (A) = A +A𝑇

2
, (︀A⌋︀𝑎 ∶= (︀A⌋︀ = A −A𝑇

2

Numerous isolated instances of representation theorems for isotropic tensor

functions can be found in the literature before Wang’s and Smith general results.

They are representations theorems:

(i) for ordinary tensor functions of vectors 𝑣1, . . . ,𝑣𝑀 due to Cauchy (1850):

𝜙 = 𝜙(𝑣𝑖 ⋅ 𝑣𝑗), for all pairs 𝑖, 𝑗. (2.82)

(ii) for scalar-valued and tensor-valued tensor functions of single second-order

symmetric tensor A:
B = 𝜙0I + 𝜙1A + 𝜙2A2

𝜙𝑖 = 𝜙𝑖(tr A, tr A2, tr A3) (2.83)

where the 𝜙’s are of the form. Equation 2.82 show that the only possibility to

form a scalar function with vector arguments is a function which consists uniquely
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Table 2.3. Invariants for isotropic/hemitropic tensor functions.

Agencies Isotropy Hemitropy

A tr A, tr A2, tr A3

A,B tr AB, tr A2B, tr AB2, tr A2B2

A,B,C tr ABC
W tr W2

A,W tr AW2, tr A2W2, tr A2W2AW
A,B,W tr ABW, tr A2BW, tr AB2W2, tr AW2BW
W,V tr WV
A,W,V tr AWV, tr AW2V, tr AWV2

W,V,U tr WVU
v v ⋅ v v ⋅ v
A,v v ⋅Av,v ⋅A2v v ⋅Av,v ⋅A2v, (︀v,Av,A2v⌋︀

A,B,v v ⋅ABv
v ⋅ 𝜖(︀AB⌋︀,v ⋅ 𝜖(︀A2B⌋︀,
v ⋅ 𝜖(︀AB2⌋︀, (︀v,Av,Bv⌋︀

W,v v ⋅W2v v ⋅ 𝜖W,v ⋅A2v, (︀v,Av,A2v⌋︀
A,W,v v⋅AWv,v⋅A2Wv,v⋅WAW2v v ⋅AWv,v ⋅ 𝜖(︀AW⌋︀,v ⋅ 𝜖(︀AW2⌋︀
W,V,v v ⋅WVv,v ⋅W2Vv,v ⋅WV2v v ⋅ 𝜖(︀WV⌋︀
u,v v ⋅ u v ⋅ u
A,v,u v ⋅Au,v ⋅A2u v ⋅Au, (︀v,u,Av⌋︀, (︀v,u,Au⌋︀
A,B,v,u v ⋅ (AB −BA)u —
W,v,u v ⋅Wu,v ⋅W2u v ⋅Wu
A,W,v,u v ⋅ (AW +WA)u —
W,V,v,u v ⋅ (WV −VW)u —
v,u,w — (︀v,u,w⌋︀

in the norms of the vectors and/or inner products of the vectors. The result in

equation 2.83 is known as the Rivlin-Ericksen’s theorem for isotropic solids.
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2.5.3 Anisotropic tensor functions

A subgroup of the Orthogonal groupO(3) is referred as a point group. As numbers

measure size, groups measure symmetry. A fundamental problem arises whether

or not every point group describes a possible real material symmetry Zheng and

Boehler (1994) [119] established some useful results about this question:

Theorem 2.5.1. Concerning the symmetry group of a tensor function:

(i) The symmetry group of a polynomial tensor function of any finite number

of tensor agencies can be only a compact point group (the compact subgroups

are precisely the Lie subgroups).

(ii) Generalized Wineman-Pipkin’s theorem. For any finite number of ten-

sor agencies and relative to any compact point group, a complete represen-

tation for polynomal tensor functions can play as complete representation

for tensor functions.

(iii) Zheng-Boehler’s classification theorem. Any compact three-dimensional

point group is conjugate of one of the following groups: the axial groups

C𝑛,S2𝑛,C𝑛ℎ,C𝑛𝑣,D𝑛,D𝑛𝑑,D𝑛ℎ, the polyhedral groups: T,T𝑑,Tℎ,O,Oℎ, I, Iℎ,

the infinite axial groups C∞,C∞ℎ,D∞,C∞𝑣,D∞ℎ and the complete groups

SO(3),O(3) and any non-compact three-dimensional group point group is

conjugate to a group which is dense in one of the infinite groups (the axial

infinite groups or the complete groups)

The part (i) can be made more general, if Ψ(S(𝑎)) is a non-polynomial tensor

function and the induced function Ψ∗ of any orthogonal tensor Q:

Ψ∗(S(𝑎)) = Ψ(∐︀Q̃︀S(𝑎)) (2.84)

is continuous in the full orthogonal group, then the symmetry group of Ψ(S(𝑎))
must be a compact group. This extends the results to all continuous tensorial

functions, from the result obtained for polynomials.

The theorem 2.5.1 classifies all types of material symmetry groups, but in the

elastic behavior not all the above symmetries are distinguishable. A consequence

of the Zheng-Boehler’s classification theorem and the structural tensor theorem

(see below theorem 2.5.2) is that the all possible symmetries of linear physical

properties by a 𝑝th-order tensor in three dimensions are the symmetries of the

table 2.4.
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Table 2.4. Possible symmetry groups of a 𝑝th-order tensor in three dimensions

𝑝 = 2𝑙 (even order) 𝑝 = 2𝑙 + 1 (odd order)

C𝑖,C3𝑖,C5𝑖, . . . ,C(𝑝−1)𝑖,
D3𝑑,D5𝑑,D7𝑑, . . . ,D(𝑝−1)𝑑,
C2ℎ,C4ℎ,C6ℎ, . . . ,C𝑝ℎ;C∞ℎ,
D2ℎ,D4ℎ,D6ℎ, . . . ,D𝑝ℎ;D∞ℎ,
Tℎ(if 𝑝 ≥ 4),Oℎ(if 𝑝 ≥ 4),
Iℎ(if 𝑝 ≥ 6),O(3)(if 𝑝 ≥ 2)

C1,C2,C3, . . . ,C𝑞;C∞

D1,D3,D4, . . . ,D𝑝;D∞

C2𝑣,C3𝑣,C4𝑣, . . . ,C𝑝𝑣;C∞𝑣,
C2𝑖,C4𝑖,C6𝑖, . . . ,C(𝑝−1)𝑖,
D2𝑑,D4𝑑,D6𝑑, . . . ,D(𝑝−1)𝑑,
C1ℎ,C3ℎ,C5ℎ, . . . ,C𝑝ℎ,
D3ℎ,D5ℎ,D7ℎ, . . . ,D𝑝ℎ,
T(if 𝑝 ≥ 3),T𝑑(if 𝑝 ≥ 3),
O(if 𝑝 ≥ 5), I(if 𝑝 ≥ 7)
SO(3)(if 𝑝 ≥ 3)

A representation of some the symmetry groups described in the above theo-

rem are represented in tables 2.5 and 2.6. In this tables two-color partition (a

tessellation) is showed, this partition is invariant under rotations and reflections

of a given group. A two-color partition on the sphere which is invariant under a

given point group 𝒢 ⊂O(3), with the property that no finer partition is invariant

under 𝒢 is called the “invariant domain” of 𝒢.

Table 2.5. Invariant domains of three-dimensional polyhedral point groups.

T𝑑 (order 24) Oℎ (order 48) Iℎ (order 120)

Tetrahedral group Octahedral group Icosahedral group
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Table 2.6. Invariant domains of three-dimensional axial point groups.

C1𝑣 C2𝑣 C3𝑣 C4𝑣 C5𝑣 C6𝑣

D1ℎ D2ℎ D3ℎ D4ℎ D5ℎ D6ℎ

Table 2.7. Invariants for symmetry groups 𝑇𝑅4, 𝑇𝑅2 and 𝑇𝑅5.

Agencies Transversal isotropy Transversal isotropy Transversal isotropy
type 𝑇𝑅4 = D∞ℎ type 𝑇𝑅2 = C∞𝑣 type 𝑇𝑅5 = D∞

A tr A, tr A2, tr A3,k ⋅Ak,k ⋅A2k
A,B tr AB, tr A2B, tr AB2,k ⋅ABk
W tr W2,k ⋅W2k
A,W tr AW2, tr A2W2, tr A2W2AW,k ⋅AWk,k ⋅A2Wk,k ⋅WAW2k
W,V tr WV,k ⋅WVk,k ⋅W2Vk,k ⋅WV2k,
v v ⋅ v, (v ⋅ k)2 v ⋅ v,v ⋅ k v ⋅ v, (v ⋅ k)2
A,v v ⋅Av,v ⋅A2v, v ⋅Av,k ⋅Av, v ⋅Av,v ⋅A2v,

(k ⋅ v)(k ⋅Av) k ⋅A2v (︀k,v,Ak⌋︀, (︀k,v,A2k⌋︀
(︀v,Av,A2v⌋︀

W,v v ⋅W2v, v ⋅Wv, (︀k,v,Wk⌋︀, (︀k,v,W2k⌋︀
(k ⋅ v)(k ⋅Wv), v ⋅W2v (k ⋅ v)(k ⋅Wv),
(k ⋅Wv)(k ⋅W2v) v ⋅ 𝜖(︀W⌋︀

v,u v ⋅ u, (v ⋅ k)(u ⋅ k) v ⋅ u, (v ⋅ k)(u ⋅ k) v ⋅ u, (v ⋅ k)(u ⋅ k)
(︀k,v,u⌋︀ (︀k,v,u⌋︀(k ⋅ v)

(︀k,v,u⌋︀(k ⋅ u)
A,v,u v ⋅Au,v ⋅A2u, v ⋅Au v ⋅Au, (︀v,u,Au⌋︀

v ⋅(k⊗Ak−Ak⊗k)u (︀v,u,Av⌋︀
W,v,u v ⋅Wu,v ⋅W2u, v ⋅Wu v ⋅Wu

v⋅(k⊗Wk−Wk⊗k)u
v,u,w — — (︀v,u,w⌋︀

67



CHAPTER 2. ANTECEDENTS

Figure 2.19. Invariant geome-
tries under the axial groups: ro-
tational or cyclic group C6, cyclic
group with horizontal reflection
C6ℎ, pyramidal group or cyclic
group with horizontal reflections
C6𝑣, dihedral group D6, prismatic
group D6ℎ, anti-prismatic group
D6𝑣, cyclic group with inversion
S6, (after A. Kepert, Wikimedia,
2006)

The two lists in table 2.4 imply that for

classical elasticity (where strain tensor and

stress tensors are second-order tensors) we have

the following types of anisotropy:

� Isotropy and hemitropy. A tensor

function is isotropic if it is invariant un-

der transformations “rotations” and “re-

flexitons” (invariant under the action of

O(3)), and hemitropic it is invariant only

under “rotations” (invariant under the

action of SO(3)).
� Transversal isotropy/hemitropy. This

type of anisotropy when there is a pre-

ferred direction. Unidirectional fiber

composite is a typical example of trans-

versely isotropic material with the fiber

direction as the preferred direction,

where the constitutive relations are in-

variant under rotations about the pre-

ferred direction. Muscle should be con-

sidered as transversally isotropic mate-

rial rather than an isotropic one. There

are five subtypes of transverse isotropy,

one for each of the following symme-

try groups: 𝑇𝑅1 = C∞, 𝑇𝑅2 = C∞𝑣,

𝑇𝑅3 = C∞ℎ, 𝑇𝑅4 = D∞ℎ, 𝑇𝑅5 = D∞

(respectively rotational symmetry, rota-

tional symmetry with parallel reflection

planes (parallel to the preferred direc-

tion), rotational symmetry with reflection

normal plane (normal to the preferred

direction), full transverse isotropy and

transverse hemitropy). The transversal

isotropic/hemitropic invariants are sum-

marized in tables 2.7 and 2.8 (in tables,

k represents the structural vector).
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� Orthotropy. There are three subtypes of properly orthotropic materials

with symmetry groups: 𝑂𝑅1 = C2𝑣,𝑂𝑅2 = D2,𝑂𝑅3 = D2ℎ. Some authors do

not distinguish properly between orthotropy and transversal isotropy, and

consider the later one a subtype of the former one. Here, we will use the term

“orthotropy” in a proper sense, and consider transversal symmetries other

type. Some cross-ply laminates are orthotropic, whose material symmetry

can be described as 𝑂𝑅3. Rolled sheet steels possess a plastic-induced

orthotropy in the rolling direction, the transverse direction and the direction

of the thickness. The orthotropic invariants are summarized in table 2.9 (in

the table, k and M represent the structural tensors for 𝑂𝑅𝑖).

� Clinotropy. Crystals in the monoclinic system and composite reinforced

with families of fibers in two non-orthogonal and mechanically non-equivalent

directions are referred as “clinotropic” materials. There are thre subtypes

of materials called monoclinic clinotropic materials (with symmetry groups

𝐶𝐿𝑚
1 = C2ℎ,𝐶𝐿𝑚

2 = C1ℎ,𝐶𝐿𝑚
3 = C2), and two additional subtypes called

triclinic clinotropic materials (with symmetry groups 𝐶𝐿𝑡
1 = C𝑖,𝐶𝐿𝑡

2 = C1).

Table 2.8. Invariants for symmetry groups 𝑇𝑅1 and 𝑇𝑅3.

Agencies Transversal isotropy Transversal isotropy
type 𝑇𝑅3 = C∞ℎ type 𝑇𝑅1 = C∞

A tr A, tr A2, tr A3,k ⋅Ak,k ⋅A2k, (︀k,Ak,A2k⌋︀
A,B tr AB, tr A2B, tr AB2, tr A2B2,k ⋅ 𝜖(︀AB⌋︀,k ⋅ 𝜖(︀A2B⌋︀, (︀k,Ak,Bk⌋︀
W tr W2,k ⋅ 𝜖(︀W⌋︀
A,W tr AW2,k ⋅AWk,k ⋅ 𝜖(︀AW⌋︀,k ⋅ 𝜖(︀AW2⌋︀
W,V tr WV,k ⋅ 𝜖(︀WV⌋︀
v v ⋅ v, (v ⋅ k)2 v ⋅ v,k ⋅ v
A,v v ⋅Av, v ⋅A2v, (︀k,v,Av⌋︀, v ⋅Av,k ⋅Av,

(︀k,v,A2v⌋︀, (v ⋅ k)(︀k,v,A2k⌋︀ (︀k,v,Av⌋︀, (︀k,v,Ak⌋︀
W,v v ⋅W2v, (︀k,v,Wv⌋︀, (︀k,v,W2v⌋︀, v ⋅ 𝜖(︀W⌋︀,k ⋅Wv

(v ⋅ k)(k ⋅Wv)
u,v v ⋅ u, (︀k,u,v⌋︀, v ⋅ u
A,v,u v ⋅Au,k ⋅ (v ×Au − u ×Av) —
W,v,u v ⋅Wu,k ⋅ (v ×Wu − u ×Wv) —
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Table 2.9. Invariants for symmetry groups 𝑂𝑅3, 𝑂𝑅1 and 𝑂𝑅2.

Agencies Transversal isotropy Transversal isotropy Transversal isotropy
type 𝑂𝑅3 = D2ℎ type 𝑂𝑅1 = C2𝑣 type 𝑂𝑅2 = D2

A tr A, tr A2, tr A3, tr MA, tr M2A, tr MA2, tr M2A2

A,B tr AB, tr A2B, tr AB2, tr MAB
A,B,C tr ABC
W tr W2, tr MW2, tr M2W2, tr M2W2MW
A,W tr AW2, tr MAW, tr M2AW, tr MA2W
A,B,W tr ABW
W,V tr WV, tr MWV, tr MW2V, tr MWV2

A,W,V tr AWV
W,V,U tr WVU
v v ⋅ v,v ⋅Mv,v ⋅M2v v ⋅ v,v ⋅Mv,k ⋅ v v ⋅ v,v ⋅ v,v ⋅Mv,

v ⋅M2v,
(︀v,Mv,M2v⌋︀

A,v v ⋅Av,v ⋅A2v, v ⋅Av,k ⋅Av, v ⋅Av, 𝜖(︀MA⌋︀,
v ⋅MAv k ⋅A2v 𝜖(︀M2A⌋︀, 𝜖(︀MA2⌋︀

k ⋅ (AM −MA)v
W,v v ⋅W2v,v ⋅MWv, v ⋅MWv,k ⋅Wv, v ⋅MWv,v ⋅ 𝜖(︀W⌋︀,

v ⋅M2Wv k ⋅W2v, v ⋅ 𝜖(︀MW⌋︀,
k ⋅ (MW +WM)v v ⋅ 𝜖(︀MW2⌋︀

v,u v ⋅ u,v ⋅Mu v ⋅ u,v ⋅Mu v ⋅ u,v ⋅Mu
v ⋅M2u (︀v,u,Mu⌋︀, (︀v,u,Mv⌋︀

2.5.4 Structural tensor theorem and isotropicization theorem

For any point group 𝒢 ⊂ O(3), if there are tensors M1, . . . ,M𝑆 such that any

orthogonal transformation Q belongs to 𝒢 if and only if:

∐︀Q̃︀M1 =M1, . . . , ∐︀Q̃︀M𝑆 =M𝑆

we say that the tensors M1, . . . ,M𝑆 characterize 𝒢. In other words the ten-

sors M𝑖 are structural tensors. Formally, we can write that a set of tensors

{M1, . . . ,M𝑆} is structural if for this set the following proposition is true:

(∀𝑖 ∶ ∐︀Q̃︀M𝑖 =M𝑖) ⇔Q ∈ 𝒢 (2.85)
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In correspondence with the Zheng-Boehler’s classification theorem, the same au-

thors established the following structural tensor theorem [119] and Zheng

established the isotropicization theorem [118]. We quote both results as part

of the same result:

Theorem 2.5.2. Concerning the symmetry group of a tensor function:

(i) Structural tensor theorem. Let 𝒢 a two- or three-dimensional point

group. Then (a) if 𝒢 is compact, 𝒢 can be characterized by single (even irre-

ducible) tensor. (b) if 𝒢 can be characterized by a finite number of tensors,

then 𝒢 is compact; and (c) if 𝒢 is non-compact, 𝒢 cannot be characterized

by a finite number of tensors of finite orders.

(ii) Isotropicization theorem. An anisotropic tensor function in three-dimensional

space of any finite number of tensor agencies relative to a compact point

group is expressible as an isotropic tensor function of the original tensor

agencies and the structural tensors.

Mathematically, let 𝜙(S𝑎) be an anisotropic tensor function of tensor agen-

cies S1, . . . ,S𝐴 relative to a compact point group characterized by structural ten-

sors M1, . . . ,M𝑆. Then, there exists an isotropic tensor function 𝜙𝑖𝑠𝑜(S𝑎,M𝑠) of
S1, . . . ,S𝐴;M1, . . . ,M𝑆 so that:

𝜙(S𝑎) = 𝜙𝑖𝑠𝑜(S𝑎,M𝑠) (2.86)

The importance of isotropicization theorem can be seen in deriving complete and

irreducible representations for anisotropic tensor functions as well as isotropic

functions involving higher order tensor, and in formulating constitutive laws in

unified and consistent forms [118].

It is interesting to note that the non-compact groups (which are infinite groups

contained but dense in some compact infinite groups) do not admit a finite rep-

resentation in terms of structural tensors. This seems an undesirable property

considered unphysical for many authors. These non-compact subgroups note be-

ing closed are not Lie subgroups (For this reason, it is interesting to use the theory

of topological groups not simply the theory of groups for classifying symmetries).

As a final comment we can remark that the reality of crystal classes, trans-

verse isotropies, hemitropy and isotropy are well-known. In addition, the two
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kinds of three-dimensional point group in the icosahedral system are of increas-

ing importance in describing the symmetry of quasi-crystals and viruses [49,106].

For every other non-crystallographic finite point group, Zheng and Boehler ex-

ampled real or ideal laminates (which can be generally referred as quasi-isotropic

composites) such that their macroscopic material symmetry correspond to this

point group [119]. The density of a non-compact point group in a certain con-

tinuous or mixed continuous group and the observation of the physical reality

of materials in continuum physics point of view have lead to the fundamental

proposal of Zheng and Boehler: The description of the symmetry of a continuous

medium or any physical property of this medium by a non-compact point group is

an unreality. This can be included as an additional principle that seems to be a

general property of matter. Thus Zheng (1994) introduced the following so-called

principle of symmetry of continuum:

Principle of symmetry of continuum Compact point groups describe

and classify all kind of real and ideal material symmetry and physical sym-

metry, while the description of the symmetry of a continuous medium by a

non-compact point group is not physical realistic.

Assuming this principle some authors call compact point groups as material

point groups as a broader category than crystallographic point groups. In particu-

lar, since a mechanical symmetry group includes the central inversion −1, as a di-

rect consequence of the principle of symmetry of continuum and the classification

theorem, we can classify all kinds of mechanical symmetry in three-dimensional

spaces, as shown in table 2.10. In the tables of structural tensors the following

notations is used: R(𝜃𝑛) denotes a rotation of 𝜃 (radians) around the axis 𝑛;

𝑖, 𝑗,𝑘 is the canonical basis in R3; the vectors: 𝑐 = 𝑖 + 𝑗 + 𝑘⇑
⌋︂
3, 𝑙 = 𝑖 cos 𝜁−𝑘 sin 𝜁

with tan 𝜁 = (3 −
⌋︂
5⇑4); Ri a reflection; and the polyhedral structural tensors:

Tℎ = 𝑖2 ⊗ 𝑗2 − 𝑘2 ⊗ 𝑖2 + 𝑗2 ⊗ 𝑘2 − 𝑘2 ⊗ 𝑗2 + 𝑘2 ⊗ 𝑖2 − 𝑖2 ⊗ 𝑘2

Oℎ = 𝑖4 + 𝑗4 + 𝑘4

Iℎ = 𝑎6
1 + 𝑎6

2 + ⋅ ⋅ ⋅ + 𝑎6
6

where 𝑎6 = 𝑘 and
⌋︂
5𝑎𝑚 = 𝑘+2(cos(2𝜋𝑚⇑5)𝑖+sin(2𝜋𝑚⇑5)𝑗) and the abbreviation

𝑤𝑛 for any real or complex vector𝑤 denotes the 𝑛th-order real or complex tensor:

𝑤𝑛 ∶=𝑤 ⊗⋯⊗𝑤
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝑛
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The 𝑛th-order basic structural tensors P𝑛(𝑛 = 1,2, . . . ) is defined as:

P𝑛 = Re(𝑖 + 𝑖𝑗)𝑛

where 𝑖 =
⌋︂
−1, Re(⋅) denotes “real part of”. The first term in the list are: P1 = 𝑖,

P2 = 𝑖⊗ 𝑖 − 𝑗 ⊗ 𝑗, P3 = 𝑖⊗ 𝑖⊗ 𝑖 − (𝑖⊗ 𝑗 ⊗ 𝑗 + 𝑗 ⊗ 𝑖⊗ 𝑗 + 𝑗 ⊗ 𝑗 ⊗ 𝑖), etc.

Table 2.10. Classification of three-dimensional mechanical symmetries

Mechanical Group generators Structural Symmetries of
symmetries (all include −1) tensors linear elasticity
C𝑛𝑖(𝑛 = 3,5,7, . . . ) R(2𝜋⇑𝑛𝑘) P𝑛 ⊗ 𝑘, 𝜖𝑘 C𝑖,C3𝑖

D𝑛𝑑(𝑛 = 3,5,7, . . . ) R(2𝜋⇑𝑛𝑘),Rj P𝑛 ⊗ 𝑘 C3𝑑

C𝑛ℎ(𝑛 = 2,4,6, . . . ) R(2𝜋⇑𝑛𝑘) P𝑛,𝜖𝑘 C2ℎ,C4ℎ,C6ℎ

D𝑛ℎ(𝑛 = 2,4,6, . . . ) R(2𝜋⇑𝑛𝑘),Ri,Rj P𝑛 D2ℎ,D4ℎ,D6ℎ

C∞ℎ R(𝜃𝑘) 𝜖𝑘 C∞ℎ

D∞ℎ R(𝜃𝑘),Ri,Rj 𝑘 ⊗ 𝑘 D∞ℎ

Tℎ R(2𝜋⇑3𝑐),Ri Tℎ Tℎ

Oℎ R(2𝜋⇑3𝑐),R(𝜋⇑2𝑖),Rj Oℎ Oℎ

Iℎ R(2𝜋⇑5𝑙),R(2𝜋⇑3𝑖),Rj Iℎ —
O(3) R(𝜃𝑘),R(𝜓𝑖) 1 O(3)
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3
Data and methods

3.1 Introduction

The study of the mechanical behavior of the esophageal wall under forced dila-

tion requires a constitutive model of large deformations to be realistic. All models

include functional relations among measurable magnitudes and additional param-

eters (calledmechanical properties). These mechanical properties characterize the

specific mechanical behavior of each sample; thus, the determination or estima-

tion of the mechanical properties for a specific individual is required in order to

predict the result of a procedure of forced dilation under specific load conditions.

A relative straightforward procedure for determining the mechanical prop-

erties of a soft tissue sample is to conduct some experiments under different

conditions (a uniaxial tensile test in both longitudinal and transversal directions,

inflation tests, etc.). The results of these experiments can be compared with the

predictions of different models. This comparison leads to the estimation of the

mechanical properties which produce the best fit between the predictions of the

model and the obtained results.
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For this study, we have used the uniaxial tests for determining the mechanical

properties of the samples (the statistical analysis of these data allow us to have

some knowledge of the average mechanical behavior of a typical esophagus, and

to study the effect of some anthropometric factors like age, sex and body mass

index). For the experiments, thirty-two samples of esophageal tissue were har-

vested from seventeen different donors. In addition, some complementary tests

have been made on animal tissues, including inflation tests for comparison. All

experiments in this study are in vitro experiments, this implies that some special

conditions present in vivo situations are absent in the experiments. For example

residual stress in esophageal wall need to be indirectly estimated as explained

below.

This chapter describes the preparation of the samples, the pre-processing, the

uniaxial and inflation tests, the processing of the data (forces, displacements,

pressures, etc.), and the computational issues related to the post-processing of

the data. Regarding the force, the digitalized data were provided by the testing

machine, and the displacement of selected points were obtained by digital motion

tracking with an auxiliary optical capture system.

3.2 Specimens for experimentation

3.2.1 Description of swine specimens

The first part of our testing was made using swine samples, and the obtained data

were used for adjusting a restricted microcontinuum model. These results were

published in Annals of Biomedical Engineering (henceforth ABME) [99]. The

main reason for using these samples was to test the procedure; no human samples

were needed for adjusting the technical requirements for our further testing.

All these swine samples were collected from 5- to 8-month-old piglets. Their

esophagi were conserved after sacrifice in an animal farm (this farm is outside the

facilities of the biomechanics laboratory of the UPC). Then the transportation

to the UPC facilities was done in isothermal hermetical bags with a temperature

of about 2°C to 5°C in saline solution inside a refrigerator. In the manipulation

of all the samples, the instructions of the protocol of bio-safety of the University

of Virginia (UVA) was followed.

76



3.2. SPECIMENS FOR EXPERIMENTATION

From each swine specimen at least two samples could be obtained (in some

cases three samples were obtained). For each sample a uniaxial tensile test was

conducted. For computing mechanical properties, only twelve uniaxial tensile

tests were selected (these tests included: two-layered sample tests (both longi-

tudinal and transversal) and one-layered samples (again, for longitudinal and

transversal directions). In addition, three inflation tests were conducted with

three different swine intact esophagi. These last tests provided an interesting

qualitative information about anatomical failure of an esophagus fixed to an in-

ternal pressure condition, but the numerical data are less useful than the uniaxial

tensile tests.

3.2.2 Description of human specimens

Samples from seventeen donors were harvested, but only fifteen of them were suit-

able for testing. The manipulation of human specimens requires higher biomedical

health and safety standards because all samples are treated as potentially infec-

tious by default, according to the UVA protocol (while laboratory tests are not

available providing negative results). On the other hand, swine specimens do not

present some of the biomedical hazards potentially present in human samples.

The anthropometric data of the human specimens are summarized in table 3.1.

As shown in the table 3.1, the mean age is 62.7 ± 16.3 y.o. (58.3 ± 16.5 y.o.

for males, and 75.0± 7.7 y.o. for females), and the mean body Mass Index (BMI)

is 33.6 ± 8.7 kg⇑m2
(32.0 ± 9.6 for males, and 37.5 ± 4.7 for females). In addition,

eight samples of porcine esophagi were used for some complementary tests. The

swine specimens were extracted from 5 to 8 month-old piglets, no bio-metrical

data are provided given that no statistical computation with those variables was

performed.

3.2.3 Preparation of specimens

The used procedure for both types of samples is similar. On the first stage of this

research, twelve swine esophagi were used. On the second stage, once the testing

procedure was well established, seventeen human esophagi were used. All human

specimens used for this study were obtained by means of a collaboration agree-
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Table 3.1. Main anthropometric data of the specimens.

Specimen Sex Age Weight Height BMI
Number [year] [kg] [m] [kg/m2]
839 ♂ 64 131 1.69 45.9
855 ♂ 66 160 1.76 51.7
856 ♂ 85 72 1.68 25.5
880 ♂ 61 — 1.55 —
911 ♂ 64 90 1.70 31.1
912 ♂ 32 88 1.67 31.6
954 ♂ 45 72 1.62 27.4
957 ♂ 68 70 1.57 28.4
961 ♂ 30 90 1.67 32.3
964 ♂ 69 60 1.70 20.8
966 ♂ 57 80 1.77 25.5
879 ♀ 68 99 1.52 42.8
906 ♀ 85 70 1.48 32.0
907 ♀ 70 76 1.46 35.7
953 ♀ 77 88 1.49 39.6

ment between the UPC and the IMLC (Institut de Medicina Legal de Catalunya).

. In all cases specimens were obtained according to the established protocols by

the Ethics Committee of this public institute.1

For each human specimen, an informed consent form was given to the relatives

of the potential donor. The obtained samples were processed according to this

protocol:

� Identification. All samples were identified by a code preserving anonymity

of the donor. For each donor clinical data were collected: age, sex, height,

weight and cause of death.

� Preservation. All samples were put in a saline solution and maintained at

low temperature before testing it. All samples were tested in least fifteen

hours after the extraction from the body.

� Examination. Each sample was examined in order to check integrity and

absence of scratches produced during the extraction procedure.

� Cutting. Residues of visceral fat were completely removed carefully by

means of a scalpel and two samples of the same length were obtained from

1On the other hand, the swine samples were collected in a nearby farm.
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each specimen (both proximal and distal parts were measured in length).

� Weighing. The weight of each sample was measured before and after

testing (in some cases a reduction of the weight of 5-15%, due to a loss of

fluid in the sample by stretching was registered).

� Marking. In order to improve the optical process of motion tracking (used

for computation of stretching and deformation) a matrix pattern of black

dots were marked on the surface of the samples (an example can be seen in

figure 3.1).

Figure 3.1. A swine sample showing the regular pattern, each sample was about 5×15
cm.

All specimens came from individuals with no known digestive diseases, and

without risk in their medical histories and no esophageal pathologies. All samples

were harvested in the following 24 hours after the decease. For each esophagus

at least two segments of the tissue were obtained (we refer to them as the distal

and the proximal parts), exceptionally for some individuals three segments were

obtained (distal, medial, and proximal). The ages of all donors fall in the range

30-85 years old. A typical sample of the two segment is shown in figure 3.2:

For the preparation of all samples, surgical instrumental has been used and

the UVA bio-safety protocol was followed. For human tissue samples the security

and hygienic measures were much stricter than those for the animal samples,

in order to prevent infections. The separation of layers was possible for all the

swine esophagi except for some that were left apart. For the separation of layers,

surgical scissors and a scalpel were used. The separation of both layers requires

a series of consecutive cuts of the fibers joining the layers. For the marking, some

essays were made to find an adequate substance. The main problem was that

fresh tissue is normally wet and a conventional adhesive or ink is not suitable
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Figure 3.2. The two segments (distal and proximal) of the sample 964 [donor: male,
69 y.o.], the shown faces are in both cases is mucosa.

for the marking. In addition, an adequate contrast with the natural color of

the tissue was required in order to have good results in motion tracking. Table

3.2 summarizes the inconvenient drawbacks found with some substances in the

marking:

Table 3.2. Observed behavior of substances intended for marking.

Substance/ Evaluation Observations
Pigment
Ink Deficient Humidity of the tissue disperses ink,

resulting in cloudy streams
Aerosol paint Deficient Humidity of the tissue disperses ink,

resulting in cloudy streams
Permanent marker Very deficient The marks are too weak,

after some uses the marker is moistened
Enamel paint Satisfactory The marks are visible,

if there is no abrasion in the surface, marks are stable

3.3 Experiments

3.3.1 Uniaxial tensile tests

Uniaxial tensile tests are commonly used for characterization of materials. An

uniaxial test applies an increasing force on a segment of the esophagus in order
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to achieve an homogeneous state of deformation. Relative displacement of the

clamps is registered for each value of the applied force. Assuming that the segment

is homogeneous the mechanical properties can be computed from these data (if

the material is not completely homogeneous, an average is obtained instead). By

computing strain and stress, the stress-strain curves can be plotted. Every test is

conducted until the tearing of the tissue and cleavages are observed in the sample.

Only the initial part of the data was used for the computation of the mechanical

properties. In addition, the maximum stress (tearing stress) was computed from

the final part.

Figure 3.3. Experimental setting for the uniaxial tensile tests. Right : sample in place
for testing, with clamps and acoustic sensors, the upright face is the muscularis externa
layer. Left : detail of the acoustic sensors in the close-up face is the mucosa layer.

