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Introduction

Differential equations are a fundamental tool in the description of physical phenom-
ena through mathematical models that cover almost any area of human knowledge.
The theoretical development of the Theory of Ordinary Differential Equations began
in 1675 with Isaac Newton (1642–1727) and Gottfried W. von Leibniz (1646–1716).

The main concern of mathematicians during the 17th and 18th century was
focused primarily on integration of differential equations by means of elementary
functions. Due to the works of several great mathematicians, all known elementary
methods for solving first order differential equations had been found practically
by the end of the 17th century. Many differential equations of second order were
derived, in the beginning of the 18th century, as models for problems in classical
Mechanics. Also other phenomena led to differential equations of third order.

In the middle of the 19th century, Joseph Liouville (1809-1882) showed the
impossibility of expressing the general solution of certain differential equations by a
combination of elementary functions or Liouville functions. Hence, a new approach
to the study of differential equations should be developed.

The qualitative theory of differential equations was born at the end of the 19th
century with the works of Henri Poincaré (1854–1912) [89] and Aleksandr M. Lya-
punov (1857–1918) [70]. Its aim consists in obtaining the local and global behavior
of the solutions without having them explicitly. The main goal of the qualitative
theory is the topological description of properties and configurations of solutions of
differential systems in the whole space.

When restricted to the planar case, Poincaré showed in the second part of [89],
that differential equations can have limit cycles: isolated periodic solutions in the set
of all periodic solutions, see also [90]. They strongly attracted Poincaré’s attention
and he developed several tools for their study, like the Poincaré’s map, the Annular
Region Theorem, the method of small parameters, etc. In addition, he noticed the
close relationship between the study of limit cycles and the global behavior of the
solutions of differential equations. Thus, the limit cycles became one of the most
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Introduction

interesting objects to be considered in the study of any differential equation. In 1900
David Hilbert stated the research on limit cycles in planar polynomial differential
equations as one of the most important problems for the 20th century, see [60]
and the interesting surveys [62, 65]. Afterwards, Steve Smale proposed the same
problem, but restricted to polynomial Liénard differential equations, as one of the
challenging problems for the 21st century [94].

In 1901, Ivar Bendixson (1861–1935) gave a rigorous proof of the Annular Region
Theorem and extended it to the well-known Poincaré–Bendixson Theorem on the
limit sets of trajectories of differential equations in a bounded region [11]. Moreover,
he first applied Green’s formula to establish the relationship between the existence
of a closed trajectory and the divergence of a planar vector field. This result was
improved in 1933 by Henri Dulac (1870-1955). The Bendixson–Dulac Theorem
has been generalized in the plane, see [50], and extended in several directions: for
proving non-existence of periodic orbits in higher dimensions [37, 66], or to control
the number of isolated periodic solutions of some non-autonomous Abel differential
equations, see for instance [6, 18].

In the 1930s, van der Pol and A. A. Andronov showed that the closed orbit in
the phase plane of a self-sustained oscillation occurring in a vacuum tube circuit
is a limit cycle as considered by Poincaré. After this observation, the existence,
non-existence, uniqueness and other properties of limit cycles have been studied ex-
tensively by mathematicians and physicists. Moreover, many mathematical models
from physics, engineering, chemistry, biology, economics, etc., were displayed as
plane autonomous systems with limit cycles.

According to the previous discussion we can distinguish two different, important
and interlinked directions in the research on differential equations: quantitative and
qualitative theories. While the objective of the first one is to find a solution either
in closed form or else by some process of approximation, the main goal of the second
one is to provide a qualitative description of the behavior of the solutions.

Essentially, we can distinguish three broad categories of techniques for analyzing
the quantitative and qualitative properties of nonlinear differential systems: asymp-
totic techniques (for instance the averaging method), heuristic techniques (Galerkin
methods, the harmonic balance method, etc.), and analytical mathematical results
about differential equations. In this thesis we will concentrate on the last two cate-
gories, carrying out a thorough study of the qualitative and quantitative properties
of the solutions of certain classes of planar ordinary differential equations.

This thesis is divided into two parts. The first one is concerned with both the
application and the theoretical basis of the Harmonic Balance Method (HBM). The
second part is devoted to the analytical analysis of bifurcation diagrams, phase
portraits, and limit cycles of some planar polynomial differential systems. Indeed,
the results of the second part of this work, address in the issues proposed by Cop-
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pel in his well-known paper [29], taking into account the results of [35]. Recall
that Coppel says: “Ideally one might hope to characterize the phase portraits of
quadratic systems by means of algebraic inequalities on the coefficients”. However,
in [35] the authors proved that there are bifurcation curves in quadratic systems
which are neither algebraic nor analytic. Therefore, not only for quadratic, but for
polynomial systems there is no hope of finding analytic or algebraic expressions of
the bifurcation curves. Similarly, for one-parameter families of polynomial vector
fields it will not be possible to obtain all the bifurcation values algebraically. Hence
to obtain rational upper and lower bounds of the non-algebraic bifurcation values
is a natural and interesting question.

Each chapter of this work is almost self-contained and has a detailed introduc-
tion. For this reason, we will only give a brief description of the ideas, methods,
and tools that we use and develop in our research, as well as a summary of the main
results that we have obtained.

The Harmonic Balance Method has been widely used to study periodic solu-
tions of nonlinear systems. We know that each periodic solution has a convergent
Fourier series representation. The so-called N -th order Harmonic Balance Method
(HBM) consists of approximating the periodic solutions of a nonlinear differential
equation by using truncated Fourier series of order N . This procedure allows to
transform an autonomous system of nonlinear ordinary differential equations into a
system of nonlinear algebraic equations whose unknowns are the coefficients of the
truncated Fourier series and the frequency of the sought periodic orbit. In most
of the applications this method is used to approach isolated periodic solutions, see
for instance [61, 74, 78, 76, 75]. Since the HBM also provides an approximation
of the angular frequency of the desired periodic solution, it can be also used to
get its period. Thus, the HBM can be applied to systems of differential equations
having a continuum of periodic orbits in order to obtain approximations to their
period function. This approach is also used for instance in [9, 10, 79]. To determine
the local or global behavior of this period function is an interesting problem in the
qualitative theory of differential equations either as a theoretical question or due to
its appearance in many situations of applied science.

In Chapter 1 we consider several families of potential non-isochronous systems.
The main goal is to show that some properties of their associated period functions,
like their global monotonicity or their local behavior near the critical point or in-
finity, are captured by the HBM. To this end, we use analytical tools to obtain the
local or global expression of the period function, we compute an approximation to
this function by applying the HBM and we see that they have similar Taylor series.
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For instance, in Section 1.7 we consider the family of polynomial potential systems{
ẋ = −y,
ẏ = x+ k x3 + x5, k ∈ R, (1)

which for some values of k has a global center, and whose associated period function
T has at most one oscillation [71, Thm. 1.1 (b)]. Here T (A) denotes the (minimal)
period of the periodic orbits of system (1) passing through the point (A, 0). Two
of the main results of this chapter are the following, which show that the first
approximation of the period function obtained by applying the first order HBM
captures and reproduces quite well the actual behavior of T (A).

Theorem 1.5. Consider system (1) with k ∈ (−2,∞). Let T be the period
function associated to the origin, which is a global center. Then:

(i) The function T is monotonous decreasing for k ≥ 0.

(ii) The function T starts increasing, until a maximum (a critical period) and
then decreases towards zero, for k ∈ (−2, 0).

(iii) At the origin

T (A) = 2π − 3

4
kπA2 +

57k2 − 80

128
πA4 +O(A6),

and at infinity

T (A) ∼
2B(1

6
, 1
2
)

√
3

1

A2
≈ 8.4131

A2
.

Proposition 1.6. Let T1(A) be the approximation of the period function T (A) of
system (1) obtained by applying the first-order HBM to the same system. Then:

T1(A) =
8π√

16 + 12kA2 + 10A4
.

In particular,

(i) The function T1(A) is decreasing for k ≥ 0.

(ii) The function T1(A) starts increasing, has a maximum and then decreases
towards zero, for k ∈ (−2, 0).

(iii) At the origin

T1(A) = 2π − 3

4
kπA2 +

54k2 − 80

128
πA4 +O(A6),
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and at infinity

T1(A) ∼
4π

√
10

5

1

A2
≈ 7.9477

A2
.

In order to continue with the exploration about the validity of the HBM for
approaching the period function, in Chapter 2 we perform an exhaustive study of
the differential equation xẍ+1 = 0, already considered in [78] and proposed in [2] as
a model for certain phenomena in plasma physics. We prove that it has a continuum
of continuous weak periodic solutions and we compute their periods.

In practice, the N -th order HBM is often used with N = 1, 2 because of the
difficulty to solve the nonlinear algebraic systems obtained with this approach.
However, by using the Gröbner basis method we can apply the HBM until sixth
order to approach the periods of the weak periodic solutions of xẍ+ 1 = 0, and to
illustrate how the sharpness of the method increases with the order.

We have not yet been able to give a theoretical basis of the applicability of
the HBM to approximate the period functions. Aiming towards a complete un-
derstanding of the validity of this approach we have restricted our attention to a
simpler case. More precisely, in Chapter 3 we provide a result for one-dimensional
non-autonomous ordinary differential equations which implies that the HBM can
be used to prove the existence of limit cycles of planar differential systems as well
as for determining its localization and hyperbolicity. Our main result, which is
strongly based in the pioneering works of Stokes [97] and Urabe [99] on the subject,
provides a theoretical basis for the above question. To state it we introduce some
concepts.

Let x̄(t) be a real 2π-periodic C1-function; we will say that x̄(t) is noncritical
with respect to the differential equation x′ = X(x, t) if∫ 2π

0

∂

∂x
X(x̄(t), t) dt ̸= 0.

Observe that if x̄(t) is a periodic solution of x′ = X(x, t) then the concept of
noncritical is equivalent to the one of being hyperbolic; see [68].

As we will see in Lemma 3.3, if x̄(t) is noncritical w.r.t. x′ = X(x, t), the linear
periodic system

y′ =
∂

∂x
X(x̄(t), t) y + b(t)

has a unique periodic solution yb(t) for each smooth 2π-periodic function b(t). More-
over, once X and x̄ are fixed, there exists a constant M , which will be called a
deformation constant associated to x̄ and X, such that

||yb||∞ ≤M ||b||2.
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Here, as usual, for a continuous 2π-periodic function f ,

||f ||2 =

√
1

2π

∫ 2π

0

f 2(t)dt, ||f ||∞ = max
x∈R

|f(x)| and ||f ||2 ≤ ||f ||∞ .

Finally, consider
s(t) := x̄′(t)−X(x̄(t), t).

We say that x̄(t) is an approximate solution of x′ = X(x, t) with accuracy S = ||s||2 .

Theorem 3.1. Let x̄(t) be a 2π-periodic C1 -function such that

• it is noncritical w.r.t. x′ = X(x, t) and has M as a deformation constant,

• it has accuracy S w.r.t. x′ = X(x, t).

Given I := [min{t∈R} x̄(t) − 2MS,max{t∈R} x̄(t) + 2MS] ⊂ Ω, let K < ∞ be a
constant such that

max
(x,t)∈I×[0,2π]

∣∣∣∣ ∂2∂x2X(x, t)

∣∣∣∣ ≤ K.

Therefore, if
2M2KS < 1,

there exists a 2π-periodic solution x∗(t) of x′ = X(x, t) satisfying

||x∗ − x̄||∞ ≤ 2MS,

and it is the unique periodic solution of the equation entirely contained in this strip.
If in addition ∣∣∣∣∫ 2π

0

∂

∂x
X(x̄(t), t) dt

∣∣∣∣ > 2π

M
,

then the periodic orbit x∗(t) is hyperbolic, and its stability is given by the sign of
this integral.

The above result is applied to two examples of planar rigid systems to localize
and give an approximated expression of their corresponding limit cycles.

In the last two chapters of this thesis we focus on the study of one-parameter
families of planar differential equations, in order to give as much information as
possible about their bifurcation diagrams. The main difference between these fam-
ilies is that one of them is a semi-complete family of rotated vector field (SCFRVF)
and the other one is not.

As is well-known, if a one-parameter family of differential systems is a SCFRVF,
then there are many results that allow to control the possible bifurcations; see
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[33, 87, 83]. One of the most useful ones is the so-called non-intersection property.
It asserts that if γ1 and γ2 are limit cycles corresponding to systems with different
values of the parameter, then γ1 ∩ γ2 = ∅. As a consequence, the study of one-
parameter bifurcation diagrams is much more simple in this case.

More specifically, in Chapter 4 we study the number of limit cycles and the
bifurcation diagram in the Poincaré sphere of the one-parameter family of rotated
vector fields of degree five{

ẋ = y,
ẏ = −x+ (b2 − x2)(y + y3), b ∈ R+ ∪ {0}, (2)

which is reminiscent of the celebrated van der Pol system. In previous papers
[59, 102] it was proved that the family can have limit cycles if and only if b ∈ (0, b∗)
and b∗ ∈ (0, 6

√
9π2/16) ≈ (0, 1.33). Moreover it was shown that when they exist

they are unique and hyperbolic. By using numerical methods it is not difficult to get
that b∗ ≈ 0.80629. Nevertheless, as far as we know there are no analytical tools to
obtain the value b∗. This is the main goal of this chapter. By using a rational Dulac
function we provide an interval of length 27/1000 where b∗ lies. To our knowledge
the tools used to determine this interval are new and are based on the construction
of algebraic curves without contact by the flow of the differential equation. These
curves are obtained using analytic information about the separatrices of the infinite
critical points of the vector field. Moreover, during our study we have also realized
that there is a bifurcation value not obtained in the previous studies. Our main
result is:

Theorem 4.1. Consider system (2). There exist two positive numbers b̂ and b∗

such that:

(a) It has a limit cycle if and only if 0 < b < b∗. Moreover, when it exists, it is
unique, hyperbolic and stable.

(b) The only bifurcation values of the system are 0, b̂ and b∗. In consequence there
are exactly six different global phase portraits on the Poincaré disc, which are
the ones displayed in Figure 1.

(c) It holds that 0.79 < b̂ < b∗ < 0.817.

The phase portraits missing in [102] are (ii) and (iii) of Figure 1.
In order to prove that the Bendixson–Dulac Theorem applies, we develop a

method for studying whether one-parameter families of polynomials in two variables
do not vanish. That method is based on the computation of the so-called double
discriminant (△2) and on the concept of uniformly isolated points, see Appendix II
of Chapter 4 for more details. Our result reads as follows.
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(o) a ≤ 0 (i) 0 < b < b̂ (ii) b = b̂

(iii) b̂ < b < b∗ (iv) b = b∗ (v) b > b∗

Figure 1: Phase portraits of system (2).

Proposition 4.25. Let Fb(x, y) be a family of real polynomials depending also
polynomially on a real parameter b and let Ω ⊂ R2 be an open connected subset
having a boundary ∂Ω formed by finitely many algebraic curves. Suppose that there
exists an open interval I ⊂ R such that:

(i) For some b0 ∈ I, Fb0(x, y) > 0 on Ω.

(ii) For all b ∈ I, △2(Fb) ̸= 0.

(iii) For all b ∈ I, all points of Fb = 0 at infinity which are also in Ω do not depend
on b and are uniformly isolated.

(iv) For all b ∈ I, {Fb = 0} ∩ ∂Ω = ∅.

Then for all b ∈ I, Fb(x, y) > 0 on Ω.

In Chapter 5 we consider the one-parameter family of planar quintic systems,{
ẋ = y3 − x3,
ẏ = −x+my5, m ∈ R, (3)

8
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proposed by A. Bacciotti, during a conference about the stability of analytic dy-
namical systems held in Florence in 1985. Two years later, Galeotti and Gori in [40]
published an extensive study of this family that we complete in this work. A main
difficulty in considering such a family is that it is not a semi-complete family of
rotated vector fields.

Theorem 5.1. Consider the family of systems (3).

(i) It has neither periodic orbits, nor polycycles, when m ∈ (−∞, 0.547]∪[0.6,∞).
Otherwise, it has at most one periodic orbit or one polycycle, but can not
coexist. Moreover, when the limit cycle exists, it is hyperbolic and unstable.

(ii) For m > 0, their phase portraits on the Poincaré disc, are given in Figure 2.

(iii) Let M be the set of values of m for which it has a heteroclinic polycycle.
Then M is finite, non-empty and it is contained in (0.547, 0.6). Moreover,
the system corresponding to m ∈ M has no limit cycles and its phase portrait
is given by Figure 2 (b).

Our simulations show that (a), (b) and (c) of Figure 2 occur when m ∈ (0,m∗),
m = m∗ and m > m∗, respectively, for some m∗ ∈ (0.547, 0.6), which numerically
we have found to be m∗ ≈ 0.560115. We have not been able to prove the existence
of this special value m∗, because of our system is not a SCFRVF and this fact
hinders the obtention of the full bifurcation diagram. From our analysis, we know
the existence of finitely many values m∗

j , j = 1, . . . , k, where k ≥ 1, satisfying
0.547 < m∗

1 < m∗
2 < · · ·m∗

k < 0.6, such that phase portrait (b) only occurs for these
values. Moreover, for m ∈ (0.547,m∗

1), phase portrait (a) holds, for m ∈ (m∗
k, 0.6)

phase portrait (c) holds, and for each one of the remaining k−1 intervals, the phase
portrait does not vary on each interval and is either (a) or (c).

Furthermore, we answer an open question left in [40] about the change of sta-
bility of the origin for an extension of system (3). In short, we prove

Theorem 5.3. Consider the system{
ẋ = y3 − x2k+1,
ẏ = −x+my2s+1, m ∈ R and k, s ∈ N+.

(i) When s < 2k, the origin is an attractor for m ≤ 0 and a repeller for m > 0.

(ii) When s > 2k, the origin is always an attractor.

(iii) When s = 2k, the origin is an attractor for

m <
(2k + 1)!!

(4k + 1)!!!!

9



Introduction

and a repeller when the reverse inequality holds. Moreover, when k = 1 and
m = 3/5 the origin is a repeller and for m . 3/5 the system has at least one
limit cycle near the origin.

In [40], the authors gave the stability of the origin when s ̸= 2k and ask whether
it is true or not that the change of stability of the origin when s = 2k is at the value
m = (2k + 1)/(4k + 1). We can see that their guess was only correct for k = 1.

(a) When m ∈ (0, 0.547], or when (b) When m ∈ (0.547, 0.6) and
m ∈ (0.547, 0.6) and neither the the polycycle exists.

polycycle nor the limit cycle exist.

(c) When m ∈ (0.547, 0.6) and (d) For m ∈ [0.6,∞)
the limit cycle exists.

Figure 2: Phase portraits of system (3).

From our point of view, to introduce tools for studying one-parameter families
that are not SCFRVF is a challenge for the differential equations community. Fur-
ther topics considered and developed in last two chapters are the construction of
Dulac functions for applying a generalization of the Bendixson–Dulac Theorem in
order to prove existence, non-existence, uniqueness and hyperbolicity of the limit
cycles, and the determination of explicit lower bounds of the basin of attraction
of attracting critical points. We believe that the tools that we have introduced in
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this part of the work can be applied to other families of polynomial vector fields to
provide an analytic control of the bifurcation values for them.

The results of Chapter 1 and 2 have been submitted for publication see [42] and
[43], respectively. The results of Chapter 3 are already published in “Journal of
Differential Equations” [41]. These three papers have been written in collaboration
with Armengol Gasull.

The results of Chapter 4 have been accepted for publication in “Discrete and
Continuous Dynamical Systems” [44] and the ones of Chapter 5 have already been
published in “Journal of Mathematical Analysis and Applications” [45]. The results
of both chapters have been obtained in joint works with Armengol Gasull and Hector
Giacomini.
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The Harmonic Balance Method
(HBM)
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Chapter 1
The period function of potential systems
and the HBM

1.1 Introduction and main results

Given a planar differential system having a continuum of periodic orbits, its period
function is defined as the function that associates to each periodic orbit its period.
To determine the global behavior of this period function is an interesting problem
in the qualitative theory of differential equations either as a theoretical question
or due to its appearance in many situations. For instance, the period function is
present in mathematical models in physics or ecology, see [28, 91, 101] and the
references therein; in the study of some bifurcations [23, pp. 369-370]; or to know
the number of solutions of some associated boundary value problems, see [19, 20].

In particular, there are several works giving criteria for determining the mono-
tonicity of the period function associated with some systems, see [19, 39, 54, 93, 105]
and the references therein. Results about non monotonous period functions have
also recently appeared, see for instance [46, 55, 71].

The so-called N -th order Harmonic Balance Method (HBM) consists on ap-
proximating the periodic solutions of a nonlinear differential equation by using
truncated Fourier series of order N . It is mainly applied with practical purposes,
although in many cases there is no a theoretical justification. In most of the appli-
cations this method is used to approach isolated periodic solutions, see for instance
[41, 61, 74, 78, 76, 75]. Since the HBM also provides an approximation of the
angular frequency of the searched periodic solution, it can be also used to get its
period.

Hence, applying the HBM to systems of differential equations having a contin-
uum of periodic orbits we can obtain approximations of the corresponding period
functions. The main goal of this chapter is to illustrate this last assertion through
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Chapter 1. The period function of potential systems and the HBM

the study of several concrete planar systems. This approach is also used for instance
in [9, 10, 79]. A main difference among these papers and our work is that we also
carry out a detailed analytic study of the involved period functions.

More specifically, in this chapter we will consider several families of planar po-
tential systems, ẍ = f(x), having continua of periodic orbits. We will study analyt-
ically their corresponding period functions and we will see that the approximations
of the period functions obtained using the N -th order HBM, for N = 1, keep the
essential properties of the actual period functions: local behavior near the critical
point and infinity, monotonicity, oscillations,... For the case of the Duffing oscil-
lator we also consider N = 2 and 3. In particular, the method that we introduce
using resultants gives an analytic way to deal with the 3rd order HBM, answering
question (iv) in [79, p. 180].

First, we focus in the following two families of potential differential systems:{
ẋ = −y,
ẏ = x+ x2m−1, m ∈ N and m ≥ 2,

(1.1)

and {
ẋ = y,
ẏ = − x

(x2+k2)m
, k ∈ R \ {0}, m ∈ [1,∞).

(1.2)

Each system of these families has a continuum of periodic orbits around the origin.
Thus, we can talk about its period function T which associates to each periodic
orbit passing through (x, y) = (A, 0) its period T (A). In addition, we will denote
by TN(A) the approximation to T (A) by using N -th order HBM; see Section 1.3
for the precise definition of TN(A).

System (1.1) is an extension of the Duffing-harmonic oscillator which corre-
sponds to the case m = 2. The case m = 2 has been studied by many authors, see
[61, 67, 76, 80]. The exact period function of this particular system is given as an
elliptic function and so it is easier to obtain analytic properties of T . Our analytic
study is valid for all integers m ≥ 2.

System (1.2) with m = 1 and by taking the limit k → 0 is equivalent to the
second order differential equation xẍ + 1 = 0, which is studied in [78] as a model
of plasma physics. Thus, system (1.2) can be seen as an extension of the singular
second order differential equation xẍ + 1 = 0. In the next chapter we explore
the relationship between the periodic solutions of (1.2) with m = 1 and their
corresponding periods with the solutions of the limiting case xẍ+ 1 = 0.

We have chosen these two families due to their simplicity and because, as we
will see, their corresponding period functions are monotonous, being the first one
decreasing and the second one increasing.

For the first family (1.1), in addition to the monotonicity of T , we perform a
more detailed study of some properties of T . More precisely, we give the behavior of
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1.1. Introduction and main results

T near to the origin and at infinity and we compare them with the results obtained
by using the HBM.

Theorem 1.1. System (1.1) has a global center at the origin and its period function
T is decreasing. Moreover, at A = 0,

T (A) = 2π

(
1− (2m− 1)!!

(2m)!!
A2m−2 + S(m)A4m−4 +O(A6m−6)

)
, (1.3)

where S(m) = (2m−1)(4m−1)!!
m(4m)!!

− (m−1)(2m−1)!!
m(2m)!!

; and

T (A) ∼ B

(
1

2m
,
1

2

)
2√

mAm−1
, A→ ∞, (1.4)

where B(·, ·) is the Beta function.

Proposition 1.2. By applying the first-order HBM to system (1.1) we get the
decreasing function

T1(A) =
2mπ√

(2m−1)!
(m−1)!m!

A2m−2 + 22m−2
. (1.5)

Moreover, at A = 0,

T1(A) = 2π

(
1− (2m− 1)!!

(2m)!!
A2m−2 +

3

2

(
(2m− 1)!!

(2m)!!

)2

A4m−4 +O(A6m−6)

)
,

and

T1(A) ∼
2mπ√

(2m−1)!
(m−1)!m!

Am−1
, A→ ∞. (1.6)

By Theorem 1.1, we know that the period function T of system (1.1) is decreas-
ing. Proposition 1.2 asserts that this property is already present in its first order
approximation obtained with the HBM. Additionally, we can see that the first and
second terms of the Taylor series at A = 0 of T (A) and T1(A) coincide, while the
third one is different. Furthermore, from (1.4) and (1.6) it follows that T (A) and
T1(A) have similar behaviors at infinity.

In the case of the Duffing-harmonic oscillator (m = 2 in (1.1)) we will apply the
N -th order HBM, N = 2, 3, for computing the approximations TN(A) of the period
function T (A), see Section 1.6. We prove that T (A)−TN(A) = O(A2N+4) at A = 0.
We believe that similar results hold for (1.1) with m > 2, nevertheless, we do not
study this question in this work. We also will see that the approximations TN(A),
N = 1, 2, 3, at infinity become sharper by increasing N .

For the family (1.2) we have similar results. We only will deal with the global
behaviors of T and T1 skipping the study of these functions near zero and infinity.
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Chapter 1. The period function of potential systems and the HBM

Theorem 1.3. System (1.2) has a center at the origin and its period function T is
increasing. Moreover, the center is global for m = 1 and non-global otherwise.

Proposition 1.4. By applying the first-order HBM to system (1.2) we obtain the
increasing function

T1(A) = 2π

√√√√ m∑
j=0

(
1

2

)2j (
m

j

)(
2j + 1

j

)
k2(m−j)A2j. (1.7)

Note that again, as in system (1.1), with the first-order HBM we obtain that
T1(A) and T (A) have the same monotonicity behavior.

In Section 1.7 we consider the family of polynomial potential systems{
ẋ = −y,
ẏ = x+ k x3 + x5, k ∈ R, (1.8)

which for some values of k has a global center. In [71, Thm. 1.1 (b)] it is proved
that the period function associated to the global center at the origin has at most
one oscillation. Joining this result with a similar study that the one made for
system (1.1) at the origin and at infinity, we obtain:

Theorem 1.5. Consider system (1.8) with k ∈ (−2,∞). Let T be the period
function associated to the origin, which is a global center. Then:

(i) The function T is monotonous decreasing for k ≥ 0.

(ii) The function T starts increasing, until a maximum (a critical period) and
then decreases towards zero, for k ∈ (−2, 0).

(iii) At the origin

T (A) = 2π − 3

4
kπA2 +

57k2 − 80

128
πA4 +O(A6),

and at infinity

T (A) ∼
2B(1

6
, 1
2
)

√
3

1

A2
≈ 8.4131

A2
.

We prove:

Proposition 1.6. By applying the first-order HBM to the family (1.8) we get:

T1(A) =
8π√

16 + 12kA2 + 10A4
.

In particular,
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1.1. Introduction and main results

(i) The function T1(A) is decreasing for k ≥ 0.

(ii) The function T1(A) starts increasing, has a maximum and then decreases
towards zero, for k ∈ (−2, 0).

(iii) At the origin

T1(A) = 2π − 3

4
kπA2 +

54k2 − 80

128
πA4 +O(A6),

and at infinity

T1(A) ∼
4π

√
10

5

1

A2
≈ 7.9477

A2
.

Once more, we can see that the function T1(A) obtained by applying the first
order HBM captures and reproduces quite well the actual behavior of T (A).

Remark 1.7. In fact, the shape of the function T1(A) for k ∈ (−2, 0) does not vary
until k = −2

√
10/3 ≈ −2.107. For k ≤ −2

√
10/3, it is no more defined for all

A ∈ R. Somehow, this phenomenon reflects the fact that for k ≤ −2 the center is
not global. Notice, that for k < −2, system (1.8) has three centers.

Motivated by all our results, in Section 1.8 we study the relationship between
the Taylor series of T (A) and TN(A) with N = 1, 2 at A = 0 for an arbitrary smooth
potential.

When the system has a center and its period function is constant, then the center
is called isochronous. The problem about the existence and characterization of
isochronous center has also been extensively studied, see [24, 25, 26, 58, 72]. To end
this introduction we want to comment that we have not succeeded in applying the
HBM to detect isochronous potentials. We have unfold in 1-parameter families one
of the simplest potential isochronous systems, the one given by a rational potential
function, see [14]. Our attempts to use the low order HBM to detect the value of
the parameter that corresponds to the isochronous case have not succeed.

The chapter is organized as follows. In Section 1.2 we give some preliminary
results which include a known result for studying the monotonicity of the period
function. Next, we describe the N -th order HBM. In Section 1.4 we prove our
analytical results about the monotonicity of the period function of systems (1.1)
and (1.2) and their local behavior at the origin and at infinity, see Theorems 1.1
and 1.3. In Section 1.5 we prove Propositions 1.2 and 1.4, both dealing with the
HBM. In Section 1.6 we focus on the study of the Duffing-harmonic oscillator and
we also apply the 2-th order and 3-rd order HBM. Section 1.7 deals with the family
of planar polynomial potential systems having a non-monotonous period function.
Finally, Section 1.8 studies the local behavior near zero of T (A) and TN(A) with
N = 1, 2, of an arbitrary smooth potential system.
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Chapter 1. The period function of potential systems and the HBM

1.2 Preliminary results

This section is divided in two parts. The first one is devoted to recall some def-
initions, as well as, to give the framework for the study of the period function of
(1.1) and (1.2) from an analytical point of view. In the second one we will give the
description of the N -order Harmonic Balance Method, which we will apply in our
second analysis of the period function.

Definitions and some analytical tools

The systems studied in this chapter are all potential systems,{
ẋ = −y,
ẏ = F ′(x),

(1.9)

with associated Hamiltonian function H(x, y) = y2/2+F (x), where F : Ω ⊂ R → R
is a real smooth function, F (0) = 0 and 0 ∈ Ω, an open real interval.

Let p0 be a singular point of (1.9). It is said that p0 is a center if there exists an
open neighborhood U of p0 such that each solution γ(t) of (1.9) with γ(0) ∈ U−{p0}
defines a periodic orbit γ surrounding p0. The largest neighborhood P with this
property is called the period annulus of p0. If Ω = R and P = R2, then p0 is called
a global center.

The following result characterizes systems (1.9) having global centers.

Lemma 1.8. If F (x) has a minimum at 0, then system (1.9) has a center at the
origin. Moreover, the center is global if and only if F ′(x) ̸= 0 for all x ̸= 0 and
F (x) tends to infinity when |x| does.

Suppose that (1.9) has a center with period annulus P. For each periodic orbit
γ ∈ P we define T (γ) to be the period of γ. Thus, the map

T : P → R+, γ 7→ T (γ),

is called the period function associated with P. It is said that the map T ismonotone
increasing (respectively monotone decreasing) if for each couple of periodic orbits
γ0 and γ1 in P , with γ0 in the interior of bounded region surrounded by γ1, it holds
that T (γ1)− T (γ0) > 0 (respectively < 0). When T is constant, then the center is
called isochronous center.

If we fix a transversal section Σ to P and we take a parametrization σ(A) of
Σ with A ∈ (0, A∗) ⊂ R+, then we can denote by γA the periodic orbit passing
through σ(A) and by T (A) its period. That is, we have the map T : (0, A∗) → R+,
A 7→ T (A). When T is not monotonous then either it is constant or it has local
maxima or minima. The isolated zeros of T ′(A) are called critical periods. It is not
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1.2. Preliminary results

difficult to prove that the number of critical periods does not depend neither of Σ
nor of its parametrization.

Next, we will recall two results about some properties of the period function T
which we will apply in our study of the families (1.1), (1.2) and (1.8). The first
result is an adapted version to system (1.9), of statement 3 of [39, Prop. 10] and
gives a criterion about the monotonicity of T . The second one is an adapted version
of [25, Thm. C], which will allow us to describe the behavior of T at infinity.

Proposition 1.9. Suppose that system (1.9) has a center at the origin. Let T be
the period function associated to the period annulus of the center. Then

(i) If F ′(x)2 − 2F (x)F ′′(x) ≥ 0 (not identically 0) on Ω, then T is increasing.

(ii) If F ′(x)2 − 2F (x)F ′′(x) ≤ 0 (not identically 0) on Ω, then T is decreasing.

To state the second result, we need some previous constructions and definitions.

Let γh(t) = (xh(t), yh(t)) be a periodic orbit of (1.9) contained in P correspon-
ding to the level set {H = h}. This orbit crosses the axis y = 0 at the points
determined by F (xh(t)) = h. Since F has a minimum at x = 0, near the origin the
above equation has two solutions, one of them on x > 0 which will be denoted by
F−1
+ (h) and the other one on x < 0 which will be denoted by F−1

− (h). We note that
this property remains for all h ∈ (0, h∗) := H(P) \ {0}. For each h > 0 we define
the function

lF (h) = F−1
+ (h)− F−1

− (h) (1.10)

which gives the length of the projection to the x-axis of γh. See Figure 1.1.

−
( )F h

1

F

h

( )F h
1

Figure 1.1: Definition of lF for system (1.9).
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Chapter 1. The period function of potential systems and the HBM

Definition 1.10. Given two real numbers a and M , it is said that a continuous
function g(x) has Mxa as dominant term of its asymptotic expansion at x = x0 ∈
R ∪ {∞} if

lim
x→x0

g(x)−Mxa

xa
= 0.

This property is denoted by g(x) ∼Mxa at x = x0.

Theorem 1.11. Assume that (1.9) has a global center at the origin. Let lF (h) be
as in (1.10) and suppose that l′F (h) ∼ Mha, at h = ∞ with a > −1 and M > 0.
Then, the period function of (1.9) satisfies T (h) ∼ Cha+1/2 at h = ∞, where
C =

√
2MB(a+ 1, 3/2), and B(·, ·) is the Beta function.

Next lemma computes the function lF (h) for system (1.1).

Lemma 1.12. The function lF (h) associated to (1.1) satisfies that lF (h) ∼ 2(2mh)
1

2m

at h = ∞.

Proof. We start studying the algebraic curve C := {p(x, h) = F (x) − h = 0} at
infinity. For that, we consider the homogenization

P (X,H,Z) = X2m +mX2Z2m−2 − 2mHZ2m−1, (1.11)

of p(x, h) in the real projective plane RP2. From (1.11) it follows that [0 : 1 : 0]
is the unique point at infinity of C, and C in the chart that contains such point is
given by the set of zeros of the polynomial

p̃(x̃, z̃) := P (x̃, 1, z̃) = x̃2m +mx̃2z2m−2 − 2mz̃2m−1.

For studying C at infinity we will obtain a parametrization of it close to the point
[0 : 1 : 0]. As usual, we will use the Newton polygon associated to p̃. The carrier
of p̃ is carr(p̃) = {(2m, 0), (2, 2m− 2), (0, 2m− 1)}, whence the Newton polygon is
the straight line joining (2m, 0) and (0, 2m− 1) whose equation is

z̃ = −
(
2m− 1

2m

)
x̃+ 2m− 1.

In p̃(x̃, z̃) we replace z̃ = z0t
2m and x̃ = x0t

2m−1, then

p̃(x0t
2m−1, z0t

2m) = mx20z
2(m−1)
0 t2(2m

2−1) + (x2m0 − 2mz2m−1
0 )t2m(2m−1).

For x0 fixed we consider

ϕ(z0, t) = (x2m0 − 2mz2m−1
0 )t2m(2m−1) +mx20z

2(m−1)
0 t2(2m

2−1)

= t2m(2m−1)ϕ̃(z0, t),
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1.3. Description of the HBM

where ϕ̃(z0, t) = x2m0 − 2mz2m−1
0 +mx20z

2(m−1)
0 t2(m−1). It is clear that ϕ̃(z∗0 , 0) = 0

for z∗0 solution of x2m0 − 2mz2m−1
0 = 0. Moreover

∂ϕ̃

∂z0
(z∗0 , 0) = −2m(2m− 1)(z∗0)

2(m−1) ̸= 0.

From the implicit function theorem there exists a function z0(t) : (R, 0) → R such
that z0(0) = z∗0 and ϕ(z0(t), t) = 0 for t ∈ (R, 0). Since ϕ(z0(t), t) is an analytic
function, z0(t) also is it. Hence we can write z0(t) = c0 + c1t+ c2t

2 + . . ., moreover
as z0(0) = z∗0 then

z0(t) = z∗0 +O(t).

From x2m0 − 2mz2m−1
0 = 0 and the above equation it follows that

x0(t) = ±((2m)
1

2m (z∗0)
2m−1
2m +O(t

2m−1
2m )).

