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Abstract

One of the main challenges in Robotics is to develop robots that can interact

with humans in a natural way, sharing the same dynamic and unstructured

environments. Such an interaction may be aimed at assisting, helping or

collaborating with a human user. To achieve this, the robot must be en-

dowed with a cognitive system that allows it not only to learn new skills

from its human partner, but also to refine or improve those already learned.

In this context, learning from demonstration appears as a natural and user-

friendly way to transfer knowledge from humans to robots. This dissertation

addresses such a topic and its application to an unexplored field, namely

force-based manipulation tasks learning. In this kind of scenarios, force

signals can convey data about the stiffness of a given object, the inertial

components acting on a tool, a desired force profile to be reached, etc.

Therefore, if the user wants the robot to learn a manipulation skill suc-

cessfully, it is essential that its cognitive system is able to deal with force

perceptions.

The first issue this thesis tackles is to extract the input information that

is relevant for learning the task at hand, which is also known as the what

to imitate? problem. Here, the proposed solution takes into consideration

that the robot actions are a function of sensory signals, in other words the

importance of each perception is assessed through its correlation with the

robot movements. A Mutual Information analysis is used for selecting the

most relevant inputs according to their influence on the output space. In

this way, the robot can gather all the information coming from its sensory

system, and the perception selection module proposed here automatically

chooses the data the robot needs to learn a given task.



Having selected the relevant input information for the task, it is neces-

sary to represent the human demonstrations in a compact way, encoding

the relevant characteristics of the data, for instance, sequential informa-

tion, uncertainty, constraints, etc. This issue is the next problem addressed

in this thesis. Here, a probabilistic learning framework based on hidden

Markov models and Gaussian mixture regression is proposed for learning

force-based manipulation skills. The outstanding features of such a frame-

work are: (i) it is able to deal with the noise and uncertainty of force signals

because of its probabilistic formulation, (ii) it exploits the sequential infor-

mation embedded in the model for managing perceptual aliasing and time

discrepancies, and (iii) it takes advantage of task variables to encode those

force-based skills where the robot actions are modulated by an external

parameter. Therefore, the resulting learning structure is able to robustly

encode and reproduce different manipulation tasks.

After, this thesis goes a step forward by proposing a novel whole framework

for learning impedance-based behaviors from demonstrations. The key as-

pects here are that this new structure merges vision and force information

for encoding the data compactly, and it allows the robot to have different

behaviors by shaping its compliance level over the course of the task. This is

achieved by a parametric probabilistic model, whose Gaussian components

are the basis of a statistical dynamical system that governs the robot mo-

tion. From the force perceptions, the stiffness of the springs composing such

a system are estimated, allowing the robot to shape its compliance. This

approach permits to extend the learning paradigm to other fields different

from the common trajectory following. The proposed frameworks are tested

in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and

(c) a collaborative assembly, where the experimental results evidence the

importance of using force perceptions as well as the usefulness and strengths

of the methods.

viii



Resumen

Uno de los principales retos en Robótica es crear robots que puedan in-

teractuar con seres humanos de una forma natural compartiendo el mismo

entorno, el cual puede ser altamente dinámico y no estructurado. Dicha

interacción podŕıa estar enfocada a asistir, ayudar o colaborar en ciertas

tareas con un usuario humano. Para alcanzar dicho objetivo, el robot debe

estar dotado de un sistema cognitivo que le permita no solo aprender nuevas

habilidades, sino también refinar o mejorar aquellas ya aprendidas con an-

terioridad. En este contexto, el aprendizaje por demostración aparece como

un método intuitivo por el cual un humano puede transferir conocimiento

a un robot. Esta disertación se basa en dicha idea y su aplicación a un

campo poco explorado: el aprendizaje de tareas de manipulación basadas

en fuerza. En esta clase de escenarios, las señales de fuerza pueden trans-

mitir información sobre la rigidez de un objeto, las componentes inerciales

que actúan sobre una herramienta, una referencia de fuerza a seguir, etc.

Por lo consiguiente, si el usuario desea que el robot aprenda una tarea de

manipulación satisfactoriamente, es esencial que su sistema cognitivo sea

capaz de trabajar con percepciones hápticas.

El primer punto que esta tesis abarca es la extracción de información rele-

vante para el aprendizaje a partir del conjunto de datos de entrada, lo cual

se conoce como el problema de ¿Qué imitar?. La solución que se propone

aqúı considera que las acciones del robot son función de las señales senso-

riales, en otras palabras, la importancia de cada percepción es evaluada a

través de su correlación con los movimientos del robot. Un análisis de infor-

mación mutual es utilizado para seleccionar las entradas más relevantes de

acuerdo a su influencia sobre las variables de salida del problema. De este

modo, el robot puede reunir toda la información proveniente de su sistema



sensorial, la cual será analizada por un modulo de selección de percepciones

con el fin de escoger automáticamente los datos que el robot necesita para

aprender una tarea especifica.

Una vez seleccionada la información de entrada relevante para la tarea, es

necesario representar en una forma compacta las demostraciones dadas por

un usuario, codificando las caracteŕısticas más importantes, por ejemplo,

información secuencial, incertidumbre, restricciones, etc. Este aspecto es el

siguiente problema que se aborda en esta tesis. Se propone entonces una es-

tructura de aprendizaje probabiĺıstica basada en el modelo oculto de Markov

y en la regresión por mezclas de Gaussianas, para aprender habilidades de

manipulación basadas en fuerzas. Las propiedades más destacadas de dicha

estructura son: (i) es capaz de trabajar con señales de fuerza ruidosas y

con incertidumbre gracias a su naturaleza probabiĺıstica, (ii) aprovecha la

información secuencial dada por el modelo de Markov con el fin de resolver

el “aliasing” sensorial y las discrepancias temporales, y (iii) explota las vari-

ables de la tarea para codificar aquellas habilidades basadas en fuerza en

las cuales las acciones del robot sean moduladas por un parámetro externo.

Por lo tanto, el sistema de aprendizaje resultante es capaz de codificar y

reproducir de forma robusta diferentes tareas de manipulación.

Finalmente, esta tesis va un paso más allá proponiendo una estructura nove-

dosa para el aprendizaje por demostración de comportamientos basados en

impedancia. Los aspectos claves de dicho sistema son la combinación de

información de fuerza y visión para codificar las demostraciones de forma

compacta, y la capacidad de modular el nivel de “compliance” del robot a

lo largo de la tarea. Lo anterior se logra por medio del uso de un modelo

probabiĺıstico paramétrico, cuyas componentes Gaussianas son la base de

un sistema dinámico que gobierna el movimiento del robot. A partir de

las percepciones hápticas, la rigidez de los muelles que componen el sis-

tema dinámico es estimada, permitiendo de esta forma modular la rigidez

resultante del robot. Este enfoque permite extender el paradigma de apren-

dizaje a otros campos diferentes a los enfoques que tratan el problema t́ıpico

de codificación de trayectorias cinemáticas. Las estructuras de aprendizaje
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propuestas son evaluadas en tres escenarios, a saber, (a) la tarea bola-en-

caja, (b) servir bebidas, y (c) ensamble colaborativo. Los resultados exper-

imentales evidencian la importancia de utilizar percepciones de fuerza, aśı

como también la utilidad y fortalezas de los métodos planteados.
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Resum

Un dels reptes en Robòtica és la creació de robots capaços d’interactuar amb

els humans de manera natural i compartint el mateix entorn, el qual pot

ésser altament dinàmic i no estructurat. Aquesta interacció pot estar enfo-

cada per a assistir, ajudar o col.laborar en tasques concretes amb un usuari.

Per tal d’assolir el citat objectiu, el robot ha d’estar dotat d’un sistema

cognitiu que permeti aprendre noves habilitats, i alhora ha de ser capaç

de refinar o millorar aquelles que han estat prèviament apreses. En aquest

context, l’aprenentatge per demostració apareix com un mètode intüıtiu

amb el qual l’humà pot transferir coneixement a un robot. Aquesta dis-

sertació es basa en l’esmentada idea, a més, la seva aplicació es presenta en

un camp poc explorat: l’aprenentatge de tasques de manipulació basades

en forces. En aquest tipus d’escenaris, les senyals de força poden trans-

metre informació sobre la rigidesa d’un objecte, les components inercials

que actuen sobre una eina, una referència de força que ha de ser seguida,

etc. Consegüentment, si l’usuari desitja que el robot aprengui una tasca de

manipulació satisfactòriament, és essencial que el seu sistema cognitiu sigui

capaç de treballar amb percepcions hàptiques.

El primer punt que aquesta tesi comprèn és l’extracció d’informació rell-

evant per a l’aprenentatge a partir d’un conjunt de dades d’entrada, el

què es coneix com el problema Què imitar?. La solució que es proposa en

aquest treball és considerar que les accions del robot són funcions de les

senyals sensorials, en altres termes, la importància de cada percepció és

avaluada mitjançant la seva correlació amb els moviments del robot. Un

anàlisi d’informació mútua és utilitzat per a seleccionar les entrades més

rellevants d’acord a la seva influència sobre les variables de sortida del prob-

lema. D’aquesta manera, el robot pot recopilar tota la informació procedent



del seu sistema sensorial, la qual serà analitzada mitjançant un mòdul de

selecció de percepcions amb la finalitat d’escollir automàticament les dades

que el robot necessita per a aprendre una tasca espećıfica.

Havent seleccionat la informació d’entrada rellevant per a la tasca, és nec-

essari representar d’una forma compacta les demostracions donades per

l’usuari, codificant les caracteŕıstiques més importants, per exemple, infor-

mació seqüencial, incertesa, restriccions, etc. Aquest aspecte és el següent

problema que s’estudia en aquesta tesi. Consegüentment, s’estudia una es-

tructura d’aprenentatge probabiĺıstica basada en el model ocult de Markov

i en la regressió per mescla de Gaussianes, per tal d’aprendre habilitats de

manipulació basades en forces. Les propietats més destacades de la citada

estructura són: (i) és capaç de treballar amb senyals de força amb soroll

i incertesa gràcies a la seva naturalesa probabiĺıstica, (ii) aprofita la in-

formació seqüencial donada pel model de Markov amb la fi de resoldre el

“aliasing” sensorial i les discrepàncies temporals, i (iii) explota les variables

de la tasca per a codificar aquelles habilitats basades en força, amb les quals

les accions del robot són modulades per un paràmetre extern. Per tant, el

sistema d’aprenentatge resultant és capaç de codificar i reproduir de forma

robusta diferents tasques de manipulació.

Finalment, aquesta tesi doctoral va un pas més enllà proposant una estruc-

tura innovadora per a l’aprenentatge per demostració de comportaments

basats en impedància. Els aspectes claus del citat sistema són la com-

binació d’informació de forces i visió per a codificar les demostracions de

forma compacta, i la capacitat de modular el nivell de “compliance” del

robot durant la realització de la tasca. Tot això s’aconsegueix per mitjà

de l’ús d’un model probabiĺıstic paramètric, les components del qual són

Gaussianes, aquestes són la base del sistema dinàmic que governa el movi-

ment del robot. A partir de les percepcions hàptiques, la rigidesa dels molls

que componen el sistema dinàmic és estimada, permetent d’aquesta manera

modular la rigidesa resultant del robot. Aquest enfocament permet estendre

el paradigma d’aprenentatge a altres camps diferents, els quals tracten els

problemes t́ıpics de codificació de trajectòries cinemàtiques. Les estructures

xiv



d’aprenentatge proposades són avaluades en tres escenaris diferents, (a) la

tasca pilota-en-caixa, (b) servir begudes, i (c) acoblament col.laboratiu. Els

resultats experimentas evidencien la importància d’utilitzar percepcions de

força, aix́ı com també la utilitat i fortalesa dels mètodes plantejats.
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Chapter 1

Introduction

You open the fridge and, by only lifting slightly the Tetra Brik, you already know

whether it contains enough milk for your breakfast, and how carefully you have to

pour the liquid into the bowl. Think of all the force-based manipulations involved in

inserting a key in the keyhole and opening the lock, or the push-and-pull needed to

close the drawer of an old chest of drawers. Visualize yourself moving together with a

friend a piece of furniture across a cluttered environment. In all these cases, force-based

sensory information is crucial for the successful completion of the task. Force signals

can convey data about the stiffness of a given object, the inertial components acting

on a tool, a desired force profile to be reached, etc. Therefore, when a human wants

to teach a robot such manipulation skills from examples, it is necessary to endow the

robot with a learning framework able to exploit the force information generated during

the execution of the task. This thesis analyzes this problem and proposes a set of

computational structures appropriate to learn and reproduce force-based manipulation

tasks. All the work is performed in the context of three scenarios, where manipulation

is the central theme.

This chapter presents the motivations and objectives of this thesis in Sections 1.1

and 1.2, respectively. The different learning frameworks developed along this thesis are

described in Section 1.3, and the three experimental scenarios are shown in Section 1.4.

Lastly, Sections 1.5 and 1.6 respectively explain the contributions of this research and

the organization of this dissertation.
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1.1 Motivation

1.1 Motivation

One of the main concerns in Robotics is how robots may become our companions and

inhabit our environments in the most “natural” way. Such target is still far, but one

of the routes to achieve it is to endow robots with safe and user-friendly interaction

skills, so that they can behave in such a way humans can feel comfortable sharing

their surroundings with them. This involves to have robots with cognitive capabilities

allowing them to understand, analyze and react according to the interaction with a

human [34, 36]. In this context, learning mechanisms are needed to acquire knowledge

from such an interaction process. Learning from demonstration (LfD) is one approach

in which a robot can learn a specific task from human examples (e.g., imitating human

gestures [23], pouring a drink [154], lifting an object [50], etc.).

While most works in the field have focused on learning the kinematics of motions,

little work concerning force-based skills has been done. Force signals are crucial when

contact with the environment takes place, mostly in manipulation of objects [108],

and physical interaction with a partner [130]. Research has shown that the human

central nervous system is composed of internal models that control the interactions

between the body and its surroundings [107, 165]. Some of these models are dedicated

to predicting the outcome or anticipating force resulting from an individual’s conscious

action. Inspired by the relevance of force information in the human performance of

tasks, the core of this thesis is to study and analyze how robots may learn force-based

tasks from human demonstrations.

It is worth noting that depending exclusively on one perception channel greatly

limits the information that a robot may be provided with during the execution of any

task. Humans are endowed with a very rich multimodal perception system [57], and in

contrast, research on LfD has focused on learning tasks using unimodal sensing. Tak-

ing inspiration from these facts, this thesis also proposes to merge vision and haptic

information in order to improve the learning process by exploiting the different kinds

of data provided by distinct sensory channels. Note that when performing physical col-

laboration tasks, humans communicate strongly and often subtly via multiple channels

like gaze, speech, gestures, movement and posture [113, 152]. Therefore, robots jointly

working with humans may widely benefit from this sensory combination.
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1.2 Objectives

Recent progress in physical human-robot interaction (pHRI) showed that active

and safe workspace sharing is possible in principle. Encouraged by these results, re-

searchers have been focused on encompassing safety issues based on biomechanical

analysis, human-friendly hardware design, and interaction control strategies [4, 64].

Nevertheless, it is equally relevant to develop and validate cognitive key components

that enable robots to track, understand and predict human motions in a weakly struc-

tured dynamic environment in real-time. In this sense, humans may also teach through

examples a robot to carry out a collaborative task, where not only trajectories are im-

portant, but also the role of the robot (e.g., leader or follower) and its behaviors (e.g.,

reactive or proactive). In this context, this thesis addresses an interesting and chal-

lenging issue regarding impedance-based behaviors learning in pHRI scenarios, where

the new control schema of recently developed torque-controlled robots can be exploited.

Here, the reformulation of learning algorithms as well as multimodal perception systems

are crucial to achieve such a goal.

1.2 Objectives

According to the current state of the research in LfD and the gaps in this field to build

safe, smart and user-friendly robots, the problems that this thesis aims to solve are

summarized below:

1. To identify the relevant features in force-based manipulation tasks from

sensory information with the aim of including them as inputs in the

learning stage.

Although the learning algorithms might work successfully using input training

data with redundant and irrelevant variables, it is useful and more suitable to

recognize those perceptions that are relevant in manipulation tasks with the aim

of reducing the complexity of the problem and data dimensionality as well as

improving the performance in the learning stage. The identification of relevant

input variables works in the direction of answering the central question of What

to imitate?

2. To propose extendable end-to-end LfD frameworks for teaching force-

based manipulation tasks to robots.
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1.3 Overview of the proposed learning frameworks

The characteristics of force-based skills will be analyzed and further on taken

into account for selecting the learning methods best suited to deal with force

signals. This will permit to build entire learning frameworks able to encode and

reproduce a large set of manipulation tasks, so that future researchers can use

and/or modify them easily.

3. To merge haptic and visual data by exploiting the unique informa-

tion that each perception channel provides, and taking advantage from

wisely combining them to obtain richer and more precise state and

task descriptions.

Haptic and vision data mostly provide distinct types of information when a robot

is carrying out a manipulation task. In this sense, it is quite relevant to exploit

such information for learning a larger range of skills without increasing signifi-

cantly the complexity of the encoding and reproduction methods.

4. To extend the LfD paradigm for encoding and reproducing impedance-

based robot behaviors.

The learning frameworks that have been developed for precise reproduction of

reference trajectories need to be re-thought and adapted to the new scenarios

and tasks where the recently developed torque-controlled robots may work. Force

sensing and stiffness estimation can be exploited for learning and reproducing a

different kind of skills in pHRI, namely, impedance-based behaviors.

1.3 Overview of the proposed learning frameworks

Along the development of this thesis, three learning frameworks have been proposed

in order to provide a whole structure to be used for encoding and reproducing force-

based tasks with distinct characteristics. The next chapters are aimed at explaining

in detail each module of these frameworks, justifying the selection of each method and

algorithm, and showing their performance when dealing with haptic perceptions. Brief

descriptions and illustrations of the proposed frameworks are given next.

The first learning framework is shown in Figure 1.1. Here, the first module is aimed

at processing the data coming from the force sensor (details in Section 3.1), which is

relevant when the robot manipulates objects and also when its signals are fed back to
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1.3 Overview of the proposed learning frameworks

Figure 1.1: Learning framework based on hidden Markov models and Gaussian mixture
regression able to deal with perceptual aliases.

the teacher, for instance, through a haptic device (see Sections 1.4.1 and 1.4.2). The

processed signals are then analyzed by the feature selection module. This is in charge of

selecting the most relevant input variables for the problem at hand through a Mutual

Information analysis, as explained in Section 3.3. After this, in the learning phase,

a hidden Markov model (HMM) encodes the resulting training data. The obtained

probabilistic model is then used at the reproduction phase along with a modified version

of Gaussian mixture regression (GMR) for computing the desired control commands

to be sent to the robot. These two phases are described in Section 4.3.1 and 4.3.2,

respectively. This whole structure is suitable to learn simple force-based manipulation

tasks, it exploits the sequential information implicit in the training data and it is also

able to deal with perceptual aliases (i.e., those tasks with an underlying multivalued

function behavior).

Figure 1.2 illustrates the second proposed framework, which is basically an exten-

sion of the one previously described. The main difference lies in the concept of task

variables modulation (also known as task parametrization), where the main idea is that

the robot actions now also depend on a specific parameter of the task. In this sense,

this framework exploits such task variables by encoding the demonstrations through a

parametric version of the classic HMM (details in Section 4.4). Therefore, this frame-

work keeps the same advantages provided by its predecessor, but it is now able to

learn force-based skills that are modulated by a given parameter. Hence, this improved

version can learn a larger range of force-based tasks.
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1.4 Experimental scenarios

Figure 1.2: Extension of the framework shown in Figure 1.1, where force-based param-
eters are exploited for encoding purposes.

Note that the previous frameworks do not take into consideration other kind of

sensory information different from force signals. This aspect might limit the range

of manipulation tasks where these approaches may be applied to, for instance, those

where vision data are needed. Hence, the third proposed framework shown in Fig-

ure 1.3 copes with this problem by merging vision and haptic information through a

task-parametrized probabilistic model, as explained in Section 5.1. This novel learn-

ing structure takes inspiration from the task parametrization used in the previous

framework (Figure 1.2) in order to modulate a model encoding force-based skills with

parameters given by a vision sensory system. Such model is then used to represent a

statistical dynamical system, which is aimed at encoding impedance-based behaviors

by shaping the robot impedance through the stiffness estimation module (see Section

5.2). The whole learning framework thus allows to extend the force-based learning to

other type of scenarios, e.g., collaborative tasks (see Section 1.4.3).

1.4 Experimental scenarios

To test the different proposed learning frameworks, three experimental setups were

constructed. The first two structures (Figures 1.1 and 1.2) were used to teach a

robotic manipulator to carry out two distinct manipulation tasks using exclusively

haptic data. In both scenarios a human user holding the end-effector of a 6-DoF haptic

interface (Delta device from Force Dimension [59]) teleoperates a robotic arm (RX60
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1.4 Experimental scenarios

Figure 1.3: Learning framework combining vision and force information for encoding
impedance-based behaviors.

from Stäubli) which has a force-torque sensor (Schunk FTC-050) placed on its wrist.

The description of these tasks is given below. The third experimental setup aimed at

testing the learning structure shown in Figure 1.3 is introduced in Section 1.4.3.

1.4.1 Ball-in-box task

In this task the robot holds a plastic container with a steel sphere inside it, as shown in

Figure 1.4. At the demonstration phase, the teacher repeatedly carries out the task to

be learned, which consists of taking the ball out of the box through the hole, following a

specific motion strategy: Starting at some predefined initial positions, the ball is driven

towards the wall adjacent to the hole, and then forced to roll along this wall to the hole

(see bottom right box in Figure 1.4). During the demonstrations, the teacher feels at

the end-effector of the haptic device the force-torque sensed at the robotic wrist. Also,

note that the user has an additional information source by watching the scene directly.

No visual data are provided to the robot. It is worth highlighting that this particular

manipulation task has been chosen because it is well-defined and simple enough to

permit analyzing each stage of the proposed LfD frameworks separately and in depth.

The inputs of this manipulation task are defined as the wrench ϑ = {Fx Fy Fz Tx Ty Tz},

8
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Figure 1.4: Experimental scenario of the ball-in-box task.

i.e., the sensed forces and torques in the robot’s frame, and the outputs correspond to

the joint velocities of the robot defined by ω = { ω1 . . . ωNq }, where Nq is the num-

ber of joints of the robot. Despite the task to be learned seems simple at first sight,

the entire process implies to solve several technical and research issues. Regarding the

acquisition of suitable training data, first it is necessary to take into account that the

box is not a rigid structure and it vibrates when the robot moves. Second, it is impor-

tant to provide the teacher with focused haptic feedback so that it does not distract

him/her from task demonstrations. Note that these are general issues since robot tools,

grippers and hands are a source of noise that affects the force-torque sensor readings.

Moreover, it is also important to consider the possible delays that typical teleoperation

systems undergo [118]. In this sense, the position-force architecture of the experimental

setting works at a frequency of 1000 Hz, which showed to be stable according to the

task requirements and also provided high fidelity force reflection to the user.