Stress is deduced from the applied forces measured by the load cell coupled

to the testing machine (MTS-BIONIX 858). The load cell measures the changes

in electric resistance of some elements; these changes can be associated to the

deformation of the cell and thus the stress in the cell. The measurement of

the load cells is converted into a digital signal that is recorded by a PC. The

homogeneity of the tissue has been found to be an acceptable hypothesis given

that the strain field measured by motion tracking is uniform. This fact can be

profitably used in the computation of the stress. For the computations, the first

Piola-Kirchhoff stress is used instead of the Cauchy stress (this makes measuring

the cross sectional area unnecessary).

The geometric measures of the samples obtained from the specimens are sum-

marized in table 3.3. For each sample the lumen perimeter and the effective
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length (distance between edge of clamps) have been measured (the length of the

sample includes the effective length and the supplementary fixation length inside

the clamps). The thickness was directly computed for some samples (those with

a ”c” in the table) for the rest, the thickness was indirectly estimated (those with

an ”e” in the table). The cross area is computed according to the lumen perime-

ter and the thickness. The cross area is the main geometric measure affecting the

computations and is computed according to:

cross area = lumen perimeter × thickness

The cross area is involved in the computation of the first Piola-Kirchhoff

stress (see section 3.4.1). Regarding the thickness, for the samples in which a

direct computation of thickness was used the computation proceeds in two steps.

The first step is to compute the frontal area, although it can be approximately

computed by

frontal area = lumen perimeter × length

we used a direct computation using a CAD program that determined exactly

the frontal area in pixels2, and then this areas was converted into 𝑐𝑚2. From this

exact frontal area the mean thickness is computed from weight, density and total

frontal area as:

mean thickness = weight

frontal area × density

In the table of geometric dimensions, “c” in “type of thickness” indicates direct

computation and “e” indicates indirect estimation. The mean effective length for

the samples was 73.0± 24.1 mm, the mean lumen perimeter was 44± 5.9 mm and

the thickness 4.15 ± 0.89 mm (for proximal parts 4.21 ± 0.90 mm and 4.11 ± 0.99

mm for distal parts, the difference is statistically significant with 𝑝-value < 0,0002,

distal part is 14% thicker than proximal part).
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Table 3.3. Main geometric dimensions for the samples.

Sample Part Lumen Effective Type of Cross Frontal
Number perimeter Length thickness area area

[mm] [mm] [mm2] [mm2]
839 dist 46.8 70.5 e 3302 194.4
839 med 38.1 28.9 e 1102 158.1
839 prox 38.1 28.9 e 1102 158.1
855 dist e
855 prox e
856 dist 48.3 73.3 e 3544 200.7
856 prox 43.1 93.3 e 4020 179.0
879 dist 43.4 41.6 e 1805 180.3
879 prox 36.7 37.5 e 1376 152.5
880 dist 54.8 94.2 e 5163 227.7
880 prox 46.1 68.6 e 3162 191.5
906 dist 51.3 93.0 e 4774 213.1
906 prox 41.0 86.5 e 3550 170.3
907 dist 41.5 104.8 e 4346 172.1
907 prox 31.4 59.4 e 1863 130.3
911 dist 52.2 86.0 e 4489 216.7
911 prox 43.9 42.7 e 1873 182.2
912 dist 48.0 92.1 e 4423 199.4
912 prox 41.5 88.3 e 3661 172.2
953 dist c
953 prox c
954 dist 41.9 85.1 c 3567 228.9
954 prox 35.9 86.4 c 3102 171.1
957 dist 49.7 89.1 c 4431 199.5
957 prox 42.0 45.9 c 1931 132.0
961 dist — — — — —
961 prox 53.0 107.6 c 5705 199.2
964 dist c
964 prox 47.1 61.8 c 2908 158.8
966 dist 45.9 87.6 c 4023 153.0
966 prox — — — — —
Average 44.2 73.0 — 3169 173.6
St. Dev 5.9 24.1 — 1445 44.9
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3.3.2 Inflation tests

Some complementary tests of inflation were carried out with swine samples. The

aim of these tests was to determine what type of failure could be detected in a

forced dilation.

Figure 3.4. Experimental setting for the inflation tests. Right : The sample in place
for testing, with conical clamps. Center : The location of the gastric balloon . Left : A
photograph of the real test.

For the testing, gastric balloons of the same type used in forced dilations were

used. For inflating the balloons, an incompressible fluid was used to measure

exactly the change in the volume of the gastric balloons. Our procedure differs

from the usual forced dilation in one point: we used water (an incompressible

fluid) instead of air (a compressible one). In the usual procedure the pressure

of the air is controlled, but not the volume. By controlling the amount of fluid,
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it is easy to know the diameter reached by the gastric balloon, and thus, it is

possible to estimate the strain in the lumen of the esophagus (the pressure in the

balloon is not directly related to the direct contact pressure of the balloon and

the esophageal wall, a fact hardly mentioned in the medical literature).

For this type of tests, we used clamps of type II (frustoconical clamps) and

an intact tubular portion of esophagus. In each end, a frustoconical clamp was

inserted. Two or three cable ties were used to fix the end of the esophagus to

each frustoconical clamp. Then 100 ml of water were injected into the gastric

balloon, until the central part of the balloon got a diameter 26 mm. At this point,

the breaking of some capillary could be observed. The tests were conducted with

esophagus in an axially relaxed situation, and with the esophagus pre-stressed.

The results were similar; therefore, it seems that longitudinal strain/stress does

not affect the mural strength of esophagus.

3.3.3 Motion tracking

The strains were computed from optical means of motion tracking . Motion

tracking (video tracking) is a process for locating a moving object (or multiple

objects) over time using a camera. For this purpose, a set of marks on the surface

of the sample was the target of the motion tracking. All tests were videotaped

and the video was processed with the help of a software program that follows each

mark optically on the surface of the sample. The software is able to compute the

position of each mark over time (indeed a position/number of frame is obtained

for each mark).

This technique has also been used in other studies of biomechanical properties

[39]. For the swine esophagus tests, a digital camera at a fixed resolution of

640×480 pixels was used and for the human esophagus tests we used a resolution

of 400x250 pixels. In both cases, the samples of esophagus, marked with a regular

net of dots were tracked by motion capture algorithms (see figure 3.5).

� Pre-processing. Recorded sequences of images were transferred to a com-

puter for the tracking motion procedure. First, the sequences were trimmed

and synchronized with the stress data recorded in the testing machine. The

luminance of the frames was also modified to create a higher contrast be-

tween the esophagus tissue and the matrix of dots.
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Figure 3.5. General setting for motion tracking: the sample is held between clamps,
for each instant of time the camera captures a close-up of the sample.

Figure 3.6. In blue, the initial grid used for computing strain; in red, the computed
new positions, and in green, the initial position. The difference between red and green
crosses is the displacement.
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Table 3.4. Detailed explanation of the algorithm of motion tracking.

Explanation Graph

Original image in 𝑡 = 𝑘

Original image with superimposed grid

Scanning of the window around a point (blue)

Next image in 𝑡 = 𝑘 + 1 with grid (brown dot moves to
the right)

Pixels are compared in each window near the blue dot. A
dot is found that matches with the established criterion

From the matching window, the new postion of the dot
(red) is established

� Processing. Once the frame rate was reduced and the luminance was

modified, the strain was determined with a Matlab script (Christoph Eberl,

Robert Thompson, Daniel Gianola; Group of Kevin J. Hemker, John Hop-

kins University) [17]. Essentially, a rectangular grid of 6 by 10 points was

defined over the first reference frame. Each of these defined points was sur-

rounded by a window of 25 square pixels. In every frame step, this software

compares the hue and the luminance of each frame with the following one

(figure 3). When the 90% of the pixels in a window matched, the center of

this window would become the new position of the point. This procedure

was repeated until the end of the image sequence. Table 3.4 summarizes

the phases of the processing.

� Post-processing. The distance between every pair of marks were used to

calculate the strain data. The result is a plot of the global strain versus

time.

The figure 3.6 shows how the computation of position as the sample is stretched.
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Usually, most of the points are correctly tracked; when it is not the case incor-

rectly tracked points need to be eliminated in the post-processing.

3.3.4 Clamp design

An important technical issue was the design of the clamps used for both types

of tests: the uniaxial tensile tests and the inflation tests. The clamps were made

out of non-porous polymeric material (Nylon 6). There are two main reasons: (1)

a porous material would have produced adherence and local dehydration in the

sample, (2) in addition, being less rigid the polymeric material allows a better fit

to the soft tissue.

The clamps used for all tests were specifically designed for the occasion. The

preliminary computations from the geometry of the clamps demonstrated that

they are much stiffer than the tested soft tissue. The thickness and dimensions

were adjusted in order to ensure that deformations of the clamps are completely

negligible and the application of pressures and forces is fairly uniform. Two types

of clamps were used:

� Uniaxial tensile test clamps (type I). The first type are planar clamps

for holding rectangular samples of esophagi obtained by cutting the esoph-

agus longitudinally (see figure 3.7).

� Inflation test clamps (type II). The second type are frustoconical clamps

to hold tubular samples of esophagus. It was required that this type of

clamps allowed the insertion of a gastric balloon inside the esophagus. Each

clamp allowed the adjustment of different diameters of esophagus (see figure

3.8).

An important issue in both types of clamps was to ensure that biological

samples did not creep over the surface of the clamps. Preventing the creeping of

the tissue was specially difficult because of the existence of water and moisture in

the tissue; which in some cases acted as lubricant. To avoiding any sliding, both

types of clamps were provided with a fluted surface in the area of contact with

the samples. Some preliminary testing, forced to select the right pressure of the

clamp on the samples and to add some additional drills to increase the number

of bolts near the edge of the samples was necessary. The final design resulted

satisfactory for the type I used in uniaxial tensile tests and no human sample had
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Figure 3.7. Planar clamps for uniaxial tensile tests: Top (a) the pair of clamps in
position for holding the sample, (b) Exploded assembly. Bottom Details of the fluted
surface.

to be discarded for this factor. For the type II the result was not that good and

the inflation tests were conducted only with a low axial stress (just for holding

the esophagus a slightly tight, without slackness). Anyway, the main task could

be fulfilled even for clamps of type II.

As it can be observed in figure 3.7, the planar clamps are formed by two sets

of twin plates, each set is located at the ends of the rectangular sample of tissue.
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Figure 3.8. Frustroconical clamps for inflation tests: Top (a) one frustoconical clamps
assembled, (b) Exploded assembly. Bottom Constructive details of the frustoconical
clamp.

As it has previously been stated, each pair of plates can press hard on the sample

by a set of bolts surrounding the end of the sample. This pressure ensures no

significant sliding and thus the strain measures are correct (if there is some sliding

present, the strain measure would be distorted). The fluted area includes small

grooving of about 1 mm in width with a sawtooth shape.

For the inflation tests the two frustoconical clamps which insert in a tubular

intact sample were designed. These clamps are shown in figure 3.8. An important

detail is that there is a central drill in the clamps through which a deflated gastric

balloon can be inserted. The tube of the balloon connects it with the exterior of

the intact esophagus and allows us to inflate the balloon once inserted. Then the
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frustoconical clamps enclose the tubular cavity of the esophagus. The esophagus

is hold to the clamps by means of some plastic pull ties that press the tissue

against the exterior surface of the frustoconical shape.

3.4 Computational issues

This section describes the mathematical aspects needed for the strain computa-

tion and the fitting of strain-stress curves. Although nowadays there is commer-

cial software for doing this task, in our case these tasks were done only semi-

automatically. The basic ideas behind the methods are interesting and they

deserve some attention in form of a brief exposition.

3.4.1 Stress and strain computation

In uniaxial tensile tests, the testing machine provides measurements of force.

This force is presumably applied quite uniformly at the edges of the sample. The

traction vector is easily computed from the forces provided by the testing machine.

We will use the nominal traction vector or first Piola-Kirchoff traction vector,

instead of the true traction vector or Cauchy traction vector. The difference

between the two in this case is mainly due to the shrinkage of the transversal

area. For a uniaxial tensile test (in Cartesian coordinates, and assuming near

incompressibility of the tissue), the Cauchy stress 𝜎 tensor and the first Piola-

Kirchhoff stress tensor P are given by:

(𝜎𝑎
𝑏) =

⎨⎝⎝⎝⎝⎝⎪

𝑝𝜆 0 0

0 0 0

0 0 0

⎬⎠⎠⎠⎠⎠⎮
, (𝑃 𝑎𝐴) =

⎨⎝⎝⎝⎝⎝⎪

𝑝 0 0

0 0 0

0 0 0

⎬⎠⎠⎠⎠⎠⎮
(3.1)

where 𝑝 = 𝐹 ⇑𝐴0 is the nominal stress (the total force divided by the initial

area), and 𝜆 > 1 the longitudinal stretch. Obviously, the Cauchy stress is greater

because of the effect of the shrinkage of the transversal area. The Piola-Kirchhoff

stress is a little bit simple because it only requires the initial area and the applied

force.

For the computation of strains, the displacements provided by the motion
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tracking algorithm are used. We use the Green-Lagrange strain tensor as a

measure of strain. This tensor is related to the coordinate by means of:

𝐸𝐴𝐵 = 1

2
( 𝜕𝑥

𝑎

𝜕𝑋𝐴

𝜕𝑥𝑏

𝜕𝑋𝐵
𝛿𝑎𝑏 − 𝛿𝐴𝐵) (3.2)

where 𝑥𝑎(𝑡,𝑋𝐴) are the spatial coordinates of the point occupying the position
𝑥𝑎 = 𝑋𝐴 for 𝑡 = 0. The 2-tensor given by equation 3.2 represents the strain

field, a tensorial field over the initial configuration. But a practical difficulty

needs to be addressed: experimental measures only refer to a finite collection of

points, not the complete field. Therefore, the strain field can be obtained only by

interpolations of this finite set of points. A linear interpolation was used; in this

case there is no need of quadratic or cubic interpolation (the linear approximation

was found sufficiently approximate in practice). The motion tracking provides

the displacements of an orthogonal matrix of 𝑚 × 𝑛 points, being ℎ the distance

between each pair of adjacent point (and in both directions). There are two

possibilities for the strain computation: the method of the averaging of pairs and

the method of the slope.

Method of the averaging of pairs

This method is based on the finite differences for approximating derivatives of

displacements, i.e. strains can be calculated approximating the strain in the line

joining a pair of points with the ratio of differences of displacements divided by

distances between the pair points. This method is quite simple and was used for

some samples (that were also computed with the second method). The use of

finite differences is explained and described in many standard references (see, for

example, [5]).

Considering an orthogonal net of points of coordinates (𝑋𝑖,𝑗, 𝑌𝑖,𝑗) where (𝑖, 𝑗) ∈
{1, . . . ,𝑚} × {1, . . . , 𝑛}, if the point are near enough, we can approximate the

derivative of the displacements by expressions like the following:

𝜕𝑥𝑎(𝑋𝑖,𝑗, 𝑌𝑖,𝑗, 𝑡)
𝜕𝑋

≈
𝑥𝑎𝑖+1,𝑗 − 𝑥𝑎𝑖,𝑗
𝑋𝑖+1,𝑗 −𝑋𝑖,𝑗

(3.3)

𝜕𝑥𝑎(𝑋𝑖,𝑗, 𝑌𝑖,𝑗, 𝑡)
𝜕𝑌

≈
𝑥𝑎𝑖,𝑗+1 − 𝑥𝑎𝑖,𝑗
𝑌𝑖,𝑗+1 − 𝑌𝑖,𝑗

(3.4)
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Where 𝑥𝑖,𝑗 = 𝑥1𝑖,𝑗 = 𝜑𝑎(𝑋𝑖,𝑗, 𝑌𝑖,𝑗, 𝑡) and 𝑦𝑖,𝑗 = 𝑥2𝑖,𝑗 = 𝜑𝑎(𝑋𝑖,𝑗, 𝑌𝑖,𝑗, 𝑡). So, the

strains are algebraic combinations of expressions of this form, so we can approx-

imate strain by ratios of differences in coordinates.

Method of the slopes

The method of slopes is similar but instead of computing differences between pairs

of points, it uses all the points simultaneously in order to achieve the best fit in

the least-squares sense. Although, conceptually more complex, computationally is

not much more complicate than the method of averaging pairs. The fact of using

all the points for each instant reduces significantly the “noise” in the computed

strain.

For computing 𝜕𝑥𝑎⇑𝜕𝑋𝐵 at time 𝑡, one takes the variables 𝑥𝑎𝑖,𝑗 = 𝜑𝑎(𝑋𝐵
𝑖,𝑗, 𝑡)

and compute the regression:

𝑥𝑎𝑖𝑗 = 𝛽
{𝑎}

{𝐴}
(𝑡)𝑋𝐴

𝑖𝑗 + 𝜖𝑖𝑗 (3.5)

Then it is obtained with a very good approximation that:

𝜕𝑥𝑎

𝜕𝑋𝐴
= 𝛽{𝑎}

{𝐴}
(𝑡) (3.6)

These coefficients are all what is required for computing the strain components:

𝐸𝐴𝐵 = 1

2
(

2

∑
𝑎=1

𝛽
{𝑎}

{𝐴}
𝛽
{𝑎}

{𝐵}
− 𝛿𝐴𝐵) (3.7)

3.4.2 Curve fitting

The curve fitting is in general a mathematical problem that involves determining

material parameters in incompressible isotropic elastic strain–energy functions on

the basis of a non-linear least squares optimization. The non-linear character of

the problem makes it mandatory the use of numerical methods for solving the

least squares optimization. The basic theory for this type of numerical problems

was initially developed by Levenberg (1944) [63], while working at the Frankford

Army Arsenal. It was rediscovered by Marquardt (1963) [71] who worked as a

statistician at DuPont and independently by Girard, Wynn and Morrison [40,78,

112]. This studies are the base of the currently called the Levenberg–Marquardt

algorithm (LMA) described in [89], which has been further generalized [77].
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The basic description of the LM algorithm is as follows. In this section, ∏︁ ⋅ ∏︁
shall denote the ordinary Euclidean norm, the following explanation is based

on [67]. Let 𝑓 be an assumed functional relation which maps a parameter vector

p ∈ R𝑛 to an estimated measurement vector x̂ = 𝑓(p) ∈ R𝑛. An initial parameter

estimates p0 and a measured vector x are provided and it is desired to find the

vector p̂ that best satisfies the functional relation 𝑓 , i.e. it minimizes the squared

distance d𝑇d with d = x − x̂. The basis of the LM algorithm is a linear approx-

imation in the neighborhood of p. For a small ∏︁𝛿p∏︁, a Taylor series expansion

leads to the approximation

𝑓(p + 𝛿p) ≈ 𝑓(p) + J ⋅ 𝛿p (3.8)

where J = (𝜕𝑓 𝑖⇑𝜕𝑥𝑗) is the Jacobian matrix. Like all non-linear optimization

methods, LM is iterative: Initiated at the starting point p0, the method produces

a series of vectors p1,p2, . . . which converge towards a local minimizer for p̂.

Hence, at each step, it is required to find the 𝛿p that minimizes the quantity

∏︁x − 𝑓(p + 𝛿p)∏︁ ≈ ∏︁d − J ⋅ 𝛿p)∏︁. The sought 𝛿p is thus the solution to a linear

least-squares problem: the minimum is attained when d−J ⋅𝛿p) is orthogonal to
the column space of J. This leads to J𝑇 (d − J ⋅ 𝛿p) = 0 which yields 𝛿p as the

solution of the so-called normal equations [43]:

J𝑇J ⋅ 𝛿p = J𝑇d (3.9)

The matrix J𝑇J on the left side of 3.9 is the approximate Hessian,i.e. an

approximation to the matrix of second order derivatives. The LM algorithm

actually solves a slight variation of this equation, known as the augmented normal

equations

N ⋅ 𝛿p = J𝑇d (3.10)

where the off-diagonal elements of N are identical to the corresponding ele-

ments of J𝑇J and the diagonal elements are given by 𝑁𝑖𝑖 = 𝜇 + (︀J𝑇J⌋︀𝑖𝑖 for some

𝜇 > 0. The strategy of altering the diagonal elements of J𝑇J is called damp-

ing and 𝜇 is referred to as the damping term. If the updated parameter vector

p + 𝛿p with 𝛿p computed from 3.10 leads to a reduction in the error distance d,
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the update is accepted and the process repeats with a decreased damping term.

Otherwise, the damping term is increased, the augmented normal equations are

solved again and the process iterates until a value of 𝛿p that decreases error is

found. The process of repeatedly solving 3.10 for different values of the damping

term until an acceptable update to the parameter vector is found corresponds to

one iteration of the LMA.

In LMA, the damping term is adjusted at each iteration to assure a reduction

in the error distance d. If the damping is set to a large value, matrix N in 3.10 is

nearly diagonal and the LM update step 𝛿p is near the steepest descent direction.

Moreover, this magnitude is reduced in this case. Damping also handles situations

where the Jacobian is rank deficient and J𝑇J is therefore singular [62]. In this

way, LMA can defensively navigate a region of the parameter space in which the

model is highly nonlinear. If the damping is small, the LMA step approximates

the exact quadratic step appropriate for a fully linear problem. LMA is adaptive

because it controls its own damping: it raises the damping if a step fails to reduce

d; otherwise, it reduces the damping. In this way LMA is capable to alternate

between a slow descent approach when being far from the minimum and a fast

convergence when being at the minimum’s neighborhood. The LMA terminates

when at least one of the following conditions is met:

� The magnitude of the gradient of d𝑇d, i.e. J𝑇d on the right side of 3.9,

drops below a threshold d1

� The relative change in the magnitude of 𝛿p drops below a threshold d2

� The error d𝑇d drops below a threshold d3

� A maximum number of iterations is completed
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Explicit pseudo-codes for the algorithm can be found in [38,67]

Input: A vector function 𝑓 ∶ R𝑚 → R𝑛 with 𝑛 ≥𝑚,;

a measurement vector x ∈ R𝑛;

and an initial parameter estimate p0 ∈ R𝑚

Output: A vector p̂ ∈ R𝑚 minimizing ∏︁x − 𝑓(p)∏︁2
initialization:

k:=0; 𝜈=2; p = p0;

A ∶= J𝑇J;d ∶= x − 𝑓(p); g = J𝑇d;

stop:=(∏︁g∏︁∞ ≤ 𝜖1);𝜇 ∶= 𝜏 ∗max𝑖=1,...𝑚𝐴𝑖𝑖;

while (not stop) and (𝑘 < 𝑘max) do
k:=k+1;

repeat

Solve(A + 𝜇I)𝛿p = g;

if ∏︁𝛿p∏︁ < 𝜖2∏︁p∏︁ then
stop:=true;

else

p𝑛𝑒𝑤 = p + 𝛿p;

𝜌 ∶= (∏︁d∏︁2 − ∏︁x − 𝑓(p𝑛𝑒𝑤)∏︁2)⇑(𝛿𝑇
p(𝜇𝛿p + g));

if 𝜌 > 0 then

A ∶= J𝑇J;d ∶= x − 𝑓(p);
stop:=(∏︁g∏︁∞ ≤ 𝜖1) or (∏︁d∏︁2 ≤ 𝜖3);
𝜇 ∶= 𝜇 ∗max(13 ,1 − (2𝜌 − 1)3);𝜈 ∶= 2;

else

𝜇 ∶= 𝜇 ∗ 𝜈;𝜈 ∶= 2∗𝜈;
end

end

until 𝜌 > 0 or (stop);

end

p̂ ∶= p;

Algorithm 1: Levenberg–Marquardt algorithm (LMA) non-linear least

squares algorithm

In this study the strain-stress relations for uniaxial tensile tests have been de-

rived from the SEDF/HEDF. Some interesting technical details about the fitting

hyperelastic models to experimental data can be found in Ogden et al. (2004) [83].

The work of Ogden highlights, in particular, (a) the relative errors generated in
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the fitting process and (b) the occurrence of multiple sets of optimal material

parameters for the same data sets. This multiplicity can lead to very different

numerical solutions for a given boundary-value problem (a well known fact in non-

linear elastostatics). Some commercial software incorporates efficient sub-rutines

based on the algorithm 1 just given.
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Nōbis pr̄ıme est virtūs perspicuitās;
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4
Results

4.1 Experimental results

Stress-strain curves are the main experimental evidence for prediciting failure of

the esophagus wall. In addition, in this research the inflation tests showed that, in

some cases, the occurrence of bleeding occurs even when no damage is detectable

in the esophagus wall; possibly the probability of hemorrhaging episodes can

not be assessed from in vitro tests, because of the absence of blood preassure

and circulation. The inflation test also showed that the ripping of some blood

vessels leads to early hemorrhage episodes. We will concentrate in this section on

stress-strain curves. First, we will address the procedure for obtaining the curves;

second, we will examine the results of the best fitting for the Lu-Gregersen model

(2001) and the Yang-Gregersen model (2006), which were reviewed in section

2.4.1.

To obtain the stress-strain curves it is necessary to “synchronize” the infor-

mation from two different sources:
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1. Computation of displacements by motion tracking. From these data,

the curves 𝜀(𝑡) are obtained following the methodology explained in section

3.4.1. For each sample a computation time of about 15 hours is required to

obtain all the displacements.

2. Data of load cell in the testing machine. The load cell produces a

digital list of instants of time, and for each instant a measure of force and

a measure of voltage are provided. Then, the curves 𝜎(𝑡) are obtained.

Figure 4.1. Stress-time and strain-time curves (sample 839 proximal). Top: Stress-
time curve Bottom: Strain-time curve.

In this processes it is very important to synchronize the instant 𝑡 = 0 for

both types of data in order to achieve good results. In our case we used a
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switch off to achieve a correct synchronization. The switch off produces a voltage

dop and simultaneously a “black out” in the recorded video, in this way the

video signal and the measures of force and voltage of the testing machine are

easily synchronized. This type of data allows us to compute for each sample the

mechanical properties (i.e. the elastic constants) that characterize the particular

sample according to the constitutive model used. The figure 4.1 shows both types

of measures after synchronization. Note that the final form of the stress-strain

is not obvious from the graphs (note that 𝜀 = 𝜀(𝑡), 𝜎 = 𝜎(𝑡) can be seen as a

parametric form of the stress-strain curves shown above, see section 4.1.1)

The following section shows the obtained curves for all samples. As it has been

stated, the uniaxial tensile test also provides information for the cleaving-ripping

stress and the maximum attainable strain (i.e., “maximum” stress and strain).

In all cases, the ripping was due to the stress in the region between clamps. This

shows that the design of the clamps was effective in avoiding inconvenient stress

concentrations in the clamp edge. In some cases of porcine samples a delamination

of the two layers of the esophagus was observed. This effect is not present in the

human samples (this is consistent with the observed fact that porcine esophagi

permit a separation of the two layers in a much easier way).

4.1.1 Stress-Strain curves for human samples

All the stress-strain curves obtained show two important characteristics:

1. All the curves are not only monotonically increasing, but also have a convex

shape.

2. The effective tangent longitudinal modulus (i.e, the “Young’s modulus”)

increases as stress increases.

This type of curves has been found for all types of collagenous soft tissue. The

second characteristic (2) suggests that an “exponential law” is adequate. Infor-

mally, this implies that the effective tangent longitudinal modulus is proportional

to stress multiplied by some functions of the strain.

Some of the experimental stress-strain curves (in gray color) show low to

medium level of white noise (this can be due to vibration of the sample or low
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contrast in the sample surface, etc.). The noise is particularly high for samples

856 prox, 911 prox, 953 dist (see figures 4.4, 4.8, 4.10). Other samples are very

clear and with no significant noise (see the non-zigzaging curves in the same

figures). Despite the apparent irregularities in some curves, all of them can be

adjusted to the models with a good fitting (see section 4.1.2).

102



4.1. EXPERIMENTAL RESULTS

Figure 4.2. Stress-Strain curves from donor 839. Top: proximal, male, 64 y.o., BMI
45.9 Bottom: another similar sample from the same donor.
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Figure 4.3. Stress-Strain curves from donors 839 and 855. Top: distal, male, 64 y.o.,
BMI 45.9 Bottom: male, distal, 66 y.o, BMI 51.7.
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Figure 4.4. Stress-Strain curves from donor 856. Top: proximal, male, 85 y.o., BMI
25.5 Bottom: distal, same donor.
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Figure 4.5. Stress-Strain curves from donor 879. Top: proximal, female, 68 y.o., BMI
42.8 Bottom: distal, same donor.
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Figure 4.6. Stress-Strain curves from donor 880. Top: proximal, male, 61 y.o.,
Bottom: distal, same donor.
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Figure 4.7. Stress-Strain curves from donor 907. Top: proximal, female, 70 y.o., BMI
35.7 Bottom: distal, same donor.
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Figure 4.8. Stress-Strain curves from donor 911. Top: proximal, male, 90 y.o., BMI
31.1 Bottom: distal, same donor.
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Figure 4.9. Stress-Strain curves from donor 912. Top: proximal, male, 32 y.o., BMI
31.6 Bottom: distal, same donor.
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Figure 4.10. Stress-Strain curves from donor 953. Top: proximal, female, 77 y.o.,
BMI 39.6 Bottom: distal, same donor.
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Figure 4.11. Stress-Strain curves from donor 954. Top: proximal, male, 45 y.o., BMI
27.4 Bottom: distal, same donor.
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Figure 4.12. Stress-Strain curves from donors 906 and 961:Top: 906, proximal, female,
85 y.o., BMI 32.0 Bottom: 961, male, proximal, 30 y.o, BMI 32.3.
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Figure 4.13. Stress-Strain curves from donor 966: distal, male, 57 y.o., BMI 25.5.
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4.1.2 Comparison with previously proposed models

The experimental data are compared with two previously proposed models: the

Lu-Gregersen model and the Yang-Gregersen-Deng model, summarized in section

2.4.1. The experimental fit with most of the samples is very good (see table 4.1).

Table 4.1. Fitted elastic constants for Lu-Gregersen and Yang-Deng models.

Sample Lu-Gregersen Yang-Deng
Number Type 𝐴𝐿 [kPa] 𝛽𝐿 𝑟 𝐴𝐿 [kPa] 𝛽𝐿 𝑟
839 dist 320.4 14.18 0.9954 5007 66.8 0.9953
839 med 199.2 14.45 0.9997 3212 126.8 0.9966
839 prox *6.07 29.16 0.9901 1172 *45.3 0.9777
855 dist 91.0 25.01 0.9967 4208 107.0 0.9961
856 dist 364.1 17.08 0.9872 6373 165.4 0.9843
856 prox 365.2 10.27 0.9967 4098 55.0 0.9967
879 dist 301.2 20.39 0.9991 6337 224.8 0.9914
879 prox *934.7 9.699 0.9911 5556 200.6 0.9547
880 dist 137.1 20.40 0.9993 3113 153.1 0.9970
880 prox 288.2 14.24 0.9932 3537 167.9 0.9680
906 prox 239.7 22.87 0.9788 3799 415.0 0.9913
907 dist 114.1 41.05 0.9756 3442 *1381 0.8909
907 prox 432.4 17.94 0.9819 4351 *1051 0.9848
911 dist 392.3 18.05 0.9800 *12376 *30.7 0.9920
911 prox 14.50 49.18 0.9858 2534 164.3 0.9828
912 dist 226.8 17.99 0.9976 3469 328.5 0.9903
912 prox *944.9 13.05 0.9993 *13920 87.8 0.9994
953 prox 138.7 29.99 0.9964 4351 389.9 0.9961
954 dist 399.1 17.95 0.9740 3928 303.3 0.9959
954 prox 480.5 10.69 0.9965 6200 *50.0 0.9963
957 dist 49.8 50.07 0.9869 3018 844.8 0.9918
957 prox 565.0 17.97 0.9859 10871 246.4 0.9909
961 prox 199.2 14.45 0.9369 3619 67.4 0.9331
964 dist 89.4 18.01 0.9867 — — —
964 prox 95.2 41.57 0.9921 3038 *922.8 0.9956
966 dist 84.8 56.60 0.9941 5348 *864.1 0.9966

[geometric] mean 182.3 21.6 — 4040 211.2 —
superior limit 427.3 34.85 — 5244 541.1 —
inferior limit 77.8 13.37 — 3113 82.4 —
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All samples show good adjustment (An 80% of the samples have a correlation

coefficient 𝑟 > 0.98). This means that, numerically, these models are quite good

for our experimental data. Much more complex models (such as the Kroon-

Holzapfel and Natali-Gregersen models) can provide even a better fit according to

some studies [38]. Possibly, at least in some cases, the computational complexity

might not be suitable for some applications.

4.1.3 Analysis of mechanical properties for human samples

The elastic mechanical properties of the Lu-Gregersen model 𝐴
(𝐿)
𝐿 , 𝛽

(𝐿)
𝐿 and the

Yang-Deng model 𝐴
(𝑌 )
𝐿 , 𝛽

(𝑌 )
𝐿 computed in the previous section show a great vari-

ability. The logarithmic average or geometric mean has been computed excluding

the the extreme values, marked with an asterisk (*). This logarithmic average is

computed by:

ln𝜇𝑀 = 1

𝑛

𝑛

∑
𝑖=1

ln𝑀𝑖 (4.1)

where 𝑀𝑖 ∈ {𝐴(𝐿)
𝐿,𝑖 , 𝛽

(𝐿)
𝐿,𝑖 ,𝐴

(𝑌 )
𝐿,𝑖 , 𝛽

(𝑌 )
𝐿,𝑖 }. A covariance analysis shows that these four

parameter are far from being independent the covariance matrix is given by:

𝐴
(𝐿)
𝐿 𝛽

(𝐿)
𝐿 𝐴

(𝑌 )
𝐿 𝛽

(𝐿)
𝐿

𝐴
(𝐿)
𝐿 1 −0,631 +0,698 −0,268

𝛽
(𝐿)
𝐿 −0,631 1 −0,320 +0,621

𝐴
(𝑌 )
𝐿 +0,698 −0,320 1 −0,241

𝛽
(𝑌 )
𝐿 −0,268 +0,621 −0,241 1

(4.2)

As we can see the 𝐴
(𝐿)
𝐿 and 𝐴

(𝑌 )
𝐿 are positively correlated, the same is true for 𝛽

(𝐿)
𝐿

and 𝛽
(𝑌 )
𝐿 . Interestingly the 𝐴𝐿’s are negatively correlated with the 𝛽𝐿’s. To char-

acterize each sample we search of a set of statistically independent parameters.

