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]. Introduction

Our current theoretical description of nature is divided into two categories: the Standard
Model of particle physics which unifies electromagnetism, weak and strong interactions and the
General Theory of Relativity which describes gravitation. Both theories have been extremely
well tested at a wide range of energy and length scales, the Standard Model in high-energy
collision experiments such as the Large Hadron Collider in Geneva and General Relativity in
astrophysical observations in the solar system and beyond, among others.

However, General Relativity is a classical theory and must fail to provide the correct description
at sufficiently high-energy scales, comparable to the Planck scale, where a putative theory of
Quantum Gravity takes over. Since such energy scales are beyond our experimental reach,
work on such theories is purely theoretical and can only be judged by internal consistency and
simplicity. The only possible perspective on experimental evidence for a theory of quantum
gravity (except maybe for analogue models of gravity [1]) comes from observations of the
cosmic microwave background (CMB), which were recently vastly improved upon by the Planck
satellite [2-4] and which allow us to catch a glimpse of the very early history of our universe
where quantum gravity effects played a role. Remnants of interactions of that time that are
still observable today therefore can give us clues about physics at those scales. According to
the standard ACDM model of cosmology, the universe underwent a period of rapid expansion
in its early history, known as inflation [5-8], and which can be modeled by a part of de Sitter
spacetime up to small corrections (so-called slow-roll corrections). In this case, the driving
factor is a homogeneous scalar field, the inflaton, with a large potential term which changes
very slowly during the inflationary period, and can thus be modeled effectively by a constant.
Furthermore, there is a real cosmological constant which is however very small, and which is
responsible for the current accelerated expansion of the cosmos [4, 9]. Models which replace
also this constant with some dynamical term are known under the generic term dark energy
(see [10, 11] for reviews), however, to this date there are no observational indications which
favor anything different from a constant. A puzzling feature of the CMB, namely its almost
perfect homogeneity over regions which have never been in causal contact, can be explained by
such an inflationary period with exponential expansion, i.e., faster than the speed of light. Tiny
variations of the temperature distribution are thought to be sourced by quantum fluctuations
of the metric through which the photons of the CMB propagate, with most of the effect coming
from fluctuations which were generated during inflation [8, 12].

Nonetheless, Planck scales are not reached during the inflationary period, and in such an
intermediate regime quantum gravity can be studied perturbatively in the manner of effective
field theories (EFT). In these theories, we parametrize our ignorance of the true high-energy
physics by some effective interactions, including all possible terms whose form is compatible
with the assumed symmetries of the system under consideration. A prominent example is
the Fermi theory of four-fermion interaction, where the exchange of a W boson between two
fermions at energy scales well below the mass of the W boson is described by an effective vertex
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where four fermions interact, with a coupling constant inversely proportional to the squared
mass of the W [13]. This theory gives correct predictions at all energies which are well below
the scale set by the mass of the W boson. It is not renormalizable, and to calculate loop effects
one would have to include operators of higher mass dimension, i.e., six- and more-fermion
vertices with coupling constants which must be determined by experiment. However, these
higher operators are suppressed by increasingly higher powers of the W boson mass, and at
low energy scales do not make appreciable contributions. The situation is analogous in the
case of perturbative quantum gravity. At large distance and low curvature (as compared to
the Planck scale), we can add to the Einstein-Hilbert action for gravity higher-dimensional
operators, which are higher powers of curvature tensors and their covariant derivatives. These
operators are suppressed by powers of the Planck mass, and so for low-energy processes give
only small corrections that can be trusted at those scales.

In this thesis, we will investigate two effects that can be studied in this scenario: the stability of
de Sitter spacetime under small metric perturbations, and their correlation functions which can
be related to cosmological observables.

The standard theoretical analysis of perturbations in primordial cosmology relies on linear
perturbation theory, which in the quantum theory amounts to a tree level calculation. However,
the effects due to loop corrections can be potentially significant if, by some novel physical
process in curved backgrounds, the usual suppression of these corrections can be overcome.
Already some time ago, Tsamis and Woodard proposed that radiative corrections due to loops
of gravitons could lead to a screening of the cosmological constant [14-16], which then could
potentially serve as a mechanism to end inflation, independently of an inflaton field. In this case,
the fundamental cosmological constant would be only a few orders of magnitude smaller than
the Planck scale, and the value that is observed today is the screened one. The mechanism by
which this works relies on the continuous excitation of graviton modes during the inflationary
period which are not diluted by the exponential expansion, which then — due to the nonlinear
nature of gravitational interaction — leads to a slowing down of this expansion. While this claim
is very attractive from a physical point of view, its validity and the interpretation of concrete
calculations have been doubted [17, 18], and it is still an unsettled issue whether it may work
at all. A similar effect had been proposed to appear for the massless, minimally coupled scalar
field [19], but has since been shown to be an artifact of perturbation theory [20, 21].

In addition, because of the absence of a global time-like Killing vector in de Sitter space, there
exists the possibility that even massive theories on a fixed de Sitter background may have
instabilities. This idea has been analyzed by a variety of authors both at tree level [22-27] and
including loop corrections [28-30]. In this context, the continuation to an Euclidean formalism
(i.e., calculations on the sphere) has been proven to be very useful. The Euclidean vacuum
state and correlation functions in this state, which are defined by an appropriate analytic
continuation from the sphere to de Sitter space, have a number of attractive properties, which
include infrared finiteness and full de Sitter invariance. For massive scalar fields, calculations
done on the sphere and using the in-in formalism in de Sitter space have been proven to be fully
equivalent by Higuchi, Marolf and Morrison [31], and generalizations to very light and massless
fields have also been developed [20, 21]. Furthermore, the Euclidean vacuum constitutes a
late-time attractor for generic initial states, meaning that correlation functions in other states
approach the Euclidean ones for late times in a precisely defined sense [32-34].

These findings for interacting matter fields (for sufficiently weak coupling such that perturbation
theory is applicable) extend classical results about the late-time attractor character of de Sitter
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spacetime both for linear perturbations and the nonlinear case [35-40], which is known as
“no-hair” property similar to the case of black holes. However, considering test fields on a fixed
background only gives part of the full answer, and for the complete problem one has to take
the backreaction of the quantum fields on the spacetime geometry into account. Studies of this
type have been done in semiclassical gravity, where the metric is still considered classical, but
the quantum nature of matter is already taken into account, and similar attractor properties
have been found [41]. Instead of a classical stress tensor, on the right-hand side of the Einstein
equation an expectation value of a quantum stress tensor operator appears [42, 43]. However,
it is important as well to also take the quantum nature of the metric into account: studying
gravity as an effective field theory, this amounts to a quantization of metric perturbations
around a fixed background.

In the first half of this thesis, we will thus extend these considerations to the gravitational case,
studying the stability of de Sitter spacetime under small metric perturbations interacting with
matter fields. Partial studies in this direction have been done. For example, flat space has been
shown to be stable under linearized perturbations interacting with matter fields [44, 45], in
de Sitter space a vanishing correction to classical modes has been found for the interaction of
tensor modes with massless, minimally coupled free scalar fields [46], and also the stability of
de Sitter spacetime for spatially isotropic perturbations was established [47, 48]. Extending
these calculations, here we consider the stability under general linearized metric perturbations
(of scalar, vector and tensor type) due to the interaction with conformal fields, and give
arguments on why our conclusions should smoothly extend to other kinds of matter. In this
context, we employ the so-called order reduction method, which in contrast to a strictly
perturbative treatment provides solutions which are reliable over a long time, a feature which is
obviously crucial to study stability questions. This method not only eliminates spurious solutions
which lie outside the validity of the effective field theory approach that we are pursuing, but
also has the advantage to generate backreaction equations which are relatively simple to solve
exactly, and thus eliminating the need to use approximations beyond the ones imposed by the
EFT ansatz and the consideration of linear perturbations.

The second half of the thesis concerns correlation functions of these metric perturbations. This
goes one step further than the previous objective, where the equations that govern the evolution
of metric perturbations are the same as the ones that apply to their expectation value. It is
of course important to take fluctuations around the mean value into account. Their relative
size in relation to the mean value can be used as a criterion for the validity of the mean field
description [49-51], and they are related to cosmological observables such as the tensor power
spectrum at the end of inflation [8, 12]. For the case of the interaction with conformal fields,
we calculate explicitly the two-point function of scalar, vector and tensor perturbations, using a
generalization of the flat space ie prescription which allows us to define a proper interacting
vacuum state at past infinity. From this two-point function, we calculate the power spectrum
for tensorial perturbations, which can be observed through the spectrum of the temperature
fluctuations in the CMB.

However, while the gauge fixing that is usually used in cosmology (and that we use in this thesis)
for the scalar-vector-tensor decomposition is complete for perturbations that fall off at spatial
infinity, it is not local since one needs to specify boundary conditions. Objects constructed from
correlation functions in this gauge are therefore not observables in the strict sense of the word,
since we only have observational access to a finite part of the universe. Therefore, one has
to search for “sufficiently local” observables which characterize the geometrical properties in

13



regions of finite physical size. This last requirement has been crucial in the construction of
so-called infrared-safe observables, which give finite results in situations that would lead to
divergences without an explicit infrared cutoff [18, 52, 53]. Furthermore, this gauge fixing
which is done in the conformally flat coordinate patch does not respect the symmetries of
the underlying de Sitter background, and hence obscures such symmetries in the correlation
functions. It is of course difficult to find a gauge-invariant and local observable, even in
perturbative quantum gravity [54], but if we exclude graviton loops and restrict to a de Sitter
(or other maximally symmetric) background, the linearized Riemann tensor provides such an
observable. We thus calculate its two-point function, starting from the two-point function of
the metric perturbations for the case where they interact with conformal fields. In order to
better understand the structure of the result, it is decomposed in Weyl and Ricci tensor and
scalar correlation functions. We then make use of the Bianchi identities to bypass the long
calculation, showing that the Riemann tensor two-point function can be obtained directly from
the two-point function of the stress tensor.

This thesis consists of four parts: Preliminaries, Metric perturbations, Riemann tensor, and
Conclusions. In the first part, after fixing our conventions in chapter 2, in chapter 3 we explain
how to calculate the effective action, which incorporates quantum corrections to the metric
perturbations due to matter fields, and from which these perturbations can be calculated. This
exposition is completely general. In chapter 4, we specialize to de Sitter space and calculate
the necessary matter expectation values which appear in the effective action, paying special
attention to renormalization. In the second part, chapter 5 is dedicated to the first objective, the
study of the stability of de Sitter space under these perturbations, and in chapter 6 we calculate
their two-point function as well as the tensor power spectrum. The third part, chapter 7, gives
the two-point function of the Riemann tensor as a proper local observable, and explains a
procedure by which it can be obtained directly from the two-point function of the matter stress
tensor. We conclude the thesis in the last part with a discussion of the obtained results, some
technical appendices and a summary in Spanish.

Some results of this thesis have already been published. The relevant publications are:

* M. B. Fréb, A. Roura, and E. Verdaguer, One-loop gravitational wave spectrum in de Sitter
spacetime, JCAP 1208 (2012) 009, [arXiv:1205.3097]

* M. B. Frob, D. B. Papadopoulos, A. Roura, and E. Verdaguer, Nonperturbative semiclassical
stability of de Sitter spacetime for small metric deviations, Phys. Rev. D 87 (2013) 064019,
[arXiv:1301.5261]

e M. B. Frob and A. Higuchi, Mode-sum construction of the two-point functions for the
Stueckelberg vector fields in the Poincaré patch of de Sitter space, arXiv:1305.3421

* M. B. Frob, Fully renormalized stress tensor correlator in flat space, Phys. Rev. D 88 (2013)
045011, [arXiv:1305.0217]
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Preliminaries

Before turning to those moral and mental aspects of the matter which present the greatest
difficulties, let the enquirer begin by mastering more elementary problems.

— Sir Arthur Conan Doyle, A study in scarlet
Its form of value is simple and collective, thus general.
(Thre Wertform ist einfach und gemeinschaftlich, daher allgemein.)

— Karl Marx, Capital






2 Notations and Conventions

In this thesis, we work with natural units such that ¢ = A = 1. Furthermore, we define
k2 = 16mGy with Newton’s constant Gy. Our sign conventions are a mostly plus metric,
R%.q = 0. Ty; —...and Ryq =R%q4, i.e., the + + + convention in the list of [59]. Depending
on the context, Latin indices can be understood as abtract indices or as ranging over space
and time, while Greek indices always refer to spatial coordinates only. Spatial vectors are also
written in boldface without indices. In the first half of the thesis, we work in n dimensions, and
after renormalization switch to n = 4 in the second half.

We do not differentiate in notation between a function and its Fourier transform, since the
arguments always make it clear which one is meant. The Fourier transform from coordinate to
momentum space is defined by f(p) = f f(x)e P* d"x, while the reverse transform changes
the sign in the exponential and has an additional factor (27t)™". Since we use the Minkowski
metric 7, to define the scalar product px, for the time components the signs are reversed.

Many different quantum states are defined in this thesis; the state |in) is the interacting vacuum,
the state |0) is the free-field (Bunch-Davies) vacuum state. (), (defined by (3.14)) denotes an
expectation value with respect to a matter action of fields ¢ (which can be free or interacting),
(), (defined by (6.4)) denotes an expectation value with respect to the effective action (3.15)
for metric perturbations, and () denotes a connected correlation function, with the state in
which this function is evaluated (Jin) or |0)) being clear from the context.

The background de Sitter metric is g, while the perturbed metric is denoted by ., = gqp+Khqp
with the perturbation h,;. Objects with a tilde refer to this perturbed metric, while objects
without tilde refer to the background metric. We will denote successive perturbative orders of
a perturbative expansion in h,; with a superscript, e.g., gff,’] = g4 and gﬁ) =hgp.
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The effective action

In this section, we explain how to calculate an effective action which only depends on the
metric perturbations but incorporates quantum corrections due to their interaction with matter
fields. The presentation is generic, and its specialization to a background de Sitter spacetime
will be given in the next section.

3.1. The in-in formalism and the ie prescription

In the quantum field theoretical treatment of scattering problems one usually calculates the
transition matrix element of a Hermitean operator A between two states,

(alAIp), (3.1)

where |a) and |B) can be taken to be two different in and out vacuum states, with the particle
content of the real states incorporated into the operator A. For time-ordered matrix elements
between these vacuum states, the path integral representation

- [Al$1eS9IDg
(outITAIm) = W . (3.2)

with the action S depending on the fields ¢ is well known.

To implement the standard flat-space choice of vacuum in the path integral (3.2), one slightly
tilts the time integration contour on the complex plane to include an imaginary part

t — t(1—ie) (3.3)

with € > 0 (see for instance section 4.2 in [60]). In the case of a time-independent Hamiltonian,
which is the usual situation (e.g., in the Standard Model of particle physics), this prescription
selects the asymptotic vacuum as the state of lowest energy of the full interacting theory, which
includes appropriate correlations at the initial time between the different fields or even different
modes of the same field. If the Hamiltonian is time-dependent, this prescription still selects
an adiabatic vacuum of the theory at early times. The standard procedure is then to calculate
the integral from some initial time ¢, to some final time T and to take the limits t, — —00,
T — o0 in a slightly imaginary direction. One may even rotate the time axis further onto the
imaginary axis, which gives rise to Euclidean quantum field theory.

However, in a cosmological setting one is not interested in transition matrix elements but
rather in true correlation functions, which are expectation values of operators. Moreover, one
typically needs to impose initial conditions at early times instead of boundary conditions at
both early and late times. Furthermore, as was explicitly shown in [25] for de Sitter space, in
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an exponentially expanding spacetime in-out perturbation theory has an infrared divergence
because of the expanding space volume. For all these reasons we are naturally led to consider
the in-in formalism, where one specifies initial conditions at some initial time (in certain cases,
such as the exponentially expanding patch of de Sitter with spatially flat sections, one can
specify these initial conditions at past infinity and define an asymptotic in vacuum).

We now want to derive an analogue formula to (3.2) for this case. We thus insert the identity
operator as a sum over an orthonormal basis of field-configuration eigenvectors |a, T) in the
Heisenberg picture at some final time T, i.e. ¢(T)|a, T) = ala, T), to obtain

(inl(T"A)(TB)lin) = (in|T"Ala, T) (e, TITBlin) = > ((a, T TAlin))" (e, T|Alin)

~ JA[¢_]B[¢+]5[¢+(T) —a]6[¢~(T)—a]es# Te S 1 Dy Dy~ Da.
(3.4

Since we have two path integrals for each degree of freedom, we need two copies of the fields
which we have labeled ¢ and ¢~. Instead of enforcing the separate equality of both fields to
a and then integrating over all field configurations a at time T, in the following we can directly
enforce the equality of the fields ¢* and ¢~ at that time. Rather than considering two separate
fields, this suggests yet another way, namely modifying the time integration contour (which in
the usual case goes from —oo to +00) to run from —oo to T and turning back to —oo [61].
In the second half of this contour, time runs backwards which provides for the minus sign in
front of S[¢ ] in (3.4). Thus, the in-in formalism is also known as the closed-time-path (CTP)
formalism, and one in general obtains path-ordered (denoted by P) correlation functions, with
fields lying on the backward contour ordered to the left of fields lying on the forward contour
(see figure 3.1). This contour being implicitly understood, the formula connecting expectation
values and path integrals is almost identical to the in-out result (3.2)

[Alp]eS4IDg

{in|PAlin) = -
[eslelDg

(3.5)

The ie prescription can also be carried over to the CTP formalism. However, due to the complex
conjugation of the integrand in the path integral for the ¢~ fields, we need to take the complex
conjugate prescription for them

t — t(1+ie). (3.6)

One therefore has to integrate along a contour going from tJ to T, returning to t; with
t; = (tg)*, and taking at the end of the calculation t; — —00(1—ie). The dependence on T
disappears in the final result as long as it is larger than all times of interest (i.e., all the times in
the arguments of the correlation function one wants to calculate), as required by causality. The

deformed contour is also shown in figure 3.1.

As explained before, in the case of a time-dependent Hamiltonian this prescription is suitable for
selecting an adiabatic vacuum of the interacting theory as t — —o0 as asymptotic initial state.
It is clear that it only can work when the behavior of the modes for free fields is dominated
at past infinity by the same kind of oscillatory behavior as in Minkowski space (factors with
a power-law or weaker time dependence are allowed). This is the case for the exponentially
expanding patch of de Sitter spacetime with spatially flat sections, but would not be appropriate
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to_ ¢_ (7'4) d)_ (T3)

Figure 3.1.: The deformed CTP integration contour, together with 4 path-ordered fields. For any permuta-

tion of the indices we have P$*(t,)d*(7,)*(r.)d* (Td)— é- (74)¢ (1) ¥ (15)P™ (14).
Here, ¢*(t,) and ¢~ (t,) simply represent the operator ¢ evaluated at a time lying, respect-
ively, on the upper and lower branch of the deformed complex contour for time integration,
and correspond to the fields ¢* and ¢~ respectively in the path integrals.

for global de Sitter, which is instead exponentially contracting coming from past infinity. In this
case, the proper definition of asymptotic initial states is much more involved [62].

For further details about the CTP formalism see for instance [61, 63-67]. In the following,
we will mostly exhibit general considerations using the CTP contour, splitting it only for the
calculation of explicit examples. However, switching between the two formulations is very
easy: starting with the expression for the closed contour, each field obtains an extra capital
Latin index A which can take the values + and —, and every time integration becomes two
integrations, with an additional minus sign for the second one which runs over the — branch of
the contour.

3.2. Calculating the effective action

We will now take the full metric to be composed of a background and perturbations

gab = 8ab + Khab . (37)

As an action for gravity, we consider the standard Einstein-Hilbert action with a cosmological
constant A

1 (.
Sglh] = EJ(R—zA),/—gd”x, (3.8)

some matter action Sy[h, ¢ ] (with ¢ being a general field, not necessary scalar) and coun-
terterms needed for renormalization which in our case are quadratic in the curvature tensors

2 < bed e .
Solhl = gaJ(RabcdRabcd—RabRab),/—gd”wﬁf}z%/—gdﬂx. (3.9)

In the spirit of effective field theories [68-70], these are all the local and covariant terms of
mass dimension four, which is the next term in a low-curvature expansion of some unknown
high-energy theory (other terms of dimension four such as OR are total derivatives and do not
contribute to the bulk action). Furthermore, in four dimensions the Gauf3-Bonnet theorem tells
us that the integral of the Euler density

E, =R¥®“R_, 4 —4R®R,;, +R? (3.10)
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is a topological invariant and hence does not contribute to the correlation functions of h,
in which we are interested. It is therefore sufficient to consider only two counterterms with
coefficients a and f3, and we choose the above for simplicity. Also in four dimensions, the first
term in (3.9) reduces to the square of the Weyl tensor plus a multiple of the Euler density, as
one can see from the expansions of appendix A.

In the following, we only want to consider quantum corrections due to loops of the matter
fields appearing in Sy;. This can be formally implemented in a natural way by considering
a large N expansion for N matter fields interacting with the gravitational field [71]. One
then rescales the gravitational constant 1/x? — N/k? and takes N identical fields (this is
equivalent to Sy; — NSy) and takes the limit N — oo with k held fixed. In this limit, the
path integrals in (3.5) can be evaluated by the saddle-point method, and graviton loops are
suppressed by factors of 1/N. This can be seen clearly from the expansion of the gravitational
action in successive powers of the perturbation h,;, and hence we do not need to perform the
1/N-expansion explicitly but can simply truncate the expansion in h,;, after the quadratic term.
For the matter action, this expansion can be parametrized as

SM[h’ ¢] = S%/?)[(p] + %Kf habTab[¢]\/__gdnx + K2 f hathdUabcd[¢]\/__gdnxa (311)

where T? is the usual stress tensor of the matter.

Since we are not interested in correlation functions of the matter fields, we can integrate them
out. Formula (3.5) can then be written in the form (we recall that the time integration runs
over the CTP contour 3.1)

Aty — 4 A DR 312
(in|PA[ ]Im>—m o

with an effective action S, which only depends on the metric perturbation h,;, defined by
eiSerlh] — J S0 Dy = eilSalhI+Solh) J eSulhd1 Dy (3.13)

If we define the expectation value (), by

(@
[ ALp1eSV#) Dy
PA = 3.14
we obtain up to terms quadratic in h,,
1
Ses = Sglh]+ So[h]+ Ekf h®(Top) 5 +/—g d"x + J hPh (Uypeq) v/ —8 d"x
(3.15)

i
+ §K2 JJ [(PTab(x)Tc’d’(x/)>¢ - (Tab(x)>¢<Tc’d’(x/)>¢:|
x R ()RS (x")4/—g d"x y/—g d"x" .
We see that S really deserves its name, including corrections of higher order in « to the

gravitational action due to the interaction with matter. The earliest example of such effective

24



actions is the Euler-Heisenberg Lagrangian [72] which includes corrections to the Maxwell
Lagrangian due to vacuum polarization effects. However, note that this is a different effective
action from the one obtained by a Legendre transformation.

As explained before, one has to consider an appropriate initial state which in general includes
correlations between the metric perturbations and the matter fields. In this light, the factoriza-
tion between matter and metric perturbation degrees of freedom implied by the definition of
the effective action (3.13) does not seem to be valid. However, if we employ the ie prescription
and adopt the above factorization, the interacting in vacuum state that is selected by this
prescription will in some sense contain the minimally necessary correlations. Furthermore,
it has been shown (see [73] and references therein) that other initial states (described by an
arbitrary density matrix) can be incorporated into this approach if one adds additional terms to
the effective action which are supported at the initial time (i.e., are proportional to 5(t —t;)).

For the calculation of this effective action, we need the specified expectation values, a calculation
that will be done in the next section. For free fields, this amounts to a one-loop calculation, while
interacting fields can be treated as usually as a power series in the interaction constant. A special
case are conformal theories, for which these low-order correlation functions are completely
determined by conformal symmetry, even when they are strongly interacting (see, e.g. [74]).
In this thesis, we concentrate on specific examples in the free-field case; the generalization to
interacting theories should be straightforward.
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4 Free quantum fields in de Sitter space

4.1. Facts on de Sitter space

n-dimensional de Sitter space is most easily defined by embedding it into a flat n+1-dimensional
manifold. Denoting the Cartesian embedding coordinates of a point x by X*(x), it is the
hyperboloid satisfying

X)X, (x)=H2, (4.1)

where H is constant. As a measure of distance between two points, we simply define
Z(x,x") = H>XA(x)X 4 (x"), (4.2)

which is related to the Minkowskian distance d between two points in the embedding space
as

d?(x, x") = (X)) —XA(x")) (Xa(x) = Xa(x)) = 2H2 (1 — Z(x, X)) . (4.3)

Symmetries of de Sitter space are Lorentz transformations of the embedding Minkowski space,
since they leave the embedding condition (4.1) unchanged. It is clear that Z(x,x’) is also
invariant under such transformations, and hence will be denoted invariant distance. The
Lorentz group O(n,1) is therefore contained in the symmetry group of dS,,. Since it is generated
by n(n + 1)/2 generators - Killing vectors —, which is the maximum for a n-dimensional space,
de Sitter space is a maximally symmetric space, and its symmetry group is exactly O(n,1). As
for all maximally symmetric spaces, the Riemann tensor can be expressed in terms of the metric
as

Rabcd = k(gacgbd _gadgbc) > (44)

and by choosing a specific embedding (such as (4.6)) one calculates k = H 2,

When the two points x and x’ are connected by a geodesic, we can relate Z(x,x’) to the
geodesic (proper) distance u(x, x’) between those points

Z(x,x") = cos(Hu(x, x")), (4.5)

where the distance is to be taken along the shortest geodesic in case there are more than one.
From the relation to the Minkowskian distance of the embedding space (4.3) as well as to
the de Sitter geodesic distance (4.5), we see immediately that Z(x,x’) = 1 if the points are
null-related, u(x,x’) = d(x,x’) = 0. When they are time-like separated, d2(x,x’) < 0 and
Z(x,x”) > 1, from which it follows that the geodesic distance becomes imaginary u(x, x") =
i|u(x, x")|; while for space-like separated points we have d?(x,x’) > 0 and consequently
Z(x,x’) < 1. In this case, there are points which cannot be connected by a geodesic, namely
when Z(x,x’) < —1.
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One special symmetry of O(n,1) deserves further mention, which is coordinate inversion
XA — —X*. The image X of a point x in de Sitter space under this symmetry is called antipodal
point, with Z(x,x") = Z(x,x") = —Z(x,x’) = —Z(x,x’). One sees immediately that if two
points x and x’ cannot be connected by a geodesic, x and x’ as well as X and x’ can be, and in
fact, this geodesic is then time-like.

Since the only object which is left invariant by all isometries of flat space is the Minkowski
distance d2, any scalar function of two points (a biscalar) which is invariant under all de Sitter
isometries must be a function of Z since their symmetry groups are identical as shown above.

Extending in the obvious way the definition of tensor fields, one can now define bitensors which
depend on two points and have indices referring to either one of them. In total correspondence
to the scalar case, a bitensor is said to be maximally symmetric if it is invariant under all
de Sitter isometries. Since parallel transport commutes with the action of isometries, covariant
derivatives of Z(x, x”) are maximally symmetric bitensors. That they form a complete set in the
sense that any maximally symmetric bitensor can be expressed as a sum of products of derivatives
of Z with coefficients which are invariant, has been shown by Allen and Jacobson [75] (however,
not directly for derivatives of Z but for a related set of bitensors — see table 4.1).

Additionally, the set of covariant derivatives of Z(x, x’) is finite. Taking the conformally flat
coordinate system defined by

X0 = _M X% = _x* x4 = M (4.6)
21 Hn 21
with —oco < 1 < 0, we get for the invariant distance
2 /2 N2 \2 N2
+ J— J— J— J— J—
Z(x,x") =" ’72 (/”3 2y _,_ @ m)z (/” ) 4.7)
mm nn
The induced metric is given by
ox* ox® 1
ds* = 4B 5 Ben dx™dx" = o2 (—dn? +dz?) (4.8)
and one can easily calculate that
VoVyZ =—ZH?gq, 4.9)

so that the first derivatives of Z and the mixed second derivative already form a complete set.

In the literature an overwhelming number of different bitensor sets are used, and for the
benefit of the reader we have compiled a short table (4.1) to convert between them. Of course,
they have all one or the other advantage and disadvantage, but only one of them (apart from
derivatives of Z) will be important in this work, namely the set (a). While n, is defined as
the normal vector to the shortest geodesic connecting the points x and x’ (if it exists), its
importance stems from the fact that it is normalized, n®n, = 1, and so suited for the asymptotic
expansion of bitensors as Z — £00. On the other hand, the parallel propagator g,;,, which
propagates vectors along the aforementioned geodesic, is essential to calculate contractions of
bitensors since only indices which refer to the same point can be contracted.
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z VZ =24 Vo VyZ=Zgy

(a) =H larccosZ n,= e =H?2 (Z _ Lty )
w a HV/I=—72 8ab sab’ 1+27
z=3(1+2) - -
(b) y= 2(1 _Z) Yia = _2Z;a Yiabr = _ZZ;ab'
Z, Z..Zy
c 6 = arccos Z X, =—— I, =H?(Z_,, —-2——
© e SN G
2., 2.
s=2H2%(1-2) - Tay =H2 (Z;ab, + “—”)
1—-Z7
- - Ly =HZ4,

Table 4.1.: de Sitter-invariant bitensor sets in use in the literature. Authors using those conventions are,
e.g., Allen, Jacobson and Higuchi for (a), Tsamis and Woodard for (b) and Osborn and Shore
for (c).

Of later use will be explicit expressions for those bitensors in the conformally flat coordinate
system (4.8). They are easily calculated from equation (4.7), and we get

M2 = ~(@—2), +85(n—n'2)
' Zy =(x—2)y+6° (0 —nZ) (4.10)
nn/Z;ab’ =MNab — 71522;(1 - 77/522;17' - 6252(2 —-1),

with (z — ), = 0 understood. Also, contractions of those bitensors will be useful that can be
obtained by using the relations in table 4.1 and g, n”> = —n, as well as n®n, = 1, giving

2,2 =H*(1-2%)
ZowZ? =—H?ZZ,, (4.11)
Zoap 2" =H*6 —H?Z.,Z° .

The flat space limit can be obtained by taking the de Sitter radius H™* to infinity, keeping the
geodesic distance u(x, x”) between two points x and x’ fixed. From equation (4.5), this gives

1
Z—1— 5H2u2(x,x/) + O(H4) , (4.12)

and by recalling that in Minkowski space we have u?(x, x’) = (x—x’)?, also covariant derivatives
of Z can be easily obtained in the flat space limit.

