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Chapter 1

Introduction

In fact, all epistemological value of the theory of probability
1s based on this: The large-scale random phenomena

in their collective action create strict, non-random reqularity.
(Gnedenko and Kolmogorov, 1969)

The whole is more than the sum of its parts.
(Aristotle)

The subject of this thesis is to investigate phenomena that occur over a wide range of
spatial and temporal scales in systems composed of a large number of interacting units,
which present an emergent behaviour. Emergence implies that the collective behaviour
of the system cannot be explained by analysing the response of the individual parts that
compose it. This often manifests itself as large-scale statistical regularities and coherent
structures such as scale-invariant distributions for the coarse-grained observables of the
system. Emergent phenomena are a characteristic of Complex Systems, whose study
demands highly interdisciplinary approaches for developing models with the ability to

explain their observed features.

In particular, this research focuses on out-of-equilibrium slowly driven systems with
fast (in comparison to the driving) dissipation mechanisms and a dynamical evolution
controlled by local threshold-interactions. Many geophysical phenomena, such as atmo-
spheric convection and earthquakes, can be characterized by the aforementioned prop-
erties. Theoretical and empirical studies addressing the fundamental mechanisms un-
derlying such processes are required due to the increasing need for improved prediction

of natural hazards and forecasting of weather, as well as for climate change projections.
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The research presented encompasses empirical analysis of complex systems data, de-
velopment of statistical methods for model veri cation and new insights into modelling

and prediction of complex systems.

1.1 Format and outline of the Thesis

The thesis format is Thesis by Publication , following the Universitat Autonoma of
Barcelona (UAB) required standards: at least two articles published in international
peer-reviewed journals or book chapters, an introduction in which a common thematic
line is clari ed and a summary, discussion and conclusion section. The articles pending
publication or preprints have been accepted to be a complementary part of the thesis
by the Postgraduate Studies Commission of the UAB. It is a requirement to attach the
papers in their original format at the end of the manuscript, apologies for repetition

that this constrain may cause.

Chapter 1 corresponds to the introduction and a global summary. A literature overview
is provided, placing the scope of the results of the articles in the wider context of the
current state-of-the-art. Chapters 2 and 3 correspond to the two published articles that
constitute the main part of this thesis. Chapter 4 corresponds to a submitted publication,
while Chapter 5 and 6 correspond to preprints of work in progress, which has been
already partially published in non-peer-reviewed proceedings (see A). In Chapter 7 we
present the general conclusions, synthesizing and combining the results of the previous

chapters. In addition, expectations of future research are emphasized.

Finally, in Chapter 8 a copy of the peer-review accepted publications is given. Comple-
mentary publications are given, following the requirements of the UAB, in Appendix A

that constitute the main part of this thesis.

1.2 Complexity and criticality

The fact that Complezity has an ambiguous and non-unique de nition has led to sci-
enti ¢ controversy due to the overuse of the term. Moreover, in the past few decades
the term has been abused due to its perceived marketability. In Complex Systems
the term tends to be identi ed with phenomena occurring in systems with many non-
trivially interacting parts which present emergence. The Complexity framework still
requires signi cant theoretical and conceptual re nements, while new appropriate sta-
tistical methodologies still need to be developed. Nevertheless, new scienti ¢ approaches

based on complexity ideas and views have already led to scienti ¢ advances, and hold
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much promise for understanding and modelling very diverse systems such as biological
systems (the brain, insect colonies, ecosystems, cells, etc.), social systems (the economy
and nancial markets, road tra c, language, World Wide Web, etc.) and geophysi-
cal systems (weather, earthquakes, solar ares, etc.) (Newman, 2011, and references

therein).

In this context, there are two basic strategies towards gaining scienti ¢ understand-
ing regarding a particular system. One strategy is to create highly realistic computer
simulations, building on all the interacting parts of the complex system and includ-
ing all the available details, and then, see if the emergent behaviour of the system is
reproduced. This approach is usually based on Monte Carlo simulations, agent-based
simulations, molecular dynamics simulations, multiscaling approaches, etc. Using this

rst approach, one can end up creating a new complex system whose behaviour/dy-
namics is very di cult to grasp. These kind of models can often have a considerable
amount of parameters, making their understanding very challenging. Also, the knowl-
edge of the precise interactions may be impossible. The alternative strategy, the one on
which this thesis is based, resides in the construction of highly simpli ed mathematical
abstractions capable of capturing the emergent behaviour of the system. These simpler
models will be easier to solve mathematically and simulate in a computer than those of
the rst approach. They are usually based on methodologies and approaches from dy-
namical systems, information theory, stochastic processes, cellular automata, networks
theory, computational complexity, among others. This second strategy presents prob-
lems such as oversimpli cation (the models are too simple and cannot really describe the
phenomena) or irresolubility (simple models that are not as simple as initially expected,
in the sense that they are not easily mathematically solvable). These kind of models
can often be understood as a rst step towards a full model: the idea behind this

approach is to identify the crucial variables of the system.

Some of the most in uential and important ideas in the area of Complex Systems arise
from statistical physics and condensed-matter theory. Concepts such as scale invariance,
phase transition and criticality have received an enormous attention over the past few
decades from the physics and mathematical communities. This has resulted in signi cant
number of research output on their fundamental theory and their applications to real-
world problems (Grauwin et al., 2012), including research on mathematical foundations

of statistical physics awarded with the Field s Medal (Smirnov, 2001).

Criticality is sometimes understood as a high susceptibility to external perturbations.
Even so, in this thesis criticality stands more speci cally for the behaviour of a system

near a critical point of a second order (or continuous) phase transition, where the absence
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of a characteristic scale i.e., scale invariance, manifests itself (Christensen and Moloney,

2005, Stanley, 1999). In the next section a de nition for this term is introduced.

1.2.1 Phase transitions and long-range correlations

A system undergoes a phase transition when it su ers a qualitative change in some
thermodynamic magnitude as a result of the variation of a characteristic parameter of
the system so-called control parameter. The order parameter is an observable of the
system that indicates the existence of the phase change. The point of coexistence of
both phases is called critical point. When the control parameter is continuous but its
derivative is not at the critical point the transition is called second order or continuous

phase transition.

A classical example of a phase transition is the transition of ferromagnetic to param-
agnetic in a magnetic material, which is often modelled by the Ising Model. The Ising
Model is a lattice model composed by N sites with a spin at each site ¢ oriented up,
s; = 1, or down, s; = 1. The order in the system can be quanti ed by the magnetic

moment, which is proportional to the magnetization. It is de ned as

mt) = si(t) (L1)

The system is said to be in the magnetic phase if m > 0 and in the non-magnetic phase
if m = 0. One of the control parameter of this system is the temperature (T). For a

given critical temperature the magnetization passes from zero to positive.

Around the critical point many interesting properties appear. In particular, the micro-
scopic short-range interactions combine in such a way that correlations are developed
over all length scales. The lack of a characteristic scale, also referred to as scale invari-
ance, is expressed mathematically by means of power laws and power-law distributions

of certain macroscopic observables of the system.

Away from the critical point the correlations decay exponentially with the distance
between two given sites. However, in the proximity of the critical point and taking
the thermodynamic limit (size of the system tending to in nity) the spatial correlation

decays slowly in space, proportionally to

1
corr(r) — (1.2)
r
In this case, it is said that the system displays long-range correlations. Similarly, the

temporal correlation function also follows a power law in the proximity of the critical
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point. Moreover, the order parameter s susceptibility, which is the degree of change
in the order parameter in response to changes in the control parameter, diverges as a
power law approaching the critical point. When the system has a nite size, nite size
e ects appear, limiting the power law range. They introduce a cuto on the power-law

distributions.

It is only at the critical point, with ne tuning of the control or control parameter, that
second order phase transitions and hence scale-free behaviour (or scaling) take place
in equilibrium systems. Only at this point, are order and disorder perfectly balanced
and emergent behaviour for the coarse grained variables of the system builds on the

microscopic short-range interactions.

In a continuous phase transition, the control parameter has to be tuned to a critical value
that depends on the microscopic details of the system. However, the critical exponents
(exponents of the power laws that emerge) associated with divergent mean variables,

such as the correlation function, do not depend on the microscopic details.

For a magnetic system undergoing a ferromagnetic-paramagnetic transition, the order
parameter is the net magnetization, as illustrated before for the Ising model, whereas in
liquid/gas transitions it is the density di erence between the two phases (the transition

between the solid and liquid phases is thought always rst-order)(Yeomans, 1992).

1.2.2 Universality

Continuous phase transitions have many interesting properties. The phenomena as-
sociated with these are often called critical phenomena, due to their association with
critical points. The most striking fact about phase transitions arising in di erent sys-
tems is that they often share the same set of critical exponents, which characterize them.
This phenomenon is a manifestation of what is known as universality. For example, the
critical exponents at the liquid-gas critical point have been found to be independent of
the chemical composition of the uid (Yeomans, 1992), see there are several universality
classes, which are sets of systems sharing the same behaviour (in terms of critical expo-
nents and scaling functions). The universality class just depends on the dimensionality
of space and the symmetry of the order parameter, for systems in equilibrium and with

short-range interactions (Stanley, 1999).

Universality is understood mathematically by means of the renormalization group theory
of phase transitions. This theory states that the thermodynamic properties of a system
near a critical point of a phase transition depend only on a small number of features,

such as dimensionality and symmetries, and are insensitive to the underlying microscopic
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properties of the system. This fact was rst recognized in 1971 by K. G. Wilson. His
seminal work on critical phenomena led to him winning the Nobel Prize for Physics in
1982 (Wilson, 1971).

1.3 The apparent ubiquity of power laws

The existence of a power-law distribution for a coarse-grained variable of a system has
been considered as pointing to criticality, and indicative that the models used for under-
standing and predicting the behaviour of such a system must be non-linear (Newman,
2005). However, there exists linear mechanisms capable to generate power-law distribu-

tions, as showed in the next section.

This statistical pattern has been observed in, a priori, a large number of macroscopic
variables of di erent systems. Power-laws distributions have been claimed to be found
in diverse range of elds such as sizes of city populations and wars, the frequency of
use of words in human languages or surnames in most cultures, the number of written
scienti ¢ papers and of citations of scienti ¢ papers, number of employees in rms,

income or wealth, among many others (Newman, 2005, and references therein).

This thesis will focus primarily on geophysical processes. Power-law distributions have
been ascertained for earthquakes sizes, rockfalls, landslides, volcanic eruptions, forest
res, rainfall and tropical cyclones, astrophysical phenomena and the times between

natural hazards events (see more details and related references in Chapter 2).

Recently there has been an increasing debate about the reliability of the methods used
widely in the literature for testing the existence of power laws. The potential relationship
between power laws and fashionable terms such as criticality or complexity, has lead to
a strong preference for nding power laws. This preference, combined with unreliable
methods, has resulted in a strong scepticism about power-law claims (Clauset et al., 2009,
Stumpf and Porter, 2012). This is exacerbated by a more general tendency in science and
society: we are in the onset of the Big Data era and the so-called Data Science. After
the Internet boom we are now facing a data boom, that is expected by many to be a new
historical revolution equivalent to the Industrial Revolution, in particular for business
models, companies and policy planning. Buzzwords such as real-time customization,
improved management, self-regulating processes and reduction of uncertainty, cover non-
scienti ¢ high-impact journals (for instance, dozens of articles during September 2013
about this topic in Forbes, www.forbes.com). However, all these advances cannot be

achieved without mechanistic backing. This also applies to many analyses related to
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power-laws distributions. Without models and a theoretical framework supporting the

statistical analysis the current state-of-art cannot be advanced.

The importance of proper data analysis cannot be overestimated, and it is ultimately
crucial for testing theory against data. Concerning power laws, systematic methods
have been developed recently con rming power law behaviour in many relevant systems

(Clauset et al., 2009), however, they have been found problematic (Corral et al., 2011).

Next, in Sections 1.3.1 and 1.3.2, a mathematical de nition of a power-law distribution,
together with the properties associated with it, are given. A more detailed and broader
de nition, including the so-called truncated power laws, is given in Chapter 2. Section
1.4 will survey di erent known mechanisms (including the already mentioned criticality)

that lead to power-law emergence.

1.3.1 Definition

A continuous random variable X is power-law distributed if its probability density is
given by
fx(z) =Cx (1.3)

where £ ZTyin, Tmin > 0, > 1 and C' is a normalization constant. Power-law distri-
butions are also called Pareto distributions (Evans et al., 2000, Johnson et al., 1994) (or
Riemann zeta distributions in the discrete case (Johnson et al., 2005)). Pareto distri-
butions are sometimes associated with slightly di erent distributions in other contexts
(Johnson et al., 1994). For this reason, throughout this thesis only the term power-law

distribution will be used.

1.3.2 Properties

The most relevant and unusual statistical properties of power laws are scale invariance

and divergence of moments.

As already introduced, scale invariance characterizes power-law distributions due to the
fact that a power law is the only function such that it is the same at any scale we look on
it. These distributions are invariant under (properly performed) linear rescaling of axes,
and therefore have no characteristic scale. Note however that for power-law distributions
strict scale-invariance cannot hold, as x,;, cannot be equal to zero by de nition (the
distribution would not normalize). In addition, if (1 2] all the moments diverge (i.e.
non nite mean, variance, etc.) and the law of large numbers does not hold (Kolmogorov,

1956, p. 65). Hence, the mean of a sequence of realizations of an observable does not
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characterize it because it does not converge as the number of realizations increases, but
rather tends to in nity (Shiryaev, 1996, p. 393). If (2 3] the mean exists and
is nite, but higher moments diverge and the conditions for the central limit theorem
to apply (in its original form) are not satis ed (Bouchaud and Georges, 1990). For
higher s only moments higher than order 1 are in nite and there is convergence
in probability towards the Gaussian law, but very slowly in some cases, depending on

the value of

A relevant case for many systems analysed in this thesis is when the distribution is a
power law with a decay at the tail at least as fast as an exponential function. Such
laws obey the central limit theorem but their kurtosis is very large: there is convergence
to a Gaussian at the centre of the law, but to a power law at the tails. Moreover the
weight in probability of these tails becomes more important as the exponent approaches
2 from above. For exponents smaller than 2, there is no convergence to a Gaussian
but to a Levy Law (Sornette, 2004). In addition, for power laws, there is invariance
under aggregation just at the tail of the distribution : power laws are conserved under

polynomial transformations (Farmer and Geanakoplos, 2008).

The next section describes di erent mechanisms for the generation of power laws. Many
of them are not related with criticality and then obtaining a power law is just a necessary

condition, but not su cient for criticality.

1.4 Mechanisms for generating power laws

This section overviews several mechanisms that can explain the observed power-law
distributions. The one proposed by Bak et al. (1987), Self-Organized Criticality (SOC),
will receive a special attention as it is a good candidate for understanding the dynamics
of some geophysical systems, as for example the case of rainfall and convection, which
we will study in depth in this thesis. More details about this connection will be given

in section 1.5.

We do not aim to provide a complete list of mechanisms, but just to give an idea of the
variety of possible explanations for power-law behaviour. Some other mechanisms not
detailed here include: percolation, fragmentation and other related processes; directed
percolation and its universality class of so-called contact processes; crackling noise and
avalanches resulting from the competition between frozen disorder and local interac-
tions; and competition between multiplicative noise and birth-death processes. Com-
plete reviews of mechanisms and the corresponding references can be found in Farmer

and Geanakoplos (2008), Mitzenmacher (2004), Newman (2005) and Sornette (2004).
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Continuous phase transitions, already introduced in section 1.2.1, can be seen also as a

mechanism for the power law emergence.

1.4.1 Exponentiation of the Exponential

The rst mechanism is one of the most trivial ways of obtaining a power-law distribution.

Given a continuous random variable X distributed exponentially, i.e.,
fx(x) e (1.4)

the variable Y de ned as the exponential of X, Y  e?X, will be power-law distributed

with distribution
fry) y 't (1.5)

for y greater than a certain value ym,:n > 0.

1.4.2 Inverse of random variable

Consider a random variable X. Then the variable Y = X « with > 0 (its inverse
variable for = 1) will have distribution
dx fx(z)

fr(y) = fx(x) q - (1.6)

Suppose that fx(z(y)) tends to a constant for z 0, then the distribution of Y for
large values approaches a power law with exponent 1 + . A uniform behaviour of the

variable X leads to scale-free behaviour of its inverse power Y.

