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Introduction

This thesis consists of three self-contained essays on non-stationary panel data. We

propose novel approaches to both cointegration and unit root analysis in panel data

models. The main contribution of this thesis is allowing for the presence of cross-

section dependence through the specification of an approximate common factor

model. Early studies assumed that time series in the panel data were either indepen-

dent or that cross-section dependence could be controlled by including time effects.

In macroeconomic, microeconomic and financial applications, cross-section depen-

dence is more a recurrent than a rare characteristic and it is usually caused by the

presence of common shocks (oil price shocks or financial crises) or the existence

of local productivity spillover effects. Ignoring these factors can lead to spurious

statistical inference. More exactly, in the case of unit root testing, the unaccounted

cross-section dependence might lead one to conclude that panel data is actually

I(0) stationary when in fact it might be I(1) non-stationary. Similarly, the panel

data cointegration test statistics might indicate than there are more cointegrating

relations than there exist. Thus, recent studies proposed several alternatives to over-

come this limitation. One popular approach is the factor structure applied to the

error process, an approach that we employ throughout this thesis.

In the first essay we extend the univariate Carrion-i-Silvestre, Kim and Perron

(2009) GLS-based unit root tests with multiple structural breaks to panel data. The

proposed statistics are general enough that they allow for cross-section dependence

and multiple structural breaks in both the level and the trend of the units of the

panel. We evaluate the finite-sample properties of these statistics via Monte Carlo

simulations. Our simulation study shows that the panel tests perform well, espe-

cially for the cases of known structural breaks. We apply these statistics to a panel

of annual data covering the period 1870-2008 for 19 OECD countries. We find

strong evidence in favor of I(0) stationarity when we apply the unit root tests to

idiosyncratic component. However, the empirical analysis also shows that the I(1)

non-stationarity of the real per capita GDP is captured by the common factor.
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In the second essay we propose a test statistic to determine the cointegration

rank of VAR processes both in a unit-by-unit analysis and in a panel data frame-

work. The cross-section dependence is accounted for through the specification of a

common factor model, which covers situations where there is cointegration among

the cross-section dimension. We perform a Monte Carlo experiment in order to

investigate the small-sample properties of the proposed panel statistic and the sim-

ulation results indicate a good performance of the tests in terms of empirical size

and power. We show that in some cases not accounting for common factors when

they are present can lead to overestimating the cointegrating rank. We apply our

proposed tests to two empirical applications using the variables involved in the

money demand equation and the monetary exchange model. The money demand

model detects two stochastic trends while the monetary exchange model detects

three stochastic trends.

In the third essay of this dissertation we investigate the cointegration relation

between output, physical capital, human capital, public capital and labor for 17

Spanish regions observed over the period 1964-2000. The novelty of our approach

is that we allow for cross-section dependence between the members of the panel

using a common factor model. This is interesting because we allow the model

specification to capture unobservable variables (technological progress, total factor

productivity) to be proxied by the common factors, something that has not been

widely addressed in the literature. To see if the variables are cointegrated or not, we

employ two different techniques at the panel level. More exactly, we compare the

statistics from the single-equation method of Westerlund (2008) and Banerjee and

Carrion-i-Silvestre (2011, 2013) with those from the VAR framework of Carrion-

i-Silvestre and Surdeanu (2011). Moreover, using the VAR method, we identify

at least one common cointegrating relation among output, physical capital, human

capital, public capital and labor. Finally, we use several estimators to estimate the

long-run relation between these variables.
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Chapter 1

Panel GLS Unit Root Tests and
Common Factors

1.1 Introduction

Ever since Perron (1989) published his seminal paper on unit root tests and struc-

tural breaks, the interest on this field rose considerably. Failure to account for

structural breaks leads to size distortions and potentially biased estimates of the

parameters in which unit root tests build upon. This line of research began when

the author showed that the Dickey-Fuller (DF) statistic is biased towards the null

hypothesis of unit root if there is an external shock affecting the slope of the time

series. He proposed different tests, consistent under both the null and the alterna-

tive hypotheses, with the condition that the structural break date is known a priori.

This condition was later criticized by Christiano (1992) who argued that the date

of the structural break is chosen based on pre-test examination of the data so that

the analysis becomes conditional on the decision of the practitioner. As a result,

the following studies took into consideration that the break date was determined en-

dogenously and examples of such studies for one unknown structural break include

Zivot and Andrews (1992), Perron and Vogelsang (1992), Banerjee, Lumsdaine and

Stock (1992) and Perron (1997).

The next line of research for univariate case includes studies for two or more

structural breaks. Lumsdaine and Papell (1997) argued that unit root test results are

sensitive to the number of assumed structural breaks and they extended the Zivot

and Andrews (1992) analysis in order to account for two endogenously determined

structural breaks. Note that the framework of Zivot and Andrews (1992) allows

3



the structural break only under the alternative hypothesis. For the case when a

series has a structural break under the null hypothesis, the rejection of the null hy-

pothesis might indicate that the time series is I(0) stationary with structural breaks

when in fact it is I(1) non-stationary with structural breaks. Clemente, Montañés

and Reyes (1998) generalize the proposal in Perron and Vogelsang (1992) consid-

ering two structural breaks affecting the level of the time series, both under the null

and alternative hypotheses. Lee and Strazicich (2003) went one step further and

proposed a minimum Lagrange Multiplier (LM) unit root test that allows for two

unknown structural breaks in level and trend under both the null and the alternative

hypotheses. The authors compared their results with those of Lumsdaine and Papell

(1997) using the same dataset and found that the statistic proposed by Lumsdaine

and Papell (1997) tends to reject the null hypothesis of unit root more than the LM

test.

Other researchers extended the previous analyses to more than two endoge-

nously determined structural breaks. Ohara (1999) and Kapetanios (2005) gener-

alized the Zivot and Andrews (1992) methodology to allow for m structural breaks

but only under the alternative hypothesis of I(0) – see Perron (2006) for a complete

overview. Carrion-i-Silvestre, Kim and Perron (2009, CKP hereafter) extended the

unit root tests based on the GLS detrending procedure proposed in Ng and Perron

(2001). Their framework allows for multiple structural breaks under both the null

and alternative hypotheses. Also, they allow for structural breaks in both the level

and the slope of the time trend of the series. It has been shown that these statistics

have better size and power properties than those that allow for structural breaks only

under the I(0) stationary alternative. In a recent paper, Westerlund (2012) extended

the Amsler and Lee (1995) unit root test to allow for multiple structural breaks in

the level of the data. Like in the CKP paper, the break points are allowed under both

the null and alternative hypotheses.

With the increasing development of panel data methods, the researchers ex-

tended the univariate analysis to panel data framework. However, these types of

extensions are relatively limited. The first generation of panel data unit root and

stationarity tests with structural breaks assumed that the units of the panel are

cross-section independent. For example, Carrion-i-Silvestre, del Barrio Castro and

López-Bazo (2001) extended the panel data Dickey-Fuller (DF) unit root test in

Harris and Tzavalis (1999) considering one structural break in the level of the time

series. Another example of panel unit root test is the work of Im, Lee and Tieslau

(2005) who extended the LM-based test while allowing for up to two level shifts.
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Finally, Carrion-i-Silvestre, del Barrio Castro and López-Bazo (2005) developed a

panel data stationarity test allowing for multiple structural breaks in both the inter-

cept and/or the slope of the time series.

Note that these studies did not account for the cross-sectional dependence that

plagued the earlier panel data studies, the so-called first-generation panel tests – see

Breitung and Pesaran (2008) and Banerjee and Wagner (2009) for recent overviews

of non-stationary panel data analysis. In the recent years it was shown that the cross-

section independence assumption is not realistic especially in country or regional

studies. For example, one important problem that we have to deal with nowadays

is the increase in oil prices. As a result, many macroeconomic variables from one

country are very close related with those from a neighboring country. That is, due to

a common shock, the cross-section variables of the panel of countries are dependent

on one another. If the cross-section dependence is not accounted for, it can cause

biased and inconsistent estimates. So the next necessary step is taking into account

the dependence between cross-sections while still allowing for structural breaks.

One example of such studies is that of Bai and Carrion-i-Silvestre (2009). The

authors treated the cross-section dependence by using common factors originally

proposed by Bai and Ng (2004). They proposed as a panel unit root test the square

of the modified MSB test defined by Stock (1999) while allowing for multiple struc-

tural breaks. The test is invariant in the limit only to level shifts but not to structural

breaks affecting the slope of the time trend. Therefore, the authors also proposed a

simplified MSB test statistic that is invariant to both level and slope shifts, although

the limiting distribution still depends on the number of structural breaks. Another

example of a related work is that of Tam (2006) who proposed panel unit root tests

that are an extension of the LM-based test and the combination tests of Maddala and

Wu (1999) and Choi (2001). The author handles the impact of cross-section depen-

dence by means of bootstrapping. Another study that extends a LM-based unit root

test to panel data is the one by Westerlund (2012), who allows for multiple struc-

tural breaks in the level of the data. In order to estimate the number of the structural

breaks and their location, Westerlund (2012) suggests a procedure based on outlier

detection that is valid under both the null and alternative hypotheses, does not re-

quire a priori knowledge about the number or the location of the structural breaks,

and is robust to cross-sectional dependence captured by common factors. However,

the disadvantage of the procedure is that the underlying error terms must be nor-

mally distributed. Im, Lee and Tieslau (2012) proposed another LM-based panel

unit root test that allows for heterogeneous structural breaks in both the level and
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the slope of the time trend of the series. Their statistic depends only on the number

of structural breaks but not on their size or location, and is invariant to nuisance

parameters. The authors apply the cross-sectionally augmented ADF (CADF) re-

gression of Pesaran (2007) to their tests as one possible means of correcting for

cross-section dependence. Finally, Lee and Wu (2012) suggested a panel unit root

test based on the generalized CADF procedure proposed by Pesaran (2007). They

incorporate a single-frequency-component Fourier function that is used to approx-

imate the unknown multiple structural breaks. The cross-sectional dependence is

modeled by an unobservable I(0) stationary common factor.

However, the panel unit root literature that use the GLS detrending is relatively

limited. Very recently, Westerlund (2013) noted that “the only formal treatment

known to us is the simulation study of Lopez (2009)”. Lopez (2009) proposed

a pooled panel unit root test based on GLS detrending that allows for serial and

contemporaneous correlation. While the author accounts for cross-sectional depen-

dence by estimating the residual covariance matrix, she does not allow for structural

breaks. To the best of our knowledge, none of the existing panel studies that use

GLS detrending in their estimation allows for structural breaks under both the null

and the alternative hypotheses and in both the intercept and slope of the series.

In this chapter, we propose several panel data unit root tests that are based on

the GLS detrending procedure. The statistics are the extension of univariate CKP

statistics to panel data. The new tests allow for multiple structural breaks that af-

fect either the level and/or the slope of the time trend. Like in the CKP study,

we allow for structural breaks under both the null and the alternative hypotheses.

Moreover, we deal with the cross-section dependence through the use of common

factors. We then evaluate the finite-sample properties of our statistics via Monte

Carlo simulations. Our simulation study shows that the tests perform well for both

cases of known and unknown structural breaks. Finally, we apply the proposed tests

to a panel of annual per capita real GDP over the period 1870-2008 for 19 OECD

countries.

The structure of this chapter is as follows. In Section 1.2 we describe the model,

while Section 1.3 presents the unit root test statistics that are investigated. Section

1.4 presents the case for unknown structural breaks. The proposed panel statistics

are shown in Section 1.5. Section 1.6 summarizes the Monte Carlo simulation re-

sults and the empirical application is carried out in Section 1.7. Finally, this chapter

concludes in Section 1.8.
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1.2 The model

Let us consider the data generating process (DGP) given by the following system of

equations:

yi,t = di,t +F ′t δi + ei,t (1.2.1)

(I−L)Ft = C (L)wt (1.2.2)

(1−θiL)ei,t = Bi (L)εi,t , (1.2.3)

i = 1, . . . ,N, t = 1, . . . ,T , where the stochastic process yi,t is decomposed as the sum

of a deterministic term di,t , a common factor component F ′t δi and the idiosyncratic

stochastic component ei,t . In this framework the cross-section dependence among

time series in the panel data is driven by an approximate common factor model as

in Bai and Ng (2002, 2004). Ft denotes a (r×1) vector of unobserved common

factors and δi is a (r×1) vector of factor loadings. Note that Ft can be I(0), I(1)

or a combination of I(0) and I(1) common factors depending on the rank of C(1).

For example, if C(1) = 0 then Ft is I(0). If the rank of C(1) is r1 then they are r1

common stochastic trends and r−r1 I(0) common factors. If C(1) has full rank then

Ft is I(1).

Let M < ∞ be a generic positive number, independent of T and N and let ‖A‖=
trace(A′A)1/2

. We follow Bai and Ng (2004) and define the following assumptions:

Assumption A: (i) for non-random δi, ‖δi‖ ≤ M; for random δi, E ‖δi‖4 ≤ M.

(ii) 1
N ∑N

i=1 δiδ ′i
p→ Σδ , a (r× r) positive definite matrix.

Assumption B: (i) wt ∼ iid (0,Σw), E ‖wt‖4≤M. (ii) Var (ΔFt)=∑∞
j=0CjΣwC′j >

0. (iii) ∑∞
j=0 j

∥∥Cj
∥∥< M. (iv) C (1) has rank r1, 0≤ r1 ≤ r.

Assumption C: (i) for each i, εi,t ∼ iid (0,Σεi), E |εi,t |8 ≤ M. (ii) Var (Δεi,t) =

∑∞
j=0 Bi, jΣεiB

′
i, j > 0. (iii) ∑∞

j=0 j
∥∥Bi, j

∥∥< M.

Assumption D: εi,t , wt and δi are mutually independent.

Assumption E: E ‖F0‖ ≤M, and for every i = 1, . . . ,N, E
∣∣ei,0

∣∣≤M.

Assumptions A and B imply the existence of r common factors. Assumption B

permits a combination of I(0) and I(1) common factors in the model. Assumption

C(i) allows some weak correlation in (1−θiL)ei,t , while C(ii) and C(iii) allow weak
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cross-section correlation. Assumption D states that the errors εi,t , wt and δi are

mutually independent across i and t. Assumption E defines the initial conditions.

The definition of the deterministic component in (1.2.1) gives rise to three dif-

ferent models. Model 0, where the multiple structural breaks occur in the intercept,

is known as the “level shift” model. Model I is known as the “slope change” model

and allows for structural breaks only in the slope of the time trend. Finally, Model II

allows for multiple structural breaks in both the intercept and the slope of the time

trend. These models can be parameterized as

di,t =
m

∑
j=0

z′i,t
(
T 0

i, j
)

ψi, j ≡ z′i,t
(
λ 0

i
)

ψi,

where zi,t
(
λ 0

i
)
=
[
z′i,t
(

T 0
i,0

)
, . . . ,z′i,t

(
T 0

i,m

)]′
, ψi =

(
ψ ′i,0, . . . ,ψ

′
i,m

)′
and

zi,t
(
T 0

i, j
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DUi,t

(
T 0

i, j

)
for Model 0

DTi,t

(
T 0

i, j

)
for Model I(

DUi,t

(
T 0

i, j

)
,DTi,t

(
T 0

i, j

))′
for Model II

,

and

ψi, j =

⎧⎪⎨
⎪⎩

μi, j for Model 0

βi, j for Model I(
μi, j,βi, j

)′
for Model II

,

0 ≤ j ≤ m, with DUi,t

(
T 0

i, j

)
= 1 and DTi,t

(
T 0

i, j

)
= t−T 0

i, j for t > T 0
i, j and 0 other-

wise, where T 0
i, j =

⌊
T λ 0

i, j

⌋
represents the true break date for the i-th individual – �·	

denotes the integer part of the element between brackets – λ 0
i is a (m×1)-vector

with the true break fractions, with the convention that T 0
i,0 = 0 ∀i. It is worth notic-

ing that the use of “0” as a superscript indicates that the structural breaks are known

a priori – the case of unknown structural breaks is addressed below.1

As for the break dates, the model that we specify assumes that they admit certain

degree of heterogeneity through the definition of

T 0
i, j = T 0

j + vi, j, (1.2.4)

1Although we deal with three different specifications involving structural breaks, our setup can

also be particularized to the case of no structural breaks considering m = 0.
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with vi, j ∼ iid
(

0,σ2
i, j

)
∀i, j , i.e., the break dates are assumed to depart from a

common break dates up to a bounded quantity. Note that in the limit, the fraction

parameters are common to all individuals since

λ 0
i, j = T 0

i, j/T

= T 0
j /T +Op

(
T−1

) p→ λ 0
j ,

where
p→ denotes convergence in probability. Consequently, although in finite sam-

ples the break dates are allowed to be mildly heterogeneous across individuals, in

the limit the break fraction vector is common to all individuals, i.e., λ 0
i

p→ λ 0 =

(λ 0
1 , . . . ,λ

0
m)
′. It is worth mentioning that it is also possible to impose here the con-

straint that the break points are common to all individuals in finite samples if we set

vi, j = 0 ∀i, j in (1.2.4), so that λ 0
i, j = λ 0

j ∀i, j.

The GLS detrended unit root statistics use the transformed data yᾱ
i,t and zᾱ

i,t
(
λ 0

i
)
,

which is defined as yᾱ
i,1 = yi,1 and zᾱ

i,1

(
λ 0

i
)
= zi,1

(
λ 0

i
)

for t = 1, and yᾱ
i,t =(1− ᾱL)yi,t

and zᾱ
i,t
(
λ 0

i
)
=(1− ᾱL)zi,t

(
λ 0

i
)

for t = 2, . . . ,T , i= 1, . . . ,N, with ᾱ = 1+ c̄
(
λ 0
)
/T

and c̄
(
λ 0
)

being the non-centrality parameter defined in CKP. Let ψ̃ i be the esti-

mator that minimizes the sum of squared residuals

S(ψi,λ 0
i ) =

(
yᾱ

i,t− zᾱ ′
i,t
(
λ 0

i
)

ψ i
)′(

yᾱ i
i,t − zᾱ ′

i,t
(
λ 0

i
)

ψ i

)
.

Using these estimated parameters we can construct the GLS detrended variable

ỹi,t = yi,t− z′i,t
(
λ 0

i
)

ψ̃ i and compute its first difference

Δỹi = Δyi−Δz′i
(
λ 0

i
)

ψ̂ i

= −Δzi
(
λ 0

i
)
(ψ̂ i−ψi)+ΔFδi +Δei

= −Δzi
(
λ 0

i
)
(zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)
)−1zᾱ ′

i
(
λ 0

i
)(

F ᾱδi + eᾱ
i
)
+ΔFδi +Δei

= f δi +ξi, (1.2.5)

where ξi = Δei−Δzi
(
λ 0

i
)
(zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)
)−1zᾱ ′

i
(
λ 0

i
)

eᾱ
i and f = ΔF −Δzi

(
λ 0

i
)

(zᾱ ′
i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)
)−1zᾱ ′

i
(
λ 0

i
)

F ᾱ i . In this case (1.2.5) is a factor model with the

new observable variables Δỹi,t and the estimation of the common factors and factor

loadings can be done as in Bai and Ng (2004) using principal components. Let

Δỹ = (Δỹ1,Δỹ2, ...,ΔỹN),
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be the (T −1)×N data matrix. The estimated principal components of ΔF = (ΔF2,

ΔF3, . . . ,ΔFT ), denoted as ΔF̃ , are
√

T −1 times the r eigenvectors correspond-

ing to the first r largest eigenvalues of the (T −1)× (T −1) matrix ΔỹΔỹ′, un-

der the normalization ΔF̃ΔF̃ ′/(T −1) = Ir. The estimated loading matrix is Λ̃ =

Δỹ′ΔF̃/(T −1), from which we can define the estimated residuals as

Δẽi,t = Δỹi,t−ΔF̃ ′t δ̃ i. (1.2.6)

We can recover the idiosyncratic disturbance terms through cumulation, i.e.,

ẽi,t =
t

∑
s=2

Δẽi,s,

whereas the common factors are estimated in the same fashion:

F̃t =
t

∑
s=2

Δ f̃s.

Using these two estimated components we can assess the source of potential I(1)

non-stationarity of the observable variables.

1.3 Unit root test statistics

The order of integration of each component can be analyzed using the modified

test statistics in Ng and Perron (2001) – hereafter, M-type test statistics. Thus, if

we focus on the idiosyncratic component, the M-type unit root tests statistics are

defined as:

MSBGLS
i =

(
s−2

i T−2
T

∑
t=1

ẽ2
i,t−1

)1/2

(1.3.1)

MZGLS
i,α =

(
T−1ẽ2

i,T − s2
i
)(

2T−2
T

∑
t=1

ẽ2
i,t−1

)−1

(1.3.2)

MZGLS
i,t =

(
T−1ẽ2

i,T − s2
i
)(

4s2
i T−2

T

∑
t=1

ẽ2
i,t−1

)−1/2

(1.3.3)

where s2
i = (T − ki)

−1
(

∑T
t=ki+1 ũ2

i,t,ki

)
/
(

1−∑ki
j=1 b̃i, j

)2
and ki is the order of the

autoregression selected using the information criteria proposed by Ng and Perron
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(2001) and Perron and Qu (2007). The terms ũi,t,ki and b̃i, j are the OLS estimated

coefficients from the regression

Δẽi,t = bi,0ẽi,t−1 +
ki

∑
j=1

bi, jΔẽi,t− j +ui,t,ki .

Using these statistics we can test the hypotheses that ei,t is I(1) against the alternative

hypothesis that ei,t is I(0), i.e.,

{
H0 : θi = 1

H1 : θi < 1

where θi appears in Equation (1.2.3).

As for the common factors, in the case where there is only one (r = 1) common

factor, we can proceed to test its order of integration using the M-type test statistics

defined above, once it has been GLS detrended. The GLS detrending is performed

using the vector of regressors zt
(
λ 0
)

that define the break dates T 0
j = E

(
T 0

i, j

)
=

N−1 ∑N
i=1 T 0

i, j, j = 0,1, . . . ,m, which makes use of the mild heterogeneous property

for the break dates. The GLS detrended estimated common factor is defined as

F̃d
t = F̃t− z′t

(
λ 0
)

ψ̃ , where ψ̃ is the quasi-GLS estimation of the parameters. Then,

the unit root tests given in (1.3.1)-(1.3.3) can be computed using F̃d
t instead of ẽi,t

– the corresponding test statistics are denoted as MSBGLS
F , MZGLS

F,α and MZGLS
F,t .

When there is more than one common factor (r > 1), we can assess how many

common factors are I(1) and I(0) using the MQ test statistics in Bai and Ng (2004).

Start with q = r and proceed in three stages:

1. Let β̃⊥ be the q eigenvectors associated with the q largest eigenvalues of

T−2 ∑T
t=2 F̃d

t F̃d′
t .

2. Let Ỹ d
t = β̃⊥F̃d

t , from which we can define two statistics:

(a) Let K ( j) = 1− j/(J+1), j = 0,1,2, . . . ,J:

i. Let ξ̃
d
t be the residuals from estimating a first-order VAR in Ỹ d

t , and

let

Σ̃d
1 =

J

∑
j=1

K ( j)

(
T−1

T

∑
t=2

ξ̃
d
t− jξ̃

d′
t

)
.

ii. Let ṽd
c (q)=

1
2

[
∑T

t=2

(
Ỹ d

t Ỹ d′
t−1 + Ỹ d

t−1Ỹ d′
t
)−T

(
Σ̃d

1 + Σ̃d′
1

)](
∑T

t=2 Ỹ d
t−1Ỹ d′

t−1

)−1
.
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iii. Define MQd
c (q) = T

[
ṽd

c (q)−1
]

for the case of no change in the

slope of the trend (Model 0) and MQd
c
(
q,λ 0

)
= T

[
ṽd

c
(
q,λ 0

)−1
]

for the case of changes in the slope of the trend (Models I and II).

(b) For p fixed that does not depend on N and T :

i. Estimate a VAR of order p in ΔỸ d
t to obtain Π̃(L) = Iq− Π̃1L−

. . .− Π̃pLp. Filter Ỹ d
t by Π̃(L) to get ỹd

t = Π̃(L)Ỹ d
t .

ii. Let ṽd
f (q) be the smallest eigenvalue of

Φd
f =

1

2

[
T

∑
t=2

(
ỹd

t ỹd′
t−1 + ỹd

t−1ỹd′
t

)]( T

∑
t=2

ỹd
t−1ỹd′

t−1

)−1

.

iii. Define the statistic MQd
f (q) = T

[
ṽd

f (q)−1
]

for the case of no

change in the slope of the trend (Model 0) and MQd
f

(
q,λ 0

)
=

T
[
ṽd

f

(
q,λ 0

)−1
]

for the case of changes in the slope of the trend

(Models I and II).

3. If H0 : r1 = q is rejected, set q = q−1 and return to the first step. Otherwise,

r̃1 = q and stop.

The limiting distribution of these unit root test statistics is presented in the fol-

lowing theorem:

Theorem 1.1. Let yi,t , i = 1, . . . ,N , t = 1, . . . ,T , be a stochastic process with the

DGP given by (1.2.1) to (1.2.3) and satisfying Assumptions A to E. Also, define

ᾱ = 1+ c̄
(
λ 0
)
/T , let s2

i be a consistent estimate of σ2
i and let ki be chosen in a

way that ki → ∞ and k3
i /min [N,T ]→ 0. Then as N,T → ∞ with N/T → 0
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(a) the statistics applied to the idiosyncratic component converge to:

Model 0:

MSBGLS
i ⇒

(∫ 1
0 Vi,c,c̄ (s)

2 ds
)1/2

MZGLS
α,i ⇒ 0.5

(
Vi,c,c̄ (1)

2−1
)(∫ 1

0 Vi,c,c̄ (s)
2 ds

)−1

MZGLS
t,i ⇒ 0.5

(
Vi,c,c̄ (1)

2−1
)(∫ 1

0 Vi,c,c̄ (s)
2 ds

)−1/2

Models I and II:

MSBGLS
i ⇒

(∫ 1
0 Vi,c,c̄

(
s,λ 0

)2 ds
)1/2

MZGLS
α,i ⇒ 0.5

(
Vi,c,c̄

(
1,λ 0

)2−1
)(∫ 1

0 Vi,c,c̄
(
s,λ 0

)2 ds
)−1

MZGLS
t,i ⇒ 0.5

(
Vi,c,c̄

(
1,λ 0

)2−1
)(∫ 1

0 Vi,c,c̄
(
s,λ 0

)2 ds
)−1/2

,

where⇒ denotes weak convergence to the associated measure of probability,

Vi,c,c̄ (s) =Wi,c (s)− s
(

bWi,c (1)+3(1−b)
∫ 1

0 uWi,c (u)du
)

,

b=(1− c̄)/
(
1− c̄+ c̄2/3

)
, Vi,c,c̄

(
s,λ 0

)
=Wi,c (s)−z2 (s)A

(
λ 0
)−1 V̄i

(
λ 0
)
, Wi,c (s)

is an Ornstein-Uhlenbeck process and the terms A
(
λ 0
)

and V̄i
(
λ 0
)

for each cross-

section are defined in the Appendix A.

(b) When r = 1, the limiting distribution for the MSBGLS
F , MZGLS

F,α and MZGLS
F,t

test statistics for the different model specifications is the same as the one given by

MSBGLS
i , MZGLS

i,α and MZGLS
i,t , respectively.

(c) When r > 1, let Vq,c,c̄ (s) and Vq,c,c̄
(
s,λ 0

)
be q-vectors with elements defined

by Vj,c,c̄ (s) =Wj,c (s)− s
(

bWj,c (1)+3(1−b)
∫ 1

0 uWj,c (u)du
)

and Vj,c,c̄
(
s,λ 0

)
=

Wj,c (s)− z2 (s)A
(
λ 0
)−1 V̄j

(
λ 0
)
, j = 1, . . . ,q, respectively.

For Model 0, let vd∗ (q) be the smallest eigenvalues of

Φd
∗ =

1

2

[
Vq,c,c̄ (1)Vq,c,c̄ (1)

′ − Ip
][∫ 1

0
Vq,c,c̄ (s)Vq,c,c̄ (s)

′ ds
]−1

.

For Models I and II, let vd∗
(
q,λ 0

)
be the smallest eigenvalues of

Φd
∗ (λ ) =

1

2

[
Vq,c,c̄

(
1,λ 0

)
Vq,c,c̄

(
1,λ 0

)′ − Ip

][∫ 1

0
Vq,c,c̄

(
s,λ 0

)
Vq,c,c̄

(
s,λ 0

)′
ds
]−1

.
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(c.1) Let J be the truncation lag of the Bartlett kernel, chosen such that J→∞

and J/min
[√

N,
√

T
]→ 0. Then, under the null hypothesis that Ft has q stochastic

trends, MQd
c (q)⇒ vd∗ (q) and MQd

c
(
q,λ 0

)⇒ vd∗
(
q,λ 0

)
.

(c.2) Under the null hypothesis that Ft has q stochastic trends with a finite

VAR(p̄) representation and a VAR(p) is estimated with p ≥ p̄, MQd
f (q)⇒ vd∗ (q)

and MQd
f

(
q,λ 0

)⇒ vd∗
(
q,λ 0

)
.

The proof of Theorem 1.1 is given in Appendix A. The asymptotic critical val-

ues for the MSBGLS
i , MZGLS

i,α and MZGLS
i,t – and the ones for the common factor,

MSBGLS
F , MZGLS

F,α and MZGLS
F,t – can be found in Carrion-i-Silvestre et al. (2009).

The asymptotic critical values for the MQ test statistics can be found in Table 1.1

for Model 0 and in Table 1.2 for Models I and II. For further developments, we

have also computed by simulation the asymptotic mean and variance of the limiting

distribution of the different test statistics reported in Theorem 1.1.

Finally, the model that we have specified assumes that the number of common

factors is known. In practice we will need to estimate it using, for instance, the

information criteria proposed in Bai and Ng (2002, 2004). We will analyze the

performance of the use of these information criteria in the Monte Carlo simulation

section.

1.4 Unknown structural breaks

So far, we have assumed that the vector of break points is known. This assumption

might be feasible in some cases, where panels of variables such as, for instance, real

exchange rates panels are analyzed and it is known that there is an important event

that have affected the time series – in this case, the euro currency birth. However,

there might be some cases where this assumption cannot be made and the date

of the structural breaks needs to be estimated. Throughout this section, we assume

that the number of structural breaks (m) is known and common to all individuals. In

principle, it would be possible to specify a maximum number of structural breaks

(mmax) and estimate the number of structural breaks (m̃) using a panel Bayesian

information criterion such as the one proposed in Bai and Ng (2002, 2004).

We proceed to estimate the date of the break points for each time series, without

taking into account the other time series of the panel data set. The estimation of the

unknown structural breaks for each time series relies on the procedure proposed in
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Carrion-i-Silvestre et al. (2009) and consists of the following steps:

1. For a given value of m, compute an initial educated estimation of the date

of the break points T̃i =
(
T̃i,1, . . . , T̃i,m

)′
and the vector of parameters ψ̃ i =(

ψ̃ ′i,0, . . . , ψ̃
′
i,m

)′
specifying the model

yi,t = z′i,t
(
λ 0

i
)

ψi +ui,t ,

where the OLS estimation procedure is used to obtain the estimates. The esti-

mates that are obtained in this step are the ones drawn from the minimization

of the sum of squared residuals (SSR)

2. Obtain c̄(λ̃ i) using the estimates obtained in the previous step

3. Compute the quasi-difference of the variables and proceed to compute the

GLS estimates of the parameters and break dates minimizing the restricted

sum of squared residuals (RSSR) – see Carrion-i-Silvestre et al. (2009) for

further details

4. Repeat steps 2 and 3 until convergence is achieved and store the estimated

break dates

5. Compute the GLS detrended variable ỹi,t using the final estimates of the break

points and the parameters of the model

6. Estimate the common factors, the factor loadings and the idiosyncratic distur-

bance terms using the method of principal components described in Section

1.2

7. Test the order of integration of the different components using the unit root

test statistics proposed in Section 1.3

1.5 Panel data unit root test statistics

Although the analysis that has been conducted so far allows us to test the order of

integration of the different stochastic processes involved in the model at a unit-by-

unit level, it is possible, in principle, to improve the performance of the statistical

inference combining the individual test statistics. In order to pool the individual test
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statistics we require to introduce the additional assumption of cross-section inde-

pendence of the idiosyncratic disturbance terms ei,t , which implies that the source

of cross-section dependence is well captured by the common factor structure. This

assumption makes the individual test statistics to be cross-sectionally independent.

