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Abstract  

Most evolutionary analyses are based upon pre-estimated multiple sequence alignment 

models. From a computational point of view, it is too complex to estimate a correct 

alignment, as it is to derive a correct tree from that alignment. Several works have 

recently reported on the influence of alignment on downstream analysis, and on the 

uncertainty inherent to their estimation. Chapter 1 develops the notion of alignment 

uncertainty as either inherent to the data (internal) or resulting from methodological 

biases (external). Chapter 2 presents two contributions of mine for the improvement of 

MSA methods through the use of homology extension (TM-Coffee) and thanks to an 

improved word-matching algorithm (SymAlign). In Chapter 3, I show how alignment 

uncertainty can be used to improve the trustworthiness of phylogenetic analysis. 

Chapter 4 shows how a similar improvement can be obtained through a simple 

adaptation of the T-Coffee transitive score, thus allowing downstream analysis to take 

into account internal alignment uncertainty. The final chapter contained a discussion of 

our current results and possible future work. 

Resumen 
La mayoría de los análisis evolutivos están basados en modelos establecidos de 

alineamiento de secuencia múltiple. Desde un punto de vista computacional, es igual de 

complejo la estimación de un alineamiento correcto, como la obtención de un árbol 

correcto a partir del alineamiento. Recientemente varios trabajos han informado sobre la 

influencia del alineamiento en los análisis posteriores, y en la incertidumbre inherente a 

su estimación. El Capítulo 1 desarrolla el concepto de incertidumbre de alineación, tanto 

inherente a los datos (internos), como resultante de los sesgos metodológicos (externo). 

El Capítulo 2 presenta dos contribuciones mías para la mejora de los métodos de MSA a 

través del uso de la extensión de homología (TM-Coffee) y gracias a un algoritmo de 

coincidencia de palabra mejorado (SymAlign). En el capítulo 3, se muestra cómo la 

incertidumbre de alineación puede ser utilizada para mejorar la confiabilidad del 

análisis filogenético. El capítulo 4 nos muestra como se puede obtener una mejora 

similar por medio de una simple adaptación de la puntuación transitiva del T-Coffee, lo 

cual permite un análisis posterior para tener en cuenta la incertidumbre de alineación 

interna. El último capítulo contiene un análisis de los resultados actuales y los posibles 

futuros trabajos. 
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Preface 
 
Molecular biology research has changed a lot in the last 10 years. Next Generation 

Sequencing technique now makes it practical to sequence whole genome in reasonable 

time and cost. New areas of research have been opened, prompting the revision of many 

concepts taken for granting in our understanding of the molecular basis of life. For 

example, transcriptome analysis from ENCODE project discovers that non-coding 

RNAs occupy the large proportion of genome. These methodologies produce huge 

amounts of data that need to be analyzed, thus turning accurate computational 

approaches into an essential limiting step of this new big data biology. When I started 

my master degree in Taiwan, few people had an idea about bioinformatics and its utility. 

Today, many universities have provided the graduate courses of bioinformatics. In this 

thesis I contribute to the improvement of the two most popular methods in sequence 

analysis, the multiple sequence alignment and the phylogenetic reconstruction, which 

due to its difficulty, still provides challenges. 
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1. INTRODUCTION 
Multiple sequence alignment (MSA) is probably the most widely used bioinformatics 

method in biology and is subsequently used for many more applications, such as 

structure prediction, motifs/patterns recognition, SNP analysis and phylogeny inference 

(Thompson and Poch 2006). Over the last 30 years, more than 100 papers relevant to 

MSA have been published (Kemena and Notredame 2009) and so far none has been 

proven to perform better than others in all different situations. One of the main focuses 

in the field over the last years has been to identify and propose the most accurate 

method. However, the focus on alignment uncertainty has intensified over the last few 

years, with several recent high impact papers have reporting on uncertainties in MSAs 

computation (Wong et al. 2008; Markova-Raina and Petrov 2011; Jordan and Goldman 

2012) as being yet one more confounding factor when doing phylogenetic and 

evolutionary analyses due. To address this issue, many new confidence measures have 

been proposed. In this chapter, we start by reviewing the difficulty of defining a correct 

MSA such that alignment methods based on different criteria may give various results 

(section 1.1). When modeling a given dataset, variations arising across methods may be 

considered a manifestation of alignment uncertainty, especially in the absence of criteria 

able to tell the relative merits of the considered alignments. We then discuss the causes 

of such uncertainty. The next section is a review of available methods for the automated 

assessment of MSA reliability and accuracy (section 1.2). The last section explores the 

problem of post-processing of MSA including summarizing sample alignments and 

trimming the problematic region of MSA (section 1.3). We hope that this thesis can 

draw the attention of the wider molecular evolution research community to the 

importance of alignment uncertainty. 

1.1 Computing	
  and	
  evaluating	
  multiple	
  sequence	
  alignments 
The simultaneous comparison of evolutionary related or functionally biological 

sequences usually starts with a sequence alignment. Such alignments may be considered 

as a summary of the relationships existing among the considered sequences. The 

variations within the alignment itself are a direct reflection of the exploratory process 

followed by natural evolution through a complex combination of mutations and fixation 

of novel alleles. Given a set of sequences, an MSA has not absolute definition, and its 

correctness will depend on the nature of the characters one wishes to model, these may 
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be structural similarity, evolutionary similarity, and sequence similarity (Table 1-1). In 

the next section we review these various characters and discuss the potential 

consequences of divergent evaluations. We then report on the suitability of new kinds of 

experimental evidences, based on NGS data, for the evaluation of nucleotide 

alignments. 

a) Various	
  criteria	
  for	
  MSA	
  evaluation	
  
The easiest criterion one can use to estimate the biological accuracy of an alignment is 

sequence similarity. Under this scheme, the best possible MSA (optimal) is defined as 

the one yielding the highest level of similarity within aligned columns. Similarity can be 

defined as identity, or as weighted identity, using popular substitution matrices like 

BLOSUM62 or PAM250. The total estimation of the MSA cost is obtained by summing 

up the substitution cost of every pair of aligned residue. For this reason, the objective 

function is known as the Sum-of-Pairs (SoP). In many of its implementations, the SoP 

objective function is associated with a weighting scheme meant to reflect the 

information content of each considered sequence (Altschul et al. 1989; Sibbald and 

Argos 1990; Thompson et al. 1994). The goal of such weights is to insure that highly 

similar sequences do not end up dominating the MSA computation, and eventually 

prevent the correct alignment of more remote homologues. 

 

When applying the SoP scoring scheme, an important assumption is that the score of 

each column of the alignment is independent from those of the rest. This scheme is very 

well suited to pairwise sequence alignment, where an optimal alignment can be 

computed using a dynamic programming approach (Bellman 1953; Bellman 1954). 

Interestingly, the dynamic programming approach used in biology and commonly 

referred to as Needlman and Wunsch was independently re-invented by these same 

authors (Needleman and Wunsch 1970) and only later recognized to be related to the 

dynamic programming approach of Bellman. Although the optimal pairwise alignment 

can be found through dynamic programming, possible paths with identical SoP scores 

needed tiebreak are the source of alignment uncertainty (section 1.2.a). Optimization 

becomes NP-hard when multiple sequence case is considered (Wang and Jiang 1994; 

Bonizzoni and Vedova 2001; Just 2001; Elias 2006). This makes it impossible to use 

brute force multiple dynamic programming to align more than three sequences. One 

can, however, use a bounded approach to define a smaller multi-dimensional envelop 
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allowing the alignment of a larger number of sequences (up to 20) using the Carillo and 

Lipman algorithm implemented in “MSA” (Lipman et al. 1989). In practice, few MSA 

software produce a provably optimal alignment and most algorithms work by either 

applying heuristics to solve the original NP-complete optimization problem using 

delivering only an approximate solution or by replacing the SoP objective function with 

another objective whose optimization is tractable. The heuristics approach includes 

progressive aligners and consistency aligners, representing many methodological 

innovations for sequence alignment. 

 

More sophisticated objective functions can be defined using structural information. In 

that case, MSAs are evaluated for their capacity to align equivalent residues as 

estimated from the global comparison of their respective folds. This approach has been 

used to establish several collections of structure based reference alignments, routinely 

used for the systematic benchmark of novel protein alignment methods (BAliBASE, 

PREFAB, HOMSTRAD, and SABmark (Edgar 2004a; Stebbings and Mizuguchi 2004; 

Thompson et al. 2005b; Van Walle et al. 2005b)). More recently, a similar approach has 

been applied to the RNA analysis (Kemena et al. 2013). The main rationale for using 

structure based alignments to evaluate sequence based procedure stems from the 

observation that structural folds appear to be evolutionary more resilient than their 

underlying sequences (Chothia and Lesk 1986). In order to best use this property, 

O'Sullivan O. et al. developed 3D-Coffee, a method for combining protein sequences 

and structures in order to generate high-quality MSAs. They found a linear correlation 

between MSA accuracy and the proportion of sequences with structure information 

(O'Sullivan et al. 2004). 

 

The third criterion is functional similarity. The biological activity of a protein typically 

depends on the presence of a small number of functional residues. These residues are 

often remarkably conserved, as a consequence of the purifying selection under which 

they evolve. Functional similarity can also result from convergent evolution, as 

observed in the case of serine proteases, where the triad of catalytic residues appears to 

have been discovered at least twice by evolution (Casari et al. 1995). In this context, 

functional and evolutionary alignments may disagree, and therefore reflect convergent 

evolution. Functional analysis can also be used to track subtler processes such as the 

evolution of substrate specificity and affinity, materialized by positions differently 



4 

conserved within subfamilies. A commonly accepted scenario is that whereas fully 

conserved positions related to functional features are common to all the members of the 

family, these other residues related to functional specificity are common to the members 

of the sub-family (e.g., binding of different cofactors) (Rausell et al. 2010). Magis et al. 

have recently shown that structure based analysis can be combined with evolutionary 

based inference in order to disentangle the complex interaction between genetic drift, 

purifying selection and convergent evolution. Using a novel tree reconstruction 

algorithm (T-RMSD) based on the comparison of intra-molecular distances, they show a 

process of convergent evolution occurring between a ligand and its receptor in the 

Tumor Necrosis Receptor family (Magis et al. 2010; Magis et al. 2012).  

 

All things considered, the most widely used framework for the reconstruction of 

multiple sequence alignment is an evolutionary framework. In this context, the MSAs 

are assembled as a substrate for the estimation of the scenario underlying the divergence 

of the considered sequences. In this context, each aligned item in the MSA may be 

viewed as an evolutionary hypothesis. The columns of MSA explicitly support the 

hypothesis that all align residues correspond to the same unique ancestral residue in the 

last unique common ancestor of the considered sequences. While the most common 

aligners do not explicitly try to optimize an evolutionary scenario and merely optimize 

similarity, a more recent class of aligners have recently developed with the explicit 

purpose of generating the more evolutionary probable MSAs.  They include 

phylogenetically aware alignment and statistical alignment. In contrast to the previous 

generation aligners, they are not benchmarked using structural information, but rather 

using simulated phylogenies (Hall 2005; Rosenberg 2005; Nuin et al. 2006; Ogdenw 

and Rosenberg 2006; Kumar and Filipski 2007; Landan and Graur 2009; Wang et al. 

2011). Of course, one may argue that such aligners heavily depend on a priori simulated 

models, and it is a matter of fact that strong discrepancies remain with respect to the 

performances of various packages on structure based or simulated benchmarks. 

Resolving this issue will probably require a better understanding of the complex relation 

between alignment accuracy and trustworthy phylogenetic reconstruction. Moving one 

step in this direction, Dessimoz and Gil recently introduced tree-based tests of 

alignment accuracy, which not only use large and representative samples of real 

biological data, but also enable the evaluation of the effect of gap placement on 

phylogenetic inference (Dessimoz and Gil 2010). 



 

 5 

The four criterion discussed in the above section that may be used to reconstruct 

multiple sequence alignments reflect well the complexity of the problem. On the one 

hand, protein sequences are part of living entities, and as such they undergo an 

evolutionary process that includes neutral processes. These same proteins evolve under 

various levels of selection. Some are only constrained not to harm their host and must 

therefore retain a functional fold. Others must retain precise functions or embark for 

survival on a red-queen race in order to follow their ligand, outpace their competitors or 

acquire novel functions. In theory, models could be built that address each of these 

aspects separately. Unfortunately, our knowledge of biology is not complete enough. 

We do not understand well the relation between sequences and structures, the rules 

governing evolution and selection, and even less the function/sequence relationship. 

This results in a necessary attempt to combine these four aspects of biological 

information in the hope that they will complement each other and lead to more accurate 

models at all levels. However, this seemingly obvious approach has now become less of 

evidence, especially when considering the growing number of conflicting reports on 

structure and evolutionary based MSA evaluation. I will now discuss in more details the 

nature of these inconsistencies and suggest how a better use of homology information 

may help address the question. 

  



6 

Ta
bl

e 
1-

1 
 M

ai
n 

cr
ite

ria
 fo

r b
ui

ld
in

g 
a 

m
ul

tip
le

 se
qu

en
ce

 a
lig

nm
en

t (
ad

ap
te

d 
fr

om
 (C

la
ve

rie
 a

nd
 N

ot
re

da
m

e 
20

03
))

 

A
lig

ne
r 

M
A

FF
T 

(T
ho

m
ps

on
 a

nd
 P

oc
h 

20
06

), 
M

U
SC

LE
 (E

dg
ar

 2
00

4b
), 

T-
C

of
fe

e 
(N

ot
re

da
m

e 
et

 a
l. 

20
00

), 
Pr

ob
C

on
s (

D
o 

et
 a

l. 
20

05
) 

TM
-a

lig
n 

(Z
ha

ng
 a

nd
 S

ko
ln

ic
k 

20
05

), 
SA

P 
(T

ay
lo

r 2
00

0)
,3

D
-

C
of

fe
e 

(O
'S

ul
liv

an
 e

t a
l. 

20
04

) 

 SA
Te

 (L
iu

 e
t a

l. 
20

12
), 

PR
A

N
K

 
(L

oy
ty

no
ja

 a
nd

 G
ol

dm
an

 2
00

8)
, 

B
al

iP
hy

 (S
uc

ha
rd

 a
nd

 R
ed

el
in

gs
 

20
06

), 
A

liF
rit

z 
(F

le
is

sn
er

 e
t a

l. 
20

05
), 

St
at

A
lig

n 
(N

ov
ak

 e
t a

l. 
20

08
), 

PO
Y

 (V
ar

ón
 e

t a
l. 

20
10

) 

D
at

as
et

 

 B
A

liB
A

SE
 3

 
(T

ho
m

ps
on

 e
t a

l. 
20

05
a)

, P
R

EF
A

B
 4

 
(E

dg
ar

 2
00

4b
), 

SA
B

R
E 

(V
an

 W
al

le
 e

t a
l. 