Jan et al. (1999) show that this argument is relevant for the fractional change of the
magnetization between successive measurements for the Ising model at the magnetized

phase.

1.4.3 The Yule processes

The Yule Process is a widely used mechanism for power-law emergence, also referred
in the literature as cumulative advantage , the richer get richer or preferential
attachment . The Yule Process is a stochastic process that consists of discrete elements
added randomly to a set of groups. All groups start with kg elements and new ones are
added at a rate proportional to the number k£ that they have already, plus a constant

¢ > ko. New groups can also appear between the appearance of one element and the
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next one, at a rate m, and hence the number of groups also grow. Hence, the model has
three parameters kg, ¢ and m. The time in the model is de ned as each time one new
element is added to a group. It can be demonstrated that the fraction of groups with
k elements, when the total number of groups is n, will not depend on n for long times.

Thus, the distribution of sizes of the groups for large times goes as

_ Bk 2+1m)

_ 1.7
B(ko 2+ 1 m)’ e (17)

Pk
where B is the beta-function (also called rst kind Euler integral B(x y) = 01 t= (1
t)Y 1dt) and py, is the probability of having ko elements in the group. Since the beta-

function has a power-law at the tail, the asymptotic exponent will be =2+ %.

1.4.4 Random walk

Random walks (RW) are very well-studied stochastic processes for which many of their
properties associated with their rst passage statistics distribute as power laws (Redner,
2001). For example, the rst return time to the origin of the RW is power-law distributed
for large enough values of ¢

fty t32ift 1 (1.8)

This is equivalent to considering a random walk with an absorbing boundary at the
origin. Also, the areas under the rst passage of a random walk present asymptotic

power law behaviour for the areas or sizes of the runs.

1.4.5 Branching process

A branching stochastic processes is a process in which an individual (the ancestor) creates
a random number of descendants k with probability ps given by a random variable K.
The process starts with one individual by de nition, Z;=1. In a given generation ¢, a

total number of individuals Z; could reproduce following a certain distribution, and then
Zyt

the population at time ¢ 4+ 1 will be given by Z;y; = K;.
i=1
The average number of rst-generation descendants created by an ancestor is the so-

called branching ratio, = kpy. Let s consider a simple case in which the number of

k
descendants Kj; is distributed following a binomial distribution Bin(2 p), and then K;

can be 0, 1 or 2. If p > 1 2, the branching ratio will be greater than 1 and the process
has a certain probability to continue inde nitely. If p < 1 2, the branching ratio will be

smaller than 1, and the process will be nish at some point. p =1 2 corresponds to the
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critical case, the branching ratio will be exactly equal to one and the process will nish
in a nite time, but the total number of descendants in the process so called size of the
process, will follow asymptotically a power-law distribution with exponent 3 2 (Corral
and Font-Clos, 2013, Harris, 1989). This is a very simple example of a phase transition.
The parameter p can be seen as the control parameter of a phase transition (from nite
to in nite size of the total population) with critical point at p. = 1 2. In Figure 1.1
a realization of the process for this concrete distribution of descendants is given as an

example.

A branching process can be mapped to a random walk (Pruessner, 2012) and to anoma-
lous di usion process when the distribution of descendants follows a power-law (Saichev
et al., 2005). Moreover, branching processes are the mean- eld limit of a stochastic SOC

model (Zapperi et al., 1995).

FIGURE 1.1: A realization of a branching processes from the tree point of view (up) and

the evolution of descendants for each generation (down). The number of descendants

distribution is a binomial distribution Bin(2 1 2). Reproduced from Corral and Font-
Clos (2013).

1.4.6 Self-organized criticality

As highlighted in the previous section, continuous phase transitions present power-law
behaviour at the critical point. However, they demand an external adjustment of the

control parameter, and they cannot explain the power-law behaviour observed in nature.
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A mechanism for scale invariance in natural systems was introduced by Bak et al. (1987).
They considered non-equilibrium systems of dissipative nature in which the e ect of
dissipation is compensated by a slow external driving. This creates a ow of energy
through the system that leads to a non-equilibrium attractive critical state. The system
self-organizes around this scale-invariant critical state. Small local perturbations or
instabilities, which appear when some threshold is surpassed, can then lead to activity
that propagates rapidly through the system. This phenomenon is known as avalanche
and governs the dynamic evolution of SOC systems. Moreover, as expected in criticality,
the distribution of the avalanche sizes and durations are power laws. We will illustrate

conceptually these ideas using the metaphor of a sandpile.

The sandpile is driven out of equilibrium by a continuous but very slow in comparison
to the dissipation rate (grains that leave the pile, usually at the border) addition of
grains (the driving), one at a time, at random positions. Normally, when the grains
land, they nd an equilibrium position. Initially, avalanches tend to be very small and
localized and the response is simply proportional to the external perturbation. But, if
we continue to drop grains, the sandpile grows in size because the pile can maintain a

nite slope thanks to the friction between the grains. However, if at some point the pile
is too steep, the new grain may be unstable and an avalanche starts at this position. If
the slope of the pile becomes too shallow, the addition of grains will tend to increase it,
and if the slope becomes too steep, avalanches will tend to decrease it. Therefore, the
pile self-organizes into a steady state in which its slope uctuates around a constant

angle of repose (Christensen and Moloney, 2005).

The main characteristic features of SOC systems are:

a slow external energy input;

intermediate energy storage;

a threshold dynamics, i.e., the activity occurs when a threshold is surpassed;

sudden burst-like energy releases;

avalanches of all sizes.

In order to emphasize the essential dynamical ingredients in a SOC system, Jensen pro-
poses a new abbreviation of SOC which summarizes them: Slowly driven, interaction-
dominated threshold systems, SDIDT (Jensen, 1998, p. 126).

The best candidates to be SOC systems in nature, in the sense that they present
SOC characteristics, are given by earthquakes (Gutenberg and Richter, 1944), forest
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res (Malamud et al., 1998), solar ares (Dennis, 1988) or rainfall (Peters and Chris-
tensen, 2002, Peters et al., 2010); and with more controversy, the evolution of bio-
logical species (Raup, 1986, Sneppen et al., 1995, Sole and Manrubia, 2001), neural
networks (Bornholdt and Rohl, 2003) and volcanic activity (Diodati et al., 1991). It is

also important to notice that real sandpiles generally do not present such a behaviour
(Pruessner, 2012).

SOC is a theory for critical phenomena that occur in natural systems without any tun-
ing necessity and its main goal is to identify which are the main characteristic of such
systems. This has been mostly investigated numerically through cellular automata mod-
els. The rst model, which established the whole topic, is the Bak-Tang-Wiesend eld
sandpile model (BTW model) that was introduced by Bak et al. (1987). Since then,
many models, deterministic and stochastic, have been proposed and investigated in the

literature, see Pruessner (2012, chapters 4 and 5) for a general review.

More than 25 years later, after signi cant research of the general features of SOC by
investigating model properties and their analytical treatment, now the concern is to
verify these properties, determine universality classes of the models, as well as to provide

a continuous description for the dynamics.

1.4.7 Sweeping the instability

Sornette (1994) presented a robust mechanism for the appearance of a power-law dis-
tribution with a complete absence of self-organization that appears as a consequence
of some control parameter moving across a critical point, or more generally a global
bifurcation. This mechanism is one of the candidates able to explain the array of mea-
sures that link criticality and convection and precipitation. Next, in Section 1.5 will

summarize them.

1.5 Ciriticality in convection and precipitation

The atmosphere is a complex system very di cult to analyse, model and understand.
But at the same time, it is one of the most accessible and well observed natural systems.
Convection and its associated precipitation is a key aspect of the Earth s climate, playing
a leading role in the planetary heat, moisture and momentum budgets, particularly in the
tropics. A broad range of atmospheric phenomena present scale-free distributions and
wide range spatial and temporal variability. In particular, many atmospheric phenomena

related to precipitation are associated with many characteristic time and spatial scales,
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and have large-scale correlations in time and space, which may result from the coupling
between non-linear mechanisms with different temporal and spatial characteristic scales
(e.g. Bodenschatz et al., 2010, Vattay and Harnos, 1994, Yano et al., 2003).

In particular, recent high-resolution (of the order of 10 m in the horizontal scale) satel-
lite observation analyses show that projected areas of clouds, together with many of
its geometric and radiative properties, follow power-law distributions over more than 5
orders of magnitude (from few to millions of km?) (Cahalan and Joseph, 1989, Lovejoy,
1982, Peters et al., 2009, Wood and Field, 2011). Modelling convection is then a very
challenging problem because computer models cannot simulate explicitly the small con-
vective clouds (which are the most numerous). The simulations performed divide the
atmosphere into boxes with typical horizontal sizes of the order of 1-20 km (weather
simulations) or of the order of 20-200 km (climate simulations). Figure 1.2 shows the
processes related with precipitation and their associated scales, and horizontal resolution
scales of different models used in atmospheric sciences: CRMs (Cloud Resolving Models
which explicitly model convection) and GCMs (General Circulation Models which do

not resolve convection).

‘- Number
o\ e e SO

FIGURE 1.2: Processes related with precipitation and their associated scales, and hor-

izontal resolution scales of CRMs and GCMs. MSC states for mesoscale convective

clusters, which are organized convective clusters that can be found mostly over tropical
oceans. Adaptation from Bodenschatz et al. (2010).

Advances towards higher resolution problems present many challenges, and not just the
obvious enormous additional computational costs. For instance, a common simplification
is that the effect of the small scales on the resolved scales can be represented as a
deterministic function of the large-scale flow. Fluctuations that emerge from small

scales are disregarded. However, this is too strong an assumption that breaks down
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for grid boxes of order 50 km and smaller (Ball and Plant, 2008): the ensemble size of
deep convective elements within a grid box is typically small. Deep convection refers
to thermally driven turbulent mixing with vertical motions that take parcels from the
lower atmosphere above 500 hPa (The level of 500 hPa is roughly dividing the mass of

the atmosphere in two and it lies near 5 km).

Errors in convective parametrizations (models of the unresolved processes as a function
of the resolved ones) are related with major issues in climate modelling, in particular
with spatially-organized phenomena such as the spatial distribution of tropical rainfall
and large uncertainties on whether many regions in the world will get wetter or drier
in the future (IPCC4, 2007). On the weather-forecasting timescales, an adequate rep-
resentation of convection and precipitation in numerical weather prediction (NWP) is

important for forecasts of damaging ash- ood events.

Almost all current models of convection used for weather and climate prediction are
based on the concept of a collection of convective plumes embedded within a horizontally-
homogeneous medium called the environment. Convective quasi-equilibrium (QE) is
one of the classical assumptions made and postulates that convection acts to reduce
instabilities on a fast time scale as an adjustment to the slow drive arising from the
(resolved) large-scale forcing (e.g., radiative and advective cooling of the troposphere and
warming and moistening of the boundary layer). The system is self-maintained close to
a far-from-equilibrium statistically-stationary state, where driving and dissipation are
in balance (Arakawa and Schubert, 1974). Since it was rst proposed in 1974, many
interpretations and implementations of the QE concept have been suggested. However,
QE remains a controversial issue, and both conceptual and practical-implementation

problems are still present (Mapes, 1997).

Many contributions have been made for improving parametrizations of deep convection.
In recent years, stochastic parametrizations have been proposed in order to represent
sub-grid variability stochastically (e.g. Majda and Khouider, 2002, Plant and Craig,
2008). Super-parametrization, which consists of embedding an explicit but very ex-
pensive cloud model within each climate model grid box, has also been explored (e.g.
Grabowski, 2004). However, although the theoretical framework underlying current op-
erational parametrizations has been much elaborated upon in the details, in its essentials

it has remained fundamentally unchanged for more than three decades.

Recent empirical studies across a broad range of observational scales have attempted
to characterize aspects of convective phenomena with a view to constraining convec-
tive parametrization (modelling of sub-grid processes). The surprising critical proper-

ties found empirically connect the convection parametrization problem with Statistical
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Physics theories of critical phenomena. This Chapter aims to summarize them and in-
troduce the key concepts that have been used in these analyses. Chapters 3, 4 and 5

will constitute the contribution of this thesis to this research line.

1.5.1 Rainfall seen as relaxation events

SOC ideas have had a signi cant impact in the geosciences, and in particular for earth-
quake modelling (Bak, 1996, Sornette and Sornette, 1989). A simpli ed picture of the
rainfall process helps to illustrate SOC characteristics for this particular problem: The
Sun continuously radiates electromagnetic energy which translates in the continuous
evaporation of water, coming mostly from the oceans. This, together with radiative
cooling in the upper atmosphere, translates into an instability that drives convective
updrafts. The water vapour carried up by convection is intermediately stored in the
atmosphere, and when a saturation threshold is reached in a susceptible environment,
condenses and precipitates. However, the coupling mechanisms between nearby regions
of the atmosphere is not clear, cold pools or winds associated with rainfall could be
candidates (Jordan, 2008).

The key variable from the SOC perspective is the so-called rain event . Given a precip-
itation time series in a given location, the rain event is de ned as a sequence of non-zero
values of rain rate (with units mm/h). The event size s is the integrated rain rate over

the event s = r(t)dt (with units mm). One can also de ne the inter-event time, as

event

the time between two successive events, or the duration of an event as the time it lasts.

It is important to observe that the application of this concept demands in practice
very high temporal-resolution measurements. Conventional rainfall local measurements,
which correspond to rainfall accumulation during an hour or a day, are not suitable for
this kind of analysis. In general, if the rain rate were known over an area, then the event
size could be related with a more physically meaningful variable: the energy released
during one event. However, the current available spatial measurements of rainfall are

either not continuous in time or too sparse in space.

Andrade et al. (1998) were the rst to analyse rainfall time series from this perspective.
However the temporal resolution was insu cient for performing a proper analysis and
they did not provide a complete description as they did not report results for rain-event
sizes, which is the key observable. Later, but independently, Peters et al. (2002) analyzed
1-minute resolution data from a vertical pointing radar situated in mid-latitudes (Baltic

coast). Power-law distributions for event sizes and for dry-spells durations over several
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orders of magnitude were reported, with exponents a, ~ a5 ~ 1.4. For the event-
duration distribution the results were unclear, although a power law with an exponent

ag ~ 1.6 was fitted to the data.

1.5.2 Rethinking Quasi-equilibrium

As discussed, an observable distributed as a power law may indicate criticality, but it is
not a sufficient condition given that trivial non-critical mechanisms also lead to power
laws. Peters and Neelin (2006) showed further evidence using satellite data over tropical
oceans: a relationship between satellite estimates of rain rate and water vapour over the
tropical oceans compatible with a continuous phase transition. Above a critical value of

column water vapour large areas of the troposphere would enter a convectively active

phase.
Aftractive transition: the system tends to be Data collapse for
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FIGURE 1.3: This figure summarizes the findings by Peters and Neelin (2006) for the

East Pacific ocean basin for four different temperature values. It shows the precipitation

mean and variance dependence on the amount of water vapour in a given column

w normalized by a critical value w.. The occurrence probability for water vapour

conditioned to precipitation occurrence is also shown. Figure from Ref. Neelin et al.
(2008)

In addition, they showed that the system tends to be close to the transition point. These
results can be interpreted in terms of departures from the point of QE and directly re-
lated with a proposed explanation for scale-free behaviour in a variety of real-word

systems, self-organized criticality (SOC). However, the data used in this study has been
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questioned (Yano and Plant, 2012). When the water vapour is high the measurements
of precipitation are highly unreliable and the amount of data is very low. This is still
controversial, but some recent studies using high-detailed simulations of clouds and pre-
cipitation also suggest the same functional relationship between precipitation and water
vapour (Yano et al., 2012). Data from the tropics has also been found to exhibit ap-
proximate power-law autocorrelation function decay (Neelin et al., 2008), and mesoscale
convective cluster sizes (systems with horizontal dimensions ranging from few kilometers
to several hundred kilometers, as illustrated in Fig. 1.2) have been found to follow a
power law distribution (Peters et al., 2009, Wood and Field, 2011). Again, these results

suggest criticality on the system.

Assuming that the previous functional relationship between precipitation and water
vapour is not an arti ce of a bad measurement, one of the basic assumptions in which
almost all climate and weather-forecast relies can be reformulated: the quasi-convective

equilibrium.

