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Introduction

In this dissertation three different problems are treated. In Chapter 1 we construct
two families of processes that converge, in the sense of the finite dimensional dis-
tributions, towards two independent Gaussian processes. Chapter 2 is devoted to
the study of a model of bacteriophage treatments for bacterial infections. Finally,
in Chapter 3 we study some aspects of the L2 modulus of continuity of Brownian
local time.

The Wiener process, or standard Brownian motion, plays an important role
both in pure and applied mathematics. In probability theory one of the most
fundamental concept is the convergence in law, and a well known result is the
following one, due to Stroock (see [48])

Theorem (Stroock). Let N = {Ns, s ≥ 0} be a standard Poisson process. Then
the family of processes{

xε(t) = 1
ε

∫ t

0
(−1)N

s
ε2 ds, t ∈ [0, T ]

}
,

defined from the kernels θε = 1
ε
(−1)N

s
ε2 , converges in law in C([0, T ]) to a standard

Brownian motion.

Many generalizations of this result have been studied (see, e.g., [21] or [6]).
The main result we introduce in Chapter 1 is another generalization, in which we
consider two independent Gaussian processes that can be represented in terms of
a stochastic integral of a deterministic kernel with respect to the Wiener process,
i.e., we consider

Y f =
{∫ ∞

0
f(t, s)dWs, t ∈ [0, T ]

}
and

Ỹ g =
{∫ ∞

0
g(t, s)dW̃s, t ∈ [0, T ],

}
whereW = {Ws, s ≥ 0} and W̃ = {W̃s, s ≥ 0} are independent standard Brownian
motions, and we construct, from a single Poisson process, two families of processes
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Introduction

that converge, in the sense of the finite dimensional distributions, towards the
processes Y f and Ỹ g.

We will use this result to prove convergence in law results towards some other
processes, like sub-fractional Brownian motion, which is a centered Gaussian pro-
cess with covariance function

Cov(SHt , SHs ) = sH + tH − 1
2
[
(s+ t)H + |s− t|H

]
where H ∈ (0, 2).

Bacteria are prokaryotic organisms (i.e., organisms whose cells lack a
membrane-bound nucleus), typically a few micrometres in length, and can take
a wide range of shapes and inhabit in most habitats on the planet. Some bacteria
can interact with animals. Some of them form a beneficial interaction (mutual-
ism) and some others, called pathogens, form a parasitic association. They are the
cause of human and animal death and diseases.

A virus is a small infectious agent that replicates only inside the living cells
of other organisms. Those that use bacteria to replicate are called bacteriophages
(or phages for short). With lytic bacteriophages bacterial cells are broken open
(lysed) and destroyed after the replication of the virion. As such, they were found
to be antibacterial agents and can be used as a tool to treat bacterial infections or
to prevent them in food, animals or even humans.

In Chapter 2 we construct and study several models that pretend to study how
will behave a treatment of bateriophages in some farm animals. This problem has
been brought to our attention by the Molecular Biology Group of the Department
of Genetics and Microbiology at the Universitat Autònoma de Barcelona.

Starting from a basic model, we will study several variations, first from a
deterministic point of view, finding several results on equilibria and stability, and
later in a noisy context, producing concentration type results.

Let B = {Bt, t ≥ 0} be a standard Brownian motion. The local time of a
Brownian motion characterizes the amount of time a particle has spent at a given
level and can be defined as follows

Lxt := Lx(t) =
∫ t

0
δ(x−Bs)ds.

Then we may define the L2 modulus of continuity of the Brownian local time as

Gt(h) =
∫
R
(Lx+h

t − Lxt )2dx.

IV



Introduction

In [18] the authors prove the following Central Limit Theorem for the L2 modulus
of continuity of Brownian local time.

Theorem ([18], Theorem 1.1 or [26], Theorem 1). For each fixed t > 0,

h−
3
2

(∫
R
(Lx+h

t − Lxt )2dx− 4th
)

L−→ 8
√
αt
3 η,

as h tends to zero, where
αt =

∫
R
(Lxt )2dx,

and η is a N(0, 1) random variable independent of B.

In this work we will prove the following result concerning the Wiener chaos
decomposition of Gt(h).

Theorem. Let Gt(h) be the random variable defined in (3.1.1) and denote the n-th
Wiener chaos element of Gt(h) by Ĩn(Gt(h)). Then, for n = 2k, k ∈ N∗,

1
h2
√

log(1/h)
Ĩn(Gt(h)) L−→ N (0, σ2

n)

as h tends to zero, where N (0, σ2
n) is a centered Normal random variable with

variance σ2
n = 26t(2(k−1))!

π22(k−1)((k−1)!)2 . For n = 2k − 1, k ∈ N∗, the limit is zero.

This result is a joint work with Professor David Nualart, and in particular
provides us with an example of a family of random variables that is convergent in
law to a Normal distribution, but its chaos elements of even order do not converge.
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Chapter 1

Weak convergence of Gaussian
processes

In this chapter, which is based on the paper [7], we consider two independent
Gaussian processes that admit a representation in terms of a stochastic integral of
a deterministic kernel with respect to a standard Wiener process. We construct
two families of processes, from a unique Poisson process, the finite dimensional
distributions of which converge in law towards the finite dimensional distributions
of the two independent Gaussian processes. As an application of this result we ob-
tain families of processes that converge in law towards fractional Brownian motion
and sub-fractional Brownian motion.

We will also present a decomposition result of the sub-fractional Brownian
motion, originally due to J. R. de Chávez and C. Tudor (see [43]), that we obtained
independently and we will use it to obtain the convergence in law result towards
sub-fractional Brownian motion mentioned before.

1.1 Introduction and preliminaries
Let f(t, ·) and g(t, ·) be functions of L2(R+) for all t ∈ [0, T ], T > 0 and consider
the processes given by

Y f =
{∫ ∞

0
f(t, s)dWs, t ∈ [0, T ]

}
(1.1.1)

and
Ỹ g =

{∫ ∞
0

g(t, s)dW̃s, t ∈ [0, T ]
}

(1.1.2)

whereW = {Ws, s ≥ 0} and W̃ = {W̃s, s ≥ 0} are independent standard Brownian
motions.
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1.1 Introduction and preliminaries

The first result we introduce here is the construction of two families of processes,
from a unique Poisson process, that converge, in the sense of the finite dimensional
distributions, to the processes Y f and Ỹ g. We will use this result later in order
to prove weak convergence results towards different kinds of processes such as
fractional Brownian motion and sub-fractional Brownian motion.

It is well known the result by Stroock (see [48]) where it is shown that the
family of processes {

xε(t) = 1
ε

∫ t

0
(−1)N

s
ε2 ds, t ∈ [0, T ]

}
,

defined from the kernels θε = 1
ε
(−1)N

s
ε2 , converges in law in C([0, T ]) to a standard

Brownian motion, where N = {Ns, s ≥ 0} is a standard Poisson process. This
kind of processes were introduced by Kac in [28] in order to write the solution of
telegrapher’s equation in terms of Poisson process.

On the other hand, Delgado and Jolis (see [21]) extend this result to processes
represented by a stochastic integral, with respect to a standard Wiener process, of
a deterministic kernel that satisfies some regularity conditions.

A generalization of Stroock’s result can be found in [6], where it is proved that
the family {

xθε(t) = 2
ε

∫ t

0
e
iθN 2s

ε2 ds, t ∈ [0, T ]
}

(1.1.3)

converges in law in C([0, T ]) to a complex Brownian motion, for θ ∈ (0, π)∪(π, 2π).
Particularly, the real part and the imaginary part of (1.1.3) tend to independent
standard Brownian motions.

Given {Ns, s ≥ 0} a standard Poisson process and θ ∈ (0, π) ∪ (π, 2π), we
consider the following families of approximating processes

Y f
ε =

{2
ε

∫ ∞
0

f(t, s) cos
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.1.4)

and
Ỹ g
ε =

{2
ε

∫ ∞
0

g(t, s) sin
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
. (1.1.5)

The main result of [7] is the proof that the finite dimensional distributions of
the processes Y f

ε and Ỹ g
ε converge in law to the finite dimensional distributions of

the processes Y f and Ỹ g given by (1.1.1) and (1.1.2), respectively.
It is important to note that the processes Y f

ε and Ỹ g
ε are both functionally

dependent. Nevertheless, integrating and taking limits, we obtain two independent
processes.

As an application of this result it can be obtained approximations for differ-
ent examples of centered Gaussian processes, among others, fractional Brownian
motion and sub-fractional Brownian motion.
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Chapter 1. Weak convergence of Gaussian processes

Recall that fractional Brownian motion (fBm for short) BH = {BH(t), t ≥ 0}
is a centered Gaussian process with covariance function

Cov(BH
t , B

H
s ) = 1

2
(
sH + tH − |s− t|H

)
(1.1.6)

where H ∈ (0, 2). Usually fBm is defined with Hurst parameter belonging to the
interval (0, 1) with the corresponding covariance, but in order to compare it with
sub-fBm (as defined in[13]) we use the stated representation with H ∈ (0, 2).

On the other hand, sub-fractional Brownian motion (sub-fBm for brevity) SH =
{SH(t), t ≥ 0} is a centered Gaussian process with covariance function

Cov(SHt , SHs ) = sH + tH − 1
2
[
(s+ t)H + |s− t|H

]
(1.1.7)

where H ∈ (0, 2).
This process was introduced by Bojdecki et al. in 2004 (see [13]) as an interme-

diate process between standard Brownian motion and fractional Brownian motion.
Note that both fBm and sub-fBm are standard Brownian motions for H = 1.

For H 6= 1, sub-fBm preserves some of the main properties of fBm, such as
long-range dependence, but its increments are not stationary; they are more weakly
correlated on non-overlapping intervals than fBm ones, and their covariance decays
polynomially at a higher rate as the distance between the intervals tends to infinity.
For a more detailed discussion of sub-fBm and its properties we refer the reader
to [13]. Some properties of this process have also been studied in [50] and [49]. On
the other hand there are some extensions of sub-fBm in [14] and [45].

In [43] (see Theorem 1.3.4 below) the authors obtain a decomposition of the
sub-fBm in terms of fBm and another process with absolutely continuous trajec-
tories, XH = {XH

t , t ≥ 0}, which is defined by Lei and Nualart in [33] by

XH
t =

∫ ∞
0

(1− e−rt)r−
1+H

2 dWr (1.1.8)

where W is a standard Brownian motion. Lei and Nualart introduce this process
in order to obtain a decomposition of bifractional Brownian motion into the sum
of a transformation of XH

t and a fBm.
The decomposition of sub-fractional Brownian motion is different for H ∈ (0, 1)

and H ∈ (1, 2). In the first case, sub-fBm is obtained as a sum of two independent
processes, namely fBm and the process defined by (1.1.8), while for H ∈ (1, 2) is
fBm that is decomposed into the sum of the process (1.1.8) and sub-fBm, these
being independent.

In Section 2 we will prove the general result of weak convergence, in the sense of
the finite dimensional distributions, towards integrals of functions of L2(R+) with
respect to two independent standard Brownian motions. This theorem permits

3



1.2 General convergence result

us to obtain, in Section 3, results of convergence in law, in the space C([0, T ]),
towards fBm, the process defined in (1.1.8) and, finally, sub-fBm with parameter
H ∈ (0, 1) using the decomposition of this process as a sum of two independent
processes.

Positive constants, denoted by C, with possible subscripts indicating appropri-
ate parameters, may vary from line to line.

1.2 General convergence result
Let N = {Nt, t ≥ 0} denote a standard Poisson process defined on a probability
space (Ω,F , P ) and W = {Wt, t ≥ 0} a standard Brownian motion defined on
(Ω̂, F̂ , P̂ ). We will also denote the expectation of the respective probability spaces
by E and Ê.

In this section we prove the main result of weak convergence in the sense of
the finite dimensional distributions. We will use this result later in order to prove
weak convergence results towards fractional Brownian motion and sub-fractional
Brownian motion.

Theorem 1.2.1. Let f(t, ·) and g(t, ·) be functions of L2(R+) for all t ∈ [0, T ],
T > 0, let {Ns, s ≥ 0} be a standard Poisson process and θ ∈ (0, π) ∪ (π, 2π).
Define the processes Y f and Ỹ g, which are given by Y f = {

∫∞
0 f(t, s)dWs, t ∈

[0, T ]} and Ỹ g = {
∫∞

0 g(t, s)dW̃s, t ∈ [0, T ]} and where W = {Ws, s ≥ 0} and
W̃ = {W̃s, s ≥ 0} are independent standard Brownian motions. We also define the
following processes

Y f
ε =

{2
ε

∫ ∞
0

f(t, s) cos
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.2.1)

and
Ỹ g
ε =

{2
ε

∫ ∞
0

g(t, s) sin
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
. (1.2.2)

Then, the finite dimensional distributions of the family of processes {(Y f
ε , Ỹ

g
ε )}ε

converge in law to the finite dimensional distributions of the process (Y f , Ỹ g) as
ε goes to zero. In particular, {Y f

ε } and {Ỹ g
ε } converge toward two independent

Gaussian processes.

Taking into account that any statement and proof that follows in this section
is valid for any fixed t ∈ [0, T ], by abuse of notation we will write f(s) and g(s)
instead of f(t, s) and g(t, s), respectively.

The following Lemma gives a bound for the L2 and L4 norm of the approx-
imating processes defined by (1.2.1) and (1.2.2). We will use the L2 bound to
prove Theorem 1.2.1 and the L4 bound to prove weak convergence results in the
following section.
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Chapter 1. Weak convergence of Gaussian processes

Lemma 1.2.2. Let Y f
ε and Ỹ g

ε be defined by (1.2.1) and (1.2.2) respectively, and
assume we are under the conditions of Theorem 1.2.1. Then we have the following
bounds for the L2 norms of Y f

ε and Ỹ g
ε

E
[
(Y f

ε )2
]
≤ C

(∫ ∞
0

f 2(s) ds
)
, E

[
(Ỹ g

ε )2
]
≤ C

(∫ ∞
0

g2(s) ds
)
. (1.2.3)

We also have the following bounds for the L4 norms

E
[
(Y f

ε )4
]
≤ C

(∫ ∞
0

f 2(s) ds
)2
, E

[
(Ỹ g

ε )4
]
≤ C

(∫ ∞
0

g2(s) ds
)2
. (1.2.4)

Proof of Lemma 1.2.2. We will proceed to prove the result only for Y f
ε since the

proof is exactly the same for Ỹ g
ε .

Observe that defining

Zf
ε = Y f

ε + iỸ f
ε = 2

ε

∫ ∞
0

f(s)e
iθN 2s

ε2 ds

we have E[Zf
ε Z̄

f
ε ] = E[(Y f

ε )2 + (Ỹ f
ε )2], where Z̄ denotes the complex conjugate of

Z. Therefore if we prove E[Zf
ε Z̄

f
ε ] ≤ C‖f‖2

2, where ‖·‖2 is the L2(R+) norm, the
stated convergence follows.

E[Zf
ε Z̄

f
ε ] = E

[2
ε

∫ ∞
0

f(s)e
iθN 2s

ε2 ds2
ε

∫ ∞
0

f(r)e
−iθN 2r

ε2 dr
]

= 4
ε2E

∫ ∞
0

∫ ∞
0

f(s)f(r)e
iθ

(
N 2s
ε2
−N 2r

ε2

)
ds dr



= 4
ε2

∫ ∞
0

∫ ∞
0

1{r≤s}f(s)f(r)E

eiθ
(
N 2s
ε2
−N 2r

ε2

) dr ds

+ 4
ε2

∫ ∞
0

∫ ∞
0

1{s≤r}f(s)f(r)E

e−iθ
(
N 2r
ε2
−N 2s

ε2

) ds dr.

Since E[eiθX ] = e−λ(1−eiθ) and E[e−iθX ] = e−λ(1−e−iθ), being X a Poisson random
variable of parameter λ, we obtain

5



1.2 General convergence result

E[Zf
ε Z̄

f
ε ] = 4

ε2

∫ ∞
0

∫ ∞
0

1{r≤s}f(s)f(r)e−2 s−r
ε2 (1−eiθ)dr ds

+ 4
ε2

∫ ∞
0

∫ ∞
0

1{s≤r}f(s)f(r)e−2 r−s
ε2 (1−e−iθ)dr ds

≤ 4
ε2

∫ ∞
0

∫ ∞
0

1{r≤s}|f(s)f(r)| e−2 s−r
ε2 (1−cos θ)dr ds

+ 4
ε2

∫ ∞
0

∫ ∞
0

1{s≤r}|f(s)f(r)| e−2 r−s
ε2 (1−cos θ)dr ds.

Using the inequality |f(s)f(r)| ≤ 1
2 (f 2(s) + f 2(r)) and noting that, by means of

a change of variables, the last two integrals are the same we have that

E[Zf
ε Z̄

f
ε ] ≤ 4

ε2

∫ ∞
0

∫ ∞
0

1{s≤r}
(
f 2(s) + f 2(r)

)
e−2 r−s

ε2 (1−cos θ)dr ds

= 4
ε2

(∫ ∞
0
f 2(s)

∫ ∞
s
e−2 r−s

ε2 (1−cos θ)dr ds+
∫ ∞

0
f 2(r)

∫ r

0
e−2 r−s

ε2 (1−cos θ)ds dr
)

= 2
(∫ ∞

0
f 2(s)

( 1
1− cos θ

)
ds+

∫ ∞
0

f 2(r)
(

1− e−2 r
ε2 (1−cos θ)

1− cos θ

)
dr
)

≤ 4
1− cos θ

∫ ∞
0

f 2(s) ds,

giving the desired result (1.2.3).
To find the bounds for the L4 norm, being Zf

ε as before, it is enough to prove
that E[(Zf

ε Z̄
f
ε )2] ≤ C‖f‖4

2.

E[(Zf
ε Z̄

f
ε )2] = 16

ε4 E

∫
[0,∞)4

f(s1) · · · f(s4)e
iθ

(
N 2s1
ε2

+N 2s2
ε2
−N 2s3

ε2
−N 2s4

ε2

)
ds1 · · · ds4


= 64
ε4

∫
[0,∞)4

1{s1≤···≤s4}f(s1) · · · f(s4)E [E1 + · · ·+ E6] ds1 · · · ds4

where

E1 =e
iθ

(
N 2s1
ε2

+N 2s2
ε2
−N 2s3

ε2
−N 2s4

ε2

)
=e
−iθ

(
N 2s4
ε2
−N 2s3

ε2
+2
(
N 2s3
ε2
−N 2s2

ε2

)
+N 2s2

ε2
−N 2s1

ε2

)
,

E2 = e
−iθ
(
N 2s4
ε2
−N 2s3

ε2
+N 2s2

ε2
−N 2s1

ε2

)
, E3 = e

iθ

(
N 2s4
ε2
−N 2s3

ε2
−
(
N 2s2
ε2
−N 2s1

ε2

))
,

E4 = E3, E5 = E2, E6 = E1. To obtain the last expression note that we can
arrange s1, s2, s3, s4 in 24 different ways and due to the symmetry between s1 and

6



Chapter 1. Weak convergence of Gaussian processes

s2 and between s3 and s4 we have 6 possible different situations, E1, . . . , E6, each
one repeated 4 times. By means of the properties of Poisson process we have

‖E[E1]‖, ‖E[E2]‖, ‖E[E3]‖ ≤ e−2 s4−s3
ε2 (1−cos θ)e−2 s2−s1

ε2 (1−cos θ)

and we can conclude

E[(Zf
ε Z̄

f
ε )2] ≤ 384

ε4

∫
[0,∞)4

1{s1≤···≤s4}|f(s1) · · · f(s4)|

e−2 s4−s3
ε2 (1−cos θ)e−2 s2−s1

ε2 (1−cos θ)ds1 · · · ds4

≤ 384
2ε2

(∫
[0,∞)2

1{s1≤s2}|f(s1)f(s2)|e−2 s2−s1
ε2 (1−cos θ)ds1ds2

)2

≤ 3
( 4

1− cos θ

∫ ∞
0

f 2(s)ds
)2
.

Remark 1.2.3. On the previous lemma we proved, in particular, that the family
{Y f

ε Ỹ
g
ε }ε>0 is uniformly integrable.

Indeed, {Y f
ε Ỹ

g
ε }ε>0 will be uniformly integrable if supε>0 E

[
(Y f

ε Ỹ
g
ε )2

]
< ∞.

Using Hölder’s inequality we have

sup
ε>0

E
[
(Y f

ε Ỹ
g
ε )2

]
≤ sup

ε>0

(
E[(Y f

ε )4]
) 1

2
(
E[(Ỹ g

ε )4]
) 1

2 .

Proof of Theorem 1.2.1. Now we will proceed to proof the Theorem. By defini-
tion, the family {(Y f

ε , Ỹ
g
ε )}ε converges in law, in the sense of finite dimensional

distributions, to the process (Y f , Ỹ g) as ε goes to zero if and only if for every
k ∈ N and every t1, . . . , tk ∈ [0, T ]

(Y f
ε , Ỹ

g
ε )(t1, . . . , tk) L−→ (Y f , Ỹ g)(t1, . . . , tk). (1.2.5)

By the isometry of the spaces R2×Rk and R2k and from Theorem 7.7 in [12, page
49] we deduce that our result will follow if and only if

Sε :=
k∑
i=1

aiY
f
ε (ti) +

k∑
j=1

bjỸ
g
ε (tj) L−→ S :=

k∑
i=1

aiY
f (ti) +

k∑
j=1

bjỸ
g(tj), (1.2.6)

for any k ∈ N, aj, bj ∈ R, 1 ≤ i, j ≤ k and t1, . . . , tk ∈ [0, T ]. In order to prove
(1.2.6) we will show that the respective characteristic functions converge, namely,
for any x ∈ R

E[eixSε ] −→ Ê[eixS] as ε→ 0. (1.2.7)
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1.2 General convergence result

We first observe that we can write

Sε = 2
ε

∫ ∞
0

(
F (s) cos

(
θN 2s

ε2

)
+G(s) sin

(
θN 2s

ε2

))
ds

and
S =

∫ ∞
0

F (s)dWs +
∫ ∞

0
G(s)dW̃s,

where F (s) := ∑k
i=1 aif(ti, s) and G(s) := ∑k

i=1 big(ti, s).
Since F (s) and G(s) belong to L2(R+) they can be approximated, respectively,

by the following sequences of step functions

F n(s) :=
mn−1∑
j=0

fnj 1(snj ,s
n
j+1](s) and Gn(s) :=

mn−1∑
j=0

gnj 1(snj ,s
n
j+1](s),

where 0 = sn0 < sn1 < . . . < snmn−1 < snmn , f
n
j and gnj are chosen such that∫ ∞

0

(
(F (s)− F n(s))2 + (G(s)−Gn(s))2

)
ds ≤ 1

n
(1.2.8)

for any n ∈ N. Let us now define

Snε := 2
ε

∫ ∞
0

(
F n(s) cos

(
θN 2s

ε2

)
+Gn(s) sin

(
θN 2s

ε2

))
ds

and
Sn :=

∫ ∞
0

F n(s)dWs +
∫ ∞

0
Gn(s)dW̃s.

We have that for any x ∈ R, ε > 0 and n ∈ N,

|E[eixSε ]− Ê[eixS]| ≤ αnε + βnε + γn,

where αnε = |E[eixSε ] − E[eixSnε ]|, βnε = |E[eixSnε ] − Ê[eixSn ]| and γn = |Ê[eixSn ] −
Ê[eixS]|.

We observe that

E[(Sε − Snε )2] = 4
ε2E

[(∫ ∞
0

(F (s)− F n(s)) cos
(
θN 2s

ε2

)

+ (G(s)−Gn(s)) sin
(
θN 2s

ε2

)
ds
)2
]
.

Now, using the inequality (a + b)2 ≤ 2a2 + 2b2, a, b ∈ R, and by virtue of (1.2.3)
and (1.2.8), we get that

E[(Sε−Snε )2] ≤ C
∫ ∞

0
(F (s)−F (s)n)2ds+C

∫ ∞
0

(G(s)−Gn(s))2ds ≤ C
1
n
. (1.2.9)
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Chapter 1. Weak convergence of Gaussian processes

With this inequality and the mean value theorem we conclude that there exists
C > 0 such that for any ε > 0 and any n ∈ N,

αnε ≤ xE[|Sε − Snε |] ≤ Cx
1√
n
.

On the other hand, for fixed n ∈ N,

Snε =
mn−1∑
j=0

fnj

∫ snj+1

snj

cos
(
θN 2s

ε2

)
ds+

mn−1∑
j=0

gnj

∫ snj+1

snj

sin
(
θN 2s

ε2

)
ds.

In [6] Bardina proved that, for θ ∈ (0, π) ∪ (π, 2π),
∫ snj+1

snj

cos
(
θN 2s

ε2

)
ds L−→

∫ snj+1

snj

dWs

and ∫ snj+1

snj

sin
(
θN 2s

ε2

)
ds L−→

∫ snj+1

snj

dW̃s,

where Ws and W̃s are independent standard Brownian motions. Therefore we
obtain that Snε converges in law, when ε tends to zero, to

Sn =
mn−1∑
j=0

fnj

∫ snj+1

snj

dWs +
mn−1∑
j=0

gnj

∫ snj+1

snj

dW̃s.

Finally, by again applying the mean value theorem and computing the variance
of the stochastic integral, we obtain that, for any n ∈ N, γn can be bounded by

xÊ[|S − Sn|] ≤ Cx
(∫ ∞

0

(
(F (s)− F n(s))2 + (G(s)−Gn(s))2

)
ds
) 1

2
≤ Cx

1√
n
.