4.2. Scalar and vector fields

In this thesis, we are interested in free scalar fields ¢ of arbitrary mass and curvature coupling
and massless vector (gauge) fields AP. However, in order to not burden us with the treatment of
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gauge-fixing and ghosts, we will treat the massless vector fields as the limit m — 0 of massive
vector fields. The corresponding actions are given by

1
ssz_if((V“¢)(Va¢)+m2¢2+€R¢2)v—gd"x (4.13)
and
SV:_}J( ®F,, +2m2APA, ) /—g d"x (4.14)

with m > 0 the mass of the corresponding field and & a parameter controlling the coupling
to the curvature scalar. Furthermore, F,, = VA, — VA, is the field strength tensor for the
vector field. For & = (n—2)/[4(n — 1)] and vanishing mass, the scalar action is invariant
under a rescaling of the metric g,, — €2>“g,;, and the scalar field ¢ — exp (2;2”@) ¢, as can
be easily checked using the formulas of appendix B. The same is true for the vector action
in the case of vanishing mass in four dimensions; both theories are then said to be scale
invariant. Sometimes they are also denoted as “conformal theories”; nevertheless, conformal
invariance demands more than just scale invariance [76, 77] and it is not yet fully determined
if scale invariance always implies conformal invariance [78-80]. Furthermore, a theory that is
classically conformally invariant may not stay so after quantization when quantum corrections
break the conformal symmetry. This is known as conformal anomaly: for those theories, there
exists no regularization and renormalization procedure that preserves the scale invariance of
the theory. The stress tensor of classically scale invariant theories is traceless, while the trace
of the renormalized stress tensor of the quantum fields does not vanish. If conformality is
preserved in the quantum theory, all contributions to this trace anomaly must cancel out, such
as happens, e.g., in the case of N' = 4 Super-Yang-Mills theory ([81-83]).

However, here we will only consider free theories. The equations of motion that follow from
this action are

(O-m?—¢&R)p =0 (4.15)
for the scalar field and
V F = m?Ab (4.16)

for the vector field. For the massive case, this equation was first postulated by Proca [84], while
the massless case comprise just the source-free Maxwell equations. Note that because of the
antisymmetry of the field-strength tensor, one can derive

m?v,AP =0, (4.17)
and so in the massive case the vector field is automatically transverse.

In order to calculate (path-ordered) correlation functions using (3.14), we need to know the
propagator of the respective fields, which is a fundamental solution to their equations of motion.
The choice of vacuum state is encoded in the addition of a homogeneous solution, and in the
following we will assume that the matter fields are in the so-called Bunch-Davies vacuum state,
a state which resembles the standard Minkowski vacuum for high momenta. In the case of the
scalar field, the Feynman propagator G¥(x, x) has to fulfill

(El—m2 —ER) GF(x,x")=6(x,x") (4.18)
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with the covariant & distribution

6"(x —x")
S(x,x)= —"——2, (4.19)
v—E8
while for the vector field we have
(805 OV, —m?ge,) G =5 6(x,x). (4.20)

4.3. Canonical quantization

To calculate the propagator in the Bunch-Davies vacuum state, one can use canonical quant-
ization in the conformally flat coordinate system (4.8). In this coordinate system, the scalar
action (4.13) reads

1
Sg= -5 f [—H2n2(¢')* + H*n* (V¢)* + m*$* + n(n— 1)H?EP?) (—Hn) "d"x. (4.21)
The canonical momentum is then given by
n=(—=Hn)*"¢’ (4.22)

and the fields are postulated to fulfill the canonical equal-time commutation relations

[Pz, n), n(y,M]=i8""(x —y), (4.23)
with other commutators vanishing.

As usual, those relations are solved by decomposing the field ¢ in a set of modes

3 . dn—l
¢(z,m) = f (al)f (o, ) +a'(=p)f *(=p, ) €P* (271),5 -, (4.24)
where the operators a(p) and a'(p) fulfill the commutation relation
[a(p),a’(¢)]= 2n)" 6" (p—q) (4.25)

and the mode functions f (p,n) are normalized to

f,m)f*,n)—f*(—p,f (—p,n) =i(—Hn)" 2, (4.26)

in order to ensure the canonical commutation relations (4.23). Since the scalar field satisfies
the equation of motion (4.15), the mode functions are solutions of the same equation, which
expressed in the conformally flat coordinate system reads

n*f"(p,n)— (n—2)nf'(p,n) + n*p*f (p,n) + (M*H 2+ n(n—1E)f(p,n) =0. (4.27)

For the Bunch-Davies vacuum, the correctly normalized solution to this equation is given (up
to phase factors) by

n—2 1

£ m) = X (-Hm'F 47 /= WO (fpl) (428
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where we defined

v=Q(n;D2—UﬁH4+nM—1E) (4.29)

In the massless, minimally coupled case we have v = (n — 1)/2, while for the massless,
conformally coupled case with £ = (n—2)/[4(n—1)] we obtain v=1/2.

For high momentum |p| — o0, these mode functions become positive-frequency modes

w2 | 1
flp,m) ~(=Hn) = Tp'e—llpln’ (4.30)

so that this choice reduces to the standard Minkowski vacuum in the appropriate limit. The
Bunch-Davies vacuum state |0) (a standard Fock vacuum) is then defined by demanding that
a(p)|0) = 0 for all p. This vacuum state is also called Euclidean vacuum (since its two-point
function that we calculate in the following can also be obtained by analytic continuation from
the Euclidean version of de Sitter space, the sphere), and has been convincingly argued to
be the only consistent state when interactions are taken into account [85-90]. The Bunch-
Davies vacuum state is of Hadamard form [91, 92], and Hadamard states have a lot of nice
physical properties (for example, the Hadamard form is preserved under Cauchy evolution, and
vacuum states in static spacetimes are Hadamard). It has also been shown in examples that
non-Hadamard states have unpleasant behaviour (such as an infinite stress tensor expectation
value with usual renormalization procedures or state-dependent renormalization) [93-103].
The high-momentum expansion (4.30) becomes exact for the massless, conformally coupled
case. In that case, the mode functions are naturally given by the Minkowski ones times the
conformal factor (—H n)nz;2 , which is consistent with our choice.

We can now proceed to calculate correlation functions, which by the Wick theorem for free
fields can all be calculated from the two-point function

y d"'p

(0] () (x")]0) = f f(p,mf*(p,n")eP== @my1

- (4.31)
dn lp

Vi n—1 : /
- HZ N5 H(l) _ H(2) _ ’ elp(m—m)
o ) f O (AplmH® (—pl) G

(using the identity e'z"H (x)[elz " HY o] = H® (x)H® (x"), valid for either real or
purely imaginary v). The integral is calculated in appendix F, giving

(0lg(x)p(x)I0) =1,(Z —i0sgn(n —n")) (4.32)

with

wo= e (5 ()

n—1 n—1 n 1+Z7
><2F1 T‘FV, 5 —V;E;T

(4.33)

and including the correct prescription to go around the branch cut of the Gauf§ hypergeometric
function for Z € [1, c0) (see appendix D for more information on distributions which such
prescriptions). It also has the correct flat space limit, which is obtained when H — 0. The
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limit of Z was calculated before and is given by (4.12), but the calculation of the limiting form
of I,(Z) is more involved. We can obtain it by using a Mellin-Barnes representation of the
hypergeometric function (G.62)

(e )r(=s)I'(c—a—b—s)[(s+a)(s+b) , ds
[(a)T(b)I(c —a)(c—b) -2y, (4.34)

oF (a, b;c;2) =f

c

where the integration contour C runs from —ioco to +ioco in the way described in appendix G.
1,(Z) can thus be written in the form

H2 (T (-2 =s)T(s+ 2+ )T (s+ 52 —») f1—-2\° ds
1,(2)= . - - ( ) —. (4.35)
(4m)> F(i—v F(§+v) 2 2mi
C
In the Minkowski limit, we have (4.29) v ~ im/H (the sign of v does not matter) and
H 1—2x .
T(x+v)I'(x—v)~2m (—) e H ", (4.36)
m
so that equation (4.35) reduces to
mt2 n—2 m2(x —x")2\" ds
I1,(Z — | T'(—=s)I'| — — —_—. 3
o )_>(4n)% ) ( 2 S)( 4 27i (4.37)
C

This is however nothing else than the Mellin-Barnes representation of the modified Bessel
function K [104], so that we have

1,(2) - mn_zﬂ (my/(x —xf)z)%n Kz (my/(x —x'2) (4.38)
(2m): 2

which is the correct flat-space result [105]. In the massless case, this reduces to

()

py [(x —x’)z]%n . (4.39)

N

Other two-point functions may then be calculated easily from the above result. For example,
the Feynman propagator is given by

Gr(x,x") = —1(0|T ¢ (x)¢(x")|0)
=—i0(n —n"){0[¢(x)¢(x")]0) —i0(n" —n)(0|¢ (x" )¢ (x)|0) (4.40)
=—il,(Z —10),

and one may check that it fulfills the correct equation (4.18) (which is most easily done by
employing the form given in the second line together with the integral representation (4.31)).

A special case is the massless, minimally coupled scalar, with m = £ = 0. In this case, we
have v = (n—1)/2 and the integral in equation (4.31) does not converge for small |p|. It is
possible to place an infrared cutoff on this integral and obtain a closed-form expression; the
infrared cutoff must then not appear in physical observables (i.e., in any physical observable
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it must be possible to take the limit where the cutoff tends to zero). This issue has been
debated a lot in the literature [106-108], and there exist quantization procedures in closed
de Sitter space where the cutoff does not appear [109]; also the choice of a different vacuum
for the problematic low-momentum modes has been considered [110] (this does not change the
Hadamard character of the resulting state). In the following, all observables that we consider
will only involve mixed second derivatives of the propagator, for which all those procedures
agree. Especially, we can take the massless limit of the massive propagator after taking these
derivatives

V Vi [Glx,x)] = mlig0 V.,V Glx,x)=—i (Z;ab,l’%l (2) + Z;HZ;b,I’n’%l (Z)) , (4.41)

m=£=0

with the appropriate prescription for the Wightman and Feynman functions.

Another special case is the massless, conformally coupled scalar, for which we have v=1/2
independent of the dimension. As remarked at the beginning of this section, in this case the
mode functions are naturally given by the Minkowski mode functions times a power of the
conformal factor, and so it should be clear that also the propagator is given by the Minkowski
one times twice this power of the conformal factor. In flat space, the propagators of the
massless, conformally coupled scalar and the massless, minimally coupled scalar agree and are
just given by the appropriate power of the Minkowski distance (x — x”)?, so that in de Sitter
space the conformal propagator is given by the same power of the de Sitter invariant distance
1—2Z(x,x") = (x—x")?/(2nn’) (4.7). This follows in fact from the general expression (4.32),
(4.33) by setting v =1/2 and we obtain

1,.(2)

2777 o(2m)3

H"2 F(71—2
2

)(1 —7)7. (4.42)

As said before, we will treat the massless gauge vector field as the limit of the massive one.
Unlike the case of the massless, minimally coupled scalar, the mode functions are not infrared
divergent in the massless limit (with a covariant gauge-fixing term present [58]), and thus for
vector fields the massless limit is smooth as in flat space. We then follow the same steps as in
the scalar case, expressing the massive vector action (4.14) in the conformally flat coordinate
system

1 _
L= —Emz(—Hn)Z "(—A2 +A"A,)

1 (4.43)
= 5 (CHm)* " (A" = ")) (A, — BuAo) + F*(3,Ap)) -
The canonical momenta are given by
n® = (=Hn)""(A*—3%,), n°=0, (4.44)

and we see that since the time component is non-dynamical, its canonical momentum vanishes.
Instead the transversality condition (4.17) gives

(—Hn)" 2

AOZ_
m2

AT, (4.45)

We then impose the canonical commutation relations for spatial components

[Ay(z,m), 7P (x', )] =i6L 6" (x — ). (4.46)
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The equations of motion that follow from the Lagrangian (4.43) are coupled. To decouple
them, we separate the field and the canonical momentum into the transverse and longitudinal
parts,

A, =B, +3,A, n*=w*+0%m, (4.47)
with 0%B, = d,@® = 0. After some rearrangements, we obtain for the transverse parts

n—4
B’ — ——B’ — AB, =—(—Hn)?m?B,,
@ n ¢ * * (4.48)

@, = (—Hn)" "B,

where A = 9%0,. The equation for the longitudinal component is intertwined with the temporal
component, but it is possible to obtain a single equation for its conjugate momentum

-2
A S A= —(—Hn)?m?n, (4.49)
n
in terms of which the longitudinal component of the field is given by
—H n—2
A=—%n’. (4.50)
m

After introducing the usual decomposition into modes just as in the case of the scalar field,
which we don’t repeat here for brevity and since it is not enlightening in any way, the two-point
function of the vector field in the Bunch-Davies vacuum state reads

/ 1 / / / /
<0|AO(X)AO(X )|O> = _m2 (Alp(T):T) s L—XT )+ 37737,/1“(7],71 L —T )) >
/ 1 /\Nn—. / —n / /
(0lAg ()4 (x)[0) = —— (H )23, 0y (H* 00 Y71, (n, 0, — ) ,
/ 1 /\n— N2—n / /
(0144 (x)45(xI0) = —— (H*nn')"8,3, (H*n' Y "1,(n, 0,z —2)), 451

3,05 ) )
(014, (x)Ag (x)]0) = (H*nn') (’na/y + Tﬁ) I,(n,n",x—x')

1 /\n—: 8‘18 ’ \2—n
- ﬁ(Hlﬁn ) zTﬂanan' ((H2777] )2 Ip(n’ 77/;33_113/)) >

with the same integral I, (4.33), and the parameter

_32 2
p=\%—%. (4.52)

Inserting the explicit expression for I,, and performing the derivatives (in the case of purely
spatial components, one has to go back to the definition of I, in terms of a Fourier integral and
integrate by parts [57]), we obtain the de Sitter-invariant result

/ 1 / . /
{014 (A (x)]0) = —5 Koy (Z(x, x') — 10 sgn(n — 1)), (4.53)
where we defined

Ko(2) = ((n=DI,(2) + 21(Z)) Z 2 s
+(~(n=DZI(2)+ (1= Z)U2)) Zay - '
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The tensor K,;,(Z) is transverse, which can readily be verified by using the relations (4.11).
In this case there is a subtlety in defining the time-ordered function: since the transversality
condition (4.17) holds as an operator equation, the naive generalization of the scalar defini-
tion (4.40) is not covariant and must be amended by additional local terms (i.e., ~ 6(x — x")).
The divergence of the Feynman propagator then does not vanish (as it does for the Wightman
function), but it is also local. In order to keep the simple transversality condition, one can
quantize the massive theory using a covariant gauge-fixing term 1/(2£)(V,A")? and take the
limit £ — oo after quantization. In this case, the same result (4.53) is obtained [57], and the
only difference between the Feynman and the Wightman function is the appropriate prescrip-
tion. We will therefore drop the corresponding prescription and only display it when it there is
a difference in the treatment between the Wightman function and the time-ordered one.

Recalling the definition of the field strength tensor F,, = V,A, — VA, from this result we can
easily calculate the correlation function of the field strength. Using that I, satisfies

(1—Z2)I"(Z)—nZI/(2) + (vz—@)lv(z) =0 (4.55)

as a consequence of the scalar field equation of motion (4.15), the field strength tensor correla-
tion function has a very simple expression

(O1F oy Foar|0) = 4H 2 (I () Z,0go Zoarp — 11DV Z 0o Zoppe Zoar)) - (4.56)

In this correlation function, we may now take the massless limit, which does not exist for the
two-point function of the vector field (4.53), a fact well known from Minkowski space. In
the massless case, we have p = (n—3)/2 and the field strength correlation function reads
explicitly
2H"*T(n—1) ( n+2 1+z)
O|F yFoug)0) = ———2| ,F | 2,n—1; —=; —= | Z. 1o Z.gs
< | ab cd| ) (47_5)7 F(HT”) [21 2 2 salc’4;d’1b
2(n—1) ( n+4 1+Z) ]
-2 R (3.n; N 2 Zor o Zeg (4.57)
nta 21 2 2 slassblle'“5d’]
ZaeZiaw  ZiaZiple L
2m2(1—2)2  m2(1—2)3

(n—4).

Another method to derive the propagators is by solving the equations (4.18) and (4.20) that
they fulfill. One assumes a de Sitter-invariant vacuum state and looks for solutions to the
homogeneous equation, i.e., outside of coincidence. Of the two possible solutions, one takes
the one which is only singular for light-like related points, which means Z = 1, but regular
for antipodal points, Z = —1. The overall normalization is determined by comparing with
the flat-space limit, and the result is the same as obtained by canonical quantization. For the
scalar propagator, this approach was first used by Candelas and Raine [111], while the vector
propagator was first derived by Allen and Jacobson [75]. However, canonical quantization
has an advantage in as much as it tells us that we do not need to assume the existence of a
de Sitter-invariant vacuum, but that the Bunch-Davies vacuum is the appropriate one which
gives invariant correlation functions.
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4.4. Stress tensors

As we have seen in the expansion of the effective action (3.15), the basic interaction between
matter and gravity occurs through the stress tensor (and the tensor U,;.4). In this section, we
therefore determine the classical expressions for the stress tensor of scalar and vector fields, and
their (dimensionally regularized) one- and two-point functions, as well as expressions for Uy.4.
For the sake of brevity, we restrict ourselves to minimally coupled scalar fields (i.e., £ = 0),
except for the case of the massless, conformally coupled scalar (with & = (n—2)/[4(n—1)]);
however, all calculations can be generalized to the case of general mass and coupling to the
curvature scalar.

For the minimally coupled scalar field, the necessary expansion has the general form (3.11)
with

ab—(v P)(Vyp)— —gab (V) (Vip)— gabm 2¢2,
Uabcd = _E [(vs¢)(vs¢) + m2¢2] (gabgcd _Zga(cgd)b)_ % (v(a(p)gb)(c (vd)(;b) (458)
+ 280 (Vo) (Vad) + 580 (Vad) (V)

while for the massless, conformally coupled scalar field we have

(n—2)
4

2(n=1)Tep =n(V,9) (V$)—=8ap (V' 9) (V) + g H? 9> —(n—2)¢V, V¢ (4.59)

(using the equation of motion (4.15) to simplify the result). In this case, the explicit expression
for U4 is not necessary. Finally, for the (massless) vector field the expansion reads

1
Tab = FaSFbs - Zgamenan

1
_anan (gabgcd - 2ga(cgd)b) .

8Uabcd = 2Fa(ch)b + FaSFbsgcd + chFdsgab + 4Fs(agb)(ch)s - 4
(4.60)

Since the stress tensor involves the product of field operators at the same point, divergences
result when the expectation value is taken. We may regulate those divergences by separating
the points (i.e., take one field at a point x and another at a point x”), calculate the expectation
value in n dimensions and taking the limit as x’ — x. The resulting expression will be finite
for n # 4, but will develop poles as n — 4 which later on have to be subtracted with suitable
counterterms. Let us take the expectation value of the stress tensor for the massless vector field
as a concrete example. In this case, we calculate

<0|Ta,,(x)|o>=},iEL[g'"”’<0|Faf"(x)Fb/n,(x’)|0>—%gab/g’“”g (01F 1 (x)F q(“"”]
_}13[(n 2)(%Ins(z)+1 (Z))Z;az;b’

+ %Hzgab/ (—[(n —5)(n—2)+2(n—3)Z1,(Z) + (n—3) 1 - Z*)I7, (Z))],
4.61)

37



where we used the relations between the parallel propagator and derivatives of Z and their
contractions given in table 4.1. In taking the coincidence limit, which corresponds to Z — 1,
we can replace the hypergeometric functions by their value at 1 by Gauf3’s theorem

I'(c)T'(c—a—b)

OBED = e e =b)

(4.62)

This identity is only valid for R (c —a — b) > 0; however, this is fulfilled in some region of the
complex n plane, and we obtain therefore from equation (4.33)

n—2 ) pi== (= —
Iv(1)=H El—'(l—z) ( +V) ( V)’
(4m)2 2 F(§+v)r'(§—v)
N (4.63)
, H2 o\ T )T (55 - )
nm=——r(-2) =34
2(4m)3 2/ r(3+v)r(3—v)

Furthermore, in this limit we have g,,, — g, and Z,, — 0, so that the end result for the
massless vector field is

H" r'(n)

(0] Tz, (2)|0) = —(n —4)W@gab—>0 (n—4). (4.64)

We see that the regularized expectation value actually vanishes in four dimensions. By the
same procedure we calculate

H" F(n 2)
(0lUqpcq()10) = — 5 [~ =9+ 16)g,p8cq + 2(n* — 9+ 12)go( &y
4
- W (gabgcd _4ga(cgd)b) (n - 4) .
(4.65)
Again, this is already finite in four dimensions.
In the same manner, we obtain for the massive, minimally coupled scalar field
0T (oi0) = (1) T2 T =)
ab\X T (——) 8ab
2t4mt \2) T(5e )T (3
2 2H2
- _m2g, +0((n—4)°) (n—4),
3212(n—4)
P )T (5 ) e
HTI 5 fv T —
0|U, x)|0) = - F(——) 2
< I abcd( )I ) 8(47’[)5 2 (% 1}) (% ) (gabgcd ga(cgd)b)
m?* — 2H>
2(gabgcd 2ga(cgd)b)+0((n_4)0) (Tl _)4)

L L
12872(n—4)

Note that the limit m — O of these expressions is not the correct result for the massless,
minimally coupled scalar field, since a cancellation between terms which diverge like ~ m=2 as

m — 0 and explicit factors of m? takes place [108, 109] (however, the limit is smooth if one
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takes the non-minimally coupled scalar with £ = —m?/(6H?) [109]). We therefore have to
calculate this case separately, giving

H* T(n) 3H*
4(47‘5)%1—‘(%2)gab—)327’:2gab (Tl—)4),
H" T(n)
32(4n)? r(”+2

(01T (x)]0) = (n—2)
(4.67)

(0|Uabcd|0> (n - ) ) (gabgcd - 2ga(z:gd)b) -0 (Tl - 4) .

Lastly, we need these expectation values for the case of the massless, conformally coupled scalar
field. Whatever the explicit expressions are, they will all involve the regularized coincidence
limit of the propagator (or its derivatives); however, for the conformal scalar these are just n-
dependent powers of 1—Z which have vanishing coincidence limit in dimensional regularization.
Therefore, in this case we just have

(0|Tab|0> = <O|Uabcd|0> =0. (468)

This result might seem to be at odds with the known conformal anomaly, explained in section 4.2.
However, since dimensional regularization preserves the classical equations of motion in the
quantum theory, the regularized expectation value of the trace vanishes just like the classical one.
In the maximally symmetric Bunch-Davies vacuum state that we have chosen, the expectation
value of the stress tensor must be proportional to the de Sitter metric and hence is completely
determined by its trace, so it vanishes. The trace anomaly results from the inability to choose a
regularization and renormalization procedure that preserves conformal symmetries in general
(see [112] and references therein); however this does not exclude the possibility that it works
for a specific background. In fact, since (T,;) must be proportional to g,, in a maximally
symmetric vacuum state it can always be forced to vanish by choosing the cosmological constant
appropriately, as we will see later on.

These expectation values generally diverge in four dimensions, and we have to renormalize
them. We therefore expand the gravitational action (3.8, 3.9) in terms of the perturbation h,
using appendix A so that the effective action (3.15) reads

Seilh] = kS [h] + k2 P[R] (4.69)

with

250Th) = = (1= 1)(n— 2K —2 )f V=g d"x+f )/
5 (4.70)
+(n—1)(n—4) (—g(n—S)a+ n(n— 1)/5)H4J hy/—gd'x

the part quadratic in the perturbation S, @ [h] is too long to be given here. Since the renor-
malization of the parameters a and f is determmed in the next section, to renormalize the
expectation value of the stress tensor we only have A and 1/x? at our disposal. In fact, we may
completely null the linear part of the effective action S(E;f) [h] by choosing

_ _ 2 ab _ _
= % +E (T, ("1)3& Bn(n—1)f —2(n—3)a) H*. (4.71)
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Note that it is essential for this procedure to work that (T, b)¢ is proportional to the de Sitter
metric. However, if one considers a different Hadamard state, the divergent part will still be the
same [91, 92], but there will be an additional finite part which may have a different form. Also,
since the background value of the Ricci scalar is given by (n—1)(n—2)H?, this equation actually
gives a definition of the renormalization of the cosmological constant as well as of Newton’s
constant. Of the examples calculated so far, the only divergent stress tensor expectation value
is the one of the massive, minimally coupled scalar field (4.66). We see that the divergent part
naturally separates into two, one proportional to m* and one proportional to m>H?, and by
choosing

A A m*

PR 64n2(n—4)°

" ; (4.72)
1 1 m

—_ _+—’
2 K2 96m2(n—4)

we can absorb all the divergences. This agrees with the well-known calculation by t'Hooft
and Veltman [113] as well as other previous calculations in Minkowski space [114]. Note
also that we did not introduce a renormalization scale at this point; the Hubble constant H
arises naturally as the scale where the theory is renormalized, in the sense that the finite
part of the stress tensor after the above renormalization includes a term In(m/H). It is of
course possible to introduce a different renormalization scale y; in this case we are left with a
scale-dependent cosmological constant A(u) and Newton’s constant in the form 1/x2(u) as
well as a renormalized stress tensor expectation value (T,;)""(u).

Of all the cases we consider, the expectation value of Uy, is only divergent for the massive,
minimally coupled scalar field (4.66), and we see that the divergent part agrees with the
divergent part of the stress tensor expectation value (apart from the different tensor structure).
By expanding the part of the effective action which is quadratic in the perturbation, Sé?f)[h]
(which is conveniently done using the tensor algebra package xAct, see appendix H, using
the expansions from appendix A), we see that these divergences are absorbed as well by the
renormalization of the cosmological constant and Newton’s constant.

4.5. Stress tensor two-point functions

The last correlation function that we need is the (connected) two-point function of the stress
tensor

{Tap () Tergr (") = (01 Tap () Tergr (x")10) = (01 Ta (x)10) (0 Tergr (x")]0) . (4.73)

In the connected correlation function, the divergences that arise from taking fields at the same
spacetime point cancel out, and so it is already finite as long as x and x’ are not lightlike related.
However, in the null separation limit (x — x’)? — 0 the correlation functions still diverge after
smearing with test functions; they are not well-defined distributions in four dimensions. While
the regularized two-point function can be quite easily calculated [115], the separation of these
remaining divergences is in general a hard problem. For the massless, conformally coupled
scalar field this correlation function was renormalized by Campos and Verdaguer [67, 116]
by transforming to flat space, a method that is applicable for any conformal theory. In the
following, I will present a general technique whose only drawback is that it has so far only been

40



formulated for flat space since a generalization to de Sitter space has some technical difficulties.
Afterwards, I explain a different method which works in de Sitter space on the example of the
massless, minimally coupled scalar field.

However, first we need to calculate the regularized two-point function in the various cases.
Using the same point-splitting prescription as in the last section, schematically we have to
calculate correlation functions of the type

im0l (19 ()I0) ~ (0l ()N 01 (NP (II0)]. 474

At the free-field level that we are considering, the first correlation function factorizes per Wick’s
theorem, and by noting that it does not matter if we take the limit y’ — x’ or x’ — y’, this
reduces to

2(01¢ (x) ¢ (x")10) {0l (x ) (x")[0) . (4.75)

From this explicit expression, the assertion made above is clear: as long as x and x’ are not
null separated, this expression is already finite. As an example, let us take again the massless
vector field, where we have

(Tab(x)Tc’d’(x/)> = (0|Fas(x)Fc’tl(X/)|0> <0|Fbs(X)Fd’t’(x/)|0>
+ (0F,* (x)F 41 (x)|0){O|Fys (X)E,* (x")]0)

1 mn t'ro /
— 58ab {O1F™ (X)Fe * (x)IO)O1Fun (x)F (x7)]0) (4.76)

- %gc/d/ (O1F,*(X)FP'Y (x)[0) (0| Fps (x)F gy (x)]0)

1 /Al
+ ggabgc/d/<0|Fm”(X)Fp T (x")]0) {01 Fy (X )F g/ (x7)10) -

We can now insert the explicit expression (4.57) to obtain
5
(Tap () Twar(x)) = D O T (20e, X NTO(Z(x,x) ~i0sgn(n —n')) (477
k=1

with the bitensor set

DT bea(Z) = gap8erar

O T bea(Z2) = H (Z,Z p8erar + 8abZoc Ziar)

O Tpea(Z)=H 2,242 Z.4 (4.78)
O Tepea(2) = 4H* Z 2y o Zoar)

O T e (Z)=2H*Z. g Z.gryp
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and the coefficients

TW(Z) = 5 2 — Z)[4ZI”_3(Z)I,,3(Z) (1— 22)1”2 (Z)]
HS
402 _ _ 2y772 e —
+H*(n*—11n+26—2(5—n)Z )IHT,B(Z) Tomi(1—2) (n—4)
T(z)(Z)z(n—4)H4[ 1’23(z)+421”3(z)1 g(z)+(1 22)1”2 (z)]—>0 (n—4)

TO(2) = 2H4[ A2 (Z2) +4Z1L (2 (Z) + (n =3+ 221 (z)] - ﬁizﬁ (n—4)

T(4)(Z)=H4[ 421;23(Z)+2(n 2— 222)1,13(2)1,13(2)+z(1 Z)I”Z (z)]

H8
ey
8n4(1—2)5

T(S)(Z)—H4[4(n 3+22)1 J(2)—4z(1— Z)I,,S(Z)I’ni(Z)+(1—Z2)2 ”2(2)]

(n—4)

HS
- 8m4(1—2Z)4 (n=4).
4.79)

For the tedious tensor algebra, it is advisable to use the tensor manipulation package xAct, as
detailed in appendix H.

For the time-ordered two-point function, the formula (4.77) holds but with the Feynman
prescription instead of the Wightman one, i.e.,

5
(TTop ()T (X)) = D O T (20, X NTH(Z(x, x) —i0) (4.80)

k=1

with the same coefficients 7% from equation (4.79). In this case, one can see from the
explicit expressions that they are too singular to be integrable in four dimensions, and hence
do not give a well-defined distribution. One might wonder if for the time-ordered two-point
function additional local terms ~ &(x, x”) are obtained when the derivatives act on the Feynman
propagator of the respective field, like in equation (4.18). However, since a priori the time-
ordered stress tensor correlation function is not well defined, there is no reason to keep those
local terms, and we will see later on that our choice leads to the correct well-known counterterms
needed for renormalization.

The two-point function of the stress tensor for the massive, minimally coupled scalar field has
the same general expression (4.77), but with the different coefficients
1
TO(Z) = EH“(n —5+(n—1)22)1%(2) + m*12(2)
+m*H?[(n—1ZI(Z)1,(Z) + (1 —Z2)1(2)],
TA(2)=H1'%(2) - H*(n—2)ZI(2)I)(2) — m*H* (1(2I(2) + I'X(2)) ,
TO(Z) =2H*T/%(2),
TW(2) = H'1,()1(2),
TO(Z) =H*T%(2).

