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Abstract
Nowadays, many of the healthcare systems are large, complex environments and quite
dynamic, specifically Emergency Departments, EDs. They are opened and working 24
hours per day throughout the year with limited resources. EDs are usually the main en-
trance to the hospital, and a key component of the whole healthcare system. The original
mission of EDs is to primarily handle only emergency situations. However, ED visits
include a wide range of illnesses and injuries, from truly emergencies to non-urgent cases.
As a consequence, EDs are overcrowded. Thus, is mandatory to use extensively com-
puter simulations of EDs to evaluate output responses. The choice of optimal simulation
parameters can lead to improved functioning, but choosing a good configuration remains
a challenging problem. This improvement can be achieved by modelling and simulating
EDs using Agent-Based Modelling and simulation. Optimisation via simulation is an
emerging field which integrates optimisation techniques into simulation analysis.

In this research a two-phase optimisation methodology for optimisation via simulation
for healthcare Emergency Departments is proposed. The first phase is a coarse grained
approach consisted in a global exploration step over the entire search space. This phase
identifies promising regions for optimisation based on a neighbourhood structure of the
problem, using either a pipeline scheme approach of an Emergency Department or the
Monte Carlo heuristic plus the K-means method, or both. This first phase returns a
collection of promising regions. The second phase is a fine grained approach that con-
sists in seeking the best solution, either the optimum or a sub-optimum by performing
a �reduced exhaustive search� in such promising regions.

This work optimises the sanitary sta� configuration of an actual ED. The sanitary sta�
configuration comprises: doctors, triage and emergency nurses, admission personnel, and
x-ray technicians, the amount, and sort of them. Sta� configuration is a combinatorial
and multidimensional problem, that can take a lot of time to be solved. In order to do
optimisation, objective functions to minimise or maximise have to be set. Three di�erent
indexes were set: minimise patient length of stay (LoS); maximise number of attended
patients per day (Throughput); and minimise a compound index, the product of the cost
of a given sanitary sta� configuration times patient length of stay (CLoS). HPC is used
to run the experiments, and encouraging results were obtained. However, even with the
simplified ED used in this work the search space is very large, thus, when the problem
size increases, it is going to need more resources of processing in order to obtain results
in a reasonable time.

Keywords: Emergency departments, modelling, simulation, agent-based, optimisa-
tion, high-performance computing.
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Resumen
Actualmente, muchos de los sistemas de salud son entornos grandes, complejos y dinámi-
cos, en particular los servicios de urgencias hospitalarios (EDs por sus siglas en inglés).
Éstos abren y funcionan las 24 horas al día durante todo el año, con recursos limitados.
Los EDs suelen ser la entrada principal al hospital y componente clave de todo el sistema
sanitario. La misión original de los EDs es atender situaciones de emergencia. Sin em-
bargo, los usuarios de EDs incluyen una amplia gama de enfermedades y lesiones desde
casos urgentes, hasta no urgentes. Como resultado de esto, los EDs están saturados. Por
lo tanto, es necesario el uso amplio de simulaciones computacionale de EDs para evaluar
sus respuestas a la demanda de servicios. La elección de los parámetros de simulación
óptimos puede mejorar su funcionamiento, pero la elección de una buena configuración
es un gran desafío. Esta mejora se puede lograr mediante la modelización de los EDs
basado en agentes y su simulación. La optimización mediante la simulación es un campo
emergente que integra técnicas de optimización en el análisis de simulaciones.

En esta investigación se propone una metodología de optimización de dos fases para
la optimización de EDs a través de la simulación. La primera fase es un enfoque de
grano grueso que consiste en una etapa de exploración global sobre todo el espacio de
búsqueda. Esta fase identifica regiones prometedoras para la optimización basado en
una estructura de vecindad del problema. Esta fase utiliza ya sea un enfoque pipeline de
EDs o la heurística de Monte Carlo más el método de K-means, o ambos. Esta primera
fase devuelve una colección de regiones prometedoras. La segunda fase es un enfoque de
grano fino, que consiste en la búsqueda de la mejor solución, ya sea la óptima o una sub-
óptima mediante una �búsqueda exhaustiva reducida� en tales regiones prometedoras.

Este trabajo optimiza la configuración del personal sanitario de un ED existente. La
configuración de su personal incluye: médicos, enfermeras de triaje y de urgencias, per-
sonal de admisión y técnicos de rayos X, cantidad y tipo de ellos. Dicha configuración
es un problema combinatorio y multidimensional, que puede consumir mucho tiempo
en resolverse. Específicamente tres índices diferentes se verificaron: minimizar tiempo
de estancia del paciente; maximizar número de pacientes atendidos diariamente y min-
imizar el producto del costo de la configuración por el tiempo de estancia del paciente.
HPC se utiliza para ejecutar los experimentos y se han obtenido resultados alentadores.
Sin embargo, incluso con una versión simplificada de un ED utilizada en este trabajo,
el espacio de búsqueda es muy grande, por lo tanto, cuando aumenta el tamaño del
problema, se requerirán más recursos de cómputo para obtener resultados en un tiempo
razonable.

Palabras clave: servicios de urgencias, optimización, simulación, cómputo de alto
rendimiento, modelización, agentes.
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Resum
Actualment, molts dels sistemes de salut són entorns grans, complexos i molt dinàmics,
en particular els serveis d'urgències hospitalaris (EDs per les sigles en anglès). Aquests
obren i funcionen les 24 hores al dia durant tot l'any, amb recursos limitats. Els EDs
solen estar a l'entrada principal de l'hospital i un component clau de tot el sistema de
salut. La missió original dels EDs és atendre situacions d'emergència únicament. No
obstant això, els usuaris d' EDs inclouen una àmplia gamma de malalties i lesions des de
casos de veritable emergència, fins als no urgents. Com a resultat d'això, els EDs estan
saturats. Per tant, és necessari l'ús ampli de simulacions de EDs a ordinador per avaluar
les seves respostes a la demanda de serveis. L'elecció dels paràmetres de simulació òp-
tims pot millorar el seu funcionament, però l'elecció d'una bona configuració segueix
sent un gran desafiament. Aquesta millora es pot aconseguir mitjançant la modelització
dels EDs basat en agents i la simulació.

L'optimització a través de la simulació és un camp emergent que integra tècniques
d'optimització en l'anàlisi de simulacions. En aquesta investigació es proposa una meto-
dologia d'optimització de dues fases per a l'optimització d'EDs a través de la simulació.
La primera fase és un enfocament de gra gruixut que consisteix en una etapa d'exploració
global sobre tot l'espai de cerca. Aquesta fase identifica regions prometedores per a
l'optimització basat en una estructura de veïnatge del problema. Aquesta fase fa servir
ja sigui un enfocament pipeline d'un servei d'urgències o l'heurística de Monte Carlo
més el mètode de K-means, o ambdós. Aquesta primera fase retorna una col•lecció de
regions prometedores. La segona fase és un enfocament de gra fi, que consisteix en la
recerca de la millor solució, ja sigui l'òptima o una sub-òptima mitjançant la realització
d'una �recerca exhaustiva reduïda� en tals regions prometedores.

En aquest treball s'optimitza la configuració del personal sanitari d'un ED existent.
La configuració del seu personal inclou: metges, infermeres de triatge i d'urgències, per-
sonal d'admissió, i tècnics de raigs X, la quantitat i el tipus d'ells. La configuració
del personal dels EDs és un problema combinatori, que pot consumir molt de temps
a resoldre. Específicament tres índex diferents: temps d'estada del pacient al servei
d'urgències, el nombre de pacients atesos per dia i un índex compost, el producte del
cost del personal sanitari configuració pel temps d'estada del pacient. HPC s'utilitza per
executar els experiments i s'han obtingut resultats encoratjadors. No obstant això, fins
i tot amb una versió simplificada d'un ED utilitzada en aquest treball, l'espai de cerca
és molt gran, per tant, quan augmenta la mida del problema, es requeriran més recursos
de còmput per tal d'obtenir resultats en un temps raonable.

Paraules clau: serveis d'urgències, modelat, simulació, basats en agents, optimitza-
ció, computació d'alt rendiment.
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Chapter 1

Introduction

“Estudar não é um ato de consumir idéias,
mas de criá-las e recriá-las.”

� Paulo Freire

1.1 Emergency Department
Health is one of the most appraised gifts for human beings; therefore, it is crucial
to preserve it. Healthcare systems are characterised by high human involvement
and were designed to take charge of health. Such healthcare systems have evolved
along centuries, specifically during the previous decades. Hospitals, as core mem-
bers of healthcare systems, are made of several independent distributed complex
care units [19]; amongst other, some of these units are: cardiology, neurology,
gastroenterology and emergency departments. The Emergency Department (ED)
could be the most dynamic healthcare department, usually the main entrance to
the hospital, and a key component of the whole healthcare system.
Emergency Departments are semi-autonomous units and responsible for man-

aging the large influx of patients. EDs are open and staffed 24 hours per day,
365 days per year, including holidays. The original mission of EDs is to primar-
ily handle only emergent situations. However, ED visits include a wide range of
illnesses and injuries, i.e., true emergencies, urgent, semi-urgent, and non-urgent
cases. In the recent years, EDs worldwide have increased their human and in-
frastructure resources to attend all of these cases, becoming large, complex, and
dynamic units.
Healthcare and ED management is concerned with the mission of improving

the healthcare delivery system, i.e., organisation, planning, coordination, staffing,
evaluating and controlling of healthcare services. Their main objective is to provide
affordable healthcare of the best quality.

1.2 Motivation
Nowadays, many of the healthcare systems are large and complex environments
and dynamic systems, specially the Emergency Departments. The ED is a sui
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generis unit of hospitals. On the one hand, it is opened and working 24 hours per
day throughout the year with limited resources, specially with the present financial
crisis, when there are several budget reductions that could compromise healthcare
systems. And on the other hand, is under a huge and growing demand of services,
i.e., overcrowded. Such critical service must be provided with the best quality and
effort. ED is supposed to be the unit where only severe illness and injury, emergent
cases, is handled, but due to the high demand of services, it is not the case any
more. As a matter of fact, ED has become a unit where urgent, non-urgent, and
severe cases converge, which decrease the amount of time, quality and resources
given to the patients. Therefore, it is mandatory to improve qualitatively and
quantitatively the performance of such crucial department.
Moreover, High Performance Computing (HPC) has been associated, and used

mainly in classical sciences as physics, astronomy and chemistry, or hard difficult
engineering problems, but nowadays social sciences are also using it. The sys-
tems modelled are quite complex and demand huge amount of data space, and to
preserve the data new file systems must be develop; furthermore, the simulation
of such systems has long run-times on conventional computers. In addition, the
models and the phenomena being modelled are inherently probabilistic. Hence,
social sciences and EDs demand HPC, in order to simulate, analyse, understand
and generate knowledge.
This work is interdisciplinary, since there is a relationship between health sci-

ence and healthcare systems, computer science and engineering. It belongs to
Computational Science applications in Individual Oriented Behaviour, specifically.
Thus, computers are used to simulate the model, which is not a mathematical or
standard one of an ED, as it is said above, in order to choice of optimal simulation
staff configuration that to can lead to improved functioning.

1.3 Statement of the Problem
In the operation of Emergency Departments, it has been observed an almost steady
stream of patients arriving into them, specifically non-urgent or urgent cases, but
also serious ones too. The latter cases are, or at least they are supposed to be,
the main target of EDs, even though all cases have to be received, and addressed.
Patients can arrive either by their own or by ambulance. Moreover, there are days,
periods or extreme events which modify such almost steady stream of patients and
increase the demand of services that compromise the whole EDs and the ad hoc
or ideal patient care. Nevertheless, patient input cannot be modified, i.e., it is a
fact, even if it is steady or not.
EDs units are constituted by the place, the physical resources as beds and

test equipment, and, finally, but the most important, people as patients and their
companions, and staff members, which includes nurses, doctors, and admission
staff, amongst others.
Usually, patients have the following flow in the EDs: a) arrive by walk in, if

they do not require immediate care they proceed to the admission place, whereas
those who need immediate attention, and those that arrive by ambulance are sent
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directly to a treatment area, if admission staff is busy patients wait; b) thus,
patients go to a triage area, if triage nurses are busy, patients have to wait, again,
but in another area -at this step patients are evaluated for the seriousness or acuity
of their condition, and a priority level is assigned based on it; c) then, patients
wait for a diagnosis and treatment room and a doctor; d) finally, patients could be
admitted into the service or discharge. A typical ED layout is shown in Figure 1.1.

Figure 1.1: Typical layout of emergency departments

All these phases depend, not only on the stream of patients distribution, but
also on the configuration of the ED staff members, i.e., the human resources of
EDs, which imply a cost, associated to their salaries, as well as the costs related
to screening and diagnostic tests that have to be performed to the patient. These
costs have become a very important issue in the functioning of EDs, because the
budget has become a major constraint for their operation (and in some cases for
their existence).
In spite of such an increase, patients continue to suffer, since they do not have

access to ad hoc healthcare, in some cases due to the inefficiencies of the EDs
functioning. As a result of this, EDs are overcrowded and the length of stay
(LoS) of patients has increased, whereas quality of service has decreased. Indeed,
overcrowding of EDs is a worldwide issue, and a national crisis in the US [39].
Although ED overcrowding is not a new topic, it was documented in the literature
for the last 20 years [11, 46, 54, 55, 58, 67], there is not a solution to this long and
growing issue yet. Therefore, new techniques and paradigms should be found in
order to deal with such overcrowded condition. ED managers require different and
fresh solutions, because society demands not only care, quality and service, but
also the best care, quality and service.
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A direct solution to this issue is increasing the size of EDs, however, this straight-
forward solution is limited by the facility, number of staff (doctors, nurses, techni-
cians) and services (computing, communication, radiology, laboratory), and it is
not the best approach [50]. Also, healthcare managers have to maximise the use
of healthcare resources, whereas being constrained by limited budget, in order to
minimise patient LoS, while increase satisfaction of the patients, i.e., to optimise
the performance of the ED. The resource planning of an ED is complex activity,
since it is not linear, and it varies depending on time, day of week and season. The
ability to simulate special situations such as seasonal increases in ED demand can
be useful for the efficient use of resources.

1.4 Mathematical-Computational Modelling and
Simulation of Emergency Departments

There are no standard models to characterise complex systems such as healthcare
systems. Due to the absence of any formal description for EDs, alternative meth-
ods must be used to describe them. Simulation becomes an important tool for
modelling systems including many elements as well as interdependencies amongst
the elements, and/or considerable variability. Discrete event simulation (DES),
system dynamics (SD) and agent-based modelling and simulation (ABMS) are the
three main approaches used to simulate healthcare systems. There are a large
and growing body of literature describing the use of DES and SD models in ED
studies, but the use of ABMS for this purpose is few; although, healthcare systems
are characterised by a high human involvement, i.e., based on human actions and
interactions, that are quite difficult to model with DES, and can be more properly
modelled with ABMS.
Therefore, here we use Agent-Based Model (ABM), also known as Individual

oriented Modelling, since this framework describes the dynamic of the system, in
which agent behaviour is complex and non-linear and the combined interaction of
the agents can create a rich emergent behaviour, while showing memory [10].

1.5 Optimisation via Simulation
Computer simulations are used extensively as models of real systems to evaluate
output responses. Applications of simulations are widely found in many areas
including supply chain management, finance, manufacturing, engineering design
and medical treatment [28, 42, 66]. Choosing optimal parameters for the simula-
tion could lead to improved functioning, but choosing a good configuration remains
a challenging problem. Historically, the parameter settings are chosen by selecting
the best from a set of candidate parameter settings. Optimisation via simula-
tion [6, 25–27, 63] is an emerging field which integrates optimisation techniques
into simulation analysis. The corresponding objective function is an associated
measurement of an experimental simulation. Due to the complexity of the simula-
tion, the objective function may be difficult and expensive to evaluate. Moreover,
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the inaccuracy of the objective function often complicates the optimisation process.

1.6 Thesis Objectives and Methodology
The ultimate goal of this work is to devise, implement, and evaluate a methodology
to do optimisation via simulation of the performance of complex and dynamic
healthcare emergency department systems.
Through this methodology emergency department managers can set up strategies

and management guidelines to enhance the performance of such critical system,
i.e., a decision support system (DSS) for Healthcare Emergency Department (ED).

Specifically setting the hypothesis that the search space or parameter settings
of emergency departments could be reduced by using a two-phase optimisation via
simulation methodology.

1.6.1 Methodology
To achieve the objective previously stated, the methodology used in this thesis
is based on the scientific method. The first phase is a coarse grained approach
consisted in a global exploration step over the entire search space. This phase
identifies promising regions for optimisation based on a neighbourhood structure of
the problem. This phase uses either a pipeline scheme approach of an Emergency
Department or the Monte Carlo heuristic plus the K-means method, or both.
This first phase returns a collection of promising regions which are represented
by hyperplanes. The second phase is a fine grained approach that consists in
seeking the best solution, either the optimum or a sub-optimum by performing a
“reduced exhaustive search” in such promising regions to find the optimum or a
good solution. This methodology research is shown in Figure 1.2.
This research has followed an incremental development approach based on sev-

eral enhancements of the original model proposed, that was published in [70],
and [71]. An extension to the model of ED was published in [73].
The first version of this research was published in [12], an enhancement of the
proposal of this work was published in [15], and finally, the two-phase version of
the research was published in [14], and [13].

1.7 Thesis Outline
According to the objectives and the methodology described above, the outline of
the remaining chapters of this dissertation is as follows.

Chapter 2: State-of-the-Art of the Healthcare Emergency Department
Operations and Their Modelling.

In this chapter concepts of modelling are discussed. The framework used
Agent-Based Model is also presented, as well as the model of the Emergency

5



Chapter 1 Introduction

Figure 1.2: Methodology research

Department. Then topics about simulation and its importance are outlined, and
finally, the simulator of the ED developed is presented.

Chapter 3: Optimisation via Simulation of Emergency Departments.
In this chapter topics of optimisation are explained. They include defini-

tions, numerical methods, and taxonomy of optimisation approaches for single
and multiple objectives. The proposed optimisation via simulation methodology
is presented, as well as the cluster implementation of the optimisation proposal for
emergency departments.

Chapter 4: Applications of the Proposed Optimisation via Simulation.
The evaluation of the experiment proposed in the methodology and its results

are included and discussed in this chapter.

Chapter 5: Conclusions and Future Research
Concludes this dissertation and presents the open lines and future work of

this research.

6



Chapter 2

State-of-the-Art of the Healthcare
Emergency Department Operations
and Their Modelling

“Publicamos para no pasarnos la vida
corrigiendo los borradores.”

� Alfonso Reyes

In this chapter concepts about what modelling is, its purposes, and character-
istics are outlined. Also, the state-of-the-art of the Healthcare Emergency Depart-
ment (ED) operation and their modelling is described. The definition and vindic-
ation on using an alternative method, the Agent-Based Model (ABM), to model
complex systems is presented later. The current Agent-Based Model of Healthcare
Emergency Department is briefly addressed, as well as concepts of simulation and
related works are discussed.