This task was used to analyze how several learning algorithms behave in the force

domain, and subsequently it was also used to evaluate the performance of the first

proposed framework (Figure 1.1). Results regarding the feature selection process, en-
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coding and reproduction of this task are given in Sections 3.4.1, 4.3.3.1 and 4.3.3.2,

respectively.

1.4.2 Pouring task

The second task consists of pouring drinks. Here, the robotic arm holds a 1 liter

plastic bottle full of tiny metallic spheres, which play the role of a fluid (this solution

was adopted to avoid spilling liquid during tests and, in the end, the goal to learn

is a given fluid-like dynamics, no matter which). The teacher teleoperates the robot

in order to demonstrate how to pour 100 ml drinks into a plastic glass. In contrast

to the illustrative example shown in Figure 1.5 where the human moves its arm in

order to pour into all the glasses placed at different location, here every sample of the

task starts from a unique predefined initial pose of the bottle, which is also the stop

configuration once the robot has poured a drink. Initially, the bottle is completely full,

and the teacher carries out several demonstrations until the bottle is empty. Thus,

the initial force-torque values for each example vary according to how much “fluid”

has been poured previously. Note that in a real situation, a human carrying out the

same task must turn the bottle in such a way that the fluid is poured, which definitely

depends on the quantity of fluid inside it, as illustratively shown in Figure 1.6. It is

worth to highlight that such changes in the input variables at the beginning of the

demonstrations are similar to those observed in the ball-in-box task for each initial

position of the sphere inside the container.

Note that in this task, the teacher is also able to watch the scene directly, thus

he/she can know the location of the glass in the robot workspace. Such information

is not provided to the robot during the execution phase because the glass position

is predefined in advance and fixed across the examples.1 The input variables also

are the wrench ϑ, but the output variables are the joint robot position defined by

q = { q1 . . . qNq } at instant t+1 for the given ϑ at t. Such change of output variables

for this task is aimed at showing the generic significance of the second proposed learning

framework (Figure 1.2) for different representations of the task state.

1Note that a camera system may also be used to know the location of the glass in the robot frame,
so that the demonstrations would also be dependent on this parameter.
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Figure 1.5: Experimental scenario of the pouring task.

It should be noted that the proposed task is challenging and has aroused the research

community’s interest recently. For instance, Tamosiunaite et al. [154] tackled the same

problem using reinforcement learning, which was applied to improve the initial encoding

obtained from human demonstrations modeled through dynamic motion primitives.

Moreover, Cakmak and Thomaz [20] taught a humanoid robot to pour through an active

learning framework, wherein the robot was allowed to ask questions regarding the task

at hand. The proposed experimental setup and learning frameworks significantly differ

from these works in that the human-robot interaction is through a haptic device, the

demonstrations are encoded by a probabilistic model that exploits the task parameters

and the perception system senses only the forces-torques generated over the execution

of the skill. Section 3.4.2 explains the results of the feature selection process, while

Sections 4.4.2.1 and 4.4.2.2 respectively present the learning and reproduction of this

task.

1.4.3 Collaborative table assembly

In order to test the third proposed framework (Figure 1.3), a human-robot collaborative

task is considered. Here, the robot’s role is to hold a wooden table while the user’s role

is to screw the four legs to it. Figure 1.7 presents an example of assembly instructions

11
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Figure 1.6: Illustration of pouring task carried out by a human in a real situation.

Figure 1.7: Assembly tasks characterized by different sequences, positions and orienta-
tions of components, with haptic and motion patterns that are specific to each item.

that can be found in “do it yourself” furniture catalogs. Here, two small tables require

specific sequences of force and movement to get assembled. Learning such specificities

is required for an efficient collaborative assembly. Instead of manually programming

those specificities for each item, one would like the robot to extract those automatically

from a set of demonstrations provided by two users collaborating together to assemble

the different parts of the table as shown in Figure 1.8. After learning, the task can

be reproduced by a single user, with the robot partner interacting appropriately with

respect to the preferences of the user and the specificities of the item being assembled.

Thus the information about the points of assembly is not provided to the robot, neither

the different options, orientation of table legs, etc. The robot instead learns those

specificities by being guided by one of the users through kinesthetic teaching.

A different experimental setup was built for this task. A KUKA lightweight 7-DoF

robot (LWR) [3] is used here, which is controlled through the Fast-Research Interface

[145], by using a Cartesian impedance controller. The position and orientation of the
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1.4 Experimental scenarios

Figure 1.8: Top: Two humans assembling a wooden table. Bottom: (left) demon-
stration of the impedance-based behavior, (right) reproduction of the collaborative
assembly task.

table legs are tracked with a marker-based NaturalPoint OptiTrack motion capture

system that is composed of 12 cameras working at a rate of 30 frames per second. The

robot is equipped with a six-axis force-torque sensor (ATI Mini45) attached between its

wrist and the wooden table, measuring all the signals generated during the interaction

of the human while moving the table and screwing the legs to it.

Regarding the task, two candidate frames of reference are considered in the experi-

ment: the fixed robot frame OR and the leg frame OL. It is assumed here that one leg

is used and tracked at a time (after one leg has been assembled, the next leg is tracked).

The collaborative scenario shown in Figure 1.8 consists of screwing the legs at the four

corresponding positions on the table. DT (i.e., the robot) is first compliant to allow DL

(i.e., the human user) to move the table freely in the workspace until comfortable po-

sition and orientation are found for the work to be performed next (compliant phase).

When DL grasps a leg and starts inserting it into one of the four screw threads in the

table, DT adopts a stiff posture, holding the table to facilitate DL’s part of the task

(stiff phase).

It is worth to highlight that vision and haptic information combination is funda-
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mental to this task. On the one hand, if only vision was used, it may occur that the

leg was close enough to one of the screw threads but without being assembled. This

would probably make DT become stiff, wasting a high quantity of energy while DL

is occupied to precisely position the leg before the actual screwing process. Here, DT

should instead also regulate its stiffness in accordance with the sensed force pattern.

On the other hand, if the DT behavior was based only on force-based perceptions, the

learning of the task could potentially fail because DT would require to distinguish from

noisy data what forces-torques correspond to interaction with DL and which ones are

produced by the leg screwing phases. This can be problematic because these patterns

might be similar in some situations. Thus, this setting allows to stress the convenience

of merging both perception channels with vision and haptic data coming together to

help DT and learn how its stiffness behavior should be shaped.

Note that vision information is used to define the task variables that modulate

the probabilistic model while the force data compose the input vector ϑ. The output

variables in the demonstration phase are the robot end-effector position x in OR. The

robot is controlled at the execution phase through force commands obtained from a

set of virtual spring systems (see Section 5.3.2). Results regarding the feature selection

process, encoding and reproduction of this task are given in Sections 3.4.3, 5.3.1 and

5.3.2, respectively.

1.5 Contributions

The development of this thesis may be split in several phases. The first entails discov-

ering the relevant information for learning a manipulation task, in other words, which

perceptions are needed for encoding and reproducing a skill successfully. After this, the

second step was to build a whole learning framework able to robustly encode and exploit

force data. Lastly, the last stage of this research considered two challenging problems,

namely, (i) merging vision and force information in a LfD framework, and (ii) learning

impedance-based robot behaviors. These issues comprise the main contributions of this

dissertation, which will be explained in detail next.

1. Solving the what to imitate? issue using a Mutual Information feature

selection approach

14



1.5 Contributions

In general terms, the robot skills are encoded by a policy representing a mapping

between perceptions and actions, in other words, the robot output commands are

conditioned by the input information coming from its sensory system. In this

sense, a given input variable is more or less relevant for the task according to

how much it influences the robot actions. Such idea is the basis of the approach

presented in this thesis for solving the what to imitate? problem. Here, a selection

algorithm based on Mutual Information analysis is proposed in order to choose

the most relevant robot perceptions based on their correlation with the actions.

Specifically, a conditional Mutual Information criterion is used, which allows not

only to discover the most correlated input variables, but also to know how much

information a specific perception provides with respect to a subset of already

chosen inputs.

2. Force-based LfD framework able to deal with perceptual aliases and

parametrized skills

When a robot learns a task using force signals as input information, several is-

sues need to be taken into account in order to design a framework appropriate for

this kind of data (e.g., forces are noisy and may also show high time discrepan-

cies). From a study of several learning algorithms, probabilistic methods showed

to perform well in the force domain. This thesis then proposes a whole learning

framework that deals with time discrepancies by exploiting the sequential infor-

mation provided by hidden Markov models, which also allow to discern the correct

robot action when perceptual aliasing occurs. The framework is then improved

by switching the encoding model to its parametric version, which permits to learn

skills that are modulated by a force-based parameter. The resulting framework is

thus composed by an inputs selection module (previously described), an encoding

phase carried out by a parametric hidden Markov model and a reproduction stage

performed through modified Gaussian mixture regression that uses the sequential

information embedded in the learning model.

3. Merging vision and force information to compactly encode impedance-

based behaviors

Several manipulation tasks are not exclusively based on force perceptions, but

they also depend on other kind of information, for instance, that provided by
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vision systems (i.e., location and orientation of objects of interest). Thus, it is in-

teresting how these two sensory components can be merged in an optimal fashion,

where the different data are exploited and combined for learning a skill. In this

context, a parametrized Gaussian mixture model is used in this thesis in order to

encode a force-based task where the variables modulating the model come from

the vision system. Such encoding approach is then the basis to define a statistical

dynamical system (i.e., a set of virtual springs) that controls the robot motion.

Such representation allows to extend the LfD paradigm to other scenarios, for

instance, those where the robot action is based on specific impedance-based be-

haviors, instead of merely following a given trajectory. Therefore, the proposed

idea here is to shape the springs stiffness according to the vision and force inputs

in such a way that the robot reaches different compliance levels according to the

task requirements. The obtained novel learning structure is thus able to encode

and reproduce impedance-based robot actions.

1.6 Organization

This thesis is structured in the following chapters:

• Chapter 2 presents the history and concepts of LfD. The most well-known learning

algorithms as well as the different ways of transferring skills to a robot are also

explained. Applications in the field are briefly described in this chapter.

• Chapter 3 shows how feature selection techniques can be used to select the most

relevant perceptions to learn a given task. Specifically, the Mutual Information

criterion is introduced here as a robust tool that analyzes how the robot percep-

tions influence its actions in order to carry out the selection process.

• Chapter 4 is aimed at analyzing how some state-of-the-art algorithms work on

the force domain, and at proposing a compact learning framework able to learn

skills from haptic inputs. Also, an extension of such framework is proposed to

deal with task variables.

• Chapter 5 deals with merging vision and force in LfD, where instead of simply

augmenting the observation vector, the input variables provided by the vision
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1.6 Organization

system are considered as task variables while the force data compose the input

space.

• Chapter 6 presents the conclusions of thie thesis and summarizes the results

achieved.

• Chapter 7 discusses new possible routes of research arising from the work pre-

sented in the previous chapters. Issues concerning robust temporal information

encoding, impedance-based behaviors learning, role determination in pHRI using

force information, among others, are discussed here.

Supplementary information concerning the list of publications of the author related

to this thesis (with descriptions) can be found in Appendix A.
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Chapter 2

Robot learning from

demonstration: Past and current

research

During the last years, the need of having robots in scenarios different from the industrial

floor has increased. At the beginning, robots only worked in structured environments

such as factories or research departments, thus engineers built programming routines

knowing accurate information about the setting where the robot performed. How-

ever, recent robotic applications where robots may interact with humans and populate

dynamic scenarios demand other types of programming approaches. Classical program-

ming does not fulfill the new requirements that human-robot interaction (HRI) and

changing environments demand, hand coded programs would have to consider and pre-

dict all possible human behaviors, as well as contemplate and have a response to all the

possible changes in the surroundings of the robot. This is clearly not the environment

where classical programming of robots is suited for.

Hence, new robot programming techniques should: (i) encapsulate the relevant

features of the task, (ii) adapt to new and unseen conditions (i.e., good generalization

capabilities) and (iii) be based on user-friendly systems in order to allow inexperienced

users to program them in a more natural way (e.g., by providing gesture-based com-

munication or natural language commands). An attractive idea is to program robots

from demonstrations provided by humans and through the interaction with them. The

goal is that robots can learn to execute specific tasks from this information and adapt

18
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to all changes generated in their surroundings. In this way, they will successfully carry

out the given task regardless of environment changes.

As it was highlighted in [12] and [81], learning would be a promising approach

for programming robots in dynamic environments. Learning can be performed in two

non-mutually excluding ways, namely by direct interaction with the environment or

from demonstrations carried out by a human or by another robot. The first approach

is known as reinforcement learning where teaching derives from experience [79]. The

second approach is known as Programming by demonstration (PbD), learning from

demonstration (LfD), imitation learning, etc. Here, the robot learns from examples of

the task given by a teacher. The robot generalizes through these samples generating

an abstract task knowledge (at a high or low level). Through learning, robots will be

able to accomplish a given task in a dynamic setting by adapting their actions based

on the knowledge previously provided by a human expert and the current information

acquired through their perception system.

This chapter first presents the history and concepts about LfD, where the evolution

of this field is briefly reviewed. The most known learning algorithms as well as the

different ways of transferring skills to a robot are explained. Applications will also be

described, highlighting those where haptics and vision play a relevant role. Lastly, it

will be shown how physical human-robot interaction (pHRI) offers new perspectives

in LfD.

2.1 History and concepts

In response to the need of automating robot programming in industrial settings, LfD

constitutes a suitable solution for avoiding tedious manual programming. First works

were based on symbolic reasoning where a programmer demonstrated an action either

manually or by teleoperating the robot, which afterwards reproduced exactly the shown

task. This approach was also known as teach-in, guiding or playback. While demon-

stration was carried out, all information about the robot and its environment (e.g.,

positions and orientations of obstacles and targets) was stored in order to segment it

into sub-goals and primitive actions to attain these sub-goals. After that, the demon-

strated task was represented by means of a sequence of state-action-state transitions,
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2.1 History and concepts

which was the basis of the symbolic approaches later on. Such concepts are closely re-

lated to a branch of the artificial intelligence known as high-level planning. Here, given

a description of the possible initial states of the world, a description of the desired

goals and possible actions, the planning problem is to find a plan that is guaranteed to

generate a sequence of actions that leads to one of the goal states.

Due to the presence of uncertainty in demonstrations and sensors, a method that

consolidates all demonstrations was developed. Here, the state-action-state sequence

was converted into if-then rules, where states and actions were described based on sym-

bolic representations. Finally, the complete demonstration was represented as a graph

[101, 103]. Such rules were very restrictive, thus the system showed poor generalization

capabilities. This fact gave rise to the need of having more robust, compact and ver-

satile tools for representing a task. Machine learning techniques showed up as a very

promising solution.

2.1.1 Machine learning - Towards the robot learning paradigm

Machine learning is concerned about how to construct algorithms that automatically

learn from experience (i.e., from data) [109]. Many such learning algorithms exist in

literature, which can be classified into the following three groups with respect to the sort

of feedback that the learner has access to: supervised techniques, unsupervised methods

and reinforcement learning. In the first approach, the algorithm learns a function from

labeled data, this means that a target exists for every input (e.g., artificial neural

networks, decision trees, nearest neighbors method). For unsupervised techniques, an

input data-set is presented but no feedback about it is given. Thus, their goal can be

considered as finding a representation of particular input patterns in a way that reflects

the statistical nature of the whole set [38]. The third alternative, reinforcement learning,

conceives the learner receiving feedback about the appropriateness of its response [79].

The inclusion of machine learning techniques in LfD plays a key role. In this frame-

work, the training data consist of sensory and motor information (i.e., perceptions and

actions) acquired from the perception and proprioceptive systems of the robot, respec-

tively. This data stream is processed by a machine learning algorithm that generates

actions as a function of sensory states, allowing a generalization on the samples in a

more natural way [111]. A much better encoding of the task is achieved if the relevant
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Observation

Encoding

Execution

• Representation of actions

• Mapping observed actions 

• Motivation to observe

• Which actions to observe 

• Perceiving teacher actions  

• Relevant context 

• Motivation to reproduce 

• When to reproduce

• Adaptation of the action 

Figure 2.1: The three main phases in imitation learning according to [8].

actions and perceptions are recognized in advance, so as to remove actions that do not

contribute to the learning process and to provide smoother action transitions [41, 80].

2.1.2 Imitation learning

The machine learning role in LfD and the analysis of specific neural mechanisms for

visual-motor imitation in primates, as well as the evidence of developmental stages of

imitation capacities in children led to name LfD as imitation learning or learning by

imitation. This term was analyzed in depth by Bakker and Kuniyoshi [8], who tried

to make a definition of what imitation is and to analyze if this is what robot imitation

should be.

From a psychological point of view, Thorndike defines imitation as: From an act

witnessed learn to do an act [155]. Based on this, Bakker and Kuniyoshi postulated

that imitation takes place when an agent learns a behavior from observing the execution

of that behavior by a teacher. This was the starting point for establishing the features

of robot imitation: (i) adaptation, (ii) efficient communication between teacher and

learner, (iii) compatibility with other learning algorithms and (iv) efficient learning

in a society of agents. In addition, three processes were identified in robot imitation:

sensing, understanding and doing, which can be redefined as: observe an action, rep-

resent the action and reproduce the action. These three main issues entail all current

challenges in robot imitation, see Figure 2.1.
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2.1 History and concepts

On the other hand, Schaal [140] introduced an inductive approach that deals with

the problem of how information acquired from demonstration can be translated into

an action, where he presents the concept of movement primitives: sequences of actions

that accomplish a complete goal-directed behavior and allow to have a compact state-

action representation. According to this, Schaal – based on the Piaget’s theory [125]

– describes imitation learning as a process where “a perceived action of the teacher

is mapped onto a set of existing primitives in an assimilation phase. Then, the most

appropriate primitives are adjusted by learning to improve the performance in an ac-

commodation stage. If there is not a good match for any of the primitives in front the

observed behavior, a new primitive must be created”.

Another work defined imitation learning from a more biological perspective, where

action and perception work in a joint way [105]. The proposed definition considered a

behavior-based control where the most important aspects to solve are how to interpret

and understand observed behaviors and how to integrate the perception and motion

control systems to reconstruct what was observed. There are two relevant challenges

here: (i) to recognize human behavior from visual input, (ii) to find methods for

structuring the motor control system for general movement and imitation learning

capabilities. These challenges may be solved by using a behaviors-based control system,

where behaviors are real-time processes that take inputs from sensors or other behaviors

and send output commands to effectors or other system behaviors, as Mataric proposes

[105]. This approach may be implemented along with Neuroscience ideas to structure

humanoid motor control, where spinal fields [14] and mirror neurons [39, 132] concepts

are combined for defining a learning structure based on perceptual-motor primitives.

The topic of imitation learning has also been addressed by Breazeal and Scassellati

in [17], who made clear differences between learning by imitation, learning to imitate,

learning by demonstration, task-level imitation and true imitation. They also reviewed

possible solutions for two of the main problems in imitation, namely: What to imitate

(i.e., determining which aspects of the demonstration should be imitated), and how to

imitate (i.e., determining how the robot would perform those parts of the demonstration

that should be imitated). These challenging issues have been the main concerns of

research in LfD during the last decades, but most of the efforts have been devoted to

develop learning frameworks able to represent the demonstrated tasks successfully.
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2.2 Skills transfer

2.1.3 Control policies

The need of having an algorithm representing skills that will be transferred through

imitation, as well as the way they are generated in a generic manner are issues of

current research in LfD. Skills can be represented either at a low level where a non-linear

mapping between sensory and motor information takes place, or at a high level where

the skill is represented as a sequence of action-perception units [12]. An interesting

work about finding a generic structure for LfD is explained by Schaal et al. in [143],

where a computational formalization of imitation learning concepts based on motor

control is put forward (assuming that the perception problem is already solved). They

postulate that the motor control problem can be conceived as finding a task-specific

control policy that maps relevant states (which can or cannot be functions of time) into

motor commands.

Hence, imitation learning may be defined as the problem of how control policies can

be learned by observing a demonstration. For instance, an approach known as imitation

by direct policy learning tackles the problem by directly modeling the control policy

through supervised learning of its parameters, which belong to the open variables of

the mathematical method to be used (e.g., the weights of a neural network) [37, 143].

Another approach called imitation by learning policies from demonstrated trajectories,

uses the demonstrated human movements as seeds for an initial policy which can be

optimized by a self-improvement process or active teaching [110]. A third proposal

is named imitation by model-based policy learning, here not a policy but a predictive

model of the task dynamics is approximated from the demonstrated behavior [6]. Given

knowledge of the task goal, the task-level policy of the demonstrated movement primi-

tive can be then improved with reinforcement learning procedures based on the learned

model.

2.2 Skills transfer

One of the key aspects in LfD is to provide a user-friendly method to teach the task

to the robot, which greatly depends on hardware issues. Initially, most robots were

controlled by very restricting admittance-based control laws and commanded by stan-

dard electric motors that constrained how humans could transfer a specific skill to
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a robotic learner. In the way towards enhanced user-friendliness, teleoperation and

camera systems appeared as suitable tools for supporting the teaching process. Tele-

operated robots constitute an adequate solution for teaching complex tasks in hostile,

unsafe or inaccessible environments [124]. In this type of scenarios, a robot located in

a remote place is teleoperated through a local interface driven by a human operator.

These local interfaces usually have a display providing the user with visual feedback

about the remote scene [158]. In addition, they may offer force/torque feedback through

a haptic device, which largely enriches the information sent back to the teacher as well

as provides a bidirectional communication channel between the partners [106]. One

of the main drawbacks of LfD by teleoperation is time delays, which may make the

teaching process slow and exhausting if these are significantly high.

As for camera systems, vision is one of most used systems for capturing human

demonstrations because it is considered as the most natural way of observing actions in

humans. In this context, the teacher carries out the samples of the skill to be learned

while the robot records them using a set of cameras. However, these vision-based

systems have to be very simplified to avoid all the well-known problems in computer

vision (e.g., segmentation, occlusions, lighting), for instance by placing a set of markers

on the teacher’s body [166], and on objects to be manipulated during the task1 [10].

After this, the next problem to be solved is the kinematic mapping to represent the

demonstrations either in the joint or the operational space of the robot, which is a key

problem when teaching humanoids [158].

As mentioned, vision systems extracted information from human motion, thus most

information collected by the camera was discarded (e.g., color, contours, shadows).

Because of this, another much simpler hardware has been designed to exclusively collect

motion data, as optical – or magnetic – tracking systems do. The main advantage of

these devices is that they provide very precise data about the position – and possibly

orientation – of bodies defined by a set of markers, avoiding the typical image processing

problems of cameras-based systems. However, the drawback of kinematic mapping (i.e.,

the correspondence problem) remains when humanoid robots are in the loop [90]. This

problem refers to how the imitator knows what pattern of motor activation will make

1Currently, part of the research on computer vision is focused on finding invariant features on the
objects of a given scene, which may be considered as markers that do not vary with rotations, scale
changes, etc.
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Skills Tranferring

ByWatching Kinesthetic TeachingTeleoperation

Perception channels

Force Tactile Vision Hearing Proprioception

Figure 2.2: The most common skill transferring methods and perception channels used
in imitation learning.

its action looks like that of the demonstrator [16], which is not straightforward if the

samples of the task are not provided using the robot’s own embodiment (e.g., through

kinesthetic teaching). Furthermore, placing markers on the user body is not natural,

and thus hardly used in domestic environments.