(4.81)
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As in the case of the stress tensor expectation value, the expression for the massless, minimally
coupled scalar field cannot be obtained by taking the limit m — 0 of this result, since there is a
cancellation between explicit powers of m? and the divergence 1/m?in I, [115]. The correct
result for the massless, minimally coupled case is given by

TO(Z) = S =D + (1= D22 ()~ 212 (D) + En))
2 5 n

CNHE T, HE (5-2)A+2)

o )(471)51“(%)2['%1(2) 12874 (1—2) (n—4)

H™? T(n) ,

T@(2)=H*1%(2)-HY(n—2)ZI, (2. (2) — —— 12,(2)
= = 5 (4m)2 1"(%) =
B H® 5-Z (4.82)
ganii—zp 7Y
H® (3—2)?
3) _ 47112 N N
TOZ) =211 (2) - o =27 (n— 4)

H® (2—-2)3-2)

D(2)=H"T., (DI, (Z
TOD =L DL~ = (=)
H® (2—2)?
O)z)=H*"1"%,(Z
TOD =HIL@) gy (14,
and we have simplified the expressions using the relation
n—2
(=212, (2)—nzr, () = 2 T (4.83)
= = (4m)2 1"(%)
which in the massless case replaces (4.55).
Lastly, for the conformally coupled scalar field we obtain
H?" n
V(z =——r2(—) 1-2)™"
V@) 4(n—1)(2m)n 2 ( )
TA(Z)=0
H*'n n
Nz)= —rz(—) 1—z)™"2
TH@) 4(n—1)(2m)" \2 ( ) (4.84)
H?"n n
D7) = 1"2(—) 1— 7)1
TH@) 8(n—1)(2m)n 2 ( )
H»n n
Sz :—rz(—) 1-2)™,
TO@ 8(n—1)(2m)r \2 ( )

This expression is especially simple, consisting of single powers of 1 —Z. In fact, up to an
overall constant the two-point function of the stress tensor is fixed by conformal invariance for
any conformal theory, and has been calculated for a variety of cases by Osborn and collaborat-
ors [117, 118]. Since the massless vector field is conformally invariant in four dimensions, its
stress tensor two-point function agrees with the above for n = 4, up to an overall numerical
factor 12.
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A check on these results is provided by the conservation of the stress tensor V,T% = 0,
which also applies to its correlation functions (in the case of time-ordered functions, there are
additional local terms ~ &(x, x”)). By demanding that V*(T,;(x)T.4(x")) = 0 and using the
decomposition (4.77), we obtain

TWN(Z)=—(n+4—(n+2)*Z2)TH(Z)—2n+5)(1—ZHZTH'(2)+ (1 - 22)*TW"(2)
+(n+1)2ZTOZ) = ((n+2)—(2n+3)22) T (2)—z(1—z)TO"(2),

TOZ)=(+2)ZTHZ) -1 -Z2)TH2Z)+(n+ 1T 2)+ 2T(2),

(1-Z2HT2)—(n+3)2T(2) = (n+2)TH(Z) - (n+2)2TH'(2)

+(1=Z)TYZ)=(n+2)TS(2)—2zT"(2).
(4.85)

The relations are fulfilled in each case, as one can check using the equality (4.55), and we
see that there are only two independent functions of Z (and two integration constants) which
determine the complete stress tensor two-point function.

4.6. Renormalizing stress tensor correlation functions

As can be seen from the explicit expressions in the last section, the (time-ordered) two-point
function of the stress tensor is too singular to be a well-defined distribution in four dimensions,
and needs to be renormalized. The leading singularity is of the same strength in all the cases,
being proportional to (1 — Z)™" which is more singular than the leading singularity in the
product of two propagators that is only proportional to (1 — Z)?™. This is of course due to the
fact that we took derivatives to arrive at the final expressions, and to reduce the strength of
the singularity we have to extract those derivatives again, in the form of some fourth-order
differential operator acting on a kernel. Unfortunately, this procedure is in general hard to
implement, but there is a method that works at least in flat space [58].

Let us take the massive, minimally coupled scalar field as an example. The flat space expressions
for the stress tensor two-point function can be obtained by taking H — 0. The limit of Z is
given by (4.12), and the limit of I,(Z) was calculated in (4.38). Taking the limit of the
expressions (4.78) and (4.81), the stress tensor two-point function then reads

(Tab(x)Tc,d,(O)) = SnH(C,T)d,)bI;Z(xz) + 32x(an;b)(clxd/)l;(xz)l;/(xz) + 32xaxbxclxd/1;’2(x2)
+4(x xXpNorg + nabxclxd,)[Z(n —2)I/ () (x*)—m? (Iv(xz)I;/(x2) + I’f(xz)) ]
+ nabnc/d/[Z(nz —n—AI7(x?*) + 2m*[—(n— DI, (X, (x?) + 212 (x*) ] + m4I$(x2)] ,
(4.86)

where I, now denotes its flat-space limit (4.38), and we have set x” = 0, which can be done
without loss of generality because of the Poincaré invariance of the correlation function. In
this expression, the Wightman prescription x — x +i0sgn ¢t is implicitly understood; the time-
ordered correlation function has the same form but with the prescription x — x +i0. Each
function I,(x?) has a Mellin-Barnes representation (4.37), but it is also possible to obtain a
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single Mellin-Barnes representation for the whole stress tensor correlation function, which
reads

1 F(n—z)rZ(%—z)F(—z)T (z)E
4z+2pn T(n+2—2z) abe'd o i

(Tap(X)Tera(0)) = f(mz)z(xz)z_” (4.87)
C

with

Topea(2) =2 [nabnczd/(nz —n—4—-2z(2n—1)+42%) + 4na(c,nd,)b] (n+1—22)(n—22)

X(aMb)(cHXd")
2

+16 (n—2)(n—22)(n+1—22)

NapXc Xqr + XaXpMNerar (
X2

%(n +1—2)(n—2)(n—22)?

—4

n—z)(n—2z)(n—2—22)(n+1—22)

+8
(4.88)

(see appendix G for details). Although this result looks complicated, it is quite simple and has
a very nice property: the integrand is conserved, independently of the value of z

3 [ (A " Tpea ()] =0. (4.89)

Since this is the most important property of a stress tensor, one may expect that renormalization
works at the level of the integrand, which is a simple power of x2.

As said before, we have to extract differential operators before we can renormalize, and
the exact form of those operators can be determined by demanding automatic conservation,
independently of the kernel on which they are acting. Furthermore, we have seen in the
previous section that there are only two independent functions determining the stress tensor
two-point function. We therefore consider the operators

Sab = 8,0, —Map 0, (4.90)

which are transverse 9“S,;, = 0 when acting on any tensor T,,,...,,. An ansatz for the stress tensor
two-point function which respects the symmetries is then given by

(Tab(x)Tc’d’(o» = 2(Sa(C,Sd/)b — SabSC/d/)f(xz) + SabSC/d/ g(Xz) B (491)

where the functions f and g (the kernels) are unconstrained. To determine them, we make a
Mellin-Barnes ansatz similar to the one of the stress tensor correlation function (4.87)

1 T(n—2)?(%—2)I(-2)
4z+2mn I(n+2—2%)

Fx?) = f (m2 (x2)2n PO 4o
C

and analogously for g(x?). By comparing our ansatz (4.91) with the result (4.87), we obtain
five relations for F(z) and G(z) which are solved by

Fz) = 2z—n
z T 2(z+2—-n)z+1—n)(2z+2—n)
) (4.93)
(n—22)
G(z) =

T 2z+2—n)(z+1-n)’
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so that we obtain

(Tab(x)Tc’d’(O» = (Sa(c’Sd’)b - SabSc’d’) J (m2)z(x2)z+2—n
C

F(n—Z—z)F(%—l—z)F(g + l—z) I'(—2) dg
% al

4.94
22+4mnl(n + 2 — 22) 2mi ( )
2(n
S5 (mz)Z(xz)z+2—nF(n_2_Z)F (5+1—2)F(—z) dz ‘
avTe 2283l (n + 2 — 2z) 2mi
C

The contour runs left of Re z = 0, where the first pole is encountered, and we could in principle
close it to the right to obtain a closed-form expression for the stress tensor two-point function
in terms of higher hypergeometric functions. However, the residue of this first pole is (in
four dimensions) proportional to (x2)~2 which is still not a well-defined distribution, while
the residues of all other poles give rise to well-defined distributions (with the corresponding
Wightman or Feynman prescription). We therefore lift the contour over this pole (see figure 4.1)

Figure 4.1.: Poles in the first Mellin-Barnes integral appearing in the stress tensor two-point function.
There are simple poles at z = k (black dots), at 2 = n—2+ k (white dots) and at z = % —1+k
(black squares) and double poles at z = 5 + 1 + k (white squares), shown here for n = 3.75.
The original contour C runs left of all poles. We lift it over the pole at z = O to obtain the
contour C* and the residue of this pole (shown in gray). In the remaining integral over C*,
we can take the limit n — 4, and the poles flow together (shaded circles).

to extract the problematic term and take the limit n — 4 in the remaining integral, obtaining
I(n—2)r(2)r(sz+1)
16(n—2)n"T(n+2)

+ (Sa(c'sd’)b - SabSc’d’) J (mZ)Z(XZ)z—Z
C+

(Tap(x)Tera(0)) =

(284 Saryp + (* —2n—2)8 S ) (x2)* ™

I'(—2)[(1—2)T(2—2)['(3—2) d_z
22:+474T(6 — 22) 27i

I(—2)r2—2)*(3—2) dz_
2243 74T(6—22)  2mi

+ SapSed f(mZ)Z(XZ)Z—Z
C*
(4.95)
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The term (x%)?>™ can now be renormalized. For this, we first exhibit an explicit factor of

(n—4)7! by extracting a d’Alembertian operator,
1

2\2—n __ 2\3—n
(x*)y "= —2(n—3)(n—4) O(x)”™". (4.96)

2—n . . . .
We then add and subtract u"~*(x2)= with an arbitrary mass scale u (the renormalization
scale) which is necessary to have a dimensionally correct result, and partially take the limit

n— 4 to get
2y2n _ 1 (In(u’x?) prt 258
(x*) "= 4D( 2 +2(n—3)(n—4)D(x )7 . (4.97)

The first term is a well-defined distribution in four dimensions, while the second one is propor-
tional to the massless scalar propagator (4.39). Since the Wightman function G* fulfills the
homogeneous Klein-Gordon equation OG " (x, x") = 0, the second term vanishes in this case.
For the Feynman propagator G¥, however, we get a delta distribution (4.18). Taking the explicit
form of the Feynman propagator (4.39), for the Feynman prescription the second term thus
reduces to

2
7:2(—4—2+y+1n(7t,u2))15“(x—x’). (4.98)
n—
Since the original term (x2)?™™" is well defined whenever one smears it with a test function that
has support only off the diagonal x? = 0, this formula effects the extension to a distribution that
is also well defined for test functions which have support on the diagonal, and the procedure is
known as dimensional regularization and renormalization in coordinate space [119-121].

Putting everything together, the two-point function of the stress tensor can be decomposed into
a regular and a singular part, viz.

(T Tap(xX)Torqr(0)) = i{Top Tergr) ™8 () + (Tgp Torgr) " (x* +10)
(Tap () Torgr(0)) = (Typ Tog )™ (x* +i0sgn t) 4.99)
(Toar(0) Ty (x)) = (Tqp Terqr )" (x* —i0sgn t)
(T Ty ()T (0)) = —i{Tup Tea )™ () + (T T )" (x* —10) .
In this decomposition, the regular part is given by (4.95) with the power (x%)?™" replaced by

the first term in equation (4.97). To simplify this expression further, we extract also from the
Mellin-Barnes integral a d’Alembertian operator

1
¥ r= ———no(x?)*! 4.100
(7 = gy, 06 (4.100)
and shift the contour back over z = 0, adding the corresponding residue (which is now a well
defined distribution). This gives
M(—2)f(1—2) dz

Ty Torg Y (%) = (SyorS gy — SapSeg )T | (M2 (x2) 1 -
(Tup Torar) " (x*) = (SqerSaryp — SabSerar) (m*)(x*) 204877:%1“(%—z)27“

251 r?(— z)F(3 z) dz
1024727 (4 —2) 2mi

+ SapSed DJ(mz)"’(x (4.101)
C

1
192074

uw 1
In (—) (Sa(c’sd’)b + 3SabSC/d/) O (—2) .
m X
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The singular part, which only appears for the time-ordered and anti-time-ordered functions,
contains everything proportional to 6"(x — x”) and reads

in; 1 2 AU‘Z n
(Tab Tc’d/>s g(X) = 96072 (n—_4 +r+ In (4—/“:)) (Sa(C/Sd/)b + SSabSc'd') 0] (X) . (4.102)

It can be shown [58] that the regular part coincides with earlier results [114, 122, 123]. Note
that the massless limit is finite for the regular part thanks to the last line in (4.101), which
cancels the potential logarithmic divergence as m — 0.

In the integral
” R () T () Torgr () )Y () d" A", (4.103)

we may now integrate these differential operators by parts and simplify the resulting expressions
using the curvature tensor expansions from appendix A, specialized to flat space. This results
in

f f () [SapSeaf (x =x W) A7 () d"x d"x’ = f f RGOS ((e=xPIRD(x) d"x d"x’

(4.104)
and

Jf () [Su(eSanpf ((x —x )R (x") d"x d"x
(4.105)
— nam’nbn’ncp/ndq/ JZI» R(l)ade (x)f((x _ x/)Z)RS’il)nlplq/(x/) dx dx’ .

That is, the integral (4.103) with the appropriate stress tensor two-point function (4.99) can be
written in a manifestly gauge-invariant form involving the linearized curvature tensors, making
explicit a theorem by Wald [124]. Using further integration by parts, we can bring the integral
involving the singular part (T, T, 4/)*"8(x) into the form

1 2 > < < <) g "
1440722 (_n ) +r+ ln(z—n))J (2R(1)abcdR(1)abcd _ 2R(1)abR(1)ab + 5R(1)2) d"x, (4.106)

where the divergences can be cancelled by choosing the bare coefficients @ and f in the effective
action (3.15, 3.9) appropriately,

1 2 u?
=a(u)— +y+In| =
= o)~ 3eaom (n—4 ’ n(4n))

_ Lo (2
P =P~ 5304 (n—4+Y+ln(4n))'

These counterterms coincide also with well-known results [113].

(4.107)

In de Sitter space, the above construction should in principle work in exactly the same way.
The practical implementation fails however in two parts: first, it seems very difficult to obtain
a single Mellin-Barnes representation for the stress tensor two-point function a la (4.87) due to
a lack of a generalization of Barnes’ lemma (G.55) for a higher number of T functions in the
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integrand (in flat space, the propagator representation (4.37) only involves two I' functions,
while in de Sitter we need four (4.35)). Second, it is not clear how the generalization of
the differential operators (4.90) and therefore the ansatz (4.91) can be done; while in flat
space S,, can be defined alternatively by R = xS ,h®® + O(Kz) (see appendix A) and the
term S,;S.¢ has a straightforward generalization, the mixed term S,(./S4;, is not as easy to
generalize — because covariant derivatives do not commute, it fails to be transverse. As a
replacement, a differential operator obtained by perturbatively expanding the Weyl tensor has
been proposed [46, 117, 118], but it is not yet clear if this works in all cases. Nevertheless, we
can apply the general idea in specific cases.

Since the massless, conformally coupled scalar field can be treated by flat-space methods after
a conformal transformation, we will explain the method for the case of the massless, minimally
coupled scalar field. In this case, we first extract the most singular terms from the stress tensor
two-point function (4.82), namely those which would not be well defined in four dimensions.
For the other terms, we may already take the limit n — 4, and it results

TW(Z) = l1"2 (E) -l(nz —n—4)(1-2)"+ 1(n3 —5n% +4n—4)(1—2z)™"*!
4(2mn \2/|2 4
Lt _gn 4 19n% — _gymzy g Tl —g]
+16(n 8n°+19n°—28n+8)(1—2Z) +8n(n—2)(1 Z)
H?" n\[ 1 1
(2) — - 2= _ = _ _ —n—1_ (.3 __ 2 _ __ 7\
TO@)= g (5)] ~3nn=20 =27~ 2" ~5n* + 6n—4)(1 - 2)

1 -1 .
(P =7+ 12n—12)n(1—Z) " —2 (1 — z)—z—l]
16 n—2

TO(Z) = I (12) [2(1 —Z) "2 (n—2)1—2)" i(n2 —3n—-2)(1 —z)—”]

4(2m)n 2
@ H™ n n+2 N  en
T (z)_4(2n)nr(2)r( . )[(1 2"+ S (- 1(1-2)
1 —n+ _1 —%—
+§(n+1)(n—2)(1—Z) 1—2m(1—z) 1]

2n

TO(Z) = %FZ (g) [(1 —Z) "+ g(l —z)y %(n +1)n(1—2z) "+
n—1 _n
_4—n(n _2)(1 —7Z): ] . (4.108)

In flat space, we have seen that the integral involving the stress tensor two-point function in
the effective action can be written in a manifestly gauge-invariant form involving the linearized
Riemann tensor, and so it seems that also in curved spacetime we should be able to write the
integral

JJ h“b(x)<Tab(x)TC/d/(x’)>hC/d/(x’)\/ —gd'x’y/—gd"x (4.109)
in the form

ff RWb (K, P (x, x’)R(l)m/”/p,q,(x’)\/ —gd"x'/—gd"x (4.110)

with a kernel K that needs to be determined. Furthermore, since the stress tensor correlation
function is a maximally symmetric bitensor, it is reasonable to suppose that also K is such a
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bitensor. A complete set of maximally symmetric bitensors that, when antisymmetrized in the
index pairs ab, cd, m’'n’ and p’q’, respects the symmetries of the Riemann tensor is given by

DR peamnpq (Z) = 8ac8ba&mp &y

OR apeamnpq(Z) = H > 8ac 8y (8baZiw Zig + Zp Z:a8wqr)

OR peamnpq(2) = H *8aclmp Zop ZiaZw Zig

DR apeammp(Z) = 4H *Sac8mp Z.s Z.ayw Zogr)

OR apeammpq(Z) = 2H *8uc 8y Zopw Zogra (4.111)
(6)Rﬂbcdm'n’p’q’(z) =2H"° (gacZ;m’Z;p' + Z;aZ;cgm’p') ZpwZiqd
(7)Rﬂbcdm’n’P’q’(Z) = 2H782;aZ;CZ;m’Z;p’Z;b(n’Z;q’)d

ORavednnpy (2) = 8H *ZuZym Zip Zintw Zagr

OR peammpa(Z) = 4H " Z o Zpie Zipiw Zigra -

Using appendix A, the linearized Riemann tensor in de Sitter spacetime reads

5 b
RO = —2(H25[ + Vv ) n)

g (4.112)

and involves two derivatives. If each derivative acts on a coefficient function which multiplies
the bitensors (4.111), it lowers the powers of (1 — Z) that appear by 4, and since the most
divergent power appearing in the stress tensor two-point function (4.108) is (1 —2)™2 our
unknown coefficient functions should involve (1—Z)?>™ and lesser powers. We make therefore
the ansatz

Kabcdm’n'p’q’ (Z) =

H2n—4 i
(O3 2)
abcdm/n’p’q’
8(2m)n &

X (ak(l —ZP T+ B(1—Z) " + 27,

1-2)*"—(1—-2z):
( )4_; ) +5k)

(4.113)

with unknown coefficients ay, B, vr and 6. Integrating by parts in equation (4.110), we
can then determine the coefficients by comparison with the result (4.108), and the outcome is
given in table 4.2. Since there are nine bitensors in K (4.113) but only five bitensors in the
stress tensor two-point function (4.77), there is a large freedom in choosing those coefficients
(namely, terms which upon integration by parts vanish identically), and we have taken a choice
where as many coefficients as possible are zero.

The only power of 1 — Z that needs to be renormalized is (1 — Z)*™". We proceed as in flat
space, extracting first a d’Alembertian operator

1-2)"= m(m—zﬁ(n—s))u—zf'—", (4.114)

and then adding and subtracting (1 —Z )? to obtain

1 )111(1—2) 1
+

_7\2—n _ [
1-2) —(1 22 0) T1-2  HAn—-3)n—4)

(0—2H*(n—3))(1-2)7", (4.115)
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.
—_
)
w
N
wul
T
")
No)

8 29 19 8 1

a4 ———(n—4) 0 0 0 —-Z+—(m-4 0 =

15 450 15 ' 225 5

B 44 227 48 299 _74 o 1

k 25 50 5 50 25 5

9

i 3 -5 0 0 -3 0 0
589 12 387

5, 2= 0 0o -—-= =7 0 0
150 5 75

Table 4.2.: Coefficients of powers of (1 — Z) in the kernel K (4.113). Since there is considerable freedom
in choosing them, we have taken a choice where as many coefficients as possible vanish. Note
that all coefficients may actually be calculated as exact functions of n, but we only give the
(sufficient) expansion to order (n —4)! (for a;, as and a,) or (n —4)° (all other coefficients).

As in flat space, the second term gives a 6 distribution only for the Feynman prescription, as
one can see from the equation of motion (4.15) for the massless, conformally coupled scalar
field

(D — #Hz) GF(x,x")=68(x,x") (4.116)

together with the explicit form for its propagator (4.42). In total, we have

_ 1 In(1—-2) 1

1-Z)P* "= 1——1:1) —

( ) ( 2H?2 1-z  2(1-2)

+ﬁ( 2
H4 \n—4

4.117)

OM(x—x")
—2+y—2InH+In2+Inn |i———,
v—8
where the local term ~ §"(x — x”) is absent for the Wightman prescription. Note that as for
the stress tensor expectation value, in this case there was no need to explicitly introduce a
renormalization scale u for dimensional reasons since Z is dimensionless; the Hubble constant
H naturally arises as the scale where the theory is renormalized. Of course, one can easily
introduce a different renormalization scale u.

As in flat space (4.99), we can split the regularized expression into a renormalized, finite term
and a singular part. The singular part of the integral (4.110) is given by

1 2 Hz 5(1)ab B(1)m'n’ /
1327r2 n_4—2+y+ln e R «d(X)R (X))

Ny v/
X Z o OR 4, PU(Z) 5(x—‘/__gx)\/—gd”x’\/—gd"x.

k=1,5,9

(4.118)

We now insert the bitensors ®R from equation (4.111) and the coefficients a; from table 4.2,
note that in the coincidence limit we have Z,,;,, — H 2g_, and obtain after some algebraic
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manipulations (taking advantage of the symmetries of the Riemann tensor)

1 2 H? o 16 U
i4807‘t2 (n_4 -2 +y+1n(%))J [9RadeRabcd + (—38 + E(n—4))RabRab

+ (8— %(n—4))}~22 - 9?6(n—4)H2(R—6H2)]\/—_gd”x.

(4.119)

This is not yet in the form of the counterterms in S (3.9). To bring it into the appropriate
form, we first use the fact that we can replace ,/—g by its perturbed value since our original
expression (4.110) was already of second order in the perturbation. Then we use the identity

J (RadeRabcd _4RabRab +R2) '\/__gdnx
. (4.120)
—2H*(n—4)(n— B)J (R— E(n —2)(n— 1)H2) v/—gd"x = const. + O(K3) R

which in four dimensions reduces to the Gau3-Bonnet identity (3.10) and obtain

it (2 opyim(E [2(1- 0= 9) (B R~ FRe)
144072 \ n—4 27 15 abed ab
5

8 8(n—4)H4]\/—§d”x.

11 ) <
+5(1 + —(n—4))R2——(n—4)H2R——
30 5 5

(4.121)

The counterterms we need to cancel these divergences are exactly the same as in flat space
(4.107), but here we take the choice of an additional finite renormalization to also remove
the finite parts. The terms proportional to R and the constant term do not receive additional
divergent contributions, so that the renormalization of Newton’s constant and the cosmological
constant is still determined by (4.72); however, we can add to those relations the finite renor-
malizations needed to get rid of the above finite parts. To switch from the renormalization at
the scale H to a different scale u, we just add In(u/H) to the regular part and subtract it from
the singular part. The renormalized kernel K™" is then given by

HY < 1 \In((Q-2)?/H?)
ren — E (k) -
Kabeamnya 2 1) = g mya 24 Raveanya (2) [a" (1 2H2 D) 1-7

+(p-ga)a-2 +rna-2)+5],

(4.122)
with the coefficients from table 4.2.
This method works in practice for stress tensor correlation functions which have a simple form
in four dimensions, so that the number of terms in an expansion around the most singular
terms as in (4.108) is manageable. However, there is no reason to suspect it does not work in

principle for all stress tensor two-point functions.

With the calculation of these expectation values, the effective action (3.15) is completely
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determined, and the renormalized effective action reads

eff K2( )

J(R 2A(u)v/—gd*x + = a(u) f (RR ypeqg —R™®Ryp ) v/—g d*x
+ ﬁ(u)J R*/—gd*x + EK(M)J R (T,p) " () /—g d*x
+ Kz(.u) J habhed (Uabcd>ren(u’)\/__gd4x

i ~ ! 7 ~ Y
+ gkz(u) ” RM L OK™ 4 P (2, x), WRI™™ L (x) 4/ —g d¥x /=g d¥x.
(4.123)

Note that all time integrations in this effective action run over the CTP contour 3.1; alternatively
one can split the contour. Taking the last term as an example, this reads with the proper
prescriptions for the kernel K™

+ Jj R(1)+abcd (X)Krenabcdm/n/p’q’(z —io, M)R(1)+m’n’p/q/(x/) /_g d'x /_g dnx’
- J J RMO=ab (K™ 1 Y (Z —i05gn(n — '), IRDT™™ | (x")4/—g d"x /=g d"x’
- ff RO*Fb (K™ 4P (Z +i0sgn(n — 1), u)fl(l)_m/”/p/ql(x’) V—gd'x+/—gd"x’

+ ” RO (K™ 3 P9 (Z 40, p)RD™™ o (x') 4/ =g d"x /=g d"x,
4.124)

where now all time integrations extend over —oco <7 < 0.
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Metric perturbations

He had hardly started, however, before he realized the difficulty which faced him. In his eagerness
he had wandered far past the ravines which were known to him, and it was no easy matter to pick
out the path which he had taken.

— Sir Arthur Conan Doyle, A study in scarlet

At first sight, a good seems to be a self-evident, trivial thing. Its analysis yields that it is a very
intricate thing, full of metaphysical pernicketinesses and theological quirks.
(Eine Ware scheint auf den ersten Blick ein selbstverstdndliches, triviales Ding. IThre Analyse ergibt,
dafs sie ein sehr vertracktes Ding ist, voll metaphysischer Spitzfindigkeit und theologischer
Mucken.)

— Karl Marx, Capital






5 Effective field equations and the stability of
de Sitter space

5.1. The semiclassical Einstein equation

The semiclassical Einstein equation which describes the backreaction of the matter fields on the
background can be obtained by varying the renormalized effective action (4.123) with respect
to the perturbation h,; and setting it to zero afterwards. We first define the tensors A,; and
B, by the variations

9]
Aab = WJ‘ CadeCabcd vV —E& d*x = _4v(mvn)cmanb - 2Rmncmanb
4 1 2 1
= _4Rmananb + §RRab + gameann - ggasz - ZDRab + §vava + ggab DR, (51)
9] 1
By = WAl f R*y/—gd*x = Egasz —2RR,;, +2V,V,R—2g,, OR.

Using the fact that the first term in equation (3.9) reduces to the square of the Weyl tensor in
four dimensions plus a multiple of the Euler density (3.10) which vanishes under variation, the
semiclassical Einstein equations read

Kz](-‘u) ab ’i\z((‘l;)) 8ab = a(‘u)Aab + ﬁ(nu‘)Bab + %(Tab)ren(u) . (5.2)

Since the Bunch-Davies vacuum which we chose as the state for the scalar fields gives rise
to a de Sitter-invariant stress tensor expectation value as calculated in the last section, the
background is still a de Sitter space, but with a quantum-corrected cosmological constant.
On this de Sitter background, the tensors A,; and B,; vanish, and the semiclassical Einstein
equation then gives the relation between the cosmological constant A and the inverse de Sitter
radius H

1
A(u)=3H*+ gxz(u)g“b (Tap)™"(W). (5.3)

This relation only depends on the matter field content of the theory and is independent of the
unknown parameters a(u) and (u), so that it is an unambiguous prediction of low-energy
effective quantum gravity.

5.2. Equations for metric perturbations

The equations for the perturbations h,; can be obtained by the same variation. When one splits
the CTP contour, it is necessary to take a variational derivative with respect to the + fields only,
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and set afterwards h, =h_, = h,,. In the other case, it is still useful to split the CTP contour
after variation to exhibit clearly the causal structure of the resulting equations. Of course, in
both cases the same result is obtained, and the only difference to an in-out treatment is that
we have to take the difference between the kernels K™" (4.122) with the Feynman and the
negative Wightman prescription, instead of only the Feynman one. After taking into account
the semiclassical background (5.3), these equations read

Lé(l)b(x) — a(u)A(l)b(x) + ﬁ(u)é(l)b()c) + Zthng(Uascd>ren(x,M)
KZ(M) a a a

- % J[H25; + V4V | (K™ (Z(x, ') — 10, 1) — K™(Z(x, x') +i05gn(n — 1)) fge1 P

X R(l)mln/p/q/(xl)'\/__gd4x/ N
5.4

with the time integration ranging over —oo < 1 < 0. They are strictly causal, since the
integral is constrained to the past lightcone of the point x. If x’ and x are timelike related,
the difference between the kernels K" vanishes if x’ is to the future of x, and if x’ and x are
spacelike related the prescription is not necessary to define a distribution as one can see from
the explicit form (4.122), so that the integrand also vanishes. Furthermore, these equations
are of higher than second order, and so would need more initial conditions when taken at face
value. In this case, they would admit so-called runaway solutions which grow very quickly, on
a timescale of order 1/x2. These solutions are therefore outside of the validity of the effective
field theory approach, where corrections to the lowest-order solutions must be small, and
it is now generally accepted that early results based on such solutions [125-128] must be
regarded as unphysical. In order to eliminate these unphysical solutions, there are several
approaches. One could, for instance, simply calculate all solutions and then simply disregard
all that show this unstable behaviour [129]. However, solving the full equations is hard and
in many cases simply impossible. Another possibility would be a perturbative development
of the solution hy, = hi%) + thilb). The lowest order equation is then solved for hg? , and

the result is treated as a source term in the equation for hfllb). However, in many situations
the real expansion parameter is not the small parameter (in this case k2), but this quantity
multiplied by some characteristic scale of the problem such as the total time. The perturbative
expansion then ceases to be valid when this product grows, so that it may fail to capture the
correct long-time behaviour due to the appearance of these so-called secular terms. A method
with overcomes this limitation is the order reduction method, which transforms the original
higher-order equation into one that is valid up to the same order in the perturbative parameter,
but which does not contain higher-derivative terms. Solutions of the order-reduced equation
are then taken as exact (i.e., without a further expansion in the perturbative parameter). They
agree locally with the perturbative solutions constructed around any point in time, but provide
a long-time interpolation between all of them, so that long-time phenomena can be studied.
This is especially important when corrections are locally small, but can build up over time and
give rise to large accumulated effects. Examples of such situations are given by the circular
motion of an electric charge in a uniform magnetic field, where the continuous emission of
electromagnetic radiation slowly decreases its energy and thus the radius of its orbit, or an
evaporating black hole which slowly decreases its mass because of the continuous emission
of Hawking radiation. Order reduction has been applied to problems of this type [130-133],
including calculations in semiclassical gravity [43, 134]. One should take into account that
sometimes order reduction cannot be applied in a straightforward way [43], however, it is
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perfectly viable in our case.