2.1 Introduction
In spite of the fact that the complexity of healthcare emergency departments
has increased during the past few decades, the design of their key operational
processes has been maintained somehow primitive. To address these problems,
many facilities have turned to quick fixes, e.g., downsizing or adding more human
or physical resources; however, most of these changes have not resulted in the
desired outcome. For example, patients often experience long waiting times and
encounter delays or cancellations. Most of these problems neither are caused by a
lack of effort from staff nor because of their number, and cannot be resolved by,
for example, working harder. Rather, it seems that the patient flow between and
amongst the different healthcare departments is the source of their operational
problems. Generally a healthcare facility is made up of several interdependent
units, where the actions and decisions of one of them can affect the others. As
such, patient flow throughout the entire system must be improved, rather than
just in isolated ED units.
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2.2 Operation of Emergency Departments
The task of characterising any system is difficult, especially systems where people
are involved such as emergency departments. Unfortunately, oversimplification ap-
pears when attempting to categorise emergency care systems internationally. First
of all, in order to characterise EDs it is mandatory defining what is meant by the
term "ED". Without loss of generality, an ED is a healthcare system that delivers
immediate, often stabilising, care for patients with emergent medical needs. This
care is provided within the largest level of availability and accessibility possible,
i.e., 24 hours per day, 7 days per week and 365 days per year, including holidays,
with no restriction on who can access such critical service. The Emergency De-
partment could be the most dynamic healthcare department, usually the main
entrance to the hospital, and a key component of the whole healthcare system.
Emergency Departments are semi-autonomous units and responsible for man-

aging the large influx of patients. The original mission of EDs is to primarily
handle only emergency situations. However, ED visits include a wide range of
illnesses and injuries, i.e., truly emergencies, urgent, semi-urgent, and non-urgent
cases. In the recent years, worldwide the EDs have increased their human and
infrastructure resources to attend all of those cases, becoming large, complex and
dynamic units.
Healthcare and ED management is concerned with the mission of improving

the healthcare delivery system, i.e., organisation, planning, coordination, staffing,
evaluating and controlling of healthcare services. Its main objective is to provide
healthcare of best quality, and affordable to people.
Although the diversity amongst the EDs all over the world, certain basic char-

acteristics had proved useful for describing EDs. According to [72] when viewing
EDs from the perspective of how patient care is delivered, four main characteristics
can be used to describe EDs, i.e., (1) physical location, (2) physical layout, (3)
time period open to patients, and (4) patient type served. These four character-
istics are particularly well suited to describe a wide variety of care contexts, i.e.,
they represent a basic common framework to which other characteristics can be
added, as to consider school or University-affiliated EDs, since they train doctors
and nurses students. This training could affect time and quality of service, because
such healthcare students or junior staff are less experienced than senior doctors
and nurses. In what follows each of them will be discussed.

2.2.1 Physical Characteristics of Emergency Departments
Physical Location

The physical location of EDs could be one of the most basic features of emergency
care. This characterisation could be subdivided into two main groups: hospital-
based EDs and independent EDs. First ones are typically located in a general acute
care hospital, but may also be found in specialty hospitals; whereas independent
EDs can be further characterised as satellite EDs, autonomous EDs, and primary-
care-based EDs.
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Physical Layout

The standard physical layout of an ED is shown in Figure 2.1. It consists of the
admission, the triage and the treatment zones. It is worth noting that patients
might arrive to the ED by their own means or by ambulance. Emergency care may
also be provided in several different layouts within a facility. Characterising EDs
by physical layout distinguishes two main groups: contiguous and non-contiguous.
In a contiguous ED, medical and surgical emergencies are treated in one or adja-
cent areas. Contiguous EDs can be further described as having or lacking triage
to service. "Triage to service" does not refer to the process of patients being ad-
mitted to the hospital from the ED, but rather to the process whereby patients
arriving at the ED are directed to emergency care from non-emergency medicine
specialties, e.g., to a medical or surgical team. A contiguous ED with triage to ser-
vice is often staffed by physicians from many different specialties, amongst others
are: surgeons, internists, and cardiologists, who are employed by their respective
specialty departments and who treat emergencies related to their fields.

Figure 2.1: Simplified emergency department layout

2.2.2 Operational Characteristics of Emergency Departments
Time Period Open to Patients of EDs

When EDs are characterised according to when they provide emergency care, they
tend to fall into four groups: full-time, part-time, seasonal or alternating. A full-
time ED provides care 24 h per day, 7 days per week, 365 days per year. In contrast,
a part-time ED is open less than the former. Whereas part-time EDs usually are
open at least 150 of 168 hours per week and 365 days per year. Similar reasoning
may be applied to seasonal EDs, which are only open during one portion of the
year. Finally, alternating EDs are those which share responsibility for providing
24/7 emergency care to a population. Though each hospital may have an ED
that, when considered alone, may not qualify as such due to its restricted hours of
availability.

Patient Type Served by EDs
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When characterising EDs by the sort of patient attended, it has been found that
three main groups appear: general population EDs, adult EDs, and paediatric EDs.
General population EDs serve all patients regardless of age, sex, race/ethnicity, or
other major socio demographic factors. General population EDs may be further
characterised as combined or separate. Combined general population EDs provide
care for all patients in one common area, while separate general population EDs
provide care to different groups of patients in distinct physical areas within one
facility, depending upon specific patient characteristics. The most common popu-
lation characteristic that distinguishes these two types of general population EDs
is age, as demonstrated by children and adults being seen in separate locations
within a facility. However, not all EDs primarily serve both children and adults.

Patients Flow in EDs

Usually, patients have the following flow in the EDs (see Figure 2.2) : a) arrive by
walk in, if they do not require immediate care, they proceed to the admission ED
unit, whereas both of those who need immediate attention, and those that arrive
by ambulance are sent directly to a treatment area, if the admission staff is busy,
patients have to wait; b) thus, patients go to an ED triage area, if triage nurses
are busy patients have to wait, again, but in another ED unit -in this step patients
are evaluated for the seriousness or acuity of their condition, and a priority level is
assigned based on it; c) finally, patients wait for a diagnosis and treatment room,
and a doctor. At last, patients could be admitted into the service or discharge.

Sta� and Economics of EDs

Usually the configuration of the staff members of an ED consists of: doctors,
nurses, admission personnel, x-ray technician, and supporting staff. These human
resources imply cost, such as their salaries, as well as the costs related to the EDs’
infrastructure used for the tests that have to be taken to the patient, as part of
their diagnosis and treatment. As it discussed further down, the staff configuration
plays a crucial role in the optimal operation of EDs.

2.3 Modelling of Emergency Departments
2.3.1 Introduction to Modelling
It is said that models are only an abstract representation of a real system. Models
can be defined as a set of assumptions or approximations about how a system
works, i.e., it describes the system. It is of paramount importance remembering
that a model is not reality, but merely a human construction to help to better
understand real world systems [45].
Modelling is an art. Models can be either mental, that are subjective, incom-

plete, and usually lack a formal statement ( e.g., ideas and concepts), or formal,
which are based on rules, and are easy transmittable, for example diagrams, and
planes.
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Figure 2.2: ED model by patient service

The overall modelling process is usually iterative, and comprise the following
steps: 1) Determine the goals and objectives of the model; 2) Build a conceptual
model; 3) Convert into a specification model; 4) Transform into a computational
model; 5) Verify the model; 6) Validate the model.
Amongst the purposes of modelling the following can be stated: allow to study,

and analyse the model instead of the real system. It is easier, faster, cheaper, and
(in some cases) safer; can help to train or for educational objectives; can generate
new insights; testable predictions can be made; can help to proof hypothesis; rule
out a particular explanation for an experimental observation; can include wide-
range of ideas or experiments.
Once the goals and objectives of the model have been stated, there are some

questions that have to be examined and satisfactorily answer before carrying on
the steps 2 to 6, previously stated: are the expected savings from using the model
greater than the cost of developing and implementing it? Is there enough time
to develop and implement the model before the recommendation is needed? Is it
easier to perform an experiment on the real system (if this is possible) than to
build a model of the latter?
However, answering the previous questions are not the most difficult tasks when
developing the conceptual model, but also to identify the simplifications that ought
to be made on the model without sacrificing the needed or useful accuracy of the
proposed model. If unimportant details are kept out of the model, it would be
easier to change it and to use it. Another key part of this conceptual and abstract
process is how comprehensive should the model be?
The specification phase comprise (if it is the case) in the mathematical formula-
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tion of the model, i.e., the equations that represent it and to generate a pseudocode
of the conceptual model of the prior step; whereas the computational model consist
in numerical implementation, i.e., a computer program.
Verification implies that computational model must be consistent with the spe-

cification model. Finally, the model is validated if it is consistent with the system
being analysed. Moreover, if an expert cannot distinguish a simulation output
from the actual system output (in case we have actual observations), thus, the
model is right. Nevertheless, if the output model differs from what happened in
the real world, it is necessary to recall that the model is not the reality. Hence,
the model still has some flaws. As an iterative process if any phase is not satisfied
it has to back to the previous steps.
As mentioned in section section 2.1 the ED systems are complex [52], and dif-

ficult to analyse. Therefore, recently the use of the so-called Agent-Based Model
(ABM) have bee suggested as a promising possibility to model the EDs. In the
following section the main characteristics of the ABM will be discussed.

2.3.2 Agent-Based Model
Although, there is not a general accepted definition, it can be said that an Agent-
Based Model (ABM) is a computational model of a heterogeneous population
of agents (components of the system) and their interactions, as well as the in-
teractions of the former with the environment. This type of modelling is used
to analyse complex systems that are difficult to be tackled by classical or formal
methods, which are unable to represent such systems. The result of the micro-
level interactions of the components of a system can produce macro-level behaviour
like cooperation, segregation, and culture, amongst others. Furthermore, the ABM
framework describes the dynamics of systems in which agent behaviour is complex,
stochastic, and non-linear. Also in systems in which the combined interaction of
all its agents can create rich emergent behaviour, and shows memory [10]. ABMs
are fundamentally decentralised, i.e., the behaviour of the system is defined at
individual level, and the global behaviour emerges as a result of the interactions of
many individuals (agents of the ABM), each one following its own behaviour rules.
Hence, ABM is also called bottom-up modelling. An ABM agent is defined as a
discrete entity with its own goals and autonomous behaviours, with a capability
to adapt and modify the latter.
ABM can be a useful tool for model analysis, complementary to pure math-

ematical model, i.e., when a model is either not totally solved mathematically or
apparently insoluble. This is the case for social science systems, where usually
there is a lack of mathematical model which defines the problem.
The three fields in which ABM are most utilised are: economics, biology, and

social sciences [32]. It is widely used in the latter in situations where human beha-
viour cannot be predicted using classical methods such as qualitative, or statistical
analysis [56]. Human behaviour is also modelled with ABMs in the fields of psy-
chology [69], epidemiology [21], and tourism planning [40], amongst a long list of
others.
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Amongst others, according to [47] the advantages of using ABMs to model
complex systems, such as EDs, are the following: there is a natural representation
of the ED components as agents; there are decisions and behaviours of the ED
system that can be defined discretely (with boundaries); the ED agents can adapt
and change their behaviours; the ED agents can learn and engage in dynamic
strategic behaviours; the EDs agents can have dynamic relationships with other
agents; ED’s agents relationships can be developed and/or stopped; the spatial
component of ED’s agents behaviours and interactions can be fully represented.

2.3.3 Agent-Based Emergency Department Model
The Emergency Department model proposed in this thesis is a pure Agent-Based
Model, and so is formed entirely of the rules governing the behaviour of the indi-
vidual agents which populate the system.
The real EDs systems of interest for this thesis are the ones of hospitals of Mataro

and Sabadell, especially the latter (a tertiary hospital which provides health ser-
vice to a catchment area of 500,000 inhabitants, whereas its emergency depart-
ment provides health service to an average of 160,000 patients/year), located in
the vicinity of Barcelona. From the information obtained during the interviews
carried out with ED staff and managers of those hospitals, active and passive
agents were identified. The active ED agents represent people and other entities
of the EDs that act upon their own initiative (patients, companions of patients,
admission personnel, sanitary and x-ray technicians, triage and emergency nurses,
emergency doctors, others medical specialists, and social workers). The passive
agents represent ED components that are solely reactive, such as loudspeaker sys-
tem, patient information system, pneumatic pipes, and central diagnostic services
(radiology service and laboratories).

2.3.3.1 ED Active Agents.

The ED active agents are described by state machines, specifically Moore ma-
chines. A Moore machine has a single output for each state; transitions between
states are specified by the input [53]. An example of the interaction carried out
between patient and doctor active agents, represented as state machines, during
the diagnosis phase is shown in Figure 2.3.
The current state of an active agent is represented by a collection of state vari-

ables, known as the state vector (T). Each unique combination of values for these
variables defines a distinct state. Through the round of interviews at the EDs of
Mataro and Sabadell hospitals an initial set of state variables for the EDs active
agents has been defined, based on the minimum amount of information required to
model each patient and member of staff. Some of such variables, their values and
their kind of observability are shown in Table 2.1. Some of the state variables will
have a potentially very large set of possible values, e.g. the symptoms or physical
condition. Every time step the state machine moves to the next state is defined
by the current state and the input vector as described below.
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Patient agent 

Communication 

Doctor agent 

Patient  
state machine 

Doctor 
state machine 

Figure 2.3: Patient and doctor active agents, and their interaction represented
by state machines. Si and Oi are the current state and the output, respect-
ively, and the arrows represent the change of state of the agent because of the
communication between patient and the doctor.

Patients are the most important active agents of the ED, and they are the reason
of the existence on ED. Patients are served by their priority level, which is identified
in the triage phase (mainly conducted by triage nurses) using the Spanish triage
classification applied in Spanish hospitals [22, 77, 79]. This classification consists
of 5 levels, with 1 being the most critical (resuscitation), and 5 being the least
critical (non-urgent).

2.3.3.2 ED State Variables

In order for the Moore state machine to function, all state variables associated to
an ED active agent must be enumerable in some manner (see Table 2.1). This
may be achieved by using discrete variables or variables representing continuous
quantities which have had their possible values divided into ranges.
A variable that is externally observable (E) indicates that any agent can discern

the value of that variable merely by being within a certain proximity of the agent
in question. An internally observable (I) variable is one where the agent is aware
of the value of the variable, but other agents are not. An unobservable variable
(N) is one which no agent, and thus nothing within the system, knows the value
of it.
It is possible that a variable may have some values which are observable, and
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Table 2.1: Some ED active agents state variables, and their values. I means
that the variable is internally observable, E is externally observable, and N is
unobservable.

Variable Values Observability
Name / Identifier Unique per agent I
Personal details

(patient)
Gender; Medical history; Allergies;

Origin
I

Location Department entrance, Admissions,
Waiting room, Triage, Consultancy

room, Treatment box

E

Action Idle, Requesting information from
<id>, Giving information to <id>,
Searching, Moving to <location>

E

Physical condition
(patient)

Healthy, Hemodynamic-Constant;
Barthel Index

E / I / N

Symptoms None; Level 1 - Resuscitation; Level
2 - Emergent; Level 3 - Urgent ;
Level 4 - Less Urgent; Level 5

Non-Urgent

E/ I

Level of
communication

Low, Medium, High E

Level of experience
(doctor)

None, Resident, Junior, Senior and
Consultant

I

Level of experience
(triage and

emergency nurses)

None, Low, Medium, High I

Level of experience
(admission
personnel)

None, Low, Medium, High I

others which are not or a group of values which will all appear the same to an
observer, this is a partly observable variable. In the case of an agent representing
a person and a variable representing their physical condition certain values may be
externally observable (for instance a broken arm), others may be only internally
observable (the cause of a stomach ache).
This observability is represented as implicit 1-to-location communication, each

agent in the location receives, for instance, a message that another agent has a
broken arm. Most agents will not respond to this input, but it is available to all
as in the corresponding real life situation all people in a room would be able to see
that a patient has a broken arm without the need to specifically ask this person
about it.

2.3.3.3 ED Inputs, Outputs, and State Transitions

Upon each time step the state machine moves to the next state. This may represent
a new state or the same one it was in before the transition. The next state the
machine takes is dependent on the input during that state. The input may be
described as an input vector (I) that contains a number of input variables, each
one of which may take a number of different values. As this is a Moore machine,
the output depends only on the state, so each state has its own output, although
various states may have outputs that are identical. The output is described as an
output vector (O), a collection of output variables, each with a number of defined
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possible values. Transitions between states are dependent on the current state at
time t (St) and the input at time t (It). Following the transition the state machine
will be in a new state (St+1). The state machine can be represented as a state
transition table, as shown in Table 2.2, where each row represents a unique state-
input combination, showing the output (defined solely by the current state) and
the state in the next time step (defined by the current state and the input).

Table 2.2: State transition table. Si is the current state, Ij is the input, Oi is the
output.

Current state / Input Next state /
output output
S0 / O0 I0 Si / Oi

S0 / O0 I1 Sj / Oj

S0 / O0 I2 Sk / Ok
... ... ...
Sx / Ox I0 Sy / Oy

Sx / Ox I1 Sz / Oz
... ... ...

2.3.3.3.1 ED Probabilistic State Transitions In some cases the state machine
representing an ED migth involve probabilistic transitions, where a given combin-
ation of a current state Si(ti) and input Ij has more than one possible next state
Si(ti+1). Which transition is made is chosen at random at the time of the trans-
ition, weights on each transition provide a means for specifying transitions that
are more or less likely for a given individual. Each one of the input variable of the
input vector (I) ) may take a number of different values with a certain probability.
In these cases our state transition table is defined with probabilities on the input
as shown in Figure 2.4b. An agent in state Sx receiving input Ia may move to
either one of states Sy, Sz or remain in the same state, with a probability of p1,
p2, and p3 respectively. One of these transitions will always occur, which is to say
p1 + p2 + p3 = 1. The state diagram would then have three different transitions
for that state-input combination as shown in Figure 2.4a.
Probabilities may be different for each agent, in this way heterogeneity is provided

to agents as people, since agent behaviour can be probabilistically defined external
to their state.

2.3.3.4 ED Passive Agents

Passive agents represent services within the hospital ED system such as the inform-
ation technology infrastructure that allows patient details to be stored, radiology
services and other laboratory tests as well as special systems such as pneumatic
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(a) Probabilistic state transition graph. (b) Probabilistic state transition table.

Figure 2.4: Probabilistic state transition graph, and its corresponding table. I
and O represent input and output vectors, respectively, while Si are the current
states, and pi is a certain probability.

tube networks that some larger hospitals use to quickly transfer samples from one
part of the department to another.