1.5.3 Alternative explanations

Although the SOC hypothesis is fully compatible with observational analyses conducted
so far, alternative explanations for the observed behaviours are also possible. For exam-
ple, a closely-related alternative based on a stability threshold for boundary-layer water
vapour is able to reproduce some aspects of the observed characteristics (Muller et al.,
2009). Moreover, the observations could even be compatible with a complete absence
of self-organization: they could for instance arise as a consequence of some control pa-
rameter moving across a second-order phase transition, being subject to a sweeping-over
mechanism (Sornette, 1994), explained in Section 1.4.7. Or they could result directly
from a complex ow eld, as was shown in simulations using randomized vortices and

passive tracers (Dickman, 2003).

In the previous sections we summarized recent observational studies that have shown
strong, although not de nitive, evidence in support of criticality in the transition to deep
convection. However, the number of studies is still limited and alternative non-critical
mechanisms may also explain the observations. Thus, there remains a need to delve

further into the observations.

1.5.4 Outline of the contests of the thesis related to this section

The main part of this thesis is devoted to the investigation of an expectation of SOC

and criticality: universality of rain event associated exponents. In Chapter 2 a method
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for tting and nding exponents of power-law distributions is presented. In Chapter 3 a
study of data from the Atmospheric Radiation Measurement program (ARM) available
observational sites is presented. The time series have 1 minute temporal resolution
measured with the same optical rain gauge (Peters et al., 2010). The results show
unambiguous power-law distributions of event sizes, with apparent universal exponents

s =117 003, extending the support to the SOC hypothesis in rainfall. Power laws
distributions are also found for the dry spell durations, but for event durations the

behaviour is unclear.

In Chapter 4 data obtained from a network of 20 rain gauges scattered in a region of
the NW Mediterranean coast is analysed. The measurements have 5 minute temporal
resolution, but a lower, in comparison to other analyses, threshold of rain rate detection

(0.1 mm in 5 minute, while ARM measurements have 0.2 mm in 1 minute).

Finally, in Chapter 5 the ARM analysis is extended to updated and new datasets. New

methods for addressing universality are introduced.
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Deluca A, Corral A. Fitting and Goodness-of-Fit Test of Non-Truncated and Truncated
Power-law Distributions. Acta Geophysica 2013; DOI: 10.2478/s11600-013-0154-9.

Abstract Recently, Clauset, Shalizi, and Newman have proposed a systematic method
to nd over which range (if any) a certain distribution behaves as a power law. However,
their method has been found to fail, in the sense that true (simulated) power-law tails are
not recognized as such in some instances, and then the power-law hypothesis is rejected.
Moreover, the method does not work well when extended to power-law distributions
with an upper truncation. We explain in detail a similar but alternative procedure, valid
for truncated as well as for non-truncated power-law distributions, based in maximum
likelihood estimation, the Kolmogorov-Smirnov goodness-of- t test, and Monte Carlo
simulations. An overview of the main concepts as well as a recipe for their practical
implementation is provided. The performance of our method is put to test on several
empirical data which were previously analysed with less systematic approaches. We nd

the functioning of our method very satisfactory.
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2.1 Introduction

Over the last decades, the importance of power-law distributions has continuously in-
creased, not only in geoscience but elsewhere (Johnson et al., 1994). These are proba-
bility distributions de ned by a probability density (for a continuous variable x) or by

a probability mass function (for a discrete variable z) given by,

f(x) xi (2.1)

for x  a and a > 0, with a normalization factor (hidden in the proportionality symbol

) which depends on whether z is continuous or discrete. In any case, normalization
implies > 1. Sometimes power-law distributions are also called Pareto distributions
(Evans et al., 2000, Johnson et al., 1994) (or Riemann zeta distributions in the discrete
case (Johnson et al., 2005)), although in other contexts the name Pareto is associated
to a slightly di erent distribution (Johnson et al., 1994). So we stick to the clearer term

power-law distribution.

These have remarkable, non-usual statistical properties, as are scale invariance and di-
vergence of moments. The rst one means that power-law functions (de ned between 0
and ) are invariant under (properly performed) linear rescaling of axes (both z and f)
and therefore have no characteristic scale, and hence cannot be used to de ne a proto-
type of the observable represented by = (Christensen and Moloney, 2005, Corral, 2008,
Newman, 2005, Takayasu, 1989). For example, no unit of distance can be de ned from
the gravitational eld of a point mass (a power law), whereas a time unit can be de ned
for radioactive decay (an exponential function). However, as power-law distributions
cannot be de ned for all x > 0 but for x  a > 0 their scale invariance is not complete

or strict.

A second uncommon property is the non-existence of nite moments; for instance, if

2 not a single nite moment exists (no mean, no variance, etc.). This has important
consequences, as the law of large numbers does not hold (Kolmogorov, 1956, p. 65),
i.e., the mean of a sample does not converge to a nite value as the size of the sample
increases; rather, the sample mean tends to in nite (Shiryaev, 1996, p. 393). If 2 < 3
the mean exists and is nite, but higher moments are in nite, which means for instance
that the central limit theorem, in its classic formulation, does not apply (the mean of a

sample is not normally distributed and has in nite standard deviation) (Bouchaud and
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Georges, 1990). Higher s yield higher-order moments in nite, but then the situation is
not so critical . Newman reviews other peculiar properties of power-law distributions,
such as the 80 20 rule (Newman, 2005).

Although the normal (or Gaussian) distribution gives a non-zero probability that a
human being is 10 m or 10 km tall, the de nition of the probability density up to in nity
is not questionable at all, and the same happens with an exponential distribution and
most standard distributions in probability theory. However, one already sees that the
power-law distribution is problematic, in particular for 2, as it predicts an in nite
mean, and for 2 < 3, as the variability of the sample mean is in nite. Of course,
there can be variables having an in nite mean (one can easily simulate in a computer
processes in which the time between events has an in nite mean), but in other cases, for
physical reasons, the mean should be nite. In such situations a simple generalization
is the truncation of the tail (Aban et al., 2006, Burroughs and Tebbens, 2001, Carrillo-
Menendez and Suarez, 2012, Johnson et al., 1994), yielding the truncated power-law
distribution, de ned in the same way as before by f(z) 1 z but witha x b,
with b nite, and with normalizing factor depending now on a and b (in some cases it
is possible to have a = 0, see next section). Obviously, the existence of a nite upper
cuto b automatically leads to well-behaved moments, if the statistics is enough to see

the cuto ; on the other hand, a range of scale invariance can persist, if b a. What
one nds in some practical problems is that the statistics is not enough to decide which
is the sample mean and one cannot easily conclude if a pure power law or a truncated

power law is the right model for the data.

A well known example of (truncated or not) power-law distribution is the Gutenberg-
Richter law for earthquake size (Kagan, 2002, Kanamori and Brodsky, 2004, Utsu,
1999). If by size we understand radiated energy, the Gutenberg-Richter law implies
that, in any seismically active region of the world, the sizes of earthquakes follow a
power-law distribution, with an exponent = 14 2B 3 and B close to 1. In this
case, scale invariance means that if one asks how big (in terms of radiated energy)
earthquakes are in a certain region, such a simple question has no possible answer. The
non-convergence of the mean energy can easily be checked from data: catastrophic events
such as the Sumatra-Andaman mega-earthquake of 2004 contribute to the mean much
more than the previous recorded history (Corral and Font-Clos, 2013). Note that for
the most common formulation of the Gutenberg-Richter law, in terms of the magnitude,
earthquakes are not power-law distributed, but this is due to the fact that magnitude is
an (increasing) exponential function of radiated energy, and therefore magnitude turns
out to be exponentially distributed. In terms of magnitude, the statistical properties of
earthquakes are trivial (well behaved mean, existence of a characteristic magnitude...),

but we insist that this is not the case in terms of radiated energy.
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Malamud (2004) lists several other natural hazards following power-law distributions in
some (physical) measure of size, such as rockfalls, landslides (Hergarten, 2002), volcanic
eruptions (Lahaie and Grasso, 1998, McClelland et al., 1989), and forest res (Mala-
mud et al., 2005), and we can add rainfall (Peters et al., 2002, 2010), tropical cyclones
(roughly speaking, hurricanes) (Corral et al., 2010), auroras (Freeman and Watkins,
2002), tsunamis (Burroughs and Tebbens, 2005), etc. In some cases this broad range
of responses is triggered simply by a small driving or perturbation (the slow motion of
tectonic plates for earthquakes, the continuous pumping of solar radiation in hurricanes,
etc.); then, this highly nonlinear relation between input and output can be labelled as
crackling noise (Sethna et al., 2001). Notice that this does not apply for tsunamis, for

instance, as they are not slowly driven (or at least not directly slowly driven).

Aschwanden (2011) reviews disparate astrophysical phenomena which are distributed
according to power laws, some of them related to geoscience: sizes of asteroids, craters in
the Moon, solar ares, and energy of cosmic rays. In the eld of ecology and close areas,
the applicability of power-law distributions has been overviewed by White et al. (2008),
mentioning also island and lake sizes. Aban et al. (2006) provides bibliography for power-
law and other heavy-tailed distributions in diverse disciplines, including hydrology, and

Burroughs and Tebbens (2001) provide interesting geological examples.

A theoretical framework for power-law distributed sizes (and durations) of catastrophic
phenomena not only in geoscience but also in condensed matter physics, astrophysics,
biological evolution, neuroscience, and even the economy, is provided by the concept of
self-organized criticality, and summarized by the sandpile paradigm (Bak, 1996, Chris-
tensen and Moloney, 2005, Jensen, 1998, Pruessner, 2012, Sornette, 2004). However,
although the ideas of self-organization and criticality are very reasonable in the context
of most of the geosystems mentioned above (Corral, 2010, Peters and Christensen, 2006,
Peters and Neelin, 2006), one cannot rule out other mechanisms for the emergence of
power-law distributions (Czechowski, 2003, Dickman, 2003, Mitzenmacher, 2004, New-
man, 2005, Sornette, 2004).

On the other hand, it is interesting to mention that, in addition to sizes and durations,
power-law distributions have also been extensively reported in time between the occur-
rences of natural hazards (waiting times), as for instance in solar ares (Baiesi et al.,
2006, Bo etta et al., 1999), earthquakes (Bak et al., 2002, Corral, 2003, 2004a), or solar
wind (Wanliss and Weygand, 2007); in other cases the distributions contain a power-law
part mixed with other factors (Corral, 2004b, 2009b, Geist and Parsons, 2008, Saichev
and Sornette, 2006). Nevertheless, the possible relation with critical phenomena is not

direct (Corral, 2005, Paczuski et al., 2005). The distance between events, or jumps, has
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received relatively less attention (Corral, 2006, Davidsen and Paczuski, 2005, Felzer and
Brodsky, 2006).

The importance of power-law distributions in geoscience is apparent; however, some of
the evidence gathered in favour of this paradigm can be considered as anecdotic or
tentative, as it is based on rather poor data analysis. A common practice is to nd
some (naive or not) estimation of the probability density or mass function f(z) and plot
In f(z) versus Inx and look for a linear dependence between both variables. Obviously,
a power-law distribution should behave in that way, but the opposite is not true: an
apparent straight line in a log-log plot of f(z) should not be considered a guarantee of
an underlying power-law distribution, or perhaps the exponent obtained from there is
clearly biased (Bauke, 2007, Clauset et al., 2009, Goldstein et al., 2004, White et al.,
2008). But in order to discriminate between several competing theories or models, as
well as in order to extrapolate the available statistics to the most extreme events, it is
very important to properly t power laws and to nd the right power-law exponent (if

any) (White et al., 2008).

The subject of this paper is a discussion on the most appropriate tting, testing of
the goodness-of- t, and representation of power-law distributions, both non-truncated
and truncated. A consistent and robust method will be checked on several examples in
geoscience, including earthquakes, tropical cyclones, and forest res. The procedure is
in some points analogous to that of Clauset et al. (2009), although there are variations
is some key steps, in order to correct several drawbacks of the original method (Corral
et al., 2011, Peters et al., 2010). The most important di erence is in the criterion to select
the range over which the power law holds. As the case of most interest in geoscience is
that of a continuous random variable, the more involving discrete case will be postponed

to a separate publication (Corral et al., 2012).

2.2 Power-law fits and goodness-of-fit tests

2.2.1 Non-truncated and truncated power-law distributions

Let us consider a continuous power-law distribution, de ned in the range a x b,

where b can be nite or in nite and a 0. The probability density of z is given by,

f(z) = a1 1 (2.2)

the limit b with > 1 and a > 0 provides the non-truncated power-law distribu-

tion, also called here pure power law; otherwise, for nite b one has the truncated power
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law, for which no restriction exists on if a > 0, but < 1if @ = 0 (which is sometimes

referred to as the power-function distribution (Evans et al., 2000)); the case = 1 needs
a separate treatment, with
1
S 2.3
f(x) TIn(b ) (2.3)

We will consider in principle that the distribution has a unique parameter, , and that
a and b are xed and known values. Remember that, at point z, the probability density
function of a random variable is de ned as the probability per unit of the variable that

the random variable lies in a in nitesimal interval around z, that is,

Prob[z random variable < x + z]

f(z) = lim

z 0 T

(2.4)

and has to verify f(xz) 0 and f(z)dz = 1, see for instance Ross (2002).

Equivalently, the distribution can be also characterized by its (complementary) cumu-

lative distribution function,
S(z) = Prob[random variable z] = f(x)dx (2.5)

For a truncated or non-truncated power law this leads to

1z ' 10 1
S(z) = o T 1 (2.6)

if =1and v )
In(b z
Slw) = In(b a)

(2.7)

if = 1. Note that although f(x) always has a power-law shape, S(z) only has it in the
non-truncated case (b and > 1); nevertheless, even not being a power law in the
truncated case, the distribution is a power law, as it is f(z) and not S(x) which gives

the name to the distribution.

2.2.2 Problematic fitting methods

Given a set of data, there are many methods to t a probability distribution. Goldstein
et al. (2004), Bauke (2007), White et al. (2008), and Clauset et al. (2009) check several
methods based in the tting of the estimated probability densities or cumulative distri-
butions in the power-law case. As mentioned in the rst section, In f(z) is then a linear
function of In z, both for non-truncated and truncated power laws. The same holds for
In S(z), but only in the non-truncated case. So, one can either estimate f(z) from data,
using some binning procedure, or estimate S(x), for which no binning is necessary, and

then t a straight line by the least-squares method. As we nd White et al. s (2008)
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study the most complete, we summarize their results below, although those of the other

authors are not very di erent.

For non-truncated power-law distributions, White et al. (2008) nd that the results of
the least-squares method using the cumulative distribution are reasonable, although the
points in S(z) are not independent and linear regression should yield problems in this
case. We stress that this procedure only can work for non-truncated distributions (i.e.,

with b ), truncated ones yield bad results (Burroughs and Tebbens, 2001).

The least-squares method applied to the probability density f(x) has several variations,
depending on the way of estimating f(x). Using linear binning one obtains a simple
histogram, for which the tting results are catastrophic (Bauke, 2007, Goldstein et al.,
2004, Pueyo and Jovani, 2006, White et al., 2008). This is not unexpected, as linear
binning of a heavy-tailed distribution can be considered as a very naive approach. If
instead of linear binning one uses logarithmic binning the results improve (when done

correctly ), and are reasonable in some cases, but they still show some bias, high
variance, and bin-size dependence. A fundamental point is to avoid having empty bins,

as they are disregarded in logscale, introducing an important bias.

In summary, methods of estimation of probability-distribution parameters based on
least-squares tting can have many problems, and usually the results are biased. More-
over, these methods do not take into account that the quantity to be tted is a probability
distribution (i.e., once the distributions are estimated, the method is the same as for any
other kind of function). We are going to see that the method of maximum likelihood
is precisely designed for dealing with probability distributions, presenting considerable

advantages in front of the other methods just mentioned.

2.2.3 Maximum likelihood estimation

Let us denote a sample of the random variable x with N elements as 1, xo, ..., TN,
and let us consider a probability distribution f(x) parameterized by . The likelihood
function L( ) is de ned as the joint probability density (or the joint probability mass
function if the variable were discrete) evaluated at 1, 2, ..., x in the case in which

the variables were independent, i.e.,

L( ):‘ f (i) (2.8)

Note that the sample is considered =xed, and it is the parameter = what is allowed

to vary. In practice it is more convenient to work with the log-likelihood, the natural
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logarithm of the likelihood (dividing by N also, in our de nition),

1 N

()=yWI()=y i) (29)
=1

The maximum likelihood (ML) estimator of the parameter  based on the sample is
just the maximum of ( ) (which coincides with the maximum of L( ), obviously). For
a given sample, we will denote the ML estimator as . (e is from empirical), but it is
important to realize that the ML estimator is indeed a statistic (a quantity calculated
from a random sample) and therefore can be considered as a random variable; in this

case it is denoted as . In a formula,
e =argmax ( ) (2.10)

where argmax refers to the argument of the function that makes it maximum.

