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Abstract

Since its discovery in 1928, Raman spectroscopy (RS) has produced a rev-
olution in the �elds of analytical chemistry and molecular detection. Thanks
to the latest technical advances, the expectations of the applicability of RS
in biology have increased. Most recently, RS emerged as an important candi-
date technology to detect and monitor the evolution of the biochemical content
in biomedical samples non-invasively and with high speci�city. However, the
inherent properties of Raman scattering have limited its full exploitation for
biomedical applications. In the past decade, Surface Enhanced Raman Scat-
tering (SERS) and multivariate analysis have emerged as possible solutions for
overcoming the low e�ciency and the complexity of the Raman signals obtained
from biological material. Until 2009, only a few studies had been reported using
multivariate approaches, and these techniques were only employed to group dif-
ferent types of samples. Moreover, although the SERS e�ect was demonstrated
for cells, SERS probes were not used in their full capacity to study complex
biological processes inside cells.

This thesis is a step towards combining and using statistical analysis and
SERS to expand the applicability of RS in biochemistry: from single molecule
to cell and tissue level. This mehtodology could reveal novel insights, otherwise
inaccessible using previous techniques.

Speci�cally, we began studying the changes in Raman spectra of a single
DNA molecule and a RBC under stretching employing optical tweezers. SERS
and statistical techniques such as 2D correlation and PCA were used to reveal
important structural properties of those biological materials.

An experiment to study intracellular pH changes in glioma cells after Pho-
todynamic Treatment (PDT) was performed by using SERS probes embedded
in the cells. The evolution in the SERS spectra was analyzed using 2D correla-
tion. To the best of our knowledge, this study represents the �rst use of the 2D
correlation technique to study cellular SERS spectra.

Furthermore, more complex systems were investigated, to reveal the molec-
ular evolution of cells or tissues undergoing a biochemical process. PCA was
used to study how lipid metabolism varied in di�erent breast cancer cell lines
depending on the degree of malignancy. However, PCA does not provide mean-
ingful components that could be assigned directly to molecular Raman spec-
tra. Consequently, Multivariate Curve Resolution (MCR) was proposed and
applied to extract physically and chemically meaningful molecular components
that changed in cancer cells during the Epithelial to Mesenchymal transition
(EMT).

We monitored the retina composition ex-vivo when neuroin�ammation was
induced. Our study was the �rst application of MCR to decompose and monitor
the molecular content of biological tissue with RS. Biomarkers for the early
detection of neuroin�ammation processes were identi�ed and monitored. This
is the �rst step in establising of a non-invasive and rapid screening technique
for the early detection of multiple sclerosis or other neurodegenerative diseases
in patients.

Finally, the �exibility of MCR-ALS algorithm was exploited to remove the
presence of background signals in Raman spectra of cytological studies that
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mask and degrade the results of a statistical analysis. Application of MCR-ALS
enabled identi�cation of molecular components that play an important role in
the progression of breast cancer cells towards bone metastasis.

This research demonstrated a powerful method that adds a new dimension
to the �eld of analytical chemistry. Sensitive and highly speci�c information
can be extracted non-invasively, rapidly, and without sample preparation. The
samples can be monitored in vivo, quantifying molecular components di�cult
or impossible to obtain with current technology.
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Resumen

Desde que se descubrió la espectroscopia de Raman (ER) en 1928, esta téc-
nica ha producido una revolución en el área de química analítica. Gracias a
los últimos avances técnicos, las expectativas de aplicar ER en biomedicina han
aumentado. La posibilidad de detectar y monitorizar la evolución del contenido
bioquímico en muestras biomédicas de forma no invasiva con alta especi�ci-
dad se ha convertido en una visión a perseguir. Sin embargo, las propiedades
inherentes a la dispersión Raman han inhibido su completa explotación para
aplicaciones biomédicas. En la última década, Surface Enhanced Raman spec-
troscopy (SERS) y el análisis multivariante se han erigido como posibles solu-
ciones para superar la baja e�ciencia y la complejidad de las se«ales Raman de
material biológico. Hasta 2009, estas técnicas no habían sido explotadas para
su uso en aplicaciones biomédicas. La presente tesis representa un paso hacia
la combinación y el uso de análisis estadísticos y SERS para expandir la apli-
cabilidad de la ER en bioquímica: desde moléculas individuales hasta células
y tejidos. Nuevos descubrimientos inaccesibles a técnicas bioquímicas usadas
habitualmente, se han podido revelar con esta metodología.

En concreto, empezamos estudiando cambios en el espectro Raman de una
molécula individual de ADN y un glóbulo rojo (RBC) sometidos a diferentes
estiramientos por medio de pinzas ópticas. Se han utilizado SERS y técnicas
estadísticas como correlación 2D (2DC) y Análisis de Componentes Principales
(PCA) para revelar importantes propiedades estructurales de esos materiales
biológicos.

Se realizó un experimento para estudiar los cambios de pH intracelulares en
células gliales después del tratamiento fotodinámico (PDT) utilizando sondas
SERS implantadas en el interior de las células. La evolución del espectro SERS
fue analizado utilizando 2DC. Hasta donde sabemos, este estudio representa el
primer uso de la técnica 2DC para estudiar espectros SERS celulares.

Además, se han investigado sistemas más complejos para revelar la evolución
molecular de células y tejidos a lo largo de un proceso bioquímico. Con este
objetivo, se utilizó el PCA para estudiar el metabolismo lipídico en diferentes
líneas celulares de cáncer de mama relacionándolo con su grado de malignidad.
No obstante, el PCA no proporciona componentes signi�cativos que podrían
ser asignados directamente a espectros moleculares Raman. En consecuencia,
se propuso la Multivariate Curve Resolution (MCR) para extraer componentes
moleculares con signi�cado físico y químico que cambiaban en las células can-
cerígenas durante la transición epitelio-mesenquima (EMT).

En otra aplicación, se monitorizó la composición de la retina ex-vivo cuando
se inducía una neuroin�amación. Nuestro estudio representaba la primera apli-
cación de MCR para descomponer y monitorizar el contenido molecular de un
tejido biológico con ER. Se identi�caron biomarcadores para la detección pre-
coz de procesos neuroin�amatorios. Esto representa el primer paso hacia el
establecimiento de una técnica no invasiva y de diagnóstico temprano de escle-
rosis múltiple u otras enfermedades neurodegenerativas en pacientes.

Finalmente, se explotó la �exibilidad del algoritmo MCR-ALS para eliminar
la presencia de ruido de fondo en el espectro de Raman para estudios citológicos
que enmascaran y degradan los resultados del análisis estadístico. Gracias a
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eso, se pudieron identi�car nuevos componentes moleculares que ejercían un
papel muy importante en la progresión de células de cáncer de mama hacia la
metástasis ósea.

Esta investigación ha revelado un potente método que a«ade una nueva di-
mensión al campo de la química analítica. Se ha podido extraer información con
alta especi�cidad y sensibilidad de forma no invasiva, rápida y sin preparación
especial de la muestra. Las muestras pueden ser monitorizadas in vivo, cuan-
ti�cando sus componentes moleculares difíciles o imposibles de extraer con la
tecnología actual.
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1

Introduction

Methods to quantify the presence of speci�c molecules in unknown samples
are required in a vast number of applications that extend from the most basic
scienti�c research areas, to engineering, food safety monitoring, and the most
challenging medical applications. In this thesis we focus on the area of biology
and medicine.

Non-invasive monitoring with high speci�city of the molecular content of di-
verse samples such as tissues and cells is crucial when diagnosing or investigat-
ing the mechanisms that govern the progress of a disease or the e�ects of drugs.
For example, in cancers, pro�ling tools for metabolite analysis are necessary
to provide a more comprehensive picture of tumor development and progres-
sion [1]. These �metabolomic� approaches can provide important information
about tumorigenesis, revealing new therapeutic targets and therefore helping in
the diagnosis. Multiple sclerosis (MS) is an in�ammatory demyelinating disease
of the central nervous system (CNS) that lead to neurological and autoimmune
manifestations [2]. In this �eld a non-invasive tool to access the CNS and to
detect the metabolites or biomarkers related to neuro-in�ammation as well as
to study the e�ect of new drugs and to �nd new, more accurate biomarkers is
required. Usually the symptoms start when about 70% of the CNS is already
a�ected. Thus, the screening of healthy patients is necessary even if the symp-
toms are still not noticeable. It is important to establish routine tests for the
detection of this disease in its early stages with non-invasive, inexpensive, and
rapid tools.

The study of a biomolecule such as DeoxyriboNucleic Acid (DNA) is also
very important because the molecule contains key information related to var-
ious diseases. Speci�cally, the study of the mechano-chemistry of living cells
and DNA can help in understanding mechanisms such as the twisting of the
DNA during the DNA�protein interaction, or the e�ect of external forces on
cell motility or metabolic reactions. In all the above-mentioned health-related
�elds, a good understanding of the biochemical content of the studied samples is
required along with the changes in an external parameter that could be: the ad-
hesion of a drug, the di�erences in malignancy between cells, the time evolution,
the progression of the disease, the force applied, etc.

In the past decades, several non-optical pro�ling tools have been developed
for a more comprehensive picture of the biochemical composition and progres-
sion of a biological sample. Speci�cally, biochemical techniques such as High-
Performance Liquid Chromatography (HPLC) [3], Gas Chromatography-Mass
Spectrometry (GC-MS) [4], Liquid Chromatography-Mass Spectrometry (LC-
MS) [5], Metabolite arrays [6], and Nuclear Magnetic Resonance (NMR) spec-
troscopy [7] have been used routinely in laboratories. A brief comparison of the
above mentioned techniques is given in Table 1. However, most of these meth-
ods are invasive, costly, complex, and time consuming. Furthermore most of
them require previous information on the molecule that needs to be quanti�ed
or identi�ed. Usually, to provide that information on the molecules constituting
the sample is not very easy.
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On the contrary, techniques based on the interaction of light with matter are
very promising. Optical techniques can help the diagnosis be less invasive and
more informative. In order to introduce these techniques, we brie�y consider
how incident light interacts with a molecule in a sample (Fig. 1). After the
interaction, the scattered photons can have the same energy (Rayleigh scatter-
ing) or a di�erent energy as the incident one had. To understand the spectrum
of the scattered light, we need to review the basics of molecular physics [8, 9].
Brie�y, as is shown in Figs. 3 and 2, the energy of the molecule is quantized, and
depends on its electronic, vibrational, and rotational states: E = Ee +Ev +Er,
where E is the total energy of the molecule, Ee is the energy of the electronic
state, Ev is the vibrational energy, and Er the rotational energy. When light
interacts with molecules, the photons may be absorbed or scattered. If the en-
ergy of the incident photons is higher than the energy di�erence between two
electronic states of the molecule, the photons are absorbed, and the molecule is
promoted to excited states with higher energy. After this event, non-radiative
processes can occur, and the photons can be emitted from the lower energy of
the excited state, leaving the molecules in a vibrational state of the fundamental
electronic state. Processes of this type are called photoluminescence, and as a
result, the emitted photons have lower energies than the incident ones.

Other absorption processes can occur when the light energy matches the
energy di�erence between two di�erent vibrational states. Then, the photons
may be absorbed, leaving the molecule in a higher vibrational state. This is the
basis of infrared (IR) absorption spectroscopy, since the vibrational energies are
of the order of 104 − 102 cm−1, i.e., the same as IR photons [10,11].

On the other hand, the light is scattered also by the molecule. In this
case, the energy of the incident photon can have a mismatch with the di�erence
between two molecular energy levels. When the scattered photons have the same
energy as the incident photons, the process is called Rayleigh scattering. On the
contrary, photons can undergo inelastic scattering due to the interaction with
the molecular vibrations and, therefore, the energy of the scattered photons can
be di�erent from the incident ones. In this case, the process is called Raman
scattering.

Three processes, luminescence, IR absorption, and Raman spectroscopy
(RS), have been used for the identi�cation of the molecular content of a sample,
however only vibrational spectroscopy (Raman scattering and IR absorption)
possesses the highest speci�city due to its inherently sharp bands (typically on
the order of 10−20 cm−1). Photoluminescense, on the contrary, possesses broad
bands and therefore the molecular information is di�cult to access.

To understand the capabilities of RS, we brie�y discuss its basic fundamental
principles [11�14]. According to the classical theory, Raman scattering can be
described as follows. The electric �eld strength of an electromagnetic wave
(incident light) �uctuates with time (t) according to

~E = ~E0 cos 2πν0t, (1)

where ~E0 is the amplitude of the electric �eld, and ν0 is the frequency of the
incident light. When a diatomic molecule is irradiated with this electromagnetic
wave, an electric dipole moment ~P is induced:

~P = α ~E0 cos 2πν0t, (2)
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ʎ0 

Molecule 

ʎf ʎ0 

Figure 1: Scheme of the interaction of light with a molecule. Photons can
be scattered with the same frequency (Rayleigh scattering) or with di�erent
frequencies or they can be absorbed.

Figure 2: Molecular energy diagram showing electronic, vibrational and rota-
tional levels. Adapted from [8].
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Figure 3: Molecular energy diagram including the main possible interactions of
light with molecules.

Rayleigh 
scattering 

Luminescence 
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Figure 4: Representation of a typical spectrum obtained when a sample is il-
luminated with a monochromatic beam. Rayleigh scattering will appear at the
same wavelength as the incident photons (λ0), discrete Raman bands at di�erent
wavelengths and luminescence is represented by broad and intense bands.
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where α is a constant called the polarizability. In the case of isotropic molecules,
α is a scalar, and for non-isotropic molecules, α is a tensor.

If the molecule oscillates with a frequency νm, the nuclear displacement can
be written as [12]:

q = q0 cos(2πνmt), (3)

where q0 is the vibrational amplitude. For small amplitudes of vibration, α is a
linear function of the nuclear displacement:

α = α0 +

(
∂α

∂q

)
0

q + ..., (4)

where α0 is the polarizability at the equilibrium position, and
(
∂α
∂q

)
0
is the rate

of change of α0 with respect to the change in q, evaluated at the equilibrium
position. This holds for every component in the polarizability tensor. Thus, for
a given component of the induced dipole moment,

Px =
(
αxxE

0
x + αxyE

0
y + αxzE

0
z

)
cosω0t, (5)

Px =
(
α0
xxE

0
x + α0

xyE
0
y + α0

xzE
0
z

)
cosω0t

+

{(
∂αxx
∂q

)
0

E0
x +

(
∂αxy
∂q

)
0

E0
y +

(
∂αxz
∂q

)
0

E0
z

}
{q0 cosω0t cosωmt} , (6)

where ω0 = 2πν0 and ωm = 2πνm.

Px =
(
α0
xxE

0
x + α0

xyE
0
y + α0

xzE
0
z

)
cosω0t

+
q0
2

{(
∂αxx
∂q

)
0

E0
x +

(
∂αxy
∂q

)
0

E0
y +

(
∂αxz
∂q

)
0

E0
z

}
{cos(ω0 + ωm)t+ cos(ω0 − ωm)t} . (7)

The �rst term represents an oscillating dipole that radiates light of frequency
ν0 (Rayleigh scattering), while the second term corresponds to the Raman scat-

tering of frequency ν0 + νm (anti-Stokes) and ν0 − νm (Stokes). If
(
∂αxi

∂q

)
0
for

i=x,y and z in 7 is zero, the vibration is not Raman active. In other words, the
selection rules for a molecular vibration to be Raman active are that the rate of
change of the polarizability (α) with the vibration, i.e.

(
∂αxi

∂q

)
0
for i=x,y and

z, must not be zero.
According to quantum mechanics, the spectrum of molecular vibrations is

discrete and unique for each molecule, thus, Raman spectrum gives a �ngerprint
of the molecule investigated.

Another vibrational spectroscopic technique is IR absorption. Unlike RS,
a molecular vibration is IR active if the dipole moment is changed during the
vibration. There are some rules for the IR and Raman activities [11, 13, 15].
The mutual exclusion principle states that vibrations that are symmetric with
respect to the center of symmetry are Raman active but not IR active, whereas
vibrations that are antisymmetric with respect to the center of symmetry are
IR active but not Raman active. Some vibrations are inherently weak in IR and
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strong in Raman spectra. In general, covalent bonds are stronger in Raman and
ionic bonds stronger in IR.

Therefore, IR and RS could be considered as complementary techniques, but
some drawbacks inherent to IR absorption's being applied to biological samples
make RS more promising in this �eld.

First, constraints on the sample thickness need to be taken into account for
IR spectroscopy. Second, vibrational modes with low frequencies are generally
not observable in IR spectroscopy. Third, water is a weak Raman scatterer
but IR spectroscopy su�ers from the strong absorption of water. Therefore,
aqueous samples can be studied with RS without major interference from the
water, which is a major advantage in the case of biological specimens. Also,
there are no great di�culties due to background signals from sample container
materials such as glass windows [11].

An additional advantage of RS is its simple technical implementation [11].
In RS, the observation of the vibrational modes is usually independent of the ex-
citation frequency. Since RS measures the shift in frequency from the excitation
frequency, it can be performed using any excitation frequency range from UV
to NIR. The IR absorption technique, on the contrary, needs a continuum light
source in the IR spectral region. This makes necessary a lengthy and continual
intensity calibration for each wavenumber. Also, being an absorption technique,
implementation is more complex because it depends on the sample thickness and
material properties, and its applicability to in vivo study of tissues, for exam-
ple, becomes di�cult. Consequently, the technical implementation of Raman
spectroscopy is simpler than that of IR absorption spectroscopy and provides
potential bene�ts for its application for the investigation of biomedical samples.
The minimal components that a RS system must have are an excitation source
(generally a continuous-wave (CW) laser), a sample illumination source, a col-
lection system for the scattered light, a wavelength selector (spectrometer), and
a detection and computer control system.

Another advantage of RS is its speci�city [12, 14]. Each molecule has a
di�erent Raman spectrum, allowing the identi�cation of molecules from among
a mixture [16]. Also, the intensity of the bands is proportional to the molecular
concentration in the sample being studied [17].

However, there are some drawbacks that need to be solved to fully exploit
RS in the biomedical �eld. First, as was mentioned before, each molecule has
its characteristic Raman spectrum with its associated bands. In the case of a
biological sample containing a large number of di�erent biomolecules, the Ra-
man spectrum become increasingly complex. Furthermore, some Raman bands
of di�erent molecules can overlap. Consequently, the analysis of Raman spectra
becomes di�cult. For this reason, we use mathematical processing such as mul-
tivariate analysis and mathematical methods such as 2D correlation analysis to
interpret and extract the information encoded in the spectra.

The requirements of these mathematical methods vary, depending on the ap-
plication, but the main objectives of the statistical analysis are: �rstly, a high
ability to deconvolve the correlated signal of di�erent molecules in the Raman
spectra and to study the band's behavior with the changes of one parameter in
the system. The band's evolution, such as shifts, broadenings, etc., also provide
molecular information. Second, Raman spectra are inherently weak (≈ 1/107 of
the scattered photons). Hence, some work is necessary to enhance the intensity
or overcome this issue. There are techniques to enhance Raman signals, such
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as Surface Enhanced Raman scattering (SERS). SERS employs rough metallic
surfaces to increase the Raman output [18]. The �rst use of SERS for cellular
studies was in 2005 [19] by using gold and silver colloid nanoparticles. After
this publication, the number of studies based on SERS probes for biological
applications increased [20�22], but until 2009 these probes were not fully ex-
ploited to study complex biological processes inside cells. One reason could be
the incompatibiliy of the probes with the cell environment, or the di�culty of
analyzing the SERS spectra. Depending on the application, the use of metallic
structures in biosamples might not be feasible. Again, it would be necessary to
use mathematical methods to overcome the low e�ciency of RS.

At the beginning of my PhD (September 2009), a few reports had been
known on using RS in biomedical applications combining it with statistical
analysis or SERS (see Fig. 5). A signi�cant increase in publications about
RS applied to biomedical problems has occurred, mainly due to improvements
in the methodology from the application of mathematical methods and SERS.

Before 2009, the applications of RS to the study of biological specimens
such as cells or tissues were limited to single band analysis or basic multivariate
analysis. There are some examples of the use of multivariate analysis that
exploit Principal Components (PCA) to separate di�erent groups of samples
[23�25]. Other discriminant techniques such as Linear Discriminant Analysis
have helped to identify di�erent group of samples with Raman spectroscopy [26�
28]. Also, Multiple Least Squares (MLS) has been used to asses the contribution
of a previously measured Raman spectrum of a speci�c molecule to the Raman
spectra of the sample measured [29�31]. However, no studies were perform to
monitor the biochemical evolution of biological processes in cells or tissue.

Also, only a limited number of publications existed for the study of the Ra-
man spectra obtained by changing one of the parameters in the system. Specif-
ically, there was the need of an objective technique to deconvolve the Raman
spectra in a number of meaningful components that could be assigned to dif-
ferent biomolecules or metabolites. In this way, new and otherwise inaccessible
insights could be revealed about the processes studied.

The group �Optical Tweezers� at ICFO had performed several studies (in-
cluding yeast cell measurements) [32�34] before 2010 that showed that the dy-
namics of some well-known biochemical changes could be monitored at the single
cell level. After this, the group changed its strategy, concentrating on applica-
tions of RS to real demands originating from biological laboratories associated
with medical organizations in Barcelona. Compared with the previous exper-
iments, in which a simple hypothesis needed to be corroborated with RS un-
ambiguously, now our collaborators have several hypotheses for understanding
biological processes, and by the use of RS we provide additional information
that permits one to evaluate the probabilities of each hypothesis. As we men-
tioned above, the inherently low level of the Raman scattering signal and the
complexity of those signals for biomedical samples are the main di�culty in
such estimations.

Therefore, for all the above mentioned reasons, the main goal of the
present thesis is to provide a systematical study of several advanced
mathematical approaches for processing Raman data and to com-
pare their ability to get otherwise inaccessible biochemical informa-
tion. Together with applications of SERS as a mean to increase the
Raman e�ciency, this combination is used in a broad range of ap-
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Figure 5: Number of publications during the past 15 years with the topics:
RS and cells or tissue or DNA (gray color, slanted lines); Raman spectroscopy
RS and cells or tissue or DNA and multivariate analysis or chemometrics (red
color, vertical lines); RS and cells or tissue or DNA and Surface Enhanced
Raman spectroscopy (SERS). Source: ISI web of knowledge.

plications. This will start from simple cases, but with a view to fundamen-
tal interests such as the study of Raman signals from single extended DNA
molecules or the stretching of a red blood cell (RBC). Then, we will show the
application of these techniques to study the pH changes in cancer cells after
photodynamic therapy, and drug di�usion inside cancer cells. Finally, we used
our approaches for real demands originating from biological laboratories asso-
ciated with hospitals such as the study of neuroin�ammation processes that
occur in the retina (Institut d'Investigacions Bio mediques Agusti Pi i Sun-
yer (IDIBAPS) and Hospital Clinic) and the degrees of malignancy of cancer
cells associated with metabolic changes (Institut d'Investigacions Biomediques
de Bellvitge (IDIBELL) and Hospital de Bellvitge).

We cover a wide range of biochemical applications in which previously the
use of RS has been restricted due to the drawbacks inherent in the technique
when applied to biological samples. For each case, we studied how to ful�ll the
objectives by comparing, selecting, and developing the best suitable statistical
technique and using SERS if possible.

This thesis is organized as follows: in chapter 1, the principles of RS and
SERS are discussed brie�y. Chapter 2 describes the mathematical methods
used and developed in this thesis. In chapter 3, the setups used for the ex-
periments, the protocols to prepare the SERS substrates, and the software used
are described. In chapter 4, the SERS spectra of a single DNA molecule un-
der stretching is studied by using 2D correlation spectroscopy. Some important
features in the spectra were revealed thanks to this technique, such as a shift in
the O-P-O Raman band. In this study, optical trapping and surface-enhanced
Raman scattering (SERS) are combined to establish a direct relationship be-
tween the DNA's extension and structure in the low force, entropic regime. A
DNA molecule is trapped close to a SERS substrate to facilitate a detectable
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Raman signal. DNA Raman modes shift in response to the applied force, in-
dicating phosphodiester mechanical alterations. In chapter 5, a increasingly
more complex experiment was performed to study intracellular pH changes in
glioma cells after Photodynamic Treatment (PDT) by using SERS probes em-
bedded in the cells. The evolution in the SERS spectra caused by the changes in
the intracellular pH were studied with 2D correlation. A complete picture of the
Raman band's behavior was achieved, that permits selecting the best Raman
band capable of tracking the pH changes. To the best of our knowledge, this
study represents the �rst use of the 2D correlation technique in the study of
SERS spectra. In chapter 6, another study of the e�ect of a mechanical force
on a living cell is discussed, the case of RBC stretching. The band dynamics
along di�erent force loads are investigated with principal component analysis
(PCA) and 2D correlation. The results revealed important structural proper
ties of the RBC cells related with their function in the body.

In the previous chapters, the use of 2D correlation gave important insights
on the changes in the band shape or position correlated with the evolution of the
parameter being perturbed (pH or force loads) and with other Raman bands in
the spectra. This can give information about important and detailed molecular
conformation changes in the system studied. However, in some biochemical
studies, one needs a technique to extract from the spectra information about the
molecular components that evolve during the process analyzed. 2D correlation
is limited in that respect since the system starts to be complex (like cells or
tissues when the number of biomolecules in the samples become large).

In the next chapters, more complex systems are going to be investigated,
such as the molecular evolution of cells or tissues during a biochemical process.
A complete understanding of the behavior of the biochemical content is pursued
when having very limited or no a priori information about the molecules involved
and their concentration changes during the process. Pursuing this goal, in chap-
ter 7, PCA is used to study the lipid metabolism in di�erent breast cancer cell
lines, depending on the degree of malignancy in the CH stretching region of the
Raman spectra. Also a Partial Least Squares-Discriminant analysis (PLS-DA)
was perform achieving a high discrimination between metastatic and benign cell
lines. However, PCA does not provides meaningful components that could be
assigned directly to molecular Raman spectra spectra. Consequently, in chap-
ter 8 we use a multivariate technique, Multivariate Curve Resolution (MCR),
to extract physically and chemically meaningfull molecular components that
changed in cancer cell composition during Epithelial to Mesenchymal transition
(EMT). MCR permitted to conclude that the EMT process a�ects the lipid
pro�le of cells, increasing tryptophan but maintaining a low phosphatidylserine
content in comparison with highly metastatic cells. Speci�cally, the use of MCR
enabled to deconvolve and track the molecular content of cancer cells during a
biochemical process, being a powerful non-invasive tool for identifying metabolic
features of breast cancer cell aggressiveness. The application of MCR to Ra-
man spectra, then, opens up the possibility to dynamically monitor molecular
components in living tissue. For this reason, in chapter 9, we use MCR, to
monitor the retina composition when a neuroin�ammation is induced. Meaning-
ful molecular Raman spectra could be deconvolved from the spectra acquired
at di�erent time points. Assigning each spectrum to a molecular component
related with the neuroin�ammation, new, complete, and otherwise inaccessible
information about the biochemistry behind the process of neuro-in�ammation
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could be extracted. MCR has rarely been used in the RS of biological speci-
mens, but nowadays it is increasingly being used for Raman images [35]. Our
study represents the �rst application of MCR to decompose and monitor the
molecular content of a biological tissue with RS. The MCR-ALS algorithm is
very �exible [36] and exploiting the use of initial constraints or estimates can
provide a powerful method to solve crucial problems still not overcome in the
use of RS in biology. For instance, in chapter 10, we exploit the use of the
initial constraints in the MCR-ALS algorithm to remove from the spectra the
background signal not intrinsic to the cells in the study of cytological prepara-
tions of di�erent cancer cell lines. Thanks to the removal of these contributions
to the spectra, important molecular components could be revealed which are
key in the progression of breast cancer cells towards bone metastasis. Finally,
the last chapter summarizes the main conclusions of the research performed
during this thesis.

Brie�y, the main achievements made during this thesis consist in:

• Combining SERS with statistical techniques such as 2D correlation to
study the dynamics and correlation of Raman bands of single cells and
DNA when a parameter is changed in the system (force, pH, time, ...).

• Extracting from the experimental Raman spectra the individual signatures
of the di�erent molecular components in a sample and monitoring their
concentration changes during a biochemical process.

• Exploiting the MCR-ALS algorithm to solve a serious issue in the appli-
cation of RS to biological samples, viz., the background signals that mask
the Raman spectral signatures.

• Revealing biochemical information otherwise inaccessible to other bio-
chemical techniques, such as the evolution of the biomolecular content
during retina in�ammation and the Epithelial to mesenquimal transition
of cancer cells.

A list of publications and conference contributions is placed at the end of thesis.
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Raman spectroscopy

In this chapter we describe di�erent spectroscopic techniques that provide infor-
mation about molecular vibrations and thus, molecular composition of samples
being analyzed. We will show that Raman spectroscopy represents the best
suitable technique for the biomedical applications subject to our study: in-
spect the molecular composition of cancer cells, tissues, biological �uids and
changes in conformation of single molecules when a dynamic external parame-
ter is changing: (pH, force, concentration...). SERS, a phenomena to improve
Raman e�ciency will be introduced at the end of the chapter.

Raman scattering phenomena was discovered in 1928 by Sir Chandrasekhra
Ventaka Raman with only crude instrumentation. The source used was the
sunlight and a telescope was the colector; as a detector he used his eyes. That
such feble phenomena as the Raman scattering was detected in these conditions
is very remarkable. From that time improvements in the components of Raman
instrumentation have been performing. First, excitation sources were developed
to achieve higher ligh intensities until the laser invention in 1960. Second,
progress was conducted in the detection systems for Raman measurements. At
the beginning photographic plates were used, following the photomultipliers in
the 50's and the Cary Model 81 Raman spectrometer. Finally, developments
in the optical train of Raman instrumentation took place in the 1960s. All
developments in the detection system allow the expansion of the applicability
of Raman spectroscopy in other �elds like biology. Several books have been
published to explain Raman scattering phenomena and its last applications
[11�15].

Raman spectroscopy is based in the following phenomena. When a monochro-
matic light of frequency ν0 is incident on a molecule, the scattered light consists
of two contributions: one, called Rayleigh scattering, which is strong and has
the same frequency as the incident beam (ν0), and the other, called Raman
scattering, which is very weak (≈ 1/107 of the scattered photons) and has fre-
quencies ν0 ± νm where νm is a vibrational frequency of the molecule in the
sample. In Raman scattering photons interact inelastically with the sample and
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as a result, scattered light have wavelengths di�erent than the incident light
�g(1.1).

Raman spectroscopy presents several advantages with respect to other an-
alytical techniques [13]. First, it is a scattering technique and a sample only
needs to be placed under the excitation light and collect the scattered light,
making it more �exible in terms of sample thickness. Second, water and glass
have weak Raman spectra, extending the applicability of the technique to �elds
like Biology where the use of aqueous samples is basic. For Raman spectroscopy,
therefore, only minimal sample preparation is required.

Biological processes like diseases implies changes in molecular concentration
in cells and tissues. Therefore, vibrational spectroscopy is ideal for sensitive
detection of those changes and diagnosis. From the fact that no sample prepa-
ration is required, sample measurements are simple and collection times range
from seconds to minutes, Raman spectroscopy presents a rapid, objective, non-
invasive and cost-e�ective tool for early diagnosis of disease processes in patients.
IR spectroscopy, however, being also a vibrational spectroscopy, requires a tun-
able source of light, which is a much complex system than the monochromatic
source used in Raman spectroscopy.

When analyzing biomedical samples with Raman spectroscopy, all active vi-
brational modes present in the mixture of the sample are observed in a single
spectra. Therefore it leads to a very complex spectra with superimposed spec-
tral features through all the spectral range. Statistical analysis is then required
to extract the high amount of information stored in one single spectra. Addi-
tional chapters in this thesis are devoted to explain this techniques. On the
contrary other routinary techniques used in biochemistry to asses the molecular
composition of samples like �uorescence, gas chromatography, UV-VIS spec-
troscopy, HPLC analysis, can analyze only a portion of the biological content.
In addition, most of the techniques needs a very complex sample preparation
and pretreatment, arriving to be destructive while Raman spectroscopy no dam-
age of the biomedical sample is required [13]. This allows Raman spectroscopy
to study biomolecules in physiological conditions avoiding problems like sample
preparation, invasiveness and cross-contamination.

Advantages of Raman versus IR spectroscopy exist from the fact that they
are based in a scattering and absorption process respectively [11, 12]. First,
Raman spectra is composed by narrower bands allowing to extract more infor-
mation in an simpli�ed manner. Second, constraints about sample thickness
needs to be taken into account for IR spectroscopy. Third, lower vibrational
modes are generally not observable in IR spectroscopy. Fourth, in Raman spec-
troscopy no major di�culties about water interference or background signal
from samples containers like glass exist. In the case of Raman spectroscopy,
spatial resolution is dependent on the excitation wavelength used and it can be
optimized. In the case of IR spectroscopy several micrometers are obtained for
spatial resolution while Raman spectroscopy is able to analyze a sample at sub
micrometer resolution by selecting an appropriate laser wavelength. Therefore
cellular components can be studied being not possible with IR spectroscopy.

Additional advantage of Raman spectroscopy is that the observation of vi-
brational modes is usually independent on the excitation wavelength [14]. Since
Raman spectroscopy measures the shift in frequency from the excitation laser,
it can be performed using any operating range from UV to NIR. It permits the
study of vibrational information with wavelengths ranging from 2− 200µm
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Other advantage of Raman spectroscopy is its speci�city. Each molecule
has di�erent Raman spectrum, allowing the identi�cation of molecules among
a mixture. Also, the intensity of the bands is proportional to the molecular
concentration in the sample being studied. Thus, Raman spectroscopy combined
with statistical techniques is a promising technique in biomedicine due to its
speci�city, sensitivity and quantitative information.

1.1 Classical theory of Raman scattering

According to the classical theory Raman scattering can be described as follows
[12]. The electric �eld strength of an electromagnetic wave (incident light)
�uctuates with time (t) as:

~E = ~E0 cos 2πν0t (1.1)

where ~E0 is the amplitude of the electric �eld and ν0 the frequency of the incident
light. When a diatomic molecule is irradiated with this electromagnetic wave,
a electric dipole moment ~P is induced :

~P = α ~E0 cos 2πν0t (1.2)

where α is a constant called Polarizability.
For an isotropic molecule, ~P and ~E are both in the same direction and

thus, polarizability (α) of the molecule is a scalar. However, for non-isotropic
molecules the application of an electric �eld in a given direction induces a dipole
moment that in general can have three components in the space, and α becomes
a tensor. For non-isotropic molecules, the polarizability along di�erent principal
axes of the molecule can be writen as:

Px = αxxEx + αxyEy + αxzEz, (1.3)

Py = αyxEx + αyyEy + αyzEz, (1.4)

Pz = αzxEx + αzyEy + αzzEz, (1.5)

where Px, Py and Pz are the induced electric dipole moment in x, y and
z directions respectively. The tensor α is de�ned by these nine coe�cients
αxx, αxy...αzz. However, αxy = αyx, αyz = αzy and αxz = αzx, hence the
tensor α is really de�ned by six coe�cients.

If the molecule is vibrating with a frequency νm, the nuclear displacement
can be writen like:

q = q0 cos(2πνmt), (1.6)

where q0 is the vibrational amplitude. For a small amplitude of vibration, α is
a linear function of the nuclear displacement and we can write:

α = α0 +

(
∂α

∂q

)
0

q + ..., (1.7)

being α0 the polarizability at the equilibrium position, and
(
∂α
∂q

)
0
the change

of rate of α0 with respect to the change in q, evaluated at the equilibrium
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position. This polaritzability holds for every component in the polarizability
tensor. Thus, for a given component of the dipole moment induced:

Px =
(
αxxE

0
x + αxyE

0
y + αxzE

0
z

)
cosω0t, (1.8)

Px =
(
α0
xxE

0
x + α0

xyE
0
y + α0

xzE
0
z

)
cosω0t

+

{(
∂αxx
∂q

)
0

E0
x +

(
∂αxy
∂q

)
0

E0
y +

(
∂αxz
∂q

)
0

E0
z

}
{q0 cosω0t cosωmt} , (1.9)

where ω0 = 2πν0 and ωm = 2πνm.

Px =
(
α0
xxE

0
x + α0

xyE
0
y + α0

xzE
0
z

)
cosω0t

+
q0
2

{(
∂αxx
∂q

)
0

E0
x +

(
∂αxy
∂q

)
0

E0
y +

(
∂αxz
∂q

)
0

E0
z

}
{cos(ω0 + ωm)t+ cos(ω0 − ωm)t} (1.10)

The �rst term represents an oscillating dipole that radiates light of frequency ν0
(Rayleigh scattering), while the second term corresponds to the Raman scatter-
ing of frequency ν0 + νm (anti-Stokes) and ν0− νm (Stokes). From the equation

(1.10), if
(
∂αxz

∂q

)
0
is zero, the vibration is not Raman active. In other words,

the selection rules for a molecular vibration to be Raman active are that the
rate of change of polaritzability (α) with respect to the change in q, evalu-

ated at the equilibrium position, i.e.
(
∂αxi

∂q

)
0
for i=x,y and z, must not be

zero [11, 12]. From quantum mechanics a vibration is IR active if the dipole
moment is changed during the vibration. There are some rules for the IR and
Raman activities. The mutual exclusion principle states that vibrations that
are symmetric with respect to the center of symmetry are Raman active but
not IR-active, whereas vibrations that are antisymmetric with respect to the
center of symmetry are IR-active but not Raman-active. Some vibrations are
inherently weak in IR and strong in Raman spectra. In general, covalent bonds
are stronger in Raman and ionic bonds stronger in IR. Also water is a weak Ra-
man scatterer but IR spectroscopy su�ers from the strong absorption of water.
Therefore, aqueus samples can be studied without major interference from wa-
ter with Raman spectroscopy, signifying a big adventage in the case of biological
specimens.

1.2 Quantum theory of Raman scattering

Although classical theory is able to predict Stokes and anti-Stokes scattering,
experimentally it is observed that Stokes scattering is stronger than anti-Stokes
scattering and classical theory predicts equal intensities for both terms (�g 1.3).
Thus, to complete the explanation of Raman scattering it is necessary to use
quantum theory [8, 9].

According to quantum mechanics, molecular vibrations are quantized. The
scattering process is explained as the creation and annihilation of vibrational
excitations (phonons) when a photon interacts with the molecule. In Raman
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scattering incident light raises the molecule to a more energetic electronic state
(virtual state) from which it returns to a di�erent vibrational level. In the case
of Stokes scattering the molecule initially is in the lower vibrational ground
state and because of the incident photon raises a virtual state to return to a
higher vibrational level. As a result of this process, scattered photons have less
energy. On the contrary, in anti-Stokes Raman scattering, molecule initially is
in an excited vibrational level and after the interaction with incident photons
it returns to the ground vibrational state. As a result, scattered photons will
have a higher energy (�g. 1.2)

Since each atom can move in three directions (x, y, z), an N-atom molecule
has 3N degrees of freedom of motion [12]. However, the 3N includes six degrees
of freedom originating from translational motions of the whole molecule in the
three directions and rotational motions of the whole molecule about the three
principal axes of rotation, which go through the center of gravity. Thus, the
net vibrational degrees of freedom (number of normal vibrations) is Q=3N-6.
In the case of linear molecules, it becomes Q=3N-5 since the rotation about the
molecular axis does not exist.

In quantum theory the expectation value of the component αij of the polar-
izability tensor is given by:

〈αij〉 =

∫
u∗b(q)αijua(q)dq, (1.11)

where the function u(q) represent the molecular eigenfunctions in the initial
level a and the �nal level b. The integration extends over all nuclear coordinates.
Therefore the computation of Raman intensity lines requires the knowledge of
the molecular wave function of the initial and �nal states.

