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Structure of the thesis 

 The thesis is divided into eight chapters. 

 - Chapter 1. Introduction. This chapter first presents the importance of 

metal-catalyzed asymmetric reactions in the synthesis of enantiomerically pure 

compounds. An important step in this synthesis is the design and preparation of 

chiral ligands. Among them, new chiral ligands derived from sugars are presented. 

These ligands are applied to three asymmetric catalytic reactions, which are 

reviewed in detail in this chapter. For each reaction, the antecedents, performance 

and main achievements are discussed, with emphasis on the application of sugar-

derived ligands. The state-of-the-art and current needs in this field justify the 

objectives of the thesis. 

 - Chapter 2. Objectives. Based on the aspects discussed in chapter 1, this 

chapter presents the objectives of the thesis. These involve the synthesis and 

application of sugar-derived ligands in asymmetric catalysis. 

 - Chapter 3. Asymmetric hydrogenation reactions. This chapter contains 

three sections on the development and application of two ligand libraries in the 

asymmetric hydrogenation reactions. The first section, Asymmetric Rh-catalyzed 

hydrogenation using a thioether-phosphite ligand library, describes the design and 

application of a new thioether-phosphite ligand library in the asymmetric Rh-

catalyzed hydrogenation of several olefins. The second section, using a furanoside 

monophosphite second-generation ligand library. Scope and limitations, describes 

the design and application of a furanoside monophosphite ligand library in the 

asymmetric Rh-catalyzed hydrogenation of several olefins. The third section, 

Asymmetric Ir-catalyzed hydrogenation of minimally functionalized olefins using a 

thioether-phosphite ligand library derived from L-(+)-tartaric acid, includes the 

application of a new thioether-phosphite ligand library in the asymmetric Ir-

catalyzed hydrogenation of a broad range of minimally functionalized olefins. 

 - Chapter 4. Asymmetric Pd-catalyzed allylic substitution. This chapter 

contains two sections on the application of the thioether-phosphite and 

furanoside monophosphite ligand libraries in the asymmetric Pd-catalyzed allylic 

substitution reactions. The first section, Asymmetric Pd-catalyzed allylic 

substitution using a thioether-phosphite ligand library, discusses the application of 

the previously developed thioether-phosphite ligand library (see Chapter 3) in the 

Pd-catalyzed allylic substitution reactions of several linear substrates. The second 

section, Asymmetric Pd-catalyzed allylic substitution using a furanoside 
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monophosphite ligand library. Scope and limitations, describes the application of 

previously developed monophosphite ligand library (see Chapter 3) in the Pd-

catalyzed allylic substitution reactions of several di- and monosubstituted 

substrates. 

 - Chapter 5. Asymmetric Ni-catalyzed 1,2-addition. This chapter contains 

two sections on the application of the thioether-phosphite (developed in Chapter 

3), and furanoside monophosphite (developed in Chapter 3) ligand libraries in the 

asymmetric Ni-catalyzed 1,2-addition reactions. The first one, Thioether-phosphite 

ligands derived from L-(+)-tartaric acid for the Ni-catalyzed trialkylaluminum 

addition to aldehydes, reports the research on the Ni-catalyzed trialkylaluminum 

1,2-addition to aldehydes using the thioether-phosphite ligand library. The second 

section, Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed 

trialkylaluminum addition to aldehydes, includes the application of the 

carbohydrate-based monophosphite ligand library in the Ni-catalyzed 

trialkylaluminum 1,2-addition to several aldehydes types. 

 - Chapter 6. Conclusions. This chapter presents the conclusions of the work 

presented in this thesis. 

 - Chapter 7. Resum. This chapter contains a summary of the thesis in 

Catalan. 

 - Chapter 8. The Appendix contains the list of papers and meeting 

presentations given by the author during the period of development of this thesis.   
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1. Introduction 

 Nowadays the preparation of enantiomerically pure compounds is growing 

in several important areas such as pharmaceuticals, agrochemicals, fine chemicals 

and natural product chemistry,1 this is because there are many applications in 

which only one of the enantiomers has the desired properties while the other 

enantiomer is either inactive or has undesirable side-effects. The discovery of 

synthetic routes for preparing enantioenriched compounds is therefore one of the 

most persistently pursued goals in chemistry. Of the various methods for 

producing enantiopure compounds, enantioselective homogeneous metal catalysis 

is an attractive one, as is reflected by the many publications in this field and the 

award of the Nobel Prize award in 2001 to W. S. Knowles, K.B. Sharpless and R. 

Noyori and in 2010 to E. Negishi, R. F. Heck and A. Suzuki.1 

 One of the main advantages of asymmetric catalysis over other methods 

used in asymmetric synthesis is that products can be selectively synthesized from 

cheap, commercially available prochiral starting materials without undesirable 

products being formed. Usually with this strategy, a transition-metal complex 

containing a chiral ligand catalyzes the transformation of a prochiral substrate to 

one enantiomer as major product.1  

 To obtain the highest levels of reactivity and selectivity in catalytic 

enantioselective reactions, several parameters must be optimized. Among them, 

the selection and design of the chiral ligand is perhaps the most crucial step. One 

of the simplest ways to obtain chiral ligands is to transform or derivatize natural 

chiral compounds. The structural diversity of carbohydrates and the high density 

of functional groups offer a wide variety of opportunities for derivatization and 

tailoring of synthetic tools in the search of the right ligand for each particular 

reaction.2 One limitation with natural compounds from the chiral pool is that 

generally only one enantiomer is easily accessible and, indeed, the L-enantiomers 

of most naturally occurring D-carbohydrates are either prohibitively expensive or 

unavailable. However, this problem can often be solved by the use of pseudo-

enantiomers that can also be prepared from the D-series.2 

 The most widely used chiral ligands in asymmetric catalysis are 

phosphorus donors.3 Among them, phosphines and phosphinites have played a 

dominant role.3 Despite the advantage of phosphite-based ligands, such as less 

sensitive to air and other oxidizing agents than phosphines and phosphinites and 

easy to synthesize from readily available alcohols, their use as efficient chiral 
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ligands has only been demonstrated more recently.3d,4 In general, transition-metal 

complexes with chiral sulfur ligands have been less investigated than complexes 

with other donor atoms,5 although in recent decades the number of studies on 

sulphur-containing catalytic systems has increased notably.5 Compared to 

phosphorus, sulfur has a less donor and acceptor character. In addition to these 

electronic considerations, the sulfur atom in thioether ligands has only two 

substituents, which can create a less hindered environment than trivalent 

phosphorus. The formation of mixtures of diastereomeric thioether complexes 

(because the S atom becomes a stereogenic center when coordinated to the 

metal) and the difficulty to control their interconversion in solution have also been 

regarded as a problem for asymmetric induction in catalytic reactions. 

Nevertheless, in recent years, S-containing ligands have proven to be as useful as 

other classical chiral ligands, especially when combined with other donor atoms.5 

Thioethers have been combined with several donor atoms in heterodonor ligands. 

S,X-Donor ligands have several advantages over homodonors. They can provide 

different electronic environments because of the different trans influence of the 

sulfur and X atom. 

 In this context, this thesis focuses on the development of new chiral ligand 

libraries derived from sugars and their application in the enantioselective Rh- and 

Ir-catalyzed hydrogenation, asymmetric Pd-catalyzed allylic substitution and Ni-

catalyzed asymmetric addition of trialkylaluminum to aldehydes. In the following 

sections, we describe the background of each of the catalytic reactions studied in 

this thesis. 

1.1 Asymmetric Rh-catalyzed hydrogenation of functionalized olefins 

The hydrogenation of functionalized carbon-carbon double bonds is widely 

used to prepare high value compounds that can be used as building blocks in 

asymmetric synthesis (Scheme 1.1.1). The hydrogenation of dehydroamino acid 

derivatives and esters provides access to unnatural amino acids and amines that 

are useful intermediates for the pharmatheutical and agrochemical industries.1,6 

Their hydrogenation is also a typical reaction for testing the efficiency of new 

chiral ligands. Rh- and Ru-complexes containing chiral ligands with phosphorus and 

nitrogen donor centers have proven to be the best catalyst for the asymmetric 

hydrogenation of this type of substrates. Excellent activities and 

enantioselectivities have been therefore achieved for the asymmetric 

hydrogenation of dehydroamino acids and other functionalized substrates.1,6 
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The asymmetric hydrogenation of ketones is a useful way to synthesize 

chiral secondary alcohols. Ru and, to a lesser extent, Rh are the most widely used 

metal sources.1 

 

 

Scheme 1.1.1. Hydrogenation of dehydroamino acids.                     

The enantioselective hydrogenation of carbon-nitrogen double bonds is a 

simple and convenient way to synthesize chiral amines. However, their 

hydrogenation has some serious drawbacks: coordination can take place through 

the nitrogen atom and the double bond, and both the substrate and catalyst 

intermediates are unstable under catalytic conditions. Homogeneous catalyst can 

complex both the imine substrate and the amine product. In consequence, 

catalytic activity is often low. Unlike the asymmetric hydrogenation of 

functionalized substrates, iridium complexes are the best catalyst for imines.1 The 

use of enamides offers an alternative to imines for the synthesis of chiral amines 

without the problems associated with imine reduction. Rh-complexes have shown 

to be extremely efficient catalysts in the reduction of enamides.1 

1.1.1 Mechanism 

Figure 1.1.1 shows the mechanism for the asymmetric hydrogenation of 

dehydroamino acids and their esters with cationic precursors with diphosphines.7 

In the last decade, this mechanism has proved to be valid for other phosphorus-

based ligands (i.e. diphosphinites, diphosphites, etc.).8 The catalytic cycle consists 

of two coupled diastereomeric manifolds. The species starting the catalytic cycle is 

a square planar Rh (I) complex containing the chelating diphosphine and two 

molecules of solvent A. This species reacts with the substrate e.g. methyl (Z)-α-

acetamidoacrylate. 
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The substrate displaces the solvent molecules to produce the square 

planar diastereomeric adducts Bmaj and Bmin, where the substrate acts as a 

bidentate ligand bonded via the olefinic double bond and the oxygen atom of the 

acetyl group. The next step is the irreversible oxidative addition of hydrogen, 

which converts the square planar diastereoisomers B into the octahedral cis-

dihydridorhodium complexes C. Then, the coordinated olefin is inserted into one 

of the Rh-H bonds to produce the two diastereomeric alkyl complexes D. By 

reductive elimination, they generate the enantiomeric forms of the hydrogenated 

product and regenerate the catalytically active square planar species A. 

It is accepted that the oxidative addition of hydrogen is the rate- and 

enantioselective determining step. The reactivity of the minor diastereomer Bmin is 

much higher than that of the major diastereomer Bmaj, so the minor isomer is the 

product determining. Brown’s and Landis’ research groups have conducted studies 

to explain this phenomenon. They show that the oxidative addition of both major 

and minor adducts requires the substrate to be rotated in the opposite direction 

to the rhodium phosphine axis. In the minor adduct, which is less stable, there is a 

more hindered configuration that will rotate more easily. The minor species is 

therefore much more reactive toward dihydrogen than the major species. 

 

Figure 1.1.1 Mechanistic scheme for the Rh-catalyzed asymmetric hydrogenation of methyl 
(Z)-α-acetamidoacrylate. 
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1.1.2 Ligands 

The development of homogeneous asymmetric hydrogenation was 

initiated by Knowles9 and Homer10  in the late 1960s after the discovery of 

Wilkinson’s hydrogenation catalyst [RhCl(PPh3)3].
11  By replacing the 

triphenylphosphine of Wilkinson’s catalyst with resolved chiral monophosphines, 

Knowles and Horner reported the earliest examples of enantioselective 

hydrogenation, although with poor enantioselectivity. Later, two advances were 

made in asymmetric hydrogenation by Kagan and Knowles. Kagan reported the 

first diphosphine ligand successfully used in asymmetric hydrogenation (DIOP) 

(Figure 1.1.2).12  Knowles made his significant discovery of the C2-symmetric 

chelating diphosphine ligand, DIPAMP (Figure 1.1.2).13   Because of its high catalytic 

efficiency, DIPAMP was used in the industrial production of L-Dopa, a drug used to 

treat Parkinson’s disease.14 For this work Knowles was awarded the Nobel Prize in 

2001.15 

Following the significant contributions by Kagan and Knowles came the 

development of hundreds of successful chiral diphosphorus ligands for asymmetric 

hydrogenation. These include Bonisch’s CHIRAPHOS and PROPHOS, Kumada’s 

ferrocene ligand BPPFA and BPPFOH, Achiwa’s BPPM, Rhode Poulenc’s CBD and 

Giongo’s bis(aminophosphine) ligand PNNP (Figure 1.1.2). 16  However, 

development in the early 1980s focused mainly on the chiral Rh-catalyst, and the 

substrate scope was limited to α-dehydroamino acids. Noyori’s research on the 

BINAP-Ru catalyst opened up opportunities for the efficient hydrogenation of 

various substrates (Figure 1.1.2). Several prochiral olefins and ketones were 

hydrogenated with excellent enantioselectivity. 17  For this work Noyori was 

awarded the Nobel Prize in 2001. In the 1990s, the introduction of some efficient 

chiral diphosphorus ligands, such as DUPHOS and BPE developed by Burk and 

coworkers (Figure 1.1.2) for the hydrogenation of various functionalized olefins, 

significantly expanded the scope of asymmetric hydrogenation.18  

Nowadays, many chiral ligands, mainly phosphorus donor ligands with 

either C2- or C1-symmetry, have been successfully applied. Catalysts containing 

diphosphine and diphosphinite have played a dominant role among the P-

ligands.1,6,16 However, some catalysts containing a group of less electron-rich 

phosphorus compounds, phosphite and phosphoroamidite ligands, have also 

demonstrated their potential utility in asymmetric hydrogenation.2e,3d,4,6,16 Other 

donor atoms, such as sulfur and heterodonor ligands, have also received attention. 

Several systems with dithioethers have led to low-to-moderate enantioselectivities 
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(from 6% to 68%).5 Mixed P-S5 and P-P’4,19 (such as phosphine-phosphite and 

phosphoroamidite-phosphite) ligands have been developed and have proved to be 

very effective for this process. Although it has been generally accepted that 

bidentates are the most appropriate ligands for metal-catalyzed enantioselective 

hydrogenation, in recent years it has been shown that some monophosphorus 

ligands are very efficient for Rh-catalyzed asymmetric hydrogenation.20 

 

Figure 1.1.2. Successful diphosphine ligands in asymmetric hydrogenation. 

As far as carbohydrate ligands are concerned, several types of ligands, 

mainly bidentate phosphorus donors (both homo- and heterodonors), have been 

used with excellent enantioselectivities.2 Monodentate ligands have also exhibited 

good catalytic behaviour.2 

In the next section, we summarize some of the most relevant catalytic data 

published for asymmetric hydrogenation with carbohydrate ligands. 

  

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Introduction 
 

 
9 

1.1.2.1 P-donor ligands 

Phosphine ligands 

Inspired by Kagan’s early work on DIOP chemistry, other research groups 

have improved enantioselectivities. They have increased the rigidity of the 

conformational flexibility of the seven-member chelate ring in the DIOP ligand by 

introducing first a methyl substituent in the α positions of the phosphine group, 

which led to ligands 1 and 2,21 and then a conformationally rigid 1,4-dioxane 

backbone, which led to ligands 3 and 4 (Figure 1.1.3).22 These ligands have 

provided excellent enantioselectivities (ee’s up to 99%) in the Rh-catalyzed 

hydrogenation of aryl enamides.21,22  

 

 

Figure 1.1.3. C2-modified DIOP diphosphine ligands 1-4. 

Several diphospholanes, related to DUPHOS, have emerged as a powerful 

new class of ligands for asymmetric hydrogenation. These ligands are mainly 

derived from D-mannitol. In particular, Holz and coworkers and Zhang and 

coworkers developed novel diphospholanes 5, 6a-c and 7, which have chiral 

information at both the α- and β-positions of the phosphorus atom (Figure 1.1.4). 

These ligands provided high enantioselectivities (from 93% to 99%). 23 

Subsequently, Rieger and coworkers studied how the substituents in the α-

position (R2 groups) affect enantiodiscrimination with ligands 6b-f. Their results 

indicated that the optimal substituents are generally Me and Et (Figure 1.1.4).24 
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Figure 1.1.4. Diphospholane ligands 5-9. 

Another series of diphospholane ligands 8 and 9 (Figure 1.1.4) were 

efficiently used in the Rh-catalyzed asymmetric hydrogenation of α- and β-amino 

acid derivates, itaconates and an unsaturated phosphonate (ee’s up to 99%).25 

Another efficient structural variation combined a phospholane moiety, 

derived from D-mannitol, with a DIPAMP chiral phosphine through an ethylene 

bridge such as BPE (Figure 1.1.5). These ligands (10 and 11) were applied in the Rh-

catalyzed hydrogenation of several itaconates with ee’s ranging from 80 to 95%.26 

 

 

Figure 1.1.5. Phosphine-phospholane ligands developed by Brown and coworkers. 

Another important series of compounds are the furanoside ligands 12-14 

derived from D-(+)-xylose and D-(+)-glucose (Figure 1.1.6). These ligands were 

developed for the Rh asymmetric hydrogenation of dehydroamino acid and 

itaconic acid derivatives.27 Ligands 13 and 14 differ from ligand 12 at C-5, where a 
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new stereogenic center was introduced. The result indicated that the methyl 

substituent at C-5 significantly increased activity (TOF were approximately double 

for ligands 13 and 14). Moreover, the configuration of C-5 strongly influenced 

enantioselectivity. The best results (activity and enantioselectivity) were therefore 

obtained with ligand 13 with (R)-configuration at C-5. 

 

Figure 1.1.6. Diphosphines 12-14 derived from D-(+)-xylose and D-(+)-glucose. 

Enantioselectivities in the hydrogenation of α,β-unsaturated carboxylic derivatives are 

shown as examples. 

Recently, phosphorus functionalities have been incorporated into 

cyclodextrins (ligand 15, Figure 1.1.7) to take advantage of the properties of 

cyclodextrins as water-soluble chiral support. Ligand 15 contains phosphine at two 

of the positions six of a β-cyclodextrin. The Rh/15 catalytic system has been tested 

in the hydrogenation of dehydroamino acids and itaconates with ee’s up to 92%, 

but only organic solvents were used for these reactions.28 

 

 

Figure 1.1.7. Cyclodextrin containing diphosphine 15. 

Phosphinite ligands 

The first examples of diphosphinite ligands being used with a carbohydrate 

backbone in asymmetric catalysis were reported by Cullen,29 Thompson,30 Selke,31 

Descotes32 and their respective groups. They studied a wide variety of 2,3-

diphenylphosphinite pyranoside ligands in the asymmetric hydrogenation of 

dehydroamino acid derivatives. In particular, the best enantioselectivities (ee's up 
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to 96.6%) were obtained with a series of β-glucopyranoside 2,3-diphosphinite 

ligands 16, mainly developed by Selke and coworkers (Figure 1.1.8, R2 = Me, Ph, Bn 

and naphthyl; R1 = Ph).30,31,33 However, the scope was limited for the synthesis of 

substituted phenylalanines and the corresponding heteroatomic derivatives. In 

this context, RajanBabu and coworkers studied whether further modifications in 

the diphosphinite type ligand 16 (R2 = Ph; R1 = a-h) would overcome this limitation. 

They systematically studied the electronic and steric properties of the 

diphosphinite ligands by introducing different phosphinite groups (a-h) in the basic 

ligand framework 16 (Figure 1.1.8).34 

 

 
Figure 1.1.8. Diphosphinite ligand 16. Enantioselectivities obtained in the hydrogenation of 

methyl α-acetamidocinnamate are shown as examples. 

The Rh-hydrogenation results showed that electron-rich diphosphinite 

ligands considerably increased enantioselectivities, whereas electron-deficient 

ligands provided much lower selectivity. Enantioselectivities were therefore 

excellent over a wide range of dehydroamino acid derivatives with ligands 16a and 

16b (ee's up to 99% (S)). In all cases the (S)-enantiomer of the hydrogenation 

product was obtained. 

In the search for the (R)-enantiomer of the hydrogenation product (D-

amino acids), rather than preparing the corresponding diphosphinite 16 from the 

expensive L-glucose, RajanBabu and coworkers developed pseudo-enantiomeric 

diphosphinite ligands to 16 with the corresponding 3,4-diphosphinite ligands 17 

and 18 (Figure 1.1.9).34 These ligands provided high enantioselectivities in favor of 

the (R)-enantiomer (ee's up to 98%) (Figure 1.1.9). As before, the 

enantioselectivities were best with electron-rich phosphinites. In summary, the 

sugar-diphosphinite ligands developed by RajanBabu appear to be among the 

most practical ligands for the synthesis of (S) and (R)-aromatic and heteroaromatic 

alanine derivatives. 
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Figure 1.1.9. 3,4-Diarylphosphinite ligands 17 and 18. 

Diphosphinite derivatives with a furanoside backbone 19 and 20 (Figure 

1.1.10) were used in the Rh- and Ir-catalyzed asymmetric hydrogenation of 

prochiral substrates. The enantiomeric excess was dependent on both the 

absolute configuration of the C-3 stereocenter of the carbohydrate backbone and 

on the nature of the metal precursor. For instance, the enantiomeric excess in the 

hydrogenation of methyl α-acetamidoacrylate was 76% (R) with the Rh/20 

catalytic system and 78% (R) with the Ir/19 catalytic system.35 The phosphinite 

xylose derivatives 19 and 20 were also used as ligands in the Ir-catalyzed 

hydrogenation of imines although they provide only moderate enantioselectivities 

(ee’s up to 57%).36 

 

 

Figure 1.1.10. Diphosphinites ligands 19-23. 

Castillón and coworkers developed C2-symmetric diphosphinites 21a-h and 

22a-d derived from D-glucosamine and D-glucitol.37 Ligands 21a-d were used in the 

Rh-catalyzed hydrogenation of dehydroamino acids and itaconates. The best 

results were obtained with the catalytic system containing ligand 21c (93% ee). 

Ligand 23, which does not contain substituents at positions 2 and 5 of the 

tetrahydrofuran ring, gave an ee of only 18%. This indicates that stereogenic 

centers which are not directly bonded to the coordinating atoms also have a 
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strong influence on the selectivity. Substituents in 21 and 22 also affect the 

stereoselectivity. One of the advantages of diphosphinite ligands is their modular 

nature which allows different backbones as well as different substituents group.38 

Diphosphinites 22e-h (Figure 1.1.10), modified with different electron-donating or 

electron-withdrawing groups on the aryl residue, have been used in the 

hydrogenation of N-(phenylethylidene)-benzylamine. The best enantioselectivity 

(ee’s up to 76%) was obtained with ligand 22h. 

Phosphite ligands 

A review of the research into carbohydrate phosphite ligands reveals two 

main trends: bidentate ligands and monodentate ligands.4  

The first successful phosphite ligand for asymmetric hydrogenation came 

with the work of Reetz and coworkers. They developed a series of C2-ligands from 

D-mannitol 24 with different phosphite substituents (a-e) (Figure 1.1.11).39 These 

ligands were efficiently applied in the Rh-catalyzed hydrogenation of prochiral 

olefins (ee’s up to 98%). Their results indicated that the sense of 

enantiodiscrimination is predominantly controlled by the configuration of the 

binaphthyl moiety. Moreover, they observed a cooperative effect between the 

stereogenic centers of the ligand backbone and the stereogenic binaphthyl 

phosphite moieties. This resulted in a matched combination for ligand 24e. 

 

 

Figure 1.1.11. D-mannitol diphosphite ligand developed by Reetz et al. 

Our group developed a series of highly efficient modular C1-diphosphite 

ligands 25-30 (Figure 1.1.12) with a furanoside backbone for the Rh-catalyzed 

hydrogenation.40 These ligands are derived from D-(+)-xylose and D-(+)-glucose 

and their most interesting feature is that they are modular, which allows sufficient 

flexibility to fine-tune: (a) the different configurations of the carbohydrate 

backbone (C-3 and C-5) and (b) the steric and electronic properties of the 
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diphosphite substituents (a-h). Excellent enantioselectivities (ee up to 99%) and 

activities were achieved in the Rh-catalyzed hydrogenation of several prochiral 

olefins. Systematic variation of stereocenters C-3 and C-5 at the ligand backbone 

showed that enantiomeric excesses depended strongly on the absolute 

configuration of C-3 and only slightly on the absolute configuration of the 

stereocenter C-5. Enantioselectivities were best with ligands 28 with (R)-

configuration on both C-3 and C-5 stereocenters. Bulky substituents at the ortho-

positions of the biaryl diphosphite moieties have a positive effect on 

enantioselectivity. Enantiomeric excess was highest for allofuranoside ligand 28d, 

which has o-trimethylsilyl substituents in the biphenyl moieties. It was also found 

that a methyl substituent on the carbon C-5 significantly increased activity. 

 

 

Figure 1.1.12. Diphosphite modular ligands 25-30. 

 Diphosphite ligands 31-34 with C2-symmetry and a tetrahydrofuran 

backbone have been synthesized starting from D-glucosamine and D-glucitol 

(Figure 1.1.13). These ligands have been used in the Rh-catalyzed asymmetric 

hydrogenation of methyl α-acetamidoacrylate with enantioselectivities up to 

57%.41 
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Figure 1.1.13. C2-symmetric diphosphite ligands 31-34. 

Matt and coworkers successfully applied diphosphite ligand 35 (Figure 

1.1.14), built on a cyclodextrin scaffold, in the Rh-catalyzed asymmetric 

hydrogenation of dimethyl itaconate with ee’s up to 83%.42 

 

 

Figure 1.1.14. Cyclodextrin-based diphosphite ligand 35 developed by Matt et al. 

Although it has been generally accepted that bidentate ligands are the 

most appropriate for metal-catalyzed enantioselective hydrogenation, in the last 

decade it has been shown that some monophosphorus ligands are very efficient in 

Rh-catalyzed asymmetric hydrogenation.20 Research in this area was initiated by 

Reetz and coworkers. They found that the monophosphite ligands 36a-b related to 

the previously described diphosphite ligands derived from D-mannitol 24 provided 

similar enantioselectivities in both enantiomers of the product (ee’s up to 97%) 

(Figure 1.1.15).43 
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Figure 1.1.15. Monophosphite ligands 36. 

 Other monophosphite ligands 37-44 (Figure 1.1.16), often containing a 

binaphthol moiety, were used for the Rh-catalyzed asymmetric hydrogenation of 

vinyl carboxylates, dehydroamino acids, and enamides.44 The results of the vinyl 

carboxylate hydrogenation reported by Reetz and coworkers using ligands 37-39 

show that there is a cooperative effect between the configuration of the 

binaphthyl moieties and the configuration of the sugar backbone. The results were 

best with the phosphite 37b, prepared from (R)-Binol and a D-(+)-glucose 

derivative (ee’s up to 94 %).44a
 

 

Figure 1.1.16. Monophosphite ligands 37-44. 
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Chen and coworkers have also successfully used ligands 37-38 and 41-42 in 

the Rh-catalyzed hydrogenation of dehydroamino acids (ee’s up to 98%) and 

enamides (ee’s up to 99.9%).44b-e Their results indicate that the enantiomer excess 

depends strongly on the configuration of carbon atom C-3. In general, ligands 38 

and 40 with an (R)-configuration produced a much higher enantioselectivity than 

ligands 37 and 39 with the opposite configuration. In this case, their results also 

suggest that there is a cooperative effect between the configuration of the 

binaphthyl moieties and the configuration of the carbohydrate backbone. The 

enantioselectivities (ee’s up to 99.6%) were therefore best with ligands 42b. 

Ligands 43 and 44 were also highly efficient in the hydrogenation of dehydroamino 

acids and enamides, providing high enantioselectivities (ee’s up to 99.9%) and 

activities (TON's up to 5000).44 d 

Phosphoroamidite ligands 

In the last decade, several monophosphoroamidites derived from 

carbohydrates have been used for Rh-catalyzed asymmetric hydrogenation. 

However, only ligands 45 and 46 (Figure 1.1.17) derived from D-mannitol provided 

high enantioselectivities in the asymmetric hydrogenation of itaconic acid (ee’s up 

to 94%) and α-acetamidocinnamic acid (ee’s up to 89%). The best results were 

obtained with ligand 46e.24  

 

 

Figure 1.1.17. Phosphoroamidite ligands 45-46.
 

1.1.2.2 Heterodonor ligands 

P,P’ ligands 

Several types of mixed carbohydrate ligands have been developed for 

application in asymmetric hydrogenation catalysis. In particular, phosphine-

phosphite and phosphite-phosphoroamidite have produced excellent results.4,19  
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Furanoside phosphine-phosphite ligands 47 derived from D-(+)-xylose 

were used as ligands in the Rh-catalyzed asymmetric hydrogenation of several α,β- 

unsaturated carboxylic acid derivates (ee’s up to >99%) under mild conditions 

(Figure 1.1.18).8c,45 The best enantioselectivity was obtained using ligand 47b, 

which contains bulky tert-butyl groups in the ortho and para positions of the 

biphenyl moiety. The results indicate that the sense of the enantioselectivity is 

mainly controlled by the configuration of the axial chiral phosphite moiety. Both 

enantiomers can therefore be obtained with high enantioselectivities. 

 

 
Figure 1.1.18. Phosphine-phosphite ligands 47. This figure also shows the 

enantioselectivities obtained in the hydrogenation of α,β-unsaturated carboxylic acid 

derivates. 

Phosphinite-phosphite ligands 48 modified with different substituents 

(Figure 1.1.19) have shown not only considerable activity and selectivity but also 

higher enantioselectivities than the related diphosphite ligands 31. These ligands 

have provided moderate enantioselectivities (ee’s up to 76%) in the Ir-catalyzed 

hydrogenation of amines.38 The best enantioselectivity was obtained with ligand 

48a. 

 

Figure 1.1.19. Phosphinite-phosphite ligands 48. 

To investigate the potential of phosphite-phosphoroamidite as a new class 

of ligands for Rh-catalyzed asymmetric hydrogenation, our group developed a 

furanoside ligand library 49-52a-f (Figure 1.1.20).46,47 With this library the authors 
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investigated the position of the phosphoroamidite group (at C-3 or C-5), the 

configuration of C-3 and the substituents/configurations at the biaryl moieties 

Enantioselectivities were best (up to >99% ee for dimethyl itaconate and α-

dehydroamino acid esters and up to 92% ee for arylenamides) with ligands 49a 

and 49f, which contain the optimal combination of ligand parameters. 

 

 

Figure 1.1.20. Library of phosphite-phosphoroamidite ligands 49-52a-f. 

P,S ligands 

The furanoside phosphinite-thioether ligands 53 (Figure 1.1.21) were 

successfully applied in the Rh- and Ir-catalyzed asymmetric hydrogenation of α-

acylaminoacrylates and itaconic acid derivatives (ee’s up to 96%) 48  The 

enantiomeric excesses depend strongly on the steric properties of the substituent 

in the thioether moiety, the metal source and the substrate structure. A bulky 

group in the thioether moiety in conjunction with the metal Rh has a positive 

effect on enantioselectivity. 

 

 
Figure 1.1.21. Furanoside phosphinite-thioether ligands 53. 
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In contrast to phosphinite-thioether, phosphite-thioether ligands have 

been studied very little in hydrogenation. To the best of our knowledge, only one 

type of carbohydrate-based phosphite-thioether ligand has been applied to 

asymmetric hydrogenation: the phosphite-thioether ligands 54 (Figure 1.1.22).49 

These ligands have been applied in the Rh- and Ir-catalyzed asymmetric 

hydrogenation of itaconic acid with enantioselectivities up to 51%. 

 

 

Figure 1.1.22. Furanoside phosphite-thioether ligands 54. 

1.2 Asymmetric Ir-catalyzed hydrogenation of unfunctionalized olefins 

Whereas the reduction of olefins containing an adjacent polar group (i.e. 

dehydroamino acids) by Rh- and Ru- catalyst precursors modified with phosphorus 

ligands has a long history,1,6 the asymmetric hydrogenation of minimally 

functionalized olefins is less developed because they have no adjacent polar group 

to direct the reaction. Iridium complexes with chiral P,N ligands have become 

established as efficient catalysts for the hydrogenation of unfunctionalized olefins, 

and their scope is complementary to those of Rh– and Ru–diphosphine 

complexes.50 

1.2.1 Mechanism 

 Although the mechanism of olefin hydrogenation (and consequently of 

stereocontrol) by Rh catalysts is well understood,7,8a the mechanism that uses 

chiral iridium catalysts is not, despite having been investigated both 

experimentally and computationally. In the first case, there is enough evidence to 

support a RhI/RhIII mechanism in which substrate chelation to metal plays a pivotal 

role in stereodiscrimination (Figure 1.1.1), but in the second four different 
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mechanisms have been proposed (two of them involving IrI/IrIII intermediates51 

and the other two IrIII/IrV species52). Andersson and coworkers have recently used 

DFT calculations and a full, experimentally tested combination of ligands (mainly 

phosphine/phosphinite,N) and substrates to study all of the possible 

diastereomeric routes of the four different mechanisms.53 Their studies agree with 

the two already proposed catalytic cycles involving IrIII/IrV intermediates;52 

however, they fail to distinguish the two IrIII/IrV mechanisms. One of the 

mechanisms involves an IrIII/IrV migratory-insertion/reductive-elimination pathway 

(labeled 3/5-MI in Scheme 1.2.1)52c whereas the second mechanism uses an IrIII/IrV 

σ-metathesis/reductive-elimination pathway (labeled 3/5-Meta in Scheme 

1.2.1).52a,b From these cycles, it has been demonstrated that the π-olefin complex 

A and the transition states for the migratory-insertion in 3/5-MI (TS) and the σ-

metathesis in 3/5-Meta (TS’) are responsible for the enantiocontrol in iridium 

hydrogenation.53 It has been demonstrated that the enantioselectivity can be 

reliably obtained from the calculated relative energies of migratory insertion 

transition states.53 Very recently Hopmann and coworkers performed a 

computational study using a phosphine-oxazoline (PHOX)-based iridium catalyst.54 

At the same time our group, in conjunction with Norrby’s and Andersson’s groups 

have also performed DFT calculation using Ir-phosphite-oxazoline ligands.55 Both 

studies indicate that the hydrogenation of unfunctionalized olefins follows the 3/5-

Meta pathway. 

 
Scheme 1.2.1. 3/5-MI and 3/5-Meta catalytic cycles for the Ir-hydrogenation of 

unfunctionalized olefins. 
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1.2.2 Ligands 

A breakthrough in the hydrogenation of unfunctionalized olefins came in 

1997 when Pfaltz and coworkers used phosphine-oxazoline ligands PHOX56 (Figure 

1.2.1) to design [Ir(PHOX)(cod)]PF6 (cod = 1,5-cyclooctadiene), a chiral analogue of 

Crabtree’s catalyst ([Ir(py)(PCy3)(cod)]PF6)
57 that enantioselectively hydrogenated 

prochiral imines.58 Although this catalyst also hydrogenated prochiral olefins highly 

enantioselectively, it was unstable to the reaction conditions. Pfaltz and coworkers 

overcame this problem by changing the catalyst anion to [(3,5-(F3C)2-C6H3)4B]-

([BArF]
-). The result was [Ir(PHOX)(cod)]BArF (Figure 1.2.1), an active, 

enantioselective, and stable catalyst library for olefin hydrogenation. These 

catalysts have been successfully used for the asymmetric hydrogenation of a 

limited range of alkenes (mainly trisubstituted E-olefins, Figure 1.2.1).59 Bolm’s 

group have recently successfully applied Ir-PHOX catalytic systems in the 

hydrogenation of α,β-unsaturated ketones (ee’s up to 99%, Figure 1.2.1). 60 

Hydrogenation of α,β-unsaturated ketones leads to the formation of ketones with 

α-chiral carbon centers; which are an important group of compounds in organic 

synthesis.61 

 
Figure 1.2.1. Selected Ir-hydrogenation results using PHOX ligands. 
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Since then, the composition of the ligands has been extended by initially 

replacing the phosphine moiety with a phosphinite or a carbene group, and the 

oxazoline moiety with other N-donor groups (such as pyridine, thiazole and 

oxazole).50 The structure of the chiral ligand’s backbone has also been modified. 

More recently, the use of iridium catalyst containing P,S62 and P,O63 heterodonor 

ligands have been also developed. All, these modifications have led to the 

discovery of new ligands64 that have considerably broadened the scope of Ir-

catalyzed hydrogenation.59g,65 Figure 1.2.2 shows the most representative ligands 

applied to the asymmetric Ir-catalyzed hydrogenation of unfunctionalized olefins. 

Of them all, chiral Ir-P,N compounds have been the most studied and they have 

therefore become extremely useful catalytic precursors for the hydrogenation of 

unfunctionalized tri- and tetra-substituted olefins.50 The most successful P,N-

ligands contain a phosphine or phosphinite moiety as P-donor group and either an 

oxazoline,65b,g oxazole,65d thiazole65h or pyridine65c as N-donor group (Figure 1.2.2). 

The latest innovation in the design of ligands for this process was the replacement 

of the phosphine/phosphinite moiety by a biaryl phosphite group.50e, 66  The 

presence of biaryl-phosphite moieties in these P,N-ligands provides greater 

substrate versatility than previous Ir-phosphine/phosphinite, N catalyst systems. 

Nowadays, several unfunctionalized olefins, vinyl phosphonates, vinyl fluorides, 

CF3-substituted olefins, vinyl silanes, enol phosphinate esters, enol ethers, 

enamines, and even heteroaromatic rings, can be hydrogenated.50 

 

 
Figure 1.2.2. Representative chiral ligands applied to the Ir-catalyzed asymmetric 

hydrogenation of minimally functionalized olefins. 
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1.2.2.1 Phosphorus-nitrogen donor ligands 

Although carbohydrate-based ligands have been successfully used in other 

enantioselective reactions, only two reports have been published on the highly 

enantioselective Ir-catalyzed asymmetric hydrogenation of unfunctionalized 

olefins using this type of ligand. 

The first application of carbohydrate ligands in this process used the 

TADDOL-based phosphite-oxazoline ligands 63 developed by Pfaltz and coworkers 

(Figure 1.2.3). These ligands provided enantioselectivities up to 95% in the 

hydrogenation of a limited range of E- and Z-trisubstituted alkenes (Figure 1.2.3).67 

However, they required high catalyst loadings (4 mol %) and high pressures (100 

bars) to achieve full conversion. 

 

Figure 1.2.3. TADDOL-based phosphite-oxazoline 63. Summary of the best results 

obtained. 

Diéguez and Andersson applied pyranoside biaryl phosphite-oxazoline 

ligands derived from D-(+)-glucosamine (Figure 1.2.4).55,66a The modular ligand 

design has been shown to be highly successful not only at finding highly selective 

ligands for each substrate, but also at identifying two general ligands (68c and 68e) 

that perform well over the entire range of E- and Z-trisubstituted substrates 

(Figure 1.2.5). Even the performance of the very challenging class of terminally 

disubstituted olefins is good. The enantioselectivity was below 90% for olefins with 

two similarly sized substituents, such as aryl vs aryl or n-alkyl, but even a moderate 

size difference like aryl vs n-alkyl allowed good enantioselectivities in the range 90-

99%. It should be pointed out that these catalysts are also very tolerant to the 

presence of a neighboring polar group. Thus, a range of allylic alcohols, acetates, 

α,β-unsaturated ketones, α,β-unsaturated esters and vinylboronates were 

hydrogenated in high enantioselectivities (ee’s up to >99%). 
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Figure1.2.4. Pyranoside phosphite-oxazoline ligands 64-68a-k. 

 

 
Figure 1.2.5. Summary of the best results obtained in the asymmetric hydrogenation of 

unfunctionalized olefins using ligands 68c,e. In all cases full conversions were obtained. 

 Recently our group applied pyranoside phosphinite-oxazoline ligands 69-

72 (Figure 1.2.6), related to privileged phosphite-oxazoline ligands 64-68, to the Ir-

catalyzed hydrogenation of minimally functionalized olefins.68 The best results 

were obtained with ligands 71 and 72 (ee’s up to 93%). The reactivity and 

selectivity of these pyranoside Ir-phosphinite-oxazoline catalysts are high but 

somewhat lower compared to privileged phosphite-oxazoline analogues (Figure 

1.2.4).55,66a Nevertheless, these Ir/phosphinite-oxazoline systems represent one of 

the very few phosphinite-containing P,N catalysts69 able to hydrogenate a broad 

range of terminal disubstituted olefins with high enantioselectivities. 
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Figure 1.2.6. Pyranoside phosphinite-oxazoline ligands 69-72. 

1.2.2.2 Phosphorus non-N-donor heterodonor ligands 

 As previously mentioned, Ir complexes containing chiral P,N- ligands 

emerged as powerful tools in the asymmetric hydrogenation of minimally 

functionalized olefins.50 However, the possibility of changing the nature of the N-

donor atom in these heterodonor ligands has never been contemplated. Our 

group has recently reported new classes of non N-donor heterodonor ligands 

thioether-phosphite and thioether-phosphinite (Figure 1.2.7) for the asymmetric 

Ir-catalyzed hydrogenation of minimally functionalized olefins.62,70,71   

 These ligands are derived from natural D-(+)-xylose and they combine the 

advantages of phosphite/phosphinite and sugar cores. Moreover, the introduction 

of a thioether moiety in the ligand design is beneficial because the S atoms 

become a stereogenic center when coordinated to metal, which moves the 

chirality closer to the metal, and the thioether group is more stable than the 

oxazoline moiety.5c,e The results indicated that enantioselectivities were highly 

affected by the position of the thioether group at either C-5 or C-3 of the 

furanoside backbone, the configuration of C-3, the thioether substituent, the 

substituents/configuration in the biaryl phosphite moiety (a–h) and the 

replacement of the phosphite moiety by a phosphinite group. Enantioselectivities 

were excellent (ee’s up to >99%) in a wide range of E- and Z-trisubstituted alkenes 

with ligands 83a and 83e, which contain the optimal combination of ligand 

parameters. It should be pointed out that these catalysts are also very tolerant to 

the presence of a neighboring polar group. Thus, a range of allylic alcohols, 

acetates, α,β-unsaturated esters and vinylboronates were hydrogenated in high 

enantioselectivities, and again ligands 83a and 83e provided the best results (ee’s 

from 90% to 99%). Also these ligands were applied in the asymmetric 

hydrogenation of terminal disubstituted aryl/alkyl olefins. For this substrate class, 

the results indicated that enantioselectivity is dependent on the nature of the alkyl 

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Chapter 1 
 

 
28 

substrate substituent, which has been attributed to the presence of an 

isomerization process under hydrogenation conditions. Enantioselectivities were 

therefore best in the asymmetric reduction of aryl and heteroaryl/tert-butyl 

substrates with ligands 83a and 83e-f (ee’s up to 99%).62 

 

 
Figure 1.2.7. Thioether-phosphite/phosphinite ligands 73-87a-i. 

  

1.3 Asymmetric Pd-catalyzed allylic substitution 

 Enantioselective Pd-catalyzed allylic substitution is an important synthetic 

strategy for the construction of asymmetric carbon-carbon and carbon-

heteroatom bonds. Besides having a high level of asymmetric induction, the fact 

that it is tolerant to a wide range of functional groups means that it is an attractive 

option for application in the synthesis of optically active compounds.1b,56b,72 

In this process, an allylic racemic substrate which contains a leaving group 

(LG), normally an acetate or carbonate, is attacked by a nucleophile (typically a 

carbon or nitrogen nucleophile). Scheme 1.3.1 shows two important classes of 
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allylic substitutions that can be carried out enantioselectively with chiral catalysts. 

Type A reactions start from a racemic substrate (linear or cyclic) and proceed via 

symmetrical allyl systems. In this case, the enantioselectivity is determined by the 

regioselectivity of the nucleophilic attack and therefore depends on the ability of 

the chiral ligand to differentiate between the two allylic termini. In type B 

reactions, racemic or prochiral substrates with two identical geminal substituents 

at one of the allylic termini react via the π-allyl intermediate, which can isomerize 

via the well-established π-σ-π mechanism. In this case, enantioselection can occur 

either in the ionization step, leading to the allyl intermediate, or in the nucleophilic 

addition step. For these latter substrates, not only does the enantioselectivity of 

the process need to be controlled, but the regioselectivity is also a problem 

because a mixture of regioisomers may be obtained. 