For the truncated or the non-truncated continuous power-law distribution we have, sub-

stituting f(x) from Egs. (2)-(3) and introducing r = a b, disregarding the case a = 0,

1 g .
( ) = lnﬁ ].na lna lf = ]. (211)
1 .
()= lnln; Ing if =1; (2.12)

g is the geometric mean of the data, Ing = N ! le In z;, and the last term in each
expression is irrelevant for the maximization of ( ). The equation for = 1is necessary
in order to avoid over ows in the numerical implementation of Eq. (2.11). Remember
that the distribution is only parameterized by , whereas a and b (and r) are constant

parameters; therefore, ( ) is not a function of a and b, but of

In order to nd the maximum of ( ) one can derive with respect and set the result

equal to zero (Aban et al., 2006, Johnson et al., 1994),

d() _ 1 +r611nr Y
a

y Ct T =0 (2.13)
e

which constitutes the so-called likelihood equation for this problem. For a non-truncated

distribution, r = 0, and it is clear that there is one and only one solution,

1

e @ (2.14)

e =
which corresponds to a maximum, as

L( )=V )= ( 1)Ne NV Inlg a) (2.15)
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has indeed a maximum (resembling a gamma probability density, see next subsection).
Figure 1 illustrates the log-likelihood function and its derivative, for simulated power-law

data.
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FIGURE 2.1: Log-likelihood ¢(«) and its derivative, for simulated non-truncated power-

law data with exponent o = 1.15 and a = 0.001. The total number of data is Ny, =

1000. The resulting estimation yields o, = 1.143, which will lead to a confidence
interval o = 0 = 1.143 £ 0.005.

In the truncated case it is not obvious that there is a solution to the likelihood equation
(Aban et al., 2006); however, one can take advantage of the fact that the power-law dis-
tribution, for fixed a and b, can be viewed as belonging to the regular exponential family,
for which it is known that the maximum likelihood estimator exists and is unique, see
Barndorff-Nielsen (1978, p. 151) or del Castillo (2013). Indeed, in the single-parameter

case, the exponential family can be written in the form,
f(@) = C™ () H (w)e" )T, (2.16)

where both 6(«) and T'(z) can be vectors, the former containing the parameter a of the
family. Then, for §(a) = —«, T(x) = Inz, and H(x) = 1 we obtain the (truncated or
not) power-law distribution, which therefore belongs to the regular exponential family,

which guarantees the existence of a unique ML solution.

In order to find the ML estimator of the exponent in the truncated case, we proceed
by maximizing directly the log-likelihood /() (rather than by solving the likelihood
equation). The reason is a practical one, as our procedure is part of a more general

method, valid for arbitrary distributions f(x), for which the derivative of ¢(a) can be
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di cult to evaluate. We will use the downhill simplex method, through the routine
amoeba of Press et al. (2002), although any other simpler maximization procedure should
work, as the problem is one-dimensional, in this case. One needs to take care when the
value of  gets very close to one in the maximization algorithm, and then replace ( )
by its limit at =1,

() 1 Inln-— In

r

1 g
= 1 2.1
~ Ina (2.17)

which is in agreement with the likelihood function for a (truncated) power-law distribu-
tion with = 1.

An important property of ML estimators, not present in other tting methods, is their

invariance under re-parameterization. If instead of working with parameter we use

= h( ), then, the ML estimator of is in agreement with that of ,ie., =h( ).
Indeed, p g d

so, the maximum of as a function of is attained at the point h( ), provided that the
function h is one-to-one . Note that the parameters could be multidimensional as well.

Casella and Berger (2002) study this invariance with much more care.

In their comparative study, White et al. (2008) conclude that maximum likelihood esti-
mation outperforms the other tting methods, as always yields the lowest variance and
bias of the estimator. This is not unexpected, as the ML estimator is, mathematically,
the one with minimum variance among all asymptotically unbiased estimators. This

property is called asymptotical e ciency (Bauke, 2007, White et al., 2008).

2.2.4 Standard deviation of the ML estimator

The main result of this subsection is the value of the uncertainty of , represented by
the standard deviation of and given by
1 1 roe 1n?r 12

SRR O ey 21

(Aban et al., 2006). This formula can be used directly, although  can be computed
as well from Monte Carlo simulations, as explained in another subsection. A third
option is the use of the jackknife procedure, as done by Peters et al. (2010). The three
methods lead to essentially the same results. The rest of this subsection is devoted to
the particular derivation of for a non-truncated power-law distribution, and therefore

can be skipped by readers interested mainly in the practical use of ML estimation.
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For the calculation of  (the ML estimator of ) one needs to realize that this is indeed a
statistic (a quantity calculated from a random sample) and therefore it can be considered
as a random variable. Note that denotes the true value of the parameter, which is
unknown. It is more convenient to work with 1 (the exponent of the cumulative
distribution function); in the non-truncated case (r = 0 with > 1) we can easily derive
its distribution. First let us consider the geometric mean of the sample, g, rescaled by

the minimum value a,

mZ=— In=t 2.20
na | n ( )

As each z; is power-law distributed (by hypothesis), a simple change of variables shows
that In(z; a) turns out to be exponentially distributed, with scale parameter 1 (  1);
then, the sum will be gamma distributed with the same scale parameter and with shape
parameter given by N (this is the key property of the gamma distribution (Durrett,
2010)). Therefore, In(g a) will follow the same gamma distribution but with scale
parameter N 1( 1) L

At this point it is useful to introduce the generalized gamma distribution (Evans et al.,
2000, Johnson et al., 1994, Kalb eisch and Prentice, 2002), with density, for a random
variable y 0,

D=7 . 7 (2.21)

where ¢ > 0 is the scale parameter and and are the shape parameters, which have to
verify 0 < < (so, the only restriction is that they have the same sign, although
the previous references only consider > 0 and > 0); the case = 1 yields the usual
gamma distribution and = =1 is the exponential one. Again, changing variables one
can show that the inverse z = 1 y of a generalized gamma variable is also a generalized

gamma variable, but with transformed parameters,

1
- 2.22
¢ - (2.22)
So, 1=2z=1 In(g a) will have a generalized gamma distribution, with parameters

N, 1,and N( 1) (keeping the same order as above). Introducing the moments of
this distribution (Evans et al., 2000),

y" =" (2.23)
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(valid for m > if >0andform< if <O0,and y™ in nite otherwise), we

obtain the expected value of 1,

_NC D)

~— (2.24)

Note that the ML estimator, , is biased, as its expected value does not coincide with
the right value, ; however, asymptotically, the right value is recovered. An unbiased
estimator of can be obtained for a small sample as (1 1 N) .+ 1 N, although this

will not be of interest to us.

In the same way, the standard deviation of 1 (and of ) turns out to be

1
= ( 1y 12:(1 TV T (2.25)

which leads asymptotically to ( 1) N. In practice, we need to replace by the
estimated value .; then, this is nothing else than the limit » = 0 (b ) of the general
formula stated above for  (Aban et al., 2006). The fact that the standard deviation
tends to zero asymptotically (together with the fact that the estimator is asymptotically
unbiased) implies that any single estimation converges (in probability) to the true value,

and therefore the estimator is said to be consistent.

2.2.5 Goodness-of-fit test

One can realize that the maximum likelihood method always yields a ML estimator for

, no matter which data one is using. In the case of power laws, as the data only enters
in the likelihood function through its geometric mean, any sample with a given geometric
mean yields the same value for the estimation, although the sample can come from a
true power law or from any other distribution. So, no quality of the t is guaranteed
and thus, maximum likelihood estimation should be rather called minimum unlikelihood
estimation. For this reason a goodness-of- t test is necessary (although recent works do

not take into account this fact (Baro and Vives, 2012, Kagan, 2002, White et al., 2008)).

Following Goldstein et al. (2004) and Clauset et al. (2009) we use the Kolmogorov-
Smirnov (KS) test (Chicheportiche and Bouchaud, 2012, Press et al., 2002), based on
the calculation of the KS statistic or KS distance d, between the theoretical probability
distribution, represented by S(z), and the empirical one, Sc(z). The latter, which is
an unbiased estimator of the cumulative distribution (Chicheportiche and Bouchaud,

2012), is given by the stepwise function

Se(z) =ne(z) N (2.26)
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where ne(z) is the number of data in the sample taking a value of the variable larger
than or equal to x. The KS statistic is just the maximum di erence, in absolute value,
between S(z) and ne(z) N, that is,

1 a o1 1 ne(x)

de = max S(x) Se(r) = max

2.27
a x b a z b1 7"61 xT ( )

where the bars denote absolute value. Note that the theoretical cumulative distribution
S(zx) is parameterized by the value of obtained from ML, .. In practice, the di erence
only needs to be evaluated around the points x; of the sample (as the routine ksone of
Press et al. (2002) does) and not for all . A more strict mathematical de nition uses
the supremum instead of the maximum, but in practice the maximum works perfectly.

We illustrate the procedure in Fig. 2, with a simulation of a non-truncated power law.
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FIGURE 2.2: Empirical (complementary) cumulative distribution for a simulated non-
truncated power-law distribution with =115, a = 0001, and Ny, = 1000, together
with its corresponding t, which yields . =1 143. The maximum di erence between
both curves, d. = 0033, is marked as an illustration of the calculation of the KS
statistic. The original theoretical distribution, unknown in practice, is also plotted.

Intuitively, if d. is large the t is bad, whereas if d. is small the t can be considered
as good. But the relative scale of d. is provided by its own probability distribution,
through the calculation of a p value. Under the hypothesis that the data follow indeed
the theoretical distribution, with the parameter obtained from our previous estimation
(this is the null hypothesis), the p value provides the probability that the KS statistic

takes a value larger than the one obtained empirically, i.e.,

p = Prob[KS statistic for power-law data (with .) is > d.]; (2.28)
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then, bad ts will have rather small p values.

It turns out that, in principle, the distribution of the KS statistic is known, at least

asymptotically, independently of the underlying form of the distribution, so,

pog=Q(d. N+012d.4+011d. N =

=2 (1) Yexp[ 2j%(de N+012d.+011d. N)*] (2.29)

J=1

for which one can use the routine probks of Press et al. (2002) (but note their Eq.
(14.3.9) is not right). Nevertheless, this formula will not be accurate in our case, and for
this reason we use the symbol pg instead of p. The reason is that we are optimizing
the value of  using the same sample to which we apply the KS test, which yields a
bias in the test, i.e., the formula would work for the true value of , but not for one
obtained by ML, which would yield in general a smaller K.S statistic and too large
p values (because the t for . is better than for the true value ) (Clauset et al., 2009,
Goldstein et al., 2004). However, for this very same reason the formula can be useful to
reject the goodness of a given t, i.e., if pg obtained in this way is already below 0.05,
the true p will be even smaller and the t is certainly bad. But the opposite is not true.
In a formula,

if pg <005 reject power law (2.30)

otherwise, no decision can be taken yet. Of course, the signi cance level 0.05 is arbitrary
and can be changed to another value, as usual in statistical tests. As a nal comment,
perhaps a more powerful test would be to use, instead of the KS statistic, the Kuiper s
statistic (Press et al., 2002), which is a re nement of the former one. It is stated by
Clauset et al. (2009) that both tests lead to very similar ts. In most cases, we have

also found no signi cant di erences between both tests.

2.2.6 The Clauset et al.’s recipe

Now we are in condition to explain the genuine Clauset et al. s (2009) method. This
is done in this subsection for completeness, and for the information of the reader, as
we are not going to apply this method. The key to tting a power law is neither the
ML estimation of the exponent nor the goodness-of- t test, but the selection of the
interval [a b] over which the power law holds. Initially, we have taken a and b as xed
parameters, but in practice this is not the case, and one has to decide where the power
law starts and where ends, independently of the total range of the data. In any case, N

will be the number of data in the power-law range (and not the total number of data).
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The recipe of Clauset et al. (2009) applies to non-truncated power-law distributions
(b ), and considers that a is a variable which needs to be t from the sample
(values of z below a are outside the power-law range). The recipe simply consists in
the search of the value of a which yields a minimum of the KS statistic, using as a
parameter of the theoretical distribution the one obtained by maximum likelihood, .,
for the corresponding a (no calculation of a p value is required for each xed a). In
other words,

a = the one that yields minimum d, (2.31)

Next, a global p value is computed by generating synthetic samples by a mixture of
parametric bootstrap (similarly to what is explained in the next subsection) and non-
parametric bootstrap. Then, the same procedure applied to the empirical data (mini-
mization of the KS distance using ML for tting) is applied to the synthetic samples in

order to t a and

These authors do not provide any explanation of why this should work, although one
can argue that, if the data is indeed a power law with the desired exponent, the larger
the number of data (the smaller the a value), the smaller the value of de, as d. goes as
1 N (for large N, see previous subsection). On the other hand, if for a smaller a the
data departs from the power law, this deviation should compensate and overcome the
reduction in d. due to the increase of N, yielding a larger d.. But there is no reason to

justify this overcoming.

Nevertheless, we will not use the Clauset et al. s (2009) procedure for two other reasons.
First, its extension to truncated power laws, although obvious, and justi able with the
same arguments, yields bad results, as the resulting values of the upper truncation cuto ,
b, are highly unstable. Second, even for non-truncated distributions, it has been shown
that the method fails to detect the existence of a power law for data simulated with a
power-law tail (Corral et al., 2011): the method yields an a value well below the true
power-law region, and therefore the resulting p is too small for the power law to become
acceptable. We will explain an alternative method that avoids these problems, but rst

let us come back to the case with a and b xed.

2.2.7 Monte Carlo simulations

Remember that we are considering a power-law distribution, de ned ina x b. We
already have t the distribution, by ML, and we are testing the goodness of the t by
means of the KS statistic. In order to obtain a reliable p value for this test we will
perform Monte Carlo simulations of the whole process. A synthetic sample power-law

distributed and with N elements can be obtained in a straightforward way, from the
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inversion or transformation method (Devroye, 1986, Press et al., 2002, Ross, 2002),

a

[ @ re Huft Ce b

(2.32)

where u; represents a uniform random number in [0 1). One can use any random number

generator for it. Our results arise from ran3 of Press et al. (2002).

2.2.8 Application of the complete procedure to many synthetic sam-

ples and calculation of p value

The previous tting and testing procedure is applied in exactly the same way to the
synthetic sample, yielding a ML exponent s (where the subindex s stands from syn-
thetic or simulated), and then a KS statistic ds, computed as the di erence between the
theoretical cumulative distribution, with parameter 4, and the simulated one, ns(z) N

(obtained from simulations with ., as described in the previous subsection), i.e.,

1

s 1 1 ns()
a z b 1 7“51

a
. roe N (2.33)
Both values of the exponent, . and 4, should be close to each other, but they will not
be necessarily the same. Note that we are not parametrizing S(z) by the empirical value

¢, but with a new tted value 4. This is in order to avoid biases, as a parametrization
with . would lead to worse ts (as the best one would be with ) and therefore to
larger values of the resulting KS statistic and to arti cially larger p values. So, although
the null hypothesis of the test is that the exponent of the power law is ., and synthetic
samples are obtained with this value, no further knowledge of this value is used in the
test. This is the procedure used by Clauset et al. (2009) and Malmgren et al. (2008),
but it is not clear if it is the one of Goldstein et al. (2004).

In fact, one single synthetic sample is not enough to do a proper comparison with the
empirical sample, and we repeat the simulation many times. The most important out-
come is the set of values of the KS statistic, ds, which allows to estimate its distribution.

The p value is simply calculated as

number of simulations with d,  d.
Ny

D= (2.34)
where Ny is the number of simulations. Figure 3 shows an example of the distribution
of the KS statistic for simulated data, which can be used as a table of critical values
when the number of data and the exponent are the same as in the example (Goldstein
et al., 2004).
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FIGURE 2.3: Cumulative (complementary) distribution of the Kolmogorov-Smirnov
statistic for simulated non-truncated power-law distributions with = ,=1143,a =
0 001, and Ny = 1000. The original empirical value d. = 0 033 is also shown. The
resulting p value turns our to be p =0060 0 008. The false p value, pg, arising
from the KS formula, leads to higher values for the same d., in concrete, pg = 0 22.