2.3.3.5 ED Communication Model

The communication model represents three basic types of communication. First
type is 1-to-1 communication, such between two individuals, for instance admission
staff and patient, where a message has a single source and a single destination.
Second is 1-to-n communication, where a message has a single source and a specific
set of recipients, for example when a doctor communicates with both patient and
his companion. The final type is 1-to-location communication, where a message
has a single source, but is received by every agent within a certain area or location.
This occurs when triage nurse call send a message to the patients of the waiting
room, through the loudspeaker system.
Implicit, or passive, communication also exists, where an agent may be pro-

ducing communication just be remaining in a certain area. This is the manner
in which agent vision, what each agent sees, can be represented using the same
model. An agent is continuously emitting messages with regard to its visible phys-
ical status and location, other agents receive these 1-to-location messages and may
act upon them in certain circumstances. For instance, an agent waiting for another
agent in a certain area will receive communication that the agent has entered and
act upon it, representing, for instance, a nurse seeing a patient, enter a triage room
and taking care of him.
Each message is comprised of a number of components. The source <src>

and destination <dst> of the message, where the source is the individual and the
destination is either defined as an individual, a group of individuals, or location
(where all individuals within that location will receive the message). The actual
content <content> of the message is the final part, creating a message tuple of
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the form (<src>, <dst>, <content>).
The <dst> component of the message is the implicit destination of the message,

in the real world case of 1-to-1 or 1-to-n communication is communicated via
body language such as an individual facing another and making eye contact while
talking. In the case of a 1-to-location message the implicit destination is the
location. In some cases, a 1-to-location message is actually only meant for a
certain agent, in which case the <content> component of the message will need to
contain an explicit destination. A real world example of this is a loud speaker, all
individuals within hearing distance of the loud speaker will hear the message, but
if it is only directed at a certain individual their name or some other identifier will
need to be used, so the specific individual knows it is for him and the remaining
individuals know it is not addressed to them.

2.3.3.6 ED Environment

All actions and interactions modelled take place within certain locations, collect-
ively known as the environment. The environment itself can be defined to different
levels depending on the positional precision required of the model.
The environment in which the agents move and interact is passive and discrete.

There is little distinction made between agents in the same location, a patient
in the waiting room does not have any more specific sense of position than that
they are in the waiting room. Certain locations may be physically distinct, but
functionally identical, for instance there are usually a number of triage rooms, an
agent in any one of these will act as if they are in any triage room, however they
are distinct in order to represent that each available room may only be used by
one nurse-patient group at a time. The environment also contains representations
of the relative distances between different discrete locations, as can be seen in
Figure 2.1.

2.4 Simulation
It is quite difficult, even almost impossible, to separate modelling from simulation,
then why taking too much time in modelling if such model is not going to be
tested? The word simulation comes from the Latin verb simulare and means to
imitate, to simulate the operations of different kinds of some real thing or processes.
Simulation is quite important since it allows us to understand the behaviour of a
system, and to evaluate different strategies within a given structure. Computer
simulation utilises the computers to perform experimentation on a model of the
system of interest. The Figure 2.5 shows different ways to study a system [45].

Simulation is ad hoc or mandatory when: it is almost impossible to do ex-
perimentation in reality, because either the system does not exist or would be
dangerous or quite expensive. Also, when the system cannot be interrupted, and
time scale have to be changed. Amongst the advantages of doing simulation are: a)
cost, experiments on real systems might be quite expensive; b) time, it is possible
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Figure 2.5: Different ways to study a system.

to simulate weeks, months, or even years in seconds; c) safety, effects of extreme
conditions can be studied; d) replication, simulations are exactly replicable.
Simulation models can be characterised as: deterministic vs stochastic, is everything

for sure or is there uncertainty?; static vs dynamic, does the time play an import-
ant role in the model?; and discrete vs continuous, the state of the system changes
all the time, or only at specific or discrete times? [45]. This taxonomy is shown in
Figure 2.6. A deterministic model is one where the model parameters are known
or assumed, it does not contain any probabilistic component and the output is
established straightforwardly once the set of input quantities and relationships in
the model have been specified, whereas a stochastic model has one or more random
components, and it is used wherein the cause and effect relationship is randomly
determined and is generally not solved analytically; a static model is a representa-
tion of a system at a particular time or timeless, the state variables do not change
while computing, in contrast, a dynamic one represents a system where the state
variables evolve over time; in a discrete model its state variables change instant-
aneously at separated points in time, while a continuous one the state variables
change continuously with respect to time [45].
Most of the time the systems, as well as the simulation, are dynamic, discrete

and stochastic, which is the case of systems such as the ED.

2.4.1 Simulation Models for Emergency Departments
Simulation becomes an important tool for modelling systems including many ele-
ments, as well as inter-dependencies and considerable variability amongst the ele-
ments. Discrete event simulation (DES), system dynamics (SD), and agent-based
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Figure 2.6: Classification of simulation models along three different levels.

modelling and simulation (ABMS) are the three main approaches used to simu-
late healthcare systems. DES is a technique that represents a system that can
change at only a countable number of points, events, in time [45]. SD is a meth-
odology and mathematical modelling technique which study how the information-
feedback characteristics and time delays interact to influence the behaviour of the
system [24]. ABM, as stated in subsection subsection 2.3.2, is a computational
model of a heterogeneous population of agents (components of the system) and
their interactions, as well as the interactions of such agents with the environment.
There are a large and growing body of literature describing the use of DES and SD
models in ED studies, but the use of ABMS for this purpose is scarce; although,
healthcare systems are characterised by a high human involvement, i.e., based on
human actions and interactions, that can be more properly modelled with ABMS.

2.4.2 Agent-Based Emergency Department Simulator
So far we have presented the information regarding to all the important and basic
elements of the general model of and ED. It is necessary to see how agents interact
and how they evolve over time. The ED simulator of this work is used as a black
box, but the more realistic the simulator is, the better results and optimisations
are. It is implemented in NetLogo, (version 5.0.34) an agent-based programming
language and programmable modelling environment [23].
NetLogo is well suited for modelling complex systems developing over time.

Modellers can give instructions to hundreds or thousands of independent agents all
operating concurrently. This makes it possible to explore the connection between
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the micro-level behaviour of individuals and the macro-level patterns that emerge
from the interaction of many individuals [2]. One of the most useful tools that
NetLogo has is the BehaviorSpace, which lets you explore the search space of the
model of possible behaviours and determine which combinations of settings cause
the behaviours of interest
Taking into account the information obtained during the interviews at the ED

of Sabadell hospital, we have implemented a simplified agent-based ED simulator.
Two versions were implemented until now. The first one is the ED simulator v1.1,
and the current ED simulator v1.2. The main difference between them is the
diagnostic and treatment phase, which is more realistic in the current one, ED
simulator v1.2.
The actions and interactions corresponding to the admission and triage pro-

cesses have been totally implemented, but in the case of diagnostic and treatment
phase, respecting to the priorities of the Sabadell Hospital ED currently only the
level 1 was implemented. In such level 1 only patients with priority level 4 or
5 (less urgent, and non-urgent, respectively subsubsection 2.3.3.1) are taken care
of. Nevertheless, all incoming patients are triaged by triage nurses. Once patients
have been triaged, only patient type 4 and 5 are served at the stage of diagnosis-
treatment phase. The rest of the patients, patient type 1, 2, and 3, are sent to a
black box (Level 2 area in Figure 2.8), which represents the level 2 of the Sabadell
Hospital ED.
The agent-based ED simulator version 1.1, which is shown in Figure 2.7, in-

cludes the following active agents: patients, admission personnel, triage nurses,
and doctors. The diagnostic and treatment phase is only addressed by doctors.

Figure 2.7: The agent-based ED simulator version 1.1. Admission personnel,
triage nurses, and doctors were the sanitary staff considered.

The simple patient flow in this ED simulator is defined as follows: patients
arrive to the ED on their own, and waits to be attended in the admission area.
Then, patients stay in the first Waiting Room (WR) WR1, until a triage nurse
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call them. After the triage process patients identified as triage level 4 and triage
level 5 pass to a second WR2, and stay there until a free doctor calls them to
begin the diagnosis-treatment phase, depending on the patient’s symptoms and
physical condition, as well as prescribed diagnosis tests. At the end, patients are
discharged from the ED.

Figure 2.8: The agent-based ED simulator version 1.2, the current one. Admission
personnel, triage nurses, doctors, emergency nurses, and x-ray technicians were
the sanitary staff considered.

The agent-based ED simulator v1.2, which is shown in Figure 2.8, includes the
following active agents: patients, admission personnel, triage nurses, emergency
nurses, doctors, and x-ray technicians. The simple patient flow in this ED simu-
lator is defined as follows: patients arrive to the ED on their own, and waits to
be attended in the admission area. Then, patients stay in the first Waiting Room
(WR), WR1, until a triage nurse call them. After the triage process patients
identified as triage level 4 and triage level 5 pass to a second WR2, and stay there
until a free doctor calls them to begin the diagnosis-treatment phase (interrogation
process), depending on the patient’s symptoms and physical condition, patients
wait at WR (Level 1) to be attended by x-ray technician or an emergency nurse
(to perform some diagnostic tests). After the diagnosis tests, patients come back
to WR (Level 1) and stay there until a free doctor calls them again (treatment
process). At the end, patients are discharged from the ED. Even though realistic
treatment is based on the acuity of patients, in these simulators patients have the
same path throughout the ED.
The simplified ED simulator is constituted of up to four diagnostic rooms, three

triage rooms, two treatment rooms, two waiting rooms, an area of admissions, an
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area of treatment nurses, an x-ray area, the entrance, and the exit. Some paramet-
ers can be set from the graphical user interface, they are number and sort of staff
members: doctors; triage and emergency nurses; x-ray technicians, and admission
personnel, and senior or junior (that represents less and more expertise, respect-
ively). Also, the input arrival patient, in percentage, as well as the maximum
number of iterations can be set. Finally, also it can be selected if information
about times, costs, and debugging is needed.

2.5 Discussion
The most relevant conclusions of this chapter are the following:

1. The operation and characterisation of the Healthcare Emergency Depart-
ments (ED), from the perspective of how urgent patient care is delivered,
were discussed. EDs can be characterised by their: a) physical location (in
a hospital unit or an independent one); b) physical layout (such as number
of waiting, triage and medical rooms); c) time period open to patients (of
waiting, triage and medical rooms), c) time period open to patients (24hs
/ 365 days per year or part time); d) patient type served (all /certain ages
only); and e) type and number of staff members (admission and support
personnel, nurses, doctors, medical technicians).

2. The modelling of complex and dynamic systems that lack of mathematical
model which defines the problem is a difficult task, specially using classical
approaches. Therefore, the use of an alternative modelling techniques such
as the so-called Agent-Based Modelling, ABM, becomes an ad hoc strategy
to study this problem. ABM is a computational model of a heterogeneous
population of agents (components of the system) and of the interactions
among themselves and with the environment.

3. Based on the field information obtained at Mataro and Sabadell hospitals
ED’s (both located in the vicinity of Barcelona) an ABM of a typical ED
was proposed (see Figure 2.7). This model includes the active (all human
beings interacting at the ED, i.e. patients, doctors, nurses, technicians, and
all sanitary staff) and the passive (all physical reactive items of the ED, for
example radiology and communication equipment) agents that are part of
the ED.

4. The active agents of the ED are described by Moore machines (that have a
single output for each system state under a specific input) which allows to
model the dynamics of the ED (i.e., the transitions between the ED states,
as well as their probabilities of occurrence).
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5. The ABM of the ED proposed in this work is used as a black box simulator,
and its implementation was done by using NetLogo, the agent-based pro-
gramming language and programmable modelling environment (see Figure
2.7).
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Chapter 3

Optimisation via Simulation of
Emergency Departments

“Understanding is always the understanding of
a smaller problem in relation to a bigger
problem.”

� P.D. Ouspensky

3.1 Introduction
The operation of patients overcrowded Emergency Departments could be improved
by, for example, adapting their layout according to their demands, by increasing
the number of staff, and by modifying the level of staff expertise (junior to senior
ratios), amongst other solutions. In order to find the best solution (optimal) that
improves the operation of EDs one option could be to analyse, by using compu-
tational numerical algorithms, a large number of potential solutions, if not every
solution, i.e., the so-called exhaustive search technique. However, this option could
be impractical, because even if theoretically the exhaustive search technique guar-
antees to find the best solution, it could require large amount of computing time
and resources. Therefore, an alternative optimisation technique is required. Such
alternative optimisation technique must decrease computing time and resources
used to find such best solution, i.e., the computing resources should be efficiently
used. Furthermore, such best solution could be infeasible, or an approximate
“good” solution might be a “better” solution, i.e., a thoughtful balancing must
be done between finding the best solution, which implies to use large amount of
computing time and resources, or finding an approximate “good” solution, which
efficiently uses computing time and resources.
In this chapter, topics about optimisation, constraints, objectives and their clas-

sification are discussed, as well as numerical methods and their taxonomy used to
do optimisation. A new optimisation via simulation algorithm is proposed, and
implemented.
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3.2 Optimisation
Optimisation is a common sense process, but difficult to specify neatly and rig-
orously; however, in general, it can be defined as the process of finding the best
or optimal solution for a given problem under some conditions. Optimisation is
applied in quite different fields, v.gr., in engineering the aim is to maximise the
performance of a system with minimal resources and runtime, while in some in-
dustrial process the goal is to enhance the quality and efficiency of the production
process. Optimisation is also applied, even in daily life, situations in which there
are many cases where the maximum profit with minimal effort is search. It can
also be said that optimisation is a widely used process, difficult to define and apply
in order to find the truly best or optimal solution.
Mathematically an optimisation problem can be stated as:

max / min f(x)
subject to x ∈ C

(3.2.1)

where x is the variable; f is a function (f : C → R); C is the constraint
set, and ∃x0 ∈ C such that f(x0) ≤ f(x) ∀x ∈ C for minimisation, and
f(x0) ≥ f(x) ∀x ∈ C for its counterpart, maximisation.

The function f : C → R is known as the objective function or performance
index, and it is not necessarily pure mathematical formulation, but it could be
a complex algorithm. The objectives are general statements of what to optimise
under some restrictions, where the optimisation process is going to apply.

Usually, the domain C ⊆ Rn represents the problem or search space that can be
any sort of elements, e.g. arrays, numbers or equipments, amongst others. The
domain is quite common specified by a set of conditions or constraints that its
elements have to satisfy. These elements are known as candidate solutions, which
define a feasible region. The Figure 3.1 illustrates these definitions. In this figure
are shown the so-called search space, i.e., the domain where the problem is posed,
and the solution exist. The traces C1 and C2 define the spatial constraints, which
define the feasible region where the optimal solution might exist and found by
using optimisation techniques.
Before stating the process of optimisation, at least, the next three elements

ought to be defined [64]:

• the system description of the model,

• the objective function or the performance index, and

• the optimisation method to be used.

And last, but not least important, one more concept requires to be defined, the
so-called level of optimisation, which express the degree of precision in a formal or
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Figure 3.1: Optimisation problem under constrains C1 and C2. The search and
feasible areas are shown.

mathematical formulation, which imposes or specifies the desired implementation.
This concept shows the accuracy or practical reason rather than analytical. Some-
times a quick answer to the optimisation problem at hand is desired even with
loss of generality or rigorousness, but when an “exact solution”, which implies a
high degree of accuracy in the computation of the objective function, optimisa-
tion techniques have to be developed or applied, as the ones shown in what follows.

3.2.1 Objective Function
The objective is a general statement about what to optimise subject to certain
restrictions or constraints, which implies the degree of precision required for the
searched solution, as well as about how this solution should be computed. The
performance index or objective function is a rigorous mathematical expression,
which allows quantitative comparisons amongst different solutions. These com-
parisons depend on the level or degree of the optimisation. The higher the level
of optimisation, the higher the quality of the solution is. The performance index
or objective function is also known, amongst others, as cost function or criterion,
in economy and control theory, respectively.
Setting the objective function is a hard task, but control theory helps to assign it,
without loss of generality, to one of two categories [64]: 1) time (to be minimised
or maximised); and an amplitude (range or a benefit to be maximised or an error
to be minimised).
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3.2.2 Constraints
Constraint is a limitation, restriction, and, in general, a condition which any solu-
tion to an optimisation problem, such as the Equation 3.2.1 have to satisfy. It can
be either an equality, or inequality constraint.
And, as it stated above, feasible region (illustrated on Figure 3.1), is composed

by those candidate solutions that satisfy all restrictions.

Before continuing the discussion over optimisation, it is important to define what
an optimum represents in the context of single and multiple objective functions.
Global optimisation is about finding the best optimal possible solutions for given
problems, which can be done over a single or multiple objective functions.

3.2.3 Single Objective Functions
When optimising a single function f , an optimum can be either a maximum, if
it is a maximisation problem, or a minimum, when it is a minimisation problem,
such as Equation 3.2.1. It can be local or global optimum as shown in Figure 3.2.
The latter is an optimum of the whole domain, whereas the former is an optimum
of only a subset of such domain. Usually, the maximum and minimum of a set are
the greatest and least values in such set.

Figure 3.2: Global and local maximum.

Hence, following are the definitions for different sort of optima in single objective
functions [76].

• A local maximum ~xl ∈ X of an objective function f : X → R is an input
element with f(~xl) ≥ f(x) ∀x neighbouring ~xl. If X ⊆ R, it can be written
as in Equation 3.2.2

∀~xl∃ε > 0 : f (~xl) ≥ f (x) ∀x ∈ X, | x− ~xl |< ε (3.2.2)

28



3.2 Optimisation

• A local minimum ~xl ∈ X of an objective function f : X → R is an input
element with f(~xl) ≤ f(x)∀x neighbouring ~xl. If X ⊆ R, it can be written
as in Equation 3.2.3

∀~xl∃ε > 0 : f (~xl) ≤ f (x)∀x ∈ X, | x− ~xl |< ε (3.2.3)

• A local optimum x∗
l ∈ X of one objective function f : X→ R is either a local

maximum or a local minimum.

• A global maximum x̂ ∈ X of one objective function f : X → R is an input
element with f(x̂) ≥ f(x) ∀x ∈ X.

• A global minimum �x ∈ X of one objective function f : X → R is an input
element with f(�x) ≤ f(x) ∀x ∈ X.

� A global optimum x∗ ∈ X of one objective function f : X→ R is either
a global maximum or a global minimum.

Even a one-dimensional function f : X = R → R may have more than one global
maximum, multiple global minima, or even both in its whole domain X. Examples
of these optima are shown in Figure 3.2.