It is worth highlighting that a strong relationship exists between the skill transferring

method used by the teacher and the input perceptions sensed by the robotic learner. In

other words, the way in which the teacher transfers his/her knowledge about the task

indirectly conditions at least one of the robot

ion channels to observe the human demonstrations (Figure 2.2). The above described

systems are mainly used to transfer movements, this means that the learning process

occurs at trajectory-level, where the robot must encode time-series data as streams of

joint angles [98], or Cartesian positions of the end-effector [83].

With the formerly described robots hardware and control approaches, the learning

process was not considered user-friendly, safe and natural as desired. However, insights

in new control schemes and novel actuators (e.g., backdrivable motors) allowed to create

much safer and more versatile robots, which can be manipulated and held by humans

effortlessly [3, 133]. Also, small and light robotic arms or humanoids can be easily
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manipulated by setting the motors in a passive mode. This opens the door to a new

skill transferring approach, namely: kinesthetic teaching. Such term refers in general

to the procedure where the teacher is holding the robot, which is gravity compensated

at its wrist and/or links, and moves the robotic arm along the trajectories that the

robot has to follow during the execution of the task. This method has been greatly

exploited to demonstrate trajectory-level skills [2, 24], where better and more precise

samples can be provided as the teacher is much more involved in the learning process

of the robot by experiencing the kinematic constraints at first hand.

2.3 Perception systems

As mentioned above, vision-based systems (e.g., cameras, optical tracking systems) have

been the most used hardware to observe the teacher demonstrations and to perceive

the robot environment.1 Nevertheless, the robotic learner may be endowed with other

type of sensors depending on the task to carry out [77]. For instance, proprioceptive

sensors provide information about the internal state of the robot (e.g., motor encoders),

which are very useful during kinesthetic [28], or teleoperated teaching [124]. Auditive

perception has been also used in LfD settings, where a human enhances the examples of

the task by telling words or sentences that provide more information about the current

state of the demonstration [122]. Such systems have been extensively applied in social

robotics, because this kind of HRI shares similarities with how humans interact daily.

When the task to learn involves contact with objects or surroundings (e.g., manip-

ulation tasks), force-based perception systems are used to extract information such as

reference force/torque profiles [148], or tactile data [35]. The importance of this kind

of sensing increases as robots become safer, which allows them to physically interact

with humans, where haptic communication takes place. Haptic cues have been shown

to be a very rich source of information in human-robot collaborative scenarios, since

they can convey intentions over the course of the task [150]. In this context, these force

measurements are also used to learn and establish the roles of the partners [149].

1The robot may use a different set of perception systems during the demonstration phase and the
reproduction of the task. For instance, the robot may observe demonstrations of trajectories to grasp
a cup through an optical tracking system and a set of cameras, while in the execution of the task the
robot would only need the cameras to know where the cup is located.
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2.4 Representation of knowledge

Once the demonstration phase has finished, the data collected by the robot must be

encoded through a model that represents the taught task in a compact way. Such

representation depends on what the robot needs to learn from the human samples and

on the complexity of the task. On the one hand, when a robot is desired to carry

out a specific set of movements (e.g., trajectories or paths to be followed) depending

on a given set of perceptions, where position, velocity and acceleration are variables

of interest, the task is usually represented at low-level. Here, the robot actions are

directly determined by such variables, which govern motor commands to be sent to

the robot controller. Hence an approximation of the perception-movement mapping

function must be found [5]. This function must be able to generalize, such that valid

solutions are also acquired for similar states that might not have been encountered

during demonstrations. Continuous encoding models and regression-based techniques

are fit for representing this kind of tasks.

On the other hand, very complex tasks are commonly split up in a set of sub-

goals to be achieved by the robot. In such a case, the task representation is at high-

level, where the sub-goals are represented as state-action pairs. Mostly, the learning

process involves to discover rules linking the different state-action combinations. Rules

represent actions leading from one world state to another, and are typically formulated

as a set of preconditions that must hold in the world state the action applies to, and a

set of postconditions or effects of the represented action. A sequence of actions is then

planned using the learned rules. Unlike LfD approaches, planning techniques frequently

rely not only on state-action demonstrations, but also on additional information in the

form of annotations or intentions from the teacher. Discrete encoding algorithms and

graph-based models are used to represent this set of tasks.

2.4.1 Encoding of skills

In Machine Learning literature [13, 109], it is possible to find a huge quantity of algo-

rithms that can be adapted to LfD applications. The selection process of the model to

be used should consider the type of tasks to encode and the level of representation of

the teacher demonstrations. Learning techniques based on dynamical systems models
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and stochastic approaches stand out over more ad-hoc algorithms, because they pro-

vide a more general structure to encode different type of skills using the same basis

framework.

2.4.1.1 Dynamical systems models

Regarding learning methods based on dynamical systems, Ijspeert et al. proposed to

use nonlinear differential equations to form control policies in trajectory formation [75].

In this approach – known as dynamic movement primitives (DMP) – the dynamical

system represents a whole flow field instead of a single-trajectory, in other words, they

encode a whole attractor landscape in which the desired trajectory is produced. Such

flow field can be constructed from demonstrations, which can automatically correct

external perturbations and guarantee convergence to a goal state. DMP have been

extensively used in imitation of reaching movements [74], for encoding rest-to-rest mo-

tions in articulated mobile robots [120], and also extended to manipulation tasks where

the behavior of the primitives is influenced by perceptual cues [83].

The main idea behind DMP is to use simple dynamical systems (e.g., a set of first

order systems) and transform them into a nonlinear system with determined attractor

dynamics by means of a learnable autonomous forcing term. Such an approach has been

the basis for further reformulations and modifications of DMP. For instance, Hoffmann

et al. stated that the original DMP could be expressed with a mechanical analogy

by defining the basis force components used in DMP to modulate the movement as

virtual damped springs, thus moving the learning problem to the estimation of virtual

equilibrium points instead of estimating forces [68]. On the other hand, Pastor et al.

proposed a DMP framework where sensory information captured in the demonstration

phase may modify the desired trajectory in an online manner, so that the measured

sensory experience remains close to the expected one. This idea shares similarities

with the perceptual coupling for DMP proposed by Kober et al. [83]. In this work

the original formulation was modified by including a coupling with external variables,

most of them considered as perceptual cues. Finally, a recent work presents a novel

approach for joining several DMPs by overlapping kernels, in order to reproduce very

complex trajectories composed of simpler movements that need to be mixed through

smooth and natural transitions [92].
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2.4.1.2 Stochastic approaches

Gaussian Mixture Models (GMM) are the basis of several LfD frameworks performing

successfully in a variety of scenarios. Broadly speaking, GMM can be considered as a

statistical encoding tool where a mixture of experts (i.e., normal distributions acting

as the states of the model) represent the data, allowing a localized characterization of

the different parts of the demonstrated task. Calinon et al. used this mixture modeling

to teach simple manipulation tasks to a humanoid robot [26]. However, one of the

main drawbacks of GMM is the strong assumption of having aligned data streams,

that is, fixed time length demonstrations. Therefore, a pre-processing stage over the

training datapoints is needed to obtain such type of data. Among the solutions, one

can find Dynamic Time Warping (DTW) [25, 44] and Hidden Markov Models (HMM)

[88, 127].

HMM is a powerful method to encode time-series data and may be also consid-

ered as an extension of the original GMM, where the temporal evolution of the data is

encoded through the evolution of a hidden state. Such temporal information is encap-

sulated by transition probabilities for every pair of states. Thus, HMMs can be used to

encode temporal and spatial variations of complex signals, and to model, recognize and

reproduce various types of human demonstrations. In LfD, HMMs have been used for

teaching collaborative lifting tasks to a humanoid robot [50], for learning and reproduc-

tion of a bi-manual task and tennis table strokes [27], and as a basis for a hierarchical

incremental learning of full body motion [91]. Recently, some extensions of the classical

HMM formulation have been also applied to learn tasks from imitation. Krüger et al.

[86] used a parametric version of HMM to learn reaching movements, where the model

states linearly depend on a given parameter of the task, i.e., the location of the object

to be grasped. In [29], the authors propose to encode time and space constraints of a

trajectory following task using an explicit-duration HMM, which was shown to provide

good results when the robot faced strong perturbations during the execution of the

task.
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2.4.2 Reproduction of skills

Once the task model has been learned, it is necessary to reproduce the learned skill.

In the case of dynamical systems, the task is often time-dependent, thus at the repro-

duction phase the learned DMP is used to reproduce the task using temporal variables.

The smoothness of the reproduction depends on the type of nonlinear equations used for

encoding the demonstrations. In contrast, when encoding through probabilistic models,

retrieving smooth trajectories is not that straightforward. First efforts addressed this

problem using an averaging approach applied to an HMM, where generalized move-

ments are retrieved by averaging over a large number of trajectories previously gen-

erated from the trained model [98]. Such an approach is very time consuming and

computationally expensive, does not guarantee smoothness of the results, and it may

also smooth out important peaks in the human motion.

Interpolation-based approaches were also proposed to obtain a reproduction from

HMM-based encoding, where the mean of the Gaussian distributions is considered to

obtain series of keypoints for interpolating them [22]. The main drawback of this

approach is the fact that the covariance information is ignored. Then, Calinon et al.

introduced the use of Gaussian Mixture Regression (GMR) [55] to retrieve a time-based

trajectory from a set of demonstrations encoded by a GMM. GMR provides smooth

generalized trajectories with associated covariance matrices describing the variations

and correlations across different variables, considering the covariance data encapsulated

by the Gaussian states [21]. Recently, a quantum theory based GMR was proposed by

Chatzis et al. [32], which allows for a significant performance increase in comparison

with other state-of-the-art LfD methodologies.

In contrast to the above approaches, other regression-based methods have been also

used to encode and reproduce robotic skills, mostly based on trajectory following. A

popular technique is locally weighted regression (LWR) [7], a memory-based algorithm

that combines the simplicity of linear least squares along with a weighting mechanism

to learn nonlinear functions. Such an approach was the core for two further exten-

sions, namely receptive field weighted regression (RFWR) [141], and locally weighted

projection regression (LWPR) [159]. The first one dealt with the problem of moving

from a batch process to an incremental learning strategy, but suffering from the curse of
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dimensionality. This drawback was overcome by LWPR, which was shown to operate ef-

ficiently in high dimensional spaces. On the other hand, Gaussian processes (GP) have

been also applied to LfD tasks. Grimes et al. proposed to use GP for nonparametric

forward model learning in whole-body motions of a humanoid robot [61]. Nonetheless,

its main disadvantage is the high computational cost, preventing it to be used in very

complex tasks or in incremental learning. One possible solution to this problem is

based on sparse GP, where only a subset of the latent variables are treated exactly,

and the remaining variables are given some approximate, but computationally cheaper

treatment [119]. Grollman and Jenkins [62] compared this approach with LWPR in

the context of LfD, where both techniques provided good function approximation ca-

pabilities. However, regarding hard memory and timing guarantees issues, sparse GP

showed to be more suitable for real-time interaction. In contrast, Nguyen-Tuong et al.

[116] solved the high computational cost problem by partitioning the training data into

local regions and learning an independent GP model for each region, similarly to how

LWPR works. In the same vein, Schneider and Ertel also proposed a local approxima-

tion, where the training inputs were assigned to the local model that best fits and then

an individual GP on each of these models was trained [144].

Researchers in the field of LfD agree that a widely adopted assumption to represent

complex skills and nonlinear movements is to decompose them into smaller units of

action, and weighted combination of linear systems. Examples of models that can be

reformulated in this way are the GMR based approaches [27], and methods whose core

is the DMP [82]. These techniques differ in the way the linear systems are estimated

and constrained, and in the way the activation weights are defined to combine the linear

systems. This representation allows to develop more generic frameworks able to deal

with complex tasks, as well as to extend the learning process to teach other type of

human behaviors to robots, such as those based on impedance.

2.5 Applications - Experimental Scenarios

Works dealing with LfD have been carried out on different settings, where both sensory

information and how the demonstrator provides the robot with samples differ for each

application. Most of the efforts have focused on teaching a given path or trajectory
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to be followed by the robot. Such trajectory may correspond to a set of desired posi-

tion/velocity profiles of the robot’s end-effector as well as of its joints. This low-level

learning has been successfully applied to manipulation tasks, grasping skills, gesture

reproduction and whole body motion pattern imitation. However, the development of

compliant robots brings new possibilities in imitation learning, by extending the skill

transfer problem towards tasks involving force, and towards reactive systems able to

cope with various sources of perturbation coming from the interaction with the user

and the environment.

2.5.1 Manipulation tasks

A large group of researchers have focused on endowing robot with manipulation skills

to allow them to interact with objects populating their environments. Assembly setups

such as the well-known peg-in-hole task have served as an appropriate test-bed to study

LfD issues. Initially, such type of tasks were demonstrated to the robot by capturing the

teacher samples exclusively using vision-based systems [94]. Dillman et al. used fuzzy

sets and information theory to transfer manipulation skills to a robotic arm, where the

demonstrations were recorded using a stereo vision system [41]. More sophisticated

systems have been recently used to record manipulation human skills, such as magnetic

or optical tracking systems. Shon et al. [147] used reflective markers attached to the

teacher’s body in learning a lifting task, where HMMs were applied to encode and

recognize the demonstrations representing a forward model of the skill at hand. A

similar perception system was used by Krüger et al. [86] to track human examples

of pick and place movements, where abstract relationships between objects and robot

actions were determined from a low-level representation based on a parametric version

of HMMs.

In contrast to the aforementioned works, other researchers studied similar tasks

but these were demonstrated using other skills transferring methods. For instance,

assembly tasks were also analyzed in teleoperation settings, where force sensory patterns

conditioned the robot actions, which can be modeled as a sequence of contact formations

and desired transitions between them [148]. Telerobotics has been also exploited to

teach complex manipulation tasks (e.g., drill-mating or chisel-pickup) to a humanoid

robot for space applications [77, 124]. In recent times, this type of skills transfer has
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benefit from force-reflecting devices, which offers two significant advantages:(i) the

teacher gets knowledge about how the robot is perceiving its environment based on

force feedback, and (ii) learning is extended to the force domain. In this field, Howard

and Park [70] took advantage of a haptic device to regulate the teacher behavior in

demonstrating a manipulation task using guidance forces derived from visual input

data. In this work, a discriminative model based on neural networks was used to learn

the control sequences necessary for task execution.

Lifting tasks have been also demonstrated using haptic devices. Evrard et al. pro-

posed a framework to teach to a humanoid robot how to lift a beam cooperatively with

a human operator [50]. The authors used a GMM to encode a pure follower/leader

role distribution while GMR was implemented to reproduce the manipulation skill.

Force-based perceptions are considered as inputs for learning the task, assuming that

the proposed framework is able to encode the dynamics of the motion, and the syn-

chronization and adaptation processes. This extension of LfD to manage force-based

demonstrations is crucial in manipulation tasks as noted by Kormushev et al. [84].

Their work dealt with the problem of teaching force skills demonstrated through kines-

thetic teaching. Different force profiles of contact-based tasks (ironing and door open-

ing) were demonstrated through a haptic device while the robot followed a previously

learned trajectory. Both space and force constraints of the skills were represented as a

mixture of dynamical systems based on virtual damped springs.

Force-reflecting devices have been also used to teach tasks in virtual environments

where the haptic signals sensed by the human demonstrator correspond to forces com-

puted from mathematical models instead of coming from sensory readings. In [43], a

virtual peg-in-hole task was learned by encoding the human demonstrations through an

HMM. After learning, a physical robot reproduced the task using LWR as an approxi-

mator for the trajectories encoded at each state of the model. Mayer et al. [106] also

used virtual environments along with haptic devices, in this case to teach knot-tying

tasks in a minimally invasive surgery context. Their skill transfer framework comprises

a LfD module supported by a scaffolding1 process, which assists the robot to extract

sensory-motor primitives from the human demonstrations.

1Scaffolding refers to an assistance, which is generated from the superior knowledge of the teacher.
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2.5.2 Human motion

As learning at low-level has for a long time been on the top of the agenda for LfD, many

works have used such representation in human motion imitation. Calinon and Billard

devoted their research to gesture recognition and reproduction, where HMMs [22] and

incremental versions of GMMs [24] were tested to encode the teacher demonstrations,

while reproduction was implemented using GMR. They also focused on the idea of how

to find a representation of the data that encapsulates only the key aspects of the human

action, and discards the intrinsic variability across people movements (i.e., the what to

imitate? problem). This was tackled by applying principal components analysis (PCA)

to reduce the redundancy in the human samples while reducing the dimensionality of

the data. Akgun et al. [2] also addressed the problem of gesture imitation using GMMs,

but their contribution lies on the way the demonstrations are provided. They proposed

to provide a sparse set of consecutive keyframes that achieve the skill when connected

together, unlike kinesthetic teaching where continuous uninterrupted samples are given.

Full body motion imitation has been another field of application. Ude et al. [158]

dealt with the problem of programming the movements of a humanoid robot from data

generated by human motion, which was sensed by an optical tracking system. They

proposed a new approach to the formulation and optimization of joint trajectories for

humanoids using B-spline wavelets. Kulić et al. presented an entire LfD framework

to incrementally learn whole body human movements using factorial HMMs [56]. The

robot encoded the different motion patterns using a separate model for each of them,

which can also be used for recognition purposes. The models are automatically orga-

nized in a hierarchical tree where a clustering process takes place once a specific motion

has been recognized, so that similar movements can be grouped and synthesized by a

single model [88]. Kulić and her colleagues improved this work in recent times by re-

ducing the complexity of the models to be classical HMMs and by learning a temporal

relationship between motion primitives via the construction of a motion primitive graph

[91].

Human motion is also essential for social robots, which are expected to interact

with humans. Takano et al. modeled primitive nonverbal communication based on ges-

tures through a hierarchical mimesis model represented by three groups of HMMs [153].

Such model integrated imitative learning with communication in a compact framework,
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extending LfD to social robotics applications. In contrast to this approach, communi-

cation between a human and a robot can also show up through physical interaction.

Lee and Ott [99] presented a LfD structure to teach human gestures to a robot through

observational learning and subsequent kinesthetic corrections. The key feature here is

the definition of a motion refinement tube, which regulates the stiffness of the robot

joints according to the variance encapsulated by an HMM. A customized impedance

controller based on such tube allows deviations from a nominal trajectory, so that the

robot can incrementally improve its representation of the task using the kinesthetic

modifications performed by a human.

2.6 Physical human-robot interaction in LfD

Physical HRI (pHRI) opens the door to new possibilities and scenarios where a robot

can help and collaborate in an active way to perform a task with a human. Collaborative

tasks are a new branch of research in HRI, where haptic communication is an important

component to determine the roles of each partner in the dyad (e.g., leader and follower)

and to accomplish the goal successfully [130, 131]. pHRI offers two new important

perspectives in LfD: (i) it permits to demonstrate skills by guiding kinesthetically the

robot through the task, and (ii) it allows to transfer skills that are not only represented

by position information, but also by force information.

2.6.1 Human-robot interaction based on haptic inputs

In the physical human-human interaction (HHI) context, haptic inputs have shown to

be a rich and complex communication channel between the partners. Reed et al. [131]

proposed to analyse the performance on HHI through a set of experiments showing that

a dyad performs better and faster in collaboration than if the given task is carried out

individually, which highlights the possible advantages of using a robot as a collaborative

partner. In this scenario, haptic inputs are a very valuable information source when

HRI includes physical contact between the robot and the human either directly or

through an object [130]. For instance, these signals allow the robot to recognize human

intentions in order to change its behavior accordingly, as well as to determine the role

of the participants in the task [149].
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In the field of intention recognition, Stefanov et al. [150] proposed to identify human

intentions in a computer-assisted teleoperation setting by analysing the haptic interac-

tion signals which are discretized using a threshold-based technique and then encoded

through two HMMs representing the stages of the task, namely, transportation and

positioning phases. A similar approach is introduced in [162] for a human-robot hand-

shaking task, where an HMM-based high-level controller estimates human intentions

and modifies the reference trajectories accordingly. The main idea is to imitate the

compliance behavior seen in human-human handshaking by analyzing the haptic in-

puts and the human intentions. All these works addressed the problem of identifying

the role for both partners during the execution phase, extending former approaches

where each role was predefined [129, 161].

2.6.2 Impedance-based robot behaviors

During the last years, an increasing effort has been devoted to exploit the advantages

provided by the impedance-based control of robots, working on the foundations given

by Hogan in his seminal work [69]. In broad words, Hogan highlights the importance of

considering robot control as a hybrid structure where position and force control must be

developed in parallel. He proposed an energy-based model, which considers the dynamic

interaction as a flow exchange where an element behaves as an admittance (i.e., the

environment) and the other one as an impedance (i.e., the robot).1 Considering that

the robot behaves as an impedance has opened new research branches to control and

build safer and friendlier robots to interact with human beings.

Impedance in humans has also been studied with the aim of gaining in-depth knowl-

edge of the roles of the muscles, tendons, brain and spinal cord in modulating impedance

when we interact with the environment. For instance, [18, 58] have investigated how

humans modify their impedance – by activating specific muscles – to stabilize an un-

stable task or in trajectory tracking. New efforts have been devoted to mimic or copy

these insights on how human impedance works with robots. In [53], the authors analyze

how the impedance on the human arm is regulated through the muscles and propose to

implement this behavior in a robot by means of feedforward and feedback commands.

1From a physical systems perspective, admittances accept effort inputs such as forces and yield
motion, while impedances accept motion inputs and yield force outputs.
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In this way, the robot is able to adapt its force and impedance while minimizing its

trajectory tracking error. On the other hand, studies on transferring impedance control

strategies to robots with variable impedance actuators have been developed [71]. In this

work an apprenticeship learning approach is proposed to record the optimal behavior of

the system from human movements. This approach is used along with optimal control

techniques to transfer the behavior characteristics to the robot actuator.

In the field of HRI, Evrard and Kheddar [49] described an homotopy-theory-based

model to modify the robot control signals in a collaborative lifting task with humans. In

this work, a smooth switching function for the robot is determined to balance between

two extreme roles: leader and follower. This is achieved by modifying the trajectory

and impedance parameters of the robot on the basis of force-based perceptions. A

similar task was tackled in [27, 60], where the robot learns the task using GMM to

anticipate human intentions and to modify its behavior according to the force data. In

[60], the learning stage is carried out by implementing a GMM-based encoding of the

task, while motion adaptation is achieved by tuning the impedance parameters of the

robot as a function of the errors in the trajectory, the velocity, and the force data.

Transferring correct compliant behaviors is an uprising challenge in LfD. Such be-

haviors can be controlled by the estimation of the robot compliance level which has for

example been computed from robot position variability [28] or through human-stiffness

estimation using electromyography signals [1]. Recently, impedance shaping has been

exploited to refine robot motion primitives by physical interaction with a human teacher

[99].

2.7 Chapter highlights

Looking at the previous sections, it is interesting to notice that research in the LfD field

has missed two particular – and relevant – topics. On the one hand, most of the work

on LfD has focused on how to represent and reproduce a given task, and only a few

researchers have worked on finding possible solutions to the what to imitate? problem.