In the case of small displacements qn the molecular potential can be approx-
imated by a harmonic potential and then, the coupling between the di�erent
vibrational modes can be neglected [8,9]. The functions u(q) are then separable
into a product:

u(q) =

Q∏
n=1

wn(qn, vn) (1.12)

of vibrational eigenfunction of the nth normal mode with vn vibrational quanta,
where Q=3N-6 (or 3N-5 for linear molecules) is the number of normal vibrational
mode for N nuclei. Using the orthogonality relation:∫

wnwmdq = δnm, (1.13)

of the functions wn(qn), one obtains from eq. (1.11) and eq. (4):

〈αij〉ab = α0
ij +

Q∑
n=1

(
∂αij
∂qn

)
0

∫
wn(qn, va)qnwn(qn, vb)dqn, (1.14)

where the �rst term is constant and responsible of the Rayleigh scattering. For
non-degenerate vibrations the integrals in the second term vanish unless va =
vb±1. In this cases its value is [ 12 (va+1)]1/2. The parameter for intensity of the
vibrational Raman bands is the derivative (∂αij/∂q), which can be determined
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from the Raman spectra.
Quantum theory is able to explain why Stokes Raman scattering is stronger

than anti-Stokes [12]. The intensity of a Raman line at a Stokes or anti-Stokes
frequency (ω0 ± ωn) is determined by the population intensity Ni(Ei) in the
initial level Ei, by the intensity IL of the incident pump wave, and by the
Raman scattering cross section σR(i→ f) for the Raman transition Ei → Ef :

IRaman = Ni(Ei)σR(i→ f)IL. (1.15)

The population density, Ni(Ei), follows Maxwell-Boltzmann distribution at
thermal equilibrium:

Ni(Ei) =
N

Z
gie
−Ei/kT , (1.16)

where N =
∑
Ni, the partition function Z =

∑
gie
−Ei/kT , and gi is the

statistical weight.
From this equation the proportion of intensity of Stokes line versus anti-

Stokes line for a vibrational frequency ωn will be given by the factor:

IStokes
Ianti−Stokes

= e(−~ωn/kT ). (1.17)

The other factor responsible of the intensity of a given Raman band is the
scattering cross section. From quantum mechanics it depends on the matrix
element of the polarizability tensor [eq. (1.14)] and contains furthermore the ω4

frequency dependence. It can be written as follow [80]:

σR(i→ f) =
8πω4

s

9~c4

∣∣∣∣∣∣
∑
j

〈αij〉 êL 〈αjf 〉 êS
(ωij − ωL − iγj)

+
〈αji〉 êL 〈αjf 〉 êS
(ωjf − ωL − iγj)

∣∣∣∣∣∣
2

, (1.18)

where êL and êS are the unit vectors representing the polarization of the incident
and the scattered beam respectively. The sum extends over all molecular levels
j with homogeneous width γj accessible by single-photon transitions from the
initial state i. We see from eq. (1.18) that the initial and the �nal states are
connected by two-photon transitions which implies that both states have the
same parity.

Raman scattering is a relatively weak process with typical cross section of
10−30 − 10−25 cm2/molecule). Thus, the number of Raman scattered photons
is quite small. To overcome this issue and enhance the sensitivity of Raman
spectroscopy, some techniques can be used and will be discussed in the following
chapters like Resonance Raman scattering and SERS (Surface Enhanced Raman
Spectroscopy).

1.3 Resonance Raman spectroscopy

From eq. (1.18) follows that when ωij − ωL → 0 the scattering cross section
grows. This phenomena has been used in the so called Resonance Raman (RR)
scattering and it occurs when the exciting line is chosen so that its energy
intercepts the manifold of an electronic excited state [12]. As a result RR
spectra show extremely strong enhancement of Raman bands originating in this
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Figure 1.1: Scattered light from a molecule illuminated with a monochromatic
light can be Rayleigh (with the same incident frequency) or Raman (with dif-
ferent frequency)

Figure 1.2: Schematic diagram of Raman scattering by molecules.
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Figure 1.3: Raman spectra with Stokes and anti-Stokes parts.

particular electronic transition (by as much as a factor of 106). The lifetime of
the excited state in RR is very short (≈ 10−14s) compared with the Resonant
Fluorescence (≈ 10−8 to ≈ 10−5s).

But RR spectroscopy presents some disadvantages. First, a tunable laser
sources is necessary to study di�erent molecules in the sample from the fact
that with one excitation line only a molecule can be studied. Second, due to the
enhancement of bands of the molecule under study, other molecular signatures
become neglectible and can not be investigated in the same experiment. Third,
the enhancement factor is still not enough for obtaining single molecule spectra.

1.4 Surface Enhanced Raman Spectroscopy

Although Raman spectroscopy is a very sensitive technique, it is weak. Con-
sequently, biomolecules, that have low Raman cross-section and may exhibit in
the spectra high background or �uorescence signal, are di�cult to study from
the poor visibility of Raman bands. SERS presents a method to enhance the Ra-
man signal [18]. In the course of this work we will use SERS for single molecule
studies and to monitor pH changes inside a living cell.

SERS was discovered, but not recognized as such, by Fleischmann et al. [37]
in 1974. They observed an intense Raman scattering from the pyridine adsorbed
onto a roughened silver electrode surface from aqueous solution. Later, Albrecht
and Creighton [38] pointed out that the large intensities observed could not be
accounted for simply by the increase in the number of scatterers. This started
a research competition to �nd the mechanisms responsible for the SERS e�ect.
By 1985, the experiments agreed with the essential features proposed as the
mechanisms.

SERS has been observed for a very large number of molecules adsorbed on
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the surfaces of some metals with di�erent morphologies and physical environ-
ments. The largest enhancements achieved were produced in rough surfaces
at the nanoscale (10 − 100nm). Some examples are electrode surfaces, �lms
deposited by evaporation or sputtering and colloids.

SERS di�ers from ordinary Raman spectra in some aspects. For instance
intensities of the bands observed generally fall o� with increasing vibrational
frequency. Mechanisms proposed to explain SERS e�ect accounts for the exper-
imental facts observed. The two mechanisms that are still considered as valid
to explain SERS are the electromagnetic and chemical [39]. From their names,
the former focus on the enhanced electromagnetic �elds which can be produced
on metal surfaces with appropriate morphologies and the latter on changes in
the electronic structure of molecules which occur upon adsorption and which
can lead to resonance Raman scattering.

1.4.1 Electromagnetic enhancement

A plasmon is the collective excitation of the electron gas of a conductor [18].
When the excitation is con�ned in the near surface region it is called a surface
plasmon. Surface roughness or curvature is necessary for the excitation of sur-
face plasmons by light. An electromagnetic �eld of light at the surface can be
enhanced under conditions of the surface plasmon excitation. The ampli�cation
of both the incident optical �eld and the scattered Raman �eld through their
interaction with the surface constitutes the electromagnetic SERS mechanism.

The physics that governs the electromagnetic mechanism can be easily ex-
plained for a metal sphere in an external electric �eld. For a spherical particle
whose radius is much smaller than the wavelength of light, the electric �eld
is uniform across the particle and the electrostatic approximation is valid [39].
The �eld induced at the surface of the sphere is related to the applied, external
(laser) �eld by eq. (1.19)

Einduced = [ε1(ω)− ε2]/[ε1(ω) + 2ε2]Elaser, (1.19)

where ε1(ω) is the complex, frequency dependent dielectric function of the metal
and ε2 is the relative permitivity of the ambient phase. From the equation the
function is resonant in the frequency that Re(ε1) = −2ε2. The excitation of
the surface plasmon highly increase the local �eld experienced by a molecule
adsorbed on the surface of the particle.

1.4.2 Chemical enhancement

Some evidences suggested that there is a second enhancement mechanism in-
dependent from the electromagnetic mechanism which produces multiplicative
e�ects when is operative [18]. Chemical enhancement can be explained by a
resonance Raman mechanism in which new electronic states arised from the
chemisorption serve as resonant intermediate states in Raman scattering. Some-
times the highest occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO) of the adsorbate are symmetrically disposed in
energy with respect to the Fermi level of the metal. In this situation, charge-
transfer excitations (from the metal to the molecule or viceversa) can occur at
about half of the energy of the intrinsic intra-molecular excitations of the adsor-
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Figure 1.4: Surface Enhanced Raman scattering. Adapted image from [40]

bate. Molecules commonly studied by SERS, that normally have their lowest
electronic excitations in the near ultraviolet would experience charge transfer
excitations according to this simple model in the visible region of the spectrum.



2
Statistical Methods for Processing of

Raman spectra

2.1 Principal Component Analysis

Principal Component Analysis constitutes in many ways the basis for multivari-
ate data analysis. PCA provides an approximation of a data matrix Y in terms
of the product of two smaller matrices R and L' which capture the essential
data patterns of Y. Plotting the colums of R (named scores) gives a picture
of the dominant object patterns of Y and, analogously, plotting the rows of L'
(loadings) shows the complementary variable patterns. In the case of an spec-
troscopic data matrix the object will be samples measured and the variables the
Raman shift or wavenumber.

Pearson [41] was the �st formulating PCA. Later, Fisher and McKenzie
[42] mention it as more suitable than analysis of variance for the modelling
of response data. They also outlined the NIPALS algorithm. Hotelling [43]
further developed PCA to its present stage. Some good books and tutorials on
PCA are [44], [45]. In chemistry, PCA was introduced by Malinowski around
1960 with the name Factor Analysis and after 1970 a large number of chemical
applications were explored.

In multivariate data analysis we have a Y matrix with n rows termed objects
and p colums called variables. The main goals of PCA are concerned with
�nding relationships between objects. For example in �nding classes of similar
objects. Related with this is the detection of outliers in the experimental data
set. Another goal could be the data reduction, useful for large amounts of data
with a complex model structure. PCA can be used to build a model of how a
physical or chemical system behaves, and this model can be used for prediction
when new data are measured for the same system. PCA can also be used to
unmix the e�ects of a mixture of components. PCA, furthermore, estimates the
correlation structure of the variables. The importance of a variable in a PC is
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Figure 2.1: PCA provides an approximation of a data matrix Y in terms of
the product of two smaller matrices R and L' which capture the essential data
patterns of Y

indicated by the size of its variance.
A data matrix Y with n objects and p variables can be represented as an

ensemble of n points in a p dimensional space. A p-space is di�cult to visualize
when p is bigger than 3 and the inner data structure is therefore di�cult to
reveal. For this reason, we need to apply PCA to this type of complex data
structure as an spectroscopic experimental data matrix.

First, let's consider the spectra as a column vector ~yi:

~yi =



yi1
yi2
...
yij
...
yip


where p is the last wavenumber pixel recorded from the CCD camara of the
spectrometer and the intensity for each wavenumber is stored in rows. The
transform of this vector is:

~yi
′ =

(
yi1 yi2 · · · yij · · · yip

)
Then, it is possible to construct a matrix with all spectra adquired in an

experiment stored in rows:
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Figure 2.2: Simple diagram showing the Principal Components of a data set
representation. The dimensionality of the data could be reduced by selecting
the PC1 axis

Y =



~y1
′

~y2
′

...
~yi
′

...
~yn
′


=



y1,1 y1,2 · · · y1,j · · · y1,p
y2,1 y2,2 · · · y2,j · · · yy,p
...

...
...

yi,1 yi,2 · · · yi,j · · · yi,p
...

...
...

yn,1 yn,2 · · · yn,j · · · yn,p


(2.1)

where n is the number of spectra adquired. Then, yi,j represents the Raman
intensity for the ith spectra acquired at the jth wavenumber.Thus, the data
points can be represented in a set of coordinates were each axes are the in-
tensity for a given wavenumber and, by the inherent wavenumber relationships
encoded in the Raman spectra of a mixture of molecules, the representation will
have priviledge directions. By �nding this priviledge directions of the swarm of
points we could get insight into the relationships between wavenumbers that are
the responsible for the major variance in the data. By selecting those axes as
principals we could simplify the representation by selecting only the priviledge
directions that retain the maximum variance but without loosing relevant infor-
mation.

The aim of Principal Component Analysis is to identify the most meaningful
basis to re-express the dataset. With the new set of coordinates the hidden
structure of the data (relationships between wavenumbers) will be revealed and
retaining only the components that represent the major variance in the data,
the noise will be neglected. From algebra, the axes can be rotated as:

~zi = A~yi, (2.2)

where A is an orthogonal matrix and ~zi is the spectra ~yi represented in the new
set of coordinates.

Hence, Principal Component Analysis consists in calculating the orthogonal
matrix A that rotates the axis in the way that they line up with the natural
extensions of the group of data points. But to calculate this matrix, �rst, let's
present the covariance matrix SY of matrix Y:
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SY =



s11 s12 · · · s1k · · · s1p
s21 s22 · · · s2k · · · s2p
...

...
...

sj1 sj2 · · · sjk · · · sjp
...

...
...

sp1 sp2 · · · spk · · · spp


(2.3)

where sjk = 1
n−1

n∑
i=1

(yij − yj)(yik− yk) and yj = 1
p

p∑
i=1

(yij) and yk = 1
p

p∑
i=1

(yik).

The eigenvectors and eigenvalues of SY can be calculated from the following
condition:

SY ~yj = λ~yj ; (SY − λI)~yj = 0 (2.4)

and the only non trivial solutions are for

det(SY − λI) = 0 (2.5)

Thus, the rotation of the initial axis to line up with the natural extensions of
the experimental data points will be translated in the fact that the new variables
zi1, zi2..., zip (Principal Components) need to be uncorrelated and thus, the
sample covariance matrix of Z must be diagonal:

SZ =


(sz)11 0 · · · 0

0 (sz)22
. . . 0

...
...

0 0 · · · (sz)pp


Furthermore, from algebra,

C ′SY C = D = diag(λ1, λ2, ..., λp),

where the λi are the eigenvalues of S and C is an orthogonal matrix whose
columns are the normalized eigenvectors of SY . Thus, from

SZ = ASYA
′ =⇒ A = C ′

where the A rows are the normalized eigenvectors of SY and the diagonal ele-
ments of SZ = ASYA

′ are the eigenvalues of SY ,

(sz)ii = λi (2.6)

Hence, as a result, the steps for calculating the Principal Components zi,
can be reduced to �rst calculate SY and its eigenvalues and eigenvectors, and
�nally construct A, which is formed by the eigenvectors of Sy displayed in rows.
The new ~zj are calculated as ~zj = A~yj

From 2.6, the eigenvalues of SY are the sample variances of the principal
components. And, since the rotation follows the natural extension of the group
of points, ~z1 retains the largest variance and ~zp the smallest.
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In summary, PCA model could be writen as:

Y = RL′ + E (2.7)

PCA projects the Y matrix into a lower dimensional subspace by means of the
projection matrix L' and the matrix R. The later gives the sample coordinates in
this new subspace and L' rows comprise the direction coe�cients of the Principal
Components hyperplane. The colums of R are the scores and the rows of L'
are called the loadings. L' are the eigenvectors displayed in rows (L′ = A)
and the scores R = Y A′. The deviations between projections and the original
coordinates are termed the residuals and are collected in matrix E.

2.2 Partial Least squares - discriminant analysis
(PLS-DA)

PLS-DA is a supervised classi�cation method in which knowledge of the sample
is included. A matrix X is constructed with the information about the class
membership of samples. Like in PCA, matrix Y contains each sample spectra.
PLS-DA employs the fundamental principle of PCA but further rotates the
components (latent variables, LVs) by maximizing the covariance between the
spectral variation and group a�nity so that the LVs explain the diagnostically
relevant variations rather than the most prominent variations in the spectral
dataset (Fig. 2.3).

The performance of the PLS-DA diagnostic algorithm can be validated us-
ing a cross validation method. Thus, the PLS-DA analysis includes two steps:
calibration and validation. In the calibration step, the variations in the spectra
correlated to the variations in the class values are extracted and then used to
calculate the predicted concentration. In the validation step, the validity of the
model is veri�ed by adding new data and comparing the predicted values with
the reference values. Although the best validation of the model is performed
with new data, an independent and representative validation set is rare. In the
absence of a real validation set, a commonly used solution is cross-validation
(CV), which simulates the accuracy in detection of new data. CV divides the
data into a number of groups and develops a number of parallel models obtained
by deleting one group from the data. Having a number of groups similar to the
number of samples is not recommended [46]. For this reason, we used a venetian
blinds methodology for the CV, consisting in the following: the number of data
splits s is selected, and then each test set is determined by selecting every sth

object in the data set, starting at objects numbered 1 through s.
During the calibration, it is necessary to determine the correct complexity

of the model. In selecting the number of PLS components, there is the risk of
�over-�tting� by using too many components and getting a well �tting model
with small predictive power. Thus, it is necessary to test the predictive sig-
ni�cance of each PLS component and stop when the components start to be
non-signi�cant. CV is a practical and reliable tool to check the predictive sig-
ni�cance. In this study, we selected the number of components for each model
using this methodology.

The model accuracy was checked by calculating the following statistical pa-
rameters. First, the RMSE (root mean square error), which characterizes how
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Figure 2.3: Simple diagram showing the Principal Components of a data set
representation and the rotation of the PCs axis to achieve the goals of PLS-DA

well the model �ts the data used for the calibration, was calculated as follows:

RMSE =

√∑N
i=1(yical − yiref )2

N
, (2.8)

where yical is the calculated (predicted) value for a sample included in the
model, yiref is the reference value, and N is the total number of samples used
in the calibration. Another parameter is the root mean square error of the cross
validation (RMSECV), which measures the ability of the model to predict the
parameters of the samples that were not used in the calibration. The RMSECV
is also de�ned using equation 2.8, where the yical are the predictions for the
samples not included in the calibration model. To evaluate the model, multiple
correlation coe�cients (R2) [46] between the actual and predicted values were
calculated. A plot of the RMSECV and RMSE vs. the number of PLS compo-
nents helps to select the number of components. When the RMSECV was close
to the RMSE, the corresponding number of PLS components was chosen.

Finally, parameters as sensitivity and speci�city can be extracted to asses
the ability of Raman spectroscopy to discriminate between two di�erent types
of samples.

2.3 Multivariate Curve Resolution

Multivariate resolution methods represent a set of mathematical tools that can
be applied to the analysis and interpretation of spectroscopic data recorded in
the monitorization of a chemical or physical process with multichannel detectors.
The goal of resolution methods is the extraction of the underlying chemical and
physical information from the experimental data set. Nowadays, by means of
the technological advances, it is possible to acquire large data sets in short
periods of time. In the case of Raman spectroscopy the availability of rapid and
reliable detectors allows the monitoring of biochemical reactions or biophysical
processes by obtaining a complete spectrum in each point of the process. In the
past, only single or few spectroscopic signals (for instance, absorbance) could
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be read at each step.
Some techniques like PCA have been used for the analysis of these multi-

dimensional data sets. PCA reduces the dimensions of the experimental data
matrix without a signi�cative loss of information. PCA is a useful tool to es-
timate the number of the most signi�cative components and then neglect the
ones that provides noise or non-informative portions. However, the optimiza-
tion criterium is to �nd the maximum variance and orthogonal constrains are
applied. As a result, PCA in general do not provide physical or chemical mean-
ingful signatures (spectra) and relative concentration pro�les of the molecular
constituents in the sample. PCA loadings can have negative portions (�g.2.1)
therefore not representing a pure molecular Raman spectrum.

Multivariate Curve Resolution (MCR) has been proposed and applied to re-
solve multiple pure responses and concentrations of the components present in
unknown mixtures [47]. It has been used to analyze multicomponent chemical
systems like chemical reactions [48], spectroscopic mixtures [49], environmen-
tal monitoring data [50] and it can be applied to many other mixture analysis.
In MCR, the measured analytical signals are assumed to follow a generalized
bilinear additive model (like the extension of Beer- Lambert law in absorption
spectroscopy). The contribution of each component to the measured signal de-
pends on its concentration and on its own spectral sensitivity response (pure
spectrum). MCR, then, can be applied to obtain quantitative information and
provides physical and chemical meaningful solutions. All this is achieved by
means of the �exibility of the algorithm to include initial constrains. Altough
the possibility of the introduction of the constrains give more chemically un-
destandable results, MCR is a data-driven method which means that no prior
knowdlege (chemical or mathematical) is needed, compounds have a measur-
able signal and a di�erent (uncorrelated) concentration/response pro�les among
them. Spectroscopic data is bilinear by nature and therefore MCR provides a
very powerful methodology to deconvolve from the spectral data set acquired
real chemical pro�les (spectra).

MCR has been used in Raman spectroscopy to monitor inorganic chemical
reactions and images as [35,51]. In all previous Raman spectroscopy applications
pure molecular components in the sample had good and distinct Raman spectra.
However, biological Raman spectra are complex and lot of di�erent molecules
have common spectral features. Therefore, monitoring biological processes in
living tissue or cells is challenging and MCR is a good candidate technique
to deconvolve the pure molecular structures that change during the biochemi-
cal process studied. Recently, MCR-ALS has been applied to image biological
samples with Raman spectroscopy [52] but there are not applications of MCR
to monitor or study biochemical process in tissue or cells using Raman spec-
troscopy. However this �eld opens a new way to improve the analyis of biological
specimens with Raman spectroscopy.

There are several algorithms to perform MCR method: the non iterative
algorithms in which the output matrices C and S (explained below) are obtained
in a single calculation and rely on mathematical information (Heuristic Evolving
Latent Projections (HELP) [53] and SFA) and the iterative algorithms in which
C and/or S are obtained from an iterative optimization procedure and rely on
chemical and mathematical knowledge (Iterative Target Transformation Factor
Analysis (ITTFA) [54], RFA and MCR-Alternating Least Squares (MCR-ALS)).
We will focus on MCR-ALS algorithm [36] because of its �exibility to include
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Figure 2.4: Graphical description of the construction of the data matrix used
for MCR analysis from the experimental spectroscopic data. Spectra adcquired
at di�erent perturbations of the system are displayed in rows and form the
Y matrix. This Y matrix then, can be decomposed into several components
following a linear combination. A bilinear model is assumed from the nature of
the spectroscopic data (Beer Lambert's law).

initial estimates and constrains in the iterative resolution procedure.

2.3.1 MCR-ALS method

Data obtained from the spectroscopic monitoring of a process when some exter-
nal parameter (perturbation) is applied in each acquisition, can be grouped in
a data matrix Y, whose n rows contain the spectra recorded during the process
and whose p columns are the wavenumber (Raman shift) (�g. 2.4). The MCR-
ALS method is used to decompose the hyperspectral dataset into the signatures
or pure spectra of the molecular sample constituents and their concentration
(relative amounts) on each sample or acquisition. MCR-ALS is based on a bi-
linear model which assumes that the observed spectra are a linear combination
of the spectra of the pure components in the system. This model can be written
in matrix form as:

Y = CST + E (2.9)

where C is a n∗mmatrix where m is the number of pure components deconvolved
and represents the relative amounts or concentrations and ; ST is a m ∗ p
matrix and contains the pure spectra; and E is the matrix associated to noise
or experimental error. Fig.2.5 shows a graphical representation of the MCR
decomposition of matrix Y into pure components ST and its contributions C
in each acquired spectrum. An element of matrix Y can be represented by



Statistical Methods for Processing of Raman spectra 30

Figure 2.5: MCR provides a decomposition of the spectral data matrix Y in
terms of the product of two smaller matrices C and ST with information about
the underlying molecular pure components that are changing during the per-
turbation

yij =
N∑
n=1

cinsnj + eij where yij is the Raman intensity for the ith spectrum

at the jth wavenumber; cin is the concentration at the ith sample measured of
the nth component deconvolved; snj is the intensity of the nth component at
the wavenumber jth and eij is the residual error at the ith spectrum and jth
wavenumber.

The decomposition of a matrix, however, is subjected to ambiguities [55].
Many sets of paired C and ST type matrices can reproduce the original data ma-
trix with the same �t quality. Speci�cally, the response pro�les that reproduce
the original matrix can di�er in shape (rotational ambiguity) or in magnitude
(intensity ambiguity) from the real one. This two ambiguities come from the
fact that equation 2.9 can be transformed as:

D = C(PP−1)ST ;D = (CP )(P−1ST );D = C∗S∗T

where C∗ = CT and S∗T = (T−1ST ) describe the D matrix with the same
�t quality as the true C and ST matrices. This ambiguity is called rotational
ambiguity and indicates that resolution methods will provide as many C and S
matrices as P matrices exist. Thus, if C and S are not forced to obey certain
conditions, solutions for those matrices are in�nite. Appart from rotational
ambiguity, eq.2.9 can be rewritten as:

Y =

N∑
i=1

ci
ki

(kis
T
i );Y = C∗S∗T
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where ki are scalars and the concentrations pro�les of the new C∗ matrix would
have the same shape as the real ones, but being ki time smaller, whereas new
S∗ matrix would be shaped like the S spectra, but ki times more intense. This
ambiguity is named intensity ambiguity. All these ambiguities will be minimized
by introducing constrains to the MCR algorithm.

MCR-ALS solves iteratively eq.2.9 using an Alternating Least Squares algo-
rithm which calculates C and ST matrices by �tting optimally the experimental
data matrix Y. The optimization is performed for a given number of components
previously �xed and using initial estimates for C or ST .

For obtaining the number of components necessary to explain the variance
in the data, it is possible to use PCA. In PCA decomposition the variance in
the data is explained with a set of Principal components each of which having
an associated eigenvalue. The magnitude of each eigenvalue is related with the
variance of the overall data that explain the associated particular PC. Thus,
by ploting the eigenvalues of each PC it will be possible to distinguish which
components describe most of the variance in the data and which ones can be
neglected. The number of relevant Principal components will be equivalent to
the number of components needed for MCR decomposition.

Some methods can be used to obtain the initial estimates: Evolving Factor
Analysis [56] or SIMPLISMA [57].

During the ALS optimization, several constraints can be introduced for C
and ST pro�les such as non-negativity, unimodality or closure. Some of them
are clearly useful for Raman spectroscopy like the non-negativity of spectra
and concentrations. Convergence is achieved when in two consecutive iterative
cycles, relative di�erences in standard deviation of the residuals between ex-
perimental and calculated ALS data values are less than a previous selected
number, normally chosen as 0.1%.

To asses the quality of the results some �gures of merit of the optimization
procedure can be calculated. The lack of �t is de�ned as the di�erence between
the experimental data matrix Y and the data reproduced by the CST product
calculated with MCR-ALS. The mathematical expression is:

LOF = 100

√√√√√√√√
n∑
i=1

m∑
j=1

e2i,j

n∑
i=1

m∑
j=1

y2i,j

(2.10)

where yi,j designs an element of the experimental data matrix Y and ei,j =
yi,j−ŷi,j is the related residual obtained from the di�erence between the original
element yi,j and the MCR-ALS reproduction ŷi,j . Other �gure of merit is the
percent of variance explained:

R2 = 100

n∑
i=1

m∑
j=1

y2i,j −
n∑
i=1

m∑
j=1

e2i,j

n∑
i=1

m∑
j=1

y2i,j

(2.11)

As a result, MCR algorithm is constructed in four main steps: the determi-
nation of the number of components, the construction and introduction of the
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initial estimates (for C and S), the iterative Least Squares calculation of C and S
subject to constrains and �nally check for satisfactory CST data reproduction.

2.4 2D correlation Raman spectroscopy

The idea of 2D correlation spectroscopy emerged in the �eld of NMR to sim-
plify the visualization of complex spectra consisting in many overlapped bands
by spreading spectral peaks over the second dimension [58]. Although tradi-
tionally and in the present 2D correlation spectroscopy has been dominated by
NMR and other resonance spectroscopy methods, nowadays the applicability in
other types of spectroscopic techniques is increasing [59]. The introduction of
2D spectroscopy to IR and Raman spectroscopy occurred much later than NMR.
In 1986 Noda presented the concept of perturbation-based two dimensional spec-
troscopy applicable to infrared (2D IR) [60]. From that time the technique is
establishing itself as a powerful general tool for the analysis of spectroscopic
data.

2D correlation technique is based in the fact that when a certain perturba-
tion is applied to a sample, the chemical composition of the sample under study
is altered and varies depending on the perturbation exerted. This perturbation-
induced changes are translated then into spectral changes when sample is moni-
tored with an electromagnetic probe and therefore a dynamic spectra is obtained
(�g. 2.6). 2D correlation spectra consists in two orthogonal components, the
synchronous and asynchronous correlation spectrum that provide useful and
complementary information to analyze the intensity changes, band shifts, band
shapes changes..., typical spectral variations observed under external perturba-
tion.

Among the main advantages of 2D correlation spectroscopy, four stand out:
(i) simpli�cation of complex spectra consisting in many overlapped bands and
enhancement of the spectral resolution by spreading peaks over the second di-
mension; (ii) identi�cation of ambiguous assignments thanks to the correlation
of bands in the 2D spectra and study relationships between molecules dur-
ing the dynamic process; (iii) probe the order in which spectral changes occur
through the asynchronous spectra; (iv) the heterospectral correlation (2D cor-
relation analysis between two di�erent spectroscopic techniques) permits the
identi�cation of correlation among bands from di�erent types of spectroscopy.
Furthermore the applicability of generalized 2D correlation is not limited to any
type of spectroscopy with a speci�c electromagnetic probe. It has been used
in IR, NIR, Raman UV-vis, �uorescence and circular dichroism (CD). Also, 2D
correlation is not restricted to the type of perturbation that induces spectral
changes.

2.4.1 Principle of Two-dimensional Correlation Spectroscopy

In this section the fundamental concept of 2D correlation spectroscopy will
be presented. The formal mathematical procedure to generate 2D correlation
spectra, the basic properties of synchronous and asynchronous spectra and some
conclusions about characteristic patterns in 2D maps will be discussed.

The schematic description of the basic planning for a 2D correlation experi-
ment is shown in �g. 2.6. In spectroscopic techniques like Raman spectroscopy,
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Figure 2.6: Experiment �ow used for 2D correlation spectroscopy.

the interaction between an electromagnetic probe and the sample is represented
in the form of a spectrum that contains information about the system being
analyzed. In 2D correlation spectroscopy the e�ect of an additional external
perturbation exerted on the system is studied from the changes in the spec-
trum. The external perturbation may cause some physical changes in the sample
and it will we translated in distinctive modi�cations in the measured spectrum.
This spectral variations induced by an applied perturbation is referred to as a
dynamic spectrum.

In the generalized 2D correlation spectroscopy scheme, series of perturbation-
induced dynamic spectra are acquired by modifying the external parameter in
a systematic way. After, this set is transformed into a set of 2D correlation
spectra by cross-correlation analysis. This form of analysis helps to the identi-
�cation and interpretation of spectral variations not available from or at least
not apparent in the original set of conventional 1D spectra. This is the major
motivation behind 2D correlation analysis.

The scheme presented in �g. 2.6 is very general and the forms of perturba-
tions that a�ects the system can be very broad. It can be physical: mechanical,
electrical, thermal, magnetic, chemical, acoustic, etc. and the waveform of the
perturbation can be selected freely. In fact, any spectroscopic experiment, which
uses an external perturbation to generate some form of dynamic spectra, is a
good potential candidate for bene�ting from 2D correlation analysis. In this
context a time-evolution study of spectral signatures is also a good candidate
for 2D correlation analysis. Because historically 2D correlation analysis comes
from statistical series analysis, some traditional terminology like dynamic spec-
tra will be used to describe the perturbation-induced spectral changes, even if
the other types of perturbations are considered.

2.4.2 Generalized two-dimensional correlation

Dynamic spectrum

Let us consider a spectral intensity y(ν, p) which is varying with a perturbation
induced in the system and observed during a �xed interval of the external vari-
able p from Pmin to Pmax. As it was mention before, p can be any reasonable
measure of a physical quantity such as temperature, pressure, concentration,
voltage, ph, etc. that is inducing a change in the spectral intensity. It is also
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possible to include time as external variable p. The variable ν is any spectral
index used in spectroscopy: Raman shift, wavenumber, wavelength, etc.

The dynamic spectrum ỹ(ν, p) is de�ned then as [59]:

ỹ(ν, p) =

{
y(ν, p)− y(ν) for Pmin < p < Pmax
0 otherwise

(2.12)

where y(ν) is the reference spectrum of the experiment. Although the selection
of the proper reference spectrum is not speci�ed, in most cases the stationary
or averaged spectrum is selected:

y(ν) =
1

Pmax − Pmin

∫ Pmax

Pmin

y(ν, p)dp (2.13)

For some applications the reference spectrum can be chosen as some �xed ref-
erence point in our experiment like the �rst spectrum, or the last one. Without
any prior knowledge of the system, the selection of the averaged spectrum pro-
vides a robust form for correlation analysis.

2.4.3 Two-dimensional correlation concept

The main concept behind 2D correlation spectroscopy is to quantitatively com-
pare the patterns of spectral intensity variations along the external variable p
at two di�erent spectral variables, ν1 and ν2, over the interval between Pmin
and Pmax [59]. The 2D correlation spectrum can be expressed as:

X(ν1, ν2) = 〈ỹ(ν1, p) · ỹ(ν2, p
′)〉 (2.14)

The symbol 〈〉 signi�es the cross-correlation function that compare the intensity
patterns at two di�erent spectral variables ν1 and ν2 along p. In other words,
the intensity of 2D correlation spectrum X(ν1, ν1) represents the quantitative
measure of a comparative similarity or dissimilarity of spectral intensity vari-
ations ỹ(ν, p) measured at two di�erent spectral variables ν1 and ν2 during a
�xed interval along p.

X(ν1, ν1) can be treated as a complex number function to simplify the math-
ematical manipulation, with two orthogonal (real and imaginary) components,
called synchronous and asynchronous 2D correlation intensities.

X(ν1, ν2) = Φ(ν1, ν2) + iΨ(ν1, ν2) (2.15)

The synchronous 2D correlation intensity Φ(ν1, ν2) represents the similarity
or coincidental intensity changes at two di�erent spectral variables along the
value p from Pmin to Pmax. Complementarily, the asynchronous 2D correlation
intensity Ψ(ν1, ν2) can be understood as a measure of the dissimilarity or out-
of-phase character of the spectral intensity variations.

It is important to point out that real and imaginary parts of the 2D corre-
lation spectrum X(ν1, ν2) were termed synchronous and asynchronous histori-
cally because �rst conceptual developments were applied to time-series analysis.
However, as p could be any other physical variable these terms could be called
for instance: synthermal or asynbaric.
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Generalized two-dimensional correlation function

The generalized 2D correlation function is de�ned like [59]:

Φ(ν1, ν2) + iΨ(ν1, ν2) =
1

π(Pmax − Pmin)

∫ ∞
0

Ỹ1(τ) · Ỹ2(τ)dτ (2.16)

Where Ỹ1(τ) is the forward Fourier transform of the spectral intensity varia-
tions ỹ(ν1, p) observed at ν1 with respect to the external variable p and can be
expressed as:

Ỹ1(τ) =

∫ ∞
−∞

ỹ(ν1, p)e
−iτpdp = Ỹ Re1 (τ) + iỸ Im1 (τ) (2.17)

being Ỹ Re1 (τ) and Ỹ Im1 (τ) the real and imaginary components of the Fourier
transform respectively and τ the individual frequency component of the vari-
ation of ỹ(ν1, p) traced along the external variable p. The conjugate Fourier
transform of ỹ(ν2, p) at ν2 is given by:

Ỹ ∗2 (τ) =

∫ ∞
−∞

ỹ(ν2, p)e
+iτpdp = Ỹ Re2 (τ)− iỸ Im2 (τ) (2.18)

2.4.4 Properties of 2D correlation spectra

Results of 2D correlation analysis are represented by two contour maps plotting
the intensity of synchronous and asynchronous 2D correlation spectra respec-
tively. It is worthy to understand some characteristic properties of these maps
to extract the potentially useful information encoded otherwise inaccessible.

Synchronous 2D correlation spectrum

Fig. 2.7 shows schematically the intensity of a synchronous 2D correlation
spectrum Φ(ν1, ν2) which represents the simultaneous or cointidential changes
of two separate spectral intensity variations at ν1 and ν2 (in the case of Raman
spectroscopy at two di�erent wavenumbers) during the interval between Pmin
and Pmax.

The synchronous spectrum is symmetric with respect to the diagonal line
(ν1 = ν2) and correlation peaks appear at the diagonal and o�-diagonal posi-
tions. The intensity of the peaks along the diagonal are mathematically the
autocorrelation function of spectral intensity variations occured from Pmin to
Pmax. These peaks are refered as autopeaks and the spectrum along the diagonal
that they form is called the autopower spectrum. In �gure 2.7 four autopeaks
are present (A, B, C and D). The intensity of an autopeak represents the overall
extent of the changes occured for the spectral intensity at that particular spec-
tral variable ν1. It is allways positive and then permits to identify which regions
in the spectra are more susceptible to change with the external perturbation p.

On the other hand, the cross peaks are located o�-diagonal and can be pos-
itive or negative. They represent the simultaneous or coincidental changes of
spectral intensities at two di�erent spectral variables ν1 and ν2. The fact that
two spectral regions are synchronously correlated suggest interesting properties
of the molecular content of our sample. For instance two molecules that ex-
perience the same changes in concentration during the process observed, will
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Figure 2.7: Simpli�ed scheme of a synchronous 2D correlation contour map.
Shaded areas indicate negative correlation intensity. Adapted image from [59]
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Figure 2.8: Simpli�ed scheme of an asynchronous 2D correlation contour map.
Shaded areas indicate negative correlation intensity. Adapted image from [59]
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present cross-peaks in synchronous spectra showing their relationship. Also, it
permits to identify unknown bands from a pure molecule because all bands will
be related synchronously if the concentration for that molecule is changing in
the sample. It is useful to identify the correlation squares joining the pair of
cross peaks located at opposite sides of the diagonal line to extract the bands
that are synchronously correlated. In the example A and C from one side and
B and D from the other are synchronously correlated.

In the case of cross peaks they can be positive or negative. The sign becomes
positive if the spectral intensities at the two spectral variables in the coordinates
of the cross peak are either increasing or decreasing together as functions of the
external variable p along the observation interval. On the contrary, a negative
sign of the cross peak intensity indicates that one of the spectral intensities is
increasing while the other is decreasing. In the example from �g. 2.7 cross peak
at A and C is negative meaning that one band is increasing while the other is
decreasing. Cross peak at coordinates B and D is positive indicating that both
bands are increasing or decreasing together.

Asynchronous 2D correlation spectrum

The intensity of an asynchronous spectrum represents sequential or successive,
but not coincidental, changes of spectral intensities occurring at two di�erent
spectral variables ν1 and ν2. Fig. 2.8 shows an example of an asynchronous
2D correlation spectrum. In a descriptive manner, asynchronous maps are anti-
symmetric and do not present autopeaks. They consist basically in cross-peaks
located at o�-diagonal positions. Similarly to synchronous maps, it is possible
to construct correlation squares that helps to the interpretation of asynchronous
features.

From the theory, having an asynchronous cross peaks signi�es that the two
spectral features change out of phase (delayed or with a higher speed if we con-
sider time as external variable). This fact is particularly useful to di�erentiate
highly overlapped bands arising from di�erent molecules changing in a di�erent
way in our dataset. Asynchronous 2D correlation map will resolve clearly the
two bands with a di�erent sign in the cross peaks.

Other very interesting property of asynchronous spectra is that it gives infor-
mation about the sequential order of the changes happening in the spectral data
set. An asynchronous peak will be positive if the intensity change at ν1 occurs
predominantly before that at ν2 in the sequential order of p . On the contrary,
the peak sign becomes negative if the change at ν1 occurs predominantly after
ν2. However, this sign rule is reversed if the synchronous correlation intensity
at the same coordinate becomes negative (Φ(ν1, ν2) < 0). From the last rules,
in the example of �g. 2.8 intensity changes at A and C occur after changes in
B and D.

The above rules also known as Noda's rule apply in the majority of cases hav-
ing spectral intensity variations reasonably monotonic during the observation
period.

Special cases and exceptions

However there are few exceptions for the interpretation of 2D correlation spectra
from the rules explained before. Basically, they do not apply for some special
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kinds of dynamic signals. First, if the intensity variations are very di�erent
in waveforms they can not be understood as a simple synchronous correlation
based on coordinated increase or decrease of signals. An example of this case is
a spectral intensity in which ν1 increases gradually and the one at ν1 changes
in an erratic manner. Second, the rules can not apply with data sets involving
many increasing and decreasing intensity changes with mismatched frequencies.
As this kind of signals are clearly uncorrelated, it does not make sense to apply
2D correlation analysis for these cases.

The basic idea behind 2D correlation analysis is that the perturbation ex-
erted to the system by the external variable p is a�ecting the spectral intensity
in a similar waveform for all features in the spectra and not having very di�erent
frequencies.

It is very important to point out that other changes in the spectra di�erent
than simple intensity variations, like band position shifts or line shape intensities
are necessary to be treated separately and the rules before do not apply. In these
cases, characteristic features in 2D correlation maps needs to be studied and will
be explained below by means of mathematical simulations.