The lowest order term of equation (5.4) reads
GWi(x) = 0(x?), (5.5)

and we may substitute this equation on the right-hand side of (5.4) to obtain an equivalent
equation which is valid to the same order in k2. The explicit expressions (5.1) show that
the tensors A(alb) and BS)) all involve the Ricci tensor or scalar, and so are of higher order
in k2. Moreover, all terms in the kernel K™ which involve a metric, the terms ¥R for
k=1,...,5(4.111), contract the linearized Riemann tensor in the integral to a linearized Ricci
tensor which thus also is of higher order in x2. Since for the massless, minimally coupled scalar
for which we calculated the kernel K™" explicitly in the last section only the term involving
OR is non-vanishing, let us focus on this term (for the others, a similar analysis can be done).
Let us further assume for a moment that the coefficient in the renormalized kernel K™" were
a simple function f(Z) as opposed to a genuine distribution. In this case, we can insert the
explicit expression from equation (4.111) into the integral and perform the covariant derivatives
to obtain (using the contractions for covariant derivatives of Z (4.11) and omitting overall
constant factors)

J Zpn 2 (2,27 ¢/ (2) — H?60, Zf'(2)) RO | (x') /=g d*x’ (5.6)

with
g(Z):J(15f(Z)+9Zf’(Z)+sz”(Z))dZ. (5.7)

We now write Z.,,¢'(Z) = V,,g(Z) and integrate by parts, which leads to
HZJ Zop 29 87, 2[g(2) — f/(Z) RO 0 (x') /=g A’
—H? J Zopw 2929 82, g(Z)RO™™ |, (x') /=g d*x’ (5.8)
— J Zp 239 230 g(Z)V, RO™™ () /=g d*x’ .

The terms involving 5‘;:, contract the linearized Riemann tensor into a linearized Ricci tensor,
which is of higher order in k? and can be neglected. For the last term, we use the second
Bianchi identity

VisRap® =0 (5.9)

can be contracted to give

VnR™ g = 2V, R, (5.10)
To linear order in the perturbation h,;, the covariant derivative can be taken to be the back-
ground derivative V, and since the background Riemann tensor (4.4) has vanishing covariant
derivative, we conclude that the identity is applicable to the last term in the integral (5.8).

Therefore, also this term is of higher order when we use order reduction.

However, in our case the kernel K™" is a genuine distribution, and this procedure is not
directly applicable. What is shows instead is that non-local terms in K™" do not contribute
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in equation (5.4) when we use order reduction, but there are local terms ~ §%(x — x’) which
remain. The correct extraction of those local terms is difficult and can be best performed by
calculating the spatial Fourier transform of the kernel K™".

The same order reduction procedure can of course be applied to the case of other fields, for
which we did not calculate the kernel K™". However, it should be given by the same general
form, i.e., a sum of the nine bitensors (4.111) with coefficients which are distributions of Z,
and so also only the local terms in this coefficients contribute.

5.2.1. The massless, conformally coupled scalar

Since the calculation of the effective action for the massless, conformally coupled scalar field
by Campos and Verdaguer [67, 116] was done using a conformal transformation to flat space,
it is easy to perform a spatial Fourier transform on the corresponding kernels. In this case, it
turns out that also for the metric perturbations it is easier to work in the conformally related
almost flat spacetime with metric g,;, defined by

- 1 R 1 A
8ab = &ap T Khab = (_Hn)z 8ab = (—H”f))z (nab + Khab) > (511)

and all tensors with a hat refer to this metric. It is important to keep in mind that these tensors
get their indices moves with the hatted metric g,;, and so the “hatted version” of tensor fields
depends on their index position. For the curvature tensors, the corresponding transformed
tensors are given in appendix B. For N fields, the equations for the metric perturbations then
read

- N ~
Gab + Agab = a(“’)Aab + (ﬂ - 96072 ) KzBab

I S T T

+ 576072 Kz |:_Rang1 + gRRab + Egameann - Zgasz - 2‘Rmncambn]

+ K2H?1? | =4V V" (Compn In(—HN) ) + | H(x —x', u)Agp(x) d*x’
192072 n ambn n s W) Agp .

(5.12)

These equations also encompass the semiclassical Einstein equations (5.2). Furthermore, in the
calculation a choice i of the renormalization scale was made such that the coefficient in front of
the squared Weyl tensor in (4.123) vanishes, a({i) = 0, but we have restored it here for clarity.
A further peculiarity of conformal fields is the fact that they do not renormalize either the
cosmological or Newton’s constant since the expectation values of T, and U4 (4.68) vanish,
and consequently A and x? do not depend on the renormalization scale y. Moreover, also the
coefficient 3 does not receive any renormalization at all. Finally, the kernel H(x — x’, u), which
in this case is the nonlocal part of K™", is given by

_ 1 | . 2 0] i dp
H(x,u)= -3 J [ln !? —in©(—p*)sgnp” |eP* 2’ (5.13)
and by employing the Fourier transforms of appendix D, we can write it in the form
_ 1 ’ / @(77 - 77/) i dsp
H(x,u)——EJCOS[IpI(n—n NP = e s (5.14)
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Setting the perturbation h,; to zero, we obtain the semiclassical Einstein equation (5.2) for
this case, which in accordance with the general formula (5.3) determines the relation between
A and the de Sitter radius H !,

A=3H2(1— ;<2H2). (5.15)

576072

For non-vanishing perturbations, these equations are invariant under the gauge transformations
induced by local diffeomorphisms of the perturbed de Sitter space, namely

hap = hgp + 2V Ep) (5.16)

with an arbitrary vector £,. In terms of the rescaled perturbation flab and éa = (—Hn)?&,, this
reads

. . . 2 .
hay = by +28(a€b)+5nab€0- (5.17)

We may use this freedom to fix the gauge and set some components of the perturbation to
zero. For this, we first decompose both h,;, and &, into tensorial, vectorial and scalar parts with
respect to spatial transformations and rotations [133, 135]. The spatial part h,,, decomposes
as

7 TT T

hw=hw+28(uwv)+8u8va+75w, (5.18)

uv TT —_ n — suvyTT uv T _ CR
where 6#79,h, =0=6""h,, and 6"”3,w, = 0. The temporal components can be similarly
decomposed as
R T R
hou:V““r‘a“'l/J, hoo = ¢, (519)
where 6‘”3Mv$ = 0. In total, we have four scalars ¢, 1, o, T, two transverse vectors wﬁ and
vZ (with two independent components each) and a transverse traceless tensor hg (with two

independent components as well). Decomposing also the spatial part of the vector field & u as
£ _ T
£,=E +09,8, (5.20)

where & ‘“’8“51 = 0, we obtain the behavior of the various components under a gauge trans-
formation,

TT TT T T, T
huv_)huv Wu—>wu+§u
2
o—0+2& ToT+ =&,
n
(5.21)
v, 2V & Yo +E +E

¢H¢+z%—%%.

Choosing 5;, & and &, appropriately, we can set wz, o and 7 to zero, so that the perturbation
of the spatial metric is entirely given by the tensorial component

hyy = hyy - (5.22)

This is the transverse traceless gauge, also known as spatially flat gauge when focusing on the
scalar perturbations. If we restrict ourselves to metric perturbations that fall off at spatial
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infinity, the gauge is completely fixed by this choice. On the other hand, if we also include
perturbations which tend to a constant or grow at infinity, there is some residual gauge freedom
left.

On one hand, there are transformations which leave h,,, invariant. One possibility are those
generated by 5; which are functions only of the conformal time 7, and which do not change the
spatial part of the perturbation because WZ only enters by a spatial derivative. However, they
change vg and thus temporal components of fla »- A second possibility involves transformations
generated by & = fr2, £y = —2nf(n) which change o and 7 in such a way as to leave
h,,, invariant; but ¢ and v are changed by this transformation. On the other hand, the
transformations generated by 5; = E,,,x"” with a constant traceless matrix E,,, induce changes

of h,,, but leave it transverse and traceless. These residual gauge transformations will play a
role in the next section to show that certain solutions are pure gauge.

The full form of the equations (5.12) with the metric perturbations decomposed and gauge-fixed
is long and complicated. For tensor perturbations, these equations coincide with ones derived
by Starobinsky [56, 126]. Nevertheless, after applying order reduction as explained above most
terms are of higher order and do not contribute. Introducing the parameter

N 2.2
=— 5.23
* = 960m2" (5:23)

the order-reduced equations read
2
hg{T—5(1—g)hl’}§—(1—2g)AhR =0(x*), (5.24a)
T_ 4

Avy=0(x*), (5.24b)
Ap =0(x*), (5.24¢)

3 4
Ap+—(1+= =0(x"). 5.24d
v 217( 9g)¢ (") (5240

As explained in section 5.2, after order reduction these equations do not contain any nonlocal
terms, and are independent of the unknown parameter a(u) and 8(u), depending only on the
matter content (in this case N massless, conformally coupled scalars) through the parameter ¢.

5.2.2. Stability of de Sitter space

The solutions of equation (5.24b) for the components of the vector perturbation v! are arbitrary
functions of time, which can be eliminated by a gauge transformation. Indeed, by using the
residual gauge freedom described in the last section and choosing & E as an appropriate function

of time only, we can set VZ =0.

For ¢, the solution of equation (5.24c) is also an arbitrary function of time. The solution for
is then given by

1 4
¢=f(n)—%(1+§ﬁ))¢>(n)r2- (5.25)

Since 1) enters into the perturbation I:tab only through a spatial derivative according to equa-
tion (5.19), the arbitrary function f(7n) does not change the perturbation h,; and we can set
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it to zero. If we want to start with bounded initial perturbations, we must exclude solutions
which are unbounded and have to take ¢ = 0. On the other hand, if we had not excluded
such unbounded solutions, we need to take advantage of the residual gauge transformations
explained in the previous section. We would first have to choose &, appropriately to make ¢
vanish, and would need to take a similar unbounded function & = —1/(2n)&, r2 so that the
combination 8H3V0' +16 v which enters into the decomposition of the perturbation (5.18) still
vanishes. The solution for 1) is then an arbitrary function of time which we can set to zero as
above.

Both vector and scalar parts are therefore pure gauge when order reduction is employed and
can be completely eliminated by a residual gauge transformation of the kind mentioned at
the end of the last section. This conclusion was also reached by Anderson et al. [129], who
investigated scalar perturbations without using order reduction (called perturbations of the
first kind in their work) and found only solutions which lie outside the range of validity of the
semiclassical theory. However, their intermediate expressions are not directly comparable to
the ones presented here since they introduce gauge-invariant variables which only have simple
forms in a gauge quite different from the above.

For the tensor perturbations we first take the Fourier transform with respect to the spatial
coordinates, which gives
d®p

TT — s ipx
h,,(n, ) ; J €u(P)E(,P) e s, (5.26)

where ejv(p) are a pair of transverse and traceless tensors corresponding to two different
polarizations. Equation (5.24a) then becomes

2
gl(n,p)— 5(1 —9)g.(n,p)+ (1 —29)p*g.(n,p) = O(x*) . (5.27)

Setting w? = (1—2¢)p? and g, = (—wn)%’gfi(—wn), this reduces to a Bessel equation for f,,
whose general solution is

g:(n,p) = (—on) ¥ [CFJs_ (o) + G5 Y;__ (—oom)], (5.28)

where Cli and C;t are integration constants which may depend on w. The solution for |p| =0
can then be obtained by choosing Cii appropriately as functions of w and taking the limit
w — 0, resulting in
TT — Al \3=2 4 2
h,,(mx)=C, ()" +C, (5.29)

v

with two constant and traceless tensors C:w. The second term can be eliminated by a residual
gauge transformation with & z = ijx” /2, as explained in the previous section.

To discuss the importance of those solutions, we first need to consider an appropriate observable.
While the tensor perturbation hg(n,w) is a gauge-invariant object (as can be seen from
equation (5.21)) with a well-defined meaning, namely the amplitude of free gravitons, it is
not local and can therefore not be completely measured by an observer which only has access
to a region of finite physical site. Given a generic perturbation, the extraction of the tensorial
component needs the specification of boundary conditions at spatial infinity, but these are
beyond the reach of a realistic observer. This question and its implications have been recently
discussed by Tanaka and Urakawa [136].
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An observable which characterizes the geometry in a fixed physical region, i.e., locally, is the
(linearized) Riemann tensor. In terms of the conformally rescaled metric perturbation h, it is
given from (4.112) by

RO ;= 2H?5¢ 55 hoo + 2H2n* 0™ 018, 8 hgy + 2H2n5E’26513n“]” (28mhyo — 1) -
(5.30)
For tensor perturbations, we perform a Fourier transform with respect to the spatial coordinates
to obtain

S(1)ab o2 [ab] [ab] ipw 4P
RO =212 | (Sl 451 e Pk (5.31)
where
0,
S30p = =1, 18l
SE 0p =1NM"*PaSY0p » (5.32)

uv _ + 2 0
S:l: po — T)““Papp(e );’I’) 8+ + 5gsiv00 .
Hence, we can see that all the Riemann components can be written in terms of g, and g/,. Since
everything that will be said is entirely equivalent for both polarizations, in the remainder of
this section we will omit the subindices + labeling the two transverse polarizations associated
with each momentum p.

Let us now calculate the late-time limit 7 — O of the above expressions. From the known
behaviour of the Bessel functions [104], the solution for g(n) from equation (5.28) tends to

C 3
——22r (5 - g) 2775 = const.
T (5.33)

g - w&F (1 — g) 2275 = const.
T 2

The quantum correction to the Riemann tensor (5.31) vanishes as O(n) at late times; thus,
the constant limit of g as 7 — 0 is pure gauge just like the second term in (5.29). De Sitter
spacetime is therefore stable against any linear perturbation in the semiclassical limit, since (as
shown before) the vector and scalar perturbations are gauge-equivalent to zero. This extends
classical results known as “no-hair” theorems [35-40], which are obtained for ¢ = 0; in fact the
only effect of the quantum corrections is to alter the order of the Bessel functions appearing in
the solution (5.28) so that they fall off a little slower than the uncorrected ones.

So far, we have not paid much attention to initial conditions, integrating freely by parts in
equations such as (5.8). Because in the CTP formalism the equations are causal, as we have
seen above, partial integration cannot create surface terms at future timelike or spatial infinity,
but there may be surface terms at the initial surface where the quantum state was prepared.
Furthermore, as explained in section 3.1, the interacting quantum state differs from the vacuum
state of the free theory, and appropriate cross correlations must be taken into account, so-
called initial state corrections [122, 137]. In the Poincaré patch of de Sitter spacetime, the ie
prescription explained in section 3.1 selects the right asymptotic initial state at past infinity (as
demonstrated in section 6 where two-point functions of h,;, are calculated), and in this case
integration by parts does not generate extra correction terms. However, if we want to consider
an initial state at a finite time 7),, we have to take these corrections into account. Furthermore,
one may consider a state which is not vacuum at the initial time, but contains some excitations.
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All these effects can be subsumed by an additional stress tensor 6 T,;, on the right-hand side of
equation (5.4) (or for the conformal case, equation (5.12)). In this way, one can of course also
incorporate an additional classical stress tensor provided it is not too large such that the linear
approximation breaks down (this has been analyzed for the classical theory in [138, 139]).
Especially, it has been shown in [47, 48] that a suitable stress tensor for a wide class of initial
states can be generated by evolving an asymptotic Bunch-Davies vacuum state from —oo to
the initial time 7, in a given, nondynamical perturbed geometry which is asymptotically of
the de Sitter form as 7 — —oo and matches smoothly to the dynamical metric g,; at 1. The
corresponding stress tensor is then given by

Mo

(—H”?)z J Aab(”)/:P)H(”)_”)/:P, [:L) dn/a (534‘)

—00

Na
96072

6Tab(n: p) =

i.e., the nonlocal part of (5.12) integrated over the preparation period. Note that while the
kernel H depends on 7, the integration only extends until 1, because afterwards A,;, vanishes
when we use order reduction as explained earlier. The metric perturbations during this initial
period can be fairly arbitrary, subject only to the requirement that they decay quickly enough as
1 — —00 so that the above integral converges, small enough so that the linear approximation
is valid for all times and matching smoothly enough at 1, (up to the fourth derivative, which
is the maximum that occurs in A, (5.1) — this is the condition for the initial state to be of
fourth adiabatic order which is a standard requirement for finite stress tensor expectation
values [140]). More extensive studies on the conditions needed to obtain a well-defined, finite
initial state have also been done [141-143]. As long as 1 > 1), the integral is finite under these
conditions, and especially has a well-defined limit as 7 — 0. Therefore, these contributions fall
off at least as fast as 2 when 1 — 0.

After order reduction the generalization of equations (5.24) reads
2
HoT — p (1—)hf—(1-26) AR} =x*6T) + O(x*), (5.352)
Av) =—Kk*6Ty, +O(x*), (5.35b)

1 1
Ap =—x2 (5Too — 58T + Enab(STab) +0(x*),
(5.350)

3 4 1
a5 (143 ) 9 = G000+ Ox?), (5.354)

where we introduced a decomposition of this stress tensor exactly analogous to the case of the
metric perturbations (5.18, 5.19), taking into account its covariant conservation. In the case of
vector and scalar perturbations, the elliptic equation gets transformed into a algebraic equation
in spatial Fourier space, and the fall-off of those components can be directly inferred from the
fall-off of the corresponding stress tensor components. For the above explained construction,
the stress tensor components decay at least as fast as 12, and therefore also vg and ¢ decay at
least as fast, while (due to the extra factor 1/7 in the corresponding equation) we can only
assert that v decays at least like 7). For tensor perturbations, we first extract the two functions
contained in & TJVT by a Fourier transformation similar to (5.26),

. d3p
TT _ s ipx
oT,,(n, ) ;Zif 6P, p) e s (5.36)
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The solution of the equation for the tensor modes g, (7, p) is then given by the homogeneous
solution (5.28) plus the inhomogeneous term

0

gM(n,p) = JGm(n, n")J.(n’, p)dn’

Mo
n

=(—wn)3‘ng_g(—wn)%J( wn') 4 0;_(—wn')Ju(n)dn’ (5.37)

Mo

3_ T _1
— ()2 s (—wn)ﬂf(—wn’) Yy (—wn')Ju(n)dn,
Mo

with the retarded propagator G, pertaining to the tensor mode equation (5.27), whose explicit
expression in terms of the homogeneous solutions (using the standard Wronski formula) has
been inserted in the second line. Since the stress tensor components J,(7) fall off as fast
as or faster than 72 for the initial states described above, we can use the behaviour of the
Bessel functions near zero [104] to conclude that the integrals vanish as  — 0. Hence, the
inhomogeneous contribution is subdominant to the homogeneous contribution which tends to
a constant in this limit (5.33).

Specializing equation (5.30) to scalar and vector perturbations using the decomposition (5.18,
5.19) we obtain

~ . 1
ROy, = —iHm*peq (nv)) = vy ) + S H? (28456 — 850’ —n*n"“pap, )

—Hznn““papp (y—ny’),
R(l)Oupa = H2n>n"*pyp(, v G] +iH? n5[pp0 b, (5.38)

RDWo, = —H?*0’p "0 pravy; —iH* 8% 0" p, ¢,
R‘”“”pa=2H25Ep (inpoyn™ T +invIn"py + 83 +20payn T patp) .

We can see that the Riemann tensor components fall off at least as fast as the corresponding
perturbations (and in many cases faster, with additional explicit factors of n). Summarizing, it
is clear that the above conclusion of the semiclassical late-time stability of de Sitter space as
7 — 0 is not changed by the inclusion of initial state corrections.

What can change in this result if we take into account the contribution of other fields? Assuming
that the effective action can always be brought into the form (4.123), we have seen that nonlocal
terms do not contribute when we employ order reduction. The local terms must then take a
form similar to (5.24), with different numerical coefficients. Since the renormalized kernel
K™" is a distribution depending on Z and thus de Sitter-invariant, the local terms are invariant
under the simultaneous rescaling

z,n,mn — ax,an,an’ (5.39)

for constant a. However, the most general second-order equation compatible with this rescaling
has the form

7" 2 GB
huzT—E(l+g1)h;TVT—(1+g2)AhE =pT = 0(x*), (5.40)

n2 M
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and similar equations for v;, 1 and ¢ and where the ¢, are small parameters proportional to

2. If the equations for the vectorial and scalar components are still elliptic, for appropriate
boundary conditions they can be gauge transformed to zero as before. However, no time
derivatives of these components can occur in the order-reduced equations. If we examine
the explicit expression of the linearized Riemann tensor (5.38), we see that time derivatives
of these components only occur in the term RW%, = RWr R = gince RD¥ | is of
higher order when using order reduction, and R(l)"‘“ap does not contain time derivatives of
the vectorial and scalar components, time derivatives will always be of higher order and the
order-reduced equations for those components will be elliptic.

For the tensorial components, we again may take a Fourier transform as in equation (5.26),
and the solution of equation (5.40) for the modes g.(n, p) reads

3
g2(n,p) = (o)A CEIs . (Com)+ G Yy, (om)] (5.41)

with w? = (1 + ¢,)p? instead of (5.28). At late times 1 — 0, instead of tending to a constant as
in equation (5.33), g, and its derivative behave asymptotically ~ (—wn)*. However, from the
expression of the linearized Riemann tensor in terms of the tensorial components (5.32), the
components of the Riemann tensor decay like ~ (—wn)'*** and thus vanish at late times just
as before. Therefore, our conclusions are unchanged also including loop corrections due to
other matter fields.
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6 The two-point function of the metric
perturbations

For the calculation of the two-point function, we will use a perturbative approach. Following
formula (3.12), the path-ordered two-point function is given by
[ hap(X)grg(x") €M Dh

. / i =
(in[Phqy (e (x")in) = [ il Dh

) (6.1)

where the time integration extends over the CTP contour (see figure 3.1). Since the background
spacetime g, fulfills the semiclassical Einstein equation (5.2), the effective action S.¢ (4.123)
consists only of terms which are quadratic in the perturbation h,,. Furthermore, we can
decompose this quadratic part into powers of k2

Set[h] = Segrolh] + K2Sege o [R]. (6.2)

Using the formulas from appendix A, this decomposition explicitly reads
1 . ~
Sefrolh] = f (EhR(l) +R® + %HZ (n*— 2hmnhmn)) VvV—gd'x,

1
Seff,Z[h] = _E f gab<Tab>ren(Au') (hz _2hmnhmn) vV—E& d4X

+ J R Upea)"™ (1) v/ =g d*x + alp) f COaetC /=g d'
+ ﬁ(u)J (RW2 4 24H?R + 12H%hRM + 18H* (h* — 2h,,,h™)) /—g d*x
+ é fj R(l)abcd(x)Krenadem’n’p/q/(Z(xﬁ X/), H)R(l)m/nlplql(x/) vV —8 d4x vV —8 d4X/

1 Ny cd ,
=3 ff R (), (0, XYY (x7) /=g d*x /=g d*x’,

(6.3)

where we defined the kernel V.4 (x, x") in the last line. By partial integration, the effective
action can always be brought in such a form, and single integrals over x can be expressed as
double integrals using a covariant Dirac § distribution &(x, x") = §*(x —x’)/+/—g — we will
refer to those parts of V' as local parts. If we split the time integration contour in 4+ and — parts
and introduce capital indices A, B = % for the kernel V, its non-local part which involves K™"
is given with the proper prescriptions by equation (4.124), while the local parts always come
with a Kronecker 6 45.
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If we define the expectation value (), by

X fA[h] eiSeolhl Dy 6
(PA[R]), = W , (6.4

the propagator for the perturbations is given by
Gaperar (2, X) = =i Phay (hera (x)), 6.5)

Because of gauge invariance, it is well known that this expression, and in fact all expectation
values calculated using (6.4) are actually ill-defined. There are two possibilities to resolve this
issue, working in an exact gauge or adding gauge-fixing terms to the action. To work in an exact
gauge, one imposes certain conditions on the perturbation as in the last section (5.21) which
are then also fulfilled by the propagator; this is also the way we choose in the next section.
Standard textbook lore tells us that adding an additional gauge-fixing term to the action can
be thought of as imposing an exact gauge depending on a parameter, and then integrating
over this parameter with some weighting function, so that these gauges are also known as
average gauges — depending on the weighting function, the propagator fulfills the imposed
condition in some average sense. However, for the calculation of the gauge-invariant Riemann
tensor two-point function which is done in section 7.1, it does not matter which possibility is
used. Expanding the effective action in (6.1), we thus obtain a perturbative expansion for the
two-point function of the metric perturbations

(in|7)hab(x)hc’d’(x/)|in> = (Phab(x)hc’d’(x/)>h
+ iK% ((Phap (e a (XS et o [1]), — (Phap (e (X)), (PSessalh1), ) + O(x*) .

Using Wick’s theorem, the expectation values (), can be evaluated by contracting fields in all
possible ways and replacing two-point correlation functions by the propagator (6.5). This leads
to our final expression

(in]|Ph gy (3o (x)in) = iGpeq (x, x7)

- iKz fj Gabmn(x: J’)anplq/(.)’, y/)Gc’d’p’q’(x/; J’/) vV —8 d4y vV—& d4y/ + O(K4) .

(6.6)

6.7)

The propagator G4 satisfies also an equation similar to (4.18) for the scalar field. In fact,
since the equation of motion for linearized metric perturbations is (5.4), which to lowest order
in 2 just reads G(Y?, = 0, the analogue of equation (4.18) is given by

EXP™ (T Ry (e (x1)), = 182, 85,5(x, x"), (6.8)
with the differential operator E,;.; defined by the expansion of the linearized Einstein tensor
G, =E%, ™R, (6.9)

Of course, the Wightman function of the metric perturbations satisfies the homogeneous version
of (6.8). The two-point function of the Einstein tensor can then be calculated by applying this
operator to both arguments of the metric perturbation two-point function (6.7). Let us take its
Wightman function, for which we obtain

(in|GD, (x)GD 1, (x")|in) = E,™ES ,P'¢ (inh;,, ()R, (x")in)

L . (6.10)
= —ik2EY,™EC G P TV (x, x").
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All other terms of equation (6.7) involve at least one Wightman function of the metric per-
turbations, and hence vanish under the action of the differential operator E. Also, there is a
cancellation between two minus signs, one that comes from the splitting of the CTP contour
as explained in section 3.1, and one because the anti-time-ordered or Dyson propagator G~
which surfaces in this splitting satisfies equation (6.8) with a minus sign on the right-hand
side. Since all local terms in the kernel V are of the ++ or — type, only the non-local term
contributes to V*~. However, this term is nothing but the renormalized stress tensor correlation
function which we rewrote in terms of the kernel K™" in section 4.6 — but since the Wightman
function does not need to be renormalized, we simply have

2
(W, ()W (x)) = %(Tﬂ,,(x)TC’d,(x/)). (6.11)

In this last equation, since the expectation value of G(!) vanishes, we directly passed to the
connected correlation function. Perturbatively, the correlation functions of the linearized
Einstein tensor (and by appropriate index contractions and subtractions) the linearized Ricci
tensor and scalar are therefore directly related to the stress tensor two-point function. For
the time-ordered function of the Einstein tensor, in addition to a change in the prescription
Z — Z —i0 there are additional local terms ~ &(x, x") coming from V'™,

6.1. The massless, conformally coupled scalar

An explicit calculation of the metric perturbations using equation (6.7) has been done including
loops of massless, conformally coupled scalars. As in the case of effective field equations, it is
advantageous to consider a conformally rescaled perturbation ﬂab, defined by equation (5.11).
We also consider the same exact gauge as in that section, where the spatial components are
purely tensorial (5.22), while scalar and vector perturbations reside in temporal components.
Furthermore, it is easier to work in spatial Fourier space.

The two-point function (6.5) for the tensorial components in this gauge has been calculated by
Ford and Parker [106], and the result is

A A TT
(he(n, p)h(n', @), = (2m)*5%(p+q@)f (n,n’, PP (p), (6.12)
where
H’ N(lpln’ + i) e~ 1PIo=1) — £x
fn,n'sIph) = 2|p|3(|p|n—1)(|pln +1)e PRI = fX (', m, |pl), (6.13)
and
Pabcd(p) — Padpbc +Pachd _Pabpcd (6.14)

is the polarization tensor which can be written in terms of the projection tensor P*® defined
by

PHY = ¥ — p'p”
p?’ (6.15)
PO =p¥=p0=0.
The projection tensor P?® satisfies

Py, =2, pebpedy, =pad, (6.16)
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The Feynman propagator as well as other propagators we need can then be easily obtained
from this result, namely

G (1", p) =G (0,1, p)Papea(P), 6.17)
where the components of G are
G™**(n,n',p)=—i[0M—n)f (0,7, D+ —n)f *(n, 7, Ip]]
G (n,n,p) =—if*(n, 7', Ip))
G *(n,n",p)=—if (n, 7', |p)
G*(n,n",p)=—i[6M—n)f (.7, IpD+O(M —n)f (0,7, |pD] .

One can easily check that the Feynman propagator solves the suitably restricted and conformally
transformed version of (6.8), which after stripping off the polarization tensor factor reads

(6.18)

(3712 - %‘% +P2) G¥*(n,n',p)=—H*n*6(n—1n"), (6.19)

and which is the same equation as the one satisfied by the massless, minimally coupled scalar
(4.18), expressed in the conformally flat coordinate system (4.8). Hence, for small |p|, the
function f (1, n’, p) (6.13) is too singular to have a well-defined Fourier transform just as for the
massless, minimally coupled scalar field, and an infrared cutoff must be introduced. However,
if one considers appropriate observables such as the stress tensor for the massless, minimally
coupled scalar or the linearized Riemann tensor for the metric perturbation, it is possible to take
this cutoff to zero, and so we will not concern ourselves with the intensely waged discussion in
the literature about its potential effects.

Since the scalar and vectorial components are not dynamical, the equation that they satisfy
is purely elliptic, or algebraic in spatial Fourier space. For the vectorial part, the appropriate
restriction of equation (6.8) is given by

P*Gh (n,m',p) = H*n?8(n —1")50, Py 55, (6.20)
and this algebraic equation is trivially solved for the Feynman propagator. For the Wightman
function, the right-hand side vanishes, and so the Wightman function must be taken to vanish,
too. While this may sound surprising, it is just a consequence of choosing the exact transverse
traceless gauge (5.21, 5.22) as opposed to an average gauge where (usually) all metric com-
ponents are dynamical, and there is no problem in the calculation. Similarly, the Feynman
propagator for the scalar components is given by

. PoPe | o H*n?
Gopea(msm'sp) = 5& [IT) (pb)5&—5g)p(c)+3 o C]52) o 5(n—n)), (6.21)
with py = 0 understood, while the scalar Wightman function vanishes.