 

 

Scheme 1.3.1. Two classes of asymmetric allylic substitution reactions. 

In this reaction, the range of substrates tested (linear and cyclic) is quite 

wide (Figure 1.3.1). However, 1,3-diphenylprop-2-enyl acetate is widely used as a 

model substrate for testing a new ligand. With regard to the metal source, a 

variety of transition metal complexes derived from Pd, Ni, Ru, Rh, Ir, Mo, W and 

other elements are known to catalyze allylic substitutions.1b,56b,72 However, the 

most widely used catalysts are palladium complexes. A wide range of carbon- and 

heteroatom-stabilized nucleophiles such a carbonyl, sulfone, nitrile or nitro groups 

have been used in this process. Nevertheless, dimethyl malonate has become the 

standard nucleophile for testing new catalysts. There are only few examples of 

enantioselective reactions with non-stabilized nucleophiles such as diorganozinc or 

Grignard reagents.1b,56b,72 
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Figure 1.3.1. The most common substrates for the enantioselective allylic substitution. 

1.3.1 Mechanism 

The catalytic cycle for Pd-catalyzed asymmetric allylic substitution with 

stabilized nucleophiles is well established and involves four steps (Figure 

1.3.2).1b,56b,72 The first step is the coordination of an allylic substrate 89 to the 

catalyst precursor 88, which enters the cycle at the Pd(0) oxidation level. Both 

Pd(0) and Pd(II) complexes can be used as precatalysts because Pd(II) is easily 

reduced in situ by the nucleophile to the Pd(0) form. The most widely used 

precursors are Pd2(dba)3·dba, (dba = dibenzylideneacetone), Pd(OAc)2 and [Pd(η3-

C3H5)(µ-Cl)]2. The next step is the oxidative addition of complex 90 to form the π-

allyl intermediate 91, which is usually the rate-determining step of the reaction. 

The product of this oxidative addition has two positions that are susceptible to 

nucleophilic attack (C-1 and C-3). After nucleophilic addition, an unstable Pd(0)-

olefin complex 92 is produced, which readily releases the final product 93. 

 

 

Figure 1.3.2. Accepted mechanism for Pd-catalyzed allylic substitutions. 
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It is accepted, that the enantioselectivity of the process is controlled by the 

external nucleophilic attack on the most electrophilic allylic carbon terminus of the 

π-allyl intermediate 91.1b,56b,72 Hence, the π-allyl intermediate 91 plays an 

important role in the catalytic cycle and is the intermediate that controls regio- 

and enantioselectivity. This intermediate can be isolated in the absence of 

nucleophiles and it is known, that allyl complex type-91 can show a dynamic 

behavior in solution, which leading in a mixture of isomers (Figure 1.3.3).  

If we assume that the reaction rates are similar for all possible isomers, a 

single isomer needs to be formed if enantioselectivities are to be high. Both the 

oxidative addition and the nucleophilic attack generally occurs stereoselectively 

with inversion of configuration. Therefore, if the configuration of the intermediate 

allyl complex is not changed by isomerization, the overall process 88 to 93 

proceeds with the retention of configuration; for instance, the nucleophile is 

introduced on the same side of the allyl plane that was occupied by the leaving 

group LG. 

 
Figure 1.3.3. Possible isomers adopted by the Pd-allyl complex 91. 

1.3.2 Ligands 

 Unlike asymmetric hydrogenation process, few diphosphines have 

provided good enantioselectivities in allylic substitutions. Though high ee’s could 

be obtained in certain cases for instance, with BINAP and CHIRAPHOS, the scope 

of standard diphosphines in this process seems limited (Figure 1.1.2).1,72 

Most of the successful ligands reported to date for this process have been 

designed using three main strategies. The first one, developed by Hayashi and 

coworkers, was the use of a secondary interaction of the nucleophile with a side 

chain of the ligand to direct the approach of the nucleophile to one of the allylic 
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terminal carbon atoms (Figure 1.3.4).73 The second one, developed by Trost and 

co-workers, was to increase the ligand’s bite angle in order to create a chiral cavity 

in which the allyl system is perfectly embedded (Figure 1.3.4). This idea paved the 

way for the successful application of ligands with large bite angles for the allylic 

substitution of sterically undemanding substrates.74 The third strategy, developed 

by groups led by Helmchen, Pfaltz and Williams, was the use of heterodonor 

ligands that result in an electronic discrimination of the two allylic terminal carbon 

atoms due to the different trans influences of the donor groups (Figure 1.3.4).75 

This made it possible to successfully use a wide range of heterodonor ligands 

(mainly P,N-ligands) in allylic substitution reactions.1,72 More recently, we found 

that the use of biaryl phosphite-containing heterodonor ligands is highly 

advantageous by overcoming the most common limitations of this process, such as 

low reaction rates and high substrate specificity.76 Introducing a biaryl phosphite in 

the ligand design was beneficial because of its larger π-acceptor ability, which 

increases reaction rates, and because of its flexibility that allows the catalyst chiral 

pocket to adapt to both hindered and unhindered substrates. In addition, the 

presence of a biaryl phosphite moiety was also beneficial in the allylic substitution 

of more challenging monosubstituted substrates. Regioselectivity towards the 

desired branched isomer in this substrate class increases thanks to the π-acceptor 

ability of the phosphite moiety, which decreases the electron density of the most 

substituted allylic terminal carbon atom via the trans influence, favoring the 

nucleophilic attack to this carbon atom.76  

Other ligands, such as bidentate nitrogen and sulfur, have also exhibited 

very good catalytic behavior.5c,72b,e 

Carbohydrate ligands have only recently shown their huge potential as a 

source of highly effective chiral ligands in the Pd-catalyzed asymmetric allylic 

substitution reaction. Several types of ligands, mainly heterodonors, have been 

developed for this process and some of the results are among the best ever 

reported.2 

In the next section, we summarize the most relevant catalytic data 

published for the Pd-catalyzed allylic substitution reactions with carbohydrate 

ligands. 
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Figure 1.3.4. Representative ligands developed for the Pd-catalyzed allylic substitution 

reaction. 

1.3.2.1 P-donor ligands 

Phosphine ligands 

In 2000, the above mentioned C1-symmetric diphosphine ligands 12-14 

with a furanoside backbone (Figure 1.1.6) were applied in Pd-catalyzed 

asymmetric allylic substitution reactions with moderate success.77 The results for 

the allylic alkylation of dimethyl malonate to 1,3-diphenylprop-2-enyl acetate 

showed that the configuration of C-5 has no relevant influence on 

enantiodiscrimination (ee’s up to 61%). 

At the same time, one of the best results obtained in the allylic 

substitution that used phosphine ligands was achieved with the family 

independently developed by RajanBabu and Zhang. These authors reported the 

use of the above mentioned diphospholane ligands 6 (Figure 1.1.4) and 
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phospholanes 96-98, derived from D-mannitol, in the Pd-catalyzed allylic alkylation 

of substrate 1,3-diphenylprop-2-enyl acetate (Figure 1.3.5), with high 

enantioselectivities (ee’s up to 99%).78,23c It was also observed that the sense of the 

asymmetric induction is controlled by the absolute stereochemistry of the P-

carrying carbons. Both enantiomers of the product can therefore be obtained. 

 

 

Figure 1.3.5. Phospholane ligands derived from D-mannitol. 

In 2006, Ruffo and coworkers developed a modification of the Trost-

bis(phosphinoamides) ligands using diamines based on D-glucose and D-mannose 

as chiral auxiliaries (Figure 1.3.6, ligands 99 and 100).79 These ligands provided high 

enantioselectivities in the Pd-catalyzed desymmetrization of meso-cyclopenten-2-

ene-1,4-diol biscarbamate (ee’s up to 97%). Interestingly, both enantiomers of the 

product can be obtained in high enantioselectivities by switching from D-glucose 

(99) to D-mannose (100) derivative ligands. 

 

 

Figure 1.3.6. Bis(phosphinylamides) ligands 99 and 100 developed by Ruffo et al. 
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Phosphinite ligands 

In 1995, Seebach and coworkers first prepared C2-symmetric diphosphinite 

101 from TADDOL, tested it in the asymmetric allylic substitution and obtained 

ee’s of up to 76% ee (Figure 1.3.7).80 Subsequently, RajanBabu and coworkers 

tested the above mentioned ligands 16 (R2 = Ph) (Figure 1.1.8) and ligands 102-104 

(Figure 1.3.7), derived from tartaric acid, in the Pd-catalyzed asymmetric allylic 

alkylation of diethyl malonate to 1,3-diphenylprop-2-enyl acetate with low-to-

moderate enantioselectivities. For ligands 16, the best enantioselectivity (59% ee) 

was achieved with the ligand containing cyclohexyl as substituent R.1, 81 

Interestingly, electron-withdrawing and electronic-rich diphosphinite ligands lead 

to products with opposite stereochemistries. Moreover, sterically bulky 

substituents have the same effect as electron-rich ones. For diphosphinite ligands 

102-104, the electronic effects were similar to those with ligands 16, but 

enantioselectivities were up to 77% (Figure 1.3.7).82 

 

 

Figure 1.3.7. Diphosphinite ligands 101-104. Enantioselectivities are shown in parentheses. 

Phosphite ligands 

The series of previously reported furanoside diphosphite ligands 25-30 

(Figure 1.1.12) were also successfully applied in the Pd-catalyzed allylic 

substitution of diethyl malonate and benzylamine to several acyclic and cyclic 

allylic esters (Figure 1.3.8).83,77a,84 

 

 

Figure 1.3.8. Acyclic and cyclic allylic esters tested with ligands 25-30. 
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Results indicated that activities were best when the substituent at C-5 was 

methyl and when the ligand contained bulky substituents at the ortho positions on 

the phosphites and electrodonating substituents at the para positions of the 

biphenyl moieties (i.e., b ~ c > d > a). Enantioselectivities were affected by the 

substituent at C-5, the phosphite moieties, the configuration of the carbon atoms 

C-3 and C-5, and the configurations of the biaryl moieties. Enantioselectivities 

were best with ligand 27c, which has a glucofuranoside backbone and bulky tert-

butyl substituents at both ortho and para positions of the biphenyl moieties. The 

results also indicated that the nucleophilic attack takes place trans to the carbon 

atom C-5. Ligand 25c was also used to stabilize Pd-nanoparticles. These particles 

catalyzed the allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl 

malonate leading to an almost total conversion of the (R)-enantiomer and almost 

no reaction with the (S). This gives rise to 97% ee for the alkylation product and a 

kinetic resolution of the substrate recovered with ca. 90% ee.85 

Next, the above mentioned furanoside ligands of C2-symmetry 31 and 33 

(Figure 1.1.13), systematically modified at positions 2 and 5 and in the biaryl 

phosphite moieties and prepared from D-glucosamine and D-glucitol, were 

successfully applied in the Pd-catalyzed allylic substitution reaction of 1,3-

diphenylprop-2-enyl acetate. Ligand 31 provided excellent activities and 

enantioselectivities (ee’s up to 99% (S)).86 

More recently, Claver and coworkers have reported further modifications 

to the privileged ligand 27c by: (a) replacing the methyl substituent at C-5 with 

increasingly sterically demanding ether substituents (ligands 105-107, Figure 1.3.9) 

and (b) replacing the 1,2-acetal protection with an alkyl chain in C-2 (ligands 108 

and 109, Figure 1.3.9).87 These ligands were applied to the Pd-catalyzed allylic 

alkylation of di- and monosubstituted linear substrates. The best 

enantioselectivities (up to 98%) were obtained in the Pd-allylic alkylation of 1,3-

diphenylprop-2-enyl acetate using ligand 108a. 
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Figure 1.3.9. Furanoside diphosphite ligands 105-109a-c. 

Phosphoroamidite ligands 

In recent decades, there has been a huge advance in the use of 

phosphoroamidite ligands for several asymmetric processes.88 However, to the 

best of our knowledge, only one family of diphosphoroamidite ligands (110) based 

on carbohydrates has been successfully applied in asymmetric catalysis (Figure 

1.3.10). Good-to-excellent activities and enantioselectivities (ee’s up to 95%) have 

been obtained in Pd-catalyzed allylic alkylation for several di- and monosubstituted 

linear and cyclic substrates (Figure 1.3.10).89 The results indicate that catalytic 

performance is highly affected by the substituents and the axial chirality of the 

biaryl moieties of the ligand. The study of the 1,3-diphenyl and cyclohexenyl Pd-π-

allyl intermediates indicates that the nucleophilic attack takes place predominantly 

at the allylic terminal carbon atom located trans to the phosphoroamidite moiety 

attached to C-5. 
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Figure 1.3.10. Furanoside diphosphoroamidite ligands 110. Summary of the best results 

obtained with acyclic and cyclic substrates. 

1.3.2.2 S-donor ligands 

Sulfur donor ligands have been used much less than phosphorus ligands in 

Pd-catalyzed allylic substitution reactions because a complex mixture of 

diastereomers may be formed when the thioether ligand coordinates to the metal, 

which can lead to a decrease in stereoselectivity if the relative rates of the 

catalytically active intermediates, are similar. Despite this problem, high 

enantiomeric excesses have been achieved.5c,72f In this context, Khiar and 

coworkers used a combinatorial approach to find the best dithioether ligand 111 

(Figure 1.3.11) from a library of 64 potential ligands made by combining four 

linkers, four carbohydrate residues and four protective groups (Figure 1.3.12) for 

the Pd-catalyzed allylic alkylation of dimethyl malonate to 1,3- diphenylprop-2-

enyl acetate (ee's up to 90%).90a To have access at both enantiomers of the 

alkylation product, the authors successfully prepared ligands 112 and 113 derived 

from D-galactose and D-arabinose, respectively (Figure 1.3.11).90b These ligands act 

as pseudo-enantiomers. 
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Figure 1.3.11. Summary of the best results obtained in the Pd-catalyzed allylic alkylation of 

1,3-diphenylprop-2-enyl acetate using dithioether ligands 111-113. 

 

 
Figure 1.3.12. Dithioether ligand library studied by Khiar and coworkers. 

 

1.3.2.3 Heterodonor ligands 

P-S ligands 

Several combinations of P-S ligands have been studied: for example, 

phosphine-thioethers, phosphinite-thioethers, phosphine-oxathianes and 

phosphitethioethers. In particular, the phosphine-thioethers, phosphinite-

thioethers and phosphine-oxathianes have proven to be effective in 

enantioselective Pd-catalyzed allylic substitutions. 

Ferrocenylphosphine-thioglucoside ligand 114 (Figure 1.3.13) with multiple 

stereogenic units afforded an ee of 88% in the palladium allylic substitution of 

diethyl malonate with 1,3-diphenylprop-2-enyl acetate.91  However, when the 
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thiosugar moiety was the sole stereogenic unit on ligands 115 (Figure 1.3.13), 

enantioselectivities were only moderate (ee's up to 64%).92 

 

 

Figure 1.3.13. Ferrocenyl-based phosphine-thioether ligands 

Khiar and coworkers reported the successful use of phosphine-thioether 

ligand 116 (Figure 1.3.14) in the Pd-catalyzed asymmetric allylic alkylation of 1,3-

diphenylprop-2-enyl acetate (ee's up to 90% (S)).93 The same group also reported 

the application of ligand 117 (Figure 1.3.14), but with little success (ee’s up to 30% 

(R)).94 

 

Figure 1.3.14. Phosphine-imine thioglycoside ligand 116 and phosphine-thioether 

ligand 117. 

In 2003, the phosphine-oxathiane ligand 118 (Figure 1.3.15), derived from 

D-(+)-xylose, was developed for Pd-catalyzed allylic substitution reactions. Good 

enantioselectivities were obtained in the addition of dimethyl malonate and 

benzylamine to 1,3-diphenylprop-2-enyl acetate (ee's up to 91% (S) and 94% (R), 

respectively).95 

 

 

Figure 1.3.15. Phosphine-oxathiane ligand 118. 
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The series of above mentioned phosphinite-thioether ligands with a 

furanoside backbone 53 (Figure 1.1.21), derived from D-(+)-xylose, were applied in 

the Pd-catalyzed allylic substitution of mono- and disubstituted linear and cyclic 

substrates (ee’s up to 95%). 96  These ligands contained several thioether 

substituents with different electronic and steric properties. The authors found that 

this group had an important effect on catalytic performance. Enantioselectivities 

were best when the bulkiest ligands 53c-d were used.  

At the same time, the phosphinite-thioether ligands 119 and 120 with a 

pyranoside backbone (Figure 1.3.16) were successfully applied in the Pd-catalyzed 

allylic substitution of 1,3-diphenylprop-2-enyl acetate (ee’s up to 96%). 

Enantioselectivities were best when bulky tert-butyl substituents were present in 

the thioether moiety. Both enantiomers of the products were obtained by using 

ligands 119a and 120.97 

 

 

Figure 1.3.16. Phosphinite-thioglycoside ligands 119 and 120. 

 Several combinations of P-S ligands mainly phosphine-thioether and 

phosphinite-thioether have been studied and have prove to be effective but less 

attention has been paid to catalysts containing phosphite-thioether ligands. Until 

now, there were only three phosphite-thioether ligands applied in the Pd-

catalyzed allylic substitution but with moderate success (ligands 54a-b,d; Figure 

1.1.22).83 

P-N ligands 

Several types of P,N-donor carbohydrate ligands have been developed for 

use in Pd-asymmetric allylic substitutions. In particular, many phosphorus-

oxazoline ligands have produced excellent results. 
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Kunz and coworkers developed a phosphine-oxazoline ligand 121 derived 

from D-glucosamine for the Pd-catalyzed allylic alkylation of dimethyl malonate to 

symmetrically and non-symmetrically substituted allyl acetates with high 

enantioselectivities (ee's up to 98%) (Figure 1.3.17).98 These results are in line with 

a nucleophilic attack trans to the phosphorus atom. 

 

 

Figure 1.3.17. Phosphine-oxazoline ligand 121 developed by Kunz and coworkers. 

In 2003, phosphine-oxazine ligands 122, related to ligand 118 (Figure 

1.3.15), were developed for the Pd-catalyzed allylic substitution of 1,3-

diphenylprop-2-enyl acetate (Figure 1.3.18). Enantioselectivities up to 75% were 

obtained.95c 

 

 

Figure 1.3.18. Phosphine-oxazine ligands 122. This figure also shows the 

enantioselectivities obtained. 

Several phosphine-imine ligands with a pyranoside backbone 123-128 have 

been developed for Pd-catalyzed allylic substitution reactions (Figure 1.3.19).99 The 

results indicated that having the imine-phosphine residue at C-2 (ligands 127) 

provided better enantioselectivities than having it at the C-1 position of the 

pyranoside backbone (ligands 123-126). It should be noted that ligands with the 

general structure 126 have provided enantioselectivities up to 99% in the 

amination of 1,3-diphenylprop-2-enyl acetate using morpholine as the 

nucleophile.99c Recently, the imine group in ligands with the general structure 126 

has been replaced by an amine group (ligand 128, Figure 1.3.19). The results were 

also good.99d 
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Figure 1.3.19. Phosphine-imine 123-127 and phosphine-amine 128 ligands. This figure also 

shows the enantioselectivities obtained in the Pd-allylic alkylation of 1,3-diphenylprop-2-

enyl acetate. 

 

Uemura and coworkers successfully applied the previously mentioned 

phosphinite-oxazoline ligands 69-71 (Figure 1.2.6) in the Pd-catalyzed allylic 

substitution reactions (Figure 1.3.20). 100  These ligands showed high 

enantioselectivities with 1,3-diphenylprop-2-enyl acetate as a substrate, but low-

to-moderate enantioselectivities for unhindered linear and cyclic substrates. The 

results of the allylic alkylation of dimethyl malonate with 1,3- diphenylprop-2-enyl 

acetate indicated that the best enantioselectivity was obtained with the smallest 

substituent on the oxazoline (R = Me, ligand 69). Their results also indicate that the 

nucleophilic attack took place trans to the phosphorus atom thought an endo π-

allyl Pd-intermediate. 

 

 

Figure 1.3.20. Phosphinite-oxazoline ligands 69-71. This figure also shows the 
enantioselectivities obtained in the allylic alkylation of substrate 1,3-diphenylprop-2-enyl 

acetate. 
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Water-soluble ligand 129 (Figure 1.3.21), related to 69, was effective for 

the Pd-catalyzed allylic alkylation of several nucleophiles with 1,3-diphenylprop-2-

enyl acetate in aqueous or biphasic media (ee’s up to 85%).101 

 

 

Figure 1.3.21. Water-soluble ligand 129. 

In 2010, Chen and coworkers developed the new carbohydrate-based 

phosphinite-imine ligands 130a-g (Figure 1.3.22). These ligands, derived from N-

acetylglucosamine, provided high enantioselectivities in the Pd-catalyzed 

asymmetric allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl 

malonate (ee’s up to 95%).102 

 

 

Figure 1.3.22. Carbohydrate-based phosphinite-imine ligands 130a-g. This figure also 

shows the enantioselectivities obtained in the allylic alkylation of 1,3-diphenylprop-2-enyl 

acetate. 

The above mentioned phosphite-oxazoline ligands 64-68a-k (Figure 1.2.4), 

related to ligands 69-71 (Figure 1.3.20) were applied to the Pd-catalyzed allylic 

substitution of several substrate types (Figure 1.3.23).103 The introduction of a 

biaryl phosphite moiety in the ligand design proved to be highly advantageous.104 

Ligands 64-68a-k, then, provided higher enantioselectivities and reaction rates 

than related phosphinite-oxazoline ligands in the allylic substitution (ee’s up to 

99%, TOF’s up to 400 mol substrate x (mol Pd x h)-1). Moreover, the presence of a 

flexible phosphite moiety opens up the possibility of using the Pd-phosphite-

oxazoline catalytic systems to a wide range of different substrate types in this 
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catalytic process (Figure 1.3.23). These ligands were also used to stabilize Pd-

nanoparticles.105 

 

Figure 1.3.23. Acyclic and cyclic allylic esters tested with ligands 64-68a-k. 

Pfaltz and coworkers have also applied the previously reported phosphite-

oxazoline ligand 63 (Figure 1.2.3) in the allylic alkylation of several substrates. 

Results show that enantioselectivities depend strongly on the kind of substrate 

used. This ligand showed good enantioselectivities in the reaction of 3-aryl-2-

propenyl acetate (ee’s up to 94%), whereas enantioselectivities were low in the 

reaction of substrate 1,3-diphenylprop-2-enyl acetate (ee’s up to 20%).106 

P-O ligands 

Phosphine-amide ligands 131-136 (Figure 1.3.24) with a pyranoside 

backbone have been extensively studied for the Pd-catalyzed allylic alkylation of 

1,3-diphenylprop-2-enyl acetate with dimethyl malonate.99c,107 The results clearly 

show that enantioselectivity is highly affected by the configuration of the anomeric 

carbon, the chelate ring size formed upon coordination to Pd and the rigidity of 

the ligand. Ligands 131, 135 and 136 that forms a six-membered chelate ring and 

with a β anomeric carbon afforded higher enantioselectivities than ligands 132 

with an α anomeric carbon and 134 that form a seven membered chelate ring. 

Moreover, the results achieved with ligands 135 and 136 indicated a cooperative 

effect between the additional stereocenters in 135 and the carbohydrate 

backbone that resulted in a matched combination for ligand (S)-135. 
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Figure 1.3.24. Phosphine-amide ligands 131-136. The enantioselectivities are also shown in 

brackets. 

Recently, Ruffo and coworkers reported the modular ligand library 

naplephos (137, Figure 1.3.25), derived from N-acetylglucosamine, for the Pd-

catalyzed allylic alkylation of 1,3-diphenylprop-2-enyl acetate with dimethyl 

malonate. Enantioselectivities were good (ee’s up to 97%).108 These ligands were 

also effective in the desymmetrization of meso-cyclopent-2-ene-1,4-diol (ee’s up 

to 98%).79b In the search for the opposite enantiomer of the alkylation product, the 

same authors developed the pseudo-enantiomeric ligands Elpanphos (138, Figure 

1.3.25).109 
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Figure 1.3.25. Naplephos (137a-l) and Elpanphos (138a-b) ligands. 

 

P-P’ ligands 

The first successful family of P-P’ carbohydrate ligands contains the above 

mentioned phosphite-phosphoroamidite ligands 49-52 (Figure 1.1.20). These 

ligands were successfully applied in the Pd-asymmetric allylic substitution (ee’s up 

to 98%; Figure 1.3.26).110 Interestingly, this ligand family also provides high activity 

(because of the high π-acceptor capacity of the phosphoroamidite moiety) and 

high enantioselectivities for different substrate types mono- and disubstituted 

linear and cyclic substrates (Figure 1.3.26). The related phosphine-phosphite 

ligands 47 (Figure 1.1.18) have also been used in the model enantioselective Pd-

catalyzed allylic alkylation and amination substitutions of 1,3-diphenylprop-2-enyl 

acetate reactions providing ee’s up to 42% (S) and 66% (R), respectively.83
  

 

 
Figure 1.3.26. Acyclic and cyclic allylic esters tested with ligands 49-52.  

Pyranoside phosphite-phosphoroamidite ligands 139 (Figure 1.3.27) have 

been developed for the Pd-catalyzed allylic substitution reaction of several 

substrates. Enantioselectivities up to 89% have been obtained for disubstituted 

linear and cyclic substrates.111 
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Figure 1.3.27. Phosphite-phosphoroamidite ligands 139. 

N-S ligands 

Thioglucoside-derived ligands 140, containing a chiral oxazoline moiety 

(Figure 1.3.28), used as ligands in the palladium-catalyzed allylic alkylation of 1,3- 

diphenylprop-2-enyl acetate have provided some of the best results achieved in 

this reaction with mixed N,S-donor ligands. 112  The effects of the thiosugar 

substituents on enantioselectivity were mild. The success of this kind of system 

seems to lie in the combination of thiosugar function and the proximity of all 

stereogenic units to the palladium allylic fragment, because the Pd-N distance is 

shorter than the Pd-P distance in related phosphino-thiosugar palladium 

complexes. 

 

 
Figure 1.3.28. Thioether-oxazoline ligands 140. This figure also shows the 

enantioselectivities obtained in the allylic alkylation of 1,3-diphenylprop-2-enyl acetate. 

More recently, the pyranoside thioether-imine ligand 141 (Figure 1.3.29), 

related to P-S ligand 116 (Figure 1.3.14), was applied in the allylic alkylation of 1,3-

diphenylprop-2-enyl acetate with low enantioselectivity (ee’s up to 34%).93 
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Figure 1.3.29. Thioether-imine ligand 141. 

1.4 Asymmetric Ni-catalyzed 1,2-addition 

Nucleophilic 1,2-addition of organometallic reagents to carbonyl 

compounds constitutes one of the most fundamental operations in organic 

synthesis for the formation of chiral secondary alcohols.113 In this context, catalytic 

addition of dialkylzincs to aldehydes has attracted much attention since many 

chiral alcohols are highly valuable intermediates for preparing chiral 

pharmaceutical and agricultural products. For alkylation reagents, 

trialkylaluminum compounds are more interesting than other organometallic 

reagents because they are economically available in industrial scale from 

aluminum hydride and olefins.114 Despite this advantage, trialkylaluminum are less 

documented.88g,115,116 In this respect, the few successful catalysts developed for the 

enantioselective addition of trialkylaluminum to aldehydes (Scheme 1.4.1) can be 

grouped in two types. The first group is the titanium complexes that usually afford 

high enantioselectivities, but the high catalyst loadings (10-20 mol %) and the slow 

turnover rate hamper their potential utility.115a-d The second ones are the recently 

studied nickel complexes that provide enantioselectivities similar to those using 

titanium complexes but with low catalyst loadings (1 mol%).115e,f,116a 

 

 

 

Scheme 1.4.1. Metal-catalyzed 1,2-addition of trialkylaluminum to aldehydes. 

Several aldehydes, such as aryl-, alkyl- and vinylaldehydes, have been 

tested as substrates. However, benzaldehyde has been the substrate of choice for 

testing a new ligand. The aluminum source is also an important parameter for high 

catalytic activity and enantioselectivity. Traditionally, commercially available 
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trialkylaluminum reagents have been widely used. However, these reagents are 

often contaminated with oxo-containing by-products formed through accidental 

exposure to traces of air and moisture, such impurities modify the reactivity of the 

reagent.117 Recently, the group of Woodward reported the preparation of DABAL-

Me3 (Figure 1.4.1) as a new air-stable solid AlMe3 adduct that is easily formed from 

the exposure of neat AlMe3 to DABCO (1,4-diazobicyclo[2,2,2]octane).88g  

 

 

 

Figure 1.4.1. Formation of DABAL-Me3. 

1.4.1 Mechanism 

The tentative mechanism proposed for the Ni-catalyzed 1,2-addition of 

trimethylaluminum reagents to aryl aldehydes is shown in Figure 1.4.2.115e The 

reductive generation of the active Ni(0)-catalyst 142 is followed by the formation 

of a π-aldehyde complex 143, as showed possible by the seminal work of Walther 

who crystallized Ni(η2-O=CHAr)(PCy3)2 (Ar = Ph, 2,4-(MeO)2C6H3).
118  Then 

aluminum Lewis acid promoted the oxidative addition of the ketone complex 143 

and produces Ni(II)-complex 144. Finally, by reductive elimination, they generated 

the final product 145 and regenerate the catalytically active species 142. 

 

  
Figure 1.4.2. Proposed catalytic cycle for the Ni-catalyzed 1,2-addition of DABAL-Me3 (a = 

1) or AlMe3 (a = 0) to aromatic aldehydes. 
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1.4.2 Ligands 

Woodward and co-workers reported the first asymmetric Ni-catalyzed 1,2-

addition of trialkylaluminum reagents to aldehydes using phosphoroamidite and 

monophosphine ligands. High enantioselectivities (ee’s up to 95%) were obtained 

using monophosphoroamidite ligand 146 (Figure 1.4.3).88g 

 

 

Figure 1.4.3. Monophosphoroamidite ligand 146. 

1.4.2.1 P-donor ligands 

Phosphite ligands 

The previously mentioned carbohydrate-based monophosphite ligands 37-

41 (Figure 1.1.16), derived from D-glucose, D-galactose and D-fructose, have been 

successfully applied in the asymmetric Ni-catalyzed 1,2-addition of several aryl 

aldehydes (ee’s up to 94%).116a The best enantioselectivity were achieved using 

glucofuranoside ligands 37. 

 

Phosphoroamidite ligands 

 Our group screened the modular sugar-based monophosphoroamidite 

ligand library 147-151a-g (Figure 1.4.4), related to phosphite ligands 37-42 (Figure 

1.1.16), for the Ni-catalyzed trialkylaluminum addition to several aldehydes.119 The 

results showed that enantioselectivities depends of the sugar backbone, the 

configuration at carbon C-3 of the ligand backbone and the type of 

substituents/configurations in the biaryl phosphoroamidite moiety. By judicious 

choice of the ligand components were obtained good enantioselectivities (ee 

values up to 78%) and high activities in several aryl aldehydes, with low catalyst 

loadings (1 mol %) and no excess of ligand. 
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Figure 1.4.4. Modular sugar monophosphoroamidite ligand library 147-151a-g. 

 
1.4.2.2 Heterodonor ligands 

P-P’ and P-N ligands 

The previously mentioned carbohydrate-based phosphite-oxazoline (64-

68c-e, Figure 1.2.4) and phosphite-phosphoroamidite (139; Figure 1.3.27) ligands 

were applied in the asymmetric Ni-catalyzed 1,2-addition of trialkylaluminum 

reagents to aldehydes giving poor-to-moderate enantioselectivities (ee’s up to 

59%).116b
 

Recently, our group tested the phosphite-phosphoroamidite 49-52a-f 

ligand library (Figure 1.1.20) in the asymmetric Ni-catalyzed trialkylaluminum 

addition to aldehydes.120 High activities and enantioselectivities (ee’s up to 84%) 

were obtained. These ligands constitute the first successful application of 

bidentate ligands in the asymmetric Ni-catalyzed trialkylaluminum addition to 

several aldehydes.  
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2. Objectives 

 The objective of this thesis is to develop new chiral ligands for application 

as chiral auxiliaries in several important asymmetric catalytic reactions. 

 The more specific aims are: 

 1. To synthesize and apply a thioether-phosphite ligand library (L1-L8a-e; 

Figure 2.1), derived from L-(+)-tartaric acid, in the following asymmetric metal-

catalyzed reactions: a) Rh- and Ir-catalyzed hydrogenation of functionalized and 

unfunctionalized olefins, respectively; b) Pd-catalyzed allylic substitution; and c) 

Ni-catalyzed 1,2-addition of trialkylaluminum reagents to aldehydes. 

 
Figure 2.1. Thioether-phosphite ligand library L1-L8a-e. 

 2. To synthesize and apply a monophosphite ligand library (L9-L14a,f,g; 

Figure 2.2), derived from D-(+)-glucose, in the following asymmetric metal-

catalyzed reactions: a) Rh-catalyzed hydrogenation of functionalized olefins, b) Pd-

catalyzed allylic substitution, and c) Ni-catalyzed 1,2-addition of trialkylaluminum 

reagents to aldehydes. For purpose of comparison, in the Pd-catalyzed allylic 

substitution we have also prepared and screened monophosphite ligands L15-

L19a-c,f,g (Figure 2.3), derived from D-(+)-glucose, D-(+)-galactose and D-(+)-

fructose. 

 

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Chapter 2 
 

 
64 

 
Figure 2.2. Furanoside monophosphite ligand library L9-L14a,f,g. 

 

Figure 2.3. Monophosphite ligand library L15-L19a-c,f,g applied in the Pd-catalyzed allylic 

substitution reaction. 
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3. Asymmetric hydrogenation reactions 

3.1 Background 

 The enantioselective hydrogenation of olefins is one of the most powerful 

and sustainable transformations in asymmetric catalysis for preparing optically 

active compounds due to its high efficiency, atom economy and operational 

simplicity.  

 As we discussed in the introduction, chiral homodonor bidentated P-donor 

ligands have played a key role in the success of the enantioselective Rh-catalyzed 

hydrogenation of functionalized olefins. Research in this area mainly focuses on 

the search for new chiral ligands that are readily available from cheap/renewable 

raw materials and which can hydrogenate a wide range of substrates with high 

ee’s. In this respect, ligands derived from the chiral pool have many advantages: 

they are readily available and highly functionalized, and they have several 

stereogenic centers. This facilitates the development of chiral ligand libraries in the 

search for high activities and selectivities for each particular substrate. Other 

ligands that have also demonstrated their potential utility are heterodonor 

bidentated P-P' and P-N ligands and monodentated phosphoroamidite ligands. 

Despite this, the successful use of bidentated P-S and monophosphite ligands for 

the Rh-catalyzed hydrogenation is scarce. This encourages further research into 

these ligand types. 

 Whereas the reduction of olefins containing an adjacent polar group (i.e. 

dehydroamino acids) by Rh- and Ru- catalysts has a long history, the asymmetric 

hydrogenation of minimally functionalized olefins is less developed because these 

substrates have not adjacent polar group to direct the reaction. Iridium complexes 

with chiral P-N ligands have become established as one of the most efficient 

catalyst types for the hydrogenation of minimally functionalized olefins. Research 

focus in the possibility of changing the nature of the N-donor atom in these 

heterodonor ligands has not been contemplated until very recently. In this respect, 

our group has recently communicated the first successful application of non-N-

donor heterodonor ligands -thioether-phosphite- for asymmetric Ir-catalyzed 

hydrogenation. Despite this, the use of other thioether-phosphite ligands has not 

yet been reported. More research is therefore needed to study the possibilities of 

these types of ligands. 

 In this chapter, we therefore report the synthesis of two ligand libraries: 

thioether-phosphite (L1-L8a-e) and furanoside monophosphite (L9-L14a,f,g). We 
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also report their use in the asymmetric hydrogenation reactions. More specifically, 

in section 3.2 we describe the successful application of thioether-phosphite ligands 

(L1-L8a-e) in the asymmetric Rh-catalyzed hydrogenation of several α,β-

unsaturated carboxylic acid derivatives and enamides. These ligands are efficiently 

prepared from easily accessible L-(+)-tartaric acid. We found that their 

effectiveness at transferring the chiral information in the product can be tuned by 

correctly choosing the ligand components (thioether substituent, substituent at 

the alkyl backbone chain next to the phosphite moiety and the 

substituents/configurations in the biaryl phosphite group) and the substrate. High 

enantioselectivities (ee's up to 96%) were therefore obtained. In next section 3.3, 

we report the application of a furanoside monophosphite ligand library (L9-

L14a,f,g). As well as being prepared from commercially available D-(+)-glucose, this 

ligand library also has the advantage of a flexible ligand scaffold that enables 

various ligand parameters to be easily tuned. With this ligand library, then, we 

investigate the effect of systematically varying the configuration of the C-3 carbon 

atom of the furanoside backbone, the introduction of several alkyl and aryl groups 

at C-3 and the type of substituents/configurations in the biaryl phosphite moiety. 

Enantioselectivities up to >99.9% were obtained in the hydrogenation dimethyl 

itaconate. In section 3.4 we describe the application of previously reported non N-

donor heterodonor ligands thioether-phosphite (L1-L8a-e; Section 3.2) in the Ir-

catalyzed hydrogenation of minimally functionalized olefins. Moderate 

enantioselectivities were achieved in the reduction of E- and Z-trisubstituted 

olefins (ee's up to 70% and 50%, respectively). However, for disubstituted 

substrate 3,3-dimethyl-2-phenyl-1-butene, excellent enantioselectivities (ee's up 

to 98%) and activities were achieved at low hydrogen pressure. The asymmetric 

hydrogenation was also performed using propylene carbonate as an 

environmentally friendly solvent, which allowed the Ir-catalysts to be reused with 

no loss in enantiomeric excess. 
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3.2 Asymmetric Rh-catalyzed hydrogenation using a thioether-phosphite 

ligand library 

Sabina Alegre, Carlota Borràs, Elisabetta Alberico, Montserrat Diéguez, Oscar 

Pàmies in manuscript to be submitted 

Abstract. A modular thioether-phosphite ligand library has been synthesized for 

the Rh-catalyzed asymmetric hydrogenation of -unsaturated carboxylic acid 

derivatives and enamides. These ligands can be prepared efficiently from easily 

accessible L-(+)-tartaric acid. We found that their effectiveness at transferring the 

chiral information in the product can be tuned by correctly choosing the ligand 

components (thioether substituent, substituent at the alkyl backbone chain next to 

the phosphite moiety and the substituents/configurations in the biaryl phosphite 

group) and the substrate. Enantioselectivities were therefore high (ee's up to 

96%).  

3.2.1 Introduction 

 The increasing demand for enantiomerically pure pharmaceuticals, 

agrochemicals, flavors and other fine chemicals has advanced the field of 

asymmetric catalytic technologies.1 Asymmetric hydrogenation utilizing molecular 

hydrogen to reduce prochiral olefins has become one of the most efficient 

asymmetric catalytic methods for constructing chiral compounds.1 Over many 

years the scope of this reaction has gradually extended in terms of reactant 

structure and catalyst efficiency.1 Chiral homodonor P-donor ligands have played a 

key role in the success of the enantioselective Rh-catalyzed hydrogenation.1 

Research in this area mainly focuses on the search for new chiral ligands that are 

readily available from cheap/renewable raw materials and which can hydrogenate 

a wide range of substrates with high ee’s. In this respect ligands derived from the 

chiral pool have many advantages: they are readily available and highly 

functionalized, and they have several stereogenic centers. This facilitates the 

development of chiral ligand libraries in the search for high activities and 

selectivities for each particular substrate.2  

Heterodonor P,S ligands also have a potential advantage because specific 

substrate coordination, mediated by two nonequivalent donor atoms, facilitates 

the transferring of the chiral information from the catalyst to the hydrogenation 

product for a wide range of substrates.3 Despite this, their use in asymmetric 

hydrogenation has been less developed than other heterodonor ligands such as 
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P,N and P,P' ligands.1 Among them, thioether-phosphinite ligands have played a 

dominant role.4,5,6 In the last decade, a group of less electron rich phosphorus 

compounds (phosphite and phosphoroamidite ligands) have demonstrated that 

they are potentially extremely useful in asymmetric hydrogenation.7 Despite this, 

to the best of our knowledge, there is only one report on the use of heterodonor 

thioether-phosphite ligands in this process with moderate results.5b More research 

is therefore needed to study the possibilities offered by thioether-phosphites as a 

new class of ligands for this process. 

 For this purpose in this chapter we report the synthesis and application of 

a new thioether-phosphite ligand library, derived from inexpensive L-(+)-tartaric 

acid, (L1-L8a-e; Figure 3.2.1) in the Rh-catalyzed asymmetric hydrogenation of -

unsaturated carboxylic acid derivatives and enamides. Another advantage of this 

ligand library design is its highly modular construction which enables a systematic 

study of the ligand parameters on catalytic performance. With this library we 

investigate the effect of systematically varying the electronic and steric properties 

of the thioether group (ligands L1-L7) and the substituents in the alkyl backbone 

chain next to the phosphite moiety (ligands L1 and L8). We also study the 

substituents and configurations in the biaryl phosphite moiety (a-e). By carefully 

selecting these elements, we achieved high enantioselectivities and activities in a 

range of prochiral olefins. 

 

 
Figure 3.2.1. Thioether-phosphite ligands L1-L8a-e. 

3.2.2 Results and discussion 

3.2.2.1 Synthesis of ligand library 
 
 The synthesis of the thioether-phosphite ligands L1-L8a-e is 

straightforward (Scheme 3.2.1). They were efficiently synthesized from the 

corresponding easily accessible thioether-alcohols 5-8, 14-16 and 22. These latter 

compounds are easily made in few steps from inexpensive natural L-(+)-tartaric 
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acid 1. Compounds 2, 3 and 17 were easily synthesized from 1.8,9,10 Compounds 3 

and 17 were chosen as intermediates for the preparation of ligands because they 

will easily allow to incorporate the different substituents at the alkyl backbone 

chain next to the phosphite moiety. For the preparation of hydroxyl-thioether 

compounds 5-8, intermediate 3 was treated with 1 equiv of p-toluenesulfonyl 

chloride to produce the desired monotosylated compound 4 (Scheme 3.2.1, step 

(d)).11 Subsequent reaction with the corresponding NaSR provided direct access to 

the corresponding thioether-hydroxyls 5-8 (Scheme 3.2.1, step (e)). Therefore, in 

this step the desired diversity in the electronic and steric properties of the 

thioether moiety was also attained. However, in this step the incorporation of 

bulky thioether substituents proceed with poor-to-moderate yields even with long 

reaction times. Therefore, for the preparation of thioether-hydroxyls 14-16, a new 

alternative route was developed. Monoprotection of 3 was achieved using 1 equiv 

of TBDMSCl and NaH in an excellent yield (Scheme 3.2.1, step (f)).12 Subsequent 

reaction with triflic anhydride gave access to monotriflate 10 (Scheme 3.2.1, step 

(g)), which underwent to the corresponding thioether intermediates 11-13 on 

treatment with NaSR (Scheme 3.2.1, step (e)). Finally, the tert-butyldimethylsilyl 

protecting group of compounds 11-13 was removed using TBAF to achieve 

thioether-hydroxyl 14-16 (Scheme 3.2.1, step (h)). 

 For the preparation of hydroxyl-thioether 22, protection of 17 with 

TBDMSCl was followed by addition of methyl lithium to achieve compound 19. 

Standard deprotection of 19 with TBAF gave access to the corresponding diol 20. 

Selective monotosylation of 20 was achieved by treatment with 1 equiv of p-

toluenesulfonyl chloride. Subsequent reaction with sodium thiophenolate 

provided direct access to thioether-hydroxyl 22 (Scheme 3.2.1, step (e)). 