Then, both αnε and γn become arbitrarily small by taking n ≥ n0, for some n0 ∈ N.
Finally, by fixing n = n0, the term βn0

ε converges to zero as ε goes to zero, since
Snε converges in law to Sn as ε goes to zero. This completes the proof of the
convergence of the characteristic functions.

Remark 1.2.4. We can use this result to approximate two independent processes
of many kinds, such as processes with a Gousart kernel (see for instance [21]) or
the Holmgren-Riemann-Liouville fractional integral ([21]). In the next section we
will see convergence results towards some other processes.
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1.3 Weak approximation of some fractional processes

1.3 Weak approximation of some fractional pro-
cesses

In this section we apply Theorem 1.2.1 to prove weak convergence results towards
fractional Brownian motion and sub-fBm. We will also reproduce a result due to
Bardina and Es-Sebayi of convergence towards an extension of bifractional Brow-
nian motion.

1.3.1 Weak approximation of fractional Brownian motion

We are going to prove a result of weak convergence in C([0, T ]) towards fBm,
applying Theorem 1.2.1. In order to do so, we use the following representation of
the fBm as the integral of a deterministic kernel with respect to standard Brownian
motion (see for instance [20])

BH
t =

∫ t

0
K̃H(t, s) dWs, (1.3.1)

where H ∈ (0, 2), K̃H(t, s) is defined on the set {0 < s < t} and is given by

K̃H(t, s) = dH(t− s)
H−1

2 + dH
(1−H

2

) ∫ t

s
(u− s)

H−3
2

(
1−

(
s

u

) 1−H
2
)
du, (1.3.2)

where the normalizing constant dH is

dH =
(

HΓ(3−H
2 )

Γ(H+1
2 )Γ(2−H)

) 1
2

.

Since in this section the domain of fBm is restricted to the interval t ∈ [0, T ], we
can rewrite the integral representation as

BH
t =

∫ t

0
K̃H(t, s) dWs =

∫ T

0
KH(t, s) dWs,

where KH(t, s) = K̃H(t, s)1[0,t](s).
Applying this representation, since KH(t, ·) ∈ L2(R+), the following result is a

corollary of Theorem 1.2.1

10



Chapter 1. Weak convergence of Gaussian processes

Corollary 1.3.1. Let KH(t, s) = K̃H(t, s)1[0,t](s), where K̃H(t, s) is defined by
(1.3.2), let {Ns, s ≥ 0} be a standard Poisson process and let θ ∈ (0, π) ∪ (π, 2π).
Then the processes

BH
ε =

{
2
ε

∫ T

0
KH(t, s) cos

(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.3.3)

and
B̃H
ε =

{
2
ε

∫ T

0
KH(t, s) sin

(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.3.4)

converge in law, in the sense of the finite dimensional distributions, towards two
independent fractional Brownian motions.

We now proceed to prove the continuity and the tightness of the families of
processes defined by (1.3.3) and (1.3.4), and consequently, proving the weak con-
vergence in the space C([0, T ]).

The continuity can be deduced from Lemma 2.1 in [9] and the fact that BH
ε

and B̃H
ε equal zero if t = 0. We will reproduce a simplified version of this lemma

here for the sake of conciseness.

Lemma 1.3.2 (Lemma 2.1, [9]). For all s < t,

|BH
ε (t)−BH

ε (s)| ≤ CH
ε (t− s)(

H+1
2 )∧1

and
|B̃H

ε (t)− B̃H
ε (s)| ≤ CH

ε (t− s)(
H+1

2 )∧1,

where BH
ε and B̃H

ε are defined by (1.3.3) and (1.3.4) respectively.

Proof. The proof is the same for both BH
ε and B̃H

ε , so we will only prove the result
for BH

ε .
From the definition of BH

ε we have that

|BH
ε (t)−BH

ε (s)| ≤ Cε

∫ T

0

∣∣∣KH(t, u)−KH(s, u)
∣∣∣ du

and we can split this integral as follows∫ T

0

∣∣∣KH(t, u)−KH(s, u)
∣∣∣ du

=
∫ T

0

∣∣∣K̃H(t, u)I[0,t)(u)− K̃H(s, u)I[0,s)(u)
∣∣∣ du

=
∫ t

s

∣∣∣K̃H(t, u)
∣∣∣ du+

∫ s

0

∣∣∣K̃H(t, u)− K̃H(s, u)
∣∣∣ du. (1.3.5)

11



1.3 Weak approximation of some fractional processes

Let us begin with the first summand of the last expression. If H < 1 then we
have that ∫ t

s
K̃H(t, u)2du =

∫ t−s

0
K̃H(t, v + s)2dv

where we set v = u − s. If we now consider the kernel K̃H(t, v + s) and using
(1.3.2) we get that

K̃H(t, v + s) = dH(t− v − s)
H−1

2 +

dH
(1−H

2

) ∫ t

v+s
(u− v − s)

H−3
2

(
1−

(
v + s

u

) 1−H
2
)
du

= dH((t− s)− v)
H−1

2 +

dH
(1−H

2

) ∫ t−s

v
(y − v)

H−3
2

1−
(
v + s

y + s

) 1−H
2
 dy

≤ K̃H(t− s, v),

where in the last inequality we used that (v+s
y+s)

1−H
2 ≥ (v

y
) 1−H

2 since H < 1 and
y ≥ v. With this, we obtain that∫ t

s
K̃H(t, u)2du ≤

∫ t−s

0
K̃H(t− s, v)2dv = (t− s)H

to finally conclude that

∫ t

s

∣∣∣K̃H(t, u)
∣∣∣ du ≤ (t− s) 1

2

(∫ t

s
K̃H(t, u)2du

) 1
2
≤ (t− s)

1+H
2

On the other hand, when H ≥ 1,

K̃H(t, u) = CHu
1−H

2

∫ t

u
(x− u)

H−3
2 x

H−1
2 dx

≤ CHu
1−H

2

∫ t

u
(x− u)

H−3
2 dx

= CH(t− u)
H−1

2 u
1−H

2

and ∫ t

s
|K̃H(t, u)|du ≤ CH(t− s)

H−1
2

∫ t

s
u

1−H
2 du ≤ (t− s).

For the second summand of (1.3.5), notice that if H = 1, then∫ s

0

∣∣∣K̃H(t, u)− K̃H(s, u)
∣∣∣ du = 0.

12



Chapter 1. Weak convergence of Gaussian processes

When H 6= 1, we will use some bounds for the partial derivative of the kernel
K̃. From (1.3.2) it is easy to check that the kernel K̃H(t, s) is differentiable with
respect to the first variable in the set {0 < s < t} and that

∂

∂t
K̃H(t, s) = dH

(
H − 1

2

)(
s

t

) 1−H
2

(t− s)
H−3

2 .

Then, for H > 1 we have that∣∣∣∣∣∂K̃H

∂t
(t, s)

∣∣∣∣∣ ≤ CHs
1−H

2 (t− s)
H−3

2 .

Therefore,∫ s

0

∣∣∣K̃H(t, u)− K̃H(s, u)
∣∣∣ du ≤ ∫ s

0

(∫ t

s

∣∣∣∣∣∂K̃H

∂r
(r, u)

∣∣∣∣∣ dr
)

du

≤ CH
∫ s

0
u

1−H
2

(∫ t

s
(r − u)

H−3
2 dr

)
du

≤ CH(t− s)
∫ s

0
u

1−H
2 (s− u)

H−3
2 du

= CHB
(3−H

2 ,
H − 1

2

)
(t− s),

where B(x, y) is the Beta function defined by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

When H < 1 we have that∣∣∣∣∣∂K̃H

∂t
(t, s)

∣∣∣∣∣ ≤ CH(t− s)
H−3

2 .

In this situation, we obtain the following bound∫ s

0

∣∣∣K̃H(t, u)− K̃H(s, u)
∣∣∣ du ≤ ∫ s

0

(∫ t

s

∣∣∣∣∣∂K̃H

∂r
(r, u)

∣∣∣∣∣ dr
)

du

≤ CH
∫ s

0

(∫ t

s
(r − u)

H−3
2 dr

)
du

= CH
∫ t

s

(
(r − s)

H−1
2 − r

H−1
2
)

dr

= CH
(
(t− s)

H+1
2 − t

H+1
2 + s

H+1
2
)

≤ CH(t− s)
H+1

2 .

The proof of the lemma is now complete.
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1.3 Weak approximation of some fractional processes

Theorem 1.3.3. Under the hypothesis of Corollary 1.3.1, if moreover one of the
following conditions is satisfied:

1. H ∈ (1
2 , 2),

2. H ∈ (0, 1
2 ] and θ satisfies cos((2i+1)θ) 6= 1 for all i ∈ N such that i ≤ 1

2

[
1
H

]
,

then the processes BH
ε and B̃H

ε converge in law in C([0, T ]) towards two independent
fractional Brownian motions.
Proof. It only remains to prove the tightness of the families of processes defined by
(1.3.3) and (1.3.4). Since BH

ε (0) = 0, using Billingsley’s criterion (see for instance
[12]) it is enough to check that for some m > 0 and α > 1

E[|BH
ε (t)−BH

ε (s)|m] ≤ C(F (t)− F (s))α,

where F is a nondecreasing continuous function.
On the other hand, it is known that∫ T

0

(
KH(t, r)−KH(s, r)

)2
dr = E

[
(BH

t −BH
s )2

]
= (t− s)H ,

and then it is sufficient to show that

E
[
(yfε )m

]
≤ Cm

(∫ T

0
f 2(r) dr

)m
2

, E
[
(ỹfε )m

]
≤ Cm

(∫ T

0
f 2(r) dr

)m
2

(1.3.6)

holds for some m satisfying the condition Hm/2 > 1, where f(r) := KH(t, r) −
KH(s, r), yfε = 2

ε

∫ T
0 f(r) cos(θN 2r

ε2
)dr and ỹfε = 2

ε

∫ T
0 f(r) sin(θN 2r

ε2
)dr.

Then, in the case (1), it is sufficient to prove (1.3.6) for m = 4, which can be
seen proving that E[(zfε z̄fε )2] ≤ C‖f‖4

2, where ‖·‖2 is the L2[0, T ] norm and zfε =
yfε + iỹfε . If we extend f to R+ for zeros, i.e., if we consider F (r) := f(r)1[0,T ](r),
we have proved in Lemma 1.2.2 that

E[(ZF
ε Z̄

F
ε )2] ≤ 3

( 4
1− cos θ

∫ ∞
0

F 2(s)ds
)2
.

Then,

E[(zfε z̄fε )2] = E[(ZF
ε Z̄

F
ε )2]

≤ 3
( 4

1− cos θ

∫ ∞
0

F 2(s)ds
)2

= 3
(

4
1− cos θ

∫ T

0
f 2(s)ds

)2

.

To prove the result under the hypothesis (2) we can show that (1.3.6) is satisfied
for some even m such that Hm

2 > 1. If we proceed in the same way as in case (1)
we obtain an expression that depends on 1−cos((2i+1)θ) for all i = 0, 1, . . . ,

[
1

2H

]
and the constant Cm depends on maxi=0,1,...,[ 1

2H ]
1

1−cos((2i+1)θ) .
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Chapter 1. Weak convergence of Gaussian processes

1.3.2 Convergence towards sub-fractional Brownian mo-
tion

In order to obtain the convergence to sub-fractional Brownian motion, we will
apply a decomposition result due to Ruiz de Chávez and Tudor in [43] that we
obtained independently. To obtain this result we use a process XH introduced by
Lei and Nualart in [33] and defined in (1.1.8) by the equation

XH
t =

∫ ∞
0

(1− e−rt)r−
1+H

2 dWr,

where W is a standard Brownian motion. It can be proved (see [33] or [43]) that
its covariance function is

Cov(XH
t , X

H
s ) =


Γ(1−H)

H

[
tH + sH − (t+ s)H

]
if H ∈ (0, 1),

Γ(2−H)
H(H−1)

[
(t+ s)H − tH − sH

]
if H ∈ (1, 2),

(1.3.7)

and that XH has a version with absolutely continuous trajectories on [0,∞).
The decomposition result can be stated and proved as follows:

Theorem 1.3.4 (Decomposition of sub-fBm). Let BH be a fBm, SH a sub-fBm
and W = {Wt, t ≥ 0} a standard Brownian motion. Let XH be the process given
by (1.1.8). If for H ∈ (0, 1) we suppose that BH and W are independents, then the
processes {Y H

t = C1X
H
t + BH

t , t ≥ 0} and {SHt , t ≥ 0} have the same law, where
C1 =

√
H

2Γ(1−H) . If for H ∈ (1, 2) we suppose that SH and W are independents,
then the processes {Y H

t = C2X
H
t +SHt , t ≥ 0} and {BH

t , t ≥ 0} have the same law,
where C2 =

√
H(H−1)
2Γ(2−H) .

Proof. It is clear that the process Y H is centered and Gaussian in both cases. For
H ∈ (0, 1), from (1.1.6), (1.3.7) and using the independence of XH and BH we
have

Cov(Y H
t , Y

H
s ) = C2

1Cov[XH
t , X

H
s ] + Cov[BH

t , B
H
s ]

= sH + tH − 1
2
[
(s+ t)H + |s− t|H

]
,

which completes the proof in this case, and for H ∈ (1, 2), from (1.1.7), (1.3.7)
and using the independence of XH and SH we have

Cov(Y H
t , Y

H
s ) = C2

2Cov[XH
t , X

H
s ] + Cov[SHt , SHs ]

= 1
2
(
sH + tH − |s− t|H

)
,

which completes the proof.
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1.3 Weak approximation of some fractional processes

As an application of this result, we can study the space of integrable functions
with respect to sub-fractional Brownian motion.

Let us consider E the set of simple functions on [0, T ]. Generally, if U :=
(Ut, t ∈ [0, T ]) is a continuous, centered Gaussian process, we denote by HU the
Hilbert space defined as the closure of E with respect to the scalar product〈

1[0,t],1[0,s]
〉
H

= E (UtUs) .

In the case of the standard Brownian motion W , the space HW is L2([0, T ]).
On the other hand, for the fractional Brownian motion BH , the space HBH is the
set of restrictions to the space of test functions D((0, T )) of the distributions of
W

1−H
2 ,2(R) with support contained in [0, T ] (see [27]). In the case H ∈ (0, 1) all

the elements of the domain are functions, and the space HBH coincides with the
fractional Sobolev space I

1−H
2

0+ (L2([0, T ])) (see for instance [20]), but in the case
H ∈ (1, 2) this space contains distributions which are not given by any function.

As a direct consequence of Theorem 1.3.4 we have the following relation be-
tween HBH , HSH and HXH , where SH is the sub-fBm and XH is the process
introduced by Lei and Nualart in [33] and defined by (1.1.8).

Proposition 1.3.5. For H ∈ (0, 1) the following equality

HXH ∩HBH = HSH

holds. On the other hand, for H ∈ (1, 2) we have that

HXH ∩HSH = HBH .

Proof. This proposition is a direct consequence of the two decompositions into the
sum of two independent processes proved in Theorem 1.3.4.

In order to apply Theorem 1.2.1 to prove weak convergence to sub-fBm, we
have to prove weak convergence to fBm and the process XH introduced by Lei
and Nualart. Then, applying the decomposition theorem and the independence of
the limit laws, we can state the weak convergence to sub-fBm for H ∈ (0, 1).

So, it just remains to prove for the process XH defined by (1.1.8) the same
results we have obtained for fBm.

Corollary 1.3.6. Let XHbe the process defined by (1.1.8), let {Ns, s ≥ 0} be a
standard Poisson process and let θ ∈ (0, π) ∪ (π, 2π). Then the processes

XH
ε =

{2
ε

∫ ∞
0

(1− e−st)s−
1+H

2 cos
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.3.8)
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Chapter 1. Weak convergence of Gaussian processes

and
X̃H
ε =

{2
ε

∫ ∞
0

(1− e−st)s−
1+H

2 sin
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
(1.3.9)

converge in law, in the sense of the finite dimensional distributions, towards two
independent processes with the same law that XH .

Theorem 1.3.7. Under the hypothesis of Corollary 1.3.6 the processes defined by
(1.3.8) and (1.3.9) converge in law, in C([0, T ]), towards two independent processes
with the same law that the process defined by (1.1.8).

Proof. We first need to show that the processes XH
ε and X̃H

ε are continuous. In
fact, they are absolutely continuous. Let us consider for all r > 0 the process

Yr = 2
ε

∫ ∞
0

s
1−H

2 e−sr cos
(
θN 2s

ε2

)
ds.

This integral exists because, using inequality (1.2.3), we have

E[Y 2
r ] ≤ C

(∫ ∞
0

s1−He−2srds
)

= CrH−2Γ(2−H).

On the other hand,

E
[∫ t

0
|Yr|dr

]
≤
∫ t

0
(E[Y 2

r ]) 1
2 dr ≤ C

∫ t

0
r
H−2

2 dr <∞

since H ∈ (0, 2).
Let us now observe that XH

ε =
∫ t

0 Yrdr. Indeed, applying Fubini’s theorem,∫ t

0
Yrdr = 2

ε

∫ ∞
0

s
1−H

2

(∫ t

0
e−srdr

)
cos

(
θN 2s

ε2

)
ds

= 2
ε

∫ ∞
0

s−
1+H

2 (1− e−st) cos
(
θN 2s

ε2

)
ds

= XH
ε .

The same proof shows that the process X̃H
ε is continuous.

Next, we prove the convergence only for (1.3.8). For (1.3.9) the result is proved
similarly.

It suffices to prove the tightness of the family {XH
ε }ε. Since XH

ε (0) = 0, using
Billingsley’s criterion we only need to prove that

E
[
|XH

ε (t)−XH
ε (s)|4

]
≤ |F (t)− F (s)|2

where F is a continuous, non-decreasing function. We observe that

E
[
|XH

ε (t)−XH
ε (s)|4

]
= E

[2
ε

∫ ∞
0

(
ΦH(t, r)− ΦH(s, r)

)
cos(θN 2r

ε2
)dr

]4
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1.3 Weak approximation of some fractional processes

where ΦH(t, r) = (1− e−rt)r− 1+H
2 ∈ L2(R+).

Since ΦH ∈ L2(R+), applying the bound (1.2.4), which is proved in Theorem
1.2.1, we obtain

E
[
|XH

ε (t)−XH
ε (s)|4

]
≤ C

(∫ ∞
0

(
ΦH(t, r)− ΦH(s, r)

)2
dr
)2

= C

(∫ ∞
0

(
(1− e−rt)2r−(1+H) + (1− e−rs)2r−(1+H)

− 2(1− e−rt)(1− e−rs)r−(1+H)
)

dr
)2

.

Using (1.3.7) and assuming s < t we obtain for H ∈ (0, 1)

E
[
|XH

ε (t)−XH
ε (s)|4

]
≤ C

(
2(t+ s)H − (2t)H − (2s)H

)2

≤ C
(
(2t)H − (2s)H

)2
,

since s+ t < 2t. In the same way, if H ∈ (1, 2),

E
[
|XH

ε (t)−XH
ε (s)|4

]
≤ C

(
(2t)H + (2s)H − 2(t+ s)H

)2

≤ C
(
(2t)H − (2s)H

)2
,

since s+ t > 2s. In both cases we have proved the result with F (x) = (2x)H .

Finally, we obtain the result of weak convergence to sub-fractional Brownian
motion, as a direct conclusion of the previous results.

Theorem 1.3.8. Let H ∈ (0, 1), let {XH
ε (t), t ∈ [0, T ]} be the family of processes

defined by (1.3.8), let {B̃H
ε (t), t ∈ [0, T ]} be the family of processes defined by

(1.3.4) and C1 =
√

H
2Γ(1−H) . Let us assume θ ∈ (0, π)∪ (π, 2π) and, for H ∈ (0, 1

2 ],
that θ is such that cos((2i + 1)θ) 6= 1 for all i ∈ N such that i ≤ 1

2

[
1
H

]
. Then,

{Y H
ε (t) = C1X

H
ε (t) + BH

ε (t), t ∈ [0, T ]} weakly converges in C([0, T ]) to a sub-
fractional Brownian motion.

Proof. Applying Theorems 1.3.3 and 1.3.7 we know that, respectively, the pro-
cesses B̃H

ε and XH
ε converge in law in C([0, T ]) towards a fBm and the process

defined by (1.1.8). Moreover, applying Theorem 1.2.1, we know that the limit
laws are independent. Hence, we are under the hypothesis of Theorem 1.3.4,
which proves the stated result.
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Chapter 1. Weak convergence of Gaussian processes

Remark 1.3.9. Obviously we can also obtain the same result using the families of
processes defined by (1.3.9) and (1.3.3).
Remark 1.3.10. We may also notice that we cannot use our approximation result
(Theorem 1.2.1) to construct a family of approximating processes towards sub-
fBm when H ∈ (1, 2) since the decomposition result (Theorem 1.3.4) for sub-fBm
when H ∈ (1, 2) only states that fBm can be decomposed as a sum of sub-fBm
and another independent process and not otherwise. The same situation applies
for the decomposition result of bifractional Brownian motion by Lei and Nualart
in [33].

1.3.3 Convegence towards bifractional Brownian motion
with parameter K ∈ (1, 2)

In [8] X. Bardina and K. Es-Sebaiy proved that bifractional Brownian motion
can be extended for K ∈ (1, 2) and they also proved a convergence in law result
towards bifractional Brownian motion for K ∈ (1, 2) from a Poisson process.

The extension they provide is based on the decomposition of bifractional Brow-
nian motion that Lei and Nualart introduce in [33] and can be stated as follows.

Theorem 1.3.11. Assume H ∈ (0, 2) and K ∈ (1, 2) with HK ∈ (0, 2). Let BHK

be a fractional Brownian motion, and W = {Wt, t ≥ 0} a standard Brownian
motion. Let XK,H the process defined in (1.1.8). If we suppose that BHK and W
are independent, then the process

BH,K
t = aBHK

t + bXH,K
t , (1.3.10)

where a =
√

21−K and b =
√

K(K−1)
2KΓ(2−K) is a centered Gaussian process with covari-

ance function

E
(
BH,K
t BH,K

s

)
= 1

2K
((
tH + sH

)K
− |t− s|HK

)
; s, t ≥ 0.

With this extension, defined by equation (1.3.10), Bardina and Es-Sebaiy ob-
served that the following convergence result can be directly concluded from The-
orems 1.2.1, 1.3.3 and 1.3.7.

Theorem 1.3.12. Let H ∈ (0, 2) and K ∈ (1, 2) with HK ∈ (0, 2). Consider
θ ∈ (0, π)∪ (π, 2π) such that if HK ∈ (0, 1

2 ] then θ satisfies that cos((2i+ 1)θ) 6= 1
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1.3 Weak approximation of some fractional processes

for all i ∈ N such that i ≤ 1
2

[
1
H

]
. Set a =

√
21−K and b =

√
K(K−1)

2KΓ(2−K) . Define the
processes

BHK
ε =

{
2
ε

∫ T

0
KHK(t, s) sin

(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
,

XH,K
ε =

{2
ε

∫ ∞
0

(1− e−stH )s−
1+K

2 cos
(
θN 2s

ε2

)
ds, t ∈ [0, T ]

}
,

where KHK(t, s) is the kernel defined in (1.3.2). Then, {Y H
ε (t) = aBHK

ε (t) +
bXH,K

ε (t), t ∈ [0, T ]} weakly converges in C([0, T ]) to a bifractional Brownian mo-
tion.
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Chapter 2

Models for bacteriophage systems

This chapter is devoted to the study of a model of bacteriophage treatments for
bacterial infections. This problem has been brought to our attention by the Molec-
ular Biology Group of the Department of Genetics and Microbiology at the Uni-
versitat Autònoma de Barcelona.

It was first studied from a deterministic point of view in a joint work with
professor Àngel Calsina, the results of which form the research work [10], and
later it was studied in a noisy context together with professors Xavier Bardina,
Carles Rovira and Samy Tindel in a work that can be found in [5].

We will begin the chapter by introducing some general notions on the problem
and a basic model. Then we will study the deterministic case, with n strains of
bacteriophages, and finally we will proceed to study a stochastic model.

2.1 Introduction
Lately Bacteriophage therapies are attracting the attention of several scientific
studies. They can be seen as a new and powerful tool to treat bacterial infections or
to prevent them in food, animals or even humans. Generally speaking, they consist
in inoculating a (benign) virus in order to kill the bacteria known to be responsible
for a certain disease. This kind of treatment is known since the beginning of the
20th century, but has been in disuse in the Western world, erased by antibiotic
therapies. However, a small activity in this domain has survived in the USSR,
and it is now re-emerging (at least at an experimental level). Among the reasons
for this re-emergance we can find the progressive slowdown in antibiotic efficiency
(antibiotic resistance). Reported recent experiments include animal diseases like
hemorrhagic septicemia in cattle or atrophic rhinitis in swine, and a need for
suitable mathematical models is now expressed by the community.

Let us be a little more specific about the (lytic) bacteriophage mechanism:
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2.1 Introduction

after attachment, the virus’ genetic material penetrates into the bacteria and uses
the host’s replication mechanism to self-replicate. Once this is done, the bacteria
is completely spoiled while new viruses are released, ready to attack other bacteria.
It should be noticed at this point that among the advantages expected from the
therapy is the fact that it focuses on one specific bacteria, while antibiotics also
attack autochthonous microbiota. Generally speaking, it is also believed that
viruses are likely to adapt themselves to mutations of their host bacteria.