For this purpose we performed a Principal Component Analysis (PCA), with the

covariance matrix 4.4 as starting point. This analysis provided four explicative

factors or “principal components” (PC), the first principal component explained

a 60.3% of the variance, and the second one a 24.5% (the third and fourth fac-

tors are less important). Therefore, the first and second factors together explain

about a 85% of the variance and are useful for characterize approximately a sam-

ple. The cumulative importance of the different principal components is shown

in figure 4.14.
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Figure 4.14. Accumulated explained variance for principal factors of mechanical
properties

Table 4.2. Principal Component Analysis for mechanical properties

Specimen Type 1st 2nd Age BMI Gender
PC PC [y.o.] (︀kg ⋅m−2⌋︀

839 dist 0.7791 –0.6934 64 45.9 ♂
839 med 0.1408 –1.0975 64 45.9 ♂
839 prox –1.1265 –1.5233 64 45.9 ♂
855 dist –0.3602 –0.8290 66 51.7 ♂
856 prox 0.8585 –0.1176 85 25.5 ♂
856 prox 0.9134 –0.9205 85 25.5 ♂
879 dist 0.5043 –0.0248 68 42.8 ♀
879 prox 2.2954 0.4648 68 42.8 ♀
880 dist –0.2910 –1.0038 61 — ♂
880 prox 0.3555 –0.8333 61 — ♂
906 prox –0.3563 –0.1835 85 32.0 ♀
907 dist –2.5709 1.7795 70 35.7 ♀
907 prox –0.3701 1.2217 70 35.7 ♀
911 dist 1.9782 0.8280 64 31.1 ♂
911 prox –1.8535 –0.5060 32 31.6 ♂
912 dist –0.1364 –0.5508 32 31.6 ♂
912 prox 3.6198 1.9259 77 39.6 ♂
953 dist –0.5677 –0.6451 77 39.6 ♀
953 prox –0.7631 –0.0885 45 27.4 ♀
954 dist 0.3599 –0.2490 45 27.4 ♂
954 prox 1.4938 –0.3510 68 28.4 ♂
957 dist –2.5278 0.8826 68 28.4 ♂
957 prox 1.8891 1.1956 30 32.3 ♂
961 prox 0.2737 –1.1283 69 20.8 ♂
964 prox –2.1638 0.8674 69 20.8 ♂
966 dist –2.3739 1.5799 57 25.5 ♂
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Figure 4.15. Distribution of the elastic parameters for the samples on the space of
principal components PC1 and PC2.
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The values of the principal components (PC1 and PC2) for the samples is

given in table 4.3. The correlation of the anthropometric variables with these

principal factors are low:

Table 4.3. Correlations of principal components and anthropometric variables

Age BMI Gender
(1= female)

PC1 +0,1218 +0,1985 –0,1041
PC2 +0,0105 –0,2092 +0,2257

This means that the anthropometric variables (Age, Body Mass Index (BMI)

and Gender) do not seem to be very relevant for explaining the observed varia-

tion in mechanical properties. We know that the mechanical properties are well

explained by the two variables, the principal components PC1 and PC2, but these

variables are not well correlated with the age, the BMI or the gender. For under-

standing the relation of the principal components with the mechanical properties

𝐴
(𝐿)
𝐿 , 𝛽

(𝐿)
𝐿 ,𝐴

(𝑌 )
𝐿 and 𝛽

(𝑌 )
𝐿 , we show in figure 4.16 the correlations of the principal

components with the mechanical properties.

Figure 4.16. Correlation of the principal components PC1 and PC2 with mechani-

cal properties. The horizontal axis represents the correlations of the 𝐴1 = 𝐴
(𝐿)
𝐿 , 𝛽1 =

𝛽
(𝐿)
𝐿 ,𝐴2 = 𝐴

(𝑌 )
𝐿 and 𝛽2 = 𝛽

(𝑌 )
𝐿 with PC1. The vertical axis represents the correlations

with PC2.
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The mechanical properties can be related with the PC1 and PC2 by means of:

𝐴
(𝐿)
𝐿 = +0.5556 ⋅PC1 +0.3700 ⋅PC2

𝛽
(𝐿)
𝐿 = −0.5409 ⋅PC1 +0.3543 ⋅PC2

𝐴
(𝑌 )
𝐿 = +0.4693 ⋅PC1 +0.5695 ⋅PC2

𝛽
(𝑌 )
𝐿 = −0.4238 ⋅PC1 +0.6515 ⋅PC2

(4.3)

The properties of the PC analysis imply that, the above “linear coefficients”

are related to the correlations:

linear coefficient = correlation⌋︂
𝑛 ×weight of factor

where the “weight factor” are 60.29% and 24.46% for PC1 and PC2, 𝑛 = 4 is

the number of principal components, and the correlations (the same depicted in

figure 4.16) are:

𝐴
(𝐿)
𝐿 𝛽

(𝐿)
𝐿 𝐴

(𝑌 )
𝐿 𝛽

(𝑌 )
𝐿

PC1 +0.8613 −0.8400 +0.7287 −0.6581
PC2 +0.3660 +0.3505 +0.5534 +0.6444

(4.4)

In our study, two other mechanical properties were measured for the human

samples: the maximum stress and the maximum strain before fiber breaking

(after the breaking of some fibers there is a decrease in the force measure, notice

the breaking of some fibers does not imply complete failure). These magnitudes

are called here FB-stress and FB-strain. The FB-stress 𝜎bf and FB-strain 𝜀bf
are positively correlated (𝑟 = +0.6069), the values for each sample are shown in

table 4.4. The influence of the anthropometric variables (Age, BMI and Gender)

data was investigated for both magnitudes 𝜎bf and 𝜀bf. For computing if the

effect of the anthropometric variables were significant some regression analyses

and principal component analyses were carried out.
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Table 4.4. Mechanical properties associated for initial fiber breaking

Sample Type FB-strain FB-Stress Age BMI Gender
𝜀bf 𝜎bf [kPa] [y.o.] (︀kg ⋅m−2⌋︀

839d dist 0.076 613.8 64 45.9 ♂
839m med 0.086 669.6 64 45.9 ♂
839p prox 0.178 1155 64 45.9 ♂
855d dist 0.082 781.9 66 51.7 ♂
856p dist 0.057 781.9 85 25.5 ♂
856p prox 0.101 664.4 85 25.5 ♂
879d dist 0.064 737.7 68 42.8 ♀
879p prox 0.080 1219 68 42.8 ♀
880d dist 0.070 449.2 61 ♂
880p prox 0.075 515.2 61 ♂
906p prox 0.072 840.0 85 32.0 ♀
907d dist 0.038 367.6 70 35.7 ♀
907p prox 0.035 460.6 70 35.7 ♀
911d dist 0.048 584.7 64 31.1 ♂
911p prox 0.068 365.0 64 31.1 ♂
912d dist 0.045 276.4 32 31.6 ♂
912p prox 0.056 1099 32 31.6 ♂
953d dist 0.048 284.1 77 39.6 ♂
953p prox 0.041 295.4 77 39.6 ♀
954d dist 0.059 669.5 45 27.4 ♀
954p prox 0.081 681.0 45 27.4 ♂
957d dist 0.026 158.8 68 28.4 ♂
957p prox 0.048 835.8 68 28.4 ♂
961p prox 0.066 353.3 30 32.3 ♂
964d dist 0.030 71.1 69 20.8 ♂
964p prox 0.038 409.6 69 20.8 ♂
966d dist 0.044 717.4 57 25.5 ♂

A significant correlation was found between the FB-strain (𝜀bf) and the body

mass index (BMI). To analyze the correlation of 𝜀bf and the anthropometric

variables three regression models were examined:

𝜀bf = 𝛼0 + 𝛼1 ⋅Age + 𝛼2 ⋅BMI + 𝛼3 ⋅Gender (Model 1)

𝜀bf = 𝛼0 + 𝛼2 ⋅BMI (Model 2)

𝜀bf = 𝛼2 ⋅BMI (Model 3)

(4.5)

Model 1 is the best adjusted model, i.e. the model with higher correlation 𝑟 =
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0.529, the regression analysis showed that only 𝛼2 is statistitistical significant

(with a 𝑝-value < 0,013). Then two the other models were considered: model 2 is

the a complete linear model with the only significant variable (BMI) and model 3

is an incomplete linear model. The values of the coefficients for the three model

and the significance analysis is summarized in table 4.5.

Table 4.5. Influence of anthropometric parameters in 𝜀bf

Model Coefficient Value SD t-Student 𝑝-value
1 𝛼0 −1.98 ⋅ 10−3 3.27 ⋅ 10−2 –0.061 —

𝛼1 +8.98 ⋅ 10−5 3.77 ⋅ 10−4 +0.238 —
𝛼2 +1.89 ⋅ 10−3 6.93 ⋅ 10−4 +2.730 (0.013)
𝛼3 −1.78 ⋅ 10−2 1.31 ⋅ 10−2 –1.365 —

2 𝛼0 +4.22 ⋅ 10−3 2.41 ⋅ 10−2 +0.175 —
𝛼2 +1.72 ⋅ 10−3 6.90 ⋅ 10−4 +2.488 (0.021)

3 𝛼2 +1.85 ⋅ 10−3 1.57 ⋅ 10−4 11.73 (< 0.0001)

From the table 4.5 it is clear that the effect of BMI is significant in all three

models; this means that there is a verified tendency: the higher the BMI, the

larger the FB-strain of their esophagi. This can be clearly observed in figure 4.17

where the model 2 is plotted along with the data.

Figure 4.17. Effect of Body Mass Index on the fiber breaking strain. The dots are
the data for the samples along with the standard confidence intervals of 95%.

For the FB-stress 𝜎bf the positive effect of BMI is present, but it is not signif-

icant (except for model 3 or incomplete variants of model 1 and 2). The effect of
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BMI on 𝜎bf is plotted in figure 4.18 where the model 3 is plotted along with the

data.

Figure 4.18. Effect of Body Mass Index on the fiber breaking stress. The dots are
the data for the samples along with the standard confidence intervals of 95%.
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4.1.4 Stress-Strain curves for swine samples

The curves for swine samples were qualitatively similar to those of humans (see

figure 4.20). Interestingly, the swine samples allowed an easier separation of the

two layers, and on the other hand, the data for mucosa-submucosa tests and

muscularis externa test could be compared.

Figure 4.19. Force-time response and strain-time relations (for sample 13), once syn-
chronization is made (X is the direction of the force). After final failure, the computed
strains are only the result of a calculation from motion tracking; not the real strains.

Figure 4.20. A typical computed stress-strain curve (sample 13).
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4.2 Theoretical results

Besides the empirical findings previously described, three main theoretical results

have been obtained:

� A theoretical justification for exponential laws in soft tissue me-

chanics. Although broadly used in the literature, no explanation other

than empirical adequacy is given for the “exponential constitutive laws”.

Here, an encouraging theoretical result has been obtained using statistical

mechanics: if it is assumed that in a soft tissue there are fibers of different

lengths (and some of them slack if the strain is sufficiently low), one expects

that, by increasing the strain, an increasing number of fibers get tense; this

implies that by increasing the strain, the rigidity increases due to the ad-

dition of fibers in tension. To the best of my knowledge, this would be the

first non-heuristic argument for expecting the occurrence of an “exponential

law” for soft tissue.

� An exact distribution for the residual stress. Residual stress has been

briefly mentioned in section 2.2; its exact distribution has been computed

using the tools of Riemann geometry (see section 4.2.2). Other authors had

found linear approximations to this distribution, but here, we have found

the exact non-linear distribution.

� The necessary conditions for the existence and stability of the

solutions of a microstretch elasticity problem. We examined here

the necessary conditions for the propagation of elastic waves and related

restrictions for the elastic tensor. This could be considered a generalization

of some mathematical results in elasticity for microcontinuum continua.

Some other additional minor mathematical results are explained in detail in the

next sections. For example, the mathematical structure for the group of con-

figurations of a microstretch continuum or to find the scalar tensor functions

which is invariant under the symmetry group D2ℎ (the dihedral group) used in

the proposed model.
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4.2.1 Statistical mechanics of collagenous tissues

Statistical mechanics is a branch of Physics that applies probability theory for

dealing with systems that are formed by a large amount of particles or elements

which interact among them. In statistical mechanics only the overall behav-

ior of the whole system is investigated (and the information directly concerning

individual particles or elements is ignored). A typical case extensively studied

in statistical mechanics is the case of a gas formed typically by 1021 molecules.

Obviously, the individual behavior of a particular molecule is not relevant, but

temperature, pressure and other properties are relevant for the overall behav-

ior of the system. The matter is that statistical mechanics allows to predict

the physical magnitudes of a gas by averaging over all molecules. If we have a

large population of particles or identical elements interacting weakly, statistical

mechanics provides a framework for relating the microscopic properties of the

elements to the macroscopic bulk properties of the material, thereby explaining

thermodynamics as a result of the classical mechanical descriptions of statistics

and mechanics at the microscopic level.

Statistical mechanics provides an interpretation of macroscopic thermody-

namic quantities such as work, heat, free energy, and entropy in terms of micro-

scopic elements. Statistical mechanics, like thermodynamics, is governed by the

second law of thermodynamics through the medium of entropy. The important

difference is that entropy in thermodynamics is only known empirically, whereas

in statistical mechanics, it is a function of the distribution of the system on its

micro-states. The use of statistical mechanics is widespread to obtain constitutive

equations. For example, the Swiss physical chemist Werner Kuhn successfully de-

rived a thermal equation of state for rubber molecules using Boltzmann’s formula,

which has since come to be known as the entropy model of rubber. Other early

uses of statistical mechanics in constitutive theory were Kuhn & Grün (1942,

1946) [60, 61], James & Guth (1943) [56], and Flory (1953, 1956) [36].

In this section a theoretical explanation for the “exponential laws”, discussed

in section 2.4.1, is developed. The point of departure is that the tissue is formed

by a large number of interwoven collagenous fibers inside an elastin matrix. It

is supposed that the criss-crossed disposition of the collagen fibers inside the

elastin matrix produces an interaction among them by which the deformation is

distributed among all the tissue. That is, the collagenous tissue is considered as

a complex system of identical weakly interacting fibers that can be addressed by
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the canonical ensemble formalism of statistical mechanics. A short account of

the formalism of the statistical mechanics used here can be found in Zemansky

& Dittman (1997) [116] or in Pathria (1996) [86]. According to the principles

of statistical mechanics, the actual equilibrium state observed in a system is the

macro-state which maximizes the entropy subject to two constrains (the conserva-

tion of the number of particles or micro-elements, and the conservation of energy).

As the work of Ludwig Boltzmann (1877) suggested, and was stated explicitly by

Max Planck (1900) the entropy is related to the probability of a macro-state, and

thus the number of micro-states (a specific microscopic arrangement of fibers)

compatible with that macro-state, by the equation:

𝑆 = 𝑘𝐵 lnΩ, where Ω = 𝑔
𝑁1
1

𝑁1!

𝑔𝑁2
2

𝑁2!
. . . (4.6)

where 𝑘𝐵 is the Boltzmann constant, 𝑔𝑖 the number of possible ways to fill

the state 𝑖, and 𝑁𝑖 the number of fibers in state 𝑖 (it is important to highlight

that a state of the whole system is called macro-state, but a state of an individual

fiber or element is referred as micro-state or just state). The constrains for the

number of fibers and for the total energy are:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

∑𝑖𝑁𝑖 = 𝑁 = const.

∑𝑖𝑁𝑖ℰ𝑖 = 𝑈 = const.
(4.7)

Where 𝑁 is the total number of fibers, 𝑈 the internal energy of the system,

and ℰ𝑖 is the typical deformation energy stored in a fiber in the strain-state 𝑖.

Given a deformation energy, and a fixed number of fibers; the problem of

finding the distribution of occupation numbers {𝑁1,𝑁2, . . .} for fibers in each

possible strain-state by maximizing the entropy in 4.6 subject to the constrains

in 4.7 can be solved by using the method of the Lagrange multipliers (with two

multipliers 𝐴 and 𝛽). The solution of this problem is the Boltzmann distribution

of the corresponding canonical ensemble:

𝑁𝑖 = 𝐴𝑔𝑖𝑒−𝛽ℰ𝑖 (4.8)

By computing the sum of all these occupation numbers, we can eliminate the
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first multiplier:

∑
𝑖

𝑁𝑖 = 𝐴∑
𝑖

𝑔𝑖𝑒
−𝛽ℰ𝑖 = 𝑁 ⇒ 𝐴 = 𝑁

∑𝑖 𝑔𝑖𝑒
−𝛽ℰ𝑖

(4.9)

The second multiplier for a system for a conventional system is related to the

thermodynamical temperature. For a hydrostatic system, it can be computed

that:

𝛽 = 1

𝑘𝐵
(𝜕𝑆
𝜕𝑈

)
𝑉

(4.10)

Thus given the well know thermodynamic relation: 𝑇 = (𝜕𝑈⇑𝜕𝑆)𝑉 we have

the relation between the second multiplier and the “temperature” of the system:

𝛽 = 1⇑𝑘𝐵𝑇 (although in this case, the “statistical” is only a parameter related to

the relation among entropy and energy, it can not be identified with the envi-

ronment temperature). Indeed we will see that being the possible strain-energy

of a fiber bounded form above, this implies that the second multiplier needs to

be negative (a similar situation is found in a few physical systems which exhibit

“negative temperature”). Before proceeding to develop this argument, we define

a fundamental tool called partition function 𝑍 given by:

𝑍 = ∑
𝑖

𝑔𝑖𝑒
−𝛽ℰ𝑖 , 𝑍 = ∫

Σ
𝑒−𝛽ℰ(s)𝑔(s) 𝑑𝑛s (4.11)

where the first form is used when the possible energies for the micro-state

of the elements form a discrete set, the second one is used for systems with a

continuous spectrum. The variable s ∈ R𝑛 is taken over the space of possible

states. The partition function of a system is important because it is directly

related to the Helmholtz Free-Energy Density Function Ψ (HEDF) and to the

internal energy or Strain-Energy Density Function 𝑊 (SEDF) by:

Ψ = − 1
𝛽
ln𝑍, 𝑊 = −𝜕𝑍

𝜕𝛽
(4.12)

Returning to equations 4.8 and 4.9, we will assume that a fiber in its natural

state is slack and most of the strain is due to the lost of this slackness (fiber
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realignment before suffering stretch). In addition, we will assume that only a

fraction of the fibers has axial stretch different from zero; even for moderate

strains, most fibers will have experienced low stretch in longitudinal direction. For

most of the fibers that are in tension, it seems reasonable to assume that energy

of deformation can be approximated by a low order polynomial in deformation,

that is:

ℰ𝑖 = ℰ0,𝑖 +C𝑎𝑏𝜀𝑎𝑏 +C𝑎𝑏𝑐𝑑𝜀𝑎𝑏𝜀𝑐𝑑 (4.13)

where C𝑎𝑏𝑐𝑑 represents the [contravariant] components of the elastic tensor

(due the arbitrariness of the origin of energy scale we can choose ℰ0,𝑖 = 0, and

other physical reasons imply C𝑎𝑏 = 0). The partition function for a system of

fibers with global strain 𝜀𝑓 is:

𝑍 = 𝑔0𝑒ℰ(0) + ∫
𝜀𝑓

0
𝑔(𝜀)𝑒−𝛽ℰ(𝜀) 𝑑𝜀 (4.14)

The first term represents the fraction of fibers that are completely slack when

the total strain is 𝜀𝑓 . The integral represents the fibers in different states of stress

ranging from 0 to 𝜀𝑓 . Taking into account that ℰ(0) = 0 and using the second

mean value theorem for integrals for monotonically increasing functions, we can

rewrite the previous expression as:

𝑍 = 𝑔0 + 𝑒−𝛽ℰ(𝜀𝑓 )∫
𝜀0

0
𝑔(𝜀) 𝑑𝜀 = 𝑔0 + 𝑒−𝛽ℰ(𝜀𝑓 )∫

𝜀0

0
𝑔(𝜀)𝑑𝜀 = 𝑔0 + 𝑔𝑓𝑒−𝛽ℰ(𝜀𝑓 ) (4.15)

We can achieve the same qualitative result by simply assuming that there are

two groups of fibers: slacking fibers and a group of uniformly stretched fibers.

By computing the Helmholtz free-energy density function (HEDF) according to

equation 4.12, we obtain:

Ψ𝑐𝑜𝑙 = −
1

𝛽
ln𝑍 = − 1

𝛽
ln (𝑔0 + 𝑔𝑓𝑒−𝛽ℰ(𝜀𝑓 )) = −

ln 𝑔0
𝛽

− 1

𝛽
ln(1 + 𝑔𝑓

𝑔0
𝑒−𝛽ℰ(𝜀𝑓 )) (4.16)
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We can rewrite this equation in a different form, in order to compare it with

the expressions in section 2.4.1. Using the Taylor series for logarithm:

Ψ̃𝑐𝑜𝑙 ∶= Ψ𝑐𝑜𝑙 +
ln 𝑔0

𝛽
= −

1

𝛽
ln (1 + 𝑘𝑔𝑒−𝛽ℰ(𝜀𝑓 ))

≈ −
𝑘𝑔𝑒−𝛽ℰ(𝜀𝑓 )

(1 + 𝑘𝑔𝑒−𝛽ℰ(𝜀𝑓 ))𝛽

≈ −
𝑘𝑔𝑒−𝛽ℰ(𝜀𝑓 )

(1 + 𝑘𝑔)𝛽

(4.17)

where 𝑘𝑔 ∶= 𝑔𝑓⇑𝑔0. Then we have proved that for moderate stress the sta-

tistical mechanics predicts an exponential law. This exponential law in 4.17 is

directly comparable with expressions in section 2.4.1. In all of these models the

exponential is positive and so is the total HEDF, obviously this is only possible

if 𝛽 < 0 (which in other systems plays the rôle of the absolute temperature), as

we will argue below there are good physical reasons related to the behavior of

the entropy of the fibers that imply that in our case 𝛽 is a negative number,

and therefore, the statistical mechanics justifies the proposed phenomenological

models containing “exponential” laws. The other terms are in accordance with

the results, according to our model 𝑘𝑔 > 0 (because it is related to the ratio of

two probabilities) and thus this implies the mechanical stability of the system

𝜕2Ψ̃𝑐𝑜𝑙⇑𝜕𝜀2𝑓 ≥ 0

As it was previously mentioned, the system analyzed here differs significantly

from a conventional thermodynamical system, in one important point (although

a full discussion of systems with “negative temperatures” is beyond the scope of

this dissertation, some brief comments comparing our system to them is in order).

This will help to understand intuitively that the requirement of 𝛽 < 0 is not only

necessary but also natural for the system of tense and slack collagenous fibers

in a soft tissue. Most conventional thermodynamic systems are energetically

unbounded from above. For example in a classical gas, every molecule has an

infinite number of energy-states available (if the velocity increases the energetic

state of the molecule increases). This property implies that by supplying more and

more energy to a classical gas the entropy increases with the energy, therefore

we have 1⇑𝑇 = (𝜕𝑆⇑𝜕𝑈)𝑉 > 0, thus the thermodynamic “temperature” of the

system is positively defined. This situation is completely the inverse in systems

with energy-states bounded from above. Given a deformation of the soft tissue
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the maximum strain of a fiber is bounded by the total strain. Indeed, when we

stretch a piece of tissue only a fraction of the fibers are in tension, because the

fibers are not straight. Only when the stretching of the tissue is high enough most

fibers are straightened out and are in tension. The work of the exterior forces

increases the elastic energy, but reduces the disalignment and reduces entropy.

This situation implies that for a soft tissue the Lagrange multiplier 𝛽 is negative:

𝛽soft−tissue = (
𝜕𝑆

𝜕𝑈
)
𝜀

< 0 (4.18)

The subindex 𝜀 refers to the thermodynamic restriction that the path along

which we take the derivative is one with constant strain 𝜀. This situation is

analogous to the “exotic” systems such as the system of nuclear spins at very low

temperature, the lasers, and other systems which can exhibit effective negative

Kelvin temperatures. [116, p. 544].

4.2.2 About residual stress

The intact state is the shape that adopts the esophagus with no applied load. It

has been demonstrated that this load-free intact state is not a stress-free state.

An approximate distribution of the residual stress is found at the end of this

section (see figure 4.24), the objective of this section is to compute the exact

distribution of residual stretches along a cross-section of esophagus. It is inter-

esting to note that the existence of residual stresses is very common in a lot of

anatomic structures and tissues. In fact, the existence of residual stress, as it

was explained in section 2.2, is a consequence of the stress-driven growth and

remodeling of tissues. Rodriguez et al. (1994) proposed a continuum formula-

tion for growth of elastic tissues [93] in which the shape of an unloaded tissue

changes according to a magnitude analogous to the deformation gradient tensor.

The work of Rodriguez et al. suggests that a complete kinematic formulation for

growth requires a constitutive law for stress in the tissue. Since growth may in

turn be affected by stress in the tissue, such a formulation involves a symmetric

growth-rate tensor and the stress tensor. There are different evidences to show

the presence of the residual stresses. The most obvious evidence is the opening

angle of dissected ring of esophagus. Indeed, this effect provides the key factor

for computing the residual stretch. In figure 4.21, it can be observed that when
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a ring section is cut the part in tension (outer part) pulls out and the part in

compression (inner part) pushes in; the result is an opening angle. The same

effect has been observed for esophageal tissues [45,115].

Figure 4.21. The opening angle for samples of aortic artery tissue, the black line
indicates the position of intima layer. (Left) Normal aortic tissue, with typical angle
𝛼 = 131○, (Right) Abnormal aortic tissue from a donor with Marfan’s syndrome 𝛼 = 42○

(images from Garcia-Herrera, 2008), [38]

From a geometrical point of view, the existence of residual stress implies that

it is not possible to achieve a stress-free shape in Euclidean space. It is interesting

that the intact shape can be isometrically mapped to a three-dimensional Rieman-

nian manifold 𝜙 ∶ R3 ↪ 𝑌 with curvature different from zero (in turn, the Nash-

Kuiper theorem and the Nash embedding theorem for Riemannian manifolds

imply that this three-dimensional non-Euclidean manifold can be 𝒞𝑘-embedded

(𝑘 > 3) in a Euclidean space of dimension 𝑛 ≤ 𝑚(𝑚 + 1)(3𝑚 + 11)⇑12, where
𝑚 = 3, for simple states of residual stress this bound probably can be reduced

significantly).

The general theory for dealing exactly with residual stress can be found in

Lu (2012), this formulation requires unavoidably the use of Riemann manifolds

for representing the initial non-natural state [68]. This formulation assigns a

Riemann metric tensor to the tissue an effective (see B.5.1) different from the

Euclidean metrics (or distance). This metric tensor 𝐺 = 𝐺𝐴𝐵𝑑𝑋𝐴𝑑𝑋𝐵 (i.e. non-

degenerated, 2-tensor, positively-defined over the tangent bundle) allows to define

a non-Euclidean or Riemann distance over the tissue. For the compressed parts

of the tissue the Euclidean length along a virtual curve inside the tissue will be

shorter than the effective Riemann distance given by the metric tensor describing

residual stress. For tensed parts with (stretch higher than one) the Euclidean

length is larger than the effective Riemann distance. Thus, we can predict the
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residual stress from the difference between the Riemann metric tensor and the

Euclidean metric tensor. For a direction of parallel to the unitary vector n =
(𝑛1, 𝑛2, 𝑛3):

𝜎𝑟𝑒𝑠 = (𝐺𝐴𝐵 − 𝛿𝐴𝐵)𝑛𝐴𝑛𝐵 (4.19)

Trivially, for an unstressed part of the body one has 𝐺𝐴𝐵 = 𝛿𝐴𝐵

Figure 4.22. The stress-free state (left), a non-stress-free fictitious/virtual state (cen-
ter), and the load-free intact state (right)

To account for the residual stresses and strains, we need to compute the

distortion of distances in the intact state, according to the proposal of Lu (2012)

[68]. If we assume that the state depicted on the left side of figure 4.22 is a

free-stress state, the natural distances are given by the Euclidean metric tensor:

𝑔 = 𝑔𝛼𝛽𝑑𝑋𝛼 ⊗ 𝑑𝑋𝛽 = 𝛿𝛼𝛽𝑑𝑋𝛼 ⊗ 𝑑𝑋𝛽 = 𝑑𝑋 ⊗ 𝑑𝑋 + 𝑑𝑌 ⊗ 𝑑𝑌

The transformation Ψ and Φ are given by:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑋,𝑌 ) = Ψ(𝜉, 𝜂) =
⎛
⎝
(𝑅 + 𝜉) cos

𝜂

2𝜋𝑟
, (𝑅 + 𝜉) sin

𝜂

2𝜋𝑟

⎞
⎠

(𝑥, 𝑦) = Φ(𝜉, 𝜂) =
⎛
⎝
(𝑟 + 𝜉) cos

𝜂

2𝜋𝑟
, (𝑟 + 𝜉) sin

𝜂

2𝜋𝑟

⎞
⎠

(4.20)

where 𝑟 is the the radius of neutral axis in the intact configuration (dotted

line in the figure 4.22, on the left side) and 𝑅 the radius of the same material
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line on the right side (dotted line). The dotted line has the same length in all

the three figures. This implies that 𝑟𝜋 = 𝑅(𝜋 − 𝜃0). The inverse functions are:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(𝜉, 𝜂) = Ψ−1(𝑋,𝑌 ) =
⎛
⎝
⌋︂
𝑋2 + 𝑌 2 −𝑅,2𝜋𝑟 arctan

𝑌

𝑋

⎞
⎠

(𝜉, 𝜂) = Φ−1(𝑥, 𝑦) =
⎛
⎝
⌈︂
𝑥2 + 𝑦2 − 𝑟,2𝜋𝑟 arctan

𝑦

𝑥

⎞
⎠

(4.21)

The diffeomorphism between the stress-free state on the right and the intact state

to the left is given by Λ = Ψ ○Φ−1:

(𝑋,𝑌 ) = Λ(𝑥, 𝑦) ∶= Ψ ○Φ−1(𝑥, 𝑦) =
⎛
⎝

⎨⎝⎝⎝⎝⎪

𝑅 − 𝑟
⌈︂
𝑥2 + 𝑦2

+ 1

⎬⎠⎠⎠⎠⎮
𝑥,

⎨⎝⎝⎝⎝⎪

𝑅 − 𝑟
⌈︂
𝑥2 + 𝑦2

+ 1

⎬⎠⎠⎠⎠⎮
𝑦
⎞
⎠

(4.22)

Using this change of coordinates, we have the following relation among cov-

ectors (1-forms in the cotangent bundle, see appendix B.3)

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑑𝑋 =
𝜕𝑋

𝜕𝑥
𝑑𝑥 +

𝜕𝑋

𝜕𝑦
𝑑𝑦 Λ𝑋

𝑥 𝑑𝑥 +Λ𝑋
𝑦 𝑑𝑦

𝑑𝑌 =
𝜕𝑌

𝜕𝑥
𝑑𝑥 +

𝜕𝑌

𝜕𝑦
𝑑𝑦 Λ𝑌

𝑥 𝑑𝑥 +Λ𝑌
𝑦 𝑑𝑦

(4.23)

and therefore the metric tensor expressed in the (𝑥, 𝑦) coordinates is:

𝑔 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 =
(︀(Λ𝑋

𝑥 )2 + (Λ𝑌
𝑥 )2⌋︀𝑑𝑥⊗ 𝑑𝑥 + (︀Λ𝑋

𝑥 Λ
𝑋
𝑦 +Λ𝑌

𝑥 Λ
𝑌
𝑦 ⌋︀𝑑𝑥⊗ 𝑑𝑦+

(︀Λ𝑋
𝑥 Λ

𝑋
𝑦 +Λ𝑌

𝑥 Λ
𝑌
𝑦 ⌋︀𝑑𝑦 ⊗ 𝑑𝑥 + (︀(Λ𝑋

𝑦 )2 + (Λ𝑌
𝑦 )2⌋︀𝑑𝑦 ⊗ 𝑑𝑦

(4.24)

By computing explicitly the Λ𝐽
𝑗 functions, we obtain:

𝑔 = (𝑑𝑥⊗𝑑𝑥+𝑑𝑦⊗𝑑𝑦)+(𝑅 − 𝑟)2 + 2(𝑅 − 𝑟)
⌈︂
𝑥2 + 𝑦2

(𝑥2 + 𝑦2)2 (𝑦𝑑𝑥+𝑥𝑑𝑦)⊗(𝑦𝑑𝑥+𝑥𝑑𝑦) (4.25)

The first part is an Euclidean tensor, and the second part gives the deviations
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from the Euclidean distances due to residual strains. For practical computations

of distances around the lumen of esophagus, it is useful to do the same compu-

tation in “cylindrical type” coordinates:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑃,Θ) = Ψ̂(𝜉, 𝜂) =
⎛
⎝
𝜉 +𝑅,

𝜂

𝑅

⎞
⎠
, (𝜉, 𝜂) = Ψ̂−1(𝑃,Θ) = (𝑃 −𝑅,𝑅Θ)

(𝜌, 𝜃) = Ψ̂(𝜉, 𝜂) =
⎛
⎝
𝜉 + 𝑟,

𝜂

𝑟

⎞
⎠
, (𝑃,Θ) = Φ̂−1(𝜌, 𝜃) = (𝜌 − 𝑟, 𝑟𝜃)

(4.26)

The Euclidean metrics in cylindrical coordinates is (𝑃,Θ) is 𝑔 = 𝑑𝑃 ⊗ 𝑑𝑃 +
𝑃 2𝑑Θ⊗ 𝑑Θ. If the coordinate change (𝑃,Θ) ↦ (𝜌, 𝜃) (given by Λ̂ = Ψ̂ ○ Φ̂−1), we

have the metric tensor in the new coordinates:

𝑔 = 𝑑𝜌⊗ 𝑑𝜌 + (𝜌 + 𝑟 𝜃0
𝜋 − 𝜃0

)
2

(1 − 𝜃0
𝜋
)
2

𝑑𝜃 ⊗ 𝑑𝜃 (4.27)

Given this form, we can check that the neutral axis 𝜌 = 𝑟 has the same original

length:

𝐿𝑟 = 𝐿̂(𝑟) ∫
2𝜋

0

⌉︂
(𝜕𝜌
𝜕𝜃
)2 + (𝜌 + 𝑟𝜃0

𝜋−𝜃0
)2 (1 − 𝜃0

𝜋
)2 (𝜕𝜃

𝜕𝜃
)2𝑑𝜃 =

= ∫
2𝜋

0 (𝑟 + 𝑟𝜃0
𝜋−𝜃0

) (1 − 𝜃0
𝜋
)𝑑𝜃 = 2𝜋𝑟

It can also be checked that the inner part has been shrunk (compressed) and

that the exterior part has been stretched out (see figure 4.23), i.e. the perimeter

fibers outside the neutral axis (𝜌 > 𝑟) are longer in the intact configuration. On

the other hand, the fibers inside the neutral axis (𝜌 < 𝑟) are shorter. For seeing

this, we compute the initial length of a circumference of the intact configuration

with 𝜌 = 𝜌0:

𝐿̂(𝜌0) = 2𝜋 ]︀𝜌0 (1 −
𝜃0
𝜋
) + 𝑟𝜃0

𝜋
{︀ = 2 (︀𝜌0 (𝜋 − 𝜃0) + 𝑟𝜃0⌋︀

Clearly, we have:

𝜆(𝜌) = 2𝜋𝜌

𝐿̂(𝜌)
=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

< 1 for 𝜌 < 𝑟
> 1 for 𝜌 > 𝑟
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Figure 4.23. Circumferential stretches as a function of the ratio 𝑟⇑𝑟𝑛, being 𝑟 the
radius and 𝑟𝑛 the radius of the neutral axis.).