This is a crucial part of any learning framework, because the proposed solution may

make the skill learning considerably easier and faster. Such an issue is tackled in the
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next chapter, where a feature selection algorithm is proposed as a possible solution to

find the relevant perceptions of a task.

On the other hand, learning has been analyzed and applied in trajectory following

tasks, where only spatial information – coming mostly from vision systems – has been

used as input to encode and reproduce the demonstrated skill. Nevertheless, it is

worth emphasizing that such perception systems may miss relevant data in other type

of scenarios, like tasks implying physical contacts. Thus, learning in the force domain

is a highly promising route of research to build smarter – and probably safer – robots,

which is the core of this thesis.

By finding possible solutions to the aforementioned issues it would be possible to

build a whole learning framework able to encode and reproduce a large set of force-

based tasks, and that would also analyze the perception signals in order to extract the

relevant data to learn a skill. Such a framework may be considered a step further to

achieve a unified structure that endows robots with learning capabilities, which is still

a challenging and open problem in the Robotics community. Also, it will be important

to take into account that impedance controllers are providing robots with new control

features, allowing them to learn and reproduce new kinds of tasks. Therefore, the

proposed learning framework should also be able to work in these new contexts. These

issues will be treated in the final chapters of this thesis.
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Selecting relevant perceptions

During the demonstration phase, the robot observes the human performing a task

using its perception system to gather all the information about the current state of

the environment, the teacher actions and their effects on the surroundings. Part of

the collected information may be useless for the skill at hand, and some variables may

provide redundant data. These conditions give rise to one of the main open questions

in LfD, namely what to imitate? This question refers to determining which information

of the demonstrations is relevant for learning the task successfully, and it takes place

at the first stage of the teaching process [12, 115]. Here, this issue is addressed by

analyzing the importance of every perception channel (from now on, perceptions for

short) during the whole reproduction of the task.

So far, most works tackle this problem by analyzing the variability across demon-

strations of the task at trajectory level. Those parts with large variances do not have

to be learned precisely, whereas low variance suggests that the corresponding motion

segment is significant and deserves to be encoded [26, 84]. This approach exploits vari-

ance for constructing task constraints [25] as well as for determining secure interaction

zones in a robot coaching framework [99].

However, these methods are not able to uncover the relative relevance of each indi-

vidual input dimension for the task to be learned. Irrelevant or redundant information

may actually be present across input dimensions, which increase the computational cost

of the learning stage and make the task harder to learn (e.g., in some LWR-based meth-

ods). The point here is to select the subset of the most relevant input variables. The
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benefits in computational cost and noise reduction during the learning stage may out-

perform a hypothetical and marginal loss of information. Furthermore, this approach

may be compatible with the previously described variance-based analysis criterion, as

this method can be applied to the remaining variables.

This chapter shows how feature selection techniques can be used in this context.

Specifically, the mutual information (MI) criterion can be exploited to determine which

perceptions are the most relevant, by analyzing their influence on the robot actions.

This method is compared against other state-of-the-art algorithms used to solve the

same problem in previous works. Previously, however, specific issues concerning the

processing of haptic signals provided by force sensors are also addressed here, because

they are of particular interest when the robot carries out manipulation skills holding

tools at its wrist.

3.1 Perception processing

When a robotic arm carries out manipulation tasks, its end-effector is often in contact

with the environment directly or through an object (the workpiece or a given device).

Such interaction with its surroundings produces forces and torques on the robot’s tool,

which have to be measured in order to gather essential information about the task. The

collected data should contain only patterns related to the skill at hand, but unfortu-

nately this never happens in real scenarios. The weight and inertial forces of tools and

manipulated objects, intrinsic sensor features and the dynamics of the task introduce

noise in the data streams. Thus, it is necessary to remove any undesired signal so that

the robot perceptions exclusively represent the needed information.

On the one hand, high-frequency noises such as vibrations of flexible loads – induced

by the robot motion – or the intrisic noise of the sensor can be significantly reduced

by applying classical low-pass filters [45, 134]. On the other hand, the magnitude

of inertial disturbances cannot be ignored when large accelerations and fast motions

are considered (i.e., in highly dynamic tasks) or when the robot holds heavy tools.

This problem is tackled here using a simple dynamic model that allows to estimate

the external forces/torques by taking into consideration the inertial components in

the sensor readings. Considering the system shown in Figure 3.1, let p denote the
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Figure 3.1: Dynamic modeling of the force sensing process.

position of the center of gravity of the robot’s tool, ω its angular velocity, m its mass,

I its moment of inertia, g the gravitational force, {F s,T s} and {F e,T e} the sensor

and external forces/torques respectively, and rs and re the vectors from the center of

gravity of the tool to the sensor and external forces frames. Then, using the Newton-

Euler equations,

∑

F = mp̈ = mg + F e + F s, (3.1)
∑

T = Iω̇ + ω × Iω = T s + rs × F s + T e + re × F e. (3.2)

It is worth mentioning that this dynamic modeling of the force sensing process has

been used as the basis of more complex methods for estimating external forces/torques

in high-speed robot manipulation [157], robot compliant control [102] and cooperative

robots sharing a load [93]. On the other hand, the same model is greatly simplified

when the task characterizes by low velocities and accelerations,

F s = −mg − F e, (3.3)

T s + rs × F s = −T e − re × F e. (3.4)

This model will be applied to three different experimental setups (see Section 1.4)

in order to work with clean haptic data. These will be used as input information in

the training dataset for learning processes, and also for providing the teacher with

force feedback through haptic interfaces when bidirectional communication channels
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are implemented (Sections 1.4.1 and 1.4.2).

3.2 Selection through feature transformation

Feature transform is a well-known approach in variable selection and dimensionality

reduction. It basically consists on constructing a reduced number of new variables out

of the original ones. Several techniques have been proposed to achieve such transfor-

mation. One classical linear transform for dimensionality reduction is principal com-

ponent analysis (PCA). This transform is derived from eigenvectors corresponding to

the largest eigenvalues of the covariance matrix of data. The method seeks to opti-

mally represent the data in terms of minimal mean-square-error (MSE) between the

representation and the original data [78]. Another similar algorithm that makes use

of second-order statistical information, the covariances, is the linear discriminant anal-

ysis (LDA). This technique applied to classification problems finds a transformation

from the eigenvectors of a matrix that captures the compactness of each class and the

separation of the class means. Independent component analysis (ICA) is another tool

to find interesting projections of the data by maximizing the divergence to a Gaussian

density function in order to find a subspace on which the data has the least Gaussian

projection [73]. This criterion corresponds to finding a projection of data that looks

maximally clustered.

PCA has been successfully applied in kinesthetic LfD for building a latent space

onto which spatio-temporal trajectories are projected to find an optimal representation

for a given task [26]. This allowed to reduce redundancies of the original training

dataset while keeping the relevant information of the demonstrations in a subset of new

variables constructed from a linear combination of the original inputs. Such approach

may be considered as a possible solution to the what to imitate? problem, and it will be

taken into consideration in this chapter for comparison purposes against the proposed

solution described in Section 3.3.

Formally speaking, let X be a matrix containing the entire training input data with

variables {x1, x2, . . . , xI}, where I is the dimensionality of the input dataspace. New

variables ζ = {ζ1, ζ2, . . . , ζD} are computed from an orthogonal linear transformation

of the original data, which is defined by the matrix A = {v1, v2, . . . , vD}, with vi being
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the eigenvectors of the covariance matrix of X with associated eigenvalues λi. D is the

minimal number of eigenvectors used to obtain a satisfying representation of the data,

i.e., such that the projection of the data onto the latent space defined by A covers at

least 98% of the data’s spread, that is
∑

D

i=1 λi > 0.98. This technique will be applied

to the ball-in-box task and the results will be compared against those obtained from a

feature selection approach in Section 3.4.1, where also a discussion about its advantages

and drawbacks in the LfD context will be given.

3.3 Mutual information-based selection

Feature selection methods keep only useful variables and discards others, often in the

original dataspace. This approach is needed when it is essential to retain the original

data provided by some of the inputs of the problem. In other words, the original

features may convey information that can be further interpreted and used more easily

than if they were projected on a different space. In this context, Mutual Information

analysis is the approach proposed in this thesis as an alternative solution for choosing

the relevant perceptions to learn a task.

3.3.1 Classical approach

Here the MI criterion is used, which allows to establish which input variables give more

information with respect to their effects on the outputs (i.e., how perceptions affect

actions). In contrast to other techniques (e.g., correlation criterion), MI detects non-

linear dependencies between inputs and outputs and accounts for higher-order statistics,

not only for second-order ones [63, 156]. The purpose of this method in feature selection

is the reduction of the output data uncertainty, provided by each input variable [9].

In our context, depending on how the uncertainty of the output data is reduced, a

robot perception gives more or less information about the desired actions. It is worth

to highlight that this approach has shown satisfactory results in sensor fusion [76], and

vision-based positioning of a robotic arm [163].

Formally, the MI value between two continuous variables x and y is defined as
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follows (more details in [146])

I(x;y) =

∫

x

∫

y

p(x, y) log
p(x, y)

p(x)p(y)
. (3.5)

Here, both the marginal and joint probabilities may be approximated using histogram-

based densities, which are computed from discrete partitions of the dataspace. The

quantization error in the conversion from continuous variables to discrete ones is bounded

by some constant value which depends only on the number of partitions that divide the

continuous space [96]. It should be noted that other types of non-parametric density

may also be used, such as Parzen windows [97].

Specifically, given a training dataset containing I inputs and O outputs, the MI value

is computed for every input-output pair (xi,yj), with i = 1, . . . , I and j = 1, . . . ,O.

These values allow to sort the inputs based on the criterion of maximal information

with respect to the output yj, this means that the first input in the ranking will be

that with the largest I(xi;yj), reflecting the largest dependency on the given output.

Then, the problem here is to select a subset Ω of K perceptions from the original set

X of I inputs, that is “maximally informative” about the entire set of robot actions Y .

The simplest approach is to carry out a sequential search, where the best K individual

input variables, i.e., the top K features in the descent ordering of I(xi;Y ), are often

selected to create the subset Ω for Y . Nonetheless, it has been recognized that the

combinations of individually good features do not necessarily lead to good classification

performance [123].

3.3.2 Conditional Mutual Information

The maximal information criterion should be used for selecting only the most relevant

input. However, to choose the remaining K − 1 perceptions, the redundancy among

inputs may be taken into consideration (i.e., a minimal redundancy criterion). To

achieve this, we resort to a modified greedy selection algorithm known as “mutual

information-based feature selection deduced from uniform distributions” (MIFS-U)

[96], which was adapted here to fit LfD tasks characteristics as described in Algorithm 1.

The core of this technique is to select the rest of variables by maximizing the conditional

MI I(xi;Y |Ω), this means to choose the input xi that provides most information about
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Algorithm 1 MIFS-U

1: Initialization: Set Ω← {}, X ← {x1,x2, . . . ,xI} and Y ← {y1,y2, . . . ,yO}
2: Compute MI: Obtain I(xi;yj), ∀xi ∈X , and ∀yj ∈ Y

3: Mean MI: I(xi;Y ) = 1
O

∑

O

j=1 I(xi;yj), ∀xi ∈X

4: Select the most relevant input: Find the input xs = argmaxxi∈X I(xi;Y ),
and set Ω← {xs}, X ←X \ {xs}
5: Greedy selection:

for t = 1→ K− 1 do

Compute the conditional MI I(xi;yj |Ω), ∀xi ∈X, and ∀yj ∈ Y

Obtain the mean conditional MI I(xi;Y |Ω) = 1
O

∑

O

j=1 I(xi;yj|Ω), ∀xi ∈X

Find xs = argmaxxi∈X I(xi;Y |Ω), and set Ω← {xs}, X ←X \ {xs}
end for

6: Output the set Ω

the whole set of outputs Y given Ω. Specifically, the conditional MI for an input-output

pair is obtained by approximating I(xi;yj |Ω) as follows (more details are given in [96])

I(xi;yj|Ω) = I(xi;yj)−
I(yj ;Ω)

H(Ω)
I(Ω;xi), (3.6)

whereH(Ω) represents the entropy of Ω. Note that if the problem has multiple outputs

(e.g., the robot actions are represented as acceleration commands at task level), a

different subset Ωj is defined for each yj. Here, it is assumed that every output

equally influences the satisfactory accomplishment of the task, thus mean MI values

are computed across all the subsets Ωj.

3.3.3 Automatic selection of input variables

As shown previously, the number of inputs K to be selected was predefined in advance,

however it would be desirable to have a measure to decide on the optimal number of

components selected by Algorithm 1. In this direction, let us define a new variable ζt

that computes the ratio at iteration t between the information a candidate input vari-

able xt
c provides and the one already given by the current subset of selected perceptions

Ωt as follows,

ζt =
I(xt

c,Y |Ω)

I(Ωt,Y )
, (3.7)

where xt
c = argmaxxi∈XI(xi,Y |Ω) and I(Ωt,Y ) =

∑t
j=1 I(Ω

j ,Y |Ωj−1). Such con-

ditional Mutual Information ratio shows how much information the next input to be
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Algorithm 2 Threshold-driven MIFS-U

1: Initialization: Set Ω← {}, X ← {x1,x2, . . . ,xI} and Y ← {y1,y2, . . . ,yO}
2: Compute MI: Obtain I(xi;yj), ∀xi ∈X , and ∀yj ∈ Y

3: Mean MI: I(xi;Y ) = 1
O

∑

O

j=1 I(xi;yj), ∀xi ∈X

4: Select the most relevant input: Find the input xs = argmaxxi∈X I(xi;Y ),
and set Ω← {xs}, X ←X \ {xs}
5: Threshold-driven selection:

Find the candidate input xt
c = argmaxxi∈XI(xi,Y |Ω).

Compute the conditional Mutual Information ratio ζt

if ζt ≥ φ then

Set Ω← {xt
c}, X ←X \ {xt

c}
else

Output the set Ω
end

selected provides taking into consideration the accumulated conditional MI given by

the current selected variables. In this sense, it is desired that ζt is greater than a prede-

fined threshold 0 < φ ≤ 1, which controls what is the minimum information ratio that

allows to select one more input variable (i.e., the minimum mutual information that a

variable should provide). It is worth mentioning that this new selection criterion would

modify step 5 in Algorithm 1, where the greedy selection is now controlled by ζt, which

is evaluated at each iteration before selecting the next input (see Algorithm 2). Thus,

the algorithm keeps selecting variables while the condition ζt ≥ φ is satisfied. Note

that the higher φ, the more selective the algorithm. See Section 3.4.4 for an example

on how this criterion is applied.

3.4 Experimental results

This section presents a comparison between PCA and MI approaches in the context

of the ball-in-box task, highlighting their potential advantages and drawbacks when

applied to LfD scenarios. After, MI results are shown for two additional experimen-

tal setups (i.e., the pouring and table assembly tasks), where more realistic skills are

demonstrated to the robot in order to show how the proposed solution performs in real

situations.
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3.4.1 Ball-in-box task

In this task, the main goal is to take a ball out of a plastic box, based on the haptic

perceptions generated by the ball motion. Here, the robot should learn a mapping

between the perceived forces/torques and its actions, which are represented as angular

velocity commands at joint level. As described in Section 1.4.1, force-based perceptions

are fed back to the teacher in order to establish a bidirectional communication channel

during the demonstration stage. A first experimental finding derived from the use of

haptic feedback is the need for filtering. Since the box is not a perfectly rigid struc-

ture, it vibrates as the robot moves. These unwanted vibrations introduce noise in the

teleoperation system, leading to unstable behavior. To avoid this, a low-pass digital

filter is implemented to greatly reduce all vibration signals, in a similar way as done

in [45] for suppressing residual vibrations in flexible payloads carried by robot manip-

ulators. The signals’ fundamental frequency is computed by subjecting the container

– with the ball inside – to vibrations through a force applied perpendicularly to the

container’s base, at the front edge of it. Then, the frequency spectrum of the generated

data is analyzed, from which the fundamental frequency (7.5Hz) is set as the cutoff

frequency of the low-pass filter. Using MATLAB R©’s FDAtool, the filter is designed

by implementing the Constrained Least Squares technique of order 75 [42].

After this, several people tested the experimental setting, by teleoperating the

robotic arm through the haptic interface while receiving force-torque feedback from

the sensor mounted on the robotic wrist. Initially, they teleoperated the robot while

feeling both the container’s mass and the ball’s dynamics. Then, they carried out the

same task just feeling the ball’s dynamics. All the participants argued that the presence

of the container’s mass was a very distracting factor making the task more difficult to

teach. Thus, the filtering and dynamic compensation are necessary to obtain better

demonstrations and to improve the bidirectional communication channel.

3.4.1.1 PCA results

PCA was applied to this task in order to develop a variable selection through feature

transform. In this case, only the input variables set (i.e., the perceived forces/torques)

is taken into account to find the latent space where the selection process takes place.
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Figure 3.2: Percentage of the variance explained by each principal component in the
ball-in-box task.

It should be noted that the forces and torques have different ranges of values which

may considerably affect the PCA results. Thus, a variance-based normalization was

implemented for every input. After this, the process described at the end of Section

3.2 was carried out.

Figure 3.2 displays the variance explained by each principal component obtained

from PCA. It is possible to observe that only one component (i.e., the sixth one) may

be removed because the remaining ones are needed to cover at least the 98% of the

data’s spread, according to the constraint previously explained. This yields a transfor-

mation matrix A that projects the datapoints to a latent space whose dimensionality

is only one component lower than the original input dataset. Such variable selection

is not easy to analyze even for this apparently simple task. It is worth noting that

the resulting components are linear combinations of the original input variables and

determine the directions along which the variability of the data is maximal, without

taking into consideration the outputs of the problem at hand. A discussion about

the possible advantages and drawbacks of this technique in the context of the what to

imitate? problem is given in Section 3.4.1.3.
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Figure 3.3: MI values for all the input-output pairs of the ball-in-box task.

3.4.1.2 MI results

Initially, the most relevant input was found according to the maximal information

criterion (steps 1 to 4 in Algorithm 1). Figure 3.3 shows the different MI values for all

the input-output pairs in the task. In general terms, the input variables Fy and Tz show

less relevance whereas Tx and Ty are the most correlated variables with the outputs.

This does make sense as they are the variables that give the most useful information for

knowing where the ball is inside the box (see Figure 3.5). These results confirm what

is intuitively expected about which input variables were the most relevant for this task.

Thus, Tx was chosen as the perception that provides most information with respect to

the robot commands executed during the demonstration stage.

Then, the remaining K − 1 input variables are selected according to step 5 of Al-

gorithm 1 (with K = 3). After having chosen Tx, the “conditional relevance” of Fx

and Ty keeps high, while the Fz’s one is slightly reduced (see Figure 3.4(a)). Then,

the algorithm selects Ty, which drastically weakens the importance of Fz, making Fx

definitively the best third variable to be selected. Note that initially the MI values for

Fx and Fz are very similar for most of outputs if only the maximal relevance criterion

is taken into consideration (see Figure 3.3). However, once {Tx Ty} have been chosen,

the information provided by Fz given these two inputs is significantly reduced, due to

the high correlation between them (as shown in Figure 3.4(b)). This is in accordance

to intuition, since Fz is the force along the vertical axis in the robot frame, which

represents the gravitational force of the ball. Such force generates the torques about

the axes x and y, and thus Fz and {Tx Ty} are highly correlated. Finally, the selected
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(a) MI between the most relevant input and the remaining perceptions (left), and conditional MI for
all the input-output pairs given the first selected variable.
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(b) MI between the two most informative inputs and the remaining perceptions (left), and conditional
MI for all the input-output pairs given the two selected variables.

Figure 3.4: Resulting MI values across iterations of MIFS-U for the ball-in-box task
data.

perceptions for this task corresponded to the subset Ω = {Tx Ty Fx}.

It should be noted that by plotting the first samples of the resulting “most infor-

mative” variables, namely Tx and Ty, it is possible to observe that they do describe

where the ball is inside the container. Figure 3.5 shows how these two variables make

unequivocal clusters for each starting location of the ball, which confirms that these

perceptions provide enough information about its position so that the robot performs

accordingly with success in learning and execution phases as shown in Section 4.3.3.

3.4.1.3 Discussion about PCA and MI results

It is clear that PCA and MI are really different approaches, mostly because their feature

selection is carried out in different dataspaces using distinct criteria. Here some possible

advantages and drawbacks for both techniques are contrasted, and some arguments are

provided to justify why one of them may be preferred in LfD tasks.

• Both PCA and MI provide a ranking that is used to carry out the selection

process. In this context, the main difference is that PCA indirectly gives the
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Figure 3.5: Torques map representing clusters for each initial position of the ball inside
the container.

number of features to be chosen based on the data’s spread criterion (see Section

3.2). Thus, the selection is completely automatic and data-driven. In contrast,

MI does need to know the number of inputs to be selected in advance.

• As PCA intrinsically consists in a feature transform, the resulting latent space

variables are not easily understandable. In contrast, MI works in the original

dataspace, providing the possibility of a straightforward analysis of the performed

selection process (as done previously).

• MI carries out the feature selection taking into account how the inputs affect

the outputs. This aspect is in the line of control policies in imitation learning,

where a mapping function from perceptions to actions of the robot is learned (see

Section 2.1.3). Opposed to MI, PCA only studies the correlation among the data

variables, no inputs-outputs distinction is taken into consideration.

• In terms of computational cost, the computational complexity of Algorithm 1 is

higher than PCA when the data are subjected to the feature selection process

before encoding the demonstrations. In contrast, PCA implies that each data-

point is online projected to the latent space during the reproduction of the task.

Although this computation is simply a linear combination of the original inputs,

it is more time-consuming than MI, which only needs to discard the irrelevant –

non-selected – input variables.
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• PCA strongly depends on the range of values (or magnitude) of the variables,

which of course can be solved by normalizing the data. On the other hand, MI

is invariant under space transformations. Such property is based on the fact

that the argument of the logarithm in Equation 3.5 is nondimensional, thus the

integral value does not depend on the chosen coordinates [48].

Beyond the aforementioned aspects of both algorithms, feature selection approaches

may be preferable to feature transforms in LfD when the original inputs contain intuitive

information that can be used to convey cues about the task. For instance, in active

learning, the robot may let the teacher know which perceptions it has selected, in

order to get feedback about how well or how convenient its selection was according to

the human knowledge of the task. Such human assistance will not be available if the

robot carries out the selection in a transformed dataspace. This fact may occur in [26],

where the authors propose to project the human samples onto a latent space obtained

from PCA to diminish redundancies, where the transformed variables do not have a

straightforward interpretation for a human teacher anymore.

The characteristics previously discussed and the obtained results show that MI

better fits the LfD paradigm, and its use raises several interesting challenges to be

solved. For instance, in this thesis MI was applied to low-level learning, where the

sensory inputs relevance was evaluated from their influence on the robot commands.

However, in learning at higher levels, it might be necessary to evaluate how low-level

instructions help to accomplish a high-level task goal. It should be noted that MI is

totally compatible with other different state-of-the-art approaches that solve the what

to imitate? issue, as those based on variance information (mentioned at the beginning

of this chapter).