At a mathematical level, whenever the mobility of the different biological actors
is high enough, bacteriophage systems can be modeled by a kind of predator-
prey equation. Namely, set S(t) (resp. Q(t)) for the non-infected bacteria (resp.
bacteriophages) concentration at time t. Then a model for the evolution of the
couple (S,Q) is as follows dS(t) = [α− kQ(t)]S(t)dt

dQ(t) =
[
d−mQ(t)− kQ(t)S(t) + k b e−µζQ(t− ζ)S(t− ζ)

]
dt,

(2.1.1)

where α is the reproducing rate of the bacteria and k is the adsorption rate. In
equation (2.1.1), d also stands for the quantity of bacteriophages inoculated per
unit of time, m is their death rate, we denote by b the number of bacteriophages
which are released after replication within the bacteria cell, sometimes known as
burst size, ζ is the delay necessary to the reproduction of bacteriophages (called
latency time) and the coefficient e−µζ represents an attenuation in the release of
bacteriophages (given by the expected number of bacteria cell’s deaths during
the latency time, where µ is the bacteria’s death rate). A given initial condition
{S0(τ), Q0(τ);−ζ ≤ τ ≤ 0} is also specified.

Several models describing phages dynamics have already been considered in
the literature (see, for instance [15, 34, 37, 41, 52]), many elaborated variants
being introduced for instance in [42, 46]. To the best of our knowledge, none of
the articles mentioned above contemplates the possibility of a continuous injection
of phages into the system (represented by us by the constant d in (2.1.1)). This
variant corresponds to the practical problem we are starting from, which has been
brought to our attention by the Molecular Biology Group of the Department of
Genetics and Microbiology at Universitat Autònoma de Barcelona. This situation
corresponds to a treatment for cattle against Salmonella1, for which phages are
inoculated through food, with an approximate constant rate d.

1We refer to [16] for a preliminary study on this topic lead at Universitat Autònoma de
Barcelona, and to the PhD theses [4] and [47] where the bacteriophages have been characterized.
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Chapter 2. Models for bacteriophage systems

2.2 Deterministic model. Equilibria and stabil-
ity.

In this section we will proceed to study a generalization of the deterministic model
(2.1.1) introduced before, where we will consider n different strains of phages,
namely

Ṡ(t) =
(
α−

n∑
i=1

kiQi(t)
)
S(t)

Q̇i(t) = di −miQi(t)− kiQi(t)S(t) + ki bi e
−µζiQ(t− ζi)S(t− ζi),

(2.2.1)

for i = 1, . . . , n, where ki,mi, bi, ζi and Qi(t) are, respectively, the adsorption rate,
mortality, burst size, latency time and concentration at time t of the i-th strain
of bacteriophages. The constant di also stands for the quantity of bacteriophages
inoculated per unit of time of the i-th strain of bacteriophages.

We shall start studying the positivity and existence of solutions, making use
of the well-known theorems of existence for delay differential equations. Then we
will study the equilibria system (2.2.1) may have depending on certain relation of
the parameters. Once we know about the equilibria we will proceed to study their
stability. To make this study simpler, we will first suppose that ζi = 0, i = 1, . . . , n,
i.e., converting system (2.2.1) to an ordinary differential equation, and then we will
use some bifurcation results to obtain some knowledge on the general case. Finally,
we will proceed to a deeper study of some particular cases which are easier to treat.

2.2.1 Global existence and positivity of solutions
Before any study of the behavior of solutions of (2.2.1) one must ensure their
existence and positivity for all positive time or, in other words, that the solutions
will not lose their biological meaning. Let us first prove that the (local) solutions
will remain positive on their maximal interval of existence. This fact will be used
later to prove global existence.

Proposition 2.2.1 (Positivity). Let us assume that the initial condition satisfies S(t) = S0(t) ≥ 0, t ∈ [−ζ, 0] with ζ = max
i=1...n

ζi,

Qi(t) = Q0
i (t) ≥ 0, t ∈ [−ζi, 0].

(2.2.2)

Then the solution is such that S(t) ≥ 0, Qi(t) ≥ 0 for all t in the interval of
existence and i = 1, . . . , n.

Proof. The first equation in (2.2.1) implies the positivity of S(t). To show the
positivity of Qi(t), notice that Q′i(0) is positive when Qi(0) = 0 (di is positive by
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2.2 Deterministic model. Equilibria and stability.

hypothesis) so there exists a positive ε such that Qi(t) > 0 for t ∈ (0, ε) (this is
clear if Qi(0) > 0, by continuity). This fact implies the positivity of Qi(t) for all
t > 0 (in the interval of existence). Indeed, if Qi(t) was not positive, then there
would be some positive time such that Qi vanishes. Let t0 be the minimum of such
times. By continuity, Qi(t0) = 0 and then Q′i(t0) is positive because of the non-
negativity of S and Qi until time t0 and hence of Li(t0), leading to a contradiction
since Qi(t) is positive for t < t0.

Next we will prove the existence and uniqueness of solution of the initial value
problem for (2.2.1), using the standard results on local existence, uniqueness and
continuation of solutions for delay differential equations (see [25] or [31] for in-
stance), and Gronwall’s Lemma.
Theorem 2.2.2 (Global existence of solutions). For all initial condition like in
(2.2.2) there exists a unique solution of (2.2.1), which is defined for all positive
time.
Proof. Since the right hand side of (2.2.1) is of the polynomial type we have local
existence and uniqueness. Then, there only rests to prove the boundedness of the
solution for all positive time in order to prove global existence.

Since S ′(t) ≤ αS(t) (here we use the positivity result) we clearly have S(t) ≤
S0(0)eαt, t > 0. In order to show the boundedness of Qi(t) for i = 1, . . . , n we use
Proposition 2.2.1 to obtain

Q′i(t) ≤ di + kibie
−µζiS(t− ζi)Qi(t− ζi).

Notice that when t ∈ [0, ζi], S(t− ζi) = S0(t− ζi) ≤ S0(t− ζi)eαt and when t > ζi,
S(t − ζi) ≤ S0(0)eα(t−ζi). Then, defining S̃ := max{S0(0)e−αζi ,maxt∈[−ζ,0] S

0(t)},
we see that for all t > 0

Q′i(t) ≤ di + kibie
−µζiS̃eαtQi(t− Ti) =: di + Cie

αtQi(t− ζi).
Integrating we have

Qi(t) ≤ Q0
i (0) + dit+ Ci

∫ t

0
eαsQi(s− ζi) ds.

Now changing variables and using the positiveness of the integrand we obtain

Qi(t) ≤ Q0
i (0) + dit+ Ci

∫ t−ζi

−ζi
eαsQi(s) ds ≤ Q0

i (0) + dit+ Ci

∫ t

−ζi
eαsQi(s) ds.

The hypotheses of Gronwall’s Lemma hold for all interval [0, b], b > 0, with α(t) =
Q0
i (0) + dit, β(s) = Cie

αs and u(t) = Qi(t) (see [31]). Moreover, α(t) is non-
decreasing, and then

Qi(t) ≤ (Q0
i (0) + dit) exp

(∫ t

−ζi
Cie

αs ds
)
,

proving the boundedness for all positive time and hence the global existence.
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Chapter 2. Models for bacteriophage systems

2.2.2 Equilibria
Our first step in the study of the model (2.2.1) will consist in the search of equilib-
ria, having in mind that for the sake of biological meaning we want steady states
where the population densities of virus and bacteria are non-negative. For this,
one must solve the system of equations

0 =
(
α−

n∑
i=1

kiQi

)
S

0 = di −miQi − kiQiS + kibie
−µζiQiS , i = 1, . . . , n.

(2.2.3)

On the one hand, for any value of the parameters, there is only one equilibrium
without bacteria, say E0 (if S = 0, then Qi = di

mi
). On the other hand, if there is

some coexistence equilibrium, say Ec = (Ŝ, Q̂1, . . . , Q̂n) with Ŝ > 0, it must satisfy
the following equations,

α =
n∑
i=1

kiQ̂i (2.2.4)

Q̂i = di

mi − ki (bie−µζi − 1) Ŝ
, i = 1, . . . , n, (2.2.5)

and, therefore, placing (2.2.5) in (2.2.4) one obtains the following condition for the
existence of Ŝ,

F (Ŝ) :=
n∑
i=1

kiQ̂i =
n∑
i=1

kidi

mi − ki (bie−µζi − 1) Ŝ
= α. (2.2.6)

Now, we look for solutions of (2.2.6) such that Ŝ, Q̂i > 0 and we obtain the
following result.

Theorem 2.2.3 (Equilibria). If ∑n
i=1

kidi
mi
≥ α the system (2.2.1) has a unique

steady state, E0 = (0, d1
m1
, . . . , dn

mn
). When ∑n

i=1
kidi
mi

< α then model has two equi-
libria, E0 and the coexistence equilibrium Ec = (Ŝ, Q̂1, . . . , Q̂n), where Ŝ is the
unique solution of

F (S) =
n∑
i=1

kidi
mi − ki (bie−µζi − 1)S = α, S ∈ (0, S∗) ,

with S∗ := mini=1...n
mi

ki(bie−µζi−1) , and Q̂i, i = 1, . . . , n, are given by

Q̂i = di

mi − ki (bie−µζi − 1) Ŝ
, i = 1, . . . , n.
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Proof. We have already shown the existence of E0 for any value of the parameters.
Furthermore, we know that there are coexistence equilibria if and only if there are
solutions of (2.2.6) such that Ŝ, Q̂i > 0.

From the condition of positivity of Q̂i and (2.2.5) we have

Ŝ <
mi

ki (bie−µζi − 1) for all i = 1 . . . n

and therefore we must have Ŝ ∈ (0, S∗). Now, taking the derivative of F

F ′(S) =
n∑
i=1

k2
i di

(
bie
−µζi − 1

)
[mi − ki(bie−µζi − 1)S]2

> 0

we observe that, for S ∈ (0, S∗), F is a positive function, strictly increasing
with infinite limit in S∗. Therefore, if F (0) = ∑n

i=1
kidi
mi
≥ α there is no posi-

tive solution of F (S) = α and there is one and only one positive solution when
F (0) = ∑n

i=1
kidi
mi

< α. This gives the claim.

2.2.3 Local study, ζi = 0
In this section and the next one we will study the behavior of the solution near
equilibria. First of all we will study the no delayed case (ζi = 0) and making use
of the results when ζi = 0 we will proceed to study the more general (and difficult)
case with delays in the following section.

So in this section we will let ζi = 0 for i = 1, . . . , n and we can write system
(2.2.1) as follows


S ′(t) =

(
α−

n∑
i=1

kiQi(t)
)
S(t)

Q′i(t) = di −miQi(t)− kiQi(t)S(t) + kibiQi(t)S(t), i = 1, . . . , n.
(2.2.7)

As shown in Theorem 2.2.3, there exists a unique equilibrium E0 when ∑n
i=1

kidi
mi
≥

α and two equilibria E0 and Ec when ∑n
i=1

kidi
mi

< α. The differential matrix of
(2.2.7) is

A :=


α−∑n

i=1 kiQi −k1S . . . −knS
k1Q1(b1 − 1) −m1 + (b1 − 1)k1S . . . 0

... ... . . . ...
knQn(bn − 1) 0 . . . −mn + (bn − 1)knS

 .

The next result states when the bacteria-free equilibrium E0 is locally stable.
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Proposition 2.2.4. The bacteria-free equilibrium E0 = (0, d1
m1
, . . . , dn

mn
) of system

(2.2.7) is asymptotically stable when ∑n
i=1

kidi
mi

> α and unstable when ∑n
i=1

kidi
mi

<
α.

Proof. The differential matrix of system (2.2.7) in E0 is

A0 :=



α−∑n
i=1 ki

di
mi

0 . . . 0

k1
d1

m1
(b− 1) −m1 . . . 0
... ... . . . ...

kn
dn
mn

(b− 1) 0 . . . −mn


.

Then, the eigenvalues are λ0 = α − ∑n
i=1 ki

di
mi

and λi = −mi for i = 1, . . . , n.
Clearly λi is negative for i = 1, . . . , n. Moreover λ0 is positive for ∑n

i=1
kidi
mi

< α,
giving the instability of E0, and λ0 is negative for ∑n

i=1
kidi
mi

< α, which in turn
implies that E0 is asymptotically stable for ∑n

i=1
kidi
mi

> α.

In particular, the previous result shows the instability of E0 when the coexis-
tence equilibrium exists. The following result states the stability of Ec whenever
it exists, only for n = 1, 2 and 3, that is, considering no more than three different
varieties of phages. Along the proof we will extensively use a well-known criterion
due to Routh-Hurwitz which can be found, for example, in [23]. We reproduce it
here for sake of clarity.

Theorem 2.2.5 (Routh-Hurwitz Criterion). Given an equation with real coeffi-
cients of the form p(λ) = a0λ

n + a1λ
n−1 + . . . + an−1λ + an = 0, a > 0, consider

the following n× n matrix

H :=



a1 a3 a5 . . . 0
a0 a2 a4 . . . 0
0 a1 a3 . . . 0
0 a0 a2 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . an


where aj = 0 for j > n. Then all the roots of p(λ) have negative real part if and
only if all the principal minors of H are positive, i.e.,
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2.2 Deterministic model. Equilibria and stability.

∆1 = a1 > 0, ∆2 =
∣∣∣∣∣a1 a3
a0 a2

∣∣∣∣∣ > 0, . . . ,∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . 0
a0 a2 a4 . . . 0
0 a1 a3 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . an

∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Proposition 2.2.6. Whenever the equilibrium Ec of system (2.2.7) exists (that is,
when ∑n

i=1
kidi
mi

> α) it would be asymptotically stable, for n = 1, 2 and 3.

Proof. From the equations that define Ec we get the equalities α−∑n
i=1 kiQ̂i = 0

and −mi+ki(bi−1)Ŝ = −di/Q̂i. Using these equalities we get that the differential
matrix of system (2.2.7) in Ec is

A :=


0 −k1Ŝ . . . −knŜ

k1Q̂1(b1 − 1) −d1/Q̂1 . . . 0
... ... . . . ...

knQ̂n(bn − 1) 0 . . . −dn/Q̂n

 ,

and therefore the characteristic polynomial is

p(λ) = (−1)n+1λ
n∏
i=1

(
λ+ di

Q̂i

)
−

n∑
i=1

k2
i (bi − 1)Q̂iŜ

∏
j 6=i

(
λ+ dj

Q̂j

)
(−1)n

= (−1)n+1
[
λ

n∏
i=1

(λ+Di) +
n∑
i=1

Ki

∏
j 6=i

(λ+Dj)
]
,

where Ki := k2
i (bi− 1)Q̂iŜ and Di := di/Q̂i. We note that Ki and Di are positive.

We will use the Routh-Hurwitz Criterion to show that all the eigenvalues of the
characteristic polynomial are negative and, therefore, Ec is asymptotically stable.

• Letting n = 1 we have

p(λ) = λ(λ+D) +K = λ2 +Dλ+K,

and the associated Routh-Hurwitz matrix is

H =
(
D 0
1 K

)
.

The conditions of the Routh-Hurwitz Criterion are

(i). a1 = D > 0
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(ii). det(H) = DK > 0,

which are clearly fulfilled for any values of the parameters. Then, all the eigenval-
ues of the characteristic polynomial are negative.

• Letting n = 2 we have

p(λ) = −
[
λ(λ+D1)(λ+D2) +K1(λ+D2) +K2(λ+D1)

]
= −λ3 − (D1 +D2)λ2 − (D1D2 +K1 +K2)λ− (K1D2 +K2D1),

and the associated Routh-Hurwitz matrix is

H =

D1 +D2 K1D2 +K2D1 0
1 D1D2 +K1 +K2 0
0 D1 +D2 K1D2 +K2D1

 .
Letting a0 = 1, a1 = D1 +D2, a2 = D1D2 +K1 +K2 and a3 = K1D2 +K2D1 the
conditions of the Routh-Hurwitz Criterion are

(i). a1 = D1 +D2 > 0

(ii). a1a2 − a0a3 = (D1 +D2)(D1D2 +K1 +K2)− (K1D2 +K2D1) > 0

(iii). det(H) = (a1a2 − a0a3)a3 > 0 .

Clearly ai > 0 for i = 0, . . . , 3. Then, condition (i) is satisfied, and condition (iii)
would be satisfied if condition (ii) is checked, which in turn can be checked as
follows

a1a2 − a0a3 = (D1 +D2)(D1D2 +K1 +K2)− (K1D2 +K2D1)
= D1(D1D2 +K1) +D2(D1D2 +K2) > 0.

• Letting n = 3 we have

p(λ) = λ(λ+D1)(λ+D2)(λ+D3) +K1(λ+D2)(λ+D3)
+K2(λ+D1)(λ+D3) +K3(λ+D1)(λ+D2)

= λ4 + (D1 +D2 +D3)λ3 − (D1D2 +D1D3 +D2D3 +K1 +K2 +K3)λ2

+ (K1D2 +K1D3 +K2D1 +K2D3 +K3D1 +K3D2 +D1D2D3)λ
+ (K1D2D3 +K2D1D3 +K3D1D2).
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Letting a0 = 1, a1 = D1 +D2 +D3, a2 = D1D2 +D1D3 +D2D3 +K1 +K2 +K3,
a3 = K1D2 +K1D3 +K2D1 +K2D3 +K3D1 +K3D2 +D1D2D3, a4 = K1D2D3 +
K2D1D3 +K3D1D2, aj = 0, j > 4 the associated Routh-Hurwitz matrix is

H =


a1 a3 0 0
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4

 .
The conditions of the Routh-Hurwitz Criterion are

(i). a1 = D1 +D2 +D3 > 0

(ii). a1a2 − a0a3 = a1a2 − a3 > 0

(iii). ∆3 := a1a2a3 − a0a
2
3 − a2

1a4 = (a1a2 − a3)a3 − a2
1a4 > 0

(iv). det(H) = ∆3a4 > 0.

Again, we have ai > 0 for i = 0, . . . , 4 and obviously condition (i) is satisfied.
Condition (iv) would be satisfied if condition (iii) is checked. Condition (ii) can
be checked as follows

a1a2 − a3 = (D1 +D2 +D3)(D1D2 +D1D3 +D2D3 +K1 +K2 +K3)
− (K1D2 +K1D3 +K2D1 +K2D3 +K3D1 +K3D2 +D1D2D3)

= D1(D1D2 +D1D3) + (D2 +D3)(D1D2 +D1D3 +D2D3)
+K1D1 +K2D2 +K3D3 > 0,

and now, after some tedious computations, condition (iii) is checked to be

(a1a2 − a3)a3 − a2
1a4 =

= K1(D2 +D3)
(
D1(D2

2 +D2
3 +D1D2) +K1D1 +K2D2 +K3D3

)
+K1D

2
1D

2
3

+K2(D1 +D3)
(
D2(D2

1 +D2
3 +D1D2) +K1D1 +K2D2 +K3D3

)
+K2D

2
2D

2
3

+K3(D1 +D2)
(
D3(D2

1 +D2
2 +D1D3) +K1D1 +K2D2 +K3D3

)
+K3D

2
2D

2
3

+D1D2D3(a1a2 − a3) > 0,

giving the claim

This result, and the computations done to demonstrate it, justifies the following
conjecture.

Conjecture 2.2.1. Whenever the equilibrium Ec of system (2.2.7) exists (that is,
when ∑n

i=1
kidi
mi

> α) it would be asymptotically stable.

30



Chapter 2. Models for bacteriophage systems

2.2.4 Local study, general case
Stability for the bacteria-free equilibrium

First of all we shall linearize system (2.2.1) near the equilibrium E0. Assuming
S(t) = 0 + s(t) and Qi(t) = di/mi + qi(t) we obtain

s′(t) =
(
α−

n∑
i=1

ki

(
di
mi

+ qi(t)
))

s(t)

∼=
(
α−

n∑
i=1

ki
di
mi

)
s(t)

and

q′i(t) = di −mi

(
di
mi

+ qi(t)
)
− ki

(
di
mi

+ qi(t)
)
s(t)

+ kibie
−µζi

(
di
mi

+ qi(t− ζi)
)
s(t− ζi)

∼= −miqi(t)− ki
di
mi

s(t) + kibie
−µζi di

mi

s(t− ζi)

for i = 1, . . . , n.
Supposing exponential solutions of the from s(t) = eλts and qi(t) = eλtqi we

get that

λeλts =
(
α−

n∑
i=1

ki
di
mi

)
eλts =⇒

(
λ−

(
α−

n∑
i=1

ki
di
mi

))
s = 0

λeλtqi = −mie
λtqi + ki

di
mi

(bie−(µ+λ)ζi − 1)eλts

=⇒ (λ+mi)qi − ki
di
mi

(bie−(µ+λ)ζi − 1)s = 0,

so we can write the characteristic equation as follows

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ−
(
α−∑n

i=1 ki
di
mi

)
0 · · · 0

−k1
d1
m1

(b1e
−(µ+λ)ζ1 − 1) λ+m1 · · · 0
... ... . . . ...

−kn dn
mn

(bne−(µ+λ)ζn − 1) 0 · · · λ+mn

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Therefore the eigenvalues of the linearized system near E0 are λ0 = α −∑n
i=1 ki

di
mi

, λ1 = −m1, . . . , λn = −mn and we can state the same result we have
obtained for the non-delayed case.
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2.2 Deterministic model. Equilibria and stability.

Proposition 2.2.7. The bacteria-free equilibrium E0 = (0, d1
m1
, . . . , dn

mn
) of system

(2.2.7) is asymptotically stable when ∑n
i=1

kidi
mi

> α and unstable when ∑n
i=1

kidi
mi

<
α.

Theorem 2.2.8 (E0 stability). Equilibrium E0 = (0, d1
m1
, . . . , dn

mn
) of system (2.2.1)

is stable for ∑n
i=1

kidi
mi

> α (moreover, it is an attractor node and therefore asymp-
totically stable) and it is unstable (a saddle point with an unstable manifold of
dimension 1) for ∑n

i=1
kidi
mi

< α. In particular if there exists the coexistence equi-
librium Ec then E0 is unstable.

Bifurcations and stability for the coexistence equilibrium

In this section we try to draw some conclusions about the stability of the co-
existence equilibrium. Note that since we assume the existence of Ec then the
equilibrium E0 is unstable.

Let us proceed as in the previous section. First of all we linearize system
(2.2.1) near the equilibrium Ec = (Ŝ, Q̂1, . . . , Q̂n). We recall that Ec exists if and
only if

(
α−∑n

i=1 kiQ̂i

)
Ŝ = 0 and di −miQ̂i − kiQ̂iŜ + kibie

−µTiQ̂iŜ = 0, so we
will assume this two conditions hold along this section. Let S(t) = Ŝ + s(t) and
Qi(t) = Q̂i + qi(t) and we obtain

s′(t) =
(
α−

n∑
i=1

ki
(
Q̂i + qi(t)

))(
Ŝ + s(t)

)
∼= αs(t)−

n∑
i=1

ki
(
Q̂is(t) + Ŝqi(t)

)
and

q′i(t) = di −mi

(
Q̂i + qi(t)

)
− ki

(
Q̂i + qi(t)

)(
Ŝ + s(t)

)
+ kibie

−µζi
(
Q̂i + qi(t− ζi)

)(
Ŝ + s(t− ζi)

)
∼= −miqi(t)− ki

(
Q̂is(t) + Ŝqi(t)

)
+ kibie

−µζi
(
Q̂is(t− ζi) + Ŝqi(t− ζi)

)
for i = 1, . . . , n.

Supposing exponential solutions of the from s(t) = eλts and qi(t) = eλtqi we
get that

λeλts = αeλts−
n∑
i=1

kie
λt(Q̂is+ Ŝqi)

=⇒ (λ− α)s = −
n∑
i=1

ki(Q̂is+ Ŝqi)
(2.2.8)
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and

λeλtqi = −mie
λtqi + ki(bie−(µ+λ)ζi − 1)eλt(Q̂is+ Ŝqi)

=⇒ (λ+mi)qi = hi(λ)(Q̂is+ Ŝqi)
(2.2.8i)

for i = 1, . . . , n, where we have introduced the notation hi(λ) := ki(bie−(µ+λ)ζi−1).
If we sum equations (2.2.8i) multiplied by ki

hi(λ) , i = 1, . . . , n, we see that

n∑
i=1

ki(λ+mi)qi
hi(λ) =

n∑
i=1

ki(Q̂is+ Ŝqi) (2.2.9)

and we can replace (2.2.9) in (2.2.8) to obtain

(λ− α)s = −
n∑
i=1

ki(λ+mi)qi
hi(λ) . (2.2.10)

On the other hand, from (2.2.8i) we have

qi = hi(λ)Q̂is

(λ+mi)− hi(λ)Ŝ
and we get from (2.2.10) that

λ− α = −
n∑
i=1

ki(λ+mi)Q̂i

(λ+mi)− hi(λ)Ŝ
.

Finally, using expression (2.2.5) for Q̂i we have Q̂i = di
mi−hi(0)Ŝ which leads us

to
λ− α = −

n∑
i=1

ki(λ+mi)di
((λ+mi)− hi(λ)Ŝ)(mi − hi(0)Ŝ)

, (2.2.11)

and with the notation Hi(λ, Ŝ) := λ+mi − hi(λ)Ŝ we obtain

λ− α = −
n∑
i=1

kidiHi(λ, 0)
Hi(λ, Ŝ)Hi(0, Ŝ)

. (2.2.11′)

We have obtained a form of the characteristic equation for system (2.2.1). We
note that this is a transcendental equation (we recall that hi(λ) contains the term
eλζi) which makes its study very difficult. Therefore we shall not look for the zeros
of this equation, i.e., the eigenvalues of the linearized system. Instead, we shall
try to use some previous results to extract some information on the stability (or
instability) of Ec through bifurcation theory.
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2.2 Deterministic model. Equilibria and stability.