The standard deviation of the p value can be calculated just using that the number of
simulations with ds  d, is binomially distributed, with standard deviation ~Ngp(1 p)
and therefore the standard deviation of p is the same divided by N,

_ ol p) (2.35)

In fact, the p value in this formula should be the ideal one (the one of the whole
population) but we need to replace it by the estimated value; further, when doing
estimation from data, Ny should be Ny 1, but we have disregarded this bias correction.
It will be also useful to consider the relative uncertainty of p, which is the same as the
relative uncertainty of the number of simulations with d;  d. (as both are proportional).

Dividing the standard deviation of p by its mean (which is p), we obtain

1 p I p

CcV, =
P PN number of simulations with ds  d.

(2.36)

(we will recover this formula for the error of the estimation of the probability density).

In this way, small p values are associated to large values of d., and therefore to bad ts.
However, note that if we put the threshold of rejection in, let us say, p 0 05, even true
power-law distributed data, with exponent ., yield bad ts in one out of 20 samples

(on average). So we are rejecting true power laws in 5 % of the cases (type I error).
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On the other hand, lowering the threshold of rejection would reduce this problem, but
would increase the probability of accepting false power laws (type II error). In this type
of tests a compromise between both types of errors is always necessary, and depends on

the relative costs of rejecting a true hypothesis or accepting a false one.

In addition, we can obtain from the Monte Carlo simulations the uncertainty of the
ML estimator, just computing 4, the average value of 4, and from here its standard

deviation,

= (s )2 (2.37)

where the bars indicate average over the Ny Monte Carlo simulations. This procedure
yields good agreement with the analytical formula of Aban et al. (2006), but can be

much more useful in the discrete power-law case.

2.2.9 Alternative method to the one by Clauset et al.

At this point, for given values of the truncation points, a and b, we are able to obtain
the corresponding ML estimation of the power-law exponent as well as the goodness of
the t, by means of the p value. Now we face the same problem Clauset et al. (2009)
tried to solve: how to select the tting range? In our case, how to nd not only the
value of a but also of b7 We adopt the simple method proposed by Peters et al. (2010):
sweeping many di erent values of @ and b we should nd, if the null hypothesis is true
(i.e., if the sample is power-law distributed), that many sets of intervals yield acceptable

ts (high enough p values), so we need to nd the best of such intervals. And which
one is the best? For a non-truncated power law the answer is easy, we select the largest
interval, i.e., the one with the smaller a, provided that the p value is above some =xed

signi cance level p.. All the other acceptable intervals will be inside this one.

But if the power law is truncated the situation is not so clear, as there can be several
non-overlapping intervals. In fact, many true truncated power laws can be contained
in the data, at least there are well know examples of stochastic processes with double
power-law distributions (Boguna and Corral, 1997, Corral, 2003, 2009a, Klafter et al.,
1996). At this point any selection can be reasonable, but if one insists in having an
automatic, blind procedure, a possibility is to select either the interval which contains
the larger number of data, N (Peters et al., 2010), or the one which has the larger
log-range, b a. For double power-law distributions, in which the exponent for small
x is smaller than the one for large x, the former recipe has a tendency to select the

rst (small z) power-law regime, whereas the second procedure changes this tendency

in some cases.
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In summary, the nal step of the method for truncated power-law distributions is con-

tained in the formula

N
[a b] = the one that yields higher or provided that p > p. (2.38)
ba

which contains in fact two procedures, one maximizing N and the other maximizing
b a. We will test both in this paper. For non-truncated power-law distributions the two

procedures are equivalent.

One might be tempted to choose p. = 0 05, however, it is safer to consider a larger value,
as for instance p. = 0 20. Note that the p value we are using is the one for xed a and
b, and then the p value of the whole procedure should be di erent, but at this point it
is not necessary to obtain such a p value, as we should have already come out with a

reasonable t. Figure 4 shows the results of the method for true power-law data.

KS distance, de' ——
1.4 r p-value, p —+—
po —=—
ae

10° 102 10 10° 10' 10? 10® 10* 10° 10°
a
FIGURE 2.4: Evolution as a function of a of the KS statistic, the false p value pg, the

true p  value (for xed a), and the estimated exponent. The true exponent, here called
+ and equal to 1.15, is displayed as a thin black line, together with a 2 interval.

2.2.10 Truncated or non-truncated power-law distribution?

For broadly distributed data, the simplest choice is to try to t rst a non-truncated
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power-law distribution. If an acceptable t is found, it is expected that a truncated
power law, with b 4, (Where X4, is the largest value of x) would yield also a
good t. In fact, if b is not considered as a xed value but as a parameter to t, its
maximum likelihood estimator when the number of data is xed, i.e., when b is in the
range b Tmaz, 18 be = Tmaz- This is easy to see (Aban et al., 2006), just looking at the
equations for (), (11) and (12), which show that ( ) increases as b approaches .
(In the same way, the ML estimator of a, for xed number of data, would be ae = Zmin,
but we are not interested in such a case now.) On the other hand, it is reasonable that
a truncated power law yields a better t than a non-truncated one, as the former has

two parameters and the latter only one (assuming that a is xed, in any case).

In order to do a proper comparison, in such situations the so-called Akaike information
criterion (AIC) can be used. This is de ned simply as the di erence between twice the
number of parameters and twice the maximum of the log-likelihood multiplied by the

number of data, i.e.,
AIC =2 (number of parameters) 2N ( ) (2.39)

In general, having more parameters leads to better ts, and to higher likelihood, so, the
rst term compensates this fact. Therefore, given two models, the one with smaller AIC
is preferred. Note that, in order that the comparison based on the AIC makes sense, the
ts that are compared have to be performed exactly over the same data. So, in our case
this can only be done for non-truncated power laws and for truncated power laws with
b  Tmaz- Nevertheless, due to the limitations of this paper we have not performed the

comparison.

2.3 Estimation of probability densities and cumulative dis-

tribution functions

The method of maximum likelihood does not rely on the estimation of the probability
distributions, in contrast to other methods. Nevertheless, in order to present the results,
it is useful to display some representation of the distribution, together with its t. This
procedure has no statistical value (it cannot provide a substitution of a goodness-of-

t test) but is very helpful as a visual guide, specially in order to detect bugs in the

algorithms.
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2.3.1 Estimation of the probability density

In the de nition of the probability density,

Prob[x  random variable < z + x]

f(z) = lim

z 0 xT

(2.40)

a fundamental issue is that the width of the interval x has to tend to zero. In practice

x cannot tend to zero (there would be no statistics in such case), and one has to take
a non-zero value of the width. The most usual procedure is to draw a histogram using
linear binning (bins of constant width); however, there is no reason why the width of
the distribution should be xed (some authors even take x = 1 as the only possible
choice). In fact, x should be chosen in order to balance the necessity of having enough
statistics (large ) with that of having a good sampling of the function (small x).
For power-law distributions and other fat-tailed distributions, which take values across
many di erent scales, the right choice depends of the scale of x. In this cases it is
very convenient to use the so-called logarithmic binning (Hergarten, 2002, Pruessner,
2012). This uses bins that appear as constant in logarithmic scale, but that in fact grow
exponentially (for which the method is sometimes called exponential binning instead).
Curiously, this useful method is not considered by classic texts on density estimation
(Silverman, 1986).

Let us consider the semi-open intervals [ag bg) [a1 b1) [ar br)  , also called bins,
with ag11 = by and by, = Bay, (this constant B has nothing to do with the one in the
Gutenberg-Richter law, Sec. 2.1). For instance, if B = ° 10 this yields 5 intervals for
each order of magnitude. Notice that the width of every bin grows linearly with ax, but
exponentially with k, as by ar = (B 1)ay = ag(B  1)B*. The value of B should
be chosen in order to avoid low populated bins, otherwise, a spurious exponent equal to

one appears (Pruessner, 2012).

We simply will count the number of occurrences of the variable in each bin. For each

value of the random variable x;, the corresponding bin is found as

In(z; ap)

k = int
m In B

(2.41)
where the function int denotes the integer part of its argument. Of course, ag has to
be smaller than any possible value of . For a continuous variable the concrete value of
ap should be irrelevant (if it is small enough), but in practice one has to avoid that the

resulting values of ay coincide with round values of the variable (Corral et al., 2011).

So, with this logarithmic binning, the probability density can be estimated (following its

de nition) as the relative frequency of occurrences in a given bin divided by its width,
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ie.,
number of occurrences in bin k

felzy) =

2.42
(by ar) number of occurrences (242)

where the estimation of the density is associated to a value of x represented by z,.
The most practical solution is to take it in the middle of the interval in logscale, so
z, = aiby. However, for sparse data covering many orders of magnitude it is necessary
to be more careful. In fact, what we are looking for is the point x; whose value of the
density coincides with the probability of being between ap and by divided by the width

of the interval. This is the solution of

b, "
flzy) = % fla)dn = 2Lar) S

2.43
ko Ok g b ag (2.43)

where f and S are the theoretical distributions. When the distribution and its parame-
ters are known, the equation can be solved either analytically or numerically. It is easy

to see that for a power-law distribution (truncated or not) the solution can be written

= apby (1)t (2.44)
where we have used that B = by ay (if we were not using logarithmic binning we would
have to write a bin-dependent By). Note that for constant (bin-independent) B, i.e., for
logarithmic binning, the solution is proportional but not equal to the geometric mean
of the extremes of the bin. Nevertheless, the omission of the proportionality factor does
not alter the power-law behavior, just shifts (in logarithmic scale) the curve. But for a
di erent binning procedure this is no longer true. Moreover, for usual values of B the
factor is very close to one (Hergarten, 2002), although large values of B (Corral et al.,
2011) yield noticeable deviations if the factor in brackets is not included, see also our
treatment of the radionuclide half-lives in Sec. 2.3, with B = 10. Once the value of B is

xed (usually in this paper to °10), in order to avoid empty bins we merge consecutive
bins until the resulting merged bins are not empty. This leads to a change in the e ective

value of B for merged bins, but the method is still perfectly valid.

The uncertainty of fe(z) can be obtained from its standard deviation (the standard
deviation of the estimation of the density, f., not of the original random variable ).
Indeed, assuming independence in the sample (which is already implicit in order to apply
maximum likelihood estimation), the number of occurrences of the variable in bin k is
a binomial random variable (in the same way as for the p value). As the number of

occurrences is proportional to fe(x), the ratio between the standard deviation and the
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mean for the number of occurrences will be the same as for f.(x), which is,

rx) q 1 (2.45)

fe(x) mean number of occurrences in k occurrences in k

where we replace the mean number of occurrences in bin k (not available from a nite
sample) by the actual value, and ¢, the probability that the occurrences are not in bin
k, by one. This estimation of f(x) fails when the number of counts in the bin is too

low, in particular if it is one.

One nal consideration is that the tted distributions are normalized between a and
b, with NV number of data, whereas the empirical distributions include all data, with
Nyt of them, Ny N. Therefore, in order to compare the ts with the empirical

distributions, we will plot N f(x) Ny together with fe(x,).

2.3.2 Estimation of the cumulative distribution

The estimation of the (complementary) cumulative distribution is much simpler, as bins
are not involved. One just needs to sort the data, in ascending order, x(;) ()

T(Nyw 1) T(Npop); then, the estimated cumulative distribution is

Se(z3)) = L . (2.46)

for the data points, Se(x) =constant below these data points, and Se(z) = 0 for =z >
T(Nyor); Me(Z(i)) is the number of data with z ;) in the empirical sample. The formula
relating ne(z(;)) with i assumes that repeated values of the variable are not possible, so
it would not be valid for a discrete z. We use the case of empirical data as an example,
but it is of course the same for simulated data. For the comparison of the empirical
distribution with the theoretical t we need to correct the di erent number of data in
both cases. So, we plot both [NS(x) + n.(b)] Nyt and Se(z), in order to check the

accuracy of the t.

2.4 Data Analyzed and Results

We have explained how, in order to certify that a dataset is compatible with a simple
power-law distribution, many mathematical formulas are required, leading to an aston-
ishingly large number of calculations. Now we check the performance of our method
with diverse geophysical data, which were previously analyzed with di erent, less rigor-

ous or worse-functioning methods. For the peculiarities and challenges of the dataset, we
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also include the half-lives of unstable nuclides. The parameters of the method are xed
to Ny = 1000 Monte Carlo simulations and the values of a and b are found sweeping
a xed number of points per order of magnitude, equally spaced in logarithmic scale.
This number is 10 for non-truncated power laws (in which b is xed to in nity) and 5
for truncated power laws. Three values of p. are considered: 0.1, 0.2, and 0.5, in order
to compare the dependence of the results on this parameter. The results are reported
using the Kolmogorov-Smirnov test for goodness-of- t. If, instead, the Kuiper s test
is used, the outcome is not signi cantly di erent in most of the cases. In a few cases
the tting range, and therefore the exponent, changes, but without a clear trend, i.e.,
the tting range can become smaller or increase. These cases deserve a more in-depth

investigation.

2.4.1 Half-lives of the radioactive elements

Corral et al. (2011) studied the statistics of the half-lives of radionuclides (comprising
both nuclei in the fundamental and in excited states). Any radionuclide has a constant
probability of disintegration per unit time, the decay constant, let us call it  (Krane,

1988). If M is the total amount of radioactive material at time ¢, this means that

1 dM
- 247
M dt (247)
This leads to an exponential decay, for which a half-life ¢; 5 or a lifetime 6 can be de ned,
as

In2
t =02 =— (2.48)
It is well known that the half-lives take disparate values, for example, that of 22*U is
4.47 (American) billions of years, whereas for other nuclides it is a very tiny fraction of

a second.

It has been recently claimed that these half-lives are power-law distributed (Corral et al.,
2011). In fact, three power-law regions were identi ed in the probability density of ¢; o,
roughly,
1 t(l) 625 for 10 s ¢, 5 O01ls
f(t1 2) 1Y for100s ¢, 10'% (2.49)

1 t% 029 for t; o 108s

Notice that there is some overlap between two of the intervals, as reported in the original
reference, due to problems in delimiting the transition region. The study used variations
of the Clauset et al. s (2009) method of minimization of the KS statistic, introducing
and upper cuto and additional conditions to escape from the global minimum of the

KS statistic, which yielded the rejection (p = 0 000) of the power-law hypothesis. These
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additional conditions were of the type of taking either a or b a greater than a xed

amount.

For comparison, we will apply the method explained in the previous section to this
problem. Obviously, our random variable will be x = t; 5. The data is exactly the same
as in the original reference, coming from the Lund /LBNL Nuclear Data Search web page
(Chu et al., version 2.0, February 1999). Elements whose half-life is only either bounded
from below or from above are discarded for the study, which leads to 3002 radionuclides
with well-de ned half-lives; 2279 of them are in their ground state and the remaining 723
in an exited state. The minimum and maximum half-lives in the dataset are 3 10 22
sand 7 103! s, respectively, yielding more than 53 orders of magnitude of logarithmic

range. Further details are in Corral et al. (2011).

The results of our tting and testing method are shown in Table 2.1 and in Fig. 2.5.
The tting of a non-truncated power law yields results in agreement with Corral et al.
(2011), with =109 001 anda=3 107 s, for the three values of p. analyzed (0.1,
0.2, and 0.5). When tting a truncated power law, the maximization of the log-range,
b a, yields essentially the same results as for a non-truncated power law, with slightly
smaller exponents  due to the niteness of b (results not shown). In contrast, the
maximization of the number of data N yields an exponent 095 betweena 01 s
and b 400 s (with some variations depending on p.). This result is in disagreement
with Corral et al. (2011), which yielded a smaller exponent for smaller values of a and b.
In fact, as the intervals do not overlap both results are compatible, but it is also likely
that a di erent function would lead to a better t; for instance, a lognormal between
0.01 s and 10° s was proposed by Corral et al. (2011), although the tting procedure
there was not totally reliable. Finally, the intermediate power-law range reported in the
original paper (the one with = 1 19) is not found by any of our algorithms working on
the entire dataset. It is necessary to cut the dataset, removing data below, for instance,
100 s (which is equivalent to impose a > 100 s), in order that the algorithm converges
to that solution. So, caution must be taken when applying the algorithm blindly, as
important power-law regimes may be hidden by others having either larger N or larger

log-range.