We are interested in testing the null hypothesis that all units are I(1) non-stationary

against the alternative hypothesis that at least one unit is I(0) stationary, i.e.,

{
H0 : θi = 1 ∀i

H1 : θi < 1 for some i
(1.5.1)

where θi appears in Equation (1.2.3).

We define M in a generic way to define one of the M-type unit root test statistic

that we have considered, i.e., for a given unit i we can compute any of the statistics

Mi = {MSBGLS
i ,MZGLS

i,α ,MZGLS
i,t }. The first way to define a pool panel data test

statistic bases on the standardized mean of the individual statistics

ZM =

√
N(Mi− ζ̄ M

))

ν̄M → N(0,1),

where M = N−1 ∑N
i=1 Mi, ζ̄ M

= N−1 ∑N
i=1 ζ M

i and ν̄M2
= N−1 ∑N

i=1 νM2

i , where ζ M
i

and νM2

i are the mean and the variance of the Mi statistic, M = {MSBGLS,MZGLS
α ,

MZGLS
t }.
The next three panel data tests are based on the combination of the individual

p-values. Bai and Ng (2004) noted that pooling based on the p-values not only can

be used on unbalanced panels but it has the advantage of allowing heterogeneity

across units. Maddala and Wu (1999) define the panel data Fisher-type statistic that

can be applied to panel data sets with a small number of cross-section units:

PM =−2
N

∑
i=1

ln ϕ̃M
i ∼ χ2

2N , (1.5.2)

where ϕM
i denotes the p-value of the Mi statistic, M = {MSBGLS,MZGLS

α ,MZGLS
t }.

Choi (2001) goes one step further and proposes the following test that is valid

for N → ∞:

PM
m =− 1√

N

N

∑
i=1

(
ln ϕ̃M

i +1
)→ N(0,1),
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and also Choi (2001) proposes the following pool test statistic:

CM =
1√
N

N

∑
i=1

Φ−1
(
ϕ̃M

i
)→ N(0,1),

where Φ(·) denotes the standard Normal cumulative distribution function. In both

Choi (2001) statistics, M = {MSBGLS,MZGLS
α ,MZGLS

t }.
We simulate the asymptotic mean and variance for each λ 0 and these values are

presented in Table 1.4 for 1 structural break and in Table 1.5 for 2 structural breaks.

The simulated p-values for the M-class tests are available upon request.

1.6 Monte Carlo simulations

In this section, we conduct a set of simulation experiments in order to investigate the

small-sample properties of the proposed tests. We first cover the cases with a single

and then multiple structural breaks when the location of the potential structural

break is known. Later, we relax the assumption of known structural breaks and we

show the simulation results for both a single and multiple endogenous structural

breaks. The nominal size of the statistics is set at the 5% level of significance. We

present the results of the most general model specification (Model II) with structural

breaks in both the slope and the trend. In addition, we focus on the first estimation

procedure that has been described above, which bases the results on the individual

estimation of the break points. All simulations are performed in GAUSS and the

Monte Carlo results reported below are obtained using 1,000 replications.

1.6.1 Known structural breaks

We begin the analysis by considering the performance of the panel data tests for

the case of known single structural break. We account for cross-section dependence

by using the common factor structure. The data generating process consists of the

following system of equations:

yi,t = di,t +F ′t δi + ei,t (1.6.1)

di,t = αi,1DUi,t
(
T 0

1

)
+βi,1DTi,t

(
T 0

1

)
(1.6.2)

Ft = ρFt−1 +wt (1.6.3)

ei,t = θiei,t−1 + εi,t (1.6.4)
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where i = 1, . . . ,N , t = 1, . . . ,T , εi,t ∼ iid N (0,1) and wt ∼ iid N
(
0,σ2

F
)
. Without

loss of generality, the values of αi,1 and βi,1 are set equal to 1 for all individuals.

For the simulation of the common factor component we specify δi ∼ N (1,1), ρ =

{0.9,0.95,1} and σ2
F = {0.5,1,10}. The number of common factors is estimated

using the panel Bayesian information criterion (BIC) in Bai and Ng (2002). The

empirical size of the tests for the idiosyncratic component is simulated setting the

autoregressive parameter θi = 1 while the empirical power is simulated using θi =

0.9. The data is generated with N = 20 cross-sectional units and three sample sizes

T = {50,100,200}.2 Due to space constraints we only discuss results for λ 0 = 0.5

with the note that we obtain similar results for λ 0 = {0.3,0.7}. The full set of

results is available at the end of the chapter.

We first consider the size of the statistics and we summarize it in Table 1.6.

We can see that all tests perform well since the empirical size is really close to the

nominal size of 5%. It is interesting to note that the results are similar for all panel

statistics regardless of the order of integration of the common factors. Also, the

empirical size does not appear to be affected by the changes in T or σ2
F . Based on

these results we can infer that the performance of the panel tests for the case of one

known structural break is good with almost no size distortions.

We then continue the analysis of the proposed panel tests by investigating their

power properties. The results are presented in Table 1.7 and they are in line with

what it is expected from the asymptotic theory. It is easily seen that the power

increases with the increase in T . Note that even for T = 100 the power is almost 1

while the tests have perfect power for T = 200. Therefore, the results suggest that

the all panel statistics have good power properties especially for T > 50.

Panel A of Table 1.8 shows the size and power properties of statistics for the

common factor, MSBGLS
F , MZGLS

F,α and MZGLS
F,t for one known break. The values for

ρ = 1 indicate the size of the tests while those for ρ = {0.9,0.95} indicate the power

properties. For T = 50, or what is considered a small sample, the size and power of

the statistics are close to 0. That is, in small samples, the statistics MSBGLS
F , MZGLS

F,α
and MZGLS

F,t cannot distinguish between a stationary process and one with unit roots.

This might be due to the use of asymptotic critical values and we expect that finite

sample critical values will improve the empirical size and power of these statistics.

However, as T increases, the empirical size is very close to the 5% nominal size.

Also, power increases when T increases.

2The simulations have been also carried out for N = {40,60}. These results are also reported in

this chapter, but we are going to focus our discussion on the results for N = 20.
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Next, we extend the analysis of panel data unit root tests for the case of two

known structural breaks. The DGP has the following form:

yi,t = di,t +F ′t δi + ei,t (1.6.5)

di,t = αi,1DUi,t
(
T 0

1

)
+αi,2DUi,t

(
T 0

2

)
+βi,1DTi,t

(
T 0

1

)
+βi,2DTi,t

(
T 0

2

)
(1.6.6)

Ft = ρFt−1 +wt (1.6.7)

ei,t = θiei,t−1 + εi,t (1.6.8)

where i = 1, . . . ,N , t = 1, . . . ,T , εi,t ∼ iid N (0,1) and wt ∼ iid N
(
0,σ2

F
)
. As in the

previous case, δi ∼ N (1,1), ρ = {0.9,0.95,1} and σ2
F = {0.5,1,10}. We set θi = 1

for the empirical size simulations and θi = 0.9 for the empirical power simulations.

Without loss of generality, the values of αi,1, αi,2, βi,1 and βi,2 are set equal to 1

for all individuals. The sample size is T = {50,100,200} and N = 20. Since we

analyze the case with two structural breaks, we set λ 0
1 = 0.3 and λ 0

2 = 0.7.

First, we present the results on the empirical size of the panel unit root tests,

which are reported in Table 1.9. We observe that the empirical size of the test statis-

tics is close to the nominal level of 5%. The PM
m panel statistic based on MSBGLS and

MZGLS
α tests tends to over-reject for T = 100 but its empirical size approaches the

nominal size as T increases. Overall, for the case of two known structural breaks,

the statistics still perform well with very small size distortions. Second, we ana-

lyze the power properties of the proposed panel statistics. Table 1.10 presents these

results. As expected, in small samples, the power of the tests for the case of two

known breaks is slightly lower than the power of the tests for one break. However,

for T = 200 the power of all panel statistics is 1. Like in the previous case, the

power of the tests increases as T increases. Therefore, for the case of one or two

known breaks, the panel tests have good power and really small size distortions.

Panel B of Table 1.8 shows the size and power properties of statistics for the

common factor, MSBGLS
F , MZGLS

F,α and MZGLS
F,t for two known breaks. The results

are similar to those for one known break (Panel A). That is, except for T = 50, the

empirical size is very close to the nominal size and the empirical power increases

when increasing T .
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1.6.2 Unknown structural breaks

In the previous subsection, we assumed that the timing of the structural breaks is

known. This is not always the case. Actually, many times, the researcher does not

know a priori the location of the structural breaks and he/she needs the tools to do

the proper analysis. Therefore, taking that into consideration, we simulate first the

case when there is only one structural break and later on, we extend the analysis to

the case with two structural breaks. The main difference between the known and

unknown structural break cases consists in estimating the structural breaks. In the

case of the unknown structural breaks, we estimate the location of the structural

breaks through the global minimization of the RSSR of the GLS detrended model

presented in Section 1.4. More explicitly, we estimate the location of unknown

structural break by implementing the steps 1 to 7.

The DGP used in this section is the same as for the known break case. The

results on the empirical size, contained in Table 1.11, are summarized as follows.

Overall, the performance of the statistics for the case of one unknown structural

break is similar to that for the case of known structural break with a few exceptions.

For T = {50,100} and σ2
F = 10, we can see that the empirical size is slightly above

the 5% nominal size. This indicates a tendency of all the panel statistics to over-

reject the null hypothesis of unit root. Also, for T = 200, the panel statistics PM

and PM
m show small size distortion. More exactly, the values of these sizes indicate

an under-rejection of the null hypothesis. However, the size of the panel statistics

ZM and CM is really close to the nominal size. As expected, the empirical size

approaches the nominal one as T increases. This indicates a good performance

of these panel statistics. Next, we continue with the results showing the power

properties of the panel tests and we present those results in Table 1.12. Like in

the previous cases, the power accuracy of the statistics tends to be low when time-

dimension is small. However, the power of the tests seems reasonable in larger

samples and increases as sample size increases. Overall, the simulations for the case

of one unknown structural break lead us to conclude that the panel statistics have

good power in larger samples and perform rather well with small size distortions.

We then look at the size and power properties of statistics for the common factor

for one unknown break, which are presented in Panel A of Table 1.13. The size

and power of the unit root tests for common factors for T = 50 are still close to

0, indicating the statistics are under-sized and have very low power. However, for

T = 100, the empirical size is very close to the 5% nominal size and the empirical
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power is even higher than the one in the known break case. For the rest of the time-

dimensions, the power of the tests is increasing but it is slightly lower than for the

case of one known break. Also, the empirical size of the statistics is close to the

nominal size.

In the next step, we consider the size and power of proposed statistics for the

case of two unknown structural breaks. The data generating process is the same

as for the case with two known structural breaks and consists of Equations (1.6.5)

through (1.6.8). Table 1.14 presents the empirical size of the panel statistics. For

the majority of cases, the empirical size of the simulated statistics is close to the

nominal size. There are a few exceptions when the size is slightly bigger or smaller

than the 5% nominal size. For example, we can see a similar trend for all statistics

when T = 50 and σ2
F = 10. More exactly, these values point out to an over-rejection

of the null hypothesis of unit root. However, unlike the results for the case of

one unknown structural break for T = 100 and σ2
F = 10, the tests have little size

distortions for the case of two unknown structural breaks. The ZM panel statistic

based on MSBGLS test performs rather well for T = 100 but over-rejects for T = 200

and under-rejects for T = 50 when σ2
F = {0.5,1}. The PM and PM

m statistics show

moderate size distortions for T = 200. Their values of the size below the nominal

size point to an under-rejection of the null hypothesis of unit root. The results for

the size of the CM test indicate that the test has a good performance overall with

the exception when T = 50 and σ2
F = 10 mentioned earlier. Even though for a few

cases the statistics suffer from moderate size distortions, for the majority of cases

the tests maintain the nominal level well. Finally, we present in Table 1.15 the

results of the power of the tests. As expected, the power accuracy is lower when

the time series dimension is small but increases as T increases. For the case of

two unknown breaks, the statistics have slightly lower power than for the case of

one unknown break. Overall, simulations lead us to conclude that for the case of

unknown breaks, the power of the proposed panel tests is lower than in case of

known breaks and the statistics tend to under-reject when T is large.

Panel B of Table 1.13 shows the empirical size and power of the unit root statis-

tics for the common factor. For T = 50, the results are similar to the ones for one

unknown break case. However, as T increases, both empirical size and power of

the tests are increasing. The size of the statistics indicate that for the case of two

unknown breaks, the unit root statistics for the common factors tend to over-reject

when T is large.
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1.7 Empirical application

In this section, we present an empirical application of the panel tests described in

the previous sections. We use the Maddison dataset used by Dawson and Strazicich

(2010) and Kejriwal and Lopez (2010). It consists of annual time series of per capita

real GDP over the period 1870-2008 for 19 OECD countries: Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands,

New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and

United States. Note that the data are expressed in 1990 Geary-Khamis dollars. The

logarithm of per capita GDP is the output throughout the rest of this chapter. For

more details about the data, see Maddison (2009).

We begin the analysis by testing for cross-sectional dependence among the se-

ries of the panel. To this end, we apply the CD statistic of Pesaran (2004, 2013) to

the panel of OECD countries. One advantage of this test is its robustness to single

or multiple structural breaks, making it desirable in the empirical work. The cal-

culated value of the CD test is 20.099, which indicate that we can reject the null

hypothesis of no cross-sectional dependence at any acceptable level of significance.

As for the common factors component, we estimate it using the method of princi-

pal components. In this case, with the maximum number of common factors set at

one, the panel BIC information criterion in Bai and Ng (2002) selects one common

factor and the estimated common factor is characterized as I(1) stochastic process.

Next, we apply the M-class unit root tests with two structural breaks in trend to

each country individually and we show the results in Table 1.16. The second and

third columns represent the break dates for each country while the last three columns

present the individual M-class statistics. After looking at the break dates, we can

see that the World War II period is the most frequent time of structural breaks.

This is consistent with the previous studies on the OECD countries like Dawson

and Strazicich (2010). We simulate the asymptotic critical values for the MSBGLS,

MZGLS
α and MZGLS

t tests and for each pair of λ . Although we do not present the

critical values in this chapter, they are available upon request. The MSBGLS statistic

suggests the rejection of the null hypothesis at the 5% significance level for Den-

mark, New Zealand and US and at the 10% level for Germany and UK. The other

two statistics, MZGLS
α and MZGLS

t show similar results. Both tests suggest a rejec-

tion at the 5% level for Denmark, New Zealand and US and at the 10% level for

UK. Overall, for the majority of countries we cannot reject the unit root hypothesis

in favor of I(0) stationarity.
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Finally, we apply the panel unit root statistics and we show the results in Table

1.17. All panel unit root statistics are able to reject the non-stationary null hy-

pothesis at 10% and two-thirds of them are able to reject the null at the 5% level

of significance. Therefore, we can infer that the panel as a whole is I(0) stationary

when applied the unit root tests to idiosyncratic component. However, as Table 1.18

shows, the null hypothesis of the unit root tests applied to common factors cannot

be rejected. That is, the non-stationarity of the real per capita GDP is driven by the

I(1) non-stationary common factor.

1.8 Conclusion

In this chapter, we propose several panel data unit root tests that allow for multiple

structural breaks and common factors to control for the presence of cross-section

dependence. The test statistics are based on the use of GLS detrending procedure

and the structural breaks are allowed under both the null and the alternative hy-

potheses. The model specification considers both known and unknowns breaks.

This chapter derives the limiting distribution of the individual unit root test statis-

tics for the idiosyncratic disturbance term and the common factors. Further, we also

show that panel data unit root test statistics can be defined through the combination

of the individual test statistics of the idiosyncratic component.

The performance of the statistics that have been proposed is evaluated using

a Monte Carlo simulation experiment. The simulations show that the test statis-

tics perform well for the cases of known structural breaks. When the location of

the structural breaks is not known a priori the panel statistics suffer from under-

rejection when the time series dimension is large. Finally, we apply the proposed

tests to a panel data set of annual real per capita GDP over the period 1870-2008 for

19 OECD developed countries. All panel statistics rejected the null hypothesis of

panel data unit root in favor of I(0) stationarity for the idiosyncratic component of

the real per capita GDP. However, all unit root tests for the common factors cannot

reject the null hypothesis of unit root. Therefore, we conclude that there are global

stochastic trends affecting the real per capita GDP.
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Table 1.1: Asymptotic critical values for the MQd(q) tests for Model 0

r 1% 5% 10%

1 -13.78 -8.19 -5.82

2 -25.11 -18.16 -14.96

3 -35.27 -27.22 -23.53

4 -45.22 -36.31 -32.16

5 -54.26 -44.87 -40.52

6 -63.65 -53.63 -48.92

The moments of the limiting distribution of the statistics by means of Monte

Carlo simulation, using 1,000 steps to approximate the Brownian motion func-

tionals and 100,000 replications.

Table 1.2: Asymptotic critical values for the MQd(q,λ 0) tests for Models I and II,

one structural break case
λ 0= 0.1 λ 0 = 0.2 λ 0 = 0.3

r 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 -30.12 -22.28 -18.69 -31.11 -23.44 -19.81 -31.92 -23.83 -20.29

2 -41.08 -32.43 -28.30 -41.76 -33.26 -29.34 -42.09 -33.69 -29.67

3 -50.84 -41.48 -37.12 -51.51 -42.24 -37.93 -51.79 -42.75 -38.35

4 -59.87 -50.08 -45.56 -60.37 -50.99 -46.37 -60.98 -51.24 -46.63

5 -68.92 -58.65 -53.62 -69.45 -59.41 -54.49 -69.82 -59.66 -54.82

6 -77.35 -67.03 -61.90 -78.28 -67.54 -62.61 -78.30 -67.80 -62.77

λ 0 = 0.4 λ 0 = 0.5 λ 0 = 0.6
r 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 -31.60 -23.97 -20.32 -31.85 -23.86 -20.25 -31.11 -23.23 -19.63

2 -42.07 -33.70 -29.72 -42.20 -33.66 -29.59 -41.90 -33.26 -29.25

3 -51.58 -42.57 -38.24 -51.52 -42.54 -38.16 -51.24 -42.14 -37.85

4 -60.54 -51.17 -46.63 -60.91 -51.11 -46.41 -60.32 -50.69 -46.17

5 -69.72 -59.49 -54.70 -69.09 -59.36 -54.53 -68.90 -59.11 -54.40

6 -78.25 -67.67 -62.68 -77.92 -67.61 -62.62 -77.65 -67.29 -62.33

λ 0 = 0.7 λ 0 = 0.8 λ 0 = 0.9
r 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 -30.11 -22.29 -18.75 -28.90 -21.14 -17.67 -26.80 -19.38 -16.01

2 -41.07 -32.58 -28.62 -40.02 -31.49 -27.59 -38.01 -29.59 -25.70

3 -50.51 -41.50 -37.15 -50.00 -40.70 -36.50 -48.28 -38.96 -34.64

4 -60.02 -50.40 -45.84 -59.04 -49.52 -44.97 -57.40 -47.80 -43.28

5 -68.98 -58.98 -54.00 -67.99 -58.17 -53.25 -66.78 -56.42 -51.63

6 -77.38 -67.13 -61.96 -76.77 -66.38 -61.45 -75.31 -65.13 -60.10

The moments of the limiting distribution of the statistics by means of Monte Carlo sim-

ulation, using 1,000 steps to approximate the Brownian motion functionals and 100,000

replications.
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Table 1.3: Mean and variance for the M-class statistics for the cases simulated in

this study

1 known break

MSBGLS MZGLS
α MZGLS

t
T Mean Variance Mean Variance Mean Variance

50 0.261456 0.005521 -8.282115 16.489818 -1.9013545 0.294152

100 0.239627 0.004043 -9.935691 24.929351 -2.096539 0.328674

200 0.230758 0.003658 -10.823839 30.655044 -2.205788 0.378106

2 known breaks

MSBGLS MZGLS
α MZGLS

t
T Mean Variance Mean Variance Mean Variance

50 0.216900 0.002273 -11.538986 18.016178 -2.312606 0.220923

100 0.199408 0.001760 -13.776592 28.413185 -2.557161 0.270469

200 0.190975 0.001673 -15.248692 38.824724 -2.684333 0.315443

Simulations are based on 1000 replications. These values are valid for the Monte Carlo

simulation presented in Section 1.6. The DGP for the one break case is given by Equations

(1.6.1) to (1.6.4). For the case on 1 known break, the values for the mean and the variance

are calculated using λ 0 = 0.5. The DGP for the two breaks case is given by Equations

(1.6.5) to (1.6.8). The values for the mean and the variance for the case of 2 known breaks

are calculated using λ 0
1 = 0.3 and λ 0

2 = 0.7.
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Table 1.5: Asymptotic mean and variance for the M-class statistics for 2 known

breaks
MSBGLS

mean (top triangle), variance (bottom triangle)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.217 0.203 0.194 0.190 0.191 0.197 0.207 0.221

0.2 0.004 0.201 0.191 0.186 0.185 0.189 0.198 0.211

0.3 0.003 0.003 0.194 0.187 0.185 0.187 0.195 0.207

0.4 0.002 0.002 0.002 0.193 0.190 0.192 0.196 0.207

0.5 0.002 0.002 0.002 0.002 0.199 0.200 0.205 0.213

0.6 0.002 0.002 0.002 0.002 0.003 0.215 0.217 0.224

0.7 0.002 0.002 0.002 0.002 0.003 0.004 0.234 0.238

0.8 0.003 0.002 0.002 0.002 0.003 0.004 0.006 0.256

0.9 0.004 0.003 0.003 0.003 0.003 0.004 0.006 0.007

MZGLS
α

mean (top triangle), variance (bottom triangle)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 -12.471 -13.829 -14.893 -15.486 -15.569 -14.995 -13.946 -12.628

0.2 46.632 -13.977 -15.438 -16.225 -16.183 -15.947 -14.935 -13.487

0.3 50.801 51.215 -14.721 -16.013 -16.421 -16.147 -15.357 -13.934

0.4 52.241 53.388 47.737 -14.943 -15.665 -15.729 -15.069 -13.706

0.5 50.722 53.282 52.060 48.311 -14.450 -14.716 -14.387 -13.415

0.6 51.965 51.185 51.734 51.655 48.970 -13.378 -13.185 -12.533

0.7 51.061 52.727 50.559 52.826 52.517 48.374 -11.909 -11.366

0.8 49.087 49.630 49.700 50.724 50.989 49.417 46.587 -10.144

0.9 43.668 46.501 45.750 44.800 48.285 46.458 43.866 40.023

MZGLS
t

mean (top triangle), variance (bottom triangle)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 -2.337 -2.484 -2.588 -2.650 -2.667 -2.637 -2.555 -2.414

0.2 0.511 -2.491 -2.635 -2.722 -2.758 -2.722 -2.656 -2.512

0.3 0.508 0.480 -2.584 -2.709 -2.750 -2.734 -2.681 -2.559

0.4 0.468 0.470 0.437 -2.623 -2.693 -2.707 -2.668 -2.557

0.5 0.445 0.422 0.404 0.414 -2.578 -2.615 -2.576 -2.495

0.6 0.417 0.406 0.396 0.399 0.406 -2.467 -2.486 -2.407

0.7 0.415 0.399 0.376 0.402 0.417 0.430 -2.332 -2.291

0.8 0.408 0.399 0.399 0.397 0.424 0.459 0.454 -2.149

0.9 0.398 0.390 0.375 0.385 0.408 0.436 0.448 0.445

The mean and the variance for each break are simulated using on 10,000 replications and

T = 1000. These values are valid for the Monte Carlo simulation presented in Section

1.6. The DGP for the one break case is given by Equations (1.6.1) to (1.6.4).
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Table 1.8: Empirical size and power of the M-type unit root statistics for known

breaks for N = 20 for 1 common factor
Panel A: 1 known break Panel B: 2 known breaks

T σ2
F ρ MSBGLS

F MZGLS
F,α MZGLS

F,t MSBGLS
F MZGLS

F,α MZGLS
F,t

50 0.5 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

1 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

10 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

100 0.5 0.9 0.093 0.096 0.095 0.055 0.056 0.055

0.95 0.043 0.046 0.045 0.035 0.031 0.031

1 0.027 0.028 0.027 0.026 0.021 0.023

1 0.9 0.091 0.099 0.103 0.055 0.052 0.051

0.95 0.042 0.045 0.046 0.033 0.032 0.033

1 0.026 0.026 0.027 0.026 0.022 0.022

10 0.9 0.102 0.105 0.101 0.051 0.050 0.052

0.95 0.047 0.054 0.052 0.031 0.030 0.028

1 0.026 0.029 0.027 0.022 0.023 0.024

200 0.5 0.9 0.465 0.468 0.460 0.320 0.313 0.318

0.95 0.156 0.158 0.156 0.100 0.097 0.096

1 0.049 0.047 0.046 0.045 0.043 0.045

1 0.9 0.488 0.502 0.496 0.347 0.339 0.338

0.95 0.160 0.165 0.162 0.103 0.100 0.100

1 0.046 0.047 0.045 0.044 0.042 0.043

10 0.9 0.529 0.534 0.525 0.351 0.346 0.344

0.95 0.152 0.162 0.163 0.104 0.100 0.099

1 0.043 0.048 0.048 0.040 0.038 0.040

The DGP for the one break case is given by Equations (1.6.1) to (1.6.4). For the

case on 1 known break, the values for the mean and the variance are calculated

using λ 0 = 0.5. The DGP for the two breaks case is given by Equations (1.6.5) to

(1.6.8). The values for the mean and the variance for the case of 2 known breaks

are calculated using λ 0
1 = 0.3 and λ 0

2 = 0.7.
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Table 1.13: Empirical size and power of the M-type unit root statistics for unknown

breaks for N = 20 for 1 common factor
Panel A: 1 unknown break Panel B: 2 unknown breaks

T σ2
F ρ MSBGLS

F MZGLS
F,α MZGLS

F,t MSBGLS
F MZGLS

F,α MZGLS
F,t

50 0.5 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

1 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

10 0.9 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

100 0.5 0.9 0.083 0.085 0.082 0.120 0.116 0.117

0.95 0.049 0.051 0.049 0.076 0.071 0.071

1 0.041 0.044 0.044 0.064 0.062 0.067

1 0.9 0.123 0.130 0.127 0.133 0.120 0.120

0.95 0.069 0.067 0.068 0.088 0.080 0.084

1 0.057 0.057 0.056 0.071 0.065 0.066

10 0.9 0.171 0.179 0.179 0.137 0.129 0.132

0.95 0.097 0.097 0.094 0.086 0.078 0.079

1 0.074 0.067 0.066 0.081 0.078 0.075

200 0.5 0.9 0.192 0.200 0.202 0.379 0.367 0.365

0.95 0.062 0.067 0.069 0.157 0.148 0.145

1 0.023 0.022 0.022 0.096 0.090 0.091

1 0.9 0.258 0.265 0.265 0.431 0.423 0.423

0.95 0.084 0.089 0.087 0.187 0.182 0.183

1 0.032 0.033 0.032 0.115 0.109 0.110

10 0.9 0.510 0.513 0.511 0.506 0.497 0.494

0.95 0.192 0.193 0.186 0.229 0.215 0.216

1 0.071 0.075 0.072 0.113 0.106 0.105

The DGP for the one break case is given by Equations (1.6.1) to (1.6.4). The DGP

for the two breaks case is given by Equations (1.6.5) to (1.6.8).
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Table 1.16: Individual unit root tests and the two break dates
Country T̃1 T̃2 λ used for cv MSBGLS MZGLS

α MZGLS
t

Australia 1889 1931 (0.2, 0.5) 0.170 -17.130 -2.910

Austria 1913 1947 (0.3, 0.6) 0.165 -17.607 -2.913

Belgium 1918 1943 (0.4, 0.6) 0.200 -12.370 -2.472

Canada 1917 1933 (0.4, 0.5) 0.192 -13.105 -2.509

Denmark 1939 1973 (0.5, 0.8) 0.147** -23.219** -3.402**

Finland 1892 1918 (0.2, 0.4) 0.194 -13.342 -2.583

France 1929 1945 (0.4, 0.6) 0.165 -17.122 -2.830

Germany 1913 1944 (0.3, 0.6) 0.152* -20.914 -3.183

Italy 1918 1945 (0.4, 0.6) 0.295 -4.447 -1.312

Japan 1950 1973 (0.6, 0.8) 0.258 -6.836 -1.763

Netherlands 1918 1945 (0.4, 0.6) 0.168 -17.679 -2.972

New Zealand 1920 1934 (0.4, 0.5) 0.145** -23.637** -3.436**

Norway 1916 1939 (0.4, 0.5) 0.161 -17.394 -2.802

Portugal 1936 1961 (0.5, 0.7) 0.203 -10.688 -2.167

Spain 1935 1960 (0.5, 0.7) 0.265 -7.142 -1.890

Sweden 1916 1939 (0.4, 0.5) 0.229 -9.097 -2.083

Switzerland 1907 1944 (0.3, 0.6) 0.184 -14.497 -2.668

UK 1918 1943 (0.4, 0.6) 0.150* -21.756* -3.254*

USA 1929 1944 (0.4, 0.6) 0.143** -24.572** -3.505**

T̃1 and T̃2 represent the break dates and cv denotes the critical value; * and ** denote

rejection of the null hypothesis at the 10% and 5% level of significance, respectively.

Table 1.17: Panel unit root tests
Panel test MSBGLS MZGLS

α MZGLS
t

ZM -1.5616* -1.7372** -1.6879**

PM 53.4213** 51.9885* 52.7378*

PM
m 1.7689** 1.6046* 1.6905**

CM -1.7764** -1.6246* -1.6712**

Note: * and ** denote rejection of the null hypothesis at the

10% and 5% level of significance, respectively.

Table 1.18: Unit root tests for common factors
MSBGLS

F MZGLS
F,α MZGLS

F,t
0.1818 -14.2714 -2.5951
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Chapter 2

Panel Cointegration Rank Testing
with Cross-Section Dependence

2.1 Introduction

Since the pioneering work of Engle and Granger (1987) the literature on cointegra-

tion grew at a rapid pace. Even though this topic has been covered extensively in

time series, the analysis of cointegration in panel data is in early stages of develop-

ment. Most of the initial developments assumed that time series in the panel data

were either independent or that cross-section dependence could be controlled by in-

cluding time effects, which defined the so-called first generation of panel cointegra-

tion tests. Unfortunately, the assumption of cross-section independence is crucial

for the derivation of the limiting distributions that are obtained in these proposals.

However, the use of these panel data statistics that analyze the presence of cointegra-

tion assuming cross-section independence can lead to misleading conclusions when

used to study, for instance, sectors of economic activity, cities, regions or countries

that are closely related. The challenge to overcome this limitation has given rise to

the so-called second generation of panel cointegration tests.1 For a more detailed

literature review on panel cointegration see Breitung and Pesaran (2008).

This chapter aims to design a panel cointegration rank test statistic that accom-

modates for the presence of cross-section dependence through the specification of

1Proposals that consider the presence of cross-section dependence among the time series that

define the panel data set include Gengenbach, Palm and Urbain (2006), Gengenbach, Westerlund

and Urbain (2008), Bai and Carrion-i-Silvestre (2013) and Banerjee and Carrion-i-Silvestre (2013)

for the single equation framework, and Groen and Kleinberger (2003) and Breitung (2005) for the

vector error correction (VECM) framework.
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an approximate common factor model as suggested in the seminal paper of Bai

and Ng (2004). Contrary to the existing proposals, our approach allows to estimate

the number of cointegrating relations in a panel data giving information about the

source of the stochastic trends that might be present in the variables. We assume

that the stochastic component of the time series can be decomposed in terms of an

idiosyncratic component and a set of common factors. Once the observed variables

have been decomposed in these elements, we can investigate the presence of cointe-

gration among the idiosyncratic components – i.e., the individual system involving,

for instance, the variables that belong to one particular country – and whether there

are non-stationary common factors. Furthermore, with this setup we can distinguish

between idiosyncratic stochastic trends and global stochastic trends.

The proposed framework captures several interesting features that are inherent

in the economic analysis such as the presence of cross-cointegration – see Banerjee,

Marcellino and Osbat (2004) – the approximation of relevant unobserved variables,

the distinction between global and idiosyncratic common trends – see Gonzalo and

Granger (1995) – and the modeling of the cross-section dependence driven by com-

mon factors that are present by the definition of the model under investigation – see

Gengenbach, Palm and Urbain (2010).