A bifurcation occurs when a change made to the parameter values (the bifur-
cation parameters) of a system causes a change in its behavior (like the stabil-
ity of the equilibria). We have already seen a change in the stability of E0: if
we move the parameter α we can observe a change in the stability of E0

(
when

α < F (0) = ∑n
i=1 ki

di
mi

E0 is stable and when α > F (0) E0 it is unstable
)
. So we

know there is a bifurcation for α = F (0) = ∑n
i=1 ki

di
mi

.
This is called a transcritical bifurcation, which occurs when two different equi-

librium curves intersect at the same point. In our case we have the equilibrium
E0, which is fixed with respect to α, and Ec := Ec(α) = (Ŝ(α), Q̂1(α), . . . , Q̂n(α))
that intersect when α = F (0). Indeed, recall that in Theorem 2.2.3 we used the
function F (S) defined by (2.2.6) and looked for solutions Ŝ of F (S) = α. We
proved that there exists a unique solution Ŝ such that Q̂i > 0, i = 1, . . . , n, if and
only if α > F (0). It is also easy to see that when α = F (0) we have Ŝ = 0 and
Ec = E0. Moreover, when α < F (0) there exists a unique solution Ŝ of equation
F (S) = α such that Q̂i > 0, i = 1, . . . , n, and this solution Ŝ is negative. There-
fore we have an equilibrium Ec(α) for all α > 0, which coincides with E0 when
α = F (0) = ∑n

i=1 ki
di
mi

.
Now that we have identified the bifurcation we can extract some conclusions.

We know that the equilibrium E0 changes its stability for α = F (0). We can use
a well known result, that can be found, for example, in [30] pages 26–27, which
tells us that, locally, the two equilibria involved in the transcritical bifurcation
interchange their stability, leading us to the following result.

Proposition 2.2.9. There exists an ε > 0 such that the coexistence equilibrium
Ec of system (2.2.1) is stable for α ∈ (∑n

i=1 ki
di
mi
,
∑n
i=1 ki

di
mi

+ ε).

Remark. We can also conclude that Ec is unstable when

α ∈ (
n∑
i=1

ki
di
mi

− ε1,
n∑
i=1

ki
di
mi

)

for some ε1 > 0, but we are not interested in this case because Ec has not biological
meaning.

Another kind of bifurcation we can expect to find is the Hopf bifurcation, which
happens when a fixed point loses its stability when a pair of complex conjugate
eigenvalues of the characteristic equation cross the imaginary axis. It usually
leads to the appearance of a small-amplitude limit cycle. This type of bifurcation
is commonly found in delayed systems when increasing the delay time.

Taking n = 2, some numerical computations show that, for some suitable
parameter values, the equilibrium Ec loses its stability when the value of the delays
ζ1, ζ2 increase, as the pair of complex eigenvalues of the characteristic equation
(2.2.11′) cross the imaginary axis.
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These numerical results seem to indicate that we certainly have a Hopf bifur-
cation, but a more theoretical study should be conducted to have a certain proof.

2.2.5 Particular case: a single virus strain
In this section we will continue the study of the same model, but taking n = 1,
i.e., a single strain of viruses. This case is easier to study because we can find
the explicit form of the equilibrium of coexistence Ec. This allows us to get more
detailed results than in the general case. We begin, however, by re-stating the
results already obtained.

Model and equilibria

In this section we rewrite the system (2.2.1) for n = 1 and find the equilibria.
Although we will not reproduce the results of sections 2.2.1 and 2.2.3 they are still
valid in this case.

The system we will study is

 S ′(t) =
(
α− kQ(t)

)
S(t)

Q′(t) = d−mQ(t)− kQ(t)S(t) + kbe−µζQ(t− ζ)S(t− ζ)
(2.2.12)

where S(t) is the density of healthy bacteria at time t and Q(t) the density of
bacteriophages at time t.

We recall that when studying equilibria of system (2.2.1) we considered equa-
tions (2.2.3). The equivalent of these equations for the case with a single virus
strain is  0 = (α− kQ)S

0 = d−Q
(
m− k(be−µζ − 1)S

)
.

(2.2.13)

As in the general case, we see that the bacteria-free equilibrium E0 = (0,m/d)
exists for all the parameter values, and the conditions of a possible coexistence
equilibrium Ec = (Ŝ, Q̂) are 0 = (α− kQ̂)

0 = d− Q̂
(
m− k(be−µζ − 1)Ŝ

)
,

which can be solved and we obtain Q̂ = α/k and Ŝ = m−kd/α
k(be−µζ−1) . We observe that

Q̂ > 0 and Ŝ > 0 if and only if α > kd
m

(which makes the numerator of Ŝ positive).
Thus, as expected, we obtain the same result as in the general case (Theorem
2.2.3), but now we can explicitly write the equilibrium Ec.
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Theorem 2.2.10 (Equilibria). For kd
m
≥ α the model (2.2.12) has a unique equilib-

rium E0 = (0, d
m

). When kd
m
< α there exists two equilibria, E0 and the coexistence

equilibrium Ec = (Ŝ, Q̂) =
(

m−kd/α
k(be−µζ−1) ,

α
k

)
.

Asymptotic behavior of the solutions for the case without delay

In what follows we show some results concerning the boundedness of the solutions
of system (2.2.12) assuming latency time ζ negligible, i.e., we will consider the
following system

 S ′(t) =
(
α− kQ(t)

)
S(t)

Q′(t) = d−mQ(t) + k(b− 1)Q(t)S(t)
(2.2.14)

These results tell us that there are no solutions that ‘escape’ to infinity, or in
biological terms that the administration of phages controls the population of bac-
teria (it does not allow their population to increase indefinitely as it would happen
without phages). First of all we will study the case where there exists the coexis-
tence equilibrium and finally we will obtain a result in the case where there is no
coexistence equilibrium. This last result tells us that the bacteria-free equilibrium
is a global attractor, i.e., the population of bacteria will eventually extinguish.

Remark. Equations (2.2.14) define a vector field on R+ × R+. We will denote
the vector associated to a point (S,Q) by (S ′, Q′), where S ′ = (α − kQ)S and
Q′ = d−mQ+ k(b− 1)QS

Theorem 2.2.11 (Boundedness). Let ζ = 0 and suppose that kd
m
< α, i.e., there

exists the coexistence equilibrium Ec for system (2.2.14). Then, given any initial
condition (S0, Q0) such that S0 ≥ 0 and Q0 ≥ 0, the solution of system (2.2.14) is
bounded.

Proof. First of all we recall that, under the previous conditions, there exist two
equilibria, say the bacteria-free equilibrium E0 = (0, Q∗) with Q∗ = d/m and the
coexistence equilibrium Ec = (Sc, Qc) where Sc = m−kd/α

k(b−1) and Qc = α/k. We can
observe that Qc > Q∗ due to the condition of existence of Ec.

Since S ′ = 0 over the axis {S = 0, Q > 0} we know that it is invariant.
Moreover, for an initial condition (0, Q0) with Q0 > d/m we have Q′ < 0 and if
Q0 < d/m then Q′ > 0. Therefore every solution that starts on this axis will get
closer to the bacteria-free equilibrium as we increase time, giving its boundedness.

Let us now look for the vertical and horizontal isoclines.
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0 = (α− kQ)S ⇒ Q = α

k
, (2.2.15)

0 = (d−Q(m− k(b− 1)S)) ⇒ Q = d

m− k(b− 1)S , (2.2.16)

⇒ S = m− d/Q
k(b− 1) . (2.2.17)

Figure 2.1: Field and isoclines

We observe that the coexistence equilibrium is the intersection of the two iso-
clines and that (2.2.16) have a vertical asymptote when Sa = m

k(b−1) (which is
greater than Sc). Moreover when S > Sa we have Q < 0 and therefore we will
only study equations (2.2.16) and (2.2.17) when S < Sa.

The isoclines divide the first quadrant into four sectors and we will label them
as follows: A will be the region delimited by the two isoclines and the axis S = 0,
with Q > α/k; B will be the region that is also delimited by the two isoclines
and the axis S = 0, but with Q < α/k; C will be the region delimited by the two
isoclines and both axes; and D will be the region that delimits only with the two
isoclines.
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2.2 Deterministic model. Equilibria and stability.

Now we will observe the direction of the field. Since S > 0, the sign of S only
depends on α − kQ. Hence S ′ will be negative when Q > α/k and positive when
0 ≤ Q < α/k. On the other hand, for 0 ≤ S < Sa we have

Q >
d

m− k(b− 1)S ,

which gives Q′ < 0 and when S > Sa (and Q > 0) we have Q′ > 0.
Therefore the solutions of our system cannot go to infinity on region A. Indeed,

A is only unbounded from above and Q′ is negative on A. B is bounded and the
solutions must also remain bounded on this region.

Let us now focus on proving that solutions cannot go to infinity on region C.
This region is only unbounded from the right, and we will prove that any solution
in C will not ‘escape’ to the right.

Let F (S,Q) be defined by F (S,Q) = Q′/S ′, which describes the slope of the
field at (S,Q). Note that F (S,Q) > 0 for every point in C. Moreover, along the
axis {Q = 0, S > 0} we have Q′ > 0 and F (S,Q) = d

αS
.

We take a point (S∗, Q∗) ∈ C. Consider the point (S∗, 0) and the straight line
containing this point and slope Q′/S ′ = d

αS∗
, which comes defined by r∗ : Q =

d
αS∗

(S − S∗). We will show that a solution containing the point (S∗, Q∗) cannot
cross the straight line r∗, thus proving there is no solution that can escape to
infinity on region C.

To this end it is enough to show that the vector field does not cross r∗ ‘to
the right’, which is equivalent to see that F (S,Q) ≥ d

αS∗
along r∗. Since Q =

d
αS∗

(S − S∗) over r∗ we get

F (S) := F (S,Q)|Q∈r∗ =
d−

(
m− k(b− 1)S

)
d
αS∗

(
S − S∗

)
(
α− k d

αS∗
(S − S∗)

)
S

. (2.2.18)

So we want to prove that F (S) ≥ d
αS∗

for those S such that r∗ is in the region
C. Without loss of generality we can suppose S∗ to be large enough, so we can
take S∗ > Sc in order to ensure that r∗ does not cross the isocline defined by
(2.2.16). Therefore we will show that F (S) ≥ d

αS∗
for those values of S between

S∗ and the point where r∗ intersects the isocline Q = α/k, i.e., Si := S∗ + α2S∗

kd
.

From (2.2.18) we observe that F (S) ≥ d
αS∗

is equivalent to

d(S − S∗)
(
−α−m+ k(b− 1)S + kdS

αS∗

)
αS∗S

(
α− k d

αS∗
(S − S∗)

) ≥ 0.

Since S > S∗ > 0, the sign of this division only depends on the sign of the
expressions −α − m + k(b − 1)S + kdS

αS∗
and α − k d

αS∗
(S − S∗) for S∗ ≤ S ≤ Si.
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The second expression vanishes for S = Si and it is decreasing on S, therefore
it is positive for S∗ ≤ S ≤ Si. On the other hand, we notice that the first
expression is increasing on S and it vanishes when S = S̃ := α2S∗+mαS∗

k(b−1)αS∗+dk . Taking
S∗ ≥ Sc + α

k(b−1) we have S̃ ≤ S∗ and the positiveness of the first expression holds,
proving the boundedness of solution on region C.

It only remains to prove the boundedness of the solution on region D. First of
all notice that the vector field defined by (S ′, Q′) crosses the vertical line {S = Ŝ}
to the left for any Ŝ > Sa, since S ′ < 0 and Q′ > 0 on D. Hence there is no
solution that ‘escapes’ to the right on region D.

To prove that the solutions are bounded from above on region D we take a
point (Ŝ, Q̂) over the vertical line S = Ŝ such that Q̂ > Qc = α/k. We recall that
S ′ < 0 and Q′ > 0 on this point. Let us now consider the straight line r̂ that
contains this point and has slope F (Ŝ, Q̂).

We will proceed as before, proving that the vector field does not cross r̂ up-
wards. In other words, we will see that |F (S,Q)| ≤ |F (Ŝ, Q̂)| for any point (S,Q)
in r̂. To this end it is enough to see that |F (S,Q)| is decreasing on Q and increasing
on S or, since |F (S,Q)| = −F (S,Q), that ∂F

∂Q
> 0 and ∂F

∂S
< 0 where

∂F

∂Q
= −(m− k(b− 1)S)(α− kQ)S + kS(d− (m− k(b− 1)S)Q)

S2(α− kQ)2

= kSd− (m− k(b− 1)S)αS
S2(α− kQ)2 ,

∂F

∂S
= k(b− 1)Q(α− kQ)S − (α− kQ)(d− (m− k(b− 1)S)Q)

S2(α− kQ)2

= −(α− kQ)(d−mQ)
S2(α− kQ)2 .

Since Q > α/k on D, and hence Q > d/m, we have that ∂F
∂S

< 0. It is also easy
to see that ∂F

∂Q
> 0 for any S > Sc, condition which is fulfilled on D. And with

this the prove is complete.

Theorem 2.2.12. Let the coexistence equilibrium Ec exist. Then there exists a
bounded region which is positively invariant and global attractor.

Proof. Let U be the unstable manifold of the bacteria free equilibrium E0. With
the notation used on the previous result, starting from E0 we know that U will
go through region C. Then it will cross the isocline {Q = α/k} and continue on
region D until it crosses the other isocline.

Let E∗ = (S∗, Q∗) be this last point where U intersects the isocline defined
by (2.2.16) and consider the closed region R, which comes delimited by the axis
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{S = 0}, the straight line {Q = Q∗} and the piece of U we just described, that
goes from E0 to E∗. It is clear that this region is positively invariant. Moreover,
like we proved on the previous result, all the solutions will get in region A at some
time, and once on this region they must get inside region R.

Theorem 2.2.13 (Extinction). Let kd
m
≥ α, i.e., there only exists the bacteria free

equilibrium E0 of system (2.2.14). Then, given any initial condition (S0, Q0) such
that S0 ≥ 0 and Q0 ≥ 0, the solution of system (2.2.14) tends to E0.

Proof. First of all notice that, as in Theorem 2.2.11, we have two isoclines defined
by (2.2.15) and (2.2.16). Though in this case, since α/k ≤ d/m, these two isoclines
does not intersect in the first quadrant (otherwise the coexistence equilibrium
would exist).

Figure 2.2: Field and isoclines

Therefore the situation on this case is slightly different since the first quadrant
is divided into three regions only, namely: region A which is delimited by the
isocline defined by (2.2.16) and the {S = 0} axis; region B that limits with the
isocline {Q = α/k} and both axes; and region C, delimited by the two isoclines
and the {S = 0} axis (when kd

m
= α the two isoclines are enough to determine

region C).
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It is easy to see that the direction of the field on regions A, B and C is the
same than the direction on regions A, C and D of theorem 2.2.11, respectively
(see Figure 2.2.5).

Hence solution cannot escape to infinity on region A. Proceeding as we did for
regions C and D in Theorem 2.2.11 it can be seen that solutions are also bounded
on regions B and C respectively.

Moreover, we can observe that solutions will eventually get in region A. Indeed,
solutions on region B, since they cannot escape to infinity nor cross the axes, and
there is no fixed point on B, must then go to region C; similarly, solutions on C
must go to region A since they cannot go to region B. Once they are on region A,
solutions must remain on this region. Moreover, since there no interior equilibrium
on A and Q′ < 0, then all the solutions must tend to the E0 equilibrium.
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2.3 Stochastic model

2.3.1 Introduction
In this section, we will proceed to analyze a system modeling bacteriophage treat-
ments for infections in a noisy context. In the small noise regime, we show that
after a reasonable amount of time the system is close to a bacteria free equilibrium
(which is a relevant biologic information) with high probability. Mathematically
speaking, our study hinges on concentration techniques for delayed stochastic dif-
ferential equations.

First of all, we consider a truncated identity function σ : R+ → R+, such that
σ ∈ C∞, σ(x) = x whenever 0 ≤ x ≤M and σ(x) = M + 1 for x > M + 1, and we
modify our basic model (2.1.1) as follows dS(t) = [α− kσ(Q(t))]S(t)dt

dQ(t) =
[
d−mQ(t)− kσ(Q(t))S(t) + k b e−µζσ(Q(t− ζ))S(t− ζ)

]
dt.
(2.3.1)

Here all the parameters have the same meaning they had in (2.1.1), say, S(t) (resp.
Q(t)) denotes the non-infected bacteria (resp. bacteriophages) concentration at
time t, α is the reproducing rate of the bacteria and k is the adsorption rate. Also,
d stands for the quantity of bacteriophages inoculated per unit of time, m is their
death rate, we denote by b the burst size, ζ the latency time and the coefficient e−µζ
represents an attenuation in the release of bacteriophages (given by the expected
number of bacteria cell’s deaths during the latency time, where µ is the bacteria’s
death rate). A given initial condition {S0(τ), Q0(τ);−ζ ≤ τ ≤ 0} is also specified.

We have considered here the truncation of the identity σ in order to manipulate
bounded coefficients in our equations, but our parameterM can also be interpreted
as a maximal phage attack rate. This feature is also present in [46], where the
author argues that the saturation in the phage attack rate is due to multiple phage
binding to a cell (the likelihood of this event being higher in case of high density
of phages).

Let us point out that these changes with respect to the basic deterministic
model (2.1.1) induce some additional mathematical difficulties, which are handled
in Section 2.3.2. The results, though, are very similar to those of the previous
section. Indeed, given a large enough M we shall see that when kd/m > α there
exists a unique stable steady state E0 = (0, d/m) of system (2.3.1) (in particular
bacteria have been eradicated), and when kd/m < α the point E0 is still an
equilibrium but it becomes unstable, while another coexistence equilibrium Ec =
(
mα
k
−d

α(b−1) ,
α
k
) emerges.

In Section 2.3.2 we will conduct a short study on the existence and stability
of the equilibrium E0 for any given M > 0, but we will not give any result on
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the other equilibrium Ec since we only study results concerning the bacteria-free
equilibrium E0 along this section. The case of a unique stable equilibrium E0 makes
the mathematical analysis easier and it corresponds to the main practical situation
we have in mind, where high doses of phages are usually introduced in the cattle
food. One should also mention a natural generalization of our problem, studied in
the previous section for the model (2.1.1): Consider the action of several varieties
of bacteriophages, which is an option widely considered among practitioners. We
have restricted our analysis here to a simplified situation, and the case with n
strains of bacteriophages is left for future works.

We are also interested in the exponential convergence of the solution of (2.3.1)
towards its equilibrium E0, which has to be worked out carefully.

This being recalled for the deterministic system, the main aim of this section
is to deal with a noisy version of equation (2.3.1). This stochastic modeling can
be justified by several effects:
(a) It is perfectly assumable that noise will appear when collecting data from lab-
oratory tests.
(b) When one wishes to go from in vitro to in vivo modeling, it is commonly
accepted that noisy versions of the differential systems at stake have to be consid-
ered. Indeed, random fluctuations in parameters like temperature or exposure to
sun, rain and other environmental elements yield an important variability in the
coefficients of our system. These fluctuations can be accurately summarized by a
noisy random coefficient.
(c) Some quantities which were assumed to be deterministic in (2.3.1) are in fact
random, such as the latency time ζ (see e.g. [11, 42] for contributions in this di-
rection) and the number of phages b which are released from the lytic mechanism.

These random effects are present in other biological systems, and stochastic
equations have been introduced for example in [19] for HIV dynamics and in [17]
for bacteriophages in marine organisms. In these references it is always assumed
that the noise enters in a bilinear way, which is quite natural in this situation and
ensures positivity of the solution. We shall take up this strategy here, and consider
system (2.3.1) with a small random perturbation of the form


dSε(t) = [α− kσ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)
dQε(t) =

[
d−mQε(t)− kσ(Qε(t))Sε(t) + k b e−µζσ(Qε(t− ζ))Sε(t− ζ)

]
dt

+ εσ(Qε(t)) ◦ dW 2(t),
(2.3.2)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional
Brownian motion defined on a complete probability space (Ω,F ,P) equipped with
the natural filtration (Ft)t≥0 associated to the Wiener process W . Let us add the
following remarks in order to further justify our model (2.3.2).
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(i) Instead of giving a detailed model for all the random effects recalled above,
we have decided to summarize them in a global stochastic term represented by
the Wiener process W . This is obviously a first approximation, where one as-
sumes that a sum of many small effects gives raise to a Gaussian random variable
(as suggested by the central limit theorem). Let us mention however that more
complex situations, were quantities like b are modeled e.g. by Ornstein-Uhlenbeck
processes, might be the object of future extensions of the current work.

More specifically, let us examine the dynamics of S. According to the fact
that this process can be expressed as an exponential, it is reasonable to think that
its relative increments (namely dS(t)/S(t)) are governed by a trend α− kσ(Q(t))
plus a small Gaussian perturbation ε dW (t). We shall thus assume this additive
noise perturbation for the relative increment dS(t)/S(t), which yields the first
equation in (2.3.2). The second relation of our system (2.3.2) can be obtained
thanks to the same kind of hypothesis. Let us recall at this point that similar
interpretations of random effects by an analysis of the relative increments are
implicit in [17, 19]. Furthermore, it should also be mentioned that the curves
t 7→ log(S(t)) and t 7→ log(Q(t)) based on real measurements are compatible
with a stochastic model in which the noise enters in an additive way. We thus
believe that our bilinear noisy model is a natural one, though the exploration of
alternative stochastic modeling strategies as explained in [1, 2, 3] would obviously
be extremely interesting. We defer these developments to a subsequent works.
(ii) We have chosen to work with Stratonovich differentials, denoted by ◦ dW ,
instead of Itô type differentials. This is harmless in terms of mathematical analysis
and we believe this model to be physically accurate, in spite of the fact that it
differs from the Itô type modeling of [17, 19]. Indeed, our starting point here is
the macroscopic system of equations (2.3.1), in which the internal noise due to
individual phage and bacteria fluctuations has already been averaged. Then all
the randomness sources alluded to at points (a)-(b)-(c) above can be considered as
external contributions. We refer to [51, Chapter 5] for a thorough justification of
the fact that Stratonovich type noises are applicable in this kind of situation. Let
us also stress the fact that Stratonovich equations can be seen as limits of smooth
noisy equations, according to the celebrated Wong-Zakai theorem [53].

With these considerations in mind, the main aim of the current section can be
summarized as follows: we wish to prove that for a time τ0 within a reasonable
range, the coupleZε(τ0) := (Sε(τ0), Qε(τ0)) is not too far away from the stable
equilibrium E0 of equation (2.3.1). Note that reasonable range is meant here as a
time which corresponds to the order of both the latency delay and the time when
the immune system of the animal can cope with the remaining bacteria.

As we shall see in the sequel, the treatment of equation (2.3.2) involves the
introduction of some rather technical assumptions on our coefficients. For sake
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of readability, we have thus decided to handle first the following system without
delay:{

dSε(t) = [α− kσ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)
dQε(t) = [d−mQε(t) + k(b− 1)σ(Qε(t))Sε(t)] dt+ εσ(Qε(t)) ◦ dW 2(t),

(2.3.3)
where we notice that the only difference between (2.3.2) and (2.3.3) is that we
have set ζ = 0 in the latter.

The main advantage of equation (2.3.3) lies in the fact that we are able to work
under the following rather simple set of assumptions:

Hypothesis 2.3.1. We will suppose that the coefficients of equation (2.3.3) satisfy:
(i) The initial condition (S0, Q0) of the system lies into the region

R0 :=
[
0, mM − d
k(b− 1)M

]
× [d/m,M ].

(ii) The coefficient γ = kd/m− α is strictly positive and M > d/m.

We shall also use extensively the following notation:

Notation 2.3.2. The letters c, c1, c2, . . . will stand for universal constants, whose
exact value is irrelevant. For a continuous function f , we set

‖f‖∞,I = sup
x∈I
|f(x)|.

Then the previous loose considerations about convergence to E0 can be sum-
marized in the following theorem, which is the main result of this section for our
bacteriophage system without delay.

Theorem 2.3.3. Given positive initial conditions, equation (2.3.3) admits a
unique solution which is almost surely an element of C(R+,R2

+). Assume further-
more Hypothesis 2.3.1, set η = m/2∧γ and consider 3 constants 1 < κ1 < κ2 < κ3.
Then there exists ρ0 such that for any ρ ≤ ρ0 and any interval of time of the form
I = [κ1 ln(c/ρ)/η, κ2 ln(c/ρ)/η], we have

P (‖Zε − E0‖∞,I ≥ 2ρ) ≤ exp
(
−c1ρ

2+λ

ε2

)
, (2.3.4)

where λ is a constant satisfying λ > κ3/η.

Remark 2.3.4. Relation (2.3.4) can be interpreted in the following manner: assume
that we observe a noise with intensity ε. Then the kind of deviation we might
expect from the noisy system (2.3.3) with respect to the equilibrium E0 is of order
ε2ϑ with ϑ = 2η/κ3. This range of deviation happens at a time scale of order
ln(ρ−1)/η.
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A second part of our analysis is then devoted to the more realistic delayed
system (2.3.2), for which we have to impose some additional technical assumptions.

Hypothesis 2.3.5. We will suppose that the coefficients of equation (2.3.3) satisfy
the following conditions, valid for any t ∈ [−ζ, 0]:
(i) The initial condition (S0(t), Q0(t)) of the system lies into the region

R0 := [0,M ]×
[
d

m
,M

]
.