2.4.2 Seismic moment of earthquakes

The statistics of the sizes of earthquakes (Gutenberg and Richter, 1944) has been inves-
tigated not only since the introduction of the rst magnitude scale, by Richter, but even
before, in the 1930 s, by Wadati (Utsu, 1999). From a modern perspective, the most

reliable measure of earthquake size is given by the (scalar) seismic moment M, which is
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TABLE 2.1: Results of the ts for the N;,; = 3002 nuclide half-lives data, for di erent

values of p.. We show the cases of a pure or non-truncated power law (with b = |

xed) and truncated power law (with b nite, estimated from data), maximizing N.

The latter is splitted into two subcases: exploring the whole range of a (rows 4, 5, and
6) and restricting a to a > 100 s (rows 7, 8, and 9).

N a (s) b (s) b a De
143 0.316 10° 1.089 0.007 0.10
143 0.316 108 1.089 0.007 0.20
143 0.316 10% 1.089 0.008 0.50

1596 0.0794 501 6310 0.952 0.010 0.10
1539 0.1259 501 3981 0.959 0.011 0.20
1458 0.1259 316 2512 0.950 0.011 0.50

1311 125.9 0.501 10% 0.398 10%! 1.172 0.005 0.10
1309 125.9 0.316 10?2 0.251 10?0 1.175 0.005 0.20
1303 125.9 0.794 10® 0.631 10 1.177 0.005 0.50

5 T T T T T T T 7]
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FIGURE 2.5: Estimated probability density of the half-lives of the radionuclides, to-

gether with the power-law ts explained in the text. The number of log-bins per order

of magnitude is one, which poses a challenge in the correct estimation of the density,
as explained in Sec. 2.3. Data below 107!° s are not shown.

the product of the mean nal slip, the rupture area, and the rigidity of the fault material
(Ben-Zion, 2008). It is usually assumed that the energy radiated by an earthquake is
proportional to the seismic moment (Kanamori and Brodsky, 2004), so, a power-law
distribution of the seismic moment implies a power-law distribution of energies, with

the same exponent.

The most relevant results for the distribution of seismic moment are those of Kagan
for worldwide seismicity (Kagan, 2002), who showed that its probability density has a

power-law body, with a universal exponent in agreement with =163 5 3, but with
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an extra, non-universal exponential decay (at least in terms of the complementary cumu-
lative distribution). However, Kagan s (2002) analysis, ending in 2000, refers to a period
of global seismic quiescence ; in particular, the large Sumatra-Andaman earthquake of
2004 and the subsequent global increase of seismic activity are not included. Much
recently, Main et al. (2008) have shown, using a Bayesian information criterion, that
the inclusion of the new events leads to the preference of the non-truncated power-law

distribution in front of models with a faster large-M decay.

We take the Centroid Moment Tensor (CMT) worldwide catalog analyzed by Kagan
(2002) and by Main et al. (2008), including now data from January 1977 to December
2010, and apply our statistical method to it. Although the statistical analysis of Kagan
is rather complete, his procedure is di erent to ours. Note also that the dataset does
not comprise the recent (2011) Tohoku earthquake in Japan, nevertheless, the qualita-
tive change in the data with respect to Kagan s period of analysis is very remarkable.
Following this author, we separate the events by their depth: shallow for depth 70
km, intermediate for 70 km < depth 300 km, and deep for depth > 300 km. The
number of earthquakes in each category is 26824, 5281, and 1659, respectively.

Second, we also consider the Southern California s Waveform Relocated Earthquake
Catalog, from January 1st, 1981 to June 30th, 2011, covering a rectangular box of
coordinates (122 W,30 N), (113 W,37 5 N) (Hauksson et al., Shearer et al., 2005). This
catalog contains 111981 events with m 2. As, in contrast with the CMT catalog, this
one does not report the seismic moment M, the magnitudes m there are converted into

seismic moments, using the formula
3
log;g M = i(m +607) (2.50)

where M comes in units of Nm (Newtons times meters); however, this formula is a very
rough estimation of seismic moment, as it is only accurate (and exact) when m is the
so-called moment magnitude (Kanamori and Brodsky, 2004), whereas the magnitudes
recorded in the catalog are not moment magnitudes. In any case, our procedure here is

equivalent to t an exponential distribution to the magnitudes reported in the catalog.

Tables 2.2 and 2.3 and Fig. 6 summarize the results of analyzing these data with our
method, taking x = M as the random variable. Starting with the non-truncated power-
law distribution, we always obtain an acceptable (in the sense of non-rejectable) power-
law t, valid for several orders of magnitude. In all cases the exponent is between 1.61
and 1.71, but for Southern California it is always very close to 1.66. For the worldwide
CMT data the largest value of @ is 3 10'® Nm, corresponding to a magnitude m = 6 25
(for shallow depth), and the smallest is @ = 8 10'® Nm, corresponding to m = 5 2

(intermediate depth). If the events are not separated in terms of their depth (not
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TABLE 2.2: Results of the non-truncated power-law t (b= ) applied to the seismic
moment of earthquakes in CMT worldwide catalog (separating by depth) and to the
Southern California catalog, for di erent p..

Catalog N a (Nm) De
CMT deep 1216 0.1259 10™ 1.622 0.019 0.10
intermediate 3701 0.7943 107 1.654 0.011 0.10
shallow 5799 0.5012 10 1.681 0.009 0.10
CMT deep 898 0.1995 10 1.608 0.020 0.20
intermediate 3701 0.7943 107 1.654 0.011 0.20
shallow 5799 0.5012 10 1.681 0.009 0.20
CMT deep 898 0.1995 10 1.608 0.021 0.50
intermediate 3701 0.7943 10'7 1.654 0.011 0.50
shallow 1689 0.3162 10 1.706 0.018 0.50

S. California 1327 0.1000 10 1.660 0.018 0.10
S. California 1327 0.1000 10 1.660 0.018 0.20
S. California 972 0.1585 10 1.654 0.021 0.50

shown), the results are dominated by the shallow case, except for p. = 0 5, which leads
to very large values of a and (¢ =5 10 Nm and 2). The reason is probably
the mixture of the di erent populations, in terms of depth, which is not recommended
by Kagan (2002). This is an indication that the inclusion of an upper limit b to the
power law may be appropriate, with each depth corresponding to di erent bs. For
Southern California, the largest a found (for p. = 05)is 16 10! Nm, giving m = 4.
This value is somewhat higher, in comparison with the completeness magnitude of the
catalog; perhaps the reason that the power-law +t is rejected for smaller magnitudes is
due to the fact that these magnitudes are not true moment magnitudes, but come from
a mixture of di erent magnitude de nitions. If the value of a is increased, the number
of data N is decreased and the power-law hypothesis is more di cult to reject, due
simply to poorer statistics. When a truncated power law is tted, using the method of
maximizing the number of data leads to similar values of the exponents, although the
range of the t is in some cases moved to smaller values (smaller a, and b smaller than
the maximum M on the dataset). The method of maximizing b a leads to results that

are very close to the non-truncated power law.
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FIGURE 2.6: Estimated probability densities and corresponding power-law ts of the
seismic moment M of shallow earthquakes in the worldwide CMT catalog and of the
estimated M in the Southern California catalog.

2.4.3 Energy of tropical cyclones

Tropical cyclones are devastating atmospheric-oceanic phenomena comprising tropical
depressions, tropical storms, and hurricanes or typhoons (Emanuel, 2005a). Although
the counts of events every year have been monitored for a long time, and other measure-
ments to evaluate annual activity have been introduced (see Corral and Turiel (2012)
for an overview), little attention has been paid to the statistics of individual tropical

cyclones.

In 2005, Emanuel introduced the power-dissipation index (PDI) as a simple way to
obtain a rough estimation of the total energy dissipated by all tropical cyclones in a
given season and some ocean basin (Emanuel, 2005b). But the PDI can also be used to
characterize individual events as well, as it was done later by Corral et al. (2010). Indeed,
the PDI is de ned as the sum for all the discrete times ¢ (that comprise the lifetime of
a tropical cyclone) of the cube of the maximum sustained wind speed multiplied by the

time interval of sampling, ¢. In a formula,

PDI = v t (2.51)

¢
where v; is the maximum sustained wind speed. In the so-called best-track records,
t = 6 hours; this factor would only be necessary in order to compare with other data

with di erent ¢ (but caution should be present in this case for the possible fractal nature
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of the speed signal). Although the speeds are reported in knots, they are converted to
m/s (using that 1 knot=0.514 m/s), and then we report the PDI in m3/s2.

Corral et al. (2010) studied the statistics of the PDI (de ned for individual events, in
contrast to Emanuel s (2005b) work) in 4 di erent ocean basins for several time periods.
The results showed a rapid, perhaps exponential, decay at the tail, but a body of the
distribution compatible with a power law, for 1 or 2 orders of magnitude, with exponents
close to one. The connection with SOC phenomena was discussed by Corral (2010).
The method used was again a variation of the Clauset et al. s (2009) one, introducing
an upper cuto and additional restrictions to the variations of the parameters. Here we
revisit this problem, trying to use updated data (whenever it has been possible), and

applying the method which is the subject of this paper to x = PDI.

102 L p > (I).2, Pure .
I p > 0.2, Truncated (max N) mm=
100 L E. Pac. ==
N. Atl.

¢ b

f(PDI) [m™ 7]
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FIGURE 2.7: Estimated probability densities of the PDI of tropical cyclones in 5 ocean

basins, together with their power-law ts. The values of the densities are multiplied by

1, 102, 10, 105, and 102, for clarity sake. The ts for the non-truncated case are akso
displayed, although they are not tabulated.

The data has been downloaded from the National Hurricane Center (NHC) of NOAA,
for the North Atlantic and the Northeastern Paci ¢ (Jarvinen et al., 1988, National
Hurricane Center) and from the Joint Typhoon Warning Center (JTWC) of the US Navy
(Chu et al., 2002, Joint Typhoon Warning Center, Annual Tropical Cyclone Reports)
for the Northwestern Paci ¢, the Southern Hemisphere (comprising the Southern Indian

and the Southwestern Paci c¢), and the Northern Indian Ocean. The abbreviation, time
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span, and number of events for each basin are: NAtl, 1966 2011, 532; EPac, 1966 2011,
728; WPac, 1986 2011, 690; SHem, 1986 2007 (up to May), 523; NInd, 1986 2007, 110.

The latter case was not studied in any of the previous works.

The results for a truncated power law maximizing N, shown in Table 2.4 and Fig. 2.7,
are in agreement with those of Corral et al. (2010). In general, exponents are close but
above 1, except for the Northwestern Paci ¢, where 0 96, and for the North Indian,
where is substantially higher than one. We consider that this method performs rather
well. It would be interesting to test if universality can nevertheless hold (the high value
for the North Indian Ocean is based in much less data than for the rest of basins), or if
there is some systematic bias in the value of the exponents (the protocols of the NHC

and the JTWC are di erent, and the satellite coverage of each basin is also di erent).

If a non-truncated power law is t to the data, the ts turn out to be rather short,
with a high exponent (up to 6) describing the tail of the distribution (except for the
Southern Hemisphere, where no such tail is apparent). We do not give any relevance
to these results, as other alternatives, as for instance a simple exponential tail, have
to be considered (Corral and Turiel, 2012, del Castillo et al., 2012). Coming back to a
truncated power law, but maximizing the log-range, the algorithm sometimes ts the
power law in the body of the distribution (with exponent close to 1) and for some other
times the algorithm goes to the fast-decaying tail. So the method of maximizing b a is

not useful for this data.
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2.4.4 Area of forest fires

The statistics of the size of forest res was an intense topic of research since the intro-
duction of the concept of SOC, at the end of the 1980 s, but only from the point of view
of cellular-automaton models. Real data analysis had to wait several years (Malamud
et al., 1998, 2005), leading to power-law distributions, more or less in agreement with
the models. Here we are particularly interested in a dataset from Italy, for which a
power-law distribution of sizes was ruled out (Corral et al., 2008). Instead, a lognormal

tail was proposed for the re-size probability density.

The data considered by (Corral et al., 2008), and reanalyzed in this study, comes from
the Archivio Incendi Boschivi (AIB) re catalog compiled by the (Italian)

(http://www.corpoforestale.it). The subcatalog to which we restrict covers all Italy
and spans the 5-year period 1998-2002, containing 36 748 res. The size of each re is
measured by the burned area A, in hectares, with 1 ha=10* m?. In this subsection we

analyze the case of z = A.

The results in Table 2.5 and Fig. 2.8 show that a pure (non-truncated) power law is
only acceptable (in the sense of non-rejectable) for the rightmost part of the tail of the
distribution, comprising less than one order of magnitude. It is very indicative that
only 51 data are in the possible power-law tail. Therefore, we disregard this power-law
behavior as spurious and expect that other distributions can yield a much better t
(not in order of the quality of the t but regarding the number of data it spans). This
seems in agreement with other analyses of forest- re data (Clauset et al., 2009, Newman,
2005). If a truncated power-law is considered, tted by maximizing the number of data,
the results are not clearly better, as seen in the table. Moreover, there is considerable
variation with the value of p.. So, we do not give any relevance to such power-law ts.
Finally, the method of maximizing b a yields the same results as for the non-truncated
power law (except by the fact that the exponents are slightly smaller, not shown). In
order to provide some evidence for the better adequacy of the lognormal tail in front of
the power-law tail for these data, it would be interesting to apply an adaptation of the

test explained by del Castillo and Puig (1999).

2.4.5 Waiting time between earthquakes

The temporal properties of earthquakes has been a subject relatively little studied (at
least in comparison with the size of earthquakes). It is true that the Omori law has been
known for more than 100 years (Utsu, 2002, Utsu et al., 1995), and that this is a law

extremely important in order to assess the hazard of aftershocks after a big event, but
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FiGUure 2.8: Estimated probability density of the area of res in the Italian catalog,
together with the power-law ts. In contrast to the previous datasets analyzed, we
consider these power-law ts as irrelevant.

TABLE 2.5: Results of the ts for the burned area of the Ny, = 36 748 res recorded

in the Italian catalog, for di erent p.. The cases of a non-truncated power law and a

truncated power law, maximizing N, are shown. In the latter case, for p. = 0 10 and
0 50 the value of b is larger than the maximun value of the variable.

N a(ha) b(ha) ba De
51 794 2.880 0.276 0.10
51 794 2.880 0.277 0.20
51 794 2.880 0.277 0.50

168 316 7943 25 2353 0.117 0.10
148 316 1259 4 2.075 0.213 0.20
o1 794 79430 100 2.870 0.281 0.50

the Omori law looks at time properties in a very coarse-grained way, as it only provides
the number of events in relatively large time windows. Thus, no information on the ne

time structure of seismicity is provided, at least directly.

The situation has changed in the last decade, since the seminal study of Bak et al. (2002),
who found a uni ed scaling law for earthquake waiting-time distributions. They took
Southern California and divided it in di erent areas, and computed the time between
consecutive earthquakes for each area. So, if t‘g denotes the time of occurrence of the

i th earthquake in area j, the corresponding waiting time 95 is
o) =t t (2.52)

The key point is that all the resulting waiting times were added to the same distribution
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(and not to a di erent distribution j for each area). Subsequently, the uni ed scaling
law was found to be valid for other regions of the world (Corral, 2004a). The shape
of the resulting probability density corresponds to a double power law, one for small
waiting times, associated to a mixture of scales of waiting times due to the Omori
law, and another for large waiting times, due to spatial heterogeneity arising from the
mixture of di erent areas with di erent seismic rates (Bak et al., 2002, Corral, 2003,
2004a, Corral and Christensen, 2006). The rst exponent was found to be close to 1,
whereas the second one was about 2.2; the ts were done by means of the nonlinear
least-squares Marquardt-Levenberg algorithm from gnuplot, applied to the logarithm
of the log-binned empirical density. Here we apply our more sophisticated method to

updated data for Southern California seismicity, with x = 6.

We use again the relocated Southern California catalog of Hauksson et al., see also
Shearer et al. (2005), but starting in 1984 and ending in June 30th, 2011. This is to
avoid some holes in the catalog for the preceding years. As for earthquake sizes, the
occurrence takes place in a rectangle of coordinates (122 W,30 N), (113 W,37 5 N).
This rectangle is divided into equal parts both in the West-East axis and in the South-
North axis, in such a way that we consider a number of subdivisions of 4 4, 8 8§,
16 16, and 32 32. The waiting times for events of magnitude m 2 in each of these
subdivisions are computed as explained above, resulting in a number of data between
103000 and 104000 in all cases.