We propose a test statistic to determine the cointegrating rank in a panel sys-

tem of equations allowing for the presence of cross-section dependence across the

systems of variables in the panel setup. We deal with cross-section dependence by

means of approximate common factor models as proposed in Bai and Ng (2004,

2010), Gengenbach, Palm and Urbain (2006), Gengenbach, Westerlund and Urbain

(2008), Bai and Carrion-i-Silvestre (2013) and Banerjee and Carrion-i-Silvestre

(2013), among others. The contribution of this chapter is twofold. First, the nov-

elty of our approach compared to the existing proposals is that it takes into account

the possibility that there might be more than one cointegrating relation among the

variables that define the system for each individual. At the same time, our proposal

tackles the presence of cross-section dependence among the different systems in a

parsimonious way through the use of common factors. The Monte Carlo simulation

that has been conducted to investigate the small-sample properties of the proposed

panel cointegration rank tests reveals that, in general, the panel data statistics show

a good performance in terms of empirical size and power, and encompass the statis-

tical inference that can be drawn from the univariate statistics. More interestingly,

the simulations indicate that the consideration of common factors is recommended

even when we conduct the analysis for only one individual system, because in some
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cases the presence of unattended common factors can bias the analysis towards the

overestimation of the cointegrating rank. This chapter illustrates the use of the pro-

posed techniques with two empirical applications using the variables involved in

the money demand equation and the monetary exchange model. These exemplify

the situation discussed above where the presence of common factors appears in a

natural way. Global and idiosyncratic stochastic trends are estimated in both cases.

The remainder of this chapter is organized as follows. Section 2.2 presents the

model and the assumptions that we adopt in this chapter. Section 2.3 introduces the

test statistic used to determine the cointegrating rank. In Section 2.4, we discuss

the way in which the individual statistics can be combined to specify a panel data

cointegrating rank statistic. Section 2.5 analyzes the finite sample performance of

our approach, both in a unit-by-unit framework and in a panel setup by means of

Monte Carlo simulation. Section 2.6 presents two empirical applications of the

proposed statistics. Finally, some concluding remarks are presented in Section 2.7.

The Appendix B collects all the proofs.

2.2 The model

Let Yi,t be a (k×1) vector of stochastic process, where k is assumed to be finite

throughout this chapter, with the data generating process (DGP) defined as:

Yi,t = Di,t +ui,t (2.2.1)

ui,t = λiFt + ei,t (2.2.2)(
Iq−L

)
Ft = C (L)wt (2.2.3)

(Ik−L)ei,t = Gi (L)εi,t , (2.2.4)

where Di,t denotes the deterministic component, which in this chapter can be either

Di,t = μi – henceforth, this specification is denoted as the intercept model – or Di,t =

μi + δit – hereafter, the linear time trend case – t = 1, . . . ,T and i = 1, . . . ,N. The

component Ft denotes a (q×1) vector of common factors and λi is a (k×q) matrix

of factor loadings. Finally, ei,t is a (k×1) vector that collects the idiosyncratic

stochastic component. Despite the operator (I−L) in Equations (2.2.3) and (2.2.4),

where I denotes the identity matrix of appropriate dimension (q or k, as indicated by

the subscript), neither Ft or ei,t have to be I(1). In fact, Ft and ei,t can be I(0), I(1),

or a combination of both, depending on the rank of C(1) and Gi (1). For instance, if
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C(1) = 0, then Ft is I(0). If C(1) is of full rank, then each component of Ft is I(1). If

C(1) �= 0, but not full rank, then some components of Ft are I(1) and some are I(0).

The same applies for Gi (1).

Let M <∞ be a generic positive number, not depending on T and N. Throughout

this chapter, we use ‖A‖= trace(A′A)1/2
to denote the Euclidean norm of matrix A.

The stochastic processes that participate on the definition of the DGP are assumed

to satisfy the following assumptions:

Assumption A: (i) for non-random λi, ‖λi‖ ≤ M; for random λi, E ‖λi‖4 ≤ M,

(ii) 1
N ∑N

i=1 λ ′i λi
p→ ΣΛ, a (q×q) positive definite matrix.

Assumption B: (i) wt ∼ iid (0,Σw), E ‖wt‖4 ≤ M, and (ii) Var (ΔFt) = ∑∞
j=0Cj

ΣwC′j > 0, (iii) ∑∞
j=0 j

∥∥Cj
∥∥< M; and (iv) C (1) has rank q1, 0≤ q1 ≤ q.

Assumption C: (i) for each i, εi,t ∼ iid (0,Σεi), E ‖εi,t‖4 ≤ M, (ii) Var (Δεi,t) =

∑∞
j=0 Gi, jΣεiG

′
i, j > 0, (iii) ∑∞

j=0 j
∥∥Gi, j

∥∥< M; and (iv) Gi (1) has rank r, 0≤ r ≤ k.

Assumption D: The errors εi,t , wt , and the loadings λi are three mutually inde-

pendent groups across i and t.

Assumption E: E ‖F0‖ ≤M, and for every i = 1, . . . ,N, E
∥∥ei,0

∥∥≤M.

Assumption A is made on the factor loadings to warrant that the factor struc-

ture is identifiable. This assumption is standard in factor analysis. Assumption

B implies that the short-run variance of ΔFt is positive definite but the long-run

covariance of ΔFt can be of reduced rank to permit linear combinations of I(1) fac-

tors to be stationary. As stated above, this permits a combination of stationary and

non-stationary factors in the model. Assumption C(i) allows some weak correla-

tion in (I−L)ei,t , whereas C(ii) and C(iii) allow weak cross-section correlation.

C(iv) indicates that Gi (1) can be of reduced rank to permit combinations of the

I(1) idiosyncratic stochastic trends to be stationary. Assumption D states that the

errors εi,t , wt and are λi are mutually independent groups across i and t. Finally,

Assumption E defines the initial conditions.

The definition of the (k×q) loading matrix λi allows us to control the way

in which the common factors affect the variables of each individual system. For

example, suppose that we partition the λi matrix as follows:

λi =

[
λi,1,1 λi,1,2

λi,2,1 λi,2,2

]
,

so that we can impose restrictions on how the factors affect the elements of Yi,t in
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(2.2.1). Thus, some of the factors can only affect one subset of the variables, say, the

series that defines the cointegrating space, but not the other variables, and the other

way around. Therefore, situations where λi,1,2 = 0 and/or λi,2,1 = 0 are covered in

this setup. Note that it is possible that both λi,1,2 �= 0 and λi,2,1 �= 0, which is the

general situation that is assumed henceforth.

The presence of cointegration is investigated by assessing the number of stochas-

tic trends that are present in ui,t in (2.2.1). This states two different potential sources

for the common trends: first, ei,t in (2.2.2) can capture the idiosyncratic common

trends; second, Ft in (2.2.2) can control the effect of global stochastic trends. This

distinction yields different qualitative interpretations that are relevant from an eco-

nomic point of view. Thus, global stochastic trends imply that shocks are permanent

to all variables in the panel data set, while idiosyncratic stochastic trends circum-

scribe permanent shocks to specific individual systems. The standard approach does

not distinguish between these two sources, although the simulation experiments that

we have carried out below reveal that the statistical inference can be affected if the

importance of the global stochastic trends is high. In practice, the inclusion of

the common factors informs us about the number of stochastic trends that affect the

variables of the system. Moreover, the undesirable effects on the statistical inference

are not restricted to the I(1) non-stationary case. As in Andrews (2005), the pres-

ence of I(0) stationary common factors is also relevant in our case since common

shocks might cause biased and inconsistent estimation when they are left untreated.

Common shocks are present in most macroeconomic data – oil shocks, international

financial crises, common monetary and fiscal policies or aggregate productivity are

some examples – so we should take them into account when computing the test

statistics that are used to study the stochastic properties of the variables.

2.3 Cointegrating rank test in the presence of com-
mon factors

We estimate the unobservable common factors using the principal component ap-

proach suggested in Bai and Ng (2002, 2004). Let us consider the general deter-

ministic component given by Di,t = μi+δit. Taking the first difference of the model

we have:

ΔYi,t = δi +λiΔFt +Δei,t . (2.3.1)
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We can define the idempotent matrix M = IT−1− ι (ι ′ι)−1 ι ′, with ι a (T −1)× 1

vector of ones. Then,

MΔYi = MΔFλ ′i +MΔei.

yi = f λ ′i + zi.

Note that when the deterministic component is Di,t = μi, taking first differences

removes the constant term, so that in this case we can define M = IT−1 and the

rest of our discussion applies without any modification. The common factors are

extracted as the q eigenvectors corresponding to the q largest eigenvalues of the

(T − 1)× (T − 1) matrix yy′, where y = [y1, . . . ,yN ] is a (T − 1)× kN matrix that

is defined using the (T − 1)× k matrices yi, i = 1, . . . ,N. The matrix of estimated

weights, Λ̂ =
(

λ̂ 1, . . . , λ̂ N

)
, is given by Λ̂ = y′ f̂ . We can obtain an estimate of zi

from ẑi = yi− f̂ λ̂
′
i, as in Bai and Ng (2004). Note that we can recover the common

factors as F̂t = ∑t
j=2 f̂ j and the idiosyncratic component as êi,t = ∑t

j=2 ẑi, j.

Once the effects of the common factors are removed, cointegration analysis is

then performed focusing on both the idiosyncratic and common factor components.

This gives us further insight on the cointegration analysis, since the inference on the

cointegrating rank can be distorted if common factors are not accounted for in the

model.

In this chapter we propose to determine the rank with a test statistic that is

based on the multivariate version of the square of the modified Sargan-Bhargava

(MSB) statistic proposed in Stock (1999). Bai and Ng (2010) and Bai and Carrion-

i-Silvestre (2013) are among the authors that use the MSB statistic in their papers.

One important feature of the MSB statistic that motivates its use in this chapter

was pointed out by Ploberger and Phillips (2004). These authors proposed a point

optimal test for panel unit root in the presence of incidental trends that has some re-

semblance to the Sargan-Bhargava test. They show that this statistic possesses some

optimality features for panel data within the class of tests that are invariant to het-

erogeneous trends. Another desirable property of the MSB statistic was mentioned

in Bai and Ng (2010), who indicate that the statistic does not require the estimation

of the autoregressive parameters, as it would be the case in other single-equation

procedures available in the literature.

Without loss of generality, the exposition below uses the estimated idiosyncratic

component (êi,t) to describe the statistical procedure, which can be also applied to

the estimated common factors
(
F̂t
)
.
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The testing procedure builds upon the different rates of convergence of the ele-

ments on the Qêiêi = T−1ê′iêi matrix under the null hypothesis. Let us assume that

the rank of the cointegrating space is 0≤ r≤ k. We can define the orthogonal matrix

A = [A1 : A2] with A1 a (k× r) matrix and A2 a (k×m) matrix, m = k− r, such that

the first r elements of the rotated vector eA
i,t = A′ei,t =

(
(A′1ei,t)

′ ,(A′2ei,t)
′)′

are I(0)

and the other m elements are I(1). It should to be understood that A = A1 if r = k

and A = A2 if r = 0. Accordingly, we partition the long-run variance matrix as

ΩΔeA
i ΔeA

i
=

[
Ω11,i Ω12,i

Ω21,i Ω22,i

]
.

We have η
(

T−1QêiêiΩ̂
−1
ΔêiΔêi

)
=η

(
T−1Ω̂−1/2

ΔêÂ
i ΔêÂ

i
QêÂ

i êA
i
Ω̂−1/2

ΔêÂ
i ΔêÂ

i

)
, where Â= [Â1:Â2]

being Â1 and Â2 the matrices of the eigenvectors associated with the smallest r and

largest m eigenvalues, respectively, of T−2 ∑T
t=1 êi,t ê′i,t , and η (·) denotes the eigen-

values of the matrix between parentheses. The determination of the number of

stochastic trends in the system relies on the sequential testing procedure that fol-

lows:

1. First, assume that the cointegrating rank is zero, i.e., set m = k.

2. Specify the null hypothesis that there are m stochastic trends against the al-

ternative hypothesis that there are less than m common stochastic trends.

3. Estimate Â2 as the m eigenvectors that correspond to the m largest eigenvalues

of T−1Qêiêi .

4. Define the univariate MSB statistic as

MSB j,i (m) = ηmin

(
T−1Q

êÂ2
i êÂ2

i
Ω̂−1

ΔêÂ2
i ΔêÂ2

i

)

= ηmin

(
T−1Ω̂−1/2

ΔêÂ2
i ΔêÂ2

i

Q
êÂ2

i êÂ2
i

Ω̂−1/2

ΔêÂ2
i ΔêÂ2

i

)
= η̂ i,1, (2.3.2)

where the subscript j = {μ,τ} refers to the deterministic component used in

the model – μ for the Di,t = μi intercept model and τ for the Di,t = μi + δit

linear time trend case – ηi,1 < · · ·< ηi,m are the eigenvalues of

T−1Q
êÂ2

i êÂ2
i

Ω̂−1

ΔêÂ2
i ΔêÂ2

i

sorted in ascending order, and ηmin (·) denotes the min-

imum eigenvalue operator.
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5. Compare the value of the MSB j,i (m), j = {μ,τ}, statistic with the corre-

sponding critical values from the left tail of the distribution – i.e., the null hy-

pothesis that there are m stochastic trends is rejected if MSB j,i (m) is smaller

than the corresponding critical value.

6. If the null hypothesis of m common stochastic trends is rejected, specify the

null hypothesis of m− 1 stochastic trends and return to step 2. The process

continues until either the null hypothesis is not rejected or when m = 0 is

achieved.

The estimation of Ω
ΔêÂ2

i ΔêÂ2
i

can be obtained in a parametric way from the esti-

mation of the VECM model specification. Expressed in matrix notation, we have

ΔêÂ2
i = êÂ2

i,−1Πi +ΔêÂ2
i Γi,pi (L)+ εi

ΔêÂ2
i (Im−Γi,pi (L)) = êÂ2

i,−1Πi + εi

ΔêÂ2
i = êÂ2

i,−1Πi (Im−Γi,pi (L))
−1 + εi (Im−Γi,pi (L))

−1 ,

where pi denotes the number of lags of ΔêÂ2
i,i that are considered. Following Ng and

Perron (2001), define Ω̂
ΔêÂ2

i ΔêÂ2
i

=
((

Im− Γ̂i,pi (1)
)−1

)′
T−1ε̂ ′iε̂ i

(
Im− Γ̂i,pi (1)

)−1
,

where the lag order of the model pi is estimated using the modified information

criterion in Qu and Perron (2007) assuming that the cointegrating rank is zero –

note that under the null hypothesis we assume that there are m stochastic trends in

the system defined by the m variables of êÂ2
i,t .

The same procedure can be applied to the q estimated common factors, using F̂t

instead of êi,t . In this case, A = [A1 : A2] with A1 a (q×q0) matrix and A2 a (q×q1)

matrix, q = q0 + q1, where q0 and q1 are the number of I(0) and I(1) common

factors, respectively – it should be understood that A = A1 if q0 = q and A = A2 if

q1 = q. As above, Â1 and Â2 are the matrices of the eigenvectors associated with

the smallest q0 and largest q1 eigenvalues, respectively, of T−2 ∑T
t=1 F̂t F̂

′
t . The test

statistic applied to the estimated common factors is also given by (2.3.2), which is

denoted as MSBF
j (q1), j = {μ,τ}.

The limiting distribution of the MSB statistics is established in the following

theorem.

Theorem 2.1. Let Yi,t , i = 1, . . . ,N , t = 1, . . . ,T , be a (k×1) vector of stochastic

processes with the DGP given by (2.2.1) to (2.2.4) and satisfying Assumptions A

to E. Furthermore, it is assumed that pi → ∞ and p3
i /min [T,N]→ 0 as T → ∞,
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N → ∞, N/T → 0.

(1) Under the null hypothesis that there are m stochastic trends, the MSB statistic

given in (2.3.2) applied to the idiosyncratic component converges to:

(a) For the intercept model: MSBμ,i (m)⇒ ηmin
(∫ 1

0 Wi (s)Wi (s)
′ ds
)

(b) For the linear trend model: MSBτ,i (m)⇒ ηmin
(∫ 1

0 Vi (s)Vi (s)
′ ds
)
,

where ⇒ denotes weak convergence, Wi (s) is an (m×1) vector of independent

standard Brownian motions, and Vi (s) = Wi (s)− sWi (1) is an (m×1) vector of

independent Brownian bridges.

(2) Under the null hypothesis that there are q1 stochastic trends, the MSB statistic

given in (2.3.2) applied to the common factors converges to:

(a) For the intercept model: MSBF
μ (q1)⇒ ηmin

(∫ 1
0 W (s)W (s)′ ds

)
(b) For the linear trend model: MSBF

τ (q1)⇒ ηmin
(∫ 1

0 V (s)V (s)′ ds
)
,

where W (s) is a (q1×1) vector of independent standard Brownian motions, and

V (s) =W (s)− sW (1) is a (q1×1) vector of independent Brownian bridges.

The proof of Theorem 2.1 is given in the Appendix B. It has to be stressed that

our framework treats as a special case the situation in which the time series are

assumed to be cross-section independent – in this case we only need to impose λi =

0 ∀i in (2.2.2). The estimation of the parameters of the deterministic component can

be done specifying the model in first differences so that yi = zi, where yi = MΔYi

and zi = MΔei – as before, M = IT−1 for the intercept and M = IT−1− ι (ι ′ι)−1 ι ′

for the time trend deterministic specifications. Then, defining êi,t = ∑t
j=2 yi, j we

compute the MSB statistic as described previously. Its limiting distribution is given

by Theorem 2.1.

The asymptotic critical values for the MSB j (m) statistic, j = {μ,τ}, are re-

ported in Table 2.1, which have been generated using 1,000 steps to approximate

the Brownian motion functionals and 10,000 replications. In order to improve the

performance of the statistics in empirical analyses, we have also computed critical

values for different finite sample sizes.2 For subsequent purposes, we have also

2These finite sample critical values are computed using the autoregressive spectral density esti-

mator Ω̂
Δê

Â2
i Δê

Â2
i

defined above with the specification of the upper bound for pi as pmax = T 1/3 for

T = {100,200,500} – see Perron and Ng (1996). As pointed out by the referee, small sample crit-

ical values are influenced by nuisance parameters, although the specification of the autoregressive

correction with pmax lags aims to control for the presence of correlation.
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computed the mean and the variance of the statistics.

The MSB statistic presented in this chapter is consistent under the alternative

hypothesis that states that there are less common stochastic trends than the ones

specified under the null hypothesis. The following theorem shows the rate at which

the MSB statistic diverges under the alternative hypothesis.

Theorem 2.2. Let Yi,t , i = 1, . . . ,N , t = 1, . . . ,T , be a (k×1) vector of stochastic

processes with the DGP given by (2.2.1) to (2.2.4) and satisfying Assumptions A to

E. Under the alternative hypothesis the MSB statistics MSB j,i (m) and MSBF
j (q1),

j = {μ,τ}, are Op
(
T−1

)
.

The proof is given in the Appendix B. The result in Theorem 2.2 shows that

the MSB statistic converges to zero under the alternative hypothesis. Therefore, the

statistic is consistent.

2.4 Panel data cointegrating rank tests

The individual MSB statistics can be pooled to define panel data statistics, which

are expected to increase the performance of the statistical inference when estimating

the cointegrating rank. In this section we define three different panel data statistics

depending on the way in which the individual information is combined. It is impor-

tant to mention that all these statistics are independent if we include the additional

assumption that the idiosyncratic component is independent across the cross-section

dimension. In all cases, the null hypothesis is that all N individual systems have m

stochastic trends, while the alternative hypothesis is that there are m−1 stochastic

trends: {
H0 : m stochastic trends ∀i = 1, . . . ,N

H1 : m−1 stochastic trends ∀i = 1, . . . ,N
. (2.4.1)

Note that for the panel data based procedure to make sense, we need to assume that

all individual systems have the same number of stochastic trends. The sequential

testing procedure works as described in the previous section. First, we set m= k and

test the null hypothesis given in (2.4.1). If this null hypothesis is rejected, then we

define m = k− 1 and proceed to test the null hypothesis in (2.4.1). The procedure

continues until the null hypothesis is not rejected.

This chapter focuses on three different panel data statistics. The first panel data
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MSB (PMSB) statistic is based on the standardized mean of the individual statistics:

PMSBZ
j (m) =

√
N(MSB j (m)−E(MSB j (m)))√

Var(MSB j (m))
, (2.4.2)

where MSB j (m) = N−1 ∑N
i=1 MSB j,i (m), and E(MSB j (m)) and Var(MSB j (m)) are

the mean and the variance of the MSB j,i (m) statistic computed from (2.3.2), j =

{μ,τ}.
It is possible to define two additional panel data statistics based on the combina-

tion of the individual p-values. Maddala and Wu (1999) define the panel data Fisher-

type statistic PMSBF
j (m) = −2∑N

i=1 ln ϕ̂ i ∼ χ2
2N , where ϕi denotes the p-value of

the MSB j,i (m) statistic, j = {μ,τ}. Finally, since the PMSBF
j (m) statistic is valid

for finite N, Choi (2001) suggests to compute the following test when N → ∞:

PMSBC
j (m) =

−2∑N
i=1 ln ϕ̂ i−2N√

4N
j = {μ,τ} . (2.4.3)

The limiting distribution of the panel statistics is given in the following theorem.

Theorem 2.3. Let Yi,t , i = 1, . . . ,N , t = 1, . . . ,T , be a (k×1) vector of stochastic

processes with the DGP given by (2.2.1) to (2.2.4) and satisfying Assumptions A

to E, together with the assumption that the idiosyncratic component is independent

across the cross-section dimension. Under the null hypothesis that there are m

stochastic trends, with pi→∞ and p3
i /min [T,N]→ 0 as T →∞, N→∞, N/T → 0,

the panel statistics given in (2.4.2) and (2.4.3) converge to:

PMSBZ
j (m) ⇒ N(0,1)

PMSBC
j (m) ⇒ N(0,1), j = {μ,τ} .

The proof is given in the Appendix B. The simulated mean and variance of the

MSB j,i (m) statistic that are involved in the computation of the PMSBZ
j (m) statistic,

j = {μ,τ}, under the null hypothesis are presented in Table 2.1 for different sample

sizes and different number of stochastic trends. As for the p-value of the MSB j,i (m)

statistic, j = {μ,τ}, we have simulated look-up tables for different values of T ,

which are available upon request.
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2.5 Monte Carlo simulation

We now analyze the finite sample performance of the MSB panel cointegration rank

tests for the two deterministic specifications considered in this chapter. The DGP is

based on Toda (1995) and Saikkonen and Lütkepohl (2000) and has the following

form:

Yi,t = λiFt + ei,t (2.5.1)(
e1,i,t

e2,i,t

)
=

(
ψi 0

0 Ik−r

)(
e1,i,t−1

e2,i,t−1

)
+

(
ε1,i,t

ε2,i,t

)
(2.5.2)

Ft = ρFt−1 +σFwt , (2.5.3)

where εi,t ∼ iid N (0, Ik), i = 1, . . . ,N , t = 1, . . . ,T and j = 1, . . . ,q. The system is

defined by k = 3 variables, Yi,t = (y1,i,t ,y2,i,t ,y3,i,t)
′, with the deterministic specifi-

cations given by Di,t = μi + δit, with μi ∼U [−1,1] and δi ∼U [−0.5,0.5], where

U denotes the uniform distribution. The idiosyncratic cointegrating rank is investi-

gated using ψi = aIr with a = {0.5,0.8,1}. When there is not cointegration among

any of the time series, Equation (2.5.2) reduces to ei,t = ei,t−1 + εi,t . On the other

hand, when all time series are I(0), Equation (2.5.2) reduces to ei,t = ψiei,t−1 + εi,t .

We distinguish three different configurations for the common factor component:

• Setup 1: one common factor (q = 1) with λi = (0,0,c1,i)
′, c1,i ∼ U [1,2].

Note that in this case the common factor only affects the variable y3 of each

individual system.

• Setup 2: one common factor (q = 1) that affects two variables of the system

(y2 and y3) through the specification of λi = (0,c1,i,c2,i)
′, c1,i∼U [1,2], c2,i∼

U [1,2].

• Setup 3: two common factors (q = 2), each of them affecting one variable of

the system, with

λi =

⎡
⎢⎣

0 0

c2,1,i 0

0 c3,2,i

⎤
⎥⎦ ; c2,1,i ∼U [1,2] ,c3,2,i ∼U [1,2] .

Note that in this case the first factor only affects y2 whereas the second factor

only affects y3.
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As for the parameters affecting the definition of the common factors, we have

conducted simulations for all the combinations of ρ = {0.9,0.95,1} and σ2
F =

{0.5,1,10} with wt ∼ N (0,1). The number of common factors is estimated using

the panel Bayesian information criterion (BIC) in Bai and Ng (2002) with qmax = 6

as the maximum number of common factors. It is worth mentioning that panel BIC

always detected the true number of common factors.

The empirical size and power of the statistics are obtained using 1,000 replica-

tions for all different combinations of N = {1,10,20,40} and T = {100,200,500}.
The nominal size is set at the 5% level of significance. For conciseness, we report

only the results for N = 1 and for N = 20. The results for N = {10,40} are qualita-

tively similar to those for N = 20 so they are not shown to save space. Furthermore,

since the performance of the different panel data statistics is similar, we only present

the results for the PMSBZ test, although the complete set of results is available upon

request. Finally, the simulations were carried out in GAUSS using the COINT 2.0

library.

2.5.1 Ignoring the cross-section dependence

To motivate the importance of the presence of common factors, we first investigate

the MSB statistic when the common factors are not considered. Since the purpose

of this exercise is to illustrate the potential pitfalls that can affect the cointegration

analysis in this situation, we only use here the first setup, i.e., the one that assumes

that there is only one common factor that affects one variable of the individual

systems. Finally and due to space constraint, we report here a summarized version

of the results of the simulation experiments that we have conducted.

Unit-by-unit analysis

Tables 2.2 and 2.3 present the results for the deterministic specification given by

a constant term and a time trend, respectively. As it can be seen, the presence

of one I(0) common factor does not affect the inference when we focus on the

individual systems (N = 1), unless the importance of the common factor is large

(σ2
F = 10). Thus, when σ2

F = 10 the statistical procedure tends to detect fewer

stochastic trends than there exist when the true m > 0. Furthermore, for σ2
F > 0.5

we observe that, as the sample size increases, the probability of selecting the correct

number of stochastic trends decreases for m > 0. This is an undesirable effect, since

we should expect a better performance of the statistical analysis as T increases.
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These features are similar for the two deterministic functions, although the model

that includes the time trend tends to show a better performance.

When the common factor is I(1) and m = 0, the probability of selecting the

correct number of stochastic trends falls dramatically: at best, it is equal to 0.242

for T = 100 and σ2
F = 0.5 for the intercept model, and equal to 0.368 for T = 200

and σ2
F = 0.5 for the time trend model. This is something to be expected, since

the analysis is not accounting for the stochastic trend that introduces the common

factor. When the true m = 1, the probability of selecting the correct number of

stochastic trends is nearly 0.95, which is also to be expected since the stochastic

trend of the individual system is the one affected by the I(1) common factor. An

interesting result is obtained when m = 3 and σ2
F = 10, for which the probabilities

of correct selection are 0.771 (T = 100), 0.793 (T = 200) and 0.808 (T = 500)

for the intercept model. Intuitively, we should expect that the presence of an I(1)

common factor should not cause any distortion in this case, where the individual

system has three stochastic trends. Notwithstanding, these values are below 0.95,

showing that leaving the common factors untreated causes undesirable effects. In

contrast, the probabilities of correct selection are 0.952 (T = 100), 0.967 (T = 200)

and 0.953 (T = 500) once the common factor has been accounted for in the model.

Tables 2.2 and 2.3 report the performance of the MSB statistic when the com-

mon factors are considered. Now, the probability of selecting the correct number of

stochastic trends is close to the nominal size in almost all cases, clearly outperform-

ing the inference that is obtained when the common factors are disregarded.

Panel data analysis

The performance of the statistical inference worsens when we use the panel data

PMSBZ statistic – see Tables 2.4 and 2.5. The lack of considering the cross-section

dependence introduced by the common factor, regardless of whether it is I(0) or I(1),

introduces serious biases towards concluding that m̂ < m. This feature is clearly

evidenced for the cases where σ2
F > 0.5. As expected, when m = 0 the presence of

an I(0) common factor does not cause any problems.

Another interesting situation is when the true number of stochastic trends is

m = 0 and the common factor is I(1), since in this case the probability of selecting

m = 0 is around 0.5 and the probability of selecting m = 1 is around 0.5. This

situation makes sense given that the statistical procedure is detecting the common

factor, but only for half of the times. The same is also found when the true number
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of stochastic trends is m = 1. Thus, we can conclude that either m = 0 or m = 1

with the same probability irrespective of whether the true m is 0 or 1.

When the common factors are allowed for, the PMSBZ panel statistic shows

probabilities of correct selection that are close to 95%, which reveals the damage

caused by ignoring the common factors, even if they are I(0). The presence of

unattended common factors can lead to distorted conclusions, since there is a ten-

dency to indicate that there are more cointegrating relations than there exist in the

system (m̂ < m). This evidences the importance of accounting for cross-section

dependence both in unit-by-unit and panel data analyses.

2.5.2 Considering the cross-section dependence

Unit-by-unit analysis

The simulations reported in Tables 2.2 and 2.3 for a = 0.5 and N = 1 reveal some

important features. First, we can see that the results do not depend on the stochastic

properties of the common factor, provided that the performance of the MSB statis-

tics is similar regardless of the order of integration of the common factor, and for all

values of σ2
F . Second, the performance of the MSB statistic depends on how close

to one is the autoregressive parameter a. Thus, for a = 0.5 the MSB statistic selects

the correct number of stochastic trends in most cases. As expected, the behavior of

the procedure worsens for a = 0.8, although it tends to select the correct number of

stochastic trends as T increases. The results for a = 0.8 are available upon request.

Note that this picture is in sharp contrast with the previous one when the common

factors are not considered.

Panel data analysis

Tables 2.4 to 2.7 collect the simulation results for the PMSBZ statistic when a = 0.5

and N = 20. The performance is similar for the two deterministic specifications,

regardless of the setup that is used and the stochastic properties of the common

factors.3 As it can be seen, the probability of selecting the correct number of id-

iosyncratic stochastic trends is close to 0.95, which indicates the good properties

that show the PMSBZ statistic. As expected, results not reported here show that the

performance is slightly worse for a = 0.8. This is more evident for the PMSBF
τ and

3Moon, Perron and Phillips (2007) show that panel unit root test suffer from power loss when

a deterministic trend is considered. However, in our simulation setup we have not observed such

power reduction problem.
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PMSBC
τ statistics when T = 100. However, as T increases, all panel data statistics

select the correct number of stochastic trends.

The behavior of the MSB statistic applied to the estimated common factors

(MSBF
j (q1), j = μ,τ) is analyzed in Tables 2.8 and 2.9 for the intercept and time

trend models, respectively. At first sight, the pattern of the results behaves as ex-

pected, i.e., the performance of the MSB statistic improves as T and σ2
F increase.

However, for small T and σ2
F the key feature that defines the performance of the

statistic is whether the common factors are I(0) or I(1).

When the common factors are I(1), the probability of selecting the correct num-

ber of common factors is close to 0.95 in all cases. When the common factors

are I(0), the MSB statistic tends to overestimate the number of common stochastic

trends when ρ = 0.95 and T = 100 – this is especially evident for setup 3. These re-

sults resemble others reported previously in the literature using alternative statistics

– see, for instance, Stock and Watson (1988) and Bai and Ng (2004) – and evi-

dence the fact that we are dealing within a time series framework, i.e., MSBF
j (q1),

j = μ,τ , is not a panel data statistic. Finally, note that the results are qualitatively

similar for the two deterministic specifications.

2.6 Empirical illustrations

In this section we illustrate the use of the panel data cointegrating rank test that

has been proposed in the chapter. We focus on two empirical applications that

have been widely analyzed in monetary economics, and constitute two examples

of the situations discussed in the introduction where the use of common factors

is justified. The increasing economic integration experienced by some developed

economies and the international capital mobility can be thought as main factors to

induce cross-section dependence among variables such as interest rates, exchange

rates, GDP and money aggregates. These variables are the main ingredients of the

models that we investigate below.