The other two tasks described in Sections 1.4.2 and 1.4.3 will be analyzed below

using MI exclusively, with the aim of showing how this technique and the proposed

algorithm perform on more realistic scenarios.

3.4.2 Pouring task

In the task described in Section 1.4.2, a robotic manipulator learns to pour drinks using

its force perceptions exclusively. Similarly to the ball-in-box task, the demonstrations
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Figure 3.6: MI values for all the input-output pairs of the pouring task.

are carried out by teleoperating the robot through a force reflecting device. Regarding

the signal processing, a smoothing filter was implemented to reduce the noise from the

sensor readings, mainly generated by the tiny metallic spheres. Moreover, the dynamic

compensation model previously presented was used here for removing the bottle mass

effects from the sensor readings, in order to feed back the teacher with only the external

forces-torques generated by the “fluid” at the demonstration phase.

Here, inputs are the forces and torques conveying information about the fluid in

the bottle, while outputs are the desired robot joint position to be achieved. Again,

the MI value was computed for all the input-output pairs in order to select the most

important input variable, Tx in this case (see Figure 3.6). Note that Tx and Fz display

nearly the same MI value for all the robot joints. This is an expected result because Fz

is the vertical force in the robot frame representing the gravitational component of the

load (i.e., the bottle and fluid masses), while Tx is approximately the torque generated

by such a load. This means that both variables are providing similar information with

respect to the robot movements, because they significantly vary as the fluid comes out

of the bottle.

Subsequently, Algorithm 1 was applied to select the remaining K−1 variables (with

K = 3), from which the resulting “most informative” set of inputs was Ω = {Tx Fz Ty}.

The selection process and the values of the conditional mutual information are shown

in Figures 3.7(a) and 3.7(b). There is an interesting aspect to highlight from these

results: the third selected variable Ty shows slight variations when the robot rotates

the bottle to pour a drink, which are likely produced by the location change of the
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(a) MI between the most relevant input and the remaining perceptions (left), and conditional MI
for all the input/output pairs given the first selected variable.
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(b) MI between the two most informative inputs and the remaining perceptions (left), and conditional
MI for all the input/output pairs given the two selected variables.

Figure 3.7: Resulting MI values across iterations of MIFS-U for the pouring task data.

center of mass of the load due to the “fluid dynamics” into the bottle. Note that such

dynamics may be hardly modeled as reported in [154], but the algorithm was able to

detect that Ty was non-linearly correlated to the robot motion encapsulating part of

the fluid dynamics (also confirmed after a detailed analysis of the data streams).

Another point to mention is that, in some cases, MIFS-U still gives more preference

to redundant variables over irrelevant ones during the selection process, despite it is

aimed at reducing the redundancy among the selected inputs [48]. In this case the

variables Tx and Fz provide nearly the same information about the task, but both

are chosen even being redundant, because their relevance with respect to the outputs

keeps higher than that of irrelevant variables, despite one of them has been selected

previously.

3.4.3 Collaborative table assembly task

In contrast to the above experiments, MI is applied here to a collaborative task where

the robot should learn distinct reactive behaviors through the physical interaction with

a human partner as described in Section 1.4.3. Here, the data streams consist of
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Figure 3.8: MI values for all the input-output pairs of the table assembly task.

the sensed haptic inputs and the robot motion in its operational space during the

demonstrations of the task. The robot is controlled at the execution phase through

force commands that partially depend on stiffness matrix estimates that are obtained

once the model has successfully encoded the different behaviors (details are given in

Section 5.2).

In order to work only with those forces generated by the interaction between the

partners through the table, it is necessary to remove any other kind of force-based

signals from the sensor readings (e.g., screwing the table to the sensor produces an offset

in the frame of reference of the sensor). Again, a smoothing filter was implemented to

reduce the intrinsic noise of the sensor and the small vibration effects generated by the

table. Subsequently, a dynamic compensation of the forces/torques generated by the

table mass was implemented using the model shown in Figure 3.1.

The MI analysis is implemented using the positional information of the robot end-

effector (i.e., the output data) along with the perceived forces/torques (i.e., the inputs).

The selected input variables should contain enough information so that the learning

model can correctly encode the demonstrations, and so that the subsequent estimations

properly encapsulate the different compliance levels that the robot should adopt.

Figure 3.8 displays the MI values for all the haptic inputs with respect to the three

positional axes describing the end-effector location. It is possible to observe that the

most relevant input is Tx, and also that Fx, Fz and Ty nearly provide the same quantity

of information individually, thus it is not clear a priori which of these three should be

selected according to the maximal information criterion if K = 3. Again, the remaining
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(a) MI between the most relevant input and the remaining perceptions
(left), and conditional MI for all the input/output pairs given the first
selected variable.
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(b) MI between the two most informative inputs and the remaining
perceptions (left), and conditional MI for all the input/output pairs
given the two selected variables.

Figure 3.9: Resulting MI values across iterations of MIFS-U for the table assembly task
data.

K − 1 perceptions are chosen through the conditional MI, from which the resulting

subset Ω = {Tx Ty Fx} is found. Figure 3.9 displays the MI values obtained using the

proposed algorithm.

It is worth highlighting the prominent – and nearly the same – correlation between

Tx and the subset {Fz Ty}. On the one hand, the interdependence between the torque

about the axis x and the force along z is clear, as this force is orthogonal to the

plane defined by the axes x and y. On the other hand, Tx and Ty also show to be

highly correlated (see Figure 3.9(a)). This can be explained by the fact that both

variables become noticeable higher/lower when the human starts/finishes to screw a

leg, indicating that a robot behavior switching is needed (which is also the role of Fz).
1

Lastly, note that the force along the axis x is the third selected input, due to the high

correlation between the subset {Tx Ty} and Fz significantly reduced the information

provided by the force along z, as shown in Figure 3.9(b).

1Note that the haptic pattern described by {Tx Ty} unambiguously specifies the table thread
locations.
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3.4.4 Testing the automatic selection criterion

Again every training dataset of manipulation tasks previously presented was subjected

to MI analysis, but this time using the Algorithm 2 with φ = 0.4. This value was chosen

among a conservative range experimentally defined by 0.3 ≤ φ ≤ 0.7, in order to avoid

the selection process to be too much selective by removing still relevant variables for

the problem. Regarding the ball-in-box task, the resulting subset of selected inputs was

again Ω = {Tx Ty Fx}, supporting the analysis explained in Section 3.4.1. In contrast,

for the pouring task, the resulting selected perceptions were Ω = {Tx Fz}. This tells

that Ty might not provide enough information about the robot actions when Tx and Fz

have been already selected. In fact, Ty shows the highest correlation when Tx and Fz

were selected previously (see Figure 3.7), therefore the proposed automatic selection

criterion does allow to add this input variable to the set Ω (this also depends on the

value given for φ). Similarly, the perceptions selected for the collaborative assembly

task this time correspond to the set Ω = {Tx Ty}. Here, the proposed criterion showed

that Fx does not provide enough additional information to be selected. In this case, due

to the way the task is performed, the chosen variables already convey the data needed

to know the relative position of the threads with respect to the end-effector frame.

3.5 Chapter highlights

The what to imitate? problem was solved from a new perspective, by using MI-based

inputs selection. Results showed that this technique is appropriate to find which input

variables are the most relevant to learn a task. This presents several advantages in LfD

settings: reduction of input space dimensionality, less computational cost and probably

faster training and execution stages. This method can also be applied before finding

the demonstration segments with low variability that indicate those sections that must

be learned, jointly working with approaches such as the one proposed in [25]. It should

be noted that this variance-based approach is more suitable for trajectory learning (i.e.,

low-level encoding), whereas the solution proposed in this thesis is more generic and

may be applied to a larger set of tasks.

Every learning framework proposed in this thesis (see Section 1.3) uses this input

selection technique, and the selected force-based input variables are further used in
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the learning and reproduction phases. As shown in the next chapters, each task is

successfully encoded and reproduced using the input subsets obtained in this chapter,

demonstrating that the chosen haptic perceptions contain enough information for the

robot to perform as expected. Therefore, Mutual information-based selection is shown

to be a suitable tool in LfD frameworks dealing with force-based tasks.
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Chapter 4

Learning manipulation tasks

from haptic inputs

When robots interact with their surroundings and/or with humans, force-based per-

ceptions arise as a rich and valuable source of information about what is going on

over the course of such processes. Assembly and grasping tasks are classical examples

where force data are often necessary to represent their different states [72, 148], which

condition the robot actions. Likewise, haptic cues provide relevant information about

intentions and roles in pHRI scenarios. However, in spite of its remarkable importance,

this type of sensory input has been seldom used and exploited in LfD.

This chapter aims at filling this gap by analyzing how some state-of-the-art algo-

rithms work on the force domain, and by proposing a compact – and possibly extendable

– framework able to learn skills from haptic inputs. The learning methods are studied

using as test bed the ball-in-box task described in Section 1.4.1. The performance of

the proposed framework is also evaluated in depth through this task. Furthermore,

an extension of the learning framework is analyzed, that takes task parameters into

account (see Figure 1.2). The pouring task described in Section 1.4.2 constitutes a

simple and realistic scenario to evaluate this extended framework.

4.1 From positional information to haptic cues

In general terms, the robot skills are encoded by a policy representing a mapping

u(t) = Π(z(t), t, ζ), where u(t) represents the robot actions (e.g., motor commands),
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z is the internal state of the robot and the state of the environment, t is time and

ζ is the set of parameters to be learned to shape the mapping function Π [5]. This

policy may be considered as a non-autonomous system, because it is explicitly time

dependent. Obviously, such representation is very restricting and little useful for re-

producing complex and dynamic tasks, because such explicit time-based dependence

limits the generalization capabilities of the model and it is not very robust in cop-

ing with unforeseen perturbations of the task [143]. Thus, autonomous systems are

preferred, i.e., the ones driven by output commands u(t) = Π(z(t), ζ).

Therefore, the problem is to learn the parameters ζ of the policy Π from imitation,

as explained in Section 2.4. The learned policy governs the robot behavior through

output commands expressing a “desired time-derivative”, that is, implying a desired

change of the state information,

ż(t) = Π(z(t), ζ). (4.1)

It should be noted that a skill is frequently defined either in the internal coordinates

of the robot (i.e., joint angular coordinates q) q̇(t) = Π(z(t), ζ), or using a task-

level representation (i.e., the position/orientation of the robot’s end-effector x) ẋ(t) =

Π(z(t), ζ). Both approaches use all the possible state information about the robot

motion and the environment as input, but only output a variable that is the desired

change of state of the robot in the selected coordinate system.

Research on LfD has typically focused on learning and reproducing tasks at trajec-

tory level. In this context, time and space constraints govern the skill to be learned

by the robot. Gesture reproduction [22], pick-and-place skills [72], writing [92] and full

body imitation [91], among others, are common examples of tasks that can be repre-

sented onto spatio-temporal dataspaces. However, these works do not fully exploit the

robustness and generic properties of the representation given in Equation 4.1, where

the z variable may contain much more information than only positional data provided

by proprioceptive sensors. In contrast, in this chapter we use a richer representation,

first by using exclusively force data as variables of the task (see Section 4.3) and then

by adding to it the current state of the robot (see Section 4.4). Generative models are

used to learn the policies Π in each case, as shown in next sections.
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4.2 Encoding and reproduction of a force-based task

In this chapter, the learning of the policy Π is considered as a problem of finding a

mapping function between states z(t) (i.e., force perceptions) and output commands

u(t) (i.e., position changes). Here, regression techniques are used to map demonstration

states to continuous action spaces, controlling low-level robot motions. Two different

approaches are considered: (i) locally weighted projection regression [159], and (ii)

Gaussian mixture regression [26]. Hence, next sections are aimed at analyzing the

possible advantages and drawbacks of both algorithms in the context of LfD of force-

based manipulation skills, where they have been scarcely applied in the past.

4.2.1 Regression-based learning

Locally-weighted projection regression is an incremental regression algorithm that per-

forms piecewise linear function approximation and may be currently considered as the

standard real-time learning method in robot control applications [142]. The algorithm

does not require storage of the training data and has been proved to be efficient in

a variety of robot learning tasks including high dimensional data [160]. By detecting

locally redundant or irrelevant input dimensions, the method locally reduces the dimen-

sionality of the input data by finding local projections through Partial Least Squares

regression [54].

Specifically, LWPR predicts the target values (i.e., the robot actions) for a given

perception value x through a combination of K individually weighted locally linear

models. The weighted prediction ŷ is given by

ŷ(x) =

∑K
k=1wkȳk(x)
∑K

k=1wk

, (4.2)

with ȳk(x) = x̄⊤

kθk and x̄k = [(x− ck)
⊤, 1]⊤, where wk is the weight or attributed

responsability of the model, θk contains the estimated parameters of the model and ck

is the center of the k-th linear model.1 The weight wk determines whether a datapoint

falls into the region of validity of the model k, similar to a receptive field, and is

usually characterized with a Gaussian kernel (more details in [159]). During the learning

1The number of local linear models is automatically adapted by the incremental learning process.
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process, both the shape of the receptive fields and the parameters of the local models

are adjusted such that the error between the predicted values and the observed targets

is minimal. At this point, it is worth mentioning the most known drawback of this

technique, namely that it requires skillful tuning of the meta parameters for the learning

process in order to achieve competitive performance [117]. This aspect prevents LWPR

from being applied to friendly LfD frameworks, because the teacher may likely take too

long to find the correct parameter values. Nevertheless, once these values have been

found, LWPR has shown good computational results – in terms of mean squared error

– when learning a simple force-based skill, namely the ball-in-box task [135].

On the other hand, assuming the aforementioned issue was solved, there are still

more aspects to be considered. Force-based manipulation skills might be character-

ized by perceptual aliases, this means that during the task the robot may carry out

different actions for the same perception pattern [19]. In other words, the policy Π

would correspond to a multivalued function, and in such case LWPR is not applicable

anymore. Several solutions may be proposed to cope with this problem, for instance,

the robot may disambiguate the context by keeping some state information, taking into

account the time-series nature of data. This approach would considerably increase the

dimensionality of the dataspace, making the tuning process even harder. A different

solution may be to include time as an additional input variable, at the cost of limit-

ing the generalization capabilities of the learning framework, as discussed previously.

Despite several works have benefited from LWPR capabilities, its drawbacks entail to

consider other techniques able to perform successfully in this kind of situations.

4.2.2 Probabilistic learning

GMM is an algorithm belonging to the family of generative stochastic models, and it

has been extensively used to encode low-level action primitives in LfD (as explained

in Section 2.4.1). Broadly speaking, the main idea is to represent the set of provided

demonstrations O as a mixture of Nc multivariate Gaussian distributions,

p(O) =

Nc
∑

i=1

p(i)p(O|i), (4.3)
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where p(i) is a prior and p(O|i) is a conditional probability density function. The pa-

rameters in Equation 4.3 are defined by p(i) = πi and p(O|i) = N(O;µi,Σi), with µi

andΣi as the mean and covariance matrix of the Gaussian distribution i. These param-

eters are estimated through the Expectation-Maximization algorithm (EM) [40]. This

method carries out a local search that guarantees a monotone increase of the likelihood

during optimization. Moreover, EM is a simple iterative method which alternates be-

tween inferring the missing values given the parameters (E step), and then optimizing

the parameters given the data (M step). The iteration stops when the increase in the

log-likelihood at each iteration becomes too small, i.e., when

Lt+1

Lt
< φ, where L =

Nc
∑

i=1

log [p(i)p(O|i)] . (4.4)

Once data have been encoded, Gaussian mixture regression is used to retrieve

smooth robot actions from a set of input perceptions. In other words, the GMM/GMR

framework carries out the state-action mapping, representing the policiy Π. Specifi-

cally, the aim of GMR is to estimate the conditional expectation of an output y given

x on the basis of a set of demonstrations O,

p(y|x) =

Nc
∑

i=1

βi
[

µ
y
i +Σ

yx
i (Σxx

i )−1(x− µx
i )
]

, (4.5)

where βi =
p(i)p(x|i)

∑Nc
j=1

p(j)p(x|j)
, and considering that the parameters of each Gaussian i can

be expressed as follows

µi =

[

µx
i

µ
y
i

]

, Σi =

[

Σxx
i Σ

xy
i

Σ
yx
i Σ

yy
i

]

. (4.6)

The input x and the output y represent the state z(t) and the robot actions u(t) in

the context of robot LfD. Note that in this framework the only open parameter to be

tuned is the number of GMM components, which may be predefined by the user, or bet-

ter obtained by methods like the Bayesian Information Criterion (BIC) [26], or through

more recent approaches like the ones based on Dirichlet processes [87]. Here the regres-

sion function is not approximated directly, in contrast to other regression approaches

(e.g., LWPR). Instead, the joint density of the set of demonstrations is first estimated

by a model from which the regression function is derived. Unlike LWPR, the statisti-
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4.2 Encoding and reproduction of a force-based task

cal nature of GMM allows to capture the data variability in the demonstration phase,

and thus there is not a unique trajectory which can be used for action reproduction

through GMR. This is one of the main advantages of GMM/GMR, since it generates

at the same time a mean response estimate and a covariance response estimate, which

may be used for reproduction and handling of constraints [25], or for estimating the

robot joint compliance [99]. It should be noted that incremental versions of this ap-

proach have been also proposed [24, 31]. Again, the computational results based on the

mean squared error (MSE) for the ball-in-box task were satisfactory [134, 135]. At this

point, it is worth mentioning that the MSE-based performance criterion may provide a

very low value even if there are high prediction errors for datapoints belonging to mul-

tivalued cases. This is possible because MSE averages all error values along the query

datastream. This fact was more evident when these algorithms were tested on the real

setting for practical experimentation, due to both of them failed when the robot faced

a multivalued point. Thus, the MSE should be used along with another criteria (e.g.,

a task goal-based score) in order to evaluate the performance of the robot [136, 138].

In spite of the aforementioned advantages, the GMM/GMR framework also fails

when facing tasks whose underlying behavior corresponds to a multivalued function.

Again, the previously proposed solutions to overcome this problem are also applicable

here, but sharing similar drawbacks. For instance, if time is included, the generalization

capabilities are considerably degraded and a previous signal processing is needed (e.g.,

dynamic time warping [114]) in order to carry out a temporal alignment of the different

demonstrations. On the other hand, note that when GMM deals with high dimension-

ality dataspaces, a large number of local minima may exist, which makes converging

to a “good” local minimum much more difficult. In such case, the GMM/GMR may

benefit from the MI analysis presented in the previous chapter, which allows to reduce

the dimensionality of the dataspace by selecting the most relevant input variables of

the problem at hand (see Section 3.3).

The previous analysis and the obtained results initially suggest that a suitable and

generic algorithm for learning force-based skills would be one that (i) encodes the

temporal information of a task without including time explicitly, (ii) encapsulates the

data variability and (iii) does not include too many open parameters to be tuned.

Such requirements are completely fulfilled by a hidden Markov model with Gaussian
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components. This algorithm is introduced in the next section along with a modified

version of GMR, composing a learning framework (see Section 1.3) able to statistically

encode force-based tasks while exploiting the time-series nature of the demonstrations.

A detailed analysis of the learning and reproduction phases is also given.

4.3 Exploiting implicit sequential information

Previous research in LfD has proposed to use GMM for encoding manipulation tasks.

However, as stated before, this algorithm does not extract temporal information from

data, and time must explicitly be considered as an input variable if required by the

type of task to be learned (as in Calinon et al. [26]). Force-torque signals tend to show

very large time discrepancies, for instance, intrinsic noise, highly dynamic movements

and external forces may generate different haptic signal profiles across demonstrations.

This makes a specific force perceived at a given time step be different for several human

examples. Also, note that a task exclusively based on force data may not depend solely

on time as trajectory learning does, where velocity and/or accelerations constraints

appear. Such problem may be tackled using techniques as dynamic time warping [114],

at the price of increasing the complexity of the learning framework. Instead, HMM is

used here to avoid including such explicit temporal dependency in the model: it exploits

the sequential patterns in the data and it is therefore more appropriate to encode the

features of force-based tasks without using time as an additional input variable, which

would significantly constrain the generalization capabilities. In other words, HMM is

able to encode implicit time constraints of the task, which may depend on a specific

sequence of actions to be carried out by the robot irrespective of their duration.

HMM can be interpreted as an extension of GMM in which the choice of the mix-

ture component for each observation depends also on the choice of the component for

the previous observation. Hence, this algorithm is also able to encapsulate the data

variability as GMM does. The HMM has been widely used in several computer science

areas as speech recognition [128], human motion patterns encoding [11] and LfD ap-

plications [89, 99], among others. Most of LfD works use HMM to learn trajectories

from human demonstrations [50] or to encode a task with predefined states as in as-

sembly processes that can be represented at a symbolic level [43]. However, the tasks

addressed in this chapter differ from these and other works in the following points:
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(i) the task goal may be achieved by executing different trajectories depending on the

initial conditions of the task (e.g., initial position of the ball inside the container for

the ball-in-box task or the fluid quantity inside the bottle for the pouring skill), (ii)

sequential information is exploited using the observed force-torque patterns generated

over the course of the task (time is not explicitly used as an additional input variable).

4.3.1 Encoding using hidden Markov models

Formally, each demonstration m ∈ {1, . . . ,M} contains Tm datapoints forming a train-

ing dataset O = {δt}
T
t=1, with T =

∑M
m Tm. Each datapoint (or observation) δt ∈ R

D,

with D as the total number of input and output variables, i.e., the state z(t) and

the robot actions u(t), respectively. An ergodic HMM of Nc components is defined as

λ = ({aij}, {bj(δt)},π) where:

• {aij} is the state transition probability matrix, with 1 ≤ i, j ≤ Nc.

• {bj(δt)} is a continuous observation probability density defined as a normal distri-

bution N(δt;µj,Σj), where µj and Σj are respectively its center and covariance

matrix.

• π = {πi} is the initial state probability vector, with 1 ≤ i ≤ Nc.

The main idea is to adjust the model to maximize P (O|λ). To achieve this, an EM

process is applied to HMM, which is also know as the Baum-Welch method (more de-

tails in [127]). In order to describe the procedure for re-estimation of HMM parameters,

it is necessary to define the following variables:

ξt(i, j) =
αt(i)aijbj(δt+1)βt+1(j)

∑Nc

i=1

∑Nc

j=1 αt(i)aijbj(δt+1)βt+1(j)
, (4.7)

γt(i) =
Nc
∑

j=1

ξt(i, j), (4.8)
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where α and β are called forward and backward variables, respectively, and are defined

as:

α1(i) = πibi(δ1), αt+1(j) =

[

Nc
∑

i=1

αt(i)aij

]

bj(δt+1) and (4.9)

βT (i) = 1, βt(i) =

Nc
∑

j=1

aijbj(δt+1)βt+1(j). (4.10)

From equations 4.7 and 4.8, the HMM parameters are iteratively estimated as

follows

π̄i = γ1(i), āij =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

,

µ̄i =

∑T
t=1 γt(i)δt

∑T
t=1 γt(i)

, Σ̄i =

∑T
t=1 γt(i)(δt − µi)(δt − µi)

⊤

∑T
t=1 γt(i)

.