(ii) We have b e−µζQ0(t)S0(t) > d
m
S0(0), and b e−µζ > 1.

(iii) The condition S0(t) < mM−d
kbe−µζM

is satisfied.

With these hypotheses in hand, we obtain a result which is analogous to The-
orem 2.3.3.

Theorem 2.3.6. Equation (2.3.4) still holds for the delayed system (2.3.2), under
Hypothesis 2.3.5.

Theorem 2.3.6 can be seen as the main result of the current section, and de-
serves some additional comments:
(1) We have produced a concentration type result instead of a large deviation
principle for equation (2.3.3), because it seemed more adapted to our biological
context. Indeed, in the current situation one wishes to know how far we might be
from the desired equilibrium at a given fixed time, instead of producing asymptotic
results as in the large deviation theory. At a technical level however, we rely on
large deviation type tools, and in particular on an extensive use of exponential
inequalities for martingales.
(2) Let us compare our result with [17, 19], which deal with closely related systems.
The interesting article [17] is concerned with a predator-prey system similar to
ours, but it assumes that a linearization procedure around equilibrium in the highly
nonlinear situation (2.3.3) can be performed. The analysis relies then heavily on
this unjustified step. As far as [19] is concerned, it roughly shows that if the noise
intensity of the system is high enough, then HIV epidemics can be kept under
control (in terms of exponential stability). This is valuable information, but far
away from our point of view which assumes a low intensity for the noise. We
should mention again the related thorough deterministic studies [42, 24, 32, 46],
as well as the enlightening alternative stochastic modeling [1, 2, 3].
(3) Mathematically speaking, it would certainly be interesting to play with the rich
picture produced by equation (2.3.1) and its perturbed version in terms of stable
and unstable equilibria. We have not delved deeper into this direction because it
did not seem directly relevant to the biological problem we are starting from.
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This section is structured as follows: Section 2.3.2 is devoted to some prelim-
inary considerations (convergence to equilibrium for the deterministic equations,
and then existence and uniqueness results for our stochastic systems). Then we
show our concentration results in Section 2.3.3. Finally, our theoretical results are
illustrated by some numerical simulations presented in Section 2.3.4.

2.3.2 Preliminaries
In this section, we give some basic results concerning our competition system. This
is done in increasing order for the complexity of the system under consideration.

1. Exponential convergence to equilibrium for the deterministic counterpart of
the non delayed equation (2.3.3).

2. Same problem for the deterministic counterpart of the delayed equation
(2.3.2).

3. Existence and uniqueness of the solution of the perturbed system (2.3.2),
starting from the simpler system (2.3.3).

Before going on with our preliminary considerations, let us label the following set
of hypothesis on our coefficient σ as well as the initial conditions.

Hypothesis 2.3.7. The coefficients of our differential systems satisfy the following
assumptions.
(i) The function σ : R+ → R+ is such that σ ∈ C∞, and satisfies σ(x) = x for
0 ≤ x ≤M and σ(x) = M + 1 for x > M + 1. We also assume that 0 ≤ σ′(x) ≤ C
for all x ∈ R+, with a constant C such that C > 1.
(ii) As far as the initial condition is concerned, we assume that it is given as
continuous positive functions {S0(τ), Q0(τ);−ζ ≤ τ ≤ 0}. In case of the non
delayed systems, ζ = 0, it is simply given by two positive constants (S0, Q0).

Analysis of the deterministic non delayed system

This section is devoted to the analysis of the non perturbed system corresponding
to (2.3.3). Namely, we shall consider the following dynamical system{

dS(t) = [α− kσ(Q(t))]S(t)dt
dQ(t) = [d−mQ(t) + k(b− 1)σ(Q(t))S(t)] dt.

(2.3.5)

We will give some sufficient conditions for the existence of a unique stable equilib-
rium E0 and then show exponential convergence to this equilibrium.

Let us start with the basic results we shall need about equilibria of (2.3.5).
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Theorem 2.3.8. If either M + 1 < α
k
or M > α

k
and kd

m
≥ α, system (2.3.5) has a

unique (positive) steady state E0 = (0, d
m

). Moreover, the bacteria-free equilibrium
E0 is asymptotically stable for kd

m
> α and M > d

m
.

Proof. To obtain the equilibria, we have to find the solution to the following equa-
tion  0 = (α− kσ(Q̂))Ŝ

0 = d−mQ̂+ k(b− 1)σ(Q̂)Ŝ,
(2.3.6)

where Ŝ, Q̂ are positive constants.
Owing to the first equation we have either Ŝ = 0 or α− kσ(Q̂) = 0. Ŝ = 0 and

the second equation imply that Q̂ = d
m
, and then we have that the bacteria-free

equilibrium E0 exists for any value of the parameters. In the case M + 1 < α
k
one

can observe that no other equilibrium exists (since α− kσ(Q̂) > 0 for any Q̂).
Taking M > α

k
, α − kσ(Q̂) = 0 if and only if Q̂ = α

k
. Then, using the second

equation in (2.3.6), we have

0 = d−mα

k
+ (b− 1)αŜ =⇒ Ŝ = mα− kd

k(b− 1)α,

which is positive only for α > kd
m
. Otherwise, this last equation gives us another

equilibrium that we shall not consider along the stochastic case. So we have proved
the first part of the result.

For the second part, the Jacobian matrix of system (2.3.5) at E0 is

A0 :=
(
α− kσ( d

m
) 0

k(b− 1)σ( d
m

) −m

)
.

The eigenvalues of this matrix are easily shown to be λ0 = α−kσ( d
m

) and λ1 = −m,
which are negative for kd

m
> α and M > d

m
.

Now we wish to study the rate of convergence towards the E0 equilibrium in
the stable case (i.e., when kd/m > α and M > d

m
). The main result we obtain is

the following one.
Theorem 2.3.9. Under Hypothesis 2.3.1 and 2.3.7, the solution of system (2.3.5)
with initial condition

(S0, Q0) ∈
[
0, mM − d
k(b− 1)M

]
× [d/m,M ]

exponentially converges to the equilibrium E0,

|(S(t), Q(t))− E0| ≤ c e−ηt, with η = γ ∧ m2 , (2.3.7)

where we recall that γ = kd
m
− α > 0.
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Proof. In order to prove our claim, we first have to show that the region R :=
[0, mM−d

k(b−1)M ] × [ d
m
,M ] ⊂ [0,M ]2 is left invariant by equation (2.3.5). Towards this

aim, we can invoke the same method we will use in Proposition 2.3.10, and we let
the reader check the details.

Now, since we have Q(t) ≤ M for all t, we can consider σ(x) = x in equation
(2.3.5). We will consider a version of this system centered at E0 by means of the
change of variables S̃ = S, Q̃ = Q− d/m. This leads to the system


S̃ ′(t) = −γS̃(t)− kQ̃(t)S̃(t)

Q̃′(t) = −mQ̃(t) + kd

m
(b− 1)S̃(t) + k(b− 1)Q̃(t)S̃(t).

(2.3.8)

Notice that, according to our set of assumptions concerning the initial conditions,
we have S̃0 ≥ 0 and Q̃0 ≥ 0. Thus the solution to (2.3.8) will remain positive for
all t > 0 (it can be deduced from R being invariant, or can be proved just like in
Proposition 2.3.14).

Now, from the first equation in (2.3.8), we have that S̃ ′(t) ≤ −γS̃(t). This
implies S̃(t) ≤ S̃0e

−γt, proving that S̃(t) exponentially converges to zero.
Owing to the second equation in (2.3.8) and using positivity properties of the

solution, we also get

Q̃′(t) ≤ −mQ̃(t) + k(b− 1)S̃0e
−γt

(
d

m
+ Q̃(t)

)
.

Finally, the variation of constants method will lead to the stated result, follow-
ing the same steps we will detail later in the proof of Theorem 2.3.12.

Analysis of the deterministic delayed system

We now try to generalize the results of the previous section to our deterministic
delayed system (2.3.1). To this aim, recall that we work under the additional
assumptions 2.3.5.

A first step towards exponential stability is then the invariance of a certain
region under our dynamical system.

Proposition 2.3.10. Under Hypothesis 2.3.1, 2.3.7 and 2.3.5, the region

R :=
[
0, mM − d
kbe−µζM

]
×
[
d

m
,M

]
⊂ [0,M ]2

is left invariant by equation (2.3.1).
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Proof. We separate the analysis of S and Q in two steps.
Step 1: boundedness of S. Since S is obviously positive (along the same lines as
for equation (2.3.11)) and owing to the fact that S ′(t) = (α− kσ(Q(t)))S(t) we
obtain that

S ′(t) ≤ 0 whenever Q(t) > α

k
, and S ′(t) ≥ 0 whenever Q(t) < α

k
.

Furthermore, our system starts from an initial condition Q0(0) ≥ d
m
> α

k
. Thus S

is non increasing as long as Q remains in the interval [ d
m
,∞).

Let us now observe what happens in the limiting case Q0(0) = d
m
. Recalling

that our initial conditions are denoted by S0(t), Q0(t) for t ∈ [−ζ, 0], we have

Q′0(0) = −k d
m
S0(0) + kbe−µζσ(Q0(−ζ))S0(−ζ)

= k

(
be−µζQ0(−ζ)S0(−ζ)− d

m
S0(0)

)
> 0,

where we have used the fact that be−µζQ0(−ζ)S0(−ζ) > d
m
S0(0). According to

this inequality, we obtain the existence of a strictly positive ε such that Q(t) > d
m

for all t ∈ (0, ε). We thus introduce the quantity t0 = inf{t > 0 : Q(t) = d
m
}, and

notice that we have

Q′(t0) = −k d
m
S(t0) + kbe−µζσ(Q(t0 − ζ))S(t0 − ζ).

Now we can distinguish two cases.

1. If t0 > ζ, since S(t) is non-increasing in [0, t0], S(t0 − ζ) ≥ S(t0) and hence

Q′(t0) ≥ kS(t0)
(
be−µζσ(Q(t0 − ζ))− d

m

)
> 0,

due to the fact that be−µζ > 1, M > d
m

and Q(t0 − ζ) > d
m
.

2. If t0 ≤ ζ, since S(t0) ≤ S0(0) we obtain

Q′(t0) ≥ −k d
m
S0(0) + kbe−µζσ(Q0(t0 − ζ))S0(t0 − ζ)

= k

(
be−µζQ0(t0 − ζ)S0(t0 − ζ)− d

m
S0(0)

)
> 0,

where we have used the fact that be−µζQ0(t)S0(t) > d
m
S0(0) for all t ∈ [−ζ, 0].
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This discussion allows to conclude that t0 cannot be a finite time. Indeed, we
should have Q′(t0) > 0 and hence Q increasing in a neighborhood of t0, while Q
should be decreasing in a neighborhood of t0 according to its very definition. We
have thus reached the following partial conclusion,

Q(t) ≥ d

m
, t 7→ S(t) decreasing, S(t) ≥ 0.

In particular, any interval of the form [0, L] for L ≥ 0 is left invariant by t 7→ St.
Step 2: boundedness of Q. Our claim is now reduced to prove that for
(S0(t), Q0(t)) ∈ R we have Q(t) ≤M for all t ≥ 0.

To this aim notice that, whenever Q0(0) = M we have

Q′(0) = d−mM − kMS0(0) + kbe−µζσ(Q0(−ζ))S0(−ζ)
≤ d−mM + kbe−µζMS0(−ζ) < 0,

where we recall that S0(−ζ) < mM−d
kbe−µζM

according to Hypothesis 2.3.5. This yields
the existence of ε > 0 such that Q(t) < M for all t ∈ (0, ε).

We now define t1 = inf {t > 0 : Q(t) = M}. It is readily checked that

Q′(t1) = d−mM − kMS(t1) + kbe−µζσ(Q(t1 − ζ))S(t1 − ζ)
= d−mM − kMS(t1) + kbe−µζQ(t1 − ζ)S(t1 − ζ)
≤ d−mM + kbe−µζMS(t1 − ζ),

and we can distinguish again two cases.

1. If t1 > ζ, thanks to the fact that t 7→ S(t) is non-increasing on [0, t1], we
have

Q′(t1) ≤ d−mM + kbe−µζMS0(0) < 0,

since we have assumed that S0(0) < mM−d
kbe−µζM

.

2. If t1 ≤ ζ then

Q′(t1) ≤ d−mM + kbe−µζMS0(t1 − ζ) < 0,

thanks to the fact that S0(t) < mM−d
kbe−µζM

for all t ∈ [−ζ, 0].

As for the discussion of the previous step, this allows us to conclude that t1 cannot
be a finite time, due to the contradiction Q′(t1) < 0 and Q(t) < Q(t1) for all
t ∈ (0, t1). We have thus shown Q(t) ≤ M for all t ≥ 0, which finishes the
proof.
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Remark 2.3.11. Before stating the exponential convergence to the bacteria-free
equilibrium result, let us observe that Theorem 2.3.8 still holds true for the delayed
system (2.3.1). This can be easily checked, following the procedure as for the non-
delayed system.

We are now ready to state our result on exponential convergence of the delayed
system.

Theorem 2.3.12. Assume Hypothesis 2.3.1, 2.3.7, and 2.3.5 are satisfied, and let
R be the region defined at Proposition 2.3.10. Then the solution of system (2.3.1)
with initial condition (S0, Q0) ∈ R exponentially converges to the equilibrium E0,

|(S(t), Q(t))− E0| ≤ c e−ηt, with η = γ ∧ m2 , (2.3.9)

where we recall that γ = kd
m
− α > 0.

Proof. According to Proposition 2.3.10, we have Q(t) ≤ M for all −ζ ≤ t < ∞
under our standing assumptions. Hence one can recast equation (2.3.1) as{

dS(t) = (α− kQ(t))S(t)dt
dQ(t) =

(
d−mQ(t)− kQ(t)S(t) + kbe−µζQ(t− ζ)S(t− ζ)

)
dt

Let us perform now the change of variables Q̃ = Q − d
m
. This transforms the

previous system into
dS(t) =

(
α− k(Q̃(t) + d

m
)
)
S(t) dt

dQ̃(t) =
(
d−m(Q̃(t) + d

m
)− k(Q̃(t) + d

m
)S(t)

+kbe−µζ(Q̃(t− ζ) + d
m

)S(t− ζ)
)

dt.

Equivalently, our new system is
dS(t) = −

(
γS(t) + kQ̃(t)S(t)

)
dt

dQ̃(t) =
(
−mQ̃(t)− k d

m
S(t)− kQ̃(t)S(t) + k d

m
be−µζS(t− ζ)

+kbe−µζQ̃(t− ζ)S(t− ζ)
)

dt.

Observe now that Proposition 2.3.10 asserts that Q(t) ≥ d
m

for all t ≥ 0,
which means that Q̃(t) ≥ 0. With our change of variables, we have also shifted
our equilibrium to the point (0, 0). We now wish to prove that S(t) and Q̃(t)
exponentially converge to 0.

The bound on S(t) is easily obtained, just note that

dS(t) ≤ −γS(t) dt,
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which yields S(t) ≤ S0(0) e−γt. As far as Q̃(t) is concerned, one gets the bound

dQ̃(t)
dt ≤ −mQ̃(t) + k

d

m
be−µζS0(0) e−γ(t−ζ) + kbe−µζQ̃(t− ζ)S0(0) e−γ(t−ζ)

≤ −mQ̃(t) + kbe−µζS0(0) e−γ(t−ζ)
(
d

m
+M − d

m

)
= −mQ̃(t) + c e−γt,

with c = kbMS0(0) e(γ−µ)ζ , and where we have used the fact that Q(t) ≤ M
uniformly in t.

Invoking now the variation of constant method, it is readily checked that equa-
tion ẋ(t) = −mx(t) + c e−γt with initial condition x0 = Q̃0(0) can be explicitly
solved as

x(t) = e−mt
(
Q̃0(0) + c

m− γ
(
e(m−γ)t − 1

))

=
(
Q̃0(0)− c

m− γ

)
e−mt + c

m− γ
e−γt.

By comparison, this entails the inequality Q̃(t) ≤ c1 e
−ηt, where c1 = max(Q̃0(0)−

c
m−γ ,

c
m−γ ) and η = m ∧ γ. Our proof is now finished.

Properties of the stochastic system

Recall that we are considering the perturbed problem (2.3.2), with a coefficient σ
and some initial conditions satisfying Hypothesis 2.3.7. In particular, due to the
fact that we have assumed a bounded coefficient σ, the existence and uniqueness
of the solution to our differential system is a matter of standard considerations.

Theorem 2.3.13 (Global existence of solution). For any positive initial condition
there exists a unique solution of (2.3.2), which is defined for all t ≥ 0.

Proof. It is readily checked that the coefficients of the equation are locally Lipschitz
with linear growth. The existence and uniqueness of the solution is then a direct
consequence of classical results (see e.g. [29, Section 5.2] for the non delayed system
and [38] for the delayed one).

Positivity of the solution is also an important feature, if we want the quantities
S(t), Q(t) to be biologically meaningful. Moreover, part of our analysis will rely
on this property, that we label for further use.
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Proposition 2.3.14 (Positivity). If we take positive initial conditions S0(t) ≥ 0,
Q0(t) ≥ 0 for all t ∈ [−ζ, 0] for the system (2.3.2), then the solution fulfills
Sε(t) ≥ 0, Qε(t) ≥ 0 for all t > 0.

Proof. Let us first consider the system with σ(x) = x for all x, namely
dSε(t) = [α− kQε(t)]Sε(t)dt+ εSε(t) ◦ dW 1(t)
dQε(t) =

[
d−mQε(t)− kQε(t)Sε(t) + k b e−µζQε(t− ζ)Sε(t− ζ)

]
dt

+ εQε(t) ◦ dW 2(t),
(2.3.10)

with initial condition (S0(t), Q0(t)). Assuming existence and uniqueness of the
solution to (2.3.10), we shall prove that Sε(t), Qε(t) ≥ 0 for all t ≥ 0 almost surely.

Indeed, after the change of variables x(t) = e−εW
1(t)Sε(t), y(t) = e−εW

2(t)Qε(t),
we can recast (2.3.10) into the following system of differential equations with ran-
dom coefficients:

x′(t) =
(
α− keεW 2(t)y(t)

)
x(t)

y′(t) = de−εW
2(t) −my(t)− keεW 1(t)x(t)y(t)
+ k b e−µζ−ε(W

2(t)−W 2(t−ζ)−W 1(t−ζ))y(t− ζ)x(t− ζ),

(2.3.11)

with initial conditions x0(t) = S0(t) ≥ 0, y0(t) = Q0(t) ≥ 0 for all t ∈ [−ζ, 0].
Then, the positivity of x(t) is immediate from the representation

x(t) = x0(0) exp
{∫ t

0
(α− keεW 2(s)y(s))ds

}
≥ 0.

In order to see the positivity of y(t) let us observe that for y0(0) = 0 we
have y′(0) = d+ k b e−µζ−ε(W

2(0)−W 2(−ζ)−W 1(−ζ))y(−ζ)x(−ζ) > 0. Therefore, for all
initial condition y(0) ≥ 0 there exists δ > 0 such that y(t) > 0 for all t ∈ (0, δ).
Let us suppose now that y(t) < 0 for some t > 0, and let t0 = inf{t > 0 | y(t) < 0}.
Due to the continuity of the solution we have that y(t0) = 0. Then

y′(t0) = de−εW
2(t0) + k b e−µζ−ε(W

2(t0)−W 2(t0−ζ)−W 1(t0−ζ))y(t0 − ζ)x(t0 − ζ) > 0,

which is impossible since it would yield y(t) > 0 for t ∈ (t0, t0 + δ) for δ small
enough. This contradiction means exactly that y(t) ≥ 0 for all t ≥ 0.

Now that we have the positivity for system (2.3.10), we can prove the positivity
for (2.3.2) in the following way. Let us first handle the case of Sε(t), and assume
that the initial condition is such that S0(0) ≥ M . Set then τ 0

M,S = inf{t ≥
0 such that Sε(t) ≤ M/2}, and observe that τ 0

M,S is a Ft- stopping time (recall
that Ft stands for the natural filtration of the Brownian motion W ), such that Sε
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has remained positive until τ 0
M,S. Furthermore, the strong Markov property for

(Sε, Qε) entails that the process
{(
Sε(τ 0

M,S + t), Qε(τ 0
M,S + t)

)
; t ≥ 0

}
also satisfies (2.3.2) on the set ΩM,S = {ω ∈ Ω; τ 0

M,S < ∞}, with an initial
condition S0(0) = M/2. With these considerations in mind, we can assume that
the initial condition of our differential system satisfies S0(0) < M .

With such an initial condition we can conclude the positivity of Sε(t) until the
stopping time τ̂ 0

M,S = inf{t ≥ 0 such that Sε(t) ≥ M} as we have done for the
system (2.3.10), since up to time τ̂ 0

M,S we have σ(Sε(t)) = Sε(t). Then, invoking
again the strong Markov property, we can also guarantee positivity until time
τ 1
M,S = inf{t ≥ τ̂ 0

M,S such that Sε(t) ≤M/2} as above. We are now in a position to
obtain the positivity of Sεt until time τ̂ 1

M,S = inf{t ≥ τ 1
M,S such that Sε(t) ≥ M},

once again with the same reasoning than for the system (2.3.10). The global
positivity of Sε(t) on any interval of the form [τ kM,S, τ

k+1
M,S ] for k ≥ 0 now follows by

iteration of this reasoning.
It remains to show that limk→∞ τ

k
M,S =∞. This is easily obtained by combining

the following two ingredients.
(i) The increments {τ k+1

M,S − τ kM,S; k ≥ 0} form a i.i.d sequence by a simple appli-
cation of the strong Markov property.
(ii) Owing to the specific coefficients we have for equation (2.3.2), it can be checked
that for any η2 > 0 one can find η1 > 0 small enough such that P(τ 1

M,S > η1) ≥
1− η2. Details of this assertion are omitted for sake of conciseness.

We let the reader check that the positivity of Qε(t) can be obtained along the
same lines, which ends the proof.

Remark 2.3.15. Using the a priori positivity properties stated above, we could have
also obtained existence and uniqueness of the solution for system (2.3.10). We did
not include these developments for sake of conciseness.

2.3.3 Fluctuations of the random system

Here again we shall proceed gradually, and work out the following cases.

1. Fluctuations for the non delayed system.

2. Extension to the delayed system.
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Towards this aim, let us first summarize the information we have obtained up
to now in the non delayed case. We are considering the system{

dSε(t) = [α− kσ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)
dQε(t) = [d−mQε(t) + k(b− 1)σ(Qε(t))Sε(t)] dt+ εσ(Qε(t)) ◦ dW 2(t).

(2.3.12)
Under Hypothesis 2.3.1 and 2.3.7, we have shown the existence of a unique equilib-
rium E0 = (0, d/m) for the deterministic system (2.3.5), corresponding to (2.3.12)
with ε = 0. Furthermore, we have constructed a region R ∈ R2

+ such that for any
initial condition (S0, Q0) ∈ R, the solution converges exponentially to E0, with a
rate η = γ ∧ m

2 . We now wish to obtain a concentration result for the perturbed
system (2.3.12), that is give a proof of Theorem 2.3.3. To this aim, we shall divide
our proof into several subsections.

Notation 2.3.16. We will set Zε(t) for the couple (Sε(t), Qε(t)), and Z0(t) for
the solution to the deterministic equation (2.3.5).

Reduction of the problem

Recall that Theorem 2.3.3 states an exponential bound (valid for ρ small enough)
of the form

P (‖Zε − E0‖∞,I ≥ 2ρ) ≤ exp
(
−c1ρ

2+λ

ε2

)
, (2.3.13)

on any interval of the form I = [κ1 ln(c/ρ)/η;κ2 ln(c/ρ)/η] and 1 < κ1 < κ2 < κ3
such that λ > κ3/η.

A first step in this direction is to consider a generic interval of the form Î =
[a, b], and write

P
(
‖Zε − E0‖∞,Î ≥ 2ρ

)
= P

(
(‖Zε − E0‖∞,Î ≥ 2ρ) ∩ (‖Z0 − E0‖∞,Î ≥ ρ)

)
+ P

(
(‖Zε − E0‖∞,Î ≥ 2ρ) ∩ (‖Z0 − E0‖∞,Î ≤ ρ)

)
,

which yields
P
(
‖Zε − E0‖∞,Î ≥ 2ρ

)
≤ A1 + A2,

with

A1 = P
(
‖Z0 − E0‖∞,Î ≥ ρ

)
, and A2 = P

(
‖Zε − Z0‖∞,Î ≥ ρ

)
. (2.3.14)

Moreover, the term A1 is easily handled. Owing to (2.3.9), we have A1 = 0 as soon
as a = κ1 ln(c/ρ)/η with κ1 > 1. In order to prove (2.3.13), it is thus sufficient to
check the following identity,

P
(
‖Zε − Z0‖∞,I ≥ ρ

)
≤ exp

(
−c1ρ

2+λ

ε2

)
, (2.3.15)
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on any interval of the form I = [κ1 ln(c/ρ)/η;κ2 ln(c/ρ)/η] and 1 < κ1 < κ2 < κ3.
We shall focus on this inequality in the next subsection.

Exponential concentration of the stochastic equation

We will now give a general concentration result for Zε−Z0 on suitable time scales
as follows.

Proposition 2.3.17. Let Zε be the solution to (2.3.12). Then there exists ε0 =
ε0(M, τ) such that, for any ρ ≤ 1 and ε ≤ ε0 we have

P
(
‖Zε − Z0‖∞,[0,τ ] > ρ

)
≤ exp

(
− c2ρ

2

eκ2 τε2

)
, (2.3.16)

where c2, κ2 are strictly positive constants which do not depend on ρ, ε, but both
depend on our set of parameters α, k, σ, d,m, b,M .