20
05

a)
, 

O
X

B
EN

C
H

(R
ag

ha
va

 e
t 

al
. 2

00
3)

 
 Sp

ec
ie

s-
tre

e 
di

sc
or

da
nc

e,
 m

in
im

um
 

du
pl

ic
at

io
n 

(D
es

si
m

oz
 

an
d 

G
il 

20
10

) 

M
ea

ni
ng

 

A
m

in
o 

ac
id

s i
n 

th
e 

sa
m

e 
co

lu
m

n 
ar

e 
th

os
e 

th
at

 y
ie

ld
 a

n 
al

ig
nm

en
t w

ith
 m

ax
im

um
 si

m
ila

rit
y.

 
M

os
t p

ro
gr

am
s u

se
 se

qu
en

ce
 si

m
ila

rit
y 

be
ca

us
e 

it 
is

 th
e 

ea
si

es
t c

rit
er

io
n.

 W
he

n 
th

e 
se

qu
en

ce
s a

re
 c

lo
se

ly
 re

la
te

d,
 

st
ru

ct
ur

e,
 e

vo
lu

tio
na

ry
 a

nd
 fu

nc
tio

na
l s

im
ila

rit
ie

s a
re

 
eq

ui
va

le
nt

 to
 se

qu
en

ce
 si

m
ila

rit
y.

 

A
m

in
o 

ac
id

s t
ha

t p
la

y 
th

e 
sa

m
e 

ro
le

 in
 e

ac
h 

st
ru

ct
ur

e 
ar

e 
in

 th
e 

sa
m

e 
co

lu
m

n.
  

St
ru

ct
ur

e 
su

pe
rp

os
iti

on
 p

ro
gr

am
s a

re
 th

e 
on

ly
 o

ne
s t

ha
t 

us
e 

th
is

 c
rit

er
io

n 

A
m

in
o 

ac
id

s o
r n

uc
le

ot
id

es
 w

ith
 th

e 
sa

m
e 

fu
nc

tio
n 

ar
e 

in
 

th
e 

sa
m

e 
co

lu
m

n.
 

N
o 

au
to

m
at

ic
 p

ro
gr

am
 e

xp
lic

itl
y 

us
es

 th
is

 c
rit

er
io

n,
 b

ut
 if

 
th

e 
in

fo
rm

at
io

n 
is

 a
va

ila
bl

e,
 y

ou
 c

an
 fo

rc
e 

so
m

e 
pr

og
ra

m
s t

o 
re

sp
ec

t i
t o

r y
ou

 c
an

 e
di

t y
ou

r a
lig

nm
en

t 
m

an
ua

lly
. 

A
m

in
o 

ac
id

s o
r n

uc
le

ot
id

es
 re

la
te

d 
to

 th
e 

sa
m

e 
am

in
o 

ac
id

 (o
r n

uc
le

ot
id

e)
 in

 th
e 

co
m

m
on

 a
nc

es
to

r o
f a

ll 
th

e 
se

qu
en

ce
s a

re
 p

ut
 in

 th
e 

sa
m

e 
co

lu
m

n.
  

N
o 

au
to

m
at

ic
 p

ro
gr

am
 e

xp
lic

itl
y 

us
ed

 th
is

 c
rit

er
io

n,
 b

ut
 

th
ey

 a
ll 

try
 to

 d
el

iv
er

 a
n 

al
ig

nm
en

t t
ha

t r
es

pe
ct

s i
t. 

Si
m

ila
rit

y 

Se
qu

en
ce

 

St
ru

ct
ur

e 

Fu
nc

tio
na

l 

Ev
ol

ut
io

na
ry

 



 

 7 

b) Inconsistencies	
  among	
  mathematical,	
  structural	
  and	
  evolutionary	
  based	
  
objective	
  functions	
  

The reason why it is difficult to compute a MSA is not only because of the time-

consuming issue, but also because it is hard to precisely define, in mathematical terms, 

what an accurate MSA really is. This combined complexity of defining and estimating 

MSAs results in a crossroad problem between biology (what is “A” good MSA) and 

computer science (Given the definition of “A” good MSA, how can this be computed). 

As previously discussed, and even when one uses a well defined criteria (Structure, 

Evolution, Function), it remains difficult to objectively evaluate alternative alignment 

procedures (Kjer et al. 2007). The difference between alignments based on different 

criteria will be discussed in the following paragraphs. “Similarity” versus “Structure” 

will be addressed first since the largest proportion of MSA methods based on the 

similarity-based and the most popular MSA benchmarks based on structure 

perspectives. In the last section, “Similarity” versus “Evolutionary” is discussed because 

they are like the two ends of the spectrum (Anisimova et al. 2010). 

 

The relation between a similarity optimality (using the so called SoP) function and 

structural accuracy was initially explored using a genetic algorithm (Notredame and 

Higgins 1996). The authors then concluded on the lack of a strong correlation between 

mathematical optimality and structural correctness. At the time, however, reference 

databases were at a very preliminary development stage and CPU limitation was making 

it difficult to explore datasets informative enough. We decided to re-explore this issue 

by applying “MSA” (Lipman et al. 1989; Gupta et al. 1995) the only heuristic able to 

deliver optimal or near optimal MSAs onto BAliBASE 3. When doing so, using as an 

objective function unweighted SoP score based on a BLOSUM62 and gap penalties 

(open: -12, extend: -1), we only found “MSA” able to deal with 17 BAliBASE 3 

datasets (6 sets in RV11 and 11 sets in RV12). For comparison, these same datasets 

were ran through PSI-Coffee (Chang et al. 2012c), a flavor of T-Coffee that combines 

consistency based alignments with homology extension and has been reported to 

produce highly accurate MSAs on that same dataset. Besides mathematical score, 

alignment in structural accuracy is measured as its similarity against the core region of 

the reference alignment reported by BAliScore program. The relation between SoP and 

BAliScore of PSI-Coffee and “MSA” is shown on Figure 1-1, where SoP score is 
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normalized as divided by the SoP of the structural reference alignment. Alignment with 

higher SoP score is not necessary to have higher BAliScore. It suggests a poor 

correlation between SoP mathematical accuracy and structural correctness. This result is 

not surprising, as it merely reflects our limited understanding about relationship 

between sequence and structures. 

 

Figure 1-1  SOP against the SOP of reference alignment versus BAliScore of PSI-
Coffee and “MSA” alignments. Labels represent corresponding BAliBASE sets. 
 
Despite the inherent difficulties of modeling biological reality, many progresses have 

been made to improve alignment strategies by defining more realistic objective 

functions. The most notable progress has been the development of consistency based 

(Notredame et al. 2000) and probabilistic consistency based objective functions (Do et 

al. 2005; Roshan and Livesay 2006) that address both the optimization issue and the 

need to enrich similarity based objective functions with functional, structural and 

evolutionary information (Kemena and Notredame 2009). Consistency makes it possible 

to do a better use of data prior knowledge (i.e., like 3D structures, knowledge of active 
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sites, a known pattern expected for a protein domain). This not only facilitates the 

computation of higher accuracy MSAs, but also makes it possible to systematically 

combine heterogeneous level of sequence analysis. As such, the systematic use of 

consistency may be seen as a useful step towards the establishment of a better balance 

between mathematical and biological optimality when computing MSAs, an issue often 

described as pressing (Anisimova et al. 2010). 

 

Until recently, most methods were developed under the assumption that similarity was a 

reasonable indicator of homology, thus implying that similarity based models would be 

informative with respect to homology. This would imply that similarity based models 

should reflect the evolutionary process associated with the divergence of the considered 

sequences. In this context, one would expect aligners that do well at maximizing 

similarity to eventually support the most accurate phylogenetic reconstructions. This 

simple assumption has recently been questioned and there is indeed no direct evidence 

that a procedure based on maximizing similarity will result in an alignment reflecting 

accurately the positional homology between the residues (Morrison 2009). Indeed, 

Blackburne and Whelan found that “similarity-based” MSA methods (MSAMs), (e.g., 

ClustalW, Muscle, ProbCons, MAFFT, T-Coffee) and “evolution-based” MSAMs, 

(e.g., PRANK and BAliPhy) tend to form discrete clusters under the multidimensional 

scaling based on their own similarity measures between two alignments (Blackburne 

and Whelan 2012a). The class of an MSAM has a substantial impact on downstream 

analyses, phylogenetic inference (Blackburne and Whelan 2012a). They found tree 

topology estimates and their branch lengths show highly dependent on the class of 

MSAM used. The class of aligner used also affects the number of families, and the sites 

within those families, inferred to have undergone adaptive evolution. Similarity-based 

aligners favor to find more adaptive evolution (Blackburne and Whelan 2012a). David 

A. Morrison pointed out that phylogeneticists are usually dissatisfied with similarity-

based alignment procedures and tend to manually edit alignment because they do 

recognize that similarity-based alignments are not likely to be homology alignments. 

The preponderance of manual alignments is simply a reflection of the above observation 

of two MSAMs groups (Morrison 2009). He concluded that there is currently no 

bioinformatics approach that is acceptable for phylogeneticists. This observation may 

explain why the results observed on simulated data significantly differ from those 

measured on empirical data (Kemena and Notredame 2009).  
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c) A	
  new	
  class	
  of	
  objective	
  function	
  based	
  on	
  functional	
  data	
  gathered	
  
through	
  next	
  generation	
  sequencing	
  

Whenever experiments reveal novel biological features, it is a common procedure to 

look for them across related species and to evaluate how these new features fit in the 

framework of comparative biology. If comparison is the engine of this framework, new 

data is its fuel. A major source of novel data is the emergence of novel technologies. I 

will argue that the emergence of Next Generation Sequencing (NGS) with its dropping 

sequencing cost defines a new era in biology, and that the change of scale has already 

started initiating one of the most important paradigmatic shifts since discovering DNA 

structure. Advances in sequencing technologies have allowed the rapid sequencing of 

full genomes, which in turn is driving advances in methodology for aligning and 

assembling short, reads and for multiple whole genome alignment. As recently pointed 

out by Anisimova et al. (Anisimova et al. 2010), “Despite a number of recent 

algorithmic advances, the genomics alignment field is still in its infancy, presenting 

succulent challenges, yet to be solved”. 

Next generation sequencing may be seen as a functional wrapping for genomic data. For 

instance, transcriptomic analysis indicates the precise location of transcription activity 

while recordings made across alternative cell lines reveal cellular functions and their 

immediate low level phenotypic outcome. Likewise, ChIP-Seq data provides a direct 

evidence of binding activity. In ENCODE, this data has been systematically recorded 

across 18 human cell lines (http://genome.ucsc.edu/ENCODE/cellTypes.html). Even 

though some controversy has arose as weather binding and function may be considered 

equivalent (Graur et al. 2013), it is a fact that signals thus recorded are fit for cross 

species comparison and they are therefore opening the way of a new comparative 

genomics era. 

It is therefore reasonable to believe that ENCODE-type NGS data will gradually 

become a key component of comparative genomics in the near future, playing on non-

translated RNA a role similar to that of structures when dealing with proteins. It may 

first be used for benchmarking purposes, by providing the aligners with enriched DNA 

sequences in a controlled manner and by extrapolating the readouts on enriched 

sequences to the total dataset, including sequence for which no RNA-Seq or ChIP-Seq 

data was available. Recently, Erb et al. proposed a benchmark procedure based on 
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ChIP-Seq data for promoter alignment (Erb et al. 2012) gathered across several species: 

human, mouse, dog, and chicken. Methods were evaluated for their capacity to correctly 

align Transcription Factors Binding Sites (TFBSs) identified by using ChIP-Seq. The 

accuracy of a sequence alignment would be to simply count the numbers of TFBSs 

effectively matched across species. It is the first time that such a data set is used to 

determine the relative accuracy of multiple promoter alignment procedures. 

By extending Erb’s idea, I have evaluated the usefulness of RNA-Seq data for the 

comparison of alternative multiple genome alignments. My approach relies on the idea 

that given RNA-Seq expression data gathered in similar tissues, a correct alignment of 

the corresponding genomes should result in a strong overlap of the mapped data, both in 

terms of position and coverage, under the general assumption that orthologous genes 

tend to have the similar expression pattern across species (Liao and Zhang 2006; Zheng-

Bradley et al. 2010).  In order to avoid saturation, the measurements were limited to 

boundaries between high and low read coverage, which is most likely to represent 

intron/exon boundaries. Nucleotides corresponding to such boundaries were marked and 

used to compare alternative multiple genome alignments of the same sequences (Figure 

1-2). For each pair of sequences, the values are summed up to produce the final score of 

this alignment named RNA-Seq score. 

RNA-Seq data was obtained previously from six Drosophila species: D. Ananassae, D. 

Erecta, D. Melanogaster, D. Virillis, D. Willistoni and D. Yakuba. The reads from those 

data were mapped by using the segemehl program (Hoffmann et al. 2009) with default 

settings. Files containing the per-base read coverage for each of the six species were 

used for the subsequent analysis. The alignment framework is a special flavor of T-

Coffee, named Robusta, which makes it possible to combine alternative multiple 

genome aligners using the T-Coffee consistency algorithm. We used it to test and 

compare various combinations. In this context, we tested 4 different packages: Pecan, 

Mavid, Mauve (progressive), and Lastz. Robusta is a meta-aligner and an extension of 

the M-Coffee package that combines the output of several alternative aligners into one 

unique final model. We considered a total of 14 combinations (Table 1-2). Besides 

Robusta, four aligners, Lastz, Mavid, Pecan, and Pro-Coffee, are also involved into 

benchmark. Those aligners are applied on two data sets, simulated Mammals and 

biology Flies, from Alignathon (Earl 2012). For simulated Mammals set, since we 
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already knew the truth due to simulation, we therefore used mafComparator (Earl et al. 

2012) to compare the true Multiple Alignment Format (MAF) file against a predicted 

MAF file by aligner. For the Flies set, each method is evaluated based on RNA-Seq 

score (Table 1-2).  

It is interesting to note the lack of a clear agreement between the RNA-Seq evaluation 

of the Drosophila genome alignments, and a similar evaluation on the simulated data 

sets. For instance, mafComparator, suggests Pecan to the best method on simulated 

Mammalian data, while on Drosophila data, RNA-Seq suggest Pecan to be an average 

method, with the Robusta combination of pecan, mavid, lastz giving the best readout. 

Overall, however, it is worth pointing out a reasonable agreement between the both the 

specificity and sensitivity of the mafComparator score with our RNA-Seq readout  

(Figure 1-3).  