2.6.1 The money demand model

The first illustration focuses on the long-run money demand function, a topic that

has been studied previously in Stock and Watson (1993), Hoffman, Rasche and

Tieslau (1995), and Mark and Sul (2003), among others. We employ the data set

used in Mark and Sul (2003), which consists of annual observations that covers the
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period that goes from 1957 until 1996 for nineteen countries: Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Iceland, Ireland, Japan,

Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, United Kingdom

and the United States. See Mark and Sul (2003) for further details about the data

definitions and sources.

The three-dimensional vector Yi,t for the i-th country at time t has the form:

Yi,t = (mi,t ,gd pi,t ,Ri,t)
′, (2.6.1)

i = 1, . . . ,19, t = 1957, , . . . ,1996, where mi,t is the logarithm of the real money

aggregate M1, gd pi,t is the logarithm of the real GDP and Ri,t is the nominal short-

term interest rate.

We start our analysis by checking whether the cross-section dependence exists

among the series of the panel. To this end, we apply the panel CD statistic of

Pesaran (2004, 2013) to the panels generated by each variable and to the whole

panel defined by all variables taken together.4 Panel A of Table 2.10 presents the

values of the test, showing that the null hypothesis of cross-section independence is

strongly rejected for all panel data sets. It is therefore natural to conclude that the

time series in our panel sets are cross-section dependent.

In order to investigate the stochastic properties of the panel data sets of each

variable we compute the panel data unit root test in Bai and Ng (2004), Moon and

Perron (2004) and Pesaran (2007). These three proposals capture the presence of

cross-section dependence using common factor models, although the underlying as-

sumptions of the model specification are different. Thus and as pointed out in Bai

and Ng (2010), the approaches in Moon and Perron (2004) and Pesaran (2007) focus

on the idiosyncratic component, with the additional implicit assumption that both

the idiosyncratic and common factor components have the same order of integra-

tion. However, the proposal in Bai and Ng (2004) tests the unit root hypothesis both

on the idiosyncratic and common factor components separately, so that each com-

ponent might have different orders of integration. Consequently, the results drawn

from the Bai-Ng procedure are more informative since they allow us to identify the

potential source of non-stationarity and, thus, characterize the stochastic properties

of the observable data.

4The order of the autoregressive model is selected using the t-sig criterion in Ng and Perron

(1995), with the maximum number of lags defined by pmax =
[
12(T/100)1/4

]
. For money supply

and GDP, the regressions include a time trend, while for interest rates they include an intercept. This

specification is also used below when computing the unit root test statistics.
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Let us first focus on the results of the Bai and Ng (2004) statistics reported in

Panel A of Table 2.10. The panel data ADF statistic of the idiosyncratic component

(ADFe) indicates that the null hypothesis of panel unit root cannot be rejected for

the mi,t and gd pi,t variables, while it is strongly rejected for the Ri,t variable at the

5% level of significance. The procedure has estimated two common factors for the

gd pi,t , one common factor for mi,t and six common factors for Ri,t .
5 In all cases, the

common factors are characterized as I(1) stochastic processes, which implies that

Yi,t ∼ I (1).

Pesaran’s (2007) CIPS statistic gives similar conclusions, since the panel unit

root hypothesis (for the idiosyncratic component) is not rejected for gd pi,t and mi,t ,

while the conclusion for the Ri,t variable depends on the order of the autoregressive

correction – the null hypothesis of panel unit root is not rejected for p > 2, where

p denotes the order of the autoregressive correction. Finally, the ta and tb statistics

from Moon and Perron (2004) indicate that (the idiosyncratic component of) mi,t

and Ri,t are I(0), whereas gd pi,t is I(1). As mentioned above, the Bai and Ng (2004)

procedure is less restrictive and more informative provided that it investigates the

stochastic properties of both the idiosyncratic and common factor components with-

out imposing the constraint that the order of integration of the components has to

be the same. If we rely on these results, we conclude that Yi,t ∼ I (1).

Given that the panel data set of the different variables has been characterized

as I(1), we then proceed to analyze the cointegrating rank. Following the previous

analyses in the literature mentioned above, we estimate the time trend model spec-

ification. The computation of the panel data BIC selects two common factors. For

Denmark and Iceland, the MSB statistic for the individual systems of idiosyncratic

terms reported in Panel A of Table 2.11 indicates that there are two idiosyncratic

stochastic trends, i.e., the cointegrating rank is one.6 For the rest of the countries,

the MSB statistic detects three idiosyncratic stochastic trends, i.e., the cointegrat-

ing rank is zero. One possible explanation for the absence of cointegration at the

individual level might the low power of the individual MSB statistic. However, at

the panel level the results from the cointegration tests are unanimous in favor of

cointegration. The panel data PMSBZ
τ , PMSBF

τ , and PMSBC
τ statistics in Panel A

of Table 2.11 indicate the existence of two idiosyncratic stochastic trends, i.e., the

cointegration rank is one. Finally, the MSB statistic applied to the two estimated

5In the two empirical applications of this chapter, the number of common factors is selected using

the panel BIC information criterion as in Bai and Ng (2002) specifying a maximum of six factors.
6In the two empirical applications of this chapter, the lag order of the model pi is estimated using

the modified information criterion in Qu and Perron (2007) with a maximum of six lags.
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common factors classifies all of them as I(1) stochastic processes. This conclusion

is also found when using the MQ tests in Bai and Ng (2004).

In all, we have detected the existence of two global stochastic trends that af-

fect the variables in our panel data system. These global stochastic trends represent

cross-cointegration relations that can exist among the same macroeconomic vari-

able for the different countries. Furthermore, all panel data statistics that have been

computed indicate that the idiosyncratic component of these variables, which cap-

tures the shocks that affect the individual economies, is affected by two common

trends.

2.6.2 The monetary exchange model

The second application examines the monetary exchange rate model during the

post-Bretton Woods era. We use the Mark and Sul (2001) dataset, which has

also been analyzed in Rapach and Wohar (2004) and Gengenbach, Westerlund and

Urbain (2008). The data consists of quarterly observations for the logarithms of

the real GDP, money supply and nominal exchange rate from the first quarter of

1973 up to the first quarter of 1997 for nineteen countries: Austria, Australia, Bel-

gium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Korea,

the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom and the

United States. See Mark and Sul (2001) for further details on the database.

The variables used in the analysis are the relative money supply (m∗i,t = mi,t −
mUS,t), the relative real output or GDP (gd p∗i,t = gd pi,t −gd pUS,t) and the nominal

exchange rate (exchi,t) for country i at time t, where the United States has been used

as the benchmark. As it can be seen, the definition of the variables of this model

implies the existence of common factors by construction, since money and output

are expressed as deviations from the corresponding US variables – i.e., the factors –

and the exchange rate indicates the price of the corresponding currency in terms of

the US dollar. Therefore, at this stage of the analysis we should expect to detect at

least two common factors – note that this exemplifies one of the situations discussed

in the introduction. As expected, the CD statistics presented in Panel B of Table 2.10

indicate that the null hypothesis of cross-section independence is strongly rejected

in all cases.

The stochastic properties of the three panels are investigated using the panel data

unit root test as in Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007).

The first statistic (ADFe) indicates that the null hypothesis of panel unit root cannot
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be rejected for the gd p∗i,t and exchi,t variables, but it is strongly rejected for the m∗i,t
variable at the 5% level of significance. As for the common factors component,

Panel B of Table 2.10 shows that there have been estimated six common factors for

m∗i,t and exchi,t , and one common factor for gd p∗i,t . Pesaran’s (2007) CIPS statistic

indicates that exchi,t is I(1) regardless of the order of the autoregressive correction

(p), but it gives mixed results for gd p∗i,t and m∗i,t . More precisely, gd p∗i,t and m∗i,t
are I(1) for p = {3,4,5} and p = {0,3,4,5}, respectively. Finally, the ta and tb
statistics from Moon and Perron (2004) indicate that the idiosyncratic components

of all three variables are I(1).

Since there is overwhelming evidence in favor of non-stationarity, we proceed

with the cointegration analysis using the specification that considers a time trend.

If we look at the individual systems, Panel B of Table 2.11 reveals that the coin-

tegrating rank is one for Norway and Spain. For the rest of the countries, the in-

dividual MSB statistic indicates the absence of any cointegrating relation between

the variables of the monetary exchange model. The panel data PMSBZ
τ , PMSBF

τ and

PMSBC
τ tests lead to the same conclusion, indicating that the cointegration rank is

zero. Panel B of Table 2.11 also presents the results from the analysis of the com-

mon factors. As it can be seen, the computation of the panel data BIC selects three

common factors, which are characterized by the MQ tests in Bai and Ng (2004)

and the MSB statistic as I(1) non-stationary common factors. Overall, the panel

data statistics that indicate that the idiosyncratic component of these variables, is

affected by three common trends.

2.7 Conclusion

In this chapter we propose a new test statistic to estimate the cointegrating rank both

in a unit-by-unit analysis and in a panel data framework. Our proposal covers the

cross-section dependence through the specification of approximate common factor

models, which is a relevant situation from both theoretical and empirical point of

views. This setup allows us to cover strong cross-section dependence cases, i.e.,

cases where the time series of one individual system are cointegrated with times

series of other individual system (cross-cointegration), as well as cases where the

factors appear by construction due to model specification.

The performance of the proposed tests is investigated with Monte Carlo simu-

lations. In general, the panel data based MSB statistic provides better estimation of

the number of stochastic trends present in each individual system than the univari-
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ate one. More interestingly, the simulations reveal that the existence of common

factors can lead to misleading conclusions even if the analysis is carried out at a

unit-by-unit basis. This is relevant from an empirical point of view considering that,

in most cases, the cointegration analysis is conducted by focusing on one country

whose economic system is related to that of other countries or ruled by international

organizations such as in the case of the European Union. Therefore, the theoretical

proposal presented in this chapter has also a significant empirical contribution. We

have illustrated the application of the techniques to two popular empirical models.

The analysis detected two stochastic trends for the case of money demand and three

stochastic trends for the case of monetary exchange model.
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Table 2.1: Critical values, mean and variance of the MSBμ and MSBτ statistics

CRITICAL VALUES FOR INDIVIDUAL TESTING
MSBμ statistic

T = 100 T = 200 T = 500 T = 1,000

k 5% 10% 5% 10% 5% 10% 5% 10%

1 0.0629 0.0853 0.0610 0.0841 0.0593 0.0810 0.0576 0.0769

2 0.0318 0.0377 0.0298 0.0357 0.0280 0.0336 0.0271 0.0328

3 0.0227 0.0257 0.0203 0.0234 0.0188 0.0218 0.0181 0.0210

4 0.0186 0.0203 0.0160 0.0179 0.0147 0.0165 0.0136 0.0152

5 0.0158 0.0170 0.0133 0.0145 0.0120 0.0132 0.0111 0.0123

6 0.0141 0.0150 0.0116 0.0124 0.0102 0.0111 0.0093 0.0102

MSBτ statistic

T = 100 T = 200 T = 500 T = 1,000

k 5% 10% 5% 10% 5% 10% 5% 10%

1 0.0420 0.0520 0.0397 0.0496 0.0389 0.0480 0.0364 0.0456

2 0.0268 0.0307 0.0243 0.0282 0.0228 0.0267 0.0218 0.0255

3 0.0206 0.0226 0.0178 0.0200 0.0166 0.0189 0.0155 0.0178

4 0.0172 0.0186 0.0146 0.0162 0.0131 0.0145 0.0122 0.0136

5 0.0150 0.0160 0.0125 0.0135 0.0109 0.0120 0.0100 0.0111

6 0.0135 0.0143 0.0109 0.0117 0.0095 0.0103 0.0086 0.0093

MEAN AND VARIANCE
MSBμ statistic

T = 100 T = 200 T = 500 T = 1,000

k Mean Variance Mean Variance Mean Variance Mean Variance

1 0.50363 0.29974 0.50454 0.32442 0.49960 0.31146 0.50445 0.34863

2 0.09293 0.00387 0.09049 0.00386 0.08806 0.00378 0.08580 0.00364

3 0.04653 0.00042 0.04356 0.00042 0.04191 0.00040 0.04048 0.00039

4 0.03107 0.00010 0.02864 0.00011 0.02708 0.00010 0.02578 0.00009

5 0.02379 0.00004 0.02115 0.00003 0.01995 0.00004 0.01884 0.00003

6 0.01970 0.00002 0.01710 0.00002 0.01571 0.00002 0.01475 0.00002

MSBτ statistic

T = 100 T = 200 T = 500 T = 1,000

k Mean Variance Mean Variance Mean Variance Mean Variance

1 0.17830 0.02079 0.17637 0.02195 0.16825 0.02122 0.16622 0.02267

2 0.06172 0.00108 0.05943 0.00109 0.05705 0.00106 0.05539 0.00095

3 0.03709 0.00019 0.03431 0.00018 0.03281 0.00018 0.03132 0.00017

4 0.02696 0.00006 0.02454 0.00006 0.02270 0.00005 0.02172 0.00005

5 0.02161 0.00002 0.01900 0.00002 0.01744 0.00002 0.01651 0.00002

6 0.01831 0.00001 0.01570 0.00001 0.01427 0.00001 0.01323 0.00001

k denotes the number of stochastic trends under the null hypothesis. Simulations are

based on 10,000 replications, with DGP given by (2.2.1) to (2.2.4). pmax = T 1/3 for

T < 1,000, and 0 otherwise
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Table 2.2: Probability of selecting the correct number of stochastic trends. Intercept

model, setup 1 with a = 0.5, unit-by-unit analysis, MSBμ statistic

Factors are not considered Factors are considered

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 0.972 0.910 0.932 0.950 1.000 0.947 0.953 0.972

0.95 0.805 0.940 0.951 0.961 0.990 0.963 0.962 0.974

1 0.242 0.952 0.957 0.959 0.750 0.898 0.935 0.960

1 0.90 0.946 0.881 0.927 0.933 0.999 0.956 0.956 0.971

0.95 0.663 0.921 0.929 0.947 0.986 0.952 0.945 0.962

1 0.186 0.953 0.943 0.955 0.786 0.919 0.932 0.958

10 0.90 0.747 0.638 0.708 0.718 1.000 0.952 0.952 0.957

0.95 0.314 0.826 0.803 0.760 0.995 0.959 0.958 0.950

1 0.060 0.959 0.837 0.771 0.753 0.899 0.933 0.952

200 0.5 0.90 0.999 0.902 0.915 0.925 1.000 0.955 0.951 0.947

0.95 0.957 0.923 0.927 0.928 1.000 0.954 0.941 0.947

1 0.217 0.954 0.951 0.956 0.755 0.942 0.950 0.950

1 0.90 0.999 0.856 0.871 0.909 1.000 0.959 0.940 0.948

0.95 0.950 0.898 0.932 0.940 1.000 0.963 0.953 0.958

1 0.167 0.950 0.938 0.940 0.783 0.953 0.947 0.951

10 0.90 0.998 0.421 0.452 0.501 1.000 0.955 0.947 0.942

0.95 0.801 0.616 0.703 0.712 1.000 0.952 0.945 0.957

1 0.055 0.945 0.846 0.793 0.799 0.949 0.954 0.967

500 0.5 0.90 1.000 0.884 0.911 0.930 1.000 0.953 0.956 0.960

0.95 1.000 0.887 0.927 0.950 1.000 0.938 0.956 0.969

1 0.119 0.950 0.944 0.946 0.818 0.954 0.947 0.955

1 0.90 1.000 0.802 0.829 0.860 1.000 0.952 0.957 0.956

0.95 0.999 0.833 0.877 0.885 1.000 0.951 0.949 0.950

1 0.110 0.952 0.938 0.941 0.830 0.942 0.950 0.964

10 0.90 1.000 0.321 0.224 0.173 1.000 0.940 0.950 0.952

0.95 1.000 0.379 0.358 0.398 1.000 0.957 0.961 0.948

1 0.072 0.948 0.855 0.808 0.816 0.954 0.948 0.953
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Table 2.3: Probability of selecting the correct number of stochastic trends. Time

trend model, setup 1 with a = 0.5, unit-by-unit analysis, MSBτ statistic

Factors are not considered Factors are considered

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 0.746 0.876 0.910 0.958 0.822 0.889 0.902 0.953

0.95 0.548 0.899 0.904 0.960 0.827 0.879 0.896 0.970

1 0.352 0.896 0.914 0.944 0.766 0.849 0.897 0.953

1 0.90 0.615 0.857 0.898 0.929 0.819 0.882 0.909 0.959

0.95 0.365 0.870 0.899 0.940 0.809 0.865 0.898 0.945

1 0.200 0.897 0.911 0.951 0.778 0.863 0.879 0.960

10 0.90 0.327 0.735 0.712 0.699 0.834 0.885 0.902 0.962

0.95 0.108 0.871 0.776 0.741 0.811 0.878 0.898 0.947

1 0.057 0.904 0.811 0.761 0.745 0.843 0.869 0.963

200 0.5 0.90 0.941 0.897 0.927 0.940 0.893 0.952 0.941 0.954

0.95 0.841 0.939 0.932 0.942 0.899 0.956 0.939 0.946

1 0.368 0.962 0.961 0.951 0.826 0.945 0.947 0.948

1 0.90 0.947 0.833 0.883 0.914 0.894 0.947 0.948 0.959

0.95 0.738 0.900 0.938 0.942 0.888 0.955 0.947 0.961

1 0.254 0.961 0.939 0.945 0.837 0.952 0.952 0.951

10 0.90 0.824 0.480 0.563 0.589 0.900 0.949 0.953 0.953

0.95 0.358 0.801 0.762 0.746 0.888 0.951 0.951 0.965

1 0.067 0.947 0.838 0.777 0.856 0.943 0.954 0.963

500 0.5 0.90 0.979 0.860 0.892 0.911 0.896 0.948 0.963 0.962

0.95 0.969 0.894 0.915 0.928 0.880 0.948 0.953 0.959

1 0.297 0.942 0.950 0.946 0.816 0.948 0.954 0.945

1 0.90 0.998 0.756 0.810 0.846 0.898 0.947 0.950 0.938

0.95 0.982 0.805 0.866 0.898 0.899 0.945 0.951 0.949

1 0.241 0.944 0.933 0.952 0.839 0.953 0.953 0.960

10 0.90 0.995 0.162 0.184 0.193 0.899 0.946 0.946 0.959

0.95 0.930 0.337 0.428 0.480 0.901 0.937 0.956 0.944

1 0.063 0.944 0.846 0.777 0.830 0.959 0.948 0.953
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Table 2.4: Probability of selecting the correct number of stochastic trends. Intercept

model, setup 1 with a = 0.5, N = 20, panel data analysis, PMSBZ
μ statistic

Factors are not considered Factors are considered

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 1.000 0.572 0.635 0.745 1.000 0.971 0.983 0.976

0.95 0.990 0.580 0.779 0.841 1.000 0.986 0.974 0.966

1 0.528 0.803 0.905 0.915 0.954 0.981 0.980 0.972

1 0.90 1.000 0.228 0.317 0.471 1.000 0.983 0.975 0.969

0.95 0.981 0.288 0.571 0.675 1.000 0.983 0.979 0.969

1 0.520 0.683 0.817 0.801 0.948 0.983 0.977 0.978

10 0.90 1.000 0.000 0.023 0.020 1.000 0.980 0.979 0.974

0.95 0.974 0.034 0.141 0.089 1.000 0.986 0.983 0.969

1 0.468 0.545 0.309 0.095 0.955 0.978 0.978 0.972

200 0.5 0.90 1.000 0.523 0.411 0.518 1.000 0.974 0.963 0.973

0.95 1.000 0.498 0.609 0.730 1.000 0.976 0.969 0.972

1 0.492 0.817 0.888 0.919 0.982 0.981 0.965 0.976

1 0.90 1.000 0.165 0.074 0.126 1.000 0.976 0.971 0.976

0.95 1.000 0.103 0.293 0.458 1.000 0.981 0.966 0.974

1 0.485 0.687 0.800 0.817 0.985 0.982 0.971 0.974

10 0.90 1.000 0.000 0.000 0.001 1.000 0.974 0.967 0.970

0.95 0.999 0.001 0.019 0.021 1.000 0.968 0.968 0.977

1 0.505 0.509 0.295 0.115 0.991 0.979 0.967 0.973

500 0.5 0.90 1.000 0.524 0.214 0.215 1.000 0.975 0.967 0.966

0.95 1.000 0.363 0.357 0.429 1.000 0.973 0.969 0.975

1 0.516 0.794 0.880 0.899 1.000 0.979 0.968 0.963

1 0.90 1.000 0.140 0.025 0.013 1.000 0.973 0.960 0.962

0.95 1.000 0.069 0.046 0.082 1.000 0.973 0.962 0.964

1 0.494 0.680 0.818 0.814 1.000 0.962 0.959 0.963

10 0.90 1.000 0.000 0.000 0.000 1.000 0.971 0.968 0.966

0.95 1.000 0.000 0.000 0.000 1.000 0.972 0.969 0.958

1 0.510 0.499 0.303 0.095 1.000 0.977 0.983 0.965
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Table 2.5: Probability of selecting the correct number of stochastic trends. Time

trend model, setup 1 with a = 0.5, N = 20, panel data analysis, PMSBZ
τ statistic

Factors are not considered Factors are considered

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 0.973 0.492 0.731 0.818 1.000 0.986 0.986 0.986

0.95 0.885 0.652 0.865 0.886 0.998 0.984 0.980 0.982

1 0.650 0.820 0.923 0.930 0.973 0.980 0.974 0.969

1 0.90 0.957 0.250 0.482 0.559 1.000 0.985 0.978 0.977

0.95 0.829 0.472 0.707 0.756 0.998 0.978 0.980 0.979

1 0.600 0.678 0.817 0.815 0.972 0.979 0.979 0.977

10 0.90 0.925 0.092 0.062 0.017 1.000 0.983 0.982 0.981

0.95 0.772 0.274 0.221 0.068 0.999 0.977 0.985 0.981

1 0.493 0.534 0.330 0.083 0.965 0.977 0.985 0.971

200 0.5 0.90 0.999 0.246 0.439 0.576 1.000 0.973 0.971 0.974

0.95 0.968 0.392 0.657 0.772 1.000 0.972 0.975 0.969

1 0.605 0.773 0.883 0.908 0.991 0.961 0.969 0.969

1 0.90 0.996 0.045 0.095 0.196 1.000 0.966 0.972 0.975

0.95 0.978 0.177 0.425 0.578 1.000 0.964 0.973 0.973

1 0.599 0.673 0.783 0.808 0.992 0.963 0.973 0.976

10 0.90 0.999 0.003 0.003 0.002 1.000 0.962 0.973 0.971

0.95 0.961 0.050 0.059 0.032 1.000 0.967 0.959 0.964

1 0.504 0.530 0.290 0.081 0.996 0.961 0.968 0.977

500 0.5 0.90 1.000 0.160 0.140 0.192 1.000 0.973 0.975 0.965

0.95 0.999 0.192 0.343 0.455 1.000 0.978 0.979 0.974

1 0.584 0.784 0.890 0.905 1.000 0.974 0.978 0.966

1 0.90 1.000 0.014 0.007 0.007 1.000 0.966 0.983 0.965

0.95 1.000 0.021 0.067 0.105 1.000 0.976 0.974 0.970

1 0.561 0.674 0.781 0.790 1.000 0.972 0.975 0.965

10 0.90 1.000 0.000 0.000 0.000 1.000 0.969 0.963 0.974

0.95 1.000 0.000 0.000 0.000 1.000 0.971 0.968 0.965

1 0.502 0.535 0.306 0.079 0.999 0.976 0.986 0.967
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Table 2.6: Probability of selecting the correct number of stochastic trends. Intercept

model, setups 2 and 3 with a = 0.5, N = 20, panel data analysis, PMSBZ
μ statistic

Setup 2 Setup 3

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 1.000 0.976 0.978 0.973 1.000 0.980 0.979 0.978

0.95 1.000 0.988 0.977 0.965 1.000 0.985 0.981 0.968

1 0.955 0.988 0.981 0.977 0.880 0.984 0.982 0.970

1 0.90 1.000 0.985 0.977 0.971 1.000 0.989 0.980 0.980

0.95 1.000 0.985 0.984 0.961 1.000 0.978 0.982 0.982

1 0.951 0.985 0.979 0.974 0.875 0.990 0.976 0.975

10 0.90 1.000 0.980 0.981 0.975 1.000 0.974 0.979 0.979

0.95 1.000 0.982 0.981 0.969 1.000 0.970 0.983 0.982

1 0.957 0.983 0.980 0.969 0.862 0.980 0.976 0.974

200 0.5 0.90 1.000 0.982 0.972 0.967 1.000 0.983 0.975 0.983

0.95 1.000 0.977 0.970 0.974 1.000 0.979 0.977 0.961

1 0.984 0.982 0.958 0.974 0.946 0.982 0.972 0.967

1 0.90 1.000 0.979 0.974 0.971 1.000 0.975 0.970 0.977

0.95 1.000 0.978 0.963 0.977 1.000 0.979 0.966 0.978

1 0.986 0.986 0.972 0.975 0.951 0.983 0.974 0.971

10 0.90 1.000 0.979 0.965 0.972 1.000 0.974 0.969 0.980

0.95 1.000 0.973 0.975 0.979 1.000 0.978 0.973 0.971

1 0.991 0.985 0.965 0.972 0.960 0.981 0.961 0.961

500 0.5 0.90 1.000 0.979 0.972 0.968 1.000 0.977 0.970 0.965

0.95 1.000 0.973 0.970 0.980 1.000 0.964 0.970 0.964

1 1.000 0.981 0.971 0.966 0.993 0.974 0.961 0.968

1 0.90 1.000 0.973 0.959 0.966 1.000 0.966 0.969 0.971

0.95 1.000 0.976 0.965 0.962 1.000 0.972 0.970 0.976

1 1.000 0.965 0.959 0.974 0.992 0.978 0.979 0.965

10 0.90 1.000 0.975 0.970 0.965 1.000 0.960 0.963 0.965

0.95 1.000 0.970 0.961 0.960 1.000 0.969 0.975 0.964

1 1.000 0.983 0.978 0.964 0.992 0.975 0.973 0.974
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Table 2.7: Probability of selecting the correct number of stochastic trends. Time

trend model, setups 2 and 3 with a = 0.5, N = 20, panel data analysis, PMSBZ
τ

statistic
Setup 2 Setup 3

T σ2
F ρ m = 0 m = 1 m = 2 m = 3 m = 0 m = 1 m = 2 m = 3

100 0.5 0.90 1.000 0.980 0.980 0.984 1.000 0.987 0.985 0.989

0.95 0.998 0.987 0.980 0.978 0.998 0.984 0.976 0.989

1 0.968 0.974 0.982 0.974 0.937 0.978 0.978 0.973

1 0.90 1.000 0.986 0.979 0.971 0.999 0.984 0.982 0.983

0.95 0.999 0.976 0.981 0.976 0.995 0.980 0.978 0.990

1 0.975 0.980 0.985 0.978 0.935 0.982 0.981 0.980

10 0.90 1.000 0.981 0.984 0.976 1.000 0.987 0.980 0.980

0.95 0.998 0.977 0.989 0.981 0.996 0.979 0.983 0.977

1 0.969 0.978 0.978 0.976 0.933 0.983 0.978 0.976

200 0.5 0.90 1.000 0.974 0.971 0.975 1.000 0.968 0.977 0.969

0.95 1.000 0.967 0.975 0.968 1.000 0.974 0.964 0.969

1 0.993 0.959 0.970 0.971 0.982 0.979 0.967 0.979

1 0.90 1.000 0.963 0.972 0.971 1.000 0.960 0.976 0.976

0.95 1.000 0.957 0.972 0.971 1.000 0.962 0.967 0.965

1 0.994 0.962 0.968 0.968 0.984 0.969 0.977 0.975

10 0.90 1.000 0.962 0.975 0.973 1.000 0.969 0.965 0.978

0.95 1.000 0.966 0.960 0.967 1.000 0.952 0.960 0.973

1 0.996 0.961 0.967 0.980 0.986 0.973 0.958 0.970

500 0.5 0.90 1.000 0.974 0.976 0.956 1.000 0.975 0.979 0.970

0.95 1.000 0.975 0.974 0.978 1.000 0.972 0.973 0.969

1 1.000 0.975 0.976 0.965 1.000 0.972 0.961 0.970

1 0.90 1.000 0.968 0.981 0.962 1.000 0.969 0.976 0.974

0.95 1.000 0.977 0.971 0.962 1.000 0.965 0.976 0.960

1 1.000 0.972 0.973 0.979 0.999 0.979 0.976 0.966

10 0.90 1.000 0.961 0.966 0.970 1.000 0.973 0.978 0.964

0.95 1.000 0.972 0.968 0.970 1.000 0.974 0.981 0.964

1 0.999 0.975 0.983 0.959 0.998 0.967 0.978 0.967
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Table 2.10: Panel data unit root tests
PANEL A: MONEY DEMAND MODEL

Pesaran (2004, 2013) CD test Moon and Perron (2004)

CD p-val ta p-val tb p-val

gd pi,t 21.610 0.000 -1.151 0.125 -0.998 0.159

mi,t 19.017 0.000 -2.748 0.003 -3.026 0.001

Ri,t 22.535 0.000 -14.502 0.000 -6.540 0.000

Whole 27.824 0.000

Bai and Ng (2004) statistics

ADFe p-val MQ f (q̂, q̂1) MQc (q̂, q̂1)
gd pi,t -0.711 0.238 -10.243 (2,2) -14.346 (2,2)

mi,t 1.191 0.883 -4.155 (1,1) -7.462 (1,1)

Ri,t -4.064 0.000 -37.939 (6,6) -36.753 (6,6)

Pesaran (2007) CIPS statistic

CADF(0) CADF(1) CADF(2) CADF(3) CADF(4) CADF(5)

gd pi,t -2.275 -2.532 -2.475 -2.405 -1.997 -1.912

mi,t -2.380 -2.311 -2.285 -2.099 -2.127 -1.881

Ri,t -3.184 -2.676 -2.314 -2.195 -1.918 -2.079

PANEL B: MONETARY EXCHANGE MODEL
Pesaran (2004, 2013) CD test Moon and Perron (2004)

CD p-val ta p-val tb p-val

gd pi,t 26.969 0.000 -0.143 0.443 -0.091 0.464

mi,t 29.277 0.000 -1.147 0.126 -0.711 0.239

exchi,t 66.118 0.000 0.305 0.620 3.498 1.000

Whole 28.846 0.000

Bai and Ng (2004) statistics

ADFe p-val MQ f (q̂, q̂1) MQc (q̂, q̂1)
gd pi,t -0.921 0.178 -7.408 (1,1) -11.562 (1,1)

mi,t -3.169 0.001 -17.426 (6,6) -30.490 (6,6)

exchi,t 1.832 0.967 -36.238 (6,6) -37.207 (6,6)

Pesaran (2007) CIPS statistic

CADF(0) CADF(1) CADF(2) CADF(3) CADF(4) CADF(5)

gd pi,t -3.662 -2.939 -2.869 -2.193 -2.461 -2.388

mi,t -1.189 -3.126 -2.874 -2.518 -1.961 -2.678

exchi,t -2.024 -2.043 -1.969 -1.884 -1.802 -1.790

q̂ denotes the total (stationary and non-stationary) number of estimated common factors

and q̂1 the number of non-stationary ones. The number between parentheses in CADF(p),

p = 0,1, ...,5, indicates the lag augmentation used in the cross-sectionally augmented ADF

test computation
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Table 2.11: Individual and panel data cointegration rank statistics

Panel A: Money demand model Panel B: Monetary exchange model
Individual idiosyncratic systems Individual idiosyncratic systems

m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

AUS 0.042 0.077 0.177 AUS 0.027 0.145 0.246

AUT 0.030 0.048 0.453 AUT 0.065 0.053 0.141

BEL 0.036 0.038 0.440 BEL 0.037 0.108 0.346

CAN 0.055 0.060 0.364 CAN 0.050 0.124 1.084

DEN 0.027** 0.055 0.127 DEN 0.044 0.059 0.396

FIN 0.032 0.173 0.543 FIN 0.059 0.082 0.280

FRA 0.036 0.248 0.559 FRA 0.021 0.162 0.231

GER 0.030 0.145 0.457 GER 0.051 0.062 0.131

ICE 0.023** 0.115 0.530 GRE 0.078 0.229 0.237

IRE 0.063 0.103 0.274 ITA 0.042 0.121 0.212

JAP 0.035 0.097 0.239 JAP 0.030 0.094 0.300

NET 0.040 0.049 0.443 KOR 0.032 0.107 0.108

NEZ 0.044 0.092 0.319 NET 0.033 0.175 0.182

NOR 0.037 0.059 0.384 NOR 0.004** 0.058 0.542

POR 0.028 0.137 0.630 SPA 0.018** 0.052 0.760

SPA 0.029 0.057 0.296 SWE 0.167 0.140 0.736

SWI 0.084 0.148 0.585 SWI 0.034 0.047 0.098

UK 0.040 0.040 0.495 UK 0.067 0.090 0.502

US 0.038 0.078 0.323

Panel data cointegrating rank tests Panel data cointegrating rank tests
m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

PMSBZ
τ -1.884** 3.905 7.716 PMSBZ

τ 3.248 5.708 5.431

PMSBF
τ 78.660** 23.093 5.005 PMSBF

τ 40.658 9.713 10.967

PMSBC
τ 4.664** -1.710 -3.785 PMSBC

τ 0.549 -3.098 -2.950

Common factors Common factors
Test q̂1 Test q̂1

MSBF
τ 0.414 2 MSBF

τ 0.126 3

MQ f -6.756 2 MQ f -24.535 3

MQc -6.958 2 MQc -29.088 3

m denotes the number of stochastic trends that is specified under the null hypothesis. The

maximum number of common factors is six. The country specific numbers are the MSB

statistics. In panel A, the 5% critical values for the individual MSB tests are 0.027 (for

m = 3), 0.033 (for m = 2) and 0.049 (for m = 1). In panel B, the 5% critical values for the

individual MSB tests are 0.021 (for m = 3), 0.027 (for m = 2) and 0.042 (for m = 1).**

Denotes rejection of the null hypothesis at the 5% level of significance. q̂1 is the estimated

number of non-stationary common factors

80



Chapter 3

Estimation of Production Functions:
The Spanish Regional Case

3.1 Introduction

The estimation of production function that relates the output of a firm, region or

country to different combinations of factors of production – usually physical capital

and labor – have devoted lot of interest in empirical economics – see Aschauer

(1989), Munnell (1990), Garcı́a-Milá and McGuire (1992), Holtz-Eakin (1994),

Baltagi and Pinnoi (1995), and Garcı́a-Milá, McGuire and Porter (1996) for the

US, Merriman (1990) for Japan, Berndt and Hansson (1992) for Sweden, Evans

and Karras (1994) for a sample of industrialized countries, Dalamagas (1995) for

Greece, Otto and Voss (1996) for Australia, and Wylie (1996) for Canada. These

studies estimate production functions including not only physical capital and labor

as inputs, but also human and public capitals as productive factors.