 The last step of the ligand synthesis is common for all of them. Therefore, 

treating the corresponding thioether-hydroxyl (5-8, 14-16 and 22) with 1.1 equiv of 

the desired in situ formed phosphorochloridite (ClP(OR)2; (OR)2 = a-e) in the 

presence of pyridine provided easy access to the desired ligands (Scheme 3.2.1, 

step (l)).13 All the ligands were purified on neutral alumina under an argon 

atmosphere and isolated in moderate-to-good yields as white solids. The 

elemental analyses were in agreement with the assigned structure. The 1H, 31P and 
13C NMR spectra were as expected for these ligands (see Section 3.2.4). One singlet 

for each compound was observed in the 31P NMR spectrum. Rapid ring inversions 

(tropoisomerization) in the biphenyl-phosphorus moieties (a-c) occurred on the 
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NMR time scale because the expected diastereoisomers were not detected by low-

temperature 31P NMR.5b 

 

 
Scheme 3.2.1.  Synthesis of thioether-phosphite ligands L1-L8a-e. (a) EtOH/H3BO3;

8
 (b) 

DMP/benzene/PTSA;
9
 (c) LiAlH4/Et2O/THF;

10
 (d) ClTs/CH2Cl2/Py;

11
 (e) NaSR/THF; (f) TBDMS/ 

NaH/THF;
12

 (g) Tf2O/CH2Cl2/Py; (h) TBAF/THF; (i) NaBH4/EtOH; (j) TBDMS/imidazole/DMF; 

(k) MeLi/THF; (l) ClP(OR)2; (OR)2 = a-e/Py/toluene. 

3.2.2.2 Asymmetric hydrogenation of -dehydroamino acid esters S1-S2 

 Initially, we evaluated thioether-phosphite ligands L1-L8a-e (Figure 3.2.1) 

in the Rh-catalyzed asymmetric hydrogenation of benchmark -dehydroamino 

acid derivatives methyl 2-acetamidocinnamate S1 and methyl 2-acetamidoacrylate 

S2. In the first set of experiments we used the Rh-catalyzed hydrogenation of S1 to 

evaluate the potential of the new ligands. 

 We studied the effect of several reaction parameters (i.e. solvent, catalyst 

preparation, hydrogen pressure and metal source) using the catalyst precursor 

containing ligand L1a. The results, which are given in Table 3.2.1, show that the 

efficiency of the process depended on the nature of the solvent (entries 1-6).  

Therefore, the catalytic performance (activity and enantioselectivity) was best 

when dichloromethane was used (entry 1). On the other hand, while increasing 
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the temperature has a positive effect on activity, but a negative effect on 

enantioselectivity (Table 3.2.1, entries 1 vs 7 and 8), increasing the pressure to 30 

bar of H2 has no effect on enantioselectivity (entry 1 vs 10). Activity also increased 

by increasing the substrate concentration (entry 9 vs 11). The results using in situ 

prepared catalyst precursor, by adding [Rh(nbd)2]SbF6 to L1a, are similar to those 

achieved using preformed [Rh(cod)L1a]SbF6 catalyst precursor (entry 9 vs 1). 

Finally, we investigated the effect of different catalysts precursors (entries 11-16). 

The presence of triflate, CF3SO2 and BArF as counterions has a negative effect on 

enantioselectivity (i.e. entries 13-15) 

 

Table 3.2.1 Rh-catalyzed hydrogenation of S1 using ligand L1a. Effect of the reaction 

parameters
a
  

 

Entry Solvent P (bar) T (°C) Catalyst precursor [S1] (M) % Conv
b
 % ee

c 

1 CH2Cl2 10 25 [Rh(nbd)(L1a)]SbF6 0.067 76  48 (R) 

2 THF 10 25 [Rh(nbd)(L1a)]SbF6 0.067 36 15 (R) 

3 MeOH 10 25 [Rh(nbd)(L1a)]SbF6 0.067 18 0 

4 Benzene 10 25 [Rh(nbd)(L1a)]SbF6 0.067 13 18 (R) 

5 Acetone 10 25 [Rh(nbd)(L1a)]SbF6 0.067 25 38 (R) 

6 AcOEt 10 25 [Rh(nbd)(L1a)]SbF6 0.067 16 8 (R) 

7 CH2Cl2 10 40 [Rh(nbd)(L1a)]SbF6 0.067 100 45 (R) 

8 CH2Cl2 10 60 [Rh(nbd)(L1a)]SbF6 0.067 100 38 (R) 

9
d 

CH2Cl2 10 25 [Rh(nbd)2]SbF6 0.067 75  47 (R) 

10
d 

CH2Cl2 30 25 [Rh(nbd)2]SbF6 0.067 100 46 (R) 

11
d 

CH2Cl2 10 25 [Rh(nbd)2]SbF6 0.167
e 

100  48 (R) 

12
d 

CH2Cl2 10 25 [Rh(nbd)2]PF6 0.167
e 

100  46 (R) 

13
d 

CH2Cl2 10 25 [Rh(nbd)2]CF3SO2 0.167
e 

100 12 (R) 

14
d 

CH2Cl2 10 25 [Rh(nbd)2]BArF 0.167
e 

100 24 (R) 

15
d 

CH2Cl2 10 25 [Rh(cod)2] BArF 0.167
e 

100 27 (R) 

16
d 

CH2Cl2 10 25 [Rh(cod)2]BF4 0.167
e 

100 45 (R) 
a Catalyst precursor (1 mol%), S1 (1 mmol), solvent (15 mL). b % Conversion measured by GC. c Enantiomeric 
excess measured by GC. d Catalyst generated in situ: catalyst precursor (1 mol%), L1a (1.1 mol%) and S1 (1 mmol). 
e CH2Cl2 (6 mL). 

 

For the purpose of comparison the rest of ligands were tested under 

optimized conditions. The results are summarized in Table 3.2.2 and shows that 

enantioselectivities are highly affected by the thioether substituent, the 
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substituents in the alkyl backbone chain next to the phosphite moiety and the 

configuration of the biaryl phosphite moieties. However, the effect of the ligand 

parameters in activity is less pronounced. In general, full conversion of the desired 

hydrogenated product was therefore obtained without excess of ligand needed. 

 

Table 3.2.2 Selected results for the Rh-catalyzed hydrogenation of S1 

using the thioether-phosphite ligand library L1-L8a-d
a
  

Entry Ligand % Conv
b
 % ee

c 

1 L1a 100  48 (R) 

2 L1b 100  40 (R) 

3 L1c 100  30 (R) 

4 L1d 64 68 (R) 

5 L1e 100 0 

6 L2a 92 21 (R) 

7 L3a 100 9 (R) 

8 L3d 100 55 (R) 

9 L3e 100 35 (S) 

10 L4a 82 8 (S) 

11 L4d 96 28 (S) 

12 L4e 95 11 (R) 

13 L5d 100 59 (R) 

14 L5e 100 51 (S) 

15 L6d 100 54 (R) 

16 L6e 100 18 (S) 

17 L7d 100 83 (R) 

18 L7e 100 16 (S) 

19 L8a 100 36 (R) 

20 L8d 100 96 (R) 

21 L8e 100 34 (S) 
a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), substrate (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, 
room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. 

 

We first investigated the effect of the substituents/configurations at the 

biaryl phosphite moiety with ligands L1a-e. Although the results indicated that the 

nature of the substituents at the biaryl phosphite moiety has less impact on 

enantioselectivities (Table 3.2.2, entries 1-3) than the configuration of the biaryl 

phosphite moiety (Table 3.2.2, entries 4-5 vs 1-3), enantioselectivities are higher if 

bulky substituents at the para position of the biaryl phosphite groups are present 

(tBu > OMe > H; Table 3.2.2, entries 1 vs 2 and 3). In general, ligands containing an 
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R-biaryl phosphite moiety (d) provide therefore higher enantioselectivities than 

ligands containing an S-biaryl group (e) (i.e. entry 4 vs 5). 

Concerning the effect of the thioether substituent, the results indicated 

that the presence of an aromatic rather than an alkyl substituent is beneficial in 

terms of enantioselectivity (i.e. entries 4 vs 8 and 13). The highest 

enantioselectivity of the series was achieved using a 2-naphthyl thioether 

substituent (L7; Table 3.2.2 entry 17). 

Interestingly the introduction of methyl substituents at the alkyl backbone 

chain next to the phosphite moiety (ligands L8) has extremely positive effect on 

enantioselectivity (i.e. entry 4 vs 20).  

To sum up, the best result was obtained with ligand L8d, which contains 

the optimal combination of ligand parameters (100% conversion and 96% of 

enantioselectivity, entry 20). This result clearly shows the efficiency of highly 

modular scaffolds in ligand design. 

We also screened the phosphite-thioether ligand library L1-L8a-e in the 

asymmetric reduction of dehydroamino acid derivative S2. Substrate S2 is similar 

to S1 but the phenyl group in the latter substrate is lacking, so a different 

requirement of the ligand parameters may be expected (see Table 3.2.3 for 

results). Again, enantioselectivities were affected by the thioether substituent, the 

substituents in the alkyl backbone chain next to the phosphite moiety and the 

configuration of the biaryl phosphite moieties. However, the effect of these 

parameters on enantioselectivity was different from their effect on the 

hydrogenation of substrate S1. Enantioselectivity was therefore best with ligand 

L8e (ee’s up to 81%). In this respect, the effect on catalytic performance of the 

substituents in the biaryl phosphite moiety followed the same trend as for the 

hydrogenation of S1. Bulky substituents at the para position of the biaryl 

phosphite groups have a positive effect on enantioselectivities (Table 3.2.3, entries 

1-3).  The results also indicated a cooperative effect between the configuration of 

the biaryl phosphite moiety and the substituent in the alkyl backbone chain next to 

the phosphite moiety. However this effect was different from its effect on the 

hydrogenation of S1. Enantioselectivity was therefore best with ligand L8e, with 

methyl substituents in the alkyl backbone chain next to the phosphite, but in 

contrast to S1, with an S-biaryl phosphite group (entry 21). This result again clearly 

shows the efficiency of using modular scaffolds in ligand design.  
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Table 3.2.3 Selected results for the Rh-catalyzed hydrogenation of S2 

using the thioether-phosphite ligand library L1-L8a-d
a
  

 

Entry Ligand % Conv
b
 % ee

c 

1 L1a 100  37 (R) 

2 L1b 100  15 (R) 

3 L1c 100  19 (S) 

4 L1d 100 45 (R) 

5 L1e 100 15 (R) 

6 L2a 100 13 (R) 

7 L3a 100 9 (S) 

8 L3d 100 50 (S) 

9 L3e 100 17 (R) 

10 L4a 100 43 (S) 

11 L4d 100 53 (S) 

12 L4e 100 18 (R) 

13 L5d 100 43 (S) 

14 L5e 100 18 (R) 

15 L6d 100 29 (R) 

16 L6e 100 19 (R) 

17 L7d 99 17 (R) 

18 L7e 100 48 (R) 

19 L8a 100 58 (R) 

20 L8d 100 45 (R) 

21 L8e 100 81 (S) 
a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), substrate (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, 
room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. 

 

3.2.2.3 Asymmetric hydrogenation of dimethyl itaconate S3 

 We next applied ligand library L1-L8a-e in the Rh-catalyzed asymmetric 

reduction of dimethyl itaconate S3. The results, which are summarized in Table 

3.2.4, indicate that the effect of the ligand parameters in enantioselectivity is 

different from the hydrogenation of -dehydroamino acid esters S1-S2. Although 

as observed for S1-S2, the presence of para substituents at the biaryl phosphite 

moiety has a positive effect on enantioselectivity (entries 1-3), the effect of the 

configuration of the biaryl phosphite moiety depends on the thioether substituent. 
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Thus, while for ligands L1, containing a phenyl thioether substituent, 

enantioselectivities are better when an S-biaryl phosphite is used (entries 4 vs 5), 

for ligands L5, containing bulkier adamantyl thioether substituents, both R- and S-

biaryl moieties led to similar levels of enantioselectivity (entries 13 and 14). 

Interestingly for the latter ligands, the sense of enantioselectivity is controlled by 

the configuration of the biaryl phosphite group. As observed for dehydroamino 

acid derivatives, the introduction of methyl substituents at the alkyl backbone 

chain next to the phosphite group (ligands L8) has a positive effect on 

enantioselectivity (entries 1, 4-5 vs 19-21, respectively).  

   

Table 3.2.4 Selected results for the Rh-catalyzed hydrogenation of S3 

using the thioether-phosphite ligand library L1-L8a-d
a
  

 

Entry Ligand % Conv
b
 % ee

c 

1 L1a 100  26 (S) 

2 L1b 100  25 (S) 

3 L1c 100  17 (S) 

4 L1d 100  5 (S) 

5 L1e 100  18 (S) 

6 L2a 100  10 (S) 

7 L3a 100 8 (R) 

8 L3d 100 36 (S) 

9 L3e 100 18 (R) 

10 L4a 100 51 (R) 

11 L4d 100 17 (S) 

12 L4e 100 24 (R) 

13 L5d 100  52 (S) 

14 L5e 100  53 (R) 

15 L6d 100 25 (S) 

16 L6e 100 29 (S) 

17 L7d 100 39 (S) 

18 L7e 100 43 (S) 

19 L8a 100 51 (S) 

20 L8d 100 67 (S) 

21 L8e 100 75 (S) 
a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), substrate (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, 
room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. 
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 In summary, the highest enantioselectivity (ee's up to 75%) was achieved 

using ligand L8e, which contain the optimal combination of ligand parameters. 

 

3.2.2.3 Asymmetric hydrogenation of enamides S4-S8 

We subsequently applied ligand library L1-L8a-e in the Rh-catalyzed 

asymmetric reduction of several enamides (Equation 1). Enamides are an 

important class of substrates because their reductions give rise to optically active 

secondary amines, which are useful building blocks for the synthesis of fine 

chemicals.14 

 

 In a first set of experiments, we used N-(1-(4-methoxyphenyl)vinyl)-

acetamide S4 as substrate to assess the potential of the ligand library L1-L8a-e 

under standard reaction conditions15 (i.e. [Rh(cod)2]BF4 as catalyst precursor, 30 

bar H2 at rt). The results, which are summarized in Table 3.2.5, indicate that again 

enantioselectivities are highly affected by a subtle balance of the thioether 

substituent, the substituent at the alkyl backbone chain next to the phosphite 

moiety as well as the configuration of the biaryl phosphite moiety. However, the 

effect of these parameters is different from the hydrogenation of S1-S3. Thus, for 

instance, although the presence of an R-biaryl phosphite group led to higher 

enantioselectivities (entries 4 vs 5), enantioselectivity is hardly affected by the 

different substituents at the biaryl phosphite group (entries 1-3). Once again, the 

introduction of methyl substituents at the alkyl chain next to the phosphite moiety 

has a positive effect on enantioselectivity (i.e. entry 4 vs 20). To sum up, the best 

enantioselectivities (ee's up to 84%) were obtained using Rh-L8d catalyst precursor 

(entry 20). 
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Table 3.2.5 Selected results for the Rh-catalyzed hydrogenation of S4 

using the thioether-phosphite ligand library L1-L8a-d
a
  

 

Entry Ligand % Conv
b
 % ee

c 

1 L1a 100  32 (R) 

2 L1b 100  30 (R) 

3 L1c 100  31 (R) 

4 L1d 100 54 (R) 

5 L1e 100 31 (S) 

6 L2a 100 15 (R) 

7 L3a 100 33 (S) 

8 L3d 100 14 (R) 

9 L3e 100 29 (S) 

10 L4a 100 19 (S) 

11 L4d 100 8 (R) 

12 L4e 100 19 (S) 

13 L5d 100 52 (R) 

14 L5e 100 30 (S) 

15 L6d 100 59 (R) 

16 L6e 100 29 (S) 

17 L7d 100 25 (R) 

18 L7e 100 19 (S) 

19 L8a 100 13 (R) 

20 L8d 100 84 (R) 

21 L8e 100 11 (S) 
a [Rh(cod)2]BF4 (1 mol%), ligand (1.1 mol%), substrate (0.5 mmol), CH2Cl2 (6 mL), 30 bar of H2, 

room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. 

 

To further investigate the catalytic efficiency of the Rh/L8d catalytic 

system, we tested it in the Rh-catalyzed hydrogenation of other enamides with 

different aryl substituents. The results are summarized in Table 3.2.6. We found 

that conversion is hardly affected by the presence of either electron-donating or 

electron-withdrawing groups at the para positions of the aryl group. However, 

enantioselectivities are best when electron-withdrawing groups are present (i.e. 

85% (S) for N-(1-(4-fluorophenyl)vinyl)-acetamide S5; Table 3.2.6, entry 1). 
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Table 3.2.6 Selected results for the Rh-catalyzed hydrogenation of 

enamides S5-S8 using the Rh/L8d catalytic system
a
  

 

Entry Ligand % Conv
b
 % ee

c 

 

1 

 

 

100 

 

85 (R) 

 

2 

 

 

100 

 

77 (R) 

 

3 

 

 

100 

 

80 (R) 

 

4 

 

 

100 

 

79 (R) 

a [Rh(cod)2]BF4 (1 mol%), ligand (1.1 mol%), substrate (0.5 mmol), CH2Cl2 (6 mL), 30 bar of 
H2, room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by 
GC. 

 

3.2.3 Conclusions 

A modular thioether-phosphite ligand library has been synthesized for the 

Rh-catalyzed asymmetric hydrogenation of -unsaturated carboxylic acid 

derivatives and enamides. These ligands can be prepared efficiently from easily 

accessible L-(+)-tartaric acid. The results indicate that enantioselectivity is mainly 

affected by the substituents in both the thioether group and at the alkyl backbone 

chain next to the phosphite moiety, and the configuration of the biaryl phosphite 

moiety. However, the effect of these parameters depends on each substrate class. 

By carefully selecting the ligand components, full conversions and high 

enantioselectivities have been achieved in the reduction of several  -

dehydroamino acid esters (up to 96% ee), dimethyl itaconate (up to 75% ee), and a 

range of enamides (up to 85% ee). 
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3.2.4 Experimental Section 

3.2.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

an argon atmosphere. Solvents were purified by standard procedures. 

Phosphorochloridites are easily prepared in one step from the corresponding 

biaryls.16 Compounds 2,9 3,10 4,11 511 and 912 were prepared as previously 

described. Methyl (Z)-N-acetylaminocinnamate S117 and enamides S4-S818 were 

prepared following literature procedures. All other reagents were used as 

commercially available. 1H, 13C{1H}, 31P{1H} NMR spectra experiments were 

recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of 

SiMe4 (
1H and 13C) as internal standard or H3PO4 (

31P) as external standard. 1H and 
13C assignments were done based on 1H-1H gCOSY and 1H-13C gHSQC experiments. 

Elemental analyses were carried out by the “Service Central d’Analyses du CNRS” 

in Lyon using LECO SC 144 microanalyzer. 

3.2.4.2 Typical procedure for the preparation of thioether-phosphite ligands L1-

L8a-e. 

 The corresponding phosphorochloridite (1.1 mmol) produced in situ was 

dissolved in toluene (5 mL) and pyridine (0.3 mL, 3.9 mmol) was added. The 

corresponding thioether-hydroxyl compound (1 mmol) was azeotropically dried 

with toluene (3 x 2 mL) and then dissolved in toluene (5 mL) to which pyridine (0.3 

mL, 3.9 mmol) was added. The alcohol solution was transferred slowly to the 

solution of phosphorochloridite. The reaction mixture was stirred at 80 ºC for 90 

min, and the pyridine salts were removed by filtration. Evaporation of the solvent 

gave a white foam, which was purified by flash chromatography in alumina 

(toluene/NEt3= 100/1) to produce the corresponding ligand as a white solid. 

 L1a:  Yield: 413 mg, 65 %. 31P NMR (400 MHz, C6D6) δ:  135.7 (s). 1H NMR 

(C6D6), : 1.27 (s, 9H, CH3, 
tBu), 1.28 (s, 9H, CH3, 

tBu), 1.29 (s, 3H, CH3), 1.32 (s, 3H, 

CH3), 1.57 (s, 9H, CH3, 
tBu), 1.59 (s, 9H, CH3, 

tBu), 2.88 (dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 

6.4 Hz, CH2-S), 3.03 (dd, 1H, 2JH-H= 13.6  Hz, 3JH-H=  5.6 Hz, CH2-S), 3.93-3.96 (m, 1H, 

CHCH2O), 4.02 (m, 1H, CHCH2S), 4.08-4.11 (m, 2H, CH2-O), 6.87-7.60 (m, 9H, CH=). 
13C NMR (C6D6), : 26.9 (CH3), 27.1 (CH3), 30.8 (CH3, 

tBu), 30.9 (CH3, 
tBu), 31.2 (CH3, 

tBu), 34.3 (C, tBu), 35.3 (C, tBu), 35.3 (C, tBu), 36.5 (CH2-S), 64.6 (CH2-O), 76.5 

(CHCH2S), 79.7 (d, CHCH2O, JC-P= 3.8 Hz), 109.4 (CMe2), 124.1 (CH=), 125.3 (C), 

125.7 (CH=), 126.7 (CH=), 128.1 (CH=), 128.7 (CH=), 128.9 (CH=), 129.0 (CH=), 133.2 
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(C), 136.4 (C), 140.1 (C), 140.2 (C), 146.5 (C), 146.6 (C). Anal. calcd (%) for 

C41H57O5PS:  C 71.07,  H 8.29, S. 4.63. Found: C 71.22, H 8.33, S. 4.52 

 L1b:  Yield: 294 mg, 46 %. 31P NMR (400 MHz, C6D6) δ: 134.3 (s). 1H NMR 

(C6D6), : 1.24 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.45 (s, 9H, CH3, 
tBu), 1.48 (s, 9H, CH3, 

tBu), 2.83 (dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6.4 Hz, CH2-S), 3.02 (dd, 1H, 2JH-H= 13.6  Hz, 
3JH-H=  5.6 Hz, CH2-S), 3.31 (s, 6H, CH3-O), 3.90-3.92 (m, 1H, CHCH2O), 3.93-3.97 (m, 

1H, CHCH2S), 3.98-4.02 (m, 1H, CH2-O), 4.12 (m, 1H, CH2-O), 6.64-7.21 (m, 9H, 

CH=). 13C NMR (C6D6), : 26.9 (CH3), 27.0 (CH3), 30.6 (CH3, 
tBu), 35.1 (C, tBu), 35.2 

(C, tBu), 36.6 (CH2-S), 54.7 (CH3-O), 64.6 (CH2-O), 76.2 (CHCH2S), 79.8 (d, CHCH2O, 

JC-P= 3.0 Hz), 109.4 (CMe2), 112.9 (CH=), 114.5 (CH=), 125.2 (C), 125.9 (CH=), 128.1 

(C), 128.8 (CH=), 128.9 (CH=), 129.1 (CH=), 133.8 (C), 136.3 (C), 137.4 (C), 142.2 (C), 

142.3 (C), 156.0 (C). Anal. calcd (%) for C35H45O7PS: C, 65.60; H, 7.08; S, 5.00. 

Found: C, 65.81; H, 7.14; S, 4.79. 

 L1c:  Yield: 366 mg, 60 %. 31P NMR (400 MHz, C6D6) δ: 134.5 (s). 1H NMR 

(C6D6), : 0.0 (s, 9H, CH3, SiMe3), 0.03 (s, 9H, CH3, SiMe3), 0.88 (s, 3H, CH3), 0.92 (s, 

3H, CH3), 2.48 (dd, 1H, 2JH-H= 13.2 Hz, 3JH-H= 5.6 Hz, CH2-S), 2.64 (dd, 1H, 2JH-H= 13.6  

Hz, 3JH-H=  4.8 Hz, CH2-S), 3.50-3.54 (m, 1H, CH2-O), 3.54-3.56 (m, 1H, CHCH2O), 

3.56-3.60 (m, 1H, CHCH2S), 3.67-3.71 (m, H, CH2-O), 6.52-7.03 (m, 11H, CH=). 13C 

NMR (C6D6), : 0.0 (CH3-Si), 27.2 (CH3), 27.4 (CH3), 36.9 (CH2-S), 64.8 (CH2-O), 76.7 

(CHCH2S), 79.9 (d, CHCH2O, JC-P= 3.1 Hz), 109.7 (CMe2), 125.0 (CH=), 125.6 (C),  

126.1 (CH=), 128.4 (CH=), 129.0 (CH=), 129.2 (CH=), 129.5 (C), 131.2 (CH=), 131.3 

(CH=), 131.9 (CH=),132.5 (C), 135.5 (CH=), 135.6 (CH=), 136.6 (C), 155.0 (C), 155.1 

(C). Anal. calcd (%) for C31H41O5PSSi2:  C, 60.75; H, 6.74; S, 5.23. Found: C, 60.94; H, 

6.79; S, 5.06. 

 L1d:  Yield: 342 mg, 54 %. 31P NMR (400 MHz, C6D6) δ: 128.7 (s). 1H NMR 

(C6D6), : 1.25 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.52 (s, 9H, CH3, 
tBu), 1.54 (s, 9H, CH3, 

tBu), 1.64 (s, 3H, CH3), 1.73 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.80 

(dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6 Hz, CH2-S), 2.97 (dd, 1H, 2JH-H= 13.6  Hz, 3JH-H=  5.2 Hz, 

CH2-S), 3.53-3.59 (m, 1H, CH2-O), 3.84-3.88 (m, 1H, CHCH2O), 3.94-3.99 (m, 1H, 

CHCH2S), 4.17-4.23 (m, 1H, CH2-O), 6.84-7.22 (m, 7H, CH=). 13C NMR (C6D6), : 16.1 

(CH3), 16.3 (CH3), 20.0 (CH3), 26.9 (CH3), 27.0 (CH3), 30.9 (CH3, 
tBu), 31.2 (CH3, 

tBu), 

34.5 (C, tBu), 34.6 (C, tBu), 36.5 (CH2-S), 64.4 (CH2-O), 76.4 (CHCH2S), 79.8 (d, 

CHCH2O, JC-P= 3.1 Hz), 109.3 (CMe2), 125.8 (CH=), 127.8 (CH=), 127.9 (CH=), 128.1 

(CH=), 128.7 (CH=), 128.9 (CH=), 129.0 (CH=),131.1 (C), 131.5 (C), 131.7 (C), 132.3 

(C), 134.5 (C), 134.9 (C), 136.5 (C), 137.0 (C), 137.4 (C), 138.1 (C), 145.8 (C). Anal. 

calcd (%) for C37H49O5PS: C, 69.78; H, 7.76; S, 5.04. Found: C, 70.01; H, 7.82; S, 4.65. 
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 L1e:  Yield: 317 mg, 50 %. 31P NMR (400 MHz, C6D6) δ: 126.1 (s). 1H NMR 

(C6D6), : 1.19 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.52 (s, 9H, CH3, 
tBu), 1.54 (s, 9H, CH3, 

tBu), 1.63 (s, 3H, CH3), 1.72 (s, 3H, CH3), 2.01 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.82 

(dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6.4 Hz, CH2-S), 2.96 (dd, 1H, 2JH-H= 13.2  Hz, 3JH-H=  4.8 

Hz, CH2-S), 3.56-3.61 (m, 1H, CH2-O), 3.83-3.88 (m, 1H, CHCH2O), 3.90-3.95 (m, 1H, 

CHCH2S), 4.13-4.19 (m, 1H, CH2-O), 6.85-7.23 (m, 7H, CH=). 13C NMR (C6D6), : 16.1 

(CH3), 16.4 (CH3), 20.0 (CH3), 26.7 (CH3), 27.0 (CH3), 30.9 (CH3, 
tBu), 31.2 (C, tBu), 

36.4 (CH2-S), 64.4 (CH2-O), 76.2 (CHCH2S), 79.6 (d, CHCH2O, JC-P= 3 Hz), 109.3 

(CMe2), 125.7 (CH=), 128.1 (CH=), 128.2 (CH=), 128.8 (CH=), 128.9 (CH=), 129.0 

(CH=), 131.0 (C), 131.5 (C), 131.6 (C), 132.3 (C), 134.4 (C), 135.0 (C), 136.5 (C), 

136.9 (C), 137.4 (C), 138.1 (C), 145.8 (C). Anal. calcd (%) for C37H49O5PS: C, 69.78; H, 

7.76; S, 5.04. Found: C, 70.12; H, 7.84; S, 4.63. 

 L2a:  Yield: 322 mg, 51 %. 31P NMR (400 MHz, C6D6) δ: 135.4 (s). 1H NMR 

(C6D6), : 1.23 (s, 9H, CH3, 
tBu), 1.24 (s, 9H, CH3, 

tBu), 1.28 (s, 3H, CH3), 1.28 (s, 3H, 

CH3), 1.53 (s, 9H, CH3, 
tBu), 1.55 (s, 9H, CH3, 

tBu), 1.79 (s, 3H, CH3),  2.36 (dd, 1H, 
2JH-H= 14 Hz, 3JH-H= 6 Hz, CH2-S), 2.46 (dd, 1H, 2JH-H= 13.6  Hz, 3JH-H=  5.2 Hz, CH2-S), 

3.78-3.83 (m, 1H, CHCH2O), 3.93-3.98 (m, 1H, CHCH2S), 4.00-4.02 (m, 2H, CH2-O), 

6.95-7.54 (m, 4H, CH-Ar).13C NMR (C6D6), : 16.1 (CH3), 26.9 (CH3), 27.0 (CH3), 30.9 

(2CH3, 
tBu), 31.1 (CH3, 

tBu), 31.2 (CH3, 
tBu), 34.3 (2C, tBu), 35.3 (2C, tBu), 36.5 (CH2-

S), 64.4 (CH2-O), 77.5 (CHCH2S), 79.5 (d, CHCH2O, JC-P= 3. Hz), 109.0 (CMe2), 124.1 

(CH-Ar), 125.2 (C-Ar), 126.6 (CH-Ar), 128.1 (CH-Ar), 128.9 (CH-Ar),133.1 (C-Ar), 

133.2 (C-Ar), 140.0 (C-Ar), 140.1 (C-Ar), 146.4 (C-Ar), 146.5 (C-Ar), 146.6 (C-Ar). 

Anal. calcd (%) for C36H55O5PS: C, 68.54; H, 8.79; S, 5.08. Found: C, 68.81; H, 8.84; S, 

4.81. 

 L3a:  Yield: 376 mg, 56 %. 31P NMR (400 MHz, C6D6) δ: 135.0 (s). 1H NMR 

(C6D6), : 1.09 (s, 9H, CH3, 
tBu), 1.23 (s, 9H, CH3, 

tBu), 1.24 (s, 9H, CH3, 
tBu),1.28 (s, 

3H, CH3), 1.30 (s, 3H, CH3), 1.54 (s, 3H, CH3, 
tBu), 1.56 (s, 9H, CH3, 

tBu), 2.57 (dd, 1H, 
2JH-H= 12.8 Hz, 3JH-H= 7.2 Hz, CH2-S), 2.71 (dd, 1H, 2JH-H= 12.8  Hz, 3JH-H=  5.2 Hz, CH2-

S), 3.83-3.87 (m, 1H, CHCH2O), 3.94-4.00 (m, 1H, CHCH2S), 4.01-4.08 (m, 2H, CH2-

O), 6.95-7.53 (m, 4H, CH=). 13C NMR (C6D6), : 26.9 (CH3), 27.2 (CH3), 30.5 (CH3, 
tBu), 30.9 (CH3, 

tBu), 31.2 (CH3, 
tBu), 31.4 (CH2-S), 34.3 (C, tBu), 35.3 (C, tBu), 41.6 

(C, tBu), 64.6 (CH2-O), 77.2 (CHCH2S), 80.0 (d, CHCH2O, JC-P= 3.9 Hz), 109.0 (CMe2), 

124.0 (CH=),  125.2 (C), 126.6 (CH=), 128.1 (CH=),128.9 (CH=), 133.1 (C), 140.0 (C), 

146.3 (C), 146.7 (C). Anal. calcd (%) for C39H61O5PS: C, 69.61; H, 9.14; S, 4.76. 

Found: C, 70.02; H, 9.11; S, 4.51. 
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 L3d:  Yield: 321 mg, 52 %. 31P NMR (400 MHz, C6D6) δ: 128.4 (s). 1H NMR 

(C6D6), : 1.09 (s, 9H, CH3, 
tBu), 1.30 (s, 6H, CH3), 1.54 (s, 9H, CH3, 

tBu), 1.56 (s, 9H, 

CH3, 
tBu), 1.64 (s, 3H, CH3), 1.75 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.06 (s, 3H, CH3), 

2.56 (dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 6.8 Hz, CH2-S), 2.69 (dd, 1H, 2JH-H= 13.2  Hz, 3JH-H=  

6 Hz, CH2-S), 3.58-3.64 (m, 1H, CH2-O), 3.78-3.82 (m, 1H, CHCH2O), 3.97-4.02 (m, 

1H, CHCH2S), 4.26-4.32 (m, 1H, CH2-O), 6.95-7.18 (m, 2H, CH=). 13C NMR (C6D6), : 

16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 26.9 (CH3), 27.1 (CH3), 30.5 (CH3, 
tBu), 31.0 (CH3, 

tBu), 31.2 (CH3, 
tBu), 31.3 (CH2-S), 34.5 (C, tBu), 34.6 (C, tBu), 41.6 (C, tBu), 64.3 

(CH2-O), 77.5 (CHCH2S), 80.0 (d, CHCH2O, JC-P= 3.1 Hz), 109.0 (CMe2), 128.2 (CH=), 

128.9 (CH=), 131.1 (C), 131.4 (C), 131.7 (C), 132.2 (C), 134.3 (C), 134.9 (C), 137.4 

(C), 138.1 (C), 145.7(C), 145.8 (C).  Anal. calcd (%) for C35H53O5PS: C, 68.15; H, 8.66; 

S, 5.20. Found: C, 68.44; H, 8.60; S, 5.09. 

 L3e:  Yield: 388 mg, 63 %. 31P NMR (400 MHz, C6D6) δ: 125.8 (s). 1H NMR 

(C6D6), : 1.10 (s, 9H, CH3, 
tBu), 1.25 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.53 (s, 9H, CH3, 

tBu), 1.55 (s, 9H, CH3, 
tBu), 1.62 (s, 3H, CH3), 1.72 (s, 3H, CH3), 2.00 (s, 3H, CH3), 2.06 

(s, 3H, CH3), 2.55 (dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 6.4 Hz, CH2-S), 2.70 (dd, 1H, 2JH-H= 

12.8  Hz, 3JH-H=  5.2 Hz, CH2-S), 3.57-3.62 (m, 1H, CH2-O), 3.81-3.86 (m, 1H, 

CHCH2O), 3.93-3.98 (m, 1H, CHCH2S), 4.19-4.28 (m, 1H, CH2-O), 6.94-7.18 (m, 2H, 

CH-Ar). 13C NMR (C6D6), : 16.1 (CH3), 16.3 (CH3), 20.0 (CH3), 26.7 (CH3), 27.1 (CH3), 

30.5 (CH3, 
tBu), 30.9 (CH3, 

tBu), 31.2 (CH3, 
tBu), 31.3 (CH3, 

tBu), 31.4 (CH2-S), 34.5 (C, 
tBu), 34.6 (C, tBu), 41.5 (C, tBu), 64.4 (CH2-O), 77.1 (CHCH2S), 79.8 (d, CHCH2O, JC-P= 

3.9 Hz), 109.0 (CMe2), 128.2 (CH=), 128.9 (CH=), 131.0 (C), 131.4 (C), 131.7 (C), 

132.3 (C), 134.3 (C), 134.9 (C), 137.4 (C), 138.1 (C), 145.7(C), 146.1 (C).  Anal. calcd 

(%) for C35H53O5PS: C, 68.15; H, 8.66; S, 5.20. Found: C, 68.37; H, 8.61; S, 5.11. 

 L4a: Yield: 462 mg, 64 %. 31P NMR (400 MHz, C6D6) δ: 134.9 (s). 1H NMR 

(C6D6), : 1.31 (s, 9H, CH3, 
tBu), 1.31 (s, 9H, CH3, 

tBu), 1.32 (s, 3H, CH3), 1.34 (s, 3H, 

CH3), 1.60 (s, 9H, CH3, 
tBu), 1.61 (s, 9H, CH3, 

tBu), 2.15 (s, 3H, CH3), 2.52  (s, 3H, 

CH3), 2.73-2.76 (m, 2H, CH2-S), 3.89-3.92 (m, 1H, CHCH2O), 3.98-4.03 (m, 1H, 

CHCH2S), 4.05 (m, 2H, CH2-O), 6.95-7.63 (m, 7H, CH=).13C NMR (C6D6), : 21.8 (CH3-

Ar), 22.6 (CH3-Ar), 27.5 (CH3), 27.8 (CH3), 31.6 (CH3, 
tBu), 31.9 (CH3, 

tBu), 35.0 (C, 
tBu), 36.0 (C, tBu), 38.8 (CH2-S), 65.0 (CH2-O), 77.9 (CHCH2S), 80.2 (d, CHCH2O, JC-P= 

3.8 Hz), 110.0 (CMe2), 124.8 (CH=),  126.0 (CH=), 127.4 (CH=), 128.1 (CH=), 128.3 

(CH=), 128.6 (CH=), 129.6 (CH=), 133.9 (C), 134.2 (C), 138.1(C), 140.9 (C), 143.6 (C), 

147.2 (C), 147.3 (C).  Anal. calcd (%) for C43H61O5PS:  C, 71.63; H, 8.53; S, 4.45. 

Found: C, 71.84; H, 8.58; S, 4.21. 
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 L4d:  Yield: 315 mg, 47 %. 31P NMR (400 MHz, C6D6) δ: 125.4 (s). 1H NMR 

(C6D6), : 1.24 (s, 3H, CH3), 1.26 (s, 3H, CH3), 1.51 (s, 9H, CH3, 
tBu), 1.54 (s, 9H, CH3, 

tBu), 1.64 (s, 3H, CH3), 1.72 (s, 3H, CH3), 2.44 (s, 6H, CH3), 2.62 (m, 2H, CH2-S),  3.48-

3.53(m, 1H, CH2-O), 3.76-3.81 (m, 1H, CHCH2O), 3.88-3.93 (m, 1H, CHCH2S), 4.13-

4.19 (m, 1H, CH2-O), 6.86-7.18 (m, 5H, CH=). 13C NMR (C6D6), : 16.1 (CH3), 16.3 

(CH3), 20.0 (CH3), 21.8 (CH3), 26.7 (CH3), 27.0 (CH3), 30.9 (CH3, 
tBu), 31.2 (CH3, 

tBu), 

34.5 (C, tBu), 38.0 (CH2-S), 64.1 (CH2-O), 77.2 (CHCH2S), 79.5 (d, CHCH2O, JC-P= 3 Hz), 

109.2 (CMe2), 127.8 (CH=), 128.0 (CH=), 128.1 (CH=), 128.2 (CH=), 128.9 (C), 131.1 

(C), 131.5 (C), 131.6 (C), 131.7 (C), 132.3 (C), 133.6 (C), 134.4 (C), 134.9 (C), 

136.9(C), 138.1 (C), 142.8 (C), 145.8 (C).  Anal. calcd (%) for C39H53O5PS: C, 70.45; H, 

8.03; S, 4.82. Found: C, 70.82; H, 8.11; S, 4.67. 

 L4e:  Yield: 297 mg, 45 %. 31P NMR (400 MHz, C6D6) δ: 128.0 (s). 1H NMR 

(C6D6), : 1.16 (s, 3H, CH3), 1.19 (s, 3H, CH3), 1.46 (s, 18H, CH3, 
tBu), 1.57 (s, 3H, 

CH3), 1.68 (s, 3H, CH3), 1.96 (s, 3H, CH3), 2.00 (s, 3H, CH3), 2.42 (s, 6H, CH3), 2.61 (m, 

2H, CH2-S),  3.41-3.46 (m, 1H, CH2-O), 3.70-3.75 (m, 1H, CHCH2O), 3.84-3.89 (m, 1H, 

CHCH2S), 4.06-4.12 (m, 1H, CH2-O), 6.84-7.11 (m, 5H, CH=). 13C NMR (C6D6), : 16.1 

(CH3), 16.3 (CH3), 20.0 (CH3), 21.9 (CH3), 26.6 (CH3), 27.1 (CH3), 30.9 (CH3, 
tBu), 31.2 

(CH3, 
tBu), 34.5 (C, tBu), 34.6 (C, tBu), 38.1 (CH2-S), 64.0 (CH2-O), 77.0 (CHCH2S), 

79.4 (d, CHCH2O, JC-P= 3.8 Hz), 109.2 (CMe2), 128.0 (CH=), 128.1 (CH=), 128.2 (CH=), 

128.9 (CH=), 131.0 (C), 131.5 (C), 131.6 (C), 132.4 (C), 133.6 (C), 134.4 (C), 135.0 

(C), 136.9 (C), 137.0 (C), 138.0 (C), 142.8 (C), 145.6 (C), 146.0 (C). Anal. calcd (%) for 

C39H53O5PS: C, 70.45; H, 8.03; S, 4.82. Found: C, 70.84; H, 8.09; S, 4.54. 

 L5d:  Yield: 381 mg, 62 %. 31P NMR (400 MHz, C6D6) δ: 128.6 (s). 1H NMR 

(C6D6), : 1.37 (s, 3H, CH3), 1.38 (s, 3H, CH3), 1.47 (m, 6H, CH2, Ad), 1.61 (s, 9H, CH3, 
tBu), 1.63 (s, 9H, CH3, 

tBu), 1.69 (s, 3H, CH3), 1.76 (m, 6H, CH2, Ad), 1.80 (m, 6H, CH, 

Ad, CH3), 2.06 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.60 (dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 6.8 

Hz, CH2-S), 2.81 (dd, 1H, 2JH-H= 13.2  Hz, 3JH-H=  5.6 Hz, CH2-S), 3.67-3.72 (m, 1H, CH2-

O), 3.86-3.90 (m, 1H, CHCH2O), 4.05-4.10 (m, 1H, CHCH2S), 4.39-4.45 (m, 1H, CH2-

O), 6.99-7.25 (m, 2H, CH=). 13C NMR (C6D6), : 16.9 (CH3), 17.1 (CH3), 20.7 (CH3), 

20.8 (CH3), 27.7 (CH3), 27.9 (CH3), 29.5 (CH2-S), 30.3 (CH, Ad), 31.8 (CH3, 
tBu), 31.9 

(CH3, 
tBu), 35.3 (C, tBu), 35.4 (C, tBu), 36.7 (CH2, Ad), 44.0 (CH2, Ad), 44.6 (C, Ad), 

65.1 (CH2-O), 78.2 (CHCH2S), 81.0 (d, CHCH2O, JC-P= 3.1 Hz), 109.7 (CMe2), 129.6 

(CH=), 131.9 (C), 132.2 (C), 132.5 (C), 132.9 (C), 135.1 (C), 135.6 (C), 137.7 (C), 

138.2 (C), 138.9 (C), 146.6 (C). Anal. calcd (%) for C41H59O5PS: C, 70.86; H, 8.56; S, 

4.61. Found: C, 71.13; H, 8.61; S, 4.37. 
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 L5e:  Yield:  331 mg, 54 %. 31P NMR (400 MHz, C6D6) δ: 125.8 (s). 1H NMR 

(C6D6), : 1.32 (s, 3H, CH3), 1.39 (s, 3H, CH3), 1.51 (m, 6H, CH2, Ad),1.61 (s, 9H, CH3, 
tBu), 1.63 (s, 9H, CH3, 

tBu), 1.68 (s, 3H, CH3), 1.78 (s, 3H, CH3),1.79 (m, 6H, CH2, Ad), 

1.82 (m, 3H, CH, Ad), 2.05 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.61 (dd, 1H, 2JH-H= 13.2 

Hz, 3JH-H= 7.2 Hz, CH2-S), 2.83 (dd, 1H, 2JH-H= 12.4 Hz, 3JH-H=  4.8 Hz, CH2-S), 3.72-3.76 

(m, 1H, CH2-O), 3.93-4.02 (m, 2H, CHCH2O, CHCH2S), 4.30-4.35 (m, 1H, CH2-O), 

6.99-7.27 (m, 2H, CH=). 13C NMR (C6D6), : 16.1 (CH3), 16.4 (CH3), 20.0 (CH3), 20.1 

(CH3), 26.8 (CH3), 27.2 (CH3), 28.8 (CH2-S), 29.6 (CH, Ad), 30.9 (CH3, 
tBu), 31.3 (CH3, 

tBu), 34.6 (C, tBu), 34.7 (C, tBu), 36.0 (CH2, Ad), 43.3 (CH2, Ad), 43.9 (C, Ad), 64.7 

(CH2-O), 77.3 (CHCH2S), 80.2 (d, CHCH2O, JC-P= 4 Hz), 109.0 (CMe2), 128.1 (CH=), 

128.9 (CH=), 131.1 (C), 131.4 (C), 131.7 (C), 132.9 (C), 134.4 (C), 134.9 (C), 136.9 

(C), 138.1 (C), 145.8 (C), 146.6 (C). Anal. calcd (%) for C41H59O5PS: C, 70.86; H, 8.56; 

S, 4.61. Found: C, 71.24; H, 8.62; S, 4.29. 