Table 1-2  Sensitivity and specificity of the Mammels set and RNA-Seq score of the 
Flies set for all methods  

 Mammals Flies 
Method Sen.(%) rank Spe.(%) rank  RNA-Seq rank 
Robusta       

pecan 36.01% 3 79.89% 2 4369400 10 
mavid 30.84% 15 66.79% 14 4361020 14 

pmauve 26.42% 16 59.69% 16 4327600 17 
pecan, mavid 35.70% 7 75.19% 6 4380320 4 

pecan, pmauve 35.88% 4 77.61% 4 4367800 12 
pecan, lastz 36.06% 2 78.76% 3 4383280 2 

mavid, pmauve 33.29% 12 69.08% 13 4370700 9 
mavid, lastz 34.00% 11 70.83% 10 4372020 7 

pmauve, lastz 33.06% 13 69.31% 12 4357930 15 
pecan, mavid, pmauve 35.71% 6 74.08% 8 4381400 3 

pecan, mavid, lastz 35.68% 8 74.38% 7 4384130 1 
pecan, pmauve, lastz 35.77% 5 76.81% 5 4368650 11 
mavid, pmauve, lastz 34.34% 10 70.39% 11 4370830 8 

pecan, mavid, pmauve, 
lastz 

35.64% 9 73.67% 9 4379560 5 

Lastz 32.99% 14 61.85% 15 4338160 16 
Mavid 16.49% 17 56.26% 17 4206520 18 
Pecan 36.88% 1 87.86% 1 4362240 13 
Pro-Coffee N.A.  N.A.  4376850 6 
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Figure 1-2  Correlation of peaks / peak boundaries for an example alignment (r = 0.89).  
Gap values are set to -1. 

           
Figure 1-3  Correlation of RNA-Seq score (Flies) vs. Sensitivity/Specificity by 
mafComparator (mammals) (sensitivity r = 0.95/ specificity r = 0.67) 
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1.2 Alignment	
  uncertainty:	
  cause	
  and	
  measurement	
  	
  
Section 1.1 has reviewed the difficulty of objectively selecting a criterion for the 

computation of biologically meaningful MSAs. This problem, purely biological, leaves 

intact the issue of optimizing the chosen objective function. Indeed the computation of 

an MSA being NP-Complete under all the above formulation, one must use approximate 

heuristics that do not guaranty optimality. As one would expect, the wealth of available 

solutions means than many alternative MSAs may be derived from a single dataset. 

Furthermore, since all these packages do not always rely on an explicit objective 

function, it can be hard to estimate the level of optimality of a given model. To make 

things worse, objective function is defined in such a way that more than one MSA 

model may have the same optimal score. This issue is especially severe when dealing 

with distantly related sequence of low complexity like nucleic acids. In that case, the 

tiniest perturbation (change of the input sequence order, different substitution matrices) 

can have a dramatic impact on the final model, especially when dealing with very large 

datasets (Breen et al. 2012). In this section we discuss the main algorithmic reasons of 

this instability and how one can improve modeling robustness by quantifying it so as to 

identify the most trustworthy MSA features. 

 

Interest for this long known issue (Notredame 2002; Wallace et al. 2006) is now rapidly 

growing, as illustrated by an entire session of the last international conference of the 

Society for Molecular Biology & Evolution (SMBE 2012), entirely dedicated to this 

specific topic under the heading “Multiple sequence alignment, alignment confidence, 

and impact on downstream analyses”. This renewed attention is also well illustrated by 

the recent publication of several high impact papers dealing with this precise aspect of 

MSA modeling (Talavera and Castresana 2007; Wong et al. 2008) and an attempt to 

quantify its effect on downstream modeling (Jordan and Goldman 2012). It turns out 

that being able to discriminate confidently aligned from problematically aligned parts 

within an alignment is more important than its overall accuracy (Wu et al. 2012). In 

fact, in the last few years special efforts have been made focusing on the development 

of alignment confidence measures and led to many new approaches (Landan and Graur 

2007; Talavera and Castresana 2007; Capella-Gutierrez et al. 2009; Penn et al. 2010a; 

Penn et al. 2010b). One may distinguish two sources of instability when doing MSA 

modeling: internal and external. External uncertainty results from arbitrary algorithmic 
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choices across various algorithms and their many implementations. The reason why this 

is a cause of uncertainty is the difficulty we have to discriminate a priori between two 

alternative alignments of the same sequences produced by two different packages. 

Without adequate structural information, one can only guess on the basis of the relative 

benchmark performances, which amounts to betting on the horse with the best odds. 

Internal uncertainty relates to the algorithm itself and the effect of any arbitrary tie 

breaking process taking place in the course of the optimization process. Internal 

uncertainty often results in degraded robustness and sensitivity to a priory neutral 

manipulation, like sequence input order. Recent packages developed to quantify 

alignment uncertainty are summarized in Table 1-3. In this section we review the main 

causes for internal and external instability. 

a) Differences	
  in	
  aligners	
  algorithm	
  
It is well known that algorithmic variations in multiple aligners result in MSA 

variations. A given dataset will often lead to significantly different MSAs when 

processed with different methods. The level of similarity between various methods can 

be visually displayed as a “method tree” shown in Figure 1- 4 (Wallace et al. 2006). 

Figure 1-4  Methods Tree - A UPGMA (Sokal and Michener 1958) tree which shows 

the clustering of different MSA methods. Pairwise distances are calculated on the 

HOMSTRAD benchmark by computing the SoP differences of the alignments produced 

by individual methods (adapted from Figure 1 (Wallace et al. 2006)). 
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Yet, it is only recently that the community has started evaluating systematically the 

effect of these variations onto subsequent modeling, including phylogenetic 

reconstruction, by far the most common application of MSA reconstruction. Hickson et 

al. were the first to show how different alignments generated using various programs or 

even different alignment parameters can yield very diverse phylogenetic trees (Hickson 

et al. 2000). More recently, Wong et al. have pointed out the practical consequences 

related to this issue when reconstructing phylogenetic trees at genome scale (Wong et 

al. 2008). Given a collection of 1502 dataset of homologous sequences, the seven most 

widely used aligners only agree on less than 55% of the dataset (ClustalW (Thompson 

et al. 1994), Dca (Stoye 1998), Dialign2 (Morgenstern 1999), Mafft (Katoh et al. 2002), 

Muscle (Edgar 2004b), ProbCons (Do et al. 2005) and T-Coffee (Notredame et al. 

2000)). In other words, for any given dataset there is less that 55% chance to obtain a 

unique tree topology. Even considering individual alignment software, different 

parameters usually result in different alignment and therefore different downstream 

analyses, i.e., phylogenetic conclusion (Kjer et al. 2007). As discussed in previous 

section, we refer to this uncertainty, which results from algorithmic variation, as 

“external” uncertainty as opposed to the internal uncertainty developed in the next 

section. In phylogeny, it is common practice to estimate the robustness of each node in a 

tree using a process known as “bootstrap”. In this context, the bootstrap is a re-sampling 

procedure used identifies any bias in the data that would undermine the full support of 

the considered trees. It may be described as an attempt to estimate the fraction of 

columns in the MSA model supporting every split of the sequences. In Chapter 3, I 

describe a novel bootstrap procedure, Weighted Partial Bootstrap, that makes it possible 

to simultaneously take into account the sampling biases (like regular bootstrap) and the 

algorithmic fluctuation, eventually combining them into a unique bootstrap support 

value for each node. 

b) Input	
  sequence	
  orientation	
  

A vast majority of all available aligners, and for sure the five most widely used, all rely 

on a similar algorithm known as the progressive alignment. Under that scheme, 

sequences are incorporated one by one in the MSA following an order defined by a 

binary guide tree. At every node the child sequences are merged into a sub-MSA using a 

pairwise sequence alignment algorithm able to align sequences, profiles or a 

combination. This algorithm is always based on Needlman and Wunch (Needleman and 
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Wunsch 1970), a variation of the original Bellman dynamic programming designed to 

solve a sink to source problem (Bellman 1958). NW is meant to estimate the best 

possible score for matching two sequences, given a position specific scoring scheme 

and a gap penalty:  

 scorei,j=max(scorei-1,j-1+matchi,j , scorei-1,j+gap , scorei,j-1+gap) (1) 

Interestingly, the estimate of this optimal quantity can be obtained using at least two 

different iterations, outlined below. Overall, the score is the same but the difference 

between these two implementations is a break of ties in a different order that results in 

different final optimal alignments. These two alternative ways of resolving a tie are 

often referred to as high-road and low-road. 

Code 1 
1 if (scorei-1,j-1+matchi,j ≥ scorei-1,j+gap) & (scorei-1,j-1+matchi,j ≥ scorei,j-1+gap) 

2 scorei,j = scorei-1,j-1+matchi,j 

3 else if (scorei-1,j+gap ≥ scorei,j-1+gap) 

4 scorei,j = scorei-1,j+gap 

5 else 

6 scorei,j = scorei,j-1+gap 

Code 2 
1 if (scorei-1,j-1+matchi,j > scorei-1,j+gap) & (scorei-1,j-1+matchi,j > scorei,j-1+gap) 

2 scorei,j = scorei-1,j-1+matchi,j 

3 else if (scorei-1,j+gap > scorei,j-1+gap) 

4 scorei,j = scorei-1,j+gap 

5 else 

6 scorei,j = scorei,j-1+gap 

For instance, when aligning OPOSSUM (seq i) and BLOSUM62 (seq j), there are two 

optimal alignment results (Figure 1-5b), Aln1 from Code 1 (Figure 1-5a, organ path) 

and Aln2 from Code 2 (Figure 1-5a, blue path), respectively. 
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a) b)  

Figure 1-5  Alignment uncertainty when aligning OPOSSUM and BLOSUM62. 

Given a pairwise alignment of reasonably related sequences, these arbitrary decisions 

often have little impact and usually result in shifting some gaps (those having similar 

residues on both edge). It is worth pointing out that changing the input order of the 

sequences is a strict equivalent of a change of formulation. Under this scheme the 

optimal alignment (not its score) will therefore depend on the sequences input order. 

With two sequences, this has little consequences but with more than two sequences, a 

combinatorial problem occurs that can significantly affect the reconstruction process. 

For instance, if we include the third sequence and estimate the MSA through the 

combination of two pairwise MSAs (1 vs. 2 and 2 vs. 3), we will have 4 possible MSAs. 

It is easy to anticipate that the problem will become increasingly severe with growing 

numbers of sequences (Figure 1-6). 

 

Figure 1-6  Alignment uncertainty when aligning OPOSSUM, BLOSUM62, and 
BLOSUM45. 

This very precise phenomenon was recently used to develop the so Heads-or-Tails 

methodology (HoT), showing that substantial variations can occur when constructing an 

MSA on a set of sequences and subsequently on the same sequences reversed from left 
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to right (Landan and Graur 2007). Observed variations merely results from the arbitrary 

tie breaking between high-road (i.e., Figure 1-5 a, blue path) and low-road (i.e., Figure 

1-5 a, organ path) during dynamic programming (Landan and Graur 2008). It must be 

stressed, however, that reversing sequence input direction amounts to systematically 

changing all the ties. It is therefore a very limited exploration of the MSA space. Other 

packages, like PRANK do a more thorough exploration by systematically breaking ties 

in a random fashion thus making each run an independent sampling. Several variations 

have been described around the HoT algorithm, one of which involved applying the 

HoT procedure on the partition of the sequence defined by internal nodes of the guide 

tree. The updated HoT increases the alternative sample size to eight (Landan and Graur 

2008). This allows a better exploration but looses one of the main advantages of the 

HoT algorithm, which is the possibility to apply it on any third party algorithm. It is 

also worth noting that in the original publication, the Head or Tail process was applied 

onto the ClustalW algorithm, whose gap penalties are position specific and were 

estimated using structural information. Under such a scheme, the non symmetry of 

dynamic programming is not a consequence of the high-road/low road issue, but merely 

the result of a different scoring scheme, resulting from the new amino-acid transitions 

imposed by the reverse order.  

c) Input	
  sequence	
  order	
  

We showed that the shuffle of the order in the sequences are provided to the aligner, 

which can estimate a similar result approximately (Chang et al. 2012b). In most 

dynamic programming implementation, a swap of the order in which two sequences are 

aligned effectively amounts to inverting the tiebreak priority of each tie (low-road 

becomes high-road and inversely). 

We applied this strategy on two popular aligners: ClustalW2.1 (Larkin et al. 2007) and 

MAFFTv6.815b (Katoh and Toh 2008), which use the BAliBASE3.0 reference dataset 

(Thompson et al. 2005b). Our approach contained shuffling the sequences and 

realigning them 100 times. The resulting MSAs are then combined by using M-Coffee; 

a flavor of the T-Coffee package enables the combination of several alternative models 

into a consensus model (Wallace et al. 2006). The M-Coffee MSA model comes along 

with an estimation of the consistency between each position and the combined 

alignments, which is like a consensus tree when replicates are combined. Their results 



20 

indicated that variations among alignments are like a consequence of the order 

shuffling. For instance, MAFFT replicates are on 92.1% consistent in average; while 

ClustalW alignments are 90.2% consistent of BAliBASE 3. Interestingly, our analysis 

also suggested that a correlation between alignment accuracy and overall consistency 

(ClustalW r = 0.49, MAFFT r = 0.52). This result also held locally. For instance, pairs 

of residues having a score of 5 or higher are 96.9% likely to be correctly aligned. 

Likewise, pairs of residues having a score of 4 or lower are 27.6% likely to be 

accurately aligned.  

d) Guide	
  tree	
  topology	
  in	
  the	
  progressive	
  alignment	
  
In theory, the computation of an optimal progressive alignment should not depend on 

the guide tree since, unless one uses a weighting scheme based on this same guide tree, 

the tree itself is not part of the scoring scheme. In practice, however, the guide tree is a 

very important component of the MSA reconstruction and has been shown (Wheeler 

and Kececioglu 2007) to significantly impact the reconstruction capacity of various 

methods (Edgar 2004b). GUIDANCE was recently developed in order to evaluate the 

impact of the guide tree onto the subsequent MSA robustness (Penn et al. 2010b). 