For this case, the effective action has been calculated in [67, 116]. They actually obtained a
result for general FLRW geometries, but we can specialize it to de Sitter spacetimes. The local
part of Sg,[h] is then given by the terms quadratic in the perturbation h,;, of

f € C peaIn(—Hn)4/—g d*x — _N__ f R*y/—gd*x

192072 3456072

+

f [n726% + 28 K> (2(—Hn) V"V, (—Hn) ™ — g H (=Hn) )] /=& d'x,
(6.22)

576072
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together with the terms multiplied by a(u) and 8(u) from equation (6.3), while the nonlocal
part has the form

384071'2 JJ abmn(x)cmbmn()’) (L(x —y,u) +iN(x —y))d*xd*y

" 384077:2 f J Clomn(C™P™ () (D(x — y) —iN(x — y))d*x d*y

(6.23)

384077;2 Jj Copmn(CTP™ () (D(x — y) —iN(x — y))d*x d*y

- W JJ CopmnCOC™ (Y)Y (LOx = y, ) —iN(x — y))d*x d*y

Of course, the concrete form of these local and non-local terms is a bit different from the
general ansatz (4.123) owing to the different method that was used to calculate them, but the
overall structure is the same — the non-local part consists of a kernel sandwiched between two
curvature tensors. In this case, the kernels are given by

2 d4
L(x,y,)z—fln l% e‘p’(ﬁ =L(—x,u),
4
N(x):nf@(—p ) elPx ((21 )4 N(—x), (6.24)
d4
D(x)=inf®(—p2)sgnp° Ww—— (—x),

and with the help of appendix D we can calculate their mixed form

/ / / 1
L(n—n',p) = cos[|pl(n—n")]P —,
In—mn'l
, , 1
D(n—n,p)=cos[|pl(n—n)]7>n_n,, (6.25)
N(n—n',p)= _sinflpin—n)] n)]+ﬂ:5(n n').

n—n'

Note that the kernel H given in equation (5.13) can be written as H(x, u) = [L(x,u)+D(x)]/2,
in line with the general result (5.4) that the kernel in the equations for the metric perturbations
is the difference between the +4 and +— parts (and taking into account an extra minus sign
in (6.23) from the decomposition of the contour). Note also that all kernels are real. Since the
integrands of L and N in (6.24) are even under the reflection p — —p, only the cosine term of
the exponential contributes, while for D which is odd under this reflection only the sine term
of the exponential contributes.

The well-known advantage of considering a spatial Fourier transform is that the spatial integrals
in the two-point function (6.7) reduce to multiplications in Fourier space, so that only the
time integrals remain. Of course, for the vectorial and scalar parts where the propagator is
proportional to a 6 distribution (6.20, 6.21), those integrals are trivial. For the tensorial part,
let us explain the calculation on the example of a part of the first term of the effective action in
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equation (6.22), which reads

N rabed A -
~ Toz02 J Gabed &\ InHy/—g d*x. (6.26)

For the Weyl tensor of the almost flat metric g, (5.11), we calculate using appendix A and the
definition of the tensorial part (5.18) in the transverse traceless gauge

A _ mesP <9 <n q ,.mn TT
Capea = & (26767,67. 8% — 67 4116 10™ ) BBy

— mn, TT
_KTabd Pig 3hpq,

(6.27)

where we defined the tensor T in the second equality. The contribution of this part to the
two-point function (6.7) is therefore given by

N

iWK4TefghrsmnTefghklpq f (3rasGabmn(x’ y))(akal quc’d’(y: X/)) InH d4.)’ (6.28)

with the time integration ranging over the CTP contour and the derivatives referring to the
point y (note the extra factor 2 which comes from the definition of the interaction kernel
V (6.3)). We now split the contour, so that for the Wightman function (—+) we have to
calculate schematically

T T

+ j G *(n,7)G*(t,n)dr — j G (m,7)G " (7,n)dr, (6.29)
t to
i.e., the external indices are fixed while we sum over the index corresponding to the integration
variable, and the — branch obtains an extra minus sign. As explained in section 3.1, the
integration goes from an initial time t(f depending on the branch of the contour until a final
time T, such that we have tj <m,n’ < T. After Fourier transforming the spatial parts, inserting
the explicit expressions (6.17) and performing some judicious integrations by parts, we obtain

+i961(\)]n2 P “bcd[[(az_pz)G_+(’7’T lpD][2:G** (=, 7', IpD)]

T
—[(82+3p»3.G*(n,1,Ip) ]G (7,7, Ipl)] InH

fo

15602 ’<4Pabcd[ [0:G7 (v, m, IpD][(82 = PG *(z, 7', IpD)]

T

_G—-(T,n,|p|)[(83+3p2)376‘+(f”75"")]] " 630

0
T

. N _
+1WK4Pabcdf [(22+ PG (n,7,Ip) ]G (7, v/, Ipl)InH dT
t
T

bchG “(v,n,Ip)[(82 +p*)’G (7,7, Ip])]InH dr .

" 960m2"

fo
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From the formulas (6.18) and the definition of the function f (6.13), one easily obtains that
(@2 +p*)’G*(n,7,Ip) = (32 +p*)*G " (z,n,Ip)) =0, (6.31)

and therefore the two integrals vanish. The two boundary terms can also be evaluated explicitly,
and the above contribution reduces to

4172 /
o< 1 Popeaf (n,m',Ip)InH

H4
6072 K4Pabcd PYRE)
9607 2|pl

—i [(Ipln —i)(Ipln’ —)(=1+ (1 +D)Ipleg )i+ (1 +DIpley) ePea—n=m)

+(Ipln+D(Ipln" + DI + (1 + Dlple)(—i+ (1 + i)IpIta)efi'p'(”a*”*"/)] InH.
(6.32)

If we now set t§ = to(1 Fie) (3.3, 3.6) and then take the limit t, — —o00, the second line
vanishes and we are left with the first line as the final result for this term. It is independent
of the arbitrary final time T, since contributions from the + and the — branch of the CTP
contour cancel out for all times larger than both 1 and 7’; this fact could be made manifest
by rewriting the Feynman and Dyson propagators in (6.29) in terms of Wightman functions
and retarded propagators. Furthermore, it can be seen very nicely how the ie prescription
for the deformation of the CTP contour leads to a good definition of the interacting vacuum.
The exponential factors exp(i|p|ty€) (and in general exp(i|p|te) before the integration over )
serve to switch the interaction on for early times, so that the free vacuum can adiabatically
evolve into an interacting state with proper correlations.

The other terms can be calculated similarly. For the non-local terms in the effective action,
which involve two integrations, it is advisable to suitably combine the kernels L, D and N (6.25)
into exponentials. This allows to take the limit tg — —00(1 Fie) already after the first (inner)
integration and simplifies the calculation of the remaining integral a lot, as can already be seen
above (6.32). The final result for the Wightman function is given by

(in”/:lab(n’ p)flcd(nla q)|1n> = (271-)353(1) + q)Pabcd [f("?: "7/, p) (1 + KzHZA)

- x2H(1,(n, 7', )~ L(n, ', p) — I;(n', 0, p))

192072
+

K2H4(I3(ny n/; p) - 14(77, n/rp) + Is(”fl: n/rp))] + O(K4) 4
(6.33)

192072

where
L(n,n',p) = 2lp| ' nn’ e~ IPI=)
L(n,n’,p) = Ip| > ") (|p|n + 1) (Ipln’ + i) [Ein (~2ilp|n) + In (2ilp|n) + 1]
+|p| 7 e PIO=1) (1pIn — 1) (Ipln’ +1) In (—2[p|n)
Iy(n,n',p) = Ip| > e P~ (|p|n — 1) (Ip|n’ + 1) [In[2ilp|(n —n)] + 7]
L,(n,n’,p) = Ip| > =) (|p|n + 1) (Ipln’ — i) [Ein[—2ilpl(n — n")] + In[2ilpl(n —n")] + 1]

Is(n,n’,p) =n*(n')*[N(n—n',p)—iD(n—1n',p)] .
(6.34)
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and

A= 6a(u)— 246 + 1n(ﬂ) N (6.35)

N
480n2 \H/ 9607
The definition of the function Ein(x) can be found in appendix C. Note that A is independent of
the renormalization scale u, since the dependence of a(u) on u cancels the explicit logarithm,
and as said before 8 does not get renormalized for conformal fields.

For the scalar and vectorial parts, we obtain

2174 980 .. 50 "72(71/)232_50 50 3(n')?
K (aPb) ((_-Paz)—(pz)2 n (@P)O Py M

3(n")2 2(,,\3
(1110, = 31696360y 07 + 3160, 1y 6263

(inlflab(n; p)ﬁlcd(n/: Q)|ln> =
n*(n')?
p2
+i62, (8P + pp82.) 8% m° ()3, + 62526252n3(n')38,,2] (N(n—n',p)—iD(n—1n’,p))

(6.36)

576072

+ 35? pb)5?de)

a

and

(inlfigp (0, P)ea(n’, @lin) = —(27)*5%(p + q)5?an)(c53)LKZH“nZ(n’)Z
48072 6.37)
x 2% (82 +p*) (N —n',p)—iD(n—1n',p)) .
We should stress that this is the exact one-loop correlation function for metric perturbations
including loops of massless, conformally coupled scalars to order k2, and does not resort to
approximations such as leading order in p? or equal times. Furthermore, in addition to the
manifest invariance under spatial rotations and translations it depends (apart from a global
factor |p|™>) only on the physical momentum p = —Hn|p|, and is therefore invariant under the

simultaneous rescaling

p—alp, n,1n — an,an’ (6.38)

(the analogue of (5.39)), which is a necessary, but not sufficient conditions for the de Sitter
invariance of gauge-invariant observables obtainable from this two-point function.

Another important point concerns the dependence on initial conditions found in a similar
calculation by Hsiang et. al. [144]. In our case, the ie prescription selects the correct adiabatic
interacting vacuum state at past infinity, and no dependence on the initial time ¢t is left, which
is crucial for the result to be invariant under the rescaling (6.38). In contrast, Hsiang et. al.
obtained a result which diverges linearly as t, — —oo, and derived from this divergence limits
on the maximum duration of inflation, where the initial state is prepared at a large but finite
time t,. However, this divergence must be interpreted as an artifact of their calculation method.
As one goes to earlier and earlier times, the Poincaré patch of de Sitter space shrinks and the
strength of interactions grow (as can be seen, e.g., from the first term in (6.22) which grows
logarithmically). However, in a regime of strong interaction perturbation theory, which is based
on the decomposition in free theory and an interaction that is supposed to be absent at the initial
time, fails. On therefore has to resort to either modifying the interaction to decay adiabatically,
something which is provided by the ie prescription, or to nonperturbative methods, as has
been done in sections 5.2.1 and 5.2.2 to study the long-time stability of de Sitter space (note
that nonperturbative here refers to the time evolution, and not to the intrinsically perturbative
expansion of the metric g,, in powers of h,).
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6.2. Cosmological Observables

As an example of an observable that is measured in cosmology, in this section we calculate the
tensor power spectrum. Through observations of the cosmic microwave background, we can
infer the spectrum of metric perturbations at the end of inflation and compare it with models.
This spectrum was first calculated in the context of inflation about thirty years ago [145-149],
with a scale-invariant result, and its high agreement with observations makes it a crucial feature
that must be reproduced by all models. Here, we concern ourselves with quantum corrections
to this spectrum induced by loops of massless, conformally coupled scalars (or other conformal
matter), for which the two-point function of the metric perturbations was calculated in the last
section.

The power spectrum 62 is defined, up to a factor and a Fourier transform, by the equal-time
limit of the contracted two-point function for tensorial perturbations [8, 12],

2

52(|p|, n) = 4273 |17|3 “n bd J (inmab(n;w)?lcd(”f), 0)|il‘1) e~ iPT 135
2 3 (6.39)
ipPPnnt | (inlhes(n, phea(n, @)lin)
327‘53 ab ) cd > (271_)3 .

However, in our case there is problem with this definition, since the kernels N and D (6.25)
are genuine distributions with singular support, for which the equal-time limit does not make
sense. Therefore, strictly speaking, the power spectrum is ill-defined at one-loop level. Since
it is an ultraviolet effect, it will also appear for other Hadamard states, and in other curved
spacetimes, and one has to find a way to reconcile it with observations.

It is clear that physical observations can not be made with infinite precision, and so truly
observable quantities will always involve an integration over the time arguments instead of a
strict equal-time limit. Especially, the power spectrum is observed through the interaction of
CMB photons with the metric perturbations from the time of last scattering until today, and it is
those photons which interacted at different times which are measured. We then may model the
whole interaction and measurement process by the convolution of the two-point function of
the metric perturbations with a measurement function, for which we take a Gaussian of small
width o,

1 (77_770)2)
= LTl ), 6.40
gs(M0,M) Toro eXP( (6.40)

202

The correct generalization of the naive definition (6.39) is then given by

5%(lpl,m, 0) =

|p|3 ac bd Jjjga(n,f)ga(n,q—)(1n|hab(r,p)hcd(r,q)lln)(z g drdr’

(6.41)
in the limit where o tends to zero. For the regular terms in the correlation function (6.33),
this limit exists and is simple given by the equal-time limit " = 1) of those terms, while for the
kernels D and N we calculate

323

Jf go(n,7)g,(n, ) (N(t—1',p)—iD(r — 7/, p))drdr’ = %ﬁ —Ipl+0(0). (6.42)
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Since D is odd under the exchange of T and 7’ (6.25), it is only N that gives a contribution
here. From its Fourier transform (6.24), we see that it is positive definite, so that smearing
with an arbitrary test function must produce a positive result. This is the case for the result
above, but we also see that it is necessary to take the singular distribution into account — if we
would have neglected the 6 distribution in N, the result would have been just the second term
—|p| which is negative. This provides also the resolution to the question raised by some studies
which found negative power spectra neglecting such singular terms [150, 151].

We can now calculate the modified power spectrum for tensorial perturbations. Recalling the
definition (6.14) of the projection tensor, we obtain

K2H? N «*H* JT
5*(Ipl,n,0) = 1+ p*n?) (1 +x2H?A) +
(Ipl, 7, 0) 1673 ( L )( : ) 96072 1673 |plo

—2(1+p*n*)In(~2lpln) —29% | €7 (lpln +i)? (Bin (~2ilpln) +iZ )|

[lelzn2 —Ipl*n* + Ip|*n*

+2[cos(2[p|n) (1 —p*n?) + 2lpln sin (2|p|n) ] (In (—2|pln) + Y)] +0(x%).
(6.43)

This expression is of course not very illuminative, but we can study its behaviour in two important
limits. Since the power spectrum only depends on the physical momentum p = —Hn|p|, it is
time-independent in the physical background de Sitter spacetime. For high momenta p > H,
the power spectrum should be independent of the curvature of spacetime, since in the chosen
Bunch-Davies vacuum the corresponding modes go over into Minkowski modes (4.30), as
explained in section 4.3. In this sub-horizon limit, we obtain

2
5%(Ipl,n,0) = — p2(1— N K2p2)+o(g). (6.44)
1673 T p

This shows that we have a power correction to the standard Minkowski spectrum [152], and in
fact the curvature of spacetime (here represented by the Hubble constant H) does not show up.
Furthermore, one can see nicely the limits of the effective field theory approach — for momenta
which are comparable with the Planck scale where the effective field theory description ceases
to be valid, we obtain a negative power spectrum, which is however not sensible as explained
above. On the other hand, for the so-called super-horizon modes which have p < H, we get

ZHZ N ~
5%(Ipl,m,0) = —— (1 +K2H* A+ ?H*——y |+ O £, (6.45)
48072

1673 H

a small constant shift of the scale-invariant power spectrum which is found at tree level. In
contrast to previous studies of the one-loop corrections to tensor [153] and scalar [154, 155]
perturbations, there is no logarithmic dependence on the comoving momentum |p|, in line with
more recent results on loops corrections for scalar perturbations [156]. In this last study also
the origin of this discrepancy was identified — the additional contribution from the spacetime
volume measure ,/—g in dimensional regularization was not properly taken into account.

Regrettably, these corrections are too small to be observable. We could only obtain an observable
effect if the Hubble constant H is of the order of the inverse Planck length, but in this regime
can effective field theory approach that we have used breaks down, and the prediction could
not be trusted anymore.
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Riemann tensor

So startling would his results appear to the uninitiated that until they learned the processes by
which he had arrived at them, they might well consider him as a necromancer.

— Sir Arthur Conan Doyle, A study in scarlet

Research has to acquire the matter in detail, to analyze its different evolutionary stages and to
track down their inner consistence. The real movement can be portrayed appropriately only after
this work is accomplished.

(Die Forschung hat den Stoff sich im Detail anzgueignen, seine verschiednen Entwicklungsformen zu
analysieren und deren innres Band aufzuspiiren. Erst nachdem diese Arbeit vollbracht, kann die
wirkliche Bewegung entsprechend dargestellt werden.)

— Karl Marx, Capital






7 The Riemann tensor two-point function

In this section, we calculate the two-point function of the Riemann tensor. As explained in
the introduction, the Riemann tensor is a gauge-invariant observable which furthermore is
local, i.e., it does not depend on boundary conditions at infinity. Classically, it measures the
non-commutativity of parallel transport along any curve, and thus completely determines the
geometry. Therefore, one can expect that also in the quantum theory its correlation functions
give complete information about the (quantum) geometry. Since in de Sitter space it has a
non-vanishing background value, we will consider the connected correlation function

(R 4 (OR™™ 0 (x7)) = (in|R® 4 GOR™™ 10 (x)in) — (in]R® . (x)lin) (inR™™ ., (x)in)

(7.1)

where this background contribution is subtracted. Furthermore, this has the advantage that

we do only need to consider its expansion in the perturbation h,, to linear order, since the

quadratic terms in the expansion at x, which would give a contribution when combined with

the background value of the Riemann tensor at the point x’, cancel out. The above is thus
equivalent to

(R 4 GOR™™ 1 () = iRV 4 CORD™Y o (i), (7.2)

with the linearized Riemann tensor given by (4.112), and gauge invariance under the trans-
formation h,, — hgp, + V(4 &}y is evident from the explicit expression of the linearized Riemann
tensor. Note that it is only with the index position given that gauge invariance holds, because
then its Lie derivative in the background spacetime with respect to an arbitrary vector field w*,
which gives the gauge transformation by diffeomorphisms defined by w®, vanishes,

LR =L, (2H2586%) =0. (7.3)

In the next two sections we explain two different methods to arrive at this correlation function,
first by explicit calculation from the two-point function of the metric perturbations, calculated
with corrections due to massless, conformally coupled scalars in section 6.1, and second by
using Bianchi identities which relate it to the stress tensor two-point functions calculated in
section 4.5.

7.1. Using the metric two-point function

To calculate the Riemann tensor two-point correlation function, we apply the differential
operator implied in equation (5.30) to each argument of the two-point function of the metric
perturbations given in equations (6.33, 6.36, 6.37). After applying those differential operators,
we have to invert the Fourier transform and replace the resulting tensor structure, which will
consist of linear combinations of 1,5, 6° and (x —x")* (with (x —x’)° = 0), by maximally
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symmetric bitensors. The coefficient functions, which will be functions of n, n” and = — ',
also have to be replaced by the de Sitter-invariant biscalar Z(x, x’). The replacements can be
deduced from the expression of Z(x, x") in our spatially flat coordinate system (4.7) and its
derivatives (4.10). Explicitly, we have

Nap = H*N*gap (x=x")g—>—10'Z+86°(n—0'Z),
Ny = HX (' garty (x—=x")y =00 Z,y — 8% (' —nZ),
Nay = NN Zoapy + N9 Zq + 1824 + 5269,(Z —1).

Technical details for the calculation of the Fourier transformation are given in appendix E.

For the two-point function (6.33, 6.37, 6.36) which includes loops of N massless, conformally
coupled scalars, it turns out after a long calculation (conveniently done with the tensor algebra
package xAct, see appendix H) that all terms which are not de Sitter-invariant cancel. Finally
we are left with a de Sitter-invariant result which can be expressed as

(Rabcd (X)Rm/nlp’q' (x/)> =

4k2HE -
2 IRl l[p,q,](z(x,x’))[—

277255(1,k) N /
K“H*R Z(x,x")—i0sgn(n —
L 192072 (Z(x,x") gn(n—n")

# (14 RH2)ROO(2(x, )~ 0sgnln ') |
(7.4)

with A given by equation (6.35). Here, )R are the bitensors constructed from the metric and
covariant derivatives of Z given by equation (4.111), which (when antisymmetrized in each pair
of indices as indicated in equation (7.4)) have the appropriate symmetries, and the coefficients
ROK(7) and RUM(Z) are de Sitter-invariant functions of the biscalar Z. Since they are rather
long expressions, and furthermore can be inferred from the decomposition which we detail in
the following, it is not necessary to give their explicit expressions here. However, an important
feature of those coefficients is that they are well-defined distributions which are only singular
as Z — 1, i.e.,, when x and x’ are on the light cone, which is also the case for the two-point
function of the matter field ¢. This can also be seen from the decomposition which follows.

In obtaining this result, de Sitter invariance has not been assumed, but deduced from the
the two-point metric correlations computed in the Poincaré patch, which are not only gauge-
dependent but also not manifestly de Sitter-invariant. The only de Sitter-invariant input is the
selection of a de Sitter-invariant asymptotic initial vacuum state for metric fluctuations as well
as matter fields, the (interacting generalization of the) Bunch-Davies vacuum. Furthermore,
this result must also be seen as a nontrivial check of the two-point correlation functions of the
metric perturbations given by (6.33, 6.37, 6.36).

Of course we can also express the result using other bitensor sets from table 4.1, especially the
one given by the normal vectors n,, n, and the parallel propagator g,; . The corresponding
complete set of maximally symmetric bitensors, which respect the symmetries of the Riemann
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tensor when antisymmetrized properly is given by

(1)Nabcdm’n’p’q’(z) = &ac&bd&mp &y

(Z)Nabcdm’n’p’q’(z) = Zac&mp’ (8ba NNy + nbndgn’q’)

ONbedmnpq(Z) = GacmpMpNaMuy Ny

DN bedmnpq(Z) = 48ac &mpMib &)y Mg

ONbedmnpq(Z) = 28 ac &y &b &q')d (7.5)
(6)Nabcdm'n’p’q’(z) =2(gacMm ny + nancgm’p’) 8o 8q)d

DN bedmnprq(Z) = 200NNy 8y 81

ENpedmnpq(Z) = 8M(a8eym My Eb(n &)

ON pedmnpq(Z) = 48a(m &pye&bin 8q')d -

By using the relations from table 4.1, we can easily express the Riemann tensor two-point
function (7.4) in the basis furnished by these bitensors. Again, the expressions coefficients
are long and can be inferred from the following decomposition, so that we do not give them
here.

In order to better analyze the structure of this correlation function, we decompose the Riemann
tensor two-point function into the two-point function of the Weyl tensor, the two-point function
of the Ricci tensor and scalar and mixed correlation functions. Using equation (A.9), one thus
obtains

(Rabcd(x)Rm/nlp’q'(x/)> = <éabcd(x)ém/n/p’q’(x/)>
+ 2514 (RP g () E™™ g () +2(EP 4 OR™ (1)) 81

5[“ HRG)E™™ o (x) — —<C“bcd(x)R(x )5t 50

[c d]
;5EC d(R(x)R(x ))5['“

— SBlB RGO ()] — 2812 (R CORG)

+ 45[5(R i (0ORM™ [p,(x’))a" T+

(7.6)

The correlation functions on the right-hand side are obtained from the correlation function of
the Riemann tensor by using the explicit expression (inferable from equation (A.9))

C ey _(5“5 554 +2535,°5154 + = 5[C5§]555 )Rklst (7.7)

for the two-point functions that involve the Weyl tensor, while for two-point functions which
involve the Ricci tensor or scalar one can simply contract indices appropriately. From the
previous decomposition it also follows that the scalar two-point correlation functions defined

by

(Rie*(x,x")) = gam 8o 8™ g™ (R, d(x)Rm’”’p (),
<62(X, X/)> = gam’gbn’gcplgdq < ab d(X)C p’ q’(x/)>; (78)
<Ri62(x, X/)> gbn’gdq <Rbd(x)R q (X )):
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are related by
(Rie*(x,x")) = (C?(x,x")) + 2(Ric*(x,x")) — %(R(x)fl(x’)). (7.9)

As a peculiarity of the conformal case which already occurs in Minkowski spacetime [114], all
correlation functions which include the Ricci scalar vanish, so that in the following we only
need to calculate the correlation functions involving the Weyl and Ricci tensors.

7.1.1. The two-point Weyl correlation function

Since the Weyl tensor is traceless, the corresponding coefficients for the bitensor set (4.111)
are not independent because those basic bitensors are not traceless. In fact, there are only
three combinations of invariant bitensors which have vanishing trace on any contraction. These
are

1 1 4 5 8 9
OC apeastmmipq1(Z) = [—2ZWR — 38R + 62OR + 260R —22¢ )R][ab Tediimn ] Z)>
OCtpteatmntra1(2) = — (65— Z)IR +6DR + 120R —6©OR —67'R
+22OR—(3+23)OR] (@,
[ab]lcd][m'n'][p'q’]

3 _ 2y [ ) 4 (©) ®) %
Clabediimmipg)(Z2) = [(1=ZH[VR=3OR+OR]-6DR+6VR] 1 itmiira) D)

(7.10)

By using equation (7.7) and rearranging, we therefore obtain the (connected) two-point
correlation function of the Weyl tensor linearized over the de Sitter background as

~ ~ 1 4K2H6 3 /ot
(CPealIC™™ o (x) = == D O™ (2)
k=1

2772 (1,k) : / (7.11)
——F—Kk“H Z—1i0 —
X[11520n2K CHH(Z —i0sgn(n—n))

+ (1 + Kszl) ¢z —i0sgn(n — n’))] ,
where the coefficients C(*®)(Z) and CV¥(Z) are given explicitly by

CONZ) = -2 -2)",

1

o)==,

CONZ)=33-2)1-2),

C(Z)=12(1+42*—zH(1+2)*(1-2)*In [%(1 — Z)] (7.12)

+ (214287 +5222—282%—252(1+2)2(1—2)°,
cBA(2)=1221+ 231+ 2)*1-2)* ln[%(l —Z)]

+(8+35Z+282%2+2523)1+2)3(1-2)",
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Cc1A(2)=122(7+102*> -z +2)°(1-2)>° ln[%(l - Z)]

+ (304 177Z +1422% +1842° —282* —257°)(1+ Z) (1 —2Z)°.

Even though it seems that those coefficient functions are also singular for Z — —1 (which
would correspond to antipodal points), this is only apparent. Developing the logarithm around
Z=-—1as

ln[%(l—z)] Z(l;?k, (7.13)

we get

cI(z) = 8 L oz+1), 0@z =2 ~e8 > Lo+, I(z)= 40+(’)(Z+1)

(7.14)
which are perfectly regular. This means that the Weyl tensor two-point function is only singular
when the two points x and x’ of the two-point correlation function are on the light cone,
Z(x,x)=1.

Of course, we may also express the basic bitensor set (7.10) for the two-point Weyl correlation
function in terms of the complete set n,, n, and g,; using the relations from table 4.1. One
easily calculates

DCapeammpq(Z) = =22 Dapeampq + (1= 2PP Dpednimp »

OCapeammpq(Z) = =3+ Z)D Dopegmmpg — (3 —2)1 = Z)® Dapeammpry:
+(1=2%)® Dopegmnpa »

OCapeammpq(Z) = (1=Z)D Dopeammpq + (1 =21+ Z)® Dapeammprg: »

(7.15)

where the (traceless) tensors ) D are defined by

) Dabcdm’n’p’q’ = [(1)'/\[_ S(S)N + (Q)N]abcdm’n’p’q’
D Dapeammpq = [~12ON =3ON + 120N +2ON] (0
OV Dy cammry = [—2ON + 6N — 120N + 39N + 360N —6ON +1270\]

abcdm’n’p’q’

(7.16)

with the basic bitensor set )\ introduced in equation (7.5). The two-point Weyl correlation
function (7.44) then reads

) i 4K2HO & .
(Cabcd(x)cm n p’q’(x/)> — = Z (k)D[ab][Cd][m n ][p’q’]
k=1
x [ (1 + K2H27L) DOR(Z —i0sgn(n —n")) + kK2H*DIR(Z —i0sgn(n — n/))] ,

(7.17)

1152072
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where the coefficient functions D% and DMK are given by
Oy — L -3
D™(Z) = 5(3—2)(1—2)
1
DO2(7)= 37-20- zy?
1
D3 (Z) = 31+~ z)3

PUD(2)=242(1+2)3(1—2)3In [%(1 - Z)] +6(1+52)1+2)*(1-2)"* 7.18)

DI (Z)=12(1+2Z +32*)(1+2)>3(1—2)°In [%(1 —z)]
+3(9+20Z+192)(1+2)21—-2)*
PUI(2)=12Z(1+ 21+ 2) (1 -2)"3In [%(1 —Z)]

+(8+35Z+282%2+252%)(1+2)2(1—2)*.

Using either equation (7.11) and the expressions (4.11) for contractions of derivatives of Z, or
equation (7.17) together with the relations gab,nb/ = —n, and n“n, = 1, we now may compute
the contracted Weyl two-point function defined in equation (7.8). It is given by
. N«x*H® 1
Cx,x))=———(1+2Z —3ln[— 1—Z +i0sgn(n—n’ ]
(C%(x,x") 1671,4( ) 2( i0sgn(n—n"))
_ Nk*H®
19274
Again, the singularity for Z — —1 is only apparent, as can be seen by developing the logarithm
around Z = —1 using the expansion (7.13).

(7.19)

(7—35Z +2922—257%)(1+Z)2(1—Z +i0sgn(n —n'))~*.

7.1.2. The two-point Ricci and the Ricci-Weyl correlation function

Suitably contracting indices in (7.4) and using the expressions (4.11) for contractions of
derivatives of Z, we get for the two-point Ricci correlation function

Nx*H*
76814
b ;bn’ ; s b in
+2(2%25 2y + 2427 2, + 2°2,4, 77 + 2,207 ) (1-2)

(Rb4(0OR™  (x)) = [ —H“égég,’(l —ZY +4z°2,2" 2,

+2(z% 24, + 22027 ) (1— 2)2](1 —Z +i0sgn(n—n"))"°.
(7.20)

As explained before, for the conformal case correlation functions involving the Ricci scalar
vanish, which can be checked easily with this explicit form. A check on this result is provided
by comparing it with the four-dimensional limit of the stress tensor two-point function for
massless, conformally coupled scalars, which has the form (4.77) with the coefficients (4.84).