Mathematical simulation of band e�ects

In Raman spectroscopy band's shape contains important information. From
quantum theory, molecules possess well de�ned energy levels. Therefore, transi-
tions between these levels, caused when molecules absorb or emit energy, occurs
in well de�ned intervals (quanta), which gives rise to the vibrational spectrum.
Thus, the absorption of energy by an isolated molecule going from a ground
state to a �rst excited state occurs at a single, well de�ned, frequency [8]. How-
ever, most vibrating molecules exist in a bath of surrounding molecules (the
environment), with which they interact. Each molecule interacts with its en-
vironment in a slightly di�erent (and dynamic) way, and thus vibrates at a
slightly di�erent frequency [9]. The observed line shape is the sum of these
individual molecules absorbing or scattering. At equilibrium, the population of
vibrational states is controlled by the Boltzmann distribution. The majority
of molecules in a normal IR or Raman experiment initially are in the ground
state. Some of these molecules are transfered to the excited state when the IR
radiation or Raman laser interacts with the sample. The resulting absorption
(IR) or change in scattering (Raman) is captured by the spectrometer. Excited
state molecules rapidly return to the ground state. For vibrations, this occurs
after a few picoseconds (10−12 sec). This relaxation is called the lifetime (or
amplitude correlation time). However, initially, all of the excited molecules are
vibrating together (coherently), but motion and slight di�erences in vibrational
frequencies randomizes this over time. Thus, the e�ective lifetime is a combi-
nation of all this e�ects. The overall line shape originates from the sum of all
the individual vibrations, and the exact vibrational frequency of a particular
molecule is controlled by its environment [61]. In the case of solids, the various
molecules of the solid experience a statistical distribution of environments, and
the line shape takes on the bell curve or Gaussian pro�le. This pro�le has the
well-known shape from statistics, with a curving (not sharp) center and wings
that fall away relatively quickly. On the contrary, in the case of gases where
rotation and collisions happen quickly. The resulting line shape is Lorentzian
(due to the exponential vibrational population relaxation), which is sharp in
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the center, but has long wings. Liquids exist in between these limits, where
interactions prevent extremely rapid motion, but the molecules are not locked
in place. As a result, the two lifetimes can be close, and the line shape has
features of both Gaussian and Lorentzian character. The simplest model for
this involves the combination Gaussian-Lorentzian (G-L) pro�le. In conclusion
band width in vibrational spectra can change due to interactions of molecules
with its environment and neighbor molecules.

The position of a peak is controlled �rst by the natural vibrational frequency
of the isolated molecule. However, the actual peak location also depends upon
interactions with the environment. Depending on the strength of the bonding
with the neighbors, the peak can shift to lower or higher energies. For instance,
if the molecule is hydrogen bound to neighbors, this e�ectively lowers the bond
energy (spreads the bonding energy over more space), and the peak will red-
shift (to lower energy). If the molecule is experiencing repulsions, the peak blue
shifts (to higher energy). In proteins, this phenomenon leads to the assignment
of slightly variant frequencies of the amide I band to di�erent secondary and
tertiary structural elements (helices and sheets).

The height of a peak depends upon the number of molecules present (con-
centration) and the strength of the absorption. The Beer-Lambert Law uses this
for concentration determination. As dilution can shift the peak, or there may
be peak broadening, the area of the peak is a better indicator of concentration.
In some cases, the peak height can be changed by a broadening mechanism, but
the area will remain unchanged as the total number of molecules is constant.

Due to the valuable information that can be extracted from the shape and
the behaviour of a Raman band, we used 2D correlation analysis to study di�er-
ent cases of band e�ects. By means of mathematical simulations, we intend to
distinguish from 2D correlation maps: band broadening, shifts or band overlap-
ping. By only observing the spectra is very di�cult to di�erentiate band e�ects
that seems similar at the spectra level. However, characteristic features in 2D
correlation maps can discriminate objectively these di�erent cases.

First, the case of a band shift is presented split in two cases: when the shift
is bigger than the width of the band (�g.2.10) and when the shift is smaller
than the width (�g. 2.9). When the shift is smaller than the band width,
the pattern observed in the synchronous map is formed by four lobes and the
asynchronous map has the shape of a "sandwich" oriented with respect to the
diagonal alternating negative (blue) with positive (red) areas. When the shift is
bigger than the band width, these patters are similar but distinct spots of each
band can be observed in synchronous and asynchronous map. The simulation
of a band shifting in steps bigger than the band width permits to distinguish
it from the case in which of di�erent neighbor bands change in intensity in a
discorded way (simulation not shown). The characteristic 2D correlation maps
on �g. 2.10 allow to detect this pattern and relate it to a band shifting.

Sometimes it is di�cult to di�erentiate a shift from two overlapped bands
changing in opposite directions. The doubts can be vanished by comparing the
2D correlation maps. Figure 2.11 shows the 2D correlation maps and spectra of
two bands changing in intensity in opposite directions. The synchronous map
is very similar to the one obtained with a small shift. However, asynchronous
map is very di�erent, being almost zero. Thus, 2D correlation is a powerful tool
to di�erentiate di�cult band behavior when analyzing series of spectra.

On the other hand 2D correlation can be used to detect band broadening or
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Figure 2.9: Above: Synchronous (left) and asynchronous (right) 2D correla-
tion maps for a band shifting in steps smaller than its width. Below: A plot
on the simulated band shifting.

narrowing combined with shifts or other e�ects. First, we present a simulation
of a band broadening (�g. 2.12). The synchronous map shows a intense spot
in the diagonal at the position of the band. The asynchronous map present
a characteristic pattern with four lobes in a cross-like shape. This pattern
can be altered and become asymmetric due to a small shift coupled with the
broadening. Figures 2.13 and 2.14 presents the simulation of the combination
of a band broadening with shifts to higher and lower wavenumber respectively.
Furthermore, band can narrow. In �gure 2.15, a band narrowing is shown.
2D correlation maps present similar features than broadening maps but with
opposite colors (signs). When narrowing is coupled with a shift, patterns become
asymmetric (�g. 2.16).

2.5 Comparison of PCA, MCR and 2D correla-
tion for the analysis of band shifts and band
overlapping

In the last section we analyzed with 2D correlation the case of a band shift and
two overlapped bands changing intensity in opposite directions. We observed
that 2D correlation was able to distinguish these situations, di�cult to detect
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Figure 2.10: Above: Synchronous (left) and asynchronous (right) 2D correla-
tion maps for a band shifting in steps bigger than its width. Below: A plot on
the simulated band shifting.
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Figure 2.11: Above: Synchronous (left) and asynchronous (right) 2D corre-
lation maps for two highly overlapped bands changing in intensity in opposite
directions. Below: A plot on the simulated overlapped bands.
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Figure 2.12: Above: Synchronous (left) and asynchronous (right) 2D corre-
lation maps for a band broadening. Below: A plot on the simulated band
broadening.
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Figure 2.13: Above: Synchronous (left) and asynchronous (right) 2D corre-
lation maps for a band broadening and shifting towards higher wavenumbers.
Below: A plot on the simulated band broadening and shifting.
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Figure 2.14: Above: Synchronous (left) and asynchronous (right) 2D corre-
lation maps for a band broadening and shifting towards lower wavenumbers.
Below: A plot on the simulated band broadening and shifting.
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Figure 2.15: Above: Synchronous (left) and asynchronous (right) 2D cor-
relation maps for a band narrowing. Below: A plot on the simulated band
narrowing.
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Figure 2.16: Above: Synchronous (left) and asynchronous (right) 2D corre-
lation maps for a band narrowing and shifting towards higher wavenumbers.
Below: A plot on the simulated band narrowing and shifting.
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otherwise. Now, we show the analysis of the same data with PCA analysis
and MCR analysis. Figure 2.17 contains the multivariate analysis for the case
shown at �g. 2.9. PCA analysis presents a band centered in the mean position
of the shift (�rst loading) and the second and third loading have symmetric
and negative portions. On the contrary, MCR analysis give clear and physically
understandable results. Five components are necessary to explain the �ve steps
of the shift and loadings are composed by bands at each step position. Figure
2.18 presents the multivariate analysis for two overlapped bands changing in
opposite directions (the same case as �g. 2.11). PCA loading give similar
results as the case of the shift. However, MCR reproduce what is happening
physically in the spectra. The two overlapped bands are deconvolved and the
intensity behavior is monitored by the MCR scores.

Comparing PCA and MCR results, we can conclude that PCA do not present
signi�cant di�erences in the analysis of both cases (shift and band overlapping).
On the contrary, MCR is able to give a physically meaningful representation of
the band behavior, being able to discriminate the two di�erent situations. In
conclusion 2D correlation and MCR analysis are able to study band dynamics as
shifts and overlapped bands. However, for complicated situations and to have a
complete picture, a combination of both methods is recommended. Among all
three methods MCR is the best in deconvolving meaningful components from the
spectra. Therefore, it can be used to monitor the molecular content in a sample.
2D correlation, has the ability to resume in two maps the dynamic evolution
of correlated bands and its shape dynamics. Finally, PCA is an exploratory
technique that can be use to have an initial idea of di�erent groups in the
sample set or detect outliers. However, to understand chemically and physically
which molecular components are evolving in the spectra acquired, MCR is more
powerful.
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Figure 2.17: Multivariate analysis of a band shift. Above: PCA analysis:
Loadings (left) and scores (right). Below: MCR analysis: Loadings (left)
and scores (right)
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Figure 2.18: Multivariate analysis of two bands shifting in opposite directions.
Above: PCA analysis: Loadings (left) and scores (right). Below: MCR
analysis: Loadings (left) and scores (right)



3
Materials and Methods

For each experiment, di�erent set-ups and software were utilized depending on
the speci�c requirements. This chapter contains a brief description of the sys-
tems and the components used. First, the main features of a system combining
optical tweezers with Raman spectroscopy are summarized for experiments us-
ing force loads to study single molecules (DNA) or RBC. Second, the Renishaw
inVia microscope used for Raman experiments without the need of optical tweez-
ers is described. In a di�erent section a brief overview of the software used or
developed to process Raman spectra with mathematical methods is explained.

3.1 Experimental set-up

3.1.1 Raman tweezers setup

A scheme of Raman system in combination with optical tweezers used for exper-
iments is shown in �g. 3.1. The system is composed by two parts: the optical
tweezers and the Raman setup. The tweezers part is made using a 1064nm diode
laser beam (Laser Quantum Limited, Manchester, England) coaxially aligned
with a 633nm detection beam (He-Ne laser, Research Electro-optics Inc.; Model
no. LHRP-0501). With L1 and L2 (with focal length of 5 and 25cm respectively)
the 1064nm laser beam is expanded and after it is divided with the help of a
polarizing beam spliter BS1. Both beams are again combined using other beam
splitter BS2 once they get re�ected from mirrorsM1 andM2. The expansion of
the beam is done to over�ll the objective (Nikon, oil immersion, 100X, 1.3NA).
These mirrors are conjugated with the back focal plane of the objective. This
conjugation is achieved by means of lenses L3 and L4 (with focal length 20 and
40 cm respectively) which form a collimator [62]. The movement of these lenses
control the trap position in the direction of beam propagation. The control on
the x-y movement of the optical trap is achieved with the movement in either
mirrors M1 or M2 without any change in its intensity and shape, keeping the
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trapping potential of the traps the same. One of the mirrors is connected to a
motorized optical mount (Picomotor, New Focus, 8807).

Figure 3.1: Scheme of the Raman tweezers set-up used with 785nm excitation
wavelength.

BS1 and BS2 are also polarizing beam splitters, thus, after passing BS2, the
beams are orthogonally polarized. Consequently, the two beams do not have any
crosstalk at the focus of the microscope objective, giving a stable dual trap. The
633nm beam is coaxially displaced to one of the trapping beams and is used for
position detection and force measurement. The forward scattered 633nm beam
is incident on a Quadrant Photodetector (QPD) (New Focus, model 2991) and
gives a high precision information regarding the displacement of the trapped
object from the focus.

In the same system it is necessary to implement a confocal Raman micro-
scope coupled with the optical tweezers. A scheme of this part of the system
is shown in �g. 3.2. For excitation of Raman scattering a 785 nm diode laser
(Micro Laser systems Inc.) is used. The power is adjusted depending on the
experiment in order to prevent a sample damage. The beam is �ltered with a
785 nm bandpass �lter (BF) to exclude the broad �uorescence from the diode
laser and narrow down its bandwidth. After BF the beam is collimated and falls
on a holographic notch �lter NF (Kaiser Optical Systems) at a small incident
angle. The re�ected light from the NF goes inside an Olympus-IX51 inverse
microscope where the object under study is trapped. The objective also collects
the back scattered light. This light contains Rayleigh and Raman photons and
is passed through NF and a confocal pinhole of 100µm dimension. The confocal
system discards the most part of the out-of-focus light. Finally, the beam is
focused on to the slit of the spectrometer by using a lens L. The spectrometer is
a Spectra Pro 2500i, 500mm focal length monochromator, with a resolution of
0.05nm at 435.8nm, containing a 600lines/mm grating (blazed to 750nm) and
�tted with a Spec-10:100B back-illuminated CCD, cooled down to −80 ◦C. The
data acquired from the CCD is processed with the WinSpec software (Princeton
Instruments). The objective used is an oil-immersion objective and we used the
oil, that does not give �uorescence. For that reason cargille immersion oil (type
37) is used. In order to visualize and take images of the samples an additional
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Figure 3.2: Scheme of the confocal Raman microspectroscopy part of the setup.

CCD camara (JAI) is attached to the microscope.

3.1.2 Renishaw Raman microscope

For measurements on cells or tissue without the need of optical tweezers, an
inVia Renishaw Raman microscope was used. This system supports multiple
excitation wavelength lasers, with an automatic software switching the excita-
tion wavelength. In our case we used two lasers: a 785nm HPNIR785 Renishaw
diode laser with a maximum output power 300mW and a 514nm Argon Ion
laser of 25mW output power. A scheme on the system is shown in �g. 3.3. The
laser light is injected through a hole onto the laser turning mirror. Then, it is
expanded while passing thought the beam expander and light is directed to the
hologra�c notch �lter where the light is re�ected and guided to the objective. A
sample is illuminated from the top, what is called an upright microscope. Light
scattered from the sample is collected again by the objective and �ltered with
the notch �lter which removes the Rayleigh scattered light. Finally, the Raman
emission passes through the entrance slit of the spectrometer were the spectrum
is acquired by means of a CCD detector. An additional video camera permits
to visualize the sample and take snapshots or videos. The software controlling
the system is called Wire and a view on the interface is shown in �g. 3.4. This
interface permits the automatic change of the excitation wavelength, grating,
laser power and other acquisition parameters like exposure time or wavenumber
region. In the left-hand part of the screen is also possible to visualize the sample
focal plane in real time. On the right hand, di�erent spectral acquisitions can
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Figure 3.3: Schematic view of the Renishaw Raman microscope system

be obtained.

3.2 SERS probes

3.2.1 Silver colloids

In experiments, we used SERS probes based on silver colloids [63]. First, silver
colloids need to be prepared. The method used was the Lee and Meisel method
also known as citrate reduction method. Silver colloids are prepared by reducing
silver nitrate (AgNO

3
, Sigma-Aldrich, S8157) with the help of trisodium citrate

(C
6
H
5
O
7
Na

3
, Sigma Aldrich, C3434), according to protocol described by Lee

and Meisel [64], with some modi�cations. 100 ml of 10−3M silver nitrate aqueous
solution is heated to boiling (≈ 90 ◦C) and then 2ml of a 1% (w/v) trisodium
citrate solution is added slowly and steadily, while continuously stirring the
mixture. The mixture is kept boiling for 1 hour (with stirring on) and then is
allowed to cool down. The resultant mixture is of dark grey color.

3.2.2 Silver coated silica bead

The SERS probes were obtained by chemically covering a 5 or 2µm silica bead
(Micro Particles, GmbH) with silver colloids obtained from citrate reduction
method. To start with, 1000µl of silica beads is taken from stock and all the
liquid in which it is suspended is removed by centrifugation at 3500 rpm for
4 minutes. The beads are then dried overnight at 60 ◦C. After, a solution of
1% APTMS (3-aminopropyl trimethoxysilane) is made in pure ethanol. Then
100µl of APTMS is added to the dried beads in 900µl of absolute ethanol and
allowed to react for 24 h at room temperature with continuous movement. At
this stage, the solution was puri�ed by centrifuging at 3500rpm for 4 minutes.
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Figure 3.4: The screenshot of the interface "Wire" used to control the Renishaw
microscope.
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Figure 3.5: SERS images showing the resulting packing density and homogeneity
of silver colloid attached to silane monolayer (APTMS) coated silica bead

The supernant from all three washes is discarded and the remaining beads are
dried again at 60 ◦C.

One-tenth of the beads from the dried sample obtained above is redispersed
in 1000µl double-distiled water. Rest of the dried beads can be kept at a cool
and dry place for future use. From the redispersed sample, 10µl beads are taken
and are mixed in 940µl of double-distilled water along with 50µl of silver colloids
obtained from above methodologies. The whole mixture is then incubated at
a speed of 300 rpm for 30 minutes. What we obtain as �nal product is silica
beads with a layer of silver nanoparticles over it. A view of the silver coated
bead is shown in �g. 3.5. Amount of beads and amount of silver coating can
be varied according to the need of experiment. But it should be remembered
not to put too much beads at once for the silver coating, as it will hinder the
uniform metal coating due to high bead density. To get rid of free colloids in
suspension or to change the suspension from DI water to the bu�er in which
experiment have to be carried out, we can centrifuge the �nal sample at 3500
rpm for 4 minutes and discard the supernatant. This will remove most of the
freely suspended silver colloids. Finally, a solution in which we want the metal
coated beads to be suspended is added.

3.3 Software analysis

3.3.1 PLS toolbox

The multivariate analysis (PCA, PLS-DA, PLS regression, MCR) performed
during the thesis was performed in most of the cases using the PLS toolbox
(Eigenvector Research). PLS-Toolbox software contains an extensive suite of
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Figure 3.6: PLS-Toolbox interface

essential and advanced chemometric multivariate analysis tools for use within
the MATLAB computational environment. Some tools are available also in a
stand-alone version called Solo. But for our applications we used the programm
in the MATLAB environment due to the �exibility and broader possibilities
that it o�ers. PLS-Toolbox provides a uni�ed graphical interface and for use
in a wide variety of technical areas. The tools that can be used for chemical
engineers, analytical chemists and other analysis-driven scientists to analyze
their data and build predictive models. A view of the interface is shown in 3.6.

3.3.2 MCR-ALS

The application of Multivariate curve resolution (MCR) to Raman spectroscopic
data has not been broadly investigated yet. In this thesis we used MCR-ALS al-
gorithm for its �exibility and advantages. MCR-ALS is an algorithm that solves
the MCR basic bilinear model using a constrained Alternating Least Squares
algorithm. The constraints used to improve the interpretation of the pro�les of
the concentration C and ST (Pure component spectra) may respond to chem-
ical properties of these pro�les (e.g., non-negativity, unimodality, closure, ...)
or have a mathematical origin. The �exibility in applying the constraints and
the capability to treat the most diverse multiset structures are the main advan-
tages of this algorithm. The bene�ts of using MCR-ALS stems from the proper
selection and application of the constraints that are really ful�lled by the data
set and from the ability to envision how to design and to deal with the most
informative multiset structures.

In the last chapters of the thesis we used MCR constrains to deconvolve
meaningful component spectra with the minum a-priori information. For that,
we used a software developed by Romà Tauler, Anna de Juan and Joaquim Jau-
mot from the department of Analytical Chemistry at the university of Barcelona.
MCR-ALS is implemented under MATLAB environment. There are two avail-



Materials and Methods 59

Figure 3.7: MCR-ALS interface of the software developed by the group of An-
alytical Chemistry at the University of Barcelona [36]. In this step, the initial
estimates and the number of components to deconvolve are selected.

Figure 3.8: MCR-ALS interface of the software developed at the University of
Barcelona [36]. In this step of the algorithm, the constraints are selected.

able versions of the algorithm, a command line program and the more popular
graphical interface GUI MCR-ALS program, both downloadable in the web
page: http : //www.ub.edu/mcr/web_mcr. Some views on the graphical inter-
face of the software are shown in �gures 3.7, 3.8, 3.9 where a user can apply the
di�erent constrains and initial estimates in a very �exible way.
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Figure 3.9: MCR-ALS interface of the software developed at the University of
Barcelona [36]. Here, a �rst presentation of the data is shown.

3.3.3 2D correlation

In order to study the Raman band's behavior and the correlation between
Raman bands when parameter in the system changes (ph, force, time...), 2D
correlation analysis was used. I wrote a Matlab code for the calculation and
visualization of 2D correlation maps. The code is shown in the appendix A

3.3.4 Labview background subtraction

Preprocessing of the large amount of spectra acquired after a standard exper-
iment can be di�cult and time consuming. For that reason, I buit a Labview
interface with the possibility of smoothing, spike removal and background sub-
traction of the Raman spectra in an automatic way. The background subtraction
was implemented with a code that I worte in Matlab and based in the method
described at [65]. Once the user enters the speci�c parameters to preprocess the
spectra, the smoothing, spike removal and background subtraction is automati-
cally performed in a selected number of spectra. A view of the interface can be
seen in �g. 3.10.
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Figure 3.10: A view on the Labview interface developed to subtract the back-
ground and remove cosmic rays from the Raman spectra



4
Direct observation of single DNA

structural alterations with

surface-enhanced Raman scattering

DNA contains genetic information necessary for the functioning and develop-
ment of all living organism. The DNA molecule acts as a platform for a host of
critical functions such as transcription, replication, and other molecular motor
driven processes, where the DNA strand undergoes numerous mechanical events
that are primarily supported by the polymer-like phosphate backbone. To get
insight into DNA mechanics, single molecule force spectroscopy techniques are
necessary. Inherent Brownian motion limits current force spectroscopy meth-
ods from observing possible bond level structural changes. We combine optical
trapping and surface-enhanced Raman scattering (SERS) to establish a direct
relationship between DNA's extension and structure in the low force, entropic
regime. A DNA molecule is trapped close to a SERS substrate to facilitate de-
tectable Raman signal. Statistical analysis of Raman signal is performed with
2D correlation and some important features are revealed as a shift in DNA Ra-
man modes in response to applied force, indicating phosphodiester mechanical
alterations. Molecular dynamic simulations con�rm the local structural alter-
ations and the Raman sensitive band identi�ed experimentally. The combined
Raman and force spectroscopy technique is a novel methodology that can be
generalized to all single molecule studies.

4.1 Introduction

As a passive substrate, DNA maintains mechanical compliance to allow inter-
actions with proteins. Some of these interactions occur at low forces where the
mechanical load on DNA is balanced by lowered entropy via unfolding. Thus,
understanding DNA structural responses in this entropic regime is essential to
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elucidating overall DNA function.
The advancement of single molecule force spectroscopy (SMFS) has con-

nected physiological function to molecular level processes, for example, with
DNA [66, 67]. A typical SMFS experiment provides force measurements which
are related to models that idealize the molecule mechanically [68]. Advance-
ments in instrumentation have pushed length scale resolution limits leading
to dynamical studies of active processes [69]. However, these experiments are
either limited to measuring a few averaged parameters or require advanced par-
ticle tracking with �uorescence probes [70]. The use of �uorescence imaging is
generally applicable to strong topological changes [71] occurring in high force
regimes. More importantly, light interacting directly with chemical bonds would
provide a more ideal measure of the DNA structure.

Raman spectroscopy is well-suited to provide important insights to SMFS,
since it outputs the highest level of chemical structure information with mini-
mal external interference due to its fundamental scattering process at all optical
wavelengths. Raman studies of DNA have been present for two decades and
have produced a database of Raman peaks that characterize the various com-
ponents of the DNA structure [72,73]. Raman signal can be ampli�ed by metal
nanostructures through plasmonic e�ects [74] which makes possible single DNA
molecule detection [75�77]. The drawback is that the DNA or its constituent
samples are measured as an ensemble or anchored to hard surfaces; far from an
ideal physiological state. In my group at ICFO, it have been previously demon-
strated a methodology to overcome some of these issues by optically trapping
single DNA molecules [34] with silver nanoparticles nonspeci�cally bound to
the phosphate backbone, which made possible the Raman detection of single
molecule DNA in its natural aqueous environment.

In this work, we demonstrate a novel combination of optical tweezers and
SERS to study DNA structural responses from an applied load in the low force,
entropic regime. A single DNA molecule is optically stretched close to an ex-
ternal SERS substrate while its Raman spectrum is simultaneously measured.
We identify a correlation between the phosphate backbone structure and molec-
ular extension. The results of this novel experimental technique are con�rmed
with state of the art theoretical modeling, which combines molecular dynamics
(MD) with mixed quantum mechanics/molecular mechanics (QM/MM), to com-
pute Raman modes for DNA structures modeled at di�erent extensions. The
modeling was performed thanks to the collaboration with the Supercomputing
center in Universitat Politecnica de Catalunya. The overall result demonstrates
a structural response in a regime where mechanical load is thought to only be
countered by entropy changes. We also highlight an innovative methodology
for directly observing single molecule chemical structure changes in response to
controllable forces.

4.2 Methods

4.2.1 Dual optical trap and Raman spectroscopy

The experimental setup (Fig. 4.1) is a platform that combines optical trap-
ping with Raman spectroscopy and is similar to the one described in section
3.1.1. Brie�y, a specimen held by a dual trap is optically excited by a third
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beam and its Raman spectrum is recorded in the backscattered direction. The
dual optical trap was constructed with a 985 nm single-mode �ber laser beam
(Avanex) passed through an interferometer (100 mW power for each beam)
with one mirror motor driven (Newport motorized optical mount, 8807) and
controlled by a computer. This mirror was optically conjugated to the back
focal plane of the bottom objective (Nikon, CFI PL FL, 100×, NA 1.30). An
additional 635 nm low-noise optical beam (0.5 mW) (Coherent, ultralow-noise
diode laser LabLaser635) was passed to the sample, coaxial to the non-motor
driven trapping beam for position detection of the trapped microsphere. The
forward scattered light of the detection beam was collected by a top objective
(Edmund Optics, 40×, NA 0.65) and analyzed by a quadrant photodiode (QPD)
(Newport, model 2921). The Brownian motion of the bead was measured to cali-
brate the trap using established procedures [78] and to give the bead position for
the force-extension curves. The resulting signals were then transferred through
an analog-to-digital conversion card (National Instruments) and recorded with
custom software in the Labview environment. A 532 nm beam was used for
the Raman excitation (OZ Optics, OZ-2000, 20 mW) with a power density of
1.5×106 W/cm2 at the focus. The dependence of Raman spectra on excitation
polarization direction was not tested. The backscattered light was collected by
the bottom objective and passed through a holographic notch �lter (Semrock,
532 nm RazorEdge Dichroic laser-�at beamsplitter) before entering the confocal
system with a 150 µm pinhole (Thorlabs, P150S). Raman spectra were recorded
with a spectrometer (Andor, SR163, 1200 lines/mm) equipped with a charged-
coupled device (CCD) camera (Andor, DV401A-BV) at a spectral resolution of
3 cm−1. For the measurement, the DNA-bead construct was aligned such that
the Raman excitation beam passed between the beads.

None of the auxiliary beams (i.e. the trapping and position detection beams)
added background signals to the Raman spectra. These beams are shifted by
half the molecule length (2 µm) relative to the Raman excitation focus (see
Fig. 4.1) thus propagating outside of the confocal volume of the spectroscopic
system. In addition, the power of the detection beam is signi�cantly weaker
than the Raman excitation while the trapping beam wavelength is outside the
spectral window of the spectrometer that is tuned to wavelengths close to 532
nm. No Raman peaks were observed from two trapped beads without DNA
attached between them.

4.2.2 DNA Raman spectrum versus extension measure-
ment

The experiment (see Fig.4.1(top left inset)) consisted of DNA-bead constructs,
double-stranded λ-phage 12 kbp DNA (4.25 µm contour length) molecules an-
chored to silica microspheres via established methods [79], manipulated with the
dual optical trap in phosphate bu�ered saline (pH 7.4) within a custom-built
�uid chamber. The Raman signal of the molecule was enhanced by bringing it
close to a SERS substrate, 5 µm silica beads with silver nanoparticles (70 nm
average diameter) attached to their surface [63], that was previously deposited
on to the glass coverslip surface of the �uid chamber. Brie�y, the probes were
prepared by attaching citrate-reduced silver colloidal nanoparticles [64] to the
surface of the silica beads. The particles were anchored to the surface via a
self-assembled alkyloxy silane monolayer. Adjusting parameters, such as silane
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concentration and the agitation speed of the reaction vial that contained the
beads and chemicals, produced a stable silane monolayer with silver nanoparti-
cles attached at less than 20 % packing density on the bead surface, con�rmed
by scanning electron microscopy (SEM) imaging (Fig. 3.5(bottom right inset)).

For the measurements, a full force versus extension curve was �rst measured
to con�rm the presence of a single DNA molecule by �tting to a worm-like
chain (WLC) model and con�rming the single molecule persistence length [34].
The molecule was then extended to approximately 85% of its contour length
before approached in the z direction towards the upper surface of the SERS
probe by lowering the bottom objective. This was the initial extension for the
measurements and was essential in order to bring the molecule close to the
SERS probe without having it contact the trapped beads. The Raman signal
was continuously detected at 1 s acquisition times in "live" mode and the DNA z
displacement was stopped upon appearance of Raman peaks and adjusted in the
x-y directions by slightly shifting the movable trapped bead to maximize peak
intensities. The DNA molecule was then extended through two additional 100
nm increments with a single Raman spectrum at 1 s acquisition time recorded at
each step. The position of the bead in the �xed trap was continuously recorded
to monitor the applied force. The distance between the molecule and SERS
probe could not be directly measured or held perfectly constant due to the
inherent Brownian motion of the molecule. However, this motion was minimized
by the taut state of the molecule throughout the experiment.

4.2.3 Molecular dynamics and QM/MM modeling

Molecular dynamics (MD) modeling was performed with density functional the-
ory (DFT) normal mode frequencies to con�rm the experimentally observed Ra-
man modes and their sensitivity to molecular extension. The modeled DNA 3D
structures [80] were 30 base pairs long with only cytosine-guanine base pairs,
which minimized the number of theoretical modes that are not measurable in
the experiment. Four lengths were tested:97Å (unextended), 120 Å, 135 Å and
155 Å. The theoretical structure extensions were higher than in experiment due
to the long computational time necessary to resolve smaller extensions (forces).
For each modeled structure, normal mode frequencies were calculated for three
adjacent segments on each chain in order to observe any variations along the
strand. Each segment contained two base-pairs with hydrogen-caps inserted
directly above and below surrounding sugars for a total of 134 atoms (Fig. 4.2).

For the initial structure, the Raman active modes in this list of normal mode
frequencies were determined by computing Raman activities in a reduced struc-
ture containing only two bases with one joining phosphate. Obtaining Raman
activities for the full modeled structures was too computationally intensive for
this study. The result was a list of frequencies with corresponding Raman activ-
ity values. Raman active frequencies in the region of experimental interest were
tracked in the full QM/MM systems to see which modes changed with DNA ex-
tension. All computed Raman frequencies were lower than in the experimental
measurements. For example, the O-P-O stretch mode with the highest Raman
activity was at 794 cm−1 whereas this mode always appeared above 800 cm−1

in the experiment.
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Figure 4.1: Schematic of the combined dual optical trap and Raman spec-
troscopy setup where a single DNA molecule is stretched by moving one of the
attached beads with the optical trap while a laser excites the SERS substrate
and DNA molecule (top left inset). All lasers used are coupled through single
mode �bers before entering the system. The 985 nm trapping beams are split
by an interferometer made with two prism beam splitters. Both beams are
passed by a dichroic mirror to the bottom objective (O1). A 635 nm beam also
passes through O1 and is used for position detection of the trapped microsphere.
The forward scattered light of the 635 nm beam is collected by a top objective
(O2) and analyzed by a quadrant photodiode (QPD) with a band-pass �lter
(Thorlabs, FL635-10) that blocks the trapping and Raman excitation beams.
The 532 nm Raman excitation beam is re�ected by a 45o Notch �lter (NF) and
propagates colinear with the trapping and detection beams through O1. The
backscattered light is collected by O1 and passed through NF to a confocal
spectroscopy system that consists of two lenses and a pinhole (PH) in front of
a spectrophotometer with a CCD camera.

Figure 4.2: Image of DNA molecular model, highlighting the individual seg-
ments that were included in the MD normal mode frequency computation. Each
segment contained two base pairs with an adjoining phosphodiester chain and
three pairs of segments (6 total) between the two chains were calculated to
observe any variations along the strand.
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4.3 Results and Discussion

4.3.1 Raman signatures of a single DNA molecule

Figure 4.3(a) is a representative series of Raman spectra from a single DNA
molecule at three di�erent extensions where a di�erence in some peak posi-
tions between spectra is immediately clear. Each trace was background sub-
tracted using multiplicative scatter correction (MSC) and smoothed with a
spline technique [81]. The plotted region contains stretch vibrational modes
of the phosphodiester network (C-O-P-O-C) and C-N bonds in the cytosine
base [73], with bands at lower and higher frequencies containing bending and
scissor modes, respectively, that are typically inconsistent with SERS. The peak
positions measured here are similar to what was observed in the previous work
of our group [34] where silver nanoparticles were attached to the DNA molecule,
demonstrating consistency between two di�erent silver nanoparticle-based SERS
systems. The band assignments used here are based on literature that utilized
bond symmetry arguments to determine normal mode frequency regions for the
DNA components [73]; a direct derivation from the bond orientations of the
molecule that is independent of any electromagnetic �eld enhancement. Mov-
ing the DNA molecule away from the SERS bead and Raman excitation focus
led to disappearance of signal, thus eliminating band assignment to spurious
peaks that could be due to the surface chemistry of the SERS bead. As seen
in Fig.4.3(a), the Raman peak position shifts only occur for the phosphodiester
stretch mode, and only in an increasing direction with extension, while all other
peaks stay in the same position or experience slight random movement. Plotting
the Raman peak position versus extension for the phosphodiester and cytosine
base mode for this set of traces further exempli�es the di�erence in sensitivity
to molecular stretching between the two bands (Fig. 4.3b inset). The persis-
tence length (53 nm) from the WLC �t to the force extension curve in Fig. 4.3b
con�rms the presence of a single DNA molecule and indicates the applied force
and extension range where this Raman band sensitivity is observed.

Raman spectra from measurements of �ve DNA molecules at all extensions
are grouped together and cross-correlated via a 2D correlation analysis [59] to
identify peak movement in the sample set (Fig. 4.4). 2D correlation analysis
is an objective method for identifying trends in a set of spectra that respond
to a single e�ect, in this case the extension of the molecule. The outputs are
in-phase (synchronous) and out-of-phase (asynchronous) maps where the for-
mer represents Raman peak position and intensity variations and the latter the
presence of a sequential trend of these variations relative to the molecule ex-
tension. Peak position trends with molecule extension will emerge as hotspots
in both maps. Features between 800 - 900 cm−1 band, where stretch modes of
the O-P-O unit lie, are present in both maps, signifying a displacement of this
band with extension. The doublet spot is due to a shift greater than the width
of the peaks (see simulation on �g. 2.10). The C-N stretch mode of the cytosine
ring, 1280 cm−1, only has an in-phase feature due to an intensity change with
no position shift in the peak (�g. 4.4). Generally, intensity changes of SERS
spectra are di�cult to interpret because the enhancement level can vary due to
di�erences in the relative positions of the SERS substrate, molecule, and incom-
ing excitation light [82]. Debris in the solution that could come from the SERS
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Figure 4.3: A representative set of Raman spectra (a) from a single DNA
molecule at three di�erent extensions: 3700 nm (1), 3800 nm (2), and 3900
nm (3). The O-P-O Raman band in the 800 - 900 cm−1 range undergoes an
upward shift in position while the C-N vibration (1280 cm−1) remains constant
as the molecule is extended. A single molecule between the trapped beads is
con�rmed by measuring a force vs. extension curve (b) and �tting experimental
data (solid squares) to a WLC model [68] (solid line) to validate the single DNA
persistence length (53 nm). The peak position versus extension for the two
highlighted Raman bands from the three traces in (a) are plotted with their
respective location in the WLC curve indicated (inset (b)).
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Figure 4.4: 2D correlation maps (synchronous (left) and asynchronous (right))
from Raman spectra of �ve di�erent molecules that were extended. The signa-
tures in both maps (boxes) together indicate a shift in peak position of the
O-P-O Raman band (800 - 900 cm−1) while the C-N cytosine base vibration
(1280 cm−1) remains constant during the molecule extensions. The large spots
along the 1200 cm−1 axes are due to a large random peak that appeared at this
position in two of the spectra which is common with SERS.

beads or DNA sample, could also �oat in to the excitation path causing brief
"�ashes" of an intense peak during the acquisition. For these reasons, we chose
to ignore a few occurrences of a large peak at 1200 cm−1 which caused lines of
spots in the maps at this position, because it does not match a particular DNA
mode, its intensity was orders of magnitude greater than the next most intense
peak, and it appeared in only a few of the spectra.

While intensities are solely dependent on the interaction of the chemical bond
with light, band positions also depend on bond symmetry and polarizability
which is a direct consequence of the conformation of the bond. Thus, Raman
band position changes are expected to correlate with mechanical alteration of
the local structure [83]. We conclude that the 800 cm−1 phosphodiester stretch
mode is sensitive to molecule extension while the cytosine mode (1280 cm−1)
is una�ected. A similar mechanical sensitivity of the O-P-O stretch mode was
previously observed, where an upward shift of the band is present between looser
wound A-form DNA and tighter wound B-form structures [73].

The unique feature of this SERS arrangement is the ability to maintain the
molecule free of attachments allowing for a more true measure of the structure.
Based on geometrical optics, the Raman excitation focus diameter is approxi-
mately 400 nm, however, the SERS e�ect occurs only within the decay length of
the evanescent �eld from the silver nanoparticles which has been reported to be
in the range of 50-100 nm [84], equivalent to about 100 bp. While it is di�cult
to estimate the exact distance between molecule and SERS substrate, the DNA
molecule must be within this decay length in order to observe Raman signal
which is a product of multiple base pairs segments simultaneously optically ex-
cited. Maintaining the molecule in extended states minimized Brownian motion
�uctuations that could cause the DNA to come in contact with the SERS bead,
which would alter enhancement levels and potentially hinder extension based
e�ects. As a result, Raman signals remained stable during periods of minutes
without observing degradation of the molecule or SERS bead and spectra from
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the set of DNA molecules was consistent.
One di�ering characteristic in the Raman spectra was the adenine peak, pre-

viously observed to be dominant in single stranded DNA [85] and from single
adenine molecules in silver colloid solutions [76], but detected at smaller inten-
sities (730 cm−1 and 1325 cm−1) here. One reason for this discrepancy could
be the less understood interaction between silver and the double strand which
may cause shielding of the other bases from the silver nanoparticle plasmonic
�elds. Indeed, the adenine peak is the most responsive to metal nanoparticles
adsorbed to uncoiled segments of DNA [86]. The molecule is not in contact with
the metal surface as it is in other studies, thus, a proper measure of the SERS
cross section or intensity of each component is not possible in this con�gura-
tion, where the 730 cm−1 peak of adenine is traditionally dominant. Adenine
signatures, and other bases, are most likely present in the Raman spectra, but
the same intensity ratios previously observed with molecules adsorbed to metal
surfaces cannot be repeated. The lack of adsorption produces an averaging of
the base peaks instead, where the C-N stretch modes of the bases (1100-1700
cm−1) seem to be stronger than the base ring breathing modes (< 800 cm−1).
With adenine having the highest SERS cross section, this peak intensity stands
to experience the most dramatic reduction in the absence of adsorption to the
metal, as is observed here.

4.3.2 Bond orientations alter with molecule extension

Fig. 4.5a is a plot of Raman peak position versus extension for all measure-
ments. The plots contain the phosphodiester and cytosine base stretch modes
that had distinct spots in the correlation plots with points from all of the tested
molecules plotted together, owing to the known high mechanical uniformity be-
tween DNA molecules. Thus, the majority of error will lie in the Raman peak
positions. A small spread in the extension points is due to uncertainty in the
starting extension, because each molecule must be stretched to a �nite initial
length in order to be approached to the micron sized SERS substrate. The e�ect
is immediately clear: the phosphodiester mode shifts while the cytosine mode
remains una�ected during the DNA extension. Assuming a linear relationship,
the most striking parameter is the sensitivity of the phosphodiester Raman band
to the force-extension, 0.11 cm−1/nm.