Therefore the metric tensor given by 4.27 satisfies the conditions for repre-

senting the initial geometry. In the past, other approximate approaches, such as

Navier-Kirchhoff hypothesis, were used to determine the distribution of residual

stress, see for example figure 4.24. It is obvious that the Navier-Kirchhoff is a

only a linear approximation to the exact formulas found in this section. This

result corroborates the powerful possibilities associated to the use of Riemannian

geometry.
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Figure 4.24. Gregersen & Liao (2008) postulate that as a first approximation the
Navier-Kirchhoff hypothesis is valid for residual stresses in an esophageal ring, and
they use this fact to compute of the neutral axis (figure adapted from Gregersen &
Liao, [46]).

4.2.3 Other additional theoretical results

In section 2.3.5, it was explained that a configuration is an element of one group of

the form Ĉ
ℬ̂
⊂ Cℬ×GL+(𝑛), where Cℬ can be identified with a certain group of dif-

feomorphisms, characterizing the macro-deformation; and a subgroup of GL+(𝑛),
characterizing the micro-deformation (see definition 2.3.7). For the case of a mi-

crostretch continuum, the additional degrees of freedom include a reorientation

of the microstructure (mathematically, a rotation or member of SO(3)) and a

uniform compression/stretch of the microstructure (mathematically, a homoth-

ety or homogeneous dilation of ratio 𝑗). Obviously, the group representing the

configurations of the microstructure of a microstretch continuum needs to in-

clude homotheties and rotations as subgroups, the following group 𝒢𝑚𝑠 ⊂GL+(3)
satisfies this condition:

𝒢𝑚𝑠 = {g ∈GL(3)⋃︀ g𝑇g = gg𝑇 = 𝑘1, 𝑘 > 0} (4.28)

here, “ms” stands for “microstretch”. We will prove that a member of this

group 𝑔 ∈ 𝒢𝑚𝑠 can be uniquely rewritten as a product of one rotation and one

homothety, that is: ∀g ∈ 𝒢𝑚𝑠, there are g1 = 𝑗1 and g2 ∈ SO(3), such that

g = g1g2, where 𝑗 ∈ R and 1 identity matrix or unit element in the General Linear
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Group. This last factorization is the right-hand factorization, analogously one

can find a left-hand factorization g = g4g3 with g3 = 𝑗′1 and g4 ∈ SO(3). For

doing this we will prove that 𝒢𝑚𝑠 is the semidirect product of SO(3) and R+, that

is, 𝒢𝑚𝑠 = SO(3)⋊R+. Then the right- and left-hand factorization follow from the

following theorem of group theory:

Theorem 4.2.1. Let 𝐺 be a group whose identity element is 𝑒, 𝑁 a normal

subgroup of 𝐺 (i.e., 𝑁 ◁ 𝐺) and 𝐻 a subgroup of 𝐺. Then the following

statements are equivalent:

(i) 𝐺 = 𝑁𝐻 and 𝑁 ∩𝐻 = {𝑒}.
(ii) 𝐺 =𝐻𝑁 and 𝐻 ∩𝑁 = {𝑒}.
(iii) Every element of 𝐺 can be written in a unique way as a product of an

element of 𝑁 and an element of 𝐻.

(iv) Every element of G can be written in a unique way as a product of an

element of H and an element of N.

(v) The natural embedding 𝐻 → 𝐺, composed with the natural projection

𝐺→ 𝐺⇑𝑁 , yields an isomorphism between 𝐻 and the quotient group 𝐺⇑𝑁 .

(vi) There exists a homomorphism 𝐺 → 𝐻 which is the identity on 𝐻 and

whose kernel is 𝑁 .

(vii) The group 𝐺 is the semidirect product 𝐺 = 𝑁 ⋊𝐻.

We will prove that statement (vi) is true for 𝒢𝑚𝑠 then the right- and left-hand

factorizations are statements (iii) and (iv). First of all we need to prove that

𝑁 = SO(3) is a normal subgroup of 𝒢𝑚𝑠, that is, we need to prove that for all

g ∈ 𝒢𝑚𝑠, we have g𝑁g−1 ⊂ 𝑁 . Let n an element of SO(3) and let g ∈ 𝒢𝑚𝑠,

then we need to prove that for all n, gng−1 ∈ SO(3). From the definition of the

microstretch group 𝒢𝑚𝑠:

g𝑇g = gg𝑇 = 𝑘1⇒ det(g)2 = 𝑘 > 0, and g−1 = g𝑇 ⇑det(g)2

Now, we compute the transpose and the inverse of gng−1:

(gng−1)−1 = (g−1)−1n−1g−1 = gn𝑇g−1

(gng−1)𝑇 = (g−1)𝑇n𝑇g𝑇 = (g𝑇 ⇑det(g)2)𝑇n𝑇 (g−1det(g)2) = gn𝑇g−1

Then we have proved that (gng−1)−1 = (gng−1)𝑇 with detg > 0 and, therefore,

gng−1 ∈ SO(3), then SO(3) is a normal subgroup of 𝒢𝑚𝑠. Now we consider the
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homomorphism ℎ ∶ 𝒢𝑚𝑠 →𝐻, defined by g ↦ ℎ(g) = det(g)1 where

𝐻 = {A ∈GL(3)⋃︀ A = 𝑎1, 𝑎 > 0} (4.29)

The ker ℎ = 𝑁 = SO(3). This proves (vi) and we thus have as consequences (iii),

(iv) and (vii) [and the other statements]. This implies we can represent every

element of the group 𝒢𝑚𝑠 as a pair (R, 𝑗) ∈ SO(3)×R+ with the operation group:

(R1, 𝑗1) ○ (R2, 𝑗2) = (R1R2, 𝑗1𝑗2) (4.30)

Obviously, the morphism ℎ𝑖𝑠𝑜 ∶ SO(3)×R+ → 𝒢𝑚𝑠 defined by (R, 𝑗) ↦ (𝑗1)R is

an isomorphism. This is a formal proof that allows to say that for a microstretch

continuum in R3 the need can use as degrees of freedom (𝑢,R, 𝑗), a vector field,

an SO(3)-valued field, and a scalar field. This was informally stated by some

authors see table 2.2, but to the best of my knowledge no formal proof had been

published.

4.3 Simulation of esophageal perforation

4.3.1 Software used and geometry

This section summarizes some characteristics of the analysis of the mechanical

behavior of esophagus using the Finite Element Method (FEM) to solve the equa-

tions that describe completely the problems of forced dilatation. As it can be

deduced from the previous chapters and sections, the quantitative and numerical

investigation of the mechanical behavior of esophagus during forced dilatation

treatments requires a non-linear analysis of soft tissue. Being time-dependent

problems, it is necessary to perform time-dependent analyses, although as it has

been discussed that the viscoelastic effects in practice are not important given

the time scale and the characteristics of the treatments.

To perform numerical simulations with FEM, it is required a software code

with the adequate characteristics. A software than can be used for simulating

the classical constitutive models is the software LS-DYNA created by Livermore

Software Technology Corp. - LSTC. This software has been extensively used for

biomechanical analyses of crash accidents and other interesting biomechanical
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problems. Regarding the type of algorithm for integrating in time, LS-DYNA al-

lows us to perform both types of analyses: implicit analyses (with convergence to

an equilibrium state in each computation step) and explicit analyses (this result

for the studied cases a saving of time, because has a shorter time of computation

and require less adjustments). All tests showed that the results for explicit analy-

ses were acceptable and for this reason it has been the preferred type of analysis.

For the classical constitutive models LS-DYNA fulfills all the requirements. For

the microcontinuum models, no widely commercial software implement all the re-

queriments. Some authors have developed their own codes for simulation [42,95].

X-ray computed tomography (CT) data were used for the creation of a reliable

geometry. Most of the software available generates images and three-dimensional

reconstructions adequate for the visualization but not for the generation of a

useful FE model. For this reason, a lot of additional work is needed in order to

convert the CT data in a geometry suitable for FE computations. This additional

work involves the creation of external surfaces with a software that allows non-

parametric edition for surfaces was used. This means that the surfaces do not cor-

respond to geometrical conditions controlled by specific values and thus, heuristic

manipulation is allowed to obtain well defined surfaces representing adequately

the biological organs. The used software codes are mainly Blender (developed by

the Blender Foundation, first release 1995, last version 2.68 / July 18, 2013) y

Zbrush (developed by Pixologic Inc). Although these codes were not specifically

developed for biomedical image processing, they proved to be very useful for the

generation of geometries from CT data. Other software codes such as Catia or

Solidworks proved to be less useful for generating adequate surfaces.

4.3.2 Rigid dilator simulation

These simulations reproduce the effect of semi-flexible rod commonly used for

esophageal dilatation. For this simulation a complete geometry of esophagus

created form CT data is used. This complete geometry will reproduce the effect

of the actual curvature disposition of the esophagus inside the body. The semi-

flexible rod has a length of 429 mm and a diameter of 9 mm. Some additional,

simulations with diameter 15 mm were performed, nevertheless, a hight rate of

premature perforation was observed.

The boundary conditions are null displacement for the proximal and distal
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Figure 4.25. The geometries used for the human esophagus (in red) and the semil-
flexibe rod used as a dilator (in green).

end rings and unilateral boundary condition of place for simulating the contact

between the rod and the inner surfaces of mucosa layer1. The motion of the

rod is completely prescribed with time and the necessary force for overcoming

resistance of esophageal tissue is computed. Figure illustrates the evolution of

stress in time.

Figure 4.26. Maximum first principal stress induced by the semi-flexible dilator on
the esophagus according to the simulation.

The condition of tearing/perforation is defined when the principal stress over-

comes a fixed stress threshold (probably this is the least realistic detail of the

simulations and genuinely microcontinuum constitutive models can be helpful).

The three following images show the predicted type of cleavage of this elasto-

tearing model. It is interesting to note that in a number of cases the tearing is

produced outside the contact area; it suggests that the tearing mechanism is not

mainly due to pressure associated with dilatation.

1Unilateral boundary condition of place is explained in detail in Ciarlet (1988) [16, p.207]

141



CHAPTER 4. RESULTS

Figure 4.27. Area of tearing/ripping for the semi-flexible rod dilator: Right For a 15
mm dilator the most frequent tearing mode is one in which the contact area with the
tip of the dilator is critical, Left For a 9 mm dilator frequently the critical area is not
that where the dilator exerts greater pressure.

4.3.3 Balloon catheter simulation

Another common procedure for forced dilatation is to introduce a balloon catheter,

i.e. a catheter provided with an inflatable part. The expansion of the inflatable

part presses against the esophageal wall producing the tearing of some fibers and

a greater lumen. This simulation uses the airbag system implemented in LS-Dyna

code. In this case, the whole geometry is formed only by a small piece of tubu-

lar esophagus, containing the stenotic narrowing (figure 4.28 shows the geometry

used in this case).

4.4 Published articles on mechanical properties of

esophageal tissue

Some of the results explained in this dissertation were published in an article

in Annals of Biomedical Engineering : “A micro-continuum model for mechanical

properties of esophageal tissue: experimental data and constitutive analysis” [99].

The first part of the paper deals with the experimental methodology here ex-

plained. The second part proposes a micropolar elasticity constitutive model.

The paper used data of the available of swine samples. The article is included at

the end of this document.
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Figure 4.28. A virtual stenosis used for simulating the effect of a balloon catheter.
The exterior part represents the muscularis externa layer and the muscular parameters
are assigned to the material properties of that part, the internal part is the mucosa-
submucosa layer (with the corresponding mechanical properties assigned).

Figure 4.29. Maximum first principal stress induced by the balloon catheter on the
esophagus according to the simulation.

4.5 The proposed model

This section proposes a new constitutive model. In many aspect the model is

similar to that found in the literature but there are a number of key innovations,

conceptually important:
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� The functional form of the “exponential terms” are introduced in the

form suggested by expression 4.17. This form was derived from a model of

weakly interacting collagenous fibers using the tools of statistical mechanics.

In most proposed models by other authors no other justification is given

for the exponential terms, except the empirical adequacy, but this is a

theoretically unsatisfactory because there are slightly different forms that

adjust the data equally well. For example Lu-Gregersen and Yang-Deng

models contain exponential terms with different functional forms, although

both fit to the data similarly.

� The anisotropy of the tissue implies that the material symmetry group is

a proper subgroup of O(3). The histological analysis of esophageal tissues

found in literature show that both layers of esophagus seem to be formed by

fibers mainly directed along two directions [80]. The existence of two privi-

leged directions in tissue also excludes the transversal isotropic/hemitropic

groups TR𝑖 as possible symmetry groups (see figure 4.30).

� The helix shape of the collagen fiber in esophagus (see figure 4.30)

introduces a chiral asymmetry that excludes the point groups contain-

ing reflections as adequate for representing the material symmetry of the

esophageal tissue. This observation seems to have been unnoticed by most

authors, and no reference to the physical implications has been found in

the literature.

� The model includes the requirement of the covariant constitutive theory

of Marsden and Hughes [72], and the generalizations of Lu [68] for extend

this theory to the case with presence of residual stress. The computed

Riemann metric of section 4.2.2 is incorporated in functional form of the

model according to the prescriptions of the Marsden-Hughes-Lu theory.

� The last innovation is themicrocontinuum approach for representing the

micro-structure. The collagenous fibers can rotate be reoriented (3 degrees

of freedom) in the tissue and in addition at each point can be stretched

(1 degree of freedom). Thus the right type of microcontinuum is clearly a

microstretch continuum.

The proposed model is a microstretch orthotropic incompressible hyperelas-

tic constitutive model with large deformations. The material symmetry group

is the dihedral group D2ℎ representing the subtype O3 of orthotropic symmetry
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Figure 4.30. Distribution fo collagenous fibers within submucosa: Left electron mi-
crograph (after Ottani et al. [84]) Right schematic fiber arrengement (after Natali et
al. [80])

(i.e. the orthotropic symmetry compatible with chiral asymmetries). In this

model the esophagus is consdered as a thick-walled nonlinearly hyperelastic cir-

cular cylindrical tube composed by two homogenous layers (mucosa-submucosa

and muscularis externa). Each layer is treated as a fiber-reinforced material with

the fibers corresponding to the collagenous component of the material and sym-

metrically disposed with respect to the cylinder axis. The strain energy density

function (HEDF) is defined as:

Ψ(C,G𝑠,K,Γ) = Ψ𝑣𝑜𝑙(𝐽,𝐺) + Ψ̄𝑖𝑠𝑜(C̄,Gs) + Ψ̄𝑓(C̄,G𝑠,K,Γ) (4.31)

which is based on the kinematic assumption

C = 𝐽2⇑3C̄, 𝐽 = (detC), det C̄ = 1 (4.32)

This initial decomposition similar to the decomposition used in theKroon-Holzapfel

model and the Natali-Gregersen model. We have include the the microdeforma-

tion tensor K and the wryness tensor Γ for accounting the changes in the micro-

structure and the metric G𝑠 for accounting for the initial residual stress, being

the scalar 𝐺 = detG𝑠. We proceed to explain in detain the three terms Ψ𝑣𝑜𝑙, Ψ̄𝑖𝑠𝑜

and Ψ̄𝑓 .

The term Ψ𝑣𝑜𝑙(𝐽,𝐺) accounts for the incompressibility of the material. It

contributes to the second Piola-Kirchhoff with a term of the form S = 𝐽𝑝C−1,

where 𝑝 = (𝜕Ψ𝑣𝑜𝑙(𝐽,𝐺)⇑𝜕𝐽). For this function different functional forms have

been proposed by different authors in the absence of residual stress. Ogden
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proposed the general form [82]:

Ψ𝑣𝑜𝑙(𝐽) =
1

𝛽2
(𝛽 ln𝐽 + 𝐽−𝛽 − 1) (4.33)

The experiments carried out are not sufficient for determining the functional form.

Nevertheless, the physical restrictions imply that Ψ𝑣𝑜𝑙(𝐽,𝐺) = Ψ̃(𝐽⇑𝐺), and that

Ψ̃(1) = 0, Ψ̃′′(1) ≥ 0. Ciarlet and Geymonat analyzed the general requirement

conditions for polyconvexity and proposed a general form [17]:

Ψ𝑣𝑜𝑙(𝐽) = 𝑐(𝐽 − 1)2 + 𝑑 ln𝐽 (4.34)

Natali on the base of an empirical study proposed another form (see equation

2.53). In this proposed model we will select a modified form proposed for Ciarlet

because it clearly satisfies the physical requirements and can approximate well the

other forms, so for practical purposes is a suitable form (further theoretical results

and experimentation are needed to solve completely this issue). The selected form

including the presence of residual stress:

Ψ𝑣𝑜𝑙(𝐽,𝐺) = 𝑐(
𝐽

𝐺
− 1)

2

+ 𝑑 ln 𝐽
𝐺

(4.35)

For the term Ψ̄𝑖𝑠𝑜(C̄,G𝑠) in conventional continuum theories, most authors

use a function depending on (𝐼1 − 3) where 𝐼1 = tr C̄. The term is numerically

important only for low strain. For this reason we here follow the proposal of

Holzapfel and will adopt a simple linear functional form:

Ψ̄𝑖𝑠𝑜(C̄,G𝑠) = 𝜇(𝐼1 − 3) (4.36)

where 𝜇 is an elastic constant associated to the elastic properties the elastin

matrix of collagenous tissues and 𝐼1 = tr(C̄G
−1
𝑠 )

The last term is the most important term for moderate and large strains and

represents the contribution of collagen fibers and the micro-structure. From the

isotropicization theorem 2.5.2 it follows that the most general form for this term

is Ψ̄𝑓(C̄,G𝑠,K,Γ) = 𝜙(C̄G
−1
𝑠 ,K,Γ,M) where M = 𝑖 ⊗ 𝑖 − 𝑗 ⊗ 𝑗. Accordingly

the equation 4.17 deduced from statistical mechanics we will select the functional
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form:

Ψ̄𝑓(C̄,G𝑠,K,Γ) = −
1

𝛽
∑
𝑖

ln (1 + 𝑘𝑔,𝑖𝑒−𝛽ℰ𝑖(C̄,G𝑠,K,Γ)) (4.37)

The sum in 𝑖 is extended over the two families of collagenous fibers, denoted 𝑎

and 𝑏 (𝑖 ∈ {𝑎, 𝑏}. The constants 𝑘𝑔,𝑖, 𝛽 are the model parameters (or mechanical

properties to be determined for each sample). The above equation is similar to

the form used in the Kroon-Holzapfel and the Natali-Gregersen models when no

microrotation or microdilation is present (K = 0,Γ = 0) and no residual stress is

present (G𝑠 = I♭). The problem now is to select the correct form for ℰ𝑖. Most

authors use for ℰ𝑖 a tensor function which is a quadratic polynomial in the com-

ponents of C̄ for classical constitutive models [59, 80, 114]. Thus we will use the

most general polynomial in the components of C̄G
−1
𝑠 ,𝛾 which is invariant under

the group O3 = D2ℎ. To find such a polynomial is a mathematical problem solv-

able with the theory of tensor representations developed by Zheng (1994) [118].

Before finding the explicit form, we introduce explicitly the microstretch defor-

mation tensors

𝐾𝐴𝐵 = (2𝑗 − 1)𝛿𝐴𝐵, Γ𝐴𝐵𝐶 = 𝛿𝐴𝐵Γ𝐶 − 𝜖𝐴𝐵𝐷Γ𝐷𝐶

Γ𝐴𝐵 = 𝛾𝑎𝑏𝛿𝑎𝐴𝛿𝑏𝐵, Γ𝐴 = 3𝑗⋃︀𝑎𝛿
𝑎
𝐴

𝛾𝑎𝑏 = 𝜑𝑎⋃︀𝑏

(4.38)

The covector 𝜑 = (𝜑1, 𝜑2, 𝜑3) and the scalar 𝑗 are the additional four degrees of

freedom for a microstretch continuum. The covector 𝜑 represent the reorientation

in space of the dominant direction of collagen fibers at a point and 𝑗 is the

microdilation. With these definitions, the two scalar tensor polynomials ℰ𝑎 and

ℰ𝑏 are:
ℰ𝑎 = 𝐼4𝑎 +∑2

𝑘=1 𝜆𝑘𝐼𝑘,𝜑, ℰ𝑏 = 𝐼4𝑏 +∑2
𝑘=1 𝜆𝑘𝐼𝑘,𝜑

𝐼4𝑎 = 𝑎𝐴𝐶𝐴𝐵𝐺𝐵𝐶
𝑠 𝑎𝐶 𝐼4𝑏 = 𝑏𝐴𝐶𝐴𝐵𝐺𝐵𝐶

𝑠 𝑏𝐶

𝐼1,𝜑 =
𝑗2

2
𝛾2
𝑎⋃︀𝑎

𝐼1,𝜑 =
𝑗2

2
𝛾𝑎⋃︀𝑏𝛾𝑏⋃︀𝑎

(4.39)

The final functional form Ψ(C,G𝑠,K,Γ) is a combination of invariants of the

orthotropic group O3 = D2ℎ, the constants 𝑘𝑔,𝑎, 𝑘𝑔,𝑏, 𝛽, 𝜆1, 𝜆2 are the model pa-

rameters (or mechanical properties to be determined for each sample). The de-

pendence in the microstretch, through 𝐼1,𝜑 and 𝐼1,𝜑, part was selected according

to the findings in the published article about this microcontinuum models for soft

tissue [99]. An additional term 𝐼3,𝜑 = 𝑗⋃︀𝑎𝛾𝑎⋃︀𝑏𝛾𝑏⋃︀𝑐𝑗⋃︀𝑐 could be included but it needs

to be investigated if it is empirically adequate.
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The relation between strain and stress can be derived from equations 2.35.

For the first Piola-Kirchhoff stress tensor we have:

P = P𝑣𝑜𝑙 +P𝑖𝑠𝑜 +P𝑓 (4.40)

where P𝑣𝑜𝑙,P𝑖𝑠𝑜 and P𝑓 can be derived from the functional forms for Ψ𝑣𝑜𝑙(𝐽,𝐺),
Ψ̄𝑖𝑠𝑜(C̄,Gs) and Ψ̄𝑓(C̄,G𝑠,K,Γ). This three parts has clear physical meanings:

� The first part is P𝑣𝑜𝑙 = 𝑝F−𝑇 and represents the effect due the water in the

tissue that makes it virtually incomprehensible.

� The second P𝑖𝑠𝑜 represents the effect elastin matrix and it is only important

for small strain and does not contribute to the anisotropy in the tissue.

� The third partP𝑓 represents the effect of the collagen fibers. It characterizes

the anisotropy of the tissue and contains the effect of the micro-stucture

associated with the local stretching of collagen fibers or its reorientation

inside the tissue.

The couple stresses and the micropresure due to the micro-structure can be

found form equation 2.79. For the scalar micropressure 𝑠 (energy conjugate of

the microdilation 𝑗), we have:

𝑠 − 𝜎𝑎
𝑎 = 3𝜌𝑗

𝜕Ψ𝑓

𝜕𝑗

= 3𝜌𝑗2∑𝑖

⎛
⎝

𝑘𝑔,𝑖𝑒−𝛽ℰ𝑖

1 + 𝑘𝑔,𝑖𝑒−𝛽ℰ𝑖
⎞
⎠
(︀𝜆1(𝜑𝑎

⋃︀𝑎
)2 + 𝜆2𝜑𝑎

⋃︀𝑏
𝜑𝑏
⋃︀𝑎
⌋︀

(4.41)

For couple stress tensor 𝑚𝑎𝑏𝑐 =𝑚𝑎𝛿𝑏𝑐⇑3 − 𝜖𝑏𝑐𝑑𝑚𝑎𝑑⇑2, we derive Ψ𝑓 with respect to

𝑗⋃︀𝑎 and 𝛾𝑎𝑏:

𝑚𝑎 = 3𝜌
𝜕Ψ𝑓

𝜕𝑗⋃︀𝑎
= 0

𝑚𝑎𝑏 = 𝜌
𝜕Ψ𝑓

𝜕𝛾𝑎𝑏
=
𝜌𝑗2

2
∑𝑖

⎛
⎝

𝑘𝑔,𝑖𝑒−𝛽ℰ𝑖

1 + 𝑘𝑔,𝑖𝑒−𝛽ℰ𝑖
⎞
⎠
(︀𝜆1𝛿𝑎𝑏 + 𝜆2(𝜑𝑎⋃︀𝑏 + 𝜑𝑏⋃︀𝑎)⌋︀

(4.42)
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5
Conclusions

5.1 Introduction

In this research the mechanical behavior of human esophagus has been examined.

Experimental and numerical work have been carried out. In addition, some the-

oretical questions have been addressed and solved. The experimental tests of the

elastic behavior included uniaxial tensile tests and inflation tests. The theoreti-

cal results include an analysis of residual stresses and a theoretical justification

of the occurrence of “exponential laws” in soft tissue. These two features are

incorporated in the final proposed constitutive model.

The experimental work has confirmed the expected non-linear and anisotropic

behavior of soft-tissue. The tensile tests allowed to obtain parameters that char-

acterize the mechanical behavior (elastic constants, strain and stress before the

detectable breaking of collagenous fibrils). The results were compared with an-

thropometric variables (age, body mass index, gender) and some significant corre-

lations were found with these variables. For example the body mass index seems

contribute moderately to the elastic resistance by increasing the before-fiber-
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breaking strain (𝑝 < 0,05) [also an increase in the before-fiber-breaking stress,

but it is no so significant]. The effect of age seems to be to stiffen the wall (a

positive correlation has been found), but effect is not significant for the set of ex-

amined samples. The statistical tests also confirm that the mechanical properties

are significantly different for the transversal and the longitudinal directions.

The value of the mechanical properties for porcine esophageal tissue is similar

to the values found in the literature (for swine esophageal tissue, [45,69,114,115]).

The typical values of mechanical properties for human esophagus have been de-

termined for different models from the experimental data (this involved extensive

numerical computations to find the best fit). Less accurate data are available

in the literature for human esophageal tissue and no adequate data were found

for an extensive comparison. Nevertheless, a characterization of the range of the

variation of some mechanical properties for human esophageal tissue has been ob-

tained (these data are new and, therefore, it is planned to publish them because

of its interest). Although the testing only involved esophageal tissue from donors

with with no severe digestive diseases, the obtained values for the mechanical

properties are a point of departure, they can be used in numerical simulations

involving abnormal conditions such as stenosis or achalasia as a first approxima-

tion. Interestingly, the inflation tests showed that bleeding occurs at relatively

low strains compared with the failure strain, thus the medical complications can

arise without perforation of the wall.

The hypothesis that microcontinuum theories can be useful for soft tissue has

been confirmed. Some of the typical characteristics of the stress-strain curves can

be derived on the basis of assuming the influence of micro-structure, part of the

research concerning the influence of micro-structure was published in Annals of

Biomedical Engineering that explains this in detail.

Some numerical simulations have been carried out, showing that the failure

can arise outside the zone of contact of the dilator and the esophagus wall. This

suggests that pressure detectors on the detector can not predict the failure in

the absence of a complete mechanical model. Some examples in the scientific

literature show that computational models can improve medical procedures and

treatments [23, 103]. Thus, the characterization of esophageal tissue of mechan-

ical properties can be used for predicting the likely results of forced dilatation

procedure when combined with finite element (FE) computations [23, 98]. The

results of this study provide a computational model that is likely to have a similar
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impact.

For the problem of residual stresses, the data in the literature were used

for improve the law that governs their distribution along the esophageal wall.

In particular, the tools of Riemann geometry were applied to the existent data

suggesting that the residual stress is distributed according a non-linear law (some

previous proposal in the literature used a linear law that is only an approximation

to the real distribution).

5.2 Contributions

This dissertation contains the following original contributions:

� Experimental methodology A new and simple experimental methodol-

ogy has been developed, and many practical problems were solved in an

original way. Comparable values to that of the literature for many mechan-

ical properties were obtained with the new methodology.The main experi-

mental innovations are in the preparation of samples and measurement of

some critical magnitudes of samples.

� Range of variation of mechanical properties The range variation of

elastic properties (for different conventional models) has been determined

for a good number of human samples (𝑛 > 25). The analytical form of

the obtained data, as a parameters in models, makes these obtained data

suitable for simulation (some studies for human esophagus in literature are

limited to numerical values, and do not provide a complete constitutive

model). In addition, other anelastic properties constants were determined.

� Influence of BMI and other anthropometric variables The mechan-

ical properties found for the set of samples were analyzed statistically. A

significant effect of the body mass index (BMI) has been found for the

maximum attainable strain before detectable fibril breaking. Although the

amount of the total variance explained by BMI is small 𝑟 = 0.469 (being

other factors unidentifiable factors important), the effect of BMI is clearly

significant, as was established in the regression analysis.
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� Influence of micro-structure This dissertation includes one of the firsts

applications of microcontinuum theory for investigating the mechanical

properties of soft tissues.

� Simulations of forced dilations. Numerical simulations of the esophageal

wall for two different dilatation procedures were carried out. Interestingly,

some simulations suggested the occurrence of the mechanical failure at lo-

cations strictly outside the area of contact of dilator and the esophageal

(this is not a general result, it is only a suggestive finding).

� A new non-linear model of residual stress. The existence of residual

stress in esophageal wall is a well established fact. Some authors had pro-

posed a linear distribution for accounting that is appropriate for practical

purposes, a more geometrical analysis in this dissertation suggested that

the true distribution is non-linear (the previously proposed linear laws are

only a good approximation to the non-linear distribution found here).

� Theoretical justification of exponential laws for soft tissue. An

original deduction using statistical mechanics was developed for modeling

a large collection of collagenous fiber that interact weakly. This model

established a precise functional form according to the hypothesis of the

model. Many proposed models exhibit a functional form that approximate

to the functional form predicted by our model.

� A constitutive model is proposed A new constitutive model is proposed

which incorporates exponential terms in a theoretically justified way. The

residual stresses are introduced in a geometrical way. The group of symme-

try of fiber disposition was investigated and incorporated in the functional

form. In addition, additional terms accounting for the micro-structure of

the tissue are added to the model in a consistent way according to the

symmetry group.

5.3 Limitations

The main identified limitations of this study are:

� Great variability. Mechanical properties show a great variation in the
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samples. The reasons are twofold, part of this variation is due to experi-

mental uncontrollable conditions. On the other hand, each individual has

his own genetic endowment; some unseen factors related to the clinical his-

tory of each individual may also explain part of the variation. In the present

study it is unknown which part of the observed variation is due to each of

these factors. For this reason, only a probabilistic analysis is possible.

� In vivo vs. in vitro differences. All esophagi have been maintained for

a short time at a low temperature and in contact with saline solution after

their extraction. But it is known that in vivo position the esophagi are

subject to residual stress even in the absence of exterior loads that in part

are lost in vitro condition. This is particularly clear by the fact that the in

vivo normal position the esophagus is a tube with the inner part subject to

slight compression and its outer part subject to slight traction.