We obtain .

(R 4COOR  (x")) = N%(de(x)T"’q,(x’)), (7.21)
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which coincides with the previously derived result (6.11) if we take into account that correlation
functions of the Ricci scalar vanish and that we consider N conformal fields.

Using equation (7.7) we then obtain for the Ricci-Weyl correlation function

. o Nk*H?* ;o ;o
b m'n A 4cbe[m en'leq  S2y 27;b [m' ¢n']
(Rb4()E™™ 0 (x)) = T [ZH 8560, 63 (1 =23 —2HZ 2,457, 5,1
2(<b —2 b (m' n/
—6H (85 —H*Z°2,4) 6, 2" Z g1

_qslm ;n'1b ;'] 73b 'l gsb 4 '] ;b
361 (2012024 + 212024 + 201222 + 272,07 ) 2

- 35{5 (Z;;;’]Z;;g/] + Z;n/]bz;q’]d) (1 - Zz)

+6H 221" 7, (225,25 + 2710 7,04 ) ](1 —Z +i0sgn(n—n"))"".
(7.22)

For the Weyl-Ricci correlation function one also has
(€% 4(R™ 1 (x)) = (R",()EYY g (x)), (7.23)

which (for a de Sitter-invariant result) can be seen as a consequence of Z(x,x’) = Z(x’, x). Note
that there are no tree level contributions to the correlation functions involving the Ricci tensor.
This can be explained by the fact that we consider the conformal scalar field in its vacuum
state, where the de Sitter-invariant expectation value of the stress tensor operator is (with the
appropriate index position) proportional to 6¢, which is not affected by metric perturbations,
just like the cosmological constant term. Therefore, connected correlation functions involving
the Ricci tensor first receive contributions at one-loop order.

As explained before, any further contractions vanish, i.e., the two-point function of the Ricci
scalar with any other curvature tensor is zero. Lastly, for the contracted two-point Ricci
correlation function defined in equation (7.8) we obtain

. Nx*H®
Ric*(x,x")) =
( ic*(x,x )) cam

(1—Z +i0sgn(n—n')~*. (7.24)

In the bitensor basis furnished by the normal vectors n, and n, and the parallel propagator
Zqp> the above correlation functions (7.20) and (7.22) read

Nx*H®E

(RP (IR () =

[— 535;, + 16nbndn” ng + 2(gb” Zaq T gé’,g; )

, / / / (7.25)
+ 4(nbg§ ng + ngg™" ng + nbgdq,n” + ndgé’,n" ) ]x

x (1—2Z +i0sgn(n—n")~*
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and

96074
- 65{;7/ (nq/]g”/]bnd + n”/]gé’,]nd + nq/]g;ﬂ]nb + n”/]gq/]d nb) Z
-3 (553/ - 2n[m’n[p,) (gf,]gg’] + g"(]bgqud) ]x

x(14+2)(1—Z +i0sgn(n—n"))"*,

(RP4(C™™ g (X)) =

[2 (85 —n"ny) 8L 671 — 65551 n™Ing

(7.26)

respectively. A further check on these results is provided by verifying that they satisfy the Bianchi
identities, which will be explained in the next section. Moreover, the physical interpretation of
these results will be given in the section afterwards.

7.2. Using Bianchi identities

Independent of the concrete form of the metric, the Riemann tensor obeys certain identities
arising from its definition, the Bianchi identities. In the case that we are considering, these
identities can actually be used to fully determine the form of its two-point function, up to two
constants of integration. For all the tensor algebra in this section, we have used the tensor
manipulation package xAct (see appendix H).

The identity we use is the second Bianchi identity (5.9). By contracting indices and taking
other symmetries of the Riemann tensor into account, from this identity we can derive

. 1.,
vV, R = Eva’ (7.27)
. . 1 I
b _ 1 b b l [ach l k
Vi, €% gy = (5[“5655d]6k — 80,664,867 + 55[5“56155]6,()va : (7.28)
and
“ o~ - ~ 1 -
V=V, (Rb aq= 65SJR) ) (7.29)

We now want to apply these identities to correlation functions of the curvature tensors. For
the linearized Riemann tensor, the Bianchi identities are operator identities since there is
no problem with operator-ordering. If we only consider the connected two-point function
which is bilinear in the perturbation h,;,, we can take (to this order) the derivative V to be
the background derivative V. Furthermore, if we concentrate on Wightman functions, no
additional local terms due to the time-ordering can arise if we take the derivative outside the
expectation value. All in all, the Bianchi identities apply therefore without any additional
contact terms also to the two-point function of the Riemann tensor.

To use them to constrain the form of the connected Riemann tensor two-point function, we
decompose it into the two-point function of the Weyl tensor, the two-point functions of the
Ricci tensor and scalar and mixed correlation functions (7.6), as was already done in the last
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section. It has been shown in section 6 that the Einstein tensor correlation function is simply
related to the two-point function of the stress tensor (6.11),

4
(644G w(x)) = (T )T () = Z“‘)T“ T, (730

with the decomposition of the stress tensor correlation function (4.77). Using the definition of
the Einstein tensor

I
Gy =R, — JRs}, (7.31)

we therefore obtain

1 ;d - .
(R (OR™ 1 (x")) = (5 54 —55555)(5;@ 53,—55;3 54)<ch(x)cp L))
4 5
K A ,
= :Z((k)Tngf _5521/ (k)TZ? 5a(k)7—2$ += 5a5m (k)Tcs )7—(k)(2).
=1
(7.32)

Under the assumption that the stress tensor correlation function is de Sitter-invariant, the
Einstein tensor correlation function and therefore the two-point Ricci correlation function
are also de Sitter-invariant. The same applies to the two-point correlation function of the
Ricci scalar and the correlation functions between Ricci scalar and Ricci tensor, which can be
obtained by simply contracting the two-point Ricci tensor correlation function (7.32) in an
appropriate way. In the following, we will only be interested in the Wightman function but
omit the necessary prescription Z — Z —i0sgn(n —n’), in order not to overburden the already
long formulas.

7.2.1. The Weyl-Ricci correlation function

Applying the identity (7.29) to the Weyl-Ricci correlation function, we get
V(€% 4R™ ,(x) = (5,{5;61 5;{5fd)vc](ﬁklﬁm’n,(x’)). (7.33)

Considering that we only calculate the two-point correlation functions to lowest order in the
metric perturbation h,,,, the (perturbed) derivative V contributes only with its background
value V and can be taken outside of the expectation value as explained before.

What is the most general form that the Weyl-Ricci correlation function can have? For quant-
ization using the CTP formalism in de Sitter space, one can choose the Poincaré patch and
manifestly preserve spatial rotations and translations in the conformally flat coordinate sys-
tem (4.8). The tensor structure of any correlation function may then contain the spatial vector
x —x', temporal coefficients 6§ and the Minkowski metric, which using equation (4.10) can be
alternatively expressed using covariant derivatives of Z and 6. Furthermore, instead of 52 we
can use the comoving velocity

u, = (—Hn)'8? (7.34)
which is normalized to u,u® = —1 and whose covariant derivative is given by
Vi = —H(ugaup + gap) - (7.35)
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The contraction of u, with a covariant derivative of Z is given by
s _ n
wZ,=H|—-+-27], (7.36)
5 ,',,/
which is easily calculated using the definition of u, and equation (4.10).

From these objects, we construct the most general six-index bitensor with arbitrary coefficient
functions. Imposing the symmetries of the Ricci and Weyl tensor and the vanishing trace of the
Weyl tensor on any index contraction, only some of these terms survive, and the most general
form of the Weyl-Ricci correlation function under the above assumptions is given by

3
(CeaCIR™ () = D OF ™ o filZ,0,m). (7.37)
k=1

In this expression, the f; are arbitrary functions of Z, ) and ' while the tensor factors ®)F are
given by
(e))] — 2 -2 —2
Fabcdm’n’ - gacgbdgm'n’(l —Z )_H gacgbdZ;m’Z;n’ —3H gacZ;bZ;dgm’n’
+3H g0 2.y 242y Zory — 6H * 80 Z. (4 Z. gy Ziri\ Z (7.38)
—3H ¢ Zopm Znrd(L = Z2) + 6H °Z o Z. Z (i Zora »
@F — 3 T)Z 25! n
abedm'n’ = 8ac8bd&mn' T 38acUpUd & + gacgbdum’un’ﬁ —2H gacgbdu(m’Z;n’)W
_ _ _ n
—3H g tyUy Zupy Zuy + 6H > g Uiy Z. iy iy — 6H 2gacu(bZ;d)(m/un/)W

—3H *guc Zop(mr Zowyd — OH Uy Z ot Zupre
(7.39)
and

2
n n n _
(3)Fabcdm’n’ = _Bgacubudgm’n’ (n, _Z) — 8ac8pdUm'Up (n, _Z) n,z —3H lgbdu(az;c)gm’n’

— N n - n
+H 1gacgbdu(m’z;n’) 2_,_Z _/_H 2gacgbdZ;m/Z;n—/
n n n

— n n — 1

+6H " gacU(p Zoay(m U (W - Z) Y +3H g tpUtg Zym Zy (W —Z)
- n _

+3H BgacZ;(bZ;d)(m’un’)? +3H 3 gy Z. 0y Z Zogy
- n _

—3H " gactt(Ziaym Zin) (2; —Z ) —3H*gacZi Ziaym Zi)

_ n _
+ 6H 4ubudZ;a(m/Z;n/)c (; —Z) + 6H Su(bz;d)Z;a(m’Z;n')c .

(7.40)

To constrain the functions f;,, we now use equation (7.33) on the general form (7.37). Since
the two-point Ricci tensor correlation function is de Sitter-invariant, all terms in the Weyl-Ricci
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correlation function which (after taking the covariant derivative) contain u, must vanish.
Calculating this explicitly, we see that it is only possible if f,(Z,n,n") = f3(Z,n,7) = 0
and 0, f,(Z,n, 1n’) = 0, so that the tensor structure is de Sitter invariant and f; does not
depend explicitly on 1. Calculating now the right-hand side of equation (7.33) using the
expression (7.32) for the two-point Ricci correlation function, we obtain

4
f(Z,mm) = % (2TO2)+ (1 -2)TW(2)- A -2)TO2) - 2T (2)).  (7.4D)

That is, the Weyl-Ricci correlation function is de Sitter-invariant and can be given in the explicit
form

4
30H4
66

(G gGOR™  (x")) = [2H26ﬁ§§] (H*6™ (1—22)— 2" Z,,,)

- E:Z;b]z;d] (H25:}/ - Z;m/Z;n’)
=361 (2020 Z,y + 201230 2™ + 2y 20 2, + 202302 ) 2

id]

x (-1 =23 (T®2Z)-TW(2)) +z (TH(2)- T (2))) .

—3((1— 2260 — 20722 7, ) (27 2,30 + 2027 ]

(7.42)

One easily checks that applying the full Bianchi identity (7.28) to this correlation function does
not give any new information.

For the Ricci-Weyl correlation function the same reasoning applies, and it results
(R, ()CHY g (X)) = {C g (OR™  (x)). (7.43)

The correlation function of the Weyl tensor and the Ricci scalar, obtained by contracting the
Weyl-Ricci correlation function with 67 ,, vanishes identically, so that it only remains to calculate
the two-point correlation function of the Weyl tensor, which we do in the next subsection.

7.2.2. The two-point Weyl correlation function

In contrast to the Weyl-Ricci correlation function, all terms involving u, drop out when one
imposes the symmetries of the Weyl tensor in the most general form for the two-point Weyl
tensor correlation function. It is given by

3
(CPea(IC™™ g (x)) = DOy (2, ), (7.44)

k=1
where C®)(Z, 1, n’) are arbitrary functions, and where the bitensors ¥)C, bedm'nprq Are given by

equation (7.10).

For the two-point Weyl tensor correlation function, it is necessary to apply the uncontracted
Bianchi identity (7.28) to maximally constrain the functions C ®K(z, 1,71’). Again, to lowest
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order in the metric perturbations we can take the derivative outside of the expectation value
and obtain
- R 1
b — l sb_ sb l lashlsp sl
Vi(Cg1()E™™ 0 () = (5g5555d]5k — 8(,676,5% + 30, 5cl5d]5k) 7.45)
x V(R ()E™™ 0 (x).

The Ricci-Weyl correlation function is given by equation (7.43), and is de Sitter-invariant.
Therefore, after taking the covariant derivative in the ansatz (7.44) all terms which contain
u® must vanish, which is only possible if the functions C¥)(Z,7,1’) do not depend explicitly
on 7. Applying the Bianchi identity (7.28) to the Weyl tensor at x’, we see that they also
cannot depend explicitly on 1/, so that the two-point Weyl tensor correlation function must be
de Sitter-invariant. Calculating explicitly both sides of equation (7.45) using the Ricci-Weyl
correlation function given by (7.43), we obtain

CM(2)=-62CP(2)+(1—z3)C'(2)

o (7.46)
+ 5 [220-23)(TO@) - TW(2) + (5-22°) (TH(2) - T (2))]
and
c¥2)=6CP(2)+2zCP'(2)
o (7.47)
+ 5 [3+22H)(T®(2)—TW'(2))+2z (TW(2)-T(2))],
while C®(Z) is the solution of the second-order ordinary differential equation
4

(1—23)C®"(2)—102C@"(2) —20¢P(2) = ';—Ss(z), (7.48)

where
S(Z) = (7—223)T®(2) - 22TH(Z) - 26 — 22)TW'(2) + 22T (2) +5T"(Z). (7.49)

This equation can be solved easily by the method of variation of parameters. A complete
set of solutions of the homogeneous equation is found to be ¢;(Z) = (1 +Z)™* and ¢,(Z) =
Z(1+ Z?)(1—Z2)™*, from which the method of variation of parameters gives

cO(z) = K [2(1 +2%)

15(1+2) | (1—2) f(l_z)45(z)dz—fz(l+ZZ)S(Z)dZ]. (7.50)

That is, also the two-point Weyl tensor correlation function is de Sitter-invariant and, up to two
integration constants, completely determined by the stress tensor correlation function.

In the rest of this subsection we will argue that those integration constants can (and should)
always be chosen such as to make the limit Z — —1 of the two-point Weyl tensor correlation
function (which corresponds to antipodal points) finite, if it is finite for the stress tensor
correlation function.

Assuming that the stress tensor correlation function is only singular as Z — 1, equation (7.49)
shows that S(Z) and its derivatives are finite at Z = —1. We can then fix the limits of the

92



integrals in the solution (7.50) to be —1 and Z and exhibit explicitly the integration constants
C;, which make the contribution

x* Z(1+22%)
C;—GCy|. 7.51
15(1+2)+\ (1—2)4 1 2 (7.51)
Expanding this solution around Z = —1, we thus obtain
C,+8C, C, 5C,+325(-1)

CAZ)~—t——2 4 L L 1+2)+0((1+2)?), 7.52

2) 2(1+2)* 32 80 ( ) (( ) ) ( )
so that the choice C; = —8C, makes the limit Z — —1 finite. This is also what one expects

on physical grounds: the CTP formalism manifestly preserves causality in the sense that all
integrals extend only over the past light cone. For a vacuum state which is only singular for
points x and x” which are on the light cone, such integrations should clearly not result in a
singular behavior at antipodal points, which are never in causal contact. One therefore has
to make the above choice of the integration constants, and we are certain that an explicit
calculation will conform this choice for any particular case.

The coefficient C?)(Z) is thus given by
z

Z
f(l —2)*s(2)dz —f Z(1+2z*)s(z)dz
-1

-1

Kk Z(1+2%

2 _
D)= 5avzy | a2y

(7.53)
+C(1—-2)*,

where the remaining ambiguity is the free choice of the constant C. Inserting only the term
with this constant into equations (7.46) and (7.47), the undetermined part of the two-point
Weyl correlation function is an arbitrary multiple of

aWctabl, el (2—2)(1—2z)™+@cleb] (1 —2)7

+2@¢labl, gt 3 —2)(1—-2)7°, 7:59
which is proportional to the two-point Weyl correlation function for free gravitons [157, 158].
This is a physically sensible result: the whole two-point Riemann correlation function is
determined by the matter fields in form of the stress tensor correlation function, except for a
part which corresponds to free gravitons. The strength of this part (i.e., the overall coefficient)
will of course in general receive quantum corrections. This also gives a very intuitive physical
picture: gravitons propagating through spacetime are hindered in their motion by the interaction
with matter fields, i.e., the matter fluctuations around the otherwise empty vacuum induce a
kind of refractive index (see also [159, 160]). Of course, it has to be seen if this simple and
intuitive result still holds when one takes interaction between gravitons into account.

7.2.3. Examples

In this section we will use the formulas derived in previous sections to calculate the two-point
curvature tensor correlation functions for the fields studied in section 4.2, the massless vector
field, the massless, conformally coupled scalar, the massive, minimally coupled scalar and the
massless, minimally coupled scalar.
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Since the Wightman function does not need to be renormalized, we can take the four-dimen-
sional limit of the stress tensor two-point functions calculated in section 4.5. Let us start with
the massless vector field, for which the stress tensor correlation function is given by the general
form (4.77), with the coefficients (4.79). The source term S(Z) (7.49) reads in this case

3H® 9+2
S(2)="——", 7.55
@)= a—zy (7.53)
and we determine C® using equation (7.53) to be
cO(z) = k*H® 2573 +2822+35Z+8 «*H® Z(1+Z?) | (1 —z)
T 240m% (1—-2)5(1+2)3 2074 (1—Z2)* 2 (7.56)

+Cc(1—2)*,

adjusting the constant C to shorten the resulting expression. From this expression, we now
calculate ¢V (7.46) and C® (7.47), for which it results

Kk*H® 21 +287 +527%2—287%—252*% «k*H®1+4z7%2—-27% ( 1— Z)

cH(z)= +
(@)= 240m7 (1-2»0+2z) 2074 (1—22)¢ 2
420222
(1—2) (7.57)
®) x*H® 30 +177Z + 782 +184Z° —282* —257° '
CH(2)=
24074 (1-2)°(1+2)*

k*H® Z(7+ 1022 —2%) (1_Z)+2c 3—7
2074 (1—22)5 2 (1—-2)"

For the combination of stress tensor components appearing in the Weyl-Ricci correlation
function (7.42), we get

(172 (TO(2)— T D7) TOV(z)) = — SH°
1-z)(TO@2)-TW(2) + 2 (TW (@) - T (Z))—8ﬂ_4(1_2)5, (7.58)

and with this result all curvature tensor correlation functions are determined: the Einstein
tensor two-point function is related by (6.11) to the stress tensor two-point functions, and one
can calculate easily that all correlation functions involving the Ricci scalar vanish just as for
the massless, conformally coupled scalar calculated in section 7.1. The Weyl-Ricci correlator is
given by the general formula (7.42) with the coefficient given by (7.58), and the Weyl tensor
two-point function has the form (7.44) with the coefficients from (7.56, 7.57).

In fact, by comparing with the result for the massless, conformally coupled scalar (7.22, 7.11),
we see that the result for loops of massless vectors is exactly 12 times the result for loops
of massless, conformally coupled scalars (up to the undetermined constant C). This result
should not come as a surprise: the main ingredient in the effective action (3.15) is the stress
tensor two-point function, and we have seen in section 4.5 that in four dimensions massless
vectors and massless, conformally coupled scalars give rise to the same stress tensor correlation
function, up to this factor of 12. The differences between the two (such as non-equivalence in
n dimensions and different stress tensor expectation values) can all be subsumed during the
renormalization procedure in the renormalized couplings, which then may result in a different
choice for the constant C.
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For the massless, conformally coupled scalar the procedure gives the same result up to the
mentioned factor 12, and this then coincides exactly with the previously obtained result (7.22,
7.11) if we identify the constant C with

k2H®

272

(1+x%H?2). (7.59)

Since everything else in the (Wightman) curvature tensor correlation functions is completely
determined by the Wightman stress tensor two-point function, which does not get renormalized,
the renormalized couplings a(u) and S(u) can only appear in this constant C (in this case
through A (6.35)).

For the free massless, minimally coupled scalar field, the stress tensor two-point function is
given by the same general decomposition (4.77) with the coefficients from equation (4.82).
The two-point Ricci tensor correlation function can be calculated using equation (7.32), and
reads

(R OR™ 1 (x")) = Z“‘)T“ m OT(2). (7.60)

The correlation function between the Ricci tensor and the Ricci scalar is obtained by contracting
indices, and we obtain

(R, (OR(x")) = an 4[5‘1(2 ZP(A-Z) 4+ H222,(5-2)1-2)°],  (7.61)
as well as
(RGOR™ ,(x)) = (R™ ,(x)R(x")) (7.62)
and
4178
(ROOR(x") = i;;“ (7—4z+72>(1-2)*. (7.63)

The Weyl-Ricci correlation function is calculated in equation (7.42), which gives for the massless,
minimally coupled case

K*H*
192074

=361 (2020 2,y + 202430 2™ + 2y 20 2, + 2002302 ) 2

—3 ((1 =226 — 217220 2 ) (20 243 + 2027

(G gCOR™  (x")) = [2H25“c53 (H%™ (1—20)— 2" 7,,,)

—65.°2017,9)(H250 — 2™ Z,) ](7— 52)(1-2)7°.
(7.64)

The two-point Weyl correlation function has the general form (7.44) with the coefficients given
in equations (7.46), (7.47) and (7.53). For our case, we calculate

H® 19-9Z7
S(Z2)= = .65
(2)= 25674 (1—Z)6 (7.65)
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and thus

4H8
@¢(z7) = 1520 (27 +20Z +722% —602° +52*)(1 + 2) *(1-2)"°
T
41718 1—27
~ o Z(1+Zz)(1—Zz)_4ln( )+c(1—z)—4,
K*HS
Mez) = —96%4(7 +76Z—9622+42Z°+252H(1+2)3(1-2)"°
(7.66)
3x*H8 1-2 2—Z
- 1+422—-7%1-2%"1 ( )+zc ,
807 ¢ X )i = (1—2)
K*HS
®ez) = T (60 + 19Z +2747% —2527° +342% +2525)(1—2) (1 + 2)™*
TT
3x*HE 1-Z 3—-7
- 72(7+102%2-z%H(1-2z%)%1 ( )+zc—.
sont 2V X )7 in{ = (1—2)

Again, we used the freedom to redefine the arbitrary constant C to make the expressions simpler.
The overall structure is strikingly similar to the massless, conformally coupled scalar; especially,
the behaviors as Z — 1 and Z — 00 are completely equal, except for overall numerical
factors.

For the massive, minimally coupled scalar the analogous determination of the curvature tensor
correlation functions fails due to a technical problem — the components of the stress tensor
two-point function are products of hypergeometric functions, and there is no closed-form
expression for the antiderivative of such a product multiplied by a power of Z which is needed
for the coefficient C® (7.53).

However, we can check if important assumptions we made in the last section are satisfied. For
the massive, minimally coupled scalar field, we can expand the source term S(Z) (7.49) around
Z =1 and Z = —1 using well-known formulas for the hypergeometric function [104], and after
some algebra it results

4 14H? + 5m?
S(2) = ™ (2H? — m2R(4H? + m?)— ML T L 6147y,
H* 7372872 cos2(mtv)
- (7.67)
S(Z)=——— 1-2)7°
(2) 8714(1_2)6“9(( ),

that is, it is finite as Z — —1 and has the same leading singular behaviour as Z — —1 as for the
massless vector (7.55) or the massless, minimally coupled scalar (7.65). The behaviour of the
curvature tensor correlation functions should therefore be similar to these cases.

7.3. Interpretation

We now want to interpret these results. From the explicit expressions for the coefficients
appearing in the Weyl tensor two-point function (7.12), (7.56, 7.57) or (7.66), we see that
the quantum corrections are more singular near the lightcone (as Z — 1) than the tree-level
coefficients. In the opposite case, for Z — +00, we see that the quantum corrections decay
faster, i.e., in this limit the tree-level result dominates. In total, we can say that the quantum
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corrections are concentrated near the light cone. However, the bitensors consisting of covariant
derivatives of Z are not really appropriate to study these limits, since they are not normalized
and grow or shrink with Z. Since all calculated correlation functions show the same behaviour
up to numerical coefficients, let us discuss the two-point functions including corrections due to
massless, conformally coupled scalars which are already given in the normalized basis consisting
of the parallel propagator g,;, and normal vectors n,, n;, in equations (7.17, 7.18) for the Weyl
tensor and in equations (7.26, 7.25) for correlation functions involving the Ricci tensor.

For large spacelike separations, we can set the times 1 and 1’ of the two points x and x’ equal
by a de Sitter isometry. The proper physical distance d(x, x”) between those points is then
given by d? = (—Hn)2?(x —’)2. From the explicit expression of Z given in (4.7), this distance
can be written as d? = 2H~%(1— Z) which is equal to the Minkowski distance in the embedding
space between those points (4.3). Therefore, large spacelike separations (x—x’)?> — 0o, which
correspond to superhorizon scales d > H™}, yield Z — —o00, and we see that the components
of the Weyl tensor two-point function which decay more slowly go like

~kZHO|Z| 7% + k*H|Z| 2 + *H8|Z| P In|Z| +. .., (7.68)
which in terms of the proper physical distance d reads

~ kK2H2d"* + k*H*d* + «*H2dIn(Hd) + ... . (7.69)

For the short-distance limit when the two points are spacelike separated, i.e., at subhorizon
scales d < H™!, one should recover the flat space result. In fact, using the previous expression
connecting d and Z for points at equal time, one can see that d — 0 implies Z — 1, and that
the logarithmic terms in (7.18) are subdominant in this limit:

1 1
k*H8(1—-2)"1n [5(1 - Z)] ~k*H?d~®In (Eszz) <kt d 8 ~k*HE(1-2)*.  (7.70)
Thus the dominant terms do not contain H, as one would expect, and we obtain

~ K2 KA (7.71)

We see that at large distances at superhorizon scales the two-point Weyl correlation function
decays more slowly than in flat space, a behavior that was also found for the stress tensor
correlation function for massive, minimally coupled scalar fields [115]. Note that the short-
distance limit d < H™! is different from the light cone limit Z — 1, in which the two points
must be near the light cone, but may otherwise be separated by an arbitrarily large distance
along it, and which contains additional terms proportional to H.

For large timelike separations, we can achieve © = x’ by a de Sitter isometry. The expression of
Z in spatially flat coordinates (4.7) then shows that |n — 1’| — oo corresponds to Z — o0, and
we get the result (7.68). The proper time elapsed along a geodesic connecting the two points is
given by 72 = —u?(x, x’), where the relation between the geodesic distance u and the biscalar
Z is given by equation (4.5). In the limit Z — oo it follows that T = H™!In Z, and therefore
the components of the two-point Weyl correlation function which decay more slowly go like

~ KZHO e T 4 kA8 e 2T A0 e HT 4 (7.72)

i.e., they decay exponentially in proper time separation. This exponential decay is typical for
massive theories in flat spacetime [161], with correlation functions decaying like exp(—m~) for
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large separations. In contrast, correlation functions for massless fields only decay like a power
of the proper time separation and thus much more slowly. We thus see that the background
curvature acts like an effective mass for the graviton field, which otherwise is massless. This
can also be seen from the Minkowski limit given in equation (7.71) for spacelike separations,
but which has the same form with d replaced by 7 for timelike separations.

For the Ricci-Weyl correlation function (7.26) and the Ricci-Ricci correlation function (7.25), a
similar analysis can be done. There are no tree-level contributions to these correlation functions,
since the background spacetime is vacuum. As for the Weyl tensor two-point functions, both of
these correlation functions are only singular as Z — 1. For large time- or spacelike separations
where Z — +00, the components that decay more slowly go like ~ k*H8Z~* for the Ricci
tensor two-point function, and like ~ x*H8Z~2 for the Ricci-Weyl correlation function, i.e., also
exponentially in proper time separation. We see that the Ricci-Weyl correlation function decays
as slowly as the Weyl tensor two-point function, while the Ricci tensor two-point function
vanishes faster. Since for massless, minimally coupled scalars the results are the same up
to numerical coefficients, the same fall-off behaviour is obtained, and the same conclusions

apply.

In all cases, these results contribute to our understanding of quantum field theory in de Sitter
space. Especially, they shed light on possible generalizations of flat-space theorems for quantum
field theory to curved spacetimes, such as the cluster decomposition theorem. This states
that connected correlation functions decay when their arguments are widely separated, in the
manner described above, and we see that this is also the case for the two-point function of the
Riemann tensor, including loops of massless, minimally coupled or conformally coupled scalars.
This stands in strong opposition to results obtained by Tsamis, Woodard and collaborators which
grow with increasing separation, usually like logarithms of the scale factor, which corresponds
to polynomial growth in proper time, and therefore would oppose probable generalizations
of the cluster decomposition theorem. However, their results are obtained for different cases
which include internal gravitons and graviton loops, and it is possible that these effects are
gauge-dependent. If one could identify a proper gauge-independent, local observable for those
cases, it is still possible that its correlation functions also would fall off.
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Conclusions

“You sum up the difficulties of the situation succinctly and well,” he said. “There is much that is
still obscure, though I have quite made up my mind on the main facts.”

— Sir Arthur Conan Doyle, A study in scarlet
A double result has thus arisen.
(Ein doppeltes Resultat hat sich also ergeben.)
— Karl Marx, Capital






8 Discussion

In this thesis, we have studied the influence of matter loop corrections to metric perturbations.
First, the the effective action for the metric perturbations which incorporates these corrections
was derived for some specific cases. In the case of a flat space background, it was possible
to obtain the general result for minimally coupled scalar fields of arbitrary mass, and the
generalization of the method that was used to all other matter fields is straightforward. For
the case of a background de Sitter space, apart from the existing calculation for massless,
conformally coupled scalar fields which already had been done, we calculated the effective
action for a massless, minimally coupled scalar field. While the generalization of the technique
used in flat space is not possible because of a technical issue, we extended the general idea to a
curved space background and were able to apply it successfully to this last case. In principle,
there is no reason why this extension should not work also for the general case of arbitrary
mass, but in practice a lot of effort would be needed for stress tensor two-point functions which
do not have a simple form in four dimensions.

With the calculation of the effective action, it became possible to study not only the semiclassical
Einstein equation, which in this case gives a small correction to the relation between the
cosmological constant and the Hubble constant (or inverse de Sitter radius), but also the
equations satisfied by small metric perturbations. These equations were solved using the
nonperturbative method of order reduction, both for a initial Bunch-Davies vacuum state
(resp. its interacting generalization) as well as for a wide class of generic initial states. In
both cases, the changes induced in the linearized Riemann tensor, which is a gauge-invariant
local observable, are small and vanish at late times. These results constitute an extension of
the classical and semiclassical “no-hair” theorems for de Sitter space to the quantum case, at
least for the interaction studied. Such theorems assure that at sufficiently large times, any
perturbation dies away in the sense that for any region of fixed physical size observations
with fixed precision cannot detect them anymore. In the case studied, we have seen that
while tensorial perturbations tend to a constant at late times, i.e., their wavelength tends
to infinity, these are only detectable if an observer has access to the whole universe. If one
considers local observables such as the Riemann tensor, this constant does not contribute, and
so the conclusions of the “no-hair” theorems are unchanged. Furthermore, for the tensorial
perturbations which are the dynamical part of generic metric perturbations, the corrections due
to an initial non-vacuum state fall off faster than the perturbation itself. This supports existing
calculations about the late-time attraction behaviour not only of de Sitter space, but also of
perturbations starting from a de Sitter-invariant state. While these results were derived for the
interaction of gravitons with a massless, conformally coupled scalars, the de Sitter invariance of
the non-local part of the effective action allowed us to constrain the form of the order-reduced
equations of motion in the general case, such that these conclusions remain unchanged.