Again, the stopping criterion previously introduced (see Eq. (4.4)) is used to de-

termine convergence of the algorithm. These equations permit obtaining a suitable

trained HMM that represents the teacher demonstrations statistically through a model

capturing the robot motion for given force-based perceptions and taking temporal co-

herence into account from the resulting transitions {aij}. The only open parameter

is again the number of components of the model. In this chapter this parameter was

found by using the BIC as explained later on.

It is worth noting that the Baum-Welch algorithm, as an EM process, shares one of

the properties that all EM iterative methods have, namely, it cannot guarantee that a

global minimum is found. The initial estimate is thus important. In this case, starting

from a rough initialization of the Gaussian components parameters by k-means has

shown to provide convergence to “good” local minima in terms of the log-likelihood

[112]. The resulting models satisfactorily encapsulate the data and provide good re-

gression properties.

4.3.2 Reproduction using Gaussian mixture regression

Since the tasks are neither strictly learned as a sequence of discrete actions nor as

simple trajectories, it is necessary to find a suitable way to reconstruct the output

commands, given a perception, the resulting trained HMM and by taking into account

68



4.3 Exploiting implicit sequential information

the temporal coherence of the data. To achieve this goal, a modified version of GMR

(here named GMRa) is used for computing the robot actions to be sent to the controller

as the desired robot state to be achieved, as described next.

The standard GMR averages the different observations, even if they have been ob-

served at different parts of the skill. This method does not take advantage of the tem-

poral information encapsulated in the HMM. To overcome this drawback, the weighting

technique proposed in [27] is adopted here, where the robot’s actions are computed from

a modified version of the well-known GMR. This version computes the predictions from

a mixture of Gaussians (in this case the HMM components) taking the encapsulated

temporal information by the HMM (i.e., the variable α) into account along with the

given inputs (i.e., the robot perceptions). In this way, the proposed learning framework

is able to handle perceptual aliases by itself, this means that the robot may be able

to carry out the correct action if more than one output exist for the same perception

pattern, by taking advantage of the sequential information of the task. This makes

the proposed structure more generic and versatile, thus being useful for a wider set of

manipulation skills.

In GMRa, the weights are estimated using the actual values of the inputs (mainly

force-torque data in the tasks implemented in this chapter), and also implicitly their

previous values, through the transition probabilities related to the forward variable α.

Formally, the definition of the new regression based on temporal information is given

by:

ŷ =

Nc
∑

i=1

αx
t (i)

[

µ
y
i +Σ

yx
i (Σxx

i )−1(xt − µx
i )
]

, (4.11)

where αx
t (i) is the forward variable for the i -th Gaussian in the HMM (see Equation

4.9), and is computed with the input parts x of the observation vector. This variable

expresses the probability of observing the partial sequence, O = {δ1 δ2 . . . δt} and of

being in HMM component Si at time t. Now, for a given force-torque perception, the

predicted command is based on current and past observations, which makes sense for

those tasks where more than one output exists for a given input pattern.

Note that Lee and Ott’s work [99] proposes a similar framework that encodes the

demonstrations through an HMM and retrieves the robot actions using a time-driven

version of the classical GMR. In contrast to our forward variable-based weights, the
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weighting mechanism used by GMR exclusively depends on time, and neither previ-

ous observations nor sequential information are taken into account in this approach.

Nevertheless, their approach allows to handle data sequences of different duration and

speed, avoiding to use a preprocessing of the observation data such as dynamic time

warping.

4.3.3 Ball-in-box task

In this section the encoding and reproduction results of the proposed framework are

analyzed by means of a simple force-based task, previously described in Section 1.4.1.

4.3.3.1 HMM encoding

For encoding this task, inputs are the force-torque sensed at the robotic wrist and out-

puts are the velocity commands ωl at each robot joint ql with l = 1, . . . , Nq. Therefore,

in general terms the goal is to approximate the policy Π that maps force perceptions to

robot joint velocities. Note that joint velocities were chosen as outputs because they do

represent the robot actions to be performed according to the force-torque perceptions.

As explained in Section 3.4.1, the original set of inputs was subjected to a MI-based

analysis, from which the subset Ω of input variables containing the most relevant infor-

mation about the task outputs was found. Thus, in this task each training datapoint

is defined as δt = {Tx Ty Fx ω1 . . . ωNq}.

In other words, λ is encoding the joint distribution P (Ω,ω). To understand better

this idea and how the model works, observe Figure 4.1 showing the HMM convergence

for two different datasets: Figure 4.1(a) displays a three-components HMM trained

with similar demonstrations starting from positions {1, 2, 3, 4}, while Figure 4.1(b)

shows another model trained with samples starting from positions {7, 8, 9, 10}. Note

how the hidden left-to-right structure is obtained after convergence (having an ergodic

HMM at the beginning), which is the appropriate topology for learning these datasets

separately. For both cases, the resulting vector π gives as initial state the blue Gaussian,

that corresponds to the first movement carried out by the teacher (i.e., when the user

orients the robot in such a way that the ball rolls towards the wall adjacent to the hole).

In Figure 4.1(a), blue and red states intersect each other in input space, covering the

same segments of trajectories. In this case, the temporal information is essential to
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Figure 4.1: Resulting HMM for two different training datasets of the ball-in-box task.

determine what velocity command has to be provided, i.e., to disambiguate the states

corresponding to inputs lying in the intersection area, which cannot be achieved using a

GMM-based approach. This is an example of a multivalued case for which the proposed

framework works properly.

To obtain a complete model, the teacher carried out four demonstrations for ten

different initial ball positions placed along the box edges. Every demonstration was

executed by teleoperating the robotic arm through the 6-DoF haptic device (as shown in

Figure 1.4) and following the motion strategy explained in Section 1.4.1. The resulting

training dataset consisted of all datapoints {δt}
T
t=1, which were used to train several

HMMs by applying the Baum-Welch method until convergence. To find the “best”

model, the BIC was used, which allows to find a trade-off between optimizing the

model’s fitting and the number of states [26]. Note that the selected HMM will be a

model that can fit the data well, with no overfitting in BIC sense. Figure 4.2 displays

the different BIC values for the set of models tested, and Figure 4.3 shows the selected

five-components HMM along with a graphical representation of the resulting transition

probabilities matrix.

The execution and generalization capabilities were tested for some of these models

using query data extracted from the demonstrations and real experiments. The two-

components HMM showed the worst performance, this model was not able to carry out

the task starting at any place, even if it did it from a pre-trained initial position. The
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Figure 4.2: BIC values for models encoding the ball-in-box task with different number
of states.

HMMs with four, eight and nine states could achieve the goal from every pre-trained

positions but sometimes failed starting at non-trained initial configurations, showing

poor generalization capabilities. Finally, the models with five, six and seven states

showed very similar performances with no clear differences, and all of them performed

the task successfully.

Observing the selected HMM with five components, it is interesting to highlight how

the proposed framework is able to learn a multiple solution task by taking advantage

of the HMM properties. The model is shown in Figure 4.3, where the blue state in

the input space covers the beginning of all demonstrations whose initial positions are

placed on the wall opposite to where the hole is. At these starting positions, a larger

velocity command is required to draw the ball out of its resting configuration by moving

the robot joint q6 (Figure 4.3, output space projection). After, the green and light-blue

states represent the movements to force the ball to role to the hole, through q5 and

depending on whether the ball is up or down with respect to the hole (i.e., positive or

negative velocity commands, respectively). The yellow Gaussian can be considered as

an intermediate state the system goes through to reach the final state (red ellipse) at

which the velocity commands are zero (i.e., when the ball is getting out of the box) in

input space.

4.3.3.2 GMRa reproduction

As for the reproduction phase, one teacher’s demonstration for each initial position

was removed from the training examples and used as “query data” for evaluating
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Figure 4.3: Resulting 5-states HMM trained with demonstrations starting at every
position inside the box.

the learning framework performance by comparing its results with the teacher exe-

cutions. All robot joint trajectories obtained from velocity commands synthesized by

the HMM/GMRa approach are smoother than the teacher’s demonstrations (as shown

in Figures 4.4 and 4.5). Figure 4.4 shows the robot joint trajectories and velocities

obtained while the teacher demonstrates how to take the ball out of the box (solid blue

line), when starting at position 7. The trajectories and velocity profiles of the robot in

the execution phase are also displayed (dashed red line). These predictions have been

computed via GMRa for the inputs displayed in the first row of the figure and using

the HMM displayed in Figure 4.3. It can be observed that the learning framework is

able to compute the correct velocity commands to follow the teacher’s strategy as well

as to accomplish the task’s goal. In addition, every joint trajectory is very similar to

the desired one, even for those robot joints that are not playing a relevant role in the

task (e.g., q1 or q3).

By observing the obtained velocity profiles for each robot joint, one sees that they

are also smoother than the ones performed by the teacher, because human user exe-

cutions show several abrupt changes, which are not over-fitted by the learning frame-

work. This can be attributed to the selection process of the number of components

of the HMM – avoiding overfitting – and also to the fact of using GMRa to retrieve

the velocity command, because this type of regression takes the covariance information
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Figure 4.4: Input and output data streams over the course of a reproduction of the ball-
in-box task starting from the position number 7. The human demonstration is displayed
by the blue solid line, while the robot execution corresponds to the red dashed line.

into account for computing the estimation of the output, outperforming techniques that

only use the mean of the Gaussians. From these results, it is possible to conclude that

the robot performs better than the teacher. In addition, all synthesized trajectories

follow the same motion pattern as that of the teacher’s executions, which indicates that

the strategy applied by the human user was learned successfully.

Once computational results were satisfactory, the framework was validated on the

experimental setup. First, the robot had to perform the task with the ball starting at

the already trained initial positions. In all experiments, the robot was able to carry out

the task effectively. After this, a second set of tests was executed, where the ball was

located at random positions inside the container. For these tests, the robot was also able

to achieve the task’s goal, executing the motions learned for the closest initial position,
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Figure 4.5: Input and output data streams over the course of a reproduction of the
ball-in-box task starting from the position number 3.

by identifying the corresponding HMM state. It was observed that in some executions

the ball reached and surpassed the hole, without falling through it, because the hole

is only slightly larger than the ball. This behavior may be justified by the fact that

the task is assumed to be “quasi-static”.1 However, the robot was always able to take

the ball out of the box after some more executions, as it correctly identified the HMM

state corresponding to the current and past input patterns (taking into account the

temporal information). This means that the robot generates its actions as a function

of its current and past perceptions, following the taught motion strategy. If the robot

fails to reach the goal, the ball goes to another position inside the box, providing new

perceptions from which the robot can compute new movements.

4.3.3.3 Evaluating the robot performance

As the robot was able to accomplish the desired goal in every test, even when the ball

reached and surpassed the hole, the performance of the robot executions was evaluated

by using a time-based criterion [151]. Here, the idea is to determine how much time

the robot takes to complete the task successfully by executing the commands obtained

from the proposed framework compared with the three following cases: (i) the robot

executes hand-coded actions according to pre-programmed if-then rules, (ii) the teacher

1Note that the model variables are force-torque and joint velocities at the given time step, thus no
information about the past is explicitly provided. Moreover, the robot controller only allows position-
based control, thus it is not possible to send the desired velocity commands directly.
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carries out the task by teleoperation following the mentioned strategy, (iii) the robot

performs random movements that may take the ball towards the hole. Figure 4.6 shows

execution times for the aforementioned cases. As expected, the teacher’s executions

show the lowest times, except for position number 2 where the robot was faster than

the human. A relevant aspect to discuss is the fact that the robot execution times are

much larger than the teacher’s ones for positions 3 to 8. Regarding positions 3 to 5,

higher times are due to the fact that the robot starts the task by moving the joint q6

as expected, however it also moves q5 slightly which sometimes causes the ball to go to

the bottom of the box, justifying higher standard deviations for positions 3 and 4. This

is a normal effect because the first state of the learned HMM covers non-zero angular

velocities for the variable ω5. Thus, in these cases, the robot identifies the new state

where the ball is and changes its motion strategy according to the given input data for

reaching the target.

In the case of positions 6 to 8, the robot does also move the joint q5, however it

is because the teacher demonstrations showed that the human tries to guarantee “a

stable motion” by taking the ball towards the wall adjacent to the hole along the wall

at the bottom of the box. This causes that, when the ball reaches the wall adjacent

to the hole, the robot has to carry out more movements in order to take the metalic

sphere towards the hole, since the robot must compensate the initial inclination of the

box given by the wrong motion of q5. Thus, the high robot execution times are mainly

a consequence of two factors: first, there is a delay between the sensing and execution

phases that increases the time measures as the ball is farther from the target, and

second, the joint velocity profiles of the robot execution show lesser magnitudes than

the teacher ones (as observed in Figures 4.4 and 4.5), implying that when these velocity

commands are translated into desired positional configurations of the robot, the joints

rotation is lower and more velocity commands are needed to orient the box.

Regarding the times shown for the hand-coded actions, several robot learned ex-

ecutions outperformed the hand-coded ones (e.g., starting at positions 1, 2, 4, 7, 9

and 10). This mainly happened because the hand-coded actions also suffered the “sur-

passing” effect, that is, the ball did not go out through the hole at the first attempt.

Moreover, it is important to emphasize that the if-then rules programming was tedious

and time-consuming, even for this simple task. On the one hand, it was essential to
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Figure 4.6: Time-based evaluation of the robot performance in the ball-in-box task.

determine how the input space could be transformed to discrete regions to set the if

conditions. On the other hand, a tuning process was needed to specify the velocity

commands that the robot executed. One may think that the higher the velocity, the

less time the robot might take to accomplish the task, however the “surpassing” effect

may occur more often, increasing the time execution significantly. Thus, the learning-

based approach is preferred because being similarly efficient, it is friendlier and can be

applied by non-expert users.

Finally, execution times for a “random” strategy show that trying to accomplish the

goal by chance is possible, nevertheless this implies much higher times and variances

in comparison with when the robot carried out the task by using the taught strategy.

These high values occur because the random strategy does not impose movement con-

straints to the robot and, therefore, a huge set of available motions can be executed,

leading to very varied and long trials. This constitutes a reference (lower bound) for

comparison purposes, against which the improvement attained by different learning

techniques and teaching strategies can be evaluated.
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4.4 Exploiting force-based parameters

As previously shown, HMM is a suitable probabilistic tool for representing force-based

tasks while implicitly encapsulating temporal information that can be exploited in order

to obtain robust reproductions, even for tasks with a underlying multivalued function

behavior. However, there is an open issue in the former experiment that is also a

common feature of several force-based skills. One may picture a situation where the

teacher wants the robot to carry out the same task with a different ball – bigger or

smaller – whose weight significantly differs from the ball’s one used in the demonstration

phase. In such case, the skill remains unchanged (i.e., the robot actions) while the

perceptions do not because the sensed force-torque would vary in magnitude. Here, the

mass of the sphere may be considered as a task parameter, and such information may

be exploited to deal with this kind of circumstances, instead of repeating the whole

teaching process for each new different ball.

Note that the classic HMM does not handle task parameters explicitly, and if a

parameter exists for every demonstration, a possible solution would be to add it as

an additional (constant) input variable into the observation vector with the cost of

increasing the dataspace dimensionality. Instead, it is possible to resort to a parametric

version of the HMM, namely PHMM [164]. This technique models the dependence on

the parameter of interest in an explicit way through the output densities bj. Such

model allows to obtain a more generic learning framework (see Section 1.3 and Figure

1.2), providing the possibility of encoding and reproducing a larger range of tasks.

4.4.1 Parametric hidden Markov models

Formally, the observation probability distributions of the classical HMM are now a

function of the training datapoint and an associated parameter θm of the demonstration

m: bj(δt;θm). The dimension of the parameter depends on its degrees of freedom, for

instance θ would be a three dimensional vector if representing the location of an object

in the space. Here, the linear dependence of the mean of the Gaussian distributions

on θ is adopted, wherein the center of each component j of the model is expressed as

follows:

µ̂j(θm) = W jθm + µj , (4.12)
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where W j describes the linear variation. Equation 4.12 can be expressed in a matrix

fashion as µ̂j(θm) = ZjΨm, where

Zj ≡ [W j µj ], (4.13)

Ψm ≡ [θm 1]⊤. (4.14)

The former linear formulation allows to estimate only one additional model param-

eter through EM, namely Zj , from which the means of the model are computed for a

specific value of θm as follows (the readers are referred to [164] for details):

Zj =

[

∑

m,t

γmt(j)δmtΨ
⊤

m

][

∑

m,t

γmt(j)ΨmΨ⊤

m

]−1

, (4.15)

where the sub-index m refers to the demonstration with an associated parameter θm.

Once the means are estimated, the covariance matrices Σj are updated as explained in

Section 4.3.1. Again, Eq. (4.4) is used as stopping criterion for this EM process. Note

that this parametric model provides a compact probabilistic encoding of the demon-

strations, handling the task parameters through a linear dependence that modifies the

location of the output densities in the dataspace, without influencing their shape (i.e.,

the covariance information).

4.4.2 Pouring task

In this section, the performance of the classical and parametric versions of the HMM

jointly working with GMRa is analyzed in a more realistic task, where the teacher

demonstrates to a robot how to pour drinks using force-based perceptions (details are

given in Section 1.4.2). In this context, some drawbacks of the learning framework based

on the HMM are evident. Nonetheless, it is also shown how these disadvantages can be

overcome by using PHMMs [139]. This new task also allows to show the flexibility and

versatility of the proposed learning framework, that can be therefore used for encoding

and reproducing many everyday manipulation tasks.
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4.4.2.1 HMM vs. PHMM encoding

In this experimental setting, the robot perceptions are the the sensed forces and torques

in the robot’s frame. However, as explained in Section 3.4.2, several of these variables

do not play a relevant role for learning the skill at all, thus Mutual Information analysis

was applied to the input variables in order to select the most relevant perceptions. The

resulting “most informative” set of inputs was Ω = {Tx Fz Ty}, of which Tx and Fz

may also be directly extracted from an analysis of the task at hand (more details in

Section 3.4.2).1 In contrast to the previous experiment, the input space is composed

of the selected subset of variables Ω and the current joint value q at time step t, while

outputs are the desired robot state to be achieved at t+1. Thus, each training datapoint

is defined as δt = {T t
x F t

z T t
y qt1 . . . qtNq

qt+1
1 . . . qt+1

Nq
}, where Nq is the number of

joints of the robot.

This means that the state information z(t) of the policy Π now includes information

about the internal proprioceptive state of the robot, exploiting the generic formulation

of Equation 4.1. The fact of having included the robot state into the input vector is

aimed at encapsulating the task dynamics, so that the next robot state depends not

only on the force-based perceptions but also on the current robot joint values, which

is in the line of a consistent representation of the skill [121, 143]. This differs from the

representation used in the ball-in-box task, where the state of the task was expressed

only by force information. Now, this extended state allows to disambiguate perceptual

aliases more easily, making the proposed structure more robust (at cost of increasing

the dataspace dimensionality), considering that this representation encapsulates low-

level sequential information while the learning model extracting higher-level sequences

(as explained in Section 4.3.2). Moreover, this shows the flexibility of the framework

for dealing with different input/output mappings.

In order to teach the robot to pour drinks, three “complete executions” of the task

(i.e., serving four drinks consecutively) are provided to the robot by teleoperation as

described in Section 1.4.2. Each demonstration consists in starting with the bottle full

of fluid and pouring four 100 ml drinks. Note that after each drink is poured, the initial

1A simple analysis should convince the reader that the bottle with the fluid inside produces a load
on the sensor because of the gravitational force, generating a force along the axis z and a torque about
x.
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Figure 4.7: Resulting five-components HMM trained with three demonstrations of the
pouring task.
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Figure 4.8: Resulting 3-components PHMM trained with one demonstration of the
pouring task (four 100 ml drinks poured).

force-torque value changes for the next one, which conditions the robot movements

as shown in Figure 4.7 where the black lines represent the teacher’s demonstrations.

Observe that the less quantity of fluid, the more the robot rotates the bottle. Using

this training dataset, two different models were trained for comparison purposes, one

of them corresponds to the classic HMM and the other one to the PHMM.

The resulting training dataset was used to train a five-components HMM by apply-

ing the Baum-Welch method until convergence. The number of Gaussians was chosen

according to the BIC. Figure 4.7 shows the model encoding the pouring skill, where

the yellow component covers the beginning and the end of all the executions, whereas

the light blue and green ellipses are encapsulating the phases when the fluid is coming

out of the bottle. The other two Gaussians can be considered as intermediate phases
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(a)

(b)

Figure 4.9: Reproduction of the pouring task for two different quantities of fluid using
the HMM.

of the task.

On the other hand, a PHMM of three Gaussians was trained using only one demon-

stration of the pouring skill, i.e., four examples of pouring 100 ml drinks. The parameter

was set to be the initial force-torque values directly representing the quantity of fluid

at the beginning of the demonstration m, that is θm = [F t
z T t

x]
⊤ with t = 1. Figure

4.8 shows the resulting model, where it is possible to see how the PHMM is able to

encode the task through a simple left-to-right topology. Note how the provided param-

eter translates the model components to cover the corresponding demonstration data

due to the linear relationship between the task parameter and the Gaussian means (see

Equation 4.12). It should be noted that neither the Gaussians shape nor their orien-

tation are modified. In this task – and those also depending on parameters – it may

be useful to shape the Gaussians to improve the reproductions. For instance, the first

component of the model may be explicitly shaped according to how much the robot

rotates the bottle for a given force parameter. This issue will be discussed at the end

of this chapter.
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4.4.2.2 GMR reproduction

In order to test the reproduction performance of the models, one demonstration (serv-

ing four 100 ml drinks) was removed from the training data to be used as query data-

points. All the joint trajectories executed by the robot were quite similar to the ones

obtained from the teacher examples as well as the input-output pattern, using both

HMM and PHMM. After this, the following tests were aimed at evaluating the general-

ization capabilities of both models. In this case, the bottle contained quantities of fluid

different from the ones used at the demonstration phase. Regarding the HMM, the

robot performed successfully for all the tests where the starting force-torque percep-

tion was covered by the initial component of the model (i.e., the yellow ellipse in Figure

4.7). The robot joint trajectories and the input-output pattern for one of these tests

is shown in Figure 4.9(a). Nevertheless, as the starting perception significantly differs

from the values encapsulated by the initial component, the robot performance deteri-

orates considerably (see Figure 4.9(b)). In other words, the actual model shows good

interpolation competences but a poor extrapolation performance, which constrains the

range of situations where the robot would perform successfully without retraining the

HMM.

Regarding the PHMM performance, again different quantities of fluid from the ones

used in the demonstrations were given to the robot, using the same bottle and a larger

one. For both cases, the robot successfully poured a drink of 100 ml approximately (see

Figure 4.10). Figure 4.10(b) displays a reproduction of the robot when a larger bottle

full of fluid was used, where it is possible to observe how the robot joint q6 follows

a trajectory quite similar to the demonstrated ones, performing the skill as expected.

This result shows that the robot is able to pour drinks using bottles of similar shapes

but different sizes without retraining the model, because the force-based parameter

allows to displace the model so that it can cover the subspace where the data are

expected to be, which is not possible using the classic HMM (see Figure 4.9(b)). Thus,

the PHMM provides better generalization capabilities than those observed using the

HMM, with fewer components and a simpler topology.