Guidance measures the robustness of MSA by estimating a set of perturbed trees 

obtained using bootstrap replicates drawn from an input MSA. These replicate trees are 

then used to generate an equal number of alternative MSAs using any progressive 

algorithm accepting a pre-computed guide tree along with the sequences. The final 

evaluation is obtained by measuring the agreement between the various MSA replicates 

and the target MSA. GUIDANCE has been reported to be more accurate than HoT in 

predicting regions most likely to affect phylogenetic reconstruction. This approach, 

however, is invasive and requires a substantial code modification in most MSA 

packages. Moreover, it is only suitable for progressive approach. 

e) Alignment	
  robustness	
  

It has long been known that the correctness of optimal alignment may be estimated by 

comparing it to alternative sub-optimal alignments of the same sequences. This notion 

has considerably gained momentum when the notion of posterior decoding was 

introduced in the field of sequence alignment, along with pair Hidden Markov Models 

(pair-HMM). In this context, one can simultaneously estimate the combined posterior 

probability of all sub-optimal alignments. Posterior decoding then makes it possible to 
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measure the score of any alignment in the light of its sub-optimal background. This idea 

was originally developed in the probabilistic Smith and Waterman algorithm (Bucher 

and Hofmann 1996) and later used in the ProbCons algorithm where alignment library 

is estimated using the posterior decoding of a pair-HMM. More recently, the PSAR 

algorithm was reported as a way to quantify an alignment reliability by comparison with 

alternative alignments of the same sequences (Kim and Ma 2011). In that case, the 

strategy relies on a leave one out approach where the MSA is re-estimated several time 

by removing all sequences in turn and then estimating the consistency between this 

collection of partial alignments and the full model. Kim and Ma reported a positive 

relation between the support by suboptimal alignments and the correctness of alignment, 

at least on DNA sequences. 

The consistency framework of T-Coffee is ideally suited for such analysis. Consistency, 

as mean to estimate MSA accuracy was first introduced by Gotoh in an iterative MSA 

strategy (Gotoh 1990). The notion was then further refined within the Dialign algorithm 

that uses the so-called overlapping weights to drive an agglomerative assembly process, 

(Morgenstern et al. 1996) in a way reminiscent of Vingron’s dot matrix multiplication 

(Vingron and Argos 1991). This concept was eventually combined with the progressive 

alignment framework in the T-Coffee package, and later further refined using in 

ProbCons probabilistic consistency algorithm. The main specificity of T-Coffee is to 

use a library of pairwise comparison in order to estimate the cost for aligning every pair 

of residues in the dataset. In this context, the cost for matching two residues is not 

anymore estimated by a substitution matrix, but simply by estimating how many times 

these two residues were found aligned in the library, either directly or through a third 

sequence. The support of all these combined alternative alignments (suboptimal or not) 

can then be used to estimate the reliability of every pair of aligned residues. This score, 

named Transitive Consistency Score (TCS) is a slight modification of the CORE index 

originally reported for the same purpose. 

In Chapter 4, I report a comparison between GUIDANCE, HoT and TCS, as an 

indicator of alignment reliability, as estimated on BAliBASE 3 and PREFAB4 (Edgar 

2004a). We found that the performance of TCS was superior to the GUIDANCE score 

in two discriminating tests: correct/incorrect regions of alignments and 

accurate/inaccurate aligners.  On the former test, the Area Under the Curve (AUC) of 
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TCS is not only the best, ranging from 94.44% to 98.80%, but also the most stable 

among different properties of testing sets and aligners. On the later analysis, the 

accuracy of determining more accurate alignment of two methods by TCS is from 80% 

to 87%, which is highly significant from a statistical point of view. Detail description 

can be found in Chapter 4. 

1.3 Using	
  MSA	
  scoring	
  schemes	
  for	
  post	
  processing	
  purposes	
  
Alignment internal uncertainty can be used to reveal poorly supported portions of an 

MSA model, while the external uncertainty may allow an estimate of the MSA 

modeling global robustness. This information is arguably more useful than any global 

estimate of the full MSA accuracy since it can allow a systematic use of the most 

trustworthy regions for modeling purpose. Those two issues are related to each other. 

For the first issue, how to summary the information among alternative alignments is to 

make the consensus alignment of those alternative alignments, i.e., a consensus tree 

from bootstrap or supertree, a consensus tree from different genes (Delsuc et al. 2005). 

Furthermore, these alternative sample alignments reflect uncertainty and come by 

different sources. Therefore, we can evaluate the confidence region of a given alignment 

by checking the proportion of aligned pairs in a given alignment existing among 

alternative alignments. The low confident region of the alignment might be filtered. 

Methods related to those two issues will be reviewed in the following sections. 

a) Consensus	
  alignment	
  
The alignment pattern might be quite common among or various among alternative 

alignments. A consensus alignment is one way to summary those information from 

alternatives. Regions of high agreement have been shown usually well aligned (Wallace 

et al. 2006). Although there are many packages for MSA, there are few packages 

available for making a consensus alignment from input alternative alignments. For the 

combination of alternative DNA alignments, ComAlign was first described by Bucka-

Lassen et al. (Bucka-Lassen et al. 1999) and then M-Coffee was proposed for protein 

MSAs (Wallace et al. 2006). ComAlign extracts qualitatively good sub-alignments from 

a set of multiple alignments and merges them into a new alignment which is showed 

often improved. Their algorithm is implemented as a variant of the traditional dynamic 

programming strategies. M-Coffee is a special mode of T-Coffee and uses consistency 

technique to estimate a consensus alignment. It does not explicitly align sequences but 

compiles externally produced alignments as consistency libraries. Then, those libraries 
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are combined into a final MSA during the aligning procedure. Their benchmarks 

suggest that the resulting alignments tend to be more accurate than the individual 

methods (Wallace et al. 2006). Another framework, MergeAlign, represents constituent 

MSAs as a weighted directed acyclic (Collingridge and Kelly 2012). By using dynamic 

programming, the path, which maximizes the weights of edges, corresponds to a 

consensus MSA. Interestingly, both studies found that there is a positive correlation 

between the consistency of the part of the consensus alignment and its accuracy. 

b) Trimming	
  alignment	
  
Filtering alignment ambiguity region is supposed to increase the single-versus-noise 

ratio of phylogenetic information but this assumption is still controversial. For 

phylogenetic construction, it is not clear that the single-versus-noise ratio is guaranteed 

to increase after filtering.  

 

On one side, it has been shown that trimming alignment by removing non-reliable 

regions usually lead to an improvement on the overall accuracy of downstream 

phylogenetic analysis (Castresana 2000; Talavera and Castresana 2007; Capella-

Gutierrez et al. 2009). In 2000, Jose Castresana proposed a method, Gblock. It selects 

the blocks of alignment according to the number of contiguous conserved positions, less 

gappy and high conservation of flanking positions. Many possible nonhomologous 

positions will be eliminated after trimming (Castresana 2000). Then, they showed that 

cleaned alignments produce better tree topologies by using simulated protein sequences 

aligned by ClustalW, MAFFT, and ProbCons (Talavera and Castresana 2007). trimAl 

determines the confidence of alignment column based on gap score, residue similarity 

score, and identity score. It will automatically select the corresponding thresholds to be 

used in each specific alignment so that the signal-to-noise ratio is optimized. Its 

performance is better than Gblock in most scenarios (Capella-Gutierrez et al. 2009).  
 
In contrast, using simulated data (Liu et al. 2009; Wang et al. 2011) or biological data 

(Aagesen 2004; Simmons et al. 2008; Dessimoz and Gil 2010; Saurabh et al. 2012b) as 

a way to evaluate the final alignment, trimming does not always give more informative 

results. Dessimoz and Gil concluded gaps carry substantial phylogenetic signals; 

therefore, excluding gaps and variable regions is harmful (Dessimoz and Gil 2010). 

Saurabh et al. reported that indel (insertion/deletion) process might create considerable 

information that is potentially benefic for phylogenetic inference. However, a better 
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model of indel process is required before the information in gaps can be fully exploited 

for phylogenetic inference (Saurabh et al. 2012b). 

 

To overcome the trade-off between filtering problematic alignment regions and keeping 

evolutionary signals, we proposed a weighted replication strategy. It uses replicating 

instead of filtering, such that the information of a given alignment will not only be kept 

but also be enriched for phylogenetic analysis according to its confidence. The detail is 

described in the Section 4. 

Table 1-3 Alignment uncertainty software currently available to users (incomplete list). 
Software Characteristic description Reference 

Confidence   
HoT Sampling by reversing input sequence (Landan and Graur 2007) 
COS Sampling by reversing input sequence according 

to the partition of the internode of guide tree 
(Landan and Graur 2008) 

Guidance Sampling by perturbed guide trees by using the 
bootstrap method 

(Penn et al. 2010b) 

PASR Sampling from pairwise comparisons between 
each single sequence and the sub-alignment. 
Only for DNA 

(Kim and Ma 2011) 

ZORRO Probabilistic masking program based on pair 
Hidden Markov Model 

(Wu et al. 2012) 

TCS Quantify the transitive consistency of the aligned 
pair of MSA with pairwise alignment 

(Chang et al. 2012a) 

Consensus   
ComAlign Combing good sub-alignments (Bucka-Lassen et al. 1999) 
M-Coffee Consistency framework (Wallace et al. 2006) 

MergeAlign Dynamic programming in weighted directed 
acyclic graph 

(Collingridge and Kelly 
2012) 

Filter   
Gblock Two models: strict, relaxed. It is suitable for 

close related sequences 
(Talavera and Castresana 
2007) 

TrimAl Three models: gappyout, strictplus, automated1 (Capella-Gutierrez et al. 
2009) 

BMGE Conservation approach based on entropy value 
weighted with BLOSUM or PAM similarity 
matrices. 

(Criscuolo and Gribaldo 
2010) 
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2. IMPROVING	
  MULTIPLE	
  SEQUENCE	
  ALIGNMENT	
  

2.1 Accurate	
  multiple	
  sequence	
  alignment	
  of	
  transmembrane	
  protein	
  

Jia-Ming Chang, Paolo Di Tommaso, Jean-François Taly, Cedric Notredame 
BMC Bioinformatics. 2012; 13 (Suppl 4):  S1 
  

http://www.biomedcentral.com/1471-2105/13/S4/S1
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2.2 Improving	
  the	
  alignment	
  quality	
  of	
  consistency	
  based	
  aligners	
  with	
  
an	
  evaluation	
  function	
  using	
  synonymous	
  protein	
  words	
  

Hsin-Nan Lin, Cédric Notredame, Jia-Ming Chang, Ting-Yi Sung, Wen-Lian Hsu 
PLoS ONE. 2011; 6 (12): e27872 
  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0027872
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3. IMPROVING	
  SUBSEQUENT	
  PHYLOGENETIC	
  ANALYSIS	
  

Title: Phylogenetic tree reliability can be improved using alignment uncertainty 

3.1 Abstract	
  
Motivation: Most evolutionary analyses are based upon pre-estimated multiple 

sequence alignment models. From a computational point of view, it is as complex to 

estimate a correct alignment, as it is to derive a correct tree from that alignment. Wong 

et al. established the uncertainty that multiple alignment procedures induce when 

reconstructing phylogenies. They were able to show that in many cases different 

aligners produce different phylogenies, with no simple objective criterion sufficient to 

distinguish among these alter-natives. 

Result: We show that it is possible to significantly increase the dis-criminative 

capacities of bootstrap measures used to estimate phylogenetic trees reliability. Our 

procedure involves concatenating several alternative multiple sequence alignments of 

the same sequences, produced using different commonly used aligners. Concatenated 

alignments are used to draw bootstrap replicates. We named this method Weighted 

Partial Super Multiple Sequence Alignment (wpSMSA). On a collection of 853 datasets 

made of 7 one-to-one yeast orthologues, wpSMSA significantly improves the capacity 

to discriminate between topologically correct and incorrect trees. Over-all, we show that 

the combined use of wpSMSA trees along with single aligners bootstrap value makes it 

possible to identify 68% of the correct trees with a confidence of 92%.  In contrast, a 

single method can only identify 14% of the correct trees at a similar confidence level. 

Bootstrap values were estimated for entire trees and are therefore suitable for large scale 

filtering. The values themselves are comparable to similar readouts estimated using a 

single method. 

Availability: The automated generation of replicates has been implemented in the T-

Coffee package, which is available as open source freeware from www.tcoffee.org 

3.2 Introduction	
  	
  
Phylogenetic reconstruction tools are among the most widely used modeling methods in 

biology (Stamatakis 2006; Guindon et al. 2010; Tamura et al. 2011). Phylogenetic 

reconstruction has now become a method of choice for a wide range of applications that 

range from regulatory network evolution analysis (Brawand et al. 2011) to protein 

structure comparison (Magis et al. 2010). The availability of an increasing amount of 
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sequence data, obtained by high throughput sequencing, is rapidly amplifying this trend 

(Rokas et al. 2003). Nonetheless, correctly estimating phylogenetic trees remains a 

challenging task from both computational and biological standpoints. 

 

A phylogenetic tree is a binary representation of an evolutionary scenario where each 

node represents either duplication or a speciation event. Phylogeny aims at 

reconstructing the most likely scenario, that is to say the one best supported by the 

variations measured when comparing the sequences. Assuming one knows perfectly 

how mutations separate each pair of sequences, the task of turning this estimate into the 

most likely tree is NP-Complete under its most common formulations. 

 

The problem of reconstructing a tree usually starts with precisely estimating the number 

of mutations that have occurred in each sequence. Two confounding effects hamper this 

quantification. The first one, known as multiple sampling, is a consequence of 

successive mutations altering the same site and occasionally reverting it. Ignoring 

multiple sampling results in an under-estimation of evolutionary distances. This 

problem is well known and can be addressed using a wide range of corrections 

involving more or less sophisticated evolutionary models (Kimura 2 parameters, etc.). 

The second confounding factor is the uncertainty inherent to any sequence alignment 

(Rost 1999; Capriotti and Marti-Renom 2010). This phenomenon, often referred to as 

twilight zone, results from protein alignments tendency to decrease in accuracy when 

dealing with sequences less than 25% identical  (60% for RNA). Below these ranges, 

similarity measures based on pairwise alignments are usually over-estimated. This issue 

can be addressed by estimating distances from a MSA rather than through pairwise 

comparisons. Computing accurate MSAs, however, comes with issues of its own. 

 

Estimating pairwise distances on an MSA yields at least three immediate advantages. 

Firstly, pairwise distances measured on an MSA tend to be more accurate because they 

result from the entire dataset. Secondly, the intrinsic nature of the MSA model means 

that pairwise projections are all constrained to remain consistent with one another, thus 

resulting in pair-wise distances more likely to be ultra metric, a very useful property 

when using distance based methods like neighbor joining. Thirdly, the MSA 

materializes columns of homology that can span the whole dataset hence making it 

possible to estimate local evolutionary models, for in-stance when using Maximum 
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Likelihood (ML) methods. These benefits come at a cost and MSA estimation is also an 

NP-Complete problem under its most common formulations (Wang and Jiang 1994), 

including Sankoff’s that requires the simultaneous computation of a phylogenetic tree 

along with its underlying MSA (Sankoff et al. 1973). This problem has been addressed 

using a wide range of iterative heuristics such as PRRN (Gotoh 1996), MUSCLE 

(Edgar 2004b) and SATé (Liu et al. 2009). All the methods can be loosely described as 

alternative optimization protocols. None of them can guarantee optimality, even within 

some limits. As a consequence they tend to produce MSAs of comparable accuracy but 

often significantly different from one another. 