After these findings, we calculated the two-point function of scalar, vectorial and tensorial
metric perturbations including loops of massless, conformally coupled scalars. In contrast to
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earlier results that concentrated on leading-order effects and the equal-time limit, we obtained
the full one-loop two-point function for separate times. The result is invariant under the subset
of de Sitter isometries that is preserved by our gauge choice, most importantly under the
simultaneous constant rescaling of time and space coordinates. From this correlation function,
we could calculate a cosmological observable, the power spectrum for tensorial perturbations,
which is the equal-time limit of the Fourier transform of the contracted two-point function.
However, since the one-loop result for the Fourier transform is a genuine distribution (as
opposed to a regular function which arises at tree level), the equal-time limit is divergent. In
order to obtain a finite result, we smear the distribution with a test function, taken to be a
Gaussian of very small width, modeling in this way the measurement process. For the regular
part of the two-point function, this reduces to the standard definition when the width of the
Gaussian goes to zero. The obtained power spectrum depends only on physical momentum,
and is thus time-independent in the physical spacetime. This is in contrast to very early results,
which found a logarithmic dependence on comoving momentum, but in line with more recent
studies who argued (for scalar perturbations) that such a dependence is erroneous, identifying
the cause of the discrepancy. Unfortunately for observations, these corrections are then much
too small to be observable. Their size would only be appreciable if the Hubble constant had a
magnitude comparable to the Planck scale, where the effective field theory ceases to be valid.

However, due to the specific gauge fixing used observables calculated from this metric two-
point functions are not local and (through the gauge fixing) implicitly depend on boundary
conditions at spatial infinity. We thus focused our attention on the two-point function of the
linearized Riemann tensor, which is a gauge-invariant and local observable when we restrict to
matter loops only. Since classically the Riemann tensor encodes all information about the local
geometry of spacetime, one may expect that its correlation functions also give full information
in the quantum case. Its two-point function may be calculated from the two-point function
of the metric perturbations, and results being de Sitter-invariant. While the gauge fixing for
the metric perturbations was not invariant, the gauge-invariant Riemann tensor makes the
de Sitter symmetries that entered into the calculation, namely of the stress tensor correlation
functions and the asymptotic in vacuum state, manifest, and shows that for the interaction
of metric perturbations with loops of conformal matter there is no physical breaking of this
invariance. The result illustrates that the quantum corrections are concentrated near the light
cone, i.e., they are more singular there than the tree level result. Furthermore, the two-point
function decays exponentially for large separations between the two points, showing that the
background curvature acts as an effective mass for the graviton.

It is naturally interesting to see if these calculations can be generalized to the interaction with
other kinds of matter. In the last part of the thesis, we thus exploited the Bianchi identities
to show that the Riemann tensor two-point function is always de Sitter-invariant if the stress
tensor two-point function is. We gave explicit formulas to calculate its coefficients from the
coefficients of the stress tensor correlation function, and the result for the Riemann two-point
function is fully determined up to an integration constant. This constant can naturally be
interpreted as the strength of free gravitons which are propagating through the background
spacetime, and depends on the unknown coefficients which multiply terms in the gravitational
action which are quadratic in the curvature tensors.

What do these outcomes tell us? From a cosmological point of view, we may safely say that loop
corrections are irrelevant (at least for the considered cases), which maybe sounds disappointing.
This conclusion also does not change if we include matter self-interactions, as long as the stress
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tensor correlation functions stay de Sitter-invariant. Of course, the inclusion of graviton loops
can change this picture tremendously if the breaking of de Sitter invariance, which seems to be a
robust feature in calculations that have been done for individual cases, is indeed physical and not
only a gauge artifact. In order to reach a conclusion in this matter, it is first necessary to construct
an appropriate gauge-invariant and local observable which can then play the same role as the
linearized Riemann tensor does in this thesis: separate physical from gauge effects. However,
from a mathematical point of view the results obtained in this thesis are extremely satisfying.
In Minkowski space many quantization procedures, regularization methods and gauge fixing
terms exist that keep manifest the Poincaré symmetry of the background. Considering quantum
fields on a fixed curved background (i.e., not considering effects that radically change this
background such as the formation of black holes), one naturally expects that there is a way
to preserve the background symmetries, and we see that this is indeed the case. While there
is a manifestly de Sitter-invariant graviton propagator, derived from the Euclidean version of
de Sitter space, the sphere, its validity has been questioned and it is rewarding to see that the
choice of propagator does not matter for appropriate observables. Furthermore, these findings
are a further step on the way to establish equivalence between calculations done in de Sitter and
its Euclidean version, a connection which in Minkowski space has been cast into a theorem.
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Appendix

A. Metric expansion

We decompose the full metric g,; into a background g,; and perturbations h,;,
gab =8ab T K'hab . (Al)

All indices are moved with the background metric g,;, i.e. we see h,; as a tensor field on the
manifold. To calculate the inverse metric, we use the most general form and determine the
coefficients from g,,3% = o¢, which gives

ga” = g“b —xh + th‘"”hfj1 + (’)(K3) . (A.2)

For the determinant we use
~ - 1 .
V=8 =+/—det(§.,) =—exp [5 trln(gab)]

1 1 1
=—exp [— trin(gg) + = tr (Khab - —thamh’g’)]
2 2 2
1 1 (A.3)
= 4/—gexp (EKh_ ZKthnh’””)

1 1 1
=~z (1 +oxh+ nghz — szhmnhm”) +0(x%).
For the Christoffel symbols we get after a short direct calculation

I =Ty + %Ks%c — %thﬂmsmbc +0(x°)
S = Vyh? + V kS — Vohy, (A4
Vehay = Siabye »
where V denotes the derivative with respect to the background metric g,,.
The curvature tensors can equally well be calculated in a straightforward way, which gives
R%.g =RY, , + xRV +k2RPI +0O(x?),
Ryg = Rpq + xR + k2R3 + O(x%), (A.5)
R=R+xRW + x?R? + O(KS)
with
RS = VS,

. 1 (A.6)
RS g ==V (Saph) + 58S
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~ 1
R(l)bd = 5 (chbhg + VCth‘l; - Dhbd - vadh) N

~ 1
R®),, = Ehmn (Vi Vahiod + Va Vil — 2V Viphay,)

1 (A.7)
+32 (V™h—2V,h™) (2V (shgym — Vinhoa)
1 mn [m n]
+ Z(vbhmn)(vdh )+(v[mhn]b)(v hd )
and
R — _hbded +V, V,h™—0h,
R® =pm (v, vV, h+0Oh,,—2V,V°h,) + K™ RPIR e
1
— 4 @V = V) 2V Ry — V) (A.8)

1
+ Z (vshmn) (vshmn) (v[mhn]s) (v[mhn]s) >

where O = V*V,.

The Weyl tensor can be obtained from the Riemann tensor by subtracting all traces; in four
dimensions it is given by

~ab  __ pab sla <b] 1~[a b]
¢ =R Cd_zR[CBd]+§R5[C5d]. (A.9)

For its square we obtain

Cabed ¢ g =RP®R 4 — 2RPR , + §R2 : (A.10)

B. Conformal transformations

Under the conformal transformation

gab =e2w§ab’ (Bll)

the transformed Christoffel symbols are given by
I = B + (8567 + 66} — 85:8™™) oo, (B.12)

and the curvature tensors follow as

R%eq =RY  + 4§ak5ﬂl§d]{k [V Vo — (Vo) (Vaw)]— 25ﬁ§de(©mw)(©mw)
R Rbd _2[¢b¢dw—(¢bw)(¢dw)+§bd(¢mw)(¢mw)]—§bd¢m¢mw (B.13)

Rpa
e2*R=R—6V™V,w—6(V"w)(V, ),

where the covariant derivative V refers to the metric g, .
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C. Special functions

We define the entire function Ein(z) by

Z

. _[ef-1_ 2, gk
Ein(z) = —de= kzlj ok (C.14)
J -

Its asymptotic expansion at infinity (r — o0) is given by

Ein(ar + ) ~ —y —In(—(ar + B)) + e *P [é + sz_rf + (’)(r‘g)] , (C.15)

where 7y is the Euler-Mascheroni constant.

The following useful integrals involving Ein(z) can be easily obtained by partial integration:

e dt—le_%[Ein[g(bt+c)]+ln(bt+c)]
bt+c b b

fe‘“ In(bt +c)dt =

Q|

[(ea[ —ef%)ln(bt +c)—e7a_bc Ein[% (bt +c)]]

e Ein(bt +c)dt = le‘“Ein(bt +c)+ le_% [Ein(g (bt +c)) —Ein(a +b (bt +c))] .
a a b b

(C.16)

These integrals depend continuously on the parameters a and c, so that for instance the integral
of Ein(bt + ¢) can be calculated by taking the limit a — 0 on the right side of the last integral.

D. Distributions and their Fourier transforms

In this section, we give details on the distributions appearing in sections 5.2.1 and 6.1, and
their Fourier transforms. General information about the theory of distributions can be found
in [162, 163].

In general, one can define distributions as the limit of regular functions. For example, the
principal value distribution 73% can be defined as the limit as € — 0 of
O(t—e)+0O(—t—e¢)
t >

(D.17)

but this limit can only be taken after smearing with a test function, i.e.,

JP%f(t)dt=£iir(1)[J e(t_€)+®(_t_e)f(t)dt], (D.18)

t

where f(t) is such an appropriate (fast decaying) test function. We will denote this limit by
replacing € by 0 in (D.17), so that

1_ O(t—0)+6(—t—0)
t t '

P

(D.19)
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Its Fourier transform can be calculated to give

1 1wt . . eiwt . eiwt
P- dt = hm dt | =lim | lim | —dt+ lim dt
t €e—0 | r—>00 t r—oo t
et J
= 111%[ lim [Ein(iewt) +In|t]]75 + lim [Ein(iwt) + In|t|] ] (D.20)

= hn% [Ein (—iwe) + In(iw) — In(—iw) — Ein (iwe) ]
=iarg(iw)—iarg(—iw) =imsgnw,

where we used the expansion (C.15) for the Ein function. Alternatively, one can employ the
Sokhotsky formula
1

1 .
0 —7)?4-17'[5(0, (D.21)

which gives the same result.

()

Another distribution of interest is P’——, which is defined as

P,@(t) [@(t 0)
t

. + 6(t)(In(u0) + y)] , (D.22)

where u > 0 is an arbitrary reference energy scale to make the definition dimensionally correct,
and we use the symbol P’ to distinguish it from the previous P which did not include a &
distribution. Its Fourier transform can be calculated by proceeding as in the previous case, and
is given by

oo

iwt
IP’@E” et de=1im | | &

e—0

€

=lim lim [[—y —In(—iw)—Inr]+Inr —Ein(iwe)—Ine +Ine+y +1nu]

e—>0r—o0

=ln(&)+%sgnw.

(D.23)
Furthermore, combining these two we can define
1 o(t 1
P — =2p —= (t) —P=. (D.24)
t] t t

The Fourier transform of the kernels L, D and N (6.24) can then be calculated using

0
Jln|p2|e‘ipof(%:J[1n|po+lp||+1n|P°—|p||]€_ip0t(;l;E ——cos(IpIt)P’—+5(t)lﬂu

[t]
(D.25)
with the scale u from equation (D.22), which can be identified with the renormalization scale,

0 0 .
f o(—p? e P _ J [1-0(p?— ()] 2 = 50— SUPID o6
27 21 Tt
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and

) 0 —ipOrdPO s _ 2 (.0y2 0y .—ip®t—ep® dp°
e(—pHe(p”)e ¥ S — = lim [1-e(*—(")*)]e(@’)e —
mooe0 2m (D.27)

1 i : 1
=-5(t)— —e Pltp=
2 © 27 t

where in the last step equation (D.21) was used.

E. Fourier transforms for Riemann tensor two-point
functions

For the calculation of the Riemann tensor correlation function (7.4) we need Fourier transform-
ations of the type

- i d3p -

filv-»(x: X/) = fil-v-(p’ . n/)elp W = ]'-(P,T) [,fll(p’ 1, 77/)] P (E.28)
where r = x — x’. To compute this integrals we first strip the expressions of any tensorial
factors: 1), and 6° can simply be pulled out, while

]:(p: ’I") [pafil---(pi m, 77/)] = _i(aa - 6281)) F(p: ’I") [ﬁl(p7 mn, 77/)] . (E29)

The Fourier transformation of the remaining scalar factor must then be understood in the sense
of distributions, i.e. we calculate

1 —elpl o
27| fe P F(Ipl,n,n")sin(|pllr]) Ipldlpl | , (E.30)
0

N — Al;
flx,x)=d-lim o

where we take into account that because of rotational symmetry those scalar factors only
depend on the absolute value of p.

As a technical detail, we note that for the Fourier transformation of e.g. p,p;|p|™> we have
to introduce a lower bound & for the integral in equation (E.30). After derivation such as
indicated in equation (E.29), all dependence on & disappears. This is only a technical detail:
while the Fourier transformation of p,p;|p|> is well defined (and is given by the result of this
process), the Fourier transformation of |p|™> alone is not.

Using the integrals for the Ein function given in appendix C and using partial integration to
reduce any powers of |p|, most Fourier transformations can be readily calculated in this way.
Additionally, we need the indefinite integral

1 1
Jln(ap)— dp = 5 In(ap), (E.31)
p
and the definite integral
. 1
I= f e P P Ein(ibp)—dp (E.32)
p
0
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for real parameters a and b. To compute this integral, since it is absolutely convergent, we may
insert the series expansion of the Ein function to get

(]
I I (LA TN Ly
I= €P gldp dp = — | — =Liy | — . E.33
; kk! € erp P ;kz a+ie 2 a+ie ( )
0

Here, Li,(2) is the dilogarithm function. However, this definite integral only occurs together
with p,, so that its derivative

Lij(z) = —ln(lz—_z), (E.34)

which can also be directly inferred from the series expansion, is the only expression we need
for our computation.

E Evaluation of the integral I,(Z)

In this section, we explicitly calculate the integral I,(Z) in n dimensions, which is essentially
the scalar two-point function. In n dimensions, we obtain for the angular integration

. dn—l
ffupl)elp’l‘(zn)npl _ (ZQ )n lfff(q)elqrcose n—. 39qn 2d9dq

(E35)

L

(2)2

ff(q)Jns(qr)q 7 dgq,

where we set r = |r| and defined Q[ = 27[D+%/F(§ + 1), the area of the unit D-sphere. Hence,
the integral defined by (4.31) reads

n—1

T n-1 e dTTD
Iv(n,n’,r)=4—H(H2nn’) 2 JH(VU(—|I)|T))H(VZ) (—Ipln’)e®" PP

oo

n—1 3 n—1
(H*nn) = r sz(U( gmHP (—qn')Je2 (qr)q 7 dg.
0

1

n+3

THYE T

This integral can be evaluated by expressing the Hankel functions by Bessel functions and using
a result due to Bailey [164]. This result of Bailey’s in the general case is
o0
A1
J Jy (ax)J, (bx)J, (cx)x™ " dx

0

A1 N . F(p+7u;-u+v)r(—p+/12+u+v) (F36)
=—7—a"b sm(—(—p+7t+,u+ v))
AUty 2 r(1+wrd+»
+A+u+Y —p+A+u+v 2 p?
X Fy £ RTY P =LY TS g
2 2 c2’ c2
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where F, is the fourth Appell hypergeometric function defined by

(a)m+n(b)m+n m.,,n

oo
E (a,b;c,d;x,y) = Z () (d),m!n! *

k,1=0

(E37)

The integral is convergent if a, b,c > 0 with ¢ > a + b, together with the conditions fe (1) < %
and Re(p + A+ u+ v) > 0. In the case where A = p + 2 and u = v, which is all we need for
evaluating I,(Z), equation (E36) simplifies as

[ee]
J J, (ax)J_, (bx)J, (cx)xPldx =0 (E38)
0
oo
2r+1 . F'(p+1+v)
f J, (ax)J, (bx)J, (cx)xPtldx = Wa”b”sm(ﬂ:(l + 7)) W

0

a’ b?
><F4(p+1+v,1+v;1+v,1+v;—2,—2). (E39)
c2' ¢

Now we combine the formula

x y ) a a
Eyla,B58,8;— - =[1-x)*A—-y)*oF (a,1+a—B;6;xy)
O e e (e e YV pibixy
(E40)
due to Bailey and the transformation formula for the Gaul} hypergeometric function
F(a,1+a— P Bia2) = (1—2) 2,8, (o, f— =32 — 1, —— 2 (E41)
2\ @, a P52 - z 2l | @, 2; B (1_2)2 .
to find
X Y
E (a5 PSP — PR )
(PP A=y Tana -y
1 45 (E42)
=(1—x)*(1—y)*(1— y/xy) 2*,F —=2-1,—].
( X) ( .y) ( Xy) 2 l(a:ﬂ 2’ /j > (1_m)2)
Introducing
2 x 2 Y
W= , 2= (E43)
(1-x)1-y) 1-x)1-y)
with the (relative) sign defined by
VXY
uy = —————, (E44)
1-x)1-y)
one obtains after some algebra
4 — _
XY 4uv 1-x)1-y) 1 (E45)

CA-yEy? @hvr-1T Q- yEy)? 1-(utve
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By substituting these formulae in (E42) we obtain

E, (a,/ﬁ;[o’,ﬂ;uz, vz) = (1 —(u—i—v)z)_a oF (a,[o’ — %;2/5 —1; w:}%) . (E46)

By using this formula in (E39) we find

oo

+1

0 (E47)

_ 1 4ab
x cPa’b” (2 —(a+ b)) P F( +1+v,—+v;1+2v;—).
ca (C (a )) 2\P 2 (a+b)2—c2

We write the Hankel functions in (E36) in terms of Bessel functions

1, @)=, ()
isin(mtv)

ey, (x) =, (2)
isin(7mv)

1 _ 2 _
HY (2) = , HP ()= : (E48)
use (E38) and (E47) and apply a standard hypergeometric transformation which sends the
argument to its inverse. We also use the duplication and reflection formulas for the I" function

(a0 F(:I:v)l“(% + v) (£ L7 F49
2=y TETUEI =500 (49)
Thus, we obtain
1 P T 1 r 1—
f H(vl) (ax)H(vz) (bx)J, (cx)xPtdx = —— (Zc_b) (o + ;_ V) (l; + V)
2 a 3
) m2ab (p + 2) (E50)

3 (a+b)*—c?
2 4ab ’

szl(p+l+v,p+1—v;p+—,

This equation was derived under the condition ¢ > a + b, and all transformations we have
applied were valid under this condition, as well as Re (p) < % (We also need the condition
—1 + |Re (v)| < Re(p), but it is always satisfied in the cases we are interested in except for
the case m? = 0 for 9,1 u(Z ), which can be found by taking the limit m? — 0 of the result for
positive mass.) However, now we can use analytic continuation to affirm that this formula is
actually valid for all a, b and c. To this end we recall that the asymptotic expansion of the
Hankel functions at large argument is given by

HD (ax) ~ \ 2 dilax—(2v+1)n/4] H® (bx) ~ \ 2 ibx-@vtDn/4] (E51)
v nax > mbx

Hence the integral is convergent if we let a — a(1 +ie) and b — b(1 —ie) with € > 0
for all positive values of a, b and ¢ and for all p satisfying —1 + |Re(v)| < Re(p). This
observation determines how the hypergeometric function in (E50) should be continued to
(a+b)?>—c? > 4ab > 0. Thus, the argument of the hypergeometric function is given, in the
limit € — 0, by

(a+b)?>—c?

adb +iesgn(a—>b). (E52)
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Hence, by letting a = —n(1 +i€), b = —n’(1 —ie) and ¢ = || in (F50) we find indeed (4.33),
ie.

H*2 T(*7 + )T (7 —v)

(4m)z r (%) (E53)

n—1 n—1 n
X B 2 +, 5 TV T

I’V(ni 77/, 7’) =

zZ . ,
—iesgn(n—n ))

with Z defined by (4.7).

G. Mellin-Barnes integrals

Integrals of Mellin-Barnes type have found applications in a variety of contexts. For theoretical
physics, this includes the calculation of Feynman diagrams in momentum space [120], the
AdS/CFT correspondence [165-168] and also physics in de Sitter space [32-34, 169, 170].
Mellin-Barnes integrals are contour integrals in the complex plane which involve products of T
functions, such as

J T(a +2)T(b +2)T(c —2)T(d —2)x* % . (G.54)
C

Here, the integration path C runs from —ioco to +ioco and is deformed in such a way that
poles of the I functions of the type I'(x +s), called left poles, are to the left and poles of the
type T'(x —s), called right poles, to the right of this contour. For the example integral (G.54)
with a = }P b= %(1 +1i), c = 13—6(—2 +1) and d = 0, the path is shown in figure G.1. It is

-1

Figure G.1.: The integration path C for the example Mellin-Barnes integral. It separates the complex plane
in a left (unshaded) and a right (shaded) half such that the left poles (shown in white) all lie
in the left half and the right poles (shown in black) all lie in the right half.
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always possible to find such a contour as long as no difference between the a’s is an integer,
so that no left pole coincides with any right pole. These integrals are well defined because
the I' functions decay exponentially in imaginary directions, and therefore are also suited to
numerical evaluation. If the integrand also decays in a real direction z — 00, they can be
evaluated by contour integration, summing the resulting residue series.

An important result is Barnes’ Lemma [171, 172]

dz I'a+c)T(a+d)T(b+c)r(b+d)
T T I'c—2)I'(d—2)— = .
J (a+2)T(b+2)'(c—2)'(d Z)Zni T(atbrctd) s (G.55)
C
and another case which is often needed is
Tla+2)(—z) ,dz 1
J Ml@) 27mi (1+x0 (659

C
where the contour can be closed to the left if |[x| > 1 and to the right if |x| < 1.

This process can of course also be done in reverse. Let us take the series definition of the Gaul3
hypergeometric function

N T(a+ (b +k)r(e) x*
2F1 (Cl,b,C,X)—;) F(a)l"(b)l"(c+k) k' . (G57)
The terms in this sum are the residues of
Tla+z)I(b+2)(c) .
F@TbTc+z) ) (G.58)

for 2 = 0,1,..., and one therefore obtains directly the Mellin-Barnes representation of the
hypergeometric function

v | Tla+2)r(b+2)T(c) vz 42
2F1 (a,b,c,x)—f F(a)l"(b)l"(c+z) F( Z)( X) 27_51 (G59)
C
Take now the formula (G.56) in the form
HﬂXPWYZJNFﬂWFﬂFﬂ“%U (G.60)
2mi

[

multiply by I'(c—a—b—s)T'(a+s)I'(b+s) on both sides and integrate over s using the appropriate
Mellin-Barnes contour C. In the resulting double integral on the right-hand side, we can switch
the order of integration because both integrals are absolutely convergent. It thus follows

freﬂw@—a—b—@ﬂa+9ﬂb+9ﬂ—xy£%

C
ds , dz
= J f I(c—a—b—s)I(a+s)I(b+s)(z —s)ﬁr‘(—z)(—x) py (G.61)
ccC
_ [ Tlc=a)(c—b)I'(a+2)T(b+z) vz Az
_f I'(c+2) M=) 27

C
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where in the last line we applied Barnes’ Lemma (G.55). Comparing with (G.59), we therefore
obtain another Mellin-Barnes representation of the Gauf$ hypergeometric function,

I'la+2)I(b+2)(c—a—b—2z)I'(—=)'(c) . dz
T(Q)T(b)T(c —a)l(c — b) (—xyo—.  (G62)

oF (a,b;c;x) :J

C

A further application of Mellin-Barnes integrals concerns the product of two flat-space propag-
ators (4.37). These have the schematic form

G(x?) ~ f r(—s)r(—%z—s)(mzxz) a5 (G.63)
C

4 2mi’

where we stripped unimportant prefactors. For the product of two such propagators, we
multiply and shift the inner integration variable to obtain

22y e n-2 n-2 ) m?x?\" dt ds
G*(x*) JJF( s)T( t+s)r( — s)F( — s ( y il (G.64)
Cc C

We can then exchange the integration order, again because everything converges absolutely,
and by using Barnes’ Lemma (G.55) it follows

GZ(XZ)’VJ Fz(_t_n_gz)r(_t)r(—t—n-{-Z)(mzxz)tg.
I(—2t—n+2) P o

(G.65)

Similarly, one derives Mellin-Barnes formulas for the product of derivatives of such propagators.
The generalization of these formulas to de Sitter space is however not so simple, mainly because
the Mellin-Barnes representation of the de Sitter propagator (4.35) contains four I' functions
(instead of two as in flat space), and there is no analogue of Barnes’ Lemma (G.55) involving
eight T' functions.

H. Calculating with xAct

In this section, we explain an example calculation with the open source tensor manipulation
package xAct [173] for Mathematica, which was used extensively in the calculations presented
in this thesis. Commands to be entered are shown in black, while the corresponding output is
given in grey. Comments are always at the end of the line. and shown in normal font. Since
the output sometimes can be lengthy, we only give a description of it, prefixed by -.

First one needs to load the appropriate packages.

<< xAct‘xTensor‘; This is the main xAct package.
-- Copyright messages --
<< xAct‘TexAct‘; This package provides nice TgX formatting.

-- Copyright messages --

The next step is to define a manifold M of dimension nn, and give a set of indices that we want
to use later.

115



DefManifold([M, nn, a, b, ¢, d, k, 1, m, n, p, q, r, s, t, v, w, X, y, z];

** DefManifold: Defining manifold M.

** DefVBundle: Defining vbundle TangentM.

DefConstantSymbol [nn] ; Avoid derivatives like V nn.
** DefConstantSymbol: Defining constant symbol nn.

The definition of the manifold is completed with the definition of a metric gg, a covariant
derivative CD and tensors that we need in the following.

DefMetric[-1, ggl[-a, -b], CD, ";", "V"];
-- Metric, covariant derivative and curvature tensors are defined --

DefTensor[Z0[], M]; This is Z (4.5)
DefTensor[Zin[a]l, M]; Its covariant derivative V,Z.
DefTensor[Zis[al, M]; Its covariant derivative V/ Z.
DefTensor[Z2[a,b]l, M]; The mixed derivative V,V;/ Z.
DefTensor [ggn[a,b], M, Symmetric[a,bl]; The metric at the point x.
DefTensor[ggs[a,b], M, Symmetricla,bl]; The metric at the point x’.
DefTensor [unfal, M]; The comoving velocity u, at x (7.34).
DefTensor [us[a], M]; The comoving velocity u, at x’.

DefTensor[etal[]l, M];

DefTensor [etas[], M];

DefConstantSymbol [H] ;

*x*% DefTensor: Defining tensor ZO[].

-- Definitions for Zilmn, Z1s, Z2, ggl, gg2 and H --

PrintAs[Z0]~="Z"; Nicer output. The same can be done for all other objects.

Next, we define two index sets, one from which we can take indices which refer to the point x
and one for the point x’.

nindices={a,b,c,d,v,w,x,y,z};
sindices={k,1,m,n,p,q,r,s};

The distinction between these two sets is necessary in order to properly define the rules for
covariant derivatives of Z, u, (7.35), n and 7’. Covariant derivatives are written in the form
CD[a]@T [], which corresponds to VT, and contravariant indices have to be prefixed with a
minus sign.

mkZinrule[e_] :=Flatten[{Map[(CD[#]1@Z0[]->Z1in[#])&,e],
Map [(CD[-#1@Z0[1->Zin[-#1)&,el}]
mkZ1srule[e_] :=Flatten[{Map [(CD[#]@Z0[]->Z1s[#])&,e],
Map [(CD[-#]1@Z0[1->Z1s[-#])&,el}]
mkggZinrule[e_]:=Flatten[{Map[(CD[#]@Z1n[i_]:>-Z0[] H~2 ggnl#,il)&,e],
Map[(CD[-#]1@Z1n[i_]1:>-Z0[] H~2 ggn[-#,i1)&,el}]
mkggZlisrule[e_]:=Flatten[{Map[(CD[#]@Z1s[i_]:>-Z0[] H~2 ggs[#,il)&,e],
Map[(CD[-#]@Z1s[i_]1:>-Z0[] H"2 ggs[-#,i]1)&,el}]
mkZ2Z1inrulel[e_]:=Flatten[{Map[(CD[#]1@Z1in[i_]:>Z2[i,#1)&,e],
Map [(CD[-#]1@Z1in[i_]1:>Z2[i,-#]1)&,el}]
mkZ2Z1srule[e_] :=Flatten[{Map[(CD[#]@Z1s[i_]:>Z2[#,il)&,e],
Map [(CD[-#]0Z1s[i_]:>Z2[-#,1]1)&,el}]
mkZ1sZ2rule[e_] :=Flatten[{Map[(CD[#]@Z2[i_,j_1:>-Z1s[j] H"2 ggn[#,i]l)&,e],
Map[(CD[-#]@Z2[i_,j_]1:>-Z1s[j] H"2 ggn[-#,i1)&,el}]
mkZinZ2rule([e_] :=Flatten[{Map[(CD[#]@Z2[i_,j_]1:>-Z1in[i] H~2 ggs[#,j1)&,e],
Map[(CD[-#]@Z2[i_, j_]1:>-Z1n[i] H~2 ggs[-#,j1)&,el}]
mkunnrule[e_] :=Flatten[{Map[(CD[#]@un[i_]:>-H (un[#Jun[il+ggn[#,i]))&,e],
Map[(CD[-#]@un[i_]:>-H (un[-#]Jun[il+ggn[-#,i1))&,e]}]
mkussrule[e_]:=Flatten[{Map[(CD[#]@us[i_]:>-H (us[#]us[il+ggs[#,i]))&,e],
Map[(CD[-#]@us[i_]:>-H (us[-#]us[il+ggs[-#,1i]))&,el}]

mkunsrule[e_] :=Flatten[{Map[(CD[#]@un[i_]:>0)&,e], Derivatives with respect
Map[(CD[-#]@un[i_]:>0)&,el}] to the point x’ vanish,
mkusnrule[e_] :=Flatten[{Map [(CD[#]@us[i_]:>0)&,e], as one can see from the
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Map[(CD[-#]@us[i_]:>0)&,el}] explicit form of u, (7.34)
mketanrule[e_]:=Flatten[{Map[(CD[#]@etal[]l:>-H etal] un[#])&,e],
Map[(CD[-#]@etal[]l:>-H etal]l un[-#])&,el}]
mketasrule[e_] :=Flatten[{Map[(CD[#]@etas[]:>-H etas[] us[#])&,el,
Map[(CD[-#]@etas[]:>-H etas[] us[-#]1)&,el}]
mketansrule[e_] :=Flatten[{Map [(CD[#]Q@etal]l:>0)&,e],
Map[(CD[-#]@eta[]:>0)&,e]l}]
mketasnrule[e_] :=Flatten[{Map [(CD[#]@etas[]:>0)&,e],
Map[(CD[-#]@etas[]:>0)&,el}]

These rules are then defined for each index from the two sets, together with rules for the
contraction of covariant derivatives of Z (4.11) and u, (7.36).