Then the parametrization of C is t 7→ (x̃(t), z̃(t)) where

x̃(t) = t2m−1x0(t) = (2m)
1

2m (z∗0)
2m−1
2m t2m−1 +O(t

4m2−1
2m ) (1.12)

z̃(t) = t2mz0(t) = z∗0t
2m +O(t2m+1). (1.13)

Recall that the relation between (x̃, z̃) and (x, h) is given by x̃ = x/h and z̃ = 1/h.
From (1.13) it follows that 1/h ∼ z∗0t

2m at h = ∞. Using this behavior and (1.12)

we get x ∼ ±(2mh)
1

2m at h = ∞. Hence F−1
± (h) ∼ (2mh)

1
2m and from (1.10) it

follows that lF (h) ∼ 2(2mh)
1

2m .

1.3 Description of the HBM

In this section we recall the N -th order HBM adapted to our setting. Consider the
second order differential equation

ẍ = f(x, α), α ∈ R.

Suppose that it has a T -periodic solution x(t) such that x(0) = A and ẋ(0) = 0.
This T -periodic function x(t) satisfies the functional equation

F := F(x(t), ẍ(t), α) = ẍ(t)− f(x(t), α) = 0.

On the other hand, x(t) has the Fourier series:

x(t) =
ã0
2

+
∞∑
k=1

(
ãk cos(kωt) + b̃k sin(kωt)

)
,
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Chapter 1. The period function of potential systems and the HBM

where ω := 2π/T is the angular frequency of x(t) and the coefficients ãk and b̃k are
the so-called Fourier coefficients, which are defined as

ãk =
2

T

∫ T

0

x(t) cos(kωt) dt and b̃k =
2

T

∫ T

0

x(t) sin(kωt) dt for k ≥ 0.

Although we not write explicitly, ãk, b̃k, and ω depend on α and A, that is, ãk :=
ãk(α,A), b̃k := b̃k(α,A), and ω := ω(α,A). Hence it is natural to try to approximate
the periodic solutions of the functional equation F = 0 by using truncated Fourier
series of order N , i.e. trigonometric polynomials of degree N .

The N -th order HBM consists of the following four steps.
1. Consider a trigonometric polynomial

x
N
(t) =

a0
2

+
N∑
k=1

(ak cos(kωN t) + bk sin(kωN t)) . (1.14)

2. Compute the T -periodic function FN := F(x
N
(t), ẍ

N
(t)), which has also an

associated Fourier series, that is,

FN =
A0

2
+

∞∑
k=1

(Ak cos(kωN t) + Bk sin(kωN t)) ,

where Ak = Ak(a,b, ω) and Bk = Bk(a,b, ω), k ≥ 0, with a = (a0, a1, . . . , aN
) and

b = (b1, . . . , bN ).
3. Find values a, b, and ω such that

Ak(a,b, ω) = 0 and Bk(a,b, ω) = 0 for 0 ≤ k ≤ N. (1.15)

4. Then the expression (1.14), with the values of a, b, and ω obtained in point 3,
provides candidates to be approximations of the actual periodic solutions of the
initial differential equation. In particular the values 2π/ω give approximations of
the periods of the corresponding periodic orbits.

We end this short explanation about HBM with several comments:
(a) The above set of equations (1.15) is a system of polynomial equations which

usually is very difficult to solve. For this reason in many works, see for instance
[78, 79] and the references therein, only small values of N are considered. We also
remark that in general the coefficients of x

N
(t) and x

N+1
(t) do not coincide at all.

Hence, going from order N to order N +1 in the method, implies to compute again
all the coefficients of the Fourier polynomial.

(b) The equations Ak(a,b, ω) = 0 and Bk(a,b, ω) = 0 for 0 ≤ k ≤ N are
equivalent to

2

T

∫ T

0

FN cos(kωt) dt = 0 and
2

T

∫ T

0

FN sin(kωt) dt = 0 for 0 ≤ k ≤ N.
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1.4. The period function from the analytical point of view

(c) The linear combination, ak cos(kωt) + bk sin(kωt), of the harmonics of order
k, with k = 0, 1, . . . N , can be expressed as

ak cos(kωt) + bk sin(kωt) =
c̄k e

ikωt + ck e
−ikωt

2
,

where ck = ak + ibk, and c̄k is the complex conjugated of ck. Therefore, we can
use the HBM with the last notation, because the truncated Fourier series can be
written as

xN(t) =
N∑
k=1

c̄k e
ikωN t + ck e

−ikωN t

2
, k = 1, . . . , N. (1.16)

(d) In general, although in many concrete applications HBM seems to give quite
accurate results, it is not proved that the found Fourier polynomials are approxi-
mations of the actual periodic solutions of differential equation.

1.4 The period function from the analytical point

of view

In this section we prove our main results concerning the period function of systems
(1.1) and (1.2). For proving Theorem 1.1 we will apply Lemma 1.8 and Proposi-
tion 1.9 to determine the existence of a global center of (1.1) and the monotonicity
of its period function. To find the Taylor series of T at the origin we will use an
old idea, due to Cherkas([15]), which consists in transforming (1.1) into an Abel
equation. Finally, in the last part of the proof, that corresponds to the behavior
at infinity of T , we will use Theorem 1.11 and Lemma 1.12. Theorem 1.3 follows
using similar tools.

Proof of Theorem 1.1. System (1.1) is of the form (1.9) with F (x) = x2/2 +
x2m/2m. Clearly, by Lemma 1.8, the origin (0, 0) is a global center. Moreover, the
set {(A, 0) ∈ R2 |A > 0} is a transversal section to P . Thus, T can be expressed as
function depending on the parameter A.

Some easy computations give that

F ′(x)2 − 2F (x)F ′′(x) = −(m−1
m

)((2m− 1) + x2m−2)x2m ≤ 0.

Therefore, Proposition 1.9.(ii) implies that the period function T (A) associated to
P is decreasing for all m.

For obtaining the Taylor series of T at A = 0 we will consider system (1.1) in
polar coordinates and initial condition (A, 0), that is,{

Ṙ = sin(θ) cos2m−1(θ)R2m−1

θ̇ = 1 + cos2m(θ)R2m−2,
R(0) = A, θ(0) = 0, (1.17)
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which is equivalent to the differential equation

dR

dθ
=

sin(θ) cos2m−1(θ)R2m−1

1 + cos2m(θ)R2m−2
, R(0) = A.

By applying the Cherkas transformation [15]: r = r(R; θ) = R2m−2

1+cos2m(θ)R2m−2 to the
previous equation, we obtain the Abel differential equation

dr

dθ
= P (θ)r3 +Q(θ)r2, r(A; 0) =

A2m−2

1 + A2m−2
, (1.18)

where P (θ) = (2 − 2m) sin(θ) cos4m−1(θ) and Q(θ) = 2(2m − 1) sin(θ) cos2m−1(θ).
Near the solution r = 0, the solutions of this Abel equation can be written as the
power series

r(A; 0) =
A2m−2

1 + A2m−2
+

∞∑
i=2

ui(θ)

(
A2m−2

1 + A2m−2

)i
(1.19)

for some functions ui(θ) such that ui(0) = 0 which can be computed solving re-
cursively linear differential equations obtained by replacing (1.19) in (1.18). For
instance,

u2(θ) =

∫ θ

0

Q(ψ)dψ and u3(θ) =

∫ θ

0

(P (ψ) + 2Q(ψ)u2(ψ))dψ.

From the expression of θ̇ in (1.17) and using variables (r, θ) again, we obtain

T (A) =

∫ 2π

0

dθ

1 + cos2m(θ)R2m−2
=

∫ 2π

0

(1− cos2m(θ) r)dθ =

= 2π −
∫ 2π

0

cos2m(θ)

(
A2m−2

1 + A2m−2
+

∞∑
i=2

ui(θ)

(
A2m−2

1 + A2m−2

)i)
dθ.

Then, we have

T (A) = 2π −
∑
k≥1

Sk
(

A2m−2

1 + A2m−2

)k
,

with

S1 =

∫ 2π

0

cos2m(θ)dθ and Sk =
∫ 2π

0

cos2m(θ)uk(θ)dθ for k ≥ 2.

It is easy to see that for |A| < 1,

A2m−2

1 + A2m−2
= A2m−2 − A4m−4 +O(A6m−6),

( A2m−2

1 + A2m−2

)2
= A4m−4 +O(A6m−6).
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1.4. The period function from the analytical point of view

Thus,
T (A) = 2π − S1A

2m−2 − (S2 − S1)A
4m−4 −O(A6m−6).

Easy computations show that

S1 = 2π
(2m− 1)!!

(2m)!!
, S2 = 2π

(
2m− 1

m

)(
(2m− 1)!!

(2m)!!
− (4m− 1)!!

(4m)!!

)
,

where, given n ∈ N+, n!! is defined recurrently as n!! = n× (n− 2)!! with 1!!=1 and
2!!=2. Hence, introducing S(m) = S2 −S1 we obtain (1.3), as we wanted to prove.

Finally, for studying the behavior of T at infinity we will apply Theorem 1.11.
By Lemma 1.12, we have that at h = ∞, lF (h) ∼ 2(2mh)

1
2m . Then

l ′F (h) ∼
(2m)

1
2m

m
h−

2m−1
2m .

If we denote by T̃ (h) the period function of (1.1) in terms of h, then, from

Theorem 1.11, it follows that T̃ (h) at h = ∞ satisfies

T̃ (h) ∼ B

(
1

2m
,
1

2

)
2

m+1
2m m− 2m−1

2m h−
m−1
2m . (1.20)

Now, using that h = A2/2 + A2m/2m, we get

h−
m−1
2m =

(
A2

2
+
A2m

2m

)−m−1
2m

= A−(m−1)

(
1

2A2m−2
+

1

2m

)−m−1
2m

and we have

lim
A→∞

A−(m−1)
(

1
2A2m−2 +

1
2m

)−m−1
2m − (2m)

m−1
2m A−(m−1)

A−(m−1)
= 0.

Hence T (A) = T̃ (A2/2+A2m/2m), and from previous equation and (1.20) we obtain

T (A) ∼ B

(
1

2m
,
1

2

)
2

m+1
2m m− 2m−1

2m (2m)
m−1
2m A−(m−1),

which after a simplification reduces to (1.4).

Proof of Theorem 1.3. By using the transformation u = x/k, v = ykm−1, and
the rescaling of time τ = −t/km, system (1.2) becomes{

ẋ = −y,
ẏ =

x

(x2 + 1)m
, m ∈ [1,∞), (1.21)

27



Chapter 1. The period function of potential systems and the HBM

where we have reverted to the original notation (x, y) and t.

The associated Hamiltonian function to (1.21) is H(x, y) = y2

2
+ F (x) with

F (x) =


−1

2
ln(x2 + 1), if m = 1,

− 1
2(m−1)(x2+1)m−1 +

1
2(m−1)

, if m > 1.

It is clear that for all m the function F is smooth at the origin and has a non-
degenerate minimum. Thus, from Lemma 1.8, system (1.21) has a center at the
origin with some period annulus P .

From a straightforward computation we get

F ′(x)2 − 2F (x)F ′′(x) =


x2+(x2−1) ln(x2+1)

(x2+1)2
, if m = 1,

1−mx2+((2m−1)x2−1)(x2+1)m−1

(m−1)(x2+1)2m
, if m > 1.

To prove that the period function T associated to P is increasing we will apply
Proposition 1.9.(i). Hence we need only to show that F ′(x)2−2F (x)F ′′(x) ≥ 0. For
m = 1 it is clear. For m > 1 the denominator of F ′(x)2 − 2F (x)F ′′(x) is positive,
then remains to prove that its numerator is positive.

By taking w = x2 + 1, the numerator of F ′(x)2 − 2F (x)F ′′(x) with m > 1 is
(2m− 1)wm − 2mwm−1 −mw +m+ 1 or equivalently,

(w − 1)2
(
(2m− 1)wm−2 + (2m− 2)wm−3 + . . .+m+ 1

)
,

which is clearly positive.
To finish the proof, we will discuss about the globality of the center. For m = 1

the (0, 0) is a global minimum of H. Thus, (1.21) and therefore (1.2) have a global
center at the origin. For m > 1 the level curve

C 1
2m−2

=

{
1

2(m− 1)(x2 + 1)m−1
− y2

2
= 0

}
has two disjoin components. Indeed, it is formed by the graphics of the functions

y = ± 1√
(m− 1)(x2 + 1)m−1

,

which are well-defined for all x ∈ R because m > 1. This implies that the center at
the origin of (1.21) is bounded by C 1

2m−2
and therefore it is not global. The same

happens with (1.2).
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1.5. The period function from the HBM point of view

1.5 The period function from the HBM point of

view

In this section we prove Propositions 1.2 and 1.4.

Proof of Proposition 1.2. System (1.1) is equivalent to the second order differ-
ential equation ẍ + x + x2m−1 = 0 with initial conditions x(0) = A, ẋ(0) = 0. For
applying the HBM we consider the functional equation

F(x(t), ẍ(t)) = ẍ(t) + x(t) + x(t)2m−1 = 0. (1.22)

By symmetry, for applying the 1st order HBM we can look for a solution of the
form x(t) = a1 cos(ω1t). We substitute it in (1.22). By using that

cos2m−1(ω1t) =
1

22m−2

m−1∑
k=0

(
2m− 1

k

)
cos((2m− 2k − 1)ω1t)

and reordering terms we have that the vanishing of the coefficient of cos(ω1t) in
F1(x(t), ẍ(t)) implies

22m−2(ω2
1 − 1)− (2m− 1)!

(m− 1)!m!
a2m−2
1 = 0.

From the initial conditions we have a1 = A, whence

ω1 =
1

2m−1

√
(2m− 1)!

(m− 1)!m!
A2m−2 + 22m−2.

Therefore, the first approximation T1(A) to T (A) of system (1.1) is

T1(A) =
2π

1
2m−1

√
(2m−1)!
(m−1)!m!

A2m−2 + 22m−2
. (1.23)

Easy computations shows that the Taylor series of T1 at A = 0 is

T1(A) = 2π

(
1− (2m)!

(m!)2 22m
A2m−2 +

(
(2m)!

(m!)2 22m

)2

A4m−4 +O(A6m−6)

)
.

By using the identities (2m)!/(2mm!) = (2m− 1)!! and 2mm! = (2m)!! we have the
expression of the statement.

For studying the behavior at infinity we can write T1(A) as

T1(A) = 2mπA−m+1

(
(2m− 1)!

(m− 1)!m!
+

22m−2

A2m−2

)−1/2

,
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Chapter 1. The period function of potential systems and the HBM

thus,

lim
A→∞

2mπA−m+1
(

(2m−1)!
(m−1)!m!

+ 22m−2

A2m−2

)−1/2

− 2mπA−m+1
(

(2m−1)!
(m−1)!m!

)−1/2

A−m+1
= 0.

Hence T1(A) at infinity satisfies (1.6).

Proof of Proposition 1.4. System (1.2) is equivalent to the second order differ-
ential equation

(x2 + k2)mẍ+ x = 0, (1.24)

with initial conditions x(0) = A, ẋ(0) = 0. For simplicity in the computations, we
consider the complex form, given in (1.16), of the first-order HBM

x1(t) =
1

2

(
c̄eiω1t + ce−iω1t

)
, (1.25)

where c = a+ bi. By using the binomial expression

(x2 + k2)m =
m∑
j=0

(
m

j

)
x2jk2(m−j),

and by replacing (1.25) in (1.24), after some computations we get

−ω2
1

m∑
j=0

(
m

j

)(
1

2

)2j+1

k2(m−j)
2j+1∑
l=0

(
2j + 1

l

)
(clc̄ 2j−l+1)(eiω1t)2j−2l+1

+
(c̄eiω1t + ce−iω1t)

2
= 0.

We are concerned only with the first-order harmonics, i.e. j = l or l = j + 1 in
the above equation

−1

2

(
ω2
1

m∑
j=0

(
1

2

)2j (
m

j

)(
2j + 1

j

)
k2(m−j)(cc̄)j − 1

)
c̄eiω1t

− 1

2

(
ω2
1

m∑
j=0

(
1

2

)2j (
m

j

)(
2j + 1

j + 1

)
k2(m−j)(cc̄)j − 1

)
ce−iω1t +HOH = 0.

Since
(
2j+1
j

)
=
(
2j+1
j+1

)
, the previous equation can be written as

−

(
ω2
1

m∑
j=0

(
1

2

)2j (
m

j

)(
2j + 1

j

)
k2(m−j)(cc̄)j − 1

)(
c̄eiω1t + ce−iω1t

2

)
= 0,
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1.6. The Duffing-harmonic oscillator

whence

ω1 =
1√∑m

j=0

(
1
2

)2j (m
j

)(
2j+1
j

)
k2(m−j)(cc̄)j

.

By the initial conditions we have a1 = A and b1 = 0 then cc̄ = A2. Therefore, the
approximation T1(A) of T (A) associated to system (1.2) is

T1(A) = 2π

√√√√ m∑
j=0

(
1

2

)2j (
m

j

)(
2j + 1

j

)
k2(m−j)A2j.

1.6 The Duffing-harmonic oscillator

This section is devoted to the study of the Duffing-harmonic oscillator. We compare
the approximations TN(A), N = 1, 2, 3, given by theN -th order HBM with the exact
period function T (A) of the system{

ẋ = −y
ẏ = x+ x3,

(1.26)

with initial conditions x(0) = A, y(0) = 0, both near the origin and at infinity. Our
results extend those of [79], where only the cases N = 1, 2 are studied and where
the analytic comparaison is restricted to a neighborhood of the origin.

Remark 1.13. Some papers (for instance [38, 104]) consider the Duffing-harmonic
oscillator ẋ = −y, ẏ = x + ϵx3, ϵ ̸= 0, however, it is not difficult to see that by
applying the transformation x = ϵ−1/2u, y = ϵ−1/2v, this system becomes (1.26).

As in [79], we compute the period function T (A) of (1.26) via elliptic functions.
Let us remember the K complete elliptic integral of the first kind see [1, pp. 590]

K(k) =

∫ 1

0

dz√
(1− z2)(1− k z2)

,

whose Taylor expansion at k = 0, for |k| < 1 is

K(k) =
1

2
π

[
1 +

(
1

2

)2

k +

(
1 · 3
2 · 4

)2

k2 +

(
1 · 3 · 5
2 · 4 · 6

)2

k3 + · · ·

]
. (1.27)

31



Chapter 1. The period function of potential systems and the HBM

Lemma 1.14. The period function T (A) associated the system (1.26) is given by

T (A) =
4√

1 + 1
2
A2

K

(
−A2

2 + A2

)
. (1.28)

Moreover, its Taylor series at A = 0 is

T (A) = 2π − 3

4
πA2 +

57

128
πA4 − 315

1024
πA6 +

30345

131072
πA8 +O(A10), (1.29)

and its behavior at infinity is

T (A) ∼ B

(
1

4
,
1

2

) √
2

A
≈ 7.4163

A
. (1.30)

Proposition 1.15. Let TN(A), N = 1, 2, 3, be the approximations of the period
function for system (1.26) obtained applying the N-th order HBM. Then:

(i) The first approximation is

T1(A) =
4π√

3A2 + 4
.

Its Taylor series at A = 0 is

T1(A) = 2π − 3

4
πA2 +

27

64
πA4 +O(A6), (1.31)

and its behavior at infinity

T1(A) ∼
4π√
3A

≈ 7.2551

A
. (1.32)

(ii) The second approximation is

T2(A) =
2π

ω2(A)
,

where ω2(A) := ω2 is the real positive solution to the equation

1058ω6
2−3(219A2+322)ω4

2−
9

4
(21A4+80A2+40)ω2

2−
27

64
A2(7A2+8)2−2 = 0.

Moreover, its Taylor series at A = 0 is

T2(A) = 2π − 3

4
πA2 +

57

128
πA4 − 633

2048
πA6 +O(A8), (1.33)
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1.6. The Duffing-harmonic oscillator

and its behavior at infinity is given by

T2(A) ∼
∆̄

A
≈ 7.4018

A
, (1.34)

where

∆̄ =
92
√
2π∆√

1033992 + 876∆ +∆2
, ∆ = (1763014086 + 71386434

√
393)1/3.

(iii) The third approximation is given implicitly as one of the branches of an alge-
braic curve h(A2, T 2) = 0 that has degree 11 with respect to A2 and T 2 and
total degree 44. In particular, at A = 0,

T3(A) = 2π − 3

4
πA2 +

57

128
πA4 − 315

1024
πA6 +

30339

131072
πA8 +O(A10),

and at infinity,

T2(A) ∼
δ

A
≈ 7.4156

A
, (1.35)

where δ is the positive real root of an even polynomial of degree 22.

Notice that by Lemma 1.14 and Proposition 1.15 it holds that

T (A)− TN(A) = O(A2N+4), N = 1, 2, 3,

result that evidences that, at least locally and for these values of N , the N -th order
HBM improves when N increases. Moreover, the dominant terms at A = ∞ of
TN(A) also improve when N increases.

In Figure 1.2 it is shown the absolute error between the exact period function
T (A) and first and second approximation by using HBM.

Proof of Lemma 1.14. The Hamiltonian function associated to system (1.26) is
H(x, y) = y2/2 + x2/2 + x4/4. The energy level is H(x, y) = A2/2 + A4/4 := h.
Then, the period function is

T (A) = 4

∫ A

0

dx√
2h− x2 − 1

2
x4
.

Making the change of variable z = x/A, we can write the above expression as

T (A) =
4√

1 + 1
2
A2

∫ 1

0

dz√
(1− z2)

(
1 + A2

2+A2 z2
) ,

which gives (1.28) as we wanted to prove. By using (1.27) and (1.28), straight-
forward computations yield to (1.29). The behavior at infinity of T (A) is a direct
consequence of Theorem 1.1 with m = 2.
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Figure 1.2:

Proof of Proposition 1.15. Notice that result (i) corresponds to the particular
case m = 2 in Proposition 1.2. In this case, expression (1.23) gives

T1(A) =
4π√

3A2 + 4
.

Straightforward computations show that its Taylor series at A = 0 is (1.31). More-
over, writing T1(A) as

T1(A) =
4π

A
√

3 + 4
A2

,

it is clear that 4π√
3A

is its dominant term at infinity.

(ii) System (1.26) is equivalent to the second order differential equation

ẍ+ x+ x3 = 0, (1.36)

with initial conditions x(0) = A, ẋ(0) = 0.
For applying second-order of the HBM we look for a solution of (1.36) of the

form x2(t) = a1 cos(ω2t)+a3 cos(3ω2t). The vanishing of the coefficients of cos(ω2t)
and cos(3ω2t) in the Fourier series of F2 provides the nonlinear system

−4ω2
2 + 3a21 + 3a1a3 + 6a23 + 4 = 0,

−9a3ω
2
2 +

1

4
a31 +

3

2
a21a3 + a3 +

3

4
a33 = 0.

From the initial conditions we have a1 = A− a3. Hence the above system becomes

−4ω2
2 + 6a23 − 3a3A+ 3A2 + 4 = 0,

−9ω2
2a3 + 2a33 −

9

4
a23A+

3

4
a3A

2 + a3 +
1

4
A3 = 0.
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1.6. The Duffing-harmonic oscillator

Doing the resultant of these equations with respect to a3, we obtain the polynomial

1058ω6
2 −3(219A2+322)ω4

2 −
9

4
(21A4+80A2+40)ω2

2 −
1323

64
A6− 189

4
A4−27A2−2.

Thus, ω2 is the unique real positive root of the above polynomial, that is,

ω2 =

√
2

92

(
2166784 + 3272256A2 + 1033992A4 + (1288 + 876A2)R1/3 + R2/3

R1/3

)1/2

where

R = 3189506048 + 7956430848A2 + 6507324864A4 + 1763014086A6

+ 3174 (320 + 357A2)AS,

S = (4521984 + 9925632A2 + 6899904A4 + 1559817A6)1/2.

Therefore, the second approximation T2(A) to T (A) of (1.26) is T2(A) = 2π/ω2,
and it is not difficult to see that its Taylor series at A = 0 is (1.33).

For studying the behavior of T2 at infinity we rewrite ω2 as

ω2 =

√
2A

92 R̄1/6

(
2166784

A4
+

3272256

A2
+ 1033992 +

(
1288

A4
+

876

A2

)
R̄1/3 + R̄2/3

)1/2

where

R̄ =
3189506048

A6
+

7956430848

A4
+

6507324864

A2
+ 1763014086

+
1015680

A5
S̄ + 1133118S̄,

S̄ =

(
4521984

A6
+

9925632

A4
+

6899904

A2
+ 1559817

)1/2

.

From the previous expressions we have

lim
A→∞

S̄ = 63
√
393, lim

A→∞
R̄ = 1763014086 + 71386434

√
393.

Thus,

lim
A→∞

2πA

ω2

=
92
√
2π∆√

1033992 + 876∆ +∆2
,

where ∆ = (1763014086 + 71386434
√
393)1/3.

Hence,

lim
A→∞

T2(A)− ∆̄A−1

A−1
= 0,
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where

∆̄ =
92
√
2π∆√

1033992 + 876∆ +∆2
.

Therefore, we have proved (ii).

(iii) When N = 3 we look for a solution of (1.36) of the form x2(t) = a1 cos(ω3t) +
a3 cos(3ω3t)+a5 cos(5ω3t). Using the initial conditions we get that a1 = A−a3−a5.
Afterwards, imposing that the first three significative harmonics vanish, we obtain
the system of three equations:

P =A− ω3
2A+

3

4
A3 +

(
ω3

2 − 3

2
A2 − 1

)
a3 +

(
ω3

2 − 9

4
A2 − 1

)
a5 +

9

2
a3a5A

+
9

4
Aa3

2 +
15

4
a5

2A− 9

4
a5

3 − 3a3
2a5 −

9

2
a3a5

2 − 3

2
a3

3 = 0,

Q =
1

4
A3 +

(
1 +

3

4
A2 − 9ω3

2

)
a3 −

3

2
a3a5A− 3

4
a5

2A− 9

4
Aa3

2

+
3

2
a3

2a5 +
9

4
a3a5

2 + 2a3
3 +

1

2
a5

3 = 0,

R =
3

4
A2a3 +

(
−25ω3

2 +
3

2
A2 + 1

)
a5 − 3a5

2A− 9

2
a3a5A− 3

4
Aa3

2

+
15

4
a3

2a5 +
9

4
a5

3 +
15

4
a3a5

2 = 0.

Since all the equations are polynomial, the searching of its solutions can be
done by using successive resultants, see for instance [98]. We compute the following
polynomials

PQ :=
Res(P,Q, a3)

A− a5
, QR := Res(Q,R, a3),

and finally

PQR :=
Res(PQ,QR, a5)

3A2 + 4− 36ω2
3

.

This last expression is a polynomial with rational coefficients that only depends
on A and ω3 and has total degree 70. Fortunately, it factorizes as PQR(A,ω3) =
f(A,ω3)g(A,ω3), with factors of respective degrees 22 and 48. Although both fac-
tors could give solutions of our system we continue our study only with the factor
f . It is clear that if we consider the following numerator

h(A2, T 2) := Num

(
f
(
A,

2π

T

))
,
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we have an algebraic curve h(A2, T 2) = 0 that gives a restriction that has to be
satisfied in order to have a solution of our initial system. This function is precisely
the one that appears in the statement of the proposition.

Once we have this explicit algebraic curve it is not difficult to obtain the other
results of the statement. So, to obtain the local behavior near the origin we consider
T3(A) =

∑m
k t2kA

2k and we impose that h(A2, (T3(A))
2) ≡ 0, obtaining easily the

first values t2k. Similarly, for A big enough, we impose that T3(A) ∼ δ/A obtaining
the value of δ.

1.7 Non-monotonous period function

In this section we study the family of systems (1.8) whose period function has a
critical period (a maximum of the period function) and we show that the HBM also
captures this behavior.

It is not difficult to establish the existence of values of k & −2 for which the
period function is not monotonous. It holds that, for all k,

lim
A→0

T (A) = 2π and lim
A→∞

T (A) = 0. (1.37)

We remark that when k ≤ −2 the center is no more global but there is also
a neighborhood of infinity full of periodic orbits. When k = −2, the system has
also the critical points (±1, 0) and all the orbits of the potential system are closed,
except the heteroclinic ones joining these two points. Hence, for k = −2 and from
the continuity of the flow of (1.8) with respect to initial conditions, it follows that
the periodic orbits close to these heteroclinic orbits have periods arbitrarily high;
thus, the period of nearby periodic orbits, for k > −2 with k + 2 small enough,
is also arbitrarily high due to the continuity of the flow of (1.8) with respect to
parameters. Therefore, from this property and (1.37) it follows that T (A) is not
monotonous.

The proof that T (A) has only one maximum is much more difficult and in-
deed was the main objective of [71]. In that paper the authors proved this fact
showing first that T (h), where h is the energy level of the Hamiltonian associ-
ated with (1.8), satisfies a Picard-Fuchs equation. As a consequence, the function
x(h) = T ′(h)/T (h) satisfies a Riccati equation. Finally, they study the flow of this
equation for showing that x(h) vanish at most at a single point.

Proof of Proposition 1.6. For applying first-order HBM we write the family
(1.8) as the second order differential equation

ẍ+ x+ kx3 + x5 = 0.
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We look for a solution of the form x1(t) = a1 cos(ω1t). The vanishing of the coeffi-
cient of cos(ω1t) in F1, and the initial conditions x1(0) = A > 0, ẋ1(0) = 0, provides
the algebraic equation

16 + 12kA2 + 10A4 − 16ω2
1 = 0.

Solving for ω1 we obtain

ω1(A) =
1

4

√
16 + 12kA2 + 10A4.

Then, the first approximation T1(A) to T (A) is

T1(A) =
8π√

16 + 12kA2 + 10A4
,

which is well defined for all A ∈ R only for k ∈ (−2
√
10/3,∞). It is clear that if

k ≥ 0, then T1(A) is decreasing, which proves (i). Moreover

T ′
1(A) =

−16π A (3 k + 5A2)

(8 + 6 kA2 + 5A4)
√
16 + 12 kA2 + 10A4

.

Hence, T1(A) has a non-zero critical point only when k ∈ (−2
√
10/3, 0), and it is

A =
√
−3k/

√
5. Moreover, it is easy to see that such critical point is a maximum.

The proof of items (ii) and (iii) is straightforward.

1.8 General potential system

In this section we consider the smooth potential system
ẋ = −y,

ẏ = x+
∞∑
i=2

kix
i.

(1.38)

Since its Hamiltonian function has a non degenerated minimum at the origin, it
has a period annulus surrounding the origin. Thus, we have a period function T (A)
associated to this period annulus. The behavior near the origin of T (A) is given in
the following result.

Proposition 1.16. The period function T (A) of the system (1.38) at A = 0 is

T (A) =2π +

(
5

6
k2

2 − 3

4
k3

)
πA2 +

(
5

9
k2

3 − 1

2
k2 k3

)
πA3

+

(
385

288
k42 −

275

96
k22k3 +

7

4
k2k4 +

57

128
k23 −

5

8
k5

)
πA4 +O

(
A5
)
.
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1.9. Conclusions

The proof of this proposition follows by using standard methods in the local
study of the period function [22, 53].

By applying the HBM to the next family of potential systems
ẋ = −y,

ẏ = x+
M∑
i=2

kix
i,

(1.39)

for M = 3, 4, 5, 6, 7, we obtain the corresponding T1,M(A) which satisfy

T1,M(A) = 2 π +

(
k2

2 − 3

4
k3

)
πA2 +OM

(
A3
)
.

As can be seen, the quadratic terms do not depend on M . These first terms only
coincide with the corresponding ones of T (A) when k2 = 0. Notice that this is the
situation in Propositions 1.6 and 1.15.

To get a more accurate approach of T (A) we have applied the second order HBM
to (1.39) with M = 3 obtaining

T2(A) = 2 π +

(
5

6
k2

2 − 3

4
k3

)
πA2 +O

(
A3
)
,

result that coincides with the actual value of T (A).

1.9 Conclusions

Studying several examples of potential systems we have seen that the approxima-
tions TN(A) calculated using the N -th order HBM keep some of the properties (an-
alytic and qualitative) of the actual period function T (A). Moreover, this matching
seems to improve when N increases.

We believe that obtaining general results to strengthen the above relationship
is a challenging question.
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Chapter 2
Weak periodic solutions of xẍ+ 1 = 0 and
the HBM

2.1 Introduction and main results

The nonlinear differential equation

xẍ+ 1 = 0, (2.1)

appears in the modeling of certain phenomena in plasma physics [2]. In [78], Mick-
ens calculates the period of its periodic orbits and also uses the N -th order HBM,
for N = 1, 2, to obtain approximations of these periodic solutions and of their corre-
sponding periods. Strictly speaking, it can be easily seen that neither equation (2.1),
nor its associated system {

ẋ = y,
ẏ = − 1

x
,

(2.2)

which is singular at x = 0, have periodic solutions. Our first result gives two
different interpretations of Mickens’ computation of the period. The first one in
terms of weak (or generalized) solutions. In this work a weak solution will be a
function satisfying the differential equation (2.1) on an open and dense set, but
being of class C0 at some isolated points. The second one, as the limit, when k
tends to zero, of the period of actual periodic solutions of the extended planar
differential system {

ẋ = y,
ẏ = − x

x2+k2
,

(2.3)

which, for k ̸= 0, has a global center at the origin, as proved in Chapter 1.
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Theorem 2.1. (i) For the initial conditions x(0) = A ̸= 0, ẋ(0) = 0, the dif-
ferential equation (2.1) has a weak C0-periodic solution with period T (A) =
2
√
2πA.

(ii) Let T (A; k) be the period of the periodic orbit of system (2.3) with initial
conditions x(0) = A, y(0) = 0. Then

T (A; k) = 4A

∫ 1

0

ds√
ln
(
A2+k2

A2s2+k2

)
and

lim
k→0

T (A; k) = 4A

∫ 1

0

1√
−2 ln s

ds = 2
√
2πA = T (A).

Recall that the N -th order HBM consists in approximating the solutions of
differential equations by truncated Fourier series withN harmonics and an unknown
frequency; In [79, p. 180] the author asks for techniques for dealing analytically
with the N -th order HBM, for N ≥ 3. In Chapter 1 it is shown how resultants can
be used when N = 3. Here we utilize a more powerful tool, the computation of
Gröbner basis ([31, Ch. 5]), for going further in the obtention of approximations of
the function T (A) introduced in Theorem 2.1.

Notice that equation (2.1) is equivalent to the family of differential equations

xm+1ẍ+ xm = 0, (2.4)

for any m ∈ N ∪ {0}. Hence it is natural to approach the period function,

T (A) = 2
√
2πA ≈ 5.0132A,

by the periods of the trigonometric polynomials obtained applying the N -th order
HBM to (2.4). Next theorem gives our results for N ≤ 6. Here [a] denotes the
integer part of a.

Theorem 2.2. Let TN(A;m) be the period of the truncated Fourier series obtained
applying the N-th order HBM to equation (2.4). It holds:

(i) For all m ∈ N ∪ {0},

T1(A;m) = 2π

√
2[m+1

2
] + 1

2[m+1
2

] + 2
A. (2.5)
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(ii) For m = 0,

T1(A; 0) =
√
2 πA ≈ 4.4428A, T2(A; 0) = (

√
218/9) πA ≈ 5.1539A,

T3(A; 0) =
13810534πA

3
√

5494790257313+115642506449
√
715

≈ 4.9353A, T4(A; 0) ≈ 5.0455A,

T5(A; 0) ≈ 4.9841A, T6(A; 0) ≈ 5.0260A,

(iii) For m = 1,

T1(A; 1) =
√
3πA ≈ 5.4414A, T2(A; 1) ≈ 5.2733A,

T3(A; 1) ≈ 5.1476A, T4(A; 1) ≈ 5.1186A.

(iv) For m = 2,

T1(A; 2) =
√
3πA ≈ 5.4414A, T2(A; 2) ≈ 5.2724A,

T3(A; 2) ≈ 5.1417A.

Moreover, the approximate values appearing above are roots of given polynomials
with integer coefficients. Whereby the Sturm sequences approach can be used to get
them with any desirable precision.

Notice that the values T1(A;m), for m ∈ {0, 1, 2} given in items (ii), (iii) and
(iv), respectively, are already computed in item (i). We explicit this only to clarify
the reading.

eN(m) m = 0 m = 1 m = 2

N = 1 11.38% 8.54% 8.54%
N = 2 2.80% 5.19% 5.17%
N = 3 1.55% 2.68% 2.56%
N = 4 0.64% 2.10% −
N = 5 0.58% − −
N = 6 0.25% − −

Table 2.1: Percentage of relative errors eN(m).

Observe that the comparison of (2.5) with the value T (A) given in Theorem 2.1
shows that when N = 1 the best approximations of T (A) happen when m ∈ {1, 2}.
For this reason we have applied the HBM for N ≤ 6 and m ≤ 2 to elucidate which
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of the approaches is better. In the Table 2.1 we will compare the percentage of the
relative errors

eN(m) = 100

∣∣∣∣TN(A;m)− T (A)

T (A)

∣∣∣∣ .
The best approximation that we have found corresponds to T6(A; 0). Our computers
have had problems to get the Gröbner basis needed to fill the gaps of the table.

The chapter is organized as follows. First, we prove Theorem 2.1. In Section 2.2
we describe the N -th order HBM in the framework of symmetric equations. Finally,
in Section 2.3 we use this method to demonstrate Theorem 2.2.

Proof of Theorem 2.1.