 L6d:  Yield:  344 mg, 56 %. 31P NMR (400 MHz, C6D6) δ: 128.6 (s). 1H NMR 

(C6D6), : 1.30 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.52 (s, 9H, CH3, 
tBu), 1.58 (s, 9H, CH3, 

tBu), 1.67 (s, 3H, CH3), 1.75 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.89 

(dd, 1H, 2JH-H= 8.8 Hz, 3JH-H= 6 Hz, CH2-S), 3.05 (dd, 1H, 2JH-H= 13.2  Hz, 3JH-H=  6 Hz, 

CH2-S), 3.56-3.62 (m, 1H, CH2-O), 3.89-3.93 (m, 1H, CHCH2O), 4.06-4.10 (m, 1H, 

CHCH2S), 4.23-4.30 (m, 1H, CH2-O), 6.99-8.54 (m, 9H, CH=). 13C NMR (C6D6), : 16.8 

(CH3), 17.0 (CH3), 20.7 (CH3), 27.6 (CH3), 27.8 (CH3), 31.6 (CH3, 
tBu), 31.9 (CH3, 

tBu), 

35.2 (CH2-S), 37.8 (C, tBu), 65.0 (CH2-O), 77.0 (CHCH2S), 80.7 (d, CHCH2O, JC-P= 2.3 

Hz), 110.0 (CMe2), 125.8 (CH=), 126.0 (CH=), 126.2 CH=), 126.8 (CH=), 127.0 (CH=), 

127.9 (CH=), 128.8 (CH=), 129.2 (CH=), 129.6 (CH=), 131.8 (C), 132.2 (C), 132.4 (C), 

133.0 (C), 133.7 (C), 134.2 (C), 134.8 (C), 135.2 (C), 135.7 (C), 137.7 (C), 138.1 (C), 

138.8 (C), 146.4 (C). Anal. calcd (%) for C41H51O5PS: C, 71.69; H, 7.48; S, 4.67. 

Found: C, 71.98; H, 7.56; S, 4.47. 

 L6e:  Yield:  331 mg, 54 %. 31P NMR (400 MHz, C6D6) δ: 126.2 (s). 1H NMR 

(C6D6), : 1.25 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.55 (s, 9H, CH3, 
tBu), 1.56 (s, 9H, CH3, 

tBu), 1.66 (s, 3H, CH3), 1.76 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.94 

(dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 5.6 Hz, CH2-S), 3.05 (dd, 1H, 2JH-H= 12.8  Hz, 3JH-H=  6 Hz, 

CH2-S), 3.62-3.67 (m, 1H, CH2-O), 3.92-3.96 (m, 1H, CHCH2O), 4.03-4.08 (m, 1H, 

CHCH2S), 4.21-4.27 (m, 1H, CH2-O), 7.00-8.58 (m, 9H, CH=). 13C NMR (C6D6), : 16.8 

(CH3), 17.1 (CH3), 20.7 (CH3), 27.5 (CH3), 27.8 (CH3), 31.6 (CH3, 
tBu), 31.9 (CH3, 

tBu), 

35.2 (C, tBu), 35.3 (C, tBu), 37.8 (CH2-S), 65.1 (CH2-O), 77.1 (CHCH2S), 80.4 (d, 

CHCH2O, JC-P= 3.8 Hz), 110.1 (CMe2), 125.8 (CH=), 126.0 (CH=), 126.2 (CH=), 126.8 

(CH=), 127.0 (CH=), 127.9 (CH=), 128.9 (CH=), 129.2 (CH=), 129.6 (CH=),131.8 (C), 
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132.3 (C), 133.1 (C), 133.7 (C), 134.4 (C), 134.8 (C), 135.2 (C), 135.7 (C), 137.7 (C), 

138.2 (C), 138.8 (C), 146.4 (C), 146.7 (C). Anal. calcd (%) for C41H51O5PS: C, 71.69; H, 

7.48; S, 4.67. Found: C, 71.94; H, 7.55; S, 4.43. 

 L7d:  Yield:  270 mg, 60 %.  31P NMR (400 MHz, C6D6) δ: 126.2 (s). 1H NMR 

(C6D6), : 1.25 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.55 (s, 9H, CH3, 
tBu), 1.56 (s, 9H, CH3, 

tBu), 1.66 (s, 3H, CH3), 1.76 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.94 

(dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 5.6 Hz, CH2-S), 3.05 (dd, 1H, 2JH-H= 12.8  Hz, 3JH-H=  6 Hz, 

CH2-S), 3.62-3.67 (m, 1H, CH2-O), 3.92-3.96 (m, 1H, CHCH2O), 4.03-4.08 (m, 1H, 

CHCH2S), 4.21-4.27 (m, 1H, CH2-O), 7.00-8.58 (m, 9H, CH=). 13C NMR (C6D6), : 16.8 

(CH3), 17.1 (CH3), 20.7 (CH3), 27.5 (CH3), 27.8 (CH3), 31.6 (CH3, 
tBu), 31.9 (CH3, 

tBu), 

35.2 (C, tBu), 35.3 (C, tBu), 37.8 (CH2-S), 65.1 (CH2-O), 77.1 (CHCH2S), 80.4 (d, 

CHCH2O, JC-P= 3.8 Hz), 110.1 (CMe2), 125.8 (CH=), 126.0 (CH=), 126.2 (CH=), 126.8 

(CH=), 127.0 (CH=), 127.9 (CH=), 128.9 (CH=), 129.2 (CH=), 129.6 (CH=),131.8 (C), 

132.3 (C), 133.1 (C), 133.7 (C), 134.4 (C), 134.8 (C), 135.2 (C), 135.7 (C-Ar), 137.7 

(C), 138.2 (C), 138.8 (C), 146.4 (C), 146.7 (C). Anal. calcd (%) for C41H51O5PS: C, 

71.69; H, 7.48; S, 4.67. Found: C, 71.87; H, 7.54; S, 4.39. 

 L7e: Yield:  234 mg, 52 %. 31P NMR (400 MHz, C6D6) δ: 126.4 (s). 1H NMR 

(C6D6), : 1.25 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.56 (s, 9H, CH3, 
tBu), 1.57 (s, 9H, CH3, 

tBu), 1.66 (s, 3H, CH3), 1.75 (s, 3H, CH3), 2.02 (s, 3H, CH3), 2.04 (s, 3H, CH3), 3.00 

(dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 5.6 Hz, CH2-S), 3.11 (dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 5.2 

Hz, CH2-S), 3.63-3.68 (m, 1H, CH2-O), 3.94-3.99 (m, 1H, CHCH2O), 4.04-4.09 (m, 1H, 

CHCH2S), 4.22-4.28 (m, 1H, CH2-O), 6.99-7.74 (m, 9H, CH=). 13C NMR (C6D6), : 16.1 

(CH3), 16.3 (CH3), 19.9 (CH3), 20.0 (CH3), 26.7 (CH3), 27.0 (CH3), 30.9(CH3, 
tBu), 31.2 

(CH3, 
tBu), 34.5 (C, tBu), 34.6 (C, tBu), 36.4 (CH2-S), 64.4 (CH2-O), 76.4 (CHCH2S), 

79.6 (d, CHCH2O, JC-P= 3.8 Hz), 109.4 (CMe2), 125.2 (CH=), 125.4 (CH=), 126.3 (CH=), 

126.7 (CH=), 127.1 (CH=), 127.2 (CH=), 128.2 (CH=), 128.4 (CH=), 128.9 (CH=),131.0 

(C), 131.6 (C), 131.7 (C), 131.8 (C), 132.4 (C), 134.0 (C), 134.1 (C),134.4 (C), 135.0 

(C), 137.0 (C), 137.4 (C), 138.1 (C), 145.7 (C). Anal. calcd (%) for C41H51O5PS: C, 

71.69; H, 7.48; S, 4.67. Found: C, 71.94; H, 7.57; S, 4.34. 

 L8a:  Yield: 312 mg, 55 %. 31P NMR (400 MHz, C6D6) δ:  150.4 (s). 1H NMR 

(C6D6), : 1.15 (s, 3H, CH3), 1.22 (s, 9H, CH3, 
tBu), 1.23 (s, 9H, CH3, 

tBu), 1.27 (s, 3H, 

CH3), 1.50 (s, 3H, CH3), 1.53 (s, 9H, CH3, 
tBu), 1.56 (s, 9H, CH3, 

tBu), 1.65 (s, 3H, CH3), 

2.57 (dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 7.6 Hz, CH2-S), 3.07 (dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 

2.4 Hz, CH2-S), 3.88-3.91 (m, 1H, CHCMe2O), 4.22-4.28 (m, 1H, CHCH2S), 6.71-7.57 

(m, 9H, CH=). 13C NMR (C6D6), : 24.0 (CH3), 26.7 (CH3), 27.2 (CH3), 28.1 (CH3), 30.9 

(CH3, 
tBu), 31.1 (CH3, 

tBu), 31.2 (CH3, 
tBu), 34.3 (C, tBu), 35.1 (C, tBu), 35.2 (C, tBu), 
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36.0 (CH2-S), 76.4 (CHCH2S), 79.9 (CMe2O), 84.5 (d, CHCMe2O, JC-P= 1 Hz), 109.0 

(CMe2), 123.8 (CH=),124.1 (CH=), 124.7 (CH=), 127.0 (CH=), 128.0 (CH=), 128.1 

(CH=), 128.4 (CH=), 128.7 (CH=), 128.9 (CH=), 130.3 (C), 135.3 (C), 137.2 (C), 139.9 

(C), 146.4 (C). Anal. calcd (%) for C43H61O5PS: C, 71.63; H, 8.53; S, 4.45. Found: C, 

72.02; H, 8.61; S, 4.21. 

 L8d:  Yield: 360 mg, 62%. 31P NMR (400 MHz, C6D6) δ:  142.4 (s). 1H NMR 

(C6D6), : 1.21 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.57 (s, 9H, CH3, 
tBu), 

1.59 (s, 9H, CH3, 
tBu), 1.68 (s, 3H, CH3), 1.75 (s, 3H, CH3), 1.76 (s, 3H, CH3), 1.84 (s, 

3H, CH3), 2.05 (s, 3H, CH3), 2.07 (s, 3H, CH3), 2.62 (dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 6.8 

Hz, CH2-S), 2.93 (dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 2.8 Hz, CH2-S), 4.06 (d, 1H, 3JH-H= 4 Hz, 

CHCMe2O), 4.20-4.25 (m, 1H, CHCH2S), 6.87-7.33 (m, 7H, CH=). 13C NMR (C6D6), : 

16.1 (CH3), 16.5 (CH3), 20.0 (CH3), 23.6 (CH3), 26.8 (CH3), 27.1 (CH3), 27.9 (CH3),  

30.9 (CH3, 
tBu), 31.6 (CH3, 

tBu), 34.3 (C, tBu), 34.6 (C, tBu), 36.4 (CH2-S), 76.5 

(CHCH2S), 79.9 (d, CMe2O, JC-P= 11.4 Hz), 84.4 (CHCMe2O), 108.8 (CMe2), 124.9 

(CH=),125.9 (CH=), 128.0 (CH=), 128.1 (CH=), 128.4 (CH=), 128.5 (CH=), 128.9 (CH=), 

131.1 (C), 131.8 (C), 131.7 (C), 132.2(C), 132.3 (C), 134.7 (C), 135.1 (C), 137.3 

(C),137.6 (C), 138.0 (C). Anal. calcd (%) for C39H53O5PS: C, 70.45; H, 8.03; S, 4.82. 

Found: C, 70.89; H, 8.11; S, 4.58. 

 L8e:  Yield: 323 mg, 57%. 31P NMR (400 MHz, C6D6) δ:  143.4 (s). 1H NMR 

(C6D6), : 1.08 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.51 (s, 9H, CH3, 
tBu), 1.54 (s, 3H, CH3), 

1.57 (s, 3H, CH3), 1.64 (s, 3H, CH3), 1.65 (s, 9H, CH3, 
tBu), 1.69 (s, 3H, CH3), 2.04 (s, 

3H, CH3), 2.14 (s, 3H, CH3), 2.41 (dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 9.6 Hz, CH2-S), 2.94 

(dd, 1H, 2JH-H= 14.8 Hz, 3JH-H= 1.6 Hz, CH2-S), 3.76 (d, 1H, 3JH-H= 8.8 Hz, CHCMe2O), 

4.16-4.21 (m, 1H, CHCH2S), 6.74-7.23 (m, 7H, CH=). 13C NMR (C6D6), : 16.2 (CH3), 

16.4 (CH3), 20.0 (CH3), 20.1 (CH3), 23.8 (CH3), 26.4 (CH3), 27.2 (CH3), 28.5 (CH3), 31.1 

(CH3, 
tBu), 31.7 (CH3, 

tBu), 34.3 (C, tBu), 34.4 (C, tBu), 34.6 (CH2-S), 75.0 (CHCH2S), 

79.5 (d, CMe2O, JC-P= 9.9 Hz), 84.3 (CHCMe2O), 108.4 (CMe2), 124.1 (CH=),125.3 

(CH=), 126.8 (CH=), 128.1 (CH=), 128.7 (CH=), 128.9 (CH=), 131.0 (C), 132.4 (C), 

134.7 (C), 135.3 (C), 136.5 (C), 137.2 (C), 137.3 (C), 137.4 (C), 144.5 (C), 145.9 (C). 

Anal. calcd (%) for C39H53O5PS: C, 70.45; H, 8.03; S, 4.82. Found: C, 70.74; H, 8.09; S, 

4.59. 

 

3.2.4.3. General procedure for the preparation of thioether-alcohols 6-8 and 22 

 To a cooled (-15 °C) suspension of the desired thiolate sodium salt (10.2 

mmol) in THF (20 mL), a solution of 4 or 21 (3.2 mmol) in THF (10 mmol) was 

added. The reaction mixture was stirred at room temperature for minimum 48 h 
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and quenched with water. The THF was removed under reduced pressure. The 

aqueous phase was extracted with CH2Cl2 (3 x 25 mL), dried with MgSO4 and the 

solvent was evaporated. The crude was purified by flash chromatography 

(AcOEt/EP= 1/2) to produce the desired thioether-alcohols as white solids. 

 ((4S,5R)-2,2-Dimethyl-5-((methylthio)methyl)-1,3-dioxolan-4-yl)methanol 6. 

Yield: 0.43 g, 66 %. 1H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.41 (s, 3H, CH3), 2.12 (s, 

1H, OH), 2.16 (s, 3H, CH3-S),  2.67 (dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6.4 Hz, CH2-S), 2.78 

(dd, 1H, 2JH-H= 14 Hz, 3JH-H= 6 Hz, CH2-S), 3.69 (dd, 1H, 2JH-H= 11.6  Hz, 3JH-H=  4 Hz, 

CH2-O), 3.85 (dd, 1H, 2JH-H= 15.2  Hz, 3JH-H=  4.8 Hz, CH2-O), 3.90 (dd, 1H, 2JH-H= 8 Hz, 
3JH-H= 3.6 Hz, CHCH2O), 4.08 (dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6 Hz, CHCH2S). 13C NMR 

(CDCl3), : 16.6 (CH3-S), 27.2(CH3), 27.3 (CH3), 36.7 (CH2-S), 62.4 (CH2-O), 76.2 

(CHCH2S), 81.3 (CHCH2S), 109.4 (CMe2).  

  ((4S,5R)-5-((tert-Butylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol 

7. Yield: 0.47 g, 63 %. 1H NMR (CDCl3), : 1.31 (s, 9H, CH3, 
tBu),1.28 (s, 3H, CH3), 

1.39 (s, 3H, CH3), 1.41 (s, 3H, CH3, 
tBu), 2.05 (b, 1H, OH), 2.69 (dd, 1H, 2JH-H= 12.4 

Hz, 3JH-H= 7.2 Hz, CH2-S), 2.87 (dd, 1H, 2JH-H= 12.4  Hz, 3JH-H=  5.2 Hz, CH2-S), 3.67-

3.87 (m, 2H, CH2-O), 3.88-3.89 (m, 1H, CHCH2O), 4.01 (dd, 1H, 2JH-H= 7.2 Hz, 3JH-H= 2 

Hz, CHCH2S). 13C NMR (CDCl3), : 27.2 (CH3), 27.3 (CH3), 31.0 (CH3, 
tBu), 31.3 (CH2-

S), 42.7 (C, tBu), 62.7(CH2-O), 76.7 (CHCH2S), 81.8 (CHCH2O), 109.3 (CMe2). 

 ((4S,5R)-5-(((2,6-Dimethylphenyl)thio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol 8. Yield: 0.57 g, 53 %. 1H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.42  (s, 3H, 

CH3), 1.86  (s, 1H, OH), 2.53  (s, 6H, CH3),  2.84 (dd, 1H, 2JH-H= 12 Hz, 3JH-H= 8 Hz, CH2-

S), 2.89 (dd, 1H, 2JH-H= 12 Hz, 3JH-H= 4 Hz, CH2-S), 3.66 (dd, 1H, 2JH-H= 12  Hz, 3JH-H=  4 

Hz, CH2-O), 3.83 (dd, 1H, 2JH-H= 12  Hz, 3JH-H=  4 Hz, CH2-O), 3.89-3.93 (m, 1H, 

CHCH2O), 3.97-4.02 (m, 1H, CHCH2S), 7.08-7.11 (m, 3H, CH=).13C NMR (CDCl3), : 

22.3 (CH3-Ar), 27.3 (CH3), 27.4 (CH3), 38.3 (CH2-S), 62.4 (CH2-O), 76.2 (CHCH2S), 81.3 

(CHCH2O), 109.5 (CMe2), 128.4 (CH=),  128.6 (CH=), 133.4 (C), 143.1 (C).   

 2-((4R,5R)-2,2-Dimethyl-5-((phenylthio)methyl)-1,3-dioxolan-4-yl)propan-2-

ol 22. Yield: 0.77 g, 70 %. 1H NMR (CDCl3), : 1.15 (s, 3H, CH3), 1.24 (s, 3H, CH3), 

1.43 (s, 3H, CH3), 1.44 (s, 3H, CH3), 2.01 (b, 1H, OH), 3.13 (dd, 1H, 2JH-H= 12 Hz, 3JH-H= 

8 Hz, CH2-S), 3.3 (dd, 1H, 2JH-H = 16 Hz, 3JH-H = 4 Hz, CH2-S), 3.76 (d, 1H, 2JH-H = 8 Hz, 

CHCMe2O), 4.18-4.23 (m, 1H, CHCH2S), 7.17-7.41 (m, 5H, CH=). 13C NMR (CDCl3), : 

25.2 (CH3), 27.0 (CH3), 27.1 (CH3), 27.3 (CH3), 38.8 (CH2-S), 69.8 (CMe2OH), 75.7 

(CHCH2S), 85.9 (CHCMe2O), 109.2 (CMe2), 126.3 (CH=), 128.9 (CH=), 129.6 (CH=), 

146.4 (C).  
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3.2.4.4. General procedure for the preparation of compounds 11-13 

 Compound 9 (890 mg, 3.2 mmol) was azeotropically dried with toluene (3 

x 2 mL) and then dissolved in CH2Cl2 (20 mL) to which pyridine (0.56 mL, 6.8 mmol) 

was added. The alcohol solution was cooled to -15 °C and Tf2O (0.78 mL, 4.5 mmol) 

was added slowly over 2 min. The reaction mixture was stirred at -15 °C for 2 h and 

quenched with water. The aqueous phase was extracted with diethyl ether (3 x 50 

mL), dried with MgSO4 and the solvents were removed at room temperature. To 

the crude product, petroleum ether (25 mL) was added and the insoluble 

impurities were removed by filtration. Evaporation of the solvent provided the 

desired monotriflate 10 in 93% yield (1.22 g), which was used without further 

purification in the next step. 

 To a suspension of NaH (385 mg, 9.6 mmol) in THF (5 mL) a solution of the 

desired thiol (0.94 g, 5.6 mmol) in THF (15 mL) was added. After 2 min, the 

suspension was cooled to -78 °C and a solution of 10 (1.22 g, 3.0 mmol) in THF (20 

mL) was added. After 90 min, water (25 mL) was added and the THF was 

evaporated. The solution was extracted with CH2Cl2 (3 x 50 mL), dried with MgSO4 

and the solvents were evaporated. The crude was purified by flash 

chromatography (AcOEt/EP= 1/19) to produce the desired compounds as white 

solids. 

  ((4S,5R)-5-((Adamantan-1-ylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol (tert-butyl) dimethylsilane 11. Yield: 0.83 g, 66 %. 1H NMR (CDCl3), : 

0.06 (s, 6H, CH3-Si), 0.89 (s, 9H, CH3, SitBu),1.37 (s, 3H, CH3), 1.40 (s, 3H, CH3), 1.65 

(m, 6H, CH2, Ad), 1.85 (m, 6H, CH2, Ad), 2.02 (m, 3H, CH, Ad), 2.77 (d, 1H, 2JH-H= 6.4 

Hz, CH2-S), 3.77-3.83 (m, 3H, CH2-O, CHCH2O), 4.03  (m, 1H, CHCH2S).  

 tert-Butyl(((4S,5R)-2,2-dimethyl-5-((naphthalen-1-ylthio)methyl)-1,3-

dioxolan-4-yl)methoxy)dimethylsilane 12. Yield: 0.83 g, 67 %. 1H NMR (CDCl3), : 

0.01 (s, 6H, CH3-Si), 0.84 (s, 9H, CH3, SitBu),1.49 (s, 3H, CH3), 1.43 (s, 3H, CH3), 3.25 

(dd, 1H, 2JH-H= 12 Hz, 3JH-H= 8 Hz, CH2-S), 3.31 (dd, 1H, 2JH-H= 12 Hz, 3JH-H= 4 Hz, CH2-

S), 3.74 (dd, 1H, 2JH-H= 8 Hz, 3JH-H=  4 Hz, CH2-O), 3.83 (dd, 1H, 2JH-H= 8  Hz, 3JH-H=  4 

Hz, CH2-O), 3.92-3.96 (m, 1H, CHCH2O), 4.17-4.22 (m, 1H, CHCH2S), 7.41-8.47 (m, 

7H, CH=).  

 tert-Butyl(((4S,5R)-2,2-dimethyl-5-((naphthalen-2-ylthio)methyl)-1,3-

dioxolan-4-yl)methoxy)dimethylsilane 13. Yield: 0.78 g, 63 %.1H NMR (CDCl3), : 

0.01 (s, 6H, CH3-Si), 0.84 (s, 9H, CH3, SitBu),1.39 (s, 3H, CH3), 1.45 (s, 3H, CH3), 3.27 

(dd, 1H, 2JH-H= 13.6 Hz, 3JH-H= 6.8 Hz, CH2-S), 3.34 (dd, 1H, 2JH-H= 13.2 Hz, 3JH-H= 4.8 

Hz, CH2-S), 3.74 (dd, 1H, 2JH-H= 10.8 Hz, 3JH-H=  6 Hz, CH2-O), 3.83 (dd, 1H, 2JH-H= 10.8  
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Hz, 3JH-H=  4.4 Hz, CH2-O), 3.91-3.95 (m, 1H, CHCH2O), 4.15-4.20 (m, 1H, CHCH2S), 

7.40-7.78 (m, 7H, CH=).13C NMR (CDCl3), : -5.2 (CH3-Si), 18.5 (C-Si), 26.0 (CH3, 

SitBu), 27.2 (CH3), 27.5 (CH3), 37.0 (CH2-S), 63.9 (CH2-O), 77.2 (CHCH2S), 80.8 

(CHCH2O), 109.6 (CMe2), 125.9 (CH=), 126.7 (CH=),  127.1 (CH=), 127.2 (CH=), 127.5 

(CH=), 127.9 (CH=), 128.6 (C).  
 

3.2.4.5. General procedure for the preparation of thioether-alcohols 14-16 

 The desired compound 11-13 (1.27 mmol) was dissolved in THF (5 mL) to 

which TBAF (3.8 mL of 1M in THF, 3.8 mmol) was added slowly. The reaction 

mixture was stirred at room temperature for 90 min and quenched with diethyl 

ether (25 mL). The organic phase was washed with HCl 1M, brine and water, dried 

with MgSO4 and evaporated. The crude was purified by flash chromatography 

(AcOEt/EP= 1/3) to produce the desired thioether-alcohols as white solids. 

 ((4S,5R)-5-((Adamantan-1-ylthio)methyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol 14. Yield: 241 mg, 63 %. 1H NMR (CDCl3), : 1.34 (s, 3H, CH3), 1.35 (s, 

3H, CH3), 1.60-1.62 (m, 6H, CH2, Ad), 1.78-1.79 (m, 6H, CH2, Ad), 1.97 (m, 3H, CH, 

Ad), 2.51 (m, 1H, OH), 2.60 (dd, 1H, 2JH-H= 12.8 Hz, 3JH-H= 7.6 Hz, CH2-S), 2.81 (dd, 

1H, 2JH-H= 12.8  Hz, 3JH-H=  5.6 Hz, CH2-S), 3.62-3.69 (m, 1H, CH2-O), 3.77-3.83 (m, 

2H, CH2-O, CHCH2O), 3.89-3.94 (m, 1H, CHCH2S). 13C NMR (CDCl3), : 27.0 (CH3), 

27.1 (CH3), 28.5 (CH2-S), 29.5 (CH, Ad), 36.1 (CH2, Ad), 43.3 (CH2, Ad), 53.4 (C, Ad),  

62.6 (CH2-O), 76.8 (CHCH2S), 81.7 (CHCH2O), 109.0 (CMe2). 

 ((4S,5R)-2,2-dimethyl-5-((naphthalen-1-ylthio)methyl)-1,3-dioxolan-4-

yl)methanol 15. Yield: 255 mg, 66 %.  1H NMR (CDCl3), : 1.40 (s, 3H, CH3), 1.43 (s, 

3H, CH3), 2.84 (b, 1H, OH), 3.13 (dd, 1H, 2JH-H= 13.2 Hz, 3JH-H= 5.6 Hz, CH2-S), 3.27 

(dd, 1H, 2JH-H= 13.2 Hz, 3JH-H= 5.6 Hz, CH2-S), 3.64 (m, 1H, CH2-O), 3.80 (m, 1H, CH2-

O), 3.95-3.99 (m, 1H, CHCH2O), 4.10 (m, 1H, CHCH2S), 7.34-8.41 (m, 7H, CH=).13C 

NMR (CDCl3), : 27.1 (CH3), 27.2 (CH3), 37.1 (CH2-S), 62.5 (CH2-O), 75.7 (CHCH2S), 

81.3 (CHCH2O), 109.5 (CMe2), 124.9 (CH=), 125.6 (CH=), 126.3 (CH=),  126.6 (CH=), 

127.6 (CH=), 128.4 (CH=), 128.6 (CH=), 132.7 (C), 133.9 (C).  

 ((4S,5R)-2,2-dimethyl-5-((naphthalen-2-ylthio)methyl)-1,3-dioxolan-4-

yl)methanol 16. Yield: 201 mg, 52 %. 1H NMR (CDCl3), : 1.41 (s, 3H, CH3), 1.45 (s, 

3H, CH3), 2.04 (s, 1H, OH), 3.11 (dd, 1H, 2JH-H= 16 Hz, 3JH-H= 8 Hz, CH2-S), 3.32 (dd, 

1H, 2JH-H= 12 Hz, 3JH-H= 4 Hz, CH2-S), 3.65 (dd, 1H, 2JH-H= 8 Hz, 3JH-H=  4 Hz, CH2-O), 

3.81 (dd, 1H, 2JH-H= 12  Hz, 3JH-H=  4 Hz, CH2-O), 3.92-3.96 (m, 1H, CHCH2O), 4.02-

4.09 (m, 1H, CHCH2S), 7.43-7.81 (m, 7H, CH=).13C NMR (CDCl3), : 27.1 (CH3), 27.2 

(CH3), 36.5 (CH2-S), 62.5 (CH2-O), 75.5 (CHCH2S), 81.2 (CHCH2O), 109.5 (CMe2), 
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125.8 (CH=), 126.6 (CH=),  127.1 (CH=), 127.2 (CH=), 127.7 (CH=), 128.6 (CH=), 

131.8 (C), 132.8 (C), 133.7 (C).  

 

3.2.4.6. Preparation of compounds 17-21 

  (4R,5S)-Ethyl-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate 

17. To a stirred solution of compound 2 (10 g, 40.6 mmol) in ethanol (40 mL), with 

cooling (ice-bath), was added, portionwise, NaBH4 (922 mg, 24.4 mmol) over a 1 

hour period. The resulting mixture was then stirred at room temperature for a 

further 30 min. After, the ethanol was removed under reduced pressure. To the 

crude product was added water and extracted in ethyl acetate (3 x 25 mL), dried 

with MgSO4 and dried in the rotavapor. The crude was purified by flash 

chromatography on silica (Et2O/EP= 1/1) afforded diester 2. Further elution 

(Et2O/EP= 3/1) afforded the desired compound 17 Yield: 2.7 g, 33 %. 1H NMR 

(CDCl3), : 1.27 (m, 3H, CH3, Et), 1.39 (s, 3H, CH3), 1.44 (s, 3H, CH3), 2.40 (b, 1H, 

OH),  3.69-3.72 (m, 1H, CH2-O), 3.89-3.92 (m, 1H, CH2-O), 4.17-4.24 (m, 3H, 

CHCH2O, CH2, Et), 4.38-4.42 (m, 1H, CHCOOEt). 13C NMR (CDCl3), : 14.1 (CH3, Et), 

25.5 (CH3), 26.7 (CH3), 61.5 (CH2, Et), 61.8 (CH2-O), 74.8 (CHCOOEt), 79.2 (CHCH2O), 

111.3 (CMe2), 170.8 (C=O). Further elution with ethyl acetate (100%) afforded diol 

3. 

 (4R,5S)-Ethyl-5-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxylate 18. Compound 17 (1.8 g, 8.8 mmol), tert-

butyldimethylsilyl chloride (1.59 g, 10.6 mmol) and imidazole (1.5 g, 22 mmol) 

were stirred together in dry DMF (4.5 mL) at room temperature for 1 h. The crude 

product was extracted in Et2O (3 x 25 mL), dried with MgSO4 and dried in the 

rotavapor. The crude was purified by flash chromatography (Et2O/EP= 1/10) to 

produce 18 as an oil. Yield: 2.1 g, 75 %. 1H NMR (CDCl3), : 0.00 (s, 6H, CH3-Si), 0.82 

(s, 9H, CH3, SitBu), 1.21 (m, 3H, CH3, Et), 1.36 (s, 3H, CH3), 1.38 (s, 3H, CH3), 3.71 

(dd, 1H, 2JH-H= 8 Hz, 3JH-H= 4 Hz, CH2-O), 3.8 (dd, 1H, 2JH-H= 12 Hz, 3JH-H= 4 Hz, CH2-O),  

4.11-4.18  (m, 3H, CHCH2O, CH2, Et), 4.38  (d, 1H, 2JH-H= 4 Hz, CHCOOEt). 13C NMR 

(CDCl3), : -5.4 (CH3-Si), -5.3 (CH3-Si), 14.1 (CH3, Et), 18.3 (C-Si), 25.8 (CH3, SitBu), 

25.9 (CH3), 26.8 (CH3), 61.2 (CH2, Et), 62.6 (CH2-O), 75.2 (CHCOOEt), 79.7 (CHCH2O), 

111.2 (CMe2), 170.9 (C=O).  

 2-((4R,5S)-5-(((tert-Butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-

dioxolan-4-yl)propan-2-ol 19. To a solution of compound 18 (2.1 g, 6.5 mmol) in 

dry stirred THF (16.5 mL) under nitrogen, at -60 ⁰C was added methyllithium (as a 

complex with LiBr, 11 mL of 1.5 mol dm-3, solution in diethyl ether, 16.2 mmol) 
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dropwise. The resulting mixture was stirred at -60 ⁰C for 0.5 h, then was warmed 

to room temperature and quenched with water. The crude product was extracted 

in Et2O (3 x 25 mL), dried with MgSO4 and dried in the rotavapor. The crude was 

purified by flash chromatography (Et2O/EP= 1/4) to produce 19 as an oil. Yield: 1.1 

g, 52 %. 1H NMR (CDCl3), : 0.06 (s, 6H, CH3-Si), 0.88 (s, 9H, CH3, SitBu), 1.19 (s, 3H, 

CH3), 1.22 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.39 (s, 3H, CH3), 2.82 (b, 1H, OH), 3.70-

3.79 (m, 3H, CH2, CH-CH2), 3.93-3.97 (m, 1H, CH-CMe2).
13C NMR (CDCl3), : -5.5 

(CH3-Si), -5.4 (CH3-Si), 18.3 (C-Si), 25.8 (CH3, SitBu), 25.9 (CH3), 26.1(CH3), 27.0 (CH3), 

27.1 (CH3), 64.3 (CH2), 69.5 (CMe2), 77.3 (CH-CH2), 84.7(CH-CMe2), 108.5 (CMe2).  

 2-((4R,5S)-5-(Hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-ol 

20. Compound 19 (500 mg, 1.6 mmol) was dissolved in THF (5 mL) to which TBAF 

(5 mL, 5 mmol) was added slowly. The reaction mixture was stirred at room 

temperature for 90 min. The THF was removed under reduced pressure. The crude 

product was purified by flash chromatography (AcOEt/EP= 2/1) to produce 20 as a 

white solid. Yield: 265 mg, 85 %. 1H NMR (CDCl3), : 1.21 (s, 3H, CH3), 1.28 (s, 3H, 

CH3), 1.42 (s, 3H, CH3), 1.44 (s, 3H, CH3), 2.08 (b, 2H, 2OH), 3.65-3.84 (m, 3H, CH2, 

CH-CH2), 4.07-4.11 (m, 1H, CH-CMe2).
13C NMR (CDCl3), : 25.7 (CH3), 26.3 (CH3), 

27.1 (CH3), 27.2 (CH3), 63.4 (CH2), 69.8 (C-O), 77.4 (CH-CH2), 83.5 (CH-CMe2), 108.8 

(CMe2). 

 ((4S,5R)-5-(2-Hydroxypropan-2-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl 4-

methylbenzenesulfonate 21. To a solution of compound 20 (100 mg, 0.52 mmol) in 

anhydrous pyridine (0.3 mL) at 0 °C, a solution of tosylchloride (100.2 mg, 0.52 

mmol) in dichloromethane (2 mL) was added dropwise. The reaction mixture was 

stirred overnight at room temperature and quenched with water. The crude 

product was extracted in CH2Cl2 (3 x 20 ml), then washed with Copper sulphate 

and water, finally dried with MgSO4 and dried in the rotavapor. The crude was 

purified by flash chromatography (AcOEt/EP= 1/1) to produce 21 as white solid. 

Yield: 148 mg, 82 %. 1H NMR (CDCl3), : 1.12 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.32 (s, 

3H, CH3), 1.38 (s, 3H, CH3), 1.95 (b, 1H, OH), 2.45 (s, 3H, CH3, OTs), 3.74 (d, 1H, 2JH-

H= 7.6 Hz, CH-CMe2), 4.08 (dd, 1H, 2JH-H= 10.8 Hz, 3JH-H= 4.8 Hz, CH2), 4.13-4.16 (m, 

1H, CH-CH2), 4.23 (dd, 1H, 2JH-H= 10.8 Hz, 3JH-H= 2.8 Hz, CH2), 7.33-7.81 (m, 4H, CH=). 
13C NMR (CDCl3), : 21.6 (CH3, OTs), 25.1 (CH3), 26.7 (CH3), 27.1 (CH3), 69.6 (C-O), 

70.1 (CH2), 74.7 (CH-CH2), 82.4 (CHCMe2), 109.7(CMe2), 128.0 (CH=), 129.8 (CH=), 

132.7 (C), 145.0 (C).  
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3.2.4.7 Preparation of [Rh(nbd)(L1a)]SbF6 

 To a solution of [Rh(nbd)2]SbF6 (69 mg, 0.131 mmol) in dichloromethane (2 

mL), a solution of ligand L1a (100 mg, 0.144 mmol) in dichloromethane (4 mL) was 

added dropwise. The reaction mixture was stirred at room temperature for 2 

hours. Then, the solvent was removed and hexane (10 mL) was added. The 

orange/yellow precipitate was filtered and washed with cold hexane to afford the 

desired complex. Yield: 100 mg, 86%. 

3.2.4.8 General procedure for the asymmetric hydrogenation 

 In a typical run, [Rh(nbd)2]SbF6 (5.2 mg, 0.01 mmol), the corresponding 

ligand (0.011 mmol) and the corresponding substrate (1 mmol) were dissolved in 

dichloromethane (6 mL). The reaction mixture was then placed in the autoclave 

and the autoclave was purged five times with hydrogen gas. Then, it was 

pressurized to the desired pressure. After the desired reaction time, the autoclave 

was depressurized and the solvent evaporated off. The residue was dissolved in 

Et2O (2 mL) and filtered through a short celite plug. The enantiomeric excess was 

determined by chiral GC and conversions were determined by GC and confirmed 

by 1H NMR. The enantiomeric excesses of hydrogenated products were 

determined using the conditions previously described.19 
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3.3 Rh-catalyzed asymmetric hydrogenation using a furanoside 

monophosphite second-generation ligand library. Scope and limitations. 

Sabina Alegre, Elisabetta Alberico, Montserrat Diéguez, Oscar Pàmies in 

manuscript submitted to Tetrahedron: Asymmetry 

Abstract. We have expanded the ligand design of one of the most successful 

monophosphite ligands in Rh-catalyzed hydrogenation by introducing several 

substituents at C-3 position of the furanoside backbone. These new furanoside 

monophosphite ligands have been evaluated in the Rh-catalyzed asymmetric 

hydrogenation of ,-unsaturated carboxylic acid derivatives and enamides. The 

results show that the effect of introducing a substituent at C-3 of the furanoside 

backbone on enantioselectivity depends on the configuration at both C-3 of the 

furanoside backbone and at the binaphthyl group as well as the substrate. Thus, 

the new ligands afforded high-to-excellent enantioselectivities in the reduction of 

carboxylic acid derivatives (ee's up to >99.9%) and moderate ee's (up to 67%) in 

the hydrogenation of enamides. 

3.3.1 Introduction 

 Asymmetric hydrogenation of functionalized prochiral olefins catalyzed by 

chiral transition metal complexes has been widely used in stereoselective organic 

synthesis and some processes have found industrial applications.1 Many chiral 

ligands, mainly P- and N- containing ligands with either C2- or C1-symmetry, have 

been successfully applied.1 During long time, it has generally been accepted that 

enantioselective hydrogenation was more effective in the presence of bidentated 

ligands.1 Less attention was therefore paid to catalysts containing monodentated 

ligands in this process. However, in 2000, the group of Reetz obtained excellent 

enantioselectivities with catalyst precursors containing monophosphite ligands, 

derived from D-(+)-mannitol, in the hydrogenation of dimethyl itaconate.2
  Since 

then, other successful monodentated ligands have been developed.3 Research in 

this field has been mainly centered in the selection/design of new chiral ligands 

prepared from readily available cheap/renewable raw materials. For this purpose, 

carbohydrates are particularly advantageous thanks to their low price and easy 

modular constructions.4 In this respect, the groups of Reetz3d and Zheng3e-g have 

independently reported the successful use of furanoside ligands L15 and L16, 

derived from D-(+)-glucose, in the Rh-catalyzed asymmetric hydrogenation of a 

range of carboxylic acid derivatives, enamides and vinyl carboxylates (Figure 3.3.1).  
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Figure 3.3.1. Furanoside monophosphite ligands L15-L16f-g. As example, the enantiose-

lectivities achieved in the asymmetric hydrogenation of a vinyl carboxylate are shown. 

 Following our interest in carbohydrates as an inexpensive and highly 

modular chiral source for preparing ligands,4 and encouraged by the results of  

monophosphite ligands L15 and L16 in asymmetric hydrogenation,3d-g we here 

report the development and application of new furanoside monophosphite ligands 

L9-L14a,f,g (Figure 3.3.2) in the Rh-catalyzed enantioselective hydrogenation of 

carboxylic acid derivatives and enamides. These ligands differ from the previously 

monophosphite ligands L15 and L16 in the introduction of new substituents with 

different electronic and steric properties at C-3 of the sugar backbone. With this 

library we therefore fully investigated the effects of systematically varying the 

configuration of the C-3 carbon atom of the sugar backbone (L9-L10), the 

electronic and steric hindrance of the new substituent at C-3 (L10-L14) and the 

substituents/configuration of the biaryl phosphite moieties (a,f,g). 

 

 
Figure 3.3.2. Furanoside monophosphite ligand library L9-L14a,f,g. 

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Asymmetric hydrogenation of functionalized olefins 
 

 
99 

3.3.2 Results and discussion 

3.3.2.1 Synthesis of monophosphite ligand library 
 
 The sequence of ligand synthesis is illustrated in Scheme 3.3.1. Ligands L9-

L14a,f,g were synthesized very efficiently from the corresponding easily accessible 

ketone sugar derivative 1 (Scheme 3.3.1). Compound 1 is easily made in two steps 

from D-(+)-glucose. This compound was chosen as intermediate for the 

preparation of ligands because it will easily allow incorporating the various 

elements that will enable us to study the configuration of C-3. For the preparation 

of alcohol 3, compound 1 was treated with trimethylsulfonium iodide and 

potassium tert-butoxide to produce the desired epoxide 25 and then reduced with 

LiAlH4
6  (Scheme 3.3.1, steps (c,d)). For the preparation of alcohols 4-8, 

intermediate 1 was treated with the corresponding Grignard reagent (Scheme 

3.3.1, step (e)).7 

 
Scheme 3.3.1. Synthesis of monophosphite ligands L9-L14a,f,g. Reagents: (a) acetone/I2;

 8
 

(b) PCC/NaOAc/CH2Cl2;
 9

 (c) KO
t
Bu/Me3SOI/

t
BuOH;

5
 (d) LiAlH4/Et2O;

6
 (e) RMgX/THF or 

Et2O;
7
 (f) ClP(OR)2; (OR)2 = a,f,g/Py/toluene. 

 The last step of the ligand synthesis is common for all of them. Therefore, 

treating the corresponding alcohols 3-8 with 1.1 equiv of the desired in situ formed 

phosphorochloridite (ClP(OR)2; (OR)2 = a,f,g) in the presence of pyridine provided 
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easy access to the desired ligands (Scheme 3.3.1, step (f)).10 All ligands were 

purified on neutral alumina under an argon atmosphere and isolated in moderate-

to-good yields as white solids. The elemental analyses were in agreement with the 

assigned structure. The 1H, 31P and 13C NMR spectra were as expected for these C1 

ligands. One singlet for each compound was observed in the 31P NMR spectrum. 

Rapid ring inversions (tropoisomerization) in the biphenyl-phosphorus moieties a 

occurred in the NMR timescale since the expected diastereoisomers were not 

detected by low-temperature phosphorus NMR.11 

 

3.3.2.2 Asymmetric hydrogenation of dimethyl itaconate S1 

Initially, we evaluated furanoside monophosphite ligands L9-L14a,f,g 

(Figure 3.3.2) in the Rh-catalyzed asymmetric hydrogenation of dimethyl itaconate 

S1, which is used as a model substrate. The catalysts were prepared in situ by 

adding the corresponding ligands to the catalyst precursor [Rh(nbd)2]SbF6. For the 

purpose of comparison, we have chosen the reaction conditions previously 

selected for the hydrogenation using ligands L15-L16 (i.e. 10 bar of H2, 

dichloromethane as solvent, 1 mol% catalyst precursor, ligand-to-rhodium ratio of 

2.2 and room temperature).  

 The results, which are summarized in Table 3.3.1, indicated that catalytic 

activity is almost suppressed using bulky biaryl substituents (i.e. ligands L9-L10a 

and L15-L16a; entries 1, 4, 11 and 14). We also found that enantioselectivities are 

highly affected by the substituents/configuration at the C-3 of the furanoside 

backbone and the configuration of the binaphthyl group.  The results indicated 

that the effect of introducing the new substituent at C-3 on enantioselectivity 

depends on the configuration at both C-3 of the furanoside backbone and at the 

binaphthyl moiety. Thus, for glucofuranoside ligands L15, the introduction of a 

methyl substituent at C-3 (ligands L9) had a positive effect on enantioselectivity if 

an S-binaphthyl group (g) is present (ligand L9g, ee's up to >99.9%, entry 3 vs 13). 