Early studies of production function employ time series data, focusing on an

individual region or country. For example, for the case of the aggregated Span-

ish economy, Serrano (1997) uses annual data observed over the period 1964-1991

and finds no evidence of cointegration between gross value added, human capital,

private physical capital and labor. Sosvilla-Rivero and Alonso (2005) obtain a dif-

ferent result and find that in Spain, gross domestic product (GDP), physical capital,

human capital and labor define a cointegration relation. They employ annual data

that is observed over the period 1910-1995. The contradictory results indicate that

the empirical evidence from the time series studies is mixed. One plausible expla-

nation is the low power of the univariate unit root and cointegration tests that were
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used in these studies.

More recent studies show that the power of unit root and cointegration test

statistics can be improved when both the time series and cross-section dimensions

are combined. Thus, another category of studies that estimate long-run production

functions using panel data tools emerges. For example, Serrano (1996) employs a

panel of regional data observed over the years 1980-1991 and simply avoids the risk

of a spurious regression working with a model that relates the gross value added,

human capital, physical capital and labor in first difference.1 Bajo-Rubio and Dı́az-

Roldán (2005) go one step further and add public capital to the production function.

The authors investigate the relation between GDP, private capital, public capital, hu-

man capital and labor using data for the 17 Spanish regions over 1965-1995. They

find that these variables are cointegrated. Recently, Márquez, Ramajo and Hewings

(2011) investigate the relation between gross value added, public capital, private

capital and labor for the 17 Spanish regions observed over the period 1972-2000.

The authors find that indeed, there is cointegration among these variables.

One critical problem with the panel data studies for the Spanish regions men-

tioned above is the assumption of cross-section independence made. This is an

unrealistic and far too restrictive assumption from an empirical point of view, es-

pecially since regions are so closely related to each other – Spanish regions share

a common institutional framework with a common fiscal system that is used to fi-

nance the regional governments. If the independence assumption is violated then

we might expect to have, on the one hand, biased and inconsistent estimates of

the parameters and, on the other hand, spurious statistical inference – see Andrews

(2005). More specifically, in the case of non-stationary panel data, the unaccounted

cross-section dependence might lead to conclude that panel data is actually I(0) sta-

tionary when in fact it might be I(1) non-stationary – see Banerjee, Marcellino and

Osbat (2005). Similarly, the panel data cointegration test statistics might indicate

than there are more cointegrating relations than there exist – see Carrion-i-Silvestre

and Surdeanu (2011). Consequently, accounting for the presence of cross-section

dependence is crucial to draw meaningful conclusions from the analysis.

Cross-section dependence is more a recurrent than a rare characteristic that is

present in macroeconomic time series of different units – i.e., countries, regions

or sectors. There are different sources of cross-section dependence that can be ex-

pected to affect the units of a panel data set. For instance, cross-section dependence

1Note that this leads to the estimation of a short-run relation among the variables since the long-

run one would require to use the variables in levels, not in first difference.

82



is usually caused by the presence of common shocks (oil price shocks or financial

crises) or the existence of local productivity spillover effects. Further, the economic

literature on output stochastic convergence implies the existence of a long-run re-

lation (cointegration relation) among the different economies, so that the use of

macroeconomic variables such as the output or production should account for the

presence of this long-run relation across the cross-section – the so-called cross-

cointegration concept, as defined in Banerjee, Marcellino and Osbat (2005). This

implies that cross-section dependence is more the rule than the exception. There-

fore, in country or regional level studies is practically impossible to ignore the effect

of cross-section dependence in the analysis of the models that are to be estimated.

Bai and Ng (2002, 2004) recognize early on this problem and lay down the founda-

tion of the theoretical panel framework with common factors. The use of common

factor models is particularly useful to capture the presence of cross-section that is

pervasive or strong, i.e., the sort of cross-section dependence that affects all units of

the panel data.

However, as Banerjee, Eberhardt and Reade (2010) mention, the empirical work

on the estimation of production function in panel data using the common factor tech-

nique is relatively limited. Two examples related to our study is the work by Costan-

tini and Destefanis (2009) and Banerjee and Carrion-i-Silvestre (2011). Costantini

and Destefanis (2009) analyze the production function for the Italian regions over

the 1970-2003 period and find that the regional value added, physical capital and

human capital augmented labor are cointegrated. They also find that ignoring the

cross-section dependence biases upward the estimates for the returns to scale. Sim-

ilarly, Banerjee and Carrion-i-Silvestre (2011) estimate a production function with

GDP, labor and capital stock using a panel of 19 developed countries covering the

period 1951-2007, concluding that there is a long-run relation among these vari-

ables. Note that these last studies use the single-equation framework while our

proposal focuses on both single-equation and vector autoregressive (VAR) frame-

works. The advantage of a VAR model is knowing exactly how many cointegration

relations or, conversely, how many stochastic trends exist among the units of the

panel. To the best of our knowledge, none of the existing studies for the Spanish

economy take into consideration the (strong) cross-section dependence among the

members of the panel either in a single or a system-based approaches.

In this chapter, we reexamine the cointegration relation among the output, phys-

ical capital, human capital, public capital and labor for the 17 Spanish regions ob-

served over the period 1964-2000. In order to analyze the order of integration of

83



the variables in our model we apply the panel data unit root test statistics in Bai

and Ng (2004), Moon and Perron (2004) and Pesaran (2007) and the panel data

stationarity test statistics in Hadri (2000). All these test statistics account for the ex-

istence of cross-section dependence in different ways. In general, the application of

these statistics leads to the same qualitative conclusion, i.e., that all panel data sets

are characterized as I(1) non-stationary panels. We then use the panel cointegration

statistics recently proposed in Carrion-i-Silvestre and Surdeanu (2011) using a VAR

framework and in Westerlund (2008) and Banerjee and Carrion-i-Silvestre (2011,

2013) for the single-equation framework. All the cointegration statistics allow for

cross-section dependence through the use of common factors. By using the vector

autoregressive model we are able to determine the exact number of cointegrating

vectors that exist in the model. Then, we compute the panel data estimators pro-

posed in Bai, Kao and Ng (2009) and Kapetanios, Pesaran and Yamagata (2011) to

estimate the long-run production function for the Spanish regions.

Our analysis bases on the Cobb and Douglas (1928) production function spec-

ification. This specification form is widely used, relies on few parameters and is

easy to estimate. These characteristics make it easy for researchers to have their

estimates compared with previous studies. Murthy (2002) provides an extensive

discussion of the Cobb-Douglas approach and shows that many of the econometric

estimation problems can be easily addressed. The most common criticism of the

Cobb-Douglas approach is the inflexible function form of the production function.

Except for its inflexibility, all other assumptions can be relaxed.

To overcome the flexibility issue, Christensen, Jorgenson and Lau (1971) pro-

posed the translog approach which is a generalization of the Cobb-Douglas form.

The translog is estimated by adding the squares and cross products of the logs of all

explanatory variables. The advantage of the translog is the flexible functional form,

meaning less restrictions on production elasticities. However, it should be bear in

mind that it is difficult to interpret and requires estimation of many parameters.

Another drawbacks of the translog specification are multicollinearity and degrees

of freedom problems due to the inclusion of the second order terms. Finally, the

translog parameters do not have a direct interpretation compared with those from

Cobb-Douglas, where they are interpreted as elasticities – see Felipe (1998). Con-

sequently, the majority of researchers use the more restrictive Cobb-Douglas form.

In this chapter and as a robustness check, we also estimate the translog specification

allowing for cross-section dependence through a common factor model, which, to

the best of our knowledge, has not been applied in the literature. Finally, the robust-
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ness check also covers the issue of spatial dependence, a form of weak dependence

that might be affecting the Spanish regions.

The structure of this chapter is as follows. Section 3.2 presents the model for

panel data and the data used in this study. In Section 3.3 we present the econo-

metric methodology while the results are presented in Section 3.4. Finally, this

chapter concludes with Section 3.5. The database used in this chapter is described

in Appendix C.

3.2 Specification of the model and the data

This section presents the production function and the data used in this study. We

employ a modified Cobb-Douglas production function, used also by Bajo-Rubio

and Dı́az-Roldán (2005), that has the following form:

Yi,t = Ai,t F (Ki,t ,Gi,t ,Hi,t ,Li,t) , (3.2.1)

where i = 1, . . . ,N represents the cross-section dimension and t = 1, . . . ,T repre-

sents the time series dimension. The variable Yi,t is the output that depends on the

private capital (Ki,t), the public capital (Gi,t), the human capital (Hi,t) and the labor

(Li,t). The variable Ai,t is the total factor productivity (TFP), which is the part of the

output not explained by the inputs. Next, we express the production function in per

worker terms, obtaining:

Yi,t/Li,t = Ai,t/Li,t f (Ki,t/Li,t ,Gi,t/Li,t ,Hi,t/Li,t) . (3.2.2)

As it is well known, TFP represents the unobservable part of the production

function and usually reflects the technological progress of the respective country

or region. Further, if the technology represents the cumulation of the innovations

and progress efforts made by economic agents, we should expect the TFP to be

an I(1) non-stationary stochastic process. However, since the TFP cannot be mea-

sured directly, the empirical researchers estimate it as the residual of the estimated

production function. Although intuitive, this approach causes serious econometric

and interpretation problems. First, if not appropriately accounted for, the poten-

tial stochastic trend of the TFP would imply that the estimation of the production

function is, in fact, a spurious regression. Therefore, panel data cointegration test

statistics would lead to the conclusion that the variables involved in the production
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function are not cointegrated. Second, the issue that part of the technology that is

available is common to all the economies implies a source of cross-section depen-

dence, which needs to be accounted for in order to obtain meaningful conclusions of

the panel cointegration test statistics. As can be seen, the specification of a common

factor model can capture this unobservable variable that is difficult to approximate.

We take advantage of the recent developments in the field of non-stationary

panel data analysis and decompose the TFP into an unobserved common factor

component F ′t λi – where Ft is a (r×1)-vector of unobserved common factors, λi

is a (r×1)-vector of loadings – and an idiosyncratic component ei,t . The common

factor approach allows us to capture the effect of common shocks that affect the

countries or regions, making it a desirable way to model the cross-section depen-

dence. Therefore, following Costantini and Destefanis (2009) and Banerjee, Eber-

hardt and Reade (2010), TFP is modeled through the common factor specification

given by:

Ai,t/Li,t = eDi,t+F ′t λi+ei,t , (3.2.3)

where Di,t denotes the deterministic component being either a constant (Di,t = μi)

or a linear time trend (Di,t = μi +δit). Assuming a Cobb-Douglas function and

taking the natural logarithm of the variables from (3.2.2) and (3.2.3), we obtain the

model:

yi,t = ai,t +(α +β + γ +δ −1) li,t +αki,t +βgi,t +δhi,t (3.2.4)

ai,t = Di,t +F ′t λi + ei,t , (3.2.5)

where yi,t = ln(Yi,t/Li,t), ai,t = ln(Ai,t/Li,t), li,t = lnLi,t , ki,t = ln(Ki,t/Li,t), gi,t =

ln(Gi,t/Li,t) and hi,t = ln(Hi,t/Li,t). Note that the model can be written in a single-

equation form as:

yi,t = Di,t +(α +β + γ +δ −1) li,t +αki,t +βgi,t +δhi,t +F ′t λi + ei,t . (3.2.6)

Following the existing contributions in the literature, we propose two alternative

measures for public capital and human capital. First, we use the total public capital

(gi,t) or the productive public capital (gpi,t = ln(Gpi,t/Li,t)).
2 Second, the human

capital is proxied by the rate of employees with at least secondary school studies

over the total number of employees (hi,t) and the average number of schooling years

2Productive public capital includes road and highways, ports, airports, railroads, water and sewer

systems, public electric and gas utilities, and telecommunications.
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(hsi,t = ln(Hsi,t/Li,t)) – see Serrano (1996). The use of these variables defines up to

four different model specifications depending on whether total or productive public

capital is used and on whether we use hi,t or hsi,t to proxy the human capital.

The data employed in our study contains annual observations for the N = 17

Spanish regions observed over the T = 37 year period from 1964 to 2000. We col-

lect the data from the BD.MORES database provided by the Spanish Ministry of

Economy and Finance and from the Instituto Valenciano de Investigaciones Eco-

nomicas (IVIE) – for a detailed description of the variables and the sources, see

the Appendix C. The Spanish regions are: Andalucı́a, Aragón, Asturias, Baleares,

Canarias, Cantabria, Castilla y León, Castilla-La Mancha, Catalunya, Comunidad

Valenciana, Extremadura, Galicia, Madrid, Murcia, Navarra, Paı́s Vasco and La Ri-

oja. The picture of the variables can be found in Figure 3.1 which evidences first,

the clear trend pattern shown by the variables of the model and, second, the co-

movement (cross-section dependence) that seems to be present in their evolution.

3.3 Econometric methodology

In this section we describe the tools that are used throughout the chapter in order

to analyze our dataset. The order in which we present the econometric procedures

is the one that will be followed when applying them in the empirical estimation

of the regional Spanish production function. Since the validity of the panel data

unit root, stationarity and cointegration test statistics requires to assess whether the

units in the panel data set are cross-section dependent, we first start the discussion

describing Pesaran’s (2004, 2013) CD test statistic that tests the null hypothesis of

cross-section independence against the alternative hypothesis of cross-section de-

pendence. Note that in our case we are analyzing macroeconomic time series of

highly economic integrated regions, provided that the regions belong to the same

economy – see Figure 3.1. Therefore we can expect the presence of cross-section

dependence among the units of the panel. Second, we present the panel unit root

and stationarity tests that control for the presence of cross-section dependence in

different ways. To be specific, we apply the panel data unit root tests in Bai and

Ng (2004), Moon and Perron (2004) and Pesaran (2007), and the panel station-

arity tests in Hadri (2000). Finally, we summarize recent developments in panel

cointegration testing and estimation that take into consideration the cross-section

dependence. In this regard, we first focus on the system-based approach proposed

in Chapter 2 – see also Carrion-i-Silvestre and Surdeanu (2011). Then, we consider
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the single-equation-based procedures proposed in Westerlund (2008) and Banerjee

and Carrion-i-Silvestre (2011, 2013) to test whether a cointegration relation among

the variables of the model exists. Finally, we proceed to estimate the cointegration

relations using the proposals in Bai, Kao and Ng (2009) and Kapetanios, Pesaran

and Yamagata (2011). As pointed out below, these statistical procedures allow for

cross-section dependence through the specification of a common factor model.

3.3.1 Cross-section dependence

In this subsection we test the null hypothesis of cross-section independence against

the alternative hypothesis of cross-section dependence using the approach suggested

in Pesaran (2004, 2013). For notational convenience, throughout this and the next

section, we will use yi,t as the variable of interest, although the same applies for

the other variables of the system – i.e., ki,t , gi,t , gpi,t , hi,t , hsi,t and li,t . The test

statistic is based on the average of pair-wise Pearson’s correlation coefficients ρ̂ i, j,

i = 1,2, . . . ,N− 1, j = i+ 1,2, . . . ,N – i.e., we have n = N (N−1)/2 correlation

coefficients – of the residuals εi,t obtained from the following augmented Dickey-

Fuller (ADF) type regression equation:3

Δyi,t = μi +δit +αi,0yi,t−1 +
pi

∑
j=1

αi, jΔyi,t− j + εi,t , (3.3.1)

i = 1, . . . ,N. Pesaran (2004, 2013) CD test is based on averaging all pair-wise cor-

relation coefficients (ρ̂ i, j) of the Ordinary Least Squares (OLS) estimated residuals

ε̂ i,t in (3.3.1):

CD =

√
2T

N (N−1)

(
N−1

∑
i=1

N

∑
j=i+1

ρ̂ i, j

)
, (3.3.2)

with i = 1, . . . ,N − 1 and j = i + 1, . . . ,N . Under the null hypothesis of cross-

section independence, the CD statistic of Pesaran (2004, 2013) converges to the

standard normal distribution. The simulations that he conducts shows that the CD

statistic has the correct size and satisfactory power even in small samples, making

it attractive in the empirical research.

3Throughout this chapter, the cross-section dependence and order of integration analyses assume

a linear time trend as the deterministic component of the auxiliary regressions that are estimated,

provided the trending behavior of the variables drawn from Figure 3.1.
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3.3.2 Panel data unit root and stationarity test statistics

The panel data unit root tests applied in this chapter are those developed by Bai

and Ng (2004), Moon and Perron (2004) and Pesaran (2007). All of them take

into account the presence of cross-section dependence by specifying a model of

common factors. Of the three approaches the most general one is the one in Bai and

Ng (2004) because it allows to test the order of integration of the idiosyncratic and

common components in a separate way. For presentation clarity, we first describe

Pesaran (2007) approach, then continue with Moon and Perron (2004) approach

and finally, we discuss the proposal in Bai and Ng (2004). In addition and as a

robustness analysis, we also compute the panel data stationarity test statistics in

Hadri (2000).

Pesaran (2007) panel data unit root test statistic

The approach in Pesaran (2007) assumes that the cross-section dependence is driven

by one unobservable stationary common factor, which can be proxied using cross-

section averages of the units that define the panel data set. For the case of uncorre-

lated residuals, the starting regression has the following form:

Δyi,t = μi +δit +αiyi,t−1 +λi ft + εi,t ,

where Δyi,t = yi,t − yi,t−1, ft denotes the unobserved common factor and εi,t is the

idiosyncratic error. The common factor ft can be proxied by the cross-section mean

of yi,t (i.e., ȳt = N−1 ∑N
i=1 yi,t) and its lagged values (ȳt−1, ȳt−2...). Pesaran (2007)

notes that these cross-section averages are sufficient for eliminating the effect of

the common factor. Therefore, after substituting the proxies we obtain the modified

cross-sectionally ADF (CADF) regression:

Δyi,t = μi +δit +αi,0yi,t−1 +
p

∑
j=1

αi, jΔyi,t− j +ξiȳt−1 +
p

∑
j=0

ηi, jΔȳt− j + ei,t . (3.3.3)

One of the panel unit root statistics proposed by Pesaran (2007) consists of the

average of the individual CADF statistics:

CIPS(N,T ) = N−1
N

∑
i=1

CADFi,
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where CADFi is the cross-sectionally ADF statistic for the i-th cross-section unit

given by the t-ratio of the OLS estimate of αi,0 in (3.3.3).

Pesaran (2007) also proposes a truncated version of the CIPS test, denoted

CIPS∗. This statistic is useful when T is small, usually between 10 and 20. The

author presents the simulated critical values of CIPS and CIPS∗ in his paper. If the

value of the CIPS and CIPS∗ statistics is smaller than the critical value, then the

null hypothesis of panel unit root is rejected. Although Pesaran’s (2007) framework

allows for only one stationary common factor, Pesaran, Smith and Yamagata (2013)

show that it is also valid when there is either more than one common factor and/or

the common factors are I(0) or I(1).

Moon and Perron (2004) panel data unit root test statistics

Moon and Perron (2004) propose two statistics that test for the presence of a panel

data unit root while accounting for cross-sectional dependence among the units of

the panel. Their approach is based on an approximate common factor model and

tests for the unit root in the defactored series. The authors consider an autoregressive

process in which the error term follows a factor structure:

yi,t = μi +δit + y0
i,t

y0
i,t = ρiy0

i,t−1 +ui,t

ui,t = F ′t λi + ei,t .

Moon and Perron (2004) first transform the model in order to eliminate the common

factors and obtain a defactored data that has no cross-sectional dependence. In the

second step, they construct the panel unit root tests ta and tb using the defactored

data. Then the null hypothesis H0 : ρi = 1 ∀i against the alternative hypothesis H1 :

ρi < 1 for some i, i = 1, . . . ,N, is tested, using the following pooled test statistics:

ta =
T
√

N
(

ρ̂∗pool−1
)

√
2φ̂ 4

e/ω̂4
e

tb = T
√

N
(

ρ̂∗pool−1
)√ 1

NT 2
tr
(
Z−1QZ′−1

)(ω̂e

φ̂ 2
e

)
,

where the terms ρ̂∗pool , φ̂ e, ω̂e, Z−1 and Q are defined in Moon and Perron (2004).

Under the null hypothesis of panel unit root, both test statistics converge to the stan-
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dard normal distribution. The null hypothesis of a unit root is rejected if the value of

the ta or tb statistics is smaller than the critical value drawn from the standard nor-

mal distribution. Moon and Perron (2004) also show that estimating the common

factors by principal components leads to feasible statistics with the same limiting

distribution as if they were observable.

Bai and Ng (2004) panel data unit root test statistics

Bai and Ng (2004) decompose the observable variable yi,t into a deterministic com-

ponent Di,t , a common component λ ′i Ft and an idiosyncratic component ei,t :

yi,t = Di,t +λ ′i Ft + ei,t (3.3.4)

(1−L)Fj,t = Cj (L)w j,t ; j = 1 . . . ,r (3.3.5)

(1−ρiL)ei,t = Hi (L)εi,t , (3.3.6)

where Di,t denotes the deterministic part of the model – either a constant or a linear

time trend – Ft is a (r×1)-vector that accounts for the common factors that are

present in the panel, and ei,t is the idiosyncratic disturbance term. The (r×1)-

vector of loading parameters λi measures the effect that the common factors have

on the i-th time series. Unobserved common factors and idiosyncratic disturbance

terms are estimated using principal components on the first difference model. The

estimation of the number of common factors is obtained using the panel Bayesian

information criterion (BIC) in Bai and Ng (2002).

Once both the idiosyncratic and common components have been estimated, we

can proceed to test their order of integration using unit root tests. First, it is possible

to test whether there are I(0) and/or I(1) common factors (Ft) using the ADF (for

the one common factor case) or the MQ test statistics in Bai and Ng (2004) (for

the general case where there is more than one common factor). We consider both

the parametric (MQ j
f (m)) and non-parametric (MQ j

c (m)) versions of the MQ test

statistics, where j = c for the model that includes a constant, j = τ for the model

that includes a linear time trend and m denotes the number of stochastic trends

considered under the null hypothesis. The critical values for up to six factors for the

MQ tests can be found in Table I of Bai and Ng (2004). For the case of one common

factor we use the usual critical values of the Dickey-Fuller test. Therefore, using

these statistics we will be able to conclude how many (if any) of the r estimated

common factors are I(0) stationary (r0) and how many are I(1) non-stationary (r1),
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so that r = r0 + r1.

We can test the panel unit root hypothesis focusing on the idiosyncratic shocks

(ei,t). For this case, Bai and Ng (2004) propose to compute the usual ADF pseudo

t-ratio statistic applied to the idiosyncratic component. If the model contains only

an intercept, the pseudo t-ratio statistic is denoted as ADFc
ê and its asymptotic dis-

tribution coincides with the Dickey-Fuller distribution for the case of no constant.

For the model that includes a linear trend the statistic is denoted as ADFτ
ê and its

asymptotic distribution is a function of a Brownian bridge.

As can be seen, this technique can determine the source of the non-stationarity

that is present in the observable variable, if this is the case. It is possible that the

non-stationarity of the observed variables is the result of the presence of I(1) com-

mon factors – or a combination of I(0) and I(1) common factors. This would imply

that the panel data set is I(1) non-stationary and that the source of non-stationarity

is a common cause for all the units that define the panel. In this case, we should

conclude that there are global permanent shocks affecting the whole panel. An-

other source of panel non-stationarity could be given by the non-stationarity of the

idiosyncratic disturbance terms processes, a fact that implies that shocks affecting

each time series – i.e., not the global shocks – have a permanent character.

The approach of Bai and Ng (2004) nests the ones in Moon and Perron (2004)

and Pesaran (2007). As noted by Bai and Ng (2010), Moon and Perron (2004) and

Pesaran (2007) control the presence of cross-section dependence allowing for com-

mon factors, although the common factors and idiosyncratic shocks are restricted to

have the same order of integration. Therefore, it is not possible to cover situations

in which one component (e.g., the common factors) is I(0) and the other component

(for example, the idiosyncratic shocks) is I(1), and vice versa. In practical terms,

the test statistics in Moon and Perron (2004) and Pesaran (2007) turn out to be sta-

tistical procedures to make inference only on the idiosyncratic shocks, where the

dynamics of both the idiosyncratic and the common components are restricted to be

the same.

Hadri (2000) panel data stationarity test statistics

The panel data stationarity test statistic in Hadri (2000) specifies the null hypothesis

that the units in the panel data set are I(0) against the alternative hypothesis that

there are some units that are I(1). The test is based on the OLS estimation of the
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following regression equation:

yi,t = Di,t +ui,t , (3.3.7)

where Di,t denotes the deterministic component. The estimated residuals from

Equation (3.3.7) are used to define the partial sum processes Ŝi,t = ∑t
j=1 ûi, j for

each unit. Using this individual information, Hadri (2000) proposes a panel data

stationarity test:

LM j = N−1
N

∑
i=1

η j
i ,

where η j
i = ω̂−2

i T−2 ∑T
t=1 Ŝ2

i,t , i = 1, . . . ,N, denotes the individual stationarity test

statistic proposed in Kwiatkowski, Phillips, Schmidt and Shin (1992) – KPSS hence-

forth – where j = c for the model that only includes a constant (Di,t = μi) and j = τ
for the one that includes a linear time trend (Di,t = μi + δit), with ω̂2

i being a con-

sistent estimate of the long-run variance of the error term ui,t – Carrion-i-Silvestre,

del Barrio Castro and López-Bazo (2005) suggest to estimate the long-run vari-

ance following the procedure described by Sul, Phillips and Choi (2005), using the

Quadratic spectral kernel. At this stage, we should mention that it is possible to

compute two different LM statistics, depending on whether the long-run variance is

allowed to be heterogeneous across i (LM j
HET ) or homogeneous for all individuals

(LM j
HOM) – in the latter case we use ω̂2 = N−1 ∑N

i=1 ω̂2
i . After standardizing the LM

statistic by its mean and variance and assuming that ui,t in (3.3.7) are cross-section

independent, the authors derive the new test Z j
k , k = {HOM,HET}, that has the

following distribution under the null hypothesis of panel stationarity:

Z j
k =

√
N(LM j

k −ξ j)

ς j
⇒ N(0,1),

j = {c,τ}, k = {HOM,HET}. The terms ξ j and ς j are the cross-section av-

erages of the mean and the variance of the individual KPSS statistic defined in

Hadri (2000), j = {c,τ}. Finally, it should be mentioned that the test in Carrion-

i-Silvestre, del Barrio Castro and López-Bazo (2005) bases on Hadri’s (2000) pro-

posal but uses bootstrapped p-values following the lines given in Maddala and Wu

(1999) to deal with the cross-section dependence among the time series in the panel.

Note thus that these statistics do not account for the presence of cross-section de-

pendence using a common factor model.
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3.3.3 Panel data cointegration test statistics

Carrion-i-Silvestre and Surdeanu (2011) panel data cointegration test statistics

The first category of testing for cointegration in panel data is based on a system-

based approach. As mentioned above, the main advantage of the system-based

approach is to assess how many cointegrating relation exist among the variables for

each individual system. Let us define the vector Xi,t = (yi,t ,ki,t ,gi,t ,hi,t , li,t)
′ that

collects the observable variables of our model, for which we define the following

VAR representation:

Xi,t = Di,t +λiFt + ei,t (3.3.8)(
Iq−L

)
Ft = C (L)wt (3.3.9)

(Ik−L)ei,t = Hi (L)εi,t , (3.3.10)

where i = 1, . . . ,N and t = 1, . . . ,T . In this setup Di,t is defined as a (k×1)-vector

that contains the deterministic component of each of the variables in the vector Xi,t ,

i.e., k = 5 in our case. The term Ft is a (r×1)-vector of common factors, λi is a

(k× r) matrix of factor loadings and ei,t is a (k×1)-vector that collects the idiosyn-

cratic stochastic term. The estimation of the unobservable common factors is made

using the principal component approach suggested in Bai and Ng (2002, 2004).

Once the effects of the common factors are removed, cointegration analysis is then

performed focusing on both the idiosyncratic and common factor components. This

gives us further insight on the cointegration analysis, since the inference on the coin-

tegrating rank can be distorted if common factors are not accounted for in the model

– see Chapter 2 and Carrion-i-Silvestre and Surdeanu (2011) for further details.

The determination of the number of stochastic trends in the system relies on a

sequential testing procedure that starts assuming that the cointegrating rank is zero

– i.e., there are m = k stochastic trends – and, defining the multivariate MSB test

statistic MSB j,i (m), j = {c,τ}, we can proceed to test whether there are m = k

stochastic trends or fewer than k trends. Using the MSB j,i (m) test statistic, j =

{c,τ}, we can estimate the number of stochastic trends for each individual system

using the critical values in Chapter 2 and Carrion-i-Silvestre and Surdeanu (2011).