Proof. (i) We start proving that the solution of (2.1) with initial conditions x(0) =

A, ẋ(0) = 0 and for t ∈
(
−

√
2π
2
A,

√
2π
2
A
)
is

x(t) = ϕ0(t) := Ae
−
(
erf−1

(
2 t√
2πA

))2

, (2.6)

where erf−1 is the inverse of the error function

erf(z) =
2√
π

∫ z

0

e−s
2

ds.

Notice that lim
t→±

√
2π
2

ϕ0(t) = 0 and lim
t→±

√
2π
2

ϕ′
0(t) = ∓∞. To obtain (2.6),

observe that from system (2.2) we arrive at the simple differential equation

dx

dy
= −xy,

which has separable variables and can be solved by integration. The particular
solution that passes by the point (x, y) = (A, 0) is

x = Ae−y
2/2. (2.7)

Combining (2.2) and (2.7) we obtain

dy

dt
= −e

y2/2

A
,

again a separable equation. It has the solution

y(t) = −
√
2 erf−1

(
2 t√
2πA

)
, (2.8)
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which is well defined for t ∈
(
−

√
2π
2
A,

√
2π
2
A
)

since erf−1(·) is defined in (−1, 1).

Finally, by replacing y(t) in (2.7) we obtain (2.6), as we wanted to prove.
By using x(t) and y(t) given by (2.6) and (2.8), respectively, or using (2.7),

we can draw the phase portrait of (2.2) which, as we can see in Figure 2.1.(b), is
symmetric with respect to both axes. Notice that its orbits do not cross the y-axis,
which is a singular locus for the associated vector field. Moreover, the solutions of
(2.1) are not periodic (see Figure 2.1.(a)), and the transit time of x(t) from x = A
to x = 0 is

√
2π A/2.

(a) (b)

Figure 2.1: (a) Two solutions of equation (2.1). (b) Phase-portrait of system (2.2).

Figure 2.2: A weak C0-periodic solution of (2.1).

From (2.6) we introduce the C0-function, defined on the whole R, as

ϕ(t) =

{
(−1)nϕ0(t− n

√
2π), for t ∈

(
2n−1

2

√
2π, 2n+1

2

√
2π
)
, n ∈ Z,

0 for t = 2n+1
2

√
2π, n ∈ Z,
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see Figure 2.2. It is a C0-periodic function of period T (A) = 2
√
2πA and x = ϕ(t)

satisfies (2.1), for all t ∈ R \ ∪n∈Z{2n+1
2

√
2π}. Hence (i) of the theorem follows.

Notice that directly from (2.1), it is easy to see that this equation can not have
C2-solutions such that x(t∗) = 0 for some t∗ ∈ R, because this would imply that
limt→t∗ ẍ(t) = ∞.
(ii) System (2.3) is Hamiltonian with Hamiltonian function

H(x, y) =
y2

2
+

ln(x2 + k2)

2
.

Since ln(x2 + k2) has a global minimum at 0 and ln(x2 + k2) tends to infinity when
|x| does, system (2.3) has a global center at the origin. In Figure (2.3) we can see
its phase portrait for some values of k. This figure also illustrates how the periodic
orbits of (2.3) approach to the solutions of system (2.2). Its period function is

k = 1 k = 1
50

k = 1
1000

Figure 2.3: Phase portraits of (2.3) for different values of k.

T (A; k) = 2

∫ A

−A

dx

y(x)
= 2

∫ A

−A

dx√
2h− ln (x2 + k2)

,

where h = ln(A2 + k2)/2 is the energy level of the orbit passing through the point
(A, 0). Therefore,

T (A; k) = 2

∫ A

−A

dx√
ln
(
A2+k2

x2+k2

) = 4A

∫ 1

0

ds√
ln
(
A2+k2

A2s2+k2

) ,
where we have used the change of variable s = x/A and the symmetry with respect
to x. Then,

lim
k→0

T (A; k) = lim
k→0

∫ 1

0

4Ads√
ln
(
A2+k2

A2s2+k2

) .
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If we prove that

lim
k→0

∫ 1

0

4Ads√
ln
(
A2+k2

A2s2+k2

) =

∫ 1

0

lim
k→0

4Ads√
ln
(
A2+k2

A2s2+k2

) , (2.9)

then

lim
k→0

T (A; k) = 4A

∫ 1

0

ds√
−2 ln (s)

= 2
√
2πA = T (A)

and the theorem will follow. Therefore, for completing the proof, it only remains to
show that (2.9) holds. For proving that, take any sequence 1/zn, with zn tending

monotonically to infinity, and consider the functions fn(s) =
(
ln
(

A2z2n+1
A2z2ns

2+1

))−1/2

.

We have that the sequence {fn(s)}n∈N is formed by measurable and positive func-
tions defined on the interval (0, 1). It is not difficult to prove that it is a decreasing
sequence. In particular, fn(s) < f1(s) for all n > 1. Therefore, if we show that
f1(s) is integrable, then we can apply the Lebesgue’s dominated convergence theo-

rem ([92]) and (2.9) will follow. To prove that
∫ 1

0
f1(s) < ∞ note that for s close

to 1,

f1(s) =

(
ln

(
A2z21 + 1

A2z21s
2 + 1

))−1/2

∼
(
2A2z21(1− s)

A2z21 + 1

)−1/2

.

Since this last expression is integrable the result follows by the comparison test for
improper integrals.

2.2 The HBM for symmetric equations

Although in Chapter 1 we did a description of the HBM, we want to repeat it but
in the context of certain second order symmetric differential equations. Since, in
this case, there will be simplifications in the computations.

Consider the second order differential equations

F := F(x(t), ẍ(t)) = 0, (2.10)

with F(−u,−v) = F(u, v). Notice that if x(t) is a solution of (2.10) then x(−t)
also is a solution.

Suppose that equation (2.10) has a T -periodic solution x(t) with initial condi-
tions x(0) = A, ẋ(0) = 0 and period T = T (A). If x(t) satisfies x(t) = x(−t) it is
clear that its Fourier series has no sinus terms and writes as

∞∑
k=1

ak cos(kωt), with
∞∑
k=1

ak = A and ω =
2π

T
.
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As we have seen in previous section, the weak periodic solutions of equation x(t)ẍ(t)+
1 = 0 that we want to approach satisfy the above property. Moreover x(T/4) = 0
and ẋ(T/4) does not exist. In any case, if we are searching smooth approximations
to this x(t), they should also satisfy ẋ(t)ẍ(t)+x(t)

...
x (t) = 0, and hence ẋ(T/4) = 0.

For this reason, in this chapter we will search Fourier series in cosines, not having
the even terms cos(2jωt), j ∈ N ∪ {0}, which do not satisfy this property. This
type of a priori simplifications are similar to the ones introduced in [77] for other
problems.

Hence, in our setting, the HBM of order N follows the next five steps:
1. Consider a trigonometric polynomial

x
N
(t) =

N∑
j=1

a2j−1 cos((2j − 1)ωN t) with
N∑
j=1

a2j−1 = A. (2.11)

2. Compute the 2π/ωN -periodic function FN := F(x
N
(t), ẍ

N
(t)), which has also

an associated Fourier series,

FN(t) =
∑
j≥0

Aj cos(j ωN t),

where Aj = Aj(a, ωN , A) j ≥ 0, with a = (a1, a3, . . . , a2N−1).
3. Find all values a and ωN such that

Aj(a, ωN , A) = 0 for 1 ≤ j ≤ jN , (2.12)

where jN is the value such that (2.12) consists exactly of N non trivial equations.
Notice also that each equation Aj(a, ωN , A) = 0 is equivalent to∫ 2π/ωN

0

cos(jωN t)FN(t) dt = 0. (2.13)

4. Then the expression (2.11), with the values of a = a(A) and ωN = ωN(A)
obtained in point 3, provide candidates to be approximations of the actual periodic
solutions of the initial differential equation. In particular, the functions TN =
TN(A) = 2π/ωN give approximations of the periods of the corresponding periodic
orbits (as can be seen in Chapter 1).

5. Choose, as final approximation, the one associated to the solution that min-
imizes the accuracy of the solution given by the norm

||FN(t)||2 =

√
1

TN

∫ TN

0

F2
N(t) dt,

see also the Section 3.1 of the Chapter 3. We remark again some points about the
HBM, some of which were already mentioned in Section 1.3 of Chapter 1.
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Remark 2.3. (i) Going from order N to order N + 1 in the method, implies to
compute again all the coefficients of the Fourier polynomial, because in general the
common Fourier coefficients of x

N
(t) and x

N+1
(t) do not coincide.

(ii) The above set of equations (2.12) is a system of polynomial equations which
usually is not easy to solve. For this reason in many works, see for instance [78, 79]
and the references therein, only the values of N = 1, 2 are considered. In Chapter 1,
by using the method of successive resultants, we do the computations for N = 3. In
this chapter, for solving system (2.12) for N ≥ 3 we use the Gröbner basis approach
([31]). In general this method is faster that using successive resultants and moreover
it does not give spurious solutions.

(iii) As far as we know, the test proposed in point 5 to select the best approach
is not commonly used. We propose it following the definition of accuracy of an
approximated solution used in Chapter 3 and inspired in the classical works [97, 99].

2.3 Application of the HBM

We start proving a lemma that will allow to reduce our computations to the case
A = 1.

Lemma 2.4. Let TN(A;m) be the period of the truncated Fourier series obtained
applying the N-th order HBM to equation (2.4). Then there exists a constant CN(m)
such that TN(A;m) = CN(m)A.

Proof. Consider FN = xm+1
N ẍN +xmN = 0, with xN given in (2.11). We have to solve

the set of N + 1 non-trivial equations∫ 2π/ωN

0

cos(jωN t)FN(t) dt = 0 1 ≤ j ≤ jN ,

N∑
j=1

a2j−1 = A, (2.14)

with N + 1 unknowns a1, a3, . . . , a2N−1 and ωN and A ̸= 0. The lemma clearly
follows if we prove next assertion: ã1, ã3, . . . , ã2N−1 and ω̃N is a solution of (2.14)
with A = 1 if and only if Aã1, Aã3, . . . , Aã2N−1 and ω̃N/A is a solution of (2.14).
This equivalence is a consequence of the fact that the change of variables s = At
writes the integral equation in (2.14) as

1

A

∫ 2πA/ωN

0

cos
(
j
ωN
A
s
)
FN

( s
A

)
ds = 0

and from the structure of the right hand side equation of (2.14). Hence, TN(A;m) =
TN(1;m)A =: CN(m)A, as we wanted to prove.
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Chapter 2. Weak periodic solutions of xẍ+ 1 = 0 and the HBM

Proof of Theorem 2.2. Due to the above lemma, in the application of the N -th
order HBM, we can restrict our attention to the case A = 1.

(i) Following section 2.2, we consider x1(t) = cos(ω1t) as the first approximation
to the actual solution of the functional equation F(x(t), ẍ(t)) = xm+1ẍ + xm = 0.
Then

F1(t) = −ω2
1 cos

m+2(ω1t) + cosm(ω1t).

When m = 2k the above expression writes as

F1(t) = −ω2
1 cos

2k+2(ω1t) + cos2k(ω1t) = 0. (2.15)

Using (2.13) for j = 0 we get∫ 2π/ω1

0

F1(t) dt = −ω2
1I2k+2 + I2k = 0, (2.16)

where I2ℓ =
∫ 2π/ω1

0
cos2ℓ(ω1t)dt. By using integration by parts we prove that (2k +

2)I2k+2 = (2k + 1)I2k. Combining this equality and (2.16) we obtain that

ω1 =

√
2k + 2

2k + 1
,

or equivalently,

T1(A;m) = 2πA

√
2k + 1

2k + 2
,

that in terms of m coincides with (2.5). The case m odd follows similarly. The only
difference is that instead of condition (2.16) to find T1(A;m) we have to impose
that ∫ 2π/ω1

0

cos(ω1t)F1(t) dt = 0,

because
∫ 2π/ω1

0
F1(t) dt ≡ 0.

(ii) Case m = 0. Consider the functional equation F(x(t), ẍ(t)) = x(t)ẍ(t)+ 1 = 0.
When N = 2, we take as approximation x2(t) = a1 cos(ω2t) + a3 cos(3ω2t). The
vanishing of the coefficients of 1 and cos(2ω2t) in the Fourier series of F2 provides
the nonlinear system

1− 1

2
(a21 + 9a23)ω

2
2 = 0,

a1 + 10a3 = 0,

a1 + a3 − 1 = 0.
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By solving it and applying point 5 in the HBM we get ω2 = 18/
√
218. Therefore,

T2(A; 0) =

√
218

9
πA ≈ 5.1539A,

as we wanted to prove.

For the third-order HBM we use as approximate solution x3(t) = a1 cos(ω3t) +
a3 cos(3ω3t)+a5 cos(5ω3t). Imposing that the coefficients of 1, cos(2ω3t), and cos(4ω3t)
in F3 vanish we arrive at the system

P = 2−
(
a21 + 9a23 + 25a25

)
ω2
3 = 0,

Q = a21 + 10a1a3 + 34a3a5 = 0,

R = 5a3 + 13a5 = 0,

S = a1 + a3 + a5 − 1 = 0.

Since all the equations are polynomial, the searching of its solutions can be done
by using the Gröbner basis approach, see [31]. Recall that the idea of this method
consists in finding a new systems of generators, say G1, G2, . . . , Gℓ, of the ideal of
R[a1, a3, a5, ω3] generated by P,Q,R and S. Hence, solving P = Q = R = S = 0
is equivalent to solve Gi = 0, i = 1, . . . , ℓ. In general, choosing the lexicographic
ordering in the Gröbner basis approach, we get that the polynomials of the equiv-
alent system have triangular structure with respect to the variables and it can be
easily solved.

Now, by computing the Gröbner basis of {P,Q,R, S} with respect to the lexico-
graphic ordering [a1, a3, a5, ω3] we obtain a new basis with four polynomials (ℓ = 4),
being one of them,

G1(ω3) = 1553685075ω8
3−3692301106ω6

3+2143547654ω4
3−402413472ω2

3+20301192.

Solving G1(ω3) = 0 and using again point 5 of our approach to HBM we get
that the solution that gives the better approximation is

ω3 =
3
√

5494790257313 + 115642506449
√
715

6905267
.

Hence the expression T3(A; 0) = 2πA/ω3 of the statement follows.

When N = 4 we consider x4(t) = a1 cos(ω4t) + a3 cos(3ω4t) + a5 cos(5ω4t) +
a7 cos(7ω4t), and we arrive at the system

P = 2−
(
a21 + 9a23 + 25a25 + 49a27

)
ω2
4 = 0,

Q = a21 + 10a1a3 + 34a3a5 + 74a5a7 = 0,

R = 5a1a3 + 13a1a5 + 29a3a7 = 0,

S = 9a23 + 50a1a7 + 26a1a5 = 0,

U = a1 + a3 + a5 + a7 − 1 = 0.
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The Gröbner basis of {P,Q,R, S, U} with respect to the lexicographic ordering
[a1, a3, a5, a7, ω4] is a new basis with five polynomials, being one of them an even
polynomial in ω4 of degree 16 with integers coefficients. Solving it we obtain that
the best approximation is ω4 ≈ 1.2453, which gives T4(A; 0) ≈ 5.0455A.

For N = 5 and N = 6 we have done similar computations. In the case N = 5
one of the generators of the Gröbner basis is an even polynomial in ω5 with integers
coefficients and degree 32. When N = 6 the same happens but with a polynomial
of degree 64 in ω6. Solving the corresponding polynomials we get that ω5 ≈ 1.2606
and ω6 ≈ 1.2501, and consequently, T5(A; 0) ≈ 4.9843A, and T6(A; 0) ≈ 5.0260A.

(iii) Case m = 1. We apply the HBM to F(x(t), ẍ(t)) = x2(t)ẍ(t)+x(t) = 0.When
N = 2, doing similar computations that in item (ii), we arrive at

P = 4−
(
3a21 + 11a1a3 + 38a23

)
ω2
2 = 0,

Q = 4a3 −
(
a31 + 22a21a3 + 27a33

)
ω2
2 = 0,

R = a1 + a3 − 1 = 0.

Again, by searching the Gröbner basis of {P,Q,R} with respect to the lexicographic
ordering [a1, a3, ω2] we obtain a new basis with three polynomials, being one of them

G1(ω2) = 7635411ω8
2 − 14625556ω6

2 + 5833600ω4
2 − 661376ω2

2 + 13824.

Notice that the equation G(ω2) = 0 can be algebraically solved. Nevertheless, for
the sake of shortness, we do not give the exact roots. Following again step 5 of
our approach we get that the best solution is ω2 ≈ 1.1915, or equivalently that
T2(A; 1) ≈ 5.2733A.

The HBM when N = 3 produces the system

P = 4a1 −
(
3a31 + 11a21a3 + 38a1a

2
3 + 70a1a3a5 + 102a1a

2
5 + 43a23a5

)
ω2
3 = 0,

Q = 4a3 −
(
a31 + 22a21a3 + 27a21a5 + 70a1a3a5 + 27a33

)
ω2
3 = 0,

R = 4a5 −
(
11a21a3 + 54a21a5 + 19a1a

2
3 + 86a23a5 + 75a35

)
ω2
3 = 0,

S = a1 + a3 + a5 − 1 = 0.

Computing the Gröbner basis of {P,Q,R, S} with respect to the lexicographic
ordering [a1, a3, a5, ω3] we get that one of the polynomials of the new basis is an
even polynomial in ω3 of degree 26 with integer coefficients. By solving it we obtain
that the best approximation is ω3 ≈ 1.2206, which produces the value T3(A; 1) of
the statement.

When N = 4 we arrive at five polynomial equations, that we omit. Once more,
using the Gröbner basis approach we obtain a polynomial condition in ω4 of degree
80. Finally, ω4 ≈ 1.2275 and T4(1;A) ≈ 5.1186.
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(iv) When m = 2 we have to approach the solutions of F(x(t), ẍ(t)) = x3(t)ẍ(t) +
x2(t) = 0. We do not give the details of the proof because we get our results by
using exactly the same type of computations.

Remark 2.5. For each N and m our computations also provide a trigonometric
polynomial that approaches the continuous weak periodic solution ϕ(t) given in the
proof of Theorem 2.1.
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Chapter 3
A theoretical basis for the HBM

3.1 Introduction and main results

Consider the real non-autonomous differential equation

x′ = X(x, t), (3.1)

where the prime denotes the derivative with respect to t, X : Ω× [0, 2π] → R is a
C2-function, 2π-periodic in t, and Ω ⊂ R is a given open interval.

There are several methods for finding approximations to the periodic solutions of
(3.1). For instance, the Harmonic Balance Method (HBM), recalled in section 3.3,
or simply the numerical approximations of the solutions of the differential equations.
In any case, from all the methods we can get a truncated Fourier series, namely a
trigonometric polynomial, that “approximates” an actual periodic solution of the
equation. The aim of this chapter is to recover some old results of Stokes and
Urabe that allow the use of these approximations to prove that near them there
are actual periodic solutions and also provide explicit bounds, in the infinity norm,
of the distance between both functions. To the best of our knowledge these results
are rarely used in the papers dealing with the HBM.

When the methods are applied to concrete examples one has to manage the
coefficients of the truncated Fourier series that are rational numbers which ren-
ders the subsequent computations more difficult. See the examples of Section 3.5.
At this point we introduce in this setting a classical tool that as far as we know
has never been used in this type of problems: we approximate all the coefficients
of the truncated Fourier series by suitable convergents of their respective expan-
sions in continuous fractions. This is done in such a way that by using these new
coefficients we obtain a new approximate solution that is essentially at the same
distance to the actual solution as the starting approximation. With this method we
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obtain trigonometric polynomials with nice rational coefficients that approximate
the periodic solutions.

Before stating our main result, and following [97, 99], we introduce some con-
cepts. Let x̄(t) be a 2π-periodic C1-function; we will say that x̄(t) is noncritical
with respect to (3.1) if ∫ 2π

0

∂

∂x
X(x̄(t), t) dt ̸= 0. (3.2)

Notice that if x̄(t) is a periodic solution of (3.1) then the concept of noncritical is
equivalent to the one of being hyperbolic; see [68].

As we will see in Lemma 3.3, if x̄(t) is noncritical w.r.t. equation (3.1), the
linear periodic system

y′ =
∂

∂x
X(x̄(t), t) y + b(t)

has a unique periodic solution yb(t) for each smooth 2π-periodic function b(t). More-
over, once X and x̄ are fixed, there exists a constant M such that

||yb||∞ ≤M ||b||2, (3.3)

where as usual, for a continuous 2π-periodic function f ,

||f ||2 =

√
1

2π

∫ 2π

0

f 2(t)dt, ||f ||∞ = max
x∈R

|f(x)| and ||f ||2 ≤ ||f ||∞ .

Any constant satisfying (3.3) will be called a deformation constant associated to x̄
and X. Finally, consider

s(t) := x̄′(t)−X(x̄(t), t). (3.4)

We will say that x̄(t) is an approximate solution of (3.1) with accuracy S = ||s||2 .
For simplicity, if S̃ > S, we also will say that x̄(t) has accuracy S̃. Notice that
actual periodic solutions of (3.1) have accuracy 0; in this sense, the function s(t)
measures how far is x̄(t) from being an actual periodic solution of (3.1).

The next theorem improves some of the results of Stokes [97] and Urabe [99]
in the one-dimensional setting. More concretely, in those papers they prove the
existence and uniqueness of the periodic orbit when 4M2KS < 1. We present a
similar proof with the small improvement 2M2KS < 1. Moreover our result gives,
under an additional condition, the hyperbolicity of the periodic orbit.

Theorem 3.1. Let x̄(t) be a 2π-periodic C1–function such that

- it is noncritical w.r.t. equation (3.1) and has M as a deformation constant,

- it has accuracy S w.r.t. equation (3.1).
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Given I := [min{t∈R} x̄(t) − 2MS,max{t∈R} x̄(t) + 2MS] ⊂ Ω, let K < ∞ be a
constant such that

max
(x,t)∈I×[0,2π]

∣∣∣∣ ∂2∂x2X(x, t)

∣∣∣∣ ≤ K.

Therefore, if
2M2KS < 1,

there exists a 2π-periodic solution x∗(t) of (3.1) satisfying

||x∗ − x̄||∞ ≤ 2MS,

and it is the unique periodic solution of the equation entirely contained in this strip.
If in addition ∣∣∣∣∫ 2π

0

∂

∂x
X(x̄(t), t) dt

∣∣∣∣ > 2π

M
,

then the periodic orbit x∗(t) is hyperbolic, and its stability is given by the sign of
this integral.

Once some approximate solution is guessed, for applying Theorem 3.1 we need
to compute the three constants appearing in its statement. In general, K and S
can be easily obtained. Recall for instance that ||s||2 , when s is a trigonometric
polynomial, can be computed from Parseval’s theorem. On the other hand, M is
much more difficult to estimate. In Lemma 3.5 we give a result useful for computing
it in concrete cases, that is different from the approach used in [97, 99, 100].

Assuming that a non-autonomous differential equation has a hyperbolic periodic
orbit, the results of [99] also guarantee that, if given a suitable trigonometric poly-
nomial r̄(t) of a sufficiently high degree, we can apply the first part of Theorem 3.1.
Intuitively, while the value of the accuracy S goes to zero when we increase the de-
gree of the trigonometric polynomial, the values M and K remain bounded. Thus,
at some moment, it holds that 2M2KS < 1.

In Section 3.5 we apply Theorem 3.1 to study and localize the limit cycles of
two planar polynomial autonomous systems. The first one is considered in Subsec-
tion 3.5.1 and is a simple example for which the exact limit cycle is already known.
We do our study step by step to illustrate how the method suggested by Theo-
rem 3.1 works in a concrete example. In particular we obtain an approximation
x̄(t) of the periodic orbit by using a combination between the HBM until order 10
and a suitable choice of the convergents obtained from the theory of continuous
fractions applied to the approach obtained by the HBM.

The second case corresponds to the system{
ẋ = −y + x

10
(1− x− 10x2),

ẏ = x+ y
10
(1− x− 10x2).
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In polar coordinates it is written as ṙ = r/10 − cos(θ)r2/10 − cos2(θ)r3, θ̇ = 1, or
equivalently,

r′ =
dr

dt
=

1

10
r − 1

10
cos(t) r2 − cos2(t) r3, (3.5)

and it has a unique positive periodic orbit; see also [56]. Notice that we have
renamed θ as t. We prove the following:

Proposition 3.2. Consider the periodic function

r̄(t) =
4

9
− 1

693
cos(t)− 1

51
sin(t)− 1

653
cos(2t)− 1

45
sin(2t)− 1

780
cos(3t).

The differential equation (3.5) then has a periodic solution r∗(t) such that

||r̄ − r∗||∞ ≤ 0.042,

which is hyperbolic and stable, and it is the only periodic solution of (3.5) contained
in this strip.

As we will see, in this example we will find computational difficulties to obtain
the third approximation given by the HBM. Therefore we will get it first by numer-
ically approaching the periodic solution, then by numerically computing the first
terms of its Fourier series and finally by using the continuous fractions approach to
simplify the values appearing in our computations. We also will see that the same
approach works for other concrete rigid systems. Similar examples for second-order
differential equations have also been studied in [100].

3.2 Preliminary results

This section contains some technical lemmas that are useful for proving Theorem 3.1
and for obtaining in concrete examples the constants appearing in its statement.
We also include a very short overview of the HBM adapted to the setting of one-
dimensional 2π-periodic non-autonomous differential equations.

As usual, given A ⊂ R, 1A : R → R denotes the characteristic function of A:
the function takes the value 1 when x ∈ A, and the value is 0 otherwise.

Lemma 3.3. Let a(t) and b(t) be continuous real 2π-periodic functions. Consider
the non-autonomous linear ordinary differential equation

x′ = a(t)x+ b(t). (3.6)

If A(2π) ̸= 0, where A(t) :=
∫ t
0
a(s)ds, then for each b(t) the equation (3.6) has a

unique 2π-periodic solution xb(t) :=
∫ 2π

0
H(t, s)b(s)ds, where the kernel H(t, s) is

given by the piecewise function

H(t, s) =
eA(t)

1− eA(2π)
[
e−A(s)1[0,t](s) + eA(2π)−A(s)1[t,2π](s)

]
. (3.7)
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Moreover ||xb||∞ ≤ 2πmaxt∈[0,2π] ||H(t, ·)||2 ||b||2.

Proof. Since (3.6) is linear, its general solution is

x(t) = eA(t)
(
x0 +

∫ t

0

b(s)e−A(s)ds

)
. (3.8)

If we impose that the solution is 2π-periodic, i.e. x(0) = x(2π), we get

x0 =
eA(2π)

1− eA(2π)

∫ 2π

0

b(s)e−A(s)ds, (3.9)

then (3.8) becomes

xb(t) =
eA(t)

1− eA(2π)

[
eA(2π)

∫ 2π

0

b(s)e−A(s)ds+ (1− eA(2π))

∫ t

0

b(s)e−A(s)ds

]
=

eA(t)

1− eA(2π)

[
eA(2π)

∫ 2π

t

b(s)e−A(s)ds+

∫ t

0

b(s)e−A(s)ds

]
=

∫ 2π

0

H(t, s)b(s)ds.

Therefore, the first assertion follows. On the other hand, by the Cauchy-Schwarz
inequality,

|xb(t)| ≤

√∫ 2π

0

H2(t, s)ds

√∫ 2π

0

b2(s)ds.

Therefore,
||xb||∞ ≤ 2π max

t∈[0,2π]
||H(t, ·)||2 ||b||2 .

This completes the proof.

Corollary 3.4. A deformation constant M associated with x̄ and X is

M := 2π max
t∈[0,2π]

||H(t, ·)||2 ,

where H is given in (3.7) with A(t) =
∫ t
0

∂
∂x
X(x̄(t), t) dt.

Now we prove a technical result that will allow us to compute in practice de-
formation constants. In fact we will find an upper bound of M that will avoid the
integration step needed in the computation of the norm || · ||2 . First, we introduce
some notations.

Given a function A : [0, 2π] → R, a positive number ℓ, and a partition ti = ih
with i = 0, 1, . . . , N, of the interval [0, 2π], where h = 2π/N , we consider the
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function L : [0, 2π] → R given by the continuous linear piecewise function joining
the points (ti, A(ti)− ℓ). Notice that L(t) =

∑N−1
i=0 Li(t)1Ii , where Ii = [ti, ti+1] and

Li(t) =
A(ti+1)− A(ti)

h
(t− ti) + f(ti) := −1

2
(αit+ βi).

We will say that L is an adequate lower bound of A if it holds that L(t) < A(t)
for all t ∈ [0, 2π]. Clearly, smooth functions always have adequate functions that
approach them.

For each m = 0, 1, . . . , N we define the function

Ψm(t) :=
m−1∑
i=0

Ji + λ2
N−1∑
i=m−1

Ji + (1− λ2)
eβm

αm

(
eαmt − eαmtm

)
, (3.10)

where λ = eA(2π), and

Ji :=

∫ ti+1

ti

e−2L(s)ds =

∫ ti+1

ti

e−2Li(s)ds =
eβi

αi

(
eαiti+1 − eαiti

)
.

Lemma 3.5. Let L be an adequate lower bound of A, where A is the function given
in Lemma 3.3. Consider the functions Ψm(t), with m = 0, 1, . . . , N − 1. Therefore,
also following the notation introduced in that Lemma, it holds that ||xb||∞ ≤ N ||b||2,
where

N =

√
2π

|1− λ|
max
t∈[0,2π]

eA(t)

√√√√N−1∑
m=0

Ψm(t)1Im(t).

Proof. Recall that from Lemma 3.3, ||xb||∞ ≤M ||b||2 , where

M := 2π max
t∈[0,2π]

||H(t, ·)||2 .

Thus, we will find an upper bound of M. Since

H(t, s) =
eA(t)

1− eA(2π)
[
e−A(s)1[0,t](s) + eA(2π)−A(s)1[t,2π](s)

]
,

it holds that

||H(t, ·)||2 =
1√
2π

eA(t)

|1− λ|
√
G(t)

where

G(t) :=

∫ t

0

e−2A(s)ds+ λ2
∫ 2π

t

e−2A(s)ds <

∫ t

0

e−2L(s)ds+ λ2
∫ 2π

t

e−2L(s)ds,
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because L(t) < A(t) for all t ∈ [0, 2π].

Assume that t ∈ Im. Thus,∫ t

0

e−2L(s)ds =
m−1∑
i=0

Ji +

∫ t

tm

e−2Lm(s)ds,

∫ 2π

t

e−2L(s)ds =
N−1∑
i=m

Ji +

∫ tm+1

t

e−2Lm(s)ds =
N−1∑
i=m−1

Ji −
∫ t

tm

e−2Lm(s)ds.

Therefore, for t ∈ Im,

G(t) <
m−1∑
i=0

Ji + λ2
N−1∑
i=m−1

Ji + (1− λ2)

∫ t

tm

eαms+βmds = Ψm(t).

As a consequence, for t ∈ [0, 2π],

G(t) <
N−1∑
m=0

Ψm(t)1Im(t),

and the result follows.

Remark 3.6. Notice that the above lemma provides a way for computing a defor-
mation constant where there is no need of computing integrals. This will be very
useful in concrete application, where the primitive of e−2A(t) is not computable, and
so Corollary 3.4 is difficult to apply for obtaining M.

In the next result, which introduces the constant K appearing in Theorem 3.1,
D◦ denotes the topological interior of D.

Lemma 3.7. Consider X as in (3.1). Let D be a closed interval, and let x̄(t) be a
2π-periodic C1-function such that {x̄(t) : t ∈ R} ⊂ D◦. Define

R(z, t) := X(x̄(t) + z, t)−X(x̄(t), t)− ∂

∂x
X(x̄(t), t)z (3.11)

for all z such that {x̄(t) + z : t ∈ R} ⊂ D. Then

(i) |R(z, t)| ≤ K
2
|z|2,

(ii) |R(z, t)−R(z̄, t)| ≤ Kmax(|z|, |z̄|) |z − z̄|,

where

K := max
(x,t)∈D×[0,2π]

∣∣∣∣ ∂2∂x2X(x, t)

∣∣∣∣ .
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Proof. (i). By using Taylor’s formula, for each t it holds that

X(x̄(t) + z, t) = X(x̄(t), t) +
∂

∂x
X(x̄(t), t)z +

1

2

∂2

∂x2
X(ξ(t), t)z2

for some ξ(t) ∈ ⟨x̄(t), x̄(t) + z⟩. Therefore

|R(z, t)| =
∣∣∣∣12 ∂2

∂x2
X(ξ(t), t)

∣∣∣∣ |z|2 ≤ K

2
|z|2,

as we wanted to prove.

(ii). From Rolle’s theorem, for each fixed t it follows that there exists η(t) ∈ ⟨z, z̄⟩
such that

|R(z, t)−R(z̄, t)| ≤
∣∣∣∣ ∂∂zR(η(t), t)

∣∣∣∣ |z − z̄|.

Applying again this theorem, but now to ∂
∂z
R, and by noticing that ∂

∂z
R(z, t)

∣∣
z=0

=
0, we obtain∣∣∣∣ ∂∂zR(η(t), t)

∣∣∣∣ ≤ ∣∣∣∣ ∂2∂z2R(ω(t), t)
∣∣∣∣ |η(t)| = ∣∣∣∣ ∂2∂x2X(ω(t), t)

∣∣∣∣ |η(t)| ≤ K|η(t)|,

where ω(t) ∈ ⟨0, η(t)⟩. Note also that

|η(t)| ≤ max(|z|, |z̄|).

Hence, the result follows combining the three inequalities.

3.3 The HBM for non-autonomous equations

Although in Section 1.3 of Chapter 1 we defined the HBM, in this section we want to
recall it adapted to the setting of one-dimensional 2π-periodic non-autonomous dif-
ferential equations. The main difference between the non-autonomous case treated
here and the autonomous one is that in the second situation the periods of the
searched periodic orbits, or equivalently their frequencies, are also treated as un-
knowns (see Chapter 1 and 2).

So, we are interested in finding periodic solutions of the 2π-periodic differen-
tial equation (3.1), or equivalently, periodic functions which satisfy the following
functional equation

F(x(t)) := x′(t)−X(x(t), t) = 0. (3.12)

Since any smooth 2π-periodic function x(t) can be written as its Fourier series

x(t) =
a0
2

+
∞∑
m=1

(am cos(mt) + bm sin(mt)) ,
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where

am =
1

π

∫ 2π

0

x(t) cos(mt) dt, and bm =
1

π

∫ 2π

0

x(t) sin(mt) dt,

for all m ≥ 0. Then, it is natural to try to approximate the periodic solutions of
the functional equation (3.12) by using truncated Fourier series, i.e. trigonometric
polynomials.

Now, let us describe the HBM of order N . Consider a trigonometric polynomial

y
N
(t) =

r0
2
+

N∑
m=1

(rm cos(mt) + sm sin(mt))

with unknowns rm = rm(N), sm = sm(N) for all m ≤ N . Compute then the
2π-periodic function F(y

N
(t)). It has also an associated Fourier series

F(y
N
(t)) =

A0

2
+

∞∑
m=1

(Am cos(mt) + Bm sin(mt)) ,

where Am = Am(r, s) and Bm = Bm(r, s), m ≥ 0, with r = (r0, r1, . . . , rN ) and
s = (s1, . . . , sN ). The HBM consists of finding values r and s such that

Am(r, s) = 0 and Bm(r, s) = 0 for 0 ≤ m ≤ N. (3.13)

As we have seen in previous chapters, the above set of equations is usually a very
difficult nonlinear system of equations, and for this reason in various works including
[78] and the references therein, only small values of N are considered. We also
remark that in general the coefficients of y

N
(t) and y

N+1
(t) do not coincide at all.

The hope of the method is that the trigonometric polynomials found using this
approach are “near” actual periodic solutions of the differential equation (3.1). In
any case, as far as we know, the HBM for small N is only a heuristic method that
sometimes works quite well.

3.4 Proof of the main Theorem

Proof of Theorem 3.1. As a first step we prove the following result: consider the
nonlinear differential equation

z′ = X(z + x̄(t), t)−X(x̄(t), t)− s(t), (3.14)

where s(t) is given in (3.4). A 2π-periodic function z(t) is then a solution of (3.14)
if and only if z(t) + x̄(t) is a 2π-periodic solution of (3.1).
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This is a consequence of the following equalities:

(z(t) + x̄(t))′ =[X(z(t) + x̄(t), t)−X(x̄(t), t)− s(t)] + [X(x̄(t), t) + s(t)]

=X(z(t) + x̄(t), t).

By using the function

R(z, t) = X(z + x̄(t), t)−X(x̄(t), t)− ∂

∂x
X(x̄(t), t)z,

introduced in Lemma 3.7, equation (3.14) can be written as

z′ =
∂

∂x
X(x̄(t), t)z +R(z, t)− s(t). (3.15)

Let P be the space of 2π-periodic C0-functions. To prove the first part of the
theorem it suffices to see that equation (3.15) has a unique C1, 2π-periodic solution
z∗(t), which belongs to the set

N = {z ∈ P : ||z||∞ ≤ 2MS}.