 

Not being able to define and estimate unambiguously a correct MSA is a major problem 

when doing phylogenetic reconstruction. Most available aligners have been optimized 

for their capacity to reconstruct structure based sequence alignments while using 

sequence information only. They rely on a variety of scoring schemes (objective 

function) that, given the same dataset, explicitly define different optimal alignments. 

Wong et al. have recently exposed practical consequences of this problem when 

reconstructing phylogenetic trees (Wong et al. 2008). They have shown that given a 

collection of 1502 dataset of homologous sequences, the seven most widely used 

aligners only agree on less than 50 % of the dataset. In other words, for any given 

dataset there is less than 1 chance out of 2 to obtain a unique tree topology when 

applying the seven most widely used aligners. 

 

Until recently, this problem had been all but ignored by the community, with the vast 

majority of published trees relying most of the time on a single ClustalW MSA. When 

doing so, the issue of MSA reliability is usually addressed using a post processing meth-

od, like trimming, in order to systematically remove the portions of an MSA unlikely to 

be correct (Castresana 2000; Capella-Gutierrez et al. 2009) even though recent results 

suggest trimming to have only a limited impact on phylogenetic estimation (Liu et al. 

2009; Dessimoz and Gil 2010; Saurabh et al. 2012b). One may also argue that by 

removing some of the uncertainty inherent to a dataset, trimming results in an alteration 

of the signal to noise ratio, a process that can hamper robustness estimates. New 

protocols are now addressing this problem through systematic MSA sampling. For 

instance, the Heads-or-Tails (HoT) procedure involves aligning the reversed sequences 

and comparing the direct and re-verse versions of the MSA (Landan and Graur 2007). 
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Algorithmically speaking, HoT amounts to systematically reverse the order in which 

ties are broken when processing the dynamic programming matrix. Therefore, it only 

allows for two replicates. PRANK uses a more sophisticated sampling strategy, where 

each MSA replicate is estimated by randomly breaking all dynamic programming ties 

(Loytynoja and Goldman 2008). The most elaborate (and time intensive) protocol is 

probably GUIDANCE where MSA replicates are obtained by re-estimating progressive 

MSAs using guide trees obtained from the bootstrap replicates of a seed MSA (Penn et 

al. 2010a; Penn et al. 2010b). All these sampling strategies produce a similar output, in 

the form of an index summarizing the alignment robustness each residue across the 

MSA sampling process. 

 

Various benchmarks, by others and us have shown these indexes to be very informative 

as accuracy estimators, and comparable in their specificity. They address the uncertainty 

issue raised by Wong et al. but they stop short of providing a definite answer to the 

effect of MSA uncertainty onto phylogenetic reconstruction, especially when dealing 

with non-controlled cases. In this work we are proposing an alternative method that 

precisely addresses this issue. We show that rather than combining the alternative 

MSAs into a unique consensus model or to locally trim them, one can concatenate the 

alternative MSAs and use them to draw bootstrap replicates. Doing so results in a 

bootstrap value that simultaneously reflects evaluative sampling (as does regular 

bootstrap) along with the uncertainty induced by the MSA procedure. While this 

procedure does not improve the tree accuracy, it makes the global bootstrap index more 

informative and therefore more useful when doing large high-throughput automated 

analysis. 

3.3 Methods	
  

a) Reference	
  dataset	
  
Validation was made using a reference collection of orthologous datasets adapted from 

Wong et al. Wong’s collection consists of 1502 one-to-one orthologous datasets 

estimated using 7 yeast complete genomes with the phylogeny extending back >100 

Ma. Each dataset comes along with seven alternative MSAs: ClustalW (Thompson et al. 

1994), Dca (Stoye 1998), Dialign2 (Morgenstern 1999), MAFFT (Katoh et al. 2002), 

Muscle (Edgar 2004b), ProbCons (Do et al. 2005) and T-Coffee (Notredame et al. 2000) 

and their corresponding PAUP Maximum Likelihood (PAUP ML) tree. In order to 
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compile a more phylogenetically homogenous set and avoid false orthologs, we selected 

the 853 datasets for which at least one of the 7 aligners yields the established yeast Tree 

of Life (ToL) topology which was shown in Figure 4 of Rokas’s paper (Rokas et al. 

2003), as estimated using the Robinson and Foulds topological comparison 

implemented in treedist (Felsenstein 1989). 

b) Tree	
  computation	
  
For each dataset we used the seven alternative MSAs to estimate PAUP ML and its 

associated bootstrap support, as defined by Wong et al. Under this formulation, 

bootstrap is estimated for an entire tree and defined as the fraction of bootstrap 

replicates for which PAUP ML recovers the topology of the original tree estimated on 

the complete MSA. In addition to the original seven MSAs, we used the T-Coffee 

package to produce another two MSA models: a consensus alignment, estimated with 

the M-Coffee mode, and a super multiple sequence alignment (SMSA) containing a 

con-catenation of the seven individual MSAs. The term Super-MSA refers to the super-

matrix procedure (Delsuc et al. 2005) where several genes are combined in order to 

estimate a tree. SMSAs were used to draw bootstrap replicates by either drawing a 

number of columns identical to the full SMSA length, or by drawing a number of 

columns equal to the average length of the concatenated MSAs. The last procedure is 

referred to as partial SMSA bootstrap (pSMSA). Individual MSAs, consensus and 

SMSA were all estimated in one single operation using the T-Coffee package: 

t_coffee –seq <dataset> -method msa_method1, msa_method2, … -log <concatenate> -

outfile <conscensus> 

Alignment procedure is done followed by Wong et al. so alignments are done through 

backtranslating from protein to DNA.  

c) Weighted	
  sampling	
  scheme	
  
Different alignment programs may use similar strategies such that columns of SMSA 

are not generated independently. In order to reflect the similarity across concatenated 

MSAs, a weighting scheme was designed based on the column similarity across the 

alignments. For each MSAx, the weight is defined as: 

 

 

where N is the number of concatenated MSAs and ColumnSim is the percentage of 

columns in MSAx that are found identically aligned within MSAi, as returned by the 
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aln_compare algorithm: 

t_coffee -other_pg aln_compare -al1 <aln1> -al2 <aln2> -compare_mode column 

The resulting weight is then used when drawing replicates from the concatenated 

dataset, with each column having a probability to be selected proportional to the weight 

of the MSA it comes from. According to this weighting scheme, an alignment program 

similar with others will contribute less during bootstrap procedure.  

d) Evaluation	
  
A strategy was designed to compare the relative merits of all the bootstrap strategies 

described here. Given any MSA procedure and the associated collection of PAUP ML 

trees estimated on the 853 reference datasets, we proceeded as follows. Each tree 

topologically identical to the ToL was labeled as Proven Positive and the remaining 

trees were labeled as Proven Negatives. A bootstrap value was then estimated for every 

tree and the collection was sorted in reverse bootstrap order. This ordered list was then 

scanned in order to plot a true positive versus false positive graph. This same sorted set 

was also used to obtain Receiving Operator Characteristic curves and their associated 

Area Under the Curve (AUC) values with the ROCR R package (Sing et al. 2005). 

3.4 Results	
  
Our goal was to determine whether the uncertainty associated with MSA estimation 

could be incorporated within phylogenetic tree bootstrapping processes in order to 

refine tree robustness estimates. We started by analyzing the relationship between 

bootstrap support and alignment uncertainty. To that effect, we used the 1502 Wong’s 

datasets made of 7 one-to-one yeast orthologues and binned them by the number of 

different tree topologies recovered when aligning each dataset with seven popular 

aligners and turning the resulting MSAs into PAUP ML trees. We then used Wong’s 

methodology to estimate a global bootstrap for each tree and boxed-plotted the 

distribution by topological bin (Figure 3-1). Results clearly show that bootstrap values 

decrease when the number of distinct topologies increases. This rather intuitive finding 

indicates the existence of a relationship between MSA instability (i.e. alternative MSAs 

yielding different tree topologies) and low bootstrap support. 
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High bootstrap values are not direct indicators of phylogenetic accuracy. They merely 

reflect the homogeneity of the evolutionary sampling revealed by the MSA. Drawing an 

absolute correlation between phylogenetic correctness and bootstrap robustness is 

difficult because it would require access to validated reference phylogenetic trees, a 

scarce commodity. In theory, one could work with Wong’s collection using the yeast 

ToL as a gold standard, since each dataset is supposed to be made of one-to-one 

orthologues. In practice, things are less straightforward, owing to the complex yeast 

genome history, with the suspicion of several duplication rounds (Wolfe and Shields 

1997) and potential linage sorting effect. It is therefore unclear for which fraction of 

Wong’s datasets the ToL can be considered the true history. We addressed this problem 

by identifying within Wong’s collection a subset of sequences likely to be enriched in 

ToL-like evolutionary relation-ships. We did so by selecting the 853 families for which 

at least one of the 7 aligners yields an MSA supporting the ToL. Such datasets are not 

guaranteed to be ToL compliant, but it is reasonable to expect some enrichment. Indeed, 

if one assumes the 7 MSAs in each dataset to be independent (which they are not) and 

any MSA with PAUP_ML leads to a purely random tree topology (which is not totally 

appropriate as tree reconstruction), the probability of obtaining by chance the unrooted 

ToL topology is, which is about 1% (or even less if one considers the MSAs non 

independent). Out of 853 datasets, one would therefore expect in the order of 6 

mistakenly selected datasets. This figure is approximately 10 times smaller than most 

differences reported in subsequent benchmarks and can therefore be considered an 

acceptable error margin. 

Figure 3-1 Number of different tree topologies versus average bootstrap values 
measured across the seven individual aligners. 
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a) MAFFT	
  provides	
  the	
  most	
  informative	
  bootstrap	
  among	
  individual	
  aligners	
  	
  
We used the 853 family collections to compare alternative bootstrap strategies on 

alternative MSA methods (Table 3-1, Figure 3-2a). Our intention was not to compare 

the tree reconstruction accuracy, but rather to quantify the discriminative power of 

various bootstrap procedures. We estimated a PAUP ML tree on each MSA produced 

with each of the seven aligners and labeled the resulting trees as Proven Positives when 

their topology recapitulates the ToL or as Proven Negatives otherwise. We then 

estimated the bootstrap support for each tree and sorted, for each aligner, the trees in de-

creasing bootstrap order to plot True Positives (TPs) versus False Positives (FPs) curves 

(Figure 3-2a, Table 3-1). We found the individual aligners to be very comparable in 

terms of overall accuracy. They all manage to reconstruct a similar number of trees 

having the ToL topology, with MAFFT being the most effective method (665 ToL 

topologies) and T-Coffee the less accurate (620 ToL topologies). The overall 

topological correctness is a poor indicator of suitability for an aligner, because it does 

not give any indication on a method discriminative capacity and leaves users unable to 

select the trees most likely to be correct. To complement this figure, we measured the 

number of reported TPs for a certain number of accepted FPs (10 and 25). For both 

these values, MAFFT performed best with ClustalW and DCA was the less accurate. 

When measuring the Person Correlation Coefficient between the number of reported 

TPs at a given FP threshold and the average bootstrap values (Table 3-1), we found the 

25 FPs limit to be significantly more correlated than the 10 FPs limit  (0.77 and 0.44 

respectively). 

Table 3-1 Average bootstrap, AUC values and the number of TPs for 10 and 25 
accepted FPs of each method. 

   TPs 

method ave. bootstrap AUC for 10 FPs for 25 FPs total 

ClustalW 51.31 0.7521 185 274 643 
DCA 50.62 0.7694 194 284 624 
DIALIGN 51.94 0.7618 253 340 659 
MAFFT 52.82 0.7750 253 359 665 
Muscle 52.35 0.7771 224 315 639 
Probnt 50.96 0.7790 256 312 642 
T-Coffee 51.21 0.7889 234 311 620 
M-Coffee 51.41 0.7688 193 325 646 
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SMSA 77.31 0.8301 329 425 661 
pSMSA 50.96 0.8140 342 385 661 
wpSMSA 50.86 0.8215 353 423 661 
 

 

 

Figure 3-2  The number of FPs (non-ToL) versus the number of TPs (ToL) analysis on 
a) individual aligners and SMSA b) alternative sampling procedures. 

b) SMSA	
  performs	
  better	
  than	
  MAFFT	
  but	
  artificially	
  increases	
  bootstrap	
  scale	
  
We then used this same dataset and approach to estimate the effect of combining 

individual MSAs into either a consensus MSA (build with M-Coffee) or into a 

concatenated set of MSAs (Super MSA, SMSA). Results show that M-Coffee, the 

a
) 

b
) 
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consensus, is a poor performer delivering only slightly more than the average of 

individual aligners on most readout considered here. For instance, when considering the 

number of TPs for 25 FPs, M-Coffee ranks 5th out of 8 considered aligners. SMSA, the 

concatenated alignments, yields very different results. If one excludes the average 

bootstrap that will be discussed in the next paragraph, the SMSA procedure outperforms 

all the single aligners and appears to be dramatically more discriminative. For instance, 

at the 25 FP threshold, SMSA is 18% (435 vs. 359) more discriminative than MAFFT 

and on average 35% more than individual aligners. Similar levels of improvement can 

be measured when considering the 10 FPs threshold or the AUC that summarizes the 

sensitivity/specificity trade-off of a method across all possible thresholds (Table 3-1). 

This improvement does not come at a significant cost in overall accuracy and SMSA 

only delivers a few ToL topologies less than MAFFT (661 vs. 665). 