3.2.4 Multiple Objective Functions
Even though single objective optimisation methods allow to model a large number
of real problems, there are many applications where these models are unsuitable,
since it is almost impossible to get a single solution that simultaneously optimises
several objectives. To overcome this case multi-objective optimisation (MOO)
comes into play.
Problems with two or more objectives functions, known as multi-objective func-

tions, are quite common in many fields. The solution of those problems is very
difficult since their objective functions tend to be in conflict with each other. Nev-
ertheless, to simplify, many of these problems are modelled as single objective
using only one of the original functions, and handle the others as constraints.
The multiple optimisation problem can be stated as follows:

optimise [f1(~x), f2(~x), · · · , fk(~x)] (3.2.4)

subject to m inequality constraints as in Equation 3.2.5:

gi (~x) ≤ 0 i = 1, 2, · · · , m (3.2.5)

and the p equality constraints as in Equation 3.2.6:

hi (~x) = 0 i = 1, 2, · · · , p (3.2.6)
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;where k in Equation 3.2.4 is the number of objective functions

fi : Rn → R and
~x = [x1, x2, . . . , xn]T

(3.2.7)

is the vector of decision variables, and it is desired to determine from amongst
the set PF of all vectors, which one satisfy the constraints Equation 3.2.5 and
Equation 3.2.6 at the particular set of values x∗

1, x∗
2, . . . , x∗

n which yield the op-
timum values of all the objective functions. Without loss of generality, it can be
stated that the single objective function, as the one expressed in Equation 3.2.1 is a
simplified form of the multiple objective functions expressed in Equation 3.2.4 [17].
The optimality concept for multi-objective functions is quite different to the

corresponding for single one, since it is very rare that exists a single point, which
at the same time, optimises all such objective functions. Hence, when dealing with
multi-objective optimisation problems, instead of seeking single solutions it is usual
to seek for a thoughtful balancing amongst optimality, completeness, precision, and
speed.

3.2.4.1 Pareto Optimality

One of the approaches used to obtain the optimum of the MOO problem expressed
by Equation 3.2.4 to Equation 3.2.7 is the so-called Pareto optimality [30], (which
was originally proposed by Francis Ysidro Edgeworth in 1881 [20], and then gener-
alised by Vilfredo Pareto in 1896 [62]), that mathematically is exposed as follows,
it is said that a vector of decision variables ~x∗ ∈ PF is a Pareto optimal if @
another ~x ∈ PF such that fi(~x) ≤ fi(~x∗) ∀i = 1, . . . , k y fj(~x) < fj(~x∗) for
at least one j.
This definition says that x∗ is Pareto optimal if there exists no feasible vector of

decision variables x ∈ PF which would decrease some criterion without causing a
simultaneous increase in at least one other criterion. Unfortunately, this concept
almost always gives not a single solution, but rather a set of solutions known as the
Pareto optimal set. The vector x∗ corresponding to the solutions included in the
Pareto optimal set are called non-dominated. The plot of the objective functions
whose non-dominated vectors are in the Pareto optimal set is called the Pareto
front.
The Figure 3.3 and Figure 3.4 graphically shown the Pareto-dominance concept

for a minimisation problem with two objectives (k1, k2). The Figure 3.3 shows the
location of several solutions. The filled circles represent non-dominated solutions,
while the non-filled ones symbolise dominated solutions. In Figure 3.4 is shown
the relative distribution of the solutions in reference to a solution x. There exist
solutions that are worse (in both objectives, (k1, k2) ) than x, better (in both
objectives) than x, and indifferent (better in one objective, but worse in the other).
Classical techniques for multi-objective optimisation tend to generate elements

of the Pareto optimal set one at a time, this implies that a lot of trials, using
different starting points, are required in order to generate lots of those elements.
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Figure 3.3: Pareto front with non-dominated, and dominated solutions.

Figure 3.4: Pareto front, different sort of solutions in reference to solution x.
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Moreover, most of these techniques are quite sensitive to the shape of the Pareto
front, and might not work when the Pareto front is non convex. Therefore, there
is needed for techniques that overcome these difficulties.

3.3 Numerical Methods in Optimisation Problems
Numerical methods belongs to numerical analysis, which is part of mathematics
and computer science that creates, analyses, and implements algorithms for solving
numerically the problems of continuous mathematics using computers
In most cases to solve equations such as Equation 3.2.1 or Equation 3.2.4 to

Equation 3.2.7 analytically is quite difficult, unless such equations are extremely
simple. Amongst others, these difficulties could be the following: it exists an
analytical solution, but the order of equations is high; the geometry of the problem
is very complex; there is no solution or analytical procedure for the equation;
an algorithm exists to solve the equation, but it does not have polynomial time
solution .
Engineers and scientists have chosen experimental physical approaches to study

many of the real systems. Although, there are limitations of those approaches,
some of which are inherent to the experimental method, or experimental errors,
that lead to coarse accuracy of the results they obtain. Therefore, nowadays, it is
almost impossible to separate the utilisation of computers throughout the design,
analysis, and simulation processes of real systems.

3.3.1 Optimisation Methods
To solve equation such as Equation 3.2.5, the so-called optimisation theory is ap-
plied. Before entering into the methods some topics should be discuss. In order
to choose an optimisation method some properties ought to be demanded to such
method or technique that solve the model using a system of algebraic or differen-
tial equations, or any other mathematical model if it is available. However, there
are some techniques available when there is no possibility of mathematical treat-
ment. These characteristics can be divided whether the solution is analytical or
numerical [64].
Amongst others, mathematical qualities are: existence of the solution, is there

any solution?; uniqueness of the solution, is there only one?; necessary conditions,
that have to be satisfied in all cases; sufficiency conditions, if are satisfied guarantee
an extremum; absolute or local extremum, is the solution valid over a small are or
over the whole search space?; and weak and strong extremum.
While computational characteristics are (more practical rather than mathemat-

ical): existence of a numerical computing method; kind of computer used; conver-
gence, if the method uses an iterative procedure; and computing time.
Convergence is quite important property, it is a condition sine qua non for any

numerical method. It is said that it is convergent if the numerical solution ap-
proaches the exact solution as the step size goes to zero.
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Since optimisation inherently implies control, controllability and observability
are defined. It is said that a system is controllable at the instant t0 if it is possible
to take from any initial state, x(t0) to any other state in finite time. And, a system
is observable at time t if, with the system at state x(t), it is possible to determine
such state in finite time using only its outputs. Controllability and observability
are dual aspects of the same problem.

Once the problem is characterised, the objective function and the constraints are
set, the next step is to choose a method to solve the defined problem. Such method
will depend on whether [64]: these settings are static or dynamic; the objective
function is restricted or not restricted; these settings are linear or non-linear; and
these settings are one-dimensional or multidimensional.
Without loss of generality, it can be stated that the static version is the sim-

plified form of the dynamic method, the linear problem is the simplified form
of the non-linear problem, and the one-dimensional is the simplified form of the
multidimensional.

3.3.2 Taxonomy of Optimisation Methods
The optimisation methods can be broadly classified as analytical or non-analytical,
as shown in Figure 3.5, that is based on the possibility to solve equations as
Equation 3.2.5. The analytical method imposes the existence of the derivatives
of the objective function; unfortunately, not always the function has such prop-
erty. Therefore, alternative methods have to be used. The classical optimisation
methods can be seen as search methods. If the size of the search space is small, or
its computational search time is polynomial and not NP-hard or NP-complete [18],
then an exhaustive search could be used. The so-called exhaustive search is a gen-
eral problem-solving technique, which always guarantees finding a solution if it
exist, used when there is not known efficient technique, but its computational cost
could be high and proportional to the number of possible solutions which could be
a combinatorial explosion of possible solutions. This approach could be the first
approximation to tackle search problems, i.e., that the whole feasible region will
be examined to find the optimum, could be used, as shown in Figure 3.1.
Also, optimisation algorithms can be divided in two other classes: deterministic

and probabilistic algorithms [76]. The former is used if the search space can
be time-wise explored; however, to solve a problem deterministically could be a
difficult task, if the dimension of the search space is large. Therefore, a probabilistic
optimisation method should be applied. The Monte Carlo-based approach is one
of the most popular, even though if the yield solution, could be not the global
optima, but rather an approximate good solution.
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Figure 3.5: Classification of optimisation methods

3.4 Optimisation of Emergency Departments via
Simulation Model

3.4.1 Optimisation via Simulation
As mentioned in section 3.1, computer simulations are used extensively and suc-
cessfully to evaluate the output responses of real systems, as for example to model
supply chain management, finance, manufacturing, engineering design and med-
ical treatment [28, 42, 66]. One important feature of simulation experiments is
that users can choose different system settings to try to improve the perform-
ance of their systems. Those settings are chosen by selecting the best from a set
of candidate parameter settings. Therefore, it is natural to search for settings
that optimise the system performance. This is called optimisation via simulation
(OvS), an emerging field which integrates optimisation techniques into simulation
analysis [6, 25–27,63].
OvS is different from classical deterministic optimisation and the typical stochastic

programming problem since there is no explicit form of the objective function,
and function evaluations are stochastic and computationally expensive. When
the parameter settings or design variables are discrete valued, thus the optim-
isation problems become discrete optimisation via simulation (DOvS) problems
[6, 26, 34, 57]. Many DOvS algorithms are based on random search. There are at
least three ways to categorize random search algorithms: by neighbourhood struc-
ture, by the number of feasible solutions, and by convergence properties. Random
search algorithms typically generate candidate solutions from the neighbourhood
of a selected solution in each iteration. Some algorithms have a fixed neighbour-
hood structure, while others change their neighbourhood structure based on the
information gained through the optimisation process. In reference to the conver-
gence properties of DOvS algorithms, they can be divided into three categories:
no guaranteed convergence, locally convergent, and globally convergent. Most al-
gorithms used in commercial software are heuristics, which provide no convergence
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guarantee [26,29]. The random search algorithms in the literature are often glob-
ally convergent including, such as the stochastic ruler method [4, 78]; Andradót-
tir’s random search methods [5, 8]; simulated annealing algorithm [3]; stochastic
comparison method [31]; and nested partitions with specific implementations as
in [61,68], amongst others algorithms. Any globally convergent algorithm, which
converges for an arbitrary initial approximation, without any structure assump-
tion on the objective function requires examining every feasible solution infinitely
often in order to guarantee convergence [35].
Using past information, either through visit counts or by aggregated sample

means, one needs to keep a list of all visited solutions, and when a new solution
is generated one needs to check if it has already been visited. The storage and
checking cost can be high if the algorithm visits a large number of solutions.
However, the computational and storage costs are often small compared to the
cost of conducting simulation experiments in practical real-world [7]. Therefore,
since simulation experiments are computationally expensive, the past information,
i.e., to accumulate observations, should be used in DOvS algorithms, instead of
discarding such observations.
In the context of agent-based simulation, a model and the simulator with which

it is executed can include many parameters. These parameters can be specific to
either the simulator, for example, the discretisation step for the modelling of time
and space, or to the model. Some of the latter can be extracted from the knowledge
of the field and be associated to fixed values, whereas other parameters have to be
kept variable, amongst other reasons are: the knowledge of the field is generally
not exhaustive, or this knowledge may not be directly compatible with the model.
In this case, a common approach can be to try some values and simulate the model
to see how it behaves globally. Therefore, a different approach to automate this
complex process should be set.
Different methods have already been proposed to explore automatically the para-

meter or search space of discrete models. One of them, in the NetLogo platform
for instance, the “BehaviorSpace” [23], it is sometimes called parameter sweep-
ing. It lets you explore automatically and systematically the search space of the
model of possible behaviours and determine which combinations of settings is the
best. This space is a Cartesian product of values that each parameter can take.
However, when we have many parameters, the search space becomes huge and the
systematic exploration becomes impractical or highly computational cost. Other
methods have been proposed, which differentially explores the whole search space,
focusing on the most interesting areas. This is the case of the method developed
in [59]. They use a “parameter sweep infrastructure”, which is similar to the “Be-
haviorSpace” tool of NetLogo. However, to avoid a systematic exploration, they
use “special agents”, which are called searcher agents, and introduce the fitness
notion. The aim of such searcher agent is to travel in the parameter space to look
for the highest fitness. One drawback of such method is that those searcher agents
may head for local fitness optima.

35



Chapter 3 Optimisation via Simulation of Emergency Departments

3.4.2 Optimisation via Simulation of Emergency Deparments
Amongst the previous research on the simulation of EDs the following can be
included. The proposal of [75] uses ABM to simulate the work flow in ED. It focus
on triage and radiology process, but not real data was used, the acuity of patients
are not consider, and healthcare providers do not always serve patients in a first-
come-first-serve basis. Simulation optimisation is used to improve the operation
of ED in [65], using a commercial simulation package, and [1] combines simulation
with optimisation, which involves a complex stochastic objective function under
deterministic and stochastic set of restrictions. Other works modelling healthcare
systems have focused on patient scheduling under variable pathways and stochastic
process durations, the selection of an optimal mix for patient admission in order
to optimise resource usage and patient throughput [37]. Also, work has been
performed in evaluating patient length of stay under the effects of different ED
physician staffing schedules, and the only one found until now that utilises real
data is [41] or patient diversion strategies [44]. An evolutionary multi-objective
optimisation approach is used in [36] for dynamic allocation of resources in hospital
practice, while in [60] it was found that combining agent-based approaches and
classical optimisation techniques complement each other.

3.5 Proposed Optimisation via a Simulation Model
for Emergency Departments

In this section a methodology is proposed, to analyse the performance of Emer-
gency Departments. In Figure 3.6 is shown conceptually where the niche of this
research is focused: devising, developing and implementing a methodology for the
optimisation via simulation filling the gap between the exhaustive search tech-
nique and heuristic approach for the MOO (see Equation 3.2.4 to Equation 3.2.7)
for Emergency Departments.

3.5.1 The Optimisation Proposal for Emergency Departments
As it was stated in chapter 2, ED is a critical healthcare department, usually
the main entrance to the hospital, and a key component of the whole healthcare
system. EDs are semi-autonomous units that are open and staffed 24 hours per
day, 365 days per year, including holidays. EDs can be described by four main
characteristics: physical location; physical layout; time period open to patients,
and patient type served. All of them compromised human resources, as sanitary
staff, and patients as well as their companions. The original mission of EDs is
to primarily handle only emergent situations. However, ED visits include a wide
range of illnesses and injuries, i.e., truly emergencies, urgent, semi-urgent, and non-
urgent cases. EDs have increased their resources: human, physical, equipment,
infrastructure and economic, to attend all of those visits, becoming large, complex
and dynamic units. The stated problem study in this research could be synthesize
in the Figure 3.7.
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Figure 3.6: The proposed methodology

This figure shows schematically, the MOO problem of an ED, including its in-
puts, constraints and outputs. The decision or input variables of the ED are the
resources allocation –including beds and boxes, and staff scheduling– all sanitary
staff, .v.gr.: doctors, nurses, admission personnel, technicians, amongst others,
that are the parameters or search space of the problem; the other (uncertain)
inputs are also shown in Figure 3.7, including the most important, such as the
frequency of arrival and diversity of patients; the problem constraints, that could
be physical, human, equipment, and safety regulations. Also in Figure 3.7 some
of the output indexes of interest are shown, v.gr., patient length of stay, resource
utilisation, productivity, and patient satisfaction.
The optima solutions to the problem shown in Figure 3.7 could be found by

either examining the whole feasible region, usually difficult to apply in practice
since its high computational cost, or using some heuristic methods, an alternative
technique that could be quicker than the former. Even though the former guaran-
tees to find the optimum, is infeasible to apply. In contrast, the heuristic technique
is a practical alternative to find an approximate and acceptable “good” solution,
through a thoughtful balancing amongst optimality, completeness, precision, and
lower computing time cost, which are the goals of the methodology proposed in
this work, see Figure 3.6.
The optimisation via simulation methodology for EDs proposed herewith is

based in a neighbourhood structure aiming to reduce the feasible region. The
methodology is constituted of two phases as shown in Figure 3.8. The first phase

37



Chapter 3 Optimisation via Simulation of Emergency Departments

Figure 3.7: Elements of the optimisation problem of Emergency Departments.

is a coarse grained approach consisted in a global exploration step over the en-
tire search space. This phase identifies promising regions for optimisation based
on a neighbourhood structure of the problem, that uses either a pipeline scheme
approach of an Emergency Department or the Monte Carlo heuristic plus the
K-means method. The second phase is a fine grained approach, that consists
in seeking the best solution, either the optimum or a sub-optimum lying on the
Pareto frontier (discussed in subsection 3.2.3 and subsection 3.2.4) by performing
a “reduced exhaustive search” in such promising regions.

3.5.2 Coarse Grained Phase
This is the first phase of the proposed optimisation via simulation methodology.
This phase is a global exploration step over the entire search space. This phase
identifies promising regions for optimisation based on a neighbourhood structure
of the problem. This stage could be done using two alternative techniques: the
pipeline scheme approach of ED, or the Monte Carlo heuristic plus the K-means
methods. This first phase returns a collection of promising regions. Both approaches
are discussed in the next subsections.

3.5.2.1 Pipelining Modelling Technique

Pipelining is an implementation technique whereby multiple instructions are over-
lapped in execution [33]. It consists on several ordered stages. Ideally, all the
stages should have equal processing speed. Otherwise, the slowest stage becomes
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Figure 3.8: Framework of the two-phase optimisation via simulation methodology
proposed.

the bottleneck of the entire pipe. This bottleneck problem plus the congestion
caused by improper buffering may result in many idle stages waiting for the pre-
vious ones. In a uniform-delay pipeline, all tasks have equal processing time in
all stages. Ideally, all the stages can operate synchronously with full resource
utilization, but, in reality, the successive stages have unequal delays. The optimal
partition of the assembly line depends on a number of factors, including the quality
(efficiency and capability) of the working stages, the desired processing speed, and
the cost effectiveness of the entire pipe. The precedence relation of a set of sub-
tasks { T 1, T2, · · · , Tk} for a given task T implies that some task T j cannot start
until some earlier task T i (i < j) finishes. The interdependencies of all subtasks
form the precedence graph. With a linear precedence relation, task T j cannot start
until all earlier subtasks {T i, for all i ≤ j } finish. A linear pipeline can process a
succession of subtasks with a linear precedence graph [38]. The pipeline time can
be expressed by the following equation

Pipeline time = 1∑ 1
Si

+ 1∑ 1
Sj

+ . . .
1∑ 1
Sk

(3.5.1)

where Si (in Pipelining Modelling Technique) represents each stage of the pipeline.
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3.5.2.2 Pipeline Model for Emergency Departments

The pipeline scheme (PS) model of ED is based on the patients flow in an ED,
that was discussed in subsection 2.2.2. This approach is presented in Figure 3.9.
It shows the reduced approximation to the patients flow in a reduced ED, where
the patients arrive either by their own means or by ambulance, then go to up to
three different stages, pipes, that are: admission, triage, and, finally, diagnosis
and treatment stages. Therefore, the pipeline is constituted by three stages, each
of them could be done in parallel up to three or four tasks in parallel, and are
interconnected by buffers, that represent the waiting rooms of an ED. These buffers
synchronise the stages, since them have different processing speed. Also, in the
same figure is shown one of the key performance index, the approximated time
(t∗) that the patients stay in the ED. All sanitary staff configurations identified in
the promising region through this approach in the first phase of the methodology
proposed are tested to find the optimum.