To prove this last assertion, we will construct a contractive map T : N → N .
Because N is a complete space with the || · ||∞ norm, its fixed point will be a
continuous function in N that will satisfy an integral equation, equivalent to (3.15).
Finally we will see that this fixed point is in fact a C1 function, and it satisfies
equation (3.15).

Let us define T . If z ∈ N , then T (z) is defined as the unique 2π-periodic solution
of the linear differential equation

y′ =
∂

∂x
X(x̄(t), t)y +R(z(t), t)− s(t).

Notice that this map is well-defined, by Lemma 3.3, because x̄(t) is noncritical w.r.t.
equation (3.1). Thus, z1 satisfies

z′1 =
∂

∂x
X(x̄(t), t)z1 +R(z(t), t)− s(t).

Let us prove that T maps N into N and that it is a contraction. By Lemmas
3.3 and 3.7 and the hypotheses of the theorem

||T (z)||∞ = ||z1||∞ ≤M ||R(z(·), ·)− s(·)||2 ≤M (||R(z(·), ·)||2 + S) ,

≤M(||R(z(·), ·)||∞ + S) ≤M(
K

2
||z||2∞ + S),

≤M(2KM2S2 + S) < 2MS,
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where we have used in the last inequality that 2M2KS < 1.
To show that T is a contraction on N , take z, z̄ ∈ N and denote by z1 = T (z),

z̄1 = T (z̄). Then

z′1 =
∂

∂x
X(x̄(t), t)z1 +R(z(t), t)− s(t),

z̄′1 =
∂

∂x
X(x̄(t), t)z̄1 +R(z̄(t), t)− s(t).

Therefore,

(z1 − z̄1)
′ =

∂

∂x
X(x̄(t), t)(z1 − z̄1) +R(z(t), t)−R(z̄(t), t).

Again by Lemmas 3.3 and 3.7 and the hypotheses of the theorem,

||T (z)− T (z̄)||∞ =||z1 − z̄1||∞ ≤M ||R(z(·), ·)−R(z̄(·), ·)||∞
≤MKmax(||z||∞ , ||z̄||∞)||z − z̄||∞ ≤ 2M2KS||z − z̄||∞ ,

as we wanted to prove, because recall that 2M2KS < 1.
Thus, the sequence of functions {zn(t)} defined as

z′n+1(t) =
∂

∂x
X(x̄(t), t)zn+1(t) +R(zn(t), t)− s(t),

with any z0(t) ∈ N , and zn+1(t) chosen to be periodic, converges uniformly to some
function x∗(t) ∈ N . In fact we also have that

zn+1(t) = zn+1(0) +

∫ t

0

(
∂

∂x
X(x̄(w), w)zn+1(w) +R(zn(w), w)− s(w)

)
dw.

Therefore,

x∗(t) = x∗(0) +

∫ t

0

(
∂

∂x
X(x̄(w), w)x∗(w) +R(x∗(w), w)− s(w)

)
dw.

We know that x∗(t) is a continuous function, but from the above expression we
obtain that it is indeed of class C1. Therefore x∗(t) is a periodic solution of (3.15)
and is the only one in N , as we wanted to see.

To prove the hyperbolicity of x∗(t), it suffices to show that∫ 2π

0

∂

∂x
X(x∗(t), t)dt ̸= 0,

and study its sign; see [68]. We have that, fixed t,

∂

∂x
X(x∗(t), t) =

∂

∂x
X(x̄(t), t) +

∂2

∂x2
X(ξ(t), t)(x∗(t)− x̄(t)),
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for some ξ(t) ∈ ⟨x∗(t), x̄(t)⟩. Therefore, since we have already proved that |x∗(t)−
x̄(t)| < 2MS, ∣∣∣∣ ∂∂xX(x̄(t), t)− ∂

∂x
X(x∗(t), t)

∣∣∣∣ ≤ 2KMS.

Then ∣∣∣∣∫ 2π

0

∂

∂x
X(x̄(t), t)dt−

∫ 2π

0

∂

∂x
X(x∗(t), t)dt

∣∣∣∣ ≤ 4πKMS <
2π

M
,

and the result follows because by hypothesis the first integral is, in absolute value,
bigger that 2π/M.

3.5 Applications to some planar rigid systems

In this section we apply Theorem 3.1 for proving the existence and uniqueness of
hyperbolic limit cycles, in a suitable region, of some planar rigid cubic systems
which after some transformations can be converted into differential equation of the
form (3.1).

Concretely, we consider the family of planar differential systems{
ẋ = −y + x(a+ bx+ cy + dx2 + exy + fy2),
ẏ = x+ y(a+ bx+ cy + dx2 + exy + fy2),

(3.16)

where a, b, c, d, e, f ∈ R and d2 + e2 + f 2 ̸= 0. In polar coordinates it writes as

ṙ = ar + (b cos(θ) + c sin(θ))r2 + (d cos2(θ) + e sin(θ) cos(θ) + f sin2(θ))r3, θ̇ = 1,

or equivalently,

r′ =
dr

dt
= ar+(b cos(t)+c sin(t))r2+(d cos2(t)+e sin(t) cos(t)+f sin2(t))r3, (3.17)

where we have renamed θ as t.

We study two cases. In the first case, we consider a concrete integrable case.
Although we know explicitly the limit cycle in that system, we first use the HBM to
approximate it and then Theorem 3.1 to prove, in an alternative way, its existence.
In the second case, we found numerically an approximation of the limit cycle and
from this approximation we propose a truncated Fourier series as a simpler approx-
imation. Finally, Theorem 3.1 is used again to prove the existence and localize the
limit cycle.
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3.5.1 An integrable case

By fixing a = −1, d = 3, e = 2 and f = 1 in (3.17) we obtain a Bernoulli equation
that can be solved explicitly. Then we have

r′ = −r + (cos(2t) + sin(2t) + 2)r3 := X(r, t). (3.18)

Its solutions are r(t) ≡ 0 and

r(t) = ± 1√
2 + cos(2t) + ke2t

.

Therefore its unique positive periodic solution, which corresponds to the only limit
cycle of (3.16) for the given values of the parameters, is given by the ellipse

r∗(t) =
1√

2 + cos(2t)
. (3.19)

Moreover since ∫ 2π

0

∂

∂r
X(r∗(t), t) dt = 4π > 0,

it is hyperbolic and unstable, see [68]. Its Fourier series is

r∗(t) =
a0
2

+
∞∑
k=1

a2k cos(2kt), (3.20)

where
a0 = 4K√

3π
≈ 1.491498374, a0/2 ≈ 0.745749187,

a2 = 12E−8K√
3π

≈ −0.2016837219,

a4 = −32E+20K√
3π

≈ 0.04065713288,

a6 = 476E−296K√
3π

≈ −0.009092598292,

a8 = −10624E+6604K√
3π

≈ 0.002133790322,

a10 = 105548E−65608K√
3π

≈ −0.0005148662408,

being K = K(
√
6/3) and E = E(

√
6/3) the complete elliptic integrals of the first

and second kind respectively, see [12].
Let us forget that we know the exact solution and its full Fourier series to

illustrate how to use the HBM and Theorem 3.1 for equation (3.18) to obtain an
approach to the actual periodic solution (3.19).
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Following the HBM, consider the equation

F(r(t)) = r′(t) + r(t)− (cos(2t) + sin(2t) + 2)r3(t) = 0, (3.21)

which is clearly equivalent to (3.18).
Searching for a solution of the form r(t) = r0 and imposing that the first har-

monic of F(r(t)) vanishes we get that r0+2r30 = 0. The only positive solution of the
equation is r0 =

√
2/2 ≈ 0.7071 and this is the first order solution given by HBM.

Motivated by the symmetries of (3.18) for applying the second order HBM we
search for an approximation of the form

r(t) = r0 + r2 cos(2t).

The vanishing of the coefficients of 1 and cos(2t) in the Fourier series of F(r(t))
give the nonlinear system:

g(r0, r2) := r0 − 2r30 −
3

2
r2r

2
0 − 3r22r0 −

3

8
r32 = 0,

h(r0, r2) := r2 − r30 − 6r2r
2
0 −

9

4
r22r0 −

3

2
r32 = 0.

Doing the resultants Res(g, h, r0), Res(g, h, r2) we obtain that the solutions of the
above system are also solutions of

219720r80 − 18852r60 + 4269r40 − 328r20 + 8 = 0,

49437r82 − 70956r62 + 30708r42 − 4288r22 + 128 = 0.

One of its solutions is r0 ≈ 0.7440456581 =: r̃0, r2 ≈ −0.2013905597 =: r̃2.
To know the accuracy of the periodic function r̃(t) = r̃0+ r̃2 cos(2t) as a solution

of (3.18) we compute

S̃ = ||r̃′(t) + r̃(t)− (2 + sin(2t) + cos(2t))r̃(t)3||2 ≈ 0.1361

Since it is enough for our purposes we can consider simpler rational approximations
of r̃0 and r̃1, but keeping a similar accuracy. For finding these rational approxima-
tions, we search them doing the continuous fraction expansion of these values. For
instance

r̃0 = [0, 1, 2, 1, 9, 1, 21, 17, 3, 11]

giving the convergents 1, 2/3, 3/4, 29/39, 32/43,. . .. Similarly r̃2 gives 1/4, 1/5,
28/139, 29/144,. . .. At this point we have the following new candidate to be an
approximation of the periodic solution

r̄(t) =
3

4
− 1

5
cos(2t).
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Its accuracy w.r.t. equation (3.18) is

S = ||r̄′(t) + r̄(t)− (2 + sin(2t) + cos(2t))r̄(t)3||2 =
√
50069

1600
≈ 0.1398 < 0.14,

and so, quite similar to the one of r̃(t).
Therefore r̃(t) and r̄(t) are solutions of (3.18) with similar accuracy so we keep

r̄(t) as the second order approximation given by this modification of the HBM. For
this r̄(t) we already know that its accuracy is S = 0.14.

We need to know the value of M given in Theorem 3.1. With this aim we
will apply Lemma 3.5. We consider in that lemma a function L(t) formed by 13
straight lines and ℓ = 1/9. Then we get that we can takeM = 2.3. Therefore, since
2MS = 0.644 and 0.55 = 11

20
≤ r̄(t) ≤ 19

20
= 0.95.

We have that I = [−0.094, 1.594] in Theorem 3.1. Moreover∣∣∣∣ ∂2∂r2X(r, t)

∣∣∣∣ ≤ 6|2 + sin(2t) + cos(2t)||r| ≤ (12 + 6
√
2)|r| ≤ 41

2
|r|

Thus taking K = 41
2
(1.594) ≈ 32.68 we get that 2M2KS ≈ 48.4 > 1 and we can

not apply Theorem 3.1.

Doing similar computations with the successive approaches given by the HBM
we obtain

r̄(t) = 3
4
− 1

5
cos(2t) + 1

25
cos(4t),

r̄(t) = 3
4
− 1

5
cos(2t) + 1

25
cos(4t)− 1

110
cos(6t).

It is worth to comment that the above two functions are periodic functions that
approximate to solution of (3.18) with accuracies 0.045 and 0.018, respectively,
while the solutions obtained solving approximately the nonlinear systems with ten
significative digits have similar accuracies, namely 0.043 and 0.013, respectively.
For none of both approaches Theorem 3.1 applies. Let us see that the next order
HBM works for this example.

If we do all the computations we obtain the candidate to be solution

r̃(t) =
4∑

k=0

r2k cos(2kt),

with

r0 = 0.7457489122, r2 = −0.2016836610, r4 = 0.04065712547,

r6 =− 0.009092599917, r8 = 0.002133823488.
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Computing the accuracy of r̃(t) we obtain that it is 0.0039. If we take the approx-
imation, using some convergents of r2k,

r̄(t) =
3

4
− 1

5
cos(2t) +

1

25
cos(4t)− 1

110
cos(6t) +

1

468
cos(8t)

it has accuracy 0.0125. This means that we have lost significative digits and we need
to take convergents of r2k that have at least 3 significative digits. For instance some
convergents of r0 are 1, 2/3, 3/4, 41/55, 44/59,. . . and we choose 44/59. Finally we
consider

r̄(t) =
44

59
− 24

119
cos(2t) +

2

49
cos(4t)− 1

110
cos(6t) +

1

468
cos(8t). (3.22)

The accuracy of r̄ is 0.00394 quite similar to the one of r̃(t). So we take S = 0.004.
Let us see that Theorem 3.1 applies if we take this approximate periodic solution.

In this case, by applying Lemma 3.5, using the piecewise linear function L
formed by 10 pieces and ℓ = 1/10, we obtain that we can take M = 2.4.

Since it can be seen that 0.5 ≤ r̄(t) ≤ 1 and 2MS = 0.0192 we can take in
Theorem 3.1 the interval I := [0.4808, 1.0192].

Then

max
I×[0,2π]

∣∣∣∣ ∂2∂r2X(r, t)

∣∣∣∣ ≤ 41

2
(1.02) = 20.91 =: K.

Finally, 2M2KS ≈ 0.96 < 1 and Theorem 3.1 applies.
Finally, it is easy to see that∫ 2π

0

∂

∂r
X(r̄(t), t)dt > 12.5,

which is bigger than 2π/M ≈ 2.6. Therefore the hyperbolicity of the periodic orbit
given by Theorem 3.1 follows. In short we have proved,

Proposition 3.8. Consider the periodic function r̄(t) given in (3.22). Then there
is a periodic solution r∗(t) of (3.18), such that

||r̄ − r∗||∞ ≤ 0.0192,

which is hyperbolic and unstable and it is the only periodic solution of (3.18) in this
strip.

Remark 3.9. Using the known analytic expression of r∗(t) it can be seen that indeed

||r̄ − r∗||∞ ≤ 0.0007.

Notice that by using a high enough HBM we have obtained a proof of the
existence of a hyperbolic periodic orbit and an effective approximation r̄(t) without
integrating the differential equation.
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3.5.2 A biparametric family

Take d = 1, e = 0, f = 0 in the family of rigid cubic systems (3.16), that is,{
ẋ = −y − x(a+ bx+ x2),
ẏ = x− y(a+ bx+ x2),

(3.23)

already considered in [56]. In that paper it is proved that (3.23) has at most one
limit cycle, and when it exists, it is hyperbolic. We study some concrete cases.

With our point of view we will find an explicit approximation of the limit cycle;
see Proposition 3.2. In order to simplify the computations we first consider the case
a = −b = 1/10, which in polar coordinates is written as (3.5):

r′ =
dr

dt
=

1

10
r − 1

10
cos(t) r2 − cos2(t) r3 := X(r, t).

We want to find an approximation of the periodic solution of (3.5), which we
will use for applying Theorem 3.1.

First attempt: the HBM. According to section 3.3, we consider the equation

F(r(t)) = r′(t)− 1

10
r +

1

10
cos(t) r2 + cos2(t) r3 = 0, (3.24)

which is clearly equivalent to (3.5).
Searching for a solution of the form r(t) = r0 and imposing that the first har-

monic of
1

2
r30 −

1

10
r0 +

1

10
cos(t)r20 +

1

2
cos(2t)r30

vanishes, we obtain
1

2
r0

(
r20 −

1

5

)
= 0.

Hence r0 =
√
5/5 ≈ 0.4472135954 is the first order solution given by the HBM.

We obtain that the positive approximate solution is r =
√
5/5. For applying the

second-order HBM we search for an approximation of the form

r(t) = r0 + r1 cos(t) + s1 sin(t).

The vanishing of the coefficients of 1, cos(t) and sin(t) in F(r(t)), provides the
nonlinear system

f(r0, r1, s1) :=
1

2
r20 +

9

8
r21 −

1

10
+

3

8
s21 +

1

10
r1 = 0,

g(r0, r1, s1) :=
9

4
r20r1 −

5

8
r31 +

3

8
r1s

2
1 +

1

10
r20 +

3

40
r21 +

1

40
s21 −

1

10
r1 + s1 = 0,

h(r0, r1, s1) :=
3

4
r20s1 +

3

8
r21s1 +

1

8
s31 +

1

20
r1s1 −

1

10
s1 − r1 = 0.
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Doing the resultants Res(f, g, r0) and Res(f, h, r0) we obtain respectively

1775 r1
3 + 525 r1s1

2 + 240 r1
2 + 20 s1

2 − 132 r1 − 400 s1 − 8 = 0,

105 r1
2s1 + 35 s1

3 + 8 r1s1 + 80 r1 − 4 s1 = 0.

Repeating the resultant between these last two equations with respect to r1 we
have

1715000000 s1
9 + 3697050000 s1

7 − 3528000000 s1
6 − 45425216000 s1

5 − 988160000 s1
4

− 55802705600 s1
3 + 26417920000 s1

2 + 370408960000 s1 + 7270400000 = 0.

The approximate real solution of this equation is s̃1 = −0.0196567414, and then we
have the respective approximate solutions r̃0 = 0.4471066159, r̃1 = −0.0009814101.

For our purposes we can consider simpler rational approximations of r̃0, r̃1 and
s̃1, with maintaining a similar accuracy. For finding these rational approximations,
we seek them by performing the continued fraction expansion of these values. For
instance,

r̃0 = [0, 2, 4, 4, 2, 2, 2, 4, 2, 1, 1],

giving the convergents 0, 1/2, 4/9, 17/38, 38/85,. . . Similarly r̃1 gives −1, 0,
−1/1018, −1/1019,. . . and s̃1 gives −1, 0, −1/50, −1/51,. . . At this point we have
the following new candidate to be an approximation of the periodic solution

r̄(t) =
1

2
− 1

1018
cos(t)− 1

50
sin(t).

Its accuracy w.r.t. equation (3.5) is

S = ||r̄′(t)− 1

10
r̄(t) +

1

10
cos(t)r̄(t)2 + cos2(t) r̄(t) 3||2 ≈ 0.046.

Doing all the computations needed to apply Theorem 3.1 we get that we are not
under its hypotheses. Therefore we need to continue with the third-order HBM.

Performing the third-order approach we obtain five algebraic polynomial equa-
tions that we omit for the sake of simplicity. Unfortunately, neither using the
resultant method as in the previous case, nor using the more sophisticated tool of
Gröbner basis, our computers are able to obtain an approximate solution to start
our theoretical analysis.

A numerical approach. First, we search for a numerical solution of (3.5) by using
the Taylor series method. From this approximation we compute, again numerically,
its first Fourier terms obtaining

r̃(t) =
3∑

k=0

rk cos(kt) + sk sin(kt),
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where

r0 = 0.4483561517, r1 = −0.0024133439, s1 = −0.0193837572,

r2 =− 0.0037463296, s2 = −0.0220176517,

r3 =− 0.0012390886, s3 = 0.0003784656.

The accuracy of r̃(t) is 0.00289. If we take a new simpler approximation, using
again some convergents of rk and sk, we obtain

r̄(t) =
4

9
− 1

693
cos(t)− 1

51
sin(t)− 1

653
cos(2t)− 1

45
sin(2t)− 1

780
cos(3t), (3.25)

with accuracy 0.00298, quite similar to the one of r̃(t). Note that (3.25) is precisely
the approximation of the periodic solution of (3.5) stated in Proposition 3.2.

Proof of Proposition 3.2. We already know that the accuracy of r̄(t) is S := 0.003.
To apply Theorem 3.1 we will compute M and K.

First we calculate A(t) =
∫ t
0

∂
∂r
X(r̄(t), t).

A(t) = 2891685439
72733752000

− 347888350813299559
1778094556332494400

t− 561179
36756720

cos(t)− 685338551
8000712720

sin(t)

− 757058717
48004276320

cos(2t)− 40221206418131
273447836421760

sin(2t)− 2923231
576974475

cos(3t)

+ 37724429
36003207240

sin(3t)− 353400139
96008552640

cos(4t) + 17671001708653999
42674269351979865600

sin(4t)

+ 5358811
300026727000

cos(5t) + 4708003
20001781800

sin(5t) + 1537
207810720

cos(6t)

+ 43551971479
1438264594166400

sin(6t) + 1
327600

cos(7t)− 1
4753840

sin(7t)− 1
12979200

sin(8t).

Now, by using Lemma 3.5, we find a deformation constant M . In this case we
use as a lower bound for A the piecewise function L formed by 7 straight lines and
ℓ = 1/18. We obtain that we can take M = 7. Therefore 2MS ≈ 0.042. Since it
can be seen that 0.4 ≤ r̄(t) ≤ 0.47 we can consider the interval I = [0.358, 0.512] in
Theorem 3.1. In addition,

max
I×[0,2π]

∣∣∣∣ ∂2∂r2X(r, t)

∣∣∣∣ ≤ 1

5
+ 6||r̄||∞ =

1

5
+ 6(0.512) = 3.272 =: K

Finally, 2M2KS ≈ 0.962 < 1, and the first part of Theorem 3.1 applies. Hence
equation (3.5) has a periodic solution r∗(t) satisfying

||r̄ − r∗||∞ ≤ 0.042, (3.26)
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which is the only one in this strip.
Moreover, ∣∣∣∣∫ 2π

0

∂

∂r
X(r̄(t), t)dt

∣∣∣∣ > 1.2.

Since 2π/M ≈ 0.9, the hyperbolicity of r∗(t) follows by applying the second part of
the theorem.

Notice that the example of the system (3.23) that we have studied is a = λ and
b = −λ with λ = 1/10. With the same techniques we see that the same function
r̄(t) given in the statement of Proposition 3.2 is an approximation of the unique
periodic orbit of the system when |λ− 1/10| < 1/500, which also satisfies (3.26).
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Bifurcation diagram of planar
vector fields
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Chapter 4
A family of rotated vector fields

4.1 Introduction and main results

Consider the one-parameter family of quintic differential systems{
ẋ = y,
ẏ = −x+ (a− x2)(y + y3), a ∈ R. (4.1)

Notice that without the term y3, (4.1) coincides with the famous van der Pol system.
This family was studied in [102] and the authors concluded that it has only two
bifurcation values, 0 and a∗, and exactly four different global phase portraits on
the Poincaré disc. Moreover, they concluded that there exists a∗ ∈ (0, 3

√
9π2/16) ≈

(0, 1.77), such that the system has limit cycles only when 0 < a < a∗ and then if
the limit cycle exists, is unique and hyperbolic. Later, it was pointed out in [59]
that the proof of the uniqueness of the limit cycle had a gap and a new proof was
presented.

System (4.1) has no periodic orbits when a ≤ 0 because in this case the function
x2+y2 is a global Lyapunov function. Thus, from now on, we restrict our attention
to the case a > 0 and for convenience we write a = b2, with b > 0. That is, we
consider the system{

ẋ = y,
ẏ = −x+ (b2 − x2)(y + y3), b ∈ R+ ∪ {0}. (4.2)

Therefore the above family has limit cycles if and only if b ∈ (0, b∗) with b∗ =
√
a∗

and b∗ ∈ (0, 6
√
9π2/16) ≈ (0, 1.33). Following [102] we also know that the value b = 0

corresponds to a Hopf bifurcation and the value b∗ to the disappearance of the limit
cycle in an unbounded polycycle. By using numerical methods it is not difficult to
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Chapter 4. A family of rotated vector fields

approach the value b∗. Nevertheless, as far as we know there are no analytical tools
to obtain the value b∗. This is the main goal of this chapter.

We have succeed in finding an interval of length 0.027 containing b∗ and during
our study we have also realized that there was a bifurcation value that has not been
observed in the previous studies. Our main result is:

Theorem 4.1. Consider system (4.2). There exist two positive numbers b̂ and b∗

such that:

(a) It has a limit cycle if and only if 0 < b < b∗. Moreover, when it exists, it is
unique, hyperbolic and stable.

(b) The only bifurcation values of the system are 0, b̂ and b∗. In consequence there
are exactly six different global phase portraits on the Poincaré disc, which are
the ones showed in Figure 4.1.

(c) It holds that 0.79 < b̂ < b∗ < 0.817.

(o) a ≤ 0 (i) 0 < b < b̂ (ii) b = b̂

(iii) b̂ < b < b∗ (iv) b = b∗ (v) b > b∗

Figure 4.1: Phase portraits of systems (4.1) and (4.2). When a ≥ 0, then b =
√
a.
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4.1. Introduction and main results

The phase portraits missing in [102] are (ii) and (iii) of Figure 4.1.

The key steps in our proof of Theorem 4.1 are the following:

• Give analytic asymptotic expansions of the separatrices of the critical points
at infinity, see Section 4.2.

• Use these expansions to construct explicit piecewise rational curves, and prove
that they are without contact for the flow given by (4.2). These curves allow
to control the global relative positions of the separatrices of the infinite critical
points, see Section 4.4.

• Provide an alternative proof of the uniqueness and hyperbolicity of the limit
cycle, which is based in the construction of an explicit rational Dulac function,
see Section 4.3.

By solving numerically the differential equations we can approach the bifurca-
tion values given in the theorem, see Remark 4.7. We have obtained that b̂ ≈
0.8058459066, b∗ ≈ 0.8062901027 and then b∗ − b̂ ≈ 0.000444. As we have said the
main goal of this chapter is to get an analytic approach to the more relevant value
b∗, because it corresponds to the disappearance of the limit cycle.

Although all our efforts have been focused on system (4.2), the tools that we
introduce in this work can be applied to other families of polynomial vector fields
and they can provide an analytic control of the bifurcation values for these families.
In Section 4.5 we give more details about the applicability of our approach. As we
will see, our approach is not totally algorithmic and following it we do not know
how to improve the interval presented in Theorem 4.1 for the values b̂ and b∗.

One of the main computational difficulties that we have found has been to prove
that certain polynomials in x, y and b, with high degree, do not vanish on some given
regions. To treat this question, in Appendix II we propose a general method that
uses the so-called double discriminant and that we believe that can be useful in
other settings, see for instance [3, 88]. In our context this discriminant turns out
to be a huge polynomial in b2 with rational coefficients. In particular we need
to control, on a given interval with rational extremes, how many reals roots has
a polynomial of degree 965, with enormous rational coefficients. Although Sturm
algorithm theoretically works, in practical our computers can not deal with this
problem using it. Fortunately we can utilize a kind of bisection procedure based on
the Descartes rule ([63]) to overcome this difficulty, see Appendix I.
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Chapter 4. A family of rotated vector fields

4.2 Structure at infinity and relative positions of

the separatrices

As usual, for studying the behavior of the solutions at infinity of system (4.2) we
use the Poincaré compactification. That is, we will use the transformations (x, y) =
(1/z, u/z) and (x, y) = (v/z, 1/z), with a suitable change of time to transform
system (4.2) into two new polynomial systems, one in the (u, z)-plane and another
one in the (v, z)-plane respectively (see [7] for details). Then, for understanding
the behavior of the solutions of (4.2) near infinity we will study the structure of
the critical points of the transformed systems which are localized on the line z = 0.
Recall that these points are the critical points at infinity of system (4.2) and their
separatrices play a key role for knowing the bifurcation diagram of the system. In
fact, it follows from the works of Markus [73] and Newmann [82] that it suffices to
know the behavior of these separatrices, the type of finite critical points and the
number and type of periodic orbits to know the phase portraits of the system. We
obtain the following result:

Figure 4.2: Separatrices at infinity for system (4.2).

Theorem 4.2. System (4.2) has six separatrices at infinity, which we denote by
S1,S2, S3,S ′

1, S ′
2 and S ′

3, see Figure 4.2. Moreover:

(i) Each S ′
k is the image of Sk under the transformation (x, y) → (−x,−y).

(ii) The separatrices S2 and S3 near infinity are contained in the curve {y−ϕ(x) =
0} where ϕ(x) = ϕ̃(x− b)/(x− b)2, ϕ̃(u) is an analytic function at the origin
that satisfies

ϕ̃(u) =
1

b
− 1

3b2
u+

1

9b3
u2 − 359

27b4
u3 +O(u4). (4.3)

In particular, S2 corresponds to x . b and S3 to x & b.
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(iii) The separatrix S1 near infinity is contained in the curve {y−φ(x) = 0} where
φ(x) = φ̃(1/x) and φ̃ is an analytic function at the origin that satisfies

φ̃(u) = −u− (b2 − 1)u3 − (b4 − 3b2 + 2)u5 +O
(
u7
)
. (4.4)

Remark 4.3. In the statements (ii) and (iii) of Theorem 4.2 the Taylor expan-
sions of the functions ϕ̃ and φ̃ can be obtained up to any given order. In fact, in
Section 4.4 we will use the approximation of ϕ̃ until order 16.

As a consequence of the above theorem we have the following result:

(i) (ii) (iii)

(iv) (v)

Figure 4.3: Relative position of the separatrices of system (4.2).

Corollary 4.4. All the possible relative positions of the separatrices of system (4.2)
in the Poincaré disc are given in Figure 4.3.

To prove the above theorem we need some preliminary lemmas.

Lemma 4.5. By using the transformation (x, y) = (1/z, u/z) and the change of
time dt/dτ = 1/z4 system (4.2) is transformed into the system{

u′ = −(1 + u2)z4 − u(1− b2z2)(u2 + z2),
z′ = −uz5, (4.5)

where the prime denotes the derivative respect to τ . The origin is the unique critical
point of (4.5) and it is a saddle. Moreover, the stable manifold is the u-axis, the
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unstable manifold, S1, is locally contained in the curve {u− ψ(z) = 0}, where ψ(z)
is an analytic function at the origin that satisfies

ψ(z) = −z2 − (b2 − 1)z4 − (b4 − 3b2 + 2)z6 +O(z8), (4.6)

see Figure 4.4.

Figure 4.4: Phase portrait of system (4.5).

Proof. From the expression of (4.5) it is clear that the origin is its unique critical
point. For determining its structure we will use the directional blow-up since the
linear part of the system at this point vanishes identically.

The u-directional blow-up is given by the transformation u = u, q = z/u; and
by using the change of time dt/dτ = u2, system (4.5) becomes{

u̇ = −u− (1− b2u2)uq2 − (1− b2u)u2q4 − u4q4,
q̇ = q + (1− b2u2)q3 + (1− b2u)uq5.

(4.7)

This system has a unique critical point at origin and it is a saddle with eigenval-
ues ±1.

The z-directional blow-up is given by the transformation r = u/z, z = z. Doing
the change of time dt/dτ = −z2, system (4.5) becomes{

ṙ = z + (1− b2z2)(r + r3),
ż = rz4.

(4.8)

This system has a unique critical point at the origin which is semi-hyperbolic. We
will use the results of [7, Theorem 65] to determine its type. By applying the linear
change of variables r = −ξ + η, z = ξ system (4.8) is transformed into{

ξ̇ = (η − ξ)ξ4,
η̇ = η −N(ξ, η),
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4.2. Structure at infinity and relative positions of the separatrices

where N(ξ, η) = (η − ξ)(b2ξ2 − ξ4) + (η − ξ)3(b2ξ2 − 1). It is easy to see that if
η = n(ξ) is the solution of η − N(ξ, η) = 0 passing for the origin, then n(ξ) =
−(b2− 1)ξ3− (b4− 3b2+2)ξ5+O(ξ7). Thus (n(ξ)− ξ)ξ4 = −ξ5+O(ξ7). Therefore
from [7, Theorem 65] we know that the origin is a semi-hyperbolic saddle. Moreover,
its stable manifold is the η-axis and its unstable manifold is given by

η = −(b2 − 1)ξ3 − (b4 − 3b2 + 2)ξ5 +O(ξ7).

In the plane (r, z) the local expression of this manifold is

r = −z − (b2 − 1)z3 − (b4 − 3b2 + 2)z5 +O(z7).

Finally, in the (u, z)-plane the unstable manifold is contained in the curve (4.6)
and from the analysis of the phase portraits of systems (4.7) and (4.8) we obtain
that the local phase portrait of system (4.5) is the one given in Figure 4.4.

Lemma 4.6. By using the transformation (x, y) = (v/z, 1/z) and the change of
time dt/dτ = 1/z4 system (4.2) is transformed into the system{

v′ = v(1 + z2)(v2 − b2z2) + (1 + v2)z4,
z′ = z(1 + z2)(v2 − b2z2) + vz5,

(4.9)

where the prime denotes the derivative respect to τ . System (4.9) has a unique
critical point at the origin and its local phase portrait is the one showed in Figure 4.5.
Moreover, the separatrices S2 and S3 are locally contained in the curve {v− g(U) =
0} where U = z/v−1/b and g(U) is an analytic function at the origin that satisfies

g(U) = b6U2 − 10

3
b7U3 +

22

3
b8U4 +O

(
U5
)
. (4.10)

Figure 4.5: Topological local phase portrait of system (4.9). All the solutions are
tangent to the v-axis but for aesthetical reasons this fact is not showed in the figure.

Proof. From the expression of system (4.9) it is clear that the origin is its unique
critical point. As in Lemma 4.5 we will use the directional blow-up technique to
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Chapter 4. A family of rotated vector fields

determine its structure since the linear part of the system at this point is identically
zero.

It is well-known, see [7], that since at the origin z′v − v′z = −z5 + O(z6), all
the solution, arriving or leaving the origin have to be tangent to z = 0. So it
suffices to consider the v-directional blow-up given by the transformation v = v,
s = z/v. Performing it, together with the change of time dt/dτ = −v3, system (4.9)
is transformed into{

v̇ = −(1 + v2s2)(1− b2s2)− vs4(1 + v2),
ṡ = s5.

(4.11)

This system has no critical points. However, by studying the vector field on the
s-axis we will obtain relevant information for knowing the phase portrait of system
(4.9). If s = 0 then v̇ = −1 and ṡ = 0, that is, the v axis is invariant. If v = 0 then
v̇ = −1+ b2s2 and ṡ = s5, this implies that v̇ = 0 if s = ±1/b. In addition, a simple
computation shows that v̈ > 0 at the points (0,±1/b). Therefore the solutions
through these points are as it is showen in Figure 4.6.(a), and by the continuity
of solutions with respect to initial conditions, we have that the phase portrait of
system (4.11), close to these points, is as it is showed in Figure 4.6.(b).

- -

(a) (b)

Figure 4.6: Local phase portrait of system (4.11).

Then by using the transformation (v, z) = (v, sv) and the phase portrait showed
in Figure 4.6.(b) we can obtain the phase portrait of system (4.9). Recall that the
mapping swaps the second and the third quadrants in the v-directional blow-up.
In addition, taking into account the change of time dt/dτ = −v3 it follows that
the vector field in the first and fourth quadrant of the plane (v, z) has the opposite
direction to the showed in the (v, s)-plane. Therefore the local phase portrait of
(4.9) is the showed in Figure 4.5.
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-

Figure 4.7: Transformation between system (4.11) and system (4.9).

To show that the separatrices S2 and S3 are contained in the curve (4.10) we
proceed as follows. First, we will obtain the curve that contains the solution through
the point (0, 1/b) in the plane (v, s). Second, by using the transformation (v, z) =
(v, sv) we will obtain the corresponding curve in the (v, z)-plane and we will show
that such curve is exactly the curve given by (4.10).

Since ṡ is positive in (0,∞), the solution through the point (0, 1/b) (respectively
(0,−1/b)) is contained in the curve {v − g(s) = 0} (respectively {v − g̃(s) = 0}),
where g(s) (respectively g̃(s)) is an analytical function defined in an open neighbor-
hood of the point, moreover it is clear that g(1/b) = 0 and g′(1/b) = 0. Consider
the Taylor series of g(s) around (1/b):

g(s) =
∞∑
i=2

g(i)
(
1
b

)
i!

(
s− 1

b

)i
. (4.12)

Since the curve {v − g(s) = 0} is invariant then ⟨∇(v − g(s)), X̃⟩ = 0 at all the

points of {v − g(s) = 0}, where X̃ is the vector field associated to system (4.11).

Thus, we have a function, ⟨∇(v− g(s)), X̃⟩, for which all its coefficients have to be
zero. From this observation we obtain linear recurrent equations in the coefficients,
g(i)(1/b) of g(s). Simple computations show that the first 3 terms of the Taylor
series of g(s) are:

b6
(
s− 1

b

)2 − 10
3
b7
(
s− 1

b

)3
+ 22

3
b8
(
s− 1

b

)4
.

Thus, in the plane (v, z), the curve corresponding to {v − g(s) = 0} is{
v − b6

(
z
v
− 1

b

)2
+ 10

3
b7
(
z
v
− 1

b

)3 − 22
3
b8
(
z
v
− 1

b

)4
+O

((
z
v
− 1

b

)5)
= 0
}
.

Finally, if U = z/v − 1/b, we obtain (4.10).

Remark 4.7. The proof of the above lemma gives a natural way for finding a
numerical approximation of the value b∗. Notice that in the coordinates (v, s) the
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point (0, 1/b) corresponds to both separatrices S2 and S3. Since it is a regular point
we can start our numerical method (we use a Taylor method) without initial errors
and then follow the flow of the system, both forward and backward for given fixed
times, say t+ > 0 and t− < 0. We arrive to the points (v±, s±) with s± ̸= 0 for
t = t±, respectively. These two points have associated two different points (x±, y±)
in the plane (x, y), because of the transformation (v, s) = (x/y, 1/x). Now, we
integrate numerically the system (4.2) with initial conditions (x±, y±) to continue
obtaining approximations of the separatrices S2 and S3, respectively. The next step
is to compare the points of intersection x̃+ = x̃+(b) < 0 and x̃− = x̃−(b) > 0 of
these approximations with the x-axis.