 

Bootstrap values on SMSA come in a range that does not make them comparable to 

bootstrap values on standard alignments. For practical usage, these values would need to 

be re-calibrated each time one changes the concatenated methods or the number of 

methods. The reason why bootstrap values increase so much when drawing replicates 

from the SMSA has to do with the non-independence of the concatenated MSAs that 

induce a multiple re-sampling effect. In practical terms, concatenating non-independent 

MSAs amounts to artificially increasing self-agreement within the dataset, hence the 

inflated bootstrap values. This increase does not, however, correspond to any improved 

discriminative capacity. One can easily show this by self-concatenating all the 

individual MSAs seven times in a row. The result is an increase of average bootstrap 

value from 51.6 up to 78.8 with no significant variation in discriminative capacity. The 

increased bootstrap values and increased discrimination capacity we report on Table 3-1 

are there-ore disconnected observations.  

c) wpSMSA	
  as	
  good	
  as	
  SMSA	
  and	
  its	
  bootstrap	
  compatible	
  with	
  individual	
  
aligner	
  

We hypothesized the possibility to counterbalance the multiple-sampling effect by 

generating shorter replicates. To that effect we re-ran a bootstrap procedure where each 

replicate only contains a number of columns equal to the average size of the 

concatenated MSAs, i.e. 1/7 of the total SMSA length (Zharkikh and Li 1995). We 

compensated the potential information loss by drawing 7 times more replicates (700 
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rather than a 100). This protocol, named Partial SMSA (pSMSA), behaved exactly as 

anticipated. Its various readouts suggest accuracy comparable to SMSA and bootstrap 

values in the same range as those measured on individual aligners. Partial bootstrap is 

not, however, an entirely satisfying solution to the multiple sampling issue. It does 

address the mechanical bootstrap inflation induced by concatenation, but ignores the 

fact that all aligner methods are not equally different and do not contribute equal 

amounts of information. Some are more likely to produce similar MSAs, as a 

consequence of arbitrary algorithmic implementation similarities. Such methods will be 

effectively over-weighted when doing the sampling. One can easily address this 

problem by adding a corrective weighting scheme to the sampling. We selected a 

scheme (“Weighted Sampling Scheme” section, Methods) that up-weights MSAs in 

which sequences are aligned differently from the rest of the concatenated MSAs. 

Columns from such MSAs are more likely to contribute a column when drawing 

replicates. Results (Table 3-1, Figure 3-2b and 3-3) show a net improvement of the 

Weighted Partial SMSA (wpSMSA) over most alternative procedures with no 

significant variation of the bootstrap value range. Outputting compatible bootstrap value 

to individual aligner makes wpSMSA practical because a usual bootstrap threshold can 

be also applied to wpSMSA. 

 

In order to establish the relationship between the wpSMSA bootstrap value, tree 

topological correctness and similar readouts on the individual aligners, we plotted the 

respective bootstrap values on the 853 families (Figure 3-3). On this plot, the most 

striking feature is the high level of topological correctness for trees having a bootstrap 

value higher than 60 (Table 3-2). Nearly 98% of the 248 trees in this range are 

topologically correct as opposed to a mere 67% (=382/565) below the 60% bootstrap 

limit. In the lower range, one can clearly see that correct topologies (in blue) are more 

often above the main diagonal than below. This observation can be quantified (Table 3-

2) and it appears that whenever the wpSMSA bootstrap is higher than the average 

bootstrap value measured on single aligners, the resulting tree is 86% (=213/247) more 

likely to be topologically correct. This observation suggests that there exists a very 

informative relationship between the individual MSA bootstrap readouts and their 

concatenated counterpart, with the confrontation of these two quantities likely to 

improve interpretation. Decreases in bootstrap values within the wpSMSA are by 

contrast less informative. 
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Table 3-2 The average bootstrap comparison between wpSMSA and single aligner 
respect to whether the tree topology of wpSMSA is identical to ToL or not. 

 wpBS>single BS wpBS=single BS wpBS<single BS 
Overall 
wpSMSA == ToL 383 2 276 
wpSMSA != ToL 38 1 153 
wpBS  and single BS > 60 
wpSMSA == ToL 146 1 96 
wpSMSA != ToL 3 0 2 
wpBS  and single BS < 60 
wpSMSA == ToL 213 1 168 
wpSMSA != ToL 34 1 148 
 

Figure 3-3 The bootstrap of wpSMSA versus the average bootstrap of individual 
aligners. Blue points indicate datasets for which the wpSMSA topology is identical to 
the ToL, red points otherwise. 

3.5 Discussion	
  
One of the most complex aspect of the work reported here is the notion of an “aligners 

collection”. Such collections exist, merely reflecting the difficulty of properly aligning 

multiple sequences. More than 50 MSA methods (Kemena and Notredame 2009) have 

been reported over the last 20 years, and choosing the right number and combination of 

aligners is important. As for the collection used here, no strong rationale exists except 
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that these aligners have been shown to perform well and have been evaluated for their 

tendency to deliver different alignments (Wallace et al. 2006). The number of 

concatenated MSA is an issue that can more easily be addressed. We did so by 

systematically considering all possible combinations of an increasing number of 

methods (Figure 3-4). We found the combination of at least three aligners to be a critical 

point. With seven aligners, bootstrap increase appears to flatten; yet, the sharp increase 

of AUC suggests that there might be some merit in combining a few more methods. 

 

We report a variation of standard bootstrap procedures and its validation on a reference 

dataset. While bootstrap is usually carried out in order to quantify the effect of uneven 

evaluative sampling across homologous genomic sites, we show here how minor 

adaptation of standard protocols makes it possible to integrate within this process MSA 

uncertainty and its effect on phylogenetic reconstruction. Our procedure is relatively 

simple as it only involves computing alternative MSAs using different methods, 

comparing the MSAs in order to weight them, concatenating them and drawing partial 

replicates from the weighted columns. All other aspects of the tree reconstruction are 

left to external third party methods (PAUP ML in the context of this work). This 

approach is named wpSMSA. Its main merit is to combine within a single numerical 

value the combined effect of evolutionary sampling and MSA uncertainty. This 

combination is a very desirable property, considering that evolutionary sampling and 

MSA uncertainty are strongly correlated and virtually impossible to disentangle from 

one another. Once combined, they become less of confounding factor. The effect of our 

procedure is not to derive more accurate phylogenetic trees, but rather more informative 

bootstrap values. For instance, we show that when ranking trees by their bootstrap 

values, wpSMSA is much more accurate than alternative method at separating correct 

and incorrect trees on the basis of their bootstraps. 

 

 

 

 

 

 



60 

Figure 3-4 The average bootstrap and AUC (red line, %) of concatenating different 
number of aligners. 
 

The main issue with the concatenation of non-independent MSAs is bootstrap values 

inflation; a phenomenon that would require sophisticated calibration if one is to use our 

method in a standard set up. We have addressed this issue by designing and validating a 

partial bootstrap procedure that makes the wpSMSA bootstrap support directly 

comparable with that of single aligners.  When using these values and comparing them 

with single aligners, we could show that above 60 units of bootstrap, about 97% 

(=146/149) of the reported topologies are accurate, regardless of the method. Yet, 

wpSMSA reports 52% (146 vs. 96) more correct topologies than single aligners do. This 

effect is especially significant when considering that wpSMSA bootstrap is slightly 

lower than that measured on individual aligners. Below 60 bootstrap units, the 

combined use of our method also makes it possible to identify correct topologies. We 

show that whenever the wpSMSA bootstrap is higher than the average value estimated 

on individual MSAs, the resulting trees are 86% likely to be topologically correct. On a 

dataset like the one analyzed here, such a filtering would have revealed 213 correct trees 

(out of a total of 661 ToLs). Overall, if one had been using a 60 units threshold to 

decide between correct and inaccurate trees, one would have identified 22% (=146/661) 

of the correct trees with our method (with 3 FPs). If one had also been using the 

bootstrap shift effect below 60 bootstrap units, this figure would have increased to 
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68.8% (= 243+213 / 661) with a confidence level of about 92%. 

 

One class of MSA programs are designed by focusing on phylogenetic constrain. 

Blackburne and Whelan pointed out this class usually cluster together compared to 

another class, similarity based MSA methods in terms of similarity of alignments 

(Blackburne and Whelan 2012a). Two evolutionary based methods, PRANK v.121018 

(Loytynoja and Goldman 2008) and SATé v2.2.5 (Liu et al. 2012), are selected as 

representative for comparison with wpSMSA. PRANK is run under default parameters 

(-protein) and SATé is run under auto mode (“--auto”). Figure 3-5 shows the TP versus 

FP analysis. SATé performs better than the best individual aligner, MAFFT, but still 

worst than wpSMSA, that is, wpSMSA produces more TPs than SATé under the same 

FP threshold (353 versus 313 at 10 FPs, 423 versus 395 at 25 FPs).  

Figure 3-5 TP versus FP analysis of PRANK (green line) and SATé (cyan line). 

3.6 Conclusion	
  
The approach developed here leaves untouched the validation of many key properties of 

the methodology. For instance, one would want to know how informative is the node 

support delivered by wpSMSA. With only 7 species, our reference dataset is probably 



62 

not the best to ask such detailed questions, and one would probably need a larger set of 

species. The other critical component of wpSMSA is the number of combined methods. 

When doing the first validation of a consensus MSA approach, Wallace et al. did show 

the various levels of correlation that exist among methods (Wallace et al. 2006). We 

also show how wpSMSA is sensitive to the number of combined methods but stop short 

of proposing a methodology suitable for the assembly of an optimal aligner cocktail. It 

is nonetheless obvious that a change in the combined meth-od will most likely have an 

effect on the reported trees. One may therefore argue about our aligner choice being too 

arbitrary. This is certainly true; on the other hand, the fact that alternative aligners fail to 

agree merely results from our incapacity to estimate optimal MSAs. In this context, 

each aligner can be seen as arbitrary heuristics in its own right. Their combination is 

therefore another heuristic aligner, better suited for estimating phylogenetic trees. 

Because our approach has been designed to handle both the use of non-independent 

models and the effect of uneven correlations, it should remain robust, regardless of the 

number and the nature of combined methods and one may even consider combining 

alternative alignments generated while exploring some alignment parameter, like gap 

penalties. Another important question would be to deter-mine how sensitive the 

wpSMSA approach would be to dataset difficulty. The reference benchmark assembled 

here is not very challenging and one may therefore consider asking if the accuracy 

figures we report here will hold when dealing with larger datasets or sequences harder 

to align. It is reasonable to expect that concatenation will remain more informative than 

single aligners, if only because it incorporates in the global readout an element about 

MSA overall accuracy. 

 

The approach is very generic and makes it easy to systematically integrate in a 

phylogenetic analysis the potential biases that may require systematic sampling, 

including dynamic programming artifacts or guide tree effects as pointed out by 

Löytynoja and Goldman (Loytynoja and Goldman 2009). However, inferring posterior 

probabilities across a set of MSAs from different aligners is challenging (Blackburne 

and Whelan 2012a) such that how to model those uncertainty into BAliPhy (Redelings 

and Suchard 2005) framework remains open. 
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4. IMPROVING	
  MODEL	
  USAGE	
  
Title: Transitive consistency provides a Unified Framework For Homology and 
Evolutionary Modeling 

4.1 Abstract	
  
Motivation: Multiple sequence alignment (MSA) is a key modeling procedure when 

analyzing biological sequences. MSAs are often used as primary models when 

estimating phylogenetic, functional or structural relationships. It has long been known 

that the accuracy of MSAs can affect the accuracy and the reliability of these inferences. 

This effect results from an uncertainty inherent to the computation of the MSA models. 

Recently, new methods have been developed to show how these phenomena can be 

quantified in order to increase the trustworthiness of MSA models and subsequent 

analysis based upon them. Such methods include Heads-or-Tails (HoT) and 

GUIDANCE. The methods are powerful but often slow, not generic enough and of 

limited accuracy in some cases. Furthermore, no validation exists that would clarify if 

the same approach can be used to estimate the reliability of an MSA from different 

points of view such as a structural, a functional and an evolutionary one. 

Results: Our approach is named TCS (T-Coffee Consistency Score). We show here that 

TCS can be used to identify reliable positions of BAliBASE structure-based sequence 

alignments, and it does so in a way superior to both HoT and GUIDANCE. Using the 

same approach, we show that this measure can be used to do a weighted replication that 

results in a more accurate tree topology, both on simulated and empirical reference 

datasets. A main strength of TCS is the possibility to apply it to any third party MSA 

model generated by any available method. Because it is based on an estimate of the 

consistency between an MSA and a library of pairwise alignment, our method can be 

used along with different types of such collections. We show here that the best results 

are obtained using an all against all collection, but we also found that good quality 

results can be obtained when populating the library with pairwise projections extracted 

from fast approximate MSAs. 

Availability: TCS is part of the T-Coffee package, a web server is also available from 

http://tcoffee.crg.cat/core and a freeware open source code can be downloaded from 

http://www.tcoffee.org/Packages/Stable/Latest. 
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4.2 Introduction	
  
Multiple sequence alignment (MSA) is an important initial step for many applications in 

biology, the main applications being phylogenetic reconstruction, structural homology 

modeling and functional inference through domain profile comparisons. More than 100 

publications describing novel MSA methods have been published over the last 30 years 

(Kemena and Notredame 2009), and the MSA Wikipedia page lists 47 available MSA 

packages (http://en.wikipedia.org/wiki/Sequence_alignment_software). The accuracy of 

MSA is limited by both the complexity of the problem (known to be NP-Complete in all 

its useful formulations), and the difficulty to describe an MSA in mathematical terms to 

accurately reflect biological relationships. This explains why the problem is such an 

active field of research. Over the last years, new fronts have started emerging in the 

MSA research. Departing from the canonical attempt at generating more accurate 

algorithms and aligners, several groups have started exploring the issue of reliability 

and the feasibility of using approximate models along with some index indicating the 

trustworthy parts of the MSA. The rationale of this approach could be described as “A 

bird in the hand is worth two in the bush”, which, in MSA words, can be translated into 

the higher biological relevance of a model that accurately describes a small fraction of 

the data compared with one describing the entire data with lower accuracy. 

 

The main reason why MSA reliability fluctuates lies in our limited capacity to describe 

sequence homology, especially when dealing with distantly related sequences having 

less than 20% similarity. At this level of identity, the homology signal is nearly 

saturated and lower than background noise. Aligners that are meant to maximize 

similarity often over-estimate the level identity and yield inaccurate sequence alignment 

with an identity level often higher than the correct one. This global phenomenon can be 

heterogeneous across the sequences with heterotopia, the difference in evolutionary 

rates across sites, which is a common feature in protein sequences. In this case it is 

reasonable to expect significant variation in alignment accuracy, especially between the 

slowly evolving internal part of the proteins and the fast evolving exposed loops. This 

problem, which mostly results from our limited capacity to trace evolutionary 

relationships across long distances, is worsened by most alignment methods, which 

almost always rely on pairwise comparisons carried out by dynamic programming. 

When doing so, one uses the Needleman and Wunsch algorithm in order to estimate the 

relationship between two sequences. NW estimates the optimal edit score of two 
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sequences and delivers a pairwise alignment having an optimal score. Under most 

formulations, there often exist more than one optimal alignment. In most 

implementations, the algorithm arbitrarily resolves the ties that may arise and always 

returns the same alignment. The order in which ties are resolved is sometimes referred 

to as “low-road/high-road”. Given two sequences, these arbitrary tiebreaks have little 

consequence. It is worth mentioning that the order in which the ties are resolved 

depends on the order of the sequences themselves. By swapping them, one may get a 

different alignment with the same optimal score. This issue is important when dealing 

with multiple sequence datasets. 