Figure 3.9: Three-stage pipeline approach (PA) model for a reduced emergency
department.

3.5.2.3 Monte Carlo Heuristic Method

Monte Carlo (MC) is a statistical sampling method used to approximate solutions
to quantitative problems [43, 74]. It is widely used when: a) it is infeasible to
compute an exact solution using a deterministic algorithm; b) there are many
degrees of freedom, or c) there are incertitude in the input data. MC method
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does not suffer from the curse of dimensionality. Usually, to reduce the standard
error implicit in MC method, different techniques could be used, amongst them,
increasing the sample size and the variance reduction [48].

3.5.2.4 Monte Carlo Heuristic for Emergency Departments

The application of the MC method for EDs is used as an alternative technique,
whenever the pipeline approach model could not be applied. The algorithm used
is based on the Metropolis algorithm [51]. It randomly selects each time 25 ED
sanitary staff scenarios, previously ordered by the equivalent operational patient-
service time (t*) of a “single one” sanitary professional (working in parallel) of
each sanitary staff configuration. The selected scenarios that have a better aver-
age mean value and standard deviation than the previous ones are accumulated,
in order to reuse past information. The MC program stops when two consecutive
iterations cannot be able to improve the average mean value , i.e., it becomes
stationary or asymptotic, and the MC stores the last time when the average mean
value was improved.

3.5.2.5 K-means method

K -means is a partitional clustering technique that helps to identify k clusters from
a given set of n data points in d-dimensional space. Each cluster is parametrised
by a vector m(k) called its mean [49]. It is an iterative two-step algorithm: 1)
assignment step, and 2) update step. In the former, it starts with k random
centres and a single cluster, and, in the latter step, such cluster is refined at
each step arriving to k clusters. The time complexity for implementing k-means
is O (i ∗ k ∗ d ∗ n), where i is the number of iterations, but according to [9] k-
means method will run in expected polynomial time, where the upper bound on
the expected number of iterations is O

�
n34log4(n)k34d8

�6

�
, which is a polynomial in

n, k, d, 1
�
.

3.5.2.6 K-means Method for Emergency Departments

After MC heuristic, K-means is applied to cluster the scenarios selected by the
MC program. This clusterisation allows to find both the Pareto frontier and
the promising regions. This step returns a collection of promising regions, that are
represented by hyperplanes delimited by the sta� scenarios found in this step.

3.5.3 Fine Grained Phase
The second step of the proposed methodology is a fine grained approach. It consists
of a “reduced exhaustive search”. Once the feasible region of the problem is reduced
in the first coarse grained phase, either by using the pipeline approach or the MC
plus the K-means methods through returning a collection of promising regions. This
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fine grained phase is applied to find the best solution, either the optimum or a
sub-optimum lying on the Pareto frontier, by a “reduced exhaustive search”.

3.5.3.1 Reduced Exhaustive Search

The exhaustive search technique, i.e, to search in the whole feasible region, is not a
“good” practical option to solve any optimisation problem, but as it was stated in
subsection 3.3.2, it guarantees to find the optimal solution. In this thesis, the “re-
duced exhaustive search” is used to find the optimal solution in the reduced feasible
space found by either the pipeline scheme or the MC plus K-means methods.

3.6 Cluster Implementation of the Optimisation
Proposal for Emergency Departments

NetLogo neither does parallel runs nor does support for splitting the runs across
clusters. Although its BehaviorSpace tool allows to run parametric runs, it suffers
from load imbalance [16]. Thus a better approach must be used, and the dynamic
load balancing seems the natural solution. To this end, a master-worker (M-W)
framework is used.
The master-worker scheme does a dynamic load balancing of the parametric

runs of the agent-based ED simulator. First of all, the master assign an equitable
random initial workload to each worker, and as soon as it finished, the master
assign new workload again, until the whole workload is completely done. This
scheme is done intra-node. The master-worker application was implemented in
C language using pthreads to launch the agent-based ED simulator, described in
subsection 2.4.2.
The exhaustive search technique is used as baseline method. Then the two-phase

optimisation via simulation is applied. As coarse grained phase (the first of the
two-phase proposed) either the pipeline approach or MC plus K-means methods,
or both are applied. This first phase returns a collection of promising regions.
Finally, the fine grained phase is separately apply within the promising regions
found in the previous step. The implementation of the proposed optimisation via
simulation of EDs is shown schematically in Figure 3.10.
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Figure 3.10: Algorithm of the optimisation via simulation of EDs methodology
proposed.

The ED simulator to find the optimum sanitary staff configuration using ex-
haustive search technique is launched using the M-W application, which is used,
as stated before, both to compare and analyse the results and performance of the
methodology proposed.
The M-W application using pthreads to launch the ED simulator, described in

subsection 2.4.2, was implemented in C language in order to load balancing.
The pipeline program was implemented in C++ programming language using

STL, whereas the MC method was implemented in Perl programming language.
Finally, a “reduced exhaustive search” was separately applied by using the M-W

application within the reduced feasible region found by either the pipeline scheme
or the MC plus K-means methods, in the coarse fine grained phase.

3.7 Discussion
The most relevant conclusions of this chapter are the following:

1. The operation of patients overcrowded Emergency Departments could be
improved by adapting their layout according to their demands, by increasing
the number of staff, or by modifying the level of staff expertise (junior to
senior ratios). In order to find the best solution (optimal) that improves the
operation of EDs one option could be to analyse, by using computational
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numerical algorithms, a large number of potential solutions.

2. One important feature of simulation experiments is that users can choose
different system settings to try to improve the performance of their systems,
by selecting the best from a set of candidate parameter settings by applying
optimisation via simulation (OvS), which integrates optimisation techniques
into simulation analysis.

3. In the context of agent-based simulation, a model and the simulator with
which it is executed can include many parameters. These parameters can be
specific to either the simulator or to the model. The latter can be extracted
from the knowledge of the field and be associated to fixed values, whereas
other parameters have to be kept variable, to take into account that the
knowledge of the field is generally not exhaustive.

4. The “BehaviorSpace” in the NetLogo platform lets to explore automatically
and systematically the search space of the model of possible behaviours and
determine which combinations of settings is the best, but it suffers from load
imbalance.

5. The MOO problem of an ED, includes its inputs, constraints and outputs.
The decision or input variables of an ED are the resources allocation –
including beds and boxes, and staff scheduling, all sanitary staff, .v.gr.: doc-
tors, nurses, admission personnel, technicians, the parameters or search space
of the problem; other (uncertain) inputs include the most important, such
as the frequency of arrival and diversity of patients; the constraints, could
be physical, human, equipment, and safety regulations; and the output the
length of stay (LoS) and the number of patients attended per day.

6. The optimisation via simulation methodology for EDs proposed herewith is
based in a neighbourhood structure aiming to reduce the feasible region.
The methodology is constituted of two phases. The first phase is a coarse
grained approach consisted in a global exploration step over the entire search
space. This phase identifies promising regions for optimisation based on a
neighbourhood structure of the problem, that uses either a pipeline scheme
approach of an Emergency Department or the Monte Carlo heuristic plus
the K-means method. The second phase is a fine grained approach, that
consists in seeking the best solution, either the optimum or a sub-optimum
lying on the Pareto frontier by performing a “reduced exhaustive search” in
such promising regions.
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7. A Master-Worker (M-W) application using pthreads to launch the ED simu-
lator was implemented in C language in order to load balancing. This M-W
application is used as the first approach to find the optimum sanitary staff
configuration by using exhaustive search both to compare and analyse the
results and performance of the proposal methodology. The pipeline program
was implemented in C++ programming language using STL, whereas the
MC method was implemented in Perl programming language. Finally, a “re-
duced exhaustive search” was applied by using the M-W application within
the reduced feasible region found by either the pipeline scheme or the MC
plus K-means methods.
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Chapter 4

Applications of the Proposed
Optimisation of Emergency
Departments via Simulation

“It is better to be approximately right than
exactly wrong.”

� Old adage

4.1 Introduction
The two-phase optimisation via simulation of healthcare Emergency Departments,
ED, proposed in section 3.5 was applied herewith to analyse the administrative
strategies leading to optimum decisions about the physical and human resources of
an ED. In particular, the impact on the economics and the productivity of Sabadell
Hospital ED of different sanitary staff configuration (v.gr., doctors, triage nurses,
admission personnel, emergency nurses, and x-ray technicians) were analysed. It
is a discrete combinatorial optimisation problem.
There are three main issues to be addressed to carry out the evaluation, namely:

the simulation models that represent the system under study (discussed along the
previous chapters); the decision variables and workloads used as inputs of the
simulation models; and the metrics used to asses the benefits of the proposal.
We have defined some significant workloads and a set of metrics to observe both
functional and performance features of the proposal. This set of metrics were
defined in term of three different indexes, namely: patient length of stay (LoS)
in the ED; number of attended patients per day (Throughput); and a compound
index, the product of the cost of a given sanitary staff configuration times patient
length of stay (CLoS).
In the following sections, the decision variables, the workloads, and the met-

rics are described. Finally two case scenarios and their results are presented and
discussed.
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4.2 Field Information of Sabadell Hospital ED
It was found through interviews with the managers at the EDs of Sabadell hos-
pital (which provides healthcare services to an average of 160,000 patients/year),
it was found that a basic sanitary of its ED staff is composed by: doctors, triage
nurses, emergency nurses, admission personnel, and x-ray technicians, as shown
in Table 4.1. This table also shows some characteristics of such sanitary staff,
namely: sort of staff as junior or senior (that represents less and more expert-
ise, respectively); their respective costs (€ 1); the operational patient-service-time
(hours); and the minimum and maximum number of each kind of staff.

Table 4.1: Sabadell Hospital ED staff and their: associated expertise, costs, op-
erational patient-service time, and number.

Sanitary sta� Cost (€1) Time/patient (hours)
Number

of
personnel

Senior Junior Senior Junior min - Max
Doctor 1000 500 0.260 0.350 1 – 4

Triage Nurse 500 350 0.090 0.130 1 – 3
Emergency Nurse 500 350 0.090 0.130 1 – 2

Admission
personnel 200 150 0.020 0.035 1 – 3

X-ray technician 200 150 0.020 0.035 1 – 2
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Figure 4.1: Sabadell Hospital ED average of 400 daily incoming patients and its
hourly distribution (February 2010).

In reference to the Sabadell Hospital ED incoming patients, an average of four
hundred of patients daily arrive to the ED of Sabadell hospital. As example, the
statistics corresponding to February 2010, of this real average number of incom-
ing patients and its hourly distribution are shown in Figure 4.1. As stated in
subsubsection 2.3.3.1 all incomings patients are triaged to identify the acuity of

1It is not an actual euro, could be any currency.
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them and to prioritise their urgency of attention. Thus, the average percentage,
according to the priority level of urgency of attention, of the incoming patients
to the ED of Sabadell hospital is as follows: triage level 1 - 1%; triage level 2 -
4%; triage level 3 - 20%; triage level 4 - 32%;and triage level 5 - 43%. Patients
identified as triage level 4 and triage level 5 represent up to 75% of the total of
the incoming patients to the ED of Sabadell hospital.

4.3 Decision Variables of Sabadell Hospital ED
The sanitary staff included in Table 4.1 are the decision variables of the ED.

Case
number AD1 AD2 AD3

1 AS - -
2 AJ - -
3 AS AS -
4 AJ AJ -
5 AS AJ -
6 AS AS AS
7 AJ AJ AJ
8 AS AJ AJ
9 AS AS AJ

Table 4.2: 9 Admission (A) per-
sonnel cases. ADi is Admis-
sion Deni.Where AJ means Ad-
mission personnel Junior, whereas
AS means Admission personnel
Senior.

Case
number TR1 TR2 TR3

1 NS - -
2 NJ - -
3 NS NS -
4 NJ NJ -
5 NS NJ -
6 NS NS NS
7 NJ NJ NJ
8 NS NJ NJ
9 NS NS NJ

Table 4.3: 9 Nurse (N) cases. TRi
represents Triage Room i. Where
NJ means Triage Nurse Junior,
whereas NS means Triage Nurse
Senior.

Case
number ENR1 ENR2

1 ENS -
2 ENJ -
3 ENS ENS
4 ENJ ENJ
5 ENS ENJ

Table 4.4: 5 Emergency nurse (EN)
cases. ENRi represents ENurse
Room i. Where ENJ means Emer-
gency Nurse Junior, whereas ENS
means Emergency Nurse Senior

Case
number XR1 XR2

1 XRS -
2 XRJ -
3 XRS XRS
4 XRJ XRJ
5 XRS XRJ

Table 4.5: 5 X-ray technician (XR)
cases. XRi represents X-ray Room
i. Where XRJ means X-ray tech-
nician Junior, whereas XRS means
X-ray technician Senior

The disaggregation of Table 4.1 yields Table 4.2, which includes 9 possible com-
binations of admission personnel (junior/senior); Table 4.3, which also includes 9
possible combinations of triage nurses (junior/senior); Table 4.4, that presents the
5 possible combinations of emergency nurse (junior/senior); Table 4.5 that shows
the 5 possible combinations of x-ray technician (junior/senior); and Table 4.6, with
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14 possible combinations of doctors (junior/senior) in which the examined cases
for each type of staff were included. It is a discrete combinatorial problem.

Table 4.6: 14 Doctor (D) cases. DRi represents Diagnosis Room i. Where DJ
means Doctor Junior, whereas DS means Doctor Senior.

Case
number DR1 DR2 DR3 DR4

1 DS - - -
2 DJ - - -
3 DS DS - -
4 DJ DJ - -
5 DS DJ - -
6 DS DS DS -
7 DJ DJ DJ -
8 DS DJ DJ -
9 DS DS DJ -
10 DS DS DS DS
11 DJ DJ DJ DJ
12 DS DJ DJ DJ
13 DS DS DJ DJ
14 DS DS DS DJ

Table 4.2 to Table 4.6 were ordered by the sort and number of staff, whereas
Table 4.7 to Table 4.11 were ordered by the equivalent operational patient-service
time (t*) of a “single one” sanitary professional (working in parallel) of each san-
itary staff configuration (admission personnel, nurses, doctors, and x-ray tech-
nicians). This order was obtained by applying the pipeline scheme described in
subsubsection 3.5.2.2 and is graphically shown in Figure 4.2 to Figure 4.4. In these
figures the index value was represented by colours, the most important values in
shuch figures were the green ones.

Table 4.7: Ordering staff configuration of admission personnel according to the
equivalent operational patient-service time (t*) of each staff configuration.

Case
number
(t*)

Old
case

number
AD1 AD2 AD3 € Time

(hrs)
t*

(hrs)

1 6 AS AS AS 600 0.020 0.0067
2 9 AS AS AJ 550 0.035 0.0078
3 8 AS AJ AJ 500 0.035 0.0093
4 3 AS AS - 400 0.020 0.001
5 7 AJ AJ AJ 450 0.035 0.0117
6 5 AS AJ - 350 0.035 0.0127
7 4 AJ AJ - 300 0.035 0.0175
8 1 AS - - 200 0.020 0.020
9 2 AJ - - 150 0.035 0.035
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Table 4.8: Ordering staff configuration of triage nurses according to the equivalent
operational patient-service time (t*) of each staff configuration.

Case
number
(t*)

Old
case

number
TR1 TR2 TR3 € Time

(hrs)
t*

(hrs)

1 6 NS NS NS 1,500 0.090 0.0067
2 9 NS NS NJ 1,350 0.130 0.0078
3 8 NS NJ NJ 1,200 0.130 0.0093
4 7 NJ NJ NJ 1,050 0.130 0.001
5 3 NS NS - 1,000 0.090 0.0117
6 5 NS NJ - 850 0.130 0.0127
7 4 NJ NJ - 700 0.130 0.0175
8 1 NS - - 500 0.090 0.020
9 2 NJ - - 350 0.130 0.035

Table 4.9: Ordering staff configuration of doctors according to the equivalent
operational patient-service time (t*) of each staff configuration.

Case
number
(t*)

Old
case

number
DR1 DR2 DR3 DR4 € Time

(hrs)
t*

(hrs)

1 10 DS DS DS DS 4,000 0.260 0.065
2 14 DS DS DS DJ 3,500 0.350 0.0695
3 13 DS DS DJ DJ 3,000 0.350 0.0746
4 12 DS DJ DJ DJ 2,500 0.350 0.0805
5 6 DS DS DS - 3,000 0.260 0.0867
6 11 DJ DJ DJ DJ 2,000 0.350 0.0875
7 9 DS DS DJ - 2,500 0.350 0.0948
8 8 DS DJ DJ - 2,000 0.350 0.1046
9 7 DJ DJ DJ - 1,500 0.350 0.1167
10 3 DS DS - - 2,000 0.260 0.130
11 5 DS DJ - - 1,500 0.350 0.149
12 4 DJ DJ - - 1,000 0.350 0.175
13 1 DS - - - 1,000 0.260 0.260
14 2 DJ - - - 500 0.350 0.350

Table 4.10: Ordering staff configuration of emergency nurses according to the
equivalent operational patient-service time (t*) of each staff configuration.

Case
number
(t*)

Old
case

number
ENR1 ENR2 € Time

(hrs)
t*

(hrs)

1 3 ENS ENS 1,000 0.090 0.0117
2 5 ENS ENJ 850 0.130 0.0127
3 4 ENJ ENJ 700 0.130 0.0175
4 1 ENS - 500 0.090 0.020
5 2 ENJ - 350 0.130 0.035
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Table 4.11: Ordering staff configuration of x-ray technicians according to the
equivalent operational patient-service time (t*) of each staff configuration.

Case
number
(t*)

Old
case

number
XR1 XR2 € Time

(hrs)
t*

(hrs)

1 3 XRS XRS 400 0.020 0.001
2 5 XRS XRJ 350 0.035 0.0127
3 4 XRJ XRJ 300 0.035 0.0175
4 1 XRS - 200 0.020 0.020
5 2 XRJ - 150 0.035 0.035

In the first example, Figure 4.2 shows a 3D scattered graph, which axes were
ordered by the sort and number of sanitary staff (first column/case number of
Table 4.2 to Table 4.6. In this graph the green points were all scattered, and they
shown lack of connectivity.

Figure 4.2: 3D scattered graph ordered by the sort and number of staff Table 4.2
to Table 4.6. The green values of interest were totally scattered.

The second example, Figure 4.3 shows the index value ordered by the cost of
the sanitary staff configuration. The green points were less scattered, but blue
values and others were mixed, showing a region not totally connected. Finally, the
third example, Figure 4.4, shows the index value ordered by the equivalent oper-
ational patient-service time (t*) of each sanitary staff configuration of Table 4.7
to Table 4.11. This graph shows a connected and almost “non” scattered green
region.