We consider the function b → Π(b) := x+(b) + x̃−(b) and we use the bisection
method to find one approximate zero of Π. Note that if Π(b̄) = 0 then S ′

2 =
S3 and by the symmetry of the system S ′

3 = S2, and therefore b∗ = b̄. Taking
b0 = 0.8062901027, t+ = 0.05 and t− = −0.5 we obtain that x̃+(b0) + x̃−(b0) ≈
−4.58036036× 10−11 and so b∗ ≈ b0.

Following a similar procedure, but now using Lemma 4.5 to have an initial con-
dition almost on S1, we get that b̂ ≈ 0.8058459066.

Proof of Theorem 4.2. (i) The result follows because system (4.2) is invariant by
the transformation (x, y) → (−x,−y).

(ii). From (4.10) and by using the change of variables (v, z) = (x/y, 1/y) we
obtain that the separatrices S2 and S3 are contained in the curve{

x

y
− b6

(
1

x
− 1

b

)2

+
10

3
b7
(
1

x
− 1

b

)3

− 22

3
b8
(
1

x
− 1

b

)4

+O

((
1

x
− 1

b

)5
)

= 0

}
,

or equivalently {
y − ϕ(x) = 0

}
, (4.13)

where

ϕ(x) =
x

b6
(
1
x
− 1

b

)2 − 10
3
b7
(
1
x
− 1

b

)3
+ 22

3
b8
(
1
x
− 1

b

)4
+O

((
1
x
− 1

b

)5) .
We can write the function ϕ(x) as

ϕ(x) =

(
1

(x− b)2

)
ϕ1(x), (4.14)

where

ϕ1(x) =
b2x3

b6 + 10
3
b7
(
x−b
bx

)
+ 22

3
b8
(
x−b
bx

)2
+O

((
x−b
bx

)3) .
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The function ϕ1(x) is analytical at x = b and it is not difficult to see that it has the
following Taylor expansion

ϕ1(x) =
1

b
− (x− b)

3b2
+

(x− b)2

9b3
− 359(x− b)3

27b4
+O((x− b)4).

Then (4.14) can be written as

ϕ(x) =
1

b(x− b)2
− 1

3b2(x− b)
+

1

9b3
− 359

27b4
(x− b) +O((x− b)2).

Hence from (4.13) and taking ϕ(x) = ϕ̃(x− b)/(x− b)2 we complete the proof.
The proof of (iii) follows by applying the previous ideas, considering the expres-

sion given by (4.6) and the change of variables (u, z) = (y/x, 1/x).

Proof of Theorem 4.1

We start proving a preliminary result that is a consequence of some general prop-
erties of semi-complete family of rotated vector fields with respect one parameter,
SCFRVF for short, see [33, 83].

Proposition 4.8. Consider system (4.2) and assume that for b = b̄ > 0 it has no
limit cycles. Then there exists 0 < b∗ ≤ b̄ such that the system has limit cycles
if and only if b ∈ (0, b∗). Moreover, for b = b∗ its phase portrait is like (iv) in
Theorem 4.1 and when b > b∗ it is like (v) in Theorem 4.1.

Proof. It is easy to see that the system has a limit cycle for b & 0, which appears
from the origin through an Andronov-Hopf bifurcation.

If we denote by Xb(x, y) = (Pb(x, y), Qb(x, y)) the vector field associated to (4.2)
then

∂

∂b2
arctan

(
Qb(x, y)

Pb(x, y)

)
=
Pb(x, y)

∂Qb(x,y)
∂b2

−Qb(x, y)
∂Pb(x,y)
∂b2

P 2
b (x, y) +Q2

b(x, y)

=
y2(1 + y2)

P 2
b (x, y) +Q2

b(x, y)
≥ 0.

This means that system (4.2) is a SCFRVF with respect to the parameter b2.
We will recall two properties of SCFRVF. The first one is the so called non-

intersection property. It asserts that if γ1 and γ2 are limit cycles corresponding to
different values of b, then γ1∩γ2 = ∅. Informally, we like to call this property Atila’s
property,1 because it implies that, if for some value of b a limit cycle passes through

1Recall that it was said about Atila, King of the Huns, that “the grass never grew on the spot
where his horse had trod”.
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a region of the phase plane, this region becomes forbidden for the periodic orbits
that the system could have for any other value of the parameter.

The second one is called planar termination principle: [85, 84] if varying the
parameter we follow with continuity a limit cycle generated from a critical point
p, we get that the union of all the limit cycles covers a 1-connected open set U ,
whose boundaries are p and a cycle of separatrices of Xb. The corners of this cycle
of separatrices are finite or infinite critical points of Xb. Since in our case Xb only
has the origin as a finite critical point we get that U has to be unbounded. Notice
that in this definition, when a limit cycle goes to a semistable limit cycle then we
continue the other limit cycle that has collided with it. This limit cycle has to exist,
again by the properties of SCFRVF.

If for some value of b = b̄ > 0 the system has no limit cycle it means that the
limit cycle starting at the origin for b = 0, has disappeared for some b∗, 0 < b∗ ≤ b̄
covering the whole set U . Since U fills from the origin until infinity, from the non
intersection property, the limit cycle cannot either exist for b ≥ b∗, as we wanted to
prove.

The origin is a repeller for b > 0, hence from the Poincaré–Bendixson Theorem
and Corollary 4.4 we conclude that the phase portraits (i), (ii) and (iii) in Figure 4.1
have at least one limit cycle. Then, the phase portraits for b ≥ b∗ have to be like
(iv) or (v) in the same figure. Since the phase portrait (iv) is the only one having a
cycle of separatrices it corresponds to b = b∗. Again by the properties of SCFRVF,
the phase portrait (iv) does not appear again for b > b∗. Hence, for b > b∗ the
phase portrait has to be like (v) and the proposition follows.

Remark 4.9. In Lemma 4.12 we will give a simple proof that when b = 1 sys-
tem (4.2) has no limit cycles, based on the fact that for this value of the parameter
it has the hyperbola xy + 1 = 0 invariant by the flow. From the above proposition
it follows that b∗ < 1. This result already improves the upper bound of b∗, given
in [102], 6

√
9π2/16 ≈ 1.33. Theorem 4.1 improves again this upper bound, but as we

will see, the proof is much more involved.

Proof of Theorem 4.1. Recall that for a ≤ 0 the function V (x, y) = x2 + y2

is a global Lyapunov function for system (4.1) and therefore the origin is global
asymptotically stable. Then it is easy to see that its phase portrait is like (o) in
Figure 4.1. To prove the theorem we list some of the key points that we will use
and that will be proved in the forthcoming sections:

(R1) System (4.2) has at most one limit cycle for b ∈ (0, 0.817] and when it exists
it is hyperbolic and attractor, see Section 4.3.

(R2) System (4.2) has an odd number of limit cycles, with multiplicities taken into
account, when b ≤ 0.79 and the configuration of its separatrices is like (i) in
Figure 4.3, see Proposition 4.14 in Section 4.4.

88



4.3. Uniqueness of limit cycles

(R3) System (4.2) has an even number of limit cycles, with multiplicities taken into
account, when b = 0.817 and the configuration of its separatrices is like (v) in
Figure 4.3, see again Proposition 4.14 in Section 4.4.

The theorem for b ≥ b∗ is a consequence of Proposition 4.8. Notice that again
by this proposition and (R3), b

∗ < 0.817. Hence, the limit cycles can exist only
when b ∈ (0, b∗) ⊂ (0, 0.817] and by (R1), when they exist, there is only one and it
is hyperbolic and attractor.

As a consequence of (R2) and the uniqueness and hyperbolicity of the limit cycle
we have that the phase portrait for b ≤ 0.79 is like (i) in Figure 4.1.

To study the phase portraits for the remaining values of b, that is b ∈ (0.79, b∗),
first notice that all of them have exactly one limit cycle, which is hyperbolic and
stable. So it only remains to know the behavior of the infinite separatrices. We
denote by x2(b) and x′3(b) the points of intersection of the separatrices S2 and
S ′
3 of system (4.2) with the x-axis (when they exist), see also the forthcoming

Figure 4.13. Notice that for b > b∗, x′3(b) < x2(b) < 0 and x′3(b
∗) = x2(b

∗) < 0.
The properties of the SCFRVF imply that x2(b) is monotonically increasing and
that x′3(b) is monotonically decreasing. Hence, for b . b∗ the phase portrait of
the system is like (iii) in Figure 4.1. Since we already know that for b = 0.79 the
phase portrait is like (i), it should exists at least one value, say b = b̂, with phase
portrait (ii). Since for SCFRVF the solution for a given value of b, say b = b̄,
becomes a curve without contact for the system when b ̸= b̄, we have that the phase
portraits corresponding to heteroclinic orbits, that is (ii) and (iv) of Figure 4.1,
only appear for a single value of b (in this case b̂ and b∗, respectively). Therefore,
the theorem follows.

4.3 Uniqueness of limit cycles

In this section we will prove the uniqueness of the limit cycle of system (4.2) when
b ≤ 0.817. The idea of the proof is to find a suitable rational Dulac function for
applying the following generalization of Bendixson–Dulac criterion.

Proposition 4.10. Consider the C1-differential system{
ẋ = P (x, y),
ẏ = Q(x, y),

(4.15)

and let U ⊂ R2 be an open region with boundary formed by finitely many algebraic
curves. Assume that:

(I) There exists a rational function V (x, y) such that

M :=
∂V

∂x
P +

∂V

∂y
Q− V

(
∂P

∂x
+
∂Q

∂y

)
(4.16)
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does not change sign on U . Moreover, M only vanishes on points, or curves
that are not invariant by the flow of (4.15).

(II) All the connected components of U \{V = 0}, except perhaps one, say Ũ , are
simple connected. The component Ũ , if exists, is 1-connected.

Then the system has at most one limit cycle in U and when it exists is hyperbolic
and it is contained in Ũ . Moreover its stability is given by the sign of −VM on Ũ .

The above statement is a simplified version of the one given in [49] adapted to
our interests. Similar results can be seen in [16, 47, 68, 103].

Remark 4.11. Looking at the proof of Proposition 4.10 we also know that:

(i) The Dulac function used in the proof is 1/V.

(ii) In the region U , the curve {V (x, y) = 0} is without contact for the flow
of (4.15). In particular, by the Poincaré–Bendixson Theorem, the ovals of
the set {V (x, y) = 0} must surround some of the critical points of the vector
field.

To give an idea of how we have found the function V that we will use in our
proof we will first study the van der Pol system and then the uniqueness in our
system when b ≤ 0.615. Although we will not use these two results, we believe that
to start studying them helps to a better understanding of our approach.

4.3.1 The van der Pol system

Consider the van der Pol system{
ẋ = y,
ẏ = −x+ (b2 − x2)y.

(4.17)

Due to the expression of the above family of differential equations, in order to
apply Proposition 4.10, it is natural to start considering functions of the form

V (x, y) = f2y
2 + f1(x)y + f0(x).

For this type of functions, the corresponding M is a polynomial of degree 2 in y,
with coefficients being functions of x. In particular the coefficient of y2 is

f ′
1(x) + f2(b

2 − x2).

Taking f1(x) = (x2 − 3b2)f2x/3 we get that it vanishes. Next, fixing f2 = 6, and
imposing to the coefficient of y to be zero we obtain that f0(x) = 6x2 + c, for any
constant c. Finally, taking c = b2(3b2 − 4), we arrive to
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Vb(x, y) = 6y2 + 2(x2 − 3b2)xy + 6x2 + b2(3b2 − 4). (4.18)

From (4.16) of Proposition 4.10, the corresponding M , which only depends on x, is

Mb(x, y) = 4x4 + b2(3b2 − 4)(x2 − b2).

It is easy to see that for b ∈ (0, 2/
√
3) ≈ (0, 1.15), Mb(x, y) > 0. Notice that

Vb(x, y) = 0 is quadratic in y and so is not difficult to see that it has at most one
oval, see Figure 4.8 for b = 1. Then we can apply Proposition 4.10 to prove the
uniqueness and hyperbolicity of the limit cycle for these values of b.

Figure 4.8: The algebraic curve Vb(x, y) = 0 with b = 1.

We remark that taking a more suitable polynomial Dulac function, it is possible
to prove the uniqueness of the limit cycle for all values of b, see [21, p. 105]. We
have only included this explanation as a first step towards the construction of a
suitable rational Dulac function for our system (4.2).

System (4.2) with b ≤ 651/1000

By making some modifications to the function Vb given by (4.18), we get an appro-
priate function for system (4.2). Consider

Vb(x, y) =
(
2x3 + 6b2(1− b2)x

)
y3 + 6(1− b2)y2 + 2(x2 − 3b2)xy

+ 6(1− b2)x2 + b2(3b2 − 4).

Computing the double discriminant △2(Vb) of the function Vb, introduced in Ap-
pendix II, we get that

△2(Vb) = b2(3b2 − 4)(b2 − 1)15(P19(b
2))2,

where P19 is a polynomial of degree 19. By using for instance the Sturm method,
we prove that the smallest positive root of △2(Vb) is greater than 0.85. Therefore,
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by Proposition 4.20 we know that for b ∈ (0, 0.85] the algebraic curve Vb(x, y) = 0
has no singular points and therefore the set {Vb(x, y) = 0} ⊂ R2 is a finite disjoint
union of ovals and smooth curves diffeomorphic to open intervals.

By applying Proposition 4.10 to system (4.2) with V = Vb, we get that

Mb(x, y) = 6(2− 3b2)x4y2 − 12b2(2− b2)x3y3 + 6(2− b2)x2y4

+2(2− 3b2)x4 − 3b2(14− 15b2)x2y2 + 12b4(2− b2)xy3

−b2(4− 9b2)x2 + 3b4(2− 3b2)y2 + b4(4− 3b2).
(4.19)

In Subsection 4.5.4 of Appendix II we prove that Mb does not vanish on R2 for
b ∈ (0, 0.651]. Then by Remark 4.11 all the ovals of {Vb(x, y) = 0} must surround
the origin, which is the unique critical point of the system. Since the straight line
x = 0 has at most two points on the algebraic curve Vb(x, y) = 0, it can have at
most one closed oval surrounding the origin. Then by Proposition 4.10 it follows the
uniqueness, stability and hyperbolicity of the limit cycle of system (4.2) for these
values of the parameter b.

System (4.2) with b ≤ 817/1000

The hyperbola xy+1 = 0 will play an important role in the study of this case. We
first prove a preliminary result.

Lemma 4.12. Consider system (4.2).

(I) For b ̸= 1 the hyperbola xy+1 = 0 is without contact for its flow. In particular
its periodic orbits never cut it.

(II) For b = 1 the hyperbola xy + 1 = 0 is invariant for its flow and the system
has not periodic orbits.

Proof. Define F (x, y) = xy + 1 and set X = (P,Q) := (y,−x + (b2 − x2)(y + y3)).
Simple computations give that for x ̸= 0,

(FxP + FyQ)|y=−1/x =
1 + x2

x2
(
1− b2

)
.

Therefore (I) follows and we have also proved that when b = 1, the hyperbola is
invariant by the flow.

(II) When b = 1,

FxP + FyQ = KF, (4.20)

where K = K(x, y) = y2 − x2 − xy(xy− 1) is the so-called cofactor of the invariant
curve F = 0.
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4.3. Uniqueness of limit cycles

Let us prove that the system has no limit cycle. Recall that the origin is a
repeller. Therefore if we prove that any periodic orbit Γ of the system is also
repeller we will have proved that there is no limit cycle.

This will follow if we show that∫ T

0

div(X)(γ(t)) dt > 0, (4.21)

where γ(t) := (x(t), y(t)) is the time parametrization of Γ and T = T (Γ) its period.
To prove (4.21) notice that the divergence of X can be written as div(X) =

3K + 2x2 + 1− 3xy. Then,∫ T

0

div(X)(γ(t)) dt = 3

∫ T

0

K(x(t), y(t))dt+

∫ T

0

(2x2(t) + 1)dt− 3

∫ T

0

x(t)y(t)dt.

Observe that from (4.20) we have that∫ T

0

K(x(t), y(t)) dt =

∫ T

0

Fx(x(t), y(t))ẋ+ Fy(x(t), y(t))ẏ

F (x(t), y(t))
dt

=

∫ T

0

d

dt
ln |F (x(t), y(t))|dt = ln |F (x(t), y(t))|

∣∣∣T
0
= 0

and that ∫ T

0

x(t)y(t)dt =

∫ T

0

x(t)ẋ(t)dt =
x2(t)

2

∣∣∣T
0
= 0.

Therefore, ∫ T

0

div(X)(γ(t)) dt =

∫ T

0

(2x2(t) + 1)dt > 0,

as we wanted to see.

Theorem 4.13. System (4.2) for b ∈ (0, 0.817] has at most one limit cycle. More-
over when it exists it is hyperbolic and attractor.

Proof. Based on the function Vb used in the Subsection 4.3.1 we consider the func-
tion Vb(x, y) = V̂b(x, y)/(5 + 6b18x2), where

V̂b(x, y) =
1
2
b18x6 + 1

2
b18x4y2 +

(
1 + 1

2
b12
)
x3y3 +

(
1 + 3

2
b2
)
x3y

−
(
3
5
b10 + 5

3
b14 + 2 b16

)
x2y2 +

(
3 b2 − 3 b4 + 21

10
b6
)
xy3

+(3− 3 b2 + 2 b4) x2 − b2
(
3− 1

10
b4
)
xy

+(3− 3 b2 + 2 b4) y2 + 3
2
b4 − 2 b2.

(4.22)

We have added the non-vanishing denominator to increase a little bit the range
of values for which Proposition 4.10 works. Indeed, it can be seen that the above
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function, but without the denominator, is good for showing that the system has at
most one limit cycle for b ≤ 0.811.

To study the algebraic curve V̂b(x, y) = 0 we proceed like in the previous sub-
section. The double discriminant introduced in Appendix II is

△2(V̂b) = b182(3b2 − 4)(4b36 + 27b24 + 108b12 + 108)(P152(b
2))2,

where P152 is a polynomial of degree 152. It can be seen that the smallest positive
root of △2(V̂b) is greater than 0.88. Therefore by Proposition 4.20 we know that for
b ∈ (0, 0.88] this algebraic curve has no singular points. Hence the set {Vb(x, y) =
0} ⊂ R2 is a finite disjoint union of ovals and smooth curves diffeomorphic to open
intervals.

The function that we have to study in order to apply Proposition 4.10 is

Mb(x, y) =
Nb(x, y)

30(6b18x2 + 5)2
, (4.23)

where Nb(x, y) is given in (4.34) of Subsection 4.5.4. The denominator of Mb is
positive for all (x, y) ∈ R2. By Lemma 4.12 we know that the limit cycles of the
system must lay in the open region Ω = R2 ∩ {xy + 1 > 0}. In Subsection 4.5.4 of
Appendix II we will prove that Nb does not change sign on the region Ω and if it
vanishes it is only at some isolated points.

Notice also that the set {V̂b(x, y) = 0} cuts the y-axis at most in two points,
therefore by the previous results and arguing as in Subsection 4.3.1, we know that
it has at most one oval and that when it exists it must surround the origin.

Therefore we are under the hypotheses of Proposition 4.10, taking U = Ω, and
the uniqueness and hyperbolicity of the limit cycle follows.

4.4 About the existence of limit cycles

This section is devoted to find the relative position of the separatrices of the infinite
critical points when b ≤ 0.79 and when b = 0.817. The main tool will be the
construction of algebraic curves that are without contact by the flow of system (4.2).
These curves are essentially obtained by using the functions ϕi(x) := ϕ̃i(x− b)/(x−
b)2 and φi(x) := φ̃i(1/x) where ϕ̃i and φ̃i are the approximations of order i of the
separatrices of the infinite critical points, given in the expressions (4.3) and (4.4) of
Theorem 4.2, respectively. That is, we use algebraic approximations of Si and S ′

i,
for i = 1, 2, 3.

As usual for knowing when a vector field X is without contact with a curve of
the form y = ψ(x) we have to control the sign of

Nψ(x) := ⟨∇(y − ψ(x)), X⟩
∣∣
y=ψ(x)

.
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4.4. About the existence of limit cycles

In this section we will repeatedly compute this function when ψ(x) is either φi(x),
ϕi(x) or modifications of these functions.

We prove the following result.

Proposition 4.14. Consider system (4.2). Then:

(I) For b ≤ 79/100 the configuration of its separatrices is like (i) in Figure 4.3.
Moreover it has an odd number of limit cycles, taking into account their
multiplicities.

(II) For b = 817/1000 the configuration of its separatrices is like (v) in Figure 4.3.
Moreover it has an even number of limit cycles, taking into account their
multiplicities.

Proof. (I) Consider the two functions

φ1(x) = −1

x
, and φ2(x) = −1

x
− (b2 − 1)

x3
,

which are the corresponding expressions in the plane (x, y) of the first and second
approximation of the separatrix S1.

If b < 1 then (φ1 − φ2)(x) = (b2 − 1)/x3 > 0 for x < 0. This implies that the
separatrix S1 in the (x, y)-plane and close to −∞ is below the graphic of φ1(x).
Moreover

Nφ1(x) = −(x2 + 1)(b2 − 1)

x3
< 0 for x < 0.

This inequality implies that the separatrix S1 in the plane (x, y) cannot intersect
the graphic of φ1(x) for x < 0, see Figure 4.9.

Figure 4.9: Behavior of S1 for b < 1.

Now, we consider the third approximation to the separatrices S2 and S3, that is
we consider the first three terms in (4.3). It is given by the graph of the function

ϕ3(x) =
(x2 − 5bx+ 13b2)

9b3(x− b)2
.
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Let us prove that when b ∈ (0,
√
2/3), the graphs of φ1(x) and ϕ3(x) intersect

at a unique point, (x0, y0) with x0 < 0 and y0 > 0. For this is sufficient to show
that the function (φ1 − ϕ3)(x) has a unique zero at some x0 < 0.

It is clear that limx→0−(φ1 − ϕ3)(x) = +∞ and we have that (φ1 − ϕ3)(−2b) =
(3b2 − 2)/6b3, then for b <

√
2/3, (φ1 − ϕ3)(−2b) < 0 hence (φ1 − ϕ3)(x) has a

zero at a point x0 with −2b < x0 < 0. Moreover this zero is unique because the
numerator of (φ1 − ϕ3)(x) is a monotonous function.

It also holds that∇(y−ϕ3(x)) = (−ϕ′
3(x), 1) where ϕ

′
3(x) = (7b−x)/(3b2(b−x)3)

is a positive function for x < 0, and a simply computation shows that

Nϕ3(x) = −1
729b9(b−x)2

(
(81b6 + 1)x4 + (729b8 − 405b6 − 11)bx3

−9(162b8 − 108b6 − 7)b2x2 + (729b8 + 405b6 − 178)b3x

−13(81b6 − 20)b4
)
.

To control the sign ofNϕ3 we compute the discriminant of its numerator with respect
to x. It gives dis(Nϕ3(x), x) = b12P22(b

2), where P22 is a polynomial of degree 22
with integer coefficients.

By using the Sturm method we obtain that P22(b
2) has exactly four real zeros.

By Bolzano Theorem the positive ones belong to the intervals (0.7904, 0.7905) and
(2.6, 2.7).

(a) (b)

Figure 4.10: Behavior of S1 and S3 for b ≤ 0.79

If we fix b0 ≤ 79/100 then b0 <
√

2/3 and moreover according to previous
paragraph the graphics of φ1(x) and ϕ3(x) intersect at a unique point (x0, y0) with

x0 < 0 and y0 > 0. Furthermore,
∂Nϕ3

∂b
(b0) > 0 in (x0, b0) and Nϕ3 < 0 in (x0, b) for

all b ∈ (0, b0]. Therefore the vector field associated to (4.2) on these curves is the
one showed in Figure 4.10.(a).

From Figure 4.10.(a) it is clear that the separatrix S1 cannot intersect the set
Ω = {(x, φ1(x))| − ∞ < x ≤ x0} ∪ {(x, ϕ3(x))|x0 ≤ x < b0}. Moreover, since the
separatrix S2 forms an hyperbolic sector together with S3 we obtain that S1 cannot
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be asymptotic to the line x = b0. Hence we must have the situation showed in
Figure 4.10.(b). We know that the origin is a source and from the symmetry of
system (4.2) we conclude that for b ≤ 0.79 the system has an odd number of limit
cycles (taking into account multiplicities) and the phase portrait is the one showed
in Figure 4.11.

Figure 4.11: For 0 < b ≤ 0.79, system (4.2) has at least one limit cycle and phase
portrait (i) of Figure 4.1.

(II) We start proving the result when b = b0 := 89/100 because the method that
we use is the same that for studying the case b = 817/1000, but the computations
are easier. Recall that we want to prove that the configuration of separatrices is like
(v) in Figure 4.3. That the number of limit cycles must be even (taking into account
multiplicities) is then a simply consequence of the Poincaré–Bendixson Theorem,
because the origin is a source.

We consider the approximation of eight order to S2 and S3 given by the graph
of the function ϕ8(x).

By using again the Sturm method it is easy to see that Nϕ8(x) < 0 for x ∈
(b0, x0), where x0 = 1.924 is a left approximation to the root of the function ϕ8(x),
and Nϕ8(x) > 0 for x ∈ (x1, b0), where x1 = −2.022 is a right approximation to the
root of the function Nϕ8(x). That is, we have the situation shown in Figure 4.12.(a).

Now, we consider the function ϕ̂8(x) = ϕ8(x)−1/(9b3), is clear that (ϕ8−ϕ̂8)(x) > 0.
We have Nϕ̂8

(x) > 0 for x ∈ (b0, x2) where x2 = 1.6467 is a left approximation to

the root of the function ϕ̂8(x), moreover the line x = x2 is transversal to the vector
field for y > 0, thus the separatrix S3 intersects the x-axis at a point x̄ of the
interval (x2, x0), see again Figure 4.12.(a).
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(a) (b)

Figure 4.12: Behavior of S2 and S3 for b ∈ {0.817, 0.89}.

At this point, the idea is to show that S2 intersects the x-axis at a point x̂, with
−x2 < x̂ < 0. For proving this, we utilize the Padé approximants method, see [8].

Recall that given a function f(x), its Padé approximant Pd[n,m](f)(x, x0) of order
(n,m) at a point x0, or simply Pd[n,m](f)(x) when x0 = 0, is a rational function
of the form Fn(x)/Gm(x), where Fn and Gm are polynomials of degrees n and m,
respectively, and such that∣∣∣∣f(x)− Fn(x)

Gm(x)

∣∣∣∣ = O
(
(x− x0)

n+m+1
)
.

Consider the Padé approximant Pd[3,3](ϕ8). It satisfies that Pd[3,3](ϕ8)(0) = ϕ8(0)
and by the Sturm method it can be seen that there exists x3 < 0 such that
Pd[3,3](ϕ8)(x3) = 0, Pd[3,3](ϕ8) is positive and increasing on the interval (x3, 0) and a
left approximation to x3 is −1.595. Moreover, it is easy to see that NPd[3,3](ϕ8)(x) > 0
for x ∈ (x3, 0). Therefore S2 cannot intersect neither the graph of y = Pd[3,3](ϕ8)(x)
in (x3, 0) nor the graph of ϕ8(x) in [0, b0). Hence, S2 intersects the x-axis in a point x̂
contained in the interval (x3, 0). This implies that −x2 < x̂ < 0 as we wanted to see,
because −x2 < x3. Hence, the behavior of the separatrices is like Figure 4.12.(b).
See also Figure 4.13.

When b0 = 817/1000 we follow the same ideas. For this case we consider the
functions ϕ16(x) and ϕ̂16(x) = ϕ16(x) − 1/(9b3). Recall that the graphic of ϕ16(x)
is the sixteenth order approximation to S2 and S3. It is not difficult to prove that
Nϕ̂16

> 0 on the interval (b0, x2), with x2 = 1.6421 and since the line x = x2 is
transversal to X for y > 0, S3 intersects the x-axis at a point x̄ > x2. Also we
have that Nϕ16 > 0 on the interval (−3/100, b0) and using the Padé approximant
Pd[5,1](ϕ16)(x,−3/100) we obtain that S2 intersect to the x-axis in a point x̂ ∈ (x3, 0)
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Figure 4.13: Behavior of S2,S3,S ′
2 and S ′

3 for b ∈ {0.817, 0.89}.

with x3 > −1.638. This implies that −x2 < x̂ < 0 as in the case b = 0.89. Hence,
we have the same situation that in Figure 4.13.

Remark 4.15. As it is shown in the proof of Theorem 4.1, the values 0.79 and
0.817, obtained in the previous proposition, provide a lower and an upper bound for
b∗. We have tried to shrink the interval where b∗ lies using higher order approxima-
tions of the separatrices, but we have not been able to diminish its size.

4.5 Applicability of the techniques to other fam-

ilies

In this section we explain how the approach introduced in this chapter for obtaining
analytic estimations of the values of the bifurcation parameter for the concrete
quintic family (4.2) can be adapted to be used in many other one-parameter families
of planar polynomial vector fields ẋ = Xb(x).

Recall that the key points for obtaining the bifurcation diagrams for families of
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planar polynomial differential equations are the knowledge of the global behavior of
the separatrices of their critical points and the control of the number of limit cycles
that these equations can have.

The first step of our approach consists on searching algebraic explicit approxi-
mations of the separatrices of the finite and infinite critical points. The existence
of these approximations, even for degenerate singularities, is guaranteed by the
well-known fact that all the singularities of analytic vector fields can be desingu-
larized after a finite number of blow-ups, see [4, 34]. Recall that hyperbolic and
semi-hyperbolic points have analytic separatrices. Therefore, undoing the chains of
desingularizing blow-ups of their truncated Taylor series at the critical points, we
obtain rational curves that approximate the actual separatrices. Other examples of
this approach appear in [51, 52].

The second step consists on joining pieces of these approximated separatrices
and then prove that they are curves without contact by the flows of the vector fields.
Notice that the fact that the approximated separatrices are without contact for the
flow of the vector field in a sufficiently extended neighborhood of the critical point
is not assured by the algorithm of construction of these curves. This fundamental
property must be proved. The validity of this property is a bonus of the method
that we have verified in the study of several families of planar vector fields. Owing
to the difficult algebraic calculations that are necessary to prove the transversality
property it is not possible to give simple conditions on the vector field in order
to assure its validity in a sufficiently extended neighborhood of the critical point.
By the moment, given a family of planar vector fields, we are not able to know
in advance if our method will be successful for the given family. The different
directions of these flows on the given curves and the stability of the critical points
allow to distinguish the cases where the number of limit cycles, taking into account
their multiplicities, is either even or odd.

Afterwards, the exact number of limit cycles is studied by using a convenient
version of the generalized Bendixson-Dulac criterion. The most difficult part is to
figure out the type of Dulac function, B, that works for the concrete family of
differential equations. For instance, for systems of the form{

ẋ = f0(x) + f1(x)y,
ẏ = g0(x) + g1(x)y + g2(x)y

2,
(4.24)

it is often useful to write B(x, y) = (
∑p

k=0 ck(x)y
k)r(
∑q

k=0 dk(x)y
k)−s with p, q, r, s

non-negative integer numbers, and then try to find suitable functions ck and dk. This
is the case in this work and also in [48], [17] and other papers of the same authors.
It is worth to comment here that system (4.24) contains many interesting planar
differential equations: quadratic systems, Liénard and Kukles systems, predator-
prey models, etc.
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Notice that the last two steps of our approach imply the control of the sign, on
a given region, of a polynomial function that depends on x, y and the parameter b.
In general, this is not an easy task. In Appendix II we give some results on this
setting that can also be useful in other problems, see for instance [3, 88]. As we
will see, these results reduce all the question to control the zeros of several one-
variable polynomials with rational coefficients. A priori we can not control the
highest degree among all the polynomials that we will have to study (recall for our
family this degree has been 965). Fortunately the powerful tools given by the Sturm
algorithm and a combination of Descartes and Bisection algorithms, see Appendix I,
allow in many cases to deal with the problem.

Appendix I: The Descartes method

Given a real polynomial P (x) = anx
n+ · · ·+ a1x+ a0 and a real interval I = (α, β)

such that P (α)P (β) ̸= 0, there are two well-known methods for knowing the number
of real roots of P in I: the Descartes rule and the Sturm method.

Theoretically, when all the ai ∈ Q and α, β ∈ Q, the Sturm approach solves
completely the problem. If all the roots of P are simple it is possible to associate
to it a sequence of n + 1 polynomials, the so-called Sturm sequence, and knowing
the signs of this sequence evaluated at α and β we obtain the exact number of real
roots in the interval. If P has multiple roots it suffices to start with P/(gcd(P, P ′)),
see [96, Sec. 5.6].

Nevertheless when the rational numbers have big numerators and denominators
and n is also big, the computers have not enough capacity to perform the compu-
tations to get the Sturm sequence. On the other hand the Descartes rule is not so
powerful but a careful use, in the spirit of bisection method, can many times solve
the problem.

To recall the Descartes rule we need to introduce some notation. Given an
ordered list of real numbers [b0, b1, . . . , bn−1, bn] we will say that it has C changes
of sign if the following holds: denote by [c0, c1, . . . , cm−1, cm], m ≤ n the new list
obtained from the previous one after removing the zeros and without changing
the order of the remaining terms. Consider the m non-zero numbers δi := cici+1,
i = 0, . . . ,m− 1. Then C is the number of negative δi.

Theorem 4.16 (Descartes rule). Let C be the number of changes of sign of the list
of ordered numbers

[a0, a1, a2, . . . , an−1, an].

Then the number of positive zeros of the polynomial P (x) = anx
n + · · ·+ a1x+ a0,

counted with their multiplicities, is C − 2k, for some k ∈ N ∪ {0}.
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Corollary 4.17. With the notations of Theorem 4.16 if C = 0 then P (x) has not
positive roots and if C = 1 it has exactly one simple positive root.

In order to apply Descartes rule to arbitrary open intervals we introduce the
following definition:

Definition 4.18. Given a real polynomial P (x) and a real interval (α, β) we con-
struct a new polynomial

Nβ
α (P )(x) := (x+ 1)degPP

(
βx+ α

x+ 1

)
.

We will call Nβ
α (P ), the normalized version of P with respect to (α, β). Notice that

the number of real roots of P (x) in the interval (α, β) is equal to the number of real
roots of Nβ

α (P )(x) in (0,∞).

The method suggested in [63] consists in writing (α, β) =
∪k
i=1(αi, αi+1), with

α = α1 < α2 < · · · < αk < αk+1 = β in such a way that on each (αi, αi+1) it
is possible to apply Corollary 4.17 to the normalized version of the polynomial.
Although there is no systematic way of searching a suitable decomposition, we
will see that a careful use of these type of ideas has been good enough to study
the number and localization of the roots for a huge polynomial of degree 965, see
Subsection 4.5.4 in Appendix II.

Appendix II: Polynomials in two variables

The main result of this appendix is a new method for controlling the sign of families
of polynomials with two variables. As a starting point we prove a simple result for
one-parameter families of polynomials in one variable.

Let Gb(x) be a one-parametric family of polynomials. As usual, we write △x(P )
to denote the discriminant of a polynomial P (x) = anx

n + · · ·+ a1x+ a0, that is,

△x(P ) = (−1)
n(n−1)

2
1

an
Res(P (x), P ′(x)),

where Res(P, P ′) is the resultant of P and P ′.

Lemma 4.19. Let

Gb(x) = gn(b)x
n + gn−1(b)x

n−1 + · · ·+ g1(b)x+ g0(b),

be a family of real polynomials depending also polynomially on a real parameter b
and set Ω = R. Suppose that there exists an open interval I ⊂ R such that:
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4.5. Applicability of the techniques to other families

(i) There is some b0 ∈ I, such that Gb0(x) > 0 on Ω.

(ii) For all b ∈ I, △x(Gb) ̸= 0.

(iii) For all b ∈ I, gn(b) ̸= 0.

Then for all b ∈ I, Gb(x) > 0 on Ω.

Moreover, if Ω = Ωb = (c(b),∞) for some smooth function c(b), the same result
holds changing Ω by this new Ωb if we add the additional hypothesis

(iv) For all b ∈ I, Gb(c(b)) ̸= 0.

Proof. The key point of the proof is that the roots (real and complex) of Gb depend
continuously of b, because gn(b) ̸= 0. Notice that hypotheses (iii) and (iv) prevent
that moving b some root enters in Ω either from infinity or from the boundary of Ω,
respectively. On the other hand if moving b some real roots appear from C, they
do appear through a double real root that is detected by the vanishing of △x(Gb).
Since by item (ii), △x(Gb) ̸= 0 no real root appears in this way. Hence, for all
b ∈ I, the number of real roots of any Gb is the same. Since by item (i) for b = b0,
Gb0 > 0 on Ω, the same holds for all b ∈ I.

To state the corresponding result for families of polynomials with two variables
inspired in the above lemma, see Proposition 4.25, we need to prove some results
about the iterated discriminants (to replace hypothesis (ii) of the lemma) and to
recall how to study the infinity of planar curves (to replace hypothesis (iii)).

4.5.1 The double discriminant

Let F (x, y) be a complex polynomial on C2. We write F as

F (x, y) = any
n + an−1y

n−1 + an−2y
n−2 + . . .+ a1y + a0, (4.25)

where ai = ai(x) ∈ C[x]. Then

△y(F ) = (−1)
n(n−1)

2
1

an
Res(F, ∂F/∂y),
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and this resultant can be computed as the determinant of the Sylvester matrix of
dimension (2n− 1)× (2n− 1), see [31],

S =



an 0 0 0 nan 0 0 0
an−1 an 0 0 (n− 1)an−1 nan 0 0

an−2 an−1
. . . 0 (n− 2)an−2 (n− 1)an−1

. . . 0
...