� Dynamic testing/Viscosity. The proposed model is valid for low defor-

mation rate 𝜀̇ < 10−2, although in practice for the forced dilations this is

not a serious limitation. The scope of this research was limited to forced

dilatations for this reason viscoelastic effects were negligible. For broader

applications the consideration of viscoelastic effects would be of some inter-

est.

� Other simplifications. For the fitting of parameters some geometrical

simplifications have been done, for example in computations only the av-

erage thickness is considered. No biaxial testing has been performed to

determine independently the influence of the first and the second algebraic

invariants, as in the classical experiments of Treolar [104] and Rivlin and

Saunder [92].

� Restricted scope. All human samples examined in this work are from

previously healthy patients which did not present any severe digestive dis-

ease. The present research does not allow to make any statement about

the differences between normal and abnormal conditions in esophageal tis-

sues. It would be interesting in future work to systematically investigate

abonormal conditions.

� Dissected parts. This research has not examined regional differences

inside distal or proximal parts. It has been detected that the distal part

show a slightly thicker walls. But the variation along the esophagus is not
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well know for the sample, except for the distinction between distal/proximal

parts. A systematic study considering independently the differente layers

of esophageal wall would be desirable.

� Growing. The effect of growing and its characterization for esophageal

wall is important in patients subject to successive medical procedures of

dilatation. It is expected that a first medical treatment could modify locally

the properties of the tissue.

5.4 Future work

Almost every limitation cited in previous section is a potentially fruitful area of

future research. Some other additional factors that are not limitations of the

present research deserve systematic research for themselves. There is a certain

number of obvious extensions and generalizations of this research that are inter-

esting for future work:

Tearing models, acoustic emission and the Extreme Value Theory. When ten-

sile tests were conducted, acoustic emission sensors were attached to the tissue,

and measures of fiber break were obtained. This procedure allowed to obtain

detailed information about fiber breaking. A fiber breaking is a micromechani-

cal phenomenon and has no macroscopic observable effect. It was observed that

when a great amount of fiber breakings concentrated in a region some seconds

after these breakings a cleavage appeared in the soft tissue. This evidence supply

some basis for formulating a model for the ripping/tearing of soft tissue. For this

purpose, the implications of the Extreme Value Theory (EVT) need to be investi-

gated. Precisely the EVT emerged from the pioneering work of L. H. C. Tippet1.

Tippet was interested in predicting the breaking of textiles, then he observed that

the effect of the “weakest thread” was determinant in the strength of tissues. In

collaboration with R. A. Fisher, Tippett published the first important result in

EVT [35]; the Fisher–Tippett distribution is named after them. Later this EVT

result was generalized by E. Gumbel (1935) [48] and B. V. Gnedenko [41], the

main result of EVT is the useful Fisher–Tippett–Gnedenko theorem (summarized

in A.4). The implications of the EVT for tissue tearing, given the evidence of the

1L. H. C. Tippet worked at the Shirley Institute an institution, established in 1920, this
intstitutition depended on the the British Cotton Industry Research Association
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acoustic emission, are clear (currently EVT is regularly applied to assess risk of

earthquakes, tsunamis, hydrological risk and situations were extreme values are

involved, but the theory started with problems not dissimilar to the tearing of a

soft tissue).

Pathological conditions in esophagus. Many of the forced dilations procedures

are conducted in patients with some pathological conditions. In some of these

pathologies, the tissue is expected to have altered mechanical properties at some

points. It would be interesting to investigate systematically the mechanical dif-

ferences between the the normal and abnormal conditions, from the point of view

of the mechanical properties.
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The most elegant and economical
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for didactic purposes

Derek F. Lawden

A
Appendix: Functional analysis and

Lie Groups

Since differential calculus in normed vector spaces are widely used in this disser-

tation, in this appendix some basic results concerning differential mappings are

reviewed. These results are needed for the mathematical formulation of part of

this dissertation.

A.1 Fréchet derivative

In this section, all vector spaces considered are real. This section reproduces some

results on Fréchet derivatives. The approach is based mainly in Ciarlet [16],

but for a more detailed accounts, one can consult Avez [4], Cartan [11] and

Schwartz [96]. Given two normed vector spaces 𝑋 and 𝑌 , let

L (𝑋;𝑌 ), or simply L (𝑋) if 𝑋 = 𝑌, (A.1)
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denote the vector space formed by all continuous linear mappings 𝐴 ∶𝑋 → 𝑌 .

Equipped with the norm

∏︁𝐴∏︁ ∶= sup
𝑥∈𝑋,𝑥≠0

∏︁𝐴𝑥∏︁𝑌
∏︁𝑥∏︁𝑋

(A.2)

the space L (𝑋;𝑌 ) becomes itself a normed vector space, which is complete if

the space 𝑌 is complete. If 𝑋 = 𝑌 = R𝑛, an element A ∈ L (R𝑛;R𝑛) is identified

with the matrix that represents it (in a certain base), and if both spaces are

equipped with the Euclidean vector norm ⋃︀ ⋅ ⋃︀, the associated norm of the matrix

A is the spectral norm, also denoted ⋃︀ ⋅ ⋃︀. When 𝑌 = R, the space

𝑋 ′ ∶= L (𝑋;R) (A.3)

is called the topological dual space of the space 𝑋. For notational brevity,

let us agree that whenever the notation

𝑓 ∶ Ω ⊂𝑋 → 𝑌 (A.4)

is used in this section, it means that𝑋 and 𝑌 are normed vector spaces (whose

norms are denoted by the same symbol ∏︁ ⋅ ∏︁ whenever no confusion should arise),

that Ω is an open subset of the space 𝑋, and that 𝑓 is a mapping defined on the

set Ω, with values in the space 𝑌 . A mapping 𝑓 ∶ Ω ⊂ 𝑋 → 𝑌 is differentiable

at a point 𝑎 ∈ Ω if there exists an element 𝑓 ′(𝑎) of the space L (𝑋;𝑌 ) such that

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓 ′(𝑎)ℎ + 𝑜(ℎ) (A.5)

where the notation 𝑜(ℎ) means that

𝑜(ℎ) = ∏︁ℎ∏︁𝜖(ℎ) with lim
ℎ→0

𝜖(ℎ) = 0 in 𝑌. (A.6)

Of course, only points (𝑎 + ℎ) that belong to the set Ω should be considered

in the above relation; since the set Ω is open by assumption, the set of admissible

vectors ℎ contains a ball centered at the origin in the space 𝑋. If a mapping
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𝑓 is differentiable at 𝑎 ∈ Ω, it is easy seen that 𝑓 is continuous at 𝑎 and that

the element 𝑓 ′(𝑎) ∈ L (𝑋;𝑌 ) is called the Fréchet derivative, or simply the

derivative, of the mapping 𝑓 at the point 𝑎. If 𝑋 = R and 𝑥 denotes the generic

point of R, the derivative is also noted:

𝑓 ′(𝑎) = d𝑓(𝑎)
d𝑥

. (A.7)

If a mapping 𝑓 ∶ Ω ⊂𝑋 → 𝑌 is differentiable at all points of the open set Ω, it

is be differentiable in Ω. If the mapping

𝑓 ′ ∶ 𝑥 ∈ Ω ⊂𝑋 → 𝑓 ′(𝑥) ∈ L (𝑋;𝑌 ), (A.8)

which is well defined in this case, is continuous, the mapping 𝑓 is said to be

continuously differentiable in Ω or simply of class C 1. We denote by

C 1(Ω;𝑌 ), or simply C 1(Ω) if 𝑌 = R, (A.9)

the space of all continuously differentiable mappings from Ω into 𝑌 . Consider

for example an affine continuous mapping

𝑓 ∶ 𝑥 ∈𝑋 → 𝑓(𝑥) = 𝐴𝑥 + 𝑏 with 𝐴 ∈ L (𝑋;𝑌 ) and 𝑏 ∈ 𝑌. (A.10)

Since 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐴ℎ for all 𝑎, ℎ ∈ 𝑋, such a mapping is continuously

differentiable in 𝑋, with 𝑓 ′(𝑥) = 𝐴 for all 𝑥 ∈ Ω, i.e., the mapping 𝑓 ′ is constant

in this case. Conversely it can be shown (using the mean value theorem) that, if

𝑓 ′(𝑥) = 𝐴 ∈ L (𝑋;𝑌 ) for all 𝑥 ∈ Ω and if in addition the open set Ω is connected,

there exists a vector 𝑏 ∈ 𝑌 such that 𝑓(𝑥) = 𝐴𝑥 + 𝑏 for all 𝑥 ∈ Ω.

If the space 𝑌 is a product 𝑌 = 𝑌1 × ⋅ ⋅ ⋅ × 𝑌𝑚 of the normed vector spaces 𝑌𝑖,

a mapping 𝑓 ∶ Ω ⊂ 𝑋 → 𝑌 is defined by m component mappings 𝑓𝑖 ∶ Ω ⊂ 𝑋 → 𝑌𝑖,

and it is easily seen that the mapping 𝑓 differentiable at a point if and only if

each mapping 𝑓𝑖 is differentiable at the same point. In this case, the derivative

𝑓 ′(𝑎) ∈ L (𝑋;𝑌 ) can be identified with the element (𝑓 ′1(𝑎), . . . , 𝑓 ′𝑛(𝑎)) of the

product space L (𝑋;𝑌1) × ⋅ ⋅ ⋅ ×L (𝑋;𝑌𝑚).
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Consider next the case where the space X is a product 𝑋 = 𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛 of

vector spaces. Given a point 𝑎 = (𝑎1, . . . , 𝑎𝑛) of an open subset Ω of the space

X, there exists for each j and open set subject Ω𝑗 of the space 𝑋𝑗 containing the

point 𝑎𝑗 such that the open set Ω = Ω1 × ⋅ ⋅ ⋅ ×Ω𝑛 is contained Ω. If for some index

j the partial mapping :

𝑓(𝑎1, . . . , 𝑎𝑗−1, ⋅, 𝑎𝑗+1, . . . , 𝑎𝑛) ∶ Ω𝑗 ⊂𝑋𝑗 → 𝑌 (A.11)

is differentiable at the point 𝑎𝑗 ∈ Ω𝑗, its derivative

𝜕𝑗𝑓(𝑎) ∈ L (𝑋𝑗;𝑌 ) (A.12)

is called the j th partial derivative of the mapping f at the point a. If 𝑥𝑗
denotes a generic point of the space 𝑋𝑗, the partial derivatives are also noted:

𝜕𝑗𝑓(𝑎) =
𝜕𝑓(𝑎)
𝜕𝑥𝑗

. (A.13)

Remark. The notation 𝜕𝑓⇑𝜕A is also used in a different setting, to denote ∎.

If a mapping 𝑓 ∶ Ω ⊂ 𝑋 = 𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛 is differentiable ate a point 𝑎 ∈ Ω, it is
easy to see that the n partial derivatives 𝜕𝑗𝑓(𝑎) exist and that

𝑓 ′(𝑎)ℎ =
𝑛

∑
𝑗=1

𝜕𝑗𝑓(𝑎)ℎ𝑗 for all ℎ = (ℎ1, . . . , ℎ𝑛) ∈𝑋1 × ⋅ ⋅ ⋅ ×𝑋𝑛 (A.14)

Using the mean value theorem, it can be shown that conversely, if the partial

derivatives are defined and continous on Ω, the equivalence:

𝑓 ∈ C 1(Ω;𝑌 ) ⇔ 𝜕𝑗𝑓 ∈ C 0(Ω;L (𝑋𝑗;𝑌 )), 1 ≤ 𝑗 ≤ 𝑛 (A.15)

holds, where C 0(𝐸;𝐹 ) denotes in general the set of all continuous mappings

from a topological space E into a topological space F. Let 𝑋1,𝑋2, 𝑌 be normed

vector spaces. A mapping 𝐵 ∶𝑋1 ×𝑋2 → 𝑌 is bilinear if it satisfies
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𝐵(𝛼1𝑥1 + 𝛼′1𝑥′1, 𝑥2) = 𝛼1𝐵(𝑥1, 𝑥2) + 𝛼′1𝐵(𝑥′1, 𝑥2),
𝐵(𝑥1, 𝛼2𝑥2 + 𝛼′2𝑥′2) = 𝛼2𝐵(𝑥1, 𝑥2) + 𝛼′2𝐵(𝑥1, 𝑥′2)

(A.16)

for all 𝑥1, 𝑥′1 ∈𝑋1, 𝑥2, 𝑥′2 ∈𝑋2, 𝛼1, 𝛼′1, 𝛼2, 𝛼′2 ∈ R. If it is in addition continuous,

i.e., if and only if

∏︁𝐵∏︁ ∶= sup
)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑥1, 𝑥2) ∈𝑋1 ×𝑋2

𝑥1 ≠ 0, 𝑥2 ≠ 0

∏︁𝐵(𝑥1, 𝑥2)∏︁𝑌
∏︁𝑥1∏︁𝑋1∏︁𝑥2∏︁𝑋2

< +∞ (A.17)

it is differentiable in the space 𝑋1×𝑋2, since (by the bilinearity) 𝐵(𝑎1+ℎ1, 𝑎2+
ℎ2) = 𝐵(𝑎1, 𝑎2) +𝐵(ℎ1, 𝑎2) +𝐵(𝑎1, ℎ2) +𝐵(ℎ1, ℎ2), and sice (by continuity)

∏︁𝐵(ℎ1, ℎ2)∏︁ ≤ ∏︁𝐵∏︁∏︁ℎ1∏︁𝑋1∏︁ℎ2∏︁𝑋2 ≤ ∏︁𝐵∏︁(max{∏︁ℎ1∏︁𝑋1∏︁ℎ2∏︁𝑋2})2 (A.18)

The derivative and the partial derivatives are thus respectively given by

𝐵′(𝑎1, 𝑎2)(ℎ1, ℎ2) = 𝐵(ℎ1, 𝑎2) +𝐵(𝑎1, ℎ2),
𝜕1𝐵(𝑎1, 𝑎2)ℎ1 = 𝐵(ℎ1, 𝑎2), 𝜕2𝐵(𝑎1, 𝑎2)ℎ2 = 𝐵(𝑎1, ℎ2)

(A.19)

If 𝑋1 = 𝑋2 = 𝑋, a similar computation shows that the mapping 𝑓 ∶ 𝑥 ∈ 𝑋 →
𝐵(𝑥,𝑥) ∈ 𝑌 is also differentiable, with 𝑓 ′(𝑎)ℎ = 𝐵(𝑎, ℎ) +𝐵(ℎ, 𝑎) for all 𝑎, ℎ ∈ 𝑋
If in addition the bilinear mapping: 𝐵 ∶𝑋 ×𝑋 → 𝑌 is symmetric, i.e., the vectors

𝑓 ′(𝑎)ℎ = lim
𝜃→0

𝑓(𝑎 + 𝜃ℎ) − 𝑓(𝑎)
𝜃

= d

d𝜃
𝑓(𝑎 + 𝜃ℎ)⨄︀

𝜃=0
∈ 𝑌 (A.20)

are computed for arbitrary vectors ℎ of the space 𝑋. Such a vector 𝑓 ′(𝑎)ℎ ∈ 𝑌
is called a directional derivative, or a Gâteaux derivative, in the direction

of the vector ℎ.

In varius instances, like that shown in the following section, the mapping to

be differentiated is itself composed of simpler mappings whose derivatives are

161



APPENDIX A. APPENDIX: FUNCTIONAL ANALYSIS AND LIE GROUPS

known. In this case, the following result is particularly useful:

Proposition A.1.1. Let 𝑋,𝑌 and 𝑍 be normed vector spaces, let 𝑈 and 𝑉

be open subsets of the spaces 𝑋 and 𝑌 respectively, let 𝑓 ∶ 𝑈 ⊂ 𝑋 → 𝑉 ⊂ 𝑌
be a mapping differentiable at a point 𝑎 ∈ 𝑈 and let 𝑔 ∶ 𝑉 ⊂ 𝑌 → 𝑍 be a

mapping differentiable at the point 𝑓(𝑎) ∈ 𝑉 . Then the composite mapping

𝑔 ○ 𝑓 ∶ 𝑈 ⊂𝑋 → 𝑍 is differentibable at the point 𝑎 ∈ 𝑈 and:

(𝑔 ○ 𝑓)′(𝑎) = 𝑔′(𝑓(𝑎))𝑓 ′(𝑎)

A.2 Algebraic invariant and its derivatives

Constitutive models are formulated in terms of an scalar function (SEDF/HEDF)

of the algebraic invariants of a tensor. An algebraic invariant is a polynomial func-

tion of the components of the tensor takes the same value in any basis (i.e. an

invariant combination of tensorial components). The computation of the invari-

ants and its derivatives is needed for computations of stresses and the derivation

of stress-strain relations.

A.2.1 Definition of algebraic invariants

Given a (1,1)-tensor C over R3 with components 𝐶𝑖
𝑗 and eigenvalues 𝜆𝑖, we define

the three main algebraic invariants as:

Definition A.2.1. The invariants of a symmetric matrix C (in an inner

product space or a Riemann manifold) are defined by:

𝐼1(C) = tr(C), 𝐼2(C) = det(C)tr(C−1), 𝐼3(C) = det(C)

The following proposition gives useful explicit expressions in terms of eigen-

values:

Proposition A.2.1. The invariants of C are related to the coefficients in

the characteristic polynomial 𝑃 (𝜆) of C as follows:

𝑃 (𝜆) = 𝜆3 − 𝐼1(C)𝜆2 + 𝐼2(C)𝜆 − 𝐼3(C)
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In therms of the eigenvalues 𝜆1, 𝜆2, 𝜆3, we have:

𝐼1(C) = 𝜆1 + 𝜆2 + 𝜆3, 𝐼2(C) = 𝜆1𝜆2 + 𝜆3𝜆1 + 𝜆2𝜆3, 𝐼3(C) = 𝜆1𝜆2𝜆3

(these are the elementary symmetric functions of 𝜆1, 𝜆2, 𝜆3). Moreover, the

following formula for 𝐼2 holds:

𝐼2(C) = 1

2
(︀(tr C)2 − tr(C2)⌋︀

For constitutive theory, we have the following key result:

Proposition A.2.2. The following statements are equivalent:

(a) A scalar function 𝑓 of C is invariant under orthogonal transformations.

(b) 𝑓 is a function of the invariants of C.

(c) 𝑓 is a symmetric function of the principal eigenvalues of C.

For anisotropic materials the following additional partial “invariants” are

needed:

These partial “invariants” are not invariants under the action of any change of

basis. Unlike true invariants, that are invariant under any action of the rotation

group SO(3) (indeed, under the action of any element of GL(3)):

𝐼𝑖(C) = 𝐼𝑖(QCQ𝑇 ), ∀Q ∈ SO(3) (A.21)

the partial invariants are invariant only under the action of a subgroup 𝒢 ⊂ SO(3),
i.e. the above equation are valid only for Q ∈ 𝒢

A.2.2 Derivatives of algebraic invariants

The interest of derivatives of invariants is that in constitutive theory one has

expression of the type:

S = 2
𝜕𝑊

𝜕C
(A.22)
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where the las derivative can be computed by using the chain rule defined on

the previous section:

𝜕𝑊

𝜕C
= 𝜕𝑊
𝜕𝐼1

𝜕𝐼1
𝜕C

+ 𝜕𝑊
𝜕𝐼2

𝜕𝐼2
𝜕C

+ 𝜕𝑊
𝜕𝐼3

𝜕𝐼3
𝜕C

Derivative of 𝐼1
The mapping 𝐼1 ∶ M𝑛 → R is linear and continuous, it is differentiable over the

space real matrices M𝑛 =𝑀𝑛×𝑛(R) with:

𝐼 ′1(A)H = 𝐼1(H) = tr(H) (A.23)

In components:
𝜕𝐼1
𝜕𝐶𝑖

𝑗

= 𝜕𝐶
𝑘
𝑘

𝜕𝐶𝑖
𝑗

= 𝛿𝑘𝑖 𝛿𝑗𝑘 = 𝛿
𝑗
𝑖 (A.24)

Thus, 𝐼 ′1(A)H = 𝛿𝑗𝑖𝐻 𝑖
𝑗 =𝐻

𝑗
𝑗 = tr(H)

Derivative of 𝐼3
The mapping 𝐼3 ∶M3 → R is a polynomial of degree 𝑛 = 3 with respect to the 𝑛2

elements of the matrix, it is continuously differentiable over the space M3. If the

matrix A is invertible, we can write:

𝐼3(A +H) = det(A +H) = det(A)det(I +A−1H)
(detA)(1 + tr(A−1H) + 𝑜(H))

the last equality is deduced from the relation

det(I +E) = 1 + trE + {monomials of degree ≥ 2}

which itself follows form the definition of the determinant. We have thus proved

that:

𝐼 ′3(A)H = det(A)tr(A−1H)tr{(Cof A)𝑇H} (A.25)

where the Cof A is the cofactor matrix. The components of the cofactor matrix

is given by Cof A ∶= (det A)A−𝑇 . This proof is valid, even for 𝑛 ≥ 3 with minimal

changes we can compute 𝐼𝑛. Using components we have:

𝜕𝐼3
𝜕𝐶𝑖

𝑗

= 𝐼3(A−𝑇 )𝑗𝑖 (A.26)
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Derivative of 𝐼2
For the mapping 𝐼2 ∶ M𝑛 → R we will compute the derivative as an applica-

tion of the chain rule, we compute the derivative of the mapping A ↦ 𝐼2(A) =
det(A)tr(A−1). We can write 𝐼2 = 𝐼3 ⋅ (𝐼1 ○𝑓), where A↦ 𝑓(A) =A−1, we obtain:

𝐼 ′2(A)H = (𝐼 ′3(A)H)(𝐼1 ○ 𝑓)(A) + 𝐼3(A)𝐼 ′1(𝑓(A))𝑓 ′(A)H

Since the matrix (I +A−1H) is invertible for ∏︁H∏︁ < ∏︁A−1∏︁−1, with

(I +A−1H)−1 = I −A−1H + 𝑜(H)

we can write:

𝑓(A +H) = (A +H)−1 = (I +A−1H)−1A−1

= A−1 −A−1HA−1 + 𝑜(H)

and hence 𝑓 ′(A)H = −A−1HA−1, using the expression of 𝐼1, 𝐼3, we thus obtain:

𝐼 ′2(A)H = det(A) (︀tr(A−1H)tr(A−1) − tr(A−1HA−1)⌋︀
= tr(︀(Cof A)𝑇 ((trA−1)I −A−1)H⌋︀ (A.27)

With minimal changes the above derivation is valid of 𝐼𝑛−1. A shorter proof

in components (not generalizable for 𝑛 ≥ 2) is:

𝜕𝐼2

𝜕𝐶𝑖
𝑗

=
1

2

𝜕

𝜕𝐶𝑖
𝑗

(𝐶𝑘
𝑘𝐶

𝑙
𝑙 −𝐶𝑘

𝑙 𝐶
𝑙
𝑘)

=
1

2
(𝛿𝑘𝑖 𝛿

𝑗
𝑘𝐶

𝑙
𝑙 +𝐶𝑘

𝑘 𝛿
𝑙
𝑖𝛿

𝑗
𝑙 −𝐶𝑘

𝑙 𝛿
𝑙
𝑖𝛿

𝑗
𝑘 −𝐶 𝑙

𝑘𝛿
𝑘
𝑖 𝛿

𝑗
𝑙 )

=
1

2
(𝛿𝑖𝑗𝐼1 + 𝐼1𝛿𝑖𝑗 − 2𝐶𝑗

𝑖 ) = 𝐼1𝛿
𝑗
𝑖 −𝐶

𝑗
𝑖

(A.28)

The equation A.22 can be rewritten in terms of the derivatives of 𝐼1, 𝐼2 and

𝐼3 as:

S = 2
𝜕Ψ(C)
𝜕C

= 2 ]︀(𝜕Ψ
𝜕𝐼1

+ 𝐼1
𝜕Ψ

𝜕𝐼2
) I − 𝜕Ψ

𝜕𝐼2
C + 𝐼3

𝜕Ψ

𝜕𝐼2
C−1{︀ (A.29)

or in components:
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𝑆𝐵
𝐴 = 2

𝜕Ψ

𝜕𝐶𝐴
𝐵

= 2 ]︀(𝜕Ψ
𝜕𝐼1

+ 𝐼1
𝜕Ψ

𝜕𝐼2
) 𝛿𝐵𝐴 − 𝜕Ψ

𝜕𝐼2
𝐶𝐵

𝐴 + 𝜕Ψ
𝜕𝐼3

𝐼3(𝐶−1)𝐵𝐴{︀ (A.30)

A.3 Lie Groups

A rigorous description of the material symmetries of the materials and the de-

scription requires the use of symmetry groups. A symmetry group is usually un-

derstood as a Lie group (a mathematical group that is also a topological space).

In addition, the Lie groups are used to describe the effect deformation of the

micro-structure as the the action of a Lie group on the appropriate fiber bundle

(see section B.8, for a review of fiber bundles; and definition 2.3.8 for the descrip-

tion of the use of Lie groups in the motion of a microcontinuum solid). For these

reasons, we will make a brief review of Lie groups and actions of Lie groups on

manifolds which are needed for applications in elasticity. For further details on

the topics of this section reference [1] can be consulted.

Definition A.3.1. A finite-dimensional Lie group is a smooth manifold

𝒢 that is a group and for which the group operations of multiplications,

(⋅) ∶ 𝒢 × 𝒢 → 𝒢, (𝑔, ℎ) ↦ 𝑔 ⋅ ℎ, and inversion ()−1 ∶ 𝒢 → 𝒢, 𝑔 ↦ 𝑔−1 are

smooth. The identity of the group will be designed by 𝑒.

Most of the well known examples of Lie gropus are defined as matrix groups.

Some examples of matrix Lie groups are:

� General Linear group GL(𝑛). The group of linear isomorphisms of

R𝑛 → R𝑛 (i.e., the group of invertible linear mappings), called General

Linear group, is denoted by GL(R𝑛) or GL(𝑛) which is a Lie group of

dimension 𝑛2. It is a smooth manifold, being an open set of R𝑛2
and the

group operations are smooth since the formulas for the product and inverse

of matrices are smooth rational functions in the matrix components.

� Special Linear group SL(𝑛). The linear mappings with determinant

equal to 1, is a subgroup of GL(𝑛), called Special Linear group, which is

denoted by SL(R𝑛) or SL(𝑛).
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� Orthogonal group O(𝑛). The set of linear mappings that are isometries

R𝑛 form different subgroup ofGL(𝑛), called Orthogonal linear group, which

is denoted by O(R𝑛) or O(𝑛).

� Special Orthogonal group SO(𝑛). The set of rotations in the vector

space R𝑛 are a subgroup of O(𝑛) and SL(𝑛), called Special Orthogonal

linear group, which is denoted by SO(R𝑛) or SO(𝑛).

We have the following chains of inclusions:

SO(𝑛) ⊂ O(𝑛) ⊂ GL(𝑛)
SO(𝑛) ⊂ SL(𝑛) ⊂ GL(𝑛)

In addition, we have the intersection of groups SO(𝑛) = O(𝑛) ∩ SL(𝑛) and the

semidirect product GL(𝑛) = SL(𝑛)⋊R+ (i.e. 𝑔 ∈GL(𝑛), that is, it is possible to
write 𝑔 = 𝑔 ⋊ det(𝑔) where 𝑔 = 𝑔⇑det(𝑔) ∈ SL(𝑛), and SL(𝑛) ◁GL(𝑛)). The set

of elements of the General Linear group with positive determinant form a group:

i.e. GL+(𝑛) and SL+(𝑛) are Lie groups.

Anisotropic materials have symmetry groups that are proper subgroups of

O(𝑛), these subgroups are called point groups, a term used mainly in crystal-

lography. For each point of a solid, the type of material symmetry or type of

anisotropy is characterized by one such group. The symmetry group can be a

continuous point group or a discrete point group. In more than one dimension

discrete point groups come in infinite families, but from the crystallographic re-

striction theorem and one of Bieberbach’s theorems, each number of dimensions

has only a finite number of point groups that are symmetric over some lattice or

grid with that number. These are the crystallographic point groups. The above

fact allows to characterize all the possible types of anisotropic behavior for a

homogeneous material.

Definition A.3.2. A Lie subgroup ℋ of a 𝒢 is a subgroup of 𝒢 for which

the inclusion mapping 𝑖 ∶ ℋ ↪ 𝒢 is an immersion (see section B.3.5), that

is, 𝑖(ℋ) is an immersed submanifold of 𝒢.

It can be demonstrated that a topologically closed subgroup ℋ of a Lie group

𝒢 is a closed manifold and in particular is a Lie subgroup. Obviously every

discrete point group is a Lie subgroup. Note that not every subgroup of O(𝑛) is
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closed (for example, the elements all the rotations of rational angle in the plane

are a non-closed subgroup of SO(𝑛)).

A.4 Fisher–Tippett–Gnedenko theorem

The main result of the EVT is the Fisher–Tippett–Gnedenko theorem. Let

𝑋1, . . . ,𝑋𝑛 be a sequence of independent and identically distributed variables

with distribution function 𝐹 and let 𝑀𝑛 = max(𝑋1, . . . ,𝑋𝑛) denote the maxi-

mum. The exact asymptotic distribution of the maximum 𝑀𝑛 can be derived:

Pr(𝑀𝑛 ≤ 𝑧) = Pr(𝑋1 ≤ 𝑧, . . . ,𝑋𝑛 ≤ 𝑧)
= Pr(𝑋1 ≤ 𝑧)⋯Pr(𝑋𝑛 ≤ 𝑧) = (𝐹 (𝑧))𝑛

(A.31)

The associated indicator function 𝐼𝑛 = 𝐼(𝑥𝑛 > 𝑧) is a Bernoulli process with a suc-

cess probability 𝑝(𝑧) = (1−𝐹 (𝑧)) that depends on the magnitude ¡math¿z¡/math¿

of the extreme event. The number of extreme events within 𝑛 trials thus follows

a binomial distribution and the number of trials until an event occurs follows a

geometric distribution with expected value and standard deviation of the same

order 𝑂(1⇑𝑝(𝑧)). The Fisher–Tippett–Gnedenko theorem is the following:

Theorem A.4.1. Let 𝑋1, . . . ,𝑋𝑛 be a sequence of independent and identi-

cally distributed variables with distribution function 𝐹 and let

𝑀𝑛 =max(𝑋1, . . . ,𝑋𝑛)

denote the maximum. If there exist sequences of constants 𝑎𝑛 > 0 and 𝑏𝑛 ∈ R
such that

Pr{(𝑀𝑛 − 𝑏𝑛)⇑𝑎𝑛 ≤ 𝑧} → 𝐺(𝑧) ∝ exp )︀−(1 + 𝜁𝑧)−1⇑𝜁⌈︀

as 𝑛→∞ where 𝜁 depends on the tail shape of the distribution.
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B
Appendix: Manifolds, Tensors, and

Covariant derivative

B.1 Types of magnitudes

The quantitative description of the physical world requires the use of physical

magnitudes. A physical magnitude is a number (or an array of numbers) which

represents an observation by an observer. Different observers can use different

ways for representing the same reality, i. e. different observers will have different

measures of the physical properties (due to the frame dependency of the compo-

nents). The assumed objectivity of physical world will imply that the different

measures (or set of numbers used for representing some property) from differ-

ent observers can be related in a systematic way (see proposition B.4.1). Thus,

the objectivity of the physical world implies that there are some mathematical

transformation relating the measures of different observers, in other words, in-

tersubjectivity of measures is a logical consequence of objectivity of the physical

world. The converse of this affirmation is not a logical deduction, but is justified
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by induction: if there are intersubjectivity of measures for a physical property we

will assume there is an objectivity of this property. From a mathematical point

of view, we have different types of magnitudes:

� Scalar magnitudes. The properties described by scalar magnitudes can

be represented by a single number, that is equal for all observers (and thus

it represents an invariant number). Examples of this type of magnitude are

mass, density, temperature or pressure. Mathematically, scalar magnitudes

are tensors of 0th order or 0-tensors.

� Vector magnitudes. The more complex properties requiring to spec-

ify orientation, direction and magnitude are frequently represented by Eu-

clidean vectors. Examples of this type of magnitude are velocity, accel-

eration, etc. Mathematically, vectors are first order tensors or 1-tensors

(indeed, as we will see, there are two types of ”[polar] vectors”: contravari-

ant 1-tensors, called simply vectors, and covariant 1-tensors, called 1-forms;

pseudo-vectors or axial vectors such as torque, angular moment or magnetic

field are not true vectors, and tensorially they can be represent as the dual

of Hodge of a higher order tensor).

� [Proper] tensor magnitudes. Other magnitudes describing a complex

relation between directions in the neighborhood of a point and vectors re-

quire higher order tensors. In classical mechanics, we have some 2-tensor

like the inertia tensor, the different types of stress tensors, and the dif-

ferent types deformation tensors. Tensors of order higher than 2 are less

frequent, but in elasticity one have an important case the elastic tensor or

tensor of elastic constants for an anisotropic solid. (as in the case of 1-

tensors in curvilinear coordinates we need to distinguish between covariant,

contravariant and mixed

(In quantum physics an additional type is required spinorial magnitudes but

classically these types can be ignored because the symmetry group of the space

is not required to be simply connected groups, and thus there is no need for

using universal covering groups. Therefore, we do not need additional spinorial

magnitudes).

For specifying a physical magnitude, an observer needs to measure (or to com-

pute) the ”components” of a tensor that describes mathematically the magnitude.