4.4 Workloads
In order to analyse the performance of the ED, the real average four hundred
incoming patients daily arrive to the ED of Sabadell hospital was considered as
follows. This real input was divided into four scenarios, i.e., four different workload
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Figure 4.3: 3D scattered graph ordered by the cost of sanitary staff configuration.
The green values of interest were not so scattered, but not interconnected.

scenarios, up to: 4, 9, 13, and 17 incoming patients hourly, as shown in Table 4.12
(i.e., up to 96, 216, 312, and 408, respectively for 24hrs.).

Figure 4.4: 3D scattered graph ordered by the equivalent operational patient-
service time (t*) of a “single one” sanitary professional of each sanitary staff
configuration Table 4.7 to Table 4.11. The green value region of interest was
connected and almost “non” scattered.

These different workload scenarios were used to supply different loads to the
ED, whereas the percentage of the priority level of patients was maintained.

Table 4.12: Incoming ED patients divided into four different workload scenarios,
up to: 4, 9, 13, and 17 patients per hour for each scenario.

Workload scenario
number

Incoming patients
(hourly)

1 4
2 9
3 13
4 17
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4.5 Evaluation Metrics
The set of metrics used in this work were: the length of stay (LoS) of the patients in
the ED; the number of attended patients per day (Throughput); and a compound
index, the product of the cost of a given sanitary staff configuration times patient
length of stay (CLoS).
Furthermore, the computing time of each of the proposed optimisation method

is measured in order to observe the gains in reducing computing time of the meth-
odology proposed.

All simulations of the ED optimization cases analysed in this work were car-
ried out in a Linux cluster of the CAOS Department of the UAB, which has 608
computing cores and 2.2TB of RAM, that is composed of: 9 nodes of a dual-4
core Intel Xeon E5430, 2.6GHz, 16GB RAM; 1 node of 2xdual-6 core Intel Xeon
E5645, 2.4GHz, 24GB RAM; and 8 nodes of 4x16-cores AMD Opteron “Interla-
gos”, 1.66GHz, 256 GB RAM, all in a switched 1GigE network.

4.6 Evaluation Method
The evaluation of the proposed methodology was aimed to confirm the correct op-
eration of both the pipeline approach (PA) and the MC plus the K-means methods,
described in chapter 3. To this end, we have first performed the exhaustive search
(ES) to use as baseline method. The second step of this evaluation consists on
applying the coarse grained phase, using either the PA, the MC plus K-means
methods, or both. Finally, the fine grained phase is apply in the promising regions
found in the previous step.
In order to evaluate quantitatively the proposal methodology two case studies

were set. The first of them, namely case study A, was performed using the agent-
based ED simulator version 1.1. This case study is further described in section 4.7.
The second case or case study B was performed using the agent-based ED simulator
version 1.2 (the current version). This case study is further described in section 4.8.
In both case studies, only patients identified as triage level 4 and 5 are served

at the stage of diagnosis-treatment phase, the three metrics, and the four different
workloads stated above were tested, and the period simulated was 24 hrs., i.e., one
day of functioning of the ED, in all the experiments. Test scenarios and evaluation
results of both case studies are explained in detail in the following sections.

It is important to remind that the actions and interactions corresponding to
the admission and triage processes have been totally implemented, but in the case
of diagnostic and treatment phase, respecting to the priorities of the Sabadell
Hospital ED currently only the level 1 was implemented. In such level 1 only pa-
tients identified with priority level 4 or 5 (less urgent, and non-urgent, respectively
subsubsection 2.3.3.1) were taken care of. Nevertheless, all incoming patients were
triaged. Once patients have been triaged, only patients identified as triage level 4
and 5 were served at the stage of diagnosis-treatment phase.
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4.7 Case Study A
The agent-based ED simulator version 1.1, which is shown in Figure 4.5, was used
in this case study. In this version of the ED simulator the diagnostic and treatment
phase is only addressed by doctors. The simple patient flow in this ED simulator is

Figure 4.5: ED simulator v1.1. Admission personnel, triage nurses, and doctors
were the sanitary staff considered.

defined as follows: patients arrive to the ED on their own, and waits to be attended
in the admission area. Then, patients stay in the first Waiting Room (WR) WR1,
until a triage nurse call them. After the triage process patients identified as triage
level 4 and triage level 5 pass to a second WR2, and stay there until a free doctor
calls them to begin the diagnosis-treatment phase, depending on the patient’s
symptoms, physical condition, and prescribed diagnosis tests. Finally, patients
are discharged from the ED.
Therefore, in this case study the sanitary staff considered were: doctors, triage

nurses, and admission personnel. Thus, only Table 4.2 to Table 4.6 were taken
into account. As a result, 1,134 (14D ∗ 9N ∗ 9A) staff configurations were tested
for each of the four workload scenarios of incoming patients stated in Table 4.12.
Finally, the three metrics above stated: LoS, Throughput, and CLoS were ob-

tained by applying: the ES technique; the coarse grained phase, using both the
PA and the MC plus K-means methods; then, the fine grained phase was applied
in the reduced feasible region to find the optimum.

4.7.1 LoS Index
The first objective set was to minimise patient length of stay (LoS) in the ED, with
cost configuration constraint less or equal to 3,500 €. This first index is expressed
mathematically in Equation 4.7.1:

minimise LoS f(D, N, A)
subject to Dcost + Ncost + Acost ∈ Cost ≤ 3, 500 €

(4.7.1)

It is worth noting that each of the plotted points for the following four workload
scenarios were obtained running the ED simulator as many times as points are.
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Each plotted point corresponds to each of the 602 staff configurations (out of 1,134)
that satisfy the cost restriction.

4.7.1.1 First Workload Scenario

The results of this scenario, up to 4 patients/hour, are shown in Figure 4.6 to
Figure 4.9. The ES result is shown in Figure 4.6. The red triangle was the min-
imum.

Figure 4.6: Average LoS obtained by the ES. The red triangle was the minimum.

The PA result is shown in Figure 4.7, where four regions can be clearly seen and
the red triangle was the minimum.

Figure 4.7: Average LoS obtained by the PA. The red triangle was the minimum.
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The most important is the bottom region, in which the average minimum LoS
was around 0.5 hours. There were 366 configurations (from a total of 602 in the
feasible region) in this region, which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.8 to Figure 4.9,

respectively. The MC method found 75 configurations.

Figure 4.8: Average LoS of 75 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
three different clusters, shown in Figure 4.9. The most important cluster was the
red one (at the bottom right), which delimited the region where the optimum was.

Figure 4.9: K-means identified three clusters of average LoS . The red one delimits
the region where the minimum was.

The Figure 4.10 shows another way to visualise the connectivity characteristic
of the reduced regions found by the proposed methodology. The axes of such graph
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are the equivalent operational patient-service time (t*) of a “single one” sanitary
professional of each sanitary staff configuration (the first column of Table 4.7 to
Table 4.9, where they were ordered by the PA Equation 3.5.1). In such figure,
the points of interest were the green points, which lie in the region of interest,
where the minimum was, which can be seen in black triangle. It can be seen that
it was not necessary to search in the whole feasible region, but only in the green
connected region.

Figure 4.10: 3D scattered graph shows the average LoS index of the first workload
scenario (4 patients/hour). The average LoS index in hours is represented in
colour, and the minimum is the black triangle.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.13, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their asso-
ciated average minimum LoS, and cost configuration are shown. The three optima
independently found were the same.

Table 4.13: Optimum staff configurations that got the average minimum LoS
for this workload scenario (up to 4 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.6 and in black triangle in Figure 4.10.

Method € LoS (hrs) D N A Run time (hrs)
4 Pthreads

ES 3,400 0.44 2S 2S 2S 0.89
PA 3,400 0.43 2S 2S 2S 0.53

MC+K-means 3,400 0.44 2S 2S 2S 0.76
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4.7.1.2 Second Workload Scenario

The results of this scenario, up to 9 patients/hour, are shown in Figure 4.11 to
Figure 4.14. The ES result is shown in Figure 4.11, where the red triangle was the
minimum.

Figure 4.11: Average LoS obtained by the ES. The red triangle was the minimum.

The PA result is shown in Figure 4.12, where seven regions can be clearly seen
and the red triangle is the minimum.

Figure 4.12: Average LoS obtained by the PA. The red triangle was the minimum.

The most important is the bottom region, in which the average minimum LoS
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was around 1 hour. There were 180 configurations (from a total of 602 in the
feasible region) in this region, which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.13 to Figure 4.14,

respectively. The MC method found 125 configurations.

Figure 4.13: Average LoS of 125 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.14. The most important was the green
cluster (at the bottom right), which delimited the region where the optimum was.

Figure 4.14: The K-means method identified two clusters of average LoS. The
green one delimited the region where the minimum was.
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The Figure 4.15 shows another way to visualise the connectivity characteristic
of the reduced regions found by the proposed methodology. The axes of such graph
are the equivalent operational patient-service time (t*) of a “single one” sanitary
professional of each sanitary staff configuration (the first column of Table 4.7 to
Table 4.9, where they were ordered by the PA Equation 3.5.1). In such figure,
the points of interest were the green points, which lie in the region of interest,
where the minimum was, which can be seen in black triangle. It can be seen that
it was not necessary to search in the whole feasible region, but only in the green
connected region.

Figure 4.15: 3D scattered graph shows the average LoS index of the third work-
load scenario (9 patients/hour). The average LoS index is expressed in colour
in hours.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.14, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their asso-
ciated average minimum LoS, and cost configuration are shown. The three optima
independently found were the same.

Table 4.14: Optimum staff configurations that got the average minimum LoS
for this workload scenario (up to 9 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.11 and in black triangle in Figure 4.15.

Method € LoS (hrs) D N A Run time (hrs)
4 Pthreads

ES 3,350 0.55 4J 2S 1S,1J 1.57
PA 3,350 0.55 4J 2S 1S,1J 0.39

MC+K-means 3,350 0.55 4J 2S 1S,1J 1.01
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4.7.1.3 Third Workload Scenario

The results of this scenario, up to 13 patients/hour, are shown in Figure 4.16 to
Figure 4.19. The ES result is shown in Figure 4.16, where the red triangle was the
minimum.

Figure 4.16: Average LoS obtained by the ES. The red triangle was the minimum.

The PA result is shown in Figure 4.17, where many regions can be clearly seen
and the red triangle is the minimum.

Figure 4.17: Average LoS obtained by the PA. The red triangle was the minimum.

The most important is the bottom region, in which the average minimum LoS
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was less than 2 hours. There were 21 configurations (from a total of 602 in the
feasible region) in this region, which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.18 to Figure 4.19,

respectively. The MC method found 125 configurations.

Figure 4.18: Average LoS of 125 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.19. The most important was the green
cluster (at the bottom right), which delimited the region where the optimum was.

Figure 4.19: The K-means method identified two clusters of average LoS. The
green one delimited the region where the minimum was.
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The Figure 4.20 shows another way to visualise the connectivity characteristic
of the reduced regions found by the the proposed methodology. The axes of such
graph are the equivalent operational patient-service time (t*) of a “single one” san-
itary professional of each sanitary staff configuration (the first column of Table 4.7
to Table 4.9, where they were ordered by the PA Equation 3.5.1). In such figure,
the points of interest were the green points, which lie in the region of interest,
where the minimum was, which can be seen in black triangle. It can be seen that
it was not necessary to search in the whole feasible region, but only in the green
connected region.

Figure 4.20: 3D scattered graph shows the average LoS index of the third work-
load scenario (13 patients/hour). The average LoS index is expressed in colour
in hours.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.15, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their asso-
ciated average minimum LoS, and cost configuration are shown. The three optima
independently found were the same.
Table 4.15: Optimum staff configurations that got the average minimum LoS for
this workload scenario (up to 13 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.16 and in black triangle in Figure 4.20.

Method € LoS (hrs) D N A Run time (hrs)
4 Pthreads

ES 3,250 1.33 4J 1S,1J 2S 2.45
PA 3,250 1.33 4J 1S,1J 2S 0.16

MC+K-means 3,250 1.33 4J 1S,1J 2S 1.49
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4.7.1.4 Fourth Workload Scenario

The results of this scenario, up to 17 patients/hour, are shown in Figure 4.21 to
Figure 4.24. The ES result is shown in Figure 4.21, where the red triangle is the
minimum.

Figure 4.21: Average LoS obtained by the ES. The red triangle was the minimum.

The PA result is shown in Figure 4.22, where many regions can be clearly seen
and the red triangle is the minimum.

Figure 4.22: Average LoS obtained by the PA. The red triangle was the minimum.

The most important is the bottom region, in which the average minimum LoS

65



Chapter 4
Applications of the Proposed Optimisation of Emergency Departments via

Simulation

was around than 3 hours. There were 21 configurations (from a total of 602 in the
feasible region) in this region, which is the one where the maximum was.
The MC plus the K-means methods results are shown in Figure 4.23 to Figure 4.24,

respectively. The MC method found 125 configurations.

Figure 4.23: Average LoS of 125 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.24. The most important was the green
cluster (at the bottom right), which delimited the region where the optimum was.

Figure 4.24: The K-means method identified two clusters of average LoS. The
green one delimited the region where the minimum was.
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The Figure 4.25 shows another way to visualise the connectivity characteristic
of the reduced regions found by the proposed methodology. The axes of such graph
are the equivalent operational patient-service time (t*) of a “single one” sanitary
professional of each sanitary staff configuration (the first column of Table 4.7 to
Table 4.9, where they were ordered by the PA Equation 3.5.1). In such figure,
the points of interest were the green points, which lie in the region of interest,
where the minimum was, which can be seen in black triangle. It can be seen that
it was not necessary to search in the whole feasible region, but only in the green
connected region.

Figure 4.25: 3D scattered graph shows the average LoS index of the third work-
load scenario (17 patients/hour). The average LoS index is expressed in colour
in hours.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified.The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.16, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their asso-
ciated average minimum LoS, and cost configuration are shown. The three optima
independently found were the same.
Table 4.16: Optimum staff configurations that got the average minimum LoS for
this workload scenario (up to 17 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.21 and in black triangle in Figure 4.25.

Method € LoS (hrs) D N A Run time (hrs)
4 Pthreads

ES 3,450 2.3 4J 3J 2S 3.42
PA 3,450 2.3 4J 3J 2S 0.15

MC+K-means 3,450 2.3 4J 3J 2S 2.0
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4.7.2 Throughput Index
The second objective set was to maximise number of attended patients per day
(Throughput) in the ED, with cost configuration constraint less or equal to 3,500
€. This index is expressed mathematically in Equation 4.7.2:

Maximise patients attended f(D, N, A)
subject to Dcost + Ncost + Acost ∈ Cost ≤ 3, 500 €

(4.7.2)

It is worth noting that each of the plotted points were obtained running the ED
simulator as many times as points are. Each plotted point corresponds to each of
the 602 staff configurations (out of 1,134) that satisfy the cost restriction.

4.7.2.1 First Workload Scenario

The results of this scenario, up to 4 patients/hour, are shown in Figure 4.26 to
Figure 4.29. Figure 4.26 shows ES results. The red triangles were the maxima.

Figure 4.26: Average number of attended patients obtained by the ES method.
The red triangles were the maxima.

Figure 4.27: Average number of attended patients obtained by the PA. The red
triangles were the maxima.
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The PA result is shown in Figure 4.27, where three regions can be clearly seen
and the red triangles were the maxima. The most important is the top region,
in which the average maximum Throughput was more than 80 attended patients.
There were 440 configurations (from a total of 602 in the feasible region) in this
region, which was the one where the maxima were.
The MC plus the K-means methods results are shown in Figure 4.28 to Figure 4.29,

respectively. The MC method found 50 configurations.

Figure 4.28: Average number of attended patients of 50 configurations obtained
by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.29. The most important was the green
cluster, which delimited the region where the optima were.

Figure 4.29: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maxima were.
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Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.17, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average maximum Throughput, and cost configuration are shown. The
three optima independently found were the same.

Table 4.17: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 4 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.26.

Method € #attended
patients

D N A Run time (hrs)
4 Pthreads

ES 3,050 86 2S 1S,1J 1S 0.91
PA 3,050 86 2S 1S,1J 1S 0.63

MC+K-means 3,050 86 2S 1S,1J 1S 0.73

4.7.2.2 Second Workload Scenario

The results of this scenario, up to 9 patients/hour, are shown in Figure 4.30 to
Figure 4.33. The ES result is shown in Figure 4.30, where the red triangle was the
maximum.

Figure 4.30: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.

The PA result is shown in Figure 4.31, where many regions can be seen and the
red triangle was the maximum.
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Figure 4.31: Average number of attended patients obtained by the PA. The red
triangles were the maximum.

The most important is the top region, in which the average maximum Through-
put was more than 150 attended patients. There were 180 configurations (from
a total of 602 in the feasible region) in this region, which was the one where the
maximum was.
The MC plus the K-means methods results are shown in Figure 4.32 to Figure 4.33,

respectively. The MC method found 125 configurations.

Figure 4.32: Average number of attended patients of 125 configurations obtained
by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
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two different clusters, shown in Figure 4.33. The most important was the green
cluster, which delimited the region where the optimum was.

Figure 4.33: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.18, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average maximum Throughput, and cost configuration are shown. The
three optima independently found were the same.

Table 4.18: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 9 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.30.

Method € #attended
patients

D N A Run time (hrs)
4 Pthreads

ES 3,350 163 1S,2J 2S 1S,1J 1.59
PA 3,350 163 1S,2J 2S 1S,1J 0.39

MC+K-means 3,350 163 1S,2J 2S 1S,1J 1.08

4.7.2.3 Third Workload Scenario

The results of this scenario, up to 13 patients/hour, are shown in Figure 4.34 to
Figure 4.37. The ES result is shown in Figure 4.34, where the red triangle was the
maximum.
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The PA result is shown in Figure 4.35, many regions can be seen and the red
triangle was the maximum. The most important is the top region, in which the
average maximum Throughput was more than 200 attended patients. There were
21 configurations (from a total of 602 in the feasible region) in this region, which
is the one where the maximum was.

Figure 4.34: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.

Figure 4.35: Average number of attended patients obtained by the PA. The red
triangles were the maximum.

The MC plus the K-means methods results are shown in Figure 4.36 to Figure 4.37,
respectively. The MC method found 275 configurations.
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Figure 4.36: Average number of attended patients of 275 configurations obtained
by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.37, the most important was the green
cluster, which delimited the region where the optimum was.

Figure 4.37: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.19, where the
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sanitary staff configuration (doctors, nurses, and admission personnel), and their
associated average maximum Throughput, and cost configuration are shown. The
three optima independently found were the same.

Table 4.19: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 13 patients hourly), where S is
Senior and J is Junior. This optimum sanitary staff configuration is shown in
red triangle in Figure 4.34.

Method € #attended
patients

D N A Run time (hrs)
4 Pthreads

ES 3,200 205 4J 2S 1S 2.46
PA 3,200 205 4J 2S 1S 0.13

MC+K-means 3,200 205 4J 2S 1S 1.51

4.7.2.4 Fourth Workload Scenario

The results of this scenario, up to 17 patients/hour, are shown in Figure 4.38 to
Figure 4.41. The ES result is shown in Figure 4.38, where the red triangle was the
maximum.