It is also possible to combine the individual information and define panel data

cointegrating rank tests. Assuming the same number of stochastic trends m in all

individual systems and that the idiosyncratic component is cross-section indepen-

dent, it is possible to test the null hypothesis that all N individual systems have
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mi = m stochastic trends against the alternative hypothesis that there are mi = m−1

stochastic trends:{
H0 : mi = m stochastic trends ∀i = 1, . . . ,N

H1 : mi = m−1 stochastic trends ∀i = 1, . . . ,N.
(3.3.11)

The first panel data statistic is based on the standardized mean of the individual

statistics:

PMSBZ
j (m) =

√
N(MSB j (m)−E(MSB j (m)))√

Var(MSB j (m))
,

where MSB j (m) = N−1 ∑N
i=1 MSB j,i (m), and E(MSB j (m)) and Var(MSB j (m)) are

the mean and the variance of the MSB j (m) statistic, j = {c,τ}, given given in

Carrion-i-Silvestre and Surdeanu (2011). Under the null hypothesis of m stochastic

trends PMSBZ
j (m)⇒ N(0,1). The remaining tests are based on the combination of

the p-values (ϕi) of the individual MSB statistic:

PMSBF
j (m) = −2

N

∑
i=1

lnϕi

PMSBC
j (m) =

−2∑N
i=1 lnϕi−2N√

4N
,

where under the null hypothesis of m stochastic trends PMSBF
j (m) ⇒ χ2

2N and

PMSBC
j (m)⇒ N (0,1), j = {c,τ}. In this chapter we use another test, PMSBCZ

j , in

order to test for cointegration among the cross-sections of the panel. The PMSBCZ
j

statistic, j = {c,τ}, originally proposed by Choi (2001), is based on the p-values of

the individual MSB tests and has the following form:

PMSBCZ
j (m) =

1√
N

N

∑
i=1

Φ−1 (ϕ̂ i) ,

where Φ(·) denotes the standard Normal cumulative distribution function and j =

{c,τ}. Although Carrion-i-Silvestre and Surdeanu (2011) do not prove it, they con-

jecture that the limiting distribution of this statistic is also standard normal, a claim

that is supported by their Monte Carlo simulations. Like the previous panel cointe-

gration tests, the null hypothesis of PMSBCZ
j , j = {c,τ}, is that of no panel cointe-

gration.
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Westerlund (2008) panel data cointegration test statistics

The author proposes two panel cointegration tests of the null hypothesis of no coin-

tegration. They allow for cross-sectional dependence that is modeled by a factor

model as in Bai and Ng (2004). More exactly, the model is given by:

yi,t = μi + x′i,tβi +λ ′i Ft + ei,t

Fj,t = ρ jFj,t−1 +u j,t j = 1, . . . ,r

ei,t = θiei,t−1 + εi,t

where Ft is a (r×1)-vector of I(0) stationary common factors, and λi is a (r×1)-

vector of factor loadings. To test the null hypothesis of no cointegration is equiva-

lent to running a unit root test on the following regression:

êi,t = θiêi,t−1 + ε̂ i,t . (3.3.12)

Westerlund (2008) proposes two panel cointegration tests based on the Durbin-

Hausman principle applied to (3.3.12). The first statistic, DHp, is the panel Durbin-

Hausman statistic constructed by summing the N individual terms before multiply-

ing them together. It is defined as follows:

DHp = ŜN
(
θ̃ − θ̂

)2
N

∑
i=1

T

∑
t=2

ê2
i,t−1, (3.3.13)

where θ̃ and θ̂ denote the pooled instrumental variables (IV) and the pooled OLS

estimators and ŜN is defined in Westerlund (2008). The null hypothesis H0 : θi = 1

∀i is tested against the alternative hypothesis H1 : θi = θ < 1 ∀i. A rejection of the

null hypothesis should indicate that all individuals in the panel are cointegrated.

The second test proposed, DHg, is the group mean panel statistic and is formu-

lated as:

DHg =
N

∑
i=1

Ŝi
(
θ̃ i− θ̂ i

)2
T

∑
t=2

ê2
i,t−1. (3.3.14)

The null hypothesis H0 : θi = 1 ∀i is tested against the alternative hypothesis H1 :

θi < 1 for at least some i. This implies that a rejection of the null should be taken as

evidence in favor of cointegration for at least some units. For both tests, we reject

the null hypothesis if the value of the test is greater than its respective critical value.
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Banerjee and Carrion-i-Silvestre (2011) panel data cointegration test statistics

Banerjee and Carrion-i-Silvestre (2011) propose a panel cointegration test based on

the common correlated effects (CCE) estimation approach developed by Pesaran

(2006). The idea behind the CCE estimation is relatively simple. Since the cross-

section dependence is sometimes caused by unobservable common factors, Pesaran

(2006) uses cross-section averages of the dependent and the explanatory variables

as proxies for the common factors. Banerjee and Carrion-i-Silvestre (2011) use the

following model:

yi,t = Di,t + x′i,tβ + z̄′tηi + ei,t ,

where z̄
′
t = (ȳt , x̄

′
t)
′

is the vector of cross-section means of the dependent and ex-

planatory variables. Following Pesaran (2006), Holly, Pesaran and Yamagata (2010)

and Kapetanios, Pesaran and Yamagata (2011), Banerjee and Carrion-i-Silvestre

(2011) use the pooled estimator:

β̂CCEP =

(
N

∑
i=1

x′iM̄xi

)−1( N

∑
i=1

x′iM̄yi

)
,

where xi = (xi,1,xi,2, ...,xi,T )
′, yi = (yi,1,yi,2, ...,yi,T )

′ and the matrix M̄ is defined

in Holly, Pesaran and Yamagata (2010). In the next step, Banerjee and Carrion-

i-Silvestre (2011) define the variable ỹi,t = yi,t − x′i,t β̂CCEP and then estimate the

regression below using the OLS estimation procedure:

ỹi,t = Di,t + ei,t . (3.3.15)

Both individual (tα̂ i,0) and panel cointegration (CADFCP) test statistics are based on

the OLS residuals êi,t from (3.3.15). The individual cointegration test statistic is the

pseudo t-ratio of the estimated parameter α̂ i,0 in the following regression:

Δêi,t = αi,0êi,t−1 +
p

∑
j=1

αi, jΔêi,t− j +ζi ¯̂et−1 +
p

∑
j=0

θi, jΔ ¯̂et− j +κi,t .

Finally, the panel cointegration statistic is defined as:

CADFCP = N−1
N

∑
i=1

tα̂ i,0 .
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The critical values for both individual and panel cointegration test statistics are pre-

sented in Banerjee and Carrion-i-Silvestre (2011). The null hypothesis of no coin-

tegration is rejected if the value of the corresponding test statistic is smaller than the

critical value.

Banerjee and Carrion-i-Silvestre (2013) panel data cointegration test statistics

The next three cointegration testing procedures are based on a single-equation frame-

work. Banerjee and Carrion-i-Silvestre (2013) deal with the following model spec-

ification:

yi,t = Di,t + x′i,tβi +F ′t λi + ei,t . (3.3.16)

The common factors and factor loadings are estimated using principal components

following the approach in Bai and Ng (2004). In order to do so, orthogonal projec-

tions on the first difference of Equation (3.3.16) are taken:

MiΔyi = MiΔFλi +MiΔei

y∗i = f λi + zi, (3.3.17)

with Mi = IT−1−Δxd
i
(
Δxd′

i Δxd
i
)−1 Δxd′

i being the idempotent matrix, Δxd
i = [ΔDi Δxi]

a matrix that contains the first difference of the deterministic component and the

stochastic regressors, y∗i = MiΔyi, f = MiΔF and zi = MiΔei.
4 The estimation of

the common factors and factor loadings is done as in Bai and Ng (2004) using

principal components. Specifically, the estimated principal components of f =

( f2, f3, . . . , fT ), denoted as f̃ , are
√

T −1 times the r eigenvectors corresponding

to the first r largest eigenvalues of the (T −1)× (T −1) matrix y∗y∗′. Under the

normalization f̃ f̃ ′/(T −1) = Ir, the estimated loading matrix is Λ̃ = f̃ ′y∗/(T −1)

and the estimated residuals are defined as z̃i,t = y∗i,t − f̃ ′t λ̃ i. Using these estimates,

the idiosyncratic disturbance term is recovered and the common factors are com-

puted through cumulation, i.e., ẽ∗i,t = ∑t
j=2 z̃i, j and F̃t = ∑t

j=2 f̃ j. Then we proceed

to the estimation of the ADF-type regression equation:

Δẽ∗i,t = αi,0ẽ∗i,t−1 +
pi

∑
j=1

αi, jΔẽ∗i,t− j +wi,t , (3.3.18)

4It should be understood that Δxd
i = Δxi for the models that do not include deterministic compo-

nent or that include a constant term provided that in these cases ΔDi = 0.
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so that the null hypothesis of no cointegration can be tested using the pseudo t-ratio

of αi,0 (tα̃ i,0). Banerjee and Carrion-i-Silvestre (2013) define the panel cointegration

test statistic Z j = (N−1 ∑N
i=1 tα̃ i,0−Θe

j)(Ψ
e
j/N)−1/2, where j = c refers to the model

that includes a constant and j = τ to the model that includes a linear time trend, with

Θe
j and Ψe

j the mean and variance of the relevant functionals of Brownian motions.5

As T,N → ∞, N/T → 0, the Z j test statistic converges in the limit to a standard

normal distribution under the null hypothesis of no panel cointegration. If there is

only one common factor, its order of integration can be tested using the ADF-type

regression equation in (3.3.18) with ẽ∗i,t replaced by F̃t . For the case where more

than one factor is estimated, the number of stochastic trends among the common

factors can be estimated using the MQ test statistics as in Bai and Ng (2004).6

3.4 Empirical results

Throughout the section, the deterministic specification is given by a linear time

trend. We start the empirical analysis by checking whether cross-section depen-

dence exists among the variables of our model. Note that while it is convenient to

think of cross-section independence as the ideal case, in real world this is not likely

to hold in most situations. It should be natural to assume that the regions of Spain

are dependent of each other. We employ the CD statistic of Pesaran (2004, 2013)

and present the results of the statistic for each variable for different augmentation

orders (p = 0,1, . . . ,5) in Table 3.1. The values of the CD test statistic indicate that

we can easily reject the null hypothesis of cross-section independence in favor of

cross-section dependence for all variables regardless of the augmentation order that

is used.

As pointed out in Pesaran (2013), the large values that take the CD test can be an

indication that strong dependence is present, which can be captured by the means

of a common factor model.

5Banerjee and Carrion-i-Silvestre (2013) approximate the moments of the limiting distribution

of the statistics by means of Monte Carlo simulation, which are (Θe
c,Θe

τ) = (−0.424,−1.535) and

(Ψe
c,Ψe

τ) = (0.964,0.341).
6The limiting distribution of the ADF test statistic when there is one common factor is the one

obtained in Dickey and Fuller (1979), so that the standard critical values for the ADF test statistic

can be used in this case. The critical values for the MQ test can be found in Table I in Bai and Ng

(2004).
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3.4.1 Panel data order of integration analysis

Let us first focus on the results obtained using Pesaran’s (2007) statistics. The

top of the Table 3.2 presents the CIPS(p) test statistic for different augmentation

orders (p = 0,1, . . . ,5) – the truncated version of the test statistic reported the same

results. The results indicate that, in almost all cases, the idiosyncratic component

of the variables that we consider in the chapter is I(1) – the null hypothesis of unit

root is marginally rejected for yi,t with p = 0 and p = 1 and for ki,t with p = 1.7 In

general, these results suggest that the idiosyncratic component of the variables in

our model is I(1) non-stationary.

As mentioned above, two of the testing proposals that are applied in this chap-

ter model the cross-section dependence through the specification of an approximate

common factor model, for which the number of common factors needs to be esti-

mated. The use of the panel BIC information criterion in Bai and Ng (2002) selects

the maximum number of common factors permitted, which is six in our case. This

seems a rather typical problem encountered by Sul (2005), Basher and Carrion-

i-Silvestre (2007) and Holly, Pesaran and Yamagata (2010), among others. One

reasonable explication, sustained by Bai and Ng (2002) as well, is that for small

number of cross-sections (less than 20), the number of common factors is difficult

to estimate. We then determine the number of I(1) non-stationary common factors

(r1) using the three information criteria (IPC1, IPC2 and IPC3) proposed by Bai

(2004) and the MQ test statistics by Bai and Ng (2004) while setting the maximum

number of factors at six. The IPC1 and IPC2 criteria yield four I(1) non-stationary

common factors, IPC3 criteria suggests three I(1) non-stationary common factors,

and the MQ test statistics indicate that all six factors are I(1) non-stationary. There-

fore, for the rest of our analysis we calculate the statistics described previously for

three, four or six factors in order to obtain robust conclusions.

Table 3.2 presents the panel data unit root test statistics in Moon and Perron

(2004). Regardless of the number of factors considered, for the variables gi,t and

hi,t the two statistics of Moon and Perron (2004) do not reject the null hypothesis

of panel unit root at the 5% level of significance. For the rest of the variables,

the results are somewhat mixed, depending on the number of factors taken into

account – for more than half of the cases, the idiosyncratic component of these

seven variables is I(1). However, we cannot conclude anything about the order

7The 5% critical value of the statistic for the case with intercept and time trend is −2.72 – see

Table II(c) in Pesaran (2007).
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of integration of the common factors from the application of these statistics since

Moon and Perron (2004) test statistics focus only on the idiosyncratic component.

Note that we wipe out the effect of the common factors, so that we are just focusing

on the idiosyncratic disturbance terms – see Bai and Ng (2010). A more informative

picture is thus obtained from Bai and Ng’s (2004) approach, provided that separate

inference can be conducted on the idiosyncratic and the common factor components

of the observable variable.

Table 3.2 summarizes the results from the application of the approach in Bai

and Ng (2004), reporting the ADF statistic for the idiosyncratic component of each

variable and the MQ test statistics on the estimated common factors.8 We first

look at the results of the ADF statistic and we see that the null hypothesis of panel

unit root cannot be rejected at the 5% level of significance for the idiosyncratic

component of yi,t , hi,t and hsi,t for any number of factors considered. The rest of

the variables are I(1) for the case of three and four factors, and I(0) when six factors

are taken into account. As for the common factors, the values of the MQτ
f (m) and

MQτ
c (m) statistics characterize the six, four or three estimated common factors as

stochastic trends – see the critical values for these statistics in Table I in Bai and

Ng (2004). Therefore, we can infer that the seven observable panels of variables

are I(1). When we consider three or four factors, the source of non-stationarity is of

global and idiosyncratic nature for all seven variables. However, when we consider

six factors, the source of non-stationarity comes from a global nature for the ki,t ,

gi,t , li,t and gpi,t panels and of a global and idiosyncratic nature for the yi,t , hi,t and

hsi,t panels.

We complement the analysis of the stochastic properties through the computa-

tion of the panel stationary test of Hadri (2000) assuming that the long-run variance

is either homogeneous or heterogeneous. The results of the panel data stationary

tests of Hadri (2000) and bootstrapped critical values computed as in Carrion-i-

Silvestre, del Barrio Castro and López-Bazo (2005) are presented in Table 3.3. It is

easy to see that with the exception of the calculated value for li,t , all values of the

stationarity test are greater than the 95% bootstrapped critical values. Therefore,

we reject the null hypothesis of I(0) for six out of seven panels of variables at the

5% level of significance – this conclusion is reached regardless of the way in which

the long-run variance is estimated. As noted in the previous section, while the sta-

tionarity test of Hadri (2000) allows for cross-section dependence when computing

8Following Perron and Ng (1998), the maximum number of lags that are used to compute the

ADF statistic is set at T 1/3.
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the empirical distribution using bootstrap, it does not accommodate for common

factors.

To sum up, after analyzing the results from several types of panel data unit root

and stationarity tests, we can infer that, in general, the panels of variables are I(1)

and we can proceed with the panel cointegration analysis.

3.4.2 Testing for panel data cointegration

The model for the production function involves five observable variables that are

driven by global and idiosyncratic stochastic trends. Since we consider two mea-

sures of public capital and human capital, we analyze four different combinations

of variables. The first combination consists of yi,t , ki,t , gi,t , hi,t and li,t – hereafter,

we denote this model specification as Combination 1. The variables that we test

secondly are yi,t , ki,t , gpi,t , hi,t and li,t (Combination 2). The third combination con-

sists of yi,t , ki,t , gi,t , hsi,t and li,t (Combination 3) and the last one consists of yi,t ,

ki,t , gpi,t , hsi,t and li,t (Combination 4). The presence of unit roots in these panels of

variables implies that the estimation of the model that links these macroeconomic

aggregates needs to restore on the use of panel cointegration analysis. Thus, we

should test whether cointegration is present among these variables, accounting for

the feature that global stochastic trends are present. This is addressed using both

system-based and single-equation procedures.

System-based panel data cointegration analysis

The individual MSB based statistic and its respective cointegration rank for the

first combination of variables are shown in the upper part of Table 3.4. The most

common selected rank for the individual Spanish regions is one, suggesting the ex-

istence of one cointegrating relation among the variables of the model. For almost

half of the regions, the univariate statistic detects no cointegration at all. For two re-

gions, namely Andalucı́a and La Rioja, the rank is two indicating two cointegrating

relations. Overall, the results are mixed indicating the low power of the univariate

statistic.

The bottom part of Table 3.4 presents the PMSBZ
τ , PMSBF

τ and PMSBC
τ panel

data statistics presented in Chapter 2 and in Carrion-i-Silvestre and Surdeanu (2011)

for Combination 1. As mentioned before, the number of common factors is esti-

mated using the panel BIC criterion and the number of estimated common factors

equals the maximum factors allowed. Since the panel cointegrating test PMSBCZ
τ ,
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also used in this chapter, is based on the same MSB statistic as the previous three

panel statistics, we present its results in the same table with the Carrion-i-Silvestre

and Surdeanu (2011) statistics. The panel cointegration ranks are reported in the last

column of the bottom part of Table 3.4. All panel data statistics strongly reject the

null hypothesis of no cointegration at the 5% level of significance. Moreover, with

the exception of the PMSBZ
τ test, all panel data cointegration test statistics indicate

that the cointegration rank is two. This result implies the existence of two cointe-

grating relations between output, physical capital, human capital, public capital and

labor. Table 3.5 presents both the univariate and panel data cointegration statistics

for Combination 2. At the univariate level, cointegrating rank is 0 for seven regions,

1 for six regions and 2 for four regions. The panel data results are similar to the ones

from Combination 1. Specifically, three panel data statistics detect two cointegra-

tion relations while only one statistic detects one cointegration relation. The results

of the cointegration tests both for univariate and panel data for the third combina-

tion are presented in Table 3.6. The univariate statistic indicates the absence of any

cointegrating relation for seven regions, one cointegrating relation for nine regions

and two cointegrating relations for one region (Canarias). At the panel level, the

results indicate the existence of one common cointegrating relation. Finally, the re-

sults from the univariate and panel data cointegration statistics for Combination 4 of

variables are presented in Table 3.7. There are seven regions for which the univari-

ate statistic does not detect any cointegration between the variables. The univariate

cointegrating rank is one for nine regions and two for only one region (Galicia). The

results from the panel cointegration tests indicate the existence of one cointegration

relation between this combination of variables.

Overall, we can infer that the results from the individual MSB based statistic are

mixed. Approximately half of the time the test statistic detects no cointegration at

all and this can be due to the low power of the univariate test. However, the panel

cointegration statistics indicate with overwhelming evidence that there exist at least

one common cointegrating relation.

Single-equation-based panel data cointegration analysis

This section examines the results from the single-equation-based framework of

Westerlund (2008) and Banerjee and Carrion-i-Silvestre (2011, 2013). Let us first

focus on the Westerlund (2008) approach and we present the panel Durbin-Hausman

cointegration test statistics of Westerlund (2008) and their respective p-values for
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each combination of variables in Table 3.8. We can easily see that the values of the

DHp indicate that the null hypothesis of no cointegration is strongly rejected at the

5% level. However, the opposite conclusion is found if we compute the DHg panel

data test statistic. This contradiction between these statistics might be due, first, to

the different heterogeneity degree that is assumed for the parameter of interest –

the DHp imposes an homogeneous parameter for all units, whereas the DHg con-

siders heterogeneous parameters when computing the test statistic – and, second, to

the assumption that the common factors have to be I(0). The later has been shown

to be a problematic assumption, provided the evidence of I(1) common factors as

mentioned above.

The results from the panel cointegration test statistic in Banerjee and Carrion-i-

Silvestre (2011) appear in Table 3.9. At the individual level, we are able to reject

the null hypothesis of no cointegration for only few regions – the results from the

individual statistics are not shown in order to save space but they are available upon

request. Therefore, at the individual level, for the majority of Spanish regions there

is not enough evidence that the variables cointegrate, regardless of the combination

of variables that is used. Let us now turn our attention to the panel statistic CADFCP

presented for up to p = 10 lags. For p = 0,5,6,7,8,9, the panel statistic detects no

cointegration at any acceptable levels of significance, regardless of the combination

of variables that is used. For p = 1,2,3, the CADFCP statistic is able to reject the

null hypothesis of no cointegration at either the 5% level of significance for every

combination. For p = 4 and p = 10, we obtain mixed results – the CADFCP test

statistic finds evidence in favor of no cointegration for the first two combinations

of variables and the opposite conclusion for the last two combinations of variables.

Although these results might seem contradictory with the evidence provided by

the Zc test statistic of Banerjee and Carrion-i-Silvestre (2013), it is important to

note that the CADFCP tends to show size distortion problems (under-rejection of

the null hypothesis) when the common factors and the idiosyncratic component

have different orders of integration – see Banerjee and Carrion-i-Silvestre (2011)

for further details.

Next, we focus on the Banerjee and Carrion-i-Silvestre (2013) approach where

the common factors are estimated using principal components. In this case, with the

maximum number of common factors set at six, the panel BIC information criterion

in Bai and Ng (2002) selects two, three or four common factors depending on the

combination of variables that we consider. In all cases, the estimated common fac-

tors are characterized as I(1) stochastic processes – see Table 3.10. The panel ADF
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test statistic computed using the idiosyncratic disturbance terms (Zc test statistic)

leads to the rejection of the null hypothesis of spurious regression for all four com-

binations of variables. Therefore, we conclude that once the presence of common

factors is accounted for, there exists a long-run relation among the variables of all

four combinations considered. Note that these results imply that the observable

economic variables of the model do not cointegrate alone, they take part of a coin-

tegration relation that includes the presence of global stochastic trends. This result

is in line with the theoretical arguments that claim that the TFP is an I(1) stochastic

process.

When we compare the results of the single-equation-based and system-based

cointegration analyses, we conclude that the results are similar at the individual

level, provided that little evidence is found in favor of cointegration. However, if we

focus on the panel data test statistics, we obtain mixed results. The evidence drawn

by the test statistics in Westerlund (2008) depends on the test statistic that is used,

although the analysis is conditional on the assumption that the common factors are

I(0), a requirement that is not met in our case. In general, Banerjee and Carrion-i-

Silvestre (2011) test statistic finds evidence of cointegration when including a small

number of lags and no cointegration for larger number of lags. Finally, the test

statistics proposed in Chapter 2 and in Carrion-i-Silvestre and Surdeanu (2011) and

in Banerjee and Carrion-i-Silvestre (2013) are able to reject the null hypothesis of

no cointegration with overwhelming evidence for every combination of variables

that is used.

3.4.3 The estimation of the Cobb-Douglas production function

Once the presence of a long-run relation among the different combination of vari-

ables that we have considered has been established, we proceed to estimate the

panel cointegration relation allowing for common factors. There are few theo-

retical proposals in the literature that fit our requirements. First, we apply the

continuously-updated and fully-modified (CupFM) and the continuously-updated

and bias-corrected (CupBC) estimators proposed in Bai, Kao and Ng (2009), which

rely on the use of principal components to jointly estimate the cointegrating vector,

the factor loadings and the common factors of the model specification. Both estima-

tion procedures render consistent and efficient estimates of the cointegrating vector

regardless of whether we have I(0) and/or I(1) common factors. Second, we also

use the pooled CCE estimator in Pesaran (2006) that, as established in Kapetanios,
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Pesaran and Yamagata (2011), produces a consistent estimator of the cointegrating

vector. In this case, the common factors are proxied by the use of cross-section

averages of the variables of the model.

Although both approaches render consistent estimates of the parameters, the one

of Bai, Kao and Ng (2009) uses an efficient estimation procedure, which takes into

account the possibility that there might be endogenous regressors in the equation

that is estimated. On the contrary, the estimator in Kapetanios, Pesaran and Yama-

gata (2011) assumes that the stochastic regressors are weakly exogenous, a situation

that might not hold in our case. Taking into account this feature, it is worth pointing

out that it is possible to conduct statistical inference on the parameters estimated by

any of these procedures.9

Table 3.11 reports the estimation of the Cobb-Douglas production function in

(3.2.6) for the different combinations and estimation procedures. The results for the

CupFM estimator are presented in the first four columns. The next four columns

show the results for the CupBC estimator while the last four columns of Table 3.11

report the CCEP estimator of Kapetanios, Pesaran and Yamagata (2011). For Com-

binations 1 and 2, the number of common factors is estimated according to the

information criteria in Bai and Ng (2002), which gives two common factors. For

Combinations 3 and 4, the estimated number of common factors is three.

The estimated coefficients represent the elasticity of output with respect to phys-

ical capital, public capital, human capital and labor. The coefficient of ki,t indicates

that the elasticity of output with respect to the physical capital ranges from 0.206

(CupBC) to 0.402 (CCEP), lower than the values commonly found in the empirical

literature for the Spanish regions.10 The lower values for this parameter shows the

risk in which practitioners can incur if common factors are not taken into account

when estimating production functions, i.e., the possibility of obtaining biased and

inconsistent estimates of the parameters.

The coefficient of gi,t indicates that the elasticity of output with respect to the

total public capital ranges from 0.118 (CCEP) to 0.173 (CupFM). Similarly, the co-

efficient of gpi,t shows that the elasticity of output with respect to the productive

public capital varies from 0.111 (CCEP) to 0.153 (CupFM).11 These findings re-

9We thank Chihwa Kao, Takashi Yamagata and Mauro Costantini for providing the Gauss code.
10For example, the values obtained by Serrano (1996) range from 0.38 to 0.45, those obtained

by Bajo-Rubio and Dı́az-Roldán (2005) range from 0.59 to 0.68 while that obtained by Márquez,

Ramajo and Hewings (2011) is 0.31. Note that specification of the variables, the model, the data and

estimation techniques differ from one study to another.
11The estimate of Bajo-Rubio and Dı́az-Roldán (2005) is 0.09, and the one by Márquez, Ramajo
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veal that each of the two types of public capital exerts a positive effect on Spanish

regional productivity.

As for the coefficients for the human capital, when we consider the share of the

employed population with secondary and university education (hi,t), the elasticity

of output with respect to the human capital takes on values between 0.213 (CupFM)

and 0.272 (CupBC). Similar results are obtained when we measure the human cap-

ital as the average years of schooling, with values that vary from 0.205 (CupFM) to

0.339 (CupBC).12 It is interesting to note that, on one hand, the CupFM and CupBC

estimators yield similar results and all the estimated parameters of the human capi-

tal are statistically significant. On the other hand, the CCEP estimator indicates that

human capital does not contribute significantly to explaining the Spanish regional

output, regardless of the combination of variables that is used. This result might

be due to the fact that, as mentioned above, the CupFM and CupBC estimators are

efficient estimators – i.e., they take into account the fact that some of the stochas-

tic regressors in the cointegration relationship might be endogenous – whereas the

CCEP estimator assumes weak exogeneity of the stochastic regressors. Therefore,

in this regard the efficient estimators would be preferable provided that they cover

broader situations.

Finally, we should highlight the negative and highly significant coefficient for

li,t that is obtained by the three panel cointegration estimators that are considered

in this chapter, which indicates that the constant returns to scale assumption cannot

be accepted. That is, the negative sign indicates diminishing returns to scale on the

factors that have been considered in the model.

Overall, when we estimate the parameters of the Cobb-Douglas production

function, the CupFM and CupBC estimators show that all variables contribute sig-

nificantly to explaining the Spanish regional output. The CCEP estimator shows that

only half the estimated parameters are statistically significant, although this conclu-

sion bases on the assumption that the stochastic regressors are weakly exogenous, a

feature that might not hold in our case.

and Hewings (2011) is 0.10.
12The results are in agreement with those of Serrano (1996), who obtained a value of 0.216, or

Bajo-Rubio and Dı́az-Roldán (2005), who obtained a value of 0.14.
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3.4.4 Robustness analysis

Translog production function

In this section we estimate the parameters of the production function using the nor-

malized translog representation. Our choice behind normalization is based on the

work of Friedlaender and Spady (1981). They interpreted the translog as a second-

order Taylor’s series approximation to some true production function. Further, the

authors implied that the translog will give a valid quadratic approximation of the

true production function only at the sample mean. The translog representation has

become increasingly popular in recent years – see López-Bazo and Moreno (2008)

and Pablo-Romero and Gómez-Calero (2013). We normalize the data by dividing

each series by its mean before the logarithmic transformation is applied – see Fe-

lipe (1998) and Sauer and Tchale (2006). To the best of our knowledge, none of

the empirical studies studying the translog production function controlled for the

cross-section dependence through the specification of a common factor model, as

we do in this chapter.

The normalized translog production model has the following form:

yi,t = ai,t +βkki,t +βggi,t +βhhi,t +βl li,t +0.5βkkk2
i,t +0.5βggg2

i,t +

+0.5βhhh2
i,t +0.5βll l2

i,t +βkgki,tgi,t +βkhki,thi,t +βklki,t li,t +

+βghgi,thi,t +βglgi,t li,t +βhlhi,t li,t (3.4.1)

ai,t = Di,t +F ′t λi + ei,t ,

where yi,t = ln(
Yi,t/Yi,•
Li,t/Li,• ), ai,t = ln(Ai,t/Li,t), li,t = ln(Li,t/Li,•), ki,t = ln(

Ki,t/Ki,•
Li,t/Li,• ), gi,t

= ln(
Gi,t/Gi,•
Li,t/Li,• ) and hi,t = ln(

Hi,t/Hi,•
Li,t/Li,• ). The variables Yi,•, Ki,•, Gi,•, Hi,• and Li,• are

the mean values of Yi,t , Ki,t , Gi,t , Hi,t and Li,t respectively.

For Combinations 1, 2 and 4, the number of common factors estimated accord-

ing to the information criteria in Bai and Ng (2002) is one. For Combination 3 we

obtain three factors. Since the translog regression is linear in parameters we can

apply standard panel data estimation techniques. Table 3.12 shows the CupFM and

CupBC estimators for the translog specification. We can easily see that the results

from these two estimators are similar. At the 1% level of significance, the first-order

coefficients from the translog specification have the same signs and similar values

with those from the Cobb-Douglas specification. The translog coefficients range

from 0.300 to 0.534 for ki,t , 0.145 to 0.157 for gi,t , 0.081 to 0.085 for gpi,t , 0.679 to
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0.723 for hi,t , 0.585 to 0.639 for hsi,t and -0.093 to -0.367 for li,t . At the 10% and

even at 5% levels of significance, we obtain a few significant coefficients that have

the opposite sign of what we obtain at 1% level of significance. For example, in the

CupFM estimation, the coefficient of gi,t for Combination 1 (-0.279) or that of gpi,t

for Combination 2 (-0.250) are negative and significant. The quadratic terms are

only half the time significant. Growiec, Pajor, Pelle and Predki (2011) obtained the

same results in their study on 19 OECD countries and state that “at this point we

cannot infer if the departures from the Cobb-Douglas benchmark are economically

important or not”.

The interaction terms in the translog production function can be explained as

follows: if the coefficient is positive then those two variables are complementary

inputs and if the coefficient is negative then the two variables are considered substi-

tutes. We see that the interaction terms between ki,t and li,t , gi,t and hsi,t , gpi,t and

hsi,t , and hi,t and li,t are positive indicating that these are complementary factors.

The interaction terms between physical capital and both forms of human capital are

negative and highly significant. Therefore, this indicates that these terms are substi-

tutes. Evans, Green and Murinde (2002) obtained similar results and indicated that

there is evidence against the embodiment and learning-by-doing hypotheses. The

rest of the interaction coefficients are negative, suggesting a lack of complementar-

ity.

Next, we compare the parameters estimates of the production function using

both Cobb-Douglas and normalized translog representations. It is well known that

the translog parameters do not have a direct interpretation compared with those

from the Cobb-Douglas production function, which are interpreted as elasticities –

see Felipe (1998). Therefore, in order to make the results comparable, we use the

estimated translog regression coefficients to calculate the elasticity of production

– which is computed by taking the partial derivative of the Equation (3.4.1) with

respect to each explanatory variable. For example, for Combination 1, the partial

elasticity of yi,t with respect to ki,t is calculated as −0.199+ 2 ∗ 0.5 ∗ 0.043 ∗ ki,t

+0.347∗gi,t −0.393∗hi,t +0.551∗ li,t . We can easily see that the partial elasticity

depends both on the information of the i-th individual and on t. Therefore, in order

to obtain a summarized measure, we replace ki,t , gi,t , hi,t and li,t by their (time

and cross-section) means.13 Table 3.13 presents the results of partial elasticities of

output with respect to each variable for the normalized translog production function.

After comparing the results from the Cobb-Douglas representation (Table 3.11) with

13The mean values of ki,t , gi,t , gpi,t , hi,t , hsi,t and li,t are available upon request.
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the results from the translog representation (Table 3.13), we see that they are similar

with very few exceptions (negative sign for hsi,t in Combination 3 and positive sign

for li,t in Combinations 1 and 2). The rest of the estimated coefficients are very

similar in both Cobb-Douglas and normalized translog production functions.