The MD modeling con�rmed the measured Raman modes and allowed visu-
alization of the modes' atomic motions. The Raman active modes were deter-
mined by computing the frequencies and Raman activities of a reduced struc-
ture, which consisted of a single phosphodiester network between a guanine and
cytosine base. The phosphate vibration with the highest Raman activity in the
vicinity of 800 cm−1 prominently involves a single O-P vibration but includes
motion throughout the phosphodiester chain (C-O-P-O-C), while the 1280 cm−1

cytosine peak comes from a C-N vibration in the cytosine ring. Fig. 4.6a de-
picts the identi�ed motion of the phosphate mode. Identifying the motion in
the reduced system allowed us to locate the corresponding band in the full DNA
structure computation and track it through the di�erent extensions. The com-
puted modes for each region (Fig. 4.2) of the full modeled DNA structure are
plotted versus extension in Fig. 4.5b. Once again, the phosphate stretch mode
shows sensitivity to DNA extension while the cytosine base remains una�ected.



Direct observation of single DNA structural alterations with surface-enhanced Raman

scattering 71

920

880

840

800

R
am

an
 s

hi
ft 

(c
m

-1
)

1350

1300

1250

1200

410040003900380037003600
DNA length (nm)

slope=7.0 10    cm   /nm
-4 -1

slope=0.1 cm   /nm
-1

(a)

920

880

840

800

T
he

or
et

ic
al

 R
am

an
 s

hi
ft 

(c
m

-1
)

161514131211109
Theoretical extension (nm)

1340

1320

1300

1280

1260

(b)

2000

1500

1000

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

16001200800
 Raman shift (cm

-1 
)

(c) region of interest
100

50

0

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

16001200800
 Raman shift (cm

-1 
)

(d)
region of interest

Figure 4.5: Experimental (a) and theoretical (b) plots of Raman peak position
versus DNA extension for the O-P-O phosphate backbone and C-N cytosine base
stretch modes. The points from all �ve molecules and six calculated regions are
plotted together for the experimental and theoretical plots, respectively. The
data sets are �t to a straight line and the slopes are included for the experimental
data. The representative experimental Raman trace for the initial extension
from Fig. 4.3a is plotted in full range (c) and shares the same x-axis with
the theoretical plot of the initial modeled structure (d) where frequencies and
intensities are taken from the full QM/MM and reduced structure calculation,
respectively. All plots show agreement between experiment and theory.
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Further agreement between experiment and theory is evident when examining
the singular traces. Fig. 4.5c is the representative trace for the initial extension
from Fig. 4.3a plotted in full range and compared to the calculated modes of
the initial structure in Fig. 4.5d where the peak positions are taken from the full
QM/MM calculation and Raman intensities from the reduced structure. The
measured Raman bands can be con�dently assigned to DNA components based
on the consistency between experiment and theory and agreement with previous
studies in the literature.

The Raman frequency of a vibration can change due to an alteration of the
mechanical and electromagnetic components of the bond. The increase in the
phosphate mode frequency is a result of an alteration in geometry and energetics
of the system as the molecule is extended. Fig. 4.6b is an overlay of the initial
and extended modeled structures with a single calculated region of the DNA
chain isolated from the full modeled structure and the phosphorus atom as the
common origin. The orientation of the O-P-O unit remains constant and the
O-P-O bond angle shows no correlation with extension. The orientations of
the carbons and adjacent sugars relative to the O-P-O unit change drastically,
however. Nearest neighbors recon�gurations can a�ect the bond's polarizability
and its interaction with light via Raman scattering by changing the symmetry
of the local region. From an energetics standpoint, the region experiences a
mechanical perturbation as the structure is extended. The total end e�ect of
the above is a shift in the bond's Raman peak position.

The DNA structural alterations observed here at small forces should aide
in understanding DNA-protein interactions in the entropic regime. Although
DNA can be modeled as a semi-�exible polymer, the result shows that chemical
bond orientations contribute to mechanical loading at all scales.

The technique is a novel combination of known methodologies that provides
a new addition to the SMFS �eld. By directly measuring at the bond level with
Raman scattering, these structural shifts can be observed at low forces without
the need for complex particle tracking. Most importantly, with the constant
advancement of SERS substrates, the stability and ampli�cation level will con-
tinue to improve while maintaining the DNA strands free of optical probes and
leaving them in a more ideal physiological condition. The combination of SERS
substrates with advanced mathematical processing of the Raman signal, pro-
vides a powerful method to extract otherwise inaccessible information about
the mechanochemical properties of single molecules in its natural environment.
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Figure 4.6: Theoretical snapshots (a) of the O-P-O vibrational mode responsible
for the 800 cm−1 Raman peak taken from the reduced structure calculation
used to determine the Raman activities. An overlay (b) of the calculated DNA
structures focused at a single region, with the phosphorus atom (arrow) as the
common origin: 97 Å (blue), 120 Å (red), 135 Å (green), 155 Å (purple).



5
Monitoring of local pH in photodynamic

therapy treated live cancer cells using

surface-enhanced Raman scattering

probes

The local pH inside individual live glioma (U-87 MG) cancer cells were moni-
tored after treatment by the photodynamic therapy drug, emodin. The cellular
pH is tracked by the real-time measurement of the surface-enhanced Raman
scattering (SERS) from a probe that is embedded in the cell. The probe is
a micron-sized silica bead that is covered by nano-sized silver colloids, which
enhance Raman signal, and 4-mercaptobenzoic acid (pMBA) whose molecular
vibrations and resulting Raman spectrum are sensitive to pH. Visible excitation
at di�erent light dosages are used to activate the drug. Evolution in the SERS
spectra caused by the intracellular pH changes were studied with 2D correlation.
A complete picture of the Raman band's behavior was achieved, that permits
to select the best Raman band capable to track the pH changes. The results
indicate cell maintenance of internal pH and cell death at low and high light
dosage, respectively. We demonstrate that these SERS probes are an e�ective
tool for ex vivo pH monitoring in a live cell due to their high optical sensitivity
and non-invasive usage. To the best of our knowledge, this study represents the
�rst use of the 2D correlation technique to analyze SERS cellular spectra.

5.1 Introduction

Photodynamic therapy (PDT) is a viable technique for the treatment of certain
types of cancer [87] The main engine of PDT is the production of highly reactive
oxygen species (ROS) when activated by visible light [88] This oxidative stress
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can lead to apoptosis or necrosis of the cell [89] where the mode of cell death is
dependent on several factors such as the type, concentration, and localization
of the drug, light activation dose, and the cell genotype.

The PDT drug that we utilize in this work is emodin (6-methyl-1,3,8 - trihy-
droxyanthraquinone). Emodin is a naturally occurring anthraquinone that was
previously reported to have antitumoral activity against certain types of can-
cers [90, 91] Emodin induces apoptosis in various types of cells [92, 93] through
a ROS-dependent mitochondrial signaling pathway.

In general, one of the main PDT targeted cell compartments for inducing
apoptosis is the mitochondria [94] Through this pathway, the intracellular pH
plays an important role because of the high pH sensitivity of the mitochondria
that can lead to cell death [95] Thus, the intracellular pH can be a good measure
of the stage of apoptosis and consequently the e�ect of the PDT drug. Healthy
cells already contain variations of pH between the cellular compartments.

One successful method for determining intracellular pH is through the use
of �uorescence. Modi�ed green �uorescent proteins were utilized to determine
the pH of the cytosol, Golgi apparatus, and mitochondria to be ∼ 7.3, ∼ 6.5,
and ∼ 8.0, respectively [96] Fluorescent dyes were also used in determining the
acidic pH (∼ 4.3) in lysosomes [97] Although these methods have provided good
estimations of the intracellular pH, they maintain drawbacks in terms of signal
level, toxicity of the dyes, and the relative complexity of expressing �uorescent
proteins in the cells. In principle, the optical spectra of the photosensitizer
itself could be utilized as a marker where pH sensitivity has been determined
previously. However, as is the case with emodin, these optical characteristics
are highly a�ected by aggregation [98] Most importantly, in light of the PDT
mechanism, optical spectroscopy that requires visible excitation would further
activate the drug during a measurement. An improved method of pH monitor-
ing is needed that is less invasive while carrying the ability of locally measuring
pH with good spatial placement and resolution, while not requiring visible wave-
length optical excitation.

Based on coulombic interactions, vibrations of certain chemical bonds can
be sensitive to the level of protonation in the local environment. For example, it
was demonstrated that 4-mercaptobenzoic acid (pMBA), which strongly adsorbs
on to silver and gold substrates, [99] can be used as an intracellular pH sensor
by calibrating against intensity changes of sensitive peaks of the pMBA Raman
spectrum [100] The main issue is the weak cross section of the Raman scat-
tering which can be circumvented with the surface-enhanced Raman scattering
(SERS) process where localized surface plasmons from nanoscopically textured
metal structures are incorporated with the sample as in [18]. However, the use
of nanosized metal colloids alone does not allow good spatial resolution when
embedded in a cell. Metal colloids need to be distributed throughout the entire
cell in order to ensure a consistent particle distribution that would validate a
point measurement or a static pH map.

For example, such a pH map was previously constructed in a living cell
where gold nanoagregates conjugated to pH sensitive molecules were accumu-
lated in the studied cell through the process of endocytosis [101] In this case, the
locations of the nanoagregates cannot be controlled leaving an inhomogenous
spatial distribution of sensors which negatively e�ects the spatial accuracy of
the di�ering pH regions. Additionally, the pH distribution in the cell nucleus
is impossible to measure by this method, because metal nanoparticles cannot
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enter this part of the cell [102,103] Other groups have demonstrated probes for
pH monitoring using SERS active substrates, along with pH sensitive molecules,
anchored to capillaries, however were unable to access the cell in a non-invasive
manner [104, 105] Anchoring colloidal material to a substrate of micron scale,
which we propose in this work, would allow for safe and accurate placement
inside cells using current microinjection methods and in principle, could facil-
itate the use of combined optical trapping and laser injection techniques [106]
for less invasive entry with better spatial control. Moreover, opposed to pre-
vious experiments, we conduct an active pH measurement over time which is
a more accurate representation of the dynamical physiological processes in live
cells such as those induced by drug interaction.

In this work, we demonstrate the use of novel pH probes to study the cellular
response to the activation of the PDT drug emodin at di�erent light dosages.
To accomplish this, we construct a new local pH probe that is based on a
micron sized silica bead covered with nanosized silver particles, which we have
previously synthesized, characterized [107], and utilized for cancer cell studies
[108] The pH sensitivity is added by attaching pMBA molecules to the bead's
surface before they are passively embedded in cancer cells through overnight
incubation. Emodin is then added to the cells and activated by visible light.
After a given light dosage, the SERS of the embedded probe is excited by a near-
infrared beam and spectra are continuously recorded. Alterations in the pMBA
SERS spectrum are indicative of pH changes at the local environment of the
probe, which we choose to be in the mitochondria, far away from the nucleus.
The results demonstrate the reaction of the cell to the activated PDT drug,
showing recovery to a balanced pH at low activation light dose and apoptotic
cell death at high light dose.

The altering of pH is deduced from intensity changes in the SERS spectra
which are revealed by 2D correlation spectroscopy analysis [59] This method is a
powerful tool for isolating and extracting complex variations in spectral features
of a system under external physical perturbations. This objective approach in
assessing the data is essential for demonstrating the use of these pH probes as an
e�ective tool in studying the biochemical changes of a live cell and its response
to drug interaction.

5.2 Experimental methods

5.2.1 Materials

Emodin (1,3,8-trihydroxy-6-methylantraquinone), dimethylsulfoxide (DMSO),
3-aminopropyl trimethoxysilane (APTMS), silver nitrate (AgNO3), trisodium
citrate (Na3C6H5O7.2H2O), 4-mercaptobenzoic acid (pMBA), hydrochloric acid
(HCl), sodium hydroxide (NaOH), methanol (CH3OH) and ethanol (CH3CH2OH)
were obtained from Sigma-Aldrich. The pMBA stock solution was prepared in
100 % methanol. Dulbecco's modi�ed eagle medium (DMEM), fetal bovin serum
(FBS), trypsin/EDTA, penicillin and streptomycin were purchased from Gibco,
Invitrogen (United Kingdom). Silica beads (2 µm diameter) were purchased
from Micro Particles GmbH (Germany). The aqueous solutions were prepared
with deionized water.
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5.2.2 Probe construction

Previously, we completed a study on the silver particle attachment to micron
sized beads, with a complete discussion of the critical parameters in the proto-
col [107] Brie�y, the probes were prepared by attaching citrate reduced silver
colloidal nanoparticles, [109] with an average diameter of 70 nm, to the sur-
face of 2 µm diameter silica beads. The particles were anchored to the surface
via a self-assembled alkyloxy silane monolayer (aminopropyltrimethoxy silane
(APTMS)). Through judicious selection of reaction parameters, in particular the
silane concentration and the agitation speed of the reaction vial that contained
the beads and chemicals, a stable silane monolayer could be formed with a less
than 20% packing density of the silver particles on the bead surface. Finally,
to add the pH sensitivity, the silver coated silica beads were mixed with 10−3

M of pMBA, which creates a monolayer of the molecule on the metal surface
through a sulfur atom and carboxyl group [99]

5.2.3 Cells

Human glioma cells (U-87 MG) were cultured as a monolayer and grown in
DMEM containing L-glutamine (862 mg/l), sodium pyruvate (110 mg/l) and
glucose (4500 mg/l), supplemented with 10 % FBS, penicillin (50 µg/ml) and
streptomycin (50 µg/ml). For all measurements, the cells were plated in plastic
Petri dishes (35 mm x 10 mm) with #0 cover glass at an optimal density of 5 x
105 cells/ml. During the measurements, the cells were enclosed in an incubator
system (Live Cell Instrument) mounted on the microscope which maintained at
37 ◦C with 5 % CO2 atmosphere.

5.2.4 Optical setup

A full description of the Raman system, which utilizes a 785 nm beam (10 mW)
for excitation, has been given previously [110] An additional 532 nm beam was
passed through a 40× top objective to facilitate the emodin activation. All
spectra were collected with a 1 s acquisition time at a spectral resolution of 3
cm−1. For all spectra, a �ve-point adjacent average smoothing was applied and
the background was removed using an established method [111]

5.2.5 Calibration of pH probes

In order to correlate the SERS peaks to local pH, the pMBA Raman bands
that are sensitive to pH were �rst identi�ed and their intensity changes against
known pH values resolved. This was done by measuring the SERS spectra
from the probes in aqueous solutions at 8 di�erent pH values between 2 - 7.5,
accomplished by HCl/NaOH titration. A total of 15 spectra were recorded and
averaged to produce a single Raman spectrum at each pH. The averaged spectra
were analyzed with 2D correlation spectroscopy, which is described at the end of
this section. Finally, a calibration curve was constructed of the pMBA marker
band intensity versus pH.
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5.2.6 PDT treated cell measurement

The cells were incubated during the night before the experiment with a fresh
culture medium containing the pH probes. The micron sized probes enter the
cells through phagocytosis [112] which is a speci�c form of endocytosis where
larger particles are encapsulated by the cell via the membrane that reforms
around the particle in order to transfer it inside. We have previously demon-
strated the ability to passively embed similar probes in the cell line studied here
while maintaining cell viability [108]

For the measurement, the cells were incubated for two hours with media
containing 2 µM emodin with less than 1 % v/v DMSO. A dish of cells was
then removed from the incubator and rewashed three times with fresh media
to remove the excess emodin that had not di�used in to the cell. The samples
were placed in the Raman setup where the PDT activation was performed using
the 532 nm beam focused to a 3 mm diameter spot around the cell and the
irradiation time held at a constant �ve minutes. By varying the laser power, two
dosage levels were applied: low (1.0 J/cm2) and high (6.0 J/cm2). These values
are below and above the level of energy that seems to assure photoactivation with
consequent apoptosis from similar PDT drugs [113] For the control test, cells
containing emodin were not photoactivated before the Raman measurement.
For the Raman measurement, visual inspection was used to locate cells with
a single embedded probe in the cytoplasm, away from the nucleus, where the
majority of the PDT process is presumed to occur. Raman spectra from these
probes were measured and for all cases, a total of 30 cells were tested and
their spectra averaged to produce a single spectrum for each elapsed time after
PDT activation. The averaged spectra were then analyzed with 2D correlation
spectroscopy before pH versus time curves were constructed using the calibration
curve described in the previous section.

5.2.7 2D correlation analysis methodology

The pH calibration and cell experiments produce an array of Raman spectra
with two parameters (intensity and wavenumber) that change under a certain
perturbation along a third parameter. The 2D correlation analysis identi�es
and extracts which Raman bands are changing the most with respect to the
third parameter and relative to each other. The method has been described and
applied previously in section 2.4 and in [59], therefore we describe only brie�y
here. All of the analysis is performed in the Matlab environment. The spec-
tra were background subtracted, smoothed, and normalized to the out-of-plane
vibration of the phenyl ring at 1070 cm−1 before entering the 2D correlation
analysis.

The output of the analysis are contour graphs where the in-plane axes are
the Raman frequencies and the third axis is the level of correlation between
two Raman bands. The method produces two results for a given set of spectra:
the synchronous and asynchronous graphs which refer to the in- or out-of-phase
relationship between bands, respectively, over a third parameter. The third pa-
rameter that induce changes in the spectra can be any physical variable, such
as pH, concentration or time, where each value matches a measured spectrum
of the system. For the synchronous spectra, autopeaks occur along the diago-
nal and are mathematically equivalent to the autocorrelation of a band, thus,
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signifying bands that are susceptible to change under the studied perturbation
that is represented by the third parameter. Crosspeaks appear o� diagonal and
represent bands that increase or decrease together during the perturbation. The
picture of the mode behavior is completed by looking at the asynchronous spec-
trum. Here, peaks on the diagonal do not exist and crosspeaks represent bands
that are increasing or decreasing during the perturbation, but out-of-phase with
each other.

In this work, we use 2D correlation analysis for the pH calibration of the
sensor where the spectra were taken at di�erent pH values for the solution,
thus the third parameter is the pH. The 2D maps identify the band that is the
most sensitive to the pH range and then a pH versus Raman intensity curve is
constructed from the raw data that is a calibration of the probe. Following this,
the same analysis is applied to study the pH changes of the living cell after PDT
treatment where Raman spectra are acquired at points in time after the drug
photoactivation, thus making time the third parameter with the understanding
that the cell pH changes by an unknown quantity. The 2D maps recon�rm the
marker band in the live cell and then the consequent Raman intensity versus
time curve is translated to a pH versus time curve for each case using the
calibration from the previous step.

5.3 Results

The synchronous and asynchronous 2D correlation maps are given in Fig. 5.1a
and 5.1b, respectively, for the calibration of the pH probe. Autopeaks and cross-
peaks are observed indicating Raman bands from the pMBA that are sensitive
to the pH. The 1480 cm−1 peak is identi�ed to be the best suited pH marker.
Figure 5.2(inset) presents a characteristic spectrum of pMBA attached to the
SERS probe with this band highlighted with an arrow. The resulting calibration
curve, the normalized intensity of the 1480 cm−1 plotted against the pH of the
solution, is shown in Fig. 5.2.

The synchronous and asynchronous maps are given in Fig. 5.3a, b and c for
the control, low, and high dosage cell experiment cases, respectively. The pH
sensitive 1480 cm−1 peak appears as auto- and crosspeaks again in all of the
cases. Using the calibration from Fig5.2, the intensity changes of the marker
band are converted to pH values and plotted over time for the control, low, and
high dosage cases in Fig5.4a, b and c, respectively. We included the standard
error, de�ned as the standard deviation divided by the square root of the number
of tested cells. A series of camera images (Fig.5.4d) are included for the high
dosage case to demonstrate the morphological breakdown of the cell over time
after the emodin activation.

5.4 Discussion

5.4.1 pH calibration curve

The utility of the 2D correlations maps is evident in the immediate identi�cation
of the pMBA pH marker Raman band from Fig.5.1. Four distinct spots (1180,
1280, 1440, 1480 cm−1) appear along the diagonal, the autopeaks, that signify
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well resolved bands and sensitivity to the pH of the solutions. Previous experi-
ments have utilized the 1440 cm−1 band as the pH marker [100, 101], however,
we do not consider this choice to be suitable due to its coincidence with protein
Raman bands in the cell [114] The synchronous map does not su�ciently de-
termine the most suitable band, because it lacks information about the band's
range of sensitivity. The asynchronous map (Fig.5.1b) completes this picture.
The �rst two bands, at 1180 and 1280 cm−1, have numerous crosspeaks in the
asynchronous map indicating that they are changing out-of-phase with the rest
of the spectrum. Thus, although these two bands are sensitive to the pH change,
determined from the strong autopeaks in the synchronous spectrum, their in-
tensities only change in a small portion of the entire pH perturbation range.
Finally, the last band at 1480 cm−1 has only two asynchronous crosspeaks that
occur at the positions of the �rst two chaotic bands (1180 and 1280 cm−1), and
so, experiences in-phase alterations of intensity, i.e., intensity changes through-
out the full pH perturbation range. Thus, this is the correct choice for the pH
marker for the cell experiments. The 1480 cm−1 peak is in the region of COO−

vibrations of the pMBA [100,101] where the bands' sensitivity to the number of
dissociated carboxylate groups allows them to be responsive to pH alterations.

Figure 5.1: (Color online) Synchronous (a) and asynchronous (b) 2D correla-
tion spectra of the pH probes, constructed from measurements of the probes in
solutions of various known pH. The averaged spectra are laid along the top of
the map. The dotted line runs along the diagonal of the maps, passing through
the autopeaks of the spectra. All spectra are normalized to a pMBA phenyl
ring vibration at 1070 cm−1 which is insensitive to pH, thus accounting for dif-
ferences in signal enhancement between the probes. The correlation intensity
values are not used, thus only a qualitative legend is given for the maps.

The calibration curve (Fig.5.2) �ts well to a sigmoidal Boltzmann distribu-
tion which is expected in a pH titration calibration [115] and was previously
observed in a pMBA SERS band pH calibration [101] For all curves, the nor-
malization to the 1070 cm−1 band is essential because of its insensitivity to pH.
Thus, any intensity variations observed here must be due to di�erences in the
metal enhancement amongst the probes and should therefore be accounted for
through this normalization [101]
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Figure 5.2: (Color online) Calibration curve of the pH probes obtained from the
intensity of the carboxyl band at 1480 cm−1 normalized to the pMBA phenyl
ring at 1070 cm−1 for each control solution in the pH range of 2.0 - 8.0. Error
bars indicate the standard error from measurements of 15 di�erent probes at
each pH value. A typical SERS spectrum of pMBA (inset) measured at acidic
pH is included with an arrow showing the pH sensitive Raman band (1480
cm−1).
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Figure 5.3: (Color online) Synchronous (top) and asynchronous (bottom) 2D
correlation maps of the embedded pH probe for the control (a), low (b), and
high (c) light dosage cases. The maps are constructed in the same way as in the
calibration result of Fig. 5.1, including the normalization method of the Raman
spectra. Once again, only a qualitative legend is given.

5.4.2 Identi�cation of pH changes in PDT treated cells

For the control case, the correlation intensities are generally low and there are
many crosspeaks in both the synchronous and asynchronous maps (Fig.5.3a).
The pH marker band at 1480 cm−1 is present, however the intensity of its au-
topeak is low, indicating the relative pH stability of the cell in the presence of
inactivated emodin. The highest autocorrelation intensity comes from the 1400
cm−1 band which was related to a vibrational mode of cytochrome C that is
sensitive to the spin state of its heme structure [116] Cytochrome C is known
to be involved in cell death through a transition from a mitochondrial mem-
brane structure to a free form in the cytosol [117] Thus, intensity �uctuations
of the cytochrome C Raman bands could appear depending on the activity of
the protein. In this control case, the large autopeak at 1400 cm−1 indicates
intensity �uctuations for this band over time, however, its almost continuous
set of asynchronous crosspeaks means that these �uctuations only occur during
a portion of the measuring period, as would be expected for the control.

The pH marker band autopeak intensity increases in the low dosage case
(Fig.5.3b). The synchronous autopeak signi�es an alteration in acid level and
minimal crosspeaks in the asynchronous map show that the pH changes occur
during the entire time period. The correlation intensities in both maps are low
compared to the rest of the Raman band alterations in the cell. The pMBA peak
at 1280 cm−1 has a higher autocorrelation, indicating more �uctuations than
the 1480 cm−1 peak, however, its behavior in the asynchronous map is similar
to what was observed in the pH calibration: numerous crosspeaks appear that
conclude the alterations are occurring during a part of the total measuring
period and therefore, are not synchronized with the �uctuating pH. The spin
marker band of cytochrome C (1400 cm−1) has a stronger autopeak in the
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synchronous map and less crosspeaks in the asynchronous map than in the
control case. The alterations of cytochrome C are seemingly higher and occur
through more of the measuring period than before.

In the high dosage case, the pMBA Raman bands dominate the synchronous
and asynchronous maps (Fig.5.3c). The bands at 1280 and 1480 cm−1 have
high synchronous autopeaks. The 1480 cm−1 band has only a few asynchronous
crosspeaks, indicating in-phase movement, that are shared with the 1180 and
1280 cm−1 bands which are again moving out-of-phase with the rest of the
spectrum. Thus, pH changes are occurring throughout the measurement period.
Additionally, asynchronous crosspeaks appear between 1480 cm−1 and 1440
cm−1 that were not present in the pH calibration. This substantiates the claim
that there are other components in the cell that contribute to the 1440 cm−1

Raman band, which causes it to no longer be synchronized with the 1480 cm−1

peak and hence, should be ignored as a pH marker as stated previously here.
The cytochrome C synchronous autopeak at 1400 cm−1 is signi�cant once again
with a low number of asynchronous crosspeaks. Therefore, like the pH marker
band, this peak is also changing in intensity throughout the entire measurement
range.

The 2D correlation spectroscopy is capable of providing more quantitative
information because the correlation maps are derived directly from the Raman
intensities and there is a temporal component that is present whenever time
used as the third parameter. Thus, further information could be objectively ex-
tracted, for example reaction steps in a chemical process [118]. However, for this
experiment, the objective identi�cation of the pH marker band and con�rming
its presence in the live cell was the critical result of the 2D maps. Utilizing
this approach to extract other quantitative and time-dependent parameters is
a consideration for our next studies. From synchronous 2D correlation map
interesting quantitative information can be extracted. For instance, the inten-
sity plot of a line in the synchronous map will provide an approximate spectrum
about bands that are highly correlated and thus, originating from related molec-
ular structures. The intensity of these plots will provide an estimation about
the amount of change this bands have undergo during the process. Selecting the
most di�erent "lines" in the synchronous 2D correlation map will be equivalent
to the loadings in Principal Components analysis. This, will be analyzed in
detail in the next chapter for other application.

5.4.3 Monitoring of pH in PDT treated cells

Following the band identi�cation, the pH versus time curves further illustrate
the intracellular response to the drug activation. In the control case (Fig.5.4a),
despite the presence of inactivated emodin, the pH of the cytoplasm is steady
at a value of 5.5 . The cytosol pH is typically at neutral, however the position
of the probe, whose surface is in contact with the mitochondrial membrane (pH
= 8) and lysosomes (pH = 4.3), causes a lowering of the initial measured pH in
all three cases. The cell pH will vary slightly around the average value due to
constant ion exchange during normal physiological processes. In the presence of
inactivated emodin, no morphological changes of the cells were observed through
camera images (data not shown).

This pH variation grows in the low dosage case (Fig.5.4b) while still keeping
the same average value of 5.5. The emodin has now been activated with low
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Figure 5.4: The constructed pH curves versus time for the control (a), low (b),
and high (c) light dose cases. The shaded regions indicate the time period of
light activation (absent for the control case). Camera images (d) of the cell
morphological changes after photodynamic treatment at the high dose level (6.0
J/cm2) are included at the indicated times in order for direct comparison to the
measured pH in (c).

energy which causes some ROS production leading to acidi�cation in the cell.
However, this disruption is not enough to physiologically unbalance the cell,
i.e., the recovery mechanisms are able to keep the pH �uctuating around the
natural condition as in the control case. Once again, cell camera images (data
not shown) do not reveal any morphological changes.

The conditions change for the cell in the high dosage case. The ROS pro-
duction is expected to increase substantially at this light activation level [119]
which has two major e�ects in the cell: fast acidi�cation and pore opening in the
mitochondrial membrane. The two together cause a cell recovery induced in�ux
of potassium, sodium, and calcium ions that increase the pH of the cell. Second,
cytochrome C and apoptosis factors pass from the mitochondria to the cytosol.
These components, since they are typically at a pH of 8 in the mitochondria,
raise the pH of the intracellular medium as well while triggering a cascade of
processes that induce cell death [95,120] Thus, as is observed in Fig.5.4c, there
is an initial increase in the pH. The 2D correlations maps show the band �uc-
tuations of cytochrome C which is reasonable considering its involvement in
the cell death process, where apoptotic processes have been invoked and the
cell continues through the stages of cell death. Membrane swelling causes more
components to spill in to the cytosol and cellular compartments begin to break
down. Lysosomes, with an internal pH of 4.3, break down to components and
lower the pH of the intracellular medium. Thus, the measured pH lowers after
the initial increase, however, it moves beyond the stable initial value in this
case. Morphological changes in the cell are observed (Fig.5.4) during this pH
lowering period and coupled with the known e�ects of emodin mentioned here,
it can be concluded that this cell death occurs through apoptotic pathways.

The role of pH in the regulation or signaling of cell death processes is still
a subject under study. However, what we have shown here is a less invasive
approach to monitoring the cell recovery and death process in response to PDT
treatment. The pH probe can, in principle, be placed anywhere in the cell with
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current microinjection techniques, which avoids the need to distribute metal
colloids or �uorescent dyes throughout the entire cell to accomplish the same
point measurement, as was the case in previous works [97, 101] We have also
demonstrated an approach where the application of Raman probes can be uti-
lized to study dynamic physiological processes in live cells in real time. This key
point is critical for future experiments that look to observe cellular responses to
external perturbations. In this experiment, the response of the cell in the high
PDT dosage case agrees with previous knowledge of the physiological response
to PDT treatment, demonstrating the e�ectiveness of these pH probes here.
Unlike previous studies using similar methods, 2D correlation spectroscopy pro-
vides an objective approach to assess biological spectra such as those related to
the dynamics of the pH of the intracellular medium.

5.5 Conclusion

We have demonstrated the monitoring of pH dynamics after photodynamic
treatment in a live cancer cell using SERS probes. Micron sized silica beads
were partially covered with nanosize silver colloids that enhance the Raman sig-
nal from pH sensitive pMBA molecules which are adsorbed on the bead surface.
The probes were passively embedded into the cell which was photodynamicaly
treated by photoactivation of emodin at low and high light dosage levels. Peak
intensity changes of a pMBA pH Raman marker band were observed in both
cases that were not seen in a control test. The consequent pH versus time curves
reveal the ability of the cell to recover at the low light dosage and apoptotic cell
death to be induced in the high light dosage case. These local pH probes o�er
a minimally invasive approach for studying the dynamics in a live cell. Due
to their stability, in regards to both physical position and optical activity, the
probes o�er a particular advantage for observing physiological action over time
as has been demonstrated here in terms of monitoring the cellular response to
the perturbation of drug interaction.



6
Mechanochemistry of single red blood

cells monitored using Raman tweezers

The main function of red blood cells (RBCs) is redistribution of oxygen through-
out human body. The high deformability of RBC is essential in the gas trans-
port [121]. In particular, it allows RBCs to �ow through microcapillaries with
inner diameter typically less than half of the cell diameter. This is possible due
to characteristic structure, shape, and mechanical properties of the cells [122].
Speci�cally, altered membrane properties can lead to human diseases such as
malaria, spherocytosis, elliptocytosis or sicke cell anemia [123]. Thus, under-
standing the molecular origin of the extraordinary mechanical properties of
RBCs is of critical interest. In this chapter, we combine optical tweezers with
Raman spectroscopy to directly extract biochemical information. Two micropar-
ticles were biochemically attached to a red blood cell at diametrically opposite
parts and held by optical traps allowing to impose deformations. The cell de-
formation was monitored from the microscopy images. Raman spectra of the
cell under tunable deformations were studied. In the past chapters, we used
2D correlation to analize band behaviour and correlation when force loads or
pH changes were applied to the sample. Here, the combination of two statis-
tical techniques (PCA and 2D correlation) are exploited to identify, monitor
and study band behaviour and correlation in the dynamic Raman spectra of
RBC when it is being stretch. Principal Component Analysis distinguishes the
most prominent changes in spectra while 2D correlation technique monitors the
evolution of Raman bands during stretching. The measurements show signi�-
cant changes in the cell chemical structure with stretching however the changes
saturate above 20 % of cell deformation. Mechanical deformation of the cell
mainly a�ects the bands corresponding to hemoglobin but contributions from
spectrin and membrane proteins can not be excluded. The saturation of bands
at higher deformations suggests some structural relaxation that RBC has to un-
dergo to bear extra load. The results con�rm widely accepted belief that spec-
trin released from membrane proteins allows for signi�cant shape changes of the
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cells. We therefore tentatively suggest that interaction between membrane and
cytoskeleton during deformation can be e�ciently probed by confocal Raman
spectroscopy, in particular via the peak around 1035 cm−1.

6.1 Introduction

Linking spectroscopic techniques with optical tweezers opens unique possibility
to directly extract biochemical information at single-cell level under controllable
mechanical conditions

Erythrocytes are built of lipid bilayer which contains many transmembrane
proteins and underlying cytoskeleton. It forms �exible biconcave disks which,
consist mainly of hemoglobin but lacks a cell nucleus and most organelles.
Chemical content of RBCs provides information about human health condi-
tions. Therefore blood is one of the most common sample submitted nowadays
for medical diagnosis.

Since, in human body, erythrocytes adopt di�erent squeezing/stretching
states, mechano-chemical processes associated with deformation of RBCs have
been of particular research interest. First studies on deformability of RBC were
performed using pipette aspiration [124, 125] and permitted to observe a high
degree of deformability. This extraordinary property allows RBC to squeeze
through microvasculature and transport oxygen during blood circulation [122].
Micromanipulation techniques such as optical or magnetic tweezers have allowed
for more sophisticated microrheological studies. Most of them were focused on
measuring the static changes of cell length [4-7] or area expansion [126] in re-
sponse to a deforming force. More recently two point microrheology measure-
ments of single RBC [127] showed the frequency dependence of complex sti�ness
con�rming strong nonlinear deformation of cells. Optical tweezers provide an
excellent method for probing single cells at di�erent stretching states, giving
potentially powerful tool for diagnosis of diseases [128], since mechanical prop-
erties of RBCs can be a�ected by malaria, spherocytosis, elliptocytosis or sickle
cell anemia [123].

Understanding of molecular origin of extraordinary mechanical �exibility or
nonlinear response of the single cell requires more sophisticated experimental
approach and extensive theoretical simulations. In this context combination of
optical tweezers with single cell spectroscopy seems to be very promising. Link-
ing spectroscopic techniques with optical tweezers opens unique possibility to
directly extract biochemical information at single-cell level under controllable
mechanical conditions. The simultaneous use of external force and spectro-
scopic detection can also provide direct insight into molecular changes caused
by mechanical deformations. Here, Raman spectroscopy is of particular inter-
est because of its high chemical resolution and relative simplicity. It yields
rich, multi-peaks vibrational spectra containing structural information about
RBC's basic constituents [12-17]. As previously demonstrated, Raman spec-
troscopy combined with optical tweezers is extremely valuable tool for reliable
estimation of cell's vitality [18-21]. Sensitivity of this method is high enough for
identi�cation and monitoring of changes in intra-cellular components induced
by cell stretching. In particular, direct evidences for deoxygenation of cells with
stretching was shown [129].

Till now most of Raman studies on RBC were performed with cells being di-
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rectly trapped with focused optical beam. This is not an ideal approach because
of potential light induced cell damage within the trapping volume. Reducing
the power of trapping beam leads to signi�cant diminution of Raman signal-to-
noise ratio, extensive averaging at the expense of single experiment acquisition
time is required. In this case external forces applied to cells by optical tweez-
ers are also strongly reduced. The problem can be avoided by attaching RBCs
to chemically functionalized microbeads, which might hold the cell during Ra-
man scattering experiments [130]. Although heating via beads (size dependent
process) or e�ects of scattered light can not be still completely excluded, the
risk of direct light-induced damage by trapping beams is signi�cantly reduced.
Therefore sensitive experiments at higher forces and lower noise for longer time
periods become possible.

We studied changes in molecular structure of a single RBC when it is gradu-
ally stretched by optically trapped beads attached to the cell. We extended our
previous Raman measurements [129] made in our group to many di�erent RBC's
stretching states, which required longer time for experiments. The applied force
is intended to simulate step-by-step deformation experienced by cells in normal
conditions and induced by blood �ow as they squeeze through microvascula-
ture. To improve further the sensitivity of the experiments and facilitate their
interpretation, we used also statistical techniques (2D correlation and principal
component analysis (PCA)), that permit us to observe previously inaccessible
changes in Raman spectra. The purpose of this work is to unravel direct relation-
ships between mechanical deformation of RBC and chemical changes occurring
in the cell structure on molecular level.

6.2 Materials and methods

6.2.1 Experimental set-up

The experimental setup is a combined dual-beam optical trapping system with
confocal Raman spectrometer and has been described previously in section 3.1.1
of chapter 3 as well as in [34,129,131].

Brie�y, a 785 nm beam was used for excitation of Raman spectra with aver-
age power of 5 mW at the sample. Samples were injected into a custom-made
�uid chamber. The chamber was placed on an inverse Olympus IX 51 micro-
scope equipped with a 100× 1.3 NA oil immersion objective and a micrometer
controlled stage. The backscattered light was collected by the trapping objec-
tive, passed through a holographic notch �lter and a confocal system with a
100-µm pinhole. The spectrometer had a 600 lines/mm grating and was �tted
with a thermoelectrically controlled charge-coupled device (CCD), cooled to -
60◦C. A CCD camera attached to the microscope provided optical images used
for calculations of cell deformation.

Raman spectra were recorded with a spectral resolution of 3 cm−1 for 30
seconds at each acquisition. Measured Raman spectra were background sub-
tracted, normalized using Multiplicative Scatter Correction (MSC), smoothed
using smoothing spline technique [81] and median centered before performing
2D correlation and PCA. Analysis was done in Matlab platform.
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6.2.2 Sample preparation

About 30 µl of blood was obtained from a healthy donor and washed two times.
Final volume was diluted in 600 µl of Alsever's solution and stored at 4◦C. The
sample was used within no longer than two days. 3µm COOH functionalized
polystyrene beads were purchased from Spherotech (CPX-30-10). The beads
were washed four times in 50 mM MES bu�er (Sigma Aldrich M1317). Their
functionalization was obtained with Lectin (Sigma Aldrich L9640) using chemi-
cals and protocol provided with PolyLink Protein Coupling Kit from Bang Labs
(PLO1N). After functionalization, beads were again washed 4 times, and �nally
resuspended and stored in MES bu�er. For measurement, 20 µl of resuspended
beads were washed in Alsever's solution.

The beads were attached to a single RBC by proceeding as follows: two beads
were optically trapped while RBC was held by the optical trap generated by
the Raman excitation beam. The two trapped beads were carefully approached
towards the diametrically opposite parts of RBC, and the connection of RBC
with the beads was obtained in around 5-10 seconds. The position of beads
were then adjusted with the help of movable mirrors to assure, that the Raman
excitation beam is hitting the edge of RBC. Cells were stretched by moving
one of the trap. Measurements of Raman spectra were done on 15 di�erent
cells. Raman spectra of most of them behaved by application of mechanical
deformation in a similar fashion.

6.2.3 Statistical processing of the Raman spectra

In order to get insight into spectral changes induced by cell deformation, in
particular those which are inaccessible by direct visual inspection, we used mul-
tivariate analysis [132]. Multivariate methods have been developed to study
complex data with many variables analyzed simultaneously. Speci�cally, Raman
spectra from biological samples are a good example of such data, when extrac-
tion of important, characteristic variables from some parts of Raman spectra is
quite complicated or even impossible without statistical methods.

Principal component analysis (PCA) reduces the dimensionality of the data
by �nding a set of orthogonal coordinates, principal components (PCs), which
accounts for the maximum variance in the Raman spectral dataset, and describes
the major trends in the data. In other words, with PCA it is possible to extract
the principal contributions in spectral changes due to molecular deformations by
RBC stretching. Loading plots represent the characteristic spectra in principal
component coordinate system.