Figure 4.38: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.

The PA result is shown in Figure 4.39, many regions can be seen and the red
triangle was the maximum. The most important is the top region, in which the
average maximum Throughput was more than 200 attended patients. There were
21 configurations (from a total of 602 in the feasible region) in this region, which
is the one where the maximum was.
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Figure 4.39: Average number of attended patients obtained by the PA. The red
triangles were the maximum.

The MC plus the K-means methods results are shown in Figure 4.40 to Figure 4.41,
respectively. The MC method found 125 configurations.

Figure 4.40: Average number of attended patients of 125 configurations obtained
by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.41, the most important was the green
cluster, which delimited the region where the optimum was.
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Figure 4.41: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Finally, after separately applied both the PA and the MC plus the K-means
methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.20, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average maximum Throughput, and cost configuration are shown. The
three optima independently found were the same.

Table 4.20: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 17 patients hourly), where S is
Senior and J is Junior. This optimum sanitary staff configuration is shown in
red triangle in Figure 4.38.

Method € #attended
patients

D N A Run time (hrs)
4 Pthreads

ES 3,400 221 4J 3J 1S,1J 3.43
PA 3,400 221 4J 3J 1S,1J 0.10

MC+K-means 3,400 221 4J 3J 1S,1J 2.06

4.7.3 CLoS Index
The third objective set was to minimise a compound index: Cost� LoS, (CLoS),
without any restriction, except the minimum and maximum number of admission
personnel, nurses, and doctors stated in Table 4.2 to Table 4.6. This index is

77



Chapter 4
Applications of the Proposed Optimisation of Emergency Departments via

Simulation

expressed mathematically in Equation 4.7.3:

Minimise CLoS f(D, N, A) (4.7.3)

As a consequence of not having any constraint, 1,134 (14D ∗ 9N ∗ 9A) staff
configurations, that represent the whole search space, were tested for each of the
four workload scenarios of incoming patients stated in Table 4.12. Each of the
plotted points were obtained running the ED simulator as many times those points
are, 1,134.

4.7.3.1 First Workload Scenario

The results of this scenario, up to 4 patients/hour, are shown in Figure 4.42 to
Figure 4.45. The 3D scattered graphics shown the average minimum CLoS index
by its colour.

Figure 4.42: Average CLoS obtained by the ES method. The black triangle was
the minimum. CLoS units are in thousands.

The green colour represents the value in the vicinity of the optimum, the lighter
green colours were the most relevant. The ES result is shown in Figure 4.42, where
the black triangle was the minimum.
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Figure 4.43: Average CLoS obtained by the PA. The black triangle was the
minimum. CLoS units are in thousands.

The PA result is shown in Figure 4.43, where the black triangle was the min-
imum. Several regions can be seen. The most important was where the black
triangle was. There were 316 configurations (from a total of 1,134) in this region,
which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.44 to Figure 4.45,

respectively. The MC method found 75 configurations.

Figure 4.44: Average CLoS of 75 configurations obtained by the MC method.
CLoS units are in thousands.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identi-
fied two different clusters, shown in Figure 4.45, the most important was the red
cluster, which delimited the region where the optimum was.
Finally, after separately applied both the PA and the MC plus the K-means

methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.21, where the
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sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average minimum CLoS, and cost configuration are shown. The three
optima independently found were the same.

Figure 4.45: The K-means method identified two clusters of average CLoS. The
red one delimited the region where the minimum was.

Table 4.21: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 4 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in black triangle in
Figure 4.42.

Method € CLoS D N A Run time (hrs)
32 Pthreads

ES 1,500 1.036 2J 1J 1J 0.46
PA 1,500 1.036 2J 1J 1J 0.13

MC+K-means 1,500 1.036 2J 1J 1J 0.35

4.7.3.2 Second Workload Scenario

The results of this scenario, up to 9 patients/hour, are shown in Figure 4.46 to
Figure 4.49. The 3D scattered graphics shown the average minimum CLoS index
by its colour. The green colour represents the value in the vicinity of the optimum.
The ES result is shown in Figure 4.46, where the black triangle was the minimum.

80



4.7 Case Study A

Figure 4.46: Average CLoS obtained by the ES method. The black triangle was
the minimum. CLoS units are in thousands.

The PA result is shown in Figure 4.47, where the black triangle was the min-
imum. Several regions can be seen. The most important was where the black
triangle was. There were 429 configurations (from a total of 1,134) in this region,
which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.48 to Figure 4.49,

respectively. The MC method found 275 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified three different clusters,
shown in Figure 4.49, the most important was the red cluster, which delimited the
region where the optimum was.
Finally, after separately applied both the PA and the MC plus the K-means

methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified.

Figure 4.47: Average CLoS obtained by the PA. The black triangle was the
minimum. CLoS units are in thousands.
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Figure 4.48: CLoS of 275 configurations obtained by the MC method. CLoS
units are in thousands.

Figure 4.49: The K-means method identified three clusters of average CLoS. The
red one delimited the region where the minimum was.

The optimum found per each method: the ES, the PA, and the MC plus the
K-means methods are presented in Table 4.22, where the sanitary staff configura-
tion (doctors, nurses, and admission personnel), their associated average minimum
CLoS, and cost configuration are shown. The three optima independently found
were the same.

Table 4.22: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 9 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in black triangle in
Figure 4.46.

Method € CLoS D N A Run time (hrs)
32 Pthreads

ES 3,050 1.786 4J 1S,1J 1J 0.72
PA 3,050 1.786 4J 1S,1J 1J 0.27

MC+K-means 3,050 1.786 4J 1S,1J 1J 0.5
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4.7.3.3 Third Workload Scenario

The results of this scenario, up to 13 patients/hour, are shown in Figure 4.50 to
Figure 4.53.

Figure 4.50: Average CLoS obtained by the ES method. The black triangle was
the minimum. CLoS units are in thousands.

The 3D scattered graphics shown the average minimum CLoS index by its colour.
The green colour represents the value in the vicinity of the optimum. The ES result
is shown in Figure 4.50, where the black triangle was the minimum.
The PA result is shown in Figure 4.51, where the black triangle was the min-

imum. Several regions can be seen. The most important was where the black
triangle was. There were 397 configurations (from a total of 1,134) in this region,
which is the one where the minimum was.
The MC plus the K-means methods results are shown in Figure 4.52 to Figure 4.53,

respectively. The MC method found 25 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified two different clusters,
shown in Figure 4.53.

Figure 4.51: Average CLoS obtained by the PA. The black triangle was the
minimum. CLoS units are in thousands.
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Figure 4.52: Average CLoS of 25 configurations obtained by the MC method.
CLoS units are in thousands.

Figure 4.53: The K-means method identified two clusters of average CLoS. The
green one delimited the region where the minimum was.

The most important was the green cluster, which delimited the region where the
optimum was.
Finally, after separately applied both the PA and the MC plus the K-means

methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.23, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average minimum CLoS, and cost configuration are shown. The three
optima independently found were the same
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Table 4.23: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 13 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in black triangle in
Figure 4.50.

Method € CLoS D N A Run time (hrs)
32 Pthreads

ES 5,400 2.726 4S 2S 2S 0.95
PA 5,400 2.726 4S 2S 2S 0.33

MC+K-means 5,400 2.726 4S 2S 2S 0.64

4.7.3.4 Fourth Workload Scenario

The results of this scenario, up to 17 patients/hour, are shown in Figure 4.54 to
Figure 4.57. The 3D scattered graphics shown the average minimum CLoS index
by its colour. The green colour represents the value in the vicinity of the optimum.
The ES result is shown in Figure 4.54, where the black triangle was the minimum.

Figure 4.54: Average CLoS obtained by the ES method. The black triangle was
the minimum. CLoS units are in thousands.

The PA result is shown in Figure 4.55, where the black triangle was the min-
imum. Several regions can be seen. The most important was where the black
triangle was. There were 538 configurations (from a total of 1,134) in this region,
which is the one where the minimum was.
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Figure 4.55: Average CLoS obtained by the PA. The black triangle was the
minimum. CLoS units are in thousands.

The MC plus the K-means methods results are shown in Figure 4.54 to Figure 4.57,
respectively. The MC method found 375 configurations.

Figure 4.56: Average CLoS of 375 configurations obtained by the MC method.
CLoS units are in thousands.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
three different clusters, shown in Figure 4.57, the most important was the green
cluster, which delimited the region where the optimum was.
Finally, after separately applied both the PA and the MC plus the K-means

methods, the “reduced exhaustive search” was separately performed in each re-
duced region identified. The optimum found per each method: the ES, the PA,
and the MC plus the K-means methods are presented in Table 4.24, where the
sanitary staff configuration (doctors, nurses, and admission personnel), their as-
sociated average minimum CLoS, and cost configuration are shown. The three
optima independently found were the same
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Figure 4.57: The K-means method identified three clusters of average CLoS. The
green one delimited the region where the minimum was

Table 4.24: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 17 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in black triangle in
Figure 4.54.

Method € CLoS D N A Run time (hrs)
32 Pthreads

ES 1,000 5.596 1S 1S 1S 0.97
PA 1,000 5.596 1S 1S 1S 0.45

MC+K-means 1,000 5.596 1S 1S 1S 0.72

4.8 Case Study B
The agent-based ED simulator v1.2, which is shown in Figure 4.58, was used in
this case study. In this version of the ED simulator the diagnosis and treatment

Figure 4.58: ED simulator v1.2. Admission personnel, triage nurses, doctors,
emergency nurses, and x-ray technicians were the sanitary staff considered.
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phase is more detailed, because the diagnosis tests were done by other agents, x-
ray technicians or emergency nurses, or both. The simple patient flow in the such
current v1.2 of the ED simulator is defined as follows: patients arrive to the ED
on their own, and waits to be attended in the admission area. Then, patients stay
in the first Waiting Room (WR) WR1, until a triage nurse call them. After the
triage process patients identified as triage level 4 and triage level 5 pass to a second
WR2, and stay there until a free doctor calls them to begin the diagnosis-treatment
phase (interrogation process), depending on the patient’s symptoms and physical
condition, patients wait at WR (Level 1) to be attended by an x-ray technician
or an emergency nurse (to perform some diagnostic tests). After tests, patients
come back to WR (Level 1) and stay there until a free doctor calls them again
(treatment process). At the end, patients are discharged from the ED.
It was found through interviews with the managers at the EDs of Sabadell

hospital that the 100% of patients undergo interrogation phase; the 80% of patients
required to perform some diagnostic tests; and only 20% need to apply a treatment.
These percentages are common for both patients identified as triage level 4 and
triage level 5.
Therefore, in this case study the sanitary staff considered were: admission per-

sonnel, triage nurses, emergency nurses, doctors, and x-ray technicians. It is a 5D
problem. Thus, the Table 4.7 to Table 4.11 were taken into account. As a result,
28,350 (14D ∗ 9N ∗ 9A ∗ 5En ∗ 5Xr) staff configurations were tested for each of
the four workload scenarios of incoming patients stated in Table 4.12.
Finally, the three metrics above stated: LoS, Throughput, and CLoS were per-

formed using two methods: the exhaustive search technique (ES), and the coarse
grained phase, using only the MC plus K-means methods. Finally, the fine grained
phase is apply in the reduced feasible region to find the optimum.

4.8.1 LoS Index
This objective set was to minimise patient length of stay (LoS) in the ED, with
cost configuration constraint less or equal to 5,500 €. This index is expressed
mathematically in Equation 4.8.1:

Minimise LoS f(D, N, A, En, Xr)
subject to Dcost + Ncost + Acost + Encost+

Xrcost ∈ Cost ≤ 5, 500 €
(4.8.1)

It is worth noting that each of the plotted points for the following four workload
scenarios were obtained running the ED simulator as many times as points are.
Each plotted point corresponds to each of the 23,445 staff configurations (out of
28,350) that satisfy the cost restriction.
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4.8.1.1 First Workload Scenario

The results of this scenario, up to 4 patients/hour, are shown in Figure 4.59 to
Figure 4.61. The ES result is shown in Figure 4.59, where the red triangle was the
minimum.

Figure 4.59: Average LoS obtained by the ES method. The red triangle was the
minimum.

The MC plus the K-means methods results are shown in Figure 4.60 to Figure 4.61,
respectively. The MC method found 600 configurations.

Figure 4.60: Average LoS of 600 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.61, the most important was the green
cluster, which delimited the region where the optimum was.
Finally, after applied the MC plus the K-means methods, the “reduced exhaust-

ive search” was performed in such reduced region identified. The optimum found
per each method: the ES, and the MC plus the K-means methods are presented
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in Table 4.25, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
minimum LoS, and cost configuration are shown. The two optima independently
found were the same.

Figure 4.61: The K-means method identified two clusters of average LoS. The
green one delimited the region where the minimum was..

Table 4.25: Optimum staff configurations that got the average minimum LoS
for this workload scenario (up to 4 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.59.

Method € LoS
(hrs)

D N A EN XR Run time (hrs)
32 Pthreads)

ES 3,850 3.7 1S,3J 1J 1J 1S 1S,1J 2.5
MC+K-means 3,850 3.7 1S,3J 1J 1J 1S 1S,1J 0.84

4.8.1.2 Second Workload Scenario

The results of this scenario, up to 9 patients/hour, are shown in Figure 4.62 to
Figure 4.64. The ES result is shown in Figure 4.62, where the red triangle was the
minimum.
The MC plus the K-means methods results are shown in Figure 4.63 to Figure 4.64,

respectively. The MC method found 150 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified two different clusters,
shown in Figure 4.64, the most important was the red cluster, which delimited the
region where the optimum was.
Finally, after applied the MC plus the K-means methods, the “reduced exhaust-

ive search” was performed in such reduced region identified. The optimum found
per each method: the ES, and the MC plus the K-means methods are presented
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in Table 4.26, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
minimum LoS, and cost configuration are shown. The two optima independently
found were the same.

Figure 4.62: Average LoS obtained by the ES method. The red triangle was the
minimum.

Figure 4.63: Average LoS of 150 configurations obtained by the MC method.
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Figure 4.64: The K-means method identified two clusters of average LoS. The
red one delimited the region where the minimum was.

Table 4.26: Optimum staff configurations that got the average minimum LoS
for this workload scenario (up to 9 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.62.

Method € LoS
(hrs)

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,400 3.1 2S,2J 3J 1S,1J 1J 2J 3.07
MC+K-means 5,400 3.1 2S,2J 3J 1S,1J 1J 2J 0.57

4.8.1.3 Third Workload Scenario

The results of this scenario, up to 13 patients/hour, are shown in Figure 4.65 to
Figure 4.67. The ES result is shown in Figure 4.65, where the red triangle was the
minimum.

Figure 4.65: Average LoS obtained by the ES method. The red triangle was the
minimum.
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The MC plus the K-means methods results are shown in Figure 4.66 to Figure 4.67,
respectively. The MC method found 150 configurations.

Figure 4.66: Average LoS of 150 configurations obtained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.67, the most important was the green
cluster, which delimited the region where the optimum was.

Figure 4.67: The K-means method identified two clusters of average LoS. The
green one delimited the region where the minimum was.

Finally, after applied the MC plus the K-means methods, the “reduced exhaust-
ive search” was performed in such reduced region identified. The optimum found
per each method: the ES, and the MC plus the K-means methods are presented
in Table 4.27, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
minimum LoS, and cost configuration are shown. The two optima independently
found were the same.
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Table 4.27: Optimum staff configurations that got the average minimum LoS for
this workload scenario (up to 13 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.65.

Method € LoS
(hrs)

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,500 3.7 3S,1J 2S 1S,1J 1J 2J 3.72
MC+K-means 5,500 3.7 3S,1J 2S 1S,1J 1J 2J 0.56

4.8.1.4 Fourth Workload Scenario

The results of this scenario, up to 17 patients/hour, are shown in Figure 4.68 to
Figure 4.70. The ES result is shown in Figure 4.68, where the red triangle was the
minimum.
The MC plus the K-means methods results are shown in Figure 4.69 to Figure 4.70,

respectively. The MC method found 150 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified two different clusters,
shown in Figure 4.70, the most important was the red cluster, which delimited the
region where the optimum was.

Figure 4.68: Average LoS obtained by the ES method. The red triangle was the
minimum.
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Figure 4.69: Average LoS of 150 configurations obtained by the MC method.

Figure 4.70: The K-means method identified two clusters of average LoS. The
red one delimited the region where the minimum was.

Finally, after applied the MC plus the K-means methods, the “reduced exhaust-
ive search” was performed in such reduced region identified. The optimum found
per each method: the ES, and the MC plus the K-means methods are presented
in Table 4.28, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
minimum LoS, and cost configuration are shown. The two optima independently
found were the same.
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Table 4.28: Optimum staff configurations that got the average minimum LoS for
this workload scenario (up to 17 patients hourly), where S is Senior and J is
Junior. This optimum sanitary staff configuration is shown in red triangle in
Figure 4.68.

Method € LoS
(hrs)

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,500 4.6 3S,1J 3J 2J 1S 1J 4.42
MC+K-means 5,500 4.6 3S,1J 3J 2J 1S 1J 0.62

4.8.2 Throughput Index
This objective set was to maximise number of attended patients per day (Through-
put) in the ED, with cost configuration constraint less or equal to 5,500 €. This
index is expressed mathematically in Equation 4.8.2:

Maximise patients attended f(D, N, A, En, Xr)
subject to Dcost + Ncost + Acost + Encost+

Xrcost ∈ Cost ≤ 5, 500 €
(4.8.2)

It is worth noting that each of the plotted points for the following four workload
scenarios were obtained running the ED simulator as many times as points are.
Each plotted point corresponds to each of the 23,445 staff configurations (out of
28,350) that satisfy the cost restriction.

4.8.2.1 First Workload Scenario

The results of this scenario, up to 4 patients/hour, are shown in Figure 4.71 to
Figure 4.73. The ES result is shown in Figure 4.71, where the red triangles were
the maximum.
The MC plus the K-means methods results are shown in Figure 4.72 to Figure 4.73,

respectively. The MC method found 1,325 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified two different clusters,
shown in Figure 4.73, the most important was the green cluster, which delimited
the region where the optimum were.
Finally, after applied the MC plus the K-means methods, the “reduced exhaust-

ive search” was performed in such reduced region identified. The optimum found
per each method: the ES and the MC plus the K-means methods are presented
in Table 4.29, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
maximum Throughput, and cost configuration are shown. The two optima inde-
pendently found were the same.
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Figure 4.71: Average number of attended patients obtained by the ES method.
The red triangles were the maxima.

Figure 4.72: Average number of attended patients of 1,325 configurations ob-
tained by the MC method.

Figure 4.73: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maxima were.

97



Chapter 4
Applications of the Proposed Optimisation of Emergency Departments via

Simulation

Table 4.29: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 4 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.71.