Spatial dependence

So far, we assumed that the cross-section dependence among the Spanish regions is

captured through the specification of a model of unobserved common factors. Ex-

amples of such common shocks are oil price, stock market or technological shocks.

The econometric techniques that have been applied have considered this form of

strong dependence when estimating the parameters of the model in order to get

consistent and efficient estimates. However, it is possible that the Spanish regions

might be affected by the presence of weak dependence – for instance, it would be

possible that one Spanish region is affected by its neighbors due, for instance, to

the existence of spillover effects. Therefore, it makes sense to consider the tools

developed by the spatial econometrics as a way to model the weak dependence that

might be affecting the Spanish regions – see Chudik, Pesaran and Tosetti (2011)

and Banerjee and Carrion-i-Silvestre (2011) for the discussion about the distinction

between weak and strong dependence.

The spatial dependence in econometric studies is carried out by defining a weight

matrix, W , which indicates whether any pair of regions share a common border. If

region i and j share a common border, then W (i, j) = 1 and zero otherwise. The

testing for spatial dependence is typically done by maximum likelihood technique

or generalized method of moments (Pesaran and Tosetti (2011)).

We follow Holly, Pesaran and Yamagata (2010) and proceed to estimate the

model in (3.2.6) using the pooled CCE estimator developed by Pesaran (2006). The

residual term given by ui,t = F ′t λi + ei,t is estimated as ûi,t = F̃ ′t λ̃ i + ẽi,t , where F̃t

denotes the (r×1)-vector of common factors, λ̃ i, j the (r×1)-vector of factor load-

ings and ẽi,t the idiosyncratic component, which are obtained from the estimation of

(3.2.6). As in Holly, Pesaran and Yamagata (2010), we perform the OLS regression

of ûi,t on the estimated factors F̃t and obtain the idiosyncratic components ẽ∗i,t . For

each idiosyncratic disturbance term we specify:

ẽ∗i,t = Γ
N

∑
j=1

wi, jẽ∗j,t + vi,t ,
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where Γ is the spatial autoregressive parameter, wi, j is the (i, j) element of the spa-

tial weight matrix W and vi,t ∼ iid
(
0,σ2

v
)
. We then calculate the log likelihood

function:

L =−
(

NT
2

)
ln(σ2

v )+T ln |IN−ΓW |− 1

2σ2
v

T

∑
t=1

(ẽ∗t −ΓWẽ∗t )
′ (ẽ∗t −ΓWẽ∗t ) ,

where ẽ∗t =
(

ẽ∗1,t , ẽ
∗
2,t , ..., ẽ

∗
N,t

)′
. Since Baleares and Canarias are islands, they have

no neighbors and we eliminate their data for this analysis. Thus, we made the

calculation considering N = 15 regions and T = 37 years. The maximum likelihood

estimates of Γ are presented in Table 3.14. It is easy to see that the results are mixed

and vary depending on the numbers of factors considered. When we consider two

or three factors for all the combinations of variables or six factors for Combinations

1 and 2, the estimates are significant at the 5% level. This indicates that, even

after controlling for the strong cross-section dependence, there exists spatial (weak)

dependence among the Spanish regions. However and regardless of the presence of

weak dependence, the estimation of the production function that has been conducted

in the previous sections is consistent and efficient, since the procedures that have

been applied allow for this type of cross-section dependence.

3.5 Conclusion

This chapter reexamines the evidence of cointegration among the output, physical

capital, human capital, public capital, and labor. We consider annual data for sev-

enteen Spanish regions observed over the period from 1964 to 2000.

The empirical analyses that focus on the estimation of Spanish production func-

tions usually assume cross-section independence, which is a restrictive assump-

tion especially at the regional level. Our empirical analysis shows that the vari-

ables involved in the model are I(1) non-stationary, so that the application of panel

data cointegration techniques are required to obtain consistent estimates of the pa-

rameters of interest. The study takes advantage of the recently developed non-

stationary panel data analysis methodologies, in both single-equation and system-

equations based framework, that are general enough to permit cross-section depen-

dence across the units of the panel.

The results reveal evidence of panel data cointegration among the variables of

the model up to the presence of I(1) non-stationary common factors. Consequently,
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the observable economic variables alone do not generate an equilibrium relation-

ship, we need to consider the, otherwise, expected global stochastic common trends

that defines the TFP of the regions. The procedures applied in this chapter detect

one or two cointegration relations among output, physical capital, human capital,

public capital (all in per worker terms) and labor, depending on the combination of

variables that is used.

We estimate the Spanish regional production function using Bai, Kao and Ng

(2009) and Kapetanios, Pesaran and Yamagata (2011) panel data cointegration esti-

mators. The results indicate that physical capital, human capital, public capital (all

in per worker terms) affect positively the Spanish productivity, whereas the negative

coefficient that has been obtained for the labor indicates the existence of decreasing

returns to scale. We also show that the Spanish regions suffer from weak spatial de-

pendence even after controlling for the strong cross-section dependence, although

the conclusions that we have obtained are robust to the presence of this form of

cross-section dependence and also to the functional form that is adopted for the

production function.
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Figure 3.1: Time series variables of the seventeen Spanish regions
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Table 3.1: Pesaran (2004, 2013) cross-section dependence tests

yi,t ki,t gi,t hi,t li,t gpi,t hsi,t
CD(0) 8.505 29.191 27.233 21.061 36.083 26.488 16.978

CD(1) 9.205 19.378 19.309 18.386 21.965 17.727 17.661

CD(2) 8.291 18.669 17.501 18.359 21.724 16.010 18.370

CD(3) 7.984 19.232 16.918 18.278 22.240 15.741 15.687

CD(4) 8.307 18.403 16.121 17.858 21.629 15.019 15.075

CD(5) 7.592 18.361 16.776 17.354 21.528 15.632 15.243

yi,t is the logarithm of GVA per worker; ki,t denotes the logarithm of private

capital per worker; gi,t and gpi,t are the logarithms of two forms of public

capital (both in per worker terms): the former represents the total public capital

while the latter represents the productive public capital; hi,t and hsi,t are the

logarithms of two forms of human capital (both in per worker terms): the

former represents the rate of employees with at least secondary school studies

while the latter represents the average number of schooling years; li,t denotes

the logarithm of labor.
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Table 3.2: Panel data unit root tests
Pesaran (2007)

yi,t ki,t gi,t hi,t li,t gpi,t hsi,t

CADF(0) -2.730 -2.687 -1.934 -2.293 -2.677 -1.844 -2.122

CADF(1) -2.916 -2.817 -2.197 -2.553 -2.716 -2.065 -2.713

CADF(2) -2.522 -2.407 -1.922 -2.123 -2.222 -1.809 -2.276

CADF(3) -2.416 -2.306 -1.929 -2.065 -2.039 -1.846 -1.990

CADF(4) -2.254 -2.088 -2.097 -1.646 -1.817 -2.075 -1.641

CADF(5) -2.271 -2.170 -1.804 -1.614 -1.648 -1.805 -2.156

Moon and Perron (2004)

yi,t ki,t gi,t hi,t li,t gpi,t hsi,t

6 factors ta -1.267 -0.844 -0.146 -0.955 -1.414 -0.301 -4.707

p-value (0.103) (0.199) (0.442) (0.170) (0.079) (0.382) (0.000)

tb -1.225 -0.743 -0.119 -0.818 -1.379 -0.253 -4.307

p-value (0.110) (0.229) (0.453) (0.207) (0.084) (0.400) (0.000)

4 factors ta -1.621 -0.397 -0.793 -0.928 -1.719 -0.515 -2.470

p-value (0.052) (0.346) (0.214) (0.177) (0.043) (0.303) (0.007)

tb -1.604 -0.354 -0.771 -0.837 -2.006 -0.478 -1.762

p-value (0.054) (0.362) (0.220) (0.201) (0.022) (0.316) (0.039)

3 factors ta -1.761 -1.985 -1.073 -1.176 -2.015 -1.531 -1.539

p-value (0.039) (0.024) (0.142) (0.120) (0.022) (0.063) ( 0.062)

tb -1.610 -1.886 -1.212 -1.082 -2.511 -1.759 -1.220

p-value (0.054) (0.030) (0.113) (0.140) (0.006) (0.039) (0.111)

Bai and Ng (2004)

yi,t ki,t gi,t hi,t li,t gpi,t hsi,t

6 factors ADFτ
ê 0.410 -1.770 -3.513 -0.219 -1.774 -2.707 2.210

p-value (0.659) (0.038) (0.000) (0.413) (0.038) (0.003) (0.986)

MQτ
f (6) -31.907 -30.099 -27.514 -34.730 -30.349 -26.869 -31.790

MQτ
c (6) -35.406 -27.884 -23.257 -33.837 -25.857 -24.339 -35.729

4 factors ADFτ
ê -0.733 -0.540 -0.026 -0.593 1.466 -0.313 0.199

p-value (0.232) (0.294) (0.490) (0.276) (0.929) (0.377) (0.579)

MQτ
f (4) -27.996 -27.129 -13.887 -21.437 -24.762 -13.888 -5.911

MQτ
c (4) -22.761 -26.854 -20.255 -20.019 -20.248 -19.498 -7.870

3 factors ADFτ
ê 0.360 -1.221 0.544 -0.373 1.855 1.231 0.199

p-value (0.641) (0.111) (0.707) (0.355) (0.968) (0.891) (0.579)

MQτ
f (3) -17.847 -24.356 -9.758 -20.501 -23.963 -8.660 -5.911

MQτ
c (3) -15.914 -26.647 -13.875 -19.851 -18.138 -13.758 -7.870

See Table 3.1 for the description of variables.
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Table 3.3: Hadri (2000) panel stationarity tests

Variable Long-run Zτ
j Bootstrapped critical values

variance Statistic 90% 95% 99%

yi,t Homogeneous 17.359 6.894 8.911 12.403

Heterogeneous 26.744 8.590 11.034 17.607

ki,t Homogeneous 38.494 7.444 9.836 15.575

Heterogeneous 44.574 9.428 12.136 20.319

gi,t Homogeneous 21.396 5.737 7.207 11.470

Heterogeneous 21.762 7.102 8.738 13.455

hi,t Homogeneous 11.421 6.895 8.791 13.027

Heterogeneous 19.596 8.606 11.441 17.954

li,t Homogeneous 5.456 5.890 7.363 10.961

Heterogeneous 6.868 7.830 9.678 14.177

gpi,t Heterogeneous 17.534 5.520 6.998 10.596

Heterogeneous 13.752 7.051 8.833 12.781

hsi,t Heterogeneous 9.220 6.019 7.663 11.580

Heterogeneous 12.081 7.617 9.732 15.976

See Table 3.1 for the description of variables.
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Table 3.4: Individual and panel data cointegration tests of Carrion-i-Silvestre and

Surdeanu (2011). Results for the Combination 1

Individual statistic
Region m = 5 m = 4 m = 3 m = 2 m = 1 Rank

Andalucı́a 0.017** 0.021** 0.070 0.081 0.258 2

Aragón 0.029 0.036 0.048 0.060 0.257 0

Asturias 0.025** 0.034 0.037 0.038 0.162 1

Baleares 0.028 0.033 0.034 0.047 0.150 0

Canarias 0.036 0.058 0.070 0.111 0.120 0

Cantabria 0.026** 0.029 0.035 0.050 0.122 1

Castilla y León 0.024** 0.033 0.059 0.091 0.062 1

Castilla-La Mancha 0.016** 0.033 0.068 0.073 0.107 1

Catalunya 0.030 0.038 0.045 0.132 0.105 0

Comunidad Valenciana 0.026 0.027 0.056 0.055 0.198 0

Extremadura 0.017** 0.033 0.100 0.099 0.207 1

Galicia 0.021** 0.041 0.051 0.086 0.306 1

Madrid 0.029 0.029 0.044 0.070 0.193 0

Murcia 0.026 0.026 0.062 0.073 0.087 0

Navarra 0.019** 0.033 0.047 0.104 0.166 1

Paı́s Vasco 0.025** 0.037 0.048 0.078 0.061 1

La Rioja 0.021** 0.027** 0.050 0.063 0.057 2

Panel statistics
m = 5 m = 4 m = 3 m = 2 m = 1 Rank

PMSBZ
τ -6.807** -1.493 2.948 1.189 -0.611 1

PMSBF
τ 134.862** 61.071** 15.798 19.579 29.308 2

PMSBC
τ 12.231** 3.283** -2.207 -1.749 -0.569 2

PMSBCZ
τ -7.434** -2.170** 2.840 1.701 0.016 2

m represents the number of stochastic trends. ** denotes that the test is significant at the

5% level. The variables consisting of Combination 1 are yi,t , ki,t , gi,t , hi,t and li,t . See

Table 3.1 for the description of variables.
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Table 3.5: Individual and panel data cointegration tests of Carrion-i-Silvestre and

Surdeanu (2011). Results for the Combination 2

Individual statistic
Region m = 5 m = 4 m = 3 m = 2 m = 1 Rank

Andalucı́a 0.019** 0.023** 0.071 0.071 0.103 2

Aragón 0.028 0.037 0.062 0.067 0.226 0

Asturias 0.027 0.033 0.039 0.039 0.112 0

Baleares 0.029 0.032 0.036 0.051 0.055 0

Canarias 0.030 0.067 0.079 0.116 0.122 0

Cantabria 0.024** 0.028 0.034 0.104 0.120 1

Castilla y León 0.026 0.044 0.061 0.089 0.055 0

Castilla-La Mancha 0.014** 0.031 0.070 0.087 0.090 1

Catalunya 0.029 0.038 0.058 0.095 0.089 0

Comunidad Valenciana 0.026** 0.027** 0.036 0.074 0.167 2

Extremadura 0.018** 0.034 0.115 0.124 0.159 1

Galicia 0.022** 0.037 0.052 0.113 0.167 1

Madrid 0.027 0.027 0.048 0.076 0.210 0

Murcia 0.025** 0.025** 0.072 0.072 0.095 2

Navarra 0.018** 0.037 0.082 0.088 0.163 1

Paı́s Vasco 0.025** 0.037 0.053 0.066 0.064 1

La Rioja 0.020** 0.025** 0.050 0.068 0.078 2

Panel statistics
m = 5 m = 4 m = 3 m = 2 m = 1 Rank

PMSBZ
τ -7.207** -1.006 4.683 1.901 -1.624 1

PMSBF
τ 137.166** 70.158** 14.216 15.236 36.389 2

PMSBC
τ 12.511** 4.385** -2.399 -2.275 0.290 2

PMSBCZ
τ -7.889** -2.290** 3.849 2.444 -1.107 2

m represents the number of stochastic trends. ** denotes that the test is significant at the

5% level. The variables consisting of Combination 2 are yi,t , ki,t , gpi,t , hi,t and li,t . See

Table 3.1 for the description of variables.
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Table 3.6: Individual and panel data cointegration tests of Carrion-i-Silvestre and

Surdeanu (2011). Results for the Combination 3

Individual statistic
Region m = 5 m = 4 m = 3 m = 2 m = 1 Rank

Andalucı́a 0.021** 0.030 0.030 0.320 0.108 1

Aragón 0.025** 0.031 0.052 0.082 0.101 1

Asturias 0.025** 0.029 0.036 0.075 0.295 1

Baleares 0.031 0.033 0.062 0.071 0.282 0

Canarias 0.025** 0.027** 0.070 0.100 0.221 2

Cantabria 0.023** 0.035 0.066 0.101 0.101 1

Castilla y León 0.028 0.032 0.086 0.086 0.082 0

Castilla-La Mancha 0.033 0.037 0.037 0.118 0.112 0

Catalunya 0.032 0.047 0.064 0.106 0.091 0

Comunidad Valenciana 0.024** 0.031 0.045 0.088 0.371 1

Extremadura 0.021** 0.028 0.115 0.173 0.229 1

Galicia 0.030 0.028 0.053 0.053 0.146 0

Madrid 0.031 0.044 0.051 0.082 0.202 0

Murcia 0.022** 0.030 0.062 0.062 0.161 1

Navarra 0.018** 0.036 0.082 0.106 0.504 1

Paı́s Vasco 0.034 0.036 0.037 0.073 0.179 0

La Rioja 0.019** 0.033 0.045 0.079 0.081 1

Panel statistics
m = 5 m = 4 m = 3 m = 2 m = 1 Rank

PMSBZ
τ -5.300** -1.496 4.214 4.846 0.611 1

PMSBF
τ 120.704** 45.451 18.137 9.435 21.565 1

PMSBC
τ 10.514** 1.389 -1.924 -2.979 -1.508 1

PMSBCZ
τ -6.125** -1.605 3.325 3.973 1.193 1

m represents the number of stochastic trends. ** denotes that the test is significant at the

5% level. The variables consisting of Combination 3 are yi,t , ki,t , gi,t , hsi,t and li,t . See

Table 3.1 for the description of variables.
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Table 3.7: Individual and panel data cointegration tests of Carrion-i-Silvestre and

Surdeanu (2011). Results for the Combination 4

Individual statistic
Region m = 5 m = 4 m = 3 m = 2 m = 1 Rank

Andalucı́a 0.018** 0.031 0.032 0.370 0.095 1

Aragón 0.025** 0.033 0.059 0.087 0.087 1

Asturias 0.025** 0.029 0.038 0.069 0.303 1

Baleares 0.030 0.034 0.065 0.077 0.256 0

Canarias 0.026 0.028 0.075 0.104 0.235 0

Cantabria 0.021** 0.036 0.082 0.097 0.204 1

Castilla y León 0.027 0.031 0.086 0.087 0.082 0

Castilla-La Mancha 0.032 0.037 0.038 0.116 0.099 0

Catalunya 0.032 0.042 0.069 0.116 0.075 0

Comunidad Valenciana 0.024** 0.032 0.037 0.096 0.346 1

Extremadura 0.021** 0.029 0.117 0.189 0.221 1

Galicia 0.025** 0.028** 0.048 0.050 0.257 2

Madrid 0.041 0.044 0.051 0.098 0.203 0

Murcia 0.018** 0.037 0.043 0.064 0.155 1

Navarra 0.018** 0.036 0.080 0.126 0.536 1

Paı́s Vasco 0.033 0.035 0.035 0.070 0.212 0

La Rioja 0.018** 0.031 0.044 0.083 0.066 1

Panel statistics
m = 5 m = 4 m = 3 m = 2 m = 1 Rank

PMSBZ
τ -5.618** -1.276 4.342 5.826 0.917 1

PMSBF
τ 127.145** 38.686 18.590 9.104 22.399 1

PMSBC
τ 11.295** 0.568 -1.869 -3.019 -1.407 1

PMSBCZ
τ -6.326** -1.096 3.275 4.292 1.325 1

m represents the number of stochastic trends. ** denotes that the test is significant at the

5% level. The variables consisting of Combination 4 are yi,t , ki,t , gpi,t , hsi,t and li,t . See

Table 3.1 for the description of variables.

Table 3.8: Panel data cointegration statistic of Westerlund (2008)

Combination 1 Combination 2 Combination 3 Combination 4

DHp 4.219 4.421 2.226 2.322

(0.000) (0.000) (0.013) (0.010)

DHg 0.490 0.728 0.086 0.961

(0.312) (0.233) (0.466) (0.168)

The numbers in parentheses are the p-values. See Table 3.10 for the description of

the Combinations 1 to 4.
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Table 3.9: Panel data cointegration test statistic of Banerjee and Carrion-i-Silvestre

(2011)

CADFCP
p Combination 1 Combination 2 Combination 3 Combination 4

0 -2.062 -2.057 -2.125 -2.121

1 -2.307* -2.300* -2.385** -2.378**

2 -2.347** -2.338** -2.465** -2.456**

3 -2.461** -2.459** -2.635** -2.630**

4 -2.106 -2.122 -2.249* -2.260*

5 -1.802 -1.823 -1.925 -1.940

6 -1.748 -1.768 -1.842 -1.857

7 -1.593 -1.621 -1.710 -1.735

8 -1.608 -1.650 -1.558 -1.583

9 -1.539 -1.621 -1.004 -1.025

10 -1.734 -1.804 -2.326** -2.210*

** denotes that the test is significant at the 5% level and * denotes that the test

is significant at the 10% level. p is the number of lags. See Table 3.10 for the

description of the Combinations 1 to 4.

Table 3.10: Banerjee and Carrion-i-Silvestre (2013) panel data cointegration test

statistic
Combination 1 Combination 2

Test r̂ r̂NP
1 r̂P

1 Test r̂ r̂NP
1 r̂P

1

Zc -2.863 2 2 2 Zc -2.609 3 3 3

MQc
c (2) -10.031 MQc

c (3) -23.306

MQc
f (2) -8.447 MQc

f (3) -24.115

Combination 3 Combination 4

Test r̂ r̂NP
1 r̂P

1 Test r̂ r̂NP
1 r̂P

1

Zc -2.578 4 4 4 Zc -2.797 3 3 3

MQc
c (4) -21.995 MQc

c (3) -19.798

MQc
f (4) -20.807 MQc

f (3) -17.876

The numbers in parentheses are the p-values. The dependent variable is yi,t . The

exogenous variables for the Combination 1 are ki,t , gi,t , hi,t and li,t . The exogenous

variables for the Combination 2 are ki,t , gpi,t , hi,t and li,t . The exogenous variables

for the Combination 3 are ki,t , gi,t , hsi,t and li,t . The exogenous variables for the

Combination 4 are ki,t , gpi,t , hsi,t and li,t . See Table 3.1 for the description of

variables.
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Table 3.12: Estimates of the panel cointegrating vector using the translog produc-

tion function
CupFM CupBC

Combinations Combinations

1 2 3 4 1 2 3 4

ki,t -0.199 -0.229 0.534 0.332 -0.278 -0.283 0.458 0.300

(-1.317) (-1.575) (15.576) (6.672) (-1.846) (-1.962) (13.756) (5.971)

gi,t -0.279 - 0.157 - -0.193 - 0.145 -

(-2.004) (7.942) (-1.379) (7.847)

gpi,t - -0.250 - 0.085 - -0.166 - 0.081

(-1.961) (2.738) (-1.299) (2.586)

hi,t 0.723 0.704 - - 0.706 0.679 - -

(6.134) (5.891) (6.037) (5.736)

hsi,t - - -0.081 0.585 - - -0.037 0.639

(-1.781) (9.620) (-0.794) (10.158)

li,t 0.316 0.306 -0.093 -0.360 0.257 0.264 -0.063 -0.367

(1.891) (1.883) (-2.765) (-7.511) (1.536) (1.629) (-1.875) (-7.490)

k2
i,t 0.043 0.279 0.777 -0.157 0.289 0.499 0.983 -0.359

(0.154) (1.099) (3.652) (-0.605) (1.057) (2.029) (4.870) (-1.406)

g2
i,t 0.050 - -0.316 - 0.018 - 0.085 -

(0.233) (-1.989) (0.084) (0.526)

gp2
i,t - 0.087 - -0.402 - 0.061 - -0.528

(0.448) (-1.588) (0.314) (-2.076)

h2
i,t 0.376 0.346 - - 0.362 0.328 - -

(4.078) (3.679) (3.980) (3.545)

hs2
i,t - - -0.580 -1.477 - - 0.704 -2.307

(-1.320) (-2.054) (1.673) (-3.122)

l2
i,t 0.234 0.296 1.508 1.509 0.038 0.073 1.102 1.689

(0.524) (0.673) (4.389) (2.829) (0.084) (0.167) (3.402) (3.158)

ki,t ∗gi,t 0.347 - -0.320 - 0.278 - -0.421 -

(1.647) (-1.872) (1.366) (-2.512)

ki,t ∗gpi,t - 0.212 - -0.045 - 0.142 - -0.094

(1.112) (-0.213) (0.770) (-0.449)

ki,t ∗hi,t -0.393 -0.433 - - -0.448 -0.465 - -

(-3.302) (-3.734) (-3.794) (-4.077)

ki,t ∗hsi,t - - -0.622 -0.319 - - -0.572 0.097

(-2.874) (-0.896) (-2.691) (0.278)

ki,t ∗ li,t 0.551 0.571 1.361 1.489 0.402 0.380 0.807 1.456

(1.790) (2.004) (6.381) (6.258) (1.313) (1.338) (3.765) (6.102)

gi,t ∗hi,t -0.315 - - - -0.253 - - -

(-2.948) (-2.364)

gi,t ∗hsi,t - - 1.104 - - - 0.485 -

(6.117) (2.814)

gi,t ∗ li,t -0.911 - -0.239 - -0.773 - 0.135 -

(-3.705) (-1.215) (-3.138) (0.697)

Continues.
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Table 3.12: Estimates of the panel cointegrating vector using the translog produc-

tion function
CupFM CupBC

Combinations Combinations

1 2 3 4 1 2 3 4

gpi,t ∗hi,t - -0.263 - - - -0.207 - -

(-2.674) (-2.095)

gpi,t ∗hsi,t - - - 0.503 - - - 0.727

(1.423) (2.034)

gpi,t ∗ li,t - -0.958 - -1.175 - -0.799 - -0.923

(-4.149) (-4.109) (-3.463) (-3.238)

hi,t ∗ li,t 0.264 0.248 - - 0.202 0.196 - -

(1.871) (1.799) (1.427) (1.426)

hsi,t ∗ li,t - - -0.786 0.112 - - -1.260 -0.390

(-2.734) (0.234) (-4.346) (-0.813)

The numbers in parentheses are the t-statistics. The dependent variable is yi,t . For the

Combinations 1, 2 and 4 the number of factors estimated according to Bai and Ng (2002)

is one. For the Combination 3 the number of estimated factors is three. See Table 3.1

for the description of variables.

Table 3.13: Elasticities of the panel cointegrating vector using the translog produc-

tion function
CupFM CupBC

Combinations Combinations

1 2 3 4 1 2 3 4

ki,t 0.283 0.313 0.550 0.356 0.274 0.299 0.475 0.325

gi,t 0.126 - 0.174 - 0.136 - 0.138 -

gpi,t - 0.089 - 0.126 - 0.103 - 0.131

hi,t 0.279 0.294 - - 0.276 0.289 - -

hsi,t - - -0.168 0.604 - - -0.095 0.640

li,t 0.048 0.059 -0.121 -0.310 0.065 0.080 -0.084 -0.328

See Table 3.1 for the description of variables.

Table 3.14: Spatial MLE estimates

Nr. of factors Combination 1 Combination 2 Combination 3 Combination 4

1 -0.010 0.005 -0.051 -0.045

2 0.167** 0.176** 0.136** 0.143**

3 0.185** 0.183** 0.142** 0.151**

4 0.004 0.003 -0.045 -0.048

5 -0.020 -0.022 -0.041 -0.044

6 -0.220** -0.218** -0.038 -0.037

** denotes significance at the 5% level. The dependent variable is yi,t . See Table 3.10 for

the description of the Combinations 1 to 4.
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Chapter 4

Conclusions and proposed future
research

This thesis consists of three self-contained chapters on non-stationary panel data

analysis. All three essays concentrate on both cointegration and unit root analysis

in panel data while allowing for the presence of cross-section dependence through

the specification of an approximate common factor model.

In the first chapter we propose several panel data unit root tests that allow for

multiple structural breaks and common factors to control for the presence of cross-

section dependence. The test statistics are based on the use of GLS detrending pro-

cedure and the structural breaks are allowed under both the null and the alternative

hypotheses. The model specification considers both known and unknowns breaks.

This study derives the limiting distribution of the individual unit root test statistics

for the idiosyncratic disturbance term and the common factors. Further, we also

show that panel data unit root test statistics can be defined through the combination

of the individual test statistics of the idiosyncratic component. The performance of

the statistics that have been proposed is evaluated using a Monte Carlo simulation

experiment. The simulations show that the test statistics perform well for the cases

of known structural breaks. When the location of the structural breaks is not known

a priori the panel statistics suffer for under-rejection when the time series dimen-

sion is large. Finally, we apply the proposed tests to a panel data set of annual real

per capita GDP over the period 1870-2008 for 19 OECD developed countries. All

panel statistics rejected the null hypothesis of panel data unit root in favor of I(0)

stationarity for the idiosyncratic component of the real per capita GDP. However,

all unit root tests for the common factor cannot reject the null hypothesis of unit
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root.

In the second chapter we propose a new test statistic to estimate the cointe-

grating rank both in a unit-by-unit analysis and in a panel data framework. This

setup allows us to cover strong cross-section dependence cases, i.e., cases where

the time series of one individual system are cointegrated with times series of other

individual system (cross-cointegration), as well as cases where the factors appear

by construction due to model specification. The performance of the proposed tests

is investigated with Monte Carlo simulations. In general, the panel data based MSB

statistic provides better estimation of the number of stochastic trends present in each

individual system than the univariate one. Moreover, the simulations reveal that the

existence of common factors can lead to misleading conclusions even if the anal-

ysis is carried out at a unit-by-unit basis. This is relevant from an empirical point

of view considering that, in most cases, the cointegration analysis is conducted by

focusing on one country whose economic system is related to that of other countries

or ruled by international organizations such as in the case of the European Union.

Therefore, the theoretical proposal presented in this chapter has also a significant

empirical contribution. We then illustrate the application of the techniques to two

popular empirical models: the money demand model and the monetary exchange

model. The statistics applied to the money demand model, which consists of annual

observations that covers the period 1957 to 1996 for nineteen countries, detect two

stochastic trends. For the monetary exchange model, which consists of quarterly

observations that covers the first quarter of 1973 up to the first quarter of 1997 for

nineteen countries, the statistics detect three stochastic trends.

In the third chapter of this dissertation we present an empirical application.

More exactly, we investigate the cointegrating relation between the output, phys-

ical capital, human capital, public capital, and labor. We consider annual data for

seventeen Spanish regions observed over the period from 1964 to 2000. The empir-

ical analysis shows that the variables involved in the model are I(1) non-stationary,

so that the application of panel data cointegration techniques are required to obtain

consistent estimates of the parameters of interest. The results reveal evidence of

panel data cointegration among the variables of the model up to the presence of

I(1) non-stationary common factors. Consequently, the observable economic vari-

ables alone do not generate an equilibrium relationship, we need to consider the,

otherwise, expected global stochastic common trends that defines the TFP of the

regions. The procedures applied in this chapter detect one or two cointegration

relations among output, physical capital, human capital, public capital (all in per
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worker terms) and labor, depending on the combination of variables that is used.

We then estimate the Spanish regional production function using Bai, Kao and Ng

(2009) and Kapetanios, Pesaran and Yamagata (2011) panel data cointegration esti-

mators. The results indicate that physical capital, human capital, public capital (all

in per worker terms) affect positively the Spanish productivity, whereas the negative

coefficient that has been obtained for the labor indicates the existence of decreasing

returns to scale. We also show that the Spanish regions suffer from weak spatial de-

pendence even after controlling for the strong cross-section dependence, although

the conclusions that we have obtained are robust to the presence of this form of

cross-section dependence and also to the functional form that is adopted for the

production function.

The main contribution of this thesis is allowing for the presence of cross-section

dependence through the specification of an approximate common factor model. We

take advantage of the recently developed non-stationary panel data analysis method-

ologies, in both single-equation and system-equations based framework, that are

general enough to permit cross-section dependence across the units of the panel.