Figure 4.11 displays the Gaussian distribution and the influence of the model com-

ponents for the reproduction shown in Figure 4.10(b). On the one hand, one can

observe how the model translates to cover a different data subspace given the new task
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(a)

(b)

Figure 4.10: Reproduction of the pouring task for two different quantities of fluid using
the PHMM.

parameter. On the other hand, it is also possible to see how the GMRa weights α(i)

(Equation 4.11) evolve over time, showing how the model components influence the

reproduction.

4.5 Chapter highlights

Several learning techniques were analyzed in the context of force-based tasks, where

the limitations of methods like LWPR and the framework GMM/GMR were evidenced

when representing skills characterized by underlying multivalued functions. Thus, the

proposed solution considered a learning framework based on HMM and GMRa that is

able to encode and reproduce force-based skills successfully. The framework performs

efficiently when the teacher’s demonstrations exhibit a multivalued function behavior,

which was achieved by means of the GMRa using temporal information encapsulated

by the HMM without explicitly considering time as another input variable and avoiding

to deal with very large time discrepancies. Time, or rather sequential information, is

already implicitly present along the teacher’s demonstrations. Afterwards, an extension

of this work was proposed to handle scenarios where the robot actions also depend

on task parameters. In this case, a structure based on PHMM and GMRa allows
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Figure 4.11: PHMM for unobserved data and the corresponding component influence
profiles during the reproduction phase.

to compactly represent such kind of behaviors without merely including these data

into the observation vector. Computational and experimental results of two different

manipulation tasks validated the appropriateness of the proposed approaches.

Nonetheless, several issues need still to be addressed. One of them is related to

the fact that the covariance of the PHMM components is not affected at all by the

task parameter, which may be problematic when the local variability of data depends

on it. On the other hand, the experimental scenarios studied in this chapter did not

consider any additional perception, and the way in which the teacher carried out the

demonstrations clearly suggests that manipulation tasks are not exclusively based on

force data, and therefore vision information should be included. These two issues are

addressed in the next chapter in the context of a human-robot collaborative assembly

task, where a probabilistic model that parameterizes both the mean and covariance of

the Gaussian components is introduced.
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Chapter 5

Merging visual and haptic

information in collaborative

manipulation tasks

While executing manipulation tasks, humans commonly look first at the scenario, select

an object, approach their hands, grasp the object and displace it by lifting, pushing

or pulling it. Further manipulative actions may include insertion, if the object is a

component of an assembly, filling or emptying it if it is a container, exerting forces

on other objects if it is a tool, etc. In this process, vision, tactile and force data

are generated, which provide the human with information for estimating the state and

properties of the object and the surroundings. Humans resort simultaneously to various

perception sources in a natural way while performing their jobs. However, research on

LfD has mostly focused on using only one input channel to gather information about the

task, which shows to be enough for very specific skills and environments. It should be

noted that vision-based systems are the most frequently used hardware in LfD settings,

which despite its richness and advantages might also miss specific valuable information

when the robot manipulates objects or interacts with humans (as discussed in Section

2.2). Thus, if required by the task, or if it means a significant enhancement of the task

learning process, other types of information sources like touch, force and sound sensing

should be considered as well.

A decade ago, it was shown how humans integrate visual and haptic information in a

statistically optimal fashion when manipulating objects [47]. This concept was further
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studied in a visual-haptic virtual reality setup for estimating the compliance of a given

material [95]. It was observed that an integration process takes place through a weighted

summation of two random variables, which are defined by single modality estimates

(i.e., Gaussian distributions of the vision-haptic data). Such results make evident that

force-based data enrich vision systems and provide additional useful information. Just

a few works in progress have recently shown how vision information can be merged with

force data in robot learning scenarios. Prats et al. proposed a position-vision-tactile

hybrid control modified by an impedance force controller to carry out a door opening

task [126]. Falco et al. used force measurements to improve the observation of the

human hand motion [51], which may be of particular interest in LfD applications.

As observed, vision and force data merging is a promising idea to enhance the

robot perception system when interacting with physical entities (e.g., objects or human

partners), and it is fundamental to take into consideration the type of data that each

input channel may provide. On the one hand, vision-based systems often take care

of capturing the pose of an object of particular interest in the task. On the other

hand, force-based data generally convey information about contact with an object, and

also static and dynamic characteristics (e.g., the weight of an object or the inertial

components of force during dynamic manipulation). Both perceptions are evidently

needed in robotic manipulation tasks. This chapter deals with merging vision and

force in LfD, where instead of simply augmenting the observation vector, the inputs

provided by the vision system are considered as task variables while the force data

compose the input space as usual, taking advantage of the task features (see Section 4.3

and 4.4). This approach avoids to increase the dataspace dimensionality (and probably

the computational complexity), and it also provides a compact structure for dealing

with tasks where several objects are manipulated.

It is worth mentioning that in contrast to PHMM, the key difference here lies on

the task-parameterized encoding, where both the means and covariances of a GMM

are modified over time as a function of the vision-based parameters, namely the pose

of an object of interest (see Section 5.1). The approach is applied to learning reactive

impedance-based behaviors of a robot collaborating with a human in an assembly task

(described in Section 1.4.3). This scenario is suitable to see how vision and force

perceptions can be jointly exploited in LfD, and how task variables are used in a
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probabilistic model to obtain a compact encoding of the demonstrations provided by

the teacher. Moreover, from this model, a set of virtual springs is proposed to govern

the robot behavior at the execution stage, as explained in Section 5.2. The robot

impedance is shaped by estimating stiffness matrices from the set of demonstrations.

5.1 Vision-based task parametrization

When robots manipulate objects, their actions may largely depend on the given goals

and object poses, which can be defined through reference frames. Here, the robot’s

behavior is conditioned by a set of task variables representing the coordinate systems

of relevant frames of reference. For generalization purposes, it is desirable to have a

model enclosing different actions as a function of these variables instead of representing

each action with a different model. An example of such approach is the parametric

hidden Markov model (PHMM), previously used to encode a task with force-based

variables conditioning the robot actions (see Section 4.4). However, this approach does

not allow to parameterize the covariance term of the Gaussians, which is crucial because

covariance encodes the local relationships among the variables that are of interest for

the task, as well as the expected variations during its execution. With standard PHMM,

a common practice to circumvent this problem is to deliberately increase the number of

Gaussian components when encoding a continuous trajectory (typically, by considering

more components for a synthesis problem [104] than for a recognition problem [100]).

The resulting effect is to reduce the importance of the covariance term in the modeling,

at the expense of increasing the required number of states and of losing information

about the local spread of data.

Other works have exploited the use of several candidate frames relevant to the

task for learning robot actions. Cederborg et al. [31] used the notion of framings

to incrementally learn various tasks that can be defined in different frames, where the

system infers from demonstrations which particular frame should be used for each task.

Calinon et al. [28] proposed to learn an HMM in several position-varying landmark

frames, and then to estimate a resulting model in the form of products of Gaussians.

By taking the aforementioned strategies into consideration, a frames-based approach

that considers task parameterization on both the centers and the covariance matrices

of the Gaussian distributions over time is used, that is known as parametric Gaussian
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mixture model (PGMM). The advantages of this approach compared to other task-

parameterized models in the context of trajectory learning are discussed in [30].

Previous work proposed to tackle the problem of parameterizing both the centers

and covariances by encoding each demonstration in a separate model [65]. After proper

realignment, a resulting model is estimated as a weighted sum of the centers and co-

variances of the different models. One drawback of this approach is that it only allows

scalar transformations of the covariance instead of generic linear transformations. It

does not allow, for example, to re-orient a normal distribution with respect to objects

in the robot’s environment. Thus, this approach may not be applied to local stiffness

estimation processes, where the main axes of the model components may change over

time yielding stiffness matrices whose highest values change accordingly.

Brand and Hertzmann [15] dealt also with the problem of center and covariance

parameterization through a stylistic HMM, in which the model parameters depend on a

style variable. Their solution – applied to motion data analysis for computer graphics –

extracts motion patterns from a highly varied set of motion capture sequences, which are

then related to stylistic parameters. These style variables along with variation matrices

modulate the model Gaussians. A notable difference is that the model parameters

learning is carried out by entropy minimization.

5.1.1 Parametric Gaussian mixture model

As an alternative approach, PGMM is proposed here to learn a skill where the prob-

abilistic model is locally influenced by a set of variables describing the task situation.

Instead of defining the centers of the Gaussians directly as a linear relationship with

respect to the task variables, like in the standard PHMM [164], products of Gaussians

are used to combine a set of linear relationships. This approach takes inspiration from

the product of experts, where each expert (or probabilistic component such as a Gaus-

sian) represents a soft constraint of the problem. For an event to be likely under a

product model, all constraints must be (approximately) satisfied, in contrast to how a

mixture of experts works [67], where all constraints are non-linearly combined. In other

words, the PGMM trains a different sub-model for each candidate frame (i.e., the task

variables) and obtains a single model from the resulting Gaussian product of all the

sub-models encoding the problem constraints locally in each frame.
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The result is a simple model that can parameterize not only the centers of the

Gaussians but also the covariance matrices (this computation is helpful to consider

simultaneously center and covariance parameterization). In this thesis, PGMM is ex-

ploited to encode impedance-based behaviors in a LfD scenario where haptic inputs

along with vision-based task variables determine how the robot should behave to ac-

complish the task successfully [137].

Formally, each demonstration m ∈ {1, . . . ,M} contains Tm datapoints forming a

dataset of N datapoints {ξn}
N
n=1 with N =

∑M
m=1Tm. Each ξn ∈ R

D is associated

with task variables {An,j, bn,j}
NP

j=1 representing NP candidate frames of reference, with

transformation matrices An,j, and offset position vectors bn,j. D is the training data

dimensionality, and the indexes n and j represent the time step and the task variable,

respectively.

The parameters of the model are {πi,Z
µ

i,j,Z
Σ

i,j}, representing respectively the

mixing coefficients, centers and covariances matrices for each frame j and mixture

component i. With this model, for an observation of frames at iteration n, the resulting

center µn,i and covariance matrix Σn,i of each component i are computed as products

of linearly transformed Gaussians

N(µn,i,Σn,i)=

NP
∏

j=1

N

(

An,jZ
µ

i,j+bn,j, An,jZ
Σ

i,jA
⊤

n,j

)

.

By using the product property of normal distributions, the above equation is computed

as

µn,i = Σn,i

NP
∑

j=1

(An,jZ
Σ

i,jA
⊤

n,j)
−1(An,jZ

µ

i,j+bn,j),

Σn,i =
(

NP
∑

j=1

(An,jZ
Σ

i,jA
⊤

n,j)
−1

)−1
. (5.1)

The parameters of the model are iteratively estimated with the following EM pro-

cedure. In the E-step, (5.1) are used as temporary Gaussian parameters to compute

the likelihood.
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E-step:

hn,i =
πiN(ξn|µn,i,Σn,i)

∑NK

k πkN(ξn|µn,k,Σn,k)
. (5.2)

M-step:

πi =

∑

n

hn,i

N
, Zµ

i,j=

∑

n

hn,i A
−1
n,j[ξn − bn,j]

∑

n

hn,i
,

ZΣ

i,j=

∑

n

hn,i A
−1
n,j[ξn−µ̃n,i,j][ξn−µ̃n,i,j]

⊤A−⊤

n,j

∑

n

hn,i
,

with µ̃n,i,j=An,jZ
µ

i,j+bn,j. (5.3)

5.1.2 Vision-based parametrization of force-based tasks

Note that for force-based tasks, the datapoints, means and covariance matrices can be

decomposed into their position and force components

ξn =

[

ξx

n

ξF

n

]

, µn,i =

[

µx

n,i

µF

n,i

]

, Σn,i =

[

Σx

n,i Σ
xF

n,i

ΣFx

n,iΣ
F

n,i

]

.

The model parameters may be initialized with a k-means procedure, modified by fol-

lowing a similar task-parametrized structure. Model selection is compatible with the

techniques employed in standard GMM (Bayesian information criterion, Dirichlet pro-

cess, etc.).

Fig. 5.1 illustrates the approach with a simple example of an impedance-based

behavior learning. (a) shows three demonstrations where the robot behaves compliantly

while another object (i.e., the green triangle with its corresponding candidate frame) is

far away from its end-effector, and becomes stiff when the object approaches it with a

specific orientation (the black line is the robot’s trajectory). (b) displays the two phases

of the task, where the robot motion is driven by a set of virtual springs connected to

the center of the model’s Gaussians (two components in this case). The mean and

covariance vary according to the task variables (i.e., the object and robot frames), and

the influence of each model component (see Eq. (5.2)) determines how compliant the

robot behaves. Dark ellipses and thick-line springs represent an activated Gaussian.

The candidate frames are displayed in red color.
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(a) Demonstrations

(b.1) Compliant phase (b.2) Stiff phase

Figure 5.1: Simplified impedance behavior learning.

One novelty with respect to [30] is that here the model is augmented with vir-

tual stiffness matrices KP
i associated to each component i, which will be estimated

as explained in Section 5.2. Thus, the complete set of parameters of the model is

{πi, {Z
Σ

i,j,Z
µ

i,j}
Np

j=1,K
P
i }

NK

i=1. Note that the variables of the task are obtained from the

position and orientation of a set of candidate frames of reference to learn the task1;

for instance in the collaborative task (Section 1.4.3), the table legs and robot frames

define these variables.

5.2 Learning impedance-based behaviors

Impedance-based behaviors in Robotics can be understood as flexible regulations of

stiffness and damping variables governing the robot actions in impedance control (see

Section 2.6.2). This allows LfD to be applied in a new learning paradigm where the

task is not merely to follow a given trajectory. Instead, it is possible to learn a new set

of tasks from demonstrations by shaping the variables of an impedance-based model.

Several approaches have been proposed to estimate from collected data the stiffness

and damping variables to be used to control robots. Erickson et al. [46] compared

1Here, such frames are selected by the experimenter and consist of coordinate systems associated
to a set of candidate objects or landmarks that might play a role in the task. However, we do not rule
out that they could be chosen automatically.
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5.2 Learning impedance-based behaviors

four different methods to estimate the robot impedance based on signal processing,

adaptive control and recursive least squares. Krislock et al. [85] proposed to use linear

least squares to estimate a positive semi-definite matrix applied to the estimation of

local compliance matrices during deformable object modeling. Flacco and De Luca [52]

estimated the nonlinear stiffness of robot joints with flexible transmissions by using

dynamic residual signals along with least-squares and regressor-based techniques.

From a different perspective, a LfD approach was proposed in [28] to find a stiffness

matrix using variability information extracted from training data in the form of a GMM,

where the stiffness matrix is estimated from the inverse of the observed covariance in the

position space. Similarly, Lee and Ott [99] used variability encoded in the components

of an HMM to define a motion refinement tube that permits a deviation from nominal

trajectories for kinesthetic corrections by controlling the stiffness value at the robot

joint level. In contrast, the approach proposed in this thesis considers that the robot

end-effector behaves as a virtual mass connected through springs to a set of attractors

(as shown in Figure 5.1),

F n =

NK
∑

i=1

hn,i
[

KP
i

(

µx
n,i − xn

)]

, (5.4)

where F n, µx
n,i and xn are respectively the sensed force, the positional part of the

Gaussians’ centers in the model and the robot’s end-effector position at time step n.

For obtaining an estimate of the stiffness values for this set of springs, an approx-

imation based on an algebraic closed-form solution is computed to find the closest

symmetric positive semi-definite stiffness matrix of a weighted least-squares estima-

tion. Specifically, a weighted least squares (WLS) regression is used to compute a first

estimate K̃
P

i =
[

(X⊤

iW iXi)
−1X⊤

iW iF
]

of the stiffness matrices by concatenating all

the N datapoints in matrices X i =
[

(µx
1,i − x1), . . . , (µ

x
N,i − xN )

]

⊤

and F , with a

weighting matrix W i = diag([h1,i, h2,i, . . . , hN,i]) (see Eq. (5.2)). Such estimate does

not necessarily comply with the constraints of a stiffness matrix, namely to be sym-

metric positive semi-definite. Therefore, the formulation presented in [66], and used

in [33] to estimate the robot’s dynamics variables for robot control, is implemented to

to compute KP
i as the nearest symmetric positive semi-definite (SPSD) matrix to K̃

P

i

according to the Frobenius norm. From the estimated stiffness matrix K̃
P

i , the nearest
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5.3 Experimental scenario: collaborative table assembly task

Table 5.1: Learning and reproduction of impedance-based behaviors.

1. Task demonstrations

- Determine NP (number of frames or task variables)
- ∀n ∈ {1, . . . , N}

- Collect ξn and task variables {An,j, bn,j}
NP

j=1

2. Model fitting

- Determine NK (number of components of the model)

- Initialize {πi, {Z
µ

i,j,Z
Σ

i,j}
NP

j=1}
NK

i=1

- Use Eq. (5.3) to refine the model parameters with EM
3. Stiffness estimation

- Create matrices X and W i

- Compute the first estimate K̃
P

i through WLS

- Find KP
i for each virtual spring by using Eq. (5.5).

4. Reproduction

- Collect ξn and {An,j, bn,j}
NP

j=1

- Estimate {πi,µn,i,Σn,i}
NK

i=1 through Eq. (5.1)
- Compute weights (influence) hn,i using Eq. (5.2)
- Apply the force command computed from Eq. (5.4)

SPSD matrix KP
i is computed as

KP
i =

B +H

2
, (5.5)

B =
K̃

P

i + (K̃
P

i )
⊤

2
and H = V ΣV⊤.

H is the symmetric polar factor which can be found from the singular value decompo-

sition of B, namely, B = UΣV⊤. Table 5.1 summarizes the learning and estimation

processes. In the next section, results on the model encoding and the estimation pro-

cess are shown for a collaborative assembly where vision and haptic data are relevant

to carry out the task successfully.

5.3 Experimental scenario: collaborative table assembly

task

A collaborative task where a human and a robot carry out a table assembly is pro-

posed to illustrate the functioning of the previously presented learning framework. As

described in Section 1.4.3, the core idea is to teach the robot reactive impedance-based
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5.3 Experimental scenario: collaborative table assembly task

Figure 5.2: Data streams displaying the demonstration of the assembly of one leg.

behaviors. In this setting, vision-force merging is exploited. Vision captures the object

configuration (i.e., the leg pose in the space), representing the task variables. Specif-

ically, a transformation matrix is computed to represent the leg configuration in the

fixed robot frame OR, from which bleg

n and Aleg

n define the Cartesian position and the

orientation of the leg as a rotation matrix, respectively. During both demonstration

and reproduction phases, {Aleg

n , bleg

n } are recorded at each time step n to determine

the task variables. Lastly, the other candidate frame {AR

n, b
R

n} defines the robot’s fixed

frame of reference.1

Forces and torques compose the observation vector of the problem, which provide

information about when and where the leg is being assembled, as evidenced in Figure

5.2. The PGMM encapsulates both perceptions and the demonstrated robot actions in

a compact model. Stiffness matrices are estimated using the provided demonstrations

and the proposed set of virtual springs. The whole framework is then used at the

reproduction stage, where force commands are computed using Eq. 5.4, and later sent

to the Cartesian impedance controller defined by

τ d = J⊤F d + V (κVd ) + f(q, q̇, q̈),

1A 3D coordinate frame is replicated for the variables x and F , the offset is only set to x.
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5.3 Experimental scenario: collaborative table assembly task
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Figure 5.3: Reproduction results at different phases of the interaction

where τ d is the desired joint torques vector, F d the desired force computed from the

resulting set of virtual springs (Eq. 5.4), V is the damping function with desired

damping values κVd and f(q, q̇, q̈) the dynamic model of the robot. 1

5.3.1 Parametric encoding results

Two candidate frames of reference are considered in this task (NP = 2): the fixed robot

frame of reference OR and the leg frame of reference OL. A model of five components

(NK = 5) was trained with sixteen demonstrations (i.e., four samples of the leg screwing

process were provided for each of the legs). The model was initialized by a modified k-

means that follows a similar strategy as the EM mechanism in Eq. (5.3). The resulting

model encodes four stiff components corresponding to the four screwing phases while

the remaining component represents the compliant behavior, automatically estimated

by the model. Each “stiff component” is characterized by the force-torque pattern and

1Note that F d is computed at each time step n given the current position of the robot’s end-effector,
the learned centers µx

n,i and the estimated KP
i .
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5.3 Experimental scenario: collaborative table assembly task
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Figure 5.4: Compliance level estimation for the five-states PGMM using all the demon-
strations from the training dataset.

the relative position of the leg with respect to the robot tool frame, which are different

for each leg. The “compliant component” encodes the remaining points in the data

space, i.e., the interaction forces-torques as well as the varying robot end-effector and

leg positions.

Figure 5.2 displays the collected data during the demonstration of the assembly of

one leg. The position and velocity of the robot’s end-effector are shown in the first

two rows, while forces and torques in the robot frame of reference are displayed in the

next two rows. The last row shows the leg position with respect to the robot tool’s

frame. Here, it is possible to observe when the screwing process begins (just after

the yellow area representing the compliant phase) and how the leg position remains

nearly constant afterwards. Also, the force/torque pattern shows how the force applied

along the z axis Fz as well as the torques generated by this force (Tx and Ty) change

significantly when the leg is placed on the table.

Figure 5.3 shows that the Gaussian corresponding to the compliant phase is already

spatially distinguishable from the Gaussians encoding the stiff behaviors during the

screwing processes (four in this case). It should be noted that the Gaussian components

in the PGMM representing the stiff phases show an elongated shape – in the spatial

subspace – and change its orientation over time. Such type of time-varying information

encapsulated in the covariance matrices cannot be encoded properly by using the classic

PHMM (no covariance parameterization) or the modified version proposed in [65] based

on scalar transformation.
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5.3 Experimental scenario: collaborative table assembly task
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Figure 5.5: Resulting stiffness matrix trace described by KP =
∑Ns

i hiK
P
i

5.3.2 Stiffness estimation results

Once the PGMM is learned, it is possible to carry out the stiffness matrix estimation

as described in Section 5.2. It should be emphasized that a stiffness matrix is locally

associated with each component in the PGMM, and it represents the stiffness of the

virtual spring connected to center of the component. During reproduction, a force

command is estimated as a combination of the virtual springs (see Figure 5.1 and Eq.

5.4).

The stiffness estimation based on the inverse of the observed covariance [28] is

compared to the proposed approach in Figure 5.4. The bars display the trace of the

estimated mean stiffness matrices for all the PGMM states. Light blue bars indicate

the stiffness values KP
Frb

(using our approach) while Light red ones show the values

KP
Inv (using the position variability) for all the states (the first state corresponds to

the compliant behavior). The inverse of the covariance sub-matrix Σx
i in the Cartesian

position space is computed for each Gaussian i. Such estimate is obtained for each dat-

apoint of the training dataset. An average stiffness estimation KP
Inv

is then calculated.