Other statistical technique used in this work is 2D correlation analysis [59].
In the previous chapter, we demonstrated this processing by monitoring local
pH in photodynamic therapy-treated live cancer cells with surface-enhanced Ra-
man scattering probes [133]. Brie�y, the 2D correlation analysis identi�es and
extracts Raman bands which are changing the most with respect to the external
perturbation and relative to each other. The output of the analysis consists of
contour graphs, where the in-plane axes are the Raman shifts and the third axis
is the level of correlation between Raman bands. The method produces syn-
chronous and asynchronous graphs, which refer to the in-phase and out-of-phase
relationship between bands, respectively, as a function of cell deformation. For
the synchronous spectra, autopeaks occur along the diagonal of the plots, and
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are mathematically equivalent to the autocorrelation of a band, thus signify-
ing bands that are susceptible to change under cell deformation. Cross peaks
appear o� diagonal and represent bands that increase or decrease together dur-
ing the perturbation. The picture of the modes behavior is completed by the
asynchronous spectrum where autopeaks and cross peaks represent bands that
increase or decrease with perturbation but out of phase with one another.

In this chapter we take the advantage of the combination of both mathe-
matical methods. First, PCA and 2D correlation identify the main changes in
the spectra. Second, PCA analysis monitor the band intensity changes along
the process. Finally, band e�ects such as broadening or shifts are studied with
2D correlation.

6.3 Results

Figure 6.1 shows a typical set of Raman spectra of single RBC. Raman signals
at �fteen di�erent stretches were measured. Raman spectra of RBCs depend
strongly on excitation wavelength [134, 135]. At 785 nm excitation the bands
associated with proteins can be observed in addition to those associated with
the porphyrin macrocycle [136]. Presented Raman spectra are characteristic of
single RBC and for unstretched cells have been discussed in details in [135�137].

Figure 6.1: 3D representation of Raman spectra of single RBC at 15 di�erent cell
deformations. Inset shows microscope image of RBC with the beads attached,
at rest and stretched by 30 %.

Deformation was conventionally measured using image analysis by calcu-
lating the distance between the beads attached to the diametrically opposite
parts of the cell. It was calculated in the following way: Deformation(%) =
(∆L/L0) × 100 where, ∆L = L − L0 is the di�erence between diameters of
stretched (L) and relaxed (L0) cell. Even without statistical processing Fig. 6.1
demonstrates e�ects of the cell stretching on some Raman bands (see also color
gradient of the plot), in particular the bands centered at about 991 cm−1, 1035
cm−1 and 1442 cm−1. 1035 cm−1 peak is associated with in-plane CH2 asym-
metric mode of vinyl substituent in porphyrin [136, 137] and/or Phenylalanine
(Phe) [138,139]. The bands at 991 cm−1 and 1442 cm−1 are assigned to ν45/Phe
and CH2/CH3 in plane modes of haem, respectively [137]. At low deformations
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Figure 6.2: PCA and 2D correlation analysis of measured Raman spectra.
Top:Left: Loading plot with threshold (dashed lines) estimated from experi-
mental noise analysis. The inset demonstrates data used to de�ne the threshold.
Right: Scores plot showing overall intensity of all bands above the threshold with
increasing cell deformation. Bottom: 2D correlation analysis for whole mea-
sured spectral window (synchronous map (Left) and asynchronous map (Right)).
Cross correlation peaks can be seen in synchronous map indicating bands cor-
related during stretching.
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Figure 6.3: Statistical analysis for Raman band at 991 cm−1. Top: PCA
analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D
correlation maps from Fig. 6.2 (synchronous map (c) and asynchronous map
(d)).

the 1035 cm−1 and 1442 cm−1 peaks are unchanged. Their growth starts when
the cell deformation is more than 10%, and the growth is saturated at higher
cell deformations (above 20 %).

The most remarkable �nding of our measurements - the extremely high sen-
sitivity of 1035 cm−1 peak to the cell extension - has not been reported yet. It
permits us to suggest the monitoring of this peak intensity as a marker to char-
acterize internal deformations in the cell in possible lab-on-a-chip applications.
Other Raman bands also change with cell deformation, but their behavior could
be revealed only using statistical techniques (see below).

6.4 Discussion

To obtain the dynamics of conformational changes we �rst performed the PCA
analysis using data in the whole spectral range (Fig. 6.2). The score plot
Fig. 6.2(b) shows that at small cell deformations (up to 10%), spectral changes
are negligible (see also Fig. 6.1). Hence, the maximum intensity variation of
spectra obtained at �ve initial values of deformation may be used to estimate a
threshold to discard the peaks generated by the electronic and mechanical noise
and errors by numerical calculations. Then we can consider only those Raman
bands which are above this threshold.

To establish the numerical value of the threshold in the loadings plot Fig.
6.2(a) we performed PCA analysis of the Raman spectra obtained for the �rst
�ve values of deformations. Multiplying each data point on the scores plot
gives us the intensity of the corresponding spectra with respect to the median
spectrum. The maximum intensity was found to be around 40 units (inset of
Fig. 6.2 (a)). To translate this threshold (in intensity) to the loadings plot of
complete set of spectra we divided it by the highest value in the scores plot
of Fig. 6.2 (b). The threshold (±0.02 in loadings) was then used for further
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Figure 6.4: Statistical analysis of Raman band at 1035 cm−1. Top: PCA
analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D
correlation maps from Fig. 6.2 (synchronous map (c) and asynchronous map
(d)).

analysis.
We conclude that the loadings of the �rst principal component, which cap-

tures almost 80% of the total variance, are dominated by bands centered at 1083,
1196, 1484, and 1535cm−1 along with above mentioned bands at 991, 1035, and
1442 cm−1. The former four bands can be assigned to δ(= CbH2)asym, ν5 +ν18,
ν3 and ν38 modes respectively [136,137,140].

These selected peaks are also consistent with the most prominent features
observed in the complementary technique, 2D correlation analysis, where strong
correlation between these bands is observed (Fig. 6.2(a) and Fig. 6.2 (b)). Po-
sitions of cross-correlation peaks in synchronous map are consistent with the
PCA analysis. This con�rms that this set of Raman bands is changing syn-
chronously with the cell stretching. Therefore, two statistical methods, with
di�erent mathematical background provide similar results regarding the parts
of the Raman spectra sensitive to force loads. Synchronous 2D correlation map
give information about the negative or positive correlation among bands. Neg-
ative cross peaks signify negative synchronous correlation, and therefore bands
change in intensity in di�erent directions at the same time. On the contrary
positive cross correlation peaks in synchronous map, means that the two bands
are changing in intensity in the same direction synchronously. PCA can give
similar picture taking a look on the loadings plot. The �rst loading plot of
�gure 6.2 contains positive and negative portions meaning that all bands in the
loading are correlated changing synchronously. However, negative bands will
change in opposite intensity direction than the positive ones. If we compare 2D
synchronous map with the PCA loading we can observe similar results. Bands
991 and 1535 cm−1 are inversely correlated with bands 1035, 1083, 1196, 1442
and 1484 cm−1. Further information can be extracted, in principle, from asyn-
chronous 2D correlation maps, like the order in which changes are occuring.
But, due to the complexity of the spectra studied, where band witdh and posi-
tions are changing, this information can not be directly extracted for this case.
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Figure 6.5: Statistical analysis for Raman band at 1083 cm−1. Top: PCA
analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D
correlation maps from Fig. 6.2 (synchronous map (c) and asynchronous map
(d)).

However asynchronous 2D correlation maps will be very valuable to extract
band behaviour (position and width) along the stretching exerted.

In order to characterize the intensity behavior of correlated bands with de-
formation, we performed the PCA analysis with reduced spectral windows to
include the selected bands only. Resulting scores plots are intended to mimic
the band intensity behavior of single band with stretching. In a way, PCA acts
as a �tting that permits us to monitor the selected Raman bands even when
the spectra are noisy and without distinguishable features. Results for bands at
991, 1035, 1083, and 1196 are shown separately in Fig. 6.3(b), 6.4(b), 6.5(b),
and 6.6(b), respectively, where all the bands exhibit a similar tendency with
the cell stretching. Raman peak at 1442 cm−1 does not give new information
and its behavior is very similar to Raman peak at 1196 cm−1. If the cell is
deformed less than 10%, these bands exhibit almost constant Raman intensity.
Higher mechanical forces lead to almost linear increase (or decrease) dependence
with stretching. This behavior is observed up to about 20% of cell deformation.
Finally, the bands saturated for deformations exceeding 20%.

However, the bands at 991 and 1535 cm−1 showed inverse behavior with
increased deformation, i.e. their intensity decreased in the deformation range of
10-20% and saturated above 20% (see, for example, data shown for 991 cm−1

band in Fig. 6.3.
To study the dynamics of band's position and their shapes we took advan-

tages of 2D correlation method. Figures 6.3, 6.4, 6.5, and 6.6 show 2D maps
for the individual bands. Similar trends for some groups of peaks are clearly
visible. In the asynchronous map we observe a characteristic pattern for band
broadenings formed by four lobes in a cross-like shape (�g. 2.12). It can also
be seen that this pattern is asymmetric. This is caused by the small shift of
the Raman band maxima to higher wavenumbers (Fig. 2.13). At 1035 cm−1

we observe a similar pattern but with opposite signs in asynchronous maps in-
dicating the band narrowing (Fig. 2.15) and shifting to smaller wavenumbers
with stretching. Bands at 991 and 1535 cm−1 have also the same cross-like
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Figure 6.6: Statistical analysis for Raman band at 1196 cm−1. Top: PCA
analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D
correlation maps from Fig. 6.2 (synchronous map (c) and asynchronous map
(d)).

shape but their intensity decrease (see, for example, data shown for 991 cm−1

band, Fig. 6.3). Comparing these patterns with mathematical simulations of
di�erent band behavior (included in section 2.4 ), we suggest that 991 cm−1

band broadens and shifts to lower wavenumbers (Fig. 2.14). 1535 cm−1 band
broadens and shifts to higher wavenumbers (data not shown). A di�erent pat-
tern was observed for 1083 cm−1 band, which exhibits two lobes at both parts
of the diagonal in the asynchronous map (Fig. 6.5). This indicates that the
width of the band remains the same but a shift to lower wavenumbers occurs.
All observed peak frequency shifts are rather small and do not exceed 5 cm−1,
close to the spectrometer resolution.

Raman signals collected from RBC are average signals from the confocal
volume consisting of large number of molecules that include haemoglobin, spec-
trin and other biomolecules (�g. 6.7). The stretching might move the cell, but
obviously the basic constituents of cell under investigation do not change. In
other words, net e�ect of stretching in Raman signals should not depend on the
probed region of the cell. Moreover, the measurements were carried out at many
stretching states and for various cells. These cells demonstrated unidirectional
changes in their bands with stretching. That is why we can exclude that the
cell movement within focal volume has any noticeable e�ect on Raman spectra.

The main constituents of RBC are hemoglobin and cytoskeleton (includ-
ing spectrin), all surrounded by thin membrane with many embedded proteins.
RBC vibrational spectra, therefore, consist mainly of bands characteristic of
porphyrin macrocycle and various proteins. The shape of cells is preserved by
spectrin network and ankyrin proteins, which anchor cytoskeleton to membrane.
About 106 hemoglobins per cell are strongly bound to the inner wall of RBC
membrane with possible intercalation [142, 143]. Stretching of the cell is ex-
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Figure 6.7: Drawing of the RBC inner molecular structure close to membrane.
The shape of cells is preserved by spectrin network and ankyrin proteins, which
anchor cytoskeleton to membrane. Hemoglobins are strongly bound to the inner
wall of RBC membrane with possible intercalation. Adapted from [141].

pected to a�ect mostly membrane and cytoskeleton, which absorb most of the
forces, and also hemoglobins, in particular those which are bounded. Raman
excitation close to the edge of RBC allowed us to get signals from the above
mentioned cell's regions which undergo maximum deformation.

The statistical analysis, in particular the scores plots, shows the similar
behavior of the Raman bands: their intensity remains almost una�ected at low
cell deformations, and changes occur at intermediate forces following by band
saturation at highest deformations achieved in the experiments. Most of these
bands can be associated with di�erent vibrational modes in hemoglobin. It
indicates that RBC's chemical structure is strongly perturbed by deformation.
Such activation/deactivation of selected Raman transitions can be caused by
signi�cant deformation-induced changes in molecular symmetry. Although the
role of hemoglobin in maintaining the shape of the cell is rather secondary we
believe that via direct binding to membrane it acts as an important probe of
membrane/cytoskeleton interaction.

The 785 nm Raman excitation beam is slightly absorbed by hemoglobin, and
resonant enhancement of Raman bands may a�ect measurements. To the best
of our knowledge, absorption measurements of single RBC at di�erent stretch-
ing states have not been performed yet. Electronic structure of hemoglobin is
expected to change with cell deformation, at least via deoxygenation [129,144].
This leads to changes in RBC's absorption spectrum, in particular, the absorp-
tion grows at 785 nm [144]. Raman spectra excited at 785 nm show strong
enhancement of the B1g modes and the vinyl modes [136]. Therefore expected
increase of absorption (at 785 nm) with stretching should further enhance all
above mentioned modes almost proportionally. Our data show that intensities
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of some modes (in particular at 1035 cm−1) grow much stronger with stretching
than the others so this hypothesis appears to break down. Hemoglobin concen-
tration in the cell may also a�ect proportionally all measured Raman intensities.
Elongating the RBC decreases the internal volume of cell and leads to the cor-
responding increase in hemoglobin concentration [129]. This e�ect should not
only promote Raman intensities at all wavenumber but also neighbor-neighbor
interaction between hemoglobins. Such enhanced interaction can be partially re-
sponsible for observed broadening of the peak at 1196. Nevertheless hemoglobin
concentration e�ect alone can not fully explain observed behavior of Raman
bands. We have to consider signi�cant structural changes caused by mechan-
ical deformation. Exact nature of structural changes in RBC are not straight
forward to determine mainly because Phenylalanine (Phe), which is an essen-
tial amino acid that can be found not only in hemoglobin but also in various
membrane proteins e.g. ankyrin, band3 proteins and spectrin [145]. Although
hemoglobin is most likely the main source of Raman signal perturbation, we can
not completely exclude contributions from proteins embedded in membrane and
cytoskeleton which bears most of the forces during deformation. Direct exposure
of membrane to Raman excitation beam is supposed to enhance total scattering
probability from it. Interestingly, in Raman studies of RBC ghost [138], strong
peak at about 1035 cm−1 was also observed which might suggest partial mem-
brane contribution in our data. From many membrane proteins it is ankyrin
which anchors cytoskeleton to membrane and that is why this protein together
with spectrin presumably undergoes maximum deformation.

Taking into account all the above mentioned aspects, the behavior of Ra-
man bands intensities as a function of applied deformation can be tentatively
explained as follows. We suppose that at low deformations, when bands inten-
sities remain almost constant, spectrin bears most of the forces and rearranges
itself without signi�cant changes in its primary chemical structure. It is likely
that in this range of deformation, structural changes might occur in its higher
order structure. At intermediate deformation range (10-20%), the stress is high
enough and can lead to signi�cant structural perturbations of linker proteins,
spectrin network as well as hemoglobin attached to membrane.Therefore signi�-
cant changes in Raman bands intensities were observed. At higher deformations
(when bands intensity growth saturates), we need to consider mechanical non-
linearity of RBCs. It was proposed that nonlinear response of the cells can
originate from the release of spectrin �lament from linker proteins (ankyrin)
which then re-bond in a con�guration of lower stress [127,130]. We believe that
observed saturation of the peaks corresponds to �lament release from the link-
ers. This process is followed by creation of new bonds but in a con�guration of
similar or even lower stress. Behavior of all the bands discussed here are consis-
tent in a way that they remain constant up to 10% cell deformation, increase (or
decrease) in intermediate deformation range, then saturates for a small region
and �nally decrease (or increase) slightly at higher deformation (above∼25%).

6.5 Conclusion

We have presented Raman spectra of RBC at relaxed and various stretched
states and discussed the spectral changes induced in RBC by mechanical de-
formation. Statistical techniques, such as principal component analysis and 2D
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correlation spectroscopy were applied to facilitate detailed analysis of spectral
changes. Mechanical deformation of the cell mainly a�ects the bands corre-
sponding to hemoglobin but the contribution from spectrin and membrane pro-
teins can not be excluded. While Raman intensity changes with deformation
were provided by both - 2D contour maps as well as PCA, other spectral details
such as bands broadening and their shift were extracted from the 2D correla-
tion analysis. We found that most of the a�ected bands show similar intensity
behavior with stretching. The saturation of bands at higher deformations sug-
gests some structural relaxation that RBC has to undergo to bear extra load.
The results con�rm widely accepted belief that spectrin release from membrane
proteins allows for signi�cant shape changes of red blood cells. We therefore
tentatively suggest that interaction between membrane and cytoskeleton dur-
ing deformation can be e�ciently probed by confocal Raman spectroscopy, in
particular via the peak around 1035 cm−1.



7
The lipid phenotype of breast cancer

cells characterized by Raman

microspectroscopy: towards a

strati�cation of malignancy

Although molecular classi�cation based on gene and protein analysis brings
interesting insights into breast cancer taxonomy, its implementation in daily
clinical care is questionable because of its expense and the information sup-
plied in a single sample allocation is not su�ciently reliable. New approaches,
based on a panel of small molecules derived from the global or targeted anal-
ysis of metabolic pro�les of cells, have found a correlation between activation
of de novo lipogenesis and poorer prognosis and shorter disease-free survival for
many tumors. We hypothesized that the lipid content of breast cancer cells
might be a useful indirect measure of a variety of functions coupled to breast
cancer progression. Raman microspectroscopy can help in the strati�cation of
breast cencer cells being a rapid, reagent-free-tool bringing sensitive molecular
information. We used RS to characterize metabolism of breast cancer cells with
di�erent degrees of malignancy: MDA-MB-435, MDA-MB-468, MDA-MB-231,
SKBR3, MCF7 and MCF10A. We used Principal Component Analysis and Par-
tial Least Squares Discriminant Analyses to assess the di�erent pro�ling of the
lipid composition of breast cancer cells. Characteristic bands related to lipid
content were found at 3014, 2935, 2890 and 2845 cm−1, and related to lipid and
protein content at 2940 cm−1. A classi�catory model was generated which seg-
regated metastatic cells and non-metastatic cells without basal-like phenotype
with a sensitivity of 90% and a speci�city of 82.1%. Moreover, expression of
SREBP-1c and ABCA1 genes validated the assignation of the lipid phenotype
of breast cancer cells. Indeed, changes in fatty acid unsaturation were related
with the epithelial-to-mesenchymal transition phenotype, a trasition present in
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the most aggresive tumors. Raman microspectroscopy is a promising technique
for characterizing and classifying the malignant phenotype of breast cancer cells
on the basis of their lipid pro�ling. The algorithm for the discrimination of
metastatic ability is a �rst step towards stratifying breast cancer cells using this
rapid and reagent-free tool.

7.1 Introduction

Despite the reduction in mortality in breast cancer patients due to earlier di-
agnosis and implementation of adjuvant chemo- and hormone therapies, breast
cancer is still the commonest cause of cancer death in women worldwide [146].
Many factors and genes are involved in the initiation of breast cancer, but
mortality is due to metastatic disease [147]. Patients who go on to develop
life-threatening metastases in the visceral tissues have a much higher mortality
rate and shortened life expectancy [148, 149]. Although the di�erent biological
behaviors and metastatic patterns observed among the distinct breast cancer
phenotypes may suggest di�erent mechanisms of invasion and metastasis, the
biological features of breast tumors have proven insu�cient for a comprehen-
sive description of progression at �rst diagnosis, due to the heterogeneity of the
disease [150]. The datasets available use speci�c genomic alterations to de�ne
subtypes of breast cancer [151]. However, the large number of genetic alter-
ations present in tumor cells complicates the discrimination between genes that
are critical for maintaining the disease state and those that are merely coinci-
dental [152]. Thus, although molecular classi�cation based on genetic analysis
provides interesting insights into breast cancer taxonomy, its implementation in
clinical care is questionable because it is too expensive to be introduced in daily
pathological diagnosis, and because the information supplied is of insu�cient
reliability in single sample allocation [153].

Many observations during the early period of cancer biology research iden-
ti�ed metabolic changes as common features of cancerous tissue, such as the
Warburg e�ect [154,155]. New approaches based on a panel of small molecules
derived from the global or targeted analysis of metabolic pro�les of cells are
being developed to link cancer and altered metabolisms and to characterize
cancer cell-speci�c metabolisms [156, 157]. One of the clearest signals is the
de novo production of fatty acids in tumor cells associated with cancer progres-
sion, linked to an increased need for membranes during rapid cell proliferation as
a part of a more general metabolic transformation, which provides cancer cells
with autonomy in terms of their supply of building blocks for growth [158]. This
metabolic change occurs as a result of common oncogenic insults and is mediated
by the activation of multiple lipogenic enzymes a�ected at all levels of regulation,
including transcription, translation, protein stabilization and protein phospho-
rylation [159�161]. Activation of de novo lipogenesis correlated with a poorer
prognosis and shorter disease-free survival for many tumor types [162, 163]. A
low ratio of TUFA/TFA has been proposed as a molecular marker for these
aggressive tumors, which is called the lipogenic phenotype. The pathway that
regulates synthesis of fatty acid in normal and tumor cells shares identical down-
stream elements including the SREBP-1c (transcriptional regulator sterol reg-
ulatory element-binding protein-1) and LXR (liver X receptor) [160, 164]. We
hypothesized that the lipid content of breast cancer cells might be an indirect
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measure of a variety of functions coupled to breast cancer progression, and that
it could discriminate between di�erent genetic features of breast cancer cells,
providing new information on the aggressiveness of their phenotype.

To explore the lipid phenotype associated with breast cancer malignancy
we used Raman microspectroscopy (RS). When applied to biological tissue, the
technique can distinguish between pathologies based on the di�erences in their
biochemical makeup [165]. RS is a rapid, reagent-free and non-destructive alter-
native for the analysis of cell biology systems [166]. Recent advances in Raman
spectroscopy have given way to a wide range of biomedical applications including
cancer. Its ability to detect variance related to DNA/RNA, proteins, and lipids
have made it an excellent tool for quantifying changes on the cellular level, as
well as di�erentiating between various cell �ngerprints over all the Raman spec-
tral range. The collection of spectra can be performed in vitro, ex vivo or in vivo
without disrupting the cellular environment [167]. This is a major advantage
of Raman spectroscopy, as most biological assays utilize chemical biomarkers
and often require conditions nonnative to the biological environment. Usually,
Raman spectra of biological samples are highly complex, and so mathematical
processing of the spectroscopic data is required to obtain objective information.
Multivariate techniques reduce the dimensionality of the spectral data and allow
extraction of useful, objective and less complex information [168,169]. We used
Principal Component Analysis (PCA) [170] and Partial Least Squares Discrim-
inant Analyses (PLS-DA) [171] to assess the di�erent pro�ling of the lipid com-
position of breast cancer cells, which permitted di�erentiation of the lipogenic
phenotype according to the proportion of unsaturated fatty acids. Moreover,
PCA clearly distinguished cells with the epithelial-to-mesenchymal transition
(EMT) phenotype, which is widely linked with breast cancer cell aggressive-
ness [172]. A discriminative model was generated that segregates metastatic
cells and non-metastatic cells without basal-like phenotype with 90% sensitivity
and 82.1% speci�city.

7.2 Materials and methods

7.2.1 Cell culture and treatments

MDA-MB-435, MDA-MB-468, MDA-MB-321, SKBR3, MCF7 and MCF10A
cells were obtained from the American Type Culture Collection. With the
exception of MCF10A, all lines were maintained under standard conditions
in 1:1 (v/v) mixture of DMEM and Ham F12 medium (DMEM/F12) sup-
plemented with 10% fetal bovine serum (FBS), 1 mM pyruvate and 2 mM
L-glutamine in 5% CO2-95% air at 37◦C in a humidi�ed incubator. MCF7
medium was supplemented with 0.01 mg/ml bovine insulin. MCF10A was grown
in DMEM/F12 medium supplemented with 5% horse serum, 1 mM pyruvate,
2 mM L-glutamine, 0.01 mg/ml bovine insulin, 20 ng/ml EGF, 1 mg/ml hy-
drocortisone and 100 ng/ml Tetanus toxine, in the same incubator conditions
described above. The treatment with the LXR agonist T0901317 (Cayman
Chemical Company, Michigan), dissolved in DMSO, was performed at 2 µM
�nal concentration (controls were treated with DMSO at the same concentra-
tion).
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7.2.2 Immunocitochemistry and labeling of cells

For immunocytochemistry 8x104 cells were seeded in 24 well-plates containing
cover slips and were �xed after 24 h using cold methanol for 1 min. MCF10A
in sparse conditions was obtained with 8x103 cells/well. Cells were washed
three times with PBS1x and treated with PBS1x-5% FBS for 30 min at room
temperature. The antibodies used were: Vimentin, mouse anti-human (Dako,
Atlanta); E-cadherin, mouse anti-human (BD Biosciences, NJ). Antibodies were
diluted 1:50 in PBS1x-1% FBS and used for 1 h at room temperature. After
three washes with PBS1x the secondary antibody, Alexa 555 anti mouse IgG
(Life technologies, NY) was used diluted 1:1000 in PBS1x-1% FBS for 30 min
at room temperature. After three washes with PBS1x the cover slips were
mounted on slides using Vectashield (Vector laboratories, Burlingame) with
DAPI for nucleus visualization. Preparations were analyzed with an Olympus
BX60 �uorescence microscope (Olympus, Japan), using the optimal �lters and
40x magni�cation.

For Nile Red and �lipin staining 8x104 cells were seeded in 24 well-plates
containing coverslips and 24 h later cells were �xed with 4% cold paraformalde-
hyde (PFA) in PBS1x for 15 min. After �xing, cells were washed three times
with PBS1x and stained with Nile Red at a �nal concentration of 1 µg/ml for
1 h, or �lipin at a �nal concentration of 50 µg/ml for 2 h. Coverslips were then
mounted as described above (�lipin staining without DAPI) and analyzed with
the confocal microscope (Leica TCS SP5, Wetzlar, Germany) for Nile red and
the Olympus BX60 �uorescence microscope for �lipin, with 40x magni�cation.

7.2.3 Raman spectroscopy

For analysis, 3x105 cells were used, and for MCF10A cells in sparse conditions
3x104 cells were used. For measurements in the 2820-3030 cm−1 range, cells
were seeded in Petri dishes with #0 coverglass (Mattek, Ashland, MA). After
24 h, cells were treated as indicated for Nile red staining. The Raman system
Renishaw (Apply Innovation, Gloucestershire, UK) comprises a 514 nm laser
that supplies an excitation beam of about 10 mW power, which is focused onto
the sample via a microscope with 60x objective (Edmund, York, UK). The same
objective collects the scattered light from the sample and directs it to the spec-
trometer. The spectrometer processes this scattered light, by rejecting the un-
wanted portion and separating the remainder into its constituent wavelengths.
The Raman spectrum is recorded on a deep depletion charge-coupled device
(CCD) detector (Renishaw RenCam). We acquired the Raman spectrum of the
cytoplasm of 20 cells per each cell line studied. The recorded Raman spectrum is
digitized and displayed on a personal computer using Renishaw WiRE software
which allows the experimental parameters to be set. The spectra were back-
ground subtracted with a custom-written Labview program and the Gaussian
�ts for total fatty acids (TFA) and total unsaturated fatty acids (TUFA) bands
(2845 cm−1 and 3015 cm−1 respectively) were performed in Matlab allowing
the quanti�cation of the two types of fatty acids in the cytoplasm [173].
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7.2.4 Statistical analysis

Raman spectroscopy is a promising technique in biomedical studies due to its
non-invasive character and high speci�city but Micro-Raman spectra of biomed-
ical samples are inherently complex and weak. The use of multivariate analysis
can improve their applicability and extract the useful information that Raman
spectroscopy can provide to biomedicine.

In this study two multivariate techniques: Principal Component Analysis
(PCA) and Partial least square-discriminant analysis (PLS-DA) were performed
over the pre-processed Raman spectra in order to evaluate the spectral di�er-
ences between the cancerous cell lines studied and to develop a model allowing
their discrimination and classi�cation.

PCA operates in an unsupervised manner (no previous knowledge of the
samples under study is provided) and �nds an alternative set of coordinates,
the principal components, (PCs) to reduce the dimensionality and complexity
of the data set. All the spectra can then be explained in a much simpler fashion
through a small number of PCs that accounts for the maximum variance in
the data. By plotting the �rst Principal Components scores, relations between
samples (grouping) are revealed. In addition, plotting loadings as a function of
the wavenumbers reveal the most important diagnostic variables or regions in
the spectra related with the di�erences found in the data set.

PLS-DA is a supervised classi�cation method in which knowledge of the sam-
ple (in our case, malignant or benign phenotype) is included. PLS-DA employs
the fundamental principle of PCA but further rotates the component (latent
variables, LVs) by maximizing the covariance between the spectral variation
and group a�nity so that the LVs explain the diagnostically relevant variations
rather than the most prominent variations in the spectral dataset. In this study,
the performance of the PLS-DA diagnostic algorithm was validated using the
venetian blinds cross validation methodology with eight data splits. The num-
ber of retained LVs was determined based on the minimal root mean square
error of cross validation (RMSECV) curves, and �nally six were taken.

Multivariate statistical analysis was performed using the PLS toolbox (Eigen-
vector Research, Wenatchee, WA) in the Matlab (Mathworks Inc., Natick, MA)
programming environment. SPSS (Statistical Package for the Social Sciences)
for Windows was used for the statistics of TFA and TUFA quanti�cation. In
all the analyses, di�erences were considered signi�cant when student's "t" was
lower than 0.05.

Before including Raman spectra in the multivariate statistical techniques,
correct preprocessing must be performed. In this case, background subtraction
was achieved with a Matlab and Labview algorithm [65], and then normalization
under all Raman spectra was performed to correct for the di�erent ampli�cation
in the signal. This normalization can be based on the fact that the spectral
region used (the CH stretching region) can be considered as the total biomass
present in our confocal volume [174].

7.2.5 Real-time reverse transcription- PCR

Real-time reverse transcription-PCR (qRT-PCR) was performed with gene-
speci�c �uorescent SYBR Green probes (Applied Biosystems, NY, USA) using
a 7300 Real time PCR system detection Instrument and the associated software
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(Applied Biosystems), following the manufacturer's instructions. Primers were
designed using Primer Express software (primer sequences are available on re-
quest). We calculated relative changes by the comparative CT method using
cyclophilin A as the reference gene. Each reaction was performed in triplicate.

7.3 Results and discussion

7.3.1 The expression of lipid metabolic genes is correlated
to the metastatic ability of cells.

The transcription factors SREBP-1c (transcriptional regulator sterol regula-
tory element-binding protein-1) and LXR (liver X receptor) maintain choles-
terol homeostasis through complementary pathways of feedback inhibition and
feed-forward activation [160, 175, 176]. To assess their coordinated action in
the lipid phenotype of breast cancer cells, we explored the LXR pathways in a
set of breast cancer cells according to their malignant phenotype including both
non-metastatic and metastatic cells: MCF7, which expressed hormone receptors
like luminal A tumors; SKBR3, a phenotype with ampli�cations of the ErbB2
oncogene; MDA-MB-468, p53 mutated cells with basal-like phenotype; and two
di�erent metastatic models: MDA-MB-435, with lung metastasis tropism, and
MDA-MB-231 with bone metastasis tropism, both belonging to the basal-like
phenotype (also called post-EMT cells) [177]. We analyzed the expression of
SREBP-1c, gene target of LXR, and ABCA1, other direct LXR target gene in-
volved in cell cholesterol export [164]. Twenty-four hours after treatment with
2µM LXR agonist T0901317 (Fig. 7.1A), the up regulation of SREBP-1c was
evident in the metastatic cells MDA-MB-231 and MDA-MB-435 compared with
non-metastatic cells: the transcriptional induction of SREBP-1c was 20 times
higher in MDA-MB-231 and 17.4 times higher in MDA-MB-435. In contrast,
treatment with the agonist produced only moderate increases in the expression
of SREBP-1c in SKBR3 (2.9 times) and MCF7 (3.6 times), and a decrease
in MDA-MB-468 cells. Moreover, the cholesterol related gene ABCA1 was in-
creased in MDA-MB-231 (6.8 fold) and MDA-MB-435 (8 fold) and di�erently
induced in non-metastatic cells (SKBR3 cells, 27 fold, MCF-7, 2.4 fold, and
MDA-MB-468, 1.3 fold). These results showed the di�erences in regulation of
lipid metabolism pathways in breast cancer cells.

Like nutritional control, neoplastic lipogenesis is controlled through the mod-
ulation of the expression and/or maturation status of the transcription factor
SREBP-1c, a crucial intermediate of the pro- and anti-lipogenic actions of nu-
trients and hormones, which stimulates fatty acid synthase transcription in nor-
mal and malignant cells [176,178]. In tumor cells, SREBP-1c expression and/or
maturation is constitutively driven by the aberrant hyperactivation of these
pathways in response to a variety of oncogenic changes, including overproduc-
tion of growth factors (GFs), ligand-dependent or independent hyperactivation
of GF receptors (GFRs), and loss of function of components of the signalling
cascade such as the phosphatase and tensin homologue (PTEN), a potent tumor
suppressor [179,180].

SKBR3 cells, a classical ErbB2 ampli�ed model, responded against the
LXR agonist with increased ABCA1 expression, di�erent to that of MDA-
MB-468 cells which have two populations with di�erent degrees of EGFR ex-
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pression [181], displaying low response against the agonist. It is well known
that endogenous synthesized fatty acids increase the signal-to-noise ratio in the
HER1/HER2-driven progression of human breast epithelial cells towards malig-
nancy [158]. Malignant cells have devised a mechanism to subvert the normal
pathways for feedback inhibition via the EGFRvIII and PI3K-dependent acti-
vation of SREBP-1c [160]. SKBR3 overexpressed SREBP-1c at basal levels by a
factor of �ve with regard to MDA-MB-468 and metastatic cells; therefore, LXR
might respond to excess cellular cholesterol by promoting ABCA1-dependent
cholesterol e�ux [156]. On the other hand, in normal cells, PI3K activation is
tightly controlled by dephosphorylation of PIP3 by the phosphatase PTEN. Ac-
tivity of the pathway is deregulated in cancer through a variety of mechanisms,
including activating mutations in PI3K or PTEN loss [182, 183]. Indeed, the
role of cholesterol metabolism in cancer pathogenesis and its association with
EGFR/PI3K signaling has recently been described as a potential therapeutic
target [160].

The inverse correlation between estrogen receptors in breast tumors and
genes involved in lipid storage is well known [184]. Indeed, MCF7 cells had the
lowest induction of SREBP-1c and ABCA1. In addition, the increased expres-
sion of SREBP-1c and ABCA1 in the estrogen negative metastatic cell lines
indicated that both genes are functionally implicated in the most malignant
phenotype. Therefore, the pathogenesis of metastasis may include the conjunc-
tion of both constitutive metabolic features: fatty acid synthesis and cholesterol
cell content.

7.3.2 The lipid phenotype characterized by Raman mi-
crospectroscopy

To explore the lipid phenotype associated to breast cancer malignancy we op-
timized the Raman microspectroscopy (RS) system to acquire Raman spectra
in the range of 2820-3030 cm−1, where TFA (2845 cm−1) and TUFA (3015
cm−1) bands were located. In the analysis we included MCF10A cells as benign
breast tumor cells, unable to spread outside the basal membrane, despite their
basal-like phenotype (Fig. 7.1B).

The cytoplasm lipids were measured by RS in a position near the nucleus
and outside the endoplasmic reticulum area, where the Nile red staining showed
major lipid concentration (see asterisk in Figure 7.1C). Each spectrum line in
Figure 7.1D represents the Raman intensity versus the Raman shift measured in
a single cell, and illustrates the cell variability inside each cell line. The bands
corresponding to TFA and TUFA for individual cells were used to quantify the
TFA and the TUFA average content in each cell line (Figure 7.2A and 7.2B).
To obtain the relative quantities of unsaturated fatty acids (% UFA) in each
cell line, which indicate the lipogenic phenotype, the values of individual cells
followed by the average of cell lines were calculated (Figure 7.2C). Low but
signi�cant changes in the TFA bands intensities were found when the cell lines
were compared with the MCF10A cells (Student's "t" < 0.0009). The TFA
content was clearly highest in MDA-MB-435 cells, followed by the MCF10A
cells, and lowest in the SKBR3 cells. These results are in agreement with the
increasing evidence that lipid accumulation is a hallmark of aggressive cancer
cells, and is involved in the production of membranes for rapid cell proliferation
[185].
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Figure 7.1: Variability in lipid metabolic genes expression and FA composition
in MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7 and SKBR3 cell lines
analysed by Raman microspectroscopy. A) The gene expression of SREBP-
1c and ABCA1 were examined after 24 h treatment with the LXR agonist
T0901317 2 µM compared to the basal conditions by RT and real-time PCR.
The fold induction is represented over the pointed line. Cyclophilin A gene was
used for normalization. B) Simplistic representation of the progression status of
breast cancer cells used in the study: 1) MCF10A cells; 2) MCF7, SKBR3 and
MDA-MB-468 and 3) MDA-MB-231 and MDA-MB-345. C) Above, bright�eld
image of MDA-MB-435 cells, with an asterisk indicating the position of the
measurements in the cytoplasm. 60x magni�cation and 9 mW power were used.
Down, �uorescence microscopy image of MDA-MB-435 cells stained with Nile
red. 40x magni�cation was used. D) Measured raw Raman spectra of the
cell lines where the axes are intensity (in arbitrary units) versus Raman shift
(cm−1). MCF10A cells were also measured. The TFA (2845 cm−1) and TUFA
(3015 cm−1) bands are indicated with the arrows in the �rst spectra.
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Figure 7.2: Analysis of the lipid content in the breast cancer cell lines using
Raman microspectroscopy. A) Total fatty acid (TFA) and B) total unsaturated
fatty acid (TUFA) Raman band intensity average in the cell lines is represented
in arbitrary units. C) Relative unsaturated fatty acid content is represented as
%. The average was calculated with the individual cell ratio values. The lines
and the p values (student's "t") indicate the signi�cance between bars compared
to the MCF10A values.
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Figure 7.3: Analysis of the lipid content in the breast cancer cell lines using Nile
red staining and confocal microscopy. Cells were �xed in 4% PFA and treated
with Nile red (1 µg/ml) for 1 h at room temperature and analysed as indicated
in material and methods. Hydrophilic fatty acids, mainly phospholipids, are
seen in the red channel. Hydrophobic fatty acids, mainly cholesterol esters and
triglycerides, are seen in the merge image in yellow. DAPI staining labels the
nuclei. 40 x magni�cation was used.
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TUFA bands intensities were only signi�cantly lower in MDA-MB-468, SKBR3
and MCF7 cells when compared to MCF10A cells (Student's "t" < 0.04). More-
over, no signi�cant di�erences were found between MCF10A and the metastatic
cells MDA-MB-231 (Student's "t" = 0.076) and MDA-MB-435 (Student's "t" =
0.661) with regard to TUFA. The unsaturation ratio, and not the TUFA value,
is indicative of de novo lipogenesis and cell malignancy. For this reason, the
percentage of unsaturated fatty acids in each cell line was calculated, but we
did not observe signi�cant di�erences due to the high dispersion in the individ-
ual cell values. The Student's "t" scores for the cells compared to MCF10A
were: MDA-MB-435=0.179; MCF7=0.166; MDA-MB-231=0.323; MDA-MB-
468=0.148 and SKBR3=0.139. Thus, the quanti�cation of these two bands was
not sensitive enough to di�erentiate benign from malignant breast cancer cells.

The total amount of lipids was analyzed with an alternative technique using
Nile red staining (Figure 7.3). The red channel showed mainly the membrane
phospholipids (hydrophilic lipids) and the green channel mainly the hydropho-
bic lipids (in yellow in the merge image), which accumulated in the typical
cytoplasm storage vesicles derived from the endoplasmic reticulum compart-
ment (called lipid droplets). They contain mainly esteri�ed cholesterol and
triglycerides [186]. The confocal images of lipids showed similar results to the
RS quanti�cations with the exception of MDA-MB-468 cells, which showed the
highest Nile red intensity. As expected, this technique was less informative
than Raman for di�erentiating the cells. The green channel intensities labeling
the lipid droplets did not correspond to the TUFA quanti�cation obtained by
Raman. MCF7 cells did not show lipid droplets, but their RS quanti�cation
was similar to that of SKBR3 and MDA-MB-468 cells. The RS results might
also lead us to expect more droplets in MCF10A cells. The overestimation of
unsaturated lipid content in MCF7 and MCF10A cells using RS may be due to
di�erences in the lipid composition of the droplets [185].