Since the analysis of non-stationary panel data is still developing, we propose

some directions for future research. For example, the proposed panel unit root tests

based on the use of GLS detrending procedure in the first chapter can be extended

to cover the case when the breaks are not common to all cross-sections. Although

we allow mild heterogeneity of the break points across the units of the panel, in

the limit we impose that the break points are common. Future research could focus

on testing while relaxing this assumption. Also, it would be interesting in a future

study to extend the cointegration panel tests proposed in the second chapter to cover

the case of structural breaks, both known and unknown. In the second chapter,

the statistics do not take into consideration the structural breaks. Therefore, this

extension would make an original future work. And finally, we would like to explore

the fractional integration in non-stationary panel data in the presence of structural

breaks and cross-section dependence. So far we assume that a process can be I(0)

stationary versus I(1) non-stationary but in the real world this might not be the case

– see for example, real exchange rates, CPI or unemployment that show fractional

values of integration. Therefore, we could develop more realistic panel data models

that would help the empirical researchers make better economic decisions.
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Appendix A

Mathematical Appendix for the First
Chapter

A.1 Proof of Theorem 1.1

The proof focuses on Model II, since it is the most general model specification that

we consider. The proof for the other models follows this one. The GLS detrended

variable can be written as:

ỹi = yi− zi
(
λ 0

i
)

Di,T
(
Di,T zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)

Di,T
)−1

Di,T zᾱ ′
i
(
λ 0

i
)

yᾱ
i

= yi− zi
(
λ 0

i
)

Di,T
(
Di,T zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)

Di,T
)−1

Di,T zᾱ ′
i
(
λ 0

i
)
(yi− ᾱ iyi,−1)

= yi−Ai (yi− ᾱyi,−1)

= Fδi−AiF ᾱδi + ei−Aieᾱ
i ,

where Ai = zi
(
λ 0

i
)

Di,T
(
Di,T zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)

Di,T
)−1 Di,T zᾱ ′

i
(
λ 0

i
)

and

DT = diag{D1,T ,D2,T} = diag(1, ...,1,T−1/2, ...,T−1/2). For subsequent develop-

ments, we define the partitioned vector of regressors zi,t
(
λ 0

i
)

as

zi,t
(
λ 0

i
)
=
(

z′i,t,1
(
λ 0

i
)
,z′i,t,2

(
λ 0

i
))′

. The term zi,t,1
(
λ 0

i
)

captures the m+ 1 regres-

sors corresponding to the constant and the impulse dummy variables, while zi,t,2
(
λ 0

i
)

collects the m+1 trending regressors. Further, we also define

zᾱ
i,t
(
λ 0

i
)
= (zᾱ ′

i,t,1

(
λ 0

i
)
,zᾱ ′

i,t,2

(
λ 0

i
)
)′ as the quasi-differenced zi,t

(
λ 0

i
)
.

Taking the first difference we obtain the usual common factor representation

xi = f δi +ξi,
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where xi = Δỹi,

f = ΔF−Δzi
(
λ 0

i
)

Di,T
(
Di,T zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)

Di,T
)−1 Di,T zᾱ ′

i
(
λ 0

i
)

F ᾱδi and

ξi = Δei−Δzi
(
λ 0

i
)

Di,T
(
Di,T zᾱ ′

i
(
λ 0

i
)

zᾱ
i
(
λ 0

i
)

Di,T
)−1 Di,T zᾱ ′

i
(
λ 0

i
)

eᾱ
i .

We can apply the method of principal components as in Bai and Ng (2004) and

estimate ft , δi and ξi,t that are used to construct the unit root statistic which is based

on the cumulative sum of the residuals

ẽi,t =
t

∑
j=2

ξ̃ i, j

Let us first focus on the idiosyncratic component ξi,t . Subtracting xi,t = f̃ ′t δ̃ i + ξ̃ i,t

from xi,t = f ′t δi +ξi,t yields

ξ̃ i,t = ξi,t + f ′t δi− f̃ ′t δ̃ i.

Following Bai and Ng (2004) and Bai and Carrion-Silvestre (2009), we can

rewrite this equation as

ξ̃ i,t = ξi,t + f ′t HH−1δi− f̃ ′t H−1δi + f̃ ′t H−1δi− f̃ ′t δ̃ i

= ξi,t +
(
H ′ ft− f̃t

)′H−1δi− f̃ ′t
(

δ̂ i−H−1δi

)
= ξi,t−η ′t H

−1δi− f̃ ′t κi, (A.1.1)

where ηt =
(

f̃t−H ′ ft
)

and κi =
(

δ̃ i−H−1δi

)
.

Using Lemma 3 and C1 from Bai and Ng (2004) and Theorem 2 from Bai and

Carrion-i-Silvestre (2009), with the condition that N,T → ∞, we obtain

T−1/2

∥∥∥∥∥
t

∑
j=2

η ′jH
−1δi

∥∥∥∥∥ = Op
(
C−1

NT
)

T−1/2

∥∥∥∥∥
t

∑
j=2

f̃ jκi

∥∥∥∥∥ = Op
(
C−1

NT
)
,

where CNT = min
[√

N,
√

T
]
.

We define the cumulative sum residuals as ẽi,t = ∑t
j=2 ξ̃ i, j and rewrite the pre-

vious equation as

T−1/2ẽi,t = T−1/2
t

∑
j=2

ξi, j +Op
(
C−1

NT
)
.

130



Note that ξi,t =Δei,t−Δzi,t
(
λ 0

i
)
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i
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λ 0

i
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zᾱ
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i
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)

eᾱ
i .

Thus,
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t
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ξi, j = T−1/2
t

∑
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The second terms is op (1) since T−1/2ei,1
p→ 0. Further,

T−1/2zi,t
(
λ 0

i
)(

zᾱ ′
i,1

(
λ 0

i
)

zᾱ
i,1

(
λ 0

i
))−1

zᾱ ′
i,1

(
λ 0

i
)

eᾱ
i

p→ 0 ∀t and T−1/2Di,T,2zᾱ
i,2

(
λ 0

i
)→

z2 (r) uniformly in r ∈ [0,1], where

z2 (s)= (s,
(
s−λ 0

1

)
1
(
s > λ 0

1

)
, . . . ,

(
s−λ 0

m
)

1
(
s > λ 0

m
)
)′. Taking into account these

elements, we can see that as N,T → ∞ with N/T → 0, we obtain

T−1/2
t

∑
j=2

ξi, j ⇒ σi

[
Wi,c (s)− z2 (s)A

(
λ 0
)−1

V̄i
(
λ 0
)]

,

where

A(λ 0) =

⎡
⎢⎢⎢⎢⎣

a
(
λ 0

0 ,λ
0
0

)
a
(
λ 0

0 ,λ
0
1

) · · · a
(
λ 0

0 ,λ
0
m
)

a
(
λ 0

1 ,λ
0
1

) · · · a
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λ 0

1 ,λ
0
m
)

. . .
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a
(
λ 0

m,λ 0
m
)

⎤
⎥⎥⎥⎥⎦ ,

with elements defined as

a
(
λ 0

i ,λ
0
j
)
=

1

6

(
1−λ 0

j
)[

6c̄
(
λ 0

i −1
)
+ c̄2

(
λ 0

j
(
3λ 0

i −1
)−3λ 0

i −λ 02

j +2
)
+6

]
,

with λ 0
i < λ 0

j , ∀i, j = 0,1, . . . ,m, where λ 0
0 = 0. Finally,

V̄i
(
λ 0
)
=
(
Vi
(
λ 0

0

)
, . . . ,Vi

(
λ 0

m
))′

with

Vi
(
λ 0

j
)

=
(
1+λ 0

j c̄
)
((Wi(1)−Wi(λ 0

j ))+(c− c̄)
∫ 1

λ 0
j

Wi,c (s)ds)

−c̄
∫ 1

λ 0
j

sdWi (s)− (c− c̄) c̄
∫ 1

λ 0
j

sWi,c (s)ds.
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Consequently,

T−1/2ẽi,t ⇒ σi

[
Wi,c (s)− z2 (s)A

(
λ 0
)−1

V̄i
(
λ 0
)]

≡ σiVi,c,c̄
(
s,λ 0

)
,

and by the Functional Central Limit Theorem (FCLT) we have that

MSBGLS
i ⇒

(∫ 1

0
Vi,c,c̄

(
s,λ 0

)2
ds
)1/2

.

The limit distribution of the other two test statistics follows easily from the devel-

opments above. Further, note that the limiting distribution for Model I is the same

as the ones derived for Model II since the impulse dummies – i.e., the elements

collected in zᾱ
i,1 – are asymptotically negligible, as shown above.

Let us now focus on the estimated common factors F̃t . From f̃t = H ft + vt we

have in the limit

F̃t = H
t

∑
s=2

fs +
t

∑
s=2

vs

= H
t

∑
s=2

(ΔFs−Δzs
(
λ 0
)

DT
(
DT zᾱ ′ (λ 0

)
zᾱ (λ 0

)
DT
)−1

(A.1.2)

DT zᾱ ′ (λ 0
)

F ᾱ δ̄
)
+

t

∑
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[
Ft−F1− zt

(
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)

DT
(
DT zᾱ ′ (λ 0

)
zᾱ (λ 0

)
DT
)−1

DT zᾱ ′ (λ 0
)

F ᾱ δ̄

+z1

(
λ 0
)

DT
(
DT zᾱ ′ (λ 0

)
zᾱ (λ 0

)
DT
)−1

DT zᾱ ′ (λ 0
)

F ᾱ δ̄
]

+Vt ,

where we have defined zt
(
λ 0
)

as the vector of regressors defined by the use of

T 0
j = E

(
T 0

i, j

)
= N−1 ∑N

i=1 T 0
i, j, j = 0,1, . . . ,m. Further, note that in (A.1.2) we have
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δ̄ , provided that it holds that

N−1
N

∑
i=1

F̃t = N−1
N

∑
i=1

[
H

t

∑
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(
ΔFs−Δzs
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)−1
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DT
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)−1
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+
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vs.

Then, we can define F̃d
t = HFd

t +V d
t , where the d superscript denotes that the

variable has been detrended. In our case, the detrending is based on the use of the

quasi-GLS procedure described above, so that we define F̃d
t = F̃t− z′t

(
λ 0
)

ψ̂ where

zt
(
λ 0
)

is the vector of regressors defined by the use of T 0
j =E

(
T 0

i, j

)
=N−1 ∑N

i=1 T 0
i, j

and ψ̂ is the matrix of parameters that has been obtained using the GLS detrending

procedure. Using these elements and the developments above, we have

(
1/
√

T
)

F̃d
t = H

(
1/
√

T
)

Fd
t +Op

(
C−1

NT
)
,

and the proof of the limiting distribution of the M-type unit root test statistics for

the case of just one common factor (r = 1) follows the one for the idiosyncratic

component replacing ei,t by F̃d
t .

When we have more than one common factor (r > 1) we can proceed to apply

the MQ tests in Bai and Ng (2004) in order to know how many I(1) and I(0) common

factors we have. In this case, the limiting distribution of the MQ test statistics

is given in Bai and Ng (2004) but using GLS detrended-based Brownian motions

functionals instead of OLS-detrended Brownian motions ones.
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Appendix B

Mathematical Appendix for the
Second Chapter

B.1 Proof of Theorem 2.1

B.1.1 The intercept case

Let us first concentrate on the part of the proof that deals with the idiosyncratic

component. Note that the estimated difference of the idiosyncratic stochastic term

is:

ẑi,t = zi,t +λi ft− λ̂ i f̂t .

Following Bai and Ng (2004), we can express the model as

ẑi,t = zi,t +λiH−1H ft−λiH−1 f̂t +λiH−1 f̂t− λ̂ i f̂t

= zi,t +λiH−1
(
H ft− f̂t

)−(λ̂ i−λiH−1
)

f̂t

= zi,t +λiH−1vt−di f̂t , (B.1.1)

where vt =
(
H ft− f̂t

)
and di =

(
λ̂ i−λiH−1

)
. Let us define the partial sum pro-

cess using the estimated residuals as êi,t = ∑t
j=2 ẑi, j = ∑t

j=2

(
[M Δêi] j

)′
, where [·] j

denotes the j-th row of the matrix between brackets. The idiosyncratic disturbance

terms can be expressed as êi,t = ei,t +Ai,t with Ai,t =−ei,1+λiH−1Vt−diF̂t . Denote

by êi,t (l) the l-th element of the (k×1)-vector êi,t , l = 1, . . . ,k . If êi,t (l)∼ I (0) then
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T−2 ∑T
t=2 ê2

i,t (l) = Op
(
T−1

)
, whereas if êi,t (l)∼ I (1) then we have

T−2
T

∑
t=2

ê2
i,t (l) = T−2

T

∑
t=2

e2
i,t (l)+2T−2

T

∑
t=2

ei,t (l)Ai,t (l)+T−2
T

∑
t=2

A2
i,t (l)

= I + II + III.

Part I is Op (1) and, from Bai and Ng (2004), III is Op
(
C−2

NT
)

for all i, with CNT =

min
[√

N,
√

T
]
. Let us now focus on II:

T−2
T

∑
t=2

ei,t (l)Ai,t (l) = −T−2
T

∑
t=2

ei,t (l)ei,1 (l)+T−2
T

∑
t=2

ei,t (l)λi (l)H−1Vt

−T−2
T

∑
t=2

ei,t (l)di (l) F̂t

= a+b+ c,

where λi (l) and di (l) denote the l-th row of the (k×q) matrices λi and di. Element

a is Op

(
T−1/2

)
, while b is

‖b‖ ≤
(

T−2
T

∑
t=2

‖ei,t (l)λi (l)‖2

)1/2(
T−2

T

∑
t=2

∥∥H−1Vt
∥∥2

)1/2

= Op (1)Op

(
N−1/2

)
= Op

(
C−1

NT
)
.

Finally, element c

‖c‖ ≤
(

T−2
T

∑
t=2

‖ei,t (l)di (l)‖2

)1/2(
T−2

T

∑
t=2

∥∥F̂t
∥∥2

)1/2

= Op

(
T−1/2

)
Op (1) = Op

(
T−1/2

)
,

given that di (l) = Op

(
min

[
N,T−1/2

])
– see Lemma 1(c) in Bai and Ng (2004).

Taking all these elements together we have that II = Op

(
T−1/2

)
+Op

(
C−1

NT
)
+

Op

(
T−1/2

)
= Op

(
C−1

NT
)
. Consequently, if êi,t (l)∼ I (1)

T−2
T

∑
t=2

ê2
i,t (l) = T−2

T

∑
t=2

e2
i,t (l)+Op

(
C−1

NT
)
.

136



For subsequent results we note that Bai and Ng (2010) show that averaging part II

across N gives N−1 ∑N
i=1 T−2 ∑T

t=2 ei,t (l)Ai,t (l) = Op
(
C−2

NT
)

provided that N/T →
0.

We can define the orthogonal matrix A = [A1 : A2] with A1 a (k× r) matrix and

A2 a (k×m) matrix, m = k− r, such that the first r elements of the rotated vector

êA
i,t = A′êi,t =

(
(A′1êi,t)

′ ,(A′2êi,t)
′)′

are I(0) and the other m elements are I(1). Using

this rotation we have that T−1/2A′1êi,t = op (1) – provided that A′1êi,t defines the

stationary relations – and T−1/2A′2êi,t = Op (1) – given that A′2êi,t defines the I(1)

stochastic trends.1 Therefore, under the null hypothesis that there are m stochastic

trends we have that as T → ∞

T−1Q
êA2

i êA2
i

= T−2êA2′
i êA2

i = T−2

(
êA2C

′
i

)′

êA2C
′

i

⇒ Ω1/2
22,i

∫ 1

0
Wi (s)Wi (s)

′ ds Ω1/2
22,i,

where Wi (s) denotes an m-vector of independent standard Brownian motions with

Wi (0) = 0. Therefore, using these elements the limiting distribution of the multi-

variate MSB statistic is given by:

MSBμ,i (m) = ηmin

(
T−1Q

êA2
i êA2

i
Ω̂−1

ΔêA2
i ΔêA2

i

)

= ηmin

(
T−1Ω̂−1/2

ΔêA2
i ΔêA2

i

Q
êA2

i êA2
i

Ω̂−1/2

ΔêA2
i ΔêA2

i

)

⇒ ηmin

(∫ 1

0
Wi (s)Wi (s)

′ ds
)
,

provided that Ω̂
ΔêA2

i ΔêA2
i

p→Ω
ΔeA2

i ΔeA2
i

, where
p→ denotes convergence in probability.

Note that we do not observe A2, which is estimated as the matrix of the eigen-

vectors associated with the largest m eigenvalues of T−2 ∑T
t=1 êi,t ê′i,t . Based on

Stock and Watson (1988), Bai and Ng (2004), pp. 1165, show that Â2
p→ A2C′

for some matrix C, so that Â′2êi,t = CA′2êi,t +
(
Â2−A2C′

)′
êi,t = CA′2êi,t , given that(

Â2−A2C′
) p→ 0. Let us define Σ22,i = CΩ22,iC′ and Σ̂22,i a consistent estimate of

Σ22,i. Then T−1Σ̂−1/2

ΔêÂ2
i ΔêÂ2

i

Q
êÂ2

i êÂ2
i

Σ̂−1/2

ΔêÂ2
i ΔêÂ2

i

has the same eigenvalues as

T−1Ω̂−1/2

ΔêA2
i ΔêA2

i

Q
êA2

i êA2
i

Ω̂−1/2

ΔêA2
i ΔêA2

i

.

The proof for the MSB statistic computed on the estimated common factors

1It should be understood that when m = k then A = A2.
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resembles the developments above using the result that T−1/2F̂t = H T−1/2Ft +

Op
(
C−1

NT
)

– see Lemma B.2(i) in Bai and Ng (2004, pp. 1158) – so that

T−2
T

∑
t=2

F̂2
t = H2 T−2

T

∑
t=2

F2
t +Op

(
C−1

NT
)
,

and

MSBF
μ (q1) = ηmin

(
T−1QF̂A2 F̂A2 Ω̂−1

ΔF̂A2ΔF̂A2

)
⇒ ηmin

(∫ 1

0
W (s)W (s)′ ds

)
,

where W (s) is a (q1×1) vector of independent standard Brownian motions. As

before, we do not observe A2, which is estimated as the matrix of the eigenvec-

tors associated with the largest q1 eigenvalues of T−2 ∑T
t=1 F̂t F̂

′
t . Since Â2

p→ A2C′

for some matrix C, so that Â′2F̂t = CA′2F̂t +
(
Â2−A2C′

)′
F̂t = CA′2F̂t , given that(

Â2−A2C′
) p→ 0. Then T−1QF̂Â2 F̂ Â2

Ω̂−1

ΔF̂ Â2ΔF̂ Â2
has the same eigenvalues as T−1

QF̂A2 F̂A2 Ω̂−1

ΔF̂A2ΔF̂A2
.

B.1.2 The linear time trend case

As above, we first focus on the idiosyncratic component. The proof for this de-

terministic component follows the one for the intercept case, but now êi,t = ei,t −
t−1
T−1ei,T +Ai,t with Ai,t =−ei,1+

t−1
T−1ei,1+λiH−1Vt−diF̂t =− T−t

T−1ei,1+λiH−1Vt−
diF̂t . If êi,t (l) ∼ I (0) then T−2 ∑T

t=2 ê2
i,t (l) = Op

(
T−1

)
, whereas if êi,t (l) ∼ I (1)

then we have

T−2
T

∑
t=2

ê2
i,t (l) = T−2

T

∑
t=2

(
ei,t (l)− t−1

T −1
ei,T (l)

)2

+2T−2
T

∑
t=2

(
ei,t (l)− t−1

T −1
ei,T (l)

)
Ai,t (l)

+T−2
T

∑
t=2

A2
i,t (l)

= I + II + III.
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Part I is Op (1) and, as before, III is Op
(
C−2

NT
)

for all i. Part II is given by

II = −T−2
T

∑
t=2

T − t
T −1

ei,t (l)ei,1 (l)+T−2
T

∑
t=2

ei,t (l)λi (l)H−1Vt

−T−2
T

∑
t=2

ei,t (l)di (l) F̂t +T−2
T

∑
t=2

T − t
T −1

t−1

T −1
ei,T (l)ei,1 (l)

−T−2
T

∑
t=2

t−1

T −1
ei,T (l)λi (l)H−1Vt +T−2

T

∑
t=2

t−1

T −1
ei,T (l)di (l) F̂t

= a+b+ c+d + e+ f .

The first component is a = Op

(
T−1/2

)
= Op

(
C−1

NT
)
, and from the previous proof,

b = Op
(
C−1

NT
)

and c = Op
(
C−1

NT
)
. Consider d

d = (T −1)−2 T−2
T

∑
t=2

(−t2 +(T +1) t−T
)

ei,T (l)ei,1 (l)

= Op

(
T−1/2

)
+Op

(
T−1/2

)
+Op

(
T−3/2

)
= Op

(
C−1

NT
)
.

Component e is given by

‖e‖ ≤
(

T−2
T

∑
t=2

∥∥∥∥ t−1

T −1
ei,T (l)λi (l)

∥∥∥∥
2
)1/2(

T−2
T

∑
t=2

∥∥H−1Vt
∥∥2

)1/2

= Op (1)Op

(
N−1/2

)
= Op

(
C−1

NT
)
.

Finally, component f is

‖ f‖ ≤
(

T−2
T

∑
t=2

∥∥∥∥ t−1

T −1
ei,T (l)di (l)

∥∥∥∥
2
)1/2(

T−2
T

∑
t=2

∥∥F̂t
∥∥2

)1/2

= Op

(
T−1/2

)
Op (1) = Op

(
C−1

NT
)
.

Therefore, part II = Op
(
C−1

NT
)
, so that if êi,t (l)∼ I (1)

T−2
T

∑
t=2

ê2
i,t (l) = T−2

T

∑
t=2

(
ei,t (l)− t−1

T −1
ei,T (l)

)2

+Op
(
C−1

NT
)
.

As already mentioned above, Bai and Ng (2010) show that averaging part II across

N gives N−1 ∑N
i=1 T−2 ∑T

t=2 ei,t (l)Ai,t (l) = Op
(
C−2

NT
)

provided that N/T → 0.

As before, we define êA
i,t = A′êi,t =

(
(A′1êi,t)

′ ,(A′2êi,t)
′)′

, with T−1/2A′1êi,t =
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op (1) and T−1/2A′2êi,t =Op (1) provided that A′2êi,t defines the I(1) stochastic trends.

Then,

T−1/2A′2êi,t ⇒Ω1/2
22,i (Wi (s)− sWi (1))

′ ,

which implies that

T−1Q
êA2

i êA2
i

= T−2êA′2
i êA2

i

⇒ Ω1/2
22,i

∫ 1

0
Vi (s)Vi (s)

′ ds Ω1/2
22,i,

where Vi (s) =Wi (s)− sWi (1) is a vector of independent Brownian bridges. There-

fore,

MSBτ,i (m)⇒ ηmin

(∫ 1

0
Vi (s)V (s)′i ds

)
,

given that Ω̂
ΔêA2

i ΔêA2
i

p→ Ω
ΔeA2

i ΔeA2
i

. As for proof for the intercept case, we have to

bear in mind that we do not observe A2, but we estimate A2 as the matrix of the

eigenvectors associated with the largest m eigenvalues of T−2 ∑T
t=1 êi,t ê′i,t . Given

that
(
Â2−A2C′

) p→ 0, we obtain that T−1Σ̂−1/2

ΔêÂ2
i ΔêÂ2

i

Q
êÂ2

i êÂ2
i

Σ̂−1/2

ΔêÂ2
i ΔêÂ2

i

has the same

eigenvalues as

T−1Ω̂−1/2

ΔêA2
i ΔêA2

i

Q
êA2

i êA2
i

Ω̂−1/2

ΔêA2
i ΔêA2

i

.

The proof for the MSB statistic computed on the estimated common factors is

similar given the result that T−1/2F̂t = H T−1/2
[
Ft− FT−F1

T−1 (t−1)
]
+Op

(
C−1

NT
)

–

see Bai and Ng (2004, pp. 1172) – so that

T−2
T

∑
t=2

F̂2
t = H2 T−2

T

∑
t=2

[
Ft− FT −F1

T −1
(t−1)

]2

+Op
(
C−1

NT
)
,

and

MSBF
τ (q1) = ηmin

(
T−1QF̂A2 F̂A2 Ω̂−1

ΔF̂A2ΔF̂A2

)
⇒ ηmin

(∫ 1

0
V (s)V (s)′ ds

)
,

where V (s) =W (s)− sW (1) is a (q1×1) vector of independent Brownian bridges.

We estimate A2 as the matrix of the eigenvectors associated with the largest q1

eigenvalues of T−2 ∑T
t=1 F̂t F̂

′
t . Since Â2

p→ A2C′ for some matrix C, so that Â′2F̂t =

CA′2F̂t +
(
Â2−A2C′

)′
F̂t = CA′2F̂t , given that

(
Â2−A2C′

) p→ 0. Then T−1QF̂Â2 F̂ Â2

Ω̂−1

ΔF̂ Â2ΔF̂ Â2
has the same eigenvalues as T−1QF̂A2 F̂A2 Ω̂−1

ΔF̂A2ΔF̂A2
.
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B.2 Proof of Theorem 2.2

We focus on the MSB statistic computed for the idiosyncratic component, but the

proof entirely applies to the statistic computed using the common factors. Let us

consider the null hypothesis that there are m = k−m stochastic trends. From the

proof of Theorem 2.1 we have that T−1A′1e′ieiA1 = Op (1), T−1A′1e′ieiA2 = Op (1)

and T−2A′2e′ieiA2 = Op (1) , so that T−2A′1e′ieiA1 = Op
(
T−1

)
and T−2A′1e′ieiA2 =

Op
(
T−1

)
. Consequently, under the alternative hypothesis that there are l < m

stochastic trends the rank of the matrix T−1Q
êA2

i êA2
i

will be l < m. Using these

elements, we can see that the cross-products involving I(0) stochastic processes in

T−1Q
êA2

i êA2
i

tend to zero at rate Op
(
T−1

)
.

Let us now focus on the estimate of the long-run covariance matrix. Note that

under both the null and the alternative hypotheses T−1ε̂ ′iε̂ i = O(1), with T−1ε̂ ′iε̂ i
p→ Σεi . Since all roots of the determinant of

(
I− Γ̂i,pi (L)

)
lie outside the unit cir-

cle interval, we can define Ξ̂i,∞ (L) =
(
I− Γ̂i,pi (L)

)−1
, with Ξi,∞ (L) = (I +Ξi,1L

+Ξi,2L2+ · · ·) and where the sequence of matrix coefficients {Ξi,s}∞
s=0 is absolutely

summable. Then, Ξi,∞ (1)< ∞ so that Ω̂
ΔêA2

i ΔêA2
i

p→ Ξ′i,∞ (1)ΣεiΞi,∞ (1) = Ω
ΔeA2

i ΔeA2
i

.

Therefore, the long-run covariance matrix estimator converges to a positive definite

matrix under both the null and the alternative hypotheses – note that this result can

be seen as the generalization of the one in Perron and Ng (1996) and Stock (1999).

Finally, note that under the alternative hypothesis that there are l < m stochas-

tic trends, rank
(

T−1Q
êA2

i êA2
i

Ω̂−1

ΔêA2
i ΔêA2

i

)
= l, where the elements that cause rank

deficiency tend to zero at rate Op
(
T−1

)
. This proves the consistency of the MSB

statistic under the alternative hypothesis.

B.3 Proof of Theorem 2.3

Let us first focus on the intercept model specification. Note that for any real sym-

metric (k× k) matrix, say Bi =
1

T 2 e′iei, it is true that ηmin
i (Bi)≤ T−2 ∑T

t=2 e2
i,t (l) for

l = 1, . . . ,k. Using this inequality we have

η̂ i,1−ηi,1 ≤ T−2
T

∑
t=2

ê2
i,t (l)−T−2

T

∑
t=2

e2
i,t (l) = Op

(
C−1

NT
)
, (B.3.1)
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where η̂ i,1 = ηmin
(

1
T 2 ê′iêi

)
and ηi,1 = ηmin

(
1

T 2 e′iei

)
, given that T−2 ∑T

t=2 ê2
i,t (l) =

T−2 ∑T
t=2 e2

i,t (l)+Op
(
C−1

NT
)
. Therefore,

η̂ i,1 ≤ ηi,1 +Op
(
C−1

NT
)
. (B.3.2)

The same result is achieved for the time trend specification, but with T−2 ∑T
t=2 e2

i,t (l)

replaced by T−2 ∑T
t=2

(
ei,t (l)− t−1

T−1ei,T (l)
)2

.

Bai and Ng (2010) show that averaging the Op
(
C−1

NT
)

component in (B.3.1) and

(B.3.2) across N produces a term that is Op
(
C−2

NT
)

provided that N/T → 0 – see the

order of magnitude of part II in Equation (A.1) of Bai and Ng (2010). Consequently,

under the null hypothesis that there are m stochastic trends

PMSBZ
j (m) =

√
N(MSB j (m)−E(MSB j (m)))√

Var(MSB j (m))

=

√
N
[
N−1 ∑N

i=1

(
ηi,1 +Op

(
C−1

NT
))−E(MSB j (m))

]
√

Var(MSB j (m))

=

√
N
[
N−1 ∑N

i=1 ηi,1−E(MSB j (m))
]

√
Var(MSB j (m))

+

√
N

min [N,T ]

=

√
N
[
N−1 ∑N

i=1 ηi,1−E(MSB j (m))
]

√
Var(MSB j (m))

+op (1) ,

for j = {μ,τ}. Therefore, as T → ∞, N → ∞, with N/T → 0, and assuming finite

second moments of the random variables characterized as Brownian motion func-

tionals ϒ≡
(

ηmin
(∫ 1

0 Wi (s)Wi (s)
′ ds
)

, ηmin
(∫ 1

0 Vi (s)Vi (s)
′ ds
))′

, PMSBZ
j (m)⇒

N (0,1), j = {μ,τ}, by the Lindberg-Levy Central Limit Theorem.

Let us now focus on the panel data statistics that pool the p-values of the indi-

vidual statistics. To avoid unnecessary confusions, we avoid the use of the subscript

i that denotes the time series in the panel data here. First, we note that the p-value is

given by the cumulated distribution function, which using Imhof’s (1961) formula

it can be expressed as – see Tanaka (1996), eq. (6.13):

F (η̂1) =
1

2
− 1

π

∫ ∞

0

1

θ
Im
[
e−iθη̂1φ j (θ)

]
dθ , (B.3.3)

where i =
√−1, Im [·] takes the imaginary part of the argument, and φ j (θ) denotes

the characteristic function, j = {μ,τ}, where in our case φμ (θ) =
(

sin
√

2iθ√
2iθ

)−1/2
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and φτ (θ) =
(

cos
√

2iθ
)−1/2

– see Tanaka (1996), pp. 111 and 112. Further,

F (η̂1) =
1

2
+

1

π

∫ ∞

0

1

θ
φ j (θ)sinθη̂1dθ

=
1

2
+

1

π

∫ ∞

0

1

θ
φ j (θ)sin

[
θ
(
η1 +Op

(
C−1

NT
))]

dθ .

Note that we can write

sin
[
θη1 +θOp

(
C−1

NT
)]

=
∞

∑
n=1

(−1)n−1

(2n−1)!

[
θη1 +θOp

(
C−1

NT
)]2n−1

=
[
θη1 +θOp

(
C−1

NT
)]

+
−1

3!

[
θη1 +θOp

(
C−1

NT
)]3

+
1

5!

[
θη1 +θOp

(
C−1

NT
)]5

+ · · ·

=
[
θη1 +θOp

(
C−1

NT
)]

+
−1

3!

[
(θη1)

3 +3(θη1)
2 θOp

(
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so that

F (η̂1) =
1

2
+

1

π

∫ ∞

0

1

θ
φ j (θ)sinθη1dθ +Op

(
C−1

NT
)

= ϕ +Op
(
C−1

NT
)
,

where ϕ denotes the p-value of the statistic. The statistic given in (2.4.3) takes the

form

PMSBC
j (m) =

−2∑N
i=1 ln ϕ̂ i−2N√

4N
.

The term ∑N
i=1 ln ϕ̂ i that appears in the numerator of the statistic

N

∑
i=1

ln ϕ̂ i = ln

(
N

∏
i=1

(
ϕi +Op

(
C−1

NT
)))

= ln

(
N

∏
i=1

ϕi +Op
(
C−1

NT
))

,
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which in the limit converges to ln

(
N
∏
i=1

ϕi

)
= ∑N

i=1 lnϕi. Consequently, as T → ∞,

N → ∞ and N/T → 0, the PMSBC
j (m) statistic converges to the standard Normal

distribution. Theorem 2.3 has been proved.
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Appendix C

Appendix for the Third Chapter

The description of the variables that are used in the database is the following:

• Yi,t = the output, measured by GVA at factor cost of region i in the year t

at 1980 constant prices, from the BD.MORES database, Spanish Ministry of

Finance and Public Administrations.

• Ki,t = the stock of private capital of region i in the year t at 1980 constant

prices, from the Stock de Capital database, IVIE.

• Gi,t = the stock of total public capital of region i in the year t at 1980 constant

prices, from the Stock de Capital database, IVIE.

• GPi,t = the stock of productive public capital of region i in the year t at 1980

constant prices, from the Stock de Capital database, IVIE.

• Hi,t = the stock of human capital, measured as a share of the employed popu-

lation with secondary and university education of region i in the year t, from

the Stock de Capital Humano database, IVIE.

• HSi,t = the stock of human capital, measured as an average years of school-

ing, from the Stock de Capital Humano database, IVIE, and Serrano (1996).

• Li,t = labor, measured as the employed population of region i in the year t,

from the Stock de Capital Humano database, IVIE.
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