Note that the core idea of this method shares similarities with the stiffness estimation
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5.3 Experimental scenario: collaborative table assembly task
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(b) Leg 2
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(c) Leg 3
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(d) Leg 4

Figure 5.6: Estimated stiffness along the three Cartesian axes of the robot and the
corresponding force/torque profiles.

proposed in [99], when time dependency is removed from the learning model. In such

case, the estimates exclusively depend on the observed covariance of the spatial vari-

ables. On the other hand, KP
Frb is the stiffness obtained using the approach proposed in

this thesis, where only one initial stiffness estimation for each component is computed

through a weighted least squares regression using all the demonstrations at a time, as

described in Section 5.2. With the given training set, both approaches estimate the

different stiffness levels appropriately.

However, the estimate based on the inverse of the observed covariance has the

disadvantage that it takes only the positional information from the data into account,

whose variability can sometimes be too weak if only a few number of demonstrations are

considered. For example, the user may provide very similar examples without covering

all of the possible variations that the task allows. In contrast, the approach that we

adopt in this paper does consider the haptic inputs in the estimation process, which help

to overcome the aforementioned drawback by providing additional and distinct sensory

information to the learning framework. Figure 5.4 displays the trace of the estimated

stiffness matrices for each Gaussian, comparing the results obtained by both approaches.
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5.3 Experimental scenario: collaborative table assembly task

(a) Wrong leg position (away from the
threads)

(b) Wrong orientation (table leg turned
upside-down)

Figure 5.7: Tests in situations that have not been shown in the demonstration phase

The ratio between the stiff and compliant values (computed from the matrix traces) is

higher using our approach (10.12 as average) than those obtained from the approach

based on position variability (5.19 as average), which allows a better clamping of the

robot stiffness considering the obtained maximum and minimum values. This indicates

that the difference between the compliant and stiff levels is more pronounced when the

estimation process is based on the proposed approach.

The reproduction and generalization capabilities of the system were evaluated by

carrying out the assembly process for all the legs. In Figure 5.5, it is possible to

observe how the compliant component (purple dotted line) is influential during the

first half of the reproduction, dominating the rest of PGMM components. After this

compliant phase, the robot becomes stiff, with specific patterns depending on which leg

is being screwed. This means that not all the PGMM components influence the robot

impedance at the stiff phase, but only the Gaussian encoding the stiff behavior for the

corresponding leg is governing the robot behavior (as observed from the different colors

representing the different stiff components), while the remaining component weights

stay close to zero. Each plot displays how the weight belonging to each component

changes over time – between 0 and 1 – showing its influence on the weighted least

squares based stiffness estimation.

Figure 5.6 shows the resulting stiffness matrix for the demonstration corresponding

to leg 1, obtained by the model displayed in Figure 5.3, where the Cartesian robot

position is shown along with the corresponding stiffness value for each Cartesian axis.

Here, it is possible to observe how different stiffness values for the different Cartesian
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5.4 Chapter highlights

axes can be learned from the demonstrations, which is useful when the robot behavior

demands to be stiff along a specific direction while being compliant along the remaining

ones. The light color zone at the first row represents the robot arm compliance (the

wider the zone is, the more compliant the robot behaves). When the envelope is wide

the robot can be moved easily, while the narrow envelope represents the table holding

phase constrained by high stiffness values along each coordinate axis.

In order to show the relevance of merging visual and haptic data, two additional

situations that did not appear in the demonstration phase were presented to the robot.

In the first case, the human holding the leg tried to screw it at the center of the table,

which means that the leg was placed at an incorrect position (see Figure 5.7(a)). In

the second situation, the leg is positioned in one of the table threads but this time it

was tilted with an orientation at which the screwing process was unfeasible (see Figure

5.7(b)). In both cases, the robot behaved compliantly as expected, because neither of

the human actions should make the robot behave stiffly.

5.4 Chapter highlights

This chapter presented a novel learning framework to encode and reproduce impedance-

based robot behaviors using a parametric probabilistic model. The proposed approach

allows to encode reactive impedance behaviors that rely on task variables, yielding only

one model to encode the whole task. Unlike PHMM, the learning algorithm considers

varying variables along the task and allows to modify the center and covariance of the

components over time accordingly. In contrast to other previous approaches where

the robot impedance is learned from demonstrated trajectories (i.e., using position

information), the robot instead extracts the impedance-based behavior of the teacher

recording both force patterns and visual information. Force-based perceptions are used

not only to encode the task, but also to estimate the stiffness of virtual springs governing

the collaborative behavior that is used to control the robot, thus emphasizing the fact

that interaction force-torque profiles are different during different phases of the task.

It is worth mentioning that the ideas presented in this chapter constitute one step

forward to achieve a multimodal LfD framework, in which a robot may benefit from a

set of different sources of information. Vision and force data may also be merged with
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5.4 Chapter highlights

auditory and tactile perceptions, which may be exploited in robot coaching scenarios

where the robot interacts with the teacher through refinements and corrections, or also

in collaborative tasks enhancing the communication channel between partners. In this

context, PGMM would encapsulate the task variables and the input variables in a com-

pact and more generic model. Time constraints may also be taken into account in the

encoding of the task by introducing temporal relationships among the model compo-

nents as those presented in the HMM (see Section 4.3). Furthermore, the proposed

approach also allows to learn impedance-based behaviors, a promising field of research

for creating safer and user-friendly robots.
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Chapter 6

Conclusions

Throughout this thesis, several challenging issues in the field of force-based learning

from demonstration were tackled. Three main concerns were satisfactorily addressed,

namely: (i) what to imitate from human demonstrations? (ii) how to learn and re-

produce a force-based task? and (iii) how to exploit the combination of vision and

force information? This chapter presents the conclusions obtained from the approaches

proposed to solve the aforementioned questions.

6.1 Selecting relevant perceptions

The what to imitate? problem was solved from a new perspective based on the Mutual

Information analysis. The proposed approach allows to select the relevant inputs of a

task by analyzing their influence on the robot actions (see Section 3.2). This method-

ology suits satisfactorily our frameworks, sharing concepts from control policy learning

where functions map perceptions to actions. In this context, this dissertation addressed

two shortcomings of the approach:

• Classic Mutual Information analysis selects the input variables without consider-

ing the information that other inputs provide. This limitation was successfully

solved by conditioning the selection of a given perception on the information pro-

vided by the previously chosen inputs. This allows not only to select the most

relevant perceptions, but also to reduce the redundancy in the data.
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6.2 Learning manipulation tasks from haptic inputs

• Common selection processes are not fully automatic and assume that the number

of inputs to be chosen is given by the user. This thesis proposed a threshold-driven

automatic selection where the number of perceptions is automatically determined

by evaluating a conditional mutual information ratio (see Algorithm 2).

The obtained results show that the proposed methodology successfully performs

in different kinds of LfD scenarios, where the selected perceptions provided enough

information to encode and reproduce the tasks satisfactorily. Nevertheless, several

challenging topics are still open. For instance, the proposed stopping criterion depends

on a threshold whose value is determined by the user according to how selective the

method is supposed to be. Also, in the case of multiple outputs, the mutual information

is averaged assuming that every output has the same relevance. These issues are of

high interest for future research as discussed in Chapter 7.

6.2 Learning manipulation tasks from haptic inputs

A novel whole learning framework has been developed in this thesis for encoding and

reproducing force-based manipulation skills, where probabilistic methods have been

exploited for solving the following problems:

• Force-based tasks often show large time discrepancies in the data, and may also

suffer from perceptual aliasing. The first proposed learning framework addressed

these issues by taking advantage of the sequential information embedded in the

states representation of the hidden Markov model. This method avoids to use time

as an explicit input, and also allows the robot to look back at the evolution of the

task (by using the transition probabilities), so that it can distinguish the correct

action when the current perception does not have a unique output command to

be performed.

• The robot actions may be conditioned on a set of force-based parameters. This

issue was successfully tackled by exploiting the parametric formulation of the clas-

sic hidden Markov model. Such an approach allows to encode force parametrized

tasks by linearly modulating the robot actions according to a force variable, in
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6.3 Merging visual and haptic information in collaborative manipulation

contrast to former works where the task parameters were represented by the lo-

cation – and possibly the orientation – of objects to be manipulated.

The resulting learning structure performed well in two different scenarios, showing

good generalization capabilities when facing unseen conditions. Therefore, this new

framework can be considered as a step forward to achieve a more generic and versatile

structure to learn tasks in the force domain from human demonstrations. Nonetheless,

its two main limitations are: (i) the parameters do not affect the covariance information

of the model states, and (ii) it is not possible to define how long the system stays at

a specific state of the model, which is represented by the self-transition probabilities.

The first drawback was addressed in Chapter 5, while the second one is considered as

future work of this thesis (see Section 7.2).

6.3 Merging visual and haptic information in collabora-

tive manipulation

In collaborative manipulation tasks, the partners actions often rely not only on the

information provided by their vision sensors, but also on the force data. Moreover, in

such kind of complex scenarios, the task performed by a robot is not merely to follow

a given trajectory. In this context, this dissertation contributed to solve the following

aspects:

• Vision and force data need to be combined in a compact way. The proposed

solution was to parametrize the force-based task by using the information coming

from the vision system. This was achieved by taking advantage of a complete

parametric Gaussian mixture model, which also allowed to modulate the covari-

ance of its components, outperforming the encoding capabilities of the parametric

learning structure proposed in Chapter 4 in the case of parametrized tasks.

• The robot role in the task was based on a reactive behavior. In this context,

this thesis was aimed at extending LfD to impedance-based behaviors. The core

idea was to assume that the robot motion was driven by a set of virtual springs.

Impedance learning took place when both the position of the springs and their

stiffness are computed from the demonstrations provided by a human.

106



6.3 Merging visual and haptic information in collaborative manipulation

The proposed impedance-based learning framework permitted to learn reactive

impedance behaviors in a collaborative manipulation task, where the robot was able

to shape its compliance according to the needs of its partner. Such an approach does

exploit the new control schemes of torque-controlled robots and the combination of

vision and force information, and hence allows to learn safer and more compliant robot

actions. At the current stage of this research, only reactive roles can be learned. In

order the robot to carry out a larger variety of collaborative tasks, it should be endowed

with a more active role. Such an aspect is part of the future work of this thesis and is

discussed in Section 7.5.
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Chapter 7

Future work

Although the objectives of this dissertation were successfully achieved, there are still

some issues of importance to be tackled in the future. This chapter is aimed at dis-

cussing new possible routes of research arising from the work presented in the previous

chapters, taking into consideration the current and future requirements to be fulfilled

in order to build smarter and friendlier robot companions.

7.1 Extensions of the Mutual Information analysis

The mutual information-based selection algorithm proposed in Section 3.3 does not

consider the case in which the relevant perceptions change over the course of the task.

Such situation may happen, for instance, when the robot is endowed with a multimodal

perception system, because it may use different sets of sensors during the execution of

the skill. Here, it would be desirable that the solution to the what to imitate? problem

selects online the relevant perceptions for every phase of the task according to its

constraints and the given demonstrations. This is a very challenging problem because

the selected perceptions would change over time and the learning framework should be

able to handle this situation, possibly through adaptive and incremental models [91].

Another open problem concerning how mutual information works is related to

multiple-input/multiple-output cases. In Section 3.3, Algorithm 1 selects the most

relevant variables considering that all the outputs have the same influence on the se-

lection process (note that all the mutual information values are averaged). This might

be a strong assumption when the subset of relevant inputs is different for each output,
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temporal information

which may result in very similar MI scores for all the inputs after averaging. Thus,

it would be desirable to know how much a specific output variable contributes to ac-

complish the task successfully. In this sense, a goal-driven selection process based on

mutual information may be implemented in two phases, namely, (i) a weight wj is

computed for each output j according to its contribution to achieve the task goal, then

(ii) a weighted average of the mutual information values is computed to select the most

relevant inputs.

Finally, note that mutual information analysis applied to the pouring task showed

that Tx, Fz and Ty were the most relevant variables (see Section 3.4.2). Then, the

initial values of two of them composed the task parameter θm for encoding the task

through a PHMM (details in Section 4.4.2). In this particular case, mutual information

results provided some cues about the variables modulating the centers of the Gaussians

in the model. Therefore, this may be further explored in order to take advantage of the

mutual information estimates for automatically determining the vector θm, instead of

setting it manually.

7.2 Hidden semi-Markov models as a more generic tool

for encoding temporal information

One of the main limitations of the classic hidden Markov model is the fact that it does

not allow to define how long the system stays at a specific state of the model, which

is restrictively represented by the self-transition probabilities {aii}. This drawback is

more evident when the HMM is desired to encode time constraints of the task (which

should not be confused with the encoding of the sequential information, that is how the

system progresses through the model states) as retrieving duration information based

on the fixed set of self-transition probabilities of conventional HMM does not provide

a good model of state duration. It is however possible to modify the structure of the

HMM to replace the self-transition of each state i with a parametric model pi(d) of the

state duration d ∈ {1, 2, . . . , dmax}, where dmax determines a maximum limit for the

number of iterations that the system can stay in a state. This approach is known as

the hidden semi-Markov model [167].
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from different perception systems

This new model would allow to encode manipulation tasks in a more robust and

generic way, dealing with time constraints and sequential information as well as en-

coding the observations through a probabilistic representation. Moreover, if models

handling task parameters (e.g., PHMM or PGMM) were integrated in this approach,

the resulting learning framework might encode and reproduce a larger set of skills.

Thus, the main idea is to improve the framework proposed in Section 1.3 (see Figure

1.2) by including the parameterization of the state duration pi(d) in the parametric

hidden Markov model. After this, covariance parameterization may also be added by

taking inspiration from the PGMM.

7.3 Extending the PGMM capabilities to deal with pa-

rameters coming from different perception systems

The parametric Gaussian mixture model was introduced in Section 5.1.1 as a possible

extension of the parametric version of the HMM (see Section 4.4.1), where the mean

and covariance of the model components are modified by the task parameter. However,

one of the drawbacks of the PGMM is the fact that the parameters are defined as frames

of reference, mainly expressed as the location and orientation of objects of interest for

the problem at hand. This significantly limits the range of tasks where PGMM may be

used, because this model, for instance, may not be able to encode skills with force-based

parameters, as the one described in Section 1.4.2. In contrast, PHMM does provide

this feature and thus parameters coming from different sources can be encapsulated

by this method. Therefore, the challenge regarding this issue is to analyze how the

PGMM parameters (i.e., the transformation matrix A and the vector b) may be used

to encode several kinds of task parameters.

At first sight, the main problem is how to set the matrix A when not representing

a frame of reference. Thus, it is necessary to study how the task parameters condition

the robot actions and how the model parameters should be defined to express such

dependence. A first step to solve this issue might be to consider learning a task where

the provided demonstrations were represented at the operational and joint spaces of

the robot, which would demand the PGMM to deal with frames in different spaces.

Hence, this would involve to take into account an operator mapping the robot actions

between both spaces, i.e., the Jacobian of the robot. In such a way, it would be possible
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to see how the model behaves when the parameters {A, b} do not represent exclusively

locations and orientations of specific Cartesian frames.

7.4 Impedance-based behavior learning

Most of the machine learning tools developed so far are decomposed into an offline model

estimation phase and a retrieval/regression phase (see Section 2.4). Instead, learning in

compliant robots should view demonstration and reproduction as an interlaced process

that can combine both imitation and reinforcement learning strategies to incrementally

refine the task. The development of compliant robots brings up new challenges in

machine learning and physical human-robot interaction, by extending the skill transfer

problem towards tasks involving force information, and towards systems capable of

learning how to cope with various sources of perturbation introduced by the user and

the task. In this thesis a model based on a set of virtual springs was proposed to control

the motion of a robotic arm by using force commands (see Section 5.2). The complete

learning framework is able to learn reactive impedance behaviors using position and

haptic information. Nevertheless, the approach does not take into consideration the

velocity data which may enhance the robot performance. This can be achieved by

including virtual dampers to the model.

Having a virtual set of spring-damper systems makes the estimation of the impedance

parameters (i.e., the stiffness and damping) from the given demonstrations a challeng-

ing problem. The approach presented in Section 5.2 should be reformulated in order

to include the estimation of the damping parameter, by taking inspiration from the

work developed by Erickson et al. [46] where the contact stiffness and damping are

identified during robot constrained motion. The idea is to keep using position and

haptic information in the estimation process but this time for a more robust and stable

model.

7.5 Haptic inputs in role determination for physical HRI

One of the main contributions of this thesis is based on exploiting haptic data in LfD

scenarios. Transferring collaborative manipulation skills to robots in a user-friendly

manner was the core of the experimental setup and the proposed learning framework
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briefly explained in Sections 1.4.3 and 1.3, respectively. Here, the robot was able to learn

reactive impedance-based behaviors in order to assist the human partner to develop the

task satisfactorily. However, the robot should also be able to play a more active role,

in other words, the robot should be a proactive partner. In order to achieve this,

the robot needs to recognize the human intention through action anticipation. Haptic

inputs have shown to be a rich and complex communication channel to communicate

intent (see Section 2.6.1).

It would be possible to endow the robotic partner with reactive and proactive be-

haviors by taking advantage of the properties of the hidden semi-Markov model, which

can encode position and haptic information in a probabilistic model while encapsulating

time constraints of the collaborative task. This approach may be used for both learning

the skill and recognizing the human intention. Thus, the improvement of the learning

framework proposed in Section 7.2 may also be exploited in this type of human-robot

collaborative tasks.
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Appendix A

Publications by the author

This appendix lists the publications of the author with a brief comment on how they

are connected to this thesis.

• Rozo, L., Jimenez, P. and Torras, C. (2010). Learning Force-Based Robot Skills

from Haptic Demonstration. 13th International Conference of the Catalan Asso-

ciation for Artificial Intelligence (CCIA), Tarragona-Spain, pp. 331-340.

This paper presents a performance comparison in terms of the mean squared

error of a robot manipulator carrying out the ball-in-box task (described in Sec-

tion 1.4.1). Approaches based on the Locally Weighted Learning and Gaussian

Mixture Model are analyzed in the context of encoding and reproduction of a

force-based task, from which the analysis described in Section 4.1 has been de-

rived. Computational results showed very similar error values, but both failed

during the experimental execution of the task when facing multivalued cases.

This permitted devising new research stages where the sequential information of

the task was taken into account (see Section 4.3).

• Rozo, L., Jimenez, P. and Torras, C. (2010). Sharpening Haptic Inputs for

Teaching a Manipulation Skill to a Robot. 1st International Conference on Ap-

plied Bionics and Biomechanics (ICABB), Venice-Italy, pp. 370-377.

The solution to the what to imitate? problem based on mutual information is

introduced in this paper. Here, the input variables are exclusively selected ac-

cording to the ranking obtained from the computation of the mutual information

among every input/output pair, which is explained at the beginning of Section
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3.3. Also, issues like signal pre-processing and dynamic compensation when using

force signals are addressed in this work (see Section 3.1). The results allowed to

observe the possible limitations of the input selection algorithm for more com-

plex tasks, which demanded to look for more sophisticated approaches to robustly

choose the relevant perceptions in LfD scenarios.

• Rozo, L., Jimenez, P. and Torras, C. (2011). Robot Learning from Demonstra-

tion of Force-based Tasks with Multiple Solution Trajectories. 15th International

Conference on Advanced Robotics (ICAR), Tallin-Estonia, pp. 124-129.

Here, the advantages of working with hidden Markov models and Gaussian mix-

ture regression in the context of force-based learning were shown through the

ball-in-box task (see Section 1.4.1). The paper presented the analysis and results

regarding how to exploit sequential information for learning tasks with multiple

solution trajectories (Section 1.1). The promising results encouraged the use of

these techniques in more realistic scenarios.

• Rozo, L., Jimenez, P. and Torras, C. (2011). Robot Learning from Demonstra-

tion in the Force Domain. 22th International Joint Conference on Artificial Intel-

ligence (IJCAI),Workshop on Agents Learning Interactively from Human Teach-

ers, Barcelona-Spain, pp. 1-6.

The first whole learning framework proposed in this thesis (Figure 1.1) was in-

troduced in this paper. Results concerning mutual information analysis (Section

3.4.1), encoding through hidden Markov models and reproduction using Gaus-

sian mixture regression (Section 4.3.3) are presented and analyzed in the context

of the ball-in-box task (see Section 1.4.1). Also, performance criteria based on

success/failure and time-based measures were used to assess a degree of accom-

plishment of the task.

• Pardo, D., Rozo, L., Alenya, G. and Torras, C. (2012). Dynamically Consis-

tent Probabilistic Model for Robot Motion Learning. International Conference

on Intelligent Robot Systems (IROS), Workshop on Learning and Interaction in

Haptic Robots, Vilamoura-Portugal, pp. 1-2.

This work presented how an extended representation of the state of the robot

(i.e., not only the current kinematic position but also on its first time derivative)
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can be used to obtain a consistent representation of the dynamics of the task. The

concepts related to autonomous systems introduced in Section 4.1 were applied

here. The learning framework proposed previously showed to benefit from this

complete representation mostly when the robot carries out tasks characterized by

an underlying multivalued function.

• Rozo, L., Jimenez, P. and Torras, C. (2013). A Robot Learning from Demon-

stration Framework to Perform Force-based Manipulation Tasks. Journal of In-

telligent Service Robotics, Special Issue on Artificial Intelligence Techniques for

Robotics: Sensing, Representation and Action, Part 2, 6(1):33-51.

This paper presented an improvement in the input variable selection process by

incorporating the conditional mutual information criterion just after the most

relevant input has been selected (see Section 3.3 and Algorithm 1). On the

other hand, a more realistic task was designed to evaluate the generality of the

proposed framework by learning to pour drinks based on force data exclusively

(Section 1.4.2). The obtained results showed that the new perception selection

algorithm, the encoding and reproduction methods also performed satisfactorily

in other kind of scenarios.

• Rozo, L., Jimenez, P. and Torras, C. (2013). Force-based Robot Learning of

Pouring Skills using Parametric Hidden Markov Models. 9th International Work-

shop on Robot Motion and Control, Accepted.

The extension for learning force-based parametrized tasks explained in Section

4.4 was introduced in this work. Here force parameters are exploited to obtain a

compact encoding of skills that are exclusively based on haptic perceptions. The

proposed learning framework (Figure 1.2) is based on a parametric version of the

classic HMM and Gaussian mixture regression to encapsulate the demonstrations

and reproduce the task, respectively. Tests were carried out on the same pour-

ing task (Section 1.4.2) used for testing the first proposed framework, where the

advantages of this extension were evident (as explained in Section 4.4.2).

• Rozo, L., Calinon, S., Caldwell, D., Jimenez, P. and Torras, C. (2013). Learn-

ing Parametrized Impedance-based Robot Behaviors. 27th AAAI Conference on

Artificial Intelligence, Accepted.
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This paper summarizes the approach and results presented in Chapter 5. Here, a

novel learning framework (Figure 1.3) was proposed to transfer impedance-based

behaviors to a torque-controlled robot, with demonstrations provided by kines-

thetic teaching. The proposed model encodes the examples as a task-parameterized

statistical dynamical system, where the robot impedance is shaped by estimating

virtual stiffness matrices from the set of demonstrations, as explained in Sections

5.1 and 5.2, respectively. The collaborative assembly task described in Section

1.4.3 was used as testbed. The results showed that the model can be used to

modify the robot impedance along task execution to facilitate the collaboration,

by triggering stiff and compliant behaviors in an on-line manner to adapt to the

user’s actions (see Section 5.3).
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