The idea that exacerbated lipogenesis provides immortalized epithelial cells
with a profound neoplastic growth and/or survival advantage over those that
maintain physiological levels of endogenous fatty acid biosynthesis strongly sug-
gests that some lipogenic enzymes may work as metabolic intermediates of onco-
genesis by linking cellular anabolism and malignant transformation [187, 188].
Indeed, the level of fatty acid saturation indicative of de novo lipogenesis de-
creased when LNCaP prostate cancer cells were treated with soraphen A (a
lipogenesis inhibitor) [162].

To improve the information obtained with the lipid phenotype measure-
ments, we performed a PCA analysis using the 2820-3030 cm−1 spectral data
to study the grouping and the homogeneity of the sample distribution (Figure
7.4). PC1 and PC2 scores accounted for 47% and 39% respectively of the to-
tal variance in the dataset. Raman band regions responsible for the PC1 score
discrimination were 3014, 2890 and 2848 cm−1 (related to lipid content) and
2940 cm−1 (related to lipid and protein content). Raman band regions respon-
sible for the PC2 score discrimination were 2846 cm−1 (TFA) and 2935 cm−1,
associated with the chain end -CH3 [189].

MCF7 and SKBR3 cells were grouped in the low PC2 region and separated
for high and low levels of the PC1 axis respectively. In contrast, other cell lines
like MCF10A and MDA-MB-435 appear to be more heterogeneous, spreading
through a larger area in the PC axes (Figure 7.4, left panel). Although Ra-
man spectral region 2900 to 3100 cm−1 has been labeled the CH stretching
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Figure 7.4: PCA scores showing the cell variability present inside each cell
line and between the di�erent cell lines. Left: illustration of PCA scores from
MCF10A, MDA-MB-231, MDA-MB-435, MDA-MB-468, MCF7 and SKBR3
cell lines RS acquisition. SKBR3 cells are shown in the green circle and MCF7
cells in the blue circle. MDA-MB-435 and MCF10A cells are the most dispersed
in the plot. On the right, the loading plots for each Principal Component,
both related to fatty acid and protein content (TUFA: 3014 cm−1; protein and
lipid: 2940 cm−1; TFA: 2871, 2890, 2846 and 2848 cm−1; -CH3: 2935 cm−1).
Percentages in the score plots represent the variance accounted for each PC.

region [189] and therefore, contains bands common for many biomolecules, we
attempted to extract a hypothesis from the PCA score plot. As lipids were
included in both PC1 and PC2 loadings, we interpret that SKBR3 and MCF7
had the lowest content. MDA-MB-231 and MDA-MB-468 cells had intermediate
lipid content and MDA-MB-435 and MCF10A cells di�ered widely, though it
was always high. Our interpretation of the PC1 loading was that it represents
mainly TFA, and that lipid and protein cell content were inversely correlated,
because we had lipid bands in positive and the 2940 cm−1 band (which includes
both lipids and proteins) in negative. MCF7 and SKBR3 cells, with similar PC2
scores, had di�erent PC1 values, suggesting di�erent protein content, higher in
SKBR3.

The most prominent band included in the PC2 loading was 2935 cm−1. No
one substrate is clearly associated with the 2935 cm−1 band due to the fact that
many biomolecules contain −CH3 side terminal groups. The 2846 cm−1 band,
also included in PC2, corresponds to total fatty acids and we hypothesized a
contribution of cholesterol and cholesterol esters in the 2935 cm-1 band, because
it is a lipid with many −CH3 side terminal groups. We also observed di�erences
in the ABCA1 gene expression, and di�erences in cholesterol have been associ-
ated to proliferation and migration of breast cancer cells [184, 185], suggesting
the involvement of cholesterol in the malignant phenotype of the cells studied.

We analyzed the cholesterol content of the cell lines using �lipin staining,
which labels free (unesteri�ed) cholesterol present in the cytosol and membranes
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Figure 7.5: Analysis of the cholesterol content in MCF7, SKBR3, MDA-MB-
231, MDA-MB-468, MDA-MB-435 and MCF10A cells with �lipin staining and
�uorescence microscopy. Cells were �xed in 4% PFA and treated with �lipin
(50 µg/ml) for 2 h at room temperature and analyzed as indicated in material
and methods. Filipin labels free cholesterol present in the membranes (arrow)
and in the cytosol (arrow head). 40x magni�cation was used.

of cells. We found di�erences in the content and distribution of free cholesterol
between the cell lines. MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells
presented the highest cholesterol intensity, though with di�erent distributions:
in MDA-MB-231 and MDA-MB-468 it was accumulated in large cytoplasm
spots, whereas MDA-MB-435 cells mainly presented cholesterol in the plasma
membrane together with some smaller spots in the cytosol (Figure 7.5). The
levels of cholesterol were also high in MCF10A but low in MCF7 cells. SKBR3
cells had higher cholesterol content than expected, given their localization in
the PCA, but reinforcing our hypothesis that their high ABCA1 gene expres-
sion occurs in response to an excess in cholesterol content (see Figure 7.1A).
Taken together, these results suggested that cholesterol might be involved in
the lipid di�erences between metastatic and non-metastatic cells. Moreover, its
contribution in the PC2 loading may also include cholesterol esters, not observed
with �lipin.

7.3.3 The lipid pro�ling of breast cancer cells distinguishes
metastatic ability from malignancy

In the second step, a PLS-DA was used to construct a classi�cation model. This
is a supervised method, meaning that prior knowledge of the class membership
was included. First we built a classi�cation algorithm to discriminate between
non-metastatic non-basal-like (MCF7 and SKBR3) and metastatic basal-like



The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy:

towards a strati�cation of malignancy 112

(MDA-MB-231 and MDA-MB-435) cell lines. Then, in the ideal prediction
model, the �rst group will have class 0 and the second one class 1 (Figure 7.6).
The PLS-DA model was carried out over the pre-processed Raman spectra and a
cross-validation was performed in order to check the strength of the algorithm to
predict new samples. The method for cross-validation was venetian blinds w/10
splits and the errors for the prediction and cross validated model were RMSEC:
0.3 and RMSECV: 0.45 respectively, showing good stability for predicting new
samples. A good discrimination between metastatic and non-metastatic cell
lines was achieved with sensitivities and speci�cities of 92.5% and 97.4% for the
calibration and 90% and 82.1% for the cross-validation respectively. These re-
sults showed good accuracy in discriminating metastatic ability of breast cancer
cells, better than those reported for the Raman spectral window (2,800-3,100
cm−1) comparing benign disease and breast cancer tissue in vivo samples, which
had speci�city and sensitivity of 81.2 and 72.4, respectively [190].

We used the PLS-DA model to test the membership of MCF10A and MDA-
MB-468 cells, which were not included in the groups (Figure 7.6). The result
indicated that most of the MCF10A cells were very similar to the metastatic
group. Seventy-�ve per cent of the MCF10A cells analyzed were predicted to
belong to the metastatic class (above the threshold). The rest of the MCF10A
cells were localised below the threshold. Following the same criteria eight of
the twenty MDA-MB-468 cells analyzed (40%) were localized in the metastatic
group and the rest in the non-metastatic group. The PLS-DAmodel showed that
MCF10A and MDA-MB-468 cells had di�erent basal-like phenotypes. These
results suggested that the classi�cation algorithm might discriminate two dif-
ferent basal-like phenotypes: MDA-MB-468 cells, common to a subgroup of
MCF10A cells, and the MCF10A cells, common to MDA-MB-231 and MDA-
MB-435 metastatic cells.

It has been described that MCF10A cells with basal-like phenotype, which
present many features of mesenchymal cancer cell lines in sparse cultures, have
intrinsic plasticity for undergoing EMT, transition present in the most aggressive
breast tumors with a basal phenotype [172]. Since MCF10A cells were grown
at low con�uence, we hypothesized that the similarities between MCF10A and
MDA-MB-435 cells in the PCA and between MCF10A and the metastatic cells
group in the PLS-DA might be related to culture conditions. We performed
Raman analysis in sparse and in dense MCF10A cultures, and in cells growing
at the edge of dense cultures (Figure 7.7A). In the PCA (Figure 7.7B), PC1 had
a prominent TUFA band contribution, and PC2 loading was formed by three
lipid bands: 3014, 2890 and 2845 cm−1, and the 2935 cm−1 band with inverse
correlation. The PCA scores plot clearly separated MCF10A and MDA-MB-435
cell lines: the phenotype of the MDA-MB-435 cells was characterized by higher
lipid content (y axis) and lower TUFA (x axis). TUFA band intensity (PC1,
x axis) also distinguished between the MCF10A subtypes, being lower in the
sparse area and higher in the con�uent area.

We also analyzed the EMT phenotype of MCF10A cells grown in sparse and
con�uent conditions. As expected, like MDA-MB-435, cells lost E-cadherin and
expressed more vimentin in sparse conditions (Figure 7.7C) than in con�uence.
These results con�rmed that the spectroscopical di�erences were secondary to
phenotypic changes and correlated well with malignancy; clearly the degree of
similarity between MDA-MB-435 and MCF10A cells depends strongly on the
culture conditions of MCF10A.
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Figure 7.6: PLS-DA discriminative model using Raman microspectroscopy
spectra of non-metastatic (SKBR3 and MCF7) and metastatic (MDA-MB-231
and MDA-MB-435) cell lines. PLSDA classi�cation algorithm, in which non-
metastatic cells are predicted with class 0 and metastatic cells with class 1. A
threshold is assigned (red line) corresponding to the best speci�city and sensi-
tivity parameters that separate groups of cells. RMSECV is represented by the
error bars. A sensitivity of 90% and a speci�city of 82.1% were achieved. Once
the model was built, MCF10A and MDA-MB-468 were included to predict their
membership. Seventy-�ve per cent of MCF10A and 40% of MDA-MB-468 cells
are related to the metastatic group.

The expression in the set of breast cancer cells of E-cadherin, CK18 and
vimentin at the mRNA level, and E-cadherin and vimentin at protein level
as well, con�rmed the close relationship between the lipid phenotype and the
EMT process (Figure 7.8). MCF7 did not express vimentin protein and SKBR3
did so in less than 5% of the cells (Figure 7.8B), similar to MDA-MB-468 cells.
These results suggested that in addition to metastatic ability the PLS-DA model
discriminated cells with basal-like phenotype that undergo EMT (MCF10A)
from basal-like cells with no EMT (MDA-MB-468).

The combination of multivariate statistical techniques applied to the Raman
spectral data (PCA and PSL-DA analysis) provided a powerful quantitative
method to discriminate cancer phenotypes. These mathematical methods used
the whole range of the spectra for the di�erentiation of the cells. Intensity anal-
ysis of a single band does not provide so powerful information, as it was shown
in �g. 7.2. Our results suggest that the lipid phenotype of these cells is a signal
of the proclivity to mesenchymal transition related to the high aggressiveness
and metastatic spread [191]. EMT is an essential developmental process by
which cells of epithelial origin lose epithelial characteristics and polarity, and
acquire a mesenchymal phenotype with increased migratory behavior. Thus, the
characterization of this functional phenotype of cancer cells with RS provides in-
formation on intercellular cell adhesion, down-regulation of epithelial markers,
up-regulation of mesenchymal markers, acquisition of �broblast-like (spindle)
morphology with cytoskeleton reorganization, increase in motility, invasiveness,
and metastatic capabilities [191�193]. The PSL-DA model described discrimi-
nates luminal or HER-2 overexpressing cells without EMT and post-EMT cells
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Figure 7.7: Raman microspectroscopy and PCA di�erentiate the MCF10A cells
grown in con�uent and sparse conditions. A) MCF10A microscopy images of
the cells measured by RS in con�uent and sparse conditions. Brightlight images
were obtained with an inverted microscope and 10x magni�cation. Arrows indi-
cate the di�erent areas that were measured by Raman (a: con�uent; b: separate
cells grown at the edge of con�uent cultures; c: sparse). B) PCA representa-
tion of MDA-MB-435 cells and MCF10A cells (grown in high con�uence and in
sparse conditions). PC 1 and 2 separate di�erent groups of cell lines. MDA-
MB-435 cells have higher PC2 scores, separated from the MCF10A. MCF10A
grown in high con�uence are displaced from the ones grown in sparse conditions
showing higher PC1 scores. Asterisk indicates the localization of the "lipogenic
phenotype" in the axis. PC1 and PC2 loadings are described down with the
bands related to TFA (arrow head) and TUFA (arrow) indicated. The percent-
age means the variance accounted for each PC. C) Immuno�uorescence images
of E-cadherin and vimentin proteins in both MCF10A culture conditions. DAPI
staining appears minimized inside each picture.
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Figure 7.8: Epithelial and EMT marker gene expression in MCF7, SKBR3,
MDA-MB-231, MDA-MB-468, MDA-MB-435 and MCF10A cells. A) The gene
expression of epithelial cell markers (E-cadherin, cytokeratin 18) and the mes-
enchymal cell marker vimentin were examined by RT and real-time PCR using
200 ng of RNA. E-cadherin and CK18 are represented compared to the luminal
MCF7 cell line expression and vimentin is represented compared to the MDA-
MB-231 cell line. Cyclophilin A gene was used to normalize gene expression. B)
Immuno�uorescence staining of the epithelial E-cadherin and the mesenchymal
vimentin markers in MCF7, MDA-MB-468, MCF10A, SKBR3, MDA-MB-231
and MDA-MB-435 cells. DAPI staining appears minimized in each picture. 40x
magni�cation was used.
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with a sensitivity of 90% and a speci�city of 82.1%. Aggressive cells with basal
phenotype (related to EMT plasticity) can also be di�erentiated, although it
may be necessary to include other spectral regions to increase the sensitivity in
the di�erentiation of metastatic and non-metastatic basal-like cell phenotypes.
Recently, it has been reported that the analysis of human tumor gene expres-
sion pro�les identi�es triple negative breast cancer subtypes with an overall
false-positive rates of 1.7%, 1.7%, and 0.9% for ER, PR, and HER2, respec-
tively [194].

Breast cancer is a heterogeneous disease that includes a wide range of histo-
logical subtypes and a diversity of clinical behaviors and patient outcomes [195].
We used representative cell variants, including di�erent phenotypes of breast
cancer cells: estrogen receptor expression, ErbB2 ampli�cation, p53 mutation
and aggressive metastasic. The molecular and cellular characterization of their
associated "lipid signatures" by RS, combined with multivariate statistical anal-
ysis, is a promising technique for characterizing the malignant phenotype of
breast cancer cells and might provide a helpful adjunct to gene-expression pro-
�ling or proteomics in the classi�cation, diagnosis and prognosis of human can-
cers. Using di�erent spectral ranges of RS, similar results have been obtained
regarding the lower lipid content in SKBR3 compared to MDA-MB-231 and
-435 cells [196]. These �ndings support the use of this technology in the study
of the lipid phenotype of cells, with possibilities to be used in experimental tu-
mors [190,197] and in human samples to distinguish between ductal carcinoma
in situ and invasive ductal carcinoma of the breast [198]. Serum samples have
been used to discriminate between breast cancer patients and healthy individu-
als; the bands analyzed were statistically accepted as markers corresponding to
proteins, polysaccharides and phospholipids [199]. Moreover, the identi�cation
of new spectral signatures expanding the RS window may o�er more accurate
classi�cation of cells for diagnostic purposes, providing rapid, reagent-free and
non-destructive alternatives for the analysis of tumor samples.

Raman spectroscopy has shown promise for use as a clinical tool for diag-
nosis of breast cancer. Optimization of spectral acquisition times and spatial
resolution for clinical use is an area which needs further investigation. Studies
of larger patient population samples will be needed to establish comparisons
between spectral makers for breast cancer cells and pathological indicators that
are used for current diagnosis. Moreover, improvements on current data analysis
techniques, including the application of advanced data mining methods, along
with novel preprocessing techniques will also be critical to introduce RS in the
clinical practice.

7.4 Conclusion

Raman spectroscopy is a promising technique in biomedical studies due to its
non-invasive character and high speci�city. The lipid phenotype associated to
breast cancer malignancy belongs to Raman spectra adquired in the range of
2820-3030 7.8, where TFA (2845 7.8) and TUFA (3015 7.8) bands were located.
The combination of multivariate statistical techniques, which use the whole
range of the spectra, applied to the Raman spectral data (PCA and PSL-DA
analysis) provided a powerful quantitative method to discriminate cancer pheno-
types. In addition, an algorithm to di�erentiate metastatic from non metastatic
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and non basal phenotype breast cancer cells was design using PLS-DA, with 90%
sensitivity and 82.1% speci�city. Our results suggest that the lipid phenotype of
these cells is a signal of the proclivity to mesenchymal transition related to the
high aggressiveness and metastatic spread, then the identi�cation of new spec-
tral signatures expanding the Raman spectral window may o�er more accurate
classi�cation of cells for diagnostic purposes.



8
Raman spectroscopy supported by

Multivariate Curve Resolution improves

biochemical analyses of cancer cells

In breast cancer the presence of cells undergoing the epithelial-to-mesenchymal
transition (EMT) is indicative of metastasis progression. In chapter 7, PCA
has been used to study the lipid metabolism in di�erent breast cancer cell lines
depending on the degree of malignancy in the CH stretching region of Raman
spectra. However, PCA does not provides meaningful components that could
be assigned directly to molecular Raman spectra. Consequently, in this chapter
Multivariate Curve Resolution (MCR) was applied to Raman spectroscopy to
assess the metabolic composition of breast cancer cells undergoing EMT decon-
volving the individual spectra of molecular components. The �ngerprint region
of the Raman spectra was used which permits a better metabolite discrimina-
tion. Benign breast cancer cell line MCF10A, which has a basal-like phenotype
and shows phenotypic and genetic changes associated with EMT when cells are
cultured in sparse conditions, was used. MCR led to the conclusion that the
EMT process a�ects the lipid pro�le of cells, increasing tryptophan but main-
taining a low phosphatidylserine content in comparison with highly metastatic
cells. A Partial Least Squares-Discriminant Analysis (PLS-DA) model classi�ed
MCF10A post-EMT cells with 94% sensitivity and 100% speci�city. In conclu-
sion, Raman microspectroscopy coupled with MCR enables deconvolution and
tracking of the molecular content of cancer cells during a biochemical process,
being a powerful non-invasive tool for identifying metabolic features of breast
cancer cell aggressiveness.
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8.1 Introduction

Breast cancer metastasis is a complex multistep process that consists of a series
of dynamic interactions between tumour cells and host cells that allow tumour
cells to leave the primary site and establish a distant lesion [200]. Tumour cells at
the primary site are in�uenced by cross-talk with the stroma, leading to break-
down of the basement membrane. This allows migration and invasion [201],
possibly through molecular mechanisms akin to the epithelial-to-mesenchymal
transition (EMT), which ultimately drive epithelial cells to acquire mesenchymal
characteristics: loss of cell-cell adhesion and apical-basal polarity, downregula-
tion of epithelial cytokeratins, upregulation of vimentin, cytoskeleton reorgani-
zation, and increased motility and invasiveness [172, 202, 203]. The preferential
expression of EMT-related genes has been found in basal-like breast tumours,
the most invasive breast carcinomas [204] with the worst prognosis and great-
est resistance to chemotherapy [205]. Basal-like tumour cells express markers
characteristic of the normal mammary gland myoepithelium, such as epidermal
growth factor receptor (EGFR), p63 and basal cytokeratins CK14, CK5/6 and
CK178. Cellular remodeling occurring as a consequence of EMT, whereby cells
have altered responses to agents in the circulatory system or secondary tumour
site, could be advantageous for the process of metastasis [172,203].

EMT can be induced during in vitro cell culture under the in�uence of extra-
cellular matrix components and growth factors, such as transforming growth fac-
tor beta (TGFbeta), scatter factor/hepatocyte growth factor, �broblast growth
factors, epithelial growth factor family members and insulin-like growth factors
1 and 29. Signal transduction pathways such as Wnt, Hedgehog, Notch and
integrin signaling can also coordinate EMT programmes. A number of tran-
scription factors induce EMT through transcriptional control of E-cadherin,
including SNAI1 (zinc �nger protein snail 1), SNAI2, ZEB1 (zinc �nger E-
box-binding homeobox 1), ZEB2, TWIST, FOXC1 (forkhead box protein 1),
FOXC2, TCF3 (transcription factor 3 - also known as E47) and GSC (home-
obox protein goosecoid) [206]. EMT confers mesenchymal properties on epithe-
lial cells and has been closely associated with the acquisition of aggressive traits
by carcinoma cells [207]. Moreover, the dynamic interactions among epithe-
lial, self-renewal and mesenchymal gene programmes determine the plasticity
of epithelial tumour-initiating cells [208]. The constitutive activation of sig-
naling cascades that stimulate cell growth has a profound impact on anabolic
metabolism [208]. One of the principal mechanisms of aerobic glycolysis resides
in the activation of hypoxia-inducible factor (HIF), a transcription factor acti-
vated by hypoxic, oncogenic, metabolic and oxidative stress, and also involved
in EMT, the initial signal of the lethal metastatic phenotype of breast cancer
cells [209]. Since metabolic features of tumour cells are critical in cancer pro-
gression and drug resistance [210], there exists a need to develop alternative/ad-
junct, user-freed, cost e�ective, rapid, objective and unambiguous methods for
the early detection and diagnosis of metastatic breast cancer cells.

We have previously shown [211] that RS and PCA is able to character-
ize the metabolic phenotype of breast cancer cells, based on a panel of small
molecules derived from the global or targeted analysis of metabolic pro�les of
cells. This emerged as a useful method for stratifying malignancy, being well cor-
related with the EMT phenotype and the expression of SREBP-1c and ABCA1
genes [211]. A useful model for characterizing the metabolic features associ-
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ated with EMT is based on in vitro studies on benign breast cancer cell line
MCF10A, which has a basal-like phenotype, showing phenotypic and genetic
changes associated with the mesenchymal transition when cells are cultured in
sparse conditions [172], thus increasing the fatty acid saturation ratio [211].
This might be due to an increase in lipid biosynthesis, leading to the "lipogenic
phenotype", which is common in aggressive cancer cells [205,212,213].

In the present research we used a Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS) algorithm to study cellular RS, which allowed the
deconvolution of meaningful molecular RS of biomolecules that are related to
metabolites that change concentration in the cells under study. Using RS and
a �rst PCA on the dataset of spectra, the number of components necessary
to explain the variance in the data was selected, accounting for 95% of the
total variance. The output of the MCR-ALS analysis gives more chemically and
physically understandable results than classical techniques such as PCA, where
only a mathematical exploration of the data can be performed [23, 24, 28, 214].
This approach led to the discovery of tryptophan as a metabolite that �ts with
the hypothesis that the EMT phenotype initiates metastatic cells, with the
phospholipid level controlled as indicated by the phosphatidylserine content.
MCR algorithm has been applied in a broad range of chemical analysis [47,48,50]
and recently to Raman images [35,189]. To our knowledge this study reports the
�rst application of MCR to RS to deconvolve and track the molecular content
of cancer cells during a biochemical process, in our case the EMT process.

8.2 Material and Methods

8.2.1 Cell culture

MCF10A cells were obtained from the American Type Culture Collection and
were grown in DMEM/F12 medium supplemented with 5% horse serum, 1 mM
pyruvate, 2 mM L-glutamine, 0.01 mg/ml bovine insulin, 20 ng/ml EGF, 1
mg/ml hydrocortisone and 100 ng/ml Tetanus toxin in 5% CO2-95% air at 37 ◦C
in a humidi�ed incubator. MDA-MB-435 cells maintained under standard con-
ditions in a 1:1 (v/v) mixture of DMEM and Ham F12 medium (DMEM/F12)
supplemented with 10% fetal bovine serum (FBS), 1 mM pyruvate and 2 mM
L-glutamine, in the same incubator conditions as described above were used in
some experiments.

8.2.2 Raman spectroscopy

Each measurement required 3x105 cells, or 3x104 cells for MCF10A cells in
sparse conditions. Cells were seeded in six-well plates (Becton Dickinson, NJ)
over a quartz crystal (ESCO products, Oak Ridge, NJ), which was used to
reduce the background signal. After 24 h, the cells were �xed with 4% cold
paraformaldehyde (PFA) in PBS 1x for 15 min, washed with PBS 1x and main-
tained in the same solution at 4 ◦C until measurements. The Renishaw Ra-
man system (Apply Innovation, Gloucestershire, UK) comprises a 514 nm laser
that supplies an excitation beam of about 5 mW power, which is focused onto
the sample via a microscope using a 60x objective (Edmund, York, UK). The
same objective collects the scattered light from the sample and directs it to
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the spectrometer. The spectrometer processes this scattered light, by rejecting
the unwanted portion and separating the remainder into its constituent wave-
lengths. The Raman spectrum is recorded on a deep depletion charge-coupled
device (CCD) detector (Renishaw RenCam). The recorded Raman spectrum is
digitalized and displayed on a personal computer using Renishaw WiRE soft-
ware, which allows the experimental parameters to be set. The spectra were
background subtracted using a custom-written Labview program.

8.2.3 Statistical analysis

Two multivariate techniques were performed on cellular Raman spectra, in order
to evaluate the spectral di�erences among the cancerous cell lines studied and
to develop a model allowing their discrimination and classi�cation: MCR and
PLS-DA.

In Multivariate Curve Resolution (MCR), a bilinear relation of the spec-
trum is assumed from the matrix, taking into account the Beer Lambert law,
X=CST+E, where X is the Raman spectra acquired matrix, C is the con-
centration matrix transposed and E is the matrix of spectral errors. The
algorithm used was Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS). Using a �rst PCA on the dataset of spectra, the number of compo-
nents necessary to explain the variance in the data was selected, accounting for
95% of the total variance. For ALS optimization, constraints of non-negativity
in the spectra and concentrations were applied. A limit of 300 iterations was
applied to reach the 0.95 con�dence limits. MCR-ALS allowed visualization of
the bands (biomolecular vibrations) responsible for the changes in metabolite
concentrations in the di�erent cell lines. Finally, �ve molecular components
were deconvolved from the spectra.

PLS-DA is a supervised classi�cation method in which knowledge of the
sample is included (in our case metastatic, malignant and benign MCF10A
phenotypes). PLS-DA employs the fundamental principle of PCA but further
rotates the component (latent variables, LVs) by maximizing the covariance
between the spectral variation and group a�nity so that the LVs explain the
diagnostically relevant variations rather than the most prominent variations in
the spectral dataset. The performance of the PLS-DA diagnostic algorithm
was validated using leave-one-out cross validation methodology. The number of
retained LVs was determined based on the minimal root mean square error of
cross validation (RMSECV) curves.

Multivariate statistical analysis was performed using the PLS toolbox (Eigen-
vector Research, Wenatchee, WA) in the Matlab (Mathworks Inc., Natick, MA)
programming environment. Before including Raman spectra in the multivariate
statistical techniques, correct preprocessing must be performed. In this case,
multiple scattering correction and background subtraction was achieved using
a Matlab and Labview algorithm54. For Raman spectral analysis, the region
between 1015 and 1110cm-1 was removed because it contained a background-
related signal that reduced the quality and interpretability of our statistical
models.
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8.2.4 Gene expression analysis

Transcriptomic data from MCF10A cells cultured in sparse or con�uent con-
ditions with accession number GSE84305 were downloaded from the Gene Ex-
pression Omnibus database [215]. The series matrix contained a normalized log
ratio (z-score) for the di�erences in expression between sparse and con�uent
cells. The median z-score between the six replicates included in the experiment
was calculated for each probe and then used to rank all genes by their level of
expression.

In addition, a series matrix including normalized data from GSE18070 that
contains di�erent strands of k-ras transfected MCF10A cells was downloaded
from the GEO repository [215]. To assess gene expression di�erences, a t-test
between all probe sets from three hybridized MIII samples (cells with ability
to metastasize in vivo) and three MII samples (cells without metastasis ability)
was conducted. Then the 33853 genes included in the array (A�ymetrix U133
Plus 2.0) were ranked based on their statistic expression level..

A pre-ranked GSEA (Gene Set Enrichment Analysis) using both lists of
ranked genes was run. Only 81 genesets related to "fatty acid", "lipid", "glu-
cose", "cholesterol", "EMT" and "tryptophan"; and those genesets described
in Charafe et al. [216] including di�erentially expressed genes between di�erent
kinds of breast cancer were included in the analysis. The statistical signi�cance
of the enrichment score was calculated by permuting the genes 1,000 times as
implemented in the GSEA software. Functional terms were considered to be
signi�cant at FDR q-value 25%. The conventional statistical methods for mi-
croarray gene expression analysis choose a list of di�erentially expressed genes
based on a p-value corrected by multi-testing. Using this astringent criterion, a
large number of genes that do in fact contribute to the studied phenotype could
be missed. The GSEA (gene set enrichment analysis) approach was designed
to address the limitation of single gene analysis since it uses all transcriptomic
information included in the array [217].

All computations were performed using R statistical software and Biocon-
ductor [218].

8.3 Results

8.3.1 Multivariate Curve Resolution (MCR) algorithm is
able to decompose cell Raman spectra in meaningful
Raman spectra of metabolites

RS of biomedical samples is inherently complex and weak. Multivariate analysis
improves its ability to obtain useful information from biomedical pro�les. Our
innovative application consisted of analysing the RS of cells in di�erent EMT
states using MCR, an unsupervised computational analysis. This algorithm
iteratively derives the pure component spectra from a spectral data set and
the contributions of each pure component in each spectrum acquired. This
statistical technique e�ciently disentangle the information encoded in complex
spectra such as Raman.

To distinguish the metabolic features of cells with the EMT phenotype [219],
as a signal of the initiation of metastasis, the focus was on characterizing the
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spectroscopic parameters of a prototype of metastasis-initiating cells in com-
parison with the highly metastatic MDA-MB-435 breast cancer cells. Con�uent
and sparse di�erentiated MCF10A, according to the TUFA band intensity, which
is lower in sparse conditions, were previously associated with the EMT pheno-
type [211]. RS of both phenotypes (con�uent and sparse MCF10A) was acquired
using an InVia Raman microscope (Renishaw) and the �ngerprint region of the
RS (600-1800cm-1). The MCR-ALS algorithm was then used to deconvolve from
the spectra the metabolites that di�ered among the cell groups. One problem
in resolution analysis methods is that the components deconvolved from the ex-
perimental Raman spectra are mixed with background signals and are therefore
di�cult to interpret. This problem was solved by adding to the data set a small
number of spectra obtained from the PBS (bu�er, not cells) at the same focal
distance at which the cellular spectra were acquired. Including this extra in-
formation in the MCR-ALS algorithm allows the deconvolution of a component
that contains only background spectra (quartz and water). Therefore, the re-
maining components only account for the di�erences in the metabolite content
in the cells. Four pure spectra were deconvolved from inherent cellular compo-
nents and are shown in Figure 8.1. Score plots relating di�erent components
are presented in Figure 8.2. The control spectra from PBS were plotted on the
scores plot as blue crosses and were always around the lowest levels of the con-
centration of the di�erent cellular metabolites, indicating the absence of those
molecules from the spectra.

With the help of previously published Raman databases [189, 220�226], we
identi�ed component 1 as tryptophan [221], component 2 as phosphatidylser-
ine [220], component 4 to polysaccharides [222�226] and component 5 as cy-
tokeratin [189, 221]. Component 3 accounted only for background contribu-
tion (Figure 8.1). Table 8.1 lists the assigned metabolites in each compo-
nent [189, 220�226]. Component 1 included mainly phenylalanine and tryp-
tophan: 1001, 1170, 1204, 1300, 1315, 1336, 1359 and 1587 cm−1. Component
2 included bands assigned to phosphatidylserine: 1123, 1260, 1300 and 1438
cm−1. Raman bands in component 4 can be assigned to polysaccharides: 940,
986, 1125, 1187, 1207, 1337, 1365 and 1452 cm−1 . All the bands contained
in component 5 are characteristic of keratin (936, 1296, 1335, 1448 and 1650
cm−1) and amide (1235 and 1240 cm−1).

Therefore, MCR resolved meaningful components in the spectra with re-
spect to classical techniques such as Principal Component Analysis (PCA),
demonstrating a high capacity to deconvolve the pure cell component spectra of
molecules from a set of Raman spectra. Moreover, the outputs of the statistical
analysis provided more chemically and physically understandable results than
classical techniques such as PCA, via which only a mathematical exploration of
the data can be performed and components have mixed molecular contributions
and negative loadings.

8.3.2 RS coupled with MCR dissects the metabolic phe-
notype of EMT in breast cancer cells

We conducted an in-depth analysis of the most signi�cant di�erences between
con�uent and sparse MCF10A cells to assess the di�erent pro�les of the spec-
tral composition and to build a classi�cation algorithm for the discrimina-
tion of EMT cells with the metastatic-initiating phenotype from the highly
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Figure 8.1: Component spectra obtained by Raman microspectroscopy decon-
volved from MCR analysis using sparse and con�uent MCF10A cells and MDA-
BM-435 cells. The main characteristic bands of component 1, 2, 4 and 5 are
indicated in each spectrum. Assignments based on references [189,220,221]
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Table 8.1: Band assignments for the Raman spectra corresponding to compo-
nents 1, 2, 4 and 5 obtained by MCR analysis of sparse and con�uent MCF10A
cells and MDA-MB-435 cells. Assignments based on references [189, 220, 221].
PA: Phenylalanine, PhS: Phosphatidylserine, T: Tryptophan, K: Keratin, A:
Amide, PS: Polysaccharides

Component 1 Component 2 Component 4 Component 5

Raman
shift
(cm−1)

Assignm. Raman
shift
(cm−1)

Assignm. Raman
shift
(cm−1)

Assignm. Raman
shift
(cm−1)

Assignm.

1001 T, PA 1123 PhS 940 PS 936 K

1170 T, PA 1260 PhS 986 PS 1001 PA

1204 T 1300 PhS 1125 PS 1235 AIII, K

1237 T, AIII 1438 PhS 1187 PS 1240 AIII, K

1300 T 1207 PS 1296 K

1315 T 1337 PS 1335 K

1336 T 1365 PS 1448 K

1359 T 1452 PS 1650 K

1448 T, CH2

deform

1479 T, AII

1587 T

metastatic MDA-MB-435 cells. We plotted the contributions of component 2
(phosphatidylserine) with respect to component 5 (keratin) (Fig. 8.2a). EMT
appeared inversely correlated with keratin, with MDA-MB-435 cells having low
keratin level whereas con�uent MCF10A cells had the highest (Figure 8.2a and
8.2c). Component 2 (phosphatidylserine) separated two MDA-MB-435 cell pop-
ulations: SP435A with the highest phosphatidylserine content, and SP435B with
a moderate phosphatidylserine increase. In contrast, sparse MCF10A cells had
a low keratin and increased phosphatidylserine content compared with con�uent
MCF10 cells, more similar to SP435A. Indeed, the most lipid accumulating cells
were sparse MCF10A and SP435A. Thus, RS accurately classi�ed EMT based
on low keratin and a high lipid and phosphatidylserine content, so called lipid
phenotype (LP). In addition, component 1 identi�ed as tryptophan (T) clearly
segregated sparse MCF10A from the rest of the cells, and therefore high levels
of this metabolite were an idiosyncratic element of the EMT phenotype (Figure
8.2b and 8.2c). Taking into account scores on tryptophan and phosphatidylser-
ine (Figure 8.2b), the aggressive metastatic phenotype of MDA-MB-435 cells
was strongly associated with an increase in phospholipids with low tryptophan
content (Figure 8.2b). On the other hand, MDA-MB-435 cells were split into two
clear groups, one with low lipid content and the other with the highest lipid con-
tent, according to its heterogeneity [227]. Moreover, in �gure 8.2d it was possible
to distinguish the highest phosphatidylserine SP435A cells (with a lipid pheno-
type) from SP435B cells (with a low lipid concentration and increased levels of
Polysaccharides (component 4)), suggesting that this component may act as an
alternative fuel source for MDA-MB-435 cells with a lower lipid content [227].
Therefore, component 4 may be related to glucose metabolism. Furthermore,
the cloud of sparse MCF10A cells was displaced with respect con�uent MCF10A
cells in Fig. 8.2d. Sparse MCF10A showed an increase LP and low PS content
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whereas con�uent MCF10A have higher PS and lower LP what support PS as
an alternative fuel source for low lipid accumulating cells.

We performed a PLS-DA model in order to explore the ability of RS to dif-
ferentiate between sparse and con�uent MCF10A and MDA-MB-435 cells. The
model (Figure 8.3) gave 100% sensitivity and 100% speci�city for discrimination
of sparse MCF10A, 94% sensitivity and 89% speci�city for con�uent MCF10A
and 80% sensitivity and 100% speci�city for MDA-MB-435 using the cross vali-
dation method venetian blinds with 7 splits. Overall there was a clear di�erence
between con�uent and sparse MCF10A cells, which re�ected the increased EMT
of sparse, compared to con�uent MCF10A cells; they could thus be strati�ed
by pro�ling the lipid accumulating phenotype, which might be enriched by the
increased tryptophan concentration in sparse MCF10A cells.

8.3.3 Di�erential expression of genes validates the pheno-
type of EMT.

We performed functional enrichment analyses to validate the spectral di�erences
between con�uent and sparse MCF10A cells. We used public transcriptomic
data downloaded from Gene Expression Omnibus database GSE84305 to search
for functional di�erences between sparse and con�uent cells. This dataset con-
tains a normalized log ratio (z-score) for the di�erences in expression of 11500
probe sets representing 9300 genes from the CNIO Homo sapiens Oncochip [201].
Genes were ranked by their median z-score and gene set enrichment analysis
(GSEA) algorithm [228] was applied to identify speci�c functions in the list of
pre-ranked genes. A total of 71 gene sets including the keywords "fatty acid",
"lipid", "glucose", "cholesterol", "EMT" and "tryptophan", and those gene sets
described in Charafe et al. [216], including genes that are di�erentially expressed
in di�erent kinds of breast cancer, were tested. Genes that were downregulated
in luminal-like breast cancer cell lines in comparison with mesenchymal-like
ones [216] were expressed in sparse MCF10A (FDR<0.000), whereas con�uent
MCF10A contained genes that were upregulated in luminal-like breast cancer
cell lines in comparison with the mesenchymal-like ones (FDR<0.000). As ex-
pected, sparse cells showed a signi�cant enrichment in genes that were upreg-
ulated in EMT whereas con�uent cells were enriched in EMT downregulated
genes, pointing to a mesenchymal phenotype. Surprisingly, both up- and down-
regulated EMT genes described in Jechlinger et al. [229] were signi�cant gene
sets in sparse cells, but downregulated genes were much more statistically sig-
ni�cant (FDR=0.01).

Fatty acid and glucose metabolic functions di�erentiated con�uent and sparse
MCF10A cells. The metabolic phenotype of sparse MCF10A cells was character-
ized by genes involved in glucose deprivation (FDR=0.0020) and glucose trans-
port (FDR=0.120), whereas in con�uent MCF10A cells the pro�ling showed an
enrichment in genes involved in glucose metabolism (FDR=0.032). Moreover,
di�erences included increased fatty acid metabolism (FDR=0.240) and fatty
acid oxidation (FDR=0.150) in con�uent MCF10A. Since fatty acid metabolism
was increased in these cells their glucose dependence was minimized with regard
to sparse cells, suggesting that con�uent and sparse MCF10A cells have a dif-
ferent metabolic phenotype in both conditions.