For a non-truncated power law, the results are only coherent with the previous reported
ones (exponent around 2.2) for the intermediate cases, i.e., 8 8 and 16 16, see Table
2.6 and Fig. 2.9. The disagreement for the other cases can easily be explained. For
4 4, the number of resulting subdivisions, 16, seems rather small. As mentioned, in
Corral and Christensen (2006) the power-law tail was explained in terms of a power-law
mixture of exponentials; so, with only 16 regions is possible that the asymptotic behavior
is still not reached. On the other hand, the e ect of the nite duration of the catalog
is visible in the 32 32 data. Due to the scaling behavior of the distributions (Corral,
2003, 2004a), the possible power-law tail in this case is displaced to larger waiting times;
but the time span of the catalog, about 100 s, clearly alters this power law, which starts
to bend at about 10? s. Thus, we conclude that a power-law exponent of about 22
or 2.3 indeed exists, provided that the number of spatial subdivisions is high enough

and the temporal extension of the catalog is large enough.

When a truncated power-law is tted, using the method of maximizing the number of
data N, the other power law emerges, but for a range shorter than what the plot of
the densities suggests. The exponent is in a range from 0.95 to 1.04 (except for the

4 4 cases, in which it is a bit smaller). The largest log-range is 100, i.e., two decades.
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TABLE 2.6: Results of the ts with a non-truncated power law and a truncated power

law, maximizing N, for earthquake waiting times calculated for di erent subdivisions

of Southern California. Di erent minimum p values are shown. The total number of
data is above 103000 in any case.

Subdivisions N a (s) b (s) b a De
4 4 124 0.5012 107 1.921 0.085 0.10
8 8 1671 0.3162 107 2.198 0.031 0.10
16 16 542 0.3162 10% 2.324  0.056 0.10
32 32 67 0.3162 107 4.404 0.405 0.10
4 4 124 0.5012 107 1.921 0.085 0.20
8 8 1671 0.3162 107 2.198 0.031 0.20
16 16 542 0.3162 108 2.324 0.056 0.20
32 32 67 0.3162 10° 4.404 0.403 0.20
4 4 77 0.7943 107 1.856 0.098 0.50
8 8 322 0.1259 10% 2.231 0.070 0.50
16 16 24 0.3162 10° 4.106 0.703 0.50
32 32 67 0.3162 10° 4.404 0.449 0.50
4 4 38765 1995 0.5012 10° 25 0.867 0.006 0.10
8 8 39851 316 0.1995 10° 63 0.987 0.004 0.10
16 16 44178 7943 0.7943 10% 100 0.956 0.004 0.10
32 32 43512 1259 0.1995 10° 158 1.029 0.003 0.10
4 4 38765 1995 0.5012 10° 25 0.867 0.006 0.20
8 8 39851 316 0.1995 10> 63 0.987 0.004 0.20
16 16 39481 7943 0.5012 10% 63 0.950 0.005 0.20
32 32 39654 1259 0.1259 10° 100 1.033 0.004 0.20
4 4 34113 3162 0.5012 10° 16 0.864 0.007 0.50
8 8 39851 316 0.1995 10° 63 0.987 0.004 0.50
16 16 39481 7943 0.5012 10° 63 0.950 0.005 0.50
32 32 39654 1259 0.1259 10% 100 1.033 0.004 0.50

The graphical representation of the density seems to indicate that the possible power
law is in uenced by the e ect of two crossovers, one for large waiting times, associ-
ated to a change in exponent, and another one for smaller times, where the distribution
becomes at. Finally, the method of tting which maximizes the log-range leads to
results that are similar to the non-truncated power-law case, although sometimes inter-
vals corresponding to very small times are selected. The latter results have no physical
meaning, as correspond to times below 1 s, i.e., below the error in the determination of

the occurrence time.

2.5 Conclusions

For power-law distributions, the tting and the testing of the goodness of the ¢t is
a di cult but very relevant problem in complex-systems science, in general, and in

geoscience in particular. The most critical step is to select, automatically (without
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F1GURE 2.9: Estimated probability densities and corresponding power-law ts for the

waiting times of l» 2 in the Southern California catalog, for di erent spatial subdi-

visions. The values of the density are multiplied by factors 1, 10, 100, and 1000, for
clarity sake.

introducing any subjective bias), where the power-law regime starts and where it ends.
We have explained in detail a conceptually simple but somewhat laborious procedure
in order to overcome some di culties previously found in the method introduced by
Clauset et al. (2009), see Corral et al. (2011). Our method is summarized in tting
by maximum likelihood estimation and testing the goodness of t by the Kolmogorov-
Smirnov statistic, using Monte Carlo simulations. Although these steps are in common
with the Clauset et al. s (2009) recipe, the key di erence is in the criterion of selection
of the power-law range. Despite the many steps of these procedures, ours can be easily
implemented, and the resulting algorithms run very fast in current computers. We also
have explained how to estimate properly the probability density of a random variable
which has a power law or a fat-tail distribution. This is important to draw graphical
representations of the results of the tting (specially in Fig. 5) but it is not required to

perform neither the ts nor the goodness-of- t tests.

The performance of the method is quite good, as checked in synthetic power-law datasets,
and the results of the analysis of previously reported power laws are very consistent. We
con rm a very broad power-law tail in the distribution of the half-lives of the radionu-

clides, with exponent = 109, as well as other power-law regimes in the body of the



Chapter 2. Fitting and Goodness-of-Fit Test of Power-law Distributions 59

distribution. The results for the power-law exponent of the distribution of seismic mo-
ments worldwide and in Southern California are in agreement with previous estimates,
but in addition our method provides a reliable way to determining the minimum seismic-
moment value for which the Gutenberg-Richter law holds. This can be useful to check
systematically for the completeness thresholds of seismic catalogs. For the energy dissi-
pated by tropical cyclones, measured roughly through the PDI, we con rm the power-law
behavior in the body of the distribution previously reported, with exponents close to
one. We also survey new results for the Southern Indian Ocean, but with a higher
power-law exponent. In contrast, for the case of the area a ected by forest res in an
Italian catalog, we obtain power-law-distributed behavior only for rather small windows
of the burnt area, containing a very few number of res. Finally, for the waiting times
between earthquakes in di erent subdivisions of Southern California we conclude that
the power-law behavior of the tail is very delicate, a ected either by a small number of
subdivisions, when the size of those is large, or by the nite duration of the record, which
introduces a sharp decay of the distribution when the number of subdivisions is high.
For the body of the distribution another power law is found, but the range is limited by
crossovers below and above it. We conclude that, in general, the method for truncated
power laws works better when the number of data in the power-law range is maximized.
When the quantity that is maximized is the logarithmic range (b a) the tting range can
jump between di erent regimes. Also, the selection of a p value above 0.50 seems too
strict sometimes, and values about 0.10 or 0.20 are more useful. Naturally, the methods
studied in this paper can be directly applied to the overwhelming number of fat-tailed

distributions reported during the last decades in geoscience.
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This chapter contains the following paper (a copy of the published version can be found

in Chapter 8).

Peters O, Deluca A, Corral A, Neelin JD, Holloway C E. Universality of rain event size
distributions. Journal of Statistical Mechanics: Theory and Experiment. P11030 (2010).
DOI: 10.1007/s10955-010-0039-0.

Abstract We compare rain event size distributions derived from measurements in cli-
matically di erent regions, which we nd to be well approximated by power laws of
similar exponents over broad ranges. Di erences can be seen in the large-scale cuto s
of the distributions. Event duration distributions suggest that the scale-free aspects are

related to the absence of characteristic scales in the meteorological

PACS 05.65.4+b, 05.70.Jk, 64.60.Ht

3.1 Introduction

Atmospheric convection and precipitation have been hypothesised to be a real-world
realization of self-organized criticality (SOC). This idea is supported by observations

of avalanche-like rainfall events (Andrade et al., 1998, Peters et al., 2002) and by the

61
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nature of the transition to convection in the atmosphere (Neelin et al., 2009, Peters
and Neelin, 2006). Many questions remain open, however, as summarized below. Here
we ask whether the observation of scale-free avalanche size distributions is reproducible
using data from di erent locations and whether the associated tted exponents show

any sign of universality.

Many atmospheric processes are characterized by long-range spatial and temporal cor-
relation, and by corresponding structure on a wide range of scales. There are two com-
plementary explanations why this is so, and both are valid in their respective regimes:
structure on many scales can be the result of di erent processes producing many char-
acteristic scales (Bodenschatz et al., 2010, Klein, 2010); it can also be the result of an
absence of characteristic scales over some range, such that all intermediate scales are
equally signi cant (Barenblatt, 1996). The latter perspective is relevant, for instance,

in critical phenomena and in the inertial subrange of fully developed turbulence.

Processes relevant for precipitation are associated with many di erent characteristic
time and spatial scales, see e.g. Ref. (Bodenschatz et al., 2010). The list of these scales
has a gap, however, from a few km (a few minutes) to 1,000 km (a few days), spanning
the so-called mesoscale, and it is in this gap that the following arguments are most likely

to be relevant.

The atmosphere is slowly driven by incident solar radiation, about half of which is
absorbed by the planet s surface, heating and moistening the atmospheric boundary
layer; combined with radiative cooling at the top of the troposphere this creates an
instability. This instability drives convection, which in the simplest case is dry. More
frequently, however, moisture and precipitation play a key role. Water condenses in
moist rising air, heating the environment and reinforcing the rising motion, and often,
the result of this process is rainfall. The statistics of rainfall thus contain information
about the process of convection and the decay towards stability in the troposphere. A
common situation is conditional instability, where saturated air is convectively unstable,
whereas dry air is stable. Under-saturated air masses then become unstable to convection
if lifted by a certain amount, meaning that relatively small perturbations can trigger

large responses.

Since driving processes are generally slow compared to convection, it has been argued
that the system as a whole should typically be in a far-from equilibrium statistically
stationary state close to the onset of instability. In the parlance of the eld this idealized
state, where drive and dissipation are in balance, is referred to as Quasi-Equilibrium

(QE) (Arakawa and Schubert, 1974). In Ref. (Peters and Neelin, 2006), using satellite
data over tropical oceans, it was found that departures from the point of QE into the

unstable regime can be described as triggering a phase transition whereby large parts
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of the troposphere enter into a convectively active phase. Assuming that the phase
transition is continuous, the attractive QE state would be a case of SOC a critical
point of a continuous phase transition acting as an attractor in the phase space of a
system (Dickman et al., 1998, Tang and Bak, 1988).

The link between SOC and precipitation processes has also been made by investigating
event size distributions in a study using data from a mid-latitude location (Peters et al.,
2002). Both the tropical data in Ref. (Peters and Neelin, 2006) and the mid-latitude
data in Ref. (Peters et al., 2002) support some notion of SOC in precipitation processes,
but the climatologies in these regions are very di erent. Rainfall in the mid-latitudes
is often generated in frontal systems, whereas in the tropics, much of the precipitation
is convective, supporting high rain rates. It is not a priori clear whether these di er-
ences are relevant to the SOC analogy, or whether they are outweighed by the robust
similarities between the systems. For instance, drive and dissipation time scales are well
separated also in the mid-latitudes. In time series from Sweden the average duration of
precipitation events was found to be three orders of magnitude smaller than the average
duration of dry spells (Olsson et al., 1993). It is therefore desirable to compare identical

observables from di erent locations.

Scale-free event size distributions suggest long-range correlation in the system, which in
turn hints at a continuous transition to precipitation. Similar e ects, however, can also
result directly from a complex ow eld, as was shown in simulations using randomized
vortices and passive tracers (Dickman, 2003). Since the uid dynamics is complex enough
to generate apparent long-range correlation, and it is di cult from direct observation to

judge whether the transition is continuous, we cannot rule out a discontinuous jump.

This uncertainty is mirrored in parameterizations of convection. The spatial resolution of
general circulation models is limited by constraints in computing power to about 100 km
in the horizontal. Dynamically there is nothing special about this scale, and the approach
in climate modeling for representing physical processes whose relevant spatial scales are
smaller is to describe their phenomenology in parameterizations. Parameterizations of
convection and precipitation processes often contain both continuous and discontinuous
elements. For instance, the intensity of convection and precipitation typically depends
continuously on a measure of convective plume buoyancy (such as convective available
potential energy) and water vapor content (Arakawa and Schubert, 1974, Betts and
Miller, 1986), but sometimes a discontinuous threshold condition is introduced to decide

whether convection occurs at all (Neelin et al., 2008).
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3.2 Data sets

We study rain data from all 10 available sites of the Atmospheric Radiation Measurement
(ARM) Program, see www.arm.gov, over periods from about 8 months to 4 years, see
Table 1. Precipitation rates were recorded at one-minute resolution, with an optical
rain gauge, Model ORG-815-DA MiniOrg (Optical Scienti ¢, Inc.) (Ritsche). Data were
corrected using the ARM Data Quality Reports (Program), and rates below 0.2 mm/h
were treated as zero measurements, as recommended by the ARM Handbook (Ritsche),

see Figure 3.1.

The measurements are from climatically di erent regions using a standardized technique,
making them ideal for our purpose. Three sites are located in the Tropical Western
Paci ¢ (Manus, Nauru and Darwin), known for strong convective activity. Niamey is
subject to strong monsoons, with a pronounced dry season. Heselbach is a mid-latitude
site with an anomalously large amount of rainfall due to orographic e ects. Rainfall in
Shouxian is mostly convective in the summer months, which constitute most of the data
set. Graciosa Island in the Azores archipelago is a sub-tropical site, chosen for the ARM

program to study precipitation in low clouds of the marine boundary layer.

Three data are less straight-forward: The Point Reyes measurements speci cally tar-
get Marine Stratus clouds, which dominate the measurement period and are known to
produce drizzle in warm-cloud conditions (without ice phase). Unfortunately the mea-
surements only cover six months, and it is unclear whether observed di erences are
due to the di erent physics or to the small sample size. The Southern Great Plains
(SGP) measurements su er from a malfunction that led to apparent rain rates of about
0.1 mm/h over much of the observation period. The problem seems to be present in
most other data sets but is far less pronounced there, see Figure 3.1. Measurements
at temperatures below 3 C were discarded as these can contain snow from which it is
di cult to infer equivalent rates of liquid water precipitation. The North Slope of Alaska

(NSA) data set contains mostly snow; it is included only for completeness.

None of the data sets showed signi cant seasonal variations in the scaling exponents. In
the Point Reyes, SGP and NSA data we found slight variations but could not convince

ourselves that these were signi cant. Data from all seasons are used.
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FIGURE 3.1: Probability (relative frequency) density of precipitation rate, r in mm/h.

The vertical line indicates the lower intensity cuto at 0.2 mm/h. Smaller rain rates are

treated as zero. The peak around 0.1 mm/h, most pronounced in the Southern Great

Plains data, is due to a malfunction of the instrument. The Alaska data set contains
mostly snow and is included only for completeness.
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FIGURE 3.2: Probability densities of event sizes, s in mm, and a power-law t (black
straight line).
Inset: Precipitation rates from Niamey, including two rain events lasting 7 and 15
minutes respectively. Interpreting reported rain rates of less than 0.2 mm/h as zero,
the shaded areas are the corresponding event sizes.

3.3 Event sizes

The data used here are (0+1)-dimensional time series, whereas the atmosphere is a
(34+1)-dimensional system. We leave the question unanswered which spatial dimensions
are most relevant the system becomes vertically unstable, but it also communicates in

the two horizontal dimensions through various processes (Neelin et al., 2009).

Following Ref. (Peters et al., 2002), we de ne an event as a sequence of non-zero mea-
surements of the rain rate, see inset in Figure 3.2. The event size s is the rain rate, r(t),

integrated over the event, s = dt r(t). The dimension of this object is [s] =mm,

event
specifying the depth of the layer of water left on the ground during the event. One mm
corresponds to an energy density of some 2500 kJ/m? released latent heat of conden-
sation. If the rain rate were known over the area covered by the event, then the event
size could be de ned precisely as the energy released during one event. Since spatial

information is not available, it is ignored in our study.

For each data set, the probability density function Ps(s) in a particular size interval
[s s+ ) is estimated as Ps(s) n(s) (N s), where n(s) is the number of events in
the interval and N the total number of events. We use (s + s) s= 1015 158 i.e.