For a k -tensor in a space of d dimensions an observer needs to specify 𝑑𝑘 num-

bers; these numbers are referred to as the ”components”. Naturally, this set of
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”components” are referred to a system of coordinates. For this reason the math-

ematical transformations relating different measures from different observers are

indeed changes of coordinates in a general sense. The following will supply the

formal details explaining that tensors are indeed multi-linear applications over

the tangent bundle of the ”physical space”, and the systems of coordinates are

indeed different ways of choosing vectorial bases over this tangent bundle.

Some additional technical details on the issues studied in this appendix can

be found in [72] (general use of manifolds in elasticity) and [50] (fiber bundles).

B.2 Curvilinear coordinates

In order to work out expressions form magnitudes in general coordinates we define

general systems of coordinates (in section B.6.2, the Christoffel symbols which are

needed for defining accelerations and covariant derivatives in general coordinates

will be defined).

Definition B.2.1. A coordinate system on R3 is a set {𝑥𝛼}, 𝛼 = 1,2,3

is a 𝐶∞ mapping (𝑥1, 𝑥2, 𝑥3) from an open set 𝒰𝑧 ⊂ R3 to R3 such that: (i)

the range is an open set 𝒰𝑥 ⊂ R3 , and

(ii) the mapping (𝑧1, 𝑧2, 𝑧3) ↦ (𝑥1(𝑧1, 𝑧2, 𝑧3), 𝑥2(𝑧1, 𝑧2, 𝑧3), 𝑥3(𝑧1, 𝑧2, 𝑧3)) of

𝒰𝑧 to 𝒰𝑥 has a 𝐶∞ inverse, whose components are denoted 𝑧𝑖(𝑥1, 𝑥2, 𝑥3) The
coordinate lines are curves 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡) whose components in Euclidean

coordinates are 𝑧𝑖(𝑐1(𝑡)) = 𝑧𝑖(𝑡, 𝑥2, 𝑥3), where 𝑥2 and 𝑥3 are fixed. Similar

definition hold for 𝑐2(𝑡) and 𝑐3(𝑡). The tangents to these curves are the

coordinate basis vectors; thus

𝑒𝑎 =
𝜕𝑧𝑖

𝜕𝑥𝑎
𝑖̂𝑖

where 𝑖̂𝑖 (𝑖 = 1,2,3) are the standard basis vectors in R3. Note that 𝑒𝑎 ∈ R3

and is a function of (𝑥1, 𝑥2, 𝑥3); that is, 𝑒𝑎 ∶ 𝒰𝑥 → R3. We always use the

[Einstein] summation convention: summation on repeated indices is

understood.

For example, cylindrical coordinates define a coordinate system in the whole

R3. Because the condition (ii) in definition B.2.1, the Jacobian of the transforma-
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Figure B.1. Curvilinear coordinates in R3, intersection of three coordinate lines at
one point, the tangent vectors depicted at the point correspond to the basis vectors at
that point (elements of the tangent bundle).

tion 𝑧𝑖 ↦ 𝑥𝑎(𝑧𝑖) is nonsingular, so {𝑒𝑎} is a basis of R3 for each (𝑥1, 𝑥2, 𝑥3). For
this reason the spherical coordinates (𝜌, 𝜃,𝜙) only define a coordinate system in

R3 minus an axis (namely where 𝜃 = 0, because for this value the Jacobian would

be null).

If 𝑐(𝑡) is a curve in R3 the tangent vector. If the trajectory is represented by

a curve parametrized by time then the tangent vector is precisely the velocity (if

arc length is used instead the vector is the unit tangent vector). We shall use

the special notation 𝜑𝑖
𝐸, and so on, for the Euclidean components of 𝜑 and other

magnitudes. Thus, the [Euclidean] material velocity is given by:

𝑉 (𝑋, 𝑡) = 𝑉 𝑡(𝑋) = 𝑉 𝑗
𝐸(𝑋, 𝑡)̂𝑖𝑗

(𝑉 1
𝐸(𝑋, 𝑡), 𝑉 2

𝐸(𝑋, 𝑡), 𝑉 3
𝐸(𝑋, 𝑡)) =

⎛
⎝
𝜕𝜑1

𝐸

𝜕𝑡
(𝑋, 𝑡),

𝜕𝜑2
𝐸

𝜕𝑡
(𝑋, 𝑡),

𝜕𝜑3
𝐸

𝜕𝑡
(𝑋, 𝑡)

⎞
⎠

𝑉 (𝑋, 𝑡) can be regarded as an element of the tangent space and 𝑉 (⋅, 𝑡) is a vector
field that is a section of the tangent bundle (see B.3.2). In the same vein, the

Euclidean coordinates of the acceleration are:

𝐴𝑖
𝐸(𝑋, 𝑡) =

𝜕𝑉 𝑖
𝐸

𝜕𝑡
(𝑋, 𝑡) = 𝜕

2𝜑𝑖
𝐸

𝜕𝑡2
(𝑋, 𝑡)

Proposition B.2.1. Let 𝜑(𝑋, 𝑡) be a C 1 motion of an elastic body ℬ and let

𝑉 be the material velocity (see definition 2.3.8 for these two concepts). Let
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{𝑥𝑖} be a general coordinate system on R3 and let 𝜑𝑖(𝑋, 𝑡) ∶= 𝑥𝑖(𝜑(𝑋, 𝑡)).
Then:

𝑉 𝑖(𝑋, 𝑡) = 𝜕𝜑
𝑖(𝑋, 𝑡)
𝜕𝑡

where 𝑉 𝑖(𝑋, 𝑡) are the components of 𝑉 relative to 𝑒𝑖 at the point 𝜑(𝑋, 𝑡)
with coordinates 𝑥𝑖(𝜑𝑖(𝑋, 𝑡)).

▶𝑃𝑟𝑜𝑜𝑓 Consider ((𝜕⇑𝜕𝑡)𝜑𝑖)𝑒𝑖 [where 𝜑𝑖 stands for 𝜑𝑖(𝑋, 𝑡) = 𝑥𝑖(𝜑(𝑋, 𝑡)) and

where 𝑒𝑖 stands for 𝑒𝑖(𝑥𝑖(𝜑(𝑋, 𝑡))). We have:

⎛
⎝
𝜕

𝜕𝑡
𝜑𝑎
⎞
⎠
𝑒𝑎 =

𝜕𝑥𝑎

𝜕𝑧𝑖
𝜕𝜑𝑖

𝐸

𝜕𝑡
𝑒𝑎 =

𝜕𝑥𝑎

𝜕𝑧𝑖
𝑉 𝑖
𝐸

𝜕𝑧𝑗

𝜕𝑥𝑎
𝑖̂𝑗

= 𝛿𝑗𝑖𝑉 𝑖
𝐸 𝑖̂𝑗 = 𝑉 𝑖

𝐸 𝑖̂𝑗 = 𝑉 = 𝑉 𝑎𝑒𝑎

since 𝜕𝑥𝑎⇑𝜕𝑧𝑖 and 𝜕𝑧𝑖⇑𝜕𝑥𝑎 are inverse matrices. ∎

The following proposition shows that the velocity vector is a 1-tensor with

the usual transformation for 1-tensor. Suppose that 𝑥̄𝑖 is another coordinate

system with, say, the same domain 𝒰𝑥. By composition we can form the change

of coordinate functions 𝑥̄𝑖(𝑥𝑗) and 𝑥𝑖(𝑥̄𝑗). The transformation property of 𝑉 is

worked out next; one says 𝑉 transforms “like a vector”. We let 𝑉 𝑎 denote the

components of 𝑉 in the basis 𝑒̄𝑎 associated with {𝑥̄𝑎}:

Proposition B.2.2. 𝑉 𝑎 = (𝜕𝑥̄𝑎⇑𝜕𝑥𝑏)𝑉 𝑏, where 𝑉 𝑎 stands for 𝑉 𝑎(𝑋, 𝑡), and
so forth.

▶𝑃𝑟𝑜𝑜𝑓 By the chain rule and B.2.1,

𝑉 𝑎 = 𝜕

𝜕𝑡
𝜑𝑎 = 𝜕𝑥̄

𝑎

𝜕𝑥𝑏
𝜕

𝜕𝑡
𝜑𝑏 = 𝜕𝑥̄

𝑎

𝜕𝑥𝑏
𝑉 𝑏

An alternative proof is obtained by noting that 𝑒̄𝑎 = (𝜕𝑥𝑏⇑𝜕𝑥̄𝑎)𝑒𝑏 ∎

To work out the components of the acceleration in a general coordinate system

we recall a few notations from calculus on R𝑛 (and Fréchet derivative in other

Banach spaces in A.1). For a function 𝑓 ∶ R𝑛 → R𝑚, the Fréchet derivative of

𝑓 at the point 𝑥0 will be denoted indistinctly by 𝑓 ′(𝑥0) or 𝐷𝑓(𝑥0). Notice that

the standard definition is independent of the coordinates and only the norm and

the linear structure of the involved Banach spaces are used. The usual calculus
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rules hold for the Fréchet derivative on R𝑛, for example, the chain rule states that

𝐷(𝑔○𝑓)(𝑥0) =𝐷𝑔(𝑓(𝑥0))○𝐷𝑓(𝑥0); the second “○” stands for composition of linear

maps (thus, matrix multiplication in R𝑚). The inverse function theorem and the

implicit function theorem remain valid even in infinite-dimensional Banach spaces

with minimal variations with respect the results in Euclidean spaces.

B.3 Manifolds, vector fields, one-forms and pull-

backs

Intuitively a manifold is a topological space which is locally homeomorphic to

an Euclidean space. Manifolds admit a tangent space and locally it is possible

to ”approximate” a small neighborhood by a convex set of the tangent space (in

every point on the surface of the calm sea, the surface is very close to an Euclidean

plane for practical purposes although the surface of the Earth is not plane).

This section initiates with a general definition of manifold and then the special

case of open sets in R3 is considered. The basic guidelines and manifold termi-

nology is the one used in this dissertation. Many of the definitions and concepts

are considered in further detail in references [72].

Definition B.3.1. A smooth n-manifold (or a manifold modeled on R𝑛)

is a setℳ such that: (1) For each 𝑃 ∈ ℳ there is a subset 𝒰 ⊂ℳ contain-

ing 𝑃 , and a one-to-one mapping, called a chart or coordinate system,

{𝑥𝛼} from 𝒰 onto an ope set 𝒱 ⊂ R𝑛 ; 𝑥𝛼 will denote the components of this

mapping (𝛼 = 1,2, . . . , 𝑛).
(2) If 𝑥𝛼 and 𝑥̄𝛼 are two mappings, the change of coordinate functions

𝑥̄𝛼(𝑥1, . . . , 𝑥𝑛) are 𝐶∞

If {𝑥̃𝛼} maps a set 𝒰 ⊂ ℳ one-to-one onto an open set in R𝑛, and if thee

change of coordinate functions with the given coordinate functions are 𝐶∞,

then {𝑥̃𝛼} will also be called a chart or coordinate system.

For instance, an open set ℳ ⊂ R𝑛 is a manifold. We take the Cartesian

coordinates {𝑍𝐼}𝐼=1,...,𝑛, and the the identity map to define the manifold structure.

By allowing all possible coordinate system that are 𝐶∞ functions of the 𝑍𝐼 , we

can enlarge our set of coordinate systems. Thus, a manifold embodies the idea
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of allowing general coordinate systems, it allow us to consider curved object

like surfaces (two manifolds) in addition to open sets of Euclidean space. The

manifoldℳ becomes a topological space by declaring the sets 𝒰 the open sets of

the topology.

For continuum mechanics both the initial configuration of the body ℬ (the

set that contains all the particles of the body) and the containing space 𝒮 are

special cases of manifolds. But many applications require this generality, such as

shell, liquid crystals and bodies with micro-structure. Many authors explicitly

consider ℬ as a set of R3 with compact closure and directly assume that 𝒮 = R3,

this is sufficient if there is no micro-structure for example.

For a manifold that is explicitly contained in Euclidean space it is trivial to define

the tangent space, even though an important mathematical discovery made at the

turn of the 20th century was that one could define a tangent to a manifold without

using a containing Euclidean space. Unfortunately, the abstraction necessary to

do this causes seems sometimes unnatural. Here we consider that every manifold

indeed can be considered embedded in an Euclidean space, and we use this fact

to define the tangent space directly:

Definition B.3.2. Letℳ⊂ R𝑛 be an open set and let 𝑃 ∈ ℳ. The tangent

space to ℳ at 𝑃 ; this tangent space is denoted by 𝑇𝑃ℳ. The tangent

bundle of ℳ is the disjoint union:

𝑇ℳ= ⊔
𝑥∈ℳ

𝑇𝑥ℳ= ⋃
𝑥∈ℳ

{𝑥} × 𝑇𝑥ℳ= ⋃
𝑥∈ℳ

{(𝑥, 𝑦)⋃︀ 𝑦 ∈ 𝑇𝑥ℳ}

consisting of pair (𝑃, 𝑣) of base points 𝑃 and tangent vectors at 𝑃 . The

map 𝜋 (or 𝜋ℳ if there is no danger of confusion) from 𝑇ℳ toℳ mapping

a tangent vector (𝑃, 𝑣) to its base point 𝑃 is called projection. We may

identify 𝑇𝑃ℳ = {𝑃} × R𝑛 as set order to keep the different tangent spaces

distinguished, or denote tangent vectors by 𝑣𝑃 = (𝑃, 𝑣) to indicate the point

𝑃 which is meant.

The tangent bundle is one of the most simple types of fiber bundles (see

section B.8). A fiber bundle can be considered as a manifold in which each point

bears attached a fiber (usually a linear space, see figures B.3 and B.4 for a graphic

intuition about them). A vector field is an assignment 𝑉 ∶ ℳ → 𝑇ℳ that assigns
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each point of the base manifold a vector of the tangent space at that point, thus,

a vector field can be viewed as a section of the tangent bundle (see definitions

B.4.1 and B.8.2). Once the tangent bundle of a manifold is defined, one makes it

into a manifold by introducing the coordinates of vectors as in definition B.3.1.

For the special case in which ℳ = ℬ is an open subset of R𝑛 this is easy. We

define the coordinate system induced by a coordinate chart onℳ:

Definition B.3.3. Let ℬ ⊂ R𝑛 be an open set and 𝑇ℬ ≈ ℬ×R𝑛 be its tangent

bundle. Let {𝑋𝐴} be a coordinate system on ℬ. The corresponding coor-

dinate system induced on 𝑇ℬ is defined by mapping 𝑊𝑋 = (𝑋,𝑊 ) to

(𝑋𝐴(𝑋),𝑊𝐴), where 𝑥 ∈ ℬ and 𝑊𝐴 = (𝜕𝑋𝐴⇑𝜕𝑍𝐼)𝑊 𝐼
𝐸 are the components

of 𝑊 in the coordinate system {𝑋𝐴}, as explained in section B.2.

For ℬ ⊂ R3, then 𝑇ℬ is a six-dimensional manifold. In general if ℬ is an

𝑛−manifold, 𝑇ℬ is a 2𝑛−manifold. In Euclidean space we know what is meant by

a C 𝑟 map. A mapping of manifols is C 𝑟 it it is C 𝑟 expressed in local coordinates:

Proposition B.3.1. (a) Let ℬ ⊂ R𝑛 be an open set and let 𝑓 ∶ ℬ → R be a

C 1 function. Let 𝑊𝑋 = (𝑋,𝑊 ∈ 𝑇𝑋ℬ. Let 𝑊𝑋(︀𝑓⌋︀ denote the derivative

of 𝑓 at 𝑋 in the direction 𝑊𝑋 , i.e., 𝑊𝑋(︀𝑓⌋︀ = 𝐷𝑓(𝑋) ⋅ 𝑊 . If {𝑋𝐴}
is any coordinate system on ℬ, then 𝑊𝑋(︀𝑓⌋︀ = (𝜕𝑓⇑𝜕𝑋𝐴)𝑊𝐴, where it is

understood that 𝜕𝑓⇑𝜕𝑋𝐴 is evaluated at 𝑋

(a) If 𝑐(𝑡) is a C 1 curve in ℬ, 𝑐(0) =𝑋, and 𝑊𝑋 = (𝑋,𝑊 ) = (𝑋, 𝑐′(0)) is

the tangent to 𝑐(𝑡) at 𝑡 = 0, then, in any coordinate system {𝑋𝐴},

𝑊𝐴 = 𝑑𝑐
𝐴

𝑑𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑐𝐴(𝑡) =𝑋𝐴(𝑐(𝑡))

▶𝑃𝑟𝑜𝑜𝑓

(a) 𝐷𝑓(𝑋) ⋅𝑊 =
𝜕𝑓

𝜕𝑍𝐼
𝑊 𝐼

𝐸 =
𝜕𝑓

𝜕𝑋𝐴

𝜕𝑋𝐴

𝜕𝑍𝐼
𝑊 𝐼

𝐸 =
𝜕𝑓

𝜕𝑋𝐴
𝑊𝐴

(b)
𝑑𝑐𝐴(𝑡)
𝑑𝑡

=
𝜕𝑋𝐴

𝜕𝑍𝐼
𝑊 𝐼

𝐸 =𝑊𝐴, evaluated at 𝑐(𝑡). ∎

Following standard practice, we let 𝑐′(0) stand for both (𝑋, 𝑐′(0)) and 𝑐′(0) ∈
R𝑛, when there is no danger of confusion. The above proposition gives a corre-

spondence between the “transformation of coordinate” definition and the other
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methods of defining the tangent space. Observe that the mapping 𝑓 ↦𝑊𝑋(︀𝑓⌋︀
is a derivation; i.e., it satisfies

𝑊𝑋(︀𝑓 + 𝑔⌋︀ =𝑊𝑋(︀𝑓⌋︀ +𝑊𝑋(︀𝑔⌋︀ (sum rule)

𝑊𝑋(︀𝑓𝑔⌋︀ = 𝑓𝑊𝑋(︀𝑔⌋︀ + 𝑔𝑊𝑋(︀𝑓⌋︀ (product rule)

In a coordinate system {𝑋𝐴} the basis vectors 𝐸𝐴 = (𝜕𝑍𝐼⇑𝜕𝑋𝐴)̂𝑖𝐼 are written
in some textbooks 𝜕⇑𝜕𝑋𝐴, since for any function 𝑓 , 𝐸𝐴(︀𝑓⌋︀ = 𝜕𝑓⇑𝜕𝑋𝐴. The

following definition lifts any mapping between manifolds to a mapping between

tangent bundles:

Definition B.3.4. Let ℬ ⊂ R𝑛 be an open set and let 𝒮 = R𝑚. If 𝜑 ∶ ℬ → 𝒮
is 𝒞1, the tangent map of 𝜑 is defined as follows:

𝑇𝜑 ∶ 𝑇ℬ → 𝑇𝒮, where 𝑇𝜑(𝑋,𝑊 ) = (𝜑(𝑋),𝐷𝜑(𝑋) ⋅𝑊 )

For 𝑋 ∈ ℬ, we let 𝑇𝑋𝜑 denote the restriction of 𝑇𝜑 to 𝑇𝑋ℬ, so 𝑇𝑋𝜑 becomes

the linear map 𝐷𝜑(𝑋) when the base point is dropped.

For completely general manifolds ℳ and 𝒩 and 𝜑 ∶ ℳ → 𝒩 , the tangent

map can be defined in terms of tangent vectors to curves, if (︀𝑐⌋︀𝑚 is a tangent

vector of a curve 𝑐 through 𝑚 ∈ ℳ at this point the tangent map is simply

defined as:

𝑇𝜑((︀𝑐⌋︀𝑚) = (︀𝜑 ○ 𝑐⌋︀𝜑(𝑚)

Notice that according to the previous definition, the following diagram com-

mutes:

𝑇ℬ 𝑇𝒮

ℬ 𝒮

𝑇𝜑

𝜋ℬ 𝜋𝒮

𝜑

(B.1)

The tangent mapping is in some sense the generalization of Jacobian matrix

to manifold calculus. The next proposition is the essence of the fact that 𝑇𝜑

makes intrinsic sense on manifolds:

Proposition B.3.2. (a) If 𝑐(𝑡) is a curve in ℬ and 𝑊𝑋 = 𝑐′(0), then

𝑇𝜑 ⋅𝑊𝑋 = 𝑑

𝑑𝑡
𝜑(𝑐(𝑡))⋁︀

𝑡=0
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(the base points 𝑋 of 𝑊𝑋 and 𝑇𝜑 ⋅𝑊𝑋 , being understood).

(b) If {𝑋𝐴} is a coordinate chart on ℬ and {𝑥𝑎} is one on 𝒮, then, for

𝑊 ∈ 𝑇𝑋ℬ
𝑇 (𝜑 ⋅𝑊𝑋)𝑎 =

𝜕𝜑𝑎

𝜕𝑋𝐴
𝑊𝐴

that is, in coordinate charts on ℬ of 𝑇𝑋ℬ is the Jacobian matrix of 𝜑 eval-

uated at 𝑋.

▶𝑃𝑟𝑜𝑜𝑓
(a) By the chain rule, 𝑑

𝑑𝑡𝜑(𝑐(𝑡))⋁︀
𝑡=0

=𝐷𝜑(𝑋) ⋅ 𝑐′(0).

(b)

𝐷𝜑(𝑋) ⋅𝑊 =
𝜕𝜑𝑖

𝐸

𝜕𝑍𝑖
𝑊 𝐼

𝐸 𝑖̂𝑖

=
𝜕𝜑𝑎

𝜕𝑍𝑖

𝜕𝑧𝑖

𝜕𝑥𝑎
𝑊 𝐼

𝐸 𝑖̂𝑖 (chain rule)

=
𝜕𝜑𝑎

𝜕𝑋𝐴

⎛
⎝
𝜕𝑋𝐴

𝜕𝑍𝐼
𝑊 𝐼

𝐸

⎞
⎠
⎛
⎝
𝜕𝑧𝑖

𝜕𝑥𝑎
𝑖̂𝑖
⎞
⎠

(chain rule)

=
𝜕𝜑𝑎

𝜕𝑋𝐴
𝑊𝐴𝑒𝑎

∎

In addition, it can be proven that 𝑇𝜑 is a tensor. Note the following trans-

formation rule:
𝜕𝜑𝑎

𝜕𝑋̄𝐴
= 𝜕𝑋

𝐵

𝜕𝑋̄𝐴

𝜕𝜑𝑏

𝜕𝑋𝐵

𝜕𝑥̄𝑎

𝜕𝑥𝑏

The chain rule can be expressed in terms of tangent mappings as follows:

Proposition B.3.3. Let 𝜑 ∶ ℬ → 𝒮 and 𝜓 ∶ 𝒮 → 𝒱 be C 𝑟 maps of manifolds

(𝑟 ≥ 1). Then 𝜓 ○ 𝜑 is a C 𝑟 mapping and 𝑇 (𝜓 ○ 𝜑) = 𝑇𝜓 ○ 𝑇𝜑

The proof of the above result is routine. This “T” formulation keeps track of the

base points automatically.

Before proceeding with the formulation, it is interesting to introduce some

additional terminology about mappings between manifolds, for future reference.

Definition B.3.5. (a) A map 𝑓 ∶ ℳ → 𝒩 for which 𝑇𝑚𝑓 is one-to-one at

each 𝑚 ∈ ℳ is called an immersion. For an immersion for each 𝑚 ∈ ℳ
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there is a neighborhood 𝑈 such that 𝑓(𝑈) ⊂ 𝑁 that is a submanifold of 𝒩 .

(b) An immersion is said to be an embedding if it is a homeomorphism

onto its image in the induced topology. Thus and embedding is a one-one

immersion.

(c) A map 𝑓 ∶ ℳ → 𝒩 is said to be proper if the inverse image 𝑓−1(𝐾) of

any compact set 𝐾 ⊂ 𝒩 is compact. It can be shown that a proper one-one

immersion is an embedding.

(d) A map 𝑓 ∶ ℳ → 𝒩 is said to be a C 𝑟 diffeomorphism if it is a one-one

C 𝑟− map and the inverse 𝑓−1 ∶ 𝒩 →ℳ is a C 𝑟 map.

Now, we define two mappings that allow to relate physical magnitudes ex-

pressed in material (initial) ans spatial (final) configurations: the push-forward

map and the pull-back map. For motivating the formal definitions, we recall some

uses of the push-forward and pull-back maps in elasticity theory. The relation

among stress tensors and strain tensors are definable by means of these maps:

� The second Piola-Kirchhoff stress tensor S is the pull-back of the

Cauchy stress tensor 𝜎(or equivalently the Cauchy stress tensor is the

push-forward of the second Piola-Kirchhoff stress tensor).

� The [full-covariant] right Cauchy-Green tensor C♭ (sometimes referred

to as the Green deformation tensor) is the pull-back of the metric

tensor g of the space where the motion of the elastic body takes place.

� The [full-contravariant] left Cauchy-Green tensor b♯ (sometimes referred

to as the Finger deformation tensor) is the push-forward of the inverse

metric tensor G−1of the original geometry of the body.

� The Green-Lagrange strain tensor E is the pull-back of the Euler-

Almansi strain tensor e.

� The components deformation gradient are the components of the restric-

tion of the tangent map (Jacobian matrix) of the motion (which we assume

is an diffeomorphism). It allows to relate the matrix components of the

above pairs of tensors.

See equations B.13 and B.14 for the justification of some of the above claims.

Returning to the formal definitions, we first define the pull-back and the

push-forward for vector fields. A formal definition is given in definition B.8.2,

but more informally, a vector field 𝑉 is an assignment 𝑉 ∶ ℳ → 𝑇ℳ such that

𝑉 (𝑋) ∈ 𝑇𝑋ℳ for all 𝑋 ∈ ℳ. A vector field is indeed a tensor field of type (1,0)
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as it can be seen in definition B.4.1. Then the pull-back and the push-forward of

a vector field are defined:

Definition B.3.6. Pull-back and Push-forward of a vector field. If 𝑉 is a

vector field 𝑉 ∶ ℳ → 𝑇ℳ, 𝜑 ∶ ℳ → 𝒩 is a regular C 1 diffeomorphism and

𝑣 is another vector field 𝑣 ∶ 𝒩 → 𝑇𝒩 then:

(a) If 𝜑 is a regular map, then 𝜑∗𝑉 = 𝑇𝜑 ○𝑉 ○ 𝜑−1, a vector field on 𝜑(ℳ)
is called the push-forward of 𝑉 by 𝜑

(b) If 𝜑−1 exists and is a regular map, then 𝜑∗𝑣 = 𝑇 (𝜑−1) ○ 𝑣 ○ 𝜑, a vector

field on 𝜑(ℳ) is called the push-forward of 𝑉 by 𝜑

In addition, the pull-back and the push-forward can be defined for 1-form

field [a tensor field of type (0,1)] and, in fact, for any type of tensor. Recall

that a 1-form at 𝑚 ∈ ℳ is a linear mapping 𝛼𝑚 ∶ 𝑇𝑚ℳ → R; the vector space

of all 1-forms is denoted as 𝑇 ∗
𝑚ℳ. The cotangent bundle 𝑇 ∗ℳ is the disjoint

union 𝑇 ∗ℳ = ⊔𝑚∈ℳ 𝑇 ∗
𝑚ℳ. A 1-form field is a cross-section of this bundle, i.e

an assignment 𝛼 ∶ ℳ → 𝑇 ∗ℳ such that 𝛼(𝑋) ∈ 𝑇 ∗
𝑚ℳ for all 𝑋 ∈ ℳ. Then the

pull-back and push-forward of an 1-form field are defined by:

Definition B.3.7. Pull-back and Push-forward of a 1-form field. If 𝛽 is a

1-form field 𝛽 ∶ 𝒩 → 𝑇𝒩 , and 𝜑 ∶ ℳ → 𝒩 is a C 1 map then:

(a) If 𝜑 is a C 1 map and 𝛽 is a 1-form on 𝒩 , then 𝜑∗𝛽 is a one form onℳ
defined by (𝜑∗𝛽)𝑋 ⋅𝑊𝑋 = 𝛽𝜑(𝑋) ⋅ (𝑇𝜑 ⋅𝑊𝑋) for 𝑋 ∈ ℳ and 𝑊𝑋 ∈ 𝑇𝑋ℳ is

called the pull-back of 𝛽 by 𝜑. In contrast to vector fields, the pull-back of

a 1-form does not use the inverse of 𝜑, so does not require 𝜑 to be regular.

(b) If 𝜑 is regular, it is possible to define the push-forward of a 1-form 𝛼

on ℳ by 𝜑∗𝛼 = (𝜑−1)∗𝛼.

The coordinate expression for the pull-back is (𝜑∗𝛽)𝐴 = (𝜕𝜑𝑎⇑𝜕𝑋𝐴)𝛽𝑎. For a
completely general tensor field the pull-back and the push-forward are formally

defined in the next section (definition B.4.2)

We conclude this section with another fundamental mathematical object in

manifolds analysis, the connection. A connection allows to define the notion of

parallel transport along a curve and the concept of material derivative:
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Definition B.3.8. A connection on a manifold ℳ is an operation ∇ ∶
𝒳 × 𝒳 → 𝒳 (where 𝒳 is the set of vector fields on ℳ) that associates to

each pair of vector fields 𝑋,𝑌 onℳ a third vector filed denoted ∇𝑋𝑌 and

called the covariant derivative of 𝑌 along 𝑋, such that:

(i) ∇𝑋𝑌 is linear in each of the two arguments 𝑋,𝑌 .

(ii) ∇𝑓𝑋𝑌 = 𝑓∇𝑋𝑌 for scalar functions 𝑓 .

(iii) ∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 + (𝑋(︀𝑓⌋︀)𝑌 .

These conditions are reasonable requirements for an operation that is sup-

posed to differentiate 𝑌 in the direction 𝑋. Note that (iii) is analogous to the

product rule for differentiation. We will return more in detail to the important

concept of covariant derivative in section B.6. But for the moment we will in-

troduce the Christoffel symbols of a connection (this will be needed for introduce

the Riemann connection on a Riemann manifolds in section B.5, and for defining

the covariant derivatives of higher order tensor in section B.6):

Definition B.3.9. The Christoffel symbols Γ𝐶
𝐴𝐵 of a connection ∇ on

ℬ are defined on a coordinate system {𝑋𝐴} by the relations:

∇𝐸𝐴
𝐸𝐵 = Γ𝐶

𝐴𝐵𝐸𝐶

The form of the above derivative follows from B.3.8, obviously, the Γ𝐶
𝐴𝐵 are

function of the point 𝑋. If we consider two different coordinate systems

{𝑋𝐴},{𝑋̄𝐴} on ℬ it can be proven that the Christoffel symbols for the two

vector bases {𝐸𝐴 = (𝜕⇑𝜕𝑋𝐴)} and {𝐸̄𝐴 = (𝜕⇑𝜕𝑋̄𝐴)}, are related by:

Γ̄𝐴
𝐵𝐶 = 𝜕𝑋̄

𝐴

𝜕𝑋𝐷
(Γ𝐷

𝐸𝐹

𝜕𝑋𝐸

𝜕𝑋̄𝐵

𝜕𝑋𝐹

𝜕𝑋̄𝐶
+ 𝜕2𝑋𝐷

𝜕𝑋̄𝐵𝜕𝑋̄𝐶
)

We denote the Christoffel symbols of ℬ by Γ𝐶
𝐴𝐵 and those of 𝒮 by 𝛾𝑐𝑎𝑏.

In the section B.6 an intuitive example is developed that will justify this

definition. For the moment we retain this formal definition for what follows.
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B.4 Tensor Analysis

The current notion used here is the same of Marsden and Hughes: ℬ and 𝒮 are

manifolds (the first one represents the initial shape of the body and the second

one the ambient space in which the body moves, thus a body motion will be

a uniparametric group of diffeomorphisms 𝜑𝑡 ∶ ℬ → 𝒮, see definition 2.3.2 for

details). Points in ℬ will be denoted by 𝑋 and those in 𝒮 by 𝑥. The tangent

spaces are written 𝑇𝑋ℬ and 𝑇𝑥𝒮. Coordinate systems are denoted by {𝑋𝐴} and

{𝑥𝑎} for ℬ and 𝒮, respectively, with the bases 𝐸𝐴 = 𝜕⇑𝜕𝑋𝐴 and 𝑒𝑎 = 𝜕⇑𝜕𝑥𝑎 (note

that the expressions 𝜕⇑𝜕𝑥 can be interpreted as a vector because the act in the

linear space of germs of functions on the manifold), the dual bases (bases of the

dual space of the tangent space) are denoted by 𝐸𝐴 = 𝑑𝑋𝐴 and 𝑒𝑎 = 𝑑𝑥𝑎. Notice
that

∐︀𝐸𝐽 ,𝐸𝐼̃︀ = ̂︁𝑑𝑋𝐽 ,
𝜕

𝜕𝑋𝐽
[︁ = 𝛿𝐼𝐼

In all cases the summation convention on repeated indexes is enforced.

Definition B.4.1. A tensor of type (𝑝𝑞) at 𝑋 ∈ ℬ is a multi-linear mapping:

T ∶ 𝑇 ∗
𝑋ℬ × ⋅ ⋅ ⋅ × 𝑇 ∗

𝑋ℬ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝑝 copies

×𝑇𝑋ℬ × ⋅ ⋅ ⋅ × 𝑇𝑋ℬ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝑞 copies

→ R

The components of T are defined by:

𝑇𝐴1𝐴2...𝐴𝑝
𝐵1𝐵2...𝐵𝑞 = 𝑇

𝐴1𝐴2...𝐴𝑝

𝐵1𝐵2...𝐵𝑞
= T(𝐸𝐴1 , . . . ,𝐸𝐴𝑝 ,𝐸𝐵1 , . . . ,𝐸𝐵𝑞)

A tensor field of type (𝑝𝑞) is an assignment 𝑋 ↦ T(𝑋) of a tensor to each

point of the manifold ℬ. The set of all tensor fields of the same type for a

fiber bundle (indeed, a vector bundle) called 𝑇 𝑝
𝑞 ℬ (for a definition of fiber

bundle see section B.8)

The upper indexes in definition B.4.1 are called contravariant indexes, and

the lower ones covariant indexes (when no possible confusion arises we will write

the first ones just on top of the other ones, note the two possible styles in the

components). A tensor field is said to be of class C 𝑟 if all its components are C 𝑟

functions of {𝑋𝐴} in any coordinate system. We repeat here common denomina-

tions for particular types of tensors:
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� A tensor of type (00) can be regarded as a scalar function.