However, the presence of a methyl substituent at C-3 in combination with an R-

biaryl group (f) had a negative effect on enantioselectivity (ligand L9f; entry 2 vs 

12). On the other hand for allofuranoside ligands L16, enantioselectivities 

decreased considerably when introducing a substituent at C-3, regardless the 

configuration at the binaphthyl group (ligands L10-L13; entries 5, 7-9 vs 15 and 

entry 6 vs 16). However, with ligand L14f, with a phenyl substituent, we obtained 

similar enantioselectivities than with previously reported ligand L16f (entry 10 vs 

15). 
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 In summary, the best result (ee's up to >99.9%) was obtained with ligand 

L9g (Table 3.3.1, entry 3), which contains the optimal combination of ligand 

parameters (substituent at C-3 and configuration at both C-3 position of the 

furanoside ring and at biaryl group). When this latter result is compared with the 

enantioselectivity obtained with its corresponding Rh/L15g catalytic system, we 

can conclude that introducing a methyl group at C-3 into ligand L15g is 

advantageous. This result is among the best that have been reported.1 

 

Table 3.3.1 Selected results for the Rh-catalyzed hydrogenation of S1 using the furanoside 

monophosphite ligand library L9-L14a,f,g
a
  

 
Entry Ligand % Conv

b
 % ee

c 

1 L9a <5 nd 

2 L9f 100  86 (R) 

3 L9g 100  >99.9 (S) 

4 L10a <5 nd 

5 L10f 100  33 (R) 

6 L10g 100  15 (S) 

7 L11f 100  4 (R) 

8 L12f 100  52 (R) 

9 L13f 100 12 (R) 

10 L14f 100 93 (S) 

11 L15a <5 nd 

12 L15f 100  92.8 (R)
d 

13 L15g 100  99.1 (S)
d 

14 L16a <5 nd 

15 L16f 100 93.6 (R)
d 

16 L16g 100 77.5 (S)
d 

a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), S1 (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, room 
temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. d 
Data from ref. 3e. 

3.3.2.3 Asymmetric hydrogenation of -dehydroamino acid esters S2-S3 

We also screened the monophosphite ligands L9-L14a,f,g in the 

asymmetric reduction of some benchmark α-dehydroamino acid derivatives 

(Equation 1).  
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The results achieved in the hydrogenation of methyl 2-acetamidoacrylate 

S2, which are summarized in Table 3.3.2, showed again that the presence of bulky 

biaryl substituents (a) has a detrimental effect on catalytic activity (i.e. ligands L9-

L10a and L15-L16a; entries 1, 4, 11 and 14).  

 

Table 3.3.2 Selected results for the Rh-catalyzed hydrogenation of S2 

using the furanoside monophosphite ligand library L9-L14a,f,g
a
  

Entry Ligand % Conv
b
 % ee

c 

1 L9a <5 nd 

2 L9f 100  23 (S) 

3 L9g 100  85 (S) 

4 L10a <5 nd 

5 L10f 100  32 (R) 

6 L10g 100  45 (S) 

7 L11f 100  29 (R) 

8 L12f 100  10 (R) 

9 L13f 100 34 (R) 

10 L14f 100 58 (R) 

11 L15a <5 nd 

12 L15f 100  87.9 (S)
d 

13 L15g 100  79.9 (R)
d 

14 L16a <5 nd 

15 L16f 100 26.5 (R)
d 

16 L16g 100 5.5 (S)
d 

a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), S2 (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, room 
temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. d 
Data from ref. 3f. 

 

As for S1, the effect of introducing the new substituent at C-3 on 

enantioselectivity depends on the configuration at both C-3 of the furanoside 

backbone and at the binaphthyl moiety. For glucofuranoside ligands, this led again 

to a matched combination for glucofuranoside ligand L9g, containing an S-

binaphthyl moiety (entry 3 vs 13); and a mismatched combination for L9f with an 

R-biaryl group (entry 2 vs 12). However, the effect of the substituents for 

allofuranoside ligands is slightly different than for S1. Thus, regardless the 
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configuration of the binaphthyl group, the introduction of a new substituent at C-3 

has in general a positive effect on enantioselectivity (i.e entries 5-6 vs 15-16, 

respectively). Again, for the allofuranoside ligands, the highest enantioselectivity 

was achieved using ligand L14f (ee's increased from 26.5% to 58% by introducing a 

phenyl substituent at C-3; entry 10 vs 15). 

 To sum up, the results show again that the introduction of a methyl 

substituent at C-3 in glucofuranoside ligand containing an S-binaphthyl moiety has 

a positive effect on enantioselectivity (ligand L9g; ee's increased from 79.9% to 

85%; Table 3.3.2, entry 3 vs 13).  

 We next applied ligands L9-L14a,f,g in the hydrogenation of methyl 2-

acetamidocinnamate S3. The results, which are shown in Table 3.3.3, followed the 

same trends as for the hydrogenation of S2. Again, the introduction of a methyl 

substituent in glucofuranoside ligand L15g led to higher enantioselectivities (ligand 

L9g; ee's increased from 68% to 84%; Table 3.3.3., entry 3 vs 12). 

 

Table 3.3.3 Selected results for the Rh-catalyzed hydrogenation of S3 

using the furanoside monophosphite ligand library L9-L14a,f,g
a
 

Entry Ligand % Conv
b
 % ee

c 

1 L9a <5 nd 

2 L9f 100  25 (S) 

3 L9g 100  84 (S) 

4 L10a <5 nd 

5 L10f 100  38 (R) 

6 L10g 100  43 (S) 

7 L11f 100  64 (R) 

8 L12f 100  7 (R) 

9 L13f 100 35 (S) 

10 L14f 100 73 (R) 

11 L15f 100  84 (S) 

12 L15g 100  68 (R) 

13 L16f 100 30 (R) 

14 L16g 100 7 (S) 
a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), S3 (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, room 
temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. 

 

3.3.2.3 Asymmetric hydrogenation of enamides S4-S8 

 To expand the utility of monophosphite ligands L9-L14a,f,g and further 

investigate the influence of the introduction of a new substituent at C-3 of the 
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furanoside backbone, we examined the Rh-catalyzed enantioselective 

hydrogenation of several 1,1-disubstituted--arylenamides (Equation 2). The 

hydrogenation of this substrate class gives access to chiral secondary amines, 

which are highly valuable intermediates for preparing chiral pharmaceutical and 

agricultural products.
12

  

 

 

 

 

 First, we used N-(1-phenylvinyl)-acetamide S4 as substrate to study the 

potential of the ligand library. The results are summarized in Table 3.3.4.  

 

Table 3.3.4 Selected results for the Rh-catalyzed hydrogenation of S4 

using the furanoside monophosphite ligand library L9-L14a,f,g
a
  

Entry Ligand % Conv
b
 % ee

c 

1 L9a <5 nd 

2 L9f 100  54 (S) 

3 L9g 100  24 (R) 

4 L10a <5 nd 

5 L10f 100  32 (R) 

6 L10g 100  44 (S) 

7 L11f 100  29 (R) 

8 L12f 100  18 (R) 

9 L13f 100 26 (R) 

10 L14f 100 58 (R) 

11 L15a <5 nd 

12 L15f 100  93.9 (S)
d 

13 L15g 100  85.5 (R)
d 

14 L16a <5 nd 

15 L16f 100 49.1 (R)
d 

16 L16g 100 87.1 (S)
d 

a [Rh(nbd)2]SbF6 (1 mol%), ligand (1.1 mol%), S2 (1 mmol), CH2Cl2 (6 mL), 10 bar of H2, room 
temperature. b % Conversion measured by GC. c Enantiomeric excess measured by GC. d 
Data from ref. 3e. 
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 In general, catalytic activity and enantioselectivity are affected by the 

same parameters than for substrates S1-S3. However, in all cases except for ligand 

L14f (entry 10 vs 15), the introduction of a substituent at C-3 has a negative effect 

on enantioselectivity (i.e. entries 2-3 vs 12-13, and entries 5-6 vs 15-16).  

 Nevertheless, both enantiomers of the hydrogenation product can be 

obtained in similar moderate enantioselectivities using ligands L9f and L14f (ee's 

up to 58%; entries 2 and 10). 

 To further investigate the catalytic efficiency of the Rh/L9f and Rh/L14f 

catalytic systems, we tested them in the Rh-catalyzed hydrogenation of other 

enamides with different aryl substituents. The results, which are given in Table 

3.3.5, indicated that catalytic performance (activity and enantioselectivity) is 

hardly affected by the presence of either electron-donating or electron-

withdrawing groups at the para positions of the aryl group. However, the highest 

enantioselectivity was achieved using N-(1-(2-naphthyl)vinyl)-acetamide S8 as 

substrate (ee's up to 67%; Table 3.3.5, entries 7 and 8). 

 

Table 3.3.5 Selected results for the Rh-catalyzed hydrogenation of 

enamides S5-S8 using the Rh/L9f and Rh/L14f catalytic system
a
  

 

Entry Ligand Ligand % Conv
b
 % ee

c 

 

1 

2 
 

 

L9f 

L14f 

 

100 

100 

 

53 (S) 

57 (R) 

 

3 

4 
 

 

L9f 

L14f 

 

100 

100 

 

59 (S) 

61 (R) 

 

5 

6 
 

 

L9f 

L14f 

 

100 

100 

 

56 (S) 

59 (R) 

 

7 

8 
 

 

L9f 

L14f 

 

100 

100 

 

64 (S) 

67 (R) 

a [Rh(cod)2]BF4 (1 mol%), ligand (1.1 mol%), substrate (0.5 mmol), CH2Cl2 (6 mL), 30 bar of 
H2, room temperature. b % Conversion measured by GC. c Enantiomeric excess measured by 
GC. 
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3.3.3 Conclusions  

 We have expanded the ligand design of one of the most successful 

monophosphite ligands in Rh-catalyzed hydrogenation by introducing several 

substituents at C-3 position of the furanoside backbone. These new furanoside 

monophosphite ligands have been evaluated in the Rh-catalyzed asymmetric 

hydrogenation of ,-unsaturated carboxylic acid derivatives and enamides. The 

general tendency is that the effect of introducing these new substituents on 

enantioselectivity depends on the configuration at both C-3 of the furanoside 

backbone and at the binaphthyl moiety as well as the substrate. Thus, for ,-

unsaturated carboxylic acids, enantioselectivities improved when introducing a 

methyl substituent at C-3 in glucofuranoside ligand containing an S-binaphthyl 

group (ligand L9g). Enantioselectivities could be therefore increased to >99.9% ee 

and 85% ee in the asymmetric reduction of dimethyl itaconate and dehydroamino 

acid derivatives, respectively. However, in the reduction of enamides, the 

introduction of substituents at C-3 of the furanoside backbone has a negative 

effect on enantioselectivity. Only moderate enantioselectivities could be therefore 

achieved for this substrate class (ee's up to 67%).  

 

3.3.4 Experimental Section 

3.3.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

an argon atmosphere. Solvents were purified by standard procedures. 

Phosphorochloridites are easily prepared in one step from the corresponding 

biaryls. 13  Compounds 35,6 and 4-87 were prepared as previously reported. 

Monophosphite ligands L15-L16a,f,g were prepared as previously described.3d,14 

Methyl (Z)-N-acetylaminocinnamate S315 and enamides S4-S816 were prepared 

following literature procedures. All other reagents were used as commercially 

available. 1H, 13C{1H}, 31P{1H} NMR spectra experiments were recorded using a 400 

MHz spectrometer. Chemical shifts are relative to that of SiMe4 (1H and 13C) as 

internal standard or H3PO4 (
31P) as external standard. 1H and 13C assignments were 

done based on 1H-1H gCOSY and 1H-13C gHSQC experiments. Elemental analyses 

were carried out by the “Service Central d’Analyses du CNRS” in Lyon using LECO 

SC 144 microanalyzer. 
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3.3.4.2 Typical procedure for the preparation of monophosphite ligands  

 The corresponding phosphorochloridite (1.1 mmol) produced in situ was 

dissolved in toluene (5 mL) before the addition of pyridine (0.18 mL, 2.3 mmol). 

Alcohol (1 mmol) was azeotropically dried with toluene (3 x 1 mL) and then 

dissolved in toluene (5 mL), to which pyridine (0.18 mL, 2.3 mmol) was added. The 

phosphorochloridite solution was transferred slowly to the solution of alcohol. The 

reaction mixture was warmed to 80 ⁰C and stirred for 4 h, after which the pyridine 

salts were removed by filtration. Evaporation of the solvent gave a white foam, 

which was purified in a short path of alumina (toluene/NEt3 = 100:1) to produce 

the corresponding ligand as white powder. 

 L9a: Yield: 415 mg (58%). 31P NMR (C6D6), δ: 150.8 (s, 1P). 1H NMR (C6D6), 

δ: 1.05 (s, 3H, CH3), 1.19 (s, 3H, CH3), 1.23 (s, 9H, CH3, 
tBu), 1.26 (s, 9H, CH3,  

tBu), 

1.31 (s, 3H, CH3), 1.35 (s, 3H, CH3), 1.48 (s, 9H, CH3, 
tBu), 1.53 (s, 9H, CH3, 

tBu), 1.94 

(s, 3H, CH3), 3.69 (dd, 1H, H-6’ , 2J6’-6 = 8.4 Hz, 3J6’-5 = 6.0 Hz), 3.97 (dd, 1H, H-6, 2J6-6’  

= 8.4 Hz, 3J6-5 = 6.0 Hz), 4.13 (dd, 1H, H-4, 3J4-5 = 2.4 Hz, 3J4-P = 6.4 Hz), 4.42 (m, 1H, 

H-5), 4.71 (dd, 1H, H-2, 3J2-1 = 3.6 Hz, J2-P = 4.0 Hz), 5.87 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 

7.29 (m, 2H, CH=), 7.54 (m, 2H, CH=). 13C NMR (C6D6), δ: 19.1 (d, CH3, JC-P = 11.5 Hz), 

25.3 (CH3), 26.1 (CH3), 26.5 (CH3), 26.6 (CH3), 30.8 (CH3, 
tBu), 30.9 (CH3, 

tBu), 31.0 

(CH3, 
tBu), 31.1 (CH3, 

tBu), 34.2 (C, tBu), 35.1 (C, tBu), 35.2 (C, tBu), 66.6 (C-6), 72.7 

(C-5), 84.5 (C-4), 86.7 (d, C-3, JC-P = 8.4 Hz), 87.2 (C-2), 104.7 (C-1), 108.7 (CMe2), 

111.9 (CMe2), 123.9 (CH=), 124.1 (CH=), 126.7 (CH=), 126.9 (CH=), 140.1 (C), 140.3 

(C), 146.1 (C), 146.2 (C), 146.5 (C), 146.6 (C). Anal. Calcd for C41H61O8P: C, 69.08; H, 

8.62. Found: C, 69.12; H, 8.61. 

 L9f: Yield: 389 mg (65%). 31P NMR (C6D6), δ: 150.7 (s, 1P). 1H NMR (C6D6), δ: 

1.09 (s, 3H, CH3), 1.14 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.37 (s, 3H, CH3), 1.96 (d, 3H, 

CH3, J3-P = 1.2 Hz), 3.79 (dd, 1H, H-6’ , 2J6’-6 = 8.4 Hz, 3J6’-5 = 6.0 Hz), 3.99 (dd, 1H, H-6, 
2J6-6’ = 8.4 Hz, 3J6-5 = 6.0 Hz), 4.13 (dd, 1H, H-4, 3J4-5 = 2.8 Hz, 3J4-P = 7.6 Hz), 4.37 (m, 

1H, H-5), 4.66 (dd, 1H, H-2, 3J2-1 = 3.6 Hz, J2-P = 1.6 Hz), 5.94 (d, 1H, H-1, 3J1-2 = 3.6 

Hz), 6.86–7.63 (m, 12H, CH=). 13C NMR (C6D6), δ: 19.3 (d, CH3, JC-P = 16.0 Hz), 25.3 

(CH3), 26.7 (CH3), 27.0 (CH3), 27.3 (CH3), 67.6 (C-6), 73.1 (C-5), 84.7 (C-4), 87.3 (d, C-

3, JC-P = 3.2 Hz), 87.6 (C-2), 105.3 (C-1), 109.4 (CMe2), 112.8 (CMe2), 122.1 (CH=), 

122.4 (CH=), 125.2 (CH=), 125.3 (CH=), 126.7 (CH=), 127.4 (CH=), 127.5 (CH=), 128.7 

(CH=), 129.9 (CH=), 130.7 (CH=), 131.7 (C), 132.1 (C), 133.2 (C), 133.5 (C), 148.2 (C), 

148.4 (C). Anal. Calcd for C33H33O8P: C, 67.34; H, 5.65. Found: C, 67.36; H, 5.68. 

 L9g: Yield: 415 mg (70%). 31P NMR (C6D6), δ: 151.9 (s, 1P). 1H NMR (C6D6), 

δ: 0.94 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.39 (s, 3H, CH3), 2.03 (s, 3H, 
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CH3), 3.87 (dd, 1H, H-6’ , 2J6’-6 = 8.8 Hz, 3J6’-5 = 6.0 Hz), 4.06 (m, 2H, H-6 and H-4), 

4.48 (m, 1H, H-5), 4.51 (m, 1H, H-2), 5.71 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 6.83–7.69 (m, 

12H, CH=). 13C NMR (C6D6), δ: 18.9 (d, CH3, JC-P = 15.3 Hz), 25.2 (CH3), 26.0 (CH3), 

26.7 (CH3), 26.8 (CH3), 67.5 (C-6), 72.7 (C- 5), 84.3 (C-4), 86.7 (C-2), 87.0 (b, C-3), 

104.7 (C-1), 109.2 (CMe2), 112.3 (CMe2), 121.6 (CH=), 122.4 (CH=), 124.9 (CH=), 

125.3 (CH=), 126.3 (CH=), 126.4 (CH=), 126.9 (CH=), 127.2 (CH=), 128.3 (CH=), 128.9 

(CH=), 129.5 (CH=), 130.4 (CH=), 131.4 (C), 131.8 (C), 132.8 (C), 133.1 (C), 147.8 (C), 

148.1 (C). Anal. Calcd for C33H33O8P: C, 67.34; H, 5.65. Found: C, 67.29; H, 5.63. 

 L10a: Yield: 552 mg (77%). 31P NMR (C6D6), δ: 146.9 (s, 1P). 1H NMR (C6D6), 

δ: 1.09 (s, 3H, CH3), 1.10 (s, 3H, CH3), 1.21 (s, 3H, CH3), 1.23 (s, 9H, CH3, 
tBu), 1.25 

(s, 9H, CH3, 
tBu), 1.30 (s, 3H, CH3), 1.48 (s, 3H, CH3), 1.59 (s, 9H, CH3, 

tBu), 1.63 (s, 

9H, CH3, 
tBu), 3.75 (dd, 1H, H-6’ , 2J6’-6 = 8.0 Hz, 3J6’-5 = 6.8 Hz), 3.93 (dd, 1H, H-6, 2J6-6’  

= 8.0 Hz, 3J6-5 = 6.4 Hz), 4.07 (m, 1H, H-5), 4.13 (d, 1H, H-2, 3J2-1 = 3.6 Hz), 4.59 (d, 

1H, H-4, 3J4-5 = 4.4 Hz), 5.36 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 7.29 (m, 2H, CH=), 7.56 (m, 

2H, CH=). 13C NMR (C6D6), δ: 21.0 (d, CH3, JC-P = 9.6 Hz), 25.2 (CH3), 26.3 (CH3), 26.4 

(CH3), 26.8 (CH3), 31.0 (CH3, 
tBu), 31.2 (CH3, 

tBu), 31.3 (CH3, 
tBu), 31.5 (CH3, 

tBu), 

34.2 (C, tBu), 34.3 (C, tBu), 35.2 (C, tBu), 35.5 (C, tBu), 65.7 (C-6), 73.6 (C-5), 80.6 (d, 

C-4, JC-P = 5.3 Hz), 82.7 (C-2), 83.8 (C-3), 103.6 (C-1), 108.6 (CMe2), 112.9 (CMe2), 

123.7 (CH=), 124.0 (CH=), 126.5 (CH=), 126.9 (CH=), 133.4 (C), 134.0 (C), 140.1 (C), 

140.5 (C), 146.0 (C), 146.2 (C), 146.4 (C). Anal. Calcd for C41H61O8P: C, 69.08; H, 

8.62. Found: C, 69.05; H, 8.60. 

 L10f: Yield: 441 mg (75%). 31P NMR (C6D6), δ: 150.9 (s, 1P). 1H NMR (C6D6), 

δ: 1.20 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.56 (s, 3H, 

CH3), 3.99 (m, 4H, H-6’ , H-6, H-5 and H-2), 4.57 (dd, 1H, H-4, 3J4-5 = 3.2 Hz, J4-P = 8.0 

Hz), 5.38 (d, 1H, H-1, 3J1-2 = 4.0 Hz), 6.91–7.81 (m, 12H, CH=). 13C NMR (C6D6), δ: 

20.5 (d, CH3, JC-P = 5.3 Hz), 25.3 (CH3), 26.4 (CH3), 26.6 (CH3), 26.7 (CH3), 67.6 (C-6), 

73.6, 79.5 (d, C-4, JC-P = 9.9 Hz), 83.4 (d, C-3, JC-P = 5.3 Hz), 84.3, 103.7 (C-1), 109.6 

(CMe2), 113.1 (CMe2), 121.9 (CH=), 122.8 (CH=), 124.6 (CH=), 126.0 (CH=), 126.2 

(CH=), 127.4 (CH=), 128.1 (CH=), 128.3 (CH=), 129.1 (CH=), 130.1 (CH=), 131.2 (C), 

131.6 (C), 132.9 (C), 133.2 (C), 148.4 (C), 148.6 (C). Anal. Calcd for C33H33O8P: C, 

67.34; H, 5.65. Found: C, 67.41; H, 5.68. 

 L10g: Yield: 322 mg (55%). 31P NMR (C6D6), δ: 149.1 (s, 1P). 1H NMR (C6D6), 

δ: 1.08 (s, 3H, CH3), 1.20 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.37 (s, 3H, CH3), 2.67 (s, 

3H, CH3), 3.87 (d, 1H, H-2, 3J2- 1 = 3.6 Hz), 3.99 (m, 3H, H-6’ , H-6 and H-5), 4.65 (dd, 

1H, H-4, 3J4- 5 = 4.0 Hz, J4-P = 7.2 Hz), 5.29 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 6.91–7.81 (m, 

12H, CH=). 13C NMR (C6D6), δ: 20.5 (d, CH3, JC-P = 3.8 Hz), 26.1 (CH3), 27.0 (CH3), 27.2 
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(CH3), 27.3 (CH3), 68.5 (C-6), 74.3, 80.2 (d, C-4, JC-P = 12.2 Hz), 84.0 (d, C-3, JC-P = 2.2 

Hz), 84.9 (C-2), 104.2 (C-1), 110.5 (CMe2), 113.5 (CMe2), 123.7 (CH=), 125.4 (CH=), 

125.5 (CH=), 126.9 (CH=), 127.6 (CH=), 127.9 (CH=), 128.1 (CH=), 128.9 (CH=), 129.0 

(CH=), 129.1 (CH=), 129.6 (CH=), 129.9 (CH=), 130.7 (C), 132.0 (C), 132.3 (C), 133.6 

(C), 133.9 (C), 149.3 (C), 149.6 (C). Anal. Calcd for C33H33O8P: C, 67.34; H, 5.65. 

Found: C, 67.39; H, 5.69. 

 L11f: Yield: 458 mg (76%). 31P NMR (C6D6), δ: 148.7 (s, 1P). 1H NMR (C6D6), 

δ: 0.73 (m, 3H, CH3, Et), 1.19 (m, 1H, CH2, Et), 1.22 (s, 3H, CH3), 1.31 (s, 3H, CH3), 

1.51 (s, 3H, CH3), 1.63 (s, 3H, CH3), 1.89 (m, 1H, CH2, Et), 4.02 (m, 2H, H-6’ and H-6), 

4.08 (m, 1H, H-5), 4.28 (d, 1H, H-2, 3J2-1 = 3.6 Hz), 4.79 (dd, 1H, H-4, 3J4-5 = 5.2 Hz, J4-P 

= 8.4 Hz), 5.39 (d, 1H, H-1, 3J1-2 = 4.0 Hz), 6.92–7.79 (m, 12H, CH=). 13C NMR (C6D6), 

δ: 7.1 (CH3, Et), 21.0 (b, CH2, Et), 24.9 (CH3), 25.1 (CH3), 26.5 (CH3), 26.6 (CH3), 68.1 

(C-6), 73.0 (C-5), 79.8 (d, C-4, JC-P = 12.4 Hz), 80.1 (C-2), 86.2 (C-3), 103.7 (C-1), 

109.6 (CMe2), 112.9 (CMe2), 121.9 (CH=), 123.0 (CH=), 124.5 (CH=), 126.0 (CH=), 

126.1 (CH=), 127.0 (CH=), 127.1 (CH=), 128.1 (CH=), 128.3 (CH=), 128.9 (CH=), 130.0 

(CH=), 131.2 (C), 131.5 (C), 132.9 (C), 133.2 (C), 148.7 (C), 148.8 (C). Anal. Calcd for 

C34H35O8P: C, 67.77; H, 5.85. Found: C, 67.74; H, 5.86. 

 L12f: Yield: 336 mg (55%). 31P NMR (C6D6), δ: 147.6 (s, 1P). 1H NMR (C6D6), 

δ: 0.62 (d, 3H, CH3, 
iPr, 3JH-H = 7.2 Hz), 0.76 (d, 3H, CH3, 

iPr, 3JH-H = 7.2 Hz), 1.24 (s, 

3H, CH3), 1.34 (s, 3H, CH3), 1.58 (s, 3H, CH3), 1.68 (s, 3H, CH3), 2.34 (m, 1H, CH, iPr), 

4.07 (m, 2H, H-6’ and H-6), 4.25 (m, 1H, H-5), 4.30 (d, 1H, H-2, 3J2-1 = 4.0 Hz), 4.93 

(dd, 1H, H-4, 3J4-5 = 8.0 Hz, J4-P = 9.2 Hz), 5.47 (d, 1H, H-1, 3J1-2 = 4.0 Hz), 6.92–7.80 

(m, 12H, CH=). 13C NMR (C6D6), δ: 17.6 (CH3, 
iPr), 18.4 (CH3, 

iPr), 25.9 (CH3), 27.2 

(CH3), 27.3 (CH3), 31.4(CH2, 
iPr), 69.4 (C-6), 73.5 (C-5), 79.2 (C-2), 82.0 (d, C-4, JC-P = 

16.7 Hz), 89.5 (C-3), 105.1 (C-1), 110.7 (CMe2), 113.4 (CMe2), 122.6 (CH=), 123.8 

(CH=), 125.2 (CH=), 126.0 (CH=), 126.7 (CH=), 126.8 (CH=), 127.7 (CH=), 127.8 

(CH=), 128.9 (CH=), 129.0 (CH=), 129.6 (CH=), 130.7 (CH=), 131.9 (C), 132.2 (C), 

133.7 (C), 134.0 (C), 149.6 (C), 149.7 (C). Anal. Calcd for C35H37O8P: C, 68.17; H, 

6.05. Found: C, 68.21; H, 6.08. 

 L13f: Yield: 351 mg (53%). 31P NMR (C6D6), δ: 147.5 (s, 1P). 1H NMR (C6D6), 

δ: 1.05 (s, 3H, CH3), 1.37 (s, 3H, CH3), 1.58 (s, 3H, CH3), 1.72 (s, 3H, CH3), 2.40 (m, 

1H, CH2-Ph), 3.35 (m, 1H, CH2-Ph), 3.78 (dd, 1H, H-6’ , 2J6-6’ = 8.8 Hz, 3J6-5 = 6.8 Hz), 

4.06 (m, 1H, H-6), 4.21 (m, 1H, H-5), 4.39 (d, 1H, H-2, 3J2-1 = 3.6 Hz), 5.03 (dd, 1H, H-

4, 3J4-5 = 5.6 Hz, J4-P = 8.0 Hz), 5.62 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 6.82–7.76 (m, 17H, 

CH=). 13C NMR (C6D6), δ: 25.0 (CH3), 25.4 (CH3), 26.0 (CH3), 26.4 (CH3), 38.2 (CH2-

Ph), 68.5 (C-6), 72.8 (C-5), 78.2 (d, C-4, JC-P = 7.5 Hz), 80.2 (C-2), 85.9 (C-3), 103.3 (C-
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1), 109.9 (CMe2), 113.1 (CMe2), 121.8 (CH=), 122.7 (CH=), 123.5 (C), 124.6 (CH=), 

125.3 (CH=), 126.2 (CH=), 126.3 (CH=), 127.0 (CH=), 127.1 (CH=), 128.1 (CH=), 128.9 

(CH=), 129.6 (C), 130.1 (C), 130.9 (CH=), 131.1 (C), 131.6 (C), 132.8 (C), 133.2 (C), 

134.9 (C), 148.6 (C), 148.8 (C). Anal. Calcd for C39H37O8P: C, 70.47; H, 5.61. Found: 

C, 70.45; H, 5.63. 

 L14f: Yield: 441 mg (68%). 31P NMR (C6D6), δ: 146.9 (s, 1P). 1H NMR (C6D6), 

δ: 1.15 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.54 (s, 3H, CH3), 1.69 (s, 3H, CH3), 3.43 (dd, 

1H, H-6’ , 2J6-6’ = 7.6 Hz, 3J6-5 = 5.6 Hz), 3.81 (m, 1H, H-5), 3.85 (m, 1H, H-6), 4.55 (d, 

1H, H-2, 3J2-1 = 3.6 Hz), 5.21 (t, 1H, H-4, J = 7.2 Hz), 5.75 (d, 1H, H-1, 3J1-2 = 3.6 Hz), 

6.89–7.71 (m, 17H, CH=). 13C NMR (C6D6), δ: 25.1 (CH3), 26.4 (CH3), 26.5 (CH3), 26.6 

(CH3), 66.4 (C-6), 73.5 (C-5), 80.1 (d, C-4, JC-P = 16.9 Hz), 84.5 (C-2), 87.8 (C-3), 104.9 

(C-1), 109.2 (CMe2), 113.3 (CMe2), 121.9 (CH=), 122.5 (CH=), 123.6 (C), 124.5 (CH=), 

124.7 (CH=), 125.3 (CH=), 126.2 (CH=), 126.3 (CH=), 127.0 (CH=), 127.2 (CH=), 128.2 

(CH=), 128.3 (CH=), 128.9 (CH=), 129.3 (C), 130.3 (C), 131.2 (CH=), 131.6 (C), 132.8 

(C), 133.5 (C), 137.5 (C), 138.2 (C), 148.5 (C), 148.8 (C). Anal. Calcd for C38H35O8P: C, 

70.15; H, 5.42. Found: C, 70.11; H, 5.38. 

3.3.4.3 Asymmetric hydrogenation 

 In a typical run, [Rh(nbd)2]SbF6 (5.2 mg, 0.01 mmol), the corresponding 

ligand (0.022 mmol, 2.2 equivalents) were dissolved in dichloromethane (6 mL) 

and the resulting solution stirred at room temperature for 30 minutes. The catalyst 

solution was then transferred to a steel autoclave equipped with a glass liner 

already containing the substrate (1 mmol). The autoclave was purged five times 

with hydrogen gas. Then, it was pressurized to the desired pressure. After the 

desired reaction time, the autoclave was depressurized and the solvent 

evaporated off. The residue was dissolved in Et2O (2 mL) and filtered through a 

short celite plug. The enantiomeric excess was determined by chiral GC and 

conversions were determined by GC and confirmed by 1H NMR. The enantiomeric 

excesses of hydrogenated products were determined using the conditions 

previously described.17 
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3.4 Asymmetric Ir-catalyzed hydrogenation of minimally functionalized 

olefins using a thioether-phosphite ligand library derived from L-(+)-

tartaric acid. 

Sabina Alegre, Carlota Borràs, Montserrat Diéguez, Oscar Pàmies in manuscript to 

be submitted  

Abstract. Thioether-phosphite ligands prepared from readily available L-(+)-

tartaric acid were applied to the Ir-catalyzed asymmetric hydrogenation of 

minimally functionalized olefins. Our results show that the enantioselectivity is 

dependent on the ligand parameters (thioether substituent, substituent at the 

alkyl backbone chain next to the phosphite moiety and the 

substituents/configurations in the biaryl phosphite group) as well as the substrate 

structure. Moderate enantioselectivities were achieved in the reduction of E- and 

Z-trisubstituted olefins (ee's up to 70% and 50%, respectively). However, for 

disubstituted substrate 3,3-dimethyl-2-phenyl-1-butene, excellent 

enantioselectivities (ee's up to 98%) and activities were achieved at low hydrogen 

pressure. For the latter substrate, the sense of enantioselectivity is controlled by 

the configuration of the biaryl phosphite group which allows the preparation of 

both enantiomers of the hydrogenation product. The asymmetric hydrogenation 

was also performed using propylene carbonate as an environmentally friendly 

solvent, which allowed the Ir-catalysts to be reused with no loss in enantiomeric 

excess. 

3.4.1 Introduction 

 Metal-catalyzed asymmetric reactions have become one of the most 

powerful tools for the production of enantiomerically pure compounds. The large 

number and permanently growing number of chemical processes suitable for 

asymmetric catalysis, as well as the large variety of substrate to which they can be 

applied represent a permanent need for the discovery of new catalysts.1 The 

performance of catalytic enantioselective reactions largely depends on 

appropriate chiral ligands being selected for the catalyst structure. Most of the 

research in this area, then, has focused on finding new series of efficient chiral 

ligands. Although many thousands of chiral ligands have been prepared and 

tested, very few of them have been found to have a general scope.1 
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 Because of its high efficiency, atom economy and operational simplicity, 

asymmetric hydrogenation that uses molecular hydrogen to reduce prochiral 

olefins has become one of the most reliable catalytic methods for preparing 

optically active compounds.1 The first asymmetric hydrogenation reactions were 

reported in 1968 independently by Horner and Knowles.2 In 1977, Knowles 

introduced the bidentate P-stereogenic phosphine ligand DIPAMP, which allowed 

the stereoselective hydrogenation of α-acylaminoacrylates with up to 96% ee.3 

This process was used as a key step in the synthesis of Dopa, the first industrially 

applied asymmetric hydrogenation.4 In the meantime, a wide range of other 

ligands have been developed for not only Rh- but also Ru-catalyzed processes.1 

Nevertheless, the asymmetric hydrogenation of minimally functionalized alkenes 

was a challenge for a long time because these substrates have no adjacent polar 

group to direct the reaction.5   

 In 1977, Crabtree described the first homogeneous achiral iridium catalyst 

which allowed the reduction of a wide range of minimally functionalized, also 

highly substituted, alkenes.6 On the basis of this pioneering work, Pfaltz et al. 

developed a new class of hydrogenation Ir-catalysts with chiral P,N ligands (PHOX 

ligands).7 Since then, most of the research has been devoted to develop new P,N 

chiral ligands.5 The first successful P,N ligands contained a phosphine or 

phosphinite moiety as P-donor group and either an oxazoline, oxazole, thiazole or 

pyridine as N-donor group.8,9 However, these iridium-phosphine/phosphinite,N 

catalysts were still highly substrate-dependent and the development of efficient 

chiral ligands that tolerate a broader range of substrates remained a challenge. 

Some years ago we discovered that the presence of biaryl-phosphite moieties in 

these P,N-ligands provides greater substrate versatility than previous Ir-

phosphine/phosphinite,N catalyst systems.10 Although the number of substrates 

that can be successfully reduced increased, there is still an important substrate 

classes that give unsatisfactory results with known catalysts. More research is 

therefore needed to find more versatile ligand systems that can be synthesized on 

an efficient and modular synthetic route using simple starting materials. 

 In this respect, research focus in the possibility of changing the nature of 

the N-donor atom in these heterodonor ligands has not been contemplated until 

very recently.11,12 Thus, we have recently communicated the first successful 

application of non-N-donor heterodonor ligands – thioether-phosphite – for 

asymmetric Ir-catalyzed hydrogenation of model trisubstituted and terminal 

minimally functionalized olefins.11 Despite this success, the use of other thioether-
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phosphite ligands has not yet been reported and a systematic study of the 

possibilities offered by thioether-phosphorus as new ligands for this process is still 

needed. For this purpose in this chapter we report the synthesis and application of 

new Ir-complexes modified with a chiral thioether-phosphite ligand library derived 

from L-(+)-tartaric acid (L1-L8a-e; Figure 3.4.1). The modular ligand design allowed 

us to systematically investigate the effect of varying: (a) the electronic and steric 

properties of the thioether group (ligands L1-L7); (b) the substituents in the alkyl 

backbone chain next to the phosphite moiety (ligands L1 and L8); and (c) the 

substituents/configurations in the biaryl phosphite moiety (a-e). By carefully 

selecting these elements, we achieved moderate-to-high enantioselectivities and 

activities in a range of minimally functionalized olefins. 

 

 
Figure 3.4.1. Thioether-phosphite ligands L1-L8a-e. 

3.4.2 Results and discussion 

3.4.2.1 Synthesis of the Ir-catalyst precursors 

 The catalyst precursors were made by refluxing a dichloromethane 

solution of the appropriate ligand (L1-L8a-e) in the presence of 0.5 equivalent of 

[Ir(µ-Cl)cod]2 for 1 h and then exchanging the counterion with sodium tetrakis[3,5-

bis(trifluoromethyl)-phenyl]borate (NaBArF) (1 equiv), in the presence of water 

(Scheme 3.4.2.1). All complexes were isolated as air-stable red-orange solids and 

were used without further purification. The complexes were characterized by 

elemental analysis and 1H, 13C, and 31P NMR spectroscopy. The spectral 

assignments were based on information from 1H-1H and 13C-1H correlation 

measurements and were as expected for these iridium complexes. 
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Scheme 3.4.2.1 Synthesis of catalyst precursors [Ir(cod)(P-S)]BArF (P-S = L1-L8a-e). 

3.4.2.2 Asymmetric hydrogenation of trisubstituted olefins S1-S2 

 In a first set of experiments we used the Ir-catalyzed hydrogenation of 

substrate E-2-(4-methoxyphenyl)-2-butene S1 to study the potential of thioether-

phosphite ligands L1-L8a-e. Substrate S1 was chosen as a model for the 

hydrogenation of trisubstituted olefins because it has been reduced with a wide 

range of ligands, which enable the efficiency of the various ligand systems to be 

compared directly.5 The results, which are summarized in Table 3.4.1, indicate that 

enantioselectivities are highly affected by a subtle balance of the thioether 

substituent, the substituent at the alkyl backbone chain next to the phosphite 

moiety as well as the configuration of the biaryl phosphite moiety.  

 Using ligands L1a-e, we investigated the effect of the 

substituents/configuration at the biaryl phosphite moiety. The results indicated 

that although the nature of the substituents at the biaryl phosphite moiety has 

little impact on the catalytic performance (Table 3.4.1, entries 1-3), 

enantioselectivity is highly affected by the configuration of the biaryl phosphite 

moiety (entries 4-5 vs 1-3).  In general, ligands containing an R-biaryl phosphite 

moiety (d) provide higher enantioselectivities than ligands containing an S-biaryl 

group (e) (i.e. entry 4 vs 5).  

 The results also indicate that enantioselectivity is affected by the thioether 

substituent. The presence of an aromatic rather than an alkyl substituent is 

beneficial in terms of enantioselectivity (i.e. entries 4 vs 6, 8 and 13). The highest 

enantioselectivity of the series was achieved using bulky 2,6-dimethylphenyl 

thioether substituent (L4; Table 3.4.1 entries 11 and 12). 

 We also found that introducing methyl substituents at the alkyl backbone 

chain next to the phosphite moiety (ligands L8) has a negative effect on 

enantioselectivity (i.e. entry 4 vs 20). This contrast with the highly positive effect 

observed in the Rh-catalyzed hydrogenation of functionalized olefins (Chapter 3.2). 

 In summary the best results were achieved with ligands L4d-e, which 

contains the optimal combination of ligand parameters (ee's up to 70%, entries 11 
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and 12). Interestingly, they provide opposite enantiomers of the hydrogenation 

product.  

 

Table 3.4.1 Selected results for the Ir-catalyzed hydrogenation 
of S1 using the thioether-phosphite ligand library L1-L8a-e

a
  

 

Entry Ligand % Conv
b
 % ee

b 

1 L1a 99  6 (R) 

2 L1b 100  5 (R) 

3 L1c 100 6 (R) 

4 L1d 100 66 (R) 

5 L1e 99 29 (S) 

6 L2a 100 19 (R) 

7 L3a 100 0 

8 L3d 100 33 (R) 

9 L3e 99 10 (S) 

10 L4a 95 25 (S) 

11 L4d 100 69 (R) 

12 L4e 100 70 (S) 

13 L5d 100 21 (R) 

14 L5e 99 11 (R) 

15 L6d 100 50 (R) 

16 L6e 98 31 (S) 

17 L7d 100 60 (R) 

18 L7e 100 35 (S) 

19 L8a 100 25 (S) 

20 L8d 100 27 (R) 

21 L8e 100 36 (S) 

22
c 

L4e 96 67 (S) 

23
d 

L4e 74 65 (S) 

24
e 

L4e 48 70 (S) 
a) Reactions carried out using 0.5 mmol of S1 and 2 mol% of Ir-catalyst 
precursor.b) Conversion and enantiomeric excesses determined by chiral GC. 
c) Reaction carried out at 75 bar of H2. d) Reaction carried out at 50 bar of H2. 
e) Reaction carried out at 0.5 mol% of Ir-catalyst precursor. 

   

 Not only can the effect of the structural parameters on catalytic 

performance be controlled, but also the reaction parameters. Therefore, we next 
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studied the effect of the hydrogen pressure on the catalytic outcome. The results 

show a small decrease in enantioselectivity when the hydrogen pressure is 

lowered (Table 3.4.1, entries 12 vs 22 and 23). We also performed the reaction at 

low catalyst loading (0.5 mol%) using Ir-L4e catalysts (entry 24). The result shows 

that enantioselectivity was maintained (70% (S) ee).  

In order to assess the potential of thioether-phosphite ligands L1-L8a-e for the 

more demanding Z-isomers, which are usually hydrogenated less 

enantioselectively than the corresponding E-isomers, we choose Z-2-(4-

methoxyphenyl)-2-butene S2 as a model.5  

 
Table 3.4.2 Selected results for the Ir-catalyzed hydrogenation 
of S2 using the thioether-phosphite ligand library L1-L8a-e

a
  

 

Entry Ligand % Conv
b
 % ee

b 

1 L1a 82 7 (R) 

2 L1b 86 6 (R) 

3 L1c 95 6 (R) 

4 L1d 88 2 (S) 

5 L1e 70 15 (R) 

6 L2a 100 0 

7 L3a 100 3 (S) 

8 L3d 100 1 (R) 

9 L3e 100 11 (R) 

10 L4a 98 12 (R) 

11 L4d 83 12 (S) 

12 L4e 81 4 (R) 

13 L5d 100 3 (S) 

14 L5e 100 14 (R) 

15 L6d 100 4 (S) 

16 L6e 80 6 (R) 

17 L7d 94 6 (S) 

18 L7e 100 8 (R) 

19 L8a 75 8 (S) 

20 L8d 70 50 (S) 

21 L8e 100 18 (R) 
a) Reactions carried out using 0.5 mmol of S1 and 2 mol% of Ir-catalyst 
precursor.b) Conversion and enantiomeric excesses determined by chiral GC. 
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 Disappointingly, low-to-moderate enantioselectivities were obtained 

(Table 3.4.2, ee's up to 50%). In contrast to the hydrogenation of S1, ligand L8d 

contains the optimal combination of ligand parameters (entry 20). This suggests 

that for this more demanding substrate the presence of methyl substituents in the 

alkyl backbone chain next to the phosphite moiety has a positive effect on 

enantioselectivity. 