 

 On a pairwise alignment, these arbitrary decisions have little consequence. By contrast, 

they can be major shaping forces when computing a multiple sequence alignment. 

Indeed, each tiebreak may be seen as a flip of a coin bringing one bit of uncertainty. 

With most MSAs being resolved in a progressive way, and sequences aligned along the 

phylogenetic tree, the dynamic programming uncertainty would require all tiebreaks to 

be somehow resolved in a coordinated fashion, so that the resulting patterns remain 

compatible while the algorithm works its way along the guide tree and coalesces the 

sequences. Such coordination, however, would dramatically increase the algorithm 

complexity. 

 

Many alternative solutions have been proposed to either deal with this issue or to take it 

into account when estimating MSA accuracy. The most complete solution is probably 

the MSA algorithm that estimates an optimal MSA in multi-dimensional space. The cost 

of MSA, however, becomes prohibitive when dealing with even moderately distant 

sequences. Another alternative, implemented in the PRANK algorithm, is to turn each 

MSA computation into a sampling across the tiebreak space (Loytynoja and Goldman 

2008). In PRANK all ties are broken randomly and the resulting MSAs may therefore 

be seen as replicates whose robustness yields an indication of the model robustness. 

Consistency based progressive alignments constitute a powerful alternative to this 

expansive sampling strategy. In a progressive consistency framework, like T-Coffee, 

MSAs are estimated by maximizing their consistency with a set of pre-computed 

pairwise alignments. The main strength of this approach relies in its capacity to re-

interpret all possible pairwise alignments. In the original implementation, the algorithm 

was computing for each pair of sequences two global pairwise alignments by feeding in 
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the sequences to a pairwise aligner in the two possible orders. By doing so, the 

algorithm was populating a pairwise library, which was then used to estimate the 

propensity of every pair of residue to be aligned, given its compatibility with the rest of 

the library. This process dramatically decreases the number of ties and though it remains 

to be established, one may suggest that a large part of the reported improvement 

resulted from the synchronization of tiebreaks. In their implementation, the ProbCons 

authors went a bit further and populated the library with all sub-optimal pairwise 

alignments above some threshold. As noted by both groups, the resulting score for 

aligning two symbols reflects the support of the whole sequence dataset, and as such, it 

may be used as a reliability indicator. More recently, a method, named Heads-or-Tails 

(HoT) (Landan and Graur 2007; Landan and Graur 2008) was reported, based on the 

observation that MSAs may vary when aligning a set of sequences after flipping them 

from left to right. As discussed in subsequent publications this effect is due to a 

systematic inversion of the tiebreak order resulting from the inversion of the sequences. 

At the pairwise level, this only affects the alignment and not its score, but when dealing 

with an MSA in a progressive alignment framework, these effects usually add up and 

may result in significant differences across replicates.  

 

The main motivation of HoT is not so much to reveal MSA instability, but rather to 

determine to which extent this instability can be used to estimate model reliability. In 

this case the authors used the estimate in order to show that phylogenetic reconstruction 

can be significantly increased when filtering out unstable positions. This concept was 

recently taken a bit further by the GUIDANCE approach (Penn et al. 2010b). In 

GUIDANCE, the authors showed how random guide trees could help identify the less 

trustworthy positions in an alignment, thereby increasing its phylogenetic reconstruction 

potential. These approaches depart significantly from the most common filtering 

procedures like Gblocks and trimAl that rely on a more static interpretation of the MSA 

and eliminate positions on the basis of their indel propensities. More dynamic filterings 

have, however, often been used when doing homology modeling. For instance, the 

CASPER server (Claude et al. 2004) uses the T-Coffee CORE index, originally 

described as a means to identify unreliable positions in an MSA in order to filter out 

them when doing homology modeling. In practice, any approach introducing an element 

of instability in an MSA can be used to estimate its robustness. As an alternative to 

random guide trees, the authors of PARS (Kim and Ma 2011) have recently shown that 
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accuracy can be estimated by comparing alternative projections of the same sequences 

in an MSA when removing in turn every sequence and realigning the remaining set. 

These perturbation methods are in many ways comparable to a phylogenetic bootstrap, 

where a model is re-estimated through data re-sampling in order to estimate how well 

supported the final model is by the data. By contrast, consistency based methods are 

much less intensive, since they rely on a finite and limited sampling (typically quadratic 

with the number of sequences) and do not require any replication stage, as the model is 

generated along with the reliability estimates. 

 

It is rather surprising to see that so far no filtering method has yet been analyzed for its 

combined capacity to reflect both structural and evolutionary correctness. This question 

is rather important as it amounts to asking whether correct structural alignments are a 

good substrate when growing phylogenetic trees. This issue is becoming highly relevant 

in a context where novel phylogeny aware methods like PRANK or SATe (Liu et al. 

2009) that are meant to estimate MSAs suitable for phylogenetic reconstruction have 

recently been reported. In most cases, these methods tend to fare poorly on structure 

based reference datasets, while they perform with superior accuracy when 

reconstructing phylogeny on simulated datasets. The most common explanation is that 

evolutionary and structural reconstructions consider extreme processes in the 

evolutionary spectrum. We show in this work that this apparent discontinuity between 

structural and phylogenetic aligners may not exist. Our accuracy evaluation method uses 

consistency in order to estimate the reliability of every pair of aligned residue in an 

MSA. We show that this score correlates better than HoT or GUIDANCE with 

structural correctness on BAliBASE3 (Thompson et al. 2005a) or PREFAB4 (Edgar 

2004b) reference MSAs. We also show that this accuracy estimation can be used to 

weight a standard bootstrap procedure in order to significantly increase the accuracy of 

the estimated trees. The result is that using that same methods we find the TCS score 

able to outperform all alternative filtering methods for the reconstruction of accurate 

phylogenetic trees, either on simulated or empirical datasets. We find this effect to be 

significant on simulated data and even more pronounced on real empirical datasets. 
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4.3 Methods	
  

a) Transitive	
  consistency	
  measure	
  

The transitive consistency measure presented here is an extended version of the T-

Coffee scoring scheme. Given a library of pairwise alignments, this score is used to 

estimate the score of aligning two residues Ax and By from two sequences A and B of the 

MSA, by identifying all intermediate residues Iz from a third sequence I that may be part 

of two pairs AxIz and IzBy. Given the entire pairwise library, the reliability score is then 

calculated as a ratio between the sum of the weight of all AxBy pairs linked through an Iz 

residue defined as TCS(Ax,By|Iz), divided by the sum of the score of all possible pair 

combinations involving Ax or/and By through an intermediate Iz. This formulation, 

shown below, amounts to estimating the fraction of all compatible pairs that support the 

alignment of Ax and By.  
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Libraries were estimated using the three following protocols:  

(1) T-Coffee original, in which the library is made by combining ClustalW (Thompson 

et al. 1994) and Lalign (Huang and Miller 1991) pairwise alignments. In this library, 

named TCS_original, pairs of residues are weighted by the average identity 

measured on the pairwise alignment they were extracted from. 

t_coffee –seq=<seq_file> -method clustalw_pair, lalign_id_pair –out_lib 

<lib.TCS_original> 

(2) Libraries populated with pairwise alignments produced by the ProbCons pair-HMM 

(Do et al. 2005). In these libraries (TCS), weights are defined as the posterior 

probability of the two considered residues being aligned. 

t_coffee –seq=<seq_file> -proba_pair –out_lib <lib.TCS> 

(3) Libraries built using the pairwise projections extracted from several fast multiple 

aligners (TCS_FM). In the context of this work, we used the protocol developed for 

the Ensembl Compara pipeline that combines MAFFT (Katoh et al. 2002), 

MUSCLE (Edgar 2004b) and Kalign (Lassmann and Sonnhammer 2005).  

t_coffee –seq=<seq_file> -method kafft_msa,kalign_msa,muscle_msa –out_lib 

<lib.TCS_FM> 



 

 69 

These three kind of libraries  (TCS_original, TCS, TCS_FM) were then used to evaluate 

MSAs produced by three alternative methods: ClustalW 2.1 (Larkin et al. 2007), 

MAFFT 6.711 (Katoh and Toh 2008), and MUSCLE 3.8.31(Edgar 2004a). T-Coffee 

was voluntarily excluded in order to rule out any interference between the actual 

computation and the subsequent evaluation. MSAs were evaluated using the following 

command: 

t_coffee –infile=<target MSA> –evaluate –lib <library> [-output score_ascii,sp_ascii] 

, where sp_ascii is a format reporting the score of every aligned pair in the target and 

score_ascii is a command reporting the average score of every individual residue along 

with the average score of every column.  

b) Structural	
  reference	
  datasets	
  

Two datasets were used in order to estimate structural correctness: BAliBASE3 

(Thompson et al. 2005b) that contains 218 sets classified in 5 categories. BAliBASE 

datasets contain several sequences having a known structure and have annotated blocks 

in which the structural superposition is considered reliable and fit for benchmarking. 

We also used PREFAB4 (Edgar 2004a), a much more extensive collection where each 

set is made of about 50 sequences embedding 2 sequences with a known structure. The 

reference alignments come along with block indication suggesting the reliable positions 

for benchmark. PREFAB4 is classified into four groups: 0~20, 20~40, 40~70 and 

70~100 according to the pairwise identity of reference sequence. RV11 of BAliBASE3 

and 0~20 of PREFAB4 are the most challenging sets because their sequence identity 

falls in the Twilight Zone (Rost 1999). RV11 has been shown to the most informative 

subset across all these categories (Kemena, 2009).  

c) Structural	
  evaluation	
  procedure	
  

In order to compare alternative evaluation methods, like HoT and GUIDANCE, the 

score of every aligned pair was estimated using TCS, HoT or GUIDANCE. Pairs 

containing residues that are part of the reference block were then extracted, labeled as 

either Proven Positives (when they corresponded to the reference) or Proven Negatives 

otherwise. The list of ordered pairs was then used to do a Receiver Operator Curve 

(ROC) and the Area Under Curve (AUC) was estimated in order to compare 

performances with the ROCR R package (Sing et al. 2005). Subgroups of BAliBASE3 

and PREFAB4 reflect different protein properties. Average AUC was computed for 
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each BAliBASE and PREFAB subgroup. We also used the provided packages to 

estimate the BAliScore and the PREFAB score on all the considered MSAs 

d) Phylogenetic	
  validation	
  
Reference datasets. Validation was done using the Gblocks (Talavera and Castresana 

2007) simulated dataset (16 tips), trimAl (Capella-Gutierrez et al. 2009) (32 and 64 tips) 

and an empirical dataset. Both simulated datasets were generated by their respective 

authors using Rose (Stoye et al. 1998). We only used the asymmetric mode reported to 

be the most challenging. Alignments were constructed on the 16 tips dataset using 

ClustalW, MAFFT and ProbCons. On the 32 and 64 tips, we only used MAFFT. 

Maximum Likelihood (ML), Neighbor Joining (NJ) and Parsimony trees were estimated 

on each MSA and the benchmark was carried out using the Gblocks protocol. The 

empirical dataset was extracted from Wong et al. (Wong et al. 2008) in which the 

authors assembled 1502 clusters of 7 orthologues that they aligned with 7 aligners 

(DCA, ClustalW, Dalign, MAFFT, Muscle, ProbCons and T-Coffee) in order to 

estimate as many phylogenies using Maximum likelihood (PAUP). Out of this set we 

selected the 853 datasets in which at least one aligner yields a phylogeny identical to the 

canonical yeast ToL (Rokas et al. 2003). 

 

Filtering procedures. In order to evaluate and compare filtering procedures, MSAs were 

filtered with Gblocks using the stringent and the relaxed procedure that keeps all 

positions containing less than 50% of gapped positions. trimAl was benchmarked in two 

modes: gappyout, which automatically selects gap cut-off score depending on MSA’s 

gap distribution and strictplus, which automatically selects block size. 

 

TCS replicates. Rather than being used as a filtering score, the TCS scoring scheme was 

used as a weighting scheme when building replicates for the benchmarking. Under this 

scheme, the number of times a column is chosen for replication is proportional to its 

average score. 

 

The MSAs and the trees were estimated using computation on the Amazon elastic 

cloud. Tree accuracy was estimated using the Robinson-Foulds distance measure 

implemented in treedist to compare the target trees with their reference (Felsenstein 

1989). 
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4.4 Results	
  

a) Prediction	
  of	
  structural	
  accuracy	
  

We first computed the BAliBASE MSAs using ClustalW, MAFFT and Muscle (Table 

4-1). We found the Sum-of-Pairs (SPs) accuracy to be in broad agreement with reported 

figures in the literature. We then used the ROC approach described in the methods 

section to test the capacity of our scoring schemes (HoT, GUIDANCE and TCS) to 

separate between accurate and inaccurate pairs of aligned residues (as judged from 

comparison). By this criterion, we found the TCS to outperform both GUIDANCE and 

HoT on BAliBASE. We also found the TCS to be much more robust across aligners, 

and being little affected by the overall method accuracy. We then refined the analysis by 

only considering the behavior of the best method (MAFFT) on the extreme datasets, 

‘easy’ and ‘difficult’, of BAliBASE and PREFAB (Table 4-2). This analysis confirmed 

the superiority of the TCS scoring scheme, which is much less affected than its 

counterparts by variations in accuracy. 

Table 4-1 AUC/average AUC analysis of different confidence schemes for different 
alignments on BAliBASE 3 set. 

 ClustalW MAFFT Muscle 
SPs 0.714 0.807 0.793 
TCS 96.46/98.80 94.44/95.81 94.51/96.37 
HoT 90.95/96.72 82.66/89.87 -* 

GUIDANCE 87.69/95.11 90.28/93.95 94.51/95.16 
*HoT does not support the Muscle aligner. 
Table 4-2 The average AUC of easy and difficult protein families from BAliBASE and 
PREFAB by MAFFT. 

 difficult easy 
 RV11 0~20 RV12 70~100 

SPs 0.536 0.465 0.888 0.942 
TCS 91.11 87.16 96.83 78.98 
HoT 72.63 81.35 78.79 57.96 

GUIDANCE 83.51 86.03 92.64 62.01 

We then compared the effectiveness of alternative TCS protocols (Table 4-3). Our result 

indicates the superior discriminative capacity of ProbCons-based libraries. This protocol 

is about 3 times faster than GUIDANCE and significantly more informative. It is, 

however, interesting to note that the fast protocol is only modestly less accurate than 

GUIDANCE but nearly 10 times faster, which may be convenient when running high 

throughput pipelines.  
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Table 4-3  The average AUC (%) of different library protocols and their running time 
analysis 

 BAliBASE PREFAB Time (s) 

TCS 94.44 89.24 17,244 
TCS_original 91.20 83.83 113,624 
TCS_FM 87.28 80.03 6,957 
GUIDANCE 90.28 85.74 66,368 

b) Overall	
  alignment	
  correctness	
  
Establishing the relative accuracy of individual pairs of residues within an MSA has 

limited practical applications. In reality, one is often more interested in deciding 

objectively between 2 or more alternative MSAs. We therefore asked if TCS is a 

suitable method to compare alternative MSAs of the same sequences. In order to 

estimate this capacity, we did a non-parametric analysis by estimating how often the 

relative accuracy of two alternative MSAs could be inferred from the relative TCS (or 

GUIDANCE) score of these same sequences. Such analyses typically yield plots like 

the ones in Figure 4-1. Given an ideal method, such plots should only contain points in 

the top right and the bottom left quadrant, which correspond to situations where the two 

differences have the same sign. We used the three alignments (ClustalW, MAFFT and 

Muscle) of each dataset as well as the reference, which was treated as a fourth method. 