Method € #attended
patients

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,400 69 3S 2S 1S,2J 1S 2S 2.54
MC+K-means 5,400 69 3S 2S 1S,2J 1S 2S 0.79

4.8.2.2 Second Workload Scenario

The results of this scenario, up to 9 patients/hour, are shown in Figure 4.74 to
Figure 4.76. The ES result is shown in Figure 4.74, where the red triangle was the
maximum.
The MC plus the K-means methods results are shown in Figure 4.75 to Figure 4.76,

respectively. The MC method found 1,350 configurations. However, it was difficult
to get any conclusion about such region; therefore, the complementary K-means
method was performed. The K-means method identified two different clusters,
shown in Figure 4.76, the most important was the green cluster, which delimited
the region where the optimum was.
Finally, after applied the MC plus the K-means methods, the “reduced exhaust-

ive search” was performed in such reduced region identified. The optimum found
per each method: the ES and the MC plus the K-means methods are presented
in Table 4.30, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
maximum Throughput, and cost configuration are shown. The two optima inde-
pendently found were the same.

Figure 4.74: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.
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Figure 4.75: Average number of attended patients of 1,350 configurations ob-
tained by the MC method.

Figure 4.76: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Table 4.30: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 9 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.74.

Method € #attended
patients

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,450 154 2S,2J 2S 2S 1S,1J 1S 3.07
MC+K-means 5,450 154 2S,2J 2S 2S 1S,1J 1S 0.7
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4.8.2.3 Third Workload Scenario

The results of this scenario, up to 13 patients/hour, are shown in Figure 4.77 to
Figure 4.79. The ES result is shown in Figure 4.77, where the red triangle was the
maximum.

Figure 4.77: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.

The MC plus the K-means methods results are shown in Figure 4.78 to Figure 4.79,
respectively. The MC method found 1,100 configurations.

Figure 4.78: Average number of attended patients of 1,110 configurations ob-
tained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.79, the most important was the green
cluster, which delimited the region where the optimum was.
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Figure 4.79: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Finally, after applied the MC plus the K-means methods, the “reduced exhaust-
ive search” was performed in such reduced region identified. The optimum found
per each method: the ES and the MC plus the K-means methods are presented
in Table 4.31, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
maximum Throughput, and cost configuration are shown. The two optima inde-
pendently found were the same.

Table 4.31: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 13 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.77.

Method € #attended
patients

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,450 178 3S,1J 2S 2S 1S,1J 1S 3.7
MC+K-means 5,450 178 3S,1J 2S 2S 1S,1J 1S 0.85
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4.8.2.4 Four Workload Scenario

The results of this scenario, up to 17 patients/hour, are shown in Figure 4.80 to
Figure 4.82. The ES result is shown in Figure 4.80, where the red triangle was the
maximum.

Figure 4.80: Average number of attended patients obtained by the ES method.
The red triangle was the maximum.

The MC plus the K-means methods results are shown in Figure 4.81 to Figure 4.82,
respectively. The MC method found 1,225 configurations.

Figure 4.81: Average number of attended patients of 1,225 configurations ob-
tained by the MC method.

However, it was difficult to get any conclusion about such region; therefore, the
complementary K-means method was performed. The K-means method identified
two different clusters, shown in Figure 4.82, the most important was the green
cluster, which delimited the region where the optimum was.
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Figure 4.82: The K-means method identified two clusters of average number of
attended patients. The green one delimited the region where the maximum was.

Finally, after applied the MC plus the K-means methods, the “reduced exhaust-
ive search” was performed in such reduced region identified. The optimum found
per each method: the ES and the MC plus the K-means methods are presented
in Table 4.32, where the sanitary staff configuration (doctors, triage nurses, emer-
gency nurses, x-ray technicians, and admission personnel), their associated average
maximum Throughput, and cost configuration are shown. The two optima inde-
pendently found were the same.

Table 4.32: Optimum staff configurations that got the average maximum
Throughput for this workload scenario (up to 17 patients hourly), where S is
Senior and J is Junior. These optimum sanitary staff configurations are shown
in red triangle in Figure 4.80.

Method € #attended
patients

D N A EN XR Run time (hrs)
32 Pthreads)

ES 5,400 190 3S,1J 1S,1J 2S,1J 1J 1J 4.41
MC+K-means 5,400 190 3S,1J 1S,1J 2S,1J 1J 1J 0.68
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4.8.3 CLoS Index
This objective set was to minimise a compound index: Cost�LoS, (CLoS) in the
ED, without any restriction, except the minimum and maximum number of admis-
sion personnel, nurses, doctors, emergency nurses, and x-ray technicians stated in
Tabellen 4.7 bis 4.11. This index is expressed mathematically in Equation 4.8.3:

Minimise CLoS f(D, N, A, En, Xr) (4.8.3)

As a consequence of not having any constraint, 28,350 (14D∗9N∗9A∗5En∗5Xr)
staff configurations, that represent the whole search space, were tested for each of
the four workload scenarios of incoming patients stated in Table 4.12. The results
are only shown in the following Tables.

4.8.3.1 First Workload Scenario

The optimum found per each method: the ES and the MC plus the K-means
methods, after applied the “reduced exhaustive search” in the promising region
identified, are presented in Table 4.33, where the sanitary staff configuration (doc-
tors, triage nurses, admission personnel, emergency nurses, and x-ray technicians),
their associated average minimum CLoS, and cost configuration are shown. The
two optimum independently found were the same.

Table 4.33: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 4 patients hourly), where S is Senior and J is
Junior.

Method € CLoS D N A EN XR Run time (hrs)
32 Pthreads)

ES 2,050 1.027 2S 1J 1J 1J 1S 3.73
MC+K-means 2,050 1.027 2S 1J 1J 1J 1S 1.08

4.8.3.2 Second Workload Scenario

The optimum found per each method: the ES and the MC plus the K-means
methods, after applied the “reduced exhaustive search” in the promising region
identified, are presented in Table 4.34, where the sanitary staff configuration (doc-
tors, triage nurses, admission personnel, emergency nurses, and x-ray technicians),
their associated average minimum CLoS, and cost configuration are shown. The
two optimum independently found were the same.

4.8.3.3 Third Workload Scenario

The optimum found per each method: the ES and the MC plus the K-means
methods, after applied the “reduced exhaustive search” in the promising region
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Table 4.34: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 9 patients hourly), where S is Senior and J is
Junior.

Method € CLoS D N A EN XR Run time (hrs)
32 Pthreads)

ES 3,550 1.327 4J 2J 1S 1S 1J 4.35
MC+K-means 3,550 1.327 4J 2J 1S 1S 1J 2.2

identified, are presented in Table 4.35, where the sanitary staff configuration (doc-
tors, triage nurses, admission personnel, emergency nurses, and x-ray technicians),
their associated average minimum CLoS, and cost configuration are shown. The
two optimum independently found were the same.

Table 4.35: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 13 patients hourly), where S is Senior and J is
Junior.

Method € CLoS D N A EN XR Run time (hrs)
32 Pthreads)

ES 1,500 1.377 1J 1J 1J 1J 1J 5.1
MC+K-means 1,500 1.377 1J 1J 1J 1J 1J 2.7

4.8.3.4 Fourth Workload Scenario

The optimum found per each method: the ES and the MC plus the K-means
methods, after applied the “reduced exhaustive search” in the promising region
identified, are presented in Table 4.36, where the sanitary staff configuration (doc-
tors, triage nurses, admission personnel, emergency nurses, and x-ray technicians),
their associated average minimum CLoS, and cost configuration are shown. The
two optimum independently found were the same.

Table 4.36: Optimum staff configurations that got the average minimum CLoS
for this workload scenario (up to 17 patients hourly), where S is Senior and J is
Junior.

Method € CLoS D N A EN XR Run time (hrs)
32 Pthreads)

ES 1,500 1.457 1J 1J 1J 1J 1J 5.98
MC+K-means 1,500 1.457 1J 1J 1J 1J 1J 3.03

Before finishing this chapter, it is worth reminding that one of the aims of
this research is to help emergency department managers in setting up strategies
and management guidelines to enhance the performance of such critical system.
Therefore, we must be aware not only in finding the optimum solution, but also
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the type of such optimum. Recovering from the first index of case study A: LoS
for up to 4 incoming patient and up to 17 incoming patients. It can be noted in
Figure 4.83 and Figure 4.84. In the first figure there are plenty of sanitary staff
configurations nearby where the optimum were (inside the red ellipse). Thus, a
sub-optimum solution would be a good solution, because choosing a sanitary staff
configuration cheaper than the optimum the LoS is approximately the same.

Figure 4.83: Average LoS for 4 incoming patients. The red triangle was the
minimum.

On the other hand, when there are up to 17 incoming patients in Figure 4.84, it
is important to carefully choose the optimum, because there are not many solutions
nearby the optimum (inside the red ellipse), and selecting a sub-optimum solution
would increase too much the LoS.

Figure 4.84: Average LoS for 17 incoming patients. The red triangle was the
minimum.
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4.9 Discussion
The most relevant conclusions of this chapter are the following:

1. The two-phase optimisation via simulation of healthcare Emergency Depart-
ments proposed was applied to analyse the administrative strategies leading
to optimum decisions about the physical and human resources of an ED. In
particular, the impact on the economics and the productivity of Sabadell
Hospital ED of different sanitary staff configuration (v.gr., doctors, triage
nurses, admission personnel, emergency nurses, and x-ray technicians) were
analysed.

2. The evaluation of the proposal included the simulation models; the decision
variables and workloads used as inputs of the simulation models; as well as
the metrics used to asses the benefits of the proposal. This metrics were
defined in term of three indexes: patient length of stay (LoS) in the ED;
number of attended patients per day (Throughput); and a compound index,
the product of the cost of a given sanitary staff configuration times patient
length of stay (CLoS).

3. From interviews with the managers at the EDs of Sabadell hospital (which
provides healthcare services to an average of 160,000 patients/year), it was
found that a basic sanitary of its ED staff is composed by: 9 possible com-
binations of admission personnel (junior/senior); 9 possible combinations of
triage nurses (junior/senior); 5 possible combinations of emergency nurses
(junior/senior); 5 possible combinations of x-ray technicians (junior/senior);
and 14 possible combinations of doctors (junior/senior) in which a set of ex-
amined cases for each type of staff were analysed as a discrete combinatorial
problem.

4. In order to analyse the performance of the ED, the real average four hundred
incoming patients that daily arrive to the ED of Sabadell hospital was di-
vided into four different workload scenarios, up to: 4, 9, 13, and 17 incoming
patients hourly, i.e., up to 96, 216, 312, and 408, respectively for 24hrs.

5. All simulations of the ED optimization cases analysed in this work were car-
ried out in a Linux cluster of the CAOS Department of the UAB, which has
608 computing cores and 2.2TB of RAM, that is composed of: 9 nodes of a
dual-4 core Intel Xeon E5430, 2.6GHz, 16GB RAM; 1 node of 2xdual-6 core
Intel Xeon E5645, 2.4GHz, 24GB RAM; and 8 nodes of 4x16-cores AMD Op-
teron “Interlagos”, 1.66GHz, 256 GB RAM, all in a switched 1GigE network.
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6. The evaluation of the proposed methodology aimed to confirm the correct
operation of both the pipeline approach (PA) and the MC plus the K-means
methods, described in chapter 3. To this end, we have first performed the
exhaustive search (ES) to use as baseline method. The second step of this
evaluation consisted on applying the coarse grained phase, using either the
PA, the MC plus K-means methods, or both. Finally, the fine grained phase
was applied in the promising regions found in the previous step.

7. To evaluate the methodology proposed, first the case study A was performed
using the agent-based ED simulator version 1.1. Then the case study B was
performed using the agent-based ED simulator version 1.2. In both cases,
the three metrics and the four different workloads stated above were tested,
and the period simulated was 24 hrs., i.e., one day of functioning of the ED,
in all the experiments.

8. After separately applying for cases A and B either the pipeline approach, PA
or the Monte Carlo, MC, plus the K-means methods, or both the “reduced
exhaustive search”, the optimum found per each method for their associated
average LoS, average Throughput, and average CLoS were the same.

9. Using the pipeline approach, PA, as the coarse grained phase of the proposed
methodology and then the “reduced exhaustive search” in the promising
regions previously found, our proposal obtained an improvement up to 95.6%
in the computing time, whereas using the Monte Carlo, MC, plus the K-
means methods and then the “reduced exhaustive search” in the promising
regions previously found, our proposal obtained an improvement up to 78%
in the computing time, both compared with the exhaustive search used.

10. The optimum solution not always is the best option; therefore, it is important
to take into account the sort of optimum when the solutions are going to be
applied into real problems.
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“Perfection is reached, not when there is no
longer anything to add, but when there is no
longer anything to take away.”

� Antoine de Saint-Exupery

5.1 Conclusions
The most relevant conclusions of this thesis are the following:

1. The operation and characterisation of the Healthcare Emergency Depart-
ments (ED), from the perspective of how urgent patient care is delivered,
were discussed. EDs can be characterised by their: a) physical location (in
a hospital unit or an independent one); b) physical layout (such as number
of waiting, triage and medical rooms); c) time period open to patients (of
waiting, triage and medical rooms), c) time period open to patients (24hs
/ 365 days per year or part time); d) patient type served (all /certain ages
only); and e) type and number of staff members (ddmission and support
personnel, nurses, doctors, medical technicians).

2. The ABM of the ED proposed in this work is used as a black box simu-
lator, and its implementation was done by using NetLogo, the agent-based
programming language and programmable modelling environment

3. The optimisation via simulation methodology for EDs proposed herewith is
based in a neighbourhood structure aiming to reduce the feasible region.
The methodology is constituted of two phases. The first phase is a coarse
grained approach consisted in a global exploration step over the entire search
space. This phase identifies promising regions for optimisation based on a
neighbourhood structure of the problem, that uses either a pipeline scheme
approach of an Emergency Department or the Monte Carlo heuristic plus
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the K-means method. The second phase is a fine grained approach, that
consists in seeking the best solution, either the optimum or a sub-optimum
lying on the Pareto frontier by performing a “reduced exhaustive search” in
such promising regions.

4. A Master-Worker (M-W) application using pthreads to launch the ED simu-
lator was implemented in C language in order to load balancing. This M-W
application is used as the first approach to find the optimum sanitary staff
configuration by using exhaustive search both to compare and analyse the
results and performance of the proposal methodology. The pipeline program
was implemented in C++ programming language using STL, whereas the
MC method was implemented in Perl programming language. Finally, a “re-
duced exhaustive search” was applied by using the m-w application within
the reduced feasible region found by either the pipeline scheme or the MC
plus K-means methods.

5. This thesis presents a concrete example that uses a promising approach,
agent-based modelling and simulation for healthcare emergency departments
since its complexity and dynamic nature make them difficult to characterise.
The model uses Moore state machines based agents which act and commu-
nicate within a defined layout. Two versions of the agent-based emergency
department simulator were implemented in NetLogo, verified, and validated.

6. The evaluation of the two-phase optimisation via simulation of healthcare
Emergency Departments proposed included the simulation models; the de-
cision variables and workloads used as inputs of the simulation models; as
well as the metrics used to asses the benefits of the proposal. This metrics
were defined in term of three indexes: patient length of stay (LoS) in the
ED; number of attended patients per day (Throughput); and a compound
index, the product of the cost of a given sanitary staff configuration times
patient length of stay (CLoS).

7. From interviews with the managers at the EDs of Sabadell hospital (which
provides healthcare services to an average of 160,000 patients/year), it was
found that a basic sanitary of its ED staff is composed by: 9 possible com-
binations of admission personnel (junior/senior); 9 possible combinations of
triage nurses (junior/senior); 5 possible combinations of emergency nurse
(junior/senior); 5 possible combinations of x-ray technician (junior/senior);
and 14 possible combinations of doctors (junior/senior) in which a set of ex-
amined cases for each type of staff were analysed as a discrete combinatorial
problem. In order to analyse the performance of the ED, the real average
four hundred incoming patients that daily arrive to the ED of Sabadell hos-
pital was divided into four different workload scenarios, up to: 4, 9, 13, and
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17 incoming patients hourly, i.e., up to 96, 216, 312, and 408, respectively
for 24hrs.

8. The evaluation of the proposed methodology aimed to confirm the correct
operation of both the pipeline approach (PA) and the MC plus the K-means
methods, described in chapter 3. To this end, we have first performed the
exhaustive search (ES) to use as baseline method. The second step of this
evaluation consisted on applying the coarse grained phase, using either the
PA, the MC plus K-means methods, or both. Finally, the fine grained phase
was applied in the promising regions found in the previous step.

9. To evaluate the methodology proposed, first the case study A was performed
using the agent-based ED simulator version 1.1. Then the case study B was
performed using the agent-based ED simulator version 1.2. In both cases,
the three metrics and the four different workloads stated above were tested,
and the period simulated was 24 hrs., i.e., one day of functioning of the ED,
in all the experiments.

10. After separately applying for cases A and B both the pipeline approach, PA,
and the Monte Carlo, MC, plus the K-means methods the “reduced exhaust-
ive search”, the optimum found per each method for their associated average
LoS, average Throughput, and average CLoS were approximately the same.

11. Using as the coarse grained phase the pipeline approach, PA, of ED and then
the “reduced exhaustive search” in the promising regions previously found,
our proposal obtained an improvement up to 95.6% in the computing time,
whereas with the Monte Carlo, MC, plus the K-means methods and then the
“reduced exhaustive search” in the promising regions previously found, our
proposal obtained an improvement up to 72% in the computing time, both
compared with the exhaustive search used.

5.2 List of Publications
The research has as outcome the publication of the following papers:

• E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, and E. Luque,
�Optimization of healthcare emergency departments by agent-
based simulation,� in ICCS, 2011, pp. 1880�1889.

• E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, and E. Luque,
�Simulation optimization for healthcare emergency departments,�
in ICCS, 2012, pp. 1464�1473. which received the award of best paper.
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• E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, and E. Luque,
�Optimization of emergency departments by agent-based model-
ing and simulation,� in IRI, 2012, pp. 423�430.

• E. Cabrera, M. Taboada, M. L. Iglesias, F. Epelde, and E. Luque,
�ABMS optimization for emergency departments,� inWinter Sim-
ulation Conference, 2012, p. 89.

5.3 Future Research
• Implement a newer version of the agent-based healthcare emergency depart-

ment simulator implemented in NetLogo or RepastSimphony

• Do sensitivity statistically analysis of the variables of the emergency depart-
ment simulator.

• Implement the pipeline scheme for the current version of the emergency
department simulator.

• Refine the MC heuristic and K-means method to find region where the op-
tima are.

• Set more indexes together with the people from the Emergency Depart-
ment of the Hospital of Sabadell (Parc Tauli Health Corporation).

• Connect the ED with a hospital.

• Consider a regional area in which all emergency departments of such area
are connected in order to do a load balancing of the incoming patients and
guarantee the best quality of service. This could be implemented as a web
portal where the patient can use it, in order to decide which emergency
department would be available.
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