. . . an
...

. . . nan
... an−1

... (n− 1)an−1

a0 a1

0 a0
... 0 a1

...

0 0
. . . 0 0

. . .

0 0 0 a0 0 0 0 a1



.

We will write △2
y,x(F ) = △x(△y(F )). Analogously we can compute △2

x,y(F ).
This so-called double discriminant plays a special role in the characterization of
singular curves of {F (x, y) = 0} and it is also used in applications, see for instance
[3, 64, 88]. In particular we prove the following result.

Proposition 4.20. Let F (x, y) be a complex polynomial on C2. If {F (x, y) =
0} ⊂ C2 has a singular point, that is, if there exists a point (x0, y0) ∈ C2 such that
F (x0, y0) = ∂F (x0, y0)/∂x = ∂F (x0, y0)/∂y = 0, then △2

y,x(F ) = △2
x,y(F ) = 0.

Proof. We write F (x, y) in the form (4.25). Without lost of generality we assume
that (x0, y0) = (0, 0). Then from the assumptions it follows that a0(0) = a′0(0) = 0
and a1(0) = 0, that is, a0(x) = x2â0(x) and a1(x) = xâ1(x), with both âi also
polynomials.

By using the Sylvester matrix S defined above, we have that

detS = (−1)na0 det(S(2n− 1 | n− 1)) + a1 det(S(2n− 1 | 2n− 1)), (4.26)

where S(i | j) means the matrix obtained from S by removing the i-th row and the
j-th column.

Notice that the elements of the last row of S(2n− 1 | 2n− 1) are only 0, a0 and
a1. Therefore, developing the determinant of this matrix from this row we get that
det(S(2n− 1 | 2n− 1)) = xQ(x), for some polynomial Q(x).

Hence, by using (4.26), we get that detS = x2P (x) with P (x) another polyno-
mial. This implies that △y(F ) has a double zero at x = 0 and hence △2

y,x(F ) = 0.
Analogously we can prove that △x(F ) has a double zero at y = 0 and hence

△2
x,y(F ) = 0.

Corollary 4.21. Consider a one-parameter family of polynomials Fb(x, y), depend-
ing also polynomially on b. The values of b such that the algebraic curve Fb(x, y) = 0
has some singular point in C2 have to be zeros of the polynomial

△2(Fb) := gcd
(
△2
x,y(Fb),△2

y,x(Fb)
)
.
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4.5. Applicability of the techniques to other families

By simplicity we will also call the polynomial △2(Fb), double discriminant of
the family Fb(x, y). As far as we know the above necessary condition for detecting
algebraic curves with singular points is new.

Remark 4.22. (i) Notice that if in Corollary 4.21, instead of imposing that for
b ∈ I, △2(Fb) ̸= 0, it suffices to check only that either △2

x,y(Fb) ̸= 0 or △2
y,x(Fb) ̸= 0.

(ii) The converse of the Proposition 4.20 is not true. For instance if we consider
the polynomial F (x, y) = x3y3 + x + 1 then △2

y,x(F ) = △2
x,y(F ) = 0, however

Fx(x, y) = 3x2y3 + 1 and Fy(x, y) = 3x3y2 hence {F (x, y) = 0} does not have
singular points.

(iii) Sometimes △2
y,x(F ) ̸= △2

x,y(F ). For instance this is the case when F =
y2 + x3 + bx2 + bx because

△2
x,y(F ) = −110592b9(b− 4)(b− 3)6 and △2

y,x(F ) = 256b3(b− 4).

Notice that △2(F ) = b3(b− 4).

4.5.2 Algebraic curves at infinity

Let
F (x, y) = F 0(x, y) + F 1(x, y) + · · ·+ F n(x, y)

be a polynomial on R2 of degree n. We denote by

F̃ (x, y, z) = znF 0(x, y) + zn−1F 1(x, y) + · · ·+ F n(x, y)

its homogenization in RP2.
For studying F̃ (x, y, z) in RP2 we can use its expressions in the three canonical

charts of RP2, {[x : y : 1]}, {[x : 1 : z]}, and {[1 : y : z]}, which can be identified with
the real planes {(x, y)},{(x, z)}, and {(y, z)} respectively. Of course the expression
in the chart {[x : y : 1]}, that is, in the (x, y)-plane is precisely F (x, y).

We denote by F̃1(x, z) and F̃2(y, z) the expressions of the function F̃ in the planes

{(x, z)} and {(y, z)}, respectively. Therefore F̃1(x, z) = F̃ (x, 1, z) and F̃2(y, z) =

F̃ (1, y, z).

Let [x∗ : y∗ : z∗] ∈ RP2 be a point of {F̃ = 0}. If z∗ ̸= 0, then [x∗ : y∗ : z∗]
corresponds to a point in R2, otherwise it is said that [x∗ : y∗ : 0] is a point of F at
infinity. Notice that the points at infinity of F correspond to the points [x∗ : y∗ : 0]
where (x∗, y∗) ̸= (0, 0) is a solution of the homogeneous part of degree n of F ,

Hn(F (x, y)) = F n(x, y),

that is F n(x∗, y∗) = 0. Equivalently, these are the zeros of F̃1(x, 0) and F̃2(y, 0). In
other words, [x∗ : y∗ : 0] is a point at infinity of F if and only if x∗/y∗ is a zero of

F̃1(x, 0) = F n(x, 1) or y∗/x∗ is a zero of F̃2(y, 0) = F n(1, y).
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Let Ω ⊂ R2 be an unbounded open subset with boundary ∂Ω formed by finitely
many algebraic curves. It is clear that this subset can be extended to RP2. We will
call the adherence of this extension Ω̄. When a point at infinity of F is also in Ω̄,
for short we will say that is a point at infinite which is also in Ω.

4.5.3 Isolated points of families of algebraic curves

To state our main result we need explicit conditions to check when a point of a real
algebraic curve G(x, y) = 0 is isolated. Recall that it is said that a point p ∈ R2

on the curve is isolated if there exists an open neighborhood U of p, such that

U ∩ {(x, y) ∈ R2 : G(x, y) = 0} = {p}.

Clearly isolated points are singular points of the curve. Next result provides an
useful criterion to deal with this question.

Lemma 4.23. Let G(x, y) be a real polynomial. Assume that (0, 0) ∈ {G(x, y) = 0}
and that there are natural numbers p, q and m, with gcd(p, q) = 1, and a polynomial
G0 satisfying G0(εpX, εqY ) = εmG0(X,Y ), and such that for all ε > 0,

G(εpX, εqY ) = εmG0(X, Y ) + εm+1G1(X, Y, ε),

for some polynomial function G1. If the only real solution of G0(X,Y ) = 0 is
(X,Y ) = (0, 0), then the origin is an isolated point of G(x, y) = 0.

Proof. Assume without loss of generality that G0 ≥ 0. We start proving that K :=
{(x, y) ∈ R2 : G0(x, y) = 1} is a compact set. Clearly it is closed, so it suffices to
prove that it is bounded. Since G0 is a quasi-homogeneous polynomial we know that
there exists a natural number m0 such that m = m0pq and G0(x, y) = Pm0(x

q, yp),
where Pm0 is a real homogeneous polynomial of degree m0. The fact that the only
real solution of the equation G0(x, y) = 0 is x = y = 0 implies that Pm0 has not
linear factors when we decompose it as a product of real irreducible factors. Hence
m0 is even and Pm0(x, y) =

∏m0/2
i=1 (Aix

2 + Bixy + Ciy
2), with B2

i − 4AiCi < 0. As
a consequence,

G0(x, y) =

m0/2∏
i=1

(Aix
2q +Bix

qyp + Ciy
2p), with B2

i − 4AiCi < 0. (4.27)

Assume, to arrive to a contradiction, that K is unbounded. Therefore it should
exist a sequence {(xn, yn)}, tending to infinity, and such that G0(xn, yn) = 1. But
this is impossible because the conditions B2

i − 4AiCi < 0, i = 1, . . . ,m0/2, imply
that all the terms Aix

2q
n +Bix

q
ny

p
n+Ciy

2p
n in (4.27) go to infinity. So K is compact.
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4.5. Applicability of the techniques to other families

Let us prove that (0, 0) is an isolated point of {(x, y) ∈ R2 : G(x, y) = 0}.
Assume, to arrive to a contradiction, that it is not. Therefore there exists a
sequence of points {(xn, yn)}, tending to 0 and such that G(xn, yn) = 0 for all
n ∈ N. Consider G0(xn, yn) =: (gn)

m > 0. It is clear that limn→∞(gn)
m = 0. Write

(xn, yn) = ((gn)
pun, (gn)

qvn). Notice that

(gn)
m = G0(xn, yn) = G0(gpnun, g

q
nvn) = (gn)

mG0(un, vn).

Then G0(un, vn) = 1 and (un, vn) ∈ K, for all n ∈ N. Therefore, taking a subse-
quence if necessary, we can assume that

lim
n→∞

(un, vn) = (u∗, v∗) ∈ K. (4.28)

We have that 0 = G(xn, yn) = (gn)
m+ (gn)

m+1G1(un, vn, gn). Dividing by (gn)
m we

obtain that 0 = 1 + gnG
1(un, vn, gn), and passing to the limit we get that 1 = 0

which gives the desired contradiction.
Notice that to prove that limn→∞ gnG

1(un, vn, gn) = 0 we need to know that the
sequence {(un, vn)} remains bounded and this fact is a consequence of (4.28).

We remark that the suitable values p, q and m and the function G0 appearing
in the statement of Lemma 4.23 are usually found by using the Newton diagram
associated to G.

We also need to introduce a new related concept for families of curves. Consider
a one-parameter family of algebraic curves Gb(x, y) = 0, b ∈ I, also depending
polynomially of b. Let (x0, y0) ∈ R2 be an isolated point of Gb(x, y) = 0 for all
b ∈ I, we will say that (x0, y0) is uniformly isolated for the family Gb(x, y) = 0,
b ∈ I if for each b ∈ I there exist neighborhoods V ⊂ I and W ⊂ R2, of b and
(x0, y0) respectively, such that for all b ∈ V ,

{(x, y) ∈ R2 : Gb(x, y) = 0} ∩W = {(x0, y0)}. (4.29)

Next example shows a one-parameter family of curves that has the origin isolated
for all b ∈ R but it is not uniformly isolated for b ∈ I, with 0 ∈ I,

Gb(x, y) = (x2 + y2)(x2 + y2 − b2)(x− 1). (4.30)

It is clear that the origin is an isolated point of {Gb(x, y) = 0} for all b ∈ R, but
there is no open neighborhood W of (0, 0), such that (4.29) holds for any b in a
neighborhood of b = 0.

Next result is a version of Lemma 4.23 for one-parameter families. In its proof
we will use some periodic functions introduced by Lyapunov in his study of the
stability of degenerate critical points, see [69]. Let us recall them.
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Let u(φ) = Cs(φ) and v(φ) = Sn(φ) be the solutions of the Cauchy problem:

u′ = −v2p−1, v′ = u2q−1, u(0) = 2q
√
1/p and v(0) = 0,

where the prime denotes the derivative with respect to φ.
Then x = Cs(φ) and y = Sn(φ) parameterize the algebraic curve px2q+qy2p = 1,

that is pCs2q(φ) + q Sn2p(φ) = 1, and both functions are smooth Tp,q-periodic
functions, where

T = Tp,q = 2p−1/2qq−1/2p
Γ
(

1
2p

)
Γ
(

1
2q

)
Γ
(

1
2p

+ 1
2q

) ,

and Γ denotes the Gamma function.

Proposition 4.24. Let Gb(x, y) be a family of real polynomials which also de-
pends polynomially on b. Assume that (0, 0) ∈ {Gb(x, y) = 0} and that there are
natural numbers p, q and m, with gcd(p, q) = 1, and a polynomial G0

b satisfying
G0
b(ε

pX, εqY ) = εmG0
b(X, Y ), and such that for all ε > 0,

Gb(ε
pX, εqY ) = εmG0

b(X,Y ) + εm+1G1
b(X, Y, ε),

for some polynomial function G1
b . If for all b ∈ I ⊂ R, the only real solution of

G0
b(X, Y ) = 0 is (X, Y ) = (0, 0), then the origin is an uniformly isolated point of

Gb(x, y) = 0 for all b ∈ I.

Proof. Assume without loss of generality that G0
b ≥ 0. Let us write the function

Gb(x, y) using the so-called generalized polar coordinates,

x = ρpCs(φ), y = ρq Sn(φ), for ρ ∈ R+.

Then

Gb(x, y) = Gb(ρ
pCs(φ), ρq Sn(φ))

= ρmG0
b(Cs(φ), Sn(φ)) + ρm+1G1

b(Cs(φ), Sn(φ), ρ). (4.31)

Using the same notation that in the proof of Lemma 4.23, with the obvious modi-
fications, we know from (4.27) that

G0
b(Cs(φ), Sn(φ)) =

m0/2∏
i=1

(Ai(b) Cs
2q(φ) +Bi(b) Cs

q(φ) Snp(φ) + Ci(b) Sn
2p(φ)),

with all B2
i (b) − 4Ai(b)Ci(b) < 0. Therefore, it is not difficult to prove that there

exists two positive continuous functions, L(b) and U(b) such that

0 < L(b) ≤ G0
b(Cs(φ), Sn(φ)) ≤ U(b),
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due to the periodicity of the Lyapunov functions and the discriminant conditions.
Dividing the expression (4.31) by ρm we obtain that the points of {Gb(x, y) =
(0, 0)} \ {(0, 0)} are given by

G0
b(Cs(φ), Sn(φ)) + ρG1

b(Cs(φ), Sn(φ), ρ) = 0. (4.32)

Fix a compact neighborhood of b, say V ⊂ I. Set L = minx∈V L(b). Then there
exists δ > 0 such that for any ||(x, y)|| ≤ δ and any b ∈ V ,

|ρG1
b(Cs(φ), Sn(φ), ρ)| < L/2.

Therefore (4.32) never holds in this region and

{(x, y) ∈ R2 : Gb(x, y) = 0} ∩ {(x, y) ∈ R2 : ||(x, y)|| < δ} = {(0, 0)},

for all b ∈ V , as we wanted to prove.

Notice that, the fact that for all b ∈ R, the origin of (4.30) is isolated simply
follows plotting the zero level set of Gb. Alternatively, we can apply Lemma 4.23
with p = 1, q = 1 and m = 2 to prove that the origin is isolated when b ̸= 0 and
with p = q = 1 and m = 4 when b = 0. In any case, Proposition 4.24 can not be
used.

4.5.4 A method for controlling the sign

Proposition 4.25. Let Fb(x, y) be a family of real polynomials depending also poly-
nomially on a real parameter b and let Ω ⊂ R2 be an open connected subset having
a boundary ∂Ω formed by finitely many algebraic curves. Suppose that there exists
an open interval I ⊂ R such that:

(i) For some b0 ∈ I, Fb0(x, y) > 0 on Ω.

(ii) For all b ∈ I, △2(Fb) ̸= 0.

(iii) For all b ∈ I, all points of Fb = 0 at infinity which are also in Ω do not depend
on b and are uniformly isolated.

(iv) For all b ∈ I, {Fb = 0} ∩ ∂Ω = ∅.

Then for all b ∈ I, Fb(x, y) > 0 on Ω.

Proof. Write I = J ∪ J c, where

J := {b ∈ I : {Fb(x, y) = 0} ∩ Ω = ∅} and J c := {b ∈ I : {Fb(x, y) = 0} ∩ Ω ̸= ∅}.
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We will prove that both J and J c are open sets. Since I is connected and from
hypothesis (i), J ̸= ∅ because b0 ∈ J , it will follow that I = J , as we wanted to
prove.

We will first prove that J c is open. We take b̄ ∈ Jc. If Fb̄(x, y) does not change
sign on Ω, then either Fb̄(x, y) ≥ 0 or Fb̄(x, y) ≤ 0 in Ω. Then, in both cases Fb̄(x, y)
has a singular point and this implies that △2(Fb̄) = 0 which contradicts hypothesis
(ii). Therefore Fb̄(x, y) changes of sign in Ω. For continuity this property remains
for all b close enough to b̄. Hence there exists a neighborhood Ub̄ of b̄ contained in
Jc, that is J c is open, as we wanted to prove.

Next, we will show that J is open as well. Assume that this is false. Then
there exists a sequence {bn} of J c such that bn → b̄ with b̄ ∈ J . Since {Fbn(x, y) =
0} ∩ Ω ̸= ∅, for each n there exists a point (xn, yn) ∈ Ω such that Fbn(xn, yn) = 0.
Consider now the sequence {(xn, yn)}. It is is either bounded or unbounded.

In the first case, we can assume that limn→∞(xn, yn) = (x̄, ȳ) ∈ Ω ∪ ∂Ω. If
(x̄, ȳ) ∈ Ω, then Fb̄(x̄, ȳ) = 0 which is impossible because b̄ ∈ J . If (x̄, ȳ) ∈ ∂Ω then
Fb̄(x̄, ȳ) = 0 which is impossible owing to hypothesis (iv).

In the second case, a subsequence of {(xn, yn)} converges to a point at infinity
of RP2, that is we can assume that limn→∞[xn : yn : 1] = [x̄ : ȳ : 0]. Therefore

limn→∞ F̃bn(xn, yn, 1) = F̃b̄(x̄, ȳ, 0) = 0, where recall that F̃ denotes the homoge-
nization of F in RP2. This last equality is in contradiction with hypothesis (iii),

because note that for all n, F̃bn(xn, yn, 1) = 0 and these facts imply that Fb̄ would
have a non uniformly isolated singularity in Ω at infinity.

Hence J is open as we wanted to prove and the proposition follows.

Control of the sign of (4.19)

In this subsection we will prove by using Proposition 4.25, that for b ∈ (0, 0.6512),
the function Mb given in (4.19) is positive on Ω = R2.

To check hypothesis (i), we prove that M1/2 > 0 for all R2. For this value,

M1/2 =
15
2
x4y2 − 21

4
x3y3 + 21

2
x2y4 − 123

16
x2y2 + 21

16
xy3 + 5

2
x4 − 7

16
x2 + 15

64
y2 + 13

64
.

We thinkM1/2 as a polynomial in x and y as a parameter and we apply Lemma 4.19.
If y = 0 then M1/2 reduces to the polynomial (5/2)x4 − (7/16)x2 + 13/64 which
is positive on R. Now, we compute △x(M1/2) and we obtain a polynomial in the
variable y of degree 20. By using the Sturm method it is easy to see that it does
not have real roots. Moreover, the coefficient of x4 is 5(3y2 + 1)/2 > 0. Therefore,
M1/2 > 0 on R2, as we wanted to see.

To check hypothesis (ii) we compute the double discriminant of Mb and we
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obtain that △2
x,y(Mb) is a polynomial in b of degree 1028, of the following form

△2
x,y(Mb) =b

320(b2 − 2)40(3b2 − 2)5(3b2 − 4)(2b6 − 4b4 − 3b2 + 2)×
× (b6 − 2b4 − 3b2 + 2)(P2(b

2))8(P6(b
2))4(P32(b

2))2(P33(b
2))6,

where Pi are polynomials of degree i with rational coefficients. By using the Sturm
method we localize the real roots of each factor of △2

x,y(Mb) and we obtain that in
the interval (0, 0.6512) none of them has real roots. In fact P32(b

2) has a root in
(0.6513, 0.6514) and that is the reason for which we can not increase more the value
of b. Therefore △2

x,y(Mb) ̸= 0 for all b ∈ (0, 0.6512).
Finally we have to check hypothesis (iii). Notice that in this case ∂Ω = ∅ and

so (iv) follows directly.
The zeros at infinity are given by the directions

H6(Mb) = 6x2y2
(
(2− 3b2)x2 − 2b2(2− b2)xy + (2− b2)y2

)
= 0.

For |b| < 0.7275 it has only the non-trivial solutions x = 0 and y = 0. The
homogenization of Mb is

M̃b = 6(2− 3b2)x4y2 − 12b2(2− b2)x3y3 + 6(2− b2)x2y4

+2(2− 3b2)x4z2 − 3b2(14− 15b2)x2y2z2 + 12b4(2− b2)xy3z2

−b2(4− 9b2)x2z4 + 3b4(2− 3b2)y2z4 + b4(4− 3b2)z6,

(4.33)

and hypothesis (iii) is equivalent to prove that (0, 0) is an uniformly isolated sin-

gularity for M̃1
b (x, z) = M̃b(x, 1, z) and that (0, 0) is also an uniformly isolated

singularity for M̃2
b (y, z) = M̃b(1, y, z).

First we prove this result for M̃1
b (x, z). From (4.33),

M̃1
b (x, z) = 6(2− 3b2)x4 − 12b2(2− b2)x3 + 6(2− b2)x2 + 2(2− 3b2)x4z2

−3b2(14− 15b2)x2z2 + 12b4(2− b2)xz2 − b2(4− 9b2)x2z4

+3b4(2− 3b2)z4 + b4(4− 3b2)z6.

Hence,

M̃1
b (ε

2X, εZ) =
(
6(2− b2)X2 + 12b4(2− b2)XZ2 + 3b4(2− 3b2)Z4

)
ε4 +O(ε5).

The discriminant with respect to X of the homogeneous polynomial T (X,W ) :=
6(2− b2)X2 + 12b4(2− b2)XW + 3b4(2− 3b2)W 2, where W = Z2, is

△X(T ) = 72W 2b4(b2 − 2)(2b6 − 4b4 − 3b2 + 2).

Since its smallest positive root is greater than 0.673 it holds for b ∈ (0, 673) that
T (X,W ) = 0 if and only if (X,W ) = (0, 0). Therefore by Proposition 4.24 the point

(0, 0) is an uniformly isolated point of the curve M̃1
b (x, z) = 0, for these values of b.
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On the other hand, since

M̃2
b (y, z) = 6(2− b2)y4 − 12b2(2− b2)y3 + 6(2− 3b2)y2 + 2(2− 3b2)z2

−3b2(14− 15b2)y2z2 + 12b4(2− b2)y3z2 − b2(4− 9b2)z4

+3b4(2− 3b2)y2z4 + b4(4− 3b2)z6,

we have that

M̃2
b (εY, εZ) = 2(2− 3b2)

(
3Y 2 + Z2

)
ε2 +O(ε3),

and the result follows for b ∈ (0,
√

2/3) ≈ (0, 0.816), by applying again the same
proposition.

So, we have shown that for b ∈ (0, 0.6512) all the hypotheses of the Proposi-
tion 4.25 hold. Therefore we have proved that for b ∈ (0, 0.651], Mb(x, y) > 0 for
all (x, y) ∈ R2.

Control of the sign of (4.23)

The numerator of the function Mb given in (4.23) is a polynomial of the following
form

Nb(x, y) = f0(x, b) + f1(x, b)y + f2(x, b)y
2 + f3(x, b)y

3 + f4(x, b)y
4, (4.34)

where

f0(x, b) = 90b36x10 − 15b18(6b20 − 5)x8 + 15b18(24b4 − 59b2 + 24)x6

−(378b24 − 810b22 + 360b20 − 300b4 + 675b2 − 300)x4

−15b2(18b22 − 24b20 + 21b4 − 45b2 + 20)x2 − 75b4(−4 + 3b2),

f1(x, b) = 180b36x7 + 12b18(60b16 + 50b14 + 18b10 + 25)x5 − 20b10(36b12

−54b10 + 54b8 − 30b6 − 25b4 − 9)x3 − 180b20(3b2 − 4)x,

f2(x, b) = 270b36x10 − 45b18(6b20 + 2b18 − 5)x8 + 3b18(30b20 + 120b16

+100b14 − 90b12 + 36b10 + 360b4 − 615b2 + 335)x6 − (360b36

+300b34 + 108b30 + 2214b24 − 3690b22 + 3435b20 + 360b18

−300b16 − 250b14 + 225b12 − 90b10 − 900b4 + 1350b2 − 900)x4

−b2(468b22 − 540b20 − 1080b18 + 300b16 + 250b14 + 90b10

+1845b4 − 3075b2 + 2475)x2 − 90b4(4b2 − 5),

f3(x, b) = −180b20(b10 − 3)x7 + 30b2(6b34 + 6b30 − 24b22 + 18b20 − 72b18

−5b10 + 15)x5 + 30b2(24b24 − 36b22 + 72b20 + 10b16 + 5b12

−20b4 + 15b2 − 60)x3 − 20b4(36b18 − 54b16 + 54b14 + 30b12

+25b10 + 9b6 − 30b4 + 45b2 − 90)x,
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f4(x, b) = 90b36x8 − 3b18(30b20 + 120b16 + 100b14 + 36b10 − 25)x6

+b10(360b26 + 300b24 + 198b20 + 360b12 − 615b10 + 720b8

−300b6 − 250b4 − 90)x4 + (−738b24 + 1080b22 − 1080b20

+300b18 + 250b16 + 315b12 + 300b4 − 450b2 + 900)x2 + 15b6.

We will prove that Nb ≥ 0 on Ω := {(x, y) : xy + 1 > 0} for all b ∈ (0, 0.817]
and if it vanishes this only happens at some isolated points. We will use again
Proposition 4.25. Notice that ∂Ω = {(x, y) : xy + 1 = 0}.

Figure 4.14: Curves Nb = 0 and xy + 1 = 0 with b = 0.817.

It is not difficult to verify that {Nb(x, y) = 0} ∩ {xy + 1 = 0} = ∅ for b ∈
(0, 0.8171), see Figure 4.14. It suffices to see that for these values of b, and x ̸= 0,
the one variable function Nb(x, 1/x), never vanishes. We skip the details. Therefore
hypothesis (iv) is satisfied.

For proving that hypothesis (ii) of Proposition 4.25 holds we compute the dou-
ble discriminant △2

y,x(Nb). It is an even polynomial in b, of degree 21852, of the
following form

b7566(3b2 − 4)(159b4 − 380b2 + 225)2(P71(b
2))2(P386(b

2))4(P587(b
2))6(P965(b

2))2,
(4.35)

where Pi are polynomials of degree i with rational coefficients. By using the Sturm
method it is easy to see that its first 4 factors do not have real roots in (0, 0.8171).
We replace b2 = t in the next three polynomials to reduce their degrees and we
obtain P1(t) := P386(t), P2(t) := P587(t), and P3(t) := P965(t). It suffices to study
their number of real roots in (0, 0.6678], because 0.6678 > (0.8171)2. Our computers
have no enough capacity to get their Sturm sequences. Therefore we will use the
Descartes approach as it is explained in Appendix I.

We consider first the polynomial P1(t). Its normalized version N0.68
0 (P1) has

all their coefficients positive. Therefore P1(t) has no real roots in (0, 0.68) as we
wanted to see.
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Applying the Descartes rule to the normalized versions of P2(t), N
0.561
0 (P2),

N0.811
0.561 (P2) and N0.812

0.562 (P2), we obtain that the number of zeros in the intervals
(0, 0.561), (0.561, 0.811) and (0.562, 0.812) is 0, 1 and 0 respectively. That is, there
is only one root of P2(t) in (0, 0.812), it is simple and it belongs to (0.561, 0.562).
Refining this interval with Bolzano Theorem we prove that the root is in the interval
(0.5617, 0.5618).

Finally, to study P3(t) we consider N
11/20
0 (P3), N

7/12
11/20(P3) and N

52/75
7/12 (P3). By

Descartes rule we obtain that the number of zeros of P3 in the corresponding in-
tervals is 0, 1 and 1 or 3, respectively. By Bolzano Theorem we can localize more
precisely these zeros and prove that in the last interval there are exactly 3 ze-
ros. So we have proved that the polynomial P3 has exactly 4 zeros in the interval
(0, 52/75) ≈ (0, 0.693), and each one of them is contained in one of the following
intervals

(0.5614, 0.5615) , (0.6678, 0.6679) , (0.6690, 0.6700) , (0.6870, 0.6880) .

In brief, for t ∈ (0, 0.6678] the double discriminant △y,x(Nb) only vanishes at two
points t = t1 and t = t2 with t1 ∈ (0.5614, 0.5615) and t2 ∈ (0.5617, 0.5618).
Therefore we are under the hypothesis (ii) of Proposition 4.25 for b belonging to
each of the intervals (0, b1), (b1, b2) and (b2, 0.8171), where

b1 :=
√
t1 ≈ 0.749301, b2 :=

√
t2 ≈ 0.749478.

To ensure that on each interval we are under the hypotheses (i) of the proposition
we prove that Nb does not vanish on Ω for one value of b in each of the above three
intervals. We take

1

2
∈ (0, b1),

7494

10000
∈ (b1, b2), and

3

4
∈ (b2, 0.8171).

We study with detail the case b = 1/2. The other two cases can be treated similarly
and we skip the details. So we have to study on Ω the sign of the function

N1/2 = 135
34359738368x

10y2 + 45
34359738368x

8y4 + 45
34359738368x

10 + 117964485
137438953472x

8y2

+ 138195
268435456x

7y3 + 39253779
137438953472x

6y4 + 39321555
137438953472x

8 + 45
17179869184x

7y

+ 320504301
137438953472x

6y2 + 1932072223485
17179869184 x5y3 − 906074381

8589934592x
4y4 + 645

1048576x
6

+ 1229859
1073741824x

5y + 5315442024413
8589934592 x4y2 − 1808748465

4194304 x3y3 + 6763995071
8388608 x2y4

+ 1258289751
8388608 x4 + 55625

262144x
3y − 1910154937

4194304 x2y2 + 26361865
262144 xy3 + 15

64y
4

− 316538295
8388608 x2 + 585

1048576xy +
45
2 y2 + 975

64 .

We consider N1/2 as a polynomial in x with coefficients in R[y] and we apply
Lemma 4.19 with Ωy = (−1/y,∞) when y > 0 and Ω0 = (−∞,∞). Notice that
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4.5. Applicability of the techniques to other families

for the symmetry of the function there is no need to study the zone y < 0 be-
cause N1/2(−x,−y) = N1/2(x, y). We introduce the following notation Sy(x) :=
N1/2(x, y). We prove the following facts:

(i) If we write Sy(x) =
∑10

i=1 si(y)x
i, then s10(y) = k(1 + 3y2) for some k ∈ Q+.

Therefore s10(y) > 0 for all y ∈ R.

(ii) If y = 0 then S0(x) is an even polynomial of degree 10 and it is easy to see
that S0(x) > 0 over R.

(iii) We already know that {Sy(x) = 0} ∩ ∂Ω = ∅.

(iv) Some computations give that

△x(Sy) = P35(y
2),

where P35 is a polynomial of degree 35. Moreover, using once more the Sturm
method, we get that P35(y

2) has only two positive roots 0 < y1 < y2, with
y1 ≈ 0.588423 and y2 ≈ 6065.2946. From this result it is easy to prove that:

(a) If y ∈ [0, y1) ∪ (y2,∞), then Sy(x) > 0.

(b) If y ∈ (y1, y2), then Sy(x) has only two real roots, say x1(y) < x2(y),
and none of them belongs to the interval (−1/y,∞). So Sy(x) > 0 on
(−1/y,∞).

(c) If y ∈ {y1, y2}, then Sy(x) has only a real root, x1(y), which is a double
root and x1(y) ̸∈ (−1/y,∞). So, again Sy(x) > 0 on (−1/y,∞).

Thus, by Lemma 4.19, the function N1/2 is positive on (x, y) ∈ Ω, as we wanted
to see. In fact, its level curves are like the ones showed in Figure 4.14. The straight
lines y = y1 and y = y2 correspond to the lower and upper tangents to the oval
contained in the second quadrant.

To be under all the hypotheses of Proposition 4.25 it only remains to study the
function Ñb at infinity. We denote by Ñb(x, y, z) its homogenization in RP2 and by

Ñ1
b (x, z) and Ñ

2
b (y, z) the expressions of the function Ñb in the planes {(x, z)} and

{(y, z)}, respectively. Since H12(Nb) = 90b36x8y2(3x2 + y2), the only non-trivial
solutions of H12(Nb) = 0 are x = 0 and y = 0. Hence these directions give rise to
two points of Nb at infinity which are also on the region Ω. They correspond to
the points (0, 0) of the algebraic curves Ñ1

b (x, z) = 0 and Ñ2
b (y, z) = 0. We have to

prove that both points are uniformly isolated.
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Similarly that in the previous subsection, we write

Ñ1
b (εX, εZ) =

(
90b36X8 − 3b18(30b20 + 120b16 + 100b14 + 36b10 − 25)X6Z2

+ b10(360b26 + 300b24 + 198b20 + 360b12 − 615b10 + 720b8 − 300b6 − 250b4 − 90)X4Z4

+ (−738b24 + 1080b22 − 1080b20 + 300b18 + 250b16 + 315b12 + 300b4 − 450b2 + 900)X2Z6

+ 15b6Z8
)
ε8 +O(ε9)

and
Ñ2
b (εY, εZ) = 90b36(3Y 2 + Z2)ε2 +O(ε3).

By Proposition 4.24, for the second algebraic curve it is clear that (0, 0) is an
isolated point for all b > 0.

For studying the first one we denote by R(X,Z) the homogenous polynomial
accompanying ε8 and we obtain that

△X(R(X,Z)) = Z56b150(P71(b
2))2,

for some polynomial P71 of degree 71 and integer coefficients. Since the smallest
positive root of this polynomial is greater that 0.92 we can easily prove that for
b < 0.92, R(X,Z) = 0 if and only if X = Z = 0. Therefore we can use again
Proposition 4.24 and prove that (0, 0) is an uniformly isolated point of the curve
for these values of b.

So, if we write

(0, 0.8171) = (0, b1) ∪ {b1} ∪ (b1, b2) ∪ {b2} ∪ (b2, 0.8171),

we can apply Proposition 4.25 to each one of the open intervals to prove that for
b ∈ (0, 0.817] \ {b1, b2} it holds that Nb(x, y) > 0 for all (x, y) in Ω. By continuity,
for the two values b ∈ {b1, b2}, we obtain that Nb(x, y) ≥ 0. Since △y(Nb) ̸≡ 0
either it is always positive or it vanishes only at some isolated points, as we wanted
to prove.

It can be seen that for b & b̂ ≈ 0.81722, Nb(x, y) changes sign on Ω because there
appears one oval in the set {Nb(x, y) = 0}. The value b̂2 ≈ 0.6678492 corresponds
to the root of P3 in the interval (0.6678, 0.6679) that has appeared in the proof as
a root of the double discriminant.
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Chapter 5
A family of non rotated vector fields

5.1 Introduction and main results

A. Bacciotti, during a conference about the stability of analytic dynamical systems
held in Florence in 1985, proposed to study the stability of the origin of the following
quintic system {

ẋ = y3 − x3,
ẏ = −x+my5, m ∈ R. (5.1)

Two years later, Galeotti and Gori in [40] published an extensive study of (5.1).
They proved that system (5.1) has no limit cycles when m ∈ (−∞, 0.36]∪ [0.6,∞),
otherwise, it has at most one. Their proofs are mainly based on the study of
the stability of the limit cycles which is controlled by the sign of its characteristic
exponent, together with a transformation of the system using a special type of
adapted polar coordinates. Their proof of the uniqueness of the limit cycle does
not cover its hyperbolicity.

In this chapter we refine the above results. To guess which is the actual bifur-
cation diagram we first did a numerical study, obtaining the following results. It
seems that there exists a value m∗ > 0 such that:

(i) System (5.1) has no limit cycles if m ∈ (−∞,m∗] ∪ [0.6,∞). Moreover, for
m = m∗ it has a heteroclinic polycycle formed by the separatrices of the two
saddle points located at (±m−1/4,±m−1/4).

(ii) For m ∈ (m∗, 0.6) the system has exactly one unstable limit cycle.

(iii) The value m∗ is approximately 0.560115.

Recall that a polycycle is a simple, closed curve, formed by several solutions of the
system, which admits a Poincaré return map. The claims (i) and (ii) above coincide
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with the results described in [40]. Concerning the location of the value m∗ however,
our computations differ from the results proposed in [40] where it is claimed that
m∗ is between 0.58 and 0.59.

The first aim of this work is to obtain analytic results that confirm, as accurate
as possible, the above claims. To clarify the phase portraits of the system, we will
study them on the Poincaré disc, see [7, 95].

For m ≤ 0, system (5.1) has no periodic orbits because x2/2 + y4/4 is a global
Lyapunov function. Therefore, the origin is a global attractor. In particular, its
phase portrait is trivial. Therefore, we will concentrate on the case m > 0. In this
case, the system has three critical points, (±m−1/4,±m−1/4) and (0, 0). The first
two points are saddles and the third one is a monodromic nilpotent singularity. Its
stability can be determined using the tools introduced in [5, 81], see Subsection 5.2
and Theorem 5.3 below. We prove:

Theorem 5.1. Consider system (5.1).

(i) It has neither periodic orbits, nor polycycles, when m ∈ (−∞, 0.547]∪[0.6,∞).
Otherwise, it has at most one periodic orbit or one polycycle, but can not
coexist. Moreover, when the limit cycle exists, it is hyperbolic and unstable.

(ii) For m > 0, their phase portraits on the Poincaré disc, are given in Figure 5.1.