Proof. For notational sake, let us abbreviate ‖f‖∞,[0,τ ] into ‖f‖∞ throughout the
proof. In order to bound Zε − Z0, we first seek a bound for Sε − S0. To this aim
we notice that for the deterministic function S0 and thanks to relation (2.3.9),
one can find a constant κ1 = κ1(α, k, σ, d,m, b) such that ‖S0‖∞ ≤ κ1. Set also
J1(t) :=

∫ t
0 σ(Sε(s)) ◦ dW 1(s). Then

|Sε(t)− S0(t)| ≤
∫ t

0

∣∣∣(α− kσ(Qε(s)))Sε(s)−
(
α− kσ(Q0(s))

)
S0(s)

∣∣∣ ds+ ε
∣∣∣J1(t)

∣∣∣
≤

∫ t

0

∣∣∣(α− kσ(Qε(s))) (Sε(s)− S0(s))
∣∣∣ ds (2.3.17)

+
∫ t

0
k
∣∣∣σ(Qε(s))− σ(Q0(s))

∣∣∣ |S0(s)|ds+ ε|J1(t)|

≤
∫ t

0
(α+ kM)|Sε(s)− S0(s)|ds (2.3.18)

+κ1k

∫ t

0
|Qε(s)−Q0(s)|ds+ ε|J1(t)|.

Analogously, setting J2(t) :=
∫ t

0 σ(Qε(s)) ◦ dW 2(s), we obtain

|Qε(t)−Q0(t)| ≤
∫ t

0
(m+ k(b− 1)κ1)|Qε(s)−Q0(s)|ds

+
∫ t

0
k(b− 1)M |Sε(s)− S0(s)|ds+ ε|J2(t)|. (2.3.19)

Hence, putting together (2.3.17) and (2.3.19), we get the existence of two pos-
itive constants κ2, κ3 such that

|Zε(t)− Z0(t)|2 ≤ κ2ε
2
(
|J1(t)|2 + |J2(t)|2

)
+ κ3

∫ t

0
|Zε(s)− Z0(s)|2ds,
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and by a standard application of Gronwall’s lemma, we get for all t ∈ [0, τ ]:

|Zε(t)− Z0(t)|2 ≤ κ2ε
2
[
|J1(t)|2 + |J2(t)|2

]
exp(κ3t)

≤ κ2ε
2
[
|J1(t)|2 + |J2(t)|2

]
exp(κ3τ). (2.3.20)

Let us now go back to our claim (2.3.16). Thanks to the inequality (2.3.20),
we have

P
(
‖Zε − Z0‖∞ > ρ

)
= P

(
‖Zε − Z0‖2

∞ > ρ2
)

≤ P
(
‖J1‖2

∞ + ‖J2‖2
∞ >

ρ2

κ2ε2 exp(κ3τ)

)
≤ T1 + T2,

with

T1 = P
(
‖J1‖∞ >

κ4ρ

ε exp(κ5τ)

)
, and T2 = P

(
‖J2‖∞ >

κ4ρ

ε exp(κ5τ)

)
.

We now proceed to bound the quantity T1. To this aim we first write J1(t) in
terms of Itô’s integrals. According to [29, Definition 3.13 p. 156],

J1(t) =
∫ t

0
σ(Sε(s))dW 1(s) + 1

2
〈
σ(Sε), W 1

〉
t
,

where 〈·, ·〉 stands for the bracket of two semi-martingales. Invoking equation
(2.3.12) and ordinary rules of Stratonovich differential calculus, it is also readily
checked that

σ(Sε(t)) = σ(Sε0) + ε
∫ t

0
σσ′(Sε(s))dW 1(s) + V (t),

where V is a process with bounded variation. We thus end up with the expression
J1(t) = M̂1(t) + V 1(t), where

M̂1(t) =
∫ t

0
σ(Sε(s))dW 1(s), and V 1(t) = ε

2

∫ t

0
σσ′(Sε(s))ds,

and decompose T1 accordingly into T1 ≤ T1,1 + T1,2, with

T1,1 = P
(
‖M̂1‖∞ >

κ4ρ

ε exp(κ3τ)

)
, and T1,2 = P

(
‖V 1‖∞ >

κ4ρ

ε exp(κ3τ)

)
.

We will now bound the terms T1,1 and T1,2 separately.
The term T1,2 is easily shown to be bounded thanks to some deterministic

arguments. Indeed, since σσ′(x) ≤ C(M + 1) for any x ∈ R+, we have ‖V 1‖∞ ≤
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C(M + 1)ετ , so that for any ρ ≤ 1 and ε ≤ ε1 := (κ4/(C(M + 1)τ exp(κ3τ)))1/2,
we have T1,2 = 0. As far as T1,1 is concerned, one can apply the exponential
martingale inequality (see, for instance, [22]) for stochastic integrals in order to
get

T1,1 ≤ exp
(
− κ4ρ

2

M2 exp(κ3τ)ε2

)
.

Putting together the estimates for T1,1 and T1,2, we have thus obtained

T1 ≤ exp
(
− κ4ρ

2

M2 exp(κ3τ)ε2

)
,

for any ρ ≤ 1 and ε ≤ ε1 := (κ4/(C(M + 1)τ exp(κ3τ)))1/2. We let the reader
check that the term T2 can be handled along the same lines, which finishes our
proof.

Deviation from equilibrium

Let us now prove inequality (2.3.13). Recall that we have decomposed P(‖Zε −
E0‖∞,I ≥ 2ρ) into A1 + A2 defined by (2.3.14). Furthermore, A1 = 0 when Î is of
the form [a, b] with a = κ1 ln(c/ρ)/η.

In order to complete our result, let us analyze the term A2 in the light of
inequality (2.3.16). Indeed, in order to go from (2.3.16) to (2.3.15), it is sufficient
to choose ρ, τ, λ such that

ρ2 exp(−κ2τ) > ρ2+λ,

which is achieved for τ < b := λ ln(1/ρ)/κ2. Hence our claim is satisfied on the
interval Î = [a, b]. We now have to verify that this interval is nonempty, namely
that a < b. This gives a linear equation in ln(1/ρ) of the form

κ1

η
[ln(1/ρ) + ln(c)] ≤ λ

κ2
ln(1/ρ),

and the reader might easily check that the following conditions are sufficient.
(i) The linear terms satisfy κ1

η
< λ

κ2
, that is λ > κ1κ2

η
.

(ii) We take ρ small enough, namely ρ ≤ ρ0 in order to compensate the term ln(c).
The proof of (2.3.13) is now finished.
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Extension to the delayed system

Let us deal now with the delayed case. As mentioned in the introduction, we
consider the system

dSε(t) = [α− kσ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)
dQε(t) =

[
d−mQε(t)− kσ(Qε(t))Sε(t) + k b e−µζσ(Qε(t− ζ))Sε(t− ζ)

]
dt

+ εσ(Qε(t)) ◦ dW 2(t),
(2.3.21)

where for any t ∈ [−ζ, 0] and for any ε > 0, (Sε(t), Qε(t)) = (S0(t), Q0(t)).
Under Hypothesis 2.3.1, 2.3.7 and 2.3.5 we have shown the existence of a unique

equilibrium E0 for the deterministic system (2.3.1), corresponding to (2.3.21) with
ε = 0. Following the non-delayed case, we wish to obtain a concentration result
for the perturbed system (2.3.21), as is given in Theorem 2.3.6.

The proof of this result can be carried out almost exactly as for Theorem 2.3.3.
Let us point out that the main difference relies on how to get an equivalent of
inequalities (2.3.17) and (2.3.19). To this aim, we set again J1(t) :=

∫ t
0 σ(Sε(s)) ◦

dW 1(s) and J2(t) :=
∫ t

0 εσ(Qε(s)) ◦ dW 2(s). Then in the delayed case, relations
(2.3.17) and (2.3.19) become

|Sε(t)−S0(t)| ≤
∫ t

0
(α+kM)|Sε(s)−S0(s)|ds+κ1k

∫ t

0
|Qε(s)−Q0(s)|ds+ε|J1(t)|,

(2.3.22)
and

|Qε(t)−Q0(t)| ≤
∫ t

0
(m+ kκ1)|Qε(s)−Q0(s)|ds+

∫ t

0
kM |Sε(s)− S0(s)|ds(2.3.23)

+ε|J2(t)|+
∫ t

0
kbMe−µζ |Sε(s− ζ)− S0(s− ζ)|ds

+
∫ t

0
kbk1e

−µζ |Qε(s− ζ)−Q0(s− ζ)|ds.

Using that for any t ∈ [−ζ, 0] and for any ε > 0, (Sε(t), Qε(t)) = (S0(t), Q0(t)) we
can write the bounds∫ t

0
kbMe−µζ |Sε(s− ζ)− S0(s− ζ)|ds =

∫ t−ζ

0
kbMe−µζ |Sε(s)− S0(s)|ds

≤
∫ t

0
kbMe−µζ |Sε(s)− S0(s)|ds,∫ t

0
kbk1e

−µζ |Qε(s− ζ)−Q0(s− ζ)|ds =
∫ t−ζ

0
kbk1e

−µζ |Qε(s)−Q0(s)|ds

≤
∫ t

0
kbk1e

−µζ |Qε(s)−Q0(s)|ds
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Then, putting these last bounds in (2.3.22) and (2.3.23) we get the existence
of two positive constants κ2, κ3 such that

|Zε(t)− Z0(t)|2 ≤ κ2
(
|J1(t)|2 + |J2(t)|2

)
+ κ3

∫ t

0
|Zε(s)− Z0(s)|2ds.

Starting from this point, the proof follows exactly as for Theorem 2.3.3.

2.3.4 Numerical simulations
This final section is devoted to a presentation of some numerical simulations
for the system described by equation (2.3.2). We have chosen the parameters
(α, k, d,m, b, ζ) according to some real data observed in vitro by the Molecular
Biology Group of the Department of Genetics and Microbiology at Universitat
Autònoma de Barcelona. We have also chosen to compare theoretical and noisy
dynamics in order to see that the quantities S and Q are close to their equilib-
rium after a reasonable amount of time (in spite of randomness). We believe that
this study is justified because the noise is expected to appear, either by the errors
when collecting data, either by the appearance of several factors that may affect
the behavior of the agents in vivo.

It is worth noticing at this point that the parameters we have chosen for our
simulations do not meet the conditions stated at Hypothesis 2.3.5. Indeed, those
conditions were imposed in order to obtain our theoretical large deviations type
results with a reasonable amount of effort, but might be too restrictive to fit to
real data experiments. Nevertheless, our simulations turn out to be satisfactory,
since we observe that the solution (S(t), Q(t)) converges to E0 for small values of
ε in a reasonable amount of time, regardless of the violation of Hypothesis 2.3.5.

Specifically, we have simulated trajectories with parameters estimated on an ex-
periment involving Salmonella ATCC14028 bacteria and UAB_Phi78 virus. From
the experiments conducted by the mentioned group we have chosen the parameters
as:

(α, k, d,m, b, ζ) = (12.1622, 27.36, 0.1, 0.1947, 61, 0.01875).

We have also put M = 10, µ = 0.5, and we have taken the initial conditions
S0(t) = 4.8eα(t+ζ), Q0(t) = 0 for t ∈ [−ζ, 0]. The time is expressed in days and the
amount of virus and bacteria are expressed in tens of millions of units.

Our simulations are summarized at Figure 2.3, in which different paths of the
processes S and Q are computed. We have first expressed our Stratonovich type
equation (2.3.2) into an Itô type equation plus corrections, and then used an Euler
type discretization scheme for our equations implemented with the R software.
We have then plotted the deterministic case (ε = 0) plus the curves corresponding
to several values of ε (namely ε = −3, 1). As mentioned before, the fluctuations
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2.3 Stochastic model

Figure 2.3: Simulation of the trajectories of S and Q with real parameters for the
Salmonella ATCC14028 bacteria and UAB_Phi78 virus for the deterministic case
(ε = 0), for ε = −3 (red curve) and ε = 1 (blue curve).

of S and Q (which are obviously due to the randomness we have introduced) do
not prevent them to converge to equilibrium. Observe that there alternative ways
to Euler discretizations in order to simulate Stratonovich type equations, such as
the Runge-Kutta method introduced in [44]. Since our numerical context was not
too demanding, we have chosen to resort to the Euler scheme based on Itô type
equations for sake of simplicity.
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Chapter 3

L2 modulus of Brownian local
time

3.1 Introduction
In [18] the authors prove the following Central Limit Theorem for the L2 modulus
of continuity of Brownian local time. Let B = {Bt, t ≥ 0} be a standard Brownian
motion, denote by {Lxt , t ≥ 0, x ∈ R} its local time and consider

Gt(h) =
∫
R
(Lx+h

t − Lxt )2dx. (3.1.1)

Theorem 3.1.1 ([18], Theorem 1.1 or [26], Theorem 1). For each fixed t > 0,

h−
3
2

(∫
R
(Lx+h

t − Lxt )2dx− 4th
)

L−→ 8
√
αt
3 η,

as h tends to zero, where
αt =

∫
R
(Lxt )2dx,

and η is a N(0, 1) random variable independent of B.

They were motivated to try to find this result by the interest in the expression

Hn =
n∑

i,j=1,i6=j
1{Si=Sj} −

1
2

n∑
i,j=1,i6=j

1{|Si−Sj |=1},

where S is a random walk on Z. This expression appears as the Hamiltonian in a
model for a polymer in a repulsive medium, and can be written as

Hn = 1
2
∑
x∈Z

(lxn − lx+1
n )2,
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where lxn = ∑n
i=1 1{Si=x} is the local time for S.

There are various proofs of Theorem 3.1.1. While in [18] the authors use
the method of moments, [26] provide a proof based on an asymptotic version of
Knight’s theorem combined with some other techniques of stochastic calculus and
Malliavin calculus, like Clark-Ocone’s formula.

Previous to this result, almost sure limits for the Lp moduli of continuity of
local times of a very wide class of symmetric Lévy processes were obtained in [36].
This result uses, among others, Eisenbaum Isomorphism theorem (see [35]), and
for the Browninan motian case, p = 2, can be written in the form

lim
h↓0

∫ ∞
−∞

(Lx+h
t − Lxt )2

h
dx = 4t a.s.

which is used in Theorem 3.1.1 to obtain the term 4th.
In this chapter we shall study the decomposition on Wiener chaos of Gt(h).

More precisely, we shall find a CLT for each Wiener chaos element of Gt(h) as
states the following theorem.

Theorem 3.1.2. Let Gt(h) be the random variable defined in (3.1.1) and denote
the n-th Wiener chaos element of Gt(h) by Ĩn(Gt(h)). Then, for n = 2k, k ∈ N∗,

1
h2
√

log(1/h)
Ĩn(Gt(h)) L−→ N (0, σ2

n) (3.1.2)

as h tends to zero, where N (0, σ2
n) is a centered Normal random variable with

variance σ2
n = 26t(2(k−1))!

π22(k−1)((k−1)!)2 . For n = 2k − 1, k ∈ N∗, the limit is zero.

Remark 3.1.3. This result provides us with an example of a family of random
variables that is convergent in law to a Normal distribution, but its chaos elements
of even order do not converge. Moreover, we find a normalization where these chaos
elements do converge in law to a Normal distribution. One can easily see that the
sum of σ2

n diverges.

3.2 Proof of Theorem 3.1.2
The proof is based on a result due to Nualart and Pecatti [40], where the authors
characterize the convergence in distribution to a normal law N (0, 1) for a sequence
of random variables belonging to a fixedWiener chaos. Let us now state their result
here, for sake of readability.

Suppose that H is the Hilbert space H = L2(T,B, µ), where (T,B) is a mea-
surable space and µ is a σ-finite and non-atomic measure, and consider a Gaussian
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Chapter 3. L2 modulus of Brownian local time

family of random variables W = {W (h), h ∈ H} defined in a complete probability
space (Ω,F , P ).

Let f be a symmetric element of L2(T n). For any p = 0, . . . , n, we define the
contraction of f of order p to be the element of L2(T 2(n−p)) given by

f⊗p(tp+1, . . . , tn, sp+1, . . . , sn) =
∫
T p
f(t1, . . . , tp, tp+1, . . . , tn)

× f(t1, . . . , tp, sp+1, . . . , sn)dt1 . . . dtp. (3.2.1)

Theorem 3.2.1 ([40], Theorem 1). Fix n ≥ 2. Consider a sequence {Fk =
In(fk), k ≥ 1} of square integrable random variables belonging to the nth Wiener
chaos such that

E[F 2
k ] = n!‖fk‖2

H⊗n −→
k→∞

σ2. (3.2.2)

The following statements are equivalent.

(1) As k goes to infinity, the sequence {Fk, k ≥ 1} converges in distribution to
the normal law N(0, σ2).

(2) limk→∞ E[F 4
k ] = 3σ4.

(3) For all 1 ≤ p ≤ n− 1, limk→∞ f
⊗p
k = 0, in H⊗2(n−p).

(4) ‖DFk‖2
H → nσ2 in L2(Ω).

In the following lemmas we shall prove that condition (3.2.2) and statement
(3) hold true for Fh = 1

h2
√

log(1/h)
Ĩn(Gt(h)) when h goes to zero, thus proving

Theorem 3.1.2. First of all we derive the following representation of Ĩn(Gt(h)).

Lemma 3.2.2. For n = 2k, k ∈ N∗, the random variable Ĩn(Gt(h)) can be ex-
pressed as the sum of 4 terms, namely:

Ĩn(Gt(h)) = 16
n!

4∑
i=1

In

Ψi
n,h

 n∧
j=1

tj,
n∨
j=1

tj

 ,
where In stands for the multiple stochastic integral and Ψi

n,h will be defined along
the proof (see (3.2.8)). For n = 2k − 1, k ∈ N∗, Ĩn(Gt(h)) equals zero.

Proof. Let us use the following expression of G (see [26])

Gt(h) = −2
∫ t

0

∫ v

0
(δ(Bv −Bu + h) + δ(Bv −Bu− h)− 2δ(Bv −Bu))dudv, (3.2.3)

where δ denotes the Dirac’s delta function.
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3.2 Proof of Theorem 3.1.2

We know that δ(Bv −Bu + h) = ∑∞
n=0 In(ϕ) where, for u ≤ t1, . . . , tn ≤ v,

ϕ(t1, . . . , tn) = 1
n!E(Dn

t1,...,tn(δ(Bv −Bu + h))) (3.2.4)

(see [39] for further details). Then we have

ϕ(t1, . . . , tn) = 1
n!

n∏
j=1

1[u,v](tj)E(δ(n)(Bv −Bu + h)) (3.2.5)

where if we consider pt(x) = 1√
2πte

−x2/2t the Gaussian distribution, we obtain

E(δ(n)(Bv −Bu + h)) =
∫
R
δ(n)(x+ h)pv−u(x)dx

= (−1)n
∫
R
δ(x+ h)p(n)

v−u(x)dx = p
(n)
v−u(h). (3.2.6)

Therefore, we obtain the following expression

Gt(h) = −2
∞∑
n=0

In

 1
n!

∫ t

0

∫ v

0

n∏
j=1

1[u,v](tj)(p
(n)
v−u(h) + p

(n)
v−u(−h)− 2p(n)

v−u(0))dudv


= −2

n!

∞∑
n=0

In

(∫ t∨n

j=1 tj

∫ ∧n

j=1 tj

0
(p(n)
v−u(h) + p

(n)
v−u(−h)− 2p(n)

v−u(0))dudv
)

= −2
n!

∞∑
n=0

In

Ψn,h

 n∧
j=1

tj ,
n∨
j=1

tj

 , (3.2.7)

defining Ψn,h in the obvious way.
One can easily see that (p(n)

v−u(h) + p
(n)
v−u(−h) − 2p(n)

v−u(0)) = 0 when n is odd,
proving the result for n = 2k− 1, k ∈ N∗. Then, from now on n will be a non-zero
even number, i.e., n = 2k , k ∈ N∗. Let us now rewrite Ψn,h in the following way

Ψn,h(s1, s2) = 2
∫ t

s2

∫ s1

0

∫ h

0

∫ x

0
p

(n+2)
v−u (y)dydxdudv,

and using the fact that p(n+2)
t (x) = 2∂p

(n)
t

∂t
(x) we obtain

Ψn,h(s1, s2)= 4
∫ s1

0

∫ h

0

∫ x

0
(p(n)
t−u(y)− p(n)

s2−u(y))dydxdu

= −8
∫ h

0

∫ x

0
(p(n−2)
t−s1 (y)− p(n−2)

t (y)− (p(n−2)
s2−s1(y)− p(n−2)

s2 (y)))dydx

= −8
∫ h

0

(
p

(n−2)
t−s1 (y)− p(n−2)

t (y)− p(n−2)
s2−s1(y) + p(n−2)

s2 (y)
)
(h− y)dy

:= −8
4∑
i=1

Ψi
n,h(s1, s2). (3.2.8)
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Lemma 3.2.3. For n = 2k, k ∈ N∗,

1
h4 log(1/h)E

(
Ĩn(Gt(h))2

)
−→ σ2

n := 26t(2(k − 1))!
π22(k−1)((k − 1)!)2

and for n = 2k − 1, k ∈ N∗, the limit is zero.

Proof. Let us fix an even n ∈ N∗ and denote

Ii := 16
n!h4 log(1/h)In

Ψi
n,h

 n∧
j=1

tj,
n∨
j=1

tj

 ,
where Ψi

n,h, i = 1 . . . 4 is defined by (3.2.8). We will show the convergence of E(I2
3 )

to σ2
n when h tends to zero. To complete the proof the reader can check that the

limit of E(I2
i ), i = 1, 2, 4, is zero when h tends to zero, which can done similarly

to the limit we will compute.
To start with, let us write E(I2

3 ) in the following way

E(I2
3 ) = 28

h2 log(1/h)

∫
∆n

t

(∫ h

0
p

(n−2)
tn−t1

(y)(h− y
h

)dy
)2

dt1 · · · dtn

= 28

h2 log(1/h)

∫ ∫
0≤t1<tn≤t

(tn − t1)n−2

(n− 2)!

×

∫ h

0

(n− 2)!√
(tn − t1)n−1

Hn−2

(
y√

tn − t1

)
e

−y2
2(tn−t1)

√
2π

(
h− y
h

)
dy

2

dt1dtn

(3.2.9)

= 28(n− 2)!
2πh2 log(1/h)

∫ ∫
0≤t1<tn≤t

1
tn − t1

×

(∫ h

0
Hn−2

(
y√

tn − t1

)
e

−y2
2(tn−t1)

(
h− y
h

)
dy
)2

dt1dtn,

where Hn(x) denote the n-th Hermite polynomial.
First letting τ = tn − t1 and then letting x = y√

τ
we get

E(I2
3 ) = 28(n− 2)!

2πh2 log(1/h)

∫ t

0

∫ t−τ

0

1
τ

(∫ h

0
Hn−2

(
y√
τ

)
e
−y2
2τ

(
h− y
h

)
dy
)2

dt1dτ

= 28(n− 2)!
2πh2 log(1/h)

∫ t

0

1
τ

(∫ h√
τ

0
Hn−2(x)e−x2/2

(
1− x

√
τ

h

)
√
τdx

)2

(t− τ)dτ,
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and finally allowing h√
τ

= u we obtain

E(I2
3 ) = 28(n− 2)!

2πh2 log(1/h)

∫ ∞
h√
t

(∫ u

0
Hn−2(x)e−x2/2

(
1− x

u

)
dx
)2
(
t− h2

u2

)
2h2

u3 du.

Now we compute the limit when h tends to zero, using Hôpital’s Theorem
twice

lim
h→0

E(I2
3 ) = lim

h→0

29(n− 2)!
2π

∫∞
h/
√
t

(∫ u
0 Hn−2(x)e−x2/2 (1− x

u

)
dx
)2 (−2)h

u5 du
−1/h

= lim
h→0

210(n− 2)!
2π

−1√
t

(∫ h√
t

0 Hn−2(x)e−x2/2
(
1− x

√
t

h

)
dx
)2

t5/2

h5

−2/h3 ,

and to finish this part we consider

∫ h√
t

0 Hn−2(x)e−x2/2
(
1− x

√
t

h

)
dx

h

and using again Hôpital’s Theorem twice we compute its limit, when h tends to
zero, which finally leads to the desired result

lim
h→0

E(I2
3 ) = 26t(n− 2)!

π

(
lim
h→0

Hn−2( h√
t
)
)2

= 26t(n− 2)!
π2n−2

((
n−2

2

)
!
)2 .

Lemma 3.2.4. Let the above notation prevail. Then, for each n ≥ 0, 16
n!h2

√
log(1/h)

Ψ3
n,h(t1 ∧ . . . ∧ tn, t1 ∨ . . . ∨ tn)

⊗p h→0−→ 0 (3.2.10)

for p = 1, . . . , n− 1.

Proof. Since Ψ3
n,h is zero for any odd n, we will consider n to be a non-zero even

number along the proof, i.e. n = 2k, k ∈ N∗. Let us first recall that the contraction
of order p of Ψ3

n,h is defined to be
(

Ψ3
n,h(

n∧
j=1

tj,
n∨
j=1

tj)
)⊗p

=
∫

[0,t]p
Ψ3
n,h(

p∧
j=1

tj ∧
n∧

j=p+1
tj,

p∨
j=1

tj ∨
n∨

j=p+1
tj))

×Ψ3
n,h(

p∧
j=1

tj ∧
n∧

j=p+1
sj,

p∨
j=1

tj ∨
n∨

j=p+1
sj))dt1 . . . dtp.
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Let us now observe that

Ψ3
n,h(

p∧
j=1

tj ∧
n∧

j=p+1
tj,

p∨
j=1

tj ∨
n∨

j=p+1
tj)) =

p!(n− p)!1{t1≤...≤tp}1{tp+1≤...≤tn}Ψ3
n,h(t1 ∧ tp+1, tp ∨ tn).