One of the �rst metabolic alterations observed in cancer cells was the higher
dependence upon glucose for their growth, the so-called Warburg e�ect, indi-
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Figure 8.2: MCR scores plot for components represented in Figure 8.1. Con-
�uent MCF10A cells (green asterisks), sparse MCF10A cells (red triangles) and
MDA-MB-435 cells (dark blue squares). Light blue crosses are control spectra
obtained from the PBS solution at the same focal depth. The arrows indicate
an increase in the EMT (epithelial-to-mesenchymal transition), the LP (lipid
phenotype), the tryptophan (T) content or the polysaccharide (PS) content. a)
Component 5 (keratin), a marker of EMT, is plotted with component 2, which
was assigned to phosphatidylserine, an indicator of the LP. b) Component 1,
assigned to tryptophan, is plotted with component 2 (phosphatidylserine). c)
Keratin is plotted with component 1, assigned to tryptophan. MCF10A cells in
both culture conditions are completely separated by di�erences in the levels of
both components. d) Component 4, assigned to polysaccharides, is plotted with
the component 2 (phosphatidylserine). MDA-MB-435 cells are clearly split into
two subpopulations: SP435A (with high lipid content) and SP435B (with lower
lipid content).
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Figure 8.3: Results of PLS-DA analysis to explore the ability of RS to di�er-
entiate between sparse and con�uent MCF10A cells and MDA-MB-435 cells.
The model gives 100% sensitivity and 100% speci�city for sparse MCF10A
discrimination (a), 94% sensitivity and 89% speci�city for con�uent MCF10A
discrimination (b), and 80% sensitivity and 100% speci�city for MDA-MB-435
identi�cation (c) using the cross-validation method venetian blinds with 7 splits.
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cating that the EMT process in sparse MCF10A cells altered their metabolism,
giving them more oncogenic properties [230]. Moreover, tryptophan metabolism
and tryptophan catabolism were statistically signi�cant functions (FDR=0.190
and 0.136 respectively) in con�uent cells, which expressed lower levels of tryp-
tophan than sparse cells. Due to the low number of metabolism-related genes
represented in the GEO2603 chip that hybridized with sparse and con�uent
MCF10A cells, an alternative analysis using data from Papageorgis et al. [231]
was conducted. To assess di�erences in gene expression, a t-test between all
probe sets from three hybridized MII samples (k-ras transfected MCF10A cells
without metastasis ability) and MIII samples (k-ras transfected MCF10A cells
with ability to metastasize in vivo) was conducted at the transcriptomic level.
The 33853 genes included in the array (A�ymetrix U133 Plus 2.0) were ranked
by the t-statistic. In this way, positive values corresponded to a MIII pheno-
type whereas negative values were characteristic of MII. A GSEA using the same
gene sets as those in the GSE8430 study was then run. A total of 33853 genes
were hopefully hybridized on the chip, so more metabolism-related genes were
included in the functional enrichment analysis. Signi�cantly enriched functions
at FDR 25% were found such as regulation of insulin secretion by free fatty
acids (FDR=0.150) in MIII cells, whereas in MII cells glucose transporters
(FDR=0.189), lipid rafts (FRD=0.029), phospholipid binding (FDR=0.124) and
cholesterol biosynthesis (FDR=0.002), among others, were enhanced.

Interestingly, upregulated genes from the dataset "Sarrio epithelial mes-
enchymal transition up" were signi�cantly associated with the MIII phenotype,
suggesting a parallel between the MIII vs. MII comparison and the sparse
MCF10A vs. con�uent MCF10A comparison (FDR = 0.013). Along with this
gene set, other sets including genes upregulated in EMT were found to be asso-
ciated with MIII cells, whereas datasets including downregulated genes in EMT
were associated with MII cells. As expected, MIII cells showed a more mesenchy-
mal phenotype, with signi�cant gene sets being those genes described in Charafe
et al. [216] as downregulated in basal and luminal breast cancer sub-types. Ac-
cording to these transcriptomic public data, we inferred that fatty acid and
glucose metabolic functions di�erentiate con�uent and sparse MCF10A cells,
then supporting the RS pro�le.

8.4 Discussion

To our knowledge this study is the �rst time MCR has been used to deconvolve
and track the molecular content of cancer cells during the EMT process, which
involves biochemical changes linked with the early metastatic phenotype of can-
cer cells. We have demonstrated that the unsupervised computational MCR
analysis resolves chemically and physically meaningful component spectra from
a set of mixed Raman spectra, allowing the assignment of pure molecular spec-
tra to each component deconvolved and its contribution (concentration). MCR
is more powerful than the classical PCA technique, in which components can
contain negative regions, impeding the assignment of molecular spectra [214].
Therefore, MCR is a good candidate for tracking the biochemical composition
of a biomedical sample during the transition involving molecular changes in the
early diagnosis of breast cancer.

During the last two decades MCR has been applied to a wide range of chemi-
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cal data [47,48,50] and has been adapted to Raman spectral data from biological
tissues for imaging their molecular content [35, 189]. High-contrast images of
uterine tissue derived using RS with an empty modelling approach of multivari-
ate curve resolution-alternating least squares [189] have been obtained. We have
shown the ability of MCR to track the biochemical composition of a biological
sample during a process involving molecular changes. These molecular changes
are sometimes masked by background signals that perturb the statistical anal-
ysis, an important problem when studying cells using RS. This is because cells
need to be grown on a substrate (normally glass) that contains Raman and �u-
orescence bands, and when acquiring the cellular spectra, the focal point needs
to be very close to the window, which in some cases covers part of the confocal
volume. The ability of MCR to deconvolve pure component spectra allow these
undesired components to be removed and only the inherent changes occurring
in cellular RS to be analysed. Our results demonstrate an improvement in the
molecular characterization of cells when using RS.

MCR performed on the RS of con�uent and sparse MCF10A cells identi�ed
the metabolic pro�le of EMT, which is characterized by a decrease in the cy-
tokeratin content and an increase in the phosphatidylcholine and tryptophan
content. These results are consistent with the gene pro�le attributed to altered
lipid metabolism functions like fatty acid metabolism and fatty acid oxidation,
which increase in malignant cells [232]. Moreover, the PLS-DA analysis of the
cellular RS classi�ed EMT cells in the 600-1800 cm-1 range with 100% sensi-
tivity and 100% speci�city, indicating that RS provides powerful information
allowing strati�cation of cells by their metastasis initiation process phenotype.

MCF10A cells in con�uent conditions had the highest content of cytoker-
atin according to the composition of their pre-EMT cytoskeleton. In contrast,
MCF10A cells that undergo EMT and MDA-MB-435 cells contain abundant
vimentin cytoskeleton [189]. Overall, there was a clear di�erence between con-
�uent and sparse MCF10A cells, re�ecting the increased EMT of the latter.
These cells can thus be strati�ed using the lipid-accumulating phenotype pro-
�le, which has been found in the most aggressive cancer cells and is related to
their increased migration in vitro [233,234]. Moreover, the increased tryptophan
concentration in sparse MCF10A compared to con�uent and MDA-MB-435 cells
might be secondary to the catabolic activation of L-tryptophan by indoleamine
2,3-dioxygenase (IDO1). The consumption of this amino acid by cancer cells
has been related to immune system evasion [235].

The role of IDO1 in tumour cells has been associated with cell cycle regula-
tory genes, increased proliferation and inhibition of apoptosis [236]. Thus tryp-
tophan metabolism could exert immunological and non-immunological e�ects, in
turn improving cancer progression. Moreover, IDO inhibition with siRNA leads
to diminished breast cancer cell proliferation [237]. The activation of genes
associated with the tryptophan metabolism has been reported in other types
of carcinoma such as the cervical carcinoma, indicating a common metabolic
change linked to malignancy [238, 239]. The epithelial-to-mesenchymal transi-
tion (EMT) is one of the main mechanisms involved in breast cancer metastasis
and most likely contributes to metastasis in all types of carcinoma [229,240,241].
Data obtained by the evaluation of RS using MCR were sensitive enough to de-
tect di�erences in the breast cancer basal phenotype, since all analysed cells have
a basal phenotype and share some similarities. The MDA-MB-435 cell popula-
tion is basically fed by components 2 (phosphatidylserine) and 4 (polysaccha-
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rides). Indeed, MDA-MB-435 cells can be split into two clear groups, one with a
low lipid content (phosphatidylserine) and higher levels of polysaccharides and
the other with a higher lipid content, indicating the important role of lipids as
a fuel source for metastatic cells under nutritional deprivation, which in turn
could in�uence metastasis organ-speci�city [227,242].

Cancer is a very heterogeneous disease with a large number of genetic al-
terations. The molecular characterization of cancer cells provides interesting
insights into breast cancer taxonomy but its implementation in clinical diagno-
sis is di�cult because it is so expensive [243]. RS together with multivariate
analysis has shown a high ability to di�erentiate cells with di�erent degrees of
malignancy according to their biochemical composition. This was validated by
gene expression analyses, which con�rmed that these di�erences in cell com-
position were closely associated with alterations in lipid metabolism that are
associated with malignancy. Compared with other decomposition techniques
used in RS, such as Principal Component Analysis, MCR analysis gives more
chemically and physically understandable results.

There is increasing evidence of the association between phospholipids and
cancer. The analysis of MCF10A cells showed initial changes in the lipid content
of cells associated with their EMT phenotype. In carcinoma cells EMT is related
to higher aggressiveness and invasive and metastatic potential [244]. Activation
of lipid metabolism is an early event in carcinogenesis and also a hallmark of
many cancers [245]. In our attempt to study the metabolic changes involved in
the EMT process we analysed sparse MCF10A cells, which show many features
of post-EMT cells in in vitro cell culture, such as increased motility5. Our
results clearly indicate that an increase in phospholipids is associated with the
EMT process in breast cells. Characterization of this initial malignant process,
which is closely related to metastasis progression, might be useful for diagnostic
purposes. The essential hallmarks of cancer are intertwined with altered cancer
cell-intrinsic metabolism, either as a consequence or as a cause [246]. New
approaches based on a panel of small molecules derived from the analysis of
metabolic pro�les of cells are being developed to characterize cancer cell-speci�c
metabolism [247]. Many observations during the early period of cancer biology
research identi�ed metabolic alterations such as the Warburg e�ect [230]. In
this scenario RS supported by MCR can provide a useful tool with which to
assess the biomolecular composition of tumour cells and metastasis-initiating
cells. The applications of spectroscopic methods in cancer detection open new
possibilities in the early stage diagnosis of breast cancer.



9
Molecular monitoring of retina

in�ammation reveals mitochondria stress

and phosphatidylcholine decrease using

Raman spectroscopy

Retinal tissue sustains substantial damage during the in�ammatory processes
characteristic of Multiple Sclerosis (MS). The analysis of neuronal and axonal
degeneration within the retina represents a unique opportunity to study neu-
rodegeneration in MS because this tissue is accessible to direct imaging by pho-
tonics. Furthermore, the analysis of molecular changes at the retinal level will
increase our understanding of neuronal loss and axonal transection and would
aid the development of new neuroprotective strategies for brain and retina dis-
eases. RS is a promising candidate technique to monitor the molecular changes
of the dissease tissue in vivo due to is speci�city and non-invasive character.
In previous chapter, we demonstrated the ability of MCR to disentangle the
molecular components that change in cellular Raman spectra along a biochem-
ical process. Then, the application of MCR to Raman spectra opens up the
possibility to dynamically monitor molecular components in living tissue. For
this reason, in this study, we propose MCR as a technique able to decompose
retina spectra in meaningful molecular components that were tracked over the
in�ammation process. Retinal in�ammation was induced by challenging murine
retinal cultures with lypopolysaccharide (LPS), activating microglia and induc-
ing oxidative stress and pro-in�ammatory cytokines, which work to promote
axonal damage. The evolutions over 48 hours of six di�erent molecular com-
ponents were deconvolved from the Raman spectra by multivariate curve reso-
lution (MCR), and were assigned based in the Raman spectra from candidate
molecules involved in neuroin�ammation. We observed the increase in levels of
immune mediators such as Lipoxygenase, iNOS and TNFα, peaking at 10-12 h



Molecular monitoring of retina in�ammation reveals mitochondria stress and

phosphatidylcholine decrease using Raman spectroscopy 133

after LPS challenge, coinciding with maximum production of oxidative stress.
We also found signi�cant changes in key molecules involved in energy produc-
tion by mitochondria, such as the increase of Cytochrome C levels by 24h and
the decrease in NADH / NAD+ levels by 12 h after LPS. Finally, we observed
a decrease of the fatty acid Phosphatidylcholine at 12 h after LPS challenge,
which parallels tissue degeneration and thinning of the retina. In summary,
we present a novel methodology to monitor the evolution of di�erent molecular
components in retina due to in�ammation by using Raman spectroscopy cou-
pled to MCR, becoming a promising tool that could be used to study the human
retina and diseases of the central nervous system in vivo. Our study represents
the �rst application of MCR to decompose and monitor the molecular content
of a biological tissue with RS.

9.1 Introduction

The retina is a distinctive component of the central nervous system (CNS) in
which retinal ganglion cells from the ganglion cell layer (GCL) projects their ax-
ons to the brain through the optic nerve. Axons from the GCL are not wrapped
by myelin sheaths until they exit the eye and are frequently damaged in several
retinal and brain diseases such as Glaucoma and Multiple Sclerosis (MS). For
this reason, the analysis of their axons in the retina will reveal information about
mechanisms of axonal degeneration independent of the demyelination that is
characteristic of MS. In�ammation of the retina is involved in promoting axonal
damage in MS and other diseases of the retina. Retinal in�ammation is primar-
ily mediated by microglia activation, including the release of pro-in�ammatory
cytokines and the creation of oxidative stress that impairs neuronal function
and promotes axonal damage [248�253]. MS is an in�ammatory disease of the
CNS inducing widespread demyelination and axonal loss, involving in almost all
cases the anterior visual pathway including the optic nerve and the retina [254].
As such, in�ammatory perivascular cu�s and widespread microglia activation
is observed in the retinas of patients with MS [255]. Axons damaged by pres-
ence of plaques within the optic nerve or by trans-synaptic degeneration due
to lesions in optic radiations su�er retrograde degeneration and can be assessed
by optic coherence tomography [256, 257]. The analysis of neuronal and ax-
onal degeneration within the retina represents a unique opportunity to study
neurodegeneration in MS because this tissue is accessible to direct imaging by
photonics. Moreover, axonal degeneration is an active but poorly characterized
process that might share commonalities within di�erent brain diseases such as
Alzheimer's disease, stroke or brain trauma [258�264]. Therefore, the analy-
sis of molecular changes at the retinal level will increase our understanding of
neuronal loss and axonal transection and would aid the development of new
neuroprotective strategies for brain and retina diseases.

Raman technology is particularly useful for working in vivo because the
near-infrared range of incident wavelengths used is non-damaging to human
tissue, and also exhibits a relatively large penetration depth into a sample.
Several recent studies have applied this technology to retinal tissue in animal
models to quantify advanced glycosilation end products (AGE) levels in Brusch
membranes [265], and to di�erentiate between the molecular content of di�erent
retinal layers [266]. Resonance Raman spectroscopy was used in human subjects
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in vivo to quantify macular carotenoid pigments [267]. Another Raman related
technology is coherent anti-Stokes Raman spectroscopy (CARS), which has been
applied for obtaining in vivo microscopy images without staining, such as the
elucidation of myelin damage in spinal cords following glutamate excitotoxicity
in guinea pigs [268].

Although Raman spectroscopy has the maximum speci�city among all op-
tical techniques for detecting molecular changes, the interpretation of Raman
spectra is complex. Biomolecules have many Raman bands and some of them
have similar molecular structures. Consequently, they share groups of bands,
making di�cult to deconvolve the contributions of pure molecular components
from the Raman spectra. During the past decades applications of Raman spec-
troscopy have been focused to separate several groups of samples by means of
multivariate analysis such as Principal Component Analysis (PCA) or to clas-
sify samples by Partial Least squares- Discriminant analysis (PLS-DA) or Neural
Networks. However, little information can be extracted from the above men-
tioned methods to extract meaningful molecular components from the Raman
spectra. In this study, we used Multivariate Curve Resolution (MCR) to decon-
volve from the set of experimental Raman spectra pure molecular components
that changed during retina in�ammation and we monitored the evolution of
their concentrations in the tissue over a 48 hour period process. MCR is an sta-
tistical technique that e�ciently extracts the information encoded in complex
spectra such as those created by Raman spectroscopy [269]. MCR is an un-
supervised computational analysis that iteratively derives the pure component
spectra from a spectral data set and the contributions of each pure component in
each spectrum acquired [270]. MCR requires minimal a priori knowledge of the
system providing objective information. Also, physical characteristics of Raman
spectra as non-negativity constrains can be included, giving more meaningful
component spectra. In this study, very limited a priori information was known
about the molecular components that changed its concentration in the retina
along retina in�ammation. Furthermore, non alternative chemical technique
existed (other than RS) to provide information about the molecular content in
a speci�c region of the retina in real time and in vivo. Thus, the combination of
RS with MCR represents an objective and novel methodology with promising
applicability to study and monitor the biochemical behavior of diseases in vivo.

Here we aim to assess the molecular changes along time of the GCL dur-
ing retina in�ammation by means of Raman spectroscopy. We made use of an
in vitro model of neuroin�ammation using murine retinal organotypic cultures,
which preserve cellular composition and tissue architecture while allowing direct
in vivo imaging analysis [271]. We were interested in identifying the most signif-
icant molecular changes associated with axonal damage in retina in�ammation
and in obtaining a proof of concept that molecular imaging of the retina by
Raman spectroscopy combined with MCR can become a useful technology for
studying and monitoring for MS and other brain and retina diseases.
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9.2 Methods

9.2.1 Chemicals

L-glutamic Acid, cytochrome C puri�ed from Pidgeon Breast Muscle, L-(+)-
lactic acid, nicotinamide adenine dinucleotide (NADH), L-+-phosphotidylcholine,
and N-acetyl-L-aspartic acid (NAA), were purchased from Sigma Aldrich and
used without further modi�cation. N-carboxymethyl lysine (CML), and N-
carboxyethyl lysine (CEL), and pentosidine were purchased from Polypeptide
Laboratories, CML and CEL were used without further modi�cation. Due to
packaging constrains, pentosidine was diluted in PBS for analysis. Flavin ade-
nine nucleotide (FAD) was purchased from Carbon Scienti�c and used without
further modi�cation. For the spectra of molecules in solution, powders were
mixed with a small amount (1 to 2 drops) of PBS 1x pH 7.4 and imaged at
this high concentration, with the exception of NADH which was measured in
Triz pH 7.5 due to its documented interactions with the phosphate content of
PBS [272]. Eight di�erent concentration of NAA in PBS pH 7 (4M, 3M, 2M,
1M, 0.5M, 0.1M, 0.05M, and 0.01M) were prepared by dilution methods. Three
to �ve spectra were taken of each concentration, and spectral intensity versus
concentration for each spectral peak was displayed graphically.

9.2.2 Retina organotypic cultures

Retinal cultures were prepared in accordance with published protocols (27, 43).
Retinal tissue was excised from C57BL/6J p8 mice (Harlan) and whole mounted
to tissue culture Millicell-CM culture inserts (pore size 0.4 µm) with the reti-
nal nerve �ber layer (RNFL) facing up, and incubated at 37◦C and 5% in
culture medium (45% HAMS-F12, 45% DMEM, 10% fetal bovine serum, 10
ml/l HEPES, 10 ml/l Penicillin / Streptomycin, 10 ml/l Anti-Mycotic, 5 µ
g/ml insulin). Tissue was cultured for six days, then treated with 15 µ g/ml
lipopolysaccharide (LPS; from Sigma Aldrich) in the tissue culture medium for
time periods up to 24 hours as described before [271,273�275].

9.2.3 Immunohistochemistry

Retinal cultures were �xed for 40 minutes in 4% paraformaldehyde 24h after
treatment with LPS. Retina were blocked and permeabilized in 0.5% Triton
and 10% normal goat serum in PBS 1x for 1 hour, and incubated overnight at
4◦C with primary antibody in blocking solution. The samples were then washed
and incubated with the secondary antibody in blocking solution, washed again,
and mounted with GelMount anti-fading medium with DAPI (Sigma). Sam-
ples for bio-conjugated Lectin staining were prepared using the same protocol,
with the secondary antibody omitted. Pairs of primary and secondary anti-
bodies were as follows: rabbit polyclonal antibody to the 200 kD neuro�lament
heavy chain (NfH) (Abcam, 1:500) and FluoProbes 488 anti-Rabbit IgG (Flu-
oProbes, 1:200), rat monoclonal to CD11b (anti-OX42) (Abcam, 1:100) and
FITC-conjugated Lectin from Lycopersicon esculentum (Sigma Aldrich 1:200).
MHC class II staining was omitted because LPS injection in the retina does not
cause induction of this particular protein in retinal microglia [253]. Samples
were viewed using a Leica confocal microscope Sp5 and Leica viewing software.
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9.2.4 qRT-PCR

The mRNA extraction from tissue culture was performed according to the ani-
mal tissue protocol from Qiagen RNeasy Mini Kit. The total RNA concentration
was measured using an UV spectrometer. 800 ng of total RNA from each sample
was subjected to reverse transcription using the Qiagen RT-PCR system. First
strand cDNAs were ampli�ed using a real-time PCR thermal cycler. qPCR was
performed with Qiagen qPCR kit and iNOS primers from Applied Biosystems.
Mouse GADPH (Applied Biosystems) was used as an endogenous control. For
relative comparison, the Ct value of each sample was normalized to the equiv-
alent endogenous control and then all values were normalized to a randomly
chosen control sample as described before [276].

9.2.5 ELISA

Retinal organotypic culture supernatants were collected at di�erent time points
after LPS stimulation (0, 6, 12, 24, and 48 hours) for the measurement of IL-1β,
TNF-α and IL-6 levels. ELISAs were performed following the kit instructions
from the manufacturer (Peprotech)

9.2.6 ROS measurement

Tissue cultures were incubated for 1 hour with 10 µl of 50 µM H2DCFDA
(Peprotech) after LPS stimulation at 0, 6, 12, 18, 24, and 48 h. Tissue was then
washed with PBS, and �uorescence was measured using a spectro�uorometer
with excitation at 485 nm and emission at 535 nm as previously described [271].

9.2.7 HPLC

We pooled 8 retinas for each time point in order to assess concentration of NAD
and NADH, Lactate, Glutamate and NAA. Perchloric acid 0.4 M was added,
and the samples were sonicated for 10 s 3 times after centrifugation for 20
min, at 10,000 rpm and 4◦C. The supernatant was collected and kept at -80◦C
until use. For metabolite determination, we applied the HPLC-Uvis (Breeze
model; Waters) with a binary pump (model 1525), autosampler (model 2707)
and UV detector (model 2489). Sample aliquots of 50 Î�l were injected into
the Spherisarb ODS column (Waters) with a 5 µm pore size and 4.6 x 250 mm
dimension. The mobile phase used was 8 mM NaH2PO4 and 18% acetonitrile
adjusted to pH 3 with HCl pure acetonitrile. Quanti�cation of the results was
done by using commercial molecules at di�erent concentrations to generate a
calibration curve (range: 0.1-1 mg/ml).

9.2.8 Raman spectroscopy

Raman spectra were acquired with an InVia Raman microscope from Renishaw
with a backscattered con�guration. The Raman excitation was performed with
785 nm laser beam focused through a 60X 0.75 NA objective (Leica). Raman
spectra for the candidate molecules were obtained by placing the powder or the
liquid samples on a sample holder with a cover glass number zero and illuminated
from the top with a power from 5 to 40mW. Retina organotypic cultures were
measured using the preparation described above using a power of 100mW to
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ensuring no photodamage was induced. The background for all spectra was
subtracted using an established method [277]. Background subtraction was
implemented in Labview and smoothed using a Butterworth low pass �lter and
�ve-point adjacent average. We assigned strong (s), medium (m), and weak
(w) labels based on the highest, middle, and lowest third of the peak intensities
of each individual spectra. For individual band assignments no shifts bigger
than 10 cm-1 were considered. We only assigned a spectrum to a molecule
when more than the 90% of the most prominent bands were correlated with the
characteristic molecular Raman bands found in the constructed Raman database
or in the literature.

9.2.9 Time series and statistical analysis

Spectra were taken randomly from 10 points in the RGC layer of the organotypic
retina culture (at a depth of 15-16 um below tissue surface, Fig. 1) in healthy
tissue and 2, 4, 6, 8, 10, 12 and 24 hours after LPS challenge. This process
was repeated for 6 independent retinas treated with LPS and 6 control retinas.
Principal Component Analysis (PCA) was performed to explore the spectra and
select the number of the principal components needed to explain the maximum
variance in the data [278]. Once the number of components was identi�ed, the
spectra were analyzed by Multivariate Curve Resolution (MCR) as described
before [269]. In total, nine components of the spectra were deconvolved. Three
components were identi�ed as background coming from di�erent parts of our
system (the culture membrane or residual �uorescence), these components were
not used in further analysis. The remaining six components were identi�ed by
their respective molecular Raman spectra and tracked through time after LPS
challenge induced retina in�ammation. Characteristic statistical parameters
such as the p value were calculated to assess the signi�cant di�erence between
molecular content in control and LPS challenged tissues. Partial Least Squares -
Discriminant Analysis (PLS-DA) was performed using PLS toolbox from Eigen-
vector Research in MatLab. The same Raman spectra used for MCR analysis
were used for PLS-DA classi�cation. Cross-validation analysis was computed by
Venetian blinds (6 bags). The number of retained LVs was chosen to minimize
the root mean square error of cross validation (RMSECV) curves. In plots, *
signify p<0.05 (signi�cant), ** means p<0.01 (highly signi�cant) and *** is
p<0.001 (very highly signi�cant).

9.3 Results

9.3.1 Raman spectra of candidate molecules

We analyzed eight molecules by Raman spectroscopy in powder form and in
solution as candidate biomarkers for monitoring retina in�ammation. These
molecules were selected because they play an important role in neuroin�amma-
tion and neurodegeneration and at the same time they show good signal to noise
ratio using Raman spectroscopy. The spectrum of each molecule is presented
as spectral library ( Fig.9.1) with an accompanying chart detailing the strength
(strong, medium, or weak) of the Raman activity of each peak (Table9.1). Of
the molecules tested, Glutamate, Lactate, NADH, NAA, Cytochrome C and
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Figure 9.1: Raman spectra of candidate molecules: Glutamate in powder a1)
and in PBS a2); Lactate in powder b1) and in PBS b2). NAA in powder c1) and
in PBS c2); FAD in powder d1) and in PBS d2); Cytochrome C in powder e1)
and in PBS e2); Pentosidine in solution f); CML in powder g1) and in PBS g2);
CEL in powder h1) and in PBS h2); Phosphatidilcoline in powder i1) and in
PBS i2); NADH in powder j1) and in PBS j2). 125 mW, 785 nm, 30s acquisition
time.

Phosphatidylcholine presented a good signal to noise ratio in Raman spectra in
solution (which better simulates the signal from living tissue, as compared to
the powder form) and were used for further analysis.

9.3.2 Raman spectra from the GCL of cultured retinas

Spectra were taken at a depth of 11-12 µm from the surface of retina cultures,
which given the refractive index of the retinal tissue (reported to be at around
1.35 for murine retina), places the focal point at an actual depth of around
15-16 µm below the tissue surface [279]. The GCL has been shown in adult
mice to begin from 13 µm below the surface of the retina in healthy tissue to 3
µm below the surface in tissue with RNFL degradation by in�ammation. The
average depth of GCL is 40 µm. Taking into account the fact that post-natal
p8 mice have less developed tissue structure, our probe focal point at a depth
of 15-16 µm was within the GCL, with vertical peripheral data including the
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Figure 9.2: Raman spectroscopy analysis of the Retinal Ganglion Cell layer of
the retina. Design of the analysis of the Ganglion cell layer (GCL) and Retinal
Nerve Fiber Layer (RNFL) of the retina based in the physical properties of laser
light and anatomical structure of retinal layers.

Figure 9.3: Raw Raman spectra from control retina samples after 10 hours in-
cubation time (black) and LPS treated retina samples after 10 hours incubation
time (red) and 12 hours incubation time (blue).

entire depth of the RNFL (Fig. 9.2) [280]. Using this approach we obtained the
Raman spectra from murine retina cultures, that revealed a complex pattern
and contain the peaks of the several candidate molecules under study (Fig. 9.3).

9.3.3 LPS induces microglia activation, oxidative stress
and axonal damage in retina cultures

In order to assess the changes in the GCL in response to in�ammation, we used a
model of retina in�ammation in which retina organotypic cultures are challenged
with LPS [271, 273�275]. Immunostaining of OX42 reveals activation of retinal
microglia 24 h after LPS challenge, as evidenced by their amoeboid shape (Fig.
9.4I a-b). Tomato Lectin staining clearly delineated rami�ed microglia with
typical long branching processes in control cultures, versus the rounder activated
amoeboid state found in cultures stimulated with LPS by same time (Fig. 9.4I c-
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d). Immunostaining of the neuro�lament heavy chain (NfH) clearly showed the
formation of axonal spheroids, a feature known to be typical of the occurrence of
impaired axonal transport and axonal dysfunction and end-bulbs indicative of
axonal transection in cultures treated with LPS (arrows in Fig. 9.4I f) [264,271].
The level of pro-in�ammatory cytokine IL-6 was assessed in culture supernatant
from baseline to 48 hours after LPS stimulation by ELISA, showing a peak at 18
hours and a subsequent increase to 48 hours after LPS stimulation (Fig. 9.4II).
The level of reactive oxygen species was measured from baseline to 24h after
LPS stimulation, showing a signi�cant increase 12 hours after LPS challenge
and remain elevated for the next 48 hours (Fig. 9.4III). Overall, these results
show the time dynamics of microglia activation and axonal damage in retina
in�ammation over 24 h after LPS challenge. The Raman spectra from murine
retina cultures challenged with LPS reveals signi�cant di�erences compared with
control retinas (Fig. 9.3).

9.3.4 Raman spectroscopy combined with Multivariate Curve
Resolution reveals signi�cant molecular changes in
immune, energy and lipid mediators during retina
in�ammation

Changes in the Raman spectra during the process of neuroin�ammation were
analyzed from spectra taken at random locations within the central region of
each organotypic retina culture at a constant depth of 15-16 µm, putting the
focal point within the GCL of the culture. Two independent experiments were
performed with 6 retinas per experiment, three retinas were control and three
were stimulated with LPS. Ten spectra were taken for each time point and
retina. We characterized molecular changes in the murine retinas during in-
�ammation using MCR analysis. Nine components were deconvolved from the
spectra by MCR, capturing 99.7% of total variance. Three components were
used for background removal from the culture membrane or media and unde-
sired �uorescence (see methods). The six remaining components were assigned
based in Raman databases or the spectra from our candidate molecules known
to have a role in neuroin�ammation (see methods).

The �rst MCR component was 5-Lipoxygenase (Fig. 9.5A) [281], an enzyme
involved in metabolism of eicosanoids such as prostaglandins and leukotrienes
and therefore critical in the innate immune response. From the reconstructed
concentration curve a signi�cant increase of 5-Lipoxygenase at 10 to 12 h after
LPS challenge was observed. The second component corresponded to iNOS and
TNFα (Fig. 9.5B) [282], two well-known proin�ammatory molecules involved in
CNS in�ammation. The temporal evolution of the concentration of iNOS and
TNFα demonstrates a signi�cant increase at 10 hours after LPS application
with a maximum at 12 h. Component 3 corresponded to Cytochrome C and
Phenylalanine (Fig. 9.5C). These molecules experience a signi�cant increase in
their concentrations 24 h after the LPS administration. Component 4 was Phos-
phatidylcholine (Fig 9.6A) [283]. The concentration plot showed a signi�cant
decrease at 10 to 12 h after LPS challenge compared with baseline. Component 5
corresponded to NAD+ and NADH (Fig 9.6A) [284]. NAD+/NADH levels �uc-
tuate with an early increase by 6 h and a decrease 12h after LPS challenge. The
last component (component 6) corresponded to a mixture of molecules, which
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(I)
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Figure 9.4: Morphological and molecular characterization of retina in-
�ammation. Immunohistochemical analysis of organotypic retinal tissue cul-
ture 24 hours after LPS challenge as compared to control tissue. I) Repre-
sentative confocal images of retinal cultures labeled with primary antibodies
against OX42 (a,b), Tomato Lectin (c,d), and NfH (e,f). Scale bar 20 µm
(a,b,c,d), 50 µm (e,f). Arrows indicate either axonal swellings (spheroids) or
axonal end-bulbs (axon transection). Induction of pro-in�ammatory cytokines
and oxidative stress during retina in�ammation: II) time-course analysis via
ELISA of cytokine levels for IL6 in culture supernatant at hours 0, 6, 12, 18, 24,
and 48 after addition of LPS; III) time-course analysis via spectro�uorometer of
reactive oxygen species levels in tissue cultures at 0, 6, 12, 18, 24, and 48 hours
after addition of LPS.
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include several of our candidates such as glutamate, NAA, lactate or FAD, as
well as structural molecules of the retina present in GCL that do not undergo
signi�cant changes in concentration during the 24 hours after LPS (9.6C) and
for this reason they were not further characterized.

9.3.5 PLS-DA classi�er identi�es Raman spectra pattern
associated with retina in�ammation

We made use of Partial Least Squares-Discriminant Analysis (PLS-DA) to asses
the ability of Raman spectroscopy to discriminate retina in�ammation. The
PLS-DA algorithm was able to classify retina tissue in control or LPS challenged
with good accuracy (sensitivity: 0.91, 0.87 and 0.95, and speci�city 1.0, 0.93
and 0.84 for 10, 12 and 24 h respectively; Fig. 9.7A - 9.7C). Therefore, the
fact that the PLS-DA classi�er achieved a high accuracy for discriminating
between healthy and in�amed tissue support Raman spectroscopy as a tool for
monitoring retina in�ammation. Also, we identi�ed the best time to detect
in�ammatory changes was at 10 h, which matches with the maximum changes
observed from the MCR results.

9.3.6 Validation of iNOS, TNFα and NAD/NADH changes
in retina in�ammation

In order to validate several of the changes revealed by Raman spectroscopy
during retina in�ammation, we quanti�ed level of TNFα in culture supernatant
from baseline to 48 hours after LPS stimulation by ELISA. We con�rmed that
TNFα increased after 12 h and remained elevated for the next 48 hours after LPS
stimulation (Fig. 9.8A and 9.4III). RT-PCR analysis of iNOS levels revealed
a prominent increase in iNOS expression 24 hours after LPS challenge (Fig.
9.8B). Finally, we assessed the levels of NAD / NADH in retina cultures by
HPLC. Retinas challenged with LPS for 12 and 24 hours were compared with
control retinas. We observed an initial increase of NAD and NADH after LPS
challenge in retinal culture in accordance with Raman spectroscopy analysis
(Fig. 9.8C). Moreover, the levels of glutamate, lactate and NAA, which were
not signi�cantly changed in the Raman spectroscopy analysis, remained also
unaltered by HPLC quanti�cation (data not shown).

9.4 Discussion

In this study we report the use of Raman spectroscopy of organotypic retinal
cultures as a molecular imaging tool applicable to study of diseases of the cen-
tral nervous system. Raman spectroscopy of the retina greatly enhances our
ability to study these systems. The accessibility of the retina for laser imaging,
and the sensitivity of Raman spectroscopy coupled with MCR-ALS algorithm
for detecting and quantifying biomolecules, allowed a more detailed study of the
temporal evolution of the molecules implicated in neuroin�ammation. By com-
bining biochemical spectra analysis, published Raman databases and multivari-
ate analysis (MCR) we were able to characterize, monitor and quantify several
molecules such as Lipoxygenase, iNOS, TNFα, Cytochrome C, Phenyalanine,
NADH/NAD+, and Phosphotidylcholine in the GCL of the retina. Moreover,
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(A)

(B)

(C)

Figure 9.5: Changes in molecular content in retina in�ammation by
Raman spectroscopy. Molecular components that changed during retina in-
�ammation were deconvolved from the Raman spectra using Multivariate Curve
Resolution. The 3 �rst components identi�ed are displayed (A-C): left: spec-
tral pro�le deconvolved for each molecular component; right: Time course of
the concentration pro�le for each molecular component after the LPS challenge.
Curves for the mean of the control samples (black line) and the LPS treated
samples (blue line) are compared. *p<0.05, **p<0.01 and ***p<0.001.
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(B)

(C)

Figure 9.6: Continuation from previous �gure. Changes in molecular con-
tent in retina in�ammation by Raman spectroscopy. Molecular com-
ponents that changed during retina in�ammation were deconvolved from the
Raman spectra using Multivariate Curve Resolution. The 3 remaining compo-
nents identi�ed are displayed (A-C): left: spectral pro�le deconvolved for each
molecular component; right: Time course of the concentration pro�le for each
molecular component after the LPS challenge. Curves for the mean of the con-
trol samples (black line) and the LPS treated samples (blue line) are compared.
*p<0.05, **p<0.01 and ***p<0.001.
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(A) (B)

(C)

Figure 9.7: Partial least square - discriminant analysis of Raman spec-
tra in retina cultures in neuroin�ammation. Spectra from 25 control
cultures and 25 cultures stimulated with LPS for 24h were analyzed by means
of PLS-DA in order to classify samples as control (0) or in�amed (LPS treated)
(1). Classi�cation is shown for changes in the Raman spectra at 10 h (A), 12 h
(B) and 24 h (C).
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(A)
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Figure 9.8: Validation of molecular changes in neuroin�ammation. A)
Induction of the pro-in�ammatory cytokine TNFα during retina in�ammation:
Time-course analysis via ELISA of cytokine levels for TNFα in culture super-
natant at hours 0, 6, 12, 18, 24, and 48 after addition of LPS. B) Quantitative
analysis by qRT-PCR of iNOS expression in tissue cultures after 24h incubation
with LPS versus control tissue. Y-axis represents the ratio between the level
of iNOS mRNA and the level of endogenous control mRNA. C) Quanti�cation
of NAD and NADH by HPLC in retina cultures after LPS challenge: Graphs
shows levels of NAD and NADH from a pool of 5 retinas for each time point
after LPS stimulation and quanti�ed by HPLC.
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we provide evidence that quanti�cation of such molecules re�ects tissue damage
related to retina in�ammation. Finally, we developed mathematical methods
that were able to predict the presence of retinal in�ammation based on changes
in the Raman spectra. Overall, our results suggest that Raman spectroscopy of
the retina combined with MCR analysis can become a useful molecular imaging
technique for the study and monitoring of retina and brain diseases.

The molecules deconvolved by MCR of Raman spectra of LPS treated retina
are important players in the process of neuroin�ammation in the CNS. The en-
zyme Lipoxygenase is associated with the production of leukotrienes, which
are associated with in�ammation of brain tissue mediated by the innate im-
mune system [285]. In the cycle of neuroin�ammation and oxidative stress in
the central nervous system, iNOS plays a critical role exacerbating the hypoxic
environment through overproduction of nitric oxide (NO). Levels of iNOS in-
creased within the GCL at 12h, as revealed by Raman spectroscopy, and in
the entire retina at 24 h as revealed by ELISA. Importantly the production of
reactive oxygen species peaks at twelve hours, closely correlated to the peak
in iNOS production detected by Raman. The production of the NO by iNOS
has deleterious e�ects on the electron transport chain, and is a major cause of
neuronal and axonal damage [271]. In addition to iNOS, the pro-in�ammatory
cytokine TNF-α is a key component of the signaling cascade associated with
the in�ammatory response in nervous tissue resulting in cellular damage [286].

In addition, Raman spectroscopic analysis of the in�amed retina revealed
changes in critical mediators of mitochondria functioning and energy produc-
tion. We observed a signi�cant increase in Cytochrome C and Phenylalanine
and a decrease in NAD/NADH. Oxidative stress can signi�cantly interfere with
the electron transport and mitochondrial function, promoting the export of Cy-
tochrome C to the cytoplasm, which is an important trigger for cell death [287].
Also, the decrease in NAD/NADH levels con�rms the failure of the electron
transport chain. In addition, NAD seems to play a signi�cant role in the con-
trol of the autoimmune attack against the brain in MS through the regulation of
the enzyme indoleamine 2,3-dioxygenase (IDO), regulating T cell activation but
also the interaction between neurons and microglia [288]. The anoxic cellular en-
vironment, in which cells must rely primarily on glycolysis to generate ATP, will
increase NADH levels, while decreasing NAD+ supplies. The increased levels of
NO impair the electron transport chain, without which NAD+ levels are unable
to be maintained. Fluctuations of these metabolites over the 24h LPS challenge
period re�ect metabolic stress experienced by the retina tissue. Also, the role of
Phenylalanine is complex, being a precursor of tryptophan and kynurenins and
for this reason playing a critical role in the control of the endogenous regulation
of neuronal excitability and the initiation of immune tolerance [289], as well as
modulating the stability of myelin during neuroin�ammation [290].