 

3.4.2.3 Asymmetric hydrogenation of disubstituted olefin S3 

To further study the potential of the thioether-phosphite ligand library L1-

L8a-e, we also screened it in the Ir-catalyzed hydrogenation of more demanding 

terminal olefins. Enantioselectivity is more difficult to control in these substrates 

than in trisubstituted olefins. There are two main reasons for this:5d,e a) the two 

substituents in the substrate can easily exchange positions in the chiral 

environment formed by the catalysts, thus reversing the face selectivity (Scheme 

3.4.1(a)); and b) the terminal double bond can isomerize to form the more stable 

internal E-alkene, which usually leads to the predominant formation of the 

opposite enantiomer of the hydrogenated product (Scheme 3.4.1(b)). Few known 

catalytic systems provide high enantioselectivities for these substrates, and those 

that do are usually limited in substrate scope.5e, 13 , 14  In contrast to the 

hydrogenation of trisubstituted olefins, the enantioselectivity in the reduction of 

terminal alkenes is highly pressure dependent. Therefore, hydrogenation at an 

atmospheric pressure of H2 gave, in general, significantly higher ee values than at 

higher pressures.13a  

 

 
Scheme 3.4.1 

 

As a model substrate, we have chosen the 3,3-dimethyl-2-phenyl-1-butene 

S3 as a model substrate to assess the potential of the new ligand library. The 

results are summarized in Table 3.4.3. We were able to fine-tune the ligand 
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parameters to produce high activities and enantioselectivities (ee’s up to 98%) in 

the hydrogenation of this substrate using low hydrogen pressures (1 bar).  

 

Table 3.4.3 Selected results for the Ir-catalyzed 

hydrogenation of S3 using the thioether-phosphite ligand 

library L1-L8a-e
a
  

 

Entry Ligand % Conv
b
 % ee

b 

1 L1a 94 14 (S) 

2 L1b 97 16 (S) 

3 L1c 75 19 (S) 

4 L1d 100 94 (S) 

5 L1e 65 93 (R) 

6 L2a 100 20 (S) 

7 L3a 55 23 (S) 

8 L3d 100 90 (S) 

9 L3e 96 88 (R) 

10 L4a 81 39 (R) 

11 L4d 85 92 (S) 

12 L4e 66 93 (R) 

13 L5d 55 90 (S) 

14 L5e 31 89 (R) 

15 L6d 100 91 (S) 

16 L6e 58 93 (R) 

17 L7d 100 96 (S) 

18 L7e 64 98 (R) 

19 L8a 100 6 (R) 

20 L8d 100 94 (S) 

21 L8e 100 96 (R) 
a) Reactions carried out using 0.5 mmol of S1 and 2 mol% of Ir-catalyst 
precursor.b) Conversion and enantiomeric excesses determined by chiral GC. 

 
Although, enantioselectivities were slightly affected by the thioether 

substituent and the substituents in the alkyl backbone chain next to the phosphite 

moiety, enantioselectivity is mainly controlled by the configuration of the biaryl 

phosphite group (i.e. entries 1-5). Therefore, in contrast to the hydrogenation of 
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trisubstituted substrates, ligands containing enantiopure bulky R- and S-biaryl 

moieties (d and e) led to excellent enantioselectivities. Interestingly, the sense of 

enantioselectivity is controlled by the configuration of the biaryl phosphite moiety. 

Both enantiomers of the hydrogenation product can be therefore obtained in high 

enantioselectivities (ee’s up to 98%).  

In summary, enantioselectivities were best using the Ir-catalysts 

precursors containing thioether-phosphite ligands L7d and L7e.  These results, 

which again clearly show the efficiency of using modular scaffolds in the ligand 

design, are among the best that have been reported for this demanding 

substrate.5e  

 

3.4.2.4 Recycling experiments using propylene carbonate as solvent 

 Encouraged by the results obtained so far, we decided to go one step 

further and study the recycling of our catalyst systems. For a practical application, 

catalyst recycling is an extremely important topic because of the very high price of 

iridium. Propylene carbonate (PC) allows catalysts to be repeatedly recycled by a 

simple two phase extraction with an apolar solvent. 15  Moreover, PC is an 

extremely attractive solvent because of its high boiling point, low toxicity and 

environmentally friendly synthesis.15,16  

Table 3.4.4. Recycling experiments with catalyst precursors 

[Ir(cod)(L4e)]BArF and [Ir(cod)(L7d)]BArF in PC
a
 

Cycle Substrate % Conv (h)
b

 % ee
b
 

1
c 

2
c 

3
c 

4
c 

S1
MeO  

100 (4) 

87 (4) 

76 (8) 

82 (12) 

70 (S) 

69 (S) 

68 (S) 

69 (S) 

1
d 

2
d 

3
d 

4
d 

 

100 (4) 

96 (4) 

94 (6) 

91 (12) 

96 (S) 

95 (S) 

95 (S) 

95 (S) 
a) Reactions carried out using 0.5 mmol of substrate and 2 mol% of Ir-catalyst 
precursor. b) Conversion and enantiomeric excesses determined by chiral GC. c 
Reaction carried out at 125 bar. d Reaction carried out at 50 bar. 

 To study whether the new Ir-P,S catalytic systems developed in this study 

can be efficiently recycled using PC, substrates S1 and S3 were hydrogenated with 

catalyst precursors [Ir(cod)(L4e)]BArF and [Ir(cod)(L7d)]BArF, respectivelly (Table 
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3.4.4). We were pleased to see that these catalysts can be used in PC up to four 

times with no significant losses in enantioselectivity, although the reaction time 

increased. This is probably due to the iridium catalyst partially passing into the 

hexane phase15a and/or the formation of inactive triiridium hydride clusters.6b,17  

 

3.4.3 Conclusions 

 A thioether-phosphite ligand library, derived from L-(+)-tartaric acid, was 

tested in the asymmetric Ir-catalyzed hydrogenation of several model minimally 

functionalized alkenes. Our results show that catalytic performance depended 

strongly on the ligand parameters (the thioether substituent, the 

substituents/configuration in the biaryl phosphite moiety and the substituent at 

the alkyl chain next to the phosphite moiety) as well as the substrate. While for 

trisubstituted olefins only moderate enantioselectivities were achieved (ee's up to 

70%), the hydrogenation of more challenging disubstituted substrate 3,3-dimethyl-

2-phenyl-1-butene S3 led to excellent enantioselectivities (ee's up to 98%). For the 

latter substrate, the presence of atropoisomeric chiral biaryl moieties is crucial for 

the high enantioselectivities achieved. Moreover, the sense of enantioselectivity is 

controlled by the configuration of the biaryl phosphite group which gives access to 

both enantiomers of the hydrogenation product in excellent enantiocontrol. The 

asymmetric hydrogenation was also performed using propylene carbonate as 

solvent, which allowed the Ir-catalysts to be reused with no loss of 

enantioselectivity. 

3.4.4 Experimental Section 

3.4.4.1 General Considerations 

 All syntheses were performed by using standard Schlenck techniques 

under an argon atmosphere. Solvents were purified by standard procedures. The 

synthesis of ligands L1-L8a-e has been previously described in Chapter 3.2. All 

other reagents were used as commercially available. 

3.4.4.2 Typical procedure for the preparation of [Ir(cod)(L)]BArF (L =L1-L8a-e) 

 The corresponding ligand (0.037 mmol) was dissolved in CH2Cl2 (2 mL) and 

[Ir(µ-Cl)(cod)]2 (12.5 mg, 0.0185 mmol) was added. The reaction was refluxed at 

50 °C for 1 hour. After 5 min at room temperature, NaBArF (38.6 mg, 0.041 mmol) 
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and water (2 mL) were added and the reaction mixture was stirred vigorously for 

30 min at room temperature. The phases were separated and the aqueous phase 

was extracted twice with CH2Cl2. The combined organic phases were dried with 

MgSO4, filtered through a plug of celite and the solvent was evaporated to give the 

products as red-orange solids. 

 [Ir(cod)(L1a)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  101.8 (s). 1H NMR (CDCl3), 

: 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
tBu), 1.37 (s, 9H, CH3, 

tBu), 

1.54 (s, 9H, CH3, 
tBu), 1.71 (s, 9H, CH3, 

tBu), 1.86 (m, 2H, CH2, COD), 2.01 (m, 2H, 

CH2, COD), 2.1 (m, 4H, 2CH2, COD), 3.74-3.79 (m, 2H, CH2-O), 3.80-3.83 (m, 1H, 

CH2-S), 3.96(m, 1H, CH=, COD), 4.11 (m, 1H, CHCH2S), 4.13-4.17 (m, 1H, CH2-S), 

4.24-4.28 (m, 1H, CHCH2O), 4.46(m, 1H, CH=, COD), 4.57 (m, 1H, CH=, COD), 4.71 

(m, 1H, CH=, COD), 7.18-7.70 (m, 21H, CH=). 13C NMR (CDCl3), : 26.4 (CH3), 

27.8(CH2, COD), 29.7(CH2, COD), 31.4 (CH3, 
tBu), 31.5 (CH3, 

tBu), 31.7 (CH2, COD), 

32.0 (CH3, 
tBu), 33.8 (CH2, COD), 35.0 (C, tBu), 35.1 (C, tBu), 35.6 (C, tBu), 47.8 (CH2-

S), 69.1 (CH2-O), 69.3 (CH=, COD), 74.1 (CH=, COD), 77.4 (CHCH2S), 79.6 (CHCH2S), 

102.8 (CH=, COD), 104.1 (CH=, COD), 110.7 (CMe2), 117.6-149.9 (aromatic 

carbons), 161.7 (q, C-B, BArF, 
1JC-B= 49 Hz).  

 [Ir(cod)(L1b)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  102.6 (s). 1H NMR (CDCl3), 

: 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.50 (s, 9H, CH3, 
tBu), 1.67 (s, 9H, CH3, 

tBu), 

1.85 (m, 2H, CH2, COD), 2.01 (m, 2H, CH2, COD), 2.15 (m, 4H, 2CH2, COD), 3.82 (s, 

6H, O-CH3),  3.87-3.95 (m, 4H, CH2-S, CH2-O, CH= COD), 4.11 (m, 2H, CH2-S, 

CHCH2S), 4.25 (m, 1H, CHCH2O), 4.44 (m, 1H, CH=, COD), 4.54 (m, 1H, CH=, COD), 

4.71 (m, 1H, CH=, COD), 6.70-7.69 (m, 21H, CH=). 13C NMR (CDCl3), : 26.4 (CH3), 

27.5 (CH2, COD), 29.5 (CH2, COD), 29.6 (CH2, COD), 31.1 (CH3, 
tBu), 31.6 (CH3, 

tBu), 

33.7 (CH2, COD), 35.4 (C, tBu), 47.7 (CH2-S), 55.5 (O-CH3), 55.6 (O-CH3), 68.2 (CH=, 

COD), 69.2 (d, CH2-O, JC-P= 14.7 Hz), 73.8 (CH=, COD), 77.1 (CHCH2S), 79.4 

(CHCH2O), 102.7 (CH=, COD), 103.9 (CH=, COD), 110.4 (CMe2), 113.7-157.2 

(aromatic carbons), 161.5 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L1c)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  102.6 (s). 1H NMR (CDCl3), 

: 0.40 (s, 9H, CH3, SiMe3), 0.56 (s, 9H, CH3, SiMe3),1.19 (s, 3H, CH3), 1.21 (s, 3H, 

CH3), 1.73 (m, 2H, CH2, COD), 1.98 (m, 2H, CH2, COD), 2.15 (m, 4H, 2CH2, COD),  

3.63-3.85 (m, 3H, CH2-O, CH2-S), 3.95-4.06 (m, 3H, CH2-S, CH= COD, CHCH2S), 4.06 

(m, 1H, CHCH2O), 4.38 (m, 2H, CH=, COD), 4.74 (m, 1H, CH=, COD), 7.18-7.63 (m, 

23H, CH=). 13C NMR (CDCl3), : 0.0 (SiMe3), 0.9 (SiMe3), 26.3 (CH3), 26.4 (CH3), 26.9 

(CH2, COD), 29.6 (CH2, COD), 30.1 (CH2, COD), 34.3 (CH2, COD), 48.0 (CH2-S), 69.1 

(d, CH2-O, JC-P= 13 Hz), 69.7 (CH=, COD), 74.2 (CH=, COD), 77.1 (CHCH2S), 79.5 
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(CHCH2O), 103.4 (CH=, COD), 110.5 (CMe2), 117.3-152.4 (aromatic carbons) , 161. 6 

(q, C-B, BArF, 
1JC-B= 50 Hz). 

 [Ir(cod)(L1d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  94.0 (s). 1H NMR (CDCl3), 

: 1.21 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
tBu), 1.54 (m, 2H, CH2, COD), 

1.63 (s, 9H, CH3, 
tBu), 1.70 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.91 (m, 4H, CH2, COD), 

2.07 (m, 2H, CH2, COD), 2.19 (s, 3H, CH3), 2.20 (s, 3H, CH3), 3.44 (m, 1H, CH2-O), 

3.50 (m, 1H, CH2-S), 3.62 (m, 1H, CH=, COD), 3.81-3.87 (m, 1H, CHCH2S), 3.94 (m, 

1H, CH2-O), 4.01 (m, 1H, CH2-S), 4.17 (m, 1H, CHCH2O), 4.49 (m, 3H, CH=, COD), 

7.17-7.63 (m, 19H, CH=). 13C NMR (CDCl3), : 16.3 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 

(CH3), 26.4 (CH3), 28.1 (CH2, COD), 29.0 (CH2, COD), 29.6 (CH2, COD), 31.3 (CH3, 
tBu), 

32.2 (CH3, 
tBu), 33.0 (CH2, COD), 34.7 (C, tBu), 35.1 (C, tBu), 46.3(CH2-S), 68.0 (CH=, 

COD), 68.3 (CH2-O), 74.7 (CH=, COD), 77.2 (CHCH2S), 79.9 (CHCH2O), 101.2 (CH=, 

COD), 101.4 (CH=, COD),  111.3 (CMe2), 117.4-144.6 (aromatic carbons), 161.5 (q, 

C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L1e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  96.7 (s). 1H NMR (CDCl3), 

: 1.20 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.38 (s, 9H, CH3, 
tBu), 1.52 (m, 2H, CH2, COD), 

1.64 (s, 9H, CH3, 
tBu), 1.72 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.84-2.12 (m, 6H, CH2, 

COD), 2.21 (s, 3H, CH3), 2.19 (s, 3H, CH3),  3.33 (m, 1H, CH=, COD), 3.55 (m, 2H, CH2-

O), 3.71 (m, 1H, CH2-S), 4.06 (m, 2H, CH2-S, CHCH2S), 4.18 (m, 1H, CHCH2O), 4.26 

(m, 1H, CH=, COD), 4.47 (m, 1H, CH=, COD), 4.60 (m, 1H, CH=, COD), 7.18-7.63 (m, 

19H, CH=). 13C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.4 

(CH3), 26.9 (CH2, COD), 30.0 (CH2, COD), 30.9 (CH2, COD), 31.4 (CH3, 
tBu), 32.1 (CH3, 

tBu), 34.2 (CH2, COD), 34.7 (C, tBu), 48.3 (CH2-S), 67.6 (CH=, COD), 69.1 (CH2-O), 

74.9 (CH=, COD), 77.6 (CHCH2S), 79.5 (CHCH2O), 102.6 (CH=, COD), 103.1 (CH=, 

COD),  110.2 (CMe2), 117.3-143.8 (aromatic carbons), 161.7 (q, C-B, BArF, 
1JC-B= 49 

Hz). 

 [Ir(cod)(L2a)]BArF: 
31P NMR (400 MHz, CDCl3) δ: 103.4 (s). 1H NMR (CDCl3), 

: 1.24 (s, 6H, CH3), 1.33 (s, 18H, CH3, 
tBu), 1.48 (s, 9H, CH3, 

tBu), 1.57 (s, 9H, CH3, 
tBu), 2.11 (m, 8H, CH2, COD), 2.5 (s, 3H, CH3),  3.43 (m, 2H, CH2-S), 3.84-3.99 (m, 

2H, CH2-O, CHCH2S), 4.15 (m, 1H, CH=, COD), 4.22 (m, 1H, CHCH2O), 4.52 (m, 1H, 

CH=, COD), 5.09 (m, 2H, CH=, COD), 7.15-7.69 (m, 16H, CH=).13C NMR (CDCl3), : 

19.7 (CH3), 26.6 (CH3), 26.7 (CH3), 28.7 (CH2, COD), 29.8 (CH2, COD), 30.3 (CH2, 

COD), 31.5 (CH3, 
tBu), 31.6 (CH3, 

tBu), 31.8 (CH3, 
tBu), 33.2 (CH2, COD), 35.0 (C, tBu), 

35.6 (C, tBu), 35.7 (C, tBu), 44.5 (CH2-S), 68.1 (d, CH2-O, JC-P= 12.4 Hz), 72.2 (CH=, 

COD), 74.8 (CH=, COD), 77.1 (CHCH2S), 77.4 (CHCH2O), 99.8 (CH=, COD), 100.9 
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(CH=, COD), 110.9 (CMe2), 117.6- 149.6 (aromatic carbons), 161.8 (q, C-B, BArF, 
1JC-

B= 49 Hz).  

 [Ir(cod)(L3a)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  104.1 (s). 1H NMR (CDCl3), 

: 1.29 (s, 6H, CH3), 1.35 (s, 9H, CH3, 
tBu), 1.36 (s, 9H, CH3, 

tBu), 1.44 (s, 9H, CH3, 
tBu), 1.63 (s, 18H, CH3, 

tBu), 1.73 (m, 2H, CH2, COD), 1.86 (m, 2H, CH2, COD), 2.01 

(m, 2H, 2CH2, COD), 2.25 (m, 2H, 2CH2, COD), 3.27 (dd, 1H, 2JH-H= 15.2  Hz, 3JH-H=  

3.2 Hz, CH2-S), 3.50-3.56 (m, 1H, CH2-O), 3.62 (dd, 1H, 2JH-H= 12.4  Hz, 3JH-H=  2.8 Hz, 

CH2-S), 3.80-3.86 (m, 1H, CH2-O), 3.96-4.02 (m, 1H, CHCH2O), 4.04-4.07 (m, 1H, 

CHCH2S), 4.56(m, 2H, CH=, COD), 5.56 (m, 1H, CH=, COD), 6.02 (m, 1H, CH=, COD), 

7.18-7.72 (m, 16H, CH=). 13C NMR (CDCl3), : 26.6 (CH3), 27.7(CH2, COD), 29.9(CH2, 

COD), 30.9 (CH3, 
tBu), 31.1 (CH3, 

tBu), 31.5 (CH3, 
tBu), 32.5 (CH2, COD), 33.9 (CH2, 

COD), 35.0 (C, tBu), 35.5 (C, tBu), 35.7 (C, tBu), 36.3 (CH2-S), 66.5 (CH2-O), 71.1 

(CH=, COD), 71.7 (CH=, COD), 76.3 (CHCH2S), 78.0 (CHCH2O), 93.9 (CH=, COD), 98.6 

(CH=, COD), 110.4 (CMe2), 117.6-149.8 (aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-

B= 49 Hz). 

 [Ir(cod)(L3d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  103.2(s), 92.7 (s). 1H NMR 

(CDCl3), :  1.04 (m, 2H, CH2, COD), 1.19 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.30 (s, 9H, 

CH3, 
tBu), 1.39 (s, 9H, CH3, 

tBu), 1.52 (s, 9H, CH3, 
tBu), 1.64 (s, 3H, CH3), 1.75 (s, 3H, 

CH3), 1.84-2.02 (m, 4H, CH2, COD), 2.03 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.43 (m, 2H, 

CH2, COD), 2.89-3.07 (m, 2H, CH2-O, CH2-S), 3.25-3.30 (m, 1H, CH2-S), 3.51 (m, 1H, 

CHCH2S), 3.64 (m, 1H, CHCH2O), 3.84-3.91 (m, 1H, CH2-O), 4.32 (m, 2H, CH=, COD), 

5.20 (m, 1H, CH=, COD), 5.96 (m, 1H, CH=, COD), 7.14-7.60 (m, 14H, CH=). 13C NMR 

(CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 26.3 (CH3), 28.0 (CH2, COD), 30.2 (CH2, 

COD), 30.9 (CH3, 
tBu), 31.7 (CH3, 

tBu), 32.2 (CH3, 
tBu), 32.5 (CH2, COD), 32.9 (C, tBu), 

34.9 (C, tBu), 34.2 (CH2, COD), 34.4 (CH2, COD),  35.9 (CH2-S), 67.6 (CH2-O), 70.6 

(CH=, COD), 72.8 (CH=, COD), 77.1 (CHCH2S), 84.6 (CHCH2O), 91.4 (CH=, COD), 99.3 

(CH=, COD), 110.3 (CMe2), 117.4-143.4 (aromatic carbons), 161.5 (q, C-B, BArF, 
1JC-

B= 49 Hz). 

 [Ir(cod)(L3e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  98.6 (s). 1H NMR (CDCl3), 

: 1.30 (s, 6H, CH3), 1.37 (s, 9H, CH3, 
tBu), 1.50 (s, 9H, CH3, 

tBu), 1.61 (s, 9H, CH3, 
tBu), 1.75 (s, 3H, CH3), 1.81 (s, 3H, CH3), 2.04 (m, 6H, CH2, COD), 2.25 (s, 3H, CH3), 

2.26 (s, 3H, CH3), 2.4 (m, 2H, CH2, COD), 3.25 (m, 1H, CH2-S), 3.31 (m, 1H, CH2-O), 

3.65-3.70 (m, 1H, CH2-S), 3.75-3.81 (m, 1H, CH2-O), 3.98 (m, 1H, CHCH2S), 4.08-4.11 

(m, 2H, CHCH2O, CH= COD), 4.43 (m, 1H, CH=, COD), 5.36 (m, 1H, CH=, COD), 6.09 

(m, 1H, CH=, COD), 7.19-7.69 (m, 14H, CH=). 13C NMR (CDCl3), : 16.6 (CH3), 16.8 

(CH3), 20.3 (CH3), 20.5 (CH3), 26.6 (CH3), 26.7 (CH3), 28.8 (CH2, COD), 29.9 (CH2, 
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COD), 31.1 (CH3, 
tBu), 31.4 (CH3, 

tBu), 32.2 (CH3, 
tBu), 33.8 (CH2, COD), 34.8 (C, tBu), 

35.1 (C, tBu), 35.1 (CH2, COD), 36.8 (CH2-S), 66.2 (CH2-O), 69.8 (CH=, COD), 72.8 

(CH=, COD), 76.1 (CHCH2S), 77.5 (CHCH2O), 99.4 (CH=, COD), 99.5 (CH=, COD), 

110.5 (CMe2), 117.6-144.5 (aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L4a)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  101.5 (s). 1H NMR (CDCl3), 

: 1.22 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.33 (s, 18H, CH3, 
tBu), 1.54 (s, 9H, CH3, 

tBu), 

1.62 (s, 9H, CH3, 
tBu), 1.78 (m, 2H, CH2, COD), 1.96 (m, 2H, CH2, COD), 2.11 (m, 2H, 

CH2, COD), 2.22 (m, 2H, CH2, COD), 2.60 (s, 3H, CH3), 2.68 (s, 3H, CH3), 3.43 (m, 1H, 

CH2-S), 3.69-3.76 (m, 1H, CH2-O), 3.95-4.06 (m, 4H, CH2-S, CH= COD, CHCH2S), 4.12-

4.16 (m, 4H, CH COD, CH2-O, CHCH2O), 4.43 (m, 1H, CH=, COD), 4.57 (m, 1H, CH=, 

COD), 7.18-7.68 (m, 19H, CH=). 13C NMR (CDCl3), : 22.7 (CH3), 23.0 (CH3), 26.9 

(CH3), 30.7 (CH2, COD), 30.9 (CH2, COD), 31.4 (CH3, 
tBu), 31.5 (CH3, 

tBu), 31.9 (CH3, 
tBu), 34.6 (CH2, COD), 35.0 (C, tBu), 35.1 (C, tBu), 35.5 (C, tBu), 35.6 (C, tBu), 47.3 

(CH2-S), 69.3 (CH2-O), 77.4 (CHCH2S), 80.2 (CHCH2O), 103.7 (CH=, COD), 110.9 

(CMe2), 117.6-149.9 (aromatic carbons), 161.5 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L4d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  93.6 (s). 1H NMR (CDCl3), 

: 1.18 (s, 3H, CH3), 1.22 (s, 3H, CH3), 1.36 (s, 9H, CH3, 
tBu), 1.56 (m, 2H, CH2, COD), 

1.61 (s, 9H, CH3, 
tBu), 1.71 (s, 3H, CH3), 1.73 (s, 3H, CH3), 1.87 (m, 2H, CH2, COD), 

2.08 (m, 2H, CH2, COD), 2.18 (s, 3H, CH3), 2.19 (s, 3H, CH3), 2.25 (m, 2H, CH2, COD), 

2.53 (s, 3H, CH3), 2.69 (s, 3H, CH3), 3.02 (m, 1H, CH2-S), 3.32 (m, 1H, CH=, COD), 

3.46-3.49 (m, 1H, CH2-O), 3.79-3.82 (m, 1H, CHCH2S), 3.87-3.92 (m, 1H, CH=, COD), 

3.95 (m, 1H, CH2-S), 4.00-4.08 (m, 2H, CHCH2O, CH2-O), 4.49 (m, 1H, CH=, COD), 

4.76 (m, 1H, CH=, COD), 7.08-7.63 (m, 17H, CH=). 13C NMR (CDCl3), : 16.5 (CH3), 

16.8 (CH3), 20.5 (CH3), 20.6 (CH3), 22.7 (CH3), 22.9 (CH3), 26.8 (2CH3), 27.0 (CH2, 

COD), 29.9 (CH2, COD), 31.5 (CH3, 
tBu), 31.6 (CH2, COD), 32.6 (CH3, 

tBu), 34.3 (CH2, 

COD), 34.9 (C, tBu), 35.2 (C, tBu), 44.5 (CH2-S), 65.4 (CH=, COD), 69.4 (CH2-O), 74.6 

(CH=, COD), 77.4 (CHCH2S), 79.6 (CHCH2O), 103.1 (CH=, COD), 105.6 (CH=, COD), 

112.1 (CMe2), 117.6-145.0 (aromatic carbons), 161.7 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L4e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  97.0 (s). 1H NMR (CDCl3), 

: 0.85 (s, 3H, CH3), 0.90 (s, 3H, CH3), 0.90 (m, 2H, CH2, COD),1.07 (s, 9H, CH3, 
tBu), 

1.26 (s, 9H, CH3, 
tBu), 1.36 (m, 2H, CH2, COD),1.39 (s, 3H, CH3), 1.42 (s, 3H, CH3), 

1.57 (m, 2H, CH2, COD), 1.73 (m, 2H, CH2, COD), 1.74 (s, 3H, CH3), 1.87 (s, 3H, CH3), 

2.20 (s, 3H, CH3), 2.21 (s, 3H, CH3), 3.15 (m, 1H, CH2-S), 3.18 (m, 1H, CH=, COD), 

3.22 (m, 2H, CH2-O), 3.47-3.52 (m, 1H, CH2-S), 3.66 (m, 1H, CH=, COD), 3.68 (m, 1H, 

CHCH2S), 3.76-3.78 (m, 1H, CHCH2O), 4.00 (m, 1H, CH=, COD), 4.18 (m, 1H, CH=, 

COD), 6.78-7.30 (m, 17H, CH=). 13C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 
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(CH3), 20.4 (CH3), 22.4 (CH3), 22.5 (CH3), 26.4 (CH3), 26.8 (CH2, COD), 29.6 (CH2, 

COD), 30.7 (CH2, COD), 31.5 (CH3, 
tBu), 32.6 (CH3, 

tBu), 34.4 (CH2, COD), 34.7 (C, 
tBu), 48.0 (CH2-S), 67.9 (CH=, COD), 68.6 (CH2-O), 74.7 (CH=, COD), 77.5 (CHCH2S), 

80.4 (CHCH2O), 101.8 (CH=, COD), 103.3 (CH=, COD), 110.3 (CMe2), 117.4-140.7  

(aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L5d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  92.9 (s). 1H NMR (CDCl3), 

: 1.30 (s, 3H, CH3), 1.36 (s, 3H, CH3), 1.40 (s, 9H, CH3, 
tBu), 1.46 (m, 2H, CH2, COD), 

1.64 (s, 9H, CH3, 
tBu), 1.70 (m, 2H, CH2, COD), 1.74 (s, 3H, CH3), 1.77-181 (m, 6H, 

CH2, Ad), 1.85 (s, 3H, CH3), 2.00-2.06 (m, 6H, CH2, Ad), 2.16 (m, 2H, CH2, COD), 2.23 

(m, 3H, CH, Ad), 2.27 (s, 6H, CH3), 2.36 (m, 2H, CH2, COD), 2.50 (m, 1H, CH2-S), 3.05 

(m, 1H, CH2-O), 3.22 (m, 1H, CH2-S), 3.6 (m, 1H, CHCH2S), 3.73 (m, 1H, CHCH2O), 

3.98 (m, 1H, CH2-O),  4.38 (m, 2H, CH=, COD), 5.45 (m, 1H, CH=, COD), 6.12 (m, 1H, 

CH=, COD), 7.17-7.71 (m, 14H, CH=). 13C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 

20.3 (2CH3), 26.0 (CH2, COD), 26.3 (2CH3), 27.9 (CH2, COD), 29.7 (CH2, COD), 30.0 

(3CH, Ad), 30.9 (CH3, 
tBu), 31.8 (CH3, 

tBu), 32.8 (CH2-S), 34.2 (CH2, COD), 34.4 (C, 
tBu), 35.0 (C, tBu), 35.3 (3 CH2, Ad), 42.5 (3 CH2, Ad), 58.4 (C, Ad), 67.5 (d, CH2-O, JC-

P= 15.5 Hz), 70.1 (CH=, COD),  72.7 (CH=, COD), 78.2 (CHCH2S), 84.8 (CHCH2O), 91.2 

(CH=, COD), 99.2 (CH=, COD), 110.2 (C), 117.3-145.0 (aromatic carbons), 161.6 (q, 

C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L5e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  98.5 (s). 1H NMR (CDCl3), 

: 1.25 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.38 (s, 9H, CH3, 
tBu), 1.45 (m, 2H, CH2, COD), 

1.63 (s, 9H, CH3, 
tBu), 1.71 (s, 3H, CH3), 1.76 (m, 3H, CH2, Ad), 1.82 (s, 3H, CH3), 1.93 

(m, 2H, CH2, COD), 2.04 (m, 3H, CH2, Ad), 2.14 (m, 2H, CH2, COD), 2.21 (m, 3H, CH, 

Ad),  2.26 (s, 6H, CH3), 2.34 (m, 2H, CH2, COD), 3.29 (m, 2H, CH2-S, CH2-O), 3.60 (m, 

1H, CH2-S), 3.82 (m, 1H, CH2-O), 4.02-4.11 (m, 3H, CHCH2O, CHCH2S, CH=, COD), 

4.43 (m, 1H, CH=, COD), 5.58 (m, 1H, CH=, COD), 6.16 (m, 1H, CH=, COD), 7.24-7.71 

(m, 14H, CH=). 13C NMR (CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 26.4 (CH3), 

26.5 (CH3), 26.7 (CH2, COD), 28.7 (CH2, COD), 29.6 (CH2, COD), 30.3 (3CH, Ad),  31.1 

(CH3, 
tBu), 32.1 (CH3, 

tBu), 33.5 (CH2, COD), 33.9 (CH2-S), 34.6 (C, tBu), 34.9 (C, tBu), 

35.3 (CH2, Ad), 43.2 (CH2, Ad), 58.5 (C, Ad), 66.0 (CH2-O, JC-P= 15 Hz), 69.1 (CH=, 

COD), 72.5 (CH=, COD), 76.0 (CHCH2S), 77.1 (CHCH2O), 99.0 (CH=, COD), 99.1 (CH=, 

COD),  110.2 (CMe3), 117.3-144.4 (aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-B= 49 

Hz). 

 [Ir(cod)(L6d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  94.2 (s). 1H NMR (CDCl3), 

: 1.15 (s, 3H, CH3), 1.21 (s, 3H, CH3), 1.31 (m, 2H, CH2, COD),1.45 (s, 9H, CH3, 
tBu), 

1.67 (s, 9H, CH3, 
tBu), 1.72 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.87-2.13 (m, 6H, CH2, 
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COD), 2.20 (s, 6H, CH3), 3.34-3.51 (m, 3H, CH2-S, CH2-O, CH=, COD), 3.85 (m, 1H, 

CHCH2S), 4.06 (m, 2H, CH2-O, CH=, COD), 4.16 (m, 1H, CHCH2O), 4.57 (m, 2H, CH2-

O, CH=, COD), 5.17 (m, 1H, CH=, COD), 7.05-8.42 (m, 21H, CH=). 13C NMR (CDCl3), : 

16.3 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.5 (CH3), 29.3 (CH2, COD),  29.5 

(CH2, COD), 29.7 (CH2, COD), 31.4 (CH3, 
tBu), 34.0 (CH2, COD), 34.7 (C, tBu), 35.1 (C, 

tBu), 45.1 (CH2-S), 66.2 (CH=, COD), 69.0 (CH2-O), 75.7 (CH=, COD), 77.2 (CHCH2S), 

79.0 (CHCH2O), 105.7 (CH=, COD), 111.9 (CMe2), 117.4-144.9 (aromatic carbons), 

161.7 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L6e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  96.9 (s). 1H NMR (CDCl3), 

: 0.87 (m, 2H, CH2, COD), 1.18 (s, 6H, CH3), 1.43 (s, 9H, CH3, 
tBu), 1.52 (m, 2H, CH2, 

COD), 1.70 (s, 6H, CH3), 1.75 (s, 9H, CH3, 
tBu), 2.06 (m, 4H, CH2, COD), 2.22 (s, 6H, 

CH3), 3.29 (m, 1H, CH=, COD), 3.57 (m, 2H, CH2-O, CH=, COD), 3.74 (m, 1H, CH2-S), 

3.95-4.34 (m, 3H, CH2-O, CHCH2S, CHCH2O), 4.44 (m, 1H, CH=, COD), 4.54 (m, 1H, 

CH2-O), 4.71 (m, 1H, CH=, COD), 7.17-8.37 (m, 21H, CH=). 13C NMR (CDCl3), : 16.4 

(CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.3 (CH3), 26.4 (CH3), 29.6 (CH2, COD), 

30.5 (CH2, COD), 31.4 (CH3, 
tBu), 32.1 (C, tBu), 32.3 (C, tBu), 34.8 (CH2, COD), 48.5 

(CH2-S), 67.1 (CH=, COD), 68.8 (CH2-O), 74.9 (CH=, COD), 77.9 (CHCH2S), 80.2 

(CHCH2O), 102.2 (CH=, COD), 104.8 (CH=, COD),  110.2 (CMe2), 117.4-159.3 

(aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L7d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  94.1 (s). 1H NMR (CDCl3), 

: 1.49 (s, 6H, CH3), 1.66 (s, 9H, CH3, 
tBu), 1.83 (m, 2H, CH2, COD), 1.96 (s, 9H, CH3, 

tBu), 2.00 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.20 (m, 4H, CH2, COD), 2.35 (m, 2H, CH2, 

COD), 2.49 (s, 6H, CH3), 3.78 (m, 1H, CH2-O), 3.90 (m, 2H, CH2-S, CH=, COD), 4.16 

(m, 1H, CHCH2S), 4.25 (m, 1H, CH2-O), 4.40-4.34  (m, 1H, CH2-S), 4.53 (m, 1H, 

CHCH2O), 4.78 (m, 1H, CH=, COD), 4.86 (m, 2H, CH=, COD), 7.47-8.23 (m, 21H, 

CH=). 13C NMR (CDCl3), : 16.3 (CH3), 16.6 (CH3), 20.3 (2CH3), 26.5 (2CH3), 28.2 (CH2, 

COD), 28.8 (CH2, COD), 29.7 (CH2, COD), 31.3 (CH3, 
tBu), 32.3 (CH3, 

tBu), 32.9 (CH2, 

COD), 34.7 (C, tBu), 35.1 (C, tBu), 46.5 (CH2-S), 67.9 (CH=, COD), 68.3 (CH2-O, JC-P= 

14.4 Hz), 75.0 (CH=, COD), 77.2 (CHCH2S), 79.9 (CHCH2O), 101.5 (CH=, COD), 104.4 

(CH=, COD),  111.4 (CMe2), 117.4-144.7 (aromatic carbons), 161.6 (q, C-B, BArF, 
1JC-

B= 49 Hz). 

 [Ir(cod)(L7e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  96.9 (s). 1H NMR (CDCl3), 

: 1.28 (s, 6H, CH3), 1.48 (s, 9H, CH3, 
tBu), 1.60 (m, 2H, CH2, COD), 1.76 (s, 9H, CH3, 

tBu), 1.81 (s, 3H, CH3), 1.84 (s, 3H, CH3), 1.93 (m, 2H, CH2, COD), 2.14 (m, 4H, CH2, 

COD), 2.3 (s, 6H, CH3), 3.45 (m, 1H, CH=, COD), 3.64 (m, 2H, CH2-O), 3.87 (m, 1H, 

CH2-S) 4.18 (m, 2H, CH2-S, CHCH2S), 4.31 (m, 1H, CHCH2O), 4.40 (m, 1H, CH=, COD), 
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4.58 (m, 1H, CH=, COD), 4.74 (m, 1H, CH=, COD), 7.26-8.06 (m, 21H, CH=). 13C NMR 

(CDCl3), : 16.4 (CH3), 16.6 (CH3), 20.3 (CH3), 20.4 (CH3), 26.4 (CH3), 27.0 (CH2, COD), 

29.6 (CH2, COD), 30.0 (CH2, COD), 31.0 (CH2, COD), 31.4 (CH3, 
tBu), 32.1 (CH3, 

tBu), 

34.3 (C, tBu), 34.7 (C, tBu), 48.3 (CH2-S), 67.8 (CH=, COD), 69.1 (CH2-O, JC-P= 14.4 

Hz), 75.0 (CH=, COD), 77.6 (CHCH2S), 79.6 (CHCH2O), 102.9 (CH=, COD), 103.1 (CH=, 

COD),  110.3 (CMe2), 117.4-143.9 (aromatic carbons), 161.7 (q, C-B, BArF, 
1JC-B= 49 

Hz). 

 [Ir(cod)(L8a)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  99.1 (s). 1H NMR (CDCl3), 

: 0.88 (m, 2H, CH2, COD), 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.33 (s, 9H, CH3, 
tBu), 

1.36 (s, 9H, CH3, 
tBu), 1.52 (s, 9H, CH3, 

tBu), 1.56 (s, 9H, CH3, 
tBu), 1.77 (s, 3H, CH3), 

1.99 (m, 2H, CH2, COD), 2.09 (m, 2H, CH2, COD), 2.1 (m, 2H, 2CH2, COD), 3.80 (m, 

1H, CH=, COD), 3.95 (m, 1H, CH2-S), 4.19 (m, 2H, CH2-S,  CHCMe2O), 4.33 (m, 1H, 

CHCH2S), 4.42 (m, 1H, CH=, COD), 4.50 (m, 1H, CH=, COD), 4.70 (m, 1H, CH=, COD), 

7.15-7.71 (m, 21H, CH=). 13C NMR (CDCl3), : 22.7 (CH2, COD), 26.4 (CH3), 26.5 

(CH3), 27.5 (CH3), 29.6 (2CH2, COD), 31.2 (CH3, 
tBu), 31.6 (2CH3, 

tBu), 31.9 (CH3, 
tBu), 

33.8 (CH2, COD), 34.8 (C, tBu), 35.4 (C, tBu), 35.5 (C, tBu), 47.9 (CH2-S), 75.9 (CH=, 

COD), 76.8 (CH=, COD), 77.2 (CHCH2S), 83.7 (CHCMe2O), 91.3 (d, CMe2O, JC-P= 21.2 

Hz), 100.5 (CH=, COD), 100.7 (CH=, COD), 109.2 (CMe2), 117.4-149.5 (aromatic 

carbons), 161.6 (q, C-B, BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L8d)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  92.2 (s). 1H NMR (CDCl3), 

: 0.85 (m, 2H, CH2, COD), 1.25 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.40 

(s, 3H, CH3), 1.43 (s, 9H, CH3, 
tBu), 1.59 (m, 2H, CH2, COD), 1.68 (s, 9H, CH3, 

tBu), 

1.73 (s, 3H, CH3), 1.84 (s, 3H, CH3), 2.16 (m, 4H, 2CH2, COD), 2.27 (s, 3H, CH3), 2.28 

(s, 3H, CH3), 3.44 (m, 1H, CH=, COD), 3.66 (d, 1H, CHCMe2O, 3JH-H= 8 Hz), 3.77-3.89 

(m, 2H, CH2-S), 4.14 (m, 1H, CH=, COD), 4.37-4.42 (m, 1H, CHCH2S), 4.58 (m, 1H, 

CH=, COD), 4.72 (m, 1H, CH=, COD), 7.22-7.70 (m, 19H, CH-Ar). 13C NMR (CDCl3), : 

16.2 (CH3), 16.4 (CH3), 20.2 (CH3), 20.4 (CH3), 22.8 (CH3), 26.5 (CH3), 26.6 (CH3), 27.9 

(CH2, COD), 29.6 (CH2, COD), 29.9 (CH2, COD), 30.8 (CH2, COD), 31.3 (CH3, 
tBu), 32.4 

(CH3, 
tBu), 33.6 (C, tBu), 34.8 (C, tBu), 45.5 (CH2-S), 68.9 (CH=, COD), 76.5 (CHCH2S), 

77.2 (CH=, COD), 85.5 (CHCMe2O), 92.1 (d, CMe2O, JC-P= 21.2 Hz ), 99.6 (CH=, COD), 

100.2 (CH=, COD), 109.9 (CMe2), 117.4-136.9 (aromatic carbons), 161.6 (q, C-B, 

BArF, 
1JC-B= 49 Hz). 

 [Ir(cod)(L8e)]BArF: 
31P NMR (400 MHz, CDCl3) δ:  94.0 (s). 1H NMR (CDCl3), 

: 0.85 (m, 2H, CH2, COD), 1.25 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.46 

(s, 9H, CH3, 
tBu), 1.56 (s, 3H, CH3),  1.67 (m, 2H, CH2, COD), 1.74 (s, 3H, CH3), 1.75 (s, 

9H, CH3, 
tBu), 1.77 (s, 3H, CH3), 2.17 (m, 4H, 2CH2, COD), 2.26 (s, 3H, CH3), 2.28 (s, 
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3H, CH3), 3.26 (m, 1H, CH=, COD), 3.33 (m, 1H, CH2-S), 4.13-4.20 (m, 2H, CHCMe2O, 

CH2-S), 4.29-4.37 (m, 2H, CHCH2S, CH=, COD), 4.45 (m, 1H, CH=, COD), 4.61 (m, 1H, 

CH=, COD), 7.26-7.71 (m, 19H, CH=). 13C NMR (CDCl3), : 16.1 (CH3), 16.4 (CH3), 

20.2 (CH3), 20.3 (CH3), 22.7 (CH3), 22.8 (CH3), 26.4 (CH3), 26.5 (CH3), 27.0 (CH2, 

COD), 29.8 (CH2, COD), 30.1 (CH2, COD), 30.7 (CH2, COD), 31.6 (CH3, 
tBu), 32.2 (CH3, 

tBu), 34.3(C, tBu), 34.7 (C, tBu), 48.3 (CH2-S), 69.1 (CH=, COD), 75.8 (CHCH2S), 76.0 

(CH=, COD), 83.9 (CHCMe2O), 91.2 (d, CMe2O, JC-P= 20.5 Hz ), 99.9 (CH=, COD), 

100.5 (CH=, COD), 109.2 (CMe2), 117.4-145.2 (aromatic carbons), 161.6 (q, C-B, 

BArF, 
1JC-B= 49 Hz). 

  

3.4.4.3 Typical procedure for the hydrogenation of olefins 

 The alkene (0.5 mmol) and Ir complex (2 mol %) were dissolved in CH2Cl2 (2 

mL) an placed in a high-pressure autoclave. The autoclave was purged 4 times with 

hydrogen. Then, it was pressurized at the desired pressure. After the desired 

reaction time, the autoclave was depressurized and the solvent evaporated off. 