(iii) Let M be the set of values of m for which it has a heteroclinic polycycle.
Then M is finite, non-empty and it is contained in (0.547, 0.6). Moreover,
the system corresponding to m ∈ M has no limit cycles and its phase portrait
is given by Figure 5.1 (b).

Our simulations show that (a), (b) and (c) of Figure 5.1 occur whenm ∈ (0,m∗),
m = m∗ and m > m∗, respectively, for some m∗ ∈ (0.547, 0.6), that numerically we
have found to be m∗ ≈ 0.560115. We have not been able to prove the existence of
this special value m∗ rigorously, because our system is not a semi-complete family
of rotated vector fields (SCFRVF) and this fact hinders the obtention of the full bi-
furcation diagram; see the discussion in Subsection 5.3.1 and Example 5.20. This is
precisely the reason why we have decided to push forward the study of system (5.1).
Our approach can be useful to understand other interesting polynomial systems of
differential equations that have been considered previously; see for instance [13, 32].

From our analysis, we know the existence of finitely many values m∗
j , j =

1, . . . , k, where k ≥ 1, satisfying 0.547 < m∗
1 < m∗

2 < · · ·m∗
k < 0.6, such that

phase portrait (b) only occurs for these values. Moreover, for m ∈ (0.547,m∗
1),

phase portrait (a) holds, for m ∈ (m∗
k, 0.6) phase portrait (c) holds, and for each

one of the remaining k − 1 intervals, the phase portrait does not vary on each
interval and is either (a) or (c).
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(a) When m ∈ (0, 0.547], or when (b) When m ∈ (0.547, 0.6) and
m ∈ (0.547, 0.6) and neither the the polycycle exists.

polycycle nor the limit cycle exist.

(c) When m ∈ (0.547, 0.6) and (d) For m ∈ [0.6,∞)
the limit cycle exists.

Figure 5.1: Phase portraits of system (5.1).

As a byproduct of our approach we can also give explicit algebraic restrictions
on the initial conditions which ensure that the corresponding solutions tend to the
origin.

Recall that when a critical point, p ∈ Rn, of a differential system is an attractor
we can define its basin of attraction as

Ws
p = {x ∈ Rn : lim

t→+∞
φ(t,x) = p},

where φ denotes the solution of the differential system such that φ(0,x) = x. A
very interesting question, mainly motivated by Control Theory problems, consists
in obtaining testable conditions for ensuring that some initial condition is in Ws

p.
Usually these conditions are obtained using suitable Lyapunov functions. In the
proof of the following result however, we use a different approach based on the
construction of Dulac functions.
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Proposition 5.2. Let Ws
0 be the basin of attraction of the origin of system (5.1).

Consider Vm(x, y) = g0,m(y) + g1,m(y)x+ g2,m(y)x
2, with

g2,m(y) =
1

89100
(3− 10m)(3 + 35m)y12 − 1

6300
(75− 125m)2/3(3− 13m)y8

+
1

90
(3− 10m)y6 − 1

25
(75− 125m)2/3y2 + 1,

g1,m(y) = g′2,m(y) and g0,m(y) = g′′2,m(y)/2−my5g′2,m(y)/2 + 5my4g2,m(y)/3. Then,
for m ∈ (0.5, 0.6), Um ⊂ Ws

0, where Um is the bounded connected component of
{(x, y) ∈ R2 : Vm(x, y) ≤ 0} that contains the origin and whose boundary is the
oval of Vm(x, y) = 0, see Figure 5.2.

Figure 5.2: The limit cycle of system (5.1) and the set Um, introduced in Proposi-
tion 5.2, when m = 0.57.

As we will see, the proof of the above proposition is a straightforward conse-
quence of Proposition 5.17. Using the same tools, it can be shown that the same
result also holds for smaller values of m. In any case, notice that this proposition
covers all the values of m for which the system has limit cycles.

While studying the stability of the origin of system (5.1) we realized that, using
the same tools, we could solve an open question left in [40]. Our third result studies
the stability of the origin of the following generalization of system (5.1):{

ẋ = y3 − x2k+1,
ẏ = −x+my2s+1, m ∈ R and k, s ∈ N+.

(5.2)

In [40], the authors gave the stability of the origin when s ̸= 2k and ask whether it
is true or not that the change of stability of the origin when s = 2k is at the value
m = (2k + 1)/(4k + 1). We will prove that their guess was not correct for k > 1.
The new result shows that when s = 2k, the stability changes at

m =
(2k + 1)!!

(4k + 1)!!!!
, (5.3)
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where, given n ∈ N+, n!! and n!!!! are defined recurrently, as follows,

n!! = n× (n− 2)!!, n!!!! = n× (n− 4)!!!!,

with 1!! = 1, 2!! = 2 and j!!!! = j for 1 ≤ j ≤ 4. Notice that when k = 1, the
right-hand side of (5.3) and (2k + 1)/(4k + 1) coincide and give m = 3/5, which is
one of the values appearing in Theorem 5.1.

Theorem 5.3. Consider system (5.2).

(i) When s < 2k, the origin is an attractor for m ≤ 0 and a repeller for m > 0.

(ii) When s > 2k, the origin is always an attractor.

(iii) When s = 2k, the origin is an attractor for m < (2k + 1)!!/(4k + 1)!!!! and a
repeller when the reverse inequality holds. Moreover, when k = 1 and m = 3/5
the origin is a repeller and for m . 3/5 system (5.1) has at least one limit
cycle near the origin.

The method used to study the stability of the origin of (5.2), when s = 2k and
k = 1, also works for deducing its stability in the case not covered by the above
theorem: s = 2k, k > 1 and m as in (5.3). Nevertheless, the computations are
tedious and we have decided not to perform them.

The chapter is structured as follows. In Section 5.2 we prove Theorem 5.3. In
Section 5.3 we recall some preliminary results. We start with a discussion on the
differences between being or not, a SCFRVF. Then, Subsection 5.3.2 is devoted to
studying the singularities of system (5.1) at infinity and their phase portraits on
the Poincaré disc. Afterwards, we present some Bendixson–Dulac type results that
we will use to prove non-existence or uniqueness of periodic orbits or polycycles.
Finally, we introduce a result for controlling the number of roots of 1-parameter
families of polynomials and we show that our system can be reduced to an Abel
differential equation.

In Section 5.4 we prove the non-existence results for m ∈ (−∞, 0.36]∪ [0.6,∞).
Our proof is different from that of [40] and it is mainly based on the use of Dulac
functions.

In Section 5.5 we prove that there exists at most one periodic orbit when
m ∈ (1/2, 0.6). Our approach also shows the hyperbolicity of the orbit and again
uses a Bendixson–Dulac type results. This section also includes the proof of Propo-
sition 5.2.

Section 5.6 is devoted to enlarging the region where we can assure the non-
existence of periodic orbits and polycycles, proving this for m ∈ (0.36, 0.547]. The
proof uses once more a suitable Dulac function in a part of the interval and the
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Poincaré–Bendixon theorem, together with the hyperbolicity of the limit cycle,
whenever it exists, for the remaining values of m.

Section 5.7 deals with the existence of polycycles for the system. Finally, in
Section 5.7, we combine all of the above results to prove Theorem 5.1.

5.2 Stability of the origin

Notice that the origin of (5.1) and (5.2) are nilpotent critical points and there
are several tools for studying its local stability, see for instance [5, 57, 81]. We
will follow the approach of [5, 57], based on the polar coordinates introduced by
Lyapunov in [69], to study the stability of degenerate critical points.

Let u(θ) = Cs(θ) and v(θ) = Sn(θ) be the solutions of the Cauchy problem:

u̇ = −v2p−1, v̇ = u2q−1, u(0) = 2q
√

1/p and v(0) = 0,

where the prime denotes the derivative with respect to θ.
The Lyapunov generalized polar coordinates are x = rpCs(θ) and y = rq Sn(θ).

They parameterize the algebraic curves px2q + qy2p = r2pq, that correspond to the
level sets of the above (p, q)-quasi-homogeneous Hamiltonian system. In particular,
pCs2q(θ) + q Sn2p(θ) = 1, and both functions are smooth Tp,q-periodic functions,
where

T = Tp,q = 2p−1/2qq−1/2p
Γ
(

1
2p

)
Γ
(

1
2q

)
Γ
(

1
2p

+ 1
2q

) ,

and Γ denotes the Gamma function. The general expression of a differential system
in these coordinates is:

ṙ =
x2q−1ẋ+ y2p−1ẏ

r2pq−1
, θ̇ =

pxẏ − qyẋ

rp+q
. (5.4)

In the nilpotent monodromic case, the component θ̇ does not vanish in a punc-
tured neighborhood of the critical point. Hence, system (5.4) can be written in a
neighborhood of r = 0 as

dr

dθ
=

∞∑
i=1

Ri(θ)r
i, (5.5)

where Ri(θ), i ≥ 1 are T -periodic functions. The solution of (5.5) that passes
through r = ρ when θ = 0 can be written as the power series

r(θ, ρ) = ρ+
∞∑
i=2

ui(θ)ρ
i, with ui(0) = 0, (5.6)
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and the functions ui can be computed solving recursive linear differential equations
obtained by plugging (5.6) into (5.5). It is well known that the stability of the origin
is given by the first nonvanishing generalized Lyapunov constant Vk := uk(T ).

To effectively compute some integrals of the above generalized trigonometric
functions we will use the following result, see [57].

Lemma 5.4. Let Sn and Cs be the (1,q)-trigonometrical functions and let T be
their period. Then, for i, j ∈ N,

(i)
∫ T
0
Sni(θ) Csj(θ) dθ = 0 when either i or j are odd.

(ii)
∫ T
0
Sni(θ) Csj(θ) dθ =

2Γ
(
i+1
2

)
Γ
(
j+1
2q

)
q

i+1
2 Γ
(
i+1
2

+ j+1
2q

) when i and j are both even.

(iii) For q = 2,
∫ θ
0
Cs8(ψ) dψ =

6Sn(θ) Cs5(θ) + 10 Sn(θ) Cs(θ) + 5θ

21
.

(iv) For q = 2,
∫ θ
0
Sn4(ψ) dψ =

− Sn3(θ) Cs(θ)− Sn(θ) Cs(θ) + θ

7
.

Proof of Theorem 5.3. By using the transformation (x, y) → (y, x), system (5.2)
becomes {

ẋ = −y +mx2s+1,
ẏ = x3 − y2k+1.

(5.7)

We use (5.4), with p = 1 and q = 2, to transform it into{
ṙ = mCs2s+4(θ)r2s+1 − Sn2k+2(θ)r4k+1,

θ̇ = r − Cs(θ) Sn2k+1(θ)r4k − 2mCs2s+1(θ) Sn(θ)r2s,

or equivalently,

dr

dθ
=

mCs2s+4(θ)r2s − Sn2k+2(θ)r4k

1− Cs(θ) Sn2k+1(θ)r4k−1 − 2mCs2s+1(θ) Sn(θ)r2s−1
. (5.8)

Depending on the parameters s and k, the Taylor series of the right-hand side of
the above equation gives rise to three different situations at the origin.

(i) When s < 2k, then (5.8) becomes

dr

dθ
= mCs2s+4(θ)r2s +O(r4k).

Therefore, using the method explained above and Lemma 5.4, we get that its first
Lyapunov constant is

V2s = m

∫ T

0

Cs2s+4(θ) dθ =
m

√
2π Γ

(
2s+5
4

)
Γ
(
2s+7
4

) . (5.9)
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Chapter 5. A family of non rotated vector fields

Then m = 0 is the bifurcation value, and the origin of (5.2) changes its stability
from attractor to repeller as m goes from negative values to positive values. The
case m = 0 follows using the Lyapunov function x4/4 + y2/2.

(ii) Suppose s > 2k, then the Taylor expansion of (5.8) at r = 0 is

dr

dθ
= − Sn2k+2(θ)r4k +O(r2s).

By using the same method, we obtain that the first Lyapunov constant is

V4k =

∫ T

0

− Sn2k+2(θ) dθ = −
Γ
(
1
4

)
Γ
(
2k+3
2

)
2

2k+1
2 Γ

(
4k+7
4

) < 0, (5.10)

and the stability of the origin of (5.2) is independent of m and it is an attractor for
all m.

(iii) Finally, when s = 2k we have

dr

dθ
=
(
mCs4k+4(θ)− Sn2k+2(θ)

)
r4k +O(r8k−1). (5.11)

Hence the first non-vanishing generalized Lyapunov constant is given by

V4k =

∫ T

0

(
mCs4k+4(θ)− Sn2k+2(θ)

)
dθ.

Using (5.9) with s = 2k and (5.10), after some simplifying calculations, we obtain
that

V4k =
2π3/2

(
m(4k + 1)!!!!− (2k + 1)!!

)(
Γ
(
3
4

))2
(4k + 3)!!!!

.

Therefore the origin of (5.2) is an attractor for m < (2k + 1)!!/(4k + 1)!!!! and a
repeller for m > (2k + 1)!!/(4k + 1)!!!!, as we wanted to prove.

In the particular case s = 2k and k = 1, which corresponds to system (5.1), and
when m = 3/5 we have that V4 = 0. To continue the proof we compute the next
non-zero Lyapunov constant. For s = 2 and k = 1, equation (5.8) writes as

dr

dθ
= R4(θ)r

4 +R7(θ)r
7 +R10(θ)r

10 +O(r13),

with R4(θ) = mCs8(θ)− Sn4(θ),

R7(θ) = 2m2 Cs13(θ) Sn(θ) +mCs9(θ) Sn3(θ)− 2mCs5(θ) Sn5(θ)− Cs(θ) Sn7(θ)

and

R10(θ) =4m3 Cs18(θ) Sn2(θ) + 4m2Cs14(θ) Sn4(θ) +m(1− 4m) Cs10(θ) Sn6(θ)

− 4mCs6(θ) Sn8(θ)− Cs2(θ) Sn10(θ),
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5.3. Preliminary results

with m = 3/5. Following the procedure explained at the beginning of this section
we obtain that u2 = u3 = 0,

u4(θ) =

∫ θ

0

R4(ψ) dψ, u5 = u6 = 0,

u7(θ) =

∫ θ

0

(
R7(ψ) + 4R4(ψ)u4(ψ)

)
dψ, u8 = u9 = 0,

u10(θ) =

∫ θ

0

(
R10(ψ) + 7R7(ψ)u4(ψ) + 4R4(ψ)u7(ψ) + 6R4(ψ)u

2
4(ψ)

)
dψ.

Using Lemma 5.4 and some straightforward computations we get that V1 =
· · · = V9 = 0. Finally, it suffices to compute

V10 =

∫ T

0

(
R10(θ) + 7R7(θ)u4(θ) + 4R4(θ)u7(θ)

)
dθ,

because
du34(θ)

dθ
= 3R4(θ)u

2
4(θ). Performing integration by parts and using the ex-

pression of u′7 we arrive at

V10 =

∫ T

0

(
R10(θ) + 3u4(θ)u

′
7(θ)

)
dθ =

∫ T

0

(
R10(θ) + 3u4(θ)R7(θ)

)
dθ. (5.12)

Notice that, applying (iii) and (iv) of Lemma 5.4, we find that

u4(θ)=

∫ θ

0

(3
5
Cs8(ψ)−Sn4(ψ)

)
dψ=

6Sn(θ) Cs5(θ) + 15 Sn(θ) Cs(θ) + 5 Sn3(θ) Cs(θ)

35
.

Plugging this expression into (5.12), using several times (i) and (ii) of Lemma 5.4
and the properties of the Γ function, we arrive at

V10 =
128

1625

(
Γ
(
3
4

))2
√
π

> 0.

Hence the origin is unstable for m = 3/5. As a consequence, we obtain that at
m = 3/5 the system has a Hopf-like bifurcation. Therefore the system has at least
one limit cycle near the origin for m . 3/5.

5.3 Preliminary results

This section is a miscellaneous one and it is divided into several short subsections
containing either some tools that we will use to prove Theorems 5.1 and 5.2 or some
preliminary results.

125



Chapter 5. A family of non rotated vector fields

5.3.1 Rotated vector fields vs non rotated vector fields

As is widely known, if we have a 1-parameter family of differential systems is a
SCFRVF, then there are many results that allow to control the possible bifurca-
tions; see [33, 87, 83]. One of the most useful ones is the so-called non-intersection
property. It asserts that if γ1 and γ2 are limit cycles corresponding to systems with
different values of m, then γ1 ∩ γ2 = ∅. As a consequence the study of 1-parameter
bifurcation diagrams is much more simple in this case.

For instance, consider a 1-parameter SCFRVF satisfying the following property:
(P) For each m ∈ (m0,m1), the system has at most one limit cycle, which we
denote by γm. Here, if for some m the corresponding system has no limit cycles
then γm = ∅. Moreover, assume that ∪m∈(m0,m1)γm covers a region of the plane that
all the periodic orbits of the system have to pass.

Under this assumption, for m ∈ R \ (m0,m1) the system has no periodic orbits.
The above property has very important practical consequences if we want to

determine the values m0 and m1, that constitute, in many cases, the most difficult
ones to be obtained to complete the bifurcation diagram. Usually, one of the values,
say m0 corresponds to a Hopf-like bifurcation, and it is obtained by some local
analysis. Then, for instance, if for some value, say m̃ > m0, the system has no limit
cycles then m1 < m̃. The same idea can also be applied to obtain lower bounds
of m1. These facts simplify a lot the obtention of analytic bounds for the value
m1, because it suffices to deal with concrete systems, with fixed values of m. This
approach has been successfully applied in many works; see for instance Chapter 4
and [51, 86, 83, 102].

On the other hand, if for a general family of vector fields we have that the
same property (P) given above holds, we can say nothing of what happens for
m ∈ R \ (m0,m1). For this reason, when we study system (5.1), we can not
ensure the existence of a unique value of m for which the phase portrait looks like
in Figure 5.1 (b); see also Example 5.20. We remark that system (5.1) is not a
SCFRVF with respect to m, and moreover we have not been able to transform it
into one.

From our point of view, to introduce tools for studying 1-parameter families
that are not SCFRVF is a challenge for the differential equations community.

5.3.2 Global phase portraits

We will draw the phase portraits of system (5.1) on the Poincaré disc, [7, 95].
Recall that, from the works of Markus [73] and Newmann [82], to characterize
a phase portrait it suffices to determine the type of critical points (finite and at
infinity), the configuration of their separatrices, and the number and character of
their periodic orbits.
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We start by studying the critical points at infinity of the Poincaré compactifica-
tion of the system. That is, we will use the transformations (x, y) = (1/z, u/z) and
(x, y) = (v/z, 1/z), with a suitable change of time to transform system (5.1) into
two new polynomial systems, one in the (u, z)-plane and another one in the (v, z)-
plane; see [7] for the details. Then, to understand the behavior of the solutions
of (5.1) near infinity it suffices to study the type of critical points of the trans-
formed systems which are localized on the line z = 0. These points are precisely
the so-called critical points at infinity of system (5.1).

Lemma 5.5. By using the transformation (x, y) = (v/z, 1/z) and the change of
time dt/dτ = 1/z4 system (5.1) is transformed into the system{

v′ = −mv + (1− v3)z2 + v2z4,
z′ = −mz + vz5,

(5.13)

where the prime denotes the derivative with respect to τ . The origin is the unique
critical point of (5.13) on z = 0 and it is an attracting node.

The proof of the above result is straightforward.

Lemma 5.6. By using the transformation (x, y) = (1/z, u/z) and the change of
time dt/dτ = 1/z4 system (5.1) is transformed into the system{

u′ = (u− z2)z2 + u4(mu− z2),
z′ = (1− u3)z3,

(5.14)

where the prime denotes the derivative with respect to τ . The origin is the unique
critical point of (5.14) on z = 0 and it is a repeller.

Proof. It is clear that the origin of system (5.14) is its unique critical point on z = 0.
To determine its nature we will use the directional blow-up, since the linear part of
the system at this point vanishes identically; see again [7].

We apply the z-directional blow-up given by the transformation r = u/z, z = z.
Together with the change of time dt/dτ = z3, system (5.14) is transformed into{

ṙ = −1 +mzr5,
ż = 1− z3r3.

(5.15)

System (5.15) has no critical points on z = 0. Then by using the transformation
(u, z) = (rz, z) we can obtain the phase portrait of system (5.15). Recall that
the mapping swaps the third and fourth quadrants in the z-directional blow-up.
In addition, taking into account the change of time dt/dτ = z3, it follows that
the vector field in the third and fourth quadrant of the plane (u, z) points in the
opposite direction compared to the one obtained in the (r, z)-plane.
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Next, we need to perform the u-directional blow-up to know the phase portrait
in that direction. After that, collecting the information about the blow-ups in both
directions, we will have the phase portrait of system (5.14).

The u-directional blow-up is given by the transformation u = u, q = z/u, and
with the change of time dt/dτ = u3, system (5.14) is transformed into{

u̇ = −q2(uq2 − 1)− u2(uq2 −m),
q̇ = q5 −muq.

(5.16)

On q = 0, the origin is the unique critical point of the system, and since the linear
part of the system at this point vanishes identically we have to use again some
directional blow-ups.

Since the lower degree term of q̇u − u̇q is −q(2mu2 + q2), and it only vanishes
on the direction q = 0, to study the origin of system (5.16) it suffices to consider
the u-directional blow-up. It is given by the transformation u = u, s = q/u. Doing
the change of time dt/dτ = u, system (5.16) becomes{

u̇ = −us2(u3s2 − 1)− u(u3s2 −m),
ṡ = s3(u3 − 1) + 2s(u3s4 −m).

(5.17)

For s = 0, system (5.17) has a unique critical point at the origin. The linearization
matrix at the origin has eigenvalues m and −2m. Thus the origin of system (5.17)
is a saddle.

Then, by using the transformation (u, q) = (u, su), we can obtain the phase
portrait of system (5.16). Recall that the mapping swaps the second and the third
quadrants in the u-directional blow-up. In addition, taking into account the change
of time dt/dτ = u it follows that the vector field in the second and third quadrants
of the plane (u, q) points in the opposite direction compared to the one in the
(u, s)-plane. Once we have the phase portrait in the (u, q)-plane, we apply the
transformation (u, z) = (u, qu).

By considering the properties of the blow-up technique and from the analysis of
all the intermediate phase portraits we obtain that the origin of system (5.14) is a
repeller.

Recall that the finite critical points are hyperbolic saddles at (±m−1/4,±m−1/4)
and a monodromic nilpotent singularity (0, 0), whose stability is given in Theo-
rem 5.3. Finally, notice that the vector field is symmetric with respect to the ori-
gin. By adding to these properties all the information concerning the infinite critical
points and using the existence and uniqueness results on the number of limit cycles
and polycycles given in Theorem 5.1, we obtain the global phase portraits of system
(5.1) given in Figure 5.1.
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5.3.3 Some Bendixson–Dulac type criteria

The next statement is a Bendixson–Dulac type result, that mixes the Bendixson–
Dulac Test given in the classical book [7, Thm. 31] and the one given in [49, Prop.
2.2]. It is adapted to serve our interests. Similar results appear in [16, 47, 68, 103].

Proposition 5.7 (Bendixson–Dulac Criterion). Let X = (P,Q) be the vector field
associated to the C1-differential system{

ẋ = P (x, y),
ẏ = Q(x, y),

(5.18)

and let U ⊂ R2 be an open region which has its boundary formed by finitely many
algebraic curves. Assume that there exist a rational function V (x, y) and k ∈ R+

such that

M =M{V,k}(x, y) = ⟨∇V,X⟩ − kV div(X) (5.19)

does not change sign in U and M only vanishes on points or curves that are not
invariant by the flow of X. Then:

(I) If all the connected components of U \ {V = 0} are simply connected then the
system has neither periodic orbits nor polycycles.

(II) If all the connected components of U \ {V = 0} are simply connected, except

one, say Ũ , that is 1-connected, then, either the system has neither periodic
orbits nor polycycles or it has at most one of them in U . Moreover, when it
has a limit cycle, it is hyperbolic, it is contained in Ũ , and its stability is given
by the sign of −VM on Ũ .

Proof. Consider the Dulac function g(x, y) = |V (x, y)|−1/k. Then

div(gX) =
∂g

∂x
P +

∂g

∂y
Q+ g(

∂P

∂x
+
∂Q

∂y
) = ⟨∇g,X⟩+ g div(X)

= −1

k
sgn(V )|V |−

k+1
k (⟨∇V,X⟩ − kV div(X))

= −1

k
sgn(V )|V |−

k+1
k M{V,k} = −1

k
sgn(V )|V |−

k+1
k M.

By the hypotheses, M |{V=0} = ⟨∇V,X⟩|{V=0} does not change sign in U and there
is no solution contained in {M = 0}. Therefore, neither the periodic orbits nor the
polycycles of the vector field in U can intersect {V = 0}.

For proving (I) we follow the proof of the Bendixson–Dulac Criterion given in [7,
Thm. 31]. Assume, to arrive a contradiction, that the system has a simple closed
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curve Γ which is the union of trajectories of the vector field. Let C ⊂ U be the
bounded region with boundary Γ. Then, by Stokes Theorem, we have that∫∫

C

div(gX) =

∫
Γ

⟨gX,n⟩,

where Γ is oriented in a suitable way. Note that the right-hand side in the above
equality is zero because gX is tangent to the curve Γ and the left one is non-zero
by our hypothesis. This fact leads to the desired contradiction.

In case (II), applying a similar argument to the region bounded by two possible
simple closed curves formed by trajectories of the vector field, we arrive again at a
contradiction.

To end the proof, let us show the hyperbolicity of the possible limit cycle Γ.
Write Γ = {γ(t) := (x(t), y(t)), t ∈ [0, T ]} ⊂ Ũ , where T is its period, and its

characteristic exponent h(Γ) =
∫ T
0
div (X(γ(t))) dt.We need to prove that h(Γ) ̸= 0

and that its sign coincides with the sign of −VM on Ũ . We know that

M

V
=

⟨∇V,X⟩
V

− k div(X).

Remember that Γ∩{V = 0} = ∅. Evaluating this last equality on γ and integrating
between 0 and T we obtain that∫ T

0

M

V
(γ(t)) dt =

∫ T

0

⟨∇V,X⟩
V

(γ(t)) dt− k

∫ T

0

div(X)(γ(t)) dt

= ln |V (γ(t))|
∣∣∣t=T
t=0

− k h(Γ) = −k h(Γ). (5.20)

Therefore, the result follows.

Next result is a straightforward consequence of the above proposition. It states
that when we construct a suitable Dulac function, the same method provides an
effective estimation of the basin of attraction of the attracting critical points.

Corollary 5.8. Assume that we are under the hypotheses of the above theorem and
moreover that {V (x, y) = 0} has an oval such that this set and the bounded region
surrounded by it, say W, are contained in U . If the differential system has only
a critical point p in W which is an attractor, then W is contained in the basin of
attraction of p.

Observe that when we are under the hypotheses of the above corollary, but
we already know that the system has a limit cycle in U and that U is simply
connected, then, unless the set {V (x, y) = 0} reduces to a single point, there is no
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need to assume that {V (x, y) = 0} has an oval. The existence of the oval is already
guaranteed by the method itself.

Sometimes the hypothesis that M does not change sign can be replaced for
another one, which we explain in the following remark.

Remark 5.9. Assume that in Proposition 5.7 we can not ensure that the function
M , given in (5.19), maintains its sign on the whole domain U . Then, this hypothesis
can be exchanged for another one. Define {M = 0}∗ to be the subset of {M = 0}
formed by curves that separate the regions {M > 0} and {M < 0}. Thus, the
new hypothesis is that the set {M = 0}∗ is without contact by the flow of X.
Hence, the conclusions (I) and (II) of Proposition 5.7 are still hold, if we replace
the assumption for the connected components of U \ {V = 0} by the assumption for
U \

(
{V = 0} ∪ {M = 0}∗

)
. We will use this idea in the proof of Proposition 5.18.

5.3.4 Zeros of 1-parameter families of polynomials

As usual, for a polynomial P (x) = anx
n+ · · ·+ a1x+ a0, we write △x(P ) to denote

its discriminant, that is,

△x(P ) = (−1)
n(n−1)

2
1

an
Res(P (x), P ′(x)),

where Res(P, P ′, x) is the resultant of P and P ′ with respect to x; see [31].
By using the same techniques as in Chapter 4 Lemma 4.19, it is not difficult to

prove the following result, which will be used in several parts of this chapter.

Lemma 5.10. Let Gm(x) = gn(m)xn + gn−1(m)xn−1 + · · · + g1(m)x + g0(m) be a
family of real polynomials depending continuously on a real parameter m and set
Λm = (c(m), d(m)) for some continuous functions c(m) and d(m). Suppose that
there exists an interval I ⊂ R such that:

(i) For some m0 ∈ I, Gm0 has exactly r zeros in Λm0 and all of them are simple.

(ii) For all m ∈ I, Gm(c(m)) ·Gm(d(m)) ̸= 0.

(iii) For all m ∈ I, △x(Gm) ̸= 0.

Then for all m ∈ I, Gm(x) has also exactly r zeros in Λm and all of them are
simple.

The idea of the proof consists in looking at the roots of G as continuous functions
of m. The hypothesis (ii) prevents that real roots of Gm pass through the boundary
of Λm when m varies. The hypothesis (iii) forbids the appearance of some multiple
root of Gm when m varies.
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Notice that the above result transforms the control of the zeros of a function
depending on two variables, x and m, into three problems of only one variable, the
one of item (i) with the variable x and the two remainder ones with the variable
m. If the dependence on m is also polynomial, and the polynomial has rational
coefficients, then these three simpler questions can be solved by applying the well-
known Sturm method. As we will see in the proof of Proposition 5.17, this approach
can also extended when the polynomial has some irrational coefficients.

5.3.5 Transformation into an Abel equation

System (5.1) can be seen as the sum of two quasi-homogeneous vector fields, see
[27]. It is known that in many cases these systems can be transformed into Abel
equations.

Proposition 5.11. The periodic orbits of system (5.1) correspond to positive T -
periodic solutions of the Abel equation

dρ

dθ
= α(θ)ρ3 + β(θ)ρ2, (5.21)

where

α(θ) = 3Cs(θ) Sn(θ)
(
2mCs4(θ) + Sn2(θ)

) (
mCs8(θ)− Sn4(θ)

)
and

β(θ) = 5mCs8(θ)− 4 Sn4(θ) + (3− 10m) Cs4(θ) Sn2(θ),

being Sn and Cs the functions introduced in Section 5.2 and T their period.

Proof. The result follows by applying the Cherkas transformation

ρ =
r3

1− r3 Sn(θ) Cs(θ)
(
Sn2(θ) + 2mCs4(θ)

) ,
to the expression of system (5.1) in the quasi-homogeneous polar coordinates in-
troduced in Section 5.2. It is used that the periodic orbits of the system do not
intersect the curve θ̇ = 0, and therefore the above transformation is well defined
over them, see [27].

Using the above expression it is not difficult to reproduce the proof of the exis-
tence of the Hopf-like bifurcation given in Subsection 5.2. Unfortunately, although
expression (5.21) looks quite simple, the results about the number of limit cycles of
Abel equations that we are aware of are not applicable to (5.21).
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5.4 First results about non-existence of limit cy-

cles and polycycles

In this section we prove the non-existence results of periodic orbits already given
in [40] and extend them to the non-existence of polycycles. Our proof is different
and based on the Bendixson–Dulac theorem and other classical tools. We study
separately each interval.

Proposition 5.12. For m ∈ (0, 9/25], system (5.1) has neither periodic orbits nor
polycycles.

Proof. Recall that for m ∈ (0, 9/25] the origin is an attractor. Therefore if we prove
that any periodic orbit Γ of the system is also an attractor we will have proved that
the system has not periodic orbits. In order to prove the stability of the limit
cycle we need to compute

∫ T
0
div (X(γ(t))) dt, where γ(t) := (x(t), y(t)) is the time

parametrization of Γ, and T = T (Γ) its period.
From equation (5.19), for any function V such that {V (x, y) = 0} ∩ Γ = ∅, we

have

div(X) =
M{V,k} − ⟨∇V,X⟩

−kV
.

Hence, ∫ T

0

div (X(γ(t))) dt = −
∫ T

0

M{V,k}(γ(t))

kV (γ(t))
dt,

where we have followed similar computations to those in (5.20). Then the stability
of Γ is given by the sign of −MV . If we show that for m ∈ (0, 9/25] there exist a
non-negative V and k ∈ R+, such that its corresponding M is non-negative, then
we will have proven that the limit cycle is hyperbolic and an attractor.

By considering V (x, y) = 2x2 + y4 and k = 2/3 equation (5.19) becomes

M{V, 2
3
} =

2

3

(
(3− 10m)x2 +my4

)
y4,

which clearly is non-negative on R2 for m ∈ (0, 3/10].
If we use the same V (x, y) as in previous case, but k = K(m) = 8(11m +

R)/(10m+ 3)2, with R =
√
m(1− 4m)(25m− 9), then we have

M{V,K(m)}=

(
2

3 + 10m

(
(m+R)(11m+R)

m

)1/2

x2 +
2(3− 10m)

3 + 10m

(
m(11m+R)

(m+R)

)1/2

y4

)2

.

Hence, M{V,K(m)} is non-negative on R2 for m ∈ (1/4, 9/25]. Therefore system
(5.1) has no limit cycles for m ∈ (0, 9/25] as we wanted to show.
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To prove the non-existence of polycycles for m ∈ (0, 9/25) we use a different
approach. Following [95], we can associate to each polycycle Γ, with k hyperbolic
saddles at its corners, the number ρ(Γ) =

∏k
i=1 bi/ai, where −ai < 0 < bi, i =

1, . . . k, are the eigenvalues at the saddles. Then, Γ is stable (respectively, unstable)
if ρ(Γ) < 1 (respectively, ρ(Γ) > 1). In our case

ρ(Γ) =

(
5
√
m− 3 +

√
25m+ 18

√
m+ 9

)4
482m

.

Then, easy computations show that the polycycle is an attractor if m < 9/25 and
a repeller if m > 9/25. Assume, to arrive to a contradiction, that for m < 9/25
the polycycle exists. Then both, the polycycle and the origin, would be attractors.
Applying the Poincaré–Bendixson Theorem we could ensure that the system would
have at least one periodic orbit between them. This result is in contradiction with
the first part of the proof, where the non-existence of periodic orbits is established.

It only remains to show that for m = 9/25 the polycycle does not exist either.
To prove this fact we could study the stability of the polycycle showing that if it
exists it would be an attractor, arriving again at a contradiction. Nevertheless it is
easier to apply Proposition 5.7 with the V and k = K(9/25) used to prove the non-
existence of periodic orbits. Indeed, this latter approach, taking the corresponding
V and k, could also be used for all values of m ∈ (0, 9/25], but we have preferred
to include a proof based on the study of the stability of the limit cycle and the
polycycle.

Lemma 5.13. Let X be the vector field associated to system (5.1).

(i) If we take k = 1/3 and V1(x, y) = g0(y) + g1(y)x where g0(y) = g′1(y) and
g1(y) a solution of the second order linear ordinary differential equation

−g′′1(y) +my5g′1(y)−
5

3
my4g1(y) = 0, (5.22)

then (5.19) reduces to the function

M1 :=M{V1, 13}(x, y) =
1

3
y3
(
3my2g′′1(y)− 5myg′1(y) + 3 g1(y)

)
. (5.23)

(ii) If we take k = 2/3 and V2(x, y) = g0(y) + g1(y)x+ g2(y)x
2, with

g1(y) = g′2(y),

g0(y) = (1/2)g′′2(y)− (1/2)my5g′2(y) + (5/3)my4g2(y), (5.24)
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then (5.19) becomes

M2 :=M{V2, 23}(x, y)

=
(
− 1

2
g′′′2 (y) +

3

2
my5g′′2(y)−

5

2
my4g′2(y) +

2

3
(3− 10m)y3g2(y)

)
x

+
1

18
y3
(
9my2g′′′2 (y)−m(30 + 9my6)yg′′2(y) + 3(6 + 5m2y6)g′2(y)

+ 20m2y5g2(y)
)
. (5.25)

Proof. (i). If V1(x, y) = g0(y) + g1(y) x and k = 1/3, then

M1 =⟨∇V1, X⟩ − 1

3
div(X)V1

=(g0(y)− g′1(y))x
2 +

(
− g′0(y) +my5g′1(y)−

5

3
my4g1(y)

)
x

+
1

3
y3
(
3mg′0(y)y

2 − 5mg0(y)y + 3g1(y)
)
.

By choosing g0(y) = g′1(y) the coefficient of x2 in M1 vanishes, and we obtain

M1 =

(
−g′′1(y) +my5g′1(y)−

5

3
my4g1(y)

)
x+

1

3
y3
(
3mg′′1(y)y

2 − 5myg′1(y) + 3g1(y)
)
.

Finally, if g1(y) is a solution of (5.22) we get (5.23).

(ii). If k = 2/3 and V2(x, y) = g0(y) + g1(y)x+ g2(y)x
2, then

M2 =⟨∇V2, X⟩ − 2

3
div(X)V2

=(g1(y)− g′2(y))x
3 +

(
my5g′2(y)−

10

3
my4g2(y)− g′1(y) + 2g0(y)

)
x2 +

(
2y3g2(y)

+my5g′1(y)−
10

3
my4g1(y)− g′0(y)

)
x+

1

3
y3
(
3g1(y) + 3my2g′0(y)− 10myg0(y)

)
.