5 bins per order of magnitude in s. Standard errors are shown, for Ps(s): assuming
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Poissonian arrivals of events in any given bin, the error in n(s) is approximated by

n(s).

3.4 SOC scaling

Studies of simple SOC models that approach the critical point of a continuous phase
transition focus on avalanche size distributions, which we liken to rain event sizes. Criti-
cal exponents are derived from nite-size scaling, that is, the scaling of observables with
system size (as opposed to critical scaling, the scaling of observables with the distance
from criticality). In SOC models, moments of the avalanche size distribution scale with
system size L like

sk LPOTE Sfork >0, 1 (3.1)

de ning the exponent D, sometimes called the avalanche dimension, and the exponent
05, which we call the avalanche size exponent. Equation 3.1 is consistent with probability

density functions Ps(s) of the form
Py(s)=s °Y4(s s )fors > s (3.2)

where s = L, and the scaling function G4(s s ) falls o very fast for large arguments,
s s > 1, and is constant for small arguments, s s 1, down to a lower cuto ,
s = s;, where non-universal microscopic e ects (e.g. discreteness of the system) become

important.

Assuming that we have observations from an SOC system, and that a signi cant part
of the observed avalanche sizes are in the region s; < s s, we expect to nd a range
of scales where the power law

Py(s) = Gs(0)s * (3.3)

holds. Under su ciently slow drive the exponent 6, is believed to be robust in SOC
models (Alava et al., 2008, Pruessner and Peters, 2008). We infer event size distributions
like in Ref. (Peters et al., 2002) from measurements in di erent locations and compare
values for the apparent avalanche size exponent #;. As a rst step to assess the validity
of Equation 3.3 we produce log-log plots of Ps(s) vs. s and look for a linear regime,
Figure 3.2. Since the study of critical phenomena is a study of limits that cannot be
reached in physical systems, the eld is notorious for debates regarding the signi cance of
experimental work, which is especially true for SOC. While an element of interpretation

necessarily remains, we devise methods to maximize the objectivity of our analysis.
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FIGURE 3.3: (a) Event size distributions shifted along the supposed power laws to

collapse the loci of the cuto s. (b) Inferred scaling function G, using s = 1 17 for all

data sets. By far the largest deviations from a common scaling function are observed
for the unreliable data sets, Alaska (NSA) and Southern Great Plains (SGP).

In our data sets, time series of rain rates from di erent locations, we interpret the
upper limit s of the scale-free range as an e ective system size. We cannot control this
size; nonetheless the scaling hypothesis, Equation 3.2, can be tested using appropriate
moment ratios (Rosso et al., 2009). For instance, s s> s, provided s s .
Hence, to account for changes in e ective system sizes the s-axis in Figure 3.2 can be
rescaled to s s 52 , see Figure 3.3(a). This collapses the loci of the large-scale cuto s.
The P,(s)-axis is rescaled by s> > 5% s, so that Figure 3.3(a) shows the curves
of Figure 3.2 shifted along their supposed power-laws, without having to estimate any
parameters. The curves are neither normalized nor do they collapse vertically the
degree of vertical collapse is comparable to that in Figure 3.2. Plotting Ps(s)s * against
the rescaled variable s s s? produces Figure 3.3(b) of the scaling function Gs(s (as )),
where «a is the proportionality constant relating s to the moment ratio. This has the
advantage of reducing the logarithmic vertical range, which makes it possible to see
di erences in the distributions that would otherwise be concealed visually. Figure 3.3(a)

covers 9 orders of magnitude vertically, whereas 3.3(b) covers little more than 2.

3.5 Exponent estimation and goodness of fit

For a detailed discussion, see 3.9. We apply a form of Kolmogorov-Smirnov (KS) test
(Press et al., 2002) similar to that in Ref. (Clauset et al., 2009). First, a tting range
[Smin Smax) 18 selected. In this range the maximum-likelihood value for 64 in Equation 3.3
is found. Next, the maximum di erence between the empirical cumulative distribution

in this range and the cumulative distribution corresponding to the best- t power law is
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found. The same measure is applied to synthetic samples of data (each with the same
number of instances), generated from the best- t power-law distribution. This yields
the p -value, i.e. the fraction of samples generated from the tested model (the best- t
power law) where at least such a di erence is observed. We stress that each synthetic
data set is compared to its own maximum-likelihood power-law distribution, i.e. an

exponent has to be tted for each sample, so that no bias be introduced.

We keep a record of the triplet (Smin Smax 0s) if the p value is greater than 10% (our
arbitrarily chosen threshold). After trying all possible tting ranges with Spin and Smax
increasing by factors of 10° %!, we select the triplet which maximizes the number N of

data between spin and Smax-

The distributions in Figure 3.2 are visually compatible with a power law (black straight
line) over most of their ranges. The procedure consisting of maximum-likelihood estima-
tion plus a goodness-of- t test con rms this result: over ranges between 2 and 4 orders of
magnitude, all data sets are consistent with a power-law distribution and the estimates
of the apparent exponents are in agreement with the hypothesis of a single exponent
0s = 117(3), brackets indicating the uncertainty in the last digit, except for the three
problematic data sets from Point Reyes, the Southern Great Plains and Alaska. The
complete results are collected in Table 3.2. While the best- t exponents in this table
are surprisingly similar (given the climatic di erences between the measuring sites), the
error estimates are unrealistically small. Taking the statistical results literally, we would
have to conclude that the exponents are very similar but mutually incompatible (e.g.
g Manus — 1 18(1) and 0,N*W™ = 1 14(1)) suggesting that 6, is not universal. On phys-
ical grounds we do not believe this conclusion because systematic errors arising from
the measurement process, the introduction of the sensitivity threshold, binning during
data recording etc., are likely to be much larger than the purely statistical errors quoted
here. For example, Ref. (Peters et al., 2002) used a di erent type of measurement with a
smaller sensitivity threshold and led to a best estimate for the exponent of 1.36. Further-
more, the apparent exponent can only be seen as a rough estimate of any true underlying
exponent. We tested that, xing s = 117, all data sets yield p > 10% over a range
larger than two and a half orders of magnitude, except for the three problematic data
sets. A two-sample Kolmogorov-Smirnov test for all pairs of datasets further con rms

the similarity of the distributions for the di erent sites, 3.10.

In Figure 3.4(a) we show a color plot of all triplets (Spmin Smax 0s), corresponding to the
Manus dataset. There is a large plateau where s 1 17, indicating that this value is
the best estimate for many intervals. Figure 3.4(b) is an analogous plot for the p value,

showing that the goodness of the t is best in the region of the plateau.
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FIGURE 3.4: (a) Color map showing the best- t value for the exponent 6, for all pairs

of Smin and Smax, (lower and upper ends of the chosen tting range in mm) for the

Manus dataset. The large plateau corresponds to s 1 17. (b) Analogous plot for the
p value.

TABLE 3.2: Avalanche size exponent 6 for all sites (last column). Lower and upper end

of tting range (in mm), logarithmic range Symax Smin, number of events N, number of

events in tting range IV, and a moment ratio proportional to the cuto s¢ are shown.
Brackets () denote errors in the last digit, determined by jackknife (Efron, 1982).

Site Smin  Smax  Smax Smin N N 52 s (er) Os(er)
Manus  0.0060 18.7 9719. 11981 9320  53.(1)  1.19(1)
Nauru  0.0066 4.7 704. 5134 3996  37.(1)  1.14(1)
Darwin  0.0067 21.6 3230. 2883 2410  50.(1)  1.16(1)
Niamey 0.0041 55.0 13500. 262 232 25.(2) 1.19(3)
Heselbach 0.0072 1.4 195. 2439 1764  13.(1)  1.18(2)
Shouxian  0.0037 2.5 677. 480 406  30.2)  1.19(3)
Graciosa  0.0069 1.0 148. 3066 2260  14.4(3)  1.16(1)
NSA 0.0205 5.9 288. 9097 6030  47.(1)  1.01(1)
Pt. Reyes 0.0062 66.7 10796 579 427  37.(2)  1.40(2)
SGP 0.0062 58.8 0463. 1624 1196  27.(1)  1.40(2)

Climatic di erences between regions are scarcely detectable in event size distributions,
which may be surprising on the grounds of climatological considerations. However, the
cuto s , representing the capacity of the climatic region around a measuring site to
generate rain events, changes signi cantly from region to region, con rming meteorolog-
ical intuition. This is di cult to see in the logarithmic scales of Figure 3.2 but is easily
extracted from the moments of the distributions, Table 3.2. Thus, the smallest cuto

(and likely maximum event size) in the ARM data is found in Heselbach (mid-latitudes),
whereas the largest is in Manus (Western Paci ¢ warm pool). We note that s? s is
only proportional to the actual cuto s . Assuming a box function for the scaling func-
tion and using the value ;s = 1 17, we can estimate the proportionality constant and
22 s?

nd s s . With this estimate, none of the tting ranges extends beyond
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FIGURE 3.5: (a) Probability densities for dry spell durations (in min). The diurnal cycle
is most pronounced in Niamey, otherwise the distributions are similar. (b) Distributions
collapsed onto their scaling function, similar to Figure 3.3(b).

the cuto .

3.6 Dry spells

The durations of precipitation-free intervals have also been reported to follow an approx-
imate power law (Lavergnat and Gole, 1998, Peters et al., 2002). We therefore repeat
for dry-spell durations the same analysis as for the event sizes. Figure 3.5(a) shows the
distributions, with a collapse corresponding to Figure 3.3(b) in Figure 3.5(b). We notice
the di erent strengths of the diurnal cycle, here visible as a relative peak near 1 day dry
spell duration. Exponents tted to the distributions are similar, see Table 3.3. They also
agree with the analyses in Ref. (Lavergnat and Gole, 1998), where a double-power-law

t was performed. For dry spell durations between a few seconds and a few hours the
authors found an exponent value of 1.35. The second, smaller, exponent for longer dry
spells found in that study may re ect the signal from the diurnal cycle. This signal is
strong in Ref. (Peters et al., 2002), where a single-power-law t yielded an exponent

estimate of 1.42.

3.7 Event durations

Precipitation event duration distributions are broad for all locations. Durations provide
a link to studies of geometric properties of precipitation elds. Numerous studies of

tropical deep convective rain elds (Peters et al., 2009), shallow convection elds (Trivej
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and Stevens, 2010), clouds (Benner and Curry, 1998, Cahalan and Joseph, 1989, Mapes
and Jr.,; 1993), and model data from large eddy simulations (Neggers et al., 2003) have
reported the distributions of ground covered by events (in radar snap shots etc.) to be
well approximated by power laws. We note that in the clustering null model of critical
two-dimensional percolation, clusters de ned in one-dimensional cuts, akin to durations,

do not scale, whereas two-dimensional clusters, akin to cloud-projections, do.

Applying to the durations the methods we used for the event sizes, we nd comparatively
short power-law ranges, see Table 3.4. The scaling range, if it exists, is expected to be
smaller than for event sizes as the size distribution is a complicated convolution of the
event duration and precipitation rate distributions, Figure 3.1, whose product covers
a broader range than either of the distributions alone. The event size distribution is
broader than the duration distribution also because long events tend to be more intense

(not shown).

3.8 Conclusions

We nd that the apparent avalanche size exponents, measured with identical instruments
in di erent locations, are consistent with a single value of 6, = 1 17(3) for all reliable
data sets. We note that the data sets from Point Reyes and from the Southern Great
Plains are similar in many respects, despite the di erent reasons for treating them with

suspicion.

TABLE 3.3: Dry spell exponent (last column). Lower and upper end of tting range
(in min), logarithmic range tgmax tdmin, number of dry spells in data set, N, and
number of dry spells in the tting range N, and a moment ratio proportional to the
cuto are shown are shown. Brackets () denote errors in the last digit, determined by
jackknife. The number of dry spells need not be within 1 of the number of events,
as our de nition of an event (and a dry spell) implies that it can be split in two if it
contains an erroneous measurement. Note the magnitude of this e ect in the NSA data

set.
Site Ldmin ldmax  ldmax tdmin N N td2 ld (67‘) Hd(er)
Manus 244 1363.1 55.8 11992 4505 2149.(20) 1.16(2)
Nauru 7.5 10275 137.7 5126 2912 3557.(50)  0.99(2)
Darwin 85  3660.6 432.6 2892 1595  19477.(368)  1.17(1)
Niamey 24 1774.0 7261 262 135  26386.(1699)  1.33(5)
Heselbach 9.5  5748.0 605.4 2441 1035  2043.(34)  1.37(2)
Showdan 2.7 13488.5 49571 478 365  8776.(404)  1.27(3)
Graciosa 14.6 415.2 28.5 3068 1185 2943.(49) 1.28(3)
NSA 12.2 90332 730.7 3440 1531  4293.(73) 1.3(2)
Pt. Reyes 3.6 17141.0 4826.3 579 379 5513.(233) 1.27(2)

(
SGP 8.4  2248.7 268.5 1625 523 17243.(463) 1.46(3)
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FIGURE 3.6: (a) Probability densities for event durations (in min) are broad for all data
sets. From a few min up to a few hundred min a power law with an exponent 6,, 20
roughly describes the data. (b) Collapsed distributions, similar to Figure 3.3(b).

TABLE 3.4: Duration exponent (last column). Lower and upper end of tting range

(in min), logarithmic range tumax twmin, DUmMber of events in data set, N, and number

of events in the tting range N are shown. Brackets () denote errors in the last digit,
determined by jackknife.

Site twmin  twmax twmax Lwmin N N t,2  ty  Ouler)
Manus 344  641.9 18.7 11981 1200 122.(1) 2.12(4)
Nauru 25.4 4375 17.2 5134 540 106.(1) 2.09(6)
Darwin 17.87  89.30 5.00 2883 554 109.(2) 2.0(1)
Niamey 2.7 2118 78.4 262 157 79.(5) 1.39(7)
Heselbach ~ 18.2  1005.0 55.1 2439 388 261.(5) 1.97(6)
Shouxian 7.7 197.5 25.5 480 172 84.(4) 1.73(9)
Graciosa 12.7  424.0 334 3066 512 60.(1) 2.12(6)
NSA 75.2  103.3 1.4 9097 16 49.(1) 6.(3)
Pt. Reyes 5.7  784.0 138.6 579 178 272.(1) 1.71(7)
SGP 9.4 2782 29.7 1624 303 143.(4) 1.74(7)

The statistical error in this estimate is surprisingly small, but neither the value itself
nor the error change much using di erent tting techniques or introducing di erent
sensitivity thresholds (not shown). Nonetheless we believe systematic errors to be larger.
Thus, the analysis gives an impression of the universality of the result but not necessarily
the physical true value of the exponent. This does not contradict the climatological
situation  tropical regions, for instance, are expected to support larger events than
mid-latitude locations, which could be realized as a smaller exponent value 6;. While
the exponents are not signi cantly di erent, the larger tropical events are re ected
in the greater large-scale cuto of the tropical distributions. Similarly, the dry-spell
durations seem to follow another power law with 6; = 1 2(1), and regional di erences
can be seen in the strength of the diurnal cycle and the cuto dry spell duration. The

broad range of event durations, Figure 3.6, suggests a link to the lack of characteristic
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scales in the mesoscale regime, where approximately scale-free distributions of clusters
of convective activity, for example cloud or precipitation, have been observed to span
areas between O(1 km?) and O(10° km?) (Benner and Curry, 1998, Cahalan and Joseph,
1989, Neggers et al., 2003, Peters et al., 2009, Trivej and Stevens, 2010). The observation
of scale-free rainfall event sizes suggests long-range correlation in the pertinent elds, a
possible indication of critical behaviour near the transition to convective activity. Direct
measurements of the behaviour of the correlation function for the precipitation eld
under changes of the (much more slowly varying) background elds of water vapour and
temperature are desirable to clarify whether the long range correlation is a consequence

of the ow eld, of the proximity to a critical point, or of a combination of both.

3.9 Appendix: Fitting procedure

In order to obtain reliable values of, for example, the exponent 6, independent of the
binning procedure used for the plots of Ps(s), we use maximum likelihood estimation.

We assume a power-law distribution Ps(s) = a ,s ¢, with support [Smin Smax]. Nor-

malization yields a , = (1 65) (sha sti.°) for a given value of 6s.
We compute the log-likelihood function,
N N
L:=In Py(s;)= Ina.,s ° (3.4)
i=1 i=1

where the index ¢ runs over all N events whose size s; is 