The residue was dissolved in Et2O (1.5 ml) and filtered through a short plug of 

celite. The conversions were determined by 1H NMR and GC and enantiomeric 

excesses were determined by chiral GC. The enantiomeric excesses of 

hydrogenated products from S1-S3 were determined using the conditions 

previously described.8e
 

 

3.4.4.4 Typical Procedure for Catalyst Recycling 

 After each catalytic run, the autoclave was depressurized. The colorless 

propylene carbonate solution was then extracted with dry/deoxygenated hexane 

under an argon atmosphere in order to remove the substrate and the 

hydrogenated product. After the extractions, the corresponding amount of 

substrate was then added for starting a new run. 
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4. Asymmetric Pd-catalyzed allylic substitution 

4.1 Background 

 As we discussed in the introduction most of the successful ligands 

reported to date for Pd-catalyzed allylic substitution reactions have been designed 

using two main strategies. The first one was to increase the ligand’s bite angle in 

order to create a chiral cavity in which the allyl system is perfectly embedded. This 

idea allowed the successful application of ligands with large bite angles for the 

allylic substitution of sterically undemanding substrates. The second strategy was 

the use of heterodonor ligands that result in an electronic discrimination of the 

two allylic terminal carbon atoms due to the different trans influences of the 

donor groups. This made it possible to successfully use a wide range of 

heterodonor ligands in allylic substitution reactions. More recently, we found that 

the use of biaryl phosphite-containing heterodonor ligands is highly advantageous 

by overcoming the most common limitations of this process, such as low reaction 

rates and high substrate specificity. Introducing a biaryl phosphite in the ligand 

design was beneficial because of its larger π-acceptor ability, which increases 

reaction rates, and because of its flexibility that allows the catalyst chiral pocket to 

adapt to both hindered and unhindered substrates. In addition, the presence of a 

biaryl phosphite moiety was also beneficial in the allylic substitution of more 

challenging monosubstituted substrates. 

 Until now, mixed phosphorus-nitrogen ligands have played a dominant 

role among the heterodonor ligands. Less attention has been paid to catalysts 

containing heterodonor thioether-phosphorus ligands in asymmetric allylic 

substitution. However, thioether-phosphine and thioether-phosphinite ligands 

have also demonstrated their potential utility in this process. Only one family of 

thioether-phosphite ligands, with a furanoside backbone, has been applied in this 

process but with moderate results (Figure 1.3.18, Chapter 1). This encourages 

further research into thioether-phosphite ligands to study the scope of this type of 

compounds as a new class of ligands for this process.  

 Less attention has been paid to catalysts containing monodentated ligands 

in asymmetric allylic substitution reactions. However, the groups of RajanBabu and 

Zhang obtained an enantioselectivity of 94% with catalysts precursors containing 

monophospholane ligands (Figure 1.3.6, Chapter 1). This encourages further 

research into monophosphorus ligands.  

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Chapter 4 
 

 
140 

 In this chapter, we therefore report the application of the thioether-

phosphite (L1-L8a-e) and furanoside monophosphite (L9-L19a-c,f-g) ligand libraries 

previously reported in Chapter 3 in the Pd-catalyzed asymmetric allylic substitution 

of several substrates. More specifically, in section 4.2 we report the application of 

the thioether-phosphite (L1-L8a-e) ligand library, derived from L-(+)-tartaric acid. 

Systematic variation of the thioether moiety, substituent at the alkyl backbone 

chain next to the phosphite moiety and the substituents/configurations in the 

biaryl phosphite group provide useful information about the ligand parameters 

that control the enantiodiscrimination. By carefully selecting the ligand 

parameters, full conversions and good enantioselectivities were obtained for 

several linear substrates (ee's up to 83 %). In section 4.3 we report the application 

of the modular sugar-based monophosphite ligand library (L9-L19a-c,f-g) for this 

process. These ligands are derived from D-(+)-glucose, D-(+)-galactose and D-(+)-

fructose, which lead to a wide range of sugar backbones, and contain several 

substituents in the C-3 of the furanoside backbone and several 

substituents/configuration in the biaryl moiety, with different steric and electronic 

properties. Systematic variation of the ligand parameters indicates that the 

catalytic performance (activities and enantioselectivities) is highly affected by 

sugar backbone, the substituents and configuration of C-3 and C-4 of the ligand 

backbone and the type of substituents/configuration in the biaryl phosphite 

moiety. Unfortunately, low-to-moderate enantioselectivities were obtained (ee’s 

up to 76%). 
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4.2 Asymmetric Pd-catalyzed allylic substitution using a thioether-

phosphite ligand library. 

Sabina Alegre, Carlota Borràs, Montserrat Diéguez, Oscar Pàmies in manuscript to 

be submitted 

Abstract. A series of readily available thioether-phosphite ligands have been 

tested in the Pd-catalyzed allylic substitution reactions of several linear substrates 

with different steric properties. Systematic variation of the thioether moiety, 

substituent at the alkyl backbone chain next to the phosphite moiety and the 

substituents/configurations in the biaryl phosphite group provide useful 

information about the ligand parameters that control the enantiodiscrimination. 

By carefully selecting the ligand parameters, full conversions and good 

enantioselectivities were obtained for several linear substrates (ee's up to 83 %). 

  

4.2.1 Introduction 

 The development of methods for enantioselective formation of carbon-

carbon and carbon-heteroatom bonds is one of the key issues in organic synthesis. 

A versatile method for achieving this is asymmetric palladium-catalyzed allylic 

substitution with several stabilized nucleophiles.1 Most of the successful ligands 

reported to date for this process have been designed using three main strategies. 

The first, developed by Hayashi and coworkers, involves a secondary interaction of 

the nucleophile with a side chain of the ligand to direct the approach of the 

nucleophile to one of the allylic terminal carbon atoms.1,2 The second strategy, 

developed by Trost and coworkers, increases the ligand’s bite angle to create a 

chiral cavity in which the allyl system is embedded.1,3 This idea made it possible for 

ligands with large bite angles to be successfully applied to the allylic substitution of 

sterically undemanding substrates. The third strategy, developed by groups led by 

Helmchen, Pfaltz and Williams, uses heterodonor ligands to electronically 

discriminate between the two allylic terminal carbon atoms because of the 

different trans influences of the donor groups.1, 4  This made it possible to 

successfully use a wide range of heterodonor ligands in allylic substitution 

reactions. Mixed phosphorus-nitrogen ligands have played a dominant role among 

the heterodonor ligands.1 To a lesser extent, thioether-phosphorus ligands have 

also demonstrated their potential utility in Pd-catalyzed asymmetric allylic 

substitution reactions.1h In this context, several combinations of P-S ligands mainly 
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thioether-phosphine5 and thioether-phosphinite6  have been studied and have 

proved to be effective. 

 Less attention has been paid to catalysts containing thioether-phosphite 

ligands7 despite that the presence of biaryl-phosphite moieties in ligand design has 

shown to be highly advantageous by overcoming the most common limitations of 

this process, such as low reaction rates and high substrate specificity.1j,8 There is 

only one report on the use of thioether-phosphite ligands in this process but with 

moderate success (Figure 4.2.1).   

 

 
Figure 4.2.1. Previously applied thioether-phosphite ligands. 

 Therefore, a study of the possibilities offered by thioether-phosphite as 

new ligands for this process is still needed. For this purpose, in this chapter we 

have applied the previously reported thioether-phosphite ligands (L1-L8a-e; Figure 

4.2.2) in the asymmetric Pd-catalyzed allylic substitution reactions. These ligands 

combine the advantages of the thioether and phosphite moieties (such as high 

resistance to oxidation and straightforward modular constructions)9,10 with the 

availability at low price of the backbone derived from L-(+)-tartaric acid.11 With this 

library we have been able to investigate the effect of systematically varying the 

electronic and steric properties of the thioether group (ligands L1-L7), the 

substituents in the alkyl backbone chain next to the phosphite moiety (ligands L1 

and L8) and the substituents/configurations in the biaryl phosphite moiety (a-e). 

By carefully selecting the ligand parameters, full conversions and good 

enantioselectivities were obtained for several linear substrates (ee's up to 83 %).  
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Figure 4.2.2. Thioether-phosphite ligands L1-L8a-e. 

4.2.2 Results and discussion 

4.2.2.1 Allylic substitution of disubstituted linear substrates 

 In this section, we report the use of the chiral thioether-phosphite ligand 

library (L1-L8a-e) in the Pd-catalyzed allylic substitution of linear disubstituted 

substrates with different steric properties (Eq. 1): rac-1,3-diphenyl-3-acetoxyprop-

1-ene (S1) (widely used as a model substrate); rac-(E)-ethyl-2,5-dimethyl-3-hex-4-

enylcarbonate (S2) and rac-1,3-dimethyl-3-acetoxyprop-1-ene (S3). In all the cases, 

the catalysts were generated in situ from the -allyl-palladium chloride dimer 

[PdCl(3-C3H5)]2 and the corresponding ligand. The nucleophile was generated 

from dimethyl malonate in the presence of N,O-bis(trimethylsilyl)-acetamide 

(BSA).1 

 

 
 

Allylic substitution of rac-1,3-diphenyl-3-acetoxyprop-1-ene S1 

 For an initial evaluation of the thioether-phosphite ligand library (L1-L8a-

e), we chose the Pd-catalyzed allylic substitution of S1 (Eq 1, R= Ph), which is 

widely used as a model substrate. Initially, we determined the optimal reaction 

conditions by conducting a first set of experiments in which the solvent and the 

ligand-to-palladium ratio were varied. For this purpose, we studied the effect of 

four solvents (tetrahydrofuran, toluene, dimethylformamide and 

dichloromethane) at three ligand-to-palladium ratios (L/Pd= 0.75, L/Pd= 1.1 and 
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L/Pd= 2) with ligand L1a. The results show that the efficiency of the process 

depended on the nature of the solvent and ligand-to-palladium ratio (Table 4.2.1). 

The optimum trade-off between activities and enantioselectivities was obtained by 

using dichloromethane as the solvent. Enantioselectivities dropped when an 

excess of ligand were used (entries 1-3). The use of DMF as a solvent has also a 

negative effect on enantioselectivity (entry 6). This can be explained by the 

formation of a less selective PdL2 species,12 due to the presence of excess of ligand 

or to DMF coordination to Pd. Interestingly, a clear kinetic resolution (KR) of the 

substrate was observed in all the solvents except DMF. However, the kinetic 

resolution in THF is advantageous, because it provides higher enantioselectivities 

in product S1 than in dichloromethane or toluene (entry 4 vs 5 and 7). 

 

Table 4.2.1 Pd-catalysed allylic substitution of S1 using ligand L1a. Effect of the solvent and 

ligand-to-palladium ratio.
a
 

Entry L/Pd Solvent % Conv (h)
b 

% ee 1
c 

% ee S1
c 

k(R)-S1 / k(S)-S1
d 

1 0.75 DCM 100 (3) 17 (S) - - 

2 1.1 DCM 100 (3) 18 (S) - - 

3 2 DCM 100 (3) 11 (S) - - 

4 1.1 THF 90 (3) 17 (S) 95 (R) 3.2 

5 1.1 Toluene 64 (3) 16 (S) 35 (R) 2.0 

6 1.1 DMF 100 (3) 4 (S) - - 

7 1.1 DCM 93 (1.5) 18 (S) 52 (R) 1.5 
a All reactions were run at room temperature. 0.5 mol% [PdCl(3-C3H5)]2.  S1 (1 mmol), solvent (2 mL), BSA (3 eq), 
dimethyl malonate (3 eq), KOAc (pinch). b Conversion percentage determined by 1H-NMR. c Enantiomeric 
excesses determined by HPLC on a Chiralcel-OJ column. Absolute configuration drawn in parentheses. d 
Calculated from kR/KS= ln[(1-Conv/100)(1-ee/100)]/ ln[(1-Conv/100)(1+ee/100)].13 
 

 Under the optimized conditions (i.e. a ligand-to-palladium ratio of 1.1 and 

dichloromethane as the solvent) we tested the remaining ligands. Table 4.2.2 

shows the results. They indicate that enantioselectivities are highly affected by the 

thioether substituent, the substituents in the alkyl backbone chain next to the 

phosphite moiety and the configuration of the biaryl phosphite moiety. However, 

the effect of the ligand parameters in activity is less pronounced. Full conversions 

and enantioselectivities up to 80% were obtained with ligand L8d. 

We first investigated the effect of the substituents/configurations at the 

biaryl phosphite moiety with ligands L1a-e. The results indicated that the nature of 

the substituents at the biaryl phosphite moiety has no effect on 

enantioselectivities (Table 4.2.2, entries 1-3), while enantioselectivities are highly 

affected by the configuration of the biaryl phosphite moiety (Table 4.2.2, entries 4-
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5 vs 1-3).  Ligands containing an R-biaryl phosphite moiety (d) provide therefore 

higher enantioselectivities than ligands containing an S-biaryl group (e) (i.e. entry 4 

vs 5).  

Concerning the effect of the thioether substituent, the highest 

enantioselectivity of the series was achieved using a phenyl thioether substituent 

(i.e. Table 4.2.2; entry 4 vs 8, 11, 13, 15 and 17). 

Interestingly the introduction of methyl substituents at the alkyl backbone 

chain next to the phosphite moiety (ligands L8) has extremely positive effect on 

enantioselectivity (i.e. entry 4 vs 20).  

 

Table 4.2.2 Pd-catalysed allylic substitution of S1 using 

ligands L1-L8a-e.
a
 

Entry Ligand % Conv (h) % ee 

1 L1a 100 (3) 18 (S) 

2 L1b 100 (3) 17 (S) 

3 L1c 100 (3) 17 (S) 

4 L1d 100 (3) 33 (R) 

5 L1e 100 (3) 17 (S) 

6 L2a 100 (3) 4 (S) 

7 L3a 92 (3) 17 (R) 

8 L3d 96 (3) 23 (R) 

9 L3e 100 (3) 12 (S) 

10 L4a 100 (3) 11 (R) 

11 L4d 100 (3) 27 (R) 

12 L4e 100 (3) 14 (S) 

13 L5d 100 (3) 25 (R) 

14 L5e 100 (3) 0 

15 L6d 100 (3) 22 (R) 

16 L6e 100 (3) 4 (R) 

17 L7d 100 (3) 14 (R) 

18 L7e 100 (3) 4 (R) 

19 L8a 100 (3) 40 (R) 

20 L8d 100 (3) 80 (R) 

21 L8e 100 (3) 10 (R) 
a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S1 (1 mmol), CH2Cl2 (2 
mL), BSA (3 eq), dimethyl malonate (3 eq), KOAc (pinch). b Conversion 
percentage determined by 1H-NMR. c Enantiomeric excesses 
determined by HPLC on a Chiralcel-OJ column. Absolute configuration 
drawn in parentheses. 
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Allylic substitution of rac-(E)-ethyl-2,5-dimethyl-3-hex-4-enylcarbonate S2 

 We next screened the thioether-phosphite ligand library L1-L8a-e in the 

allylic substitution process of S2 using dimethyl malonate as nucleophile (Eq 1, R= 
iPr, LG= OCO2Et). This substrate is more sterically demanding than substrate S1, 

which we used before.1 If ee’s are to be high, the ligand must create a bigger chiral 

pocket around the metal center to be able to accommodate the sterically 

demanding isopropyl substituents.1 Due to the flexibility conferred by the biaryl 

phosphite moiety, we expect to obtain also good enantioselectivities for this 

substrate. The most interesting results are shown in Table 4.2.3. In general, the 

trends were the same as for the allylic substitution of S1.  

 

Table 4.2.3 Pd-catalysed allylic substitution of S2 using 

ligands L1-L8a-e.
a
 

Entry Ligand % Conv (h) % ee 

1 L1a 100 (24) 21 (R) 

2 L1b 100 (24) 22 (R) 

3 L1c 100 (24) 20 (R) 

4 L1d 100 (24) 38 (S) 

5 L1e 100 (24) 20 (R) 

6 L2a 100 (24) 7 (R) 

7 L3a 99 (24) 19 (S) 

8 L3d 100 (24) 26 (S) 

9 L3e 100 (24) 17 (R) 

10 L4a 100 (24) 15 (S) 

11 L4d 100 (24) 34 (S) 

12 L4e 100 (24) 19 (R) 

13 L5d 100 (24) 31 (S) 

14 L5e 100 (24) 4 (R) 

15 L6d 100 (24) 29 (S) 

16 L6e 100 (24) 9 (S) 

17 L7d 100 (24) 19 (S) 

18 L7e 100 (24) 7 (S) 

19 L8a 100 (24) 42 (S) 

20 L8d 100 (24) 83 (S) 

21 L8e 100 (24) 12 (S) 
a All reactions were run at room temperature. 1 mol% [PdCl(3-
C3H5)]2. L/Pd= 1.1. CH2Cl2 as solvent. b Conversion percentage 
determined by 1H-NMR. c Enantiomeric excesses determined by 1H-
NMR using Eu(hfc)3. Absolute configuration drawn in parentheses. 
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 Again, the catalyst precursor containing thioether-phosphite ligand L8d 

provided the best enantioselectivity (ee's up to 83%; Table 4.2.3, entry 20). As 

expected, the activities were lower than in the alkylation reaction of S1.1 The 

stereoselectivity of the alkylation of S2 was the same as for the alkylation reaction 

of S1, though the CIP descriptor was inverted because of the change in the priority 

of the groups. 

 

Allylic substitution of rac-1,3-dimethyl-3-acetoxyprop-1-ene S3  

 Finally, we also screened the thioether-phosphite ligand library L1-L8a-e in 

the allylic alkylation of the linear substrate S3 (Eq 1, R= Me). This substrate is less 

sterically demanding than substrates S1-S2. The enantioselectivity for S3 is 

therefore more difficult to control than with hindered substrates such as S1. If ee 

values are to be high, the ligand must create a small chiral pocket around the 

metal center, mainly because of the presence of less sterically demanding methyl 

syn substituents.1 There are therefore fewer successful catalytic systems for the 

Pd-catalyzed allylic substitution of this substrate than for the allylic substitution of 

hindered substrate S1. 7b,14 Due to the presence of a bulky biaryl phosphite moiety 

in ligands L1-L8a-e, which are known to be flexible and to provide large bite 

angles, we expected to be able to tune the size of the chiral pocket appropriately. 

 Table 4.2.4 summarizes the results of using the thioether-phosphite ligand 

library. Again, enantioselectivities were affected by the substituents in both the 

thioether and alkyl backbone chain next to the phosphite moiety and by the 

configuration of the biaryl phosphite group. However, the effect of the thioether 

substituent on enantioselectivity was different from their effect on the alkylation 

of hindered substrates S1-S2. Thus, the presence of a 2-naphthyl thioether 

substituent increases the enantioselectivity from 29% ee (for a phenyl thioether 

substituent) to 40% ee (entries 4 vs 17). Nonetheless, the positive effect on 

enantioselectivity of introducing methyl substituents at the alkyl backbone chain is 

more pronounced than the effect of the thioether substituent (Table 4.2.4, entry 

17 vs 20). Despite having a phenyl thioether substituent, the best 

enantioselectivity was therefore obtained with ligand L8d, which contains a methyl 

substituent at the alkyl backbone chain and an R-configuration at the biaryl 

phosphite moiety (ee's up to 64%, entry 20). 
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Table 4.2.4. Pd-catalysed allylic substitution of S3 using 

ligands L1-L8a-e.
a
 

Entry Ligand % Conv (h) % ee 

1 L1a 100 (6) 11 (R) 

2 L1b 100 (6) 9 (R) 

3 L1c 100 (6) 10 (R) 

4 L1d 100 (6) 29 (S) 

5 L1e 100 (6) 12 (R) 

6 L2a 100 (6) 3 (R) 

7 L3a 100 (6) 15 (R) 

8 L3d 100 (6) 21 (S) 

9 L3e 100 (6) 19 (R) 

10 L4a 100 (6) 8 (R) 

11 L4d 100 (6) 22 (S) 

12 L4e 100 (6) 15 (R) 

13 L5d 100 (6) 20 (S) 

14 L5e 100 (6) 10 (R) 

15 L6d 100 (6) 24 (S) 

16 L6e 100 (6) 7 (R) 

17 L7d 100 (6) 40 (S) 

18 L7e 100 (6) 8 (R) 

19 L8a 100 (6) 8 (R) 

20 L8d 100 (6) 64 (S) 

21 L8e 100 (6) 29 (R) 
a 0.5 mol% [PdCl(3-C3H5)]2, ligand (0.011 mmol), S3 (1 mmol), CH2Cl2 (2 
mL), BSA (3 eq), dimethyl malonate (3 eq), KOAc (pinch). b Conversion 
measured by GC. Reaction time shown in parentheses. c Enantiomeric 
excesses measured by GC. The absolute configuration appears in 
parentheses. 

 

4.2.3 Conclusions 

 A library of thioether-phosphite ligands, derived from L-(+)-tartaric acid, 

has been evaluated in the Pd-catalyzed allylic substitution reactions of linear 

substrates with different steric properties. Systematic variation of the ligand 

parameters indicates that the introduction of a substituent at the alkyl backbone 

chain next to the phosphite moiety and the presence of an R-biaryl phosphite 

group have an extremely positive effect on enantioselectivity. By carefully 

selecting the ligand parameters, full conversions and good enantioselectivities 

were therefore obtained for several linear substrates (ee's up to 83 %).  
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4.2.4 Experimental Section 

4.2.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

an argon atmosphere. Solvents were purified by standard procedures. The 

synthesis of ligands L1-L8a-e has been previously described in Chapter 3.2. 

Racemic substrates S1-S3 were prepared as previously reported.15,16  All other 

reagents were used as commercially available. 1H-NMR spectra were recorded 

using a 400 MHz spectrometer. Chemical shifts are relative to that of SiMe4 as 

internal standard. 

 
4.2.4.2 Typical procedure for the allylic alkylation of S1-S3 

 A degassed solution of [PdCl(3-C3H5)]2 (1.8 mg, 0.005 mmol) and the 

thioether-phosphite ligand (0.011 mmol) in dichloromethane (0.5 mL) was stirred 

for 30 min. Subsequently, a solution of substrate (1 mmol for S1 and S3, and 0.5 

mmol for S2) in dichloromethane (1.5 mL), dimethyl malonate (171 L, 1.5 mmol), 

N,O-bis(trimethylsilyl)-acetamide (370 L, 1.5 mmol) and a pinch of KOAc were 

added. The reaction mixture was stirred at room temperature. After the desired 

reaction time, the reaction mixture was diluted with Et2O (5 mL) and a saturated 

NH4Cl (aq) (25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) 

and the extract dried over MgSO4. For compound 1, solvent was removed and 

conversion was measured by 1H-NMR. To determine the ee by HPLC (Chiralcel OJ, 

13% 2-propanol/hexane, flow 0.5 mL/min), a sample was filtered over basic 

alumina using dichloromethane as the eluent.7 For compound 2, the conversion 

was measured by 1H-NMR and the ee was determined by 1H-NMR using 

[Eu(hfc)3].
6b For compound 3 conversion and enantiomeric excess were 

determined by GC.17 
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4.3 Asymmetric Pd-catalyzed allylic substitution using a furanoside 

monophosphite ligand library. Scope and limitations. 

Sabina Alegre, Montserrat Diéguez, Oscar Pàmies in manuscript to be submitted  

Abstract. We have applied a modular sugar-based phosphite ligand library for the 

Pd-catalyzed allylic substitution reactions of several substrates. These ligands are 

derived from D-(+)-glucose, D-(+)-galactose and D-(+)-fructose, which lead to a 

wide range of sugar backbones, and contain several substituents at C-3 of the 

furanoside backbone and several substituents/configurations in the biaryl moiety, 

with different steric and electronic properties. Systematic variation of the ligand 

parameters indicates that the catalytic performance (activities and 

enantioselectivities) is highly affected by sugar backbone, the substituents at the 

C-3 of the furanoside backbone, the configurations at carbon C-3 and C-4 of the 

ligand backbone and the type of substituents/configurations in the biaryl 

phosphite moiety as well as the substrate type. While for disubstituted substrates 

moderate enantioselectivities (up to 76%) were therefore achieved using ligand 

L14f, the highest enantioselectivity (up to 40%) for monosubstituted substrate was 

obtained using ligand L17a. 

4.3.1 Introduction 

 Palladium-catalyzed asymmetric allylic alkylation is a useful synthetic 

method for the enantioselective formation of C-C bonds.1 The selection of chiral 

ligands for highly enantioselective allylic substitution has focussed on the use of 

bidentated nitrogen and phosphorus donors (both homo- and heterodonors).1 Less 

attention has been paid to catalysts containing monodentated ligands in this 

process. However, in 2000, the groups of RajanBabu and Zhang obtained an 

enantioselectivity of 94% with catalysts precursors containing monophospholane 

ligands in the Pd-catalyzed allylic alkylation to rac-1,3-diphenyl-3acetoxyprop-1-

ene.2 Despite this success, few monophosphorus ligands have been applied in the 

Pd-catalyzed asymmetric allylic substitution.3 This encourages further research 

into monophosphorus ligands to study their possibilities as a new class of ligands 

for this process. Recently, a group of less electron-rich phosphorus compounds –

biaryl phosphite-based ligands – have also demonstrated their potential utility by 

overcoming the most common limitations of this process, such as low reaction 
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rates and high substrate specificity.1i, 4  Therefore, these ligand systems have 

provided excellent enantioselectivities and activities in different substrate types.4 

 Following our interest in modular -acceptor ligands4 and encouraged by 

the success of monophosphorus ligands, we report here the design of a library of 

chiral monophosphite ligands L9-L19a-c,f-g (Figure 4.3.1) and screen their use in 

the palladium allylic substitution reaction of several substrate types. These ligands 

are derived from natural D-(+)-glucose, D-(+)-galactose and D-(+)-fructose and 

have the advantage of carbohydrate and phosphite ligands, such as availability at 

low price from readily available alcohols and facile modular constructions.5 In 

addition they are less sensitive to air than typical phosphines, widely used as 

ligands in asymmetric catalysis. All these favourable features enable series of chiral 

ligands to be synthesized and screened in the search for high activity and 

selectivity. Although carbohydrate-based bidentate ligands have been successfully 

used in some enantioselective reactions,5 few good monodentated chiral ligands 

have been reported based on carbohydrates.6,7 

 

 
Figure 4.3.1. Furanoside monophosphite ligand library L9-L19a-c,f-g. 
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4.3.2 Results and discussion 

4.3.2.1 Ligand design 

 The sugar-based monophosphite ligands are derived from D-(+)-glucose, D-

(+)-galactose and D-(+)-fructose, which lead to a wide range of sugar backbones 

(L15-L19), and contain several substituents at C-3 of the furanoside backbone (L9-

L14) and substituents/configurations in the biaryl moiety (a-c,f-g), with different 

steric and electronic properties, whose effect on the catalytic performance will be 

studied. Therefore, ligands L9-L19a-c,f-g consist of chiral di-O-protected either 

furanoside (ligands L9-L17) or pyranoside (ligands L18 and L19) backbones, which 

determine their underlying structure, and one hydroxyl group. Several phosphoric 

acid biaryl esters (a-c,f-g) were attached to these basic frameworks (Figure 4.3.1). 

 The influence of the different groups attached to the ortho- and para-

positions of the biphenyl moieties on enantioselectivity was investigated using 

ligands L15a-c, which have the same configuration on the carbon atom C-3. To 

determine whether there is a cooperative effect between the stereocenters of the 

ligand backbone and the configuration of the biaryl phosphite moieties, we 

prepared a series of enantiomerically pure binaphthol-based ligands L9-L10f-g and 

L15-L16f-g. 

 We studied the effects of the stereogenic carbon atom C-3 on 

enantioselectivity by comparing diastereomeric ligands L9 and L10 and L15 and 

L16, respectively, which have opposite configuration at C-3. The influence of the 

configuration of carbon atom C-4 in the catalytic performance was studied using 

ligands L15 and L17 which only differ in the configuration at C-4. 

 We also studied the effect of a range of substituents at C-3 of the 

furanoside backbone with ligands L9-L14. These ligands contain substituents with 

different electronic and steric properties at C-3 of the sugar backbone. 

 The influence of the carbohydrate ring size in the catalytic performance of 

the Pd-catalysts was studied with ligands L18, which have a pyranoside backbone 

and the same configuration at C-3 than furanoside ligand L15. Finally, with ligands 

L19 we studied how the flexibility of the ligand backbone may affect the catalytic 

performance. These ligands also have a pyranoside backbone as ligands L18, but 

differ from the rest of ligands in a phosphite moiety attached to a primary alcohol, 

providing a more flexible ligand. 
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4.3.2.2 Allylic substitution of disubstituted linear substrates 

 In this section, we report the use of the chiral phosphite ligand library (L9-

L19a-c,f-g) in the Pd-catalyzed allylic alkylation (Eq 1) of three disubstituted linear 

substrates with different steric properties: rac-1,3-diphenyl-3-acetoxyprop-1-ene 

S1, rac-(E)-ethyl-2,5-dimethyl-3-hex-4-enylcarbonate S2 and rac-1,3-dimethyl-3-

acetoxyprop-1-ene S3. In all the cases, the catalysts were generated in situ from 

0.5 mol % of -allyl-palladium chloride dimer [PdCl(3-C3H5)]2 and the 

corresponding ligand.1  

 

 
 

 We first investigated the Pd-catalyzed allylic substitution of rac-1,3-

diphenyl-3-acetoxyprop-1-ene S1, which is widely used as a model substrate. The 

effect of the solvent and the ligand-to-palladium ratio were investigated using the 

catalyst precursor containing ligand L16b (Table 4.3.1). The results indicated that 

solvent affected catalytic performance. The optimum trade-off between 

enantioselectivities and activities was obtained when dichloromethane was used 

as a solvent (Table 4.3.1, entry 4). We next studied the effect of the ligand-to-

palladium ratio. As expected the catalytic performance were best with a ligand-to-

palladium ratio of 2 (Table 4.3.1, entries 4 vs 5). 

 

Table 4.3.1. Pd-catalyzed allylic alkylation of 1,3-diphenyl-3-

acetoxyprop-1-ene S1 using ligands L16b.
a
 

Entry Solvent Ratio L/Pd % Conv (h)
b 

 % ee
c
 

1 DMF 2 43 (4) 11 (S) 

2 Toluene 2 9 (8) 19 (S) 

3 THF 2 24 (4) 17 (S) 

4 CH2Cl2 2 31 (4) 23 (S) 

5 CH2Cl2 1 14 (4) 20 (S) 
a 0.5 mol% [Pd(-C3H5)Cl]2, room temperature, 30 min; 3 equiv of CH2(COOMe)2 and N,O-
bis(trimethylsilyl)acetamide (BSA), a pinch of KOAc, room temperature. b Measured by 1H 
NMR. Reaction time shown in parentheses. c Determined by HPLC (Chiralcel OD). 
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 Under the optimized conditions, we first evaluated the rest of phosphite 

ligands in the Pd-catalyzed allylic substitution of rac-1,3-diphenyl-3-acetoxyprop-1-

ene S1. The results, which are summarized in Table 4.3.2, indicate that the 

catalytic performance (activities and enantioselectivities) is highly affected by the 

substituents at C-3 of the furanoside backbone, the substituents/configuration of 

the biaryl moiety, the configuration of carbon atoms C-3 and C-4 and the size of 

the ring of the sugar backbone.  

 The results using ligands L9-L10a,f-g and L15-L16a-c,f-g allow us to study 

the influence of the substituents/configuration of the biaryl moiety on the product 

outcome (Table 4.3.2, entries 1-6 and 11-20). We found that the presence of bulky 

substituents at the ortho positions of the biphenyl phosphite moiety has a 

negative effect on activity. Activities were therefore best when binaphthyl 

phosphite moieties (f,g) were present. The effect of the biaryl groups on 

enantioselectivity depends on the substituents attached to C-3 of the furanoside 

backbone. For ligands L9-L10, containing a methyl substituent at C-3, the highest 

enantioselectivities were achieved with an R-binaphthyl phosphite moiety (f; Table 

4.3.2, entries 2 and 5). However, for ligands L15 and L16, without the methyl 

substituent at C-3, the best enantioselectivities were achieved with ligands 

containing trimethylsilyl substituents at the ortho positions of the biphenyl 

phosphite moiety (c; Table 4.3.2, entries 13 and 18). 

 We next studied the effect of the substituents attached to C-3 of the 

furanoside backbone with ligands L10-L14. The results indicated that the highest 

enantioselectivities were obtained using ligand L14f, with a phenyl substituent at 

C-3 (Table 4.3.2, entry 10). 

 Comparing the results using ligands L15 with L16, that only differ in the 

configuration at C-3, we observed that this configuration controls the sense of 

enantioselectivity. Accordingly, ligands L15a-c,f-g with an S configuration at the C-

3 of the ligand backbone, gave the R-1 product, while ligands L16a-c,f-g with an R 

configuration at C-3 gave S-1 product (Table 4.3.2, entries 11-15 vs 16-20).  

Furthermore, comparing ligands L15f-g and L16f-g, we found a cooperative effect 

between the configuration of the binaphthyl phosphite moiety and the 

configuration at C-3, that results in a matched combination for ligand L16f (Table 

4.3.2, entry 19). The results also showed that ligand L17 with an S configuration at 

C-4 gave lower enantioselectivity than ligands L15 with an opposite configuration 

at this position (Table 4.3.2, entry 21 vs 11). In addition, ligands L18 which have a 

pyranoside backbone provided lower yields and enantioselectivities than their 
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relative furanoside ligands L15 (Table 4.3.2, entries 22-23 vs 11-12). Finally, the 

most flexible ligand L19, which has the phosphite moiety attached to a primary 

carbon, provided the lowest enantioselectivity (Table 4.3.2, entry 24). 

  

Table 4.3.2. Pd-catalyzed allylic alkylation of substrates S1-S3 in CH2Cl2 

using ligands L9-L19a-c,f-g.
a
 

Entry Substrate Ligand % Conv (h)
b 

 % ee
c
 

1 S1 L9a 48 (4) 6 (R) 

2 S1 L9f 100 (4) 12 (R) 

3 S1 L9g 100 (4) 10 (R) 

4 S1 L10a 57 (4) 12 (S) 

5 S1 L10f 100 (4) 37 (S) 

6 S1 L10g 40 (4) 4 (S) 

7 S1 L11f 100 (4) 36 (S) 

8 S1 L12f 42(4) 12 (S) 

9 S1 L13f 100 (4) 39 (S) 

10 S1 L14f 100 (4) 65 (S) 

11 S1 L15a 84 (4) 22 (R) 

12 S1 L15b 35 (4) 31 (R) 

13 S1 L15c 42 (4) 40 (R) 

14 S1 L15f 100 (4) 18 (R) 

15 S1 L15g 100 (4) 19 (R) 

16 S1 L16a 81 (4) 20 (S) 

17 S1 L16b 31 (4) 23 (S) 

18 S1 L16c 53 (4) 41 (S) 

19 S1 L16f 100 (4) 28 (S) 

20 S1 L16g 100 (4) 16 (S) 

21 S1 L17a 64 (4) 15 (R) 

22 S1 L18a 8 (4) 14 (R) 

23 S1 L18b 10 (4) 15 (R) 

24 S1 L19a 82 (4) 11 (S) 

25
d 

S1 L14f 29 (8) 72 (S) 

26 S2 L14f 94 (24) 66 (R)
e 

27 S3 L14f 46 (24) 42 (S)
f 

a 0.5 mol% [Pd(-C3H5)Cl]2, 2 mol% ligand, room temperature, 30 min; 3 equiv of 
CH2(COOMe)2 and N,O-bis(trimethylsilyl)acetamide (BSA), a pinch of KOAc, room 
temperature. b Measured by 1H NMR. Reaction time shown in parentheses. c 
Determined by HPLC (Chiralcel OD).d T= 0 °C. e Measured by 1H NMR using Eu(hfc)3. 

f 
Measured by GC. 
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 In addition to the effect of structural parameters on enantioselectivity, the 

reaction parameters can also be controlled to further improved selectivity. In this 

case, enantioselectivity was further improved (ee's up to 72%) with ligand L14f by 

lowering the reaction temperature to 0 °C (Table 4.3.2, entry 25). 

 We then tested ligand L14f (the one that provided the best result in the 

alkylation of S1) in the allylic alkylation of more hindered linear substrate S2 and 

unhindered linear substrate S3 (Eq 1). For hindered substrate S2, similar 

enantioselectivities (66% (R) ee) than S1 were achieved (Table 4.3.2, entry 26). 

Substrate S3 is less sterically demanding than substrates S1 and S2. The 

enantioselectivity for S3 is therefore more difficult to control than with hindered 

substrates such as S1.1 Unfortunately, the Pd-L14f catalytic system provided 

moderate enantioselectivity (ee's up to 42%; Table 4.3.2, entry 27). 

 

4.3.2.3 Allylic substitution of cyclic substrate 

 To further study the potential of ligands L9-L19a-c,f-g, we also tested the 

them in the allylic alkylation of cyclic substrate S4. As for unhindered linear 

substrate S3, enantioselectivity in cyclic substrates is difficult to control mainly 

because of the presence of less sterically anti substituents (Eq 2). These anti 

substituents are thought to play a crucial role in the enantioselection observed 

with cyclic substrates in the corresponding Pd-allyl intermediates.1  

 

 
 

 The results are summarized in Table 4.3.3. The results followed a similar 

trend to that observed for S1. Again, the best enantioselectivity was achieved 

using Pd/L14f catalytic system (ee's up to 44%). As observed for linear substrates, 

changing the solvent from dichloromethane to other solvents did not increase 

enantioselectivity (Table 4.3.3, entries 5 vs 13-15). 
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Table 4.3.3. Selected results for the Pd-catalyzed allylic alkylation of 

rac-3-acetoxy-cyclohexene S4 using ligands L9-L19a-c,f-g.
a
 

Entry Solvent Ligand % Conv (h)b  % eec 

1 CH2Cl2 L9f 52 (24) 7 (R) 

2 CH2Cl2 L9g 48 (24) 9 (R) 

3 CH2Cl2 L10f 54 (24) 29 (S) 

4 CH2Cl2 L10g 62 (24) 7 (S) 

5 CH2Cl2 L14f 49 (24) 44 (S) 

6 CH2Cl2 L15a 19 (24) 11 (R) 

7 CH2Cl2 L15f 39 (24) 9 (R) 

8 CH2Cl2 L15g 47 (24) 6 (R) 

9 CH2Cl2 L16a 11 (24) 9 (S) 

10 CH2Cl2 L16f 100 (24) 8 (S) 

11 CH2Cl2 L16g 100 (24) 2 (S) 

12 CH2Cl2 L17a 100 (24) 2 (R) 

13 DMF L14f 84 (24) 8 (S) 

14 THF L14f 27 (24) 37 (S) 

15 Toluene L14f 12 (24) 32 (S) 
a 0.5 mol% [Pd(-C3H5)Cl]2, 2 mol% ligand, room temperature, 30 min; 3 equiv of 
CH2(COOMe)2 and N,O-bis(trimethylsilyl)acetamide (BSA), a pinch of the corresponding 
base, room temperature. b Measured by GC. Reaction time shown in parentheses. 
c Determined by GC. 

 

4.3.2.4 Allylic substitution of monosubstituted linear substrates 

 Finally, we also examined the regio- and stereoselective allylic alkylation of 

1-(1-naphthyl)allyl acetate S5 with dimethyl malonate (Eq 3). It is not only the 

enantioselectivity of the process that needs to be controlled for this substrate; the 

regioselectivity is also a problem, because a mixture of regioisomers may be 

obtained. Most Pd-catalysts developed to date favor the formation of achiral linear 

product 6 rather than the desired branched isomer 5. Therefore, the development 

of highly regio- and enantioselective Pd-catalysts is still a challenge.4d,8  
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 The results obtained with the phosphite ligands are summarized in Table 

4.3.4. Unfortunately, the enantioselectivities (ee’s up to 40%) were not high. 

However, good regioselectivities (regio’s up to 80%) have been obtained.9  

 

Table 4.3.4. Pd-catalyzed allylic alkylation of S5 in CH2Cl2 using 

ligands L19a-c,f-g.
a
 

Entry Ligand % Conv (h)
b 

 5/6
b
 % ee

c
 

1 L9a 100 (6) 80/20 9 (R) 

2 L9f 100 (6) 40/60 15 (R) 

3 L9g 100 (6) 25/75 0 

4 L10a 100 (6) 75/25 6 (R) 

5 L10f 100 (6) 20/80 12 (R) 

6 L10g 100 (6) 30/70 8 (R) 

7 L11f 100 (6) 25/75 14 (R) 

8 L12f 64 (6) 30/70 6 (R) 

9 L13f 97 (6) 25/75 18 (R) 

10 L14f 85 (6) 25/75 24 (R) 

11 L15a 100 (6) 75/25 9(R) 

12 L15b 100 (6) 80/20 7 (R) 

13 L15c 100 (6) 80/20 18 (R) 

14 L15f 100 (6) 35/65 17 (S) 

15 L15g 100 (6) 20/80 0 

16 L16a 100 (6) 70/30 21 (R) 

17 L16b 100 (6) 75/25 10 (R) 

18 L16c 100 (6) 60/40 <5 (R) 

19 L16f 100 (6) 20/80 18 (R) 

20 L16g 100 (6) 25/75 3 (S) 

21 L17a 100 (6) 45/55 40 (R) 

22 L18a 100 (6) 30/70 <5 (R)  

23 L18b 100 (6) 35/65 <5 (S) 

24 L19a 100 (6) 70/30 25 (R) 
a 0.5 mol% [Pd(-C3H5)Cl]2, 2.2 mol% ligand, room temperature, 30 min; 3 
equiv of CH2(COOMe)2 and N,O-bis(trimethylsilyl)acetamide (BSA), a pinch of 
the corresponding base, room temperature. b Measured by 1H NMR. Reaction 
time shown in parentheses. c Determined by HPLC (Chiralcel OJ). 

  

 The results indicated that if regioselectivity is to be high, bulky 

substituents at the ortho positions of the biaryl phosphite moiety and a furanoside 

backbone with an R configuration at C-4 (ligands L15-L16a-c) are necessary (entries 

11-13 and 16-18). However, enantioselectivities were best for furanoside ligand 
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L17a with S configurations at both C-3 and C-4 of the furanoside backbone (entry 

21). 
 

4.3.3 Conclusions 

 A library of readily available monophosphite ligands has been screened in 

the asymmetric Pd-catalyzed allylic alkylation of several substrates with different 

electronic and steric properties. By carefully designing this library we were able to 

systematically investigate the effect of varying the sugar backbone, the 

substituents at C-3 of the furanoside backbone, the configurations at carbon C-3 

and C-4 of the ligand backbone and the type of substituents/configurations in the 

biaryl phosphite moiety. In general, the catalytic performance (activities and 

enantioselectivities) is highly affected by these ligand parameters as well as the 

substrate. For disubstituted substrates S1-S4 enantioselectivities were best with 

ligand L14f (ee's up to 76%) while for monosubstituted substrate S5 ligand L17a 

provided the best ee’s (up to 40%). 

 

4.3.4 Experimental Section 

4.3.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

argon atmosphere. Solvents were purified by standard procedures. Ligands L15-

L19a-c,f-g have been prepared as previously described.10 Ligands L9-L14a,f-g has 

been previously described in Chapter 3. Racemic substrates S1-S5 were prepared 

as previously reported.11 , 12 , 13  All other reagents were used as commercially 

available. 

 

4.3.4.2 Typical procedure of allylic alkylation of substrates S1-S4  

 A degassed solution of [Pd(-C3H5)Cl]2 (1.8 mg, 0.005 mmol) and the 

corresponding monophosphite (0.022 mmol) in dichloromethane (1 mL) was 

stirred for 30 min. Subsequently, a solution of corresponding substrate (1 mmol) in 

dichloromethane (1.5 mL), dimethyl malonate (342 L, 3 mmol), N,O-

bis(trimethylsilyl)-acetamide (740 L, 3 mmol) and a pinch of KOAc were added. 

The reaction mixture was stirred at room temperature. After the desired reaction 

time, the reaction mixture was diluted with Et2O (5 mL) and a saturated NH4Cl (aq) 

(25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and the 
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extract dried over MgSO4. For substrate S1, conversion was measured by 1H-NMR 

and enantiomeric excess was determined by HPLC (Chiralcel-OD, 0.5% 2-

propanol/hexane, flow 0.5 mL/min).14  For substrate S2, the conversion was 

measured by 1H-NMR and the ee was determined by 1H-NMR using [Eu(hfc)3].
15 For 

substrates S3 and S4, conversion and enantiomeric excess were determined by GC 

using a FS-Cyclodex -I/P 25 m column.16  

 

4.3.4.3 Typical procedure of allylic alkylation of monosubstituted linear substrate 

S5 

 A degassed solution of [Pd(-C3H5)Cl]2 (1.8 mg, 0.005 mmol) and the 

corresponding monophosphite ligand (0.022 mmol) in dichloromethane (0.5 mL) 

was stirred for 30 min. Subsequently, a solution of substrate (0.5 mmol) in 

dichloromethane (1.5 mL), dimethyl malonate (171 L, 1.5 mmol), N,O-

bis(trimethylsilyl)-acetamide (370 L, 1.5 mmol) and a pinch of KOAc were added. 