Taking into account the expression (3.2.9) and since Hn−2(x)e−x2 has a uniform
bound Cn, it follows that

|Ψ3
n,h(t1 ∧ tp+1, tp ∨ tn)| ≤ Cn(tp ∨ tn − t1 ∧ tp+1)−

n−1
2

∫ h

0
(h− y)dy

= Cn
h2

2 (tp ∨ tn − t1 ∧ tp+1)−
n−1

2 .

Therefore we can bound the L2([0, t]2(n−p)) norm of (3.2.10) by

∫
∆n−p
t ×∆n−p

t

( ∫
∆p
t

82C2
n(

n
p

)2
log 1/h

(tp ∨ tn − t1 ∧ tp+1)−
n−1

2

× (tp ∨ sn − t1 ∧ sp+1)−
n−1

2 dt1· · · dtp
)2

dtp+1· · · dtndsp+1· · · dsn,

and since log 1/h goes to zero as h tends to zero, we can prove the result by showing
the boundedness of

Tn :=
∫

∆n−p
t ×∆n−p

t

( ∫
∆p
t

(tp ∨ tn − t1 ∧ tp+1)−
n−1

2

× (tp ∨ sn − t1 ∧ sp+1)−
n−1

2 dt1· · · dtp
)2

dtp+1· · · dtndsp+1· · · dsn. (3.2.11)

The study of the boundedness of Tn involves a lot of computations. The reader
can find these computations in the following Appendix.
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Appendix A

Further details on the proof of
Lemma 3.2.4

In this appendix we shall provide more details on the proof of Lemma 3.2.4. Recall
that we reduced our problem to bound the following expression

Tn :=
∫

∆n−p
t ×∆n−p

t

( ∫
∆p
t

(tp ∨ tn − t1 ∧ tp+1)−
n−1

2

× (tp ∨ sn − t1 ∧ sp+1)−
n−1

2 dt1· · · dtp
)2

dtp+1· · · dtndsp+1· · · dsn, (A.0.1)

where n is an even number and p = 1, . . . , n − 1. First of all we will prove the
boundedness of (A.0.1) for n = 2, p = 1 and p = n− 1. Then we will provide the
computations of the ‘general case’ p = 2, . . . , n− 2, n 6= 2.

Along this appendix ε will be a number in the interval (0, 1
2).

A.1 Case n = 2
In this case, p = 1 and from (A.0.1) we get that

T2 =
∫

[0,t]2

(∫ t

0
(t1 ∨ t2 − t1 ∧ t2)− 1

2 (t1 ∨ s2 − t1 ∧ s2)− 1
2 dt1

)2
dt2ds2

= 2
∫ t

0

∫ t

t2

(∫ t

0
(t1 ∨ t2 − t1 ∧ t2)− 1

2 (t1 ∨ s2 − t1 ∧ s2)− 1
2 dt1

)2
ds2dt2,

where the last equality holds true thanks to the symmetry with respect to s2 and
t2. Now this case is reduced to study the following 3 possibilities.

Subcase 1 t1 ≤ t2 ≤ s2.
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A.2 Case p = 1 (n 6= 2)

In this situation, we can easily see that

T2 = 2
∫ t

0

∫ t

t2

(∫ t2

0
(t2 − t1)− 1

2 (s2 − t1)− 1
2 dt1

)2
ds2dt2

≤ 2
∫ t

0

∫ t

t2

(∫ t2

0
(t2 − t1)− 1

2 (s2 − t2)− 1
4 (t2 − t1)− 1

4 dt1
)2

ds2dt2 <∞.

Subcase 2 t2 ≤ t1 ≤ s2.

We will start by noticing that

T2 = 2
∫ t

0

∫ t

t2

(∫ s2

t2
(t1 − t2)− 1

2 (s2 − t1)− 1
2 dt1

)2
ds2dt2

= 2
∫ t

0

∫ t

t2

∫ s2

t2

∫ s2

t2
(t1 − t2)− 1

2 (s2 − t1)− 1
2 (t′ − t2)− 1

2 (s2 − t′)−
1
2 dt1dt′ds2dt2

= 4
∫
{t2≤t1≤t′≤s2}

(t1 − t2)− 1
2 (s2 − t1)− 1

2 (t′ − t2)− 1
2 (s2 − t′)−

1
2 dt2dt1dt′ds2,

where we used the symmetry with respect to t1 and t′ in the last step. We notice
that (t′ − t2)− 1

2 ≤ (t′ − t1)− 1
2 and we obtain that

T2 ≤ 4
∫
{t2≤t1≤t′≤s2}

(t1 − t2)− 1
2 (s2 − t1)− 1

2 (t′ − t1)− 1
2 (s2 − t′)−

1
2 dt2dt1dt′ds2

= 4
∫
{t1≤t′≤s2}

[
−2(t1 − t2) 1

2
]t1
0

(s2 − t1)− 1
2 (t′ − t1)− 1

2 (s2 − t′)−
1
2 dt1dt′ds2.

Since 2
√
t1 ≤ 2

√
t and (s2 − t1)− 1

2 ≤ (s2 − t′)−
1
4 (t′ − t1)− 1

4 we finally obtain that

T2 ≤ 8
√
t
∫
{t1≤t′≤s2}

(s2 − t′)−
3
4 (t′ − t1)− 3

4 dt1dt′ds2 <∞

Subcase 3 t2 ≤ s2 ≤ t1.

This situation can be dealt with an argument almost identical to the first situation.

A.2 Case p = 1 (n 6= 2)
In this case, since n is an even number greater or equal than four, if we first
compute the integrals with respect to t3, . . . , tn−1, s3, . . . , sn−1 we obtain that

Tn =
∫

∆n−1
t ×∆n−1

t

(∫ t

0
(t1 ∨ tn − t1 ∧ t2)−

n−1
2

× (t1 ∨ sn − t1 ∧ s2)−
n−1

2 dt1
)2

dt2· · · dtnds2· · · dsn

≤ Cn
∫

∆2
t×∆2

t

(∫ t

0
(t1 ∨ tn − t1 ∧ t2)−1(t1 ∨ sn − t1 ∧ s2)−1dt1

)2
dt2dtnds2dsn,

72



Appendix A. Further details on the proof of Lemma 3.2.4

where we used that (tn − t2)n−3 ≤ (t1 ∨ tn − t1 ∧ t2)n−3 and (sn − s2)n−3 ≤
(t1 ∨ sn− t1 ∧ s2)n−3. Thanks to the symmetry with respect to t2, tn and s2, sn we
can reduce the problem to study the boundedness in the following 3 cases

Subcase 1 t2 ≤ tn ≤ s2 ≤ sn,

Subcase 2 t2 ≤ s2 ≤ tn ≤ sn,

Subcase 3 t2 ≤ s2 ≤ sn ≤ tn

and for each one of these cases we have 5 possible positions for t1. We shall proceed
to show some of the computations involved in the study of these cases.

Along this section we will omit the constant Cn for the sake of readability.

1 A) 0 ≤ t1 ≤ t2 ≤ tn ≤ s2 ≤ sn ≤ t.

With this order we have

Tn ≤
∫

∆4
t

(∫ t2

0
(tn − t1)−1(sn − t1)−1dt1

)2
dt2dtnds2dsn (A.2.1)

and taking into account that (sn− t1)−1 ≤ (tn− t1)−ε(sn− tn)−1+ε we obtain that

Tn ≤
∫

∆4
t

(∫ t2

0
(tn − t1)−1−εdt1

)2
(sn − tn)−2+2εdt2dtnds2dsn

≤
∫

∆3
t

(tn − t2)−2ε

ε2 (sn − tn)−1+2εdt2dtndsn <∞,

where we used that 0 ≤ (tn − t2)−ε − t−εn ≤ (tn − t2)−ε.
The following situations

1 E) 0 ≤ t2 ≤ tn ≤ s2 ≤ sn ≤ t1 ≤ t,

2 A) 0 ≤ t1 ≤ t2 ≤ s2 ≤ tn ≤ sn ≤ t and

2 E) 0 ≤ t2 ≤ s2 ≤ tn ≤ sn ≤ t1 ≤ t

can be studied with a reasoning similar to situation 1 A).

1 B) 0 ≤ t2 ≤ t1 ≤ tn ≤ s2 ≤ sn ≤ t.
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Now we can write Tn as follows

Tn ≤
∫

∆4
t

(∫ tn

t2
(tn − t2)−1(sn − t1)−1dt1

)2
dt2dtnds2dsn.

After integrating with respect to s2 we use that (sn−t1)−1 ≤ (tn−t1)−ε(sn−tn)−1+ε

to get that

Tn ≤
∫

∆3
t

(∫ tn

t2
(sn − t1)−1dt1

)2
(tn − t2)−2(sn − tn)dt2dtndsn

≤
∫

∆3
t

(∫ tn

t2
(tn − t1)−εdt1

)2
(tn − t2)−2(sn − tn)−1+2εdt2dtndsn,

and finally integrating with respect to t1 we conclude that

Tn ≤
∫

∆3
t

(tn − t2)2−2ε

(1− ε)2 (tn − t2)−2(sn − tn)−1+2ε <∞

In the situation

1 D) 0 ≤ t2 ≤ tn ≤ s2 ≤ t1 ≤ sn ≤ t

Tn can also be proved to be bounded in a similar way to 1 B).

1 C) 0 ≤ t2 ≤ tn ≤ t1 ≤ s2 ≤ sn ≤ t.

In this situation we have

Tn ≤
∫

∆4
t

(∫ s2

tn
(t1 − t2)−1(sn − t1)−1dt1

)2
dt2dtnds2dsn

=
∫

∆4
t

∫ s2

tn

∫ s2

tn
(t1 − t2)−1(sn − t1)−1(t′ − t2)−1(sn − t′)−1dt1dt′dt2dtnds2dsn.

Using the symmetry with respect to t1, t′ and integrating with respect to tn and
s2 we obtain that

Tn ≤ 2
∫

∆4
t

(t1 − t2)−1(sn − t1)−1(t′ − t2)−1(sn − t′)−1(t1 − t2)(sn − t′)dt2dt1dt′dsn

≤ 2
∫

∆4
t

(t1 − t2)
−1
2 (sn − t1)

−1
2 (t′ − t2)

−1
2 (sn − t′)

−1
2 dt2dt1dt′dsn,

where we used that (t1−t2) ≤ (t1−t2) 1
2 (t′−t2) 1

2 and (sn−t′) ≤ (sn−t1) 1
2 (sn−t′)

1
2 to

obtain the last inequality. It only remains to observe that we have already studied
this integral in situation 2 of case n = 2.
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2 B) 0 ≤ t2 ≤ t1 ≤ s2 ≤ tn ≤ sn ≤ t

With this order Tn can be written as

Tn ≤
∫

∆4
t

(∫ s2

t2
(tn − t2)−1(sn − t1)−1dt1

)2
dt2ds2dtndsn.

Since in this case we cannot directly integrate with respect s2 as in case 1 B)
we shall start by using that (sn − t1)−1 ≤ (tn − t1)−ε(sn − s2)−1+ε to obtain that

Tn ≤
∫

∆4
t

(∫ s2

t2
(tn − t1)−εdt1

)2
(tn − t2)−2(sn − s2)−2+2εdt2ds2dtndsn.

Now integrating with respect t1 and sn (we recall that Tn ≥ 0) we finally obtain
that

Tn ≤
∫

∆3
t

(tn − t2)2−2ε

(1− ε)2 (tn − t2)−2(tn − s2)−1+2εdt2ds2dtn <∞.

Again, situation

2 D) 0 ≤ t2 ≤ s2 ≤ tn ≤ t1 ≤ sn ≤ t

can be dealt with a similar argument.

2 C) 0 ≤ t2 ≤ s2 ≤ t1 ≤ tn ≤ sn ≤ t

We first observe that

Tn ≤
∫

∆4
t

(∫ tn

s2
(tn − t2)−1(sn − s2)−1dt1

)2
dt2ds2dtndsn

≤
∫

∆4
t

(tn − s2)2(tn − t2)−2(sn − s2)−2dt2ds2dtndsn.

Considering that (tn − s2)2 ≤ (tn − t2)1+ε(sn − s2)1−ε we finally obtain that

Tn ≤
∫

∆4
t

(tn − t2)−1+ε(sn − s2)−1−εdt2ds2dtndsn

≤
∫

∆3
t

(tn − t2)−1+ε (tn − s2)−ε

ε
dt2ds2dtn <∞.

3 A) 0 ≤ t1 ≤ t2 ≤ s2 ≤ tn ≤ sn ≤ t.
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Now Tn becomes as follows

Tn ≤
∫

∆4
t

(∫ t2

0
(tn − t1)−1(sn − t1)−1dt1

)2
dt2ds2dsndtn

and using that (tn − t1)−1 ≤ (sn − t1)−ε(tn − s2)−1+ε we obtain that

Tn ≤
∫

∆4
t

(∫ t2

0
(sn − t1)−1−εdt1

)2
(tn − s2)−2+2εdt2ds2dsndtn

≤
∫

∆3
t

(sn − t2)−2ε

ε2
(tn − sn)−1+2ε

1− 2ε dt2dsndtn <∞.

Situations

3 B) 0 ≤ t2 ≤ t1 ≤ s2 ≤ sn ≤ tn ≤ t,

3 D) 0 ≤ t2 ≤ s2 ≤ sn ≤ t1 ≤ tn ≤ t and

3 E) 0 ≤ t2 ≤ s2 ≤ sn ≤ tn ≤ t1 ≤ t

can be studied in a similar way.

3 C) 0 ≤ t2 ≤ s2 ≤ t1 ≤ sn ≤ tn ≤ t

Observing that

Tn ≤
∫

∆4
t

(∫ sn

s2
(tn − t2)−1(sn − s2)−1dt1

)2
dt2ds2dsndtn

≤
∫

∆4
t

(sn − s2)2(tn − t2)−2(sn − s2)−2dt2ds2dsndtn

we can conclude that Tn ≤ t2

4 <∞.

A.3 Case p = n− 1 (n 6= 2)
In this case we can rewrite Tn as follows

Tn = Cn

∫
∆2
t

(∫
∆2
t

(tn−1 ∨ tn − t1 ∧ tn)−
n−1

2

× (tn−1 ∨ tn − t1 ∧ tn)−
n−1

2 (tn−1 − t1)n−3dt1dtn−1

)2

dtndsn

≤ Cn
∫

∆2
t

(∫
∆2
t

(tn−1 ∨ tn − t1 ∧ tn)−1(tn−1 ∨ sn − t1 ∧ sn)−1dt1dtn−1

)2

dtndsn,
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where we used that (tn−1− t1)n−3 ≤ (tn−1 ∨ tn− t1 ∧ tn)n−3
2 (tn−1 ∨ sn− t1 ∧ sn)n−3

2 .
We have 6 different ways of sorting t1, tn−1 with respect to tn, sn. We shall now

study each one of this orderings.
Along this section we will omit the constant Cn for the sake of readability.

Case 1 0 ≤ t1 ≤ tn−1 ≤ tn ≤ sn ≤ t

We first observe that

Tn ≤
∫

∆2
t

(∫
∆2
t

1{tn−1≤tn}(tn − t1)−1(sn − t1)−1dt1dtn−1

)2

dtndsn

≤
∫

∆2
t

(∫ tn

0
(tn − t1)−1(sn − t1)−1(tn − t1)dt1

)2
dtndsn.

And now, by using that (tn−t1) ≤ (tn−t1)ε(sn−t1)1−ε and (sn−t1)−ε ≤ (sn−tn)−ε
we conclude that

Tn ≤
∫

∆2
t

(∫ tn

0
(tn − t1)−1+εdt1

)2
(sn − tn)−2εdtndsn <∞

Also,

Case 6 0 ≤ tn ≤ sn ≤ t1 ≤ tn−1 ≤ t

can be studied in a similar fashion.

Case 2 0 ≤ t1 ≤ tn ≤ tn−1 ≤ sn ≤ t

Taking into account the order we have, we get that

Tn ≤
∫

∆2
t

(∫
∆2
t

1{t1≤tn≤tn−1}(tn−1 − t1)−1(sn − t1)−1dt1dtn−1

)2

dtndsn.

After using that (sn − t1)−1 ≤ (sn − tn)− 1
2 +ε(tn−1 − t1)− 1

2−ε we obtain that

Tn ≤
∫

∆2
t

(∫
∆2
t

1{t1≤tn≤tn−1}(tn−1 − t1)− 3
2−εdt1dtn−1

)2

(sn − tn)−1+2εdtndsn

≤
∫

∆2
t

∫ tn

0

(tn − t1)− 1
2−ε

1
2 + ε

dt1

2

(sn − tn)−1+2εdtndsn <∞

Again we notice that

Case 5 0 ≤ tn ≤ t1 ≤ sn ≤ tn−1 ≤ t
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can be dealt with a similar procedure.

Case 3 0 ≤ t1 ≤ tn ≤ sn ≤ tn−1 ≤ t

In this case we have that

Tn ≤
∫

∆2
t

(∫
∆2
t

1{t1≤tn≤sn≤tn−1}(tn−1 − t1)−1(tn−1 − t1)−1dt1dtn−1

)2

dtndsn.

Now using that (tn−1 − t1)−2 ≤ (tn−1 − t1)−2+ε(sn − tn)−ε we get that

Tn ≤
∫

∆2
t

(∫
∆2
t

1{t1≤tn≤sn≤tn−1}(tn−1 − t1)−2+εdt1dtn−1

)2

(sn − tn)−2εdtndsn

≤
∫

∆2
t

(∫ tn

0

(sn − t1)−1+ε

1− ε dt1
)2

(sn − tn)−2εdtndsn <∞.

Case 4 0 ≤ tn ≤ t1 ≤ tn−1 ≤ sn ≤ t

In this case we can bound Tn by∫
∆2
t

( ∫
∆2
t

1{tn≤t1≤tn−1≤sn}(tn−1 − tn)−1(sn − t1)−1dt1dtn−1

)2
dtndsn

and using the inequality (a+b)2 ≤ 2(a2 +b2) we can split this expression as follows

2
∫

∆2
t

(∫
∆2

t

1{tn≤t1≤tn−1≤sn}1{tn−1−tn≤sn−t1}(tn−1 − tn)−1(sn − t1)−1dt1dtn−1

)2
+

+
(∫

∆2
t

1{tn≤t1≤tn−1≤sn}1{tn−1−tn≥sn−t1}(tn−1 − tn)−1(sn − t1)−1dt1dtn−1

)2
dtndsn

:= (I) + (II).

We shall prove the boundedness of (I), and the reader can check that similar
computations proof the boundedness of (II).

Since in (I) we have tn−1 − tn ≤ sn − t1 we can see that (sn − t1)−1 ≤ (sn −
t1)− 1

2 (tn−1 − tn)− 1
2 and we obtain that

(I) ≤ 2
∫

∆2
t

( ∫
∆2
t

1{tn≤t1≤tn−1≤sn}(tn−1 − tn)− 3
2 (sn − t1)− 1

2 dt1dtn−1

)2
dtndsn

≤ 2
∫

∆2
t

( ∫ sn

tn
2(t1 − tn)− 1

2 (sn − t1)− 1
2 dt1

)2
dtndsn

≤ 8
∫

∆4
t

(t1 − tn)− 1
2 (sn − t1)− 1

2 (t′ − tn)− 1
2 (sn − t′)−

1
2 dtndt1dt′dsn,

where we used the symmetry with respect t1, t′ in the last step. To finish, we
notice that we have just found the same integral we studied in situation 2 of
case n = 2.
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A.4 Case p = 2, . . . , n− 2 (n 6= 2)
In this general case we consider the parameters p = 2, . . . , n− 2 and n 6= 2, i.e., n
is an even number greater or equal than 4.

Integrating (A.0.1) with respect to t2, . . . , tp−1, tp+2, . . . , tn−1, sp+2, . . . , sn−1 and
taking into account that

• (tp − t1)p−2 ≤ (tp ∨ tn − t1 ∧ tp+1) p−2
2 (tp ∨ sn − t1 ∧ sp+1) p−2

2

• (tn − tp+1)n−p−2 ≤ (tp ∨ tn − t1 ∧ tp+1)n−p−2

• (sn − sp+1)n−p−2 ≤ (tp ∨ sn − t1 ∧ sp+1)n−p−2

we can bound Tn (omitting constants depending on n, p) as follows

Tn ≤
∫

∆2
t×∆2

t

( ∫
∆2
t

(tp ∨ tn − t1 ∧ tp+1)− 3
2

× (tp ∨ sn − t1 ∧ sp+1)− 3
2 dt1dtp

)2
dtp+1dtndsp+1dsn. (A.4.1)

Let us now observe that we can sort tp+1, tn, sp+1, sn in 6 different ways that,
by symmetry, can be reduced to the following 3

1 tp+1 ≤ tn ≤ sp+1 ≤ sn

2 tp+1 ≤ sp+1 ≤ tn ≤ sn

3 tp+1 ≤ sp+1 ≤ sn ≤ tn.

Moreover, for each one of these three cases we can sort t1, tp in 15 different ways.
Below we shall provide a sketch of the computations involving most of these 45
cases.

1 A) 0 ≤ t1 ≤ tp ≤ tp+1 ≤ tn ≤ sp+1 ≤ sn ≤ t

Considering (A.4.1), taking into account the order we have in this case and then
integrating with respect to tp and sp+1 we obtain

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp≤tp+1}(tn − t1)− 3
2 (sn − t1)− 3

2 dt1dtp
)2

dtp+1dtndsp+1dsn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (tp+1 − t1)dt1

)2
(sn − tn)dtp+1dtndsn.
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We now observe that (tp+1 − t1) ≤ (tn − t1)ε(sn − t1)1−ε and (sn − t1)− 1
2−ε ≤

(sn − tn)− 1
2−ε to conclude that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 +εdt1
)2

(sn − tn)−2εdtp+1dtndsn

≤
∫

∆3
t

(tn − tp+1)−1+2ε

(1
2 − ε)2 (sn − tn)−2εdtp+1dtndsn <∞.

1 B) 0 ≤ t1 ≤ tp+1 ≤ tp ≤ tn ≤ sp+1 ≤ sn ≤ t

Considering the order in this case we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤tp≤tn}(tn − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn,

and integrating with respect to tp and sp+1

Tn ≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (tn − tp+1)dt1

)2
(sn − tn)dtp+1dtndsn.

We now point out that (tn − tp+1) ≤ (tn − t1)ε(sn − t1)1−ε and (sn − t1)− 1
2−ε ≤

(sn − tn)− 1
2−ε to see that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 +εdt1
)2

(sn − tn)−2εdtp+1dtndsn,

which turns out to be the same integral we studied in case 1 A).

1 C) 0 ≤ t1 ≤ tp+1 ≤ tn ≤ tp ≤ sp+1 ≤ sn ≤ t

In this case,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤tn≤tp≤sp+1}(tp − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn.

We first notice that we can integrate with respect to tp and sp+1

Tn ≤
∫

∆3
t

(∫ tp+1

0
2(tn − t1)− 1

2 (sn − t1)− 3
2 dt1

)2
(sn − tn)dtp+1dtndsn,
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and now, using that (sn − t1)− 3
2 ≤ (sn − tn)−1+ε(tn − t1)− 1

2−ε, we conclude that

Tn ≤ 4
∫

∆3
t

(∫ tp+1

0
(tn − t1)−1−εdt1

)2
(sn − tn)−1+2εdtp+1dtndsn

≤ 4
∫

∆3
t

(tn − tp+1)−2ε

ε2 (sn − tn)−1+2εdtp+1dtndsn <∞.

1 D) 0 ≤ t1 ≤ tp+1 ≤ tn ≤ sp+1 ≤ tp ≤ sn ≤ t

In this situation, (A.4.1) becomes

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{sp+1≤tp≤sn}(tp − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn.

Again, integrating with respect to tp and tn we obtain

Tn ≤
∫

∆3
t

(∫ tp+1

0
2(sp+1 − t1)− 1

2 (sn − t1)− 3
2 dt1

)2
(sp+1 − tp+1)dtp+1dsp+1dsn

and using that (sp+1 − tp+1) ≤ (sn − tp+1) and (sn − t1)− 3
2 ≤ (sp+1 − t1)− 1

2−ε(sn −
tp+1)−1+ε we conclude that

Tn ≤ 4
∫

∆3
t

(∫ tp+1

0
(sp+1 − t1)−1−εdt1

)2
(sn − tp+1)−1+2εdtp+1dsp+1dsn

≤ 4
∫

∆3
t

(sp+1 − tp+1)−2ε

ε2 (sn − tp+1)−1+2εdtp+1dsp+1dsn <∞.

1 E) 0 ≤ t1 ≤ tp+1 ≤ tn ≤ sp+1 ≤ sn ≤ tp ≤ t

Taking into account this order, we have that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{sn≤tp}(tp − t1)−3dt1dtp
)2

dtp+1dtndsp+1dsn.