ConvertZrules=Flatten[{makeZlnrule[nindices], makeZlsrule[sindices],
makeggZinrule[nindices], makeggZlsrule[sindices], makeZ2Zlnrule[sindices],
makeZ2Zlsrule[nindices], makeZlsZ2rule[nindices], makeZlnZ2rule[sindices],
Zin[i_1Zin[-i_]1:>H~2(1-Z0[1~2), Z1s[i_1Z1s[-i_]1:>H~2(1-Z0[]"~2),
Z2[i_,j_1Zin[-i_]:>-H~2 Z0[1Z1s[j], 22[-i_,j_1Zin[i_]1:>-H~2 Z0[1Z1s[j],
z2[i_,j_121s[-j_1:>-H~2 z0[1Z1n[il, Z2[i_,-j_1Z1s[j_1:>-H~2 Z0[1Zin[i],
z2[i_,j_122[-i_,k_1:>H"4 ggs[j,k]1-H"2 Z1s[j1Z1s[k],
z2[i_,j_1Z22[k_,-j_1:>H"4 ggnl[i,k]-H~2 Zin[i]Z1in[k],
ulnfa_lZin[-a_]:>H(eta[l/etas[]1-Z0[]), uln[-a_lZin[a_]:>H(etal[l/etas[]1-20[1),
uls[a_lZis[-a_]:>H(etas[]1/etal]l-Z0[1), uln[-s_]Zin[s_]:>H(etas[]/etall-Z0[]),
uinl[a_J]Z2[-a_,i_]:>H(eta[]l/etas[] H us[i]l-Z1s[il),
ulnl[-a_lZ2[a_,i_]:>H(etal[l/etas[] H us[i]l-Z1s[il),
ulsl[a_J]Z2[i_,-a_]:>H(etas[]1/etal]l] H unl[il-Z1in[il]),
uls[-a_J]Z2[i_,a_]:>H(etas[]/etal] H un[i]l-Z1in[il),

CD[_Jeggn[__1:>0, CD[_leggs[__1:>0, ggnli_,-i_]:>nn, ggn[-i_,i_]:>nn,
ggsli_,-i_]:>nn, ggs[-i_,i_]:>nn, ggnla_,b_]Zin[-a_]:>Zin[b],
ggnla_,b_1Zin[-b_]:>Zin[al, ggnl-a_,b_]Zin[a_]:>Zin[b],
ggnla_,-b_1Z1in[b_]:>Zin[a], ggsla_,b_1Zis[-a_]:>Z1s[b],
ggsla_,b_1Z1s[-b_]:>Z1s[al, ggs[-a_,b_lZis[a_]:>Z1s[b],
ggsla_,-b_1Z1s[b_1:>Z1s[al, ggnla_,b_]1Z2[-a_,i_]1:>Z2[b,il,
ggnla_,b_1Z22[-b_,i_]:>Z2[a,i], ggnl[-a_,b_]1Z2[a_,i_]:>Z2[b,i],
ggnla_,-b_122[b_,i_]1:>Z2[a,i]l, ggsla_,b_122[i_,-a_]:>Z2[i,Db],
ggsla_,b_1Z2[i_,-b_1:>Z2[i,al, ggsl[-a_,b_]1Z2[i_,a_]:>Z2[i,Db],
ggsla_,-b_1Z2[i_,b_]:>Z2[i,a), ggnli_,a_lggnl-a_,j_1:>ggnli,j],
ggnli_,-a_lggnla_,j_l:>ggnli,jl, ggnli_,a_lggnlj_,-a_l:>ggnli,j],
ggnla_,i_lggnl-a_,j_l:>ggnli,jl, ggsli_,a_lggsl-a_,j_1:>ggsli,j],
ggsli_,-a_lggsla_,j_]:>ggsli,jl, ggsli_,a_lggs[j_,-a_l:>ggs[i,j],
ggsla_,i_lggs[-a_,j_l:>ggsl[i,jl, ggnla_,b_lun[-a_]l:>un(b],
ggnla_,b_Jun[-b_]:>un[al, ggnl-a_,b_Jun[a_]:>un[b],
ggnla_,-b_Jun[b_]l:>unlal, ggsla_,b_Jus[-a_]l:>us[b],
ggsla_,b_lus[-b_]l:>us[al, ggs[-a_,b_lus[a_]l:>us[b]l,
ggsla_,-b_Jus[b_]:>us[al}];

Finally we define a function which applies these rules to an expression, along with some other
contractions and expansions.

ConvertZ[e_] :=ToCanonical [ContractMetric [Expand[e] ,OverDerivatives->True]
// .ConvertZrules]

Another very useful function groups expressions by their tensorial structure, as in (4.77),
(4.113) or (7.4). To define this function, we need a helper function which checks if a given
term has indices

HasIndices[f_]:=Length[IndicesOf [Free] [f]1>0 || Length[IndicesOf [Dummy] [£]]1>0

as well as one that can expand an expression that was previously Collect [Jed according to a
specific criterion.
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ExpandCollect [expr_, crit_]:=If[Head[expr] === Times,
If [Length[Select[expr, ((Head[#] === Plus) && crit[#])&, 1]1>0,
Module[{pos = Position[expr, _7(((Head[#] === Plus) && crit[#]) &), {1},
Heads -> False][[1, 111},
Map [ExpandCollect [Delete[expr, pos] #, crit] &, exprl[[pos]]]],

expr],
If [Head[expr] === Plus,

If [crit[expr], Map[ExpandCollect[#, crit] &, expr], expr],
exprl];

This function works in the following way: on each subexpression that is a product, each factor
is checked if it fulfills the specified criterion, and sorted into ones that do and ones that do not.
On each subexpression that is a sum, the procedure is applied to each summand. The grouping
function can then be defined by

TCollect[f_] :=ExpandCollect[Collect[f, {ggil__1, gg2[__1, Zin[_], Zis[_],
z2[__1, uin[_], uis[_], H}, Factor], HasIndices]

After defining these functions, we are ready to tackle specific calculations. For example, it is
easy to check the tracelessness of the bitensors (7.10) appearing in the Weyl-Weyl correlation
functions. We first define the Riemann bitensor set (4.111)

R1 = Antisymmetrize[Antisymmetrize[Antisymmetrize[Antisymmetrizel[
ggila,clggl[b,dlgg2[m,plgg2[n,ql,{a,b}],{c,d}],{m,n}],{p,q}];

and so on, and then define

C1 = - 2 ZO[IR1 - 3R4 + 6 ZO[IR5 + 2R8 - 2 ZO[IR9;
C2 = -(5-Z0[]1~2) R1 + 6R2 + 12R5 - 6R6 - 6R7 + 2 ZO[JR8 - (3+ZO[]1~2)R9;
C3 = (1-z0[1"2) (R1 - 3R5 + R9) - 6R3 + 6R7;

Since these expressions are valid in four dimensions, but we defined our manifold with dimen-
sion nn, we have to set nn to 4 after the contraction:

ConvertZ[ggi[-a,-b] C1 /.{nn->4}]
0
ConvertZ[ggl[-a,-b] C2 /.{nn->4}]
0

ConvertZ[ggil[-a,-b] C3 /.{nn->4}]
0

Similarly is is quite easy to derive the stress tensor correlation functions from section 4.5, for
example the massless vector propagator (4.76). The two-point function of the field strength
tensor is given by (4.56). First we define a scalar function for I o (Z)

DefScalarFunction[Irho]
** DefScalarFunction: Defining scalar function Irho.

and then we define the field strength tensor two-point function
FFla_,b_,c_,d_]:=2 H~(-2) (Z2[a,c]lZ2[b,d]-Zz2[a,d]Z2[b,c]) Irho’[Z0[]]

- H~(-2) (Zin[alZ2[b,clZ1s[d]l-Z1in[blZ2[a,c]Z1s[d]
-Zin[alZ2[b,d]1Z1s[c]+Z1in[blZ2[a,d]Z1s[c]) Irho’’[Z0[]]

The stress tensor two-point function can be directly copied from equation (4.76), taking care to
use dummy indices from the proper set depending on whether they refer to the point x or x’.
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TT = FF[a,v,m,r] FF[b,-v,n,-r] + FF[a,v,n,r] FF[b,-v,m,-r]
- 1/2 ggila,b] FF[v,w,m,r] FF[-v,-w,n,-r]
- 1/2 gg2[m,n] FFla,v,r,s] FF[b,-v,-r,-s]
+ 1/8 ggila,b] gg2[m,n] FF[v,w,r,s] FF[-v,-w,-r,-s];
TCollect [ConvertZ[ConvertZ[TT]]]

gla,blglm,n]H~4 (5-nn) ( 2(1-Z0[12)Z0[] Irho’’[Z0[]1] Irho’[ZO[I] - ...) + ...

Of course, for other calculations such as the determination of the Riemann tensor two-point
function (7.4) from the correlation function of the metric perturbations (6.33, 6.37, 6.36),
more tensors have to be defined and rules for them must be declared.
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Resumen en castellano

Nuestra descripcion tedrica actual de la naturaleza estd dividida en dos categorias: el Modelo
Estandar de la Fisica de Particulas que unifica electromagnetismo y las interacciones débiles
y fuertes, y la Teoria de Relatividad General que describe la gravitacion. Ambas teorias han
sido bien probadas en un rango amplio de escalas de energia y longitudes: el Modelo Estandar
en experimentos de colision de altas energias como en el Large Hadron Collider en Ginebra
y la Relatividad General en observaciones astrofisicas en el sistema solar y fuera de él, entre
otras.

No obstante, la Relatividad General es una teoria clasica y falla en dar la descripcion correcta
en escalas de energia suficientemente altas, comparables con la escala de Planck, donde una
teoria de Gravedad Cudntica asume el mando. Debido a que estas escalas de energia estan
fuera de nuestro alcance experimental, el trabajo con teorias de este estilo es puramente tedrico
y solo se puede juzgar por consistencia interna y simplicidad. La tnica perspectiva posible
de evidencia experimental para una teoria de gravedad cudntica (quizas con la excepcion de
modelos andlogos de gravedad) viene de observaciones del fondo cdésmico de microondas
(CMB). Estas observaciones se han mejorado inmensamente por el satélite Planck hace poco y
nos han permitido echar un vistazo a los primeros momentos de la historia de nuestro universo
cuando efectos cuanticos de gravedad jugaban un papel relevante. Vestigios de interacciones de
aquel tiempo que todavia son observables hoy en dia nos pueden dar una pista sobre la fisica a
estas escalas. Segtin el modelo estandar ACDM de cosmologia, en su infancia el universo sufrié
un periodo de expansion rapida, conocida como inflacién, el cual se puede modelar por una
parte del espacio-tiempo de Sitter hasta pequefias correcciones (denominadas correcciones de
slow-roll). En este caso, el factor propulsor es un campo escalar homogéneo, el inflatén, con un
término potencial grande que cambia muy despacio durante el periodo inflacionario, y entonces
se puede modelar efectivamente por una constante. Ademads, existe una constante cosmoldgica
real que, sin embargo, es muy pequefia y que es responsable de la expansion acelerada actual
del cosmos. Modelos que también reemplazan esta constante con algiin término dindmico estan
resumidos bajo el nombre genérico de energia oscura; no obstante, hasta ahora no hay ninguna
indicacién observacional que favorezca algo diferente de una constante. Una caracteristica
sorprendente del CMB, su homogeneidad casi perfecta por encima de regiones que nunca se
encontraron en contacto causal, puede ser explicada por tal periodo inflacionario con expansién
exponencial, o sea, mas rapido que la velocidad de la luz. Se piensa que la fuente de pequeiias
variaciones de la distribuciéon de temperatura son fluctuaciones cuanticas de la métrica en la
cual los fotones del CMB se propagan, con la mayoria del efecto proveniente de fluctuaciones
que fueron generadas a lo largo de la inflacién.

Sin embargo, no se llega a escalas de Planck durante el periodo inflacionario, y en tal régimen
intermediario se puede estudiar la gravedad cudntica perturbativamente utilizando teorfas de
campos efectivas (EFT). En estas teorias, parametrizamos nuestra ignorancia de la fisica real
de altas energias con unas interacciones efectivas, incluyendo todos los términos posibles cuya
forma es compatible con las simetrias del sistema bajo consideracién que fueron asumidas. Un
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ejemplo prominente es la teoria de Fermi de la interaccidon de cuatro fermiones, en la cual el
intercambio de un bosén W entre dos fermiones a escalas de energia bien por debajo de la masa
del bosén W estd descrito por un vértice efectivo con interaccién de cuatro fermiones, con una
constante de acoplo inversamente proporcional al cuadrado de la masa del W. Esta teoria hace
predicciones correctas para todas las energias inferiores a la escala dada por la masa del bosén
W. No es renormalizable, y para calcular efectos de lazos se tendrian que incluir operadores de
dimensién m4s alta, o sea, vértices de seis fermiones y mds, con constantes de acoplo que se
tienen que determinar por el experimento. No obstante, estos operadores estdn suprimidos por
potencias mds altas de la masa del boson W, y a escalas bajas de energia no aportan correcciones
apreciables. La situacion es analoga en el caso de gravedad cuantica perturbativa. A distancias
largas y curvatura baja (comparadas con la escala de Planck), podemos afiadir a la accién de
gravedad de Einstein-Hilbert operadores con dimensiones mas altas, que son potencias mds altas
de los tensores de curvatura y sus derivadas covariantes. Estos operadores estdn suprimidos
por potencias de la masa de Planck, y para procesos de energia baja solo dan correcciones
pequeias confiables.

En esta tesis investigamos dos efectos que se pueden estudiar en este escenario: la estabilidad
del espacio-tiempo de Sitter bajo perturbaciones débiles de la métrica, y sus funciones de
correlacién que se pueden relacionar con observables cosmolégicos.

El anélisis tedrico estandar de perturbaciones en cosmologia primordial se basa en la teoria
lineal de perturbaciones, que en la teoria cuantica es equivalente a un célculo a nivel arbol. Sin
embargo, los efectos debidos a correcciones de lazos podrian ser significativos si la supresién
habitual de estas correcciones esta superada por algiin proceso fisico nuevo en espacios curvos.
Ya hace tiempo, Tsamis y Woodard propusieron que correcciones radiativas debidas a lazos de
gravitones podrian llevar a un apantallamiento de la constante cosmoldgica, lo que entonces
servirfa como mecanismo para acabar con el periodo inflacionario independientemente de la
existencia de un inflatén. En este caso, la constante cosmoldgica fundamental tendria un valor
que solo serfa pocos ordenes de magnitud mas pequefia que la escala de Planck, y el valor
que observamos hoy es el valor apantallado. El mecanismo por el cual funciona se basa en la
excitacion continua de modos del graviton en el periodo inflacionario que no estdn diluidos
por la expansién exponencial, lo que entonces — por la naturaleza no lineal de la interaccién
gravitatoria — conduce a la frenada de la expansion. Aunque esta afirmacién es muy atractiva
desde un punto de vista fisico, su validez y la interpretacion de calculos concretos se han puesto
en duda, y todavia sigue siendo un problema irresuelto determinar si realmente funciona.

Ademas, por la ausencia de un vector de Killing global de tipo tiempo en el espacio-tiempo
de Sitter, existe la posibilidad de que incluso teorias masivas en un fondo fijo de Sitter puedan
ser inestables. Esta idea fue analizada por varios autores tanto al nivel arbol como incluyendo
correcciones de lazos. En este contexto, la continuacién a un formalismo euclideo (o sea, calculos
en la esfera) se ha mostrado muy util. El estado del vacio euclideo y funciones de correlacién en
este estado, definidas por una continuacién analitica apropiada de la esfera al espacio-tiempo
de Sitter, tienen algunas propiedades muy atractivas que incluyen finitud infrarroja e invariancia
completa de Sitter. Para campos escalares masivos, Higuchi, Marolf y Morrison demostraron
que célculos hechos en la esfera y usando el formalismo in-in en el espacio-tiempo de Sitter
son completamente equivalentes, y también se estudiaron generalizaciones para campos muy
ligeros y sin masa. A parte de eso, el vacio euclideo es un atractor en tiempos tardios de estados
iniciales genéricos, es decir, funciones de correlacién en otros estados se acercan a las funciones
euclideas en el futuro lejano en un sentido precisamente definido.
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Estos hallazgos para campos de materia interactuantes (para un acoplo suficientemente débil
tal que se puede aplicar teoria de perturbaciones) extienden resultados clasicos sobre el caracter
atractor en el futuro lejano del espacio-tiempo de Sitter, tanto para perturbaciones lineales
como para el caso non lineal, conocido bajo el nombre de propiedad “sin pelo” como en el caso
de agujeros negros. Sin embargo, considerando campos de prueba en un fondo fijo solo da
una parte de la respuesta completa, y para el problema entero se tiene que tener en cuenta la
retroaccion de los campos cudnticos a la geometria del espacio-tiempo. Estudios de este estilo
se hicieron en gravedad semiclésica, donde la métrica todavia se considera cldsicamente pero
se tiene en cuenta la naturaleza cuantica de la materia, y se encontraron propiedades similares
del tipo atractor. En vez de un tensor de energia-momento clédsico aparece un valor esperado
de un operador cuantico correspondiente al tensor de energia-momento en la parte derecha de
las ecuaciones de Einstein. No obstante, también es importante tener en cuenta la naturaleza
cudntica de la métrica: estudiando gravedad como una teoria efectiva, esto equivale a una
cuantizacion de perturbaciones de la métrica alrededor de un fondo fijo.

En la primera mitad de esta tesis, extendimos estas consideraciones al caso gravitatorio, estu-
diando la estabilidad del espacio-tiempo de Sitter bajo perturbaciones débiles de la métrica
que interactian con campos de materia. Estudios parciales en esta direccion ya existen. Por
ejemplo, se ha demostrado que el espacio-tiempo plano es estable bajo perturbaciones linealiz-
adas en interaccion con campos de materia, se ha encontrado una correccion nula a los modos
clasicos en el espacio-tiempo de Sitter para la interaccién de modos tensoriales con campos
escalares libres sin masa y minimamente acoplados, y también se ha establecido la estabilidad
del espacio-tiempo de Sitter para perturbaciones isétropas en el espacio. Extendiendo estos
calculos, consideramos primero las ecuaciones semicldsicas de Einstein, que en este caso dan
una pequefia correccion a la relacion entre la constante cosmoldgica y la constante de Hubble (o
el radio inverso de Sitter). Derivamos entonces las ecuaciones que satisfacen las perturbaciones
linealizadas generales de la métrica (de los tipos escalares, vectoriales y tensoriales) debidas a
la interaccién con campos conformes, y consideramos la estabilidad del espacio-tiempo de Sitter
bajo estas perturbaciones. En este contexto, empleamos el método de reduccién del orden, que
en contraste a un tratamiento estrictamente perturbativo produce soluciones que son fiables
por un tiempo extendido, una cualidad que obviamente es crucial para estudiar cuestiones de
estabilidad. Este método no solo desvanece soluciones casuales que estan fuera de la validez
de la teoria efectiva que usamos, sino que también tiene la ventaja de generar ecuaciones de
retroaccién que se pueden resolver bastante facilmente, y asi elimina la necesidad de usar
aproximaciones mas alla de las que estdn impuestas por el uso de la EFT y la consideracién de
perturbaciones lineales.

Resolvimos las ecuaciones tanto para un estado inicial de vacio (la generalizacion del vacio
de Bunch-Davies que incluye interacciones) como para una clase amplia de estados iniciales
generales. En ambos casos, los cambios inducidos en el tensor de Riemann linealizado, que es
un observable invariante gauge y local, son pequefios y desaparecen en el futuro infinito. Estos
resultados extienden los teoremas clasicos y semiclasicos llamados “sin pelo” del espacio-tiempo
de Sitter al caso cudntico, por lo menos para los casos que se estudiaron. Teoremas de este
tipo aseguran que para tiempos suficientemente grandes, cualquier perturbacién amaina, en el
sentido de que para cualquier regién de tamafio fisico fijo, observaciones con precisiéon limitada
no pueden detectar la perturbacién. En el caso estudiado, vimos que aunque las perturbaciones
tensoriales tienden a una constante para tiempos grandes, o sea, su longitud de onda tiende a
infinito, solo son detectables si un observador tiene acceso a todo el universo. Si uno considera
observables locales como el tensor de Riemann, esta constante no contribuye, y las conclusiones
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del teorema “sin pelo” son inalteradas. Ademads, para las perturbaciones tensoriales que son la
parte dindmica de perturbaciones generales de la métrica, las correcciones debidas a un estado
inicial diferente del vacio decaen més radpidamente que la misma perturbacién. Esto da soporte
a célculos existentes sobre el cardcter atractor del futuro lejano no solo del espacio-tiempo
de Sitter, sino también de perturbaciones que empiezan su evolucién en un estado invariante
de Sitter. Aunque estos resultados fueron derivados para la interaccién de gravitones con
campos escalares sin masa y conformemente acoplados, la invariancia de Sitter de la parte no
local de la accién efectiva nos permitié restringir la forma de las ecuaciones de movimiento en
el caso general, tal que estas conclusiones permanecen inalteradas.

Para llegar a ese objetivo, primero derivamos la accion efectiva para las perturbaciones de la
métrica que incluye las correcciones debidas a lazos de materia para algunos casos. Para un
espacio de fondo plano, fue posible de obtener el resultado general para campos escalares
minimamente acoplados y con masa arbitraria, y la generalizacién del método usado a otros
campos de materia es ficil. Para el caso de un fondo de Sitter, aparte del cédlculo existente
para campos escalares sin masa y conformemente acoplados que ya estaba hecho, calculamos
la accién efectiva para un campo escalar sin masa y minimamente acoplado. Mientras la
generalizacion de la técnica usada en el espacio plano fue imposible por un problema técnico,
extendimos la idea general a un fondo de espacio curvo y fuimos capaz de aplicarla con éxito a
este tltimo caso. En principio no hay ninguna razén por la cual esta extension no funcione
en el caso general de masa arbitraria, pero en la practica se necesitaria mucho esfuerzo para
funciones de dos puntos del tensor de energia-momento que no tienen una forma facil en cuatro
dimensiones.

La segunda mitad de tesis trata funciones de correlacion de estas perturbaciones de la métrica.
Esto va un paso adelante del objetivo anterior, donde las ecuaciones que dirigen la evolucién
de las perturbaciones de la métrica son las mismas que las que se aplican a su valor esperado.
Claramente es importante tener en cuenta las fluctuaciones alrededor del valor medio. Su
tamafio relativo en relacién al valor medio se puede usar como criterio para la validez de la
descripcion del campo medio, y estan relacionadas a observables cosmolégicos como el espectro
de potencia tensorial al final del periodo inflacionario. Para el caso de la interaccién con campos
conformes, calculamos explicitamente la funcién de dos puntos de perturbaciones escalares,
vectoriales y tensoriales, usando una generalizacién de la prescripcion ie del espacio-tiempo
plano que nos permite definir un estado adecuado de vacio con interaccién en el pasado infinito.
Contrario a resultados anteriores que se concentraban en efectos de primer orden y el limite de
tiempos iguales, obtuvimos la funcién de dos puntos entera para tiempos distintos. El resultado
es invariante bajo el subconjunto de isometrias de Sitter que estd preservado por nuestro
selecciéon de gauge, lo mas importante de estas siendo el rescalado constante simultaneo de
coordenadas temporales y espaciales. De esta funcién de dos puntos, calculamos un observable
cosmoldgico, el espectro de potencia para las perturbaciones tensoriales que se puede observar
mediante el espectro de las fluctuaciones de temperatura en el CMB. Este espectro es el limite
de tiempos iguales de la transformacién de Fourier de la funcién contraida de dos puntos. No
obstante, este limite de tiempos iguales es divergente porque el resultado a un lazo para la
transformacion de Fourier es una distribucién verdadera (en oposicion a una funcién regular
que es el resultado a nivel arbol). Para obtener un resultado finito, integramos la distribucién
con una funcién de prueba que es una funcién gaussiana de ancho pequefio, modelando de tal
manera el proceso de medir. Para la parte regular de la funcién de dos puntos, esto se reduce a la
definicion estdndar cuando el ancho de la funcién gaussiana se hace cero. El espectro obtenido
solo depende del momento fisico, y por tanto es independiente del tiempo en el espacio-tiempo
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fisico. Este hecho estd en contraste con resultados anteriores, que encontraron una dependencia
logaritmica en el momento comévil, pero concuerda con estudios més recientes que argumentan
(para perturbaciones escalares) que una dependencia de este estilo es errénea, identificando
también la causa de la discrepancia. Desafortunadamente, estas correcciones son demasiado
pequefias para ser medidas. Su tamafio solo seria apreciable si la constante de Hubble tuviera
una magnitud comparable a la escala de Planck, donde la teorfa efectiva que usamos deja de
ser valida.

Sin embargo, mientras que la fijacién del gauge que se usa habitualmente en cosmologia
(y que usamos en esta tesis) para la descomposicién escalar—vectorial-tensorial es completa
para perturbaciones que decaen en el infinito espacial, no es local dado que se necesitan
especificar condiciones del contorno. Objetos que estan construidos a partir de funciones
de correlacion en este gauge entonces no son observables en el sentido estricto, ya que solo
tenemos acceso observacional a una parte finita del universo. Por lo tanto, uno tiene que buscar
observables “suficientemente locales” que caractericen las propiedades geométricas en regiones
de tamaifio fisico finito. Este tltimo requerimiento ha sido importante en la construccién de
observables llamados de “seguro infrarrojo”, que dan resultados finitos en situaciones que
en el caso contrario llevan a divergencias sin un corte en el infrarrojo. Ademas, esta fijacién
del gauge que se hace en el sistema de coordenadas conformemente plano no respeta las
simetrias del fondo de Sitter, y por eso oculta tales simetrias en las funciones de correlacion.
Evidentemente es dificil encontrar un observable invariante gauge y local, incluso en gravedad
cuantica perturbativa, pero si excluimos lazos de gravitones y nos restringimos a un fondo
de Sitter (u otros fondos maximamente simétricos), el tensor de Riemann linealizado facilita
un observable de este tipo. En la teoria clasica, este tensor contiene toda la informacion sobre
la geometria local del espacio-tiempo, y se puede esperar que sus funciones de correlacién
también den la informacion completa en el caso cuantico.

Calculamos entonces su funcién de dos puntos, empezando desde la funcién de dos puntos
de las perturbaciones de la métrica en el caso de interaccién con campos conformes. Para
entender mejor la estructura del resultado, este se descompone en las funciones de correlacion
de los tensores de Weyl y Ricci y del escalar de Ricci. A pesar de que la fijacién de gauge para
las perturbaciones de la métrica no era completamente invariante de Sitter, el resultado para
la funcién de dos puntos del tensor de Riemann si que lo es. Esto muestra que el tensor de
Riemann divide los efectos fisicos de los efectos gauge, y exhibe manifiestamente las simetrias
de Sitter que entraban en el cdlculo, la invariancia de Sitter de las funciones de correlacién
del tensor de energia-momento y del estado asintético del vacio con interacciones, mostrando
que para la interaccién de perturbaciones de la métrica con lazos de materia conforme no
hay rotura fisica de esta invariancia. El resultado ilustra que las correcciones cuanticas estan
concentradas cerca del cono de la luz, o sea, que alli son mds singulares que el resultado a nivel
arbol. Ademas, la funcién de dos puntos decae exponencialmente para separaciones largas
entre los dos puntos, mostrando que la curvatura del fondo actia como una masa efectiva para
el gravitén.

Naturalmente es interesante saber si estos calculos se pueden generalizar a la interaccion con
otros tipos de materia. En la dltima parte de la tesis explotamos entonces las identidades
de Bianchi para demostrar que la funcién de dos puntos del tensor de Riemann siempre es
invariante de Sitter si lo es para el tensor de energia-momento. Dados los coeficientes para la
funciéon de dos puntos del tensor de energia-momento, dimos férmulas explicitas para calcular
los coeficientes de la funcién de correlacién del tensor de Riemann, y vimos que el resultado esta
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completamente determinado salvo una constante de integracion. Esta constante naturalmente
se puede interpretar como potencia de gravitones libres que se propagan en el espacio-tiempo
de fondo, y depende de los coeficientes desconocidos que multiplican a los términos en la
accién gravitatoria que involucran cuadrados de tensores de curvatura.

¢Qué nos dicen estos resultados? Desde un punto de vista cosmolégico, podemos decir con
bastante certeza que correcciones de lazos son irrelevantes (para los casos considerados), lo cual
podria sonar decepcionante. Esta conclusion tampoco cambia si incluimos auto-interacciones de
los campos de materia, en cuanto las funciones de correlacion del tensor de energia-momento
siguen siendo invariantes de Sitter. Evidentemente la inclusién de lazos de gravitones puede
cambiar enormemente este imagen si la rotura de la invariancia de Sitter, que parece ser una
caracteristica robusta en cdlculos que se hacian para casos individuales, es de verdad fisica y
no solo un artefacto gauge. Para llegar a una conclusion en este asunto, primero es necesario
construir un observable adecuado, invariante gauge y local que entonces puede jugar el mismo
papel que el tensor de Riemann linealizado en esta tesis: separando efectos fisicos de efectos
gauge. Sin embargo, desde un punto de vista matemadtico los resultados obtenidos en esta tesis
son extremadamente satisfactorios. En el espacio-tiempo de Minkowski existen muchos métodos
de cuantizacién y regularizacién y términos para fijar el gauge que preservan manifiestamente
la simetria Poincaré del fondo. Considerando campos cudnticos en un fondo curvo fijo (o sea,
no considerando efectos que radicalmente cambian este fondo como la formacién de agujeros
negros), uno naturalmente espera que haya una manera de mantener las simetrias del fondo, y
vimos que en efecto es el caso. Si bien existe un propagador de gravitones que es invariante
de Sitter, derivado de la version euclidea del espacio-tiempo de Sitter, la esfera, su validez se ha
puesto en cuestién y es gratificante ver que la eleccién del propagador no influye el resultado
para observables adecuados. Ademas, estos hallazgos son un paso mas en el camino para
establecer la equivalencia de cédlculos hechos en de Sitter y su versién euclidea, una conexién
que en el espacio plano se ha podido poner en forma de teorema.
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