The reaction mixture was stirred at room temperature. After the desired reaction 

time, the reaction mixture was diluted with Et2O (5 mL) and a saturated NH4Cl (aq) 

(25 mL) was added. The mixture was extracted with Et2O (3 x 10 mL) and the 

extract dried over MgSO4. Solvent was removed and conversion and 

regioselectivity were measured by 1H-NMR. To determine the ee by HPLC 

(Chiralcel-OJ, 3% 2-propanol/hexane, flow 0.7 mL/min), a sample was filtered over 

basic alumina using dichloromethane as the eluent.17 
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5. Asymmetric Ni-catalyzed 1,2-addition 

5.1 Background 

 The catalytic addition of organoaluminum reagents to aldehydes as a route 

to chiral alcohols has attracted much attention, since many chiral alcohols are 

highly valuable intermediates for preparing chiral pharmaceutical and agricultural 

products. Despite the organoaluminum reagents are economically obtained in 

industrial scale, their use is rare. In this respect, the few successful catalysts 

developed for the enantioselective addition of trialkylaluminum to aldehydes can 

be grouped in two types. The first group are the titanium complexes that usually 

afford high enantioselectivities, but the high catalyst loadings (10-20 mol %) and 

the slow turnover rate hamper their potential utility. The second ones are the 

recently studied nickel complexes that provide enantioselectivities similar to those 

using titanium complexes but with low catalyst loadings (1 mol %). For the latter 

group, few successful ligands have been developed. Most of them use chiral 

monodentated phosphoroamidite and phosphite ligands. Nevertheless, our group 

has demonstrated that bidentated phosphite-phosphoroamidite ligands are also 

able to induce high enantioselectivities.  

 With the aim to expand the range of successful ligands for this process, in 

this chapter, we report the application of the two sugar-based ligand libraries 

described in Chapter 3 (thioether-phosphite (L1-L8a-e) and monophosphite (L9-

L14a,f-g) in the asymmetric Ni-catalyzed 1,2-addition of trialkylaluminum reagents 

to aldehydes. More specifically, in section 5.2 we report the application of 

thioether-phosphite ligand library (L1-L8a-e), derived from L-(+)-tartaric acid. Our 

results indicated that selectivity depended strongly on the thioether substituent, 

the substituents in the alkyl backbone chain next to the phosphite moiety and the 

configuration at the biaryl phosphite moiety. The best enantioselectivities (ee’s up 

to 71%) were obtained using the catalysts precursor containing the thioether-

phosphite ligand L5a in the 1,2-addition of several aryl aldehydes. In section 5.3, 

we report the application of the modular sugar-based monophosphite ligand 

library L9-L14a,f-g for the Ni-catalyzed 1,2-addition of trialkylaluminum reagents to 

aldehydes. These ligands are based on previously developed successful furanoside 

monophosphite ligands, in which new substituents have been attached to C-3 of 

the furanoside backbone. We found that the introduction of a methyl substituent 

at C-3 of the sugar backbone in allofuranoside ligands is highly advantageous in 

terms of enantioselectivity (ee's increased from 44% to 84%). 
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5.2 Thioether-phosphite ligands derived from L-(+)-tartaric acid for the Ni-

catalyzed trialkylaluminum addition to aldehydes 

Sabina Alegre, Carlota Borràs, Montserrat Diéguez, Oscar Pàmies in manuscript to 

be submitted 

Abstract. We have described the first application of bidentated P,S-ligands in the 

asymmetric Ni-catalyzed trialkylaluminum addition to several aldehydes. The 

ligands are prepared from inexpensive L-(+)-tartaric acid and combine the 

advantages of a sugar core and the presence of both thioether and phosphite 

moieties (i.e. modular design at a low price and high stability towards oxygen and 

other oxidizing reagents). Good yields and moderate enantioselectivities have 

been achieved for a range of aryl aldehydes using several organoaluminum 

sources. 

5.2.1 Introduction 

 The catalytic asymmetric carbon-carbon bond formation is one of the most 

actively pursued areas of research in the field of asymmetric catalysis. In this 

context, the catalytic addition of organometallic reagents to aldehydes as a route 

to chiral alcohols has attracted much attention, since many chiral alcohols are 

highly valuable intermediates for preparing chiral pharmaceutical and agricultural 

products.1 For alkylation reagents, dialkylzinc compounds have played a dominant 

role;2 although trialkylaluminum compounds are more interesting than other 

organometallic reagents because they are economically obtained in industrial scale 

from aluminum hydride and olefins.3  Despite this advantage their use is rare.4,5  In 

this respect, the few most successful catalysts for the enantioselective addition of 

trialkylaluminum to aldehydes have been titanium complexes bearing chiral diols 

or N-sulfonylated amino alcohols as ligands.4 However, the high catalyst loadings 

needed and the slow turnover rate hamper the potential utility of these catalytic 

systems. This limitation has been overcome by using Ni-catalyst modified with 

chiral monodentated phosphoroamidite5a,b,f and phosphite5c ligands. More 

recently, our group found that the use of bidentated phosphite-

phosphoroamidite5e can also led to excellent enantioselectivities with low catalyst 

loadings. 

 To further expand the range of ligands and performance of this 

asymmetric nickel-catalyzed addition of organoaluminum reagents to aldehydes 

process, we report in this chapter the application of bidentated thioether-
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phosphite ligand library L1-L8a-e (Figure 5.2.1), described in Chapter 3.2. These 

ligands, which are derived from natural L-(+)-tartaric acid, have the advantage of 

sugar and phosphite ligands, such as availability at low price from readily available 

alcohols, high resistance to oxidation, and facile modular constructions. 6  In 

addition, the introduction of a thioether moiety in the ligand design may be 

beneficial, because the S atom becomes a stereogenic center when coordinated to 

metal, which moves the chirality closer to the metal.7  The highly modular 

construction of these ligands makes it easy for us to study the effect of: (a) 

systematically varying the electronic and steric properties of the thioether group 

(ligands L1-L7), (b) varying the substituents in the alkyl backbone chain next to the 

phosphite moiety (ligands L1 and L8); and (c) the effect of the substituents and 

configurations in the biaryl phosphite moiety (a-e). To the best of our knowledge 

this is the first example of bidentated P-S ligands applied to this process. 

 

 
Figure 5.2.1. Thioether-phosphite ligands L1-L8a-e. 

5.2.2 Results and discussion 

5.2.2.1 Asymmetric addition of trimethylaluminum to benzaldehyde S1 

 To make an initial evaluation of this new type of ligands (L1-L8a-e), we 

chose the nickel-catalyzed asymmetric addition of trimethylaluminum to 

benzaldehyde S1, which was used as the model substrate (Table 5.2.1).4,5 The 

catalytic system was generated in situ by adding the corresponding ligand to a 

suspension of the catalyst precursor [Ni(acac)2] (acac = acetylacetonate). 

 The results indicate that enantioselectivities are highly affected by the 

thioether substituent, the substituents in the alkyl backbone chain next to the 

phosphite moiety and the configuration of the biaryl phosphite moieties. In all 

cases excellent isolated yields (>88%) of the desired 2-phenylethanol have been 

obtained without excess of ligand needed. The best enantioselectivity (ee’s up to 
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61%, Table 5.2.1, entry 15) were obtained using ligand L5a, which has the 

appropriate combination of ligand parameters. 

 

Table 5.2.1. Ni-catalyzed asymmetric addition of AlMe3 to 

benzaldehyde using thioether-phosphite ligand library L1-L8a-e 

 
Entry Ligand L/Ni % Conv

b 
% Yield

c 
% ee

d 

1 L1a 1 100 96 42 (R) 

2 L1a 0.5 98 95 41 (R) 

3 L1a 2 100 94 42 (R) 

4 L1b 1 100 93 41 (R) 

5 L1c 1 100 91 40 (R) 

6 L1d 1 100 96 12 (R) 

7 L1e 1 100 97 31 (R) 

8 L2a 1 100 92 28 (R) 

9 L3a 1 100 96 52 (R) 

10 L3d 1 100 95 12 (R) 

11 L3e 1 100 97 17 (R) 

12 L4a 1 100 96 45 (R) 

13 L4d 1 100 96 20 (R) 

14 L4e 1 100 96 31 (R) 

15 L5a 1 100 91 61 (R) 

16 L5d 1 100 96 29 (R) 

17 L5e 1 100 96 39 (R) 

18 L6a 1 100 89 41 (R) 

19 L6d 1 100 91 11 (R) 

20 L6e 1 100 93 29 (R) 

21 L7a 1 100 90 41 (R) 

22 L7d 1 100 89 10 (R) 

23 L7e 1 100 95 29 (R) 

24 L8a 1 100 92 5 (R) 

25 L8d 1 100 88 28 (R) 

26 L8e 1 100 89 20 (S) 
a Reaction conditions: T= -20 oC, [Ni(acac)2] (1 mol%), AlMe3 (2 equiv.), substrate (1 
mmol), THF (8 mL). b % Conversion determined by GC after 3 hours. c Isolated yield. 
d Enantiomeric excess measured by GC using Cyclodex-B column. 
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 The effect of the thioether substituent was studied with ligands L1-L7a 

(Table 5.2.1, entries 1, 8, 9, 12, 15, 18 and 21). We found that these substituents 

mainly affected the enantioselectivity. Our results showed that the 

enantioselectivity depended upon the steric properties of these substituents. 

Enantioselectivities were therefore higher when more sterically demanding 

substituents were present (i.e., Ad > tBu > Ph > Me). 

 With ligands L1-L7a-e, we next studied the effect of the biaryl phosphite 

moiety on the product outcome. The results using L1a-c indicated that the 

substituents at both ortho and para-positions of the biphenyl moiety had no effect 

on the enantioselectivity (i.e. Table 5.2.1, entries 1 vs 4 and 5). However, the 

results using ligands L1-L7d-e, which contain enantiopure biphenyl moieties, show 

a clear cooperative effect between the configuration of the biaryl phosphite 

moiety and the ligand backbone. This resulted in a matched combination for 

ligands L1-L7e, which contains an enantiopure (S)-biphenyl phosphite moiety (i.e. 

entry 7 vs 6). Nevertheless, it should be pointed that the highest 

enantioselectivities were achieved using ligands containing tropoisomeric biphenyl 

moieties (i.e. entries 1 vs 6 and 7). 

 With ligands L1 and L8, we studied how the substituents at the alkyl 

backbone chain next to the phosphite moiety affected the product outcome. The 

results indicate that replacing the methylenic group (ligands L1) by a CMe2 group 

(ligands L8) led to lower enantioselectivities (i.e. entry 1 vs 24). 

5.2.2.2 Asymmetric addition of several aluminum reagents to a range of 

aldehydes 

 To further assess the catalytic efficiency of the Ni/L5a catalytic system, we 

next tested it in the nickel-catalyzed addition of several trialkylaluminum sources 

(AlR’3, R’ = Me or Et; and DABAL-Me3) to other benchmark aldehydes with different 

steric and electronic properties. The results are summarized in Table 5.2.2.  

 The results using trimethylaluminum as alkylating reagent indicated that 

catalytic performance (activity and enantioselectivity) were hardly affected by the 

presence of either electron-donating or electron-withdrawing groups at the para 

or meta-position of the phenyl group of the substrate (Table 5.2.2, entries 1-3, 5-

9). However, while the presence of a methoxy group at the para position had a 

slightly negative effect on the enantioselectivity (Table 5.2.2, entry 1 vs 4), the 

highest enantioselectivity was achieved using 2-naphthaldehyde as substrate. In 

contrast to the most successful sugar-based phosphite ligands,5c,e conversions and 
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enantiomeric excesses did not decreased when 2-substituted benzaldehydes were 

used (entries 10 and 11). 

Table 5.2.2 Ni-catalyzed asymmetric addition of aluminum reagents to aldehydes with L5a
a 

  AlMe3  AlEt3  DABAL-Me3
b 

Entry Substrate % Conv
c
 % ee

d 
 % Conv

c
 % ee

d 
 % Conv

c
 % ee

d 

 

1 

 

 

100 (98) 

 

61 (R) 

  

100 (96) 

 

60 (R) 

  

94 (81) 

 

54 (R) 

 

2 

 

 

100 (95) 

 

60 (R) 

  

100 (91) 

 

59 (R) 

  

89 (83) 

 

53 (R) 

 

3 

 

 

100 (93) 

 

62 (R) 

  

100 (92) 

 

63 (R) 

  

84 (72) 

 

59 (R) 

 

4 

 

 

99 (94) 

 

49 (R) 

  

100 (95) 

 

47 (R) 

  

86 (76) 

 

43 (R) 

 

5 

 

 

100 (92) 

 

64 (R) 

  

100 (87) 

 

61 (R) 

  

78 (64) 

 

58 (R) 

 

6 

 

 

100 (97) 

 

61 (R) 

  

100 (92) 

 

61 (R) 

  

91 (77) 

 

54 (R) 

 

7 

 

 

100 (93) 

 

59 (R) 

  

100 (91) 

 

60 (R) 

  

87 (73) 

 

55 (R) 

 

8 

 

 

100 (92) 

 

60 (R) 

  

100 (94) 

 

58 (R) 

  

91 (79) 

 

54 (R) 

 

9 

 

 

100 (92) 

 

71 (R) 

  

100 (93) 

 

69 (R) 

  

83 (71) 

 

63 (R) 

 

10
 

 

 

100 (94) 

 

64 (R) 

  

100 (90) 

 

65 (R) 

  

88 (76) 

 

61 (R) 

 

11
 

 

 

100 (91) 

 

66 (R) 

  

100 (92) 

 

64 (R) 

  

79 (68) 

 

60 (R) 

a Reaction conditions: T= -20 oC, [Ni(acac)2] (1 mol%), AlR'3 (2 equiv.), substrate (1 mmol), THF (8 mL). b Reaction 
conditions: T= 5 oC, [Ni(acac)2] (1 mol%), DABAL-Me3 (1.2 equiv.), substrate (1 mmol), THF (8 mL). c % Conversion 
determined by GC after 3 hour. In brackets are shown the yields determined by GC using dodecane as internal 
standard. d Enantiomeric excess measured by GC using Cyclodex-B column. 
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 The results of using triethylaluminum and air-stable methylating reagent 

DABAL-Me3 indicated that the catalytic performance follows the same trend as for 

the trimethylaluminum addition. However, yields and enantioselectivities were 

somewhat lower using DABAL-Me3, probably because of the higher temperature 

required to achieve full conversions. 

5.2.3 Conclusions 

 A library of bidentated P,S-ligands have been applied for the first time in 

the Ni-catalyzed trialkylaluminum addition to several aldehydes. The ligands are 

prepared from L-(+)-tartaric acid and combine the advantages of a sugar core and 

the presence of both thioether and phosphite moieties (i.e. modular design at a 

low price and high stability towards oxygen and other oxidizing reagents). We 

were able to systematically investigate the effect of varying the thioether 

substituent, the substituents in the alkyl backbone chain next to the phosphite 

moiety and the substituents/configurations in the biaryl phosphite moiety. By 

judicious choice of the ligand components we obtained good yields and moderate 

enantioselectivities (ee values up to 71%) with several aryl aldehydes, with low 

catalyst loadings (1 mol %) and no excess of ligand.  

5.2.4 Experimental section 

5.2.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

an argon atmosphere. Solvents were purified by standard procedures. The 

synthesis of ligands L1-L8a-e has been previously described in Chapter 3.2. All 

other reagents were used as commercially available. 

5.2.4.3 Typical procedure for the Ni-catalyzed enantioselective 1,2- addition of 

trialkylaluminum reagents to aldehydes 

 [Ni(acac)2] (2.4 mg, 9.32 µmol, 1 mol %) and the corresponding ligand (9.32 

µmol, 1 mol %) were stirred in dry THF (8 mL) under an argon atmosphere at -20 ⁰C 

for 10 min. Neat aldehyde (1 mmol) was then added and trialkylaluminum (2 

mmol) was added dropwise over 10 min. After the desired reaction time, the 

reaction was quenched with 2 M HCl (8 mL). Then, dodecane (80 L) was added 

and the mixture was extracted with Et2O (10 mL). The organic layer was dried over 

MgSO4 and analyzed by GC.5a 
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5.2.4.4 Typical procedure for the Ni-catalyzed enantioselective 1,2-addition of 

DABAL-Me3 to aldehydes 

 [Ni(acac)2] (2.4 mg, 9.32 µmol, 1 mol %) and the corresponding ligand (9.32 

µmol, 1 mol %) were stirred in dry THF (8 mL) under an argon atmosphere at 5⁰C 

for 10 min. Neat aldehyde (1 mmol) was then added and DABAL-Me3 (336 mg, 1.3 

mmol, 1.3 equiv) was added over 10 min. After the desired reaction time, the 

reaction was quenched with 2 M HCl (8 mL). Then, dodecane (80 L) was added 

and the mixture was extracted with Et2O (10 mL). The organic layer was dried over 

MgSO4 and analyzed by GC.5a 
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5.3 Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed 

trialkylaluminum addition to aldehydes 

Sabina Alegre, Montserrat Diéguez, Oscar Pàmies in Tetrahedron: Asymmetry 

2011, 22, 834. 

Abstract. A series of readily available sugar-based phosphite ligands were applied 

to the Ni-catalyzed asymmetric trialkylaluminum additions to aldehydes. The 

ability of the catalysts to transfer chiral information to the product could be tuned 

by choosing suitable ligand components (configuration at C-3 of the furanoside 

backbone; the steric hindrance of the substituent at C-3 and the 

substituents/configuration of the biaryl phosphite moiety). Good 

enantioselectivities (ee’s up to 84%) were obtained for several aryl aldehydes 

using several organoaluminum sources. 

5.3.1 Introduction 

 The value of enantiopure alcohols lies mainly in their use as valuable 

building blocks for the synthesis of natural, pharmaceutical and agricultural 

products.1 The asymmetric catalytic addition of organoaluminum reagents to 

aldehydes can provide a potential synthetic tool for preparing these compounds. 

Although organoaluminum reagents can be economically obtained on an industrial 

scale,2 they are rarely used.3–5 Recently, Woodward et al. discovered that nickel-

based catalysts can allow high enantioselectivities at low catalyst loadings (0.05–1 

mol %),4,5a thus overcoming the previously used Ti-catalysts’ main drawback of 

requiring high catalyst loadings (10–20 mol %).3 Despite this advance, there have 

been relatively few publications describing the highly enantioselective Ni-catalyzed 

1,2-addition of trialkylaluminum to aldehydes. Consequently, we herein aim to 

expand the range of ligands for this process, to which only three types of ligands 

have been successfully applied to date. The first successful application reported 

the use of binol-based monophosphoroamidite ligands as the chiral source.4 The 

second successful application used a series of sugar-based phosphite-

phosphoroamidite ligands.5c The third successful application reported the use of a 

sugar-based monophosphite ligand library containing several ligand backbones.5a 

For these latter ligands, the best results were obtained using glucofuranoside 

ligand 1, while the allofuranoside ligand 2, with an opposite configuration at C-3, 

provided much lower enantioselectivities (Figure 5.3.1). Despite this success, the 

use of other phosphite ligands has not yet been reported and a study of the 
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possibilities offered by phosphites as new ligands for this process is still required. 

For this purpose, we have herein made further modifications to the previous 

ligands 1 and 2 by introducing new substituents with different electronic and steric 

properties at C-3 of the sugar backbone (Figure 5.3.2). 

 

Figure 5.3.1. Monophosphite ligands 1 and 2 previously applied in this process. 

 Herein, we report the application of 18 potential chiral monophosphite 

ligands L9-L14a,f-g (Figure 5.3.2) in the asymmetric Ni-catalyzed 1,2-addition of 

trialkylaluminum to several aldehydes. These ligands also have the advantages of 

carbohydrate and phosphite ligands; that is, they are available at low cost from 

readily available feedstocks; have high resistance to oxidation, and have 

straightforward modular constructions.6,7 With this library we therefore fully 

investigated the effects of systematically varying the configuration of the C-3 

carbon atom of the sugar backbone (L9-L10), the electronic and steric hindrance of 

the new substituent at C-3 (L10-L14) and the substituents/configuration of the 

biaryl phosphite moieties a,f-g. By carefully selecting these elements, we achieved 

good enantioselectivities and activities with different substrate types. 

UNIVERSITAT ROVIRA I VIRGILI 
SCREENING OF MODULAR SUGAR DERIVED PHOSPHITE-BASED LIGAND LIBRARIES FOR M-CATALYZED 
REACTIONS. A GREEN APPROACH TO CATALYSTS DISCOVERY 
Sabina Alegre Aragonés 
Dipòsit Legal: T.194-2014 
 



Asymmetric Ni-catalyzed 1,2-addition 
 

 
181 

 
Figure 5.3.2. Carbohydrate-based monophosphite ligands L9-L14a,f-g. 

5.3.2 Results and discussion 

5.3.2.1 Asymmetric addition of AlR3 to aldehydes 

 Initially, we evaluated phosphite ligands L9-L14a,f-g (Figure 5.3.2) in the 

nickel-catalyzed asymmetric addition of trimethylaluminum to benzaldehyde, 

which was used as the model substrate (Scheme 5.3.1). The catalytic system was 

generated in situ by adding the corresponding ligand to a suspension of the 

catalyst precursor [Ni(acac)2] (acac = acetylacetonate). 

 

 
Scheme 5.3.1. Nickel-catalyzed asymmetric addition of AlMe3 to benzaldehyde using 

phosphite ligands L9-L14a,f-g. 

 

 The results, which are summarized in Table 5.3.1, indicate that 

enantioselectivities are highly affected by the configuration at the C-3 carbon atom 

of the sugar backbone, the steric hindrance of the new substituent at C-3 and the 

substituents/configuration of the biaryl phosphite moieties. In all cases excellent 

isolated yields (>95%) of the desired 2-phenylethanol have been obtained. The 

best enantioselectivity (ee’s up to 75%, Table 5.3.1, entry 4) were obtained using 

ligand L10a, which has the appropriate combination of ligand parameters. 

 With ligands L9 and L10, we studied how the configuration of C-3 of the 

sugar backbone affected the product outcome. The results indicate that this 

configuration affects the enantioselectivity (Table 5.3.1, entries 1–6). Therefore, 
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allofuranoside ligands L10 with an (R)-configuration at C-3 generally provided 

higher enantioselectivities than when glucofuranoside ligands L9 were used. 

 The effect of the substituent at C-3 of the sugar backbone was studied 

with ligands L10-L14f (Table 5.3.1, entries 5, 7–10). We found that these 

substituents mainly affected the enantioselectivity. Our results showed that the 

enantioselectivity depended upon the steric properties of these substituents. 

Enantioselectivities were therefore higher when less sterically demanding 

substituents were present (i.e., Me ≈Ph > Et ≈ Bn >> iPr). 

 With ligands L9a,f-g and L10a,f-g, we next studied the effect of the biaryl 

phosphite moiety on the product outcome. Our results indicated that the presence 

of bulky tert-butyl groups at the ortho- and para-positions of the biphenyl moiety 

had a positive effect on the enantioselectivity (e.g., Table 5.3.1, entries 4 vs 5 and 

6). In contrast to the results observed for related ligands 1 and 2,5a the results 

using ligands L9f-g and L10f-g, which contain enantiopure binaphthyl moieties, 

show a clear cooperative effect between the configuration of the biaryl phosphite 

moiety and the C-3 configuration of the sugar backbone. This resulted in a 

matched combination for ligand L10f (Table 5.3.1, entry 5). Moreover, when 

comparing the results of using ligands L9a,f-g and L10a,f-g are compared (Table 

5.3.1, entries 1–3 vs 4–6) we can conclude that whereas the biphenyl phosphite 

moiety in ligand L9a adopts an (S)-configuration, in ligand L10a it adopts an (R)-

configuration upon complexation to the nickel. 

 After comparing these results with those previously reported for related 

ligands 1 and 2 (Figure 5.3.1),5a we found that replacing the hydrogen group with a 

methyl substituent at C-3 of the sugar backbone had an extremely positive effect 

on the enantioselectivity for ligand 2 (from 44% (R) to 75% (S)), while it has a 

negative effect for ligand 1. 

 Next, we used ligand L10a which provided the best results to study the 

effect of the ligand-to-nickel ratio on the product outcome. Our results showed 

that no excess of ligand was needed for yields and enantioselectivities to be high 

(Table 5.3.1, entries 4, 11 and 12). 

 To further investigate the catalytic efficiency of the Ni/L10a catalytic 

system, we next tested it in the nickel-catalyzed addition of several 

trialkylaluminum sources (AlR’3, R’ = Me or Et; and DABAL-Me3) to other 

benchmark aldehydes with different steric and electronic properties. The results 

are summarized in Table 5.3.2. 
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Table 5.3.1. Selected results for the nickel-catalyzed asymmetric addition AlMe3 to 

benzaldehyde using phosphite ligands L9-L14a,f-g
a 

Entry Ligand L/Ni % Conv
b
 % Yield

c
 % ee

d
 

1 L9a 1 100 96 56 (R) 

2 L9f 1 100 95 13 (S) 

3 L9g 1 100 94 45 (R) 

4 L10a 1 100 98 75 (S) 

5 L10f 1 100 95 68 (S) 

6 L10g 1 100 98 29 (R) 

7 L11f 1 100 95 53 (S) 

8 L12f 1 100 97 9 (S) 

9 L13f 1 100 96 53 (S) 

10 L14f 1 100 95 65 (S) 

11 L10a 0.5 100 97 67 (R) 

12 L10a 2 100 96 65 (R) 
a Reaction conditions: T = -20 ⁰C, [Ni(acac)2] (1 mol %), AlMe3 (2 equiv), substrate (1 mmol) THF (8 mL). b % 
Conversion determined by GC after 3 h. c Isolated yield. d Enantiomeric excess measured by GC using a Cyclodex-B 
column. 
 

 We found that the conversion and enantioselectivity for the AlMe3 

addition were hardly affected by the presence of either electron-donating and 

electron-withdrawing groups at the para or meta-position of the phenyl group 

(Table 5.3.2, entries 1, 7, 10, 13 and 19). However, the presence of a methoxy 

group at the para position had a slightly negative effect on the enantioselectivity 

(Table 5.3.2, entry 1 vs 4). The trimethylaluminum addition to 2-naphthaldehyde 

provided the highest enantioselectivity (ee’s up to 82%, Table 5.3.2, entry 16). 

Finally, the catalytic performance of the reaction was also significantly influenced 

by the steric factors in the substrate (Table 5.3.2, entry 22). Thus, both the 

conversion and enantioselectivity considerably decreased when 2-

methoxybenzaldehyde was used.        

 The results of using triethylaluminum as an alkylating reagent indicated 

that the catalytic performance follows the same trend as for the 

trimethylaluminum addition, providing similar levels of enantioselectivity (Table 

5.3.2, entries 3, 6, 9, 12, 15, 18, 21 and 24).  
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Table 5.3.2. Selected results for the nickel-catalyzed asymmetric addition AlR’3 (R’ = Me or 

Et) and DABAL-Me3 to aldehydes using ligand L10a
a
 

 

Entry Aldehyde Organoaluminum source % Conv
b
 % ee

c
 

 
1 

 

 
AlMe3 

 
100 (98) 

 
75 (S) 

2
d
 DABAL-Me3 98 (95) 76 (S) 

3 AlEt3 100 (99) 72 (S) 

 
4 

 

 
AlMe3 

 
99 (94) 

 
66 (S) 

5
d
 DABAL-Me3 76 (73) 65 (S) 

6 AlEt3 92 (90) 64 (S) 

 
7 

 

 
AlMe3 

 
100 (97) 

 
76 (S) 

8
d
 DABAL-Me3 93 (91) 77 (S) 

9 AlEt3 100 (95) 75 (S) 

 
10 

 

 
AlMe3 

 
100 (92) 

 
77 (S) 

11
d
 DABAL-Me3 99 (93) 76 (S) 

12 AlEt3 100 (91) 77 (S) 

 
13 

 

 
AlMe3 

 
100 (94) 

 
74 (S) 

14
d
 DABAL-Me3 97 (91) 73 (S) 

15 AlEt3 100 (94) 71 (S) 

 
16 

 

 
AlMe3 

 
100 (91) 

 
82 (S) 

17
d
 DABAL-Me3 192 (88) 84 (S) 

18 AlEt3 100 (94) 81 (S) 

 
19 

 

 
AlMe3 

 
100 (93) 

 
78 (S) 

20
d
 DABAL-Me3 87 (82) 76 (S) 

21 AlEt3 100 (95) 75 (S) 

 
22 

 

 
AlMe3 

 
35 (33) 

 
45 (R) 

23
d
 DABAL-Me3 19 (11) 46 (R) 

24 AlEt3 33 (31) 45 (R) 
a Reaction conditions: T = -20 ⁰C, [Ni(acac)2] (1 mol %), L10a (1 mol%), AlR'3 (2 equiv), substrate (1 mmol), THF (8 
mL).  b % Conversion determined by GC after 3 h. Isolated yields in brackets. c Enantiomeric excess measured by 
GC using a Cyclodex-B column. d DABAL-Me3 (1.3 equiv), T = 5 ⁰C.  
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  Woodward et al. discovered the advantages of using DABAL-Me3 as an air-

stable methylating reagent in nickel-catalyzed additions to aldehydes.4a Our results 

using this reagent indicate that the catalytic performance follows the same trend 

as for the trimethylaluminum addition to aldehydes, which is not unexpected 

because the reactions have a similar mechanism. However, the yields were slightly 

lower than in the trimethylaluminum addition (Table 5.3.2, entries 2, 5, 8, 11, 14, 

17, 20 and 23). 

5.3.3 Conclusions 

 A series of sugar-based monophosphite ligands have been synthesized and 

applied in the Ni-catalyzed trialkylaluminum addition to several aldehydes. By 

carefully designing these ligands we were able to systematically investigate the 

effect of varying the configuration of the C-3 carbon atom of the furanoside 

backbone, the introduction of several alkyl and aryl groups at C-3 and the type of 

substituents/configurations in the biaryl phosphite moiety. By judicious choice of 

the ligand components we obtained good enantioselectivities (ee values up to 

84%) and high activities with several aryl aldehydes, with low catalyst loadings (1 

mol %) and no excess of ligand. We also demonstrated that the introduction of a 

methyl substituent at C-3 of the sugar backbone in allofuranoside ligands 2 is 

highly advantageous in terms of enantioselectivity. 

5.3.4 Experimental section 

5.3.4.1 General Considerations 

 All syntheses were performed by using standard Schlenk techniques under 

an argon atmosphere. Solvents were purified by standard procedures. The 

synthesis of ligands L9-L14a,f-g has been previously described in Chapter 3. All 

other reagents were used as commercially available. 

5.3.4.3 Typical procedure for the Ni-catalyzed enantioselective 1,2- addition of 

trialkylaluminum reagents to aldehydes 

 At first, [Ni(acac)2] (2.4 mg, 9.32 µmol, 1 mol %) and ligand (9.32 µmol, 1 

mol %) were stirred in dry THF (8 mL) under an argon atmosphere at -20 ⁰C for 10 

min. Neat aldehyde (1 mmol) was then added and trialkylaluminum (2 mmol) was 

added dropwise over 10 min. After the desired reaction time, the reaction was 
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quenched with 2 M HCl (8 mL). The mixture was extracted with Et2O (10 mL). The 

organic layer was dried over MgSO4 and analyzed by GC.5a 

5.3.4.4 Typical procedure for the Ni-catalyzed enantioselective 1,2-addition of 

DABAL-Me3 to aldehydes 

 At first, [Ni(acac)2] (2.4 mg, 9.32 µmol, 1 mol %) and ligand (9.32 µmol, 1 

mol %) were stirred in dry THF (8 mL) under an argon atmosphere at 5⁰C for 10 

min. Neat aldehyde (1 mmol) was then added and DABAL-Me3 (336 mg, 1.3 mmol, 

1.3 equiv) was added over 10 min. After the desired reaction time, the reaction 

was quenched with 2 M HCl (8 mL). The mixture was extracted with Et2O (10 mL). 

The organic layer was dried over MgSO4 and analyzed by GC.5a 
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6. Conclusions 

1. Chapter 3. Asymmetric hydrogenation reactions. The conclusions of this chapter 

can be summarized as follows: 

- In the Rh-catalyzed asymmetric hydrogenation of functionalized olefins 

(-unsaturated carboxylic acid derivatives and enamides) using a modular 

thioether-phosphite ligand library, the results indicate that the catalytic 

performance is mainly affected by the substituents in both the thioether group 

and at the alkyl backbone chain next to the phosphite moiety, and the 

configuration of the biaryl phosphite moiety. By carefully selecting the ligand 

components, full conversions and high enantioselectivities have been achieved in 

the reduction of several  -dehydroamino acid esters (up to 96% ee), dimethyl 

itaconate (up to 75% ee), and a range of enamides (up to 85% ee). 

 - In the Rh-catalyzed asymmetric hydrogenation of functionalized olefins 

(-unsaturated carboxylic acid derivatives and enamides) using a new furanoside 

monophosphite ligand library, we observed an effect of the configuration at C-3 of 

the furanoside backbone and at the binaphthyl moiety as well as the substrate. 

Thus, for ,-unsaturated carboxylic acids, enantioselectivities improved when 

introducing a methyl substituent at C-3 in glucofuranoside ligand containing an S-

binaphthyl group, achieving enantioselectivities >99.9%  and 85% in the 

asymmetric reduction of dimethyl itaconate and dehydroamino acid derivatives, 

respectively. However, in the reduction of enamides, the introduction of 

substituents at C-3 of the furanoside backbone has a negative effect on 

enantioselectivity. Only moderate enantioselectivities could be therefore achieved 

for this substrate class (ee's up to 67%).  

 - In the Ir-catalyzed asymmetric hydrogenation of minimally functionalized 

alkenes using a modular thioether-phosphite ligand library, we found that catalytic 

performance depended strongly on the ligand parameters (the thioether 

substituent, the substituents/configuration in the biaryl phosphite moiety and the 

substituent at the alkyl chain next to the phosphite moiety) as well as the 

substrate. While for trisubstituted olefins only moderate enantioselectivities were 

achieved (ee's up to 70%), the hydrogenation of more challenging disubstituted 

substrate 3,3-dimethyl-2-phenyl-1-butene let to excellent enantioselectivities (ee's 

up to 98%). For the latter substrate, the presence of atropoisomeric chiral biaryl 

moieties is crucial for the high enantioselectivities achieved. Moreover, the sense 

of enantioselectivity is controlled by the configuration of the biaryl phosphite 
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group which gives access to both enantiomers of the hydrogenation product in 

excellent enantiocontrol. 

2. Chapter 4. Asymmetric Pd-catalyzed allylic substitution. The conclusions of this 

chapter can be summarized as follows: 

 - In the asymmetric Pd-catalyzed allylic substitution reactions using a 

modular thioether-phosphite ligand library, we observed that the introduction of a 

substituent at the alkyl backbone chain next to the phosphite moiety and the 

presence of an R-biaryl phosphite group have an extremely positive effect on 

enantioselectivity. By carefully selecting the ligand parameters, full conversions 

and good enantioselectivities were therefore obtained for several linear substrates 

(ee's up to 83 %).  

 - In the asymmetric Pd-catalyzed allylic substitution reactions using a 

furanoside monophosphite ligand library, the results indicated that the catalytic 

performance highly affected by the effect of varying the sugar backbone, the 

substituents at C-3 of the furanoside backbone, the configurations at carbon C-3 

and C-4 of the ligand backbone and the type of substituents/configurations in the 

biaryl phosphite moiety, as well as the substrate. By carefully selecting the ligand 

parameters, for disubstituted substrates enantioselectivities up to 76% were 

achieved, while for monosubstituted substrate ee’s up to 40% were obtained. 

3. Chapter 5. Asymmetric Ni-catalyzed 1,2-addition. The conclusions of this chapter 

can be summarized as follows: 

 - In the asymmetric Ni-catalyzed trialkylaluminum addition to several 

aldehydes using a modular thioether-phosphite ligand library, we found important 

effects of varying the thioether substituent, the substituents in the alkyl backbone 

chain next to the phosphite moiety and the substituents/configurations in the 

biaryl phosphite moiety. By judicious choice of the ligand components we obtained 

good yields and moderate enantioselectivities (ee values up to 71%) with several 

aryl aldehydes, with low catalyst loadings (1 mol %) and no excess of ligand. 

 - In the asymmetric Ni-catalyzed trialkylaluminum addition to several 

aldehydes using a furanoside monophosphite ligand library, we observed 

important effects on the catalytic performance of varying the configuration of the 

C-3 carbon atom of the furanoside backbone, the introduction of several alkyl and 

aryl groups at C-3 and the type of substituents/configurations in the biaryl 

phosphite moiety. By judicious choice of the ligand components we obtained good 

enantioselectivities (ee values up to 84%) and high activities with several aryl 
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aldehydes, with low catalyst loadings (1 mol %) and no excess of ligand. We also 

demonstrated that the introduction of a methyl substituent at C-3 of the sugar 

backbone is highly advantageous in terms of enantioselectivity. 
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7. Resum 

 Actualment la preparació de productes enantiomèricament purs esta 

creixent en importants àrees com fàrmacs, productes agroquímics, química fina i 

productes naturals. Això es perquè en moltes aplicacions només es necessari un 

dels enantiòmers, ja que només un és el que té les propietats desitjades mentres 

que l’altre es inactiu o te efectes secundaris indesitjats. Per tant el descobriment 

de rutes sintètiques per la preparació de compostos enantiomèricament purs es 

un dels reptes mes importants pels químics orgànics moderns. En aquest context, 

les reaccions asimètriques catalitzades per metalls de transició s’han mostrat com 

una de les principals eines per l’obtenció d’aquests compostos. La major part de la 

recerca feta es centra en el desenvolupament de nous catalitzadors 

organometàl·lics modificats per lligands quirals. La síntesi de nous lligands quirals 

és essencial per descobrir bons sistemes catalítics en catàlisi asimètrica. Els sucres 

són una font important de lligands per l’elevada disponibilitat i baix preu. A més, 

són compostos altament funcionalitzats amb centres estereogènics. Això permet la 

síntesi de sèries sistemàtiques de lligands amb l’objectiu d’obtenir altes activitats i 

selectivitats per cada reacció en particular. 

 Els objectius d’aquesta tesi son el desenvolupament de dues noves 

llibreries de lligands derivats de sucre. Concretament tioèter-fosfit i furanòsid 

monofosfit, per la seva aplicació en diverses reaccions asimètriques catalitzades 

per metall de transició, tals com la hidrogenació d’olefines funcionalitzades 

catalitzades per rodi, la hidrogenació d’olefines mínimament funcionalitzades 

catalitzada per iridi, les reacció de substitució al·lílica catalitzades per pal·ladi i les 

adicions 1,2 a aldehids catalitzades per níquel. 

 Després de la introducció capítol 1 i els objectius capítol 2, al capítol 3 es 

discuteix les reaccions d’hidrogenació. Aquest capítol es composa de tres parts on 

s’estudia la síntesi i aplicació de les dues noves llibreries de  lligands. La primera 

part inclou el manuscrit, Asymmetric Rh-catalyzed hydrogenation using a 

thioether-phosphite ligand library, on es descriu la síntesis i l’aplicació de lligands 

tioèter-fosfit en la reacció d’hidrogenació asimètrica, catalitzada per rodi, de 

diverses olefines funcionalitzades. S’ha observat un important efecte dels 

substituents del grup tioèter i dels de la cadena alquílica al costat del grup fosfit i la 

configuració del grup biaril. S’han obtingut elevades enantioselectivitats en la 

reducció de α-dehidroamino àcid esters (>96% ee), dimetil itaconat (>75% ee) i 

enamides (>85% ee). La segona part està composada pel treball, Asymmetric Rh-
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catalyzed hydrogenation using a furanoside monophosphite ligand library, on es 

descriu la síntesis i l’aplicació de lligands furanòsid monofosfit en la reacció 

d’hidrogenació asimètrica, catalitzada per rodi, de diverses olefines 

funcionalitzades. Els resultats catalítics indiquen un important efecte de la 

introducció de substituents al carboni-3, de la configuració del carboni-3 de 

l’esquelet furanòsid i del grup binaftil i del substrat. L’ introducció d’un grup metil 

al carboni-3  de l’esquelet furanòsid i la presencia d’un grup S-binaftil té un efecte 

positiu en la reducció del dimetil itaconat i derivats dehidroamino àcids (>99% ee i 

>85% ee, respectivament), però negatiu en la reducció d’ enamides. La tercera part 

està composada pel treball, Asymmetric Ir-catalyzed hydrogenation using a 

thioether-phosphite ligand library, descriu l’aplicació dels compostos tioèter-fosfit 

com a lligands en la hidrogenació asimètrica d’olefines no funcionalitzades 

catalitzada per iridi. Els resultats mostren que els millors excessos enantiomèrics (> 

98% ee) s’obtenen en la hidrogenació de substrats terminals. 

 En el capítol 4, s’han aplicat les lligandteques, prèviament descrites al 

capítol 3, en la reacció de substitució al·lílica catalitzada per pal·ladi. Aquest capítol 

es divideix en dues parts. La primera part està composada pel treball, Asymmetric 

Pd-catalyzed allylic substitution using a thioether-phosphite ligand library, descriu 

l’ús dels lligands tioèter-fosfit prèviament descrits en la substitució al·lílica de 

substrats lineals catalitzada per pal·ladi. Els resultats indiquen que la introducció 

d’un substituent a la cadena alquílica al costat del grup fosfit i la presencia d’un 

grup R-biaril tenen un efecte extremadament positiu en l’enantioselectivitat;  

obtenint bones enantioselectivitats (>83% ee). La segona part esta composada pel 

treball, Asymmetric Pd-catalyzed allylic substitution using a furanoside 

monophosphite ligand library, descriu l’aplicació dels lligands furanòsid monofosfit 

prèviament descrits en la substitució al·lílica catalitzada per pal·ladi. S’ha observat 

un important efecte del tipus d’esquelet de sucre, els substituents del carboni-3 de 

l’esquelet furanòsid, la configuració del carboni-3 i del carboni-4 de l’esquelet del 

lligand i dels substituents/configuració del grup biaril, i del substrat. Així, per 

substrats disubstituïts s’aconsegueixen ee’s per sobre del 76% mentres que per 

monosubstituïts ee’s per sobre del 40%.  

 Per últim en el capítol 5, s’han aplicat les lligandteques, prèviament 

descrites al capítol 3, en l’adició 1,2 asimètrica catalitzada per níquel. Aquest 

capítol es divideix en dues parts. La primera part està composada pel treball, 

Thioether-phosphite ligands applied to the asymmetric Ni-catalyzed 

trialkylaluminum addition to aldehydes, descriu l’ús dels lligands tioèter-fosfit 
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prèviament descrits en l’adició 1,2 de trialquilalumini a aldehids catalitzada per 

níquel. Els resultats indiquen que l’enantioselectivitat està afectada pels 

substituents del grup tioèter i de la cadena alquílica al costat del grup fosfit, i dels 

substituents/configuració del grup biaril. S’obtenen bons rendiments i 

enantioselectivitats moderades (>71% ee) amb baixes carregues de catalitzador 

(1 mol %) i sense excés de lligand. La segona part, esta composada per el article, 

Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed 

trialkylaluminum addition to aldehydes, on es descriu l’aplicació dels lligands 

furanòsid monofosfits en l’adició 1,2 de trialquilalumini a aldehids catalitzada per 

níquel. S’ha observat un important efecte de la configuració del carboni-3 de 

l’esquelet furanòsid, la introducció de substituents alquils i arils al carboni-3 i dels 

substituents/configuració del grup biaril. S’obtenen bons rendiments i 

enantioselectivitats (>84% ee) amb baixes carregues de catalitzador (1 mol %) i 

sense excés de lligand. També demostrem que l’ introducció d’un grup metil al 

carboni-3 de l’esquelet furanòsid es altament avantatjós en termes 

d’enantioselectivitat.  
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