For each alignment, we estimated the BAliBASE and PREFAB score on the one hand, 

and the TCS (or GUIDANCE) score on the other hand. We then estimated for each 

combination dataset/evaluation method the proportion of points for which the relation of 

order between the structural evaluation and the sequence evaluation were in agreement. 

Results are reported in Table 4-4. In this table, an ideal method would get a score of 

100, and TCS dominates by far GUIDANCE, both on BAliBASE and on PREFAB. 

These performances are comparable to those reported when using structural information 

for similar analysis (Kemena et al. 2011). 

Table 4-4  TCS, TCS_original, TCS_FM and GUDIANCE applied to BAliBASE 3 and 
PREFAB 4. 
 BAliBASE3 PREFAB4 
 RV11 RV12 RV20 RV30 RV40 RV50 all 0~20 20~40 40~70 70~100 all 
# comp. 228 264 246 180 294 96 1,308 2,391 1,962 345 294 4,992 
TCS_original 69.2 84.0 87.4 91.7 82.0 90.6 83.1 62.8 71.2 68.3 73.6 66.8 
TCS 82.4 87.0 81.7 85.6 80.6 86.5 83.5 71.7 74.8 67.9 62.7 72.5 
TCS_FM 67.4 70.6 70.3 70.0 70.7 69.8 69.9 65.2 70.7 62.6 85.5 67.8 
GUIDANCE 68.3 73.7 64.2 77.8 72.1 72.9 71.1 59.9 61.7 56.1 62.7 60.5 
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Figure 4-1  Comparison of ∆ SPS and ∆ confidences by GUIDANCE (upper) and TCS 
(bottom) on BAliBASE3 using alignments produced by MAFFT, MUSCLE and 
ClustalW as well as the reference alignment. All points that have the same algebraic 
sign are correctly classified. 
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c) Usefulness	
  of	
  the	
  TCS	
  score	
  for	
  phylogenetic	
  reconstruction	
  
In order to estimate the usefulness of the TCS when building phylogenetic trees, we ran 

this analysis on three simulated datasets (Figure 4-2). We used the approach to compare 

filtering methods that remove columns, like trimAl and Gblocks, with our much less 

invasive approach that merely uses MSA stability to weight the contribution of each 

position. On almost every configuration, when using ML, we found our weighted 

replication to yield more accurate trees than any of the alternative protocols. We also 

found the benefits of weighted replication to increase with the number of tips. 

Interestingly we found the benefits of TCS to be much less significant when using 

lower-accuracy tree reconstruction methods like Neighbor Joining and Maximum 

Parsimony. 

Figure 4-2  Average Robinson-Foulds distances of ML tree to reference tree with 16, 
32 and 64 tips from the MAFFT complete alignments, the same alignments after 
treatment with Gblock relaxed, Gblock stringent, trimAl gappyout, trimAl strictplus and 
TCS replicated. The asymmetric tree with three different divergence levels was used for 
the simulations with different alignment lengths. 
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We did run a similar analysis on the empirical yeast datasets and found the results to be 

in excellent agreement with those observed on the simulated dataset. On these empirical 

datasets, the use of the TCS replication results in more correct topologies on all 

methods. The overall correctness of the topologies is also significantly higher (lower 

RF). Overall, the TCS approach recovers a significantly larger number of correct 

topologies than most trimming methods, which seem to have a tendency to degrade 

accuracy on this specific dataset. This interesting observation raises the issue of the 

usefulness of simulated datasets, whose value depends entirely on the expectation that 

these simulations effectively manage to recapitulate biological processes. 

 

The yeast data shows that the stricter the mode is, the less well it performs. For 

example, Gblocks relaxed works better than Gblocks stringent and trimAl gappyout 

works better than trimAl strictplus (Table 4-5). Filtering procedures will damage the 

evolutionary signal in the yeast data set. By replicating instead of filtering, TCS is the 

only strategy that can recover more yeast ToLs than using the original alignments, 

improving the number of true topologies from 641.71 to 656.14 (averaging over the 

seven aligners)  

 

Table 4-5  853 genes respect to the Yeast ToL. 

 Original Gblocks 
relaxed 

Gblocks 
stringent 

trimAl 
gappyout 

trimAl 
strictplus 

TCS replicate 

 RF TPs RF TPs RF TPs RF TPs RF TPs RF TPs 

ClustalW 0.90 643 0.99 629 1.24 584 0.95 628 1.31 561 0.91 649 

DCA 1.07 624 1.01 626 1.32 552 1.13 606 1.31 569 0.93 647 

Dalign 0.84 659 0.95 638 1.36 561 0.85 655 1.31 563 0.80 668 

MAFFT 0.80 665 0.83 653 1.26 573 0.83 657 1.28 562 0.76 669 

Muscle 0.95 639 0.91 646 1.26 578 0.96 633 1.29 559 0.84 662 

ProbCons 0.94 642 0.96 632 1.31 579 1.02 624 1.25 566 0.87 657 

T-Coffee 1.02 620 1.08 612 1.30 570 1.06 612 1.30 565 0.91 641 

AVE 0.93 641.71 0.96 633.71 1.29 571.00 0.97 630.71 1.29 563.57 0.86 656.14 
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4.5 Discussion	
  and	
  Conclusion	
  
In this work, the TCS, a score that is based on a library of pairwise alignments is shown 

to have a high discriminative power regarding alignment accuracy. An additional 

advantage is that the library can be constructed in many ways (e.g. from structural 

alignments), so that the transitive consistency of the input alignment can be judged 

according to the criteria of interest. The library platform is so flexible to integrate 

different information that it can meet a variety of different needs. 

 

One simple way of automatically curating alignments to improve quality is to remove 

ambiguously aligned regions from subsequent phylogenetic analysis, which can be done 

with the popular program Gblocks. However, the effect of applying Gblocks on 

downstream tree accuracy is controversial due to the fact that the filtered part of the 

alignment might contain an important phylogenetic signal (Anisimova et al. 2010). 

Some researches have shown that a gappy region may indeed contain an evolutionary 

signal (Liu et al. 2009; Dessimoz and Gil 2010; Saurabh et al. 2012a). In this paper, we 

propose a replication scheme based on the TCS score. Our replication strategy is new in 

two points: First, it keeps all columns of the alignment, and the confidence of the 

columns is reflected in the number of their replications. It does not filter out any 

position. Second, TCS goes beyond the popular approach based on sequence 

conservation in that it captures the alignment uncertainty in terms of pairwise 

alignments. It is shown that this new strategy helps the downstream phylogenetic 

analysis. It will be interesting to incorporate the TCS score with the gappy score or the 

conserved sequence score used in other tools like Gblocks and trimAl. 
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5. DISCUSSION	
  
David Morrison reviewed 1,280 articles in 2007 from 26 scientific journals where an 

original MSA, based on empirical data, was used in phylogenetic context (Morrison 

2009). He studied separately generalist journals and journals specialized in systematic. 

He found the majority of the practitioners (78% and 76% for general and systematics, 

respectively) manually intervene alignment processes, which includes modifying the 

result from computer software or by manually constructing the alignment from the 

beginning. He concluded that, at that time, no bioinformatics approach was acceptable 

for phylogeneticists thus leaving a gap that needs to be filled (Morrison 2009). 

 

In this manuscript, I detailed the implementation of new methods aim to contribute 

filling this lack of accurate alignments mentioned by Morrison in 2009. While I worked 

on the improvement of the T-Coffee alignment package (TM-Coffee and SymAlign), I 

also developed the TCS (section 4) that uses the consistency approach to evaluate the 

accuracy of an alignment position per position. Therefore, a manual alignment edition 

process can be speed up under the TCS score guidance. Besides TCS for internal 

alignment uncertainty, we found that phylogenetic tree reliability can be improved by 

using a weighted sampling strategy among external alignment uncertainty. Further 

extensions are discussed in the following sections. 

5.1 Future	
  work	
  

a) Alignment	
  space	
  
One sequence set might come out of many alternative alignments due to uncertainty 

effects, which we have discussed in Section 1.2. All alternative alignments may appear 

equally good by visual inspection; then users will be confused to choose a final suitable 

one. One solution proposed by current tools is to summarize these alternative 

alignments into a consensus one (section 1.3.a). However, it is also interesting to 

investigate the distribution of these alignments, the so-called alignment space. For that 

matter, Blackburne and Whelan proposed a strategy to project alignments into a space in 

which they found there exist two MSAs clusters: similarity-based and evolution-based 

approaches (Blackburne and Whelan 2012a). Their mapping procedure consists of 

measuring pairwise distances among alignments using their own distance metric 

(Blackburne and Whelan 2012b). Then, the pairwise distance matrix is processed 
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through the multidimensional scaling. Finally, each alignment is plotted as a point in the 

same N-dimensional space. Even though the projection strategy manages to capture two 

MSA classes, drive forces for two separated groups are unknown. This problem can be 

answered by using a MSA feature matrix instead of the pairwise distance matrix. 

 

Feature representation of proteins is a usual initial step for predicting protein functional 

classes (Chang et al. 2008; Su et al. 2012). Then, a protein and its features can be 

projected into the same space trough Correspondence Analysis (CA) (Chang et al. 

2012d). CA has been shown able to identify functional residues inside a MSA based on 

a projection of the columns and sequences (Casari et al. 1995; Rausell et al. 2010). 

Going a bit further, it will be interesting to investigate the “features” of a MSA, i.e., a 

gap distribution (Dessimoz and Gil 2010) and information bit, such that a MSA will be 

quantified in term of features. Taking the “information” feature as an example, we may 

consider an alignment as the process of sequences permutation from chaos to order, so 

different alignments represent different permutations with various information bits. 

Suddenly, the uni-probability model of “alignment space” will be built based on the 

distribution of the bits. Therefore, each alternative alignment is a point inside the space 

according to its containing information. Finally, MSA points can be clustered into sub-

groups thanks to typical clustering algorithms like k-means. This platform will allow us 

to investigate how alignment features drive the distribution of alignments such that a 

cluster of MSAs might be explained due to its specific properties, i.e., compact 

alignment size and gappy columns. 

 

Our goal is to provide a unified solution for handling alignment uncertainty effect 

through a visual platform of all alternative alignments. A downstream application of an 

alignment can be attached on its corresponding alignment point. Consequently, we are 

able to globally observe the effect of alignment accuracy on downstream analysis 

(Jordan and Goldman 2012). On other hand, a biological conclusion could be certainly 

conducted when the overall view of those different inferences is available. 

b) Alignment	
  confidence	
  format	
  
Although there are many programs measuring the uncertainty of MSAs, there is no 

standard alignment output format integrating uncertainty information. A popular format, 

FASTQ, developed to deal with data produced by Next Generation Sequencing, is a 
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text-based format storing both a biological sequence and a character string giving the 

quality score position per position (Cock et al. 2010). We believe this format is a good 

starting point for deriving a format including alignment uncertainty. It should be 

adapted to alignment uncertainty information because it gives information for individual 

sequence while alignment offer also other type of information besides the confidence of 

a single character, i.e., the confidence of the aligned residue pair or the confidence of 

the aligned column. As said before MSAs are often the staring point of a protocol using 

the multiple comparisons of sequences to infer biological conclusions. Among 

following analyses we often cite phylogeny, as they are very dependent on the MSAs 

accuracy. A tree reconstruction method taking into account the reliance information into 

the calculating process should improve the confidence of the resulting phylogeny.  In 

other words, the more convinced a region is, the more it should contribute in the 

phylogenetic inference. Thus, the bias of phylogenetic inference can be minimized by 

alignment uncertainty. As a conclusion, it appears to us that a standard format as 

described here would be of a great benefit for the scientific community. 

c) Phy-­‐Coffee	
  server	
  

The T-Coffee web server paper we published in 2011 is highly cited. Indeed, with 76 

citations according to Google Scholar in June 2013, it is the highest citation among all 

issue according to the Bioinformatics Links Directory (Brazas et al. 2012). It indicates 

that T-Coffee is useful for the community. We believe that our new methodology for the 

detection of uncertain region in MSA will improve the interest for our tools. Therefore, 

we aim to construct a new public server, Phy-Coffee, including partial weighted super 

MSA for uncertainty issue from alternative aligners (Section 3) and the TCS evaluation 

tool detecting low confidence regions of input alignments (Section 4). With Phy-Coffee, 

the sequence alignment service by T-Coffee can be further extended to downstream 

homology and phylogenetic modeling. Phy-Coffee plus T-Coffee will provide a 

complete sequence analysis for biologists. We hope the web servers can reduce the gap 

between computational tools and phylogenetics’ need, which is pointed out by Morrison 

(Morrison 2009). 
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6. CONCLUSION	
  
The following points give a summary of the presented projects:  
 
1. TM-Coffee addressed the problem of aligning transmembrane proteins. 

Beside the algorithm that incorporates homology information to derive 
accurate alignments, we also estimated the influence of the reference 
database content used for homology extension. We showed that highly 
non-redundant UniRef databases could be used to obtain similar results 
at a significantly reduced computational cost over full protein 
databases. 
 

2. The SymAlign project proposed not only a novel local similarity 
measure based on conserved words but also better differentiates 
between the similar and the non-similar protein structures. 

 
3. Weighted Partial Super MSA significantly contributed in the 

improvement of the discriminative capacities of bootstrap measures 
used to estimate phylogenetic trees reliability. Furthermore, the values 
themselves were comparable to similar readouts estimated by using a 
single method. 

 
4. The TCS score developed in this thesis allows us to estimate the 

structural accuracy of an alignment by using pairwise alignment 
information. This method permits to use different aligners to align a set 
of sequences and choose the best alignment according to the TCS 
score. In addition to estimate the structural accuracy of an alignment, 
TCS weighted replicate scheme can enrich evolutionary signals for 
downstream phylogenetic analyses. 
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