If we now use that (tp − t1)−3 ≤ (tp − t1)−3+ε(sn − sp+1)−ε we get

Tn ≤
∫

∆4
t

(∫ tp+1

0

(sn − t1)−2+ε

2− ε dt1
)2

(sn − sp+1)−2εdtp+1dtndsp+1dsn

≤
∫

∆4
t

(sn − tp+1)−2+2ε

(2− ε)2(1− ε)2 (sn − sp+1)−2εdtp+1dtndsp+1dsn.
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To conclude we integrate with respect to tp+1 to obtain that

Tn ≤
∫

∆3
t

(sn − tn)−1+2ε

(2− ε)2(1− ε)2(1− 2ε)(sn − sp+1)−2εdtndsp+1dsn <∞.

1 F) 0 ≤ tp+1 ≤ t1 ≤ tp ≤ tn ≤ sp+1 ≤ sn ≤ t

In this situation we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tp≤tn}(tn − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn

≤
∫

∆4
t

(∫ tn

tp+1
(tn − tp+1)− 3

2 (sn − t1)− 3
2 (tn − t1)dt1

)2

dtp+1dtndsp+1dsn.

First using that (tn − t1) ≤ (tn − tp+1)1−ε(sn − t1)ε and then writing the square of
the integral as a double integral we obtain that

Tn ≤
∫

∆4
t

( ∫ tn

tp+1
(tn − tp+1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
dtp+1dtndsp+1dsn

≤ 2
∫

∆6
t

(tn − tp+1)−1−2ε(sn − t1)− 3
2 +ε(sn − t′)−

3
2 +εdtp+1dt1dt′dtndsp+1dsn.

To conclude, we integrate with respect to tp+1 and sp+1

Tn ≤ 2
∫

∆4
t

(tn − t1)−2ε

2ε (sn − t1)− 3
2 +ε(sn − t′)−

3
2 +ε(sn − tn)dt1dt′dtndsn

and we finally use that (sn − t1)− 3
2 +ε ≤ (sn − tn)− 3

2 +ε to obtain that

Tn ≤ 2
∫

∆4
t

(tn − t1)−2ε

2ε
(sn − tn)− 1

2 +ε

1
2 − ε

(sn − tn)− 1
2 +εdt1dtndsn

≤ 2
∫

∆4
t

(tn − t1)−2ε

2ε
(sn − tn)−1+2ε

1
2 − ε

dt1dtndsn <∞.

1 G) 0 ≤ tp+1 ≤ t1 ≤ tn ≤ tp ≤ sp+1 ≤ sn ≤ t

We first observe that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tn≤tp≤sp+1}(tp − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn,
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and by means of inequality (a+ b)2 ≤ 2(a2 + b2) we can split Tn as follows

2
∫

∆4
t

(∫
∆2

t

1{tp+1≤t1≤tn≤tp≤sp+1}1{tp−tp+1≤sn−t1}(tp − tp+1)− 3
2 (sn − t1)− 3

2 dt1dtp

)2

+
(∫

∆2
t

1{tp+1≤t1≤tn≤tp≤sp+1}1{tp−tp+1≥sn−t1}(tp − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn

:= (I) + (II).

We shall prove the boundedness of (I), and the reader can check that similar
computations prove the boundedness of (II). In case (I), we have tp−tp+1 ≤ sn−t1
and hence (sn− t1)− 3

2 ≤ (tn− tp+1)−ε(sn− t1)− 3
2 +ε. Using this inequality and then

integrating with respect to tp we see that

(I) ≤ 2
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tn≤tp≤sp+1}(tp − tp+1)− 3
2−ε

× (sn − t1)− 3
2 +εdt1dtp

)2

dtp+1dtndsp+1dsn

≤ Cε

∫
∆4
t

(∫ tn

tp+1
(tn − tp+1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2

dtp+1dtndsp+1dsn,

where Cε is a constant that depends only on ε. We finally observe that we studied
this last integral along the proof of case 1 F).

1 H) 0 ≤ tp+1 ≤ t1 ≤ tn ≤ sp+1 ≤ tp ≤ sn ≤ t

In this case,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tn≤sp+1≤tp≤sn}(tp − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dtndsp+1dsn.

If we now integrate with respect to t1 and tp we obtain that

Tn ≤ 4
∫

∆4
t

(sp+1 − tp+1)−1(sn − tn)−1dtp+1dtndsp+1dsn

≤ 4
∫

∆4
t

(sp+1 − tp+1)−1(sn − tn)−1
(
1{sp+1−tp+1≤sn−tn}

+ 1{sn−tn≤sp+1−tp+1}

)
dtp+1dtndsp+1dsn,
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where we have split the integral into two parts. We will again study the first
part, leaving the details of the second part to the reader. In the first part, since
sp+1 − tp+1 ≤ sn − tn we have that (sn − tn)−1 ≤ (sn − tn)−1+ε(sp+1 − tp+1)−ε and
we can conclude that it can be bounded by

4
∫

∆4
t

(sp+1 − tp+1)−1−ε(sn − tn)−1+εdtp+1dtndsp+1dsn

≤ 4
∫

∆3
t

(sp+1 − tn)−ε

ε
(sn − tn)−1+εdtndsp+1dsn <∞.

1 I) 0 ≤ tp+1 ≤ t1 ≤ tn ≤ sp+1 ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 1 D).

1 J) 0 ≤ tp+1 ≤ tn ≤ t1 ≤ tp ≤ sp+1 ≤ sn ≤ t

In this case,

Tn ≤
∫

∆4
t

(∫
∆2

t

1{tn≤t1≤tp≤sp+1}(tp − tp+1)− 3
2 (sn − t1)− 3

2 dt1dtp

)2

dtp+1dtndsp+1dsn

≤ 2
∫

∆4
t

(∫
∆2

t

1{tn≤t1≤tp≤sp+1}1{tp−tp+1≤sn−t1}(tp − tp+1)− 3
2 (sn − t1)− 3

2 dt1dtp

)2

+
(∫

∆2
t

1{tn≤t1≤tp≤sp+1}1{tp−tp+1≥sn−t1}

× (tp − tp+1)− 3
2 (sn − t1)− 3

2 dt1dtp

)2

dtp+1dtndsp+1dsn

:= (I) + (II).

We shall prove the boundedness of (I), and the reader can check that similar
computations prove the boundedness of (II).

Since (tp − tp+1) ≤ (sn − t1), we have (sn − t1)−ε ≤ (tp − tp+1)−ε and we can
bound (I) by∫

∆4
t

(∫
∆2

t

1{tn≤t1≤tp≤sp+1}(tp − tp+1)
−3
2 −ε(sn − t1)

−3
2 +εdt1dtp

)2
dtp+1dtndsp+1dsn

≤ Cε

∫
∆4

t

(∫ sp+1

tn

(t1 − tp+1)
−1
2 −ε(sn − t1)

−3
2 +εdt1

)2
dtp+1dtndsp+1dsn.

We now develop the square of the integral with respect to t1 as a double integral
with respect to t1, t

′
1. Moreover, by symmetry, we can assume t1 ≤ t′1 and we
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obtain

(I) ≤ Cε

∫
∆6

t

(t1 − tp+1)
−1
2 −ε(sn − t1)

−3
2 +ε

× (t′1 − tp+1)
−1
2 −ε(sn − t′1)

−3
2 +εdtp+1dtndt1dt′1dsp+1dsn

= Cε

∫
∆4

t

(t1 − tp+1) 1
2−ε(sn − t1)

−3
2 +ε(t′1 − tp+1)

−1
2 −ε(sn − t′1)

−1
2 +εdtp+1dt1dt′1dsn.

Finally, using the fact that (t1 − tp+1) 1
2−ε ≤ (t′1 − tp+1) 1

2−ε, we can conclude that

(I) ≤ Cε

∫
∆4

t

(sn − t1)
−3
2 +ε(t′1 − tp+1)−2ε(sn − t′1)

−1
2 +εdtp+1dt1dt′1dsn

≤ Cε

∫
∆3

t

(sn − t′1)
−1
2 +ε(t′1 − tp+1)−2ε(sn − t′1)

−1
2 +εdtp+1dt′1dsn <∞.

1 K) 0 ≤ tp+1 ≤ tn ≤ t1 ≤ sp+1 ≤ tp ≤ sn ≤ t

This situation can be studied in a similar way than situation 1 G).

1 L) 0 ≤ tp+1 ≤ tn ≤ t1 ≤ sp+1 ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 1 C).

1 M) 0 ≤ tp+1 ≤ tn ≤ sp+1 ≤ t1 ≤ tp ≤ sn ≤ t

This situation can be studied in a similar way than situation 1 F).

1 N) 0 ≤ tp+1 ≤ tn ≤ sp+1 ≤ t1 ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 1 B).

1 O) 0 ≤ tp+1 ≤ tn ≤ sp+1 ≤ sn ≤ t1 ≤ tp ≤ t

This situation can be studied in a similar way than situation 1 A).

2 A) 0 ≤ t1 ≤ tp ≤ tp+1 ≤ sp+1 ≤ tn ≤ sn ≤ t
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Considering (A.4.1), taking into account the order we have in this case and then
integrating with respect to tp and sp+1 we obtain

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp≤tp+1}(tn − t1)−
3
2 (sn − t1)−

3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)−

3
2 (sn − t1)−

3
2 (tp+1 − t1)dt1

)2
(tn − tp+1)dtp+1dtndsn.

We now observe that (tp+1 − t1) ≤ (sn − t1)ε(tn − t1)1−ε and (tn − t1)− 1
2−ε ≤

(tn − tp+1)− 1
2−ε to conclude that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−2εdtp+1dtndsn

≤
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dtndsn <∞.

2 B) 0 ≤ t1 ≤ tp+1 ≤ tp ≤ sp+1 ≤ tn ≤ sn ≤ t

In this situation,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤tp≤sp+1}(tn − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn.

If we now integrate with respect to tp

Tn ≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (sp+1 − tp+1)dt1

)2
dtp+1dsp+1dtndsn,

and we use that (sp+1 − tp+1) ≤ (sn − t1)ε(tn − t1)1−ε to get that

Tn ≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
dtp+1dsp+1dtndsn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
(tn − tp+1)dtp+1dtndsn.

Finally we notice that (tn − t1)− 1
2−ε ≤ (tn − tp+1)− 1

2−ε to conclude that

Tn ≤
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dtndsn <∞.
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2 C) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ tp ≤ tn ≤ sn ≤ t

Considering the order in this case we have that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤sp+1≤tp≤tn}(tn − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (tn − sp+1)dt1

)2
dtp+1dsp+1dtndsn.

By means of the inequality (tn − sp+1) ≤ (sn − t1)ε(tn − t1)1−ε we obtain that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
(tn − tp+1)dtp+1dtndsn,

which we have already studied in case 2 B).

2 D) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ tn ≤ tp ≤ sn ≤ t

In this situation, (A.4.1) becomes

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{tn≤tp≤sn}(tp − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆3
t

(∫ tp+1

0
2(tn − t1)− 1

2 (sn − t1)− 3
2 dt1

)2
(tn − tp+1)dtp+1dtndsn.

We now notice that (tn − tp+1) ≤ (tn − tp+1)1−2ε(sn − t1)2ε and (tn − t1)− 1
2 ≤

(tn − tp+1)− 1
2 to obtain that

Tn ≤ 2
∫

∆3
t

(∫ tp+1

0
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−2εdtp+1dtndsn

≤ 2
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dtndsn <∞.

2 E) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ tn ≤ sn ≤ tp ≤ t
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Taking into account this order, we have that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{sn≤tp}(tp − t1)−3dt1dtp
)2

dtp+1dsp+1dtndsn.

If we now use that (tp − t1)−3 ≤ (tp − t1)−3+ε(sn − tn)−ε we get

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{sn≤tp}(tp − t1)−3+εdt1dtp
)2

× (sn − tn)−2εdtp+1dsp+1dtndsn

≤
∫

∆3
t

(∫ tp+1

0

(sn − t1)−2+ε

2− ε dt1
)2

(sn − tn)−2ε(tn − tp+1)dtp+1dtndsn.

To conclude we notice that (tn − tp+1) ≤ (sn − tp+1) to obtain that

Tn ≤
∫

∆3
t

(sn − tp+1)−2+2ε

(2− ε)2(1− ε)2 (sn − tn)−2ε(sn − tp+1)dtp+1dtndsn <∞.

2 F) 0 ≤ tp+1 ≤ t1 ≤ tp ≤ sp+1 ≤ tn ≤ sn ≤ t

In this situation we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tp≤sp+1}(tn − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆4
t

( ∫ sp+1

tp+1
(tn − tp+1)− 3

2 (sn − t1)− 3
2 (sp+1 − t1)dt1

)2
dtp+1dsp+1dtndsn.

Using that (sp+1 − t1) ≤ (tn − tp+1)1−ε(sn − t1)ε we conclude that

Tn ≤
∫

∆4
t

( ∫ sp+1

tp+1
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2εdtp+1dsp+1dtndsn

≤
∫

∆3
t

(sn − sp+1)−1+2ε

(1
2 − ε)2

(sp+1 − tp+1)−2ε

2ε dtp+1dsp+1dsn <∞.

2 G) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ tp ≤ tn ≤ sn ≤ t
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We first observe that

Tn≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤sp+1≤tp≤tn}(tn − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆4
t

(∫ sp+1

tp+1
(tn − tp+1)− 3

2 (sn − t1)− 3
2 (tn − sp+1)dt1

)2

dtp+1dsp+1dtndsn.

By means of the inequality (tn − sp+1) ≤ (sn − t1)ε(tn − tp+1)1−ε we obtain that

Tn ≤
∫

∆4
t

(∫ sp+1

tp+1
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2εdtp+1dsp+1dtndsn

≤
∫

∆3
t

(sn − sp+1)−1+2ε

(1
2 − ε)2

(sp+1 − tp+1)−2ε

2ε dtp+1dsp+1dsn <∞.

2 H) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ tn ≤ tp ≤ sn ≤ t

In this situation we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤sp+1≤tn≤tp≤sn}(tp − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn.

After integrating with respect to t1 and tp we find that

Tn ≤
∫

∆4
t

16(tn − tp+1)−1(sn − sp+1)−1dtp+1dsp+1dtndsn,

and now we use that 1{(tn−tp+1)≤(sn−sp+1)} + 1{(sn−sp+1)<(tn−tp+1)} = 1 to split the
integral into two parts.

In the first one, we have that (sn − sp+1)−1 ≤ (sn − sp+1)−1+ε(tn − tp+1)−ε and
we can see that

16
∫

∆4
t

(tn − tp+1)−1(sn − sp+1)−11{(tn−tp+1)≤(sn−sp+1)}dtp+1dsp+1dtndsn

≤ 16
∫

∆4
t

(tn − tp+1)−1−ε(sn − sp+1)−1+εdtp+1dsp+1dtndsn

≤ 16
∫

∆3
t

(tn − sp+1)−ε

ε
(sn − sp+1)−1+εdsp+1dtndsn <∞.

The other term can be proved to bounded using a similar reasoning.
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2 I) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ tn ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 2 D).

2 J) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ tp ≤ tn ≤ sn ≤ t

In this case,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{sp+1≤t1≤tp≤tn}(tn − tp+1)− 3
2

× (sn − sp+1)− 3
2 dt1dtp

)2

dtp+1dsp+1dtndsn

≤
∫

∆4
t

1
4(tn − sp+1)4(tn − tp+1)−3(sn − sp+1)−3dtp+1dsp+1dtndsn.

We observe that (tn − sp+1)4 ≤ (tn − tp+1)2+ε(sn − sp+1)2−ε and we conclude that

Tn ≤
1
4

∫
∆4
t

(tn − tp+1)−1+ε(sn − sp+1)−1−εdtp+1dsp+1dtndsn

≤ 1
4

∫
∆3
t

(tn − tp+1)−1+ε1
ε

(sn − tn)−εdtp+1dtndsn <∞.

2 K) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ tn ≤ tp ≤ sn ≤ t

This situation can be studied in a similar way than situation 2 G).

2 L) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ tn ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 2 C).

2 M) 0 ≤ tp+1 ≤ sp+1 ≤ tn ≤ t1 ≤ tp ≤ sn ≤ t

This situation can be studied in a similar way than situation 2 F).

2 N) 0 ≤ tp+1 ≤ sp+1 ≤ tn ≤ t1 ≤ sn ≤ tp ≤ t

This situation can be studied in a similar way than situation 2 B).

2 O) 0 ≤ tp+1 ≤ sp+1 ≤ tn ≤ sn ≤ t1 ≤ tp ≤ t

This situation can be studied in a similar way than situation 2 A).
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3 A) 0 ≤ t1 ≤ tp ≤ tp+1 ≤ sp+1 ≤ sn ≤ tn ≤ t

Considering (A.4.1), taking into account the order we have in this case and then
integrating with respect to tp and sp+1 we obtain

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp≤tp+1}(tn − t1)−
3
2 (sn − t1)−

3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)−

3
2 (sn − t1)−

3
2 (tp+1 − t1)dt1

)2
(sn − tp+1)dtp+1dsndtn.

We now observe that (tp+1 − t1) ≤ (sn − t1)ε(tn − t1)1−ε and (tn − t1)− 1
2−ε ≤

(tn − tp+1)− 1
2−ε. Moreover, (sn − tp+1) ≤ (tn − tp+1). Taking all these inequalities

into account, we can conclude that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−2εdtp+1dsndtn

≤
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dsndtn <∞.

3 B) 0 ≤ t1 ≤ tp+1 ≤ tp ≤ sp+1 ≤ sn ≤ tn ≤ t

In this situation,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤tp≤sp+1}(tn − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn.

If we now integrate with respect to tp

Tn ≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (sp+1 − tp+1)dt1

)2
dtp+1dsp+1dsndtn,

and we use that (sp+1 − tp+1) ≤ (sn − t1)ε(tn − t1)1−ε to get that

Tn ≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
dtp+1dsp+1dsndtn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 1

2−ε(sn − t1)− 3
2 +εdt1

)2
(sn − tp+1)dtp+1dsndtn.

Finally we notice that (tn− t1)− 1
2−ε ≤ (tn− tp+1)− 1

2−ε and (sn− tp+1) ≤ (tn− tp+1)
to conclude that

Tn ≤
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dsndtn <∞.
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3 C) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ tp ≤ sn ≤ tn ≤ t

Considering the order in this case we have that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1≤sp+1≤tp≤sn}(tn − t1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆4
t

(∫ tp+1

0
(tn − t1)− 3

2 (sn − t1)− 3
2 (sn − sp+1)dt1

)2
dtp+1dsp+1dsndtn.

By means of the inequalities (sn−sp+1) ≤ (sn−t1)ε(tn−t1)1−ε and (tn−t1)− 1
2−ε ≤

(tn − tp+1)− 1
2−ε we obtain that

Tn ≤
∫

∆3
t

(∫ tp+1

0
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2ε(sn − tp+1)dtp+1dsndtn,

and finally using that (sn − tp+1) ≤ (tn − tp+1) we conclude that

Tn ≤
∫

∆3
t

(sn − tp+1)−1+2ε

(1
2 − ε)2 (tn − tp+1)−2εdtp+1dsndtn <∞.

3 D) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ sn ≤ tp ≤ tn ≤ t

In this situation, (A.4.1) becomes

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{sn≤tp≤tn}(tn − t1)− 3
2

× (tp − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 2(sn − t1)− 1
2 dt1

)2
(sn − tp+1)dtp+1dsndtn.

We now notice that (sn − tp+1) ≤ (sn − tp+1)1−2ε(tn − t1)2ε and (sn − t1)− 1
2 ≤

(sn − tp+1)− 1
2 to obtain that

Tn ≤ 4
∫

∆3
t

(∫ tp+1

0
(tn − t1)− 3

2 +εdt1
)2

(sn − tp+1)−2εdtp+1dsndtn

≤ 4
∫

∆3
t

(tn − tp+1)−1+2ε

(1
2 − ε)2 (sn − tp+1)−2εdtp+1dsndtn <∞.
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3 E) 0 ≤ t1 ≤ tp+1 ≤ sp+1 ≤ sn ≤ tn ≤ tp ≤ t

Taking into account this order, we have that

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{tn≤tp}(tp − t1)−3dt1dtp
)2

dtp+1dsp+1dsndtn.

If we now use that (tp − t1)−3 ≤ (tp − t1)− 5
2 +ε(sn − tp+1)− 1

2−ε we get

Tn ≤
∫

∆4
t

(∫
∆2
t

1{t1≤tp+1}1{tn≤tp}(tp − t1)−
5
2 +εdt1dtp

)2

× (sn − tp+1)−1−2εdtp+1dsp+1dsndtn

≤
∫

∆3
t

(∫ tp+1

0

(tn − t1)−
3
2 +ε

3
2 − ε

dt1

)2
(sp+1 − tp+1)−2ε

2ε (tn − tp+1)dtp+1dsp+1dtn

≤ 1
2ε

∫
∆3
t

(tn − tp+1)−1+2ε

(3
2 − ε)2(1

2 − ε)2 (sp+1 − tp+1)−2εdtp+1dsp+1dtn <∞.

3 F) 0 ≤ tp+1 ≤ t1 ≤ tp ≤ sp+1 ≤ sn ≤ tn ≤ t

In this situation we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤tp≤sp+1}(tn − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆4
t

(∫ sp+1

tp+1
(tn − tp+1)− 3

2 (sn − t1)− 3
2 (sp+1 − t1)dt1

)2

dtp+1dsp+1dsndtn.

Using that (sp+1 − t1) ≤ (tn − tp+1)1−ε(sn − t1)ε we conclude that

Tn ≤
∫

∆4
t

(∫ sp+1

tp+1
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2εdtp+1dsp+1dsndtn

≤
∫

∆3
t

(sn − sp+1)−1+2ε

(1
2 − ε)2

(sn − tp+1)−2ε

2ε dtp+1dsp+1dsn <∞.

3 G) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ tp ≤ sn ≤ tn ≤ t
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A.4 Case p = 2, . . . , n− 2 (n 6= 2)

We first observe that

Tn≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤sp+1≤tp≤sn}(tn − tp+1)− 3
2

× (sn − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆4
t

(∫ sp+1

tp+1
(tn − tp+1)− 3

2 (sn − t1)− 3
2 (sn − sp+1)dt1

)2

dtp+1dsp+1dsndtn.

By means of the inequality (sn − sp+1) ≤ (sn − t1)ε(tn − tp+1)1−ε we obtain that

Tn ≤
∫

∆4
t

(∫ sp+1

tp+1
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2εdtp+1dsp+1dsndtn

≤
∫

∆3
t

(sn − sp+1)−1+2ε

(1
2 − ε)2

(sn − tp+1)−2ε

2ε dtp+1dsp+1dsn <∞.

3 H) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ sn ≤ tp ≤ tn ≤ t

In this situation we have

Tn ≤
∫

∆4
t

(∫
∆2
t

1{tp+1≤t1≤sp+1≤sn≤tp≤tn}(tn − tp+1)− 3
2

× (tp − t1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn.

After integrating with respect to tp we find that

Tn ≤
∫

∆4
t

(∫ sp+1

tp+1
(tn − tp+1)− 3

2 2(sn − t1)− 1
2 dt1

)2

dtp+1dsp+1dsndtn,

and now using that (tn − tp+1)− 3
2 ≤ (tn − tp+1)− 1

2−ε(sn − t1)−1+ε we finally obtain
that

Tn ≤ 4
∫

∆4
t

(∫ sp+1

tp+1
(sn − t1)− 3

2 +εdt1
)2

(tn − tp+1)−1−2εdtp+1dsp+1dsndtn

≤ 4
∫

∆3
t

(sn − sp+1)−1+2ε

(1
2 − ε)2

(sn − tp+1)−2ε

2ε dtp+1dsp+1dsn <∞.

3 I) 0 ≤ tp+1 ≤ t1 ≤ sp+1 ≤ sn ≤ tn ≤ tp ≤ t

This situation can be studied in a similar way than situation 3 D).
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3 J) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ tp ≤ sn ≤ tn ≤ t

In this case,

Tn ≤
∫

∆4
t

(∫
∆2
t

1{sp+1≤t1≤tp≤sn}(tn − tp+1)− 3
2

× (sn − sp+1)− 3
2 dt1dtp

)2

dtp+1dsp+1dsndtn

≤
∫

∆4
t

1
4(sn − sp+1)4(tn − tp+1)−3(sn − sp+1)−3dtp+1dsp+1dsndtn.

We observe that (sn − sp+1)4 ≤ (tn − tp+1)1+ε(sn − sp+1)3−ε and we conclude that

Tn ≤
1
4

∫
∆4
t

(tn − tp+1)−2+ε(sn − sp+1)−εdtp+1dsp+1dsndtn

≤ 1
4

∫
∆3
t

(tn − sp+1)−1+ε

1− ε (sn − sp+1)−εdsp+1dsndtn <∞.

3 K) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ sn ≤ tp ≤ tn ≤ t

This situation can be studied in a similar way than situation 3 G).

3 L) 0 ≤ tp+1 ≤ sp+1 ≤ t1 ≤ sn ≤ tn ≤ tp ≤ t

This situation can be studied in a similar way than situation 3 C).

3 M) 0 ≤ tp+1 ≤ sp+1 ≤ sn ≤ t1 ≤ tp ≤ tn ≤ t

This situation can be studied in a similar way than situation 3 F).

3 N) 0 ≤ tp+1 ≤ sp+1 ≤ sn ≤ t1 ≤ tn ≤ tp ≤ t

This situation can be studied in a similar way than situation 3 B).

3 O) 0 ≤ tp+1 ≤ sp+1 ≤ sn ≤ tn ≤ t1 ≤ tp ≤ t

This situation can be studied in a similar way than situation 3 A).

This concludes all the cases, finishing the proof of Lemma 3.2.4.
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