By choosing g1(y) = g′2(y) and g0(y) = (1/2)g′′2(y)− (1/2)my5g′2(y)+(5/3)my4g2(y)
the coefficients of x2 and x3 in M2 vanish. Then we have (5.25).

Remark 5.14. Notice that if g2(y) is a solution of the linear ordinary differential
equation

−1

2
g′′′2 (y) +

3

2
my5g′′2(y)−

5

2
my4g′2(y) +

2

3
(3− 10m)y3g2(y) = 0, (5.26)

then (5.19) reduces to a function depending only on the variable y.
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Proposition 5.15. For m ∈ [3/5,∞), system (5.1) has neither periodic orbits nor
polycycles.

Proof. We want to apply Proposition 5.7, taking k = 1/3 and V1(x, y) = g0(y) +
g1(y)x, with g0 and g1 as in (i) of Lemma 5.13. Applying the transformation
z = my6/6, equation (5.22) becomes

zg′′1(z) +

(
5

6
− z

)
g′1(z) +

5

18
g1(z) = 0,

which is a Kummer equation, see [1, pp. 504]. A particular solution of this equation
is

g1(z) = z1/6
∞∑
j=0

(−1
9
)j

(7
6
)j

zj

j!
,

where (a)j := a(a+ 1)(a+ 2) · · · (a+ j − 1) and (a)0 = 1. Therefore we consider

g1(y) =
(m
6

)1/6
y

∞∑
j=0

(−1
9
)j

(7
6
)j

(m
6

)j y6j
j!
,

which is convergent on the whole of R and satisfies (5.22). Its derivatives are

g′1(y) =
(m
6

)1/6 ∞∑
j=0

(−1
9
)j

(7
6
)j

(m
6

)j
(6j + 1)

y6j

j!
,

g′′1(y) =
(m
6

)1/6 ∞∑
j=0

(−1
9
)j

(7
6
)j

(m
6

)j
6j(6j + 1)

y6j−1

j!
.

Replacing the above functions in (5.23) we obtain

M1 =

(
3− 5m

3

)(m
6

)1/6
y4

+

(
1

3

)(m
6

)1/6 ∞∑
j=1

(−1
9
)j

(7
6
)j

(m
6

)j ( 1

j!

)(
m(6j + 1)(18j − 5) + 3

)
y6j+4.

Since (−1
9
)j is negative for all j, it follows that M1 ≤ 0 for m ≥ 3/5, and vanishes

only on y = 0. Therefore the result follows by applying Proposition 5.7.
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5.5 The uniqueness and hyperbolicity of the limit

cycle

In this section we prove that for m ∈ (1/2, 3/5), system (5.1) has at most one limit
cycle or one polycycle and the two of them never coexist. Moreover, we show that
when the limit cycle exists, it is hyperbolic. The uniqueness of the limit cycle was
already proved in [40]. Our approach is different and, like in the previous section,
it is based on the construction of a suitable Dulac function. This section ends with
the proof of Proposition 5.2.

Lemma 5.16. Let S be the open set bounded by the lines x = ±m−1/4 and y =
±m−1/4 and let Ω be the connected component containing the origin and bounded
by the above four straight lines and the hyperbola xy+1 = 0, see Figure 5.3. Then,
for m ∈ (0, 1), the following holds:

(i) The vector field X associated to system (5.1) is transversal to the boundary
∂S of the square S except at the two saddle critical points of system (5.1).

(ii) If system (5.1) has a periodic orbit or a polycycle, it must be contained in
Ω ⊂ S.

(a) (b)

Figure 5.3: Regions Ω and S.

Proof. (i). Consider the function f(x, y) = x−m−1/4. It is not difficult to see that
⟨∇f,X⟩ restricted to x−m−1/4 = 0 has the expression y3−m−1/4 which is negative
for y ∈ (−m−1/4,m−1/4). Analogously, we can see that the direction of X along ∂S
is as showed in Figure 5.3 (a).

(ii). It is well known that the sum of the indices of all the singularities sur-
rounded by a periodic orbit, or a polycycle is one. Recall that the indices of the
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saddle points are −1 and the index of a monodromic point is +1. Hence, if a pe-
riodic orbit or a polycycle Γ exist they must surround only the origin. Moreover,
by statement (i), Γ cannot intersect ∂S. Finally, a simple computation shows that
⟨∇(xy + 1), X⟩ restricted to xy + 1 = 0 is (1 − m)/x4, which implies that X is
transversal to xy+1 = 0. Hence X is transversal to ∂Ω and the lemma follows.

Proposition 5.17. For m ∈ [1/2, 3/5), system (5.1) has at most one limit cycle
and one polycycle and both never coexist. Moreover, when the limit cycle exists it
is hyperbolic and a repeller.

Proof. Following statement (ii) of Lemma 5.13 we take k = 2/3 and a function
V2(x, y) = g0(y) + g1(y)x + g2(y)x

2 adequate to apply Proposition 5.7 for proving
the uniqueness of the limit cycles or polycycles for system (5.1).

We will take g2(y) as a truncated Taylor series at the origin of a suitable solution
of (5.26) such that the curve {V2 = 0} has an oval surrounding the origin, and that
M2 does not change sign in Ω. These two properties will imply the result.

The general solution of (5.26) is the linear combination of generalized hyperge-
ometric functions

g2(y)=C0

∞∑
j=0

(ϕ+(m))j (ϕ
−(m))j(

2
3

)
j

(
5
6

)
j

(m
2

)j y6j
j!

+ C1y
∞∑
j=0

(φ+(m))j (φ
−(m))j(

5
6

)
j

(
7
6

)
j

(m
2

)j y6j
j!

+ C2y
2

∞∑
j=0

(ψ+(m))j (ψ
−(m))j(

7
6

)
j

(
4
3

)
j

(m
2

)j y6j
j!
, (5.27)

where ϕ±(m) = ±A(m) − 2/9, φ±(m) = ±A(m) − 1/18, ψ±(m) = ±A(m) + 1/9,
with A(m) =

√
(14m− 3)/m/9.

We look for an even solution, so we take C1 = 0. As we will consider C0 ̸= 0,
it is not restrictive to choose C0 = 1. Finally, the constant C2 = −(3/5 −m)2/3 is
fixed after some previous simulations and taking into account that we already know
that at m = 3/5 there is a Hopf-like bifurcation.

Once we have fixed the above constants, we calculate the Taylor polynomial of
degree 12 of g2 at y = 0, T12(g2), obtaining

T12(g2(y)) =
1

89100
(3− 10m)(3 + 35m)y12 − 1

6300
(75− 125m)2/3(3− 13m)y8

+
1

90
(3− 10m)y6 − 1

25
(75− 125m)2/3y2 + 1. (5.28)

So, in (ii) Lemma 5.13, we fix g2 as T12(g2(y)). Then the corresponding g0 and g1
are given by (5.24). Thus, M2 is of the form M2 = (ϕ(y)x+ ψ(y))y4 where

ϕ(y) =
1

9450

( 7

99
(3− 10m) (242m+ 3) (35m+ 3) y11

+ (75− 125m)2/3 (86m+ 3) (13m− 3) y7
)
,
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ψ(y) =− 247

400950
m2 (3− 10m) (35m+ 3) y16

− 13

4050
m2 (75− 125m)2/3 (13m− 3) y12

+
1

7425
(3− 10m)

(
550m2 + 145m+ 3

)
y10

+
2

4725
(75− 125m)2/3

(
196m2 − 45m− 9

)
y6

+
1

15
(3− 5m) y4 − 2

75
(75− 125m)2/3 (3− 5m) .

The proposition follows if we prove that M2 does not change sign on the region Ω.
In fact, it is sufficient to prove that M :=M2/y

4 does not change sign on Ω.
The idea is to show that {M = 0} does not intersect Ω. Since M is linear in

the variable x, {M = 0} cannot have ovals inside Ω. If {M = 0} has a component
in Ω, this component would have to cross ∂Ω by continuity of the function. Then,
it suffices to see that {M = 0} does not intersect ∂Ω. Moreover, as M satisfies
M(x, y) = M(−x,−y), it is sufficient to study M on half of ∂Ω. To deal only
with polynomials we introduce the new variables n = 4

√
m and s = (75− 125m)2/3.

Notice that s3 = (75− 125n4)2.
We split the half of the boundary of Ω in four pieces:

• The segment γ1 = {(x, 1/n) : −n < x < 1/n},

• The segment γ2 = {(1/n, y) : −n < y < 1/n},

• The piece of hyperbola γ3 = {(x,−1/x) : n < x < 1/n},

• The corners γ4 = {(1/n, 1/n), (1/n,−n), (n,−1/n)}

and we have to prove that {M = 0} ∩ γi = ∅ for each i = 1, 2, 3, 4.
These facts can be seen proving that for n ∈ I := [ 4

√
1/2, 4

√
3/5 ),

• Q1(x, n, s) :=M(x, 1/n) ̸= 0, for x ∈ (−n, 1/n).

• Q2(y, n, s) :=M(1/n, y) ̸= 0, for y ∈ (−n, 1/n).

• Q3(x, n, s) :=M(x,−1/x) ̸= 0, for x ∈ (n, 1/n).

• M(1/n, 1/n) ·M(1/n,−n) ·M(n,−1/n) ̸= 0.

Lemma 5.10, with r = 0, is a convenient tool to prove the first three items. The
proof of the last item is a straightforward consequence of the Sturm method.

We will give the details of the proof that Q2(y, n, s) ̸= 0, which is the most
elaborate case. The remaining two cases follow similarly.
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Writing Q(y, n, s) := 2806650nQ2(y, n, s) we get that

Q(y, n, s) = 1729n9(35n4 + 3)(10n4 − 3)y16 − 9009n9s(13n4 − 3)y12

− 21(10n4 − 3)(242n4 + 3)(35n4 + 3)y11

− 378n(10n4 − 3)(550n8 + 145n4 + 3)y10 + 297s(13n4 − 3)(86n4 + 3)y7

+ 1188ns(196n8 − 45n4 − 9)y6 − 187110n(5n4 − 3)y4 + 74844ns(5n4 − 3).

Looking at Lemma 5.10 with r = 0, it suffices to prove the following three facts:

(i) When n = 4
√

1/2 ∈ I, Q(y, n, s) ̸= 0 for y ∈ (−n, 1/n).

(ii) For n ∈ I, △yQ(y, n, s) ̸= 0.

(iii) For n ∈ I, Q(−n, n, s) ·Q(1/n, n, s) ̸= 0.

Since the polynomial has no rational coefficients the proof of item (i) requires
some special tricks. Notice that when n = 4

√
1/2 then s = 5 3

√
10/2. Hence,

R(y) := Q
(
y,

1
4
√
2
,
5

2
3
√
10
)
=
70889

8
4
√
8 y16 − 315315

32
4
√
8

3
√
10 y12 − 106764y11

− 80514
4
√
8 y10 +

239085

2
3
√
10 y7 +

51975

2
4
√
8

3
√
10 y6

+
93555

2
4
√
8 y4 − 93555

2
4
√
8

3
√
10.

We will prove that the above polynomial has no real roots in [−1, 12/10] ⊃
(−n, 1/n). The Sturm method gives polynomials with huge coefficients and our
computers have problems to deal with them. We use a different approach. We
know, that

n :=
3002

1785
<

4
√
8 <

37

22
=: n, s :=

28

13
<

3
√
10 <

265

123
=: s,

where these four rational approximations are obtained computing the continuous
fraction expansion of both irrational numbers. If we construct the polynomial, with
rational coefficients,

R+(y) =
70889

8
n y16 − 315315

32
n s y12 − 106764y11 − 80514n y10

+
239085

2
s y7 +

51975

2
n s y6 +

93555

2
n y4 − 93555

2
n s,
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it is clear that for y ≥ 0, R(y) < R+(y). In fact,

R+(y) =
2622893

176
y16 − 2427117

68
y12 − 106764y11 − 11509668

85
y10

+
21119175

82
y7 +

15442875

164
y6 +

314685

4
y4 − 37446948

221

and, now, using the Sturm method it is quite easy to prove that R+(y) < 0 for
y ∈ [0, 12/10]. Hence, in this interval, R(y) < R+(y) < 0, as we wanted to prove.

To study the values of y < 0 we construct a similar upper bound,

R−(y) =
70889

8
n y16 − 315315

32
n s y12 − 106764y11 − 80514n y10

+
239085

2
s y7 +

51975

2
n s y6 +

93555

2
n y4 − 93555

2
n s,

and applying the same method the result follows.

To prove (ii) we compute

△yQ(y, n, s) = n42s3(5n4 − 3)5(35n4 + 3)3(10n4 − 3)3P258(n, s),

where P258(n, s) is a polynomial in n and s of degree 258. Clearly, the roots of the
first five factors of the above discriminant are not relevant for our problem because
the corresponding n is not in I. To study whether P258(n, s) vanishes or not we
compute

Res(P258(n, s), (75− 125n4)2 − s3, s) = (5n4 − 3)24P390(n
2),

where P390(n
2) is a polynomial of degree 390 in n2. Applying again the Sturm

method we get that P390(n
2) has no significant roots for our study. Finally, the

numerator of Q(−n, n, s) · Q(1/n, n, s) is a polynomial in n and s of degree 49.
Using the same trick as above we prove item (iii). In this case the polynomial we
have to deal with has degree 152 in n.

Therefore {M = 0} ∩ ∂Ω = ∅ and as a consequence {M = 0} ∩ Ω = ∅.
Finally, it is not difficult to see, because V is quadratic in x, that the set

{V (x, y) = 0} has exactly one oval surrounding the origin. Hence, the proposi-
tion follows.

Proof of Proposition 5.2. Notice that the function V used in the proof of Proposi-
tion 5.17 coincides with the function V (x, y,m) of the statement of the proposition.
Taking k = 2/3 we are also under the hypotheses of Corollary 5.8. Therefore the
set Um is contained in Ws

0, as we wanted to prove.
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We remak that following similar ideas as in the above proof we can construct
bigger sets contained in Ws

0. For a given m, let us denote by Tℓ(g2(x;C2)) the
Taylor polynomial of degree ℓ at x = 0, of the function (5.27) with C0 = 1, C1 = 0.
Then for each ℓ ∈ N and C2 ∈ R we can take this function as a new seed g2 for
constructing the corresponding V as in (ii) of Lemma 5.13. Then checking that the
oval contained in {V = 0} is crossed inwards by the flow of the system, the result
follows for the function V constructed with these ℓ and C2.

5.6 Other results about non-existence of limit cy-

cles and polycycles

This section contains new non-existence results for system (5.1). We split the
interval into the subintervals (9/25, 1/2) and [1/2, 0.547]. Recall that our numerical
study shows that the system has no limit cycles for m < 0.56011 . . . As m becomes
closer to this bifurcation value the proof of non-existence of periodic orbits and
polycycles becomes harder.

Proposition 5.18. For m ∈ (9/25, 1/2), system (5.1) has neither limit cycles nor
polycycles.

Proof. We would like to apply Proposition 5.7. To this end we will follow similar
steps to the ones in the proof of Proposition 5.17, but with a function V such that the
set {V = 0} has no oval in Ω. Recall that Ω is the domain introduced in Lemma 5.16,
where the limit cycles and the polycycles must lie. We take V = V2(x, y) =
g0(y) + g1(y)x + g2(y)x

2 with g1(y) = g′2(y), g0 = (1/2)g′′2(y) − (1/2)my5g′2(y) +
(5/3)my4g2(y). Now we consider g2(y) = a0 + a2y

2 + a4y
4 + a6y

6 + a8y
8, with co-

efficients to be determined. From statement (ii) of Lemma 5.13 it follows that the
corresponding M2 is a polynomial function in x of the form M2 = ϕ(y)x + ψ(y)
where ϕ(y) and ψ(y) are polynomials in the variable y whose coefficients depend on
a2j, j = 0, 1, . . . , 4. In order to simplify the computations, we change the parame-
ter m by n4 to transform V into a polynomial in the variables x, y, and n. Since
m ∈ (9/25, 1/2) we can restrict our study to n ∈ (0.77, 0.844).

We consider the values of a4, a6 and a8 such that ϕ(y) has a zero at y = 0 of
multiplicity nine, we choose the value of a2 by imposing that M2 vanishes at the
two saddle points of the system and, finally, we use the freedom of changing g2(y)
by λg2(y), for any 0 ̸= λ ∈ R, to remove all the denominators. We obtain that

g2(y) =270(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)

− 756n2(9 + 42n2 + 105n4 + 130n6)y2

+ 3(3− 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y6

− 3n2(3− 13n4)(9 + 42n2 + 105n4 + 130n6)y8.
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The corresponding M2 is of the form

M2(x, y) =
2

3
y4 (ϕ(y)x+ ψ(y)) =:

2

3
y4M(x, y), (5.29)

where

ϕ(y) =3(3− 10n4)(3 + 35n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y5

− 3n2(3− 13n4)(3 + 86n4)(9 + 42n2 + 105n4 + 130n6)y7,

ψ(y) =− 756n2(3− 5n4)(9 + 42n2 + 105n4 + 130n6)

+ 27(3− 5n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y4

− 12n2(9 + 42n2 + 105n4 + 130n6)(9 + 45n4 − 196n8)y6

− 40n8(3− 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y10

+ 91n10(3− 13n4)(9 + 42n2 + 105n4 + 130n6)y12.

Recall that the main hypothesis in Proposition 5.7 is thatM does not change sign
on Ω. As we will see, this happens only for n ∈ J := (0.77, ñ] where ñ ≈ 0.8045592
will be precisely defined afterwards. When n ∈ K := (ñ, 0.844) the result will be a
consequence of the variation of Proposition 5.7 described in Remark 5.9.

For n ∈ J , proceeding similarly to proof of Proposition 5.17, we divide the half
of the boundary of Ω in five pieces:

• The segment γ1 = {(x, 1/n) : −n < x < 1/n},

• The segment γ2 = {(1/n, y) : −n < y < 1/n},

• The piece of hyperbola γ3 = {(x,−1/x) : n < x < 1/n},

• The corners γ4 = {(1/n,−n), (n,−1/n)},

• The corner γ5 = {(1/n, 1/n)}

and we will prove that {M = 0} ∩ γi = ∅ for each i = 1, 2, 3, 4 and that although
(1/n, 1/n) ∈ ∂Ω, the set {M = 0} does not enter in Ω. From these results we
will have proved that M does not change sign on Ω and, as a consequence, the
proposition will follows for n ∈ J.

To prove the fifth assertion it suffices to study the function M in a neigh-
borhood of the point (1/n, 1/n) ∈ ∂Ω. By the construction of M , it holds that
M(1/n, 1/n) = 0. By computing the partial derivatives ofM at this point we obtain
the tangent vector of the curve at (1/n, 1/n). Then, it is easy to see that when n ∈ J ,
in a punctured neighborhood W of (1/n, 1/n), it holds that W∩{M = 0}∩ Ω = ∅.
In fact, ñ ∈ ∂J is a solution of the equation

num
(∂M(x, y)

∂x

∣∣∣
(x,y)=(1/n,1/n)

)
= 0,
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where num(·) denotes the numerator of the rational function. Moreover,

M
(
x,

1

n

)
= −9(nx− 1)

n4

(
88200n16 + 107800n14 − 4930n12 − 37380n10

− 15855n8 − 2736n6 + 576n4 + 108n2 − 27
)

(5.30)

and ñ is also the positive root of the polynomial in n appearing in the right-hand
side of the above formula. Notice that when n = ñ, the straight line {y = 1/ñ} is a
subset of {M = 0}. This fact is the reason for which this approach only works for
n ∈ J = (0.77, ñ].

Let us prove the remaining four assertions. As in the proof of Proposition 5.17,
they follow by showing that when n ∈ J ,

• R1(x, n) := num(M(x, 1/n)) ̸= 0, for x ∈ (−n, 1/n).

• R2(y, n) := num(M(1/n, y)) ̸= 0, for y ∈ (−n, 1/n),

• R3(x, n) := num(M(x,−1/x)) ̸= 0, for x ∈ (n, 1/n).

• M(1/n,−n) ·M(n,−1/n) ̸= 0.

That R1 has no zeros in J , is a straightforward consequence of (5.30).
To study R2 and R3 we will use Lemma 5.16. We start computing the discrim-

inants,
S2(n) = △y(R2(y, n)), S3(n) = △x(R3(x, n)),

and analyze whether they vanish on J or not. Using the Sturm method we get that
on J , S2 vanishes only at one value n2 ≈ 0.8040188 and S3 also vanishes only at one
value n3 ≈ 0.8045576. The root n2 of S2 forces us to split the study of R2(y, n) in
the three subcases: n ∈ (0.77, n2), n = n2 and n ∈ (n2, ñ]. Doing the same type of
computations and reasoning as in the previous section we can prove all the above
assertions when n ̸= n2. The case n = n2 follows by continuity arguments, because
in this situation R2 has a real multiple root but it is not in (−n2, 1/n2). The study
of R3 is similar to the one of R2 and we omit it. We also get that R3 does not
vanish on (n, 1/n) either.

The fact thatM(1/n,−n)·M(n,−1/n) ̸= 0 for n ̸= ñ is once more a consequence
of the Sturm method.

Therefore, when n ∈ J, we are under the hypotheses of Proposition 5.7, and
we will know that the system has no limit cycles once we have proved that the set
{V = 0} has no ovals. We defer the proof of this fact until we have considered the
case n ∈ K = (ñ, 0.844).

When n ∈ K, we know that {M = 0} ∩ Ω ̸= ∅ and we are no more under the
hypotheses of Proposition 5.7. Let us see that we can apply the ideas of Remark 5.9.
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To this end we have to prove that {M2 = 0}∗ ∩Ω is without contact for the flow of
X. Note that {M2 = 0}∗ = {M = 0}∗.

We need to show that Ṁ = ⟨∇M,X⟩ does not vanish on {M = 0}∗ ∩ Ω. We
study the common points of {M = 0} and {Ṁ = 0} and prove that they are not
in Ω. First, we compute

Ṁ(x, y) = ⟨∇M(x, y), X(x, y)⟩ =: y3N(x, y),

and we remove the factor y3. We do not care about the points on {y = 0} because

M(x, 0) = 756n2
(
5n4 − 3

) (
9 + 42n2 + 105n4 + 130n6

)
̸= 0,

for n ∈ (0, 0.88].
The resultant Res(M,N, x) factorizes as

Res(M,N, x) = y2(n2y2 − 1)(Pn,2(y))(Pn,34(y)),

where Pn,2(y) and Pn,34(y) are polynomials in the variable y with respective degrees
2 and 34 and whose coefficients are polynomial functions with rational coefficients
in the variable n.

Clearly, (n2y2 − 1) does not vanish on −1/n < y < 1/n. By using once more
Lemma 5.10 it is not difficult to prove that Pn,2(y) does not vanish either on −1/n <
y < 1/n, for n ∈ (ñ, 0.844). Hence we will focus on the factor Pn,34(y).

We will use again Lemma 5.10. By using the Sturm method we get that the
polynomial △y(Pn,34(y)) has no zeros in the interval K. In fact one zero is ñ ∈ ∂K
and another one is n∗ ≈ 0.8445 ̸∈ J and this is the reason for which we can only
prove the result until n = 0.844 < n∗. By using Sturm method, it can be shown that
Pn,34(−1/n) ·Pn,34(1/n) ̸= 0 for all n ∈ K and, for instance, for n = n0 = 83/100 ∈
K, the polynomial Pn0,34(y) has exactly two (simple) zeros in −1/n0 < y < 1/n0.
Then, Lemma 5.10 with r = 2, implies that Pn,34(y) has exactly two (simple) zeros
in −1/n < y < 1/n, for all n ∈ K. We call them y = yi(n), i = 1, 2 and they
are continuous functions of n. Therefore, we need to prove that the corresponding
points in {M = 0} ∩ {N = 0} are outside of Ω.

Notice that due to the expression of M , given in (5.29), the points in {M = 0}
are on the curve Γ = {

(
− ψ(y)

ϕ(y)
, y
)

: y ∈ R \ {0}}. Moreover it can be easily

seen that ϕ(y) ̸= 0 on the region that we are considering. Therefore the points in
{M = 0} ∩ {N = 0} are given by the two continuous curves

γi :=
{(

− ψ(yi(n))

ϕ(yi(n))
, yi(n)

)
: n ∈ K

}
, i = 1, 2.

For a fixed n ∈ K it is not difficult to prove that the points in γi, i = 1, 2 are outside
of Ω. If for some n ∈ K there was a point inside Ω, by continuity it would be at
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least one point in one of the pieces of boundary of Ω formed by the straight line
{x − 1/n = 0} and the hyperbola {xy + 1 = 0}. To prove that such a point does
not exist we compute the following two resultants

Res
(
num

(
− ψ(y)

ϕ(y)
− 1

n

)
, Pn,34(y), y

)
= P1250(n),

Res
(
num

(
− y

ψ(y)

ϕ(y)
+ 1
)
, Pn,34(y), y

)
= P1260(n),

where Pℓ(n) are given polynomials with rational coefficients and degree ℓ. Both
polynomials factorize in several factors and, using once more the Sturm method, we
can easily prove that they do not vanish on K. Hence, {M = 0}∩{N = 0}∩Ω = ∅
which implies that {M = 0} ∩Ω is without contact by the flow of X, as we wanted
to prove.

Since M is linear in the variable x, {M = 0} cannot have ovals. Therefore, by
Remark 5.9, to end the proof we need to show that the set {V = 0} has no ovals
either in Ω. We claim that the set {V = 0} ∩ Ω is without contact by the flow of
the system. If this happens and {V = 0} had an oval then it would be without
contact. Then by the Poincaré–Bendixson Theorem it should surround the origin.
However, by considering the straight line passing through the origin y = 9x/10
it is easy to prove, by using again Lemma 5.10, that the function V (x, 9x/10)
does not vanish on the interval −1/n < x < 1/n for all n ∈ (0.77, 0.844). Thus,
{V = 0} ∩ {y − 9x/10 = 0} = ∅. Hence, V has no ovals inside Ω as we wanted
to see and the proposition follows by using all the above results and the reasoning
explained in Remark 5.9.

To prove the above claim, it suffices to see that {M = 0} ∩ {V = 0} ∩ Ω = ∅.
This is because precisely, M

∣∣
{V=0} = V̇ .

Recall that when n ∈ J = (0.77, ñ] then {M = 0} ∩ Ω = ∅ and so the result
follows.

Let us consider the case n ∈ K = (ñ, 0.844). To study if {V = 0} and {M = 0}
intersect, we compute the resultant of M and V with respect to x. We have

Res(V,M, x) = (n2y2 − 1)Pn,30(y),

where Pn,30(y) is a polynomial of degree 30 and whose coefficients are polyno-
mial functions in the variable n with rational coefficients. We want to prove that
Res(V,M, x) does not vanish on the interval −1/n < y < 1/n for n ∈ K. It suffices
to study Pn,30(y). We will use once more Lemma 5.10.

The polynomial Pn,30(−1/n)·Pn,30(1/n) has no real roots when n ∈ K. Moreover
hypothesis (i) of Lemma 5.10 holds with r = 0 (no real roots) by considering for
instance n0 = 82/100. To see that condition (iii) of the lemma holds, we compute
△y(Pn,30(y)). It is a polynomial of degree 2728 in the variable n which factorizes
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in several factors, the largest one being of degree 594. From this decomposition we
can prove that △y(Pn,30(y)) has no zeros for n ∈ K. Therefore, by Lemma 5.10 we
conclude that Pn,30(y) does not vanish on the whole interval −1/n < y < 1/n for
n ∈ K, and the claim follows.

Proposition 5.19. For m ∈ [0.5, 0.547], system (5.1) has neither limit cycles nor
polycycles.

Proof. We will construct a positive invariant region R having the two saddle points
in its boundary. As we will see, the proposition follows once we have constructed
this region, simply by using the uniqueness and hyperbolicity of the limit cycle,
whenever it exits. We remark that in this proof we will not use the Bendixson–
Dulac theorem.

Assume that such a positive invariant region R exits. By the Index theory, if the
system had a limit cycle, it should surround only the origin. By Proposition 5.17
we already know that for n ∈ [0.5, 0.6) ⊃ L := [0.5, 0.547], the limit cycle would be
unique, hyperbolic and repeller. By the Bendixson–Poincaré Theorem the above
facts force the existence of another limit cycle and so a contradiction. It is straight-
forward that the existence of this positive invariant region is not compatible with
the existence of a polycycle connecting both saddle points.

To construct R we consider a function V2(x, y) = g0(y) + g1(y)x+ g2(y)x
2, with

g0 and g1 as in (5.24) and g2 an even polynomial function of degree 12 of the form

g2(y) = 1 +
6∑

k=1

a2ky
2k,

to be determined. By statement (ii) of Lemma 5.13, the function M2, given in
(5.25), associated to this V2 and k = 2/3 is of the form M2 = ϕ(y)x+ ψ(y), where
ϕ(y) and ψ(y) are polynomials in the variable y whose coefficients depend on the
unknowns a2k with k = 1 . . . 6.

We fix a4 and a6 in such a way that ϕ(y) has a zero at y = 0 of multiplicity
nine; we get the value of a8 by imposing that V2 vanishes at the two saddle points;
the values of a2 and a10 are chosen so that the curve V2 = 0 is tangent to both
separatrices at the saddle points of the system. Finally, after experimenting with
several values for a12 andm, so that the region with boundary {V2 = 0} is positively
invariant, we fix a12 = −157(10m− 3)(35m+ 3)/44550000.

The region R will be the bounded connected component of R2 \ {V2 = 0}
containing the origin, see Figure 5.4 (a).

We need to prove that the curve {V2 = 0} ∩ S (see Figure 5.4 (b)) is such that
the vector field X points inwards on all its points. We introduce the new parameter
m = n2 and we compute V̇2 = ⟨∇V2, X⟩ and

Res(V2, V̇2, x) =
y8(ny2 − 1)4(Pn,12(y))

3Pn,36(y)

n28(120n3 + 113n2 − 3)6
, (5.31)
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(a) (b)

Figure 5.4: Positively invariant region R with boundary {V2 = 0}.

where Pn,12(y) and Pn,36(y) are polynomials of degree 12 and 36, respectively, and
whose coefficients are polynomial functions in the variable n.

Notice that since m ∈ [0.5, 0.547] then n ∈ T := [0.707, 0.7396]. Since the
denominator of (5.31) is positive, we only need to study its numerator.

Using once more Lemma 5.10 and the same tools as in the previous sections we
prove that Pn,12(y) ·Pn,36(y) is positive for all y ∈ (−1/n, 1/n) and n ∈ T. We omit
the details.

Hence, we have proved that the numerator of Res(V2, V̇2, x) is non-negative and
it only vanishes on y = 0 and y = ±n−1/2. Therefore the sets {V2 = 0} and
{V̇2 = 0} only can intersect on {y = 0}. Indeed, the sets {V2 = 0} ∩ S ∩ {y = 0}
and {V̇2 = 0}∩S ∩{y = 0} coincide and have two points (±x̂(n), 0) for each n ∈ T.
Studying the local Taylor expansions of V2(x, y) and V̇2(x, y) at these points we get
that the respective curves V2(x, y) = 0 and V̇2(x, y) = 0 have a fourth order contact
point on them and, as a consequence, V̇2 does not change sign on {V2 = 0} ∩ S, as
we wanted to prove. That, on {V2 = 0}, the vector field X points in, is a simple
verification. Hence the proof follows.

5.7 Existence of polycyles

This section is devoted to prove that the phase portrait (b) in Figure 5.1 can only
appear for finitely many values of m. Notice that this phase portrait is the only
one representing a polycycle. As we have already explained, the main difficulty is
that we are dealing with a family that is not a SCFRVF. To see that the control
of the existence of polycycles for general polynomial 1-parameter families can be a
non easy task, we present a simple family for which a polycycle appears at least for
two values of the parameter.
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Example 5.20. For m = 0 and m = 1, the planar systems{
ẋ = −2y + (3m− 4)x+ (4− 2m)x3 + xy2 − x5 = Pm(x, y),
ẏ = (4−m)x+ xy2 − 2mx3 − x5 = Qm(x, y), m ∈ R. (5.32)

have a heteroclinic polycycle connecting the saddle points located at (±
√
2−m, 0).

Proof. The above family has been cooked to have explicit algebraic polycycles.
Consider the family of algebraic curves Hm(x, y) = y2 − (x2 + m − 2)2 = 0 and
compute

Wm(x, y) = ⟨∇Hm(x, y), (Pm(x, y), Qm(x, y))⟩.

Doing the resultant with respect to x of Wm and Hm we obtain

Res(Wm(x, y), Hm(x, y), x) = m4(1−m)4y4R(y,m),

where R is a polynomial of degree 4 in both variables, m and y. This implies that
for m = 0 and m = 1 the algebraic curve Hm(x, y) = 0 is invariant by the flow
of (5.32). These sets coincide with the invariant manifolds of the saddle points
(±

√
2−m, 0) and contain the corresponding heteroclinic polycycles.

We have simulated the phase portraits of (5.32) for several values of m and it
seems that no polycycles appear for other values of m. In any case, the example
shows the differences between SCFRVF, for which as we have discussed in Subsec-
tion 5.3.1, the polycycle usually appears for a single value of the parameter, and
families that are not SCFRVF.

Let us continue the study of system (5.1). We denote by p±
m = (±m−1/4,±m−1/4)

the two saddle points of the system.

Proposition 5.21. Let (0, ys(m)) be the first cut of the stable manifold of p+
m with

the Oy+-axis. Similarly, let (0, yu(m)) be the first cut of the unstable manifold of p−
m

with the same axis, see Figure 5.5 (a). Then the function δ(m) := ys(m) − yu(m)
is an analytic function.

Proof. This result is a consequence of the tools introduced in [86]. We only give
the key points of that proof.

Fix a value m̂ for which δ(m) is defined. Simply because the Oy+ is transversal
for the flow, the function δ is well defined in a neighborhood of m̂. It is clear that it
suffices to prove that ys(m) is analytic at m = m̂, because the yu(m) can be studied
similarly. To prove this fact we will write the map ys(m) as the composition of two
analytic maps.

Consider a vertical straight line L := {(x, y) : x = m̂−1/4 − ε}, for ε > 0 small
enough. Denote by (m̂−1/4 − ε, y1(m)) the first cutting point of the stable manifold
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(a) (b)

Figure 5.5: Definition of the maps δ(m) and ys(m) in Proposition 5.21.

of p+
m with this line. Because L is close enough to the saddle point it can be seen

that the local stable manifold cuts this line transversally. Moreover, the tools given
in [86] prove that y1(m) is analytic at m = m̂, because of the hyperbolicity of the
saddle point. Next, consider the orbit starting on L with y-coordinate y1(m̂). In
backward time, this orbit cuts also transversally the Oy+-axis at the point with
y-coordinate ys(m̂) and needs a finite time to arrive to this point see Figure 5.5
(b). Because of the transversality to both lines, and the finiteness of the time
needed for going from one to the other, it is clear that the map y2(z) induced by
the flow of the system between L and the Oy+-axis is analytic at z = y1(m̂). Since
ys(m) = y2(y1(m)), the result follows.

Proof of (iii) of Theorem 5.1. Notice that each value of m that is a zero of the
map δ(m), introduced in Proposition 5.21, corresponds to a system (5.1) with a
polycycle, i.e. M = {m ∈ (0.547, 0.6) : δ(m) = 0}. From Proposition 5.19 we
know that δ(0.547) > 0 and from Proposition 5.15 that δ(0.6) < 0. Hence the set
M is non-empty. Finally, because of the non-accumulation property of the zeros of
analytic functions, the finiteness of M follows.

Proof of Theorem 5.1

The proof of Theorem 5.1 simply consists in combining the corresponding results
proved in the chapter. More concretely:

• The non-existence of limit cycles and polycycles when m ∈ (−∞, 0.547] ∪
[3/5,∞) is given in the following results:
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– For m ∈ (−∞, 0], trivially in the introduction.

– For m ∈ (0, 9/25] in Proposition 5.12,

– For m ∈ (9/25, 1/2) in Proposition 5.18,

– For m ∈ [1/2, 0.547] in Proposition 5.19,

– For m ∈ [3/5,∞) in Proposition 5.15.

• The existence of at most one limit cycle and one polycycle whenm ∈ [1/2, 3/5),
the fact that they never coexist, and the hyperbolicity and instability of the
limit cycle, in Proposition 5.17.

• The phase portraits of the system in the Poincaré disc and the study of the
origin, in Subsection 5.3.2 and Section 5.2, respectively.

• The proof of the existence of the phase portrait (b) in Figure 5.1, only for
finitely many values of m, in Section 5.7.
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[9] A. Beléndez, E. Gimeno, M. L. Álvarez, M. S. Yebra, D. I. Méndez, Analytical
approximate solutions for conservative nonlinear oscillators by modified ratio-
nal harmonic balance method, Int. J. Comput. Math. 87 (2010), 1497–1511.

153



Bibliography

[10] A. Beléndez, E. Gimeno, T. Beléndez, A. Hernández, Rational harmonic bal-
ance based method for conservative nonlinear oscillators: application to the
Duffing equation, Mech. Res. Comm. 36 (2009), 728–734.
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harmonic balance method, Preprint 2013, arXiv:1310.1215.
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