Raman spectra of the in�amed retina revealed decreased levels of fatty acids
that could correlate with cell death and degradation within the GCL. The de-
crease in levels of Phosphatidylcholine in the GCL as a result of LPS challenge
could be caused by cell death or thinning of the tissue and cell membrane dis-
ruption [291]. In addition, we observed that 24 to 48h after LPS challenge, the
overall signal intensity decreased in the retina tissue, which was not attributable
to any single component. Although this e�ect could be due to thinning of the
GCL, changes in Muller cells in response to microglia activation may have had
in�uence in light transmission [292]. Finally, we found no signi�cant changes in
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some of the candidate molecules such as lactate, glutamate and NAA neither by
Raman spectroscopy or HPLC. The lack of changes of these molecules that are
well documented in other settings could be related to the fact that concentration
may change between cell compartments or retinal layers, but not in the overall
concentration in the tissue.

Our study has several limitations. We have studied the changes induced by
LPS in an in vitro model of retinal in�ammation in which timing and location
was well controlled. However, in humans changes in immune mediators may be
more di�cult to detect due to heterogeneity between subjects and the changes
observed are the result of a chronic process instead of an acute challenge, mak-
ing it more di�cult to identify such patterns. Second, the speci�city of the
assignment of spectra to molecules (we required a 90% band coincidence) does
not completely preclude the possibility that the signal identi�ed may come from
other molecules, in addition to the ones identi�ed. For this reason, additional
validations in other models of disease are warranted. Also, the identi�cation
of the molecules that signi�cantly change in our study were based in the char-
acterization of a set of candidate molecules and the information available in
Raman databases, which is limited at present. For this reason, future research
would improve the knowledge of the Raman spectra of biomolecules, allowing
better identi�cation of molecular changes by this technology. Finally, at present,
knowledge of the speci�city of Raman spectroscopy for distinguishing isoforms
or posttranslational modi�cations of a given molecule is limited, which may be
of great importance for several biological processes.

One of the main bene�ts of our approach is that Raman spectroscopy com-
bined with MCR analysis is an unbiased screening technique that identi�es
temporal changes in any molecule present in the spectra, and for this reason
may reveal previously uncharacterized molecules involved in a biological pro-
cess. Furthermore it is a non-invasive technique and monitoring in living sub-
jects is possible as compared with invasive methodologies as HPLC. The use of
Raman spectroscopy to analyze �ndings in in�amed and control tissue culture
samples has revealed several peaks of interest within the retinal spectra that can
be attributable to changes in in�ammatory mediators, components of the mito-
chondria and fatty acids during neuroin�ammation. Further research is required
to characterize the Raman band's behavior of these molecular components as
a function of a real case of disease progress, and to incorporate their scanning
potential into a diagnostic agent. It is clear from these �ndings that Raman spec-
troscopy combined with MCR presents the distinct possibility of non-invasively
diagnosing and characterizing molecular levels quickly and accurately, and has
the potential to drastically change how the process of neuroin�ammation can
be studied both in culture and in humans. In summary, we present a novel
methodology for decomposing experimental Raman spectra from the retina into
pure molecular components and monitor the molecular time evolution during
retina in�ammation, becoming a promising application to study retina diseases
progress in vivo.
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Table 9.1: Raman peaks and intensity for each molecule in solution. Strong
(s), medium (m), and weak (w) designations assigned based on the highest,
middle, and lowest third of the peak intensities of each individual spectra (very
weak bands not listed). NAA: N-acetyl-aspartate; NADH: nicotinamide adenine
dinucleotide; FAD: �avin adenine nucleotide (FAD), CML: N-carboxymethyl
lysine; CEL: N-carboxyethyl lysine

Molecule Bu�er Raman bands (cm−1)

Glutamate PBS 344(w),531(m), 772(m), 787(m), 819(m), 857(s), 881(s),
935(s), 998(w), 1041(w), 1080(m), 1152(w), 1194(w),
1265(m), 1289(s), 1327(s), 1346(s), 1414(s), 1444(s),
1629(m), 2868(w), 2885(w), 2937(m)

Lactate PBS 335(w), 422(w), 532(m), 642(w), 749(m), 828(s), 924(m),
1049(m), 1085(m), 1133(w), 1245(w), 1298(m), 1334(m),
1377(s), 1456(s), 1722(m), 2731(w), 2890(w), 2946(m),
2995(w)

NAA PBS 349(s), 396(m), 542(w), 575(w), 649(m), 750(m),
7887(w), 842(s), 885(m), 901(m), 926(w), 949(s), 989(s),
1016(m), 1050(w), 1078(w), 1138(w), 1194(w), 1233(m),
1309(s), 1379(s), 1422(m), 1432(m), 1648(s), 1723(s),
2857(w), 2943(s)

NADH TRIZ 390(m), 534(w), 635(w), 729(s), 756(m), 779(w), 832(m),
849(w), 882(w), 893(w), 941(m), 995(w), 1031(w),
1075(m), 1081(m), 1114(s), 1183(m), 1222(m), 1254(m),
1306(s), 1337(s), 1379(s), 1419(s), 1458(m), 1483(m),
1511(m), 1544(s), 1580(m) 1617(s), 1688(s), 2900(w),
2956(w)

Phosphatidyl-
choline

PBS 374(w), 413(w), 449(w), 459(w), 613(w), 716(s), 766(m),
846(m), 873(m), 924(m), 954(m), 971(m), 1021(w),
1064(m), 1085(m), 1123(w), 1145(w), 1273(s), 1300(s),
1339(s), 1364(s), 1440(s), 1555(m), 1657(s), 1732(w),
2727(w), 2852(w), 2893(s), 2928(s), 3014(m), 3042(w)

FAD PBS 531(w), 609(w), 680(w), 743(m), 789(w), 1067(w),
1158(w), 1164(w), 1181(w), 1226(s), 1255(m), 1280(m),
1351(s), 1408(s), 1463(m), 1500(m), 1546(m), 1581(s),
1629(s)

Cytochrome
C

PBS 645(m), 741(s), 797(m), 811(m), 825(m), 852(w),
929(m), 975(m), 1002(m), 1126(w), 1561(s), 1582(s),
1636(s), 2883(w), 2934(m)

CML PBS 810(s), 848(s), 929(m), 987(w), 1011(w), 1079(s),
1108(m), 1219(m), 1261(s), 1441(s), 2876(w), 2912(w),
2933(m), 2963(m), 2978(w), 2998(w)

CEL PBS 332(s), 354(m), 483(w), 539(m), 554(m), 648(m), 733(w),
774(m), 810(m), 852(s), 895(w), 1043(m), 1063(m),
1070(m), 1093(m), 1166(w), 1198(w), 1327(s), 1352(s),
1372(s), 1410(s), 1444(s), 1464(s), 1632(s), 2878(w),
2944(m), 2970(w)

Pentosidine PBS 406(m), 432(m), 487(w), 534(w), 548(w), 578(m),
600(w), 624(w), 651(w), 663(m), 670(m), 680(m),
727(m), 748(m), 777(w), 786(w), 844(m), 902(m),
1054(m), 1106(m), 1144(w), 1170(m), 1277(m), 1327(m),
1372(m), 1435(s), 1480(s), 1494(s), 1532(w), 1558(w),
1610(m), 1639(m), 1660(m), 2104(m), 2878(w), 2944(w)
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Raman spectroscopy is a very promising tool for molecular cytologic studies to
reveal the underlying biochemical mechanisms that occurs in a cellular process
but Raman spectroscopy has some drawbacks that need to be overcome to set
this technique as a tool daily used in clinical diagnosis. Speci�cally, there is
a need to improve the methodology to deconvolve from the spectra each pure
molecular contribution when looking for sample di�erences. Also, the contribu-
tion of background signal in cell preparations as the glass window or the media
can contribute Raman signal masking and degrading the statistical analysis. In
this research we compare the strengths of Multivariate Curve Resolution (MCR)
vesus PCA to deconvolve meaningful molecular components from a set of mix
spectra. We exploit the capability of MCR algorithm to easily include ini-
tial estimates and constrains, demonstrating the ability of MCR to deconvolve
from the spectra undesired background spectra in cytologic Raman studies and
therefore obtaining the inherent biochemical information encoded in the cellular
spectra. The use of MDA-MB 231 and MDA-MB 435 breast cancer metastatic
cells illustrate the spectroscopic gaining insights which infer into the metabolic
changes required to bone metastasis progression, including an increase in amino
acids composition and decrease in mitochondria signal. We propose MCR as
a very powerful tool for analyzing biological Raman spectra to reveal chemi-
cally and physically meaningful components that will provide new and unique
insights to the biochemical model encoded in the molecular progression of cell
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composition.

10.1 Introduction

Raman spectroscopy has been applied in the past decade to study biological
samples with the help of statistical analysis. For instance, some techniques has
been used to �nd groups and clusters in the Raman spectral data set such as
PCA [293, 294], K-means clustering [295, 296] or Neural networks [297]. Also,
Partial-Least-Squares Discriminant analysis (PLS-DA) allowed to construct dis-
criminatory models to distinguish di�erent types of samples and thus, it has been
applied for instance to di�erentiate metastatic cells from the non-metastatic
cells without basal-like phenotype [211]. Studying a dynamic process , 2D cor-
relation was used to get insights into the correlation of Raman bands and the
band evolution as broadening, shifts, etc. [298]. However, Multivariate tech-
niques mention above do not provide the su�cient information to extract the
molecular picture of the process being analysed and then, do not exploit all the
speci�city capabilities of Raman spectroscopy. There are some applications as
the cytological studies of suspicious cancer cells in which Raman spectroscopy
could be very useful to diagnose and study molecular di�erences among types
of cells. But, some drawbacks needs to be overcome to fully exploit all the
speci�city capabilities of this technique. First, cells are grown on the surface of
glass materials and therefore laser focus needs to be close or pass the surface
window. Sometimes, part of the confocal volume analyzed covers a portion of
the glass material which consequently produces undesired background signals in
the Raman spectra. Second, it would be very useful to be able to use already
prepared and stored patient samples used for parallel studies such as �uores-
cence but, sometimes these samples contain stains and are prepared in cover
slips that will give a very high signal that will perturb the inherent cellular
Raman spectra. This could be palliated by using expensive objectives as high
numerical water immersion objectives directly on the liquid preparation, but risk
of contamination of samples will exist and no already prepared samples could
be used. Furthermore, background signals will be present. Bonnier et al. [299]
tried to remove the e�ect of the background signals in the spectra by growing
the cells in collagen matrices on the top of coverslips but this requires sample
processing and modi�cation of already established biomedical protocols. In this
study a powerful statistical methodology is proposed to remove the undesired
background signals and additionally be able to extract meaningful molecular
components playing a role from the cellular Raman spectral analysis.

The method proposed is based on the use of the �exible and powerful algo-
rithm Multivariate Curve Resolution- Alternating Least squares (MCR-ALS).
MCR-ALS has been applied to several chemical problems [47]. Recently, it has
been used in biological Raman spectroscopy as a decomposition algorithm to
create Raman maps [52]. However, up to our knowledge it has not yet being
used to recover and understand the molecular behavior of a biochemical pro-
cess from Raman spectra of biological species such as tissue or cells. In this
study we propose to exploit the �exibility of MCR-ALS algorithm to enhance
and expand the strengths of Raman spectroscopy to be applied in daily clin-
ical studies. Speci�cally, by making use of initial estimates and introducing
physic-chemical constrains as the non-negativity of spectra and concentration,
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pure and meaningful molecular components can be deconvolved from biological
Raman spectra.

In the present work, MCR-ALS algorithm has been applied to a set of cy-
tological Raman spectra that were adquired from an already prepared sample
containing di�erent cancer cell lines. Speci�cally, �rst, a comparison on the
ability of PCA and MCR analysis applied to the same Raman spectral data has
been tested to deconvolve pure components; second, a clever use of MCR-ALS
algorithm has been applied to extract the quartz and water background signal
from the spectral data and remove it from the Raman spectral data set.

This methodology has been used to get insights into the metabolic changes
that breast cancer cells acquire to bone metastasis tropism. Recently, it has
been reported the distinct growth and metastatic properties of two cell lines
that share a closely-related genetic background with di�erent orga-speci�cty in
lungs or in bone. The di�erent dynamics of hypoxia was secondary to organ-
speci�c metastasis genes suggesting distinct dependence of hypoxia in promoting
metastasis [300]. Moreover, we have recently showed that antioxidant proteins
such as peroxiredoxins were speci�cally upregulated in lung metastatic breast
cancer cells [242]. In that study, we used Raman microspectroscopy to study
the chemical composition of metastatic variants to assess the importance of
the metabolic pressure of the target organ to select their metabolic phenotype.
These results suggested the glycolytic character of lung metastatic cells subtend
by an increased REDOX. Under glucose deprivation, lung and bone metastatic
cells were almost completely separated by a component, compatible with NADH.

In the present study, we exploit the use of MCR-ALS to study the Raman
spectra of two cell lines having di�erences concerning their ability to grow in
tissues with di�erent oxygen concentration: MDA-MB-231, with tropism to
metastasize in bone, and MDA-MB-435, with tropism to metastasize in lung.
The study is complemented with the analysis of two variants of these primary
cancer cell lines with increased tropism to grow in bone, Bo2 (derived from
MDA-MB-231) and MDA-MB-435 bone (derived from MDA-MB-435). In our
intention to �nd the metabolic characteristics necessary to produce bone metas-
tasis and the mechanisms involved in this process, the cell lines set MDA-MB-
435, MDA-MB-435 bone, MDA-MB-231 and Bo2 might indicate an increase in
these metabolic characteristics. Finally, in a parallel and independent study we
proof our approach to test in a separate data set the e�ect when the PRDX2
protein was over expressed in Bo2 cells. The presence of this protein in high
amounts inside the Bo2 cells eliminates their ability to produce bone metasta-
sis [242]. We could show with Raman spectroscopy coupled with MCR analysis
that treated PRDX2 Bo2 cells return to a molecular content more similar to the
primary 231 cell line.

A new approach has been proposed and tested to push forward the use of
Raman spectroscopy in daily used samples as the preparation of cells in hospitals
to extract chemically meaningful information about the molecular content of the
biological samples and thus be able to build a biochemical model of the processes
under study. We propose MCR-ALS algorithm as a powerful method that can be
used in a clever and �exible way to reveal the underlying molecular information
stored in Raman spectra. Speci�cally, the use of initial estimates and constrains
applied to MCR-ALS algorithm allows to go an step further in the analysis of
biological Raman spectra compared with the multivariate techniques already
used.
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10.2 Materials and Methods

10.2.1 Raman spectroscopy

For analysis 3x105 cells were used. For measurements cells were seeded in 6
wells/plates (Becton Dickinson, NJ) over a quartz crystal (ESCO products, Oak
Ridge, NJ). After 24h, cells were �xed with 4% cold paraformaldehyde (PFA)
in PBS1x for 15 min, washed with PBS1x and maintained in the same solution
at 4 ◦C until measurements. After the �xation, the quartz substrate containing
the cells was mounted to a magnetic holder (Live Cell Instrument) with PBS
and covered by other quartz subtrate for Raman analysis.

A total of 135 spectra were taken from the cytoplasm of cancer cells lines
MDA-MB-231, Bo2, MDA-MB-435 and MDA-MB-435 Bone. For a second and
independent study of PRDX2 role, a total of 90 spectra were obtained from the
cytoplasm of MDA-MB-231, Bo2 and Bo2-PRDX2-treated cells.

The Raman system used was an inVia Renishaw (Apply Innovation, Glouces-
tershire, UK) and comprises a 514 nm laser that supplies an excitation beam of
about 10 mW power, which is focused onto the sample via a microscope with 60x
objective (Edmund, York, UK) and using a backscattered con�guration. The
Raman spectrum is recorded on a deep depletion charge-coupled device (CCD)
detector (Renishaw RenCam). The recorded Raman spectrum is digitalized and
displayed on a personal computer using Renishaw WiRE software which allows
the experimental parameters to be set. The spectra were background subtracted
with a custom-written Labview program using an stablish method [65].

10.2.2 Cell preparation

MDA-MB-435 cells supplied by Dr Fabra (IDIBELL) and their metastatic vari-
ant established from primary cultures of bone (435-B) metastases, maintained
under standard conditions have been described elsewhere [301]. Although con-
troversial, it has recently been demonstrated that MDA-MB- 435 cells are a use-
ful breast cancer model and that they express both epithelial and melanocytic
markers [302]. We used breast cancer bone metastatic cell lines MDA-MB-
231 originally obtained from the European Type Culture Collection (ECACC
92020424. BO2 cell line has been established from bone metastases caused by
MDA-MB-231 after six in vivo passages in nude mice using a heart injection
model. Cells were cultured under standard conditions: grown in DMEM/F12
medium supplemented with 5% horse serum, 1 mM pyruvate, 2 mM L-glutamine
in 5% CO2-95% air at 37 ◦C in a humidi�ed incubator.

10.2.3 Statistical Analysis

First, an exploration of the spectral data set was performed by using PCA anal-
ysis. The number of components selected was the one in which the cumulative
variance explained was more than the 99%. Two independent analyses (PCA
and MCR) were performed in the same dataset which contained the spectra
of the cell lines in rows. Additionally, to improve background component de-
convolution �ve spectra from the PBS solution at the same focal distance than
the cell measurements and far from the cells were added. For MCR-ALS al-
gorithm, the protocol followed was: �rst, the initial estimates were selected
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by using SIMPLISMA algorithm which selects the purest rows (spectra) in the
data set; second, the iterative least squares calculation started with the addi-
tion of constrains: non-negativity of spectra and concentration matrices. Fi-
nally, the quality parameters from the MCR model were calculated: Lack of �t

LOF = 100

√√√√√ n∑
i=1

m∑
j=1

e2i,j

n∑
i=1

m∑
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d2i,j
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d2i,j−
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where

ei,j = di,j − d̂i,j and di,j is the original data matrix and d̂i,j the calculated
by means of MCR-ALS algorithm . For PCA and MCR analysis two di�er-
ent Matlab toolboxes were used: PLS toolbox (from Eigenvector Research) and
MCR-ALS toolbox (from University of Barcelona).

10.3 Results and discussion

10.3.1 MCR is able to deconvolve more meaningful molec-
ular components than Principal Component anal-
ysis on cell Raman spectra

A matrix containing all 135 spectra form cytoplasm of MDA-MB-231, MDA-
MB-435 cells and their respective bone metastatic variants BO2 and 435B cells
was constructed. In addition 5 more spectra of the PBS solution outside the
cells were included in the last rows.

First, a PCA was performed on the spectral data matrix and the principal
component loadings are plotted in Fig.10.1a. Second, MCR-ALS algorithm
subjected to speci�c constrains (non-negativity of spectra and concentrations)
was applied to the same spectral data set and the pure spectra deconvolved are
plotted in Fig.10.1b.

From PCA analysis results shown in Fig. 10.1a, we observe that the signals
of di�erent substrates are mixed in the loading of principal components. The
contributions of Quartz signal [299, 303] (mainly bands around 800 and 1050
cm−1) was found in PC3 mixed with other cellular substrates and water signal.
Indeed, the non-negativity of the Principal component loadings made di�cult
the assignment of each component to a pure molecular Raman spectra. In
contrast, MCR decomposed four meaningful components (Fig. 10.1b) that can
be assigned to: cellular lipids (component 1), Quartz signal (component 2),
water signal [304] (component 3) and proteins and other cellular components
(component 4). The variance explained by PCA and MCR models is: 99.74%
and 99.66% respectively.

The higher ability of MCR to deconvolve pure signals relies on the �exibility
of MCR-ALS algorithm. First, a clever construction of the spectral data matrix
was performed by displaying all cell Raman spectra in rows and adding �ve more
rows containing the signal from PBS acquired at the same focal distance than
cells but outside of them. Second, the use of SIMPLISMA algorithm to �nd the
purest spectra in the data set allowed giving initial estimates of the MCR-ALS
algorithm. As a result the four most dissimilar spectra found were: two signals
from PBS solution and two of di�erent cell lines. Once the initial estimates
were selected, the iterative least square calculation was initialized by giving
some constrains to the algorithm as non-negativity in the output spectra and
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concentrations. All this summed gave as a result four chemically and physically
meaningful components.

Compared with MCR, PCA �nds the directions in the data set with max-
imum variance and orthogonal between them, but no additional chemical in-
formation can be added. Consequently, in the case of complicated biological
Raman datasets, PCA could be used for an exploratory analysis of the data set
to �nd for instance outliers or groups but no pure molecular components can be
extracted from it. This problem was mentioned in previous works for cellular
studies [214] and for image segmentation [35].

10.3.2 Subtraction of the background signals by MCR al-
lowed disentangling the inherent composition dif-
ferences between cells

In order to clean and remove those signals from the original matrix spectral
data set, a direct subtraction of the quartz and water signals (MCR loadings)
multiplied by the concentration matrix (MCR scores) of those components for
each original spectra was performed (Fig. 10.2). This induced more visibil-
ity of some spectral changes inherent to the cellular spectra, making easier to
build a statistical model with chemically meaningful outputs. The results are
shown in the plots of spectra before (Fig. 10.2A) and after (Fig. 10.2B) the
subtraction of Quartz and water signals . Furthermore, by using this method,
statistical analysis of cell Raman spectra is improved because is not a�ected by
background contributions that may interfere the results. Thus, based on the
clean cell Raman spectra, a new MCR model was calculated to deconvolve the
main molecular components that are changing between cells. Recently, some ap-
plications of MCR to Raman images, detected the contribution of background
signals in the components deconvolved [35,226]. However, up to our knowledge
this is the �rst time that MCR-ALS algorithm is proposed as a tool to sub-
tract the background signal contributions in the Raman analysis of cells when
using standard sample preparation. For clinical relevancy, and acceptance of
the Raman spectroscopy by the clinical community, it is important that the
sample preparation protocols necessary for Raman spectroscopy are consistent
with current practice. Nowadays this is a challenging issue and researchers are
working to overcome this limitation. For instance, a recent study compared
Raman signals of unprocessed tissue preparations and dewaxed tissue sections,
demonstrating that tissue processing has signi�cant impact in the extracellular
structure, in particular in the lipidic structure [305]. It will be very convenient
if Raman spectroscopy could be used using the conventional sample preparation
without the need of further processing to prevent the loose of more cellular in-
formation. In this way it would be necessary to deconvolve from the spectra the
contribution of signals non-inherent of cells that are present due to chemicals
used in the conventional cytological preparation. In this way, parallel and dialy
used techniques could be performed in the same samples in hospital laborato-
ries. The use of stored bank samples would be possible permitting studies on
prognosis and evolution of patients.

It is important to notice that from a matrix with very similar cell Raman
spectra, with MCR-ALS algorithm, three meaningful molecular components
were deconvolved giving key information about the biochemical changes occur-
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Figure 10.1: a) PCA loadings and b) MCR-ALS loadings of the matrix spectral
data set containing the Raman spectra of cytoplasm of cancer cells lines 231,
Bo2, 435 and 435Bone and PBS.
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Figure 10.2: Original Raman spectra (a) and Raman spectra after the subtrac-
tion of Quartz and water signals (b).
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ring in metastatic cancer cells. Indeed, spectra deconvolved with MCR-ALS
algorithm was assigned to an almost pure molecule and therefore gave more
biochemical information than other commonly used techniques as PCA or clus-
ter analysis could be extracted (Fig. 10.3). In particular component 1 can be
assigned to Phosphatidylserine [220]. Raman bands in component 2 have been
reported to be related to aminoacids [306, 307]. Finally, component 3 contain
bands assigned to mitochondria and cytochrome C [308�316]. This last compo-
nent also contain bands related with DNA or nucleotides [189]. The fact that
mitochondria is the organelle of the cytoplasm that contain the higher concen-
trations of DNA and Cytochrome C, leads to the conclusion that component
3 can be a measure of the amount of mitochondria present in the cell under
study. Table 10.1 shows the main assignments of Raman bands present in each
component.

Table 10.1: Band assignments for the Raman spectra corresponding to compo-
nents 1, 2, and 3 obtained by MCR analysis of MDA-MB-231, Bo2, MDA-
MB-435P and 435B cell lines after background signal subtraction. Assign-
ments based on references [189, 220, 306�316]. PA: Phenylalanine, PhS: Phos-
phatidylserine, T: Tryptophan, AA: aminoacid.

Component 1 Component 2 Component 3

Raman
shift
(cm−1)

Assignm. Raman
shift
(cm−1)

Assignm. Raman
shift
(cm−1)

Assignm.

836 PhS 693 AA, methion-
ine

750 Cytochrome
C

1057 PhS 710 AA, methion-
ine

777 Cytosine,
Tymine

1075 PhS 822 C-Cstretch 804 Phosphoric
acid

1119 PhS 997 PA 996 PA

1260 PhS 1026 PA 1082 Phospholipids,
nucleic acid

1295 PhS 1082 Glutamic acid 1120 CytochromeC

1442 PhS 1122 C-N proteins 1203 Nucleic acid

1660 PhS 1201 T, aro-
matic C-N,
AmideIII

1240 RNA

1263 AmideIII 1312 CytochromeC

1293 Alanine 1333 Adenine,
Guanine

1336 C-H,
AmideIII,
T, Glycine

1445

1442 CH2 1570 CytochromeC,
mitochondria

1654 AmideI 1585 CytochromeC,
mitochondria

In the past, a gradual increase in the amino acid Raman bands has been
observed in bladder cancer at di�erent stages [317]. Also, the increase in 790
and 820cm−1 bands were observed. The amount of amino acids like Alanine
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is expected to increase during hypoxia, made by transamination of pyruvate to
prevent further increases in lactate [1]

10.3.3 Molecular components deconvolved disentangle key
metabolic changes to undergo metastasis in bone.

To illustrate the e�cient use of MCR in Raman spectroscopy analysis, we ob-
tained the spectra of MDA-MB-231, MDA-MB-435 cells and their respective
bone metastatic variants BO2 and 435B cells to assess the di�erences between
them (Fig. 10.3). The concentrations of each MCR component for each cell
measuredwere ploted (Fig. 10.3 right) with its corresponding spectra (Fig. 10.3
left). Component 1 referred to phosphatidylserine and was inversely propor-
tional to bone metastasis ability, decreasing its value as the bone tropism in-
creased (had the lower level in BO2 cells). Moreover, we distinguished two
populations inside the MDA-MB-435 cell line, one with lower phosphatidylser-
ine content that clearly is enriched in the 435B bone metastatic variant. The
clear di�erences between MDA-MB 231 and MDA-MB 435 cells might be due to
the lung metastatic background which characterized MDA-MB 435 cells in con-
trast to MDA-MB 231 ones. This result suggested that bone metastatic ability
is related with low lipid content in the cells (measured as phosphatidylserine).

A decrease in component 2, which referred to aminoacid content, opposite
to component 1, is related to a decreased bone metastasis tropism with the
minimum level in MDA-MB-435 cells. Component 3 referred to mitochondrial
content, which is inversely related to bone metastatic ability (similar to phos-
phatidylserine content) and was found increased in MDA-MB-435 cells.

It has recently been reported that mitochondrial glucose oxidation may be
incompatible with the survival of some cancer cell [318]. Moreover, the balance
mechanism of the antioxidant system might prevent collapse by redirecting the
glycolytic �ux into the pentose phosphate pathway [319]. Indeed, B02 cells
displayed low glucose dependence suggesting a metabolic shift from glucose ox-
idation to fatty acid oxidation to resist metabolic insults in a hypoxic and hy-
poglycemic tissue like bones. Then, the low metastatic burden of B02/PRDX2
cells in bones suggests that PRDX2 might interfere in the preferential bone
metastatic cells metabolism with deleterious consequences to carcinoma cells
that try to adapt to the bone microenvironment [242]. Indeed, the mechanism
to cope with the cumulative reactive oxygen species is di�erent in lung than in
bone tissues, where the lowest oxygen gradient in bone marrow induces fewer
metabolic free radical challenges [320].

Mitochondria are organelles that provide the majority of the energy in most
cells because of their synthesis of ATP by oxidative phosphorylation. They
also have other roles including a contribution to intracellular calcium homeosta-
sis [321], and are critical for many cellular functions including growth, division,
energy metabolism and apoptosis in cells. Mitocrondrial dynamics have an im-
portant role in breast cancer cell migration and invasion [322]. Fission facilitates
and fusion inhibits these processes, Drp1, a protein controlling mitochondrial
�ssion, is an early event in development of metastatic breast cancer [323].

All together our results clearly indicated that a metabolic switch in breast
cancer cells might be useful in order to �t with the bone microenvironment
increasing their bone metastatic ability. Since no signi�cant increase in lipid
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metabolism was found in bone metastatic cells, these results strongly suggest-
ted that metabolic changes �tting with bone requirements are related to mito-
chondrial activity. Moreover, the increase aminoacid levels suggested that they
might be relatd with alternative metabolic sources.

To check this hypothesis we used a mitotraker to visualized mitochondrial
concentration in breast cancer metastatic variants. In addition we performed an
independent experiment that resulted in a matrix containing the Raman spectra
of MDA-MB-231 and BO2 cells including PRDX2BO2 cells. PRDX2 in�uences
oxidative and metabolic stress through multiple mechanisms [324]. We have re-
cently reported that PRDX2 knockdown dramatically decreased lung metasta-
sis formation, whereas overexpressed in BO2 cells decreased its bone metastatic
ability, suggesting that PRDX2 is a 'metabolic adaptor', which functions stabi-
lizing the redox state required for cell survival in an oxidative atmosphere [242].

A new MCR was built after subtracting Quartz and water signals to con�rm
the molecular behaviour of the di�erent cell lines and speci�cally the e�ect of
redox state disruption by PRDX2 in bone metastatic cells.

Similar components than previous MCR analysis (Fig. 10.3) were decon-
volved (Fig. 10.3). MCR analysis revealed that PRDX2 increased phosphatidylser-
ine in BO2 cells as was re�ected in Component 1 levels (Fig. 10.4A) according
to the above observation (Fig. 10.3A) in which the lipid content of cells was
inversely related with the bone metastasis potential. Moreover, Component 2
decreased in PRXD2BO2 cells with regard to BO2 cells, then aminoacid content
was associated with higher bone tropism. In addition, mitochondrial content
represented in Component 3 previously inversely associated to bone tropism,
was also increased (Fig 10.4C). These results validated con�dently the biolog-
ical use of MCR applications, con�rming our hypothesis that bone metastasis
production needs biochemical changes, which are reversed with the PRDX2
over expression in the metastatic Bo2 cells.This is probably because they re-
cover features of their non-hypoxic metabolism and loose the ability to produce
metastasis in an hypoxic environment as bone. Mitochondria is well-known for
its role in cell respiration [325] and it may play a role in the necessary adaptation
of primary tumor cells to proliferate in hypoxic environments as bone tissue and
produce metastasis.

As a conclusion making use of the �exible and powerful algorithm MCR-ALS
and applying it to cell Raman spectra we were able to recover and extract useful
and other-wise inaccessible information about molecular changes occurring in
cellular processes. In order to take full advantage of the speci�city potential
of Raman spectroscopy, it is necessary to expand the Raman spectral database
of biological molecules related to biochemical activity in cells and tissue. In
this way, Raman spectroscopy could substitute expensive, time consuming and
invasive techniques such as HPLC.

In the future other initial estimates could be explore to guide MCR-ALS
algorithm to recover contributions of molecules that a priori are known to have
a role in the process under study. By introducing the Raman spectra of those
pure molecules as initial estimates, the contribution of those molecules in the
processes could be explored.



Exploiting MCR-ALS algorithm to improve cytologic Raman spectroscopy studies.

Unraveling the metabolic progression of cancer cells to undergo metastasis. 161

10.4 Conclusion

We propose a new methodology to extract the useful molecular information en-
coded in Raman spectra of biological samples. By using the �exible MCR-ALS
algorithm meaningful molecular components could be extracted thanks to the
previously subtraction of background signals that perturbed the inherent cell
Raman spectra. This methodology opens up new possibilities for the clinical use
of Raman spectroscopy in hospital diagnosis because permit to remove signals
from substrates or chemicals used in the cytologic preparation. It also provides
a rapid, reliable and label free method to disentangle the biochemical compo-
nents involved in the di�erentiation of cells with di�erent ability to metastize
in di�erent organs. It provides a new tool to give a prognosis about the prob-
ability of a given group of cells to produce metastasis in an organ and prevent
it in advance. We apply this methodology to study the molecular di�erences
between primary breast cancer cell lines and their bone metastatic cell lines. We
could identify biochemically meaningful molecular components responsible for
the changes in their metastatic ability and related to the necessity of bone can-
cer cells to adapt to a more hypoxic environment. Speci�cally, mitochondrial
levels decrease in bone metastatic cell variants (Bo2) with respect with their
correspondent primary cell lines (231) but PRXD2 Bo2 treated cells recover the
same levels as 231 cells suggesting that PRXD2 over-expression suppress the
bone metastatic ability and thus it gives a good clinical treatment for patients
undergoing bone metastasis from a primary breast cancer tumor.
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Figure 10.3: MCR spectra analysis from cell Raman spectra of MDA-MB-231,
Bo2, MDA-MB-435P and 435B cell lines after the subtraction of Quartz and
water signals. Three components were deconvolved (a, b and c) and its respec-
tive MCR loadings (left) and scores (right) are plotted. Red triangles: Bo2,
blue squares: MDA-MB-231, blue crosses: 435B and white diamonds: MDA-
MB-435. The variance explained for each component is written in %.
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Figure 10.4: MCR analysis of Bo2, MDA-MB-231 and treated Bo2-PRDX2
cell lines. Three components were deconvolved (a, b and c) and its respective
MCR loadings (left) and scores (right) are plotted. Red triangles: Bo2, blue
squares: MDA-MB-231, green stars: Bo2-PRDX2. The variance explained for
each component is written in %.
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Conclusion

Since its discovery in 1928, Raman spectroscopy has produced a revolu-
tion in the areas of analytical chemistry and molecular detection. Thanks to
the latest technical advances, such as sensitive spectrometers and NIR or UV
lasers, the expectations of the applicability of Raman spectroscopy in biology
have increased. The possibility of detecting and monitoring the evolution of
the biochemical content in biomedical samples non-invasively and with high
speci�city has become a vision to be pursued. However, the inherent properties
of Raman scattering have inhibited its full exploitation for biomedical appli-
cations. In the past decade, SERS and multivariate analysis have emerged as
possible solutions for overcoming the low e�ciency and the complexity of the
Raman signals obtained from biological material. Until 2009, only a few stud-
ies had been reported using multivariate approaches, and these techniques were
only employed to group di�erent types of samples. This meant that the rich
information contained in Raman spectra was not being fully exploited. Also, al-
though the SERS e�ect was demonstrated for cells, SERS probes were not used
in their full strength to study complex biological processes inside cells. This
thesis is a step towards combining and using SERS and multivariate analysis
to expand the applicability of RS in biomedicine. Thus, the virtues of RS such
as its high speci�city can be used to diagnose and study biomedical samples
non-invasively, rapidly, and without special sample preparation. New insights
otherwise inaccessible could be revealed by this methodology, insights that the
routinely employed biochemical techniques in labs or hospitals can not provide.

Speci�cally, the SERS spectra of a single DNA molecule under stretching and
under physiological conditions was studied by using 2D correlation spectroscopy.
Some important features in the spectra were revealed, thanks to this technique,
such as a shift in the O-P-O Raman band. In this study, optical trapping
and surface-enhanced Raman scattering (SERS) were combined to establish a
direct relationship between the DNA's extension and its structure in the low
force, entropic regime. A DNA molecule was trapped close to a SERS substrate
to enhance detectable Raman signals. With the help of 2D correlation, it was
possible to observe that the DNA Raman modes shifted in response to an applied
force, indicating the occurrence of phosphodiester mechanical alterations.

Also, another study of the e�ect of a mechanical force on a living cell is
discussed, one applied to RBC stretching. The band dynamics along di�erent
force loads are investigated with principal component analysis (PCA) and 2D
correlation techniques. The results reveal important structural properties of the
RBC cells related with their function in the body.

A complex experiment was performed to study the intracellular pH changes
in glioma cells after Photodynamic Treatment (PDT) by using SERS probes
embedded in the cells. The evolution in the SERS spectra caused by the changes
in the intracellular pH was studied using 2D correlation techniques. A complete
picture of the Raman band's behavior was achieved, that permits selecting the
Raman band most capable of tracking the pH changes. To the best of our
knowledge, this study represents the �rst use of the 2D correlation technique to
study biological SERS spectra.
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Furthermore, more complex systems were investigated, such as the molecular
evolution of cells or tissues during a biochemical process. A complete under-
standing of the behavior of the biochemical content was achieved, having very
limited or no a priori information about the molecules involved or their changes
in concentration during the process. Pursuing this goal, PCA was used to study
the lipid metabolism in di�erent breast cancer cell lines depending on the degree
of malignancy in the CH stretching region of the Raman spectra. A classi�ca-
tory model was generated which di�erentiated between the metastatic cells from
the non-metastatic cells without basal-like phenotype. This represents a �rst
step towards stratifying breast cancer cells using RS. However, PCA does not
provides meaningful components that could be assigned directly to molecular
Raman spectra spectra. Consequently, a very powerful multivariate analysis
(MCR) was proposed and applied to extract physically and chemically mean-
ingful molecular components that changed in cancer cell composition during
Epithelial to Mesenchymal transition (EMT). The analysis of the Raman spec-
tra in the �ngerprint region coupled with MCR led to the conclusion that the
EMT process a�ects the lipid pro�le of the cells, increasing the tryptophan
but maintaining a low phosphatidylserine content in comparison with highly
metastatic cells. We demonstrated, then, that Raman microspectroscopy cou-
pled with MCR enables deconvolution and tracking of the molecular content of
cancer cells during a biochemical process, and is a powerful non-invasive tool
for identifying the metabolic features of breast cancer cell aggressiveness.

Also, we monitored the retina composition ex vivo when a neuroin�amma-
tion is induced. Meaningful molecular Raman spectra could be deconvolved
from the spectra acquired at di�erent time points by using the MCR algorithm.
By assigning each spectrum to a molecular component related with the neu-
roin�ammation, new, complete, and otherwise inaccessible information about
the biochemistry behind the process of neuroin�ammation could be extracted.
Our study represents the �rst application of MCR to decompose and monitor
the molecular content of a biological tissue with RS. Biomarkers for the early
detection of neuroin�ammation processes were identi�ed, and this methodol-
ogy represents the �rst step towards the establishment of a non-invasive and
rapid screening technique for the early detection of multiple sclerosis or other
neurodegenerative diseases in patients.

Finally, the MCR-ALS algorithm is very �exible, and we exploited the use
of initial constrains or estimates to provide a powerful method to solve crucial
problems not yet overcome in the use of RS in biology, such as the presence of
background signals that mask and degrade the results of a statistical analysis.
The removal from cellular spectra of the background signals not intrinsic to the
cells was achieved by employing the MCR-ALS algorithm. Cytological prepara-
tions of di�erent cancer cell lines were studied and, thanks to the removal of the
background signals, the molecular components could be identi�ed that have an
important role in the progression of breast cancer cells towards bone metastasis.

To summarize, the main results that I have achieved in my thesis are:

• Extracting from Raman spectra information on the molecular components
of cells and tissue and monitoring the evolution of their concentrations
during a biochemical process.

• Studying the Raman band's behavior and correlations by means of 2D
correlation analysis when a single DNAmolecule or a living cell is stretched
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or experiences a change in one of the parameters in its environment. This
permitted revealing important features in the molecular structure of the
biosamples studied.

• Combining 2D correlation and SERS of biological samples for the �rst
time to analyze the dynamic changes of the pH in living cells after being
treated with PDT.

• Identifying and tracking the concentration of biomarkers in cancer cells
during the EMT transition. The proposed method of using Raman spec-
troscopy supported by MCR provides a powerful non-invasive tool for
identifying the metabolic features of breast cancer cell aggressiveness.

• A method exploiting the use of constraints with the MCR-ALS algorithm,
representing a new step towards the use of cheap and conventional cytolog-
ical sample preparation for screening samples with Raman spectroscopy
in hospitals. The ability to remove the background signals non inherent
to the cells permitted the use of glassware material or the chemicals nor-
mally used in cytological preparations that could interfere with the Raman
signals.

• Combining and comparing di�erent mathematical methods to study a very
broad range of biomedical applications. For each need, a di�erent method
was proposed.

• Presenting a novel methodology for monitoring the evolution of di�erent
molecular components in the retina during an in�ammation by using Ra-
man spectroscopy coupled to MCR. This is a promising tool that could be
used to study the human retina and diseases of the central nervous system
in vivo.

This research has demonstrated a powerful method that adds a new dimen-
sion to the �eld of analytical chemistry. Sensitive and highly speci�c information
can be extracted non-invasively, rapidly, and without sample preparation. The
samples can be monitored in vivo, quantifying molecular components di�cult
or impossible to obtain with today's technology.
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