� A tensor of type (10) can be regarded as a vector.

� A tensor of type (01) can be regarded as a covector or 1-form.

� A tensor of type (11) can be regarded as a linear application of the tangent

bundle.

� A tensor of type (02) can be regarded as an application of the tangent bundle

into the cotangent bundle.

� A tensor of type (20) can be regarded as an application of the cotangent

bundle into the tangent bundle.

One interesting thing about tensors are that they are mathematical objects

on its own (they are not just sets of components). For this reason the one and the

same tensor can be expressed in different systems of coordinates. Physically, a

particular set of components representing a tensor can be interpreted as relative

components to a frame of reference. Obviously, this is related to the discussion

about the mathematical consequences of assumption of the objectivity of physical

word as was stated at the beginning of section B.1. The we can explicitly state

the rules relating the components measured by different observers, interpreting

such relations as a change of coordinates:

Proposition B.4.1. Let {𝑋𝐴} and {𝑋̄𝐴} be two coordinates sets on ℬ and

T a tensor field of type (𝑝𝑞). Then the components of T in these two systems

are related by

𝑇
𝐴1...𝐴𝑝

𝐵1...𝐵𝑞
= 𝜕𝑋̄

𝐴1

𝜕𝑋𝐶1
. . .

𝜕𝑋̄𝐴𝑝

𝜕𝑋𝐶𝑝
𝑇

𝐶1...𝐶𝑝

𝐷1...𝐷𝑞

𝜕𝑋𝐷1

𝜕𝑋̄𝐵1
. . .

𝜕𝑋𝐷𝑝

𝜕𝑋̄𝐵𝑝

The proof follows straightforwardly form the definition of components, multi-

linearity, and the formula relating the bases 𝐸̄𝐴 = (𝜕𝑋̄𝐴⇑𝜕𝑋𝐵)𝐸𝐵.

The notion of pull-back and push-forward, were introduced in definition B.3.6

for vectors of tangent bundle and covectors (1-forms) of the cotangent bundle.

The notion can be extended for a general type of tensor field as follows:

Definition B.4.2. Let 𝜑 ∶ ℬ → 𝒮 be regular mapping. If T is a tensor of

type (𝑝𝑞) on ℬ, its push-forward 𝜑∗T is a tensor of type (𝑝𝑞) on 𝒮 defined

by:

𝜑∗T(𝛼1, . . . ,𝛼𝑝,𝑣1, . . . ,𝑣𝑞) = T(𝜑∗𝛼1, . . . , 𝜑
∗𝛼𝑝, 𝜑

∗𝑣1, . . . , 𝜑
∗𝑣𝑞)
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where the pull-backs and push-forward of the 𝛼s and 𝑣s is given in definition

B.3.6: that is, 𝜑 ∗ (𝛼) ⋅𝑢 = 𝛼(𝑇𝜑 ⋅𝑢) and 𝜑 ∗ (𝑣) = 𝑇𝜑−1 ⋅ 𝑣)
The pull-back of a tensor of t ∈ 𝑇 𝑝

𝑞 𝜑(ℬ) ⊂ 𝑇 𝑝
𝑞 𝒮 is given by

𝜑∗t = (𝜑−1)∗(t)

In components we have:

(𝜑∗T)𝑎1...𝑎𝑝𝑏1...𝑏𝑞
= 𝐹 𝑎1

𝐴1
⋯𝐹 𝑎𝑝

𝐴𝑝
𝑇

𝐴1...𝐴𝑝

𝐵1...𝐵𝑞
𝐹𝐵1

𝑏1
⋯𝐹𝐵𝑞

𝑏𝑞

where 𝐹𝐴
𝑎 ∶= (𝐹 −1)𝐴𝑎 . Similarly:

(𝜑∗T)𝐴1...𝐴𝑝

𝐵1...𝐵𝑞
= 𝐹𝐴1

𝑎1 ⋯𝐹
𝐴𝑝
𝑎𝑝 𝑇

𝑎1...𝑎𝑝
𝑏1...𝑏𝑞

𝐹 𝑏1
𝐵1
⋯𝐹 𝑏𝑞

𝐵𝑞

Let’s define two common operations the product tensor and the exterior prod-

uct :

Definition B.4.3. Given a tensor S of type (𝑝𝑞) and a tensor T of type (𝑟𝑠)
the product tensor S⊗T is a tensor of type (𝑝+𝑟𝑞+𝑠) defined by:

(S⊗T)(𝛼1, . . . ,𝛼𝑝,𝑊 1, . . . ,𝑊 𝑛,𝛽
1, . . . ,𝛽𝑟,𝑌 1, . . . ,𝑌 𝑠) = . . .

⋅ ⋅ ⋅ = S(𝛼1, . . . ,𝛼𝑝,𝑊 1, . . . ,𝑊 𝑛) ⋅T(𝛽1, . . . ,𝛽𝑟,𝑌 1, . . . ,𝑌 𝑠)

In components:

(S⊗T)𝐴1...𝐴𝑝
𝐵1...𝐵𝑞

𝐶1...𝐶𝑟

𝐷1...𝐷𝑠
= . . .

⋅ ⋅ ⋅ = S𝐴1...𝐴𝑝
𝐵1...𝐵𝑞T

𝐶1...𝐶𝑟
𝐷1...𝐷𝑠

The exterior product of an 𝑚-form 𝜂 and an 𝑛-form 𝜔 (skew-symmetric

tensor of type (0𝑛)) is an (𝑚 + 𝑛)−form given by:

𝜂 ∧𝜔 = skew(𝜂 ⊗𝜔) = (︀𝜂 ⊗𝜔⌋︀

Next we discuss two-point tensors used in elasticity and early discussed for ex-

ample in Ericksen (1960) [29]. These objects play an important rôle in continuum

mechanics; a prime example is the deformation tensor 𝐹 𝑎
𝐴:

Definition B.4.4. A two-point tensor T of type (𝑝𝑞𝑙𝑚) at 𝑋 ∈ ℬ over a

mapping 𝜑 ∶ ℬ → 𝒮 is a multilinear mapping

T ∶ (𝑇 ∗
𝑋ℬ)𝑝 × (𝑇𝑋ℬ)𝑞 × (𝑇 ∗

𝑋𝒮)𝑙 × (𝑇𝑋𝒮)𝑚 → R
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where 𝑥 = 𝜑(𝑋). The components of T are defined by:

T𝐴1...𝐴𝑝
𝐵1...𝐵𝑞

𝑎1...𝑎𝑙
𝑏1...𝑏𝑚

= . . .
⋅ ⋅ ⋅ = T(𝐸𝐴1 , . . . ,𝐸𝐴𝑝 ,𝐸𝐵1 , . . . ,𝐸𝐵𝑞 ,𝑒

𝑎1 , . . . ,𝑒𝑎𝑛 ,𝑒𝑏1 , . . . ,𝑒𝑏𝑚)

B.5 Riemann manifolds

A very important tensorial object for defining metric concepts (lengths, areas,

volumes, angle between curves, curvature, covariant derivatives, etc.) is the met-

ric tensor. In Euclidean space the usual inner product provides an example of a

metric tensor (when using Cartesian coordinates the metric tensor is precisely the

quadratic form given by 𝑔Euc(𝑈 ,𝑉 ) = 𝛿𝑎𝑏𝑈𝑎𝑉 𝑏 = 𝑈𝑎𝑉 𝑏 = 𝑈 ⋅𝑉 . When using non

Cartesian coordinates for vectors or tensor we need to choose the correct com-

ponents of the metric tensor for computations (see section B.6). Finally when

working in 𝑛-dimensional spaces that are not part of R𝑛 (for example, curved

surfaces) we need to use a non-Euclidean metric tensor. In continuum mechanics

using general curvilinear coordinates the metric tensor is an extremely important

object, but it is even more important in other physical theories. For example in

General Relativity theory the basic object to define the geometry of the curved

four-dimensional space-time is precisely a metric tensor, and the equations of

Einstein relate the presence of matter concentrations to the curvature defined by

the metric tensor (for weak gravitational fields the metric tensor is the Euclidean

tensor modified by a small term depending on the gravitational potential). In

elasticity some important tensor such as the right Cauchy tensor and the left

Cauchy tensor are respectively the pull-back and the push-forward of the metric

tensor of the initial and the final geometry. We proceed to define the important

notion of metric tensor and Riemann manifold:

Definition B.5.1. A metric tensor or Riemannian metric on a man-

ifold ℳ is a C∞ covariant 2-tensor g, i.e. a tensor of type (02), such that

for all 𝑋 ∈ ℳ:

(i) g𝑋(︀∶= g(𝑋)⌋︀ is symmetric; that is for 𝑊 1,𝑊 2 ∈ 𝑇ℳ, 𝑔𝑋(𝑊 1,𝑊 2) =
g𝑋(𝑊 2,𝑊 1)
(ii) g𝑋 is positive-definite: g𝑋(𝑊 ,𝑊 ) > 0 for 0 ≠ 𝑊 ∈ 𝑇𝑋ℳ, in other

words g𝑋 defines an inner product on 𝑇𝑋ℳ. If there is no danger of con-
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fusion, it is common to write

g𝑋(𝑊 1,𝑊 2) = ∐︀𝑊 1,𝑊 2̃︀𝑋 = 𝑔𝑎𝑏(𝑋)𝑊 𝑎
1𝑊

𝑏
2

ARiemannian manifold (ℳ,g) is an 𝑛−dimensional differentiable man-

ifold ℳ where a Riemannian metric g has been defined.

The condition (ii) allows to define an application 𝐿g ∶ ℳ → L (𝑇𝑥ℳ, 𝑇 ∗
𝑥ℳ)

given by 𝑊 1 ↦ 𝛼 where 𝛼(𝑊 2) = g𝑋(𝑊 2,𝑊 1), that is: 𝛼(⋅) = g𝑋(⋅,𝑊 1).
Since g is positive-definite this mapping 𝐿g is invertible. It can be proven that

the inverse is associated with a second-order tensor of type (20) denoted ḡ = g♯ =
𝑔𝑎𝑏𝑒𝑎 ⊗ 𝑒𝑏. The components 𝑔𝑎𝑏 are the components of inverse matrix of the

matrix with components 𝑔𝑎𝑏:

(𝐿g(𝑋)(𝑔𝑎𝑏𝐸𝑎))(𝐸𝑏) = 𝑔𝑎𝑏g(𝐸𝑎,𝐸𝑏) = 𝑔𝑎𝑏𝑔𝑏𝑐 = 𝛿𝑎𝑐 =𝐸𝑎(𝐸𝑏)

Thus, 𝐿g(𝑋)(𝑔𝑎𝑏𝐸𝑏) =𝐸𝑎, so we call ḡ the “inverse metric tensor”.

In elasticity it is important to distinguish between the metric tensor G of the

initial geometryℳ and the metric tensor g of the space 𝒮 where the motion of

the body and the deformation process take place.

An important notion used frequently in computation is that in a Riemann

manifold there is a natural isomorphism between tensorial fields of type (𝑝, 𝑞)
and (𝑝′, 𝑞′) for 𝑝 + 𝑞 = 𝑝′ + 𝑞′. The computation of this isomorphism requires the

use of components of the metric tensor (𝑔𝑎𝑏) and the “inverse” of metric tensor

(𝑔𝑎𝑏), for example, if we have a tensor

T = 𝑇 𝑖
𝑗𝑘

𝜕

𝜕𝑥𝑖
⊗ 𝑑𝑥𝑗 ⊗ 𝑑𝑥𝑘 𝑟𝑎𝑖𝑠𝑖𝑛𝑔ÐÐÐÐÐ→

3𝑡ℎ 𝑖𝑛𝑑𝑒𝑥
↑3 (T) = 𝑇 𝑖

𝑗𝛼𝑔
𝑘𝛼 𝜕

𝜕𝑥𝑖
⊗ 𝑑𝑥𝑗 ⊗ 𝜕

𝜕𝑥𝑘

This can be represented in terms of the operation of contraction as: C5
3(︀T ⊗ ḡ⌋︀,

where ḡ represents the “inverse” metric tensor and the operation C𝑘
𝑖 (︀⋅⌋︀ the sum

contraction between the 𝑘th index and the 𝑖th index (this latter operation is only

defined if 𝑘 is an upper index and 𝑖 a lower index). Then for a physical magnitudes

defined for a 𝑟th-order tensor the are always 2𝑟 associated representations (for

each of the 𝑘 indexes there are two possible positions ”up” and ”down”, then

2 ⋅ . . . 𝑘 times ⋅ 2). The change between two of these equivalent representations

is called “operation of lowering/raising indexes”, and is formalized in the next
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definition:

Definition B.5.2. Given a tensor field of type (𝑝, 𝑞):
(i) if 𝑞 > 0, the operation of raising the 𝑘th index is the mapping ↑𝑘∶ 𝑇 𝑝

𝑞ℳ→
𝑇 𝑝+1
𝑞−1ℳ given by

↑𝑘 T = C𝑝+𝑞+2
𝑘 (︀T⊗ ḡ⌋︀

(notice the above operation is defined only for some 𝑘s in {1, . . . , 𝑞}).
(ii) Similarly, if 𝑝 > 0, the operation of lowering the 𝑘th index is the

mapping ↓𝑘∶ 𝑇 𝑝
𝑞ℳ→ 𝑇 𝑝−1

𝑞+1ℳ given by

↓𝑘 T = C𝑘
𝑝+𝑞+2(︀T⊗ g⌋︀

If both mappings are defined for a given tensor, then they are inverse oper-

ations ↓𝑘 ○ ↑𝑘 = ↑𝑘 ○ ↓𝑘 = Id

(iii) The isomorphism ♭ ∶ 𝑇 𝑝
𝑞ℳ→ 𝑇 0

𝑝+𝑞ℳ is the result of 𝑝 consecutive oper-

ations of lowering. For any 𝑟th-order tensor T, the tensor T♭ is called the

full covariant associated tensor of T.

(iv) The isomorphism ♯ ∶ 𝑇 𝑝
𝑞ℳ → 𝑇 𝑝+𝑞

0 ℳ is the result of 𝑞 consecutive op-

erations of raising. For any 𝑟th-order tensor T, the tensor T♯ is called the

full contravariant associated tensor of T.

A connection is a mathematical procedure that makes precise the idea of

transporting vectors or tensors along a curve (or family of curves) in a “parallel”

and consistent manner. To specify a connection on a manifold is equivalent

to specify a covariant derivation on it. A covariant derivative is a derivation

for tensors, such that the covariant derivative of a tensor is also a tensor (and,

therefore, this derivative has the right tensorial transformation properties). As it

is explained in section B.6.1 the ordinary directional derivatives do not constitute

in general a covariant derivative. A connection is normally represented by a set

of functions Γ𝐶
𝐴𝐵 called the Christoffel symbols related to the covariant derivative

∇(⋅) by means of:

∇𝐸𝐴
𝐸𝐵 = Γ𝐶

𝐴𝐵𝐸𝐶 (B.2)

In a Riemann manifold, it is possible to define many different connections, but

there is a special connection that exists for every Riemann manifold that is torsion

free and has nice properties, this is called the Riemann connection or the Levi-

Civita connection. A fundamental theorem of Riemannian geometry states that

there is a unique connection which satisfies these properties. We define some
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previous concepts and then we state the theorem proving the uniqueness of the

Riemann connection.

Definition B.5.3. A connection is called torsion free if

∇𝑊𝑌 −∇𝑌 𝑊 = (︀𝑊 ,𝑌 ⌋︀

for all the vectors 𝑊 and 𝑌 and being (︀⋅, ⋅⌋︀ the commutator of two fields.

In general the torsion tensor is defined as

Tor(𝑌 ,𝑊 ) = ∇𝑊𝑌 −∇𝑌 𝑊 − (︀𝑊 ,𝑌 ⌋︀

and is a tensor of type (12). Thus a connection is torsion free when the

torsion tensor is zero.

It can be easily proved that a connection is torsion free if and only if the Christoffel

symbols are symmetric, i.e. Γ𝐴
𝐵𝐶 = Γ𝐴

𝐶𝐵. The key result that allows to define a

Riemann connection on a Riemann manifold is the Fundamental Theorem of

Riemann Geometry, that we state now and is based on the early pioneering work

of Levi-Civita:

Theorem B.5.1. Let (ℳ,g) a Riemann manifold. Then there is a unique

connection onℳ that is torsion free and for which parallel translation pre-

serves inner products.

It can be proven that the unique Riemann connection is characterized by Christof-

fel symbols with the form:

Γ𝑎
𝑏𝑐 =

1

2
𝑔𝑎𝑑 (𝜕𝑔𝑑𝑐

𝜕𝑥𝑏
+ 𝜕𝑔𝑏𝑑
𝜕𝑥𝑐

− 𝜕𝑔𝑏𝑐
𝜕𝑥𝑑

) (B.3)

The proof is simple: it proceeds to compute directly the restrictions in the enun-

ciate of the theorem and concludes that these conditions uniquely determines

Christoffel symbols of the form B.3 [72].

Every connection on a manifold defines a curvature tensor on the manifold.

For an immersed surface on R𝑛 (with the Riemann connection associated with

the induced metric tensor) this curvature tensor allow to compute in every point
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the sectional curvatures of the surface. Thus the curvature tensor is related to

the intuitive notion of curvature and radius of curvature. For a general abstract

manifold we define the Riemann curvature tensor as:

Definition B.5.4. The Riemann curvature tensor of a Riemann man-

ifold (ℳ,g) is a tensor R of type (13) defined from the Riemann connection

as follows:

R ∶ 𝑇 ∗
𝑥ℳ× 𝑇𝑥ℳ× 𝑇𝑥ℳ× 𝑇𝑥ℳ→ R

where:

R(𝛽,𝑊 1,𝑊 2,𝑊 3) = 𝛽(∇𝑊 1∇𝑊 2𝑊 3 −∇𝑊 2∇𝑊 1𝑊 3 −∇(︀𝑊 1,𝑊 2⌋︀𝑊 3)
= 𝛽((︀∇𝑊 1 ,∇𝑊 2⌋︀𝑊 3 −∇(︀𝑊 1,𝑊 2⌋︀𝑊 3)

where 𝛽 ∈ 𝑇 ∗
𝑥ℳ and 𝑊 𝑖 ∈ 𝑇𝑥ℳ Explicitly in components the Riemann

curvature tensor is given by:

𝑅𝑎
𝑏𝑐𝑑 =

𝜕Γ𝑎
𝑏𝑑

𝜕𝑥𝑐
− 𝜕Γ

𝑎
𝑐𝑏

𝜕𝑥𝑑
+ Γ𝑎

𝑐𝑒Γ
𝑒
𝑑𝑏 − Γ𝑎

𝑑𝑒Γ
𝑒
𝑐𝑏

The contraction 𝑅𝑏𝑑 = 𝑅𝑎
𝑏𝑎𝑑 is called the Ricci curvature and its trace

𝑅 = 𝑅𝑎
𝑎 = 𝑔𝑎𝑏𝑅𝑎𝑏 is called the scalar curvature.

The term curvature is justified because the parallel transport around a closed

curve in a Riemann manifold with non-vanishing curvature depends on the curve.

In addition, one can show the following fundamental property for the second

derivatives of a vector 𝑊 𝑎
⋃︀𝑏⋃︀𝑐

−𝑊 𝑎
⋃︀𝑐⋃︀𝑏

= 𝑅𝑎
𝑏𝑐𝑑𝑊 𝑑, this contrasts with the case of

directional derivatives in R𝑛 which commute for any smooth vector field.
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B.6 Covariant derivative

B.6.1 An intuitive example

Figure B.2. The tangent vector to co-
ordinate lines belong to different tangent
spaces, consider the coordinate line AN
then the tangent vector in A belong to a
two-dimensional plane, but the tangent vec-
tor in N belong to another plane, thus work-
ing with two dimensional vector fields on
the surface it is not immediate how to relate
vectorial or tensorial magnitudes defined at
different points.

When general curvilinear coordinates

are used some concepts need to be

checked. For example, in an Euclidean

space R𝑛 the tangent space at ev-

ery point is an 𝑛-dimensional vector

space over R, thus, it can be identi-

fied again with the space R𝑛 (then the

space and the tangent space are “coin-

cident”). This is not the general case

for a manifold or curved space (say, for

example, a curved surface), the tan-

gent space at different points is not the

same (although all the tangent spaces

are isomorphic, they are not the same).

It is not immediate how to obtain a

derivative of a vector field defined on a

curved manifold. In we consider coor-

dinate lines on a curved surface, then

at each point one can select as a basis

the tangent vectors to these lines. But

this procedure implies that the basis

vectors at different points do not be-

long to the same space (see for exam-

ple figure B.2). The same problem appears when non Cartesian coordinates are

employed in an Euclidean space (so the problem is more generalized than we

can think appearing even in Euclidean spaces). For example consider a classical

particle moving in a straight line with constant velocity, we have:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥(𝑡) = 𝑑 cos 𝜃0 − 𝑣𝑡 sin 𝜃0
𝑦(𝑡) = 𝑑 sin 𝜃0 + 𝑣𝑡 cos 𝜃0

⇒ 𝑦(𝑡) = 𝑑 − 𝑥 cos(𝜃0)
sin 𝜃0

A straightforward computation shows that the above equations correspond to
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a motion with constant velocity 𝑣:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑣𝑥 =
𝑑𝑥

𝑑𝑡
= −𝑣 sin 𝜃0

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
= +𝑣 cos 𝜃0

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑎𝑥 =
𝑑𝑣𝑥

𝑑𝑡
=
𝜕𝑣𝑥

𝜕𝑥
𝑥̇ +

𝜕𝑣𝑥

𝜕𝑦
𝑦̇ = 0

𝑎𝑦 =
𝑑𝑣𝑦

𝑑𝑡
= 0

Being zero the accelerations, we have checked the velocity is constant. The

same straightforward calculation could be done in polar coordinates. It is obvious

from the above equations that the particle moves along a straight line which does

not pass through the origin, the trajectory in polar coordinates is given by:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝜌(𝑡) =
⌋︂
𝑑2 + 𝑣2𝑡2

𝜃(𝑡) = 𝜃0 + arctan
⎛
⎝
𝑣𝑡

𝑑

⎞
⎠

⇒ 𝜌(𝑡) =
𝑑

cos(𝜃(𝑡) − 𝜃0)
,

with(𝜃0 − 𝜋⇑2 < 𝜃 < 𝜃0 + 𝜋⇑2)

Computing the velocities we obtain the right expression:

𝑣𝜌 = 𝜌̇ = 𝑣 sin(𝜃 − 𝜃0), 𝑣𝜃 = 𝜃 = 𝑣
𝜌
cos(𝜃 − 𝜃0)

Using the metric tensor in polar coordinates we can compute the modulus of

velocity as 𝑣2 = 𝑔𝛼𝛽𝑣𝛼𝑣𝛽 = 𝑣𝜌𝑣𝜌 + 𝜌2𝑣𝜃𝑣𝜃 = 𝑣2(︀sin2(𝜃 − 𝜃0) + 𝜌2(cos(𝜃 − 𝜃0)⇑𝜌2)⌋︀

But a problem arises when acceleration is computed in the same way we did

for Cartesian coordinates, because:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑎𝜌 ≠
𝑑𝑣𝜌

𝑑𝑡
=
𝜕𝑣𝜌

𝜕𝜌
𝜌̇ +

𝜕𝑣𝜌

𝜕𝜃
𝜃

𝑎𝜃 ≠
𝑑𝑣𝜃

𝑑𝑡
=
𝜕𝑣𝜃

𝜕𝜌
𝜌̇ +

𝜕𝑣𝜃

𝜕𝜃
𝜃

The problem, in fact, is that the basis formed by the radial vector and the

polar azimuthal vector {𝑒𝜌,𝑒𝜃} does not have the same orientation at each point.

It is clear that for a right derivation of the acceleration we need to take into

account the change in the basis vectors:
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𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑

𝑑𝑡
(𝑣𝜌𝑒𝜌 + 𝑣𝜃𝑒𝜃) = (𝑣̇𝜌𝑒𝜌 + 𝑣̇𝜃𝑒𝜃) + (𝑣𝜌𝑒̇𝜌 + 𝑣𝜃𝑒̇𝜃)

Note that for Cartesian coordinates only the first term of the last second

member appears. But for polar or general coordinates, we need to add the second

term in order to take into account the variation the basis vectors. This is the

motivation for the covariant derivative 𝜕⇑𝜕𝑥𝑎 to define the new terms properly.

By chain rule we will have for a vector in the basis a derivative of the form:

𝑒̇𝑎 =
𝜕𝑒𝑎

𝜕𝜌

𝜕𝜌

𝜕𝑡
+ 𝜕𝑒𝑎

𝜕𝜃

𝜕𝜃

𝜕𝑡

For scalar functions we define 𝜕𝑓⇑𝜕𝑡 ∶= 𝜕𝑓⇑𝜕𝑡, and for the vectors of the basis,

being its derivative another vector we can rewrite it in terms of the basis:

∇𝑏𝑒𝑎 =
𝜕𝑒𝑎

𝜕𝑥𝑏
= 𝛾𝑐𝑎𝑏𝑒𝑐 (B.4)

where 𝛾𝑐𝑎𝑏 are the Christoffel symbols of the definition B.3.9. Thus the main

conclusion of this section is that when using general curvilinear coordinates we

need to define the covariant derivative denoted ∇𝑎 different from the ordinary

derivatives 𝜕𝑎 in order to take into account the variation in basis vectors. The

same is true for general manifold calculus, when only curvilinear coordinates are

possible.

As an illustration of that, we will return to the example of the particle mov-

ing with constant velocity along a straight line, then the acceleration correctly

computed is:

𝑎𝜌 =
𝐷𝑣𝜌

𝐷𝑡
= 𝜌̇

⎛
⎝
𝜕𝑣𝜌

𝜕𝜌
+ 𝛾𝜌𝜌𝜌𝑣𝜌 + 𝛾𝜌𝜌𝜃𝑣𝜃

⎞
⎠
+ 𝜃

⎛
⎝
𝜕𝑣𝜌

𝜕𝜃
+ 𝛾𝜌𝜃𝜌𝑣𝜌 + 𝛾

𝜌
𝜃𝜃𝑣

𝜃
⎞
⎠
=

= 𝜌̇(0 + 0 + 0) + 𝜃
⎛
⎝
𝑣 cos(𝜃 − 𝜃0) + 0 − 𝜌

𝑣

𝜌
cos(𝜃 − 𝜃0)

⎞
⎠
= 0
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𝑎𝜃 =
𝐷𝑣𝜃

𝐷𝑡
= 𝜌̇

⎛
⎝
𝜕𝑣𝜃

𝜕𝜌
+ 𝛾𝜃𝜌𝜌𝑣𝜌 + 𝛾𝜃𝜌𝜃𝑣𝜃

⎞
⎠
+ 𝜃

⎛
⎝
𝜕𝑣𝜃

𝜕𝜃
+ 𝛾𝜃𝜃𝜌𝑣𝜌 + 𝛾𝜃𝜃𝜃𝑣𝜃

⎞
⎠
=

𝜌̇
⎛
⎝
−
𝑣 cos(𝜃 − 𝜃0)

𝜌2
+ 0 +

1

𝜌

𝑣 cos(𝜃 − 𝜃0)
𝜌

⎞
⎠
+ 𝜃

⎛
⎝
−
𝑣 sin(𝜃 − 𝜃0)

𝜌
+
1

𝜌
𝑣 sin(𝜃 − 𝜃0) + 0

⎞
⎠
= 0

Now the computation is right and both components of acceleration are effec-

tively zero.

B.6.2 The general case

We have shown in the previous section that the computation of derivatives of

vectors in general coordinates can not be calculated just by deriving components.

The same is true for a general tensor. When using general curvilinear coordinates,

we need to use covariant derivatives in order to achieve the right results. The

computation of the covariant derivatives requires the use of Christoffel symbols

(introduced in B.3.9, in an abstract context). In order to introduce them in a

motivated way we will return to the context of definition B.2.1, the covariant

derivative of frame vectors 𝑒𝑎 = (𝜕𝑧𝑗⇑𝜕𝑥𝑎)̂𝑖𝑗 can be defined as:

𝜕𝑒𝑎

𝜕𝑥𝑏
= 𝜕2𝑧𝑗

𝜕𝑥𝑎𝜕𝑥𝑏
𝑖̂𝑗 =

𝜕2𝑧𝑗

𝜕𝑥𝑎𝜕𝑥𝑏
𝜕𝑥𝑥

𝜕𝑧𝑗
𝑒𝑐

This last object arises frequently in manifold calculus, it is clearly recognizable

as the Christoffel symbols associated to the spatial coordiantes, the we offer a

second definition of Christoffel symbols here:

Definition B.6.1. The Christoffel symbols of the coordinate system

{𝑥𝑎} on R3 are defined by

𝛾𝑐𝑎𝑏 =
𝜕2𝑧𝑖

𝜕𝑥𝑎𝜕𝑥𝑏
𝜕𝑥𝑐

𝜕𝑧𝑖

which are regarded as functions of 𝑥𝑑. The Christoffel symbols of a material

coordinate system {𝑋𝐴} are denoted Γ𝐴
𝐵𝐶
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Note that the 𝛾’s are symmetric in the sense that 𝛾𝑐𝑎𝑏 = 𝛾𝑐𝑏𝑎 For a general Rie-

mann manifold a more general there is a more general definition. The Christoffel

symbols allow to define “parallel transport” and “covariant derivatives” on a Rie-

mann manifold, these notions generalize the concept of parallel lines and invariant

derivatives to curved spaces/manifolds.

Then using the Christoffel symbols we can demonstrate the following general

result for the material acceleration (see definition 2.3.3) in general coordinates:

Proposition B.6.1. Let 𝜑(𝑋, 𝑡) be a C 2 motion of a body ℬ and 𝑉 𝒜 the

material velocity and acceleration. Then the components 𝐴𝑎 of 𝐴 in the

basis 𝑒𝑎 of a coordinate system {𝑥𝑎} are given by:

𝐴𝑎 = 𝜕𝑉
𝑎

𝜕𝑡
+ 𝛾𝑎𝑏𝑐𝑉 𝑏𝑉 𝑐

Moreover 𝐴𝑎 transforms as a vector; that is 𝐴𝑏 = (𝜕𝑥̄𝑏)⇑(𝜕𝑥𝑎)𝐴𝑎

▶𝑃𝑟𝑜𝑜𝑓

𝐴 =
𝜕𝑉

𝜕𝑡
=
𝜕𝑉 𝑖

𝐸

𝜕𝑡
𝑖̂𝑖 =

𝜕

𝜕𝑡

⎛
⎝
𝜕𝑧𝑖𝐸
𝜕𝑥𝑐

𝑉 𝑐
⎞
⎠
𝑖̂𝑖

=
𝜕2𝑧𝑖𝐸
𝜕𝑥𝑏𝜕𝑥𝑐

𝜕𝑥𝑏

𝜕𝑡
𝑉 𝑐𝑖̂𝑖 +

𝜕𝑧𝑖𝐸
𝜕𝑥𝑎

𝜕𝑉 𝑎

𝜕𝑡
𝑖̂𝑖 =

𝜕2𝑧𝑖𝐸
𝜕𝑥𝑏𝜕𝑥𝑐

𝑉 𝑏𝑉 𝑐
𝜕𝑥𝑎

𝜕𝑧𝑖𝐸
𝑒𝑎 +

𝜕𝑉 𝑎

𝜕𝑡
𝑒𝑎

Comparison with 𝐴 = 𝐴𝑎𝑒𝑎 yields to the first part of proposition.

For the second part, define a coordinate change 𝑒̄𝑎 = (𝜕𝑥̄𝑏)⇑(𝜕𝑥𝑎)𝐴𝑒
𝑏 and

comparing 𝒜 = 𝐴𝑎𝑒𝑎 = 𝐴𝑏𝑒̄𝑏. ∎

Now we proceed to the general definition of covariant derivative for vectors:

Definition B.6.2. Let 𝑣 and 𝑤 be two vector fields on R3, that is, maps of

open sets of R3 to R3. Assume that 𝑣 is C 1. Thus 𝐷𝑣 is a linear map of R3

to R3, so 𝐷𝑣(𝑥) ⋅𝑤(𝑥) is a vector field on R3. It is called the covariant

derivative of 𝑣 along 𝑤 and is denoted ∇𝑤𝑣 or 𝑤 ⋅ ∇𝑣

This particular definition is given by Marsden and Hughes (1983) [72]. A

more general definition can be given without the need to assume that the body
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is immersed in R3, but the definition needs to be a little more abstract. We will

state the following proposition without a proof (the proof is similar to that of

B.6.1):

Proposition B.6.2. In a coordinate system system {𝑥𝑎},

(∇𝑤𝑣)𝑎 =
𝜕𝑣𝑎

𝜕𝑥𝑏
+ 𝛾𝑎𝑏𝑐𝑤𝑏𝑣𝑐

and (∇𝑤𝑣)𝑎 transforms as a vector.

For the components of covariant derivatives, the following abbreviated notation

is commonly used: 𝑉 𝑎
⋃︀𝑏
, 𝑇 𝑎𝑏

𝑐⋃︀𝑑
denote the covariant derivatives ∇𝑏𝑉 𝑎,∇𝑑𝑇 𝑎𝑏

𝑐 , thus a

notable saving of space is obtained without any ambiguity. Where for a general

tensor of type (𝑝𝑞) the covariant derivatives are defined in components as:

(∇T)𝑎1...𝑎𝑝𝑏1...𝑏𝑞𝑘
= ∇𝑘T

𝑎1...𝑎𝑝
𝑏1...𝑏𝑞

= 𝑇 𝑎1...𝑎𝑝
𝑏1...𝑏𝑞 ⋃︀𝐾

=
𝜕

𝜕𝑥𝑘
𝑇 𝑎1...𝑎𝑝

𝑏1...𝑏𝑞 + 𝑇
𝑙𝑎2...𝑎𝑝
𝑏1...𝑏𝑞

𝛾𝑎1𝑙𝑘 + 𝑇
𝑎1𝑙...𝑎𝑝
𝑏1...𝑏𝑞

𝛾𝑎2𝑙𝑘 + (all upper indexes) − . . .
⋅ ⋅ ⋅ − 𝑇 𝑎1...𝑎𝑝

𝑙𝑏2...𝑏𝑞
𝛾𝑙𝑏1𝑘 − 𝑇

𝑎1...𝑎𝑝
𝑙𝑏2...𝑏𝑞

𝛾𝑙𝑏2𝑘 − (all lower indexes)

(B.5)

It can be proven that for the Riemann connection one have ∇g = 0, and thus ∇
preserves inner products.

More in general for a two-point tensor of type (𝑝𝑞𝑚𝑛 )using coordinates {𝑋𝐴},{𝑥𝑎},
and the associated Christoffel symbols 𝛾𝑎𝑏𝑐,Γ

𝐴
𝐵𝐶 the covariant derivative is ex-

tended by means of:

𝑇
𝐴1...𝐴𝑝𝑎1...𝑎𝑚
𝐵1...𝐵𝑞𝑏1...𝑏𝑛⋃︀𝐾

=
𝜕

𝜕𝑋𝐾
𝑇

𝐴1...𝐴𝑝𝑎1...𝑎𝑚
𝐵1...𝐵𝑞𝑏1...𝑏𝑛

+ . . .
⋅ ⋅ ⋅ + 𝑇𝐿...𝐴𝑝𝑎1...𝑎𝑚

𝐵1...𝐵𝑞𝑏1...𝑏𝑛
Γ𝐴1

𝐿𝐾 + (all upper capital indexes) − . . .
⋅ ⋅ ⋅ − 𝑇𝐴1...𝐴𝑝𝑎1...𝑎𝑚

𝐿...𝐵𝑞𝑏1...𝑏𝑛
Γ𝐿
𝐵1𝐾

− (all lower capital indexes) + . . .
⋅ ⋅ ⋅ + 𝑇𝐴1...𝐴𝑝𝑙...𝑎𝑚

𝐵1...𝐵𝑞𝑏1...𝑏𝑛
𝛾𝑎1𝑘𝑙 𝐹

𝑙
𝐾 − (all upper lowercase indexes) − . . .

⋅ ⋅ ⋅ − 𝑇𝐴1...𝐴𝑝𝑎1...𝑎𝑚
𝐵1...𝐵𝑞𝑙...𝑏𝑛

Γ𝑘
𝑏1𝑙
𝐹 𝑙
𝐾 + (all lower lowercase indexes)

(B.6)
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B.6.3 Gradient, divergence and material derivative

The covariant derivate allow to generalize the concepts of vector calculus on R𝑛

to a Riemann manifold. For example given a scalar function 𝑓 ∶ ℳ → R defined

on a Riemann manifold we define the gradient as the vector field onℳ defined

by:

∇𝑓 = 𝑔𝑎𝑏 𝜕𝑓
𝜕𝑥𝑏

𝑒𝑎, or (∇𝑓)𝑎 = 𝑔𝑎𝑏 𝜕𝑓
𝜕𝑥𝑏

(B.7)

The divergence of tensor field F of type (𝑝𝑞) is a tensor div F of type (𝑝−1𝑞 ) obtained
by contracting the last contravariant and covariant indexes in ∇F:

(div F)𝑎1...𝑎𝑝𝑏1...𝑏𝑞
= F

𝑎1...𝑎𝑝−1𝑐

𝑏1...𝑏𝑞 ⋃︀𝑐
(B.8)

For applications in elasticity we distinguish between “DIV” and “div” for tensor

in the material or spatial configurations of a deformed body. When the tensor

field is in fact a vector field is the above formula reduces to:

(div 𝑊 ) =𝑊 𝑎
⋃︀𝑎 =

1⌋︂
det 𝑔

𝜕

𝜕𝑥𝑎
(𝑊 𝑎

⌈︂
det 𝑔) (B.9)

The material derivative associated with a motion 𝜑𝑡 of a vector field 𝑊 ∈ 𝑇ℬ
along a material trajectory 𝜉(𝑡) = 𝜑𝑡(𝑋) = 𝜑(𝑋, 𝑡) ∈ 𝒮 denoted by 𝐷𝑊 ⇑𝐷𝑡 or 𝑊̇
is defined as:

𝑊̇ = 𝐷𝑊

𝐷𝑡
= ∇𝜉𝑊 , (𝐷𝑊

𝐷𝑡
)
𝐴

= 𝑑

𝑑𝑡
(𝑊𝐴(𝜉(𝑡))) + Γ𝐴

𝐵𝐶𝑊
𝐵(𝜉(𝑡))𝜉𝐶 (B.10)

For short, 𝐷𝑊 ⇑𝐷𝑡 = 𝜕𝑊 ⇑𝜕𝑡+∇𝜉𝑊 . This definition can be generalized to tensors

of any type. With the previous definition it is easy to see the relation between

the spatial acceleration and the spatial velocity:

𝑎 = 𝜕𝑎
𝜕𝑡

+∇𝑣𝑣 = 𝑣̇ (B.11)

B.7 Deformation measures

In section B.3 the differential of a configuration (see definition B.3.4) was ex-

amined. The tangent map generalizes the concept of “Jacobian matrix” of the
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calculus in R𝑛. In elasticity theory the term “deformation gradient” is used for

the tangent map of manifold calculus (we consider this a misleading name be-

cause it has nothing to do with a real gradient, but we keep this denomination).

This section is devoted to the properties of such mapping and the additional de-

formation measures constructible from it. Elasticity theory makes an extensive

use of all the notions explained in this section. We begin with a formal definition

of the deformation gradient:

Definition B.7.1. Let 𝜑 ∶ ℬ → 𝒮 be a C 1 configuration of ℬ (ℬ,𝒮 are

general manifolds here). The tangent map of 𝜑 is denoted F and is called

the deformation gradient of 𝜑; thus F = 𝑇𝜑. For 𝑋 ∈ ℬ, we let F𝑋 of

F(𝑋) denote the restriction of F to 𝑇𝑋ℬ. Thus F(𝑋) ∶ 𝑇𝑋ℬ → 𝑇𝜑(𝑋)𝒮 is a

linear mapping for each 𝑋 ∈ ℬ

The following proposition works out the coordinate description of F:

Proposition B.7.1. Let {𝑋𝐴} and {𝑥𝑎} denote coordinate systems of ℬ
and 𝒮, respectively. Then the matrix of F(𝑋) with respect to the coordinate

bases 𝐸𝐴(𝑋) = 𝜕⇑𝜕𝑋𝐴 and 𝑒𝑎(𝑋) = 𝜕⇑𝜕𝑥𝑎 [where 𝑥 = 𝜑(𝑋) is given by

𝐹 𝑎
𝐴 = 𝜕𝜑

𝑎(𝑋)
𝜕𝑋𝐴

For a motion 𝜑𝑡(𝑋) the we write F(𝑋, 𝑡) = 𝑇𝜑𝑡(𝑋) and frequently is written

simply as F, which is an important example of a two-point tensor. These objects

were discussed in B.4. Notice that the coordinate expression for 𝐹 𝑎
𝐴 does not

involve any covariant derivatives. This is because 𝜑 us bit a vector, but rather is

a poing mapping of ℬ to 𝒮. We will assume in this section 𝒮 = R𝑛 and 𝒮 ⊂ R𝑛 is a

simple body (these assumptions are not essential, the details for general Riemann

manifolds can be generalized without difficulties). Let ∐︀, ̃︀𝑥 denote the standard

inner product 𝒮 for vectors based at 𝑥 ∈ 𝒮 and similarly let ∐︀, ̃︀𝑋 be the standard

inner product in ℬ at 𝑋 ∈ ℬ. For a vector 𝑣 ∈ 𝑇𝑥𝒮 we let ∏︁𝑣∏︁𝑥 = ∐︀𝑣,𝑣̃︀1⇑2𝑥 be the

length of 𝑣. Similarly the length of 𝑊 ∈ 𝑇𝑥ℬ is denoted ∏︁𝑊 ∏︁𝑋 (when there is

no danger of confusion, the subscripts may be dropped.) Let A ∶ 𝑇𝑋ℬ → 𝑇𝑥𝒮 be
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a linear transformation. Then the transpose, or adjoint of A, denoted A𝑇 , is the

linear transformation

A𝑇 ∶ 𝑇𝑥𝒮 → 𝑇𝑋ℬ such that ∐︀A𝑊 ,𝑣̃︀𝑥 = ∐︀𝑊 ,A𝑇𝑣̃︀𝑋

For all 𝑊 ∈ 𝑇𝑋ℬ and 𝑣. If B ∶ 𝑇𝑥𝒮 → 𝑇𝑋ℬ is a linear transformation, it is

called symmetric if B = B𝑇 . In a coordinate system {𝑥𝑎} on 𝒮, let the metric

tensor 𝑔𝑎𝑏 be defined by 𝑔𝑎𝑏(𝑥) = ∐︀𝑒𝑎,𝑒𝑏̃︀𝑥 and similarly define 𝐺𝐴𝐵(𝑋) on ℬ by

𝐺𝐴𝐵(𝑋) = ∐︀𝐸𝐴,𝐸𝐵̃︀𝑋 . We let 𝑔𝑎𝑏 and 𝐺𝐴𝐵 denote the inverse matrices of 𝑔𝑎𝑏
and 𝐺𝐴𝐵; these exist since 𝑔𝑎𝑏 and 𝐺𝐴𝐵 are non-singular. In Euclidean space,

𝑒𝑎 = (𝜕𝑧𝑖⇑𝜕𝑥𝑎)̂𝑖𝑖, so we have the expression

𝑔𝑎𝑏 =
𝜕𝑧𝑖

𝜕𝑥𝑎
𝜕𝑧𝑗

𝜕𝑥𝑏
𝛿𝑖𝑗

Similarly

𝐺𝐴𝐵 = 𝜕𝑍𝐼

𝜕𝑋𝐴

𝜕𝑍𝐽

𝜕𝑋𝐵
𝛿𝐼𝐽

Proposition B.7.2. (i) For 𝑣,𝑤 ∈ 𝑇𝑥𝒮 and for a coordinate system {𝑥𝑎}.
We have

∐︀𝑣,𝑤̃︀𝑥 = 𝑔𝑎𝑏𝑣𝑎𝑣𝑏

(ii) If {𝑥𝑎} and {𝑋𝐴} are coordinate system of 𝒮 and ℬ, respectively, and
𝜑 ∶ ℬ → 𝒮 is a C 1 configuration of ℬ, the matrix of F𝑇 is given by

(F𝑇 (𝑥))𝐴𝑎 = 𝑔𝑎𝑏(𝑥)𝐹 𝑏
𝐵(𝑋)𝐺𝐴𝐵(𝑋)

where 𝑥 = 𝜑(𝑋).

▶𝑃𝑟𝑜𝑜𝑓 (i) This follows form the definition of 𝑔𝑎𝑏 and the expression 𝑣 = 𝑣𝑎𝑒𝑎

and 𝑤 = 𝑤𝑏𝑒𝑏:

∐︀𝑣,𝑤̃︀𝑥 = ∐︀𝑣𝑎𝑒𝑎,𝑤
𝑏𝑒𝑏̃︀ = 𝑣𝑎𝑤𝑏∐︀𝑒𝑎,𝑒𝑏̃︀ = 𝑣𝑎𝑤𝑏𝑔𝑎𝑏

(ii) By definitions,

∐︀F𝑇𝑤,𝑊 ̃︀𝑋 = ∐︀F𝑊 ,𝑤̃︀𝑥; that is, (F𝑇 (𝑥))𝐵𝑏𝑤
𝑏𝑊𝐴𝐺𝐴𝐵 = 𝐹 𝑎

𝐴𝑊
𝐴𝑤𝑏𝑔𝑎𝑏

for all 𝑊 ∈ 𝑇𝑥ℬ and 𝑤 ∈ 𝑇𝑥𝒮, where F𝑇 and F have their arguments suppressed.

Since 𝑊 and 𝑤 are arbitrary, (F𝑇 )𝐵𝑏𝐺𝐴𝐵 = 𝐹 𝑎
𝐴𝑔𝑎𝑏. Multiplying by 𝐺𝐴𝐶 and
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using 𝐺𝐴𝐵𝐺𝐴𝐶 = 𝛿𝐶𝐵 gives the result. In order for the map F𝑇 ∶ 𝑇 (𝜑(ℬ) → 𝑇ℬ
to well defined, 𝜑 must be regular. ∎

Then we can pass to the definition of strain measures, that involves the tangent

derivative and, therefore, the deformation gradient:

Definition B.7.2. The right Cauchy-Green tensor, also called the

Green deformation tensor, C is defined by:

C(𝑋) ∶ 𝑇𝑋ℬ → 𝑇𝑋ℬ, C(𝑋) = F𝑇 (𝑋)F(𝑋)

Or, for short, C = F𝑇F. If C is invertible, we let B =C−1, called the Piola

deformation tensor.

If {𝑥𝑎} and {𝑋𝐴} are coordinate systems on 𝒮 and ℬ, respectively, then:

𝐶𝐴
𝐵 = (F𝑇 )𝐴𝑎 𝐹 𝑎

𝐵 = 𝑔𝑎𝑏𝐺𝐴𝐶 𝜕𝜑𝑏

𝜕𝑋𝐶

𝜕𝜑𝑎

𝜕𝑋𝐵
(B.12)

It can be proved that C is symmetric and positive-semidefinite; that is,

∐︀C𝑊 ,𝑊 ̃︀𝑋 ≥ 0, and if F𝑋 is one-to-one, then C is invertible and positive-

definite; that is, ∐︀C𝑊 ,𝑊 ̃︀𝑋 > 0 if 𝑊 ≠ 0. Note that F is one-to-one if 𝜑 is

regular.

The symmetry of C means that 𝐶𝐴𝐵 = 𝐶𝐵𝐴, where 𝐶𝐴𝐵 = 𝐺𝐴𝐶𝐶𝐶
𝐵. We call 𝐶𝐴𝐵

the associated components of C. The notion of associated components and the

was clarified in definition B.5.2. The same definition allowed us to construct the

tensor C♭ from the defined C and the metric. From the definition of the pull-back

and the right Cauchy-Green tensor, we observe that C♭ = 𝜑∗g, that is, the full

lowered right Cauchy-Green tensor is the pull back to ℬ of the metric tensor g

of the space 𝒮. In a similar way, we can push the metric G on ℬ forward to 𝒮.
This leads to a new metric tensor b = c−1 with c♭ = 𝜑∗G. The explicit definition

follows:

Definition B.7.3. Let 𝜑 be a regular C 1 configuration of ℬ in 𝒮. Then

the Finger deformation tensor, also called the left Cauchy-Green

tensor, is defined on 𝜑(ℬ) by

b(𝑥) ∶ 𝑇𝑥𝜑(ℬ) ⊂ 𝒮 → 𝑇𝑥𝒮, b(𝑥) = F(𝑋)F𝑇 (𝑋)
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Or, for short, b = FF𝑇 . Also we define c = b−1. In coordinates we have:

𝑏𝑎𝑏 = 𝑔𝑎𝑐𝐺𝐴𝐵 𝜕𝜑𝑎

𝜕𝑋𝐴

𝜕𝜑𝑐

𝜕𝑋𝐵

In addition we have that b is positive-definite. Finally we introduce the strain

measures:

Definition B.7.4. (i) The material [or Lagrangian] strain tensor

E ∶ 𝑇ℬ → 𝑇ℬ is defined by E = (C − I)⇑2. The associated full lowered E♭ =
(C♭−G)⇑2. In components 𝐸𝐴

𝐵 = (𝐶𝐴
𝐵 −𝛿𝐴𝐵)⇑2 and 𝐸𝐴𝐵 = (𝐶𝐴𝐵 −𝐺𝐴𝐵)⇑2.

Thus E = 0 is equivalent to C = I.

(ii) The spatial [or Eulerian] strain tensor e ∶ 𝑇𝒮 → 𝑇𝒮 is defined by

e = (I − c)⇑2. The associated full lowered e♭ = (g − c)⇑2. In components

𝑒𝑎𝑏 = (𝛿𝑎𝑏 − 𝑐𝑎𝑏)⇑2 and 𝑒𝑎𝑏 = (𝑔𝑎𝑏 − 𝑐𝑎𝑏)⇑2. Thus e = 0 is equivalent to c = I.

It is interesting to resume the relations among the deformation tensors, metric

tensors and strain tensors:

C♭ = 𝜑∗(g), c♭ = 𝜑∗(G),
B♯ = 𝜑∗(g♯), b♯ = 𝜑∗(G♯),
E♭ = 𝜑∗(e♭), e♭ = 𝜑∗(E♭).

(B.13)

Explicitly in coordinates we have:

𝐶𝐴𝐵 = 𝑔𝑎𝑏𝐹 𝑎
𝐴𝐹 𝑏

𝐵, 𝑐𝑎𝑏 = 𝐺𝐴𝐵(𝐹 −1)𝐴𝑎(𝐹 −1)𝐵𝑏,

𝐵𝐴𝐵 = 𝑔𝑎𝑏(𝐹 −1)𝐴𝑎(𝐹 −1)𝐵𝑏, 𝑏𝑎𝑏 = 𝐺𝐴𝐵𝐹 𝑎
𝐴𝐹 𝑏

𝐵,

𝐸𝐴𝐵 = 𝑒𝑎𝑏𝐹 𝑎
𝐴𝐹 𝑏

𝐵, 𝑒𝑎𝑏 = 𝐸𝐴𝐵(𝐹 −1)𝐴𝑎(𝐹 −1)𝐵𝑏.

(B.14)

The following conditions are equivalent:

C = I, C♭ =G, c = I, c♭ = g,

B = I, B♯ =G♯, b = I, b♯ = g♯,

E = 0, E♭ = 0, e = 0, e♭ = 0.

(B.15)
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B.8 Fiber bundles

Some of the geometrical properties of a manifoldℳ can be most easily examined

by constructing a manifold called a fiber bundle, which is locally a direct product

ofℳ and a suitable space. In this section we shall give the definition of a fiber

bundle and shall consider four examples that will be used later: the tangent

bundle 𝑇ℳ, the the tensor bundle 𝑇 𝑟
𝑠ℳ, thebundle of linear frames or bases

Lin(ℳ), and the bundle of orthonormal frames Orth(ℳ).

Figure B.3. A cylindrical hairbrush show-
ing the intuition behind the term “fiber
bundle”. This hairbrush is like a fiber bun-
dle in which the base space is a cylinder and
the fibers bristles are line segments. The
mapping 𝜋 ∶ ℰ → 𝐶2 would take a point on
any bristle and map it to the point on the
cylinder where the bristle attaches.

A C 𝑘 bundle over a C 𝑠(𝑠 ≥ 𝑘) man-

ifold ℳ is a C 𝑘 is a triple (ℰ ,ℳ, 𝜋)
where ℰ is a manifold and 𝜋 is a C 𝑘

surjective map 𝜋 ∶ ℰ → ℳ. The mani-

fold ℰ is called the total subspace, ℳ
is called the base space and 𝜋 the pro-

jection. Where no confusion can arise,

we will denote the bundle simply by

ℰ . In general, the inverse image 𝜋−1(𝑝)
of point 𝑝 ∈ ℳ need not be homeo-

morphic to 𝜋−1(𝑞) for another 𝑞 ∈ ℳ.

The simplest example of a bundle is a

product bundle (ℳ × 𝒜,ℳ, 𝜋) where

𝒜 is some manifold and the projec-

tion 𝜋 is defined by 𝜋(𝑝, 𝑣) = 𝑝 for

all 𝑝 ∈ ℳ, 𝑣 ∈ 𝒜. For example if one

choosesℳ as the circle 𝑆1 and 𝒜 as the real line R, one constructs the cylinder

𝐶2 as a product bundle over 𝑆1 (see B.4).

Definition B.8.1. A bundle which is locally a product bundle is called the fiber

bundle. Thus a bundle is a fiber bundle with fiber ℱ if there exist a neighborhood

𝒰 of each point of ℳ such that 𝜋−1(𝒰) is isomorphic with 𝒰 × ℱ , in the sense

that for each point 𝑝 ∈ 𝒰 there is a diffeomorphism 𝜑𝑝 of 𝜋−1𝑝 onto ℱ such that

the map 𝜓 ∶ 𝜋−1(𝒰) → 𝒰 ×ℱ defined by 𝜑(𝑢) = (𝜋(𝑢), 𝜑𝜋(𝑢) is a diffeomorphism.

Ifℳ is required to be paracompact, for each point 𝑝, we can choose a locally

finite covering ofℳ by local charts (𝒰𝛼, 𝜑𝛼,𝑝 . If 𝒰𝛼 and 𝒰𝛽 are two members of

such covering, the map

(𝜑𝛼,𝑝) ○ (𝜑−1𝛽,𝑝)
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Figure B.4. The Möbius strip is a line bundle over the 1-sphere 𝑆1. Locally around
every point in 𝑆1, it looks like 𝑈 × R (where 𝑈 is an open arc including the point)
(Right), but the total bundle is different from the product bundle 𝑆1 × R which is a
cylinder instead (Left).

is a diffeomorphism of ℱ onto itself for each 𝑝 ∈ (𝒰𝛼 ∩ 𝒰𝛽). The inverse images

𝜋−1(𝑝) of points 𝑝 ∈ ℳ are therefore necessarily all diffeomorphic to ℱ (and so

to each other). For example, the finite Möbius strip is a fiber bundle over 𝑆1

with fiber (0,1) ⊂ R (see B.4), we need two open sets 𝒰1,𝒰2 to give a covering by

sets of the form 𝒰𝑖 × (0,1). This example shows that if a manifold is locally the

direct product of two other manifolds, it is nevertheless not, in general, a product

manifold; and for this reason the concept of a fiber bundle is so useful.

� The tangent bundle 𝑇ℳ is the fiber bundle over a C 𝑘 manifold ℳ ob-

tained by giving the set ℰ = ⊔𝑝∈ℳ 𝑇𝑝ℳ its natural manifold structure and

its natural projection into ℳ. Thus the projection 𝜋 maps each point of

𝑇𝑝ℳ into 𝑝. The manifold structure in ℰ is defined by local coordinates

{𝑧𝐴} in the following way. Let {𝑥𝑖} be local coordinates in an open set

𝒰 ⊂ℳ. Then any vector 𝑉 ∈ 𝑇𝑝𝒰 can be expressed as 𝑉 = 𝑉 𝑖𝜕⇑𝜕𝑥𝑖⋃︀𝑝. The
coordinates {𝑧𝐴} are defined in 𝜋−1(𝒰) by {𝑧𝐴} = {𝑥𝑖, 𝑉 𝑎}. On choosing a

covering of ℳ by coordinate neighborhoods 𝒰𝛼, the corresponding charts

define a C 𝑘−1 atlas on ℰ which turn it into C 𝑘−1 manifold (of dimension

2𝑛, where 𝑛 is the dimension of ℳ). The fiber 𝜋−1(𝑝) is 𝑇𝑝ℳ and so is a

vector space of dimension 𝑛. This space structure is preserved by the map

𝜑𝑝,𝛼 ∶ 𝑇𝑝ℳ→ R𝑛, which is given by 𝜑𝑝,𝛼(𝑢) = 𝑉 𝑎(𝑢), i.e. 𝜑𝑝,𝛼 maps a vector

at 𝑝 into its components with respect to the coordinates {𝑥𝑎𝛼}. If {𝑥𝑎𝛽} are

another set of local coordinates then the map (𝜑𝛼,𝑝) ○ (𝜑−1𝛽,𝑝) is a linear map

of R𝑛 onto itself. Thus it is an element of the general linear group GL(𝑛,R)
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(see section A.3).

� The tensor bundle 𝑇 𝑟
𝑠ℳ is the bundle of tensor of type (𝑟, 𝑠) overℳ is de-

fined in a very similar way. One refers to the set ℰ = ⊔𝑝∈ℳ 𝑇 𝑟
𝑠 (𝑝) (here, 𝑇 𝑟

𝑠 (𝑝)
which is the set of tensor over the tangent space at 𝑝); it defines the projec-

tion 𝜋 as a mapping at each point in 𝑇 𝑟
𝑠 (𝑝) into 𝑝, and, for any coordinate

neighborhood 𝒰 ⊂ ℳ, assigns local coordinates {𝑧𝐴} to 𝜋−1(𝒰) by {𝑧𝐴} =
{𝑥𝑖, 𝑇 𝑎...𝑏

𝑐...𝑑 } where {𝑥𝑖} are the coordinates of the point 𝑝 and {𝑇 𝑎...𝑏
𝑐...𝑑 } are the

coordinate components of T (that is, T = 𝑇 𝑎...𝑏
𝑐...𝑑 𝜕⇑𝜕𝑥𝑎 . . . 𝜕⇑𝜕𝑥𝑏𝑑𝑥𝑐 . . . 𝑑𝑥𝑑⋃︀𝑝).

This turns ℰ into C 𝑘−1 manifold of dimension 𝑛+𝑛𝑟+𝑠; any point 𝑢 of 𝑇 𝑟
𝑠ℳ

corresponds to a unique tensor T of type (𝑟, 𝑠) at 𝜋(𝑢).

� The bundle of linear frames (or bases) Lin(ℳ) is a C 𝑘−1 fiber bundle

defined as follows: the total space ℰ consists of all bases at all points of

ℳ, that is all sets of non-zero linearly independent 𝑛-tuples of vectors

{𝐸𝑎},𝐸𝑎 ∈ 𝑇𝑝ℳ, for each 𝑝 ∈ ℳ. The projection 𝜋 is the natural one

which maps a basis at a point 𝑝 ti the point 𝑝. If {𝑥𝑖} are local coordinates

in an open set 𝒰 ⊂ℳ, then

{𝑧𝐴} = {𝑥𝑎,𝐸𝑗
1,𝐸

𝑘
2 , . . . ,𝐸

𝑚
𝑛 }

are local coordinates in 𝜋−1(𝒰), where 𝐸𝑗
𝑎 is the 𝑗th components of the

vector 𝐸𝑎 with respect to the coordinate bases 𝜕⇑𝜕𝑥𝑖. The general linear

group GL(𝑛,R) acts on Lin(ℳ) in the following way: if {𝐸𝑎} is a basis at

𝑝 ∈ ℳ, then 𝐴 ∈GL(𝑛,R maps 𝑢 = {𝑝,𝐸𝑎} to

𝐴(𝑢) = {𝑝,𝐴𝑏
𝑎𝐸𝑏}

� The bundle of orthonormal framesOrth(ℳ) is a sub-bundle of Lin(ℳ);
if there is metric 𝑔 on ℳ, one can define Orth(ℳ) as the bundle of or-

thonormal bases (with respect to 𝑔) at all points of (ℳ). This consists of

the non-singular real matrices 𝐴𝑏
𝑎 such that:

𝐴𝑏
𝑎𝐴

𝑐
𝑏 = 𝛿𝑐𝑎

It maps (𝑝,𝐸𝑎) ∈ Orth(ℳ) to (𝑝,𝐴𝑏
𝑎𝐸𝑏) ∈ Orth(ℳ).

The linear bundle can serve as the configuration space for a micromorphic
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solid, and the orthonormal bundle as the configuration space for a micropolar

solid. The next step in order to do this is to define a cross-section of a bundle:

Definition B.8.2. A C 𝑘 cross-section of a bundle which is a C 𝑟 map Φ ∶
ℳ → ℰ such that 𝜋 ○ Φ is the identity map on ℳ; thus a cross-section is a C 𝑟

assignment to each point 𝑝 of ℳ of an element Φ(𝑝) of the fiber 𝜋−1(𝑝).

(a) A cross-section of the tangent bundle 𝑇ℳ is a vector field on ℳ.

(b) A cross-section of the tensor bundle 𝑇 𝑟
𝑠ℳ is a tensor field of type (𝑟, 𝑠) on

ℳ.

(c) A cross-section of Lin(ℳ) is a set of 𝑛 non-zero vectors fields {𝐸𝑎} which

are linearly independent at each point.

(d) And a cross-section of Orth(ℳ) is a set of orthonormal vector fields on ℳ
(sometimes this latter assignment is called an observer.

As curious geometrical/topological facts we can recall that since the zero vec-

tors and tensors define cross-sections in 𝑇ℳ and 𝑇 𝑟
𝑠ℳ, these fiber bundles will

always admit cross-sections. Ifℳ is orientable and non-compact, or is compact

with a vanishing Euler number, there will exist nowhere-zero vector fields, and

hence cross-sections of 𝑇ℳ which are nowhere-zero. The bundles Lin(ℳ) and

Orth(ℳ) may or may not admit cross-sections, for example Lin(𝑆2) (linear bun-
dle of the surface of a sphere) does not, but Lin(R𝑛) does. If Lin(ℳ) admits

a cross-section, ℳ is said to be parallelizable. Some physical requirements need

those properties, for example R. P. Geroch has shown (1968) that a non-compact

four-dimensional Lorentz manifoldℳ (i.e. a space-time) admits a spinor struc-

ture if and only if it is parellelizable (and spinor fields seems completely necessary

for describing fermionic matter).
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[53] Holzapfel, G. A., and Weizsäcker, H. W. Biomechanical behavior

of the arterial wall and its numerical characterization. Computers in biology

and medicine 28, 4 (1998), 377–392.

209



BIBLIOGRAPHY

[54] Hudesman, D., Korman, A., Lipp, M., Yancovitz, S., and

Bednarek, K. Acute herpetic esophagitis in an immunocompetent

woman. In American Journal of Gastroenterology (2009), vol. 104, Na-

ture Publishing Group 75 Varick st, 9th flr, New York, NY 10013-1917

USA, pp. S194–S194.

[55] Jackson, A. R., Travascio, F., and Gu, W. Y. Effect of mechanical

loading on electrical conductivity in human intervertebral disc. Journal of

biomechanical engineering 131, 5 (2009), 054505.

[56] James, H. M., and Guth, E. Theory of the elastic properties of rubber.

The Journal of Chemical Physics 11 (1943), 455.

[57] Juhl, C. O., Vinter-Jensen, L., Djurhuus, J., Gregersen, H.,

and Dajani, E. Z. Biomechanical properties of the oesophagus damaged

by endoscopic sclerotherapy: An impedance planimetric study in minipigs.

Scandinavian journal of gastroenterology 29, 10 (1994), 867–873.

[58] Kaufman, J. A., and Oelschlager, B. K. Treatment of achalasia.

Current treatment options in gastroenterology 8, 1 (2005), 59–69.

[59] Kroon, M., and Holzapfel, G. A. A new constitutive model for

multi-layered collagenous tissues. Journal of biomechanics 41, 12 (2008),

2766–2771.

[60] Kuhn, W., and Grun, F. Relationships between elastic constants and

stretching double refraction of highly elastic substances. Kolloid-Z 101

(1942), 294.

[61] Kuhn, W., and Grün, F. Statistical behavior of the single chain molecule

and its relation to the statistical behavior of assemblies consisting of many

chain molecules. Journal of Polymer Science 1, 3 (1946), 183–199.

[62] Lampton, M. Damping–undamping strategies for the Levenberg–

Marquardt nonlinear least-squares method. Computers in Physics 11

(1997), 110.

[63] Levenberg, K. A method for the solution of certain non-linear problems

in least squares. Quarterly of Applied Mathematics 2 (1944), 164–168.

210



BIBLIOGRAPHY

[64] Limbert, G., and Taylor, M. On the constitutive modeling of biolog-

ical soft connective tissues: A general theoretical framework and explicit

forms of the tensors of elasticity for strongly anisotropic continuum fiber-

reinforced composites at finite strain. International journal of solids and

structures 39, 8 (2002), 2343–2358.

[65] Liu, I.-S. On representations of anisotropic invariants. Int J. Engng. Sci.

10 (1982), 1099–1109.

[66] Lokhin, V., and Sedov, L. Nonlinear tensor functions of several tensor

arguments. Journal of Applied Mathematics and Mechanics 27, 3 (1963),

597–629.

[67] Lourakis, M. I. A brief description of the Levenberg-Marquardt algo-

rithm implemented by Levmar. Institute of Computer Science, Foundation

for Research and Technology 11 (2005).

[68] Lu, J. A covariant constitutive theory for anisotropic hyperelastic solids

with initial strains. Mathematics and Mechanics of Solids 17, 2 (2012),

104–119.

[69] Lu, X., and Gregersen, H. Regional distribution of axial strain and

circumferential residual strain in the layered rabbit oesophagus. Journal of

Biomechanics 34, 2 (2001), 225–233.
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