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Abstract

Continuous-discontinuous modelling for quasi-brittle failure:
propagating cracks in a regularised bulk

Elena Tamayo-Mas

A new strategy to describe failure of quasi-brittle materials —concrete, for exam-

ple— is presented. Traditionally, numerical simulation of quasi-brittle failure has been

tackled from two different points of view: damage mechanics and fracture mechanics.

The former, which belongs to the family of continuous models, describes fracture as

a process of strain localisation and damage growth. The latter, which falls in the

family of discontinuous models, explicitly introduces displacement discontinuities.

Recently, some new approaches that merge these two classical theories have been

devised. Although these combined approaches allow a better characterisation of the

whole failure process, there are still some issues that need to be addressed, specially

regarding the model switching —from the continuous to the continuous-discontinuous

strategy.

The goal of this thesis is to present a new contribution in this direction. Our

main concern is to properly account for the three main difficulties that emerge when

dealing with combined strategies: (1) the pathological mesh-dependence exhibited by

local softening models needs to be corrected; (2) the crack-path location has to be

determined and (3) the switching from the continuous to the continuous-discontinuous

strategy should be done in such a way that the two approaches are energetically

equivalent.

First, we extend the applicability to a two- and three-dimensional setting of an al-

ternative approach to regularise strain-softening —where non-locality is introduced at

the level of displacements rather than some internal variable. To this end, we propose

new combined boundary conditions for the regularisation equation (for the smoothed

displacement field). As illustrated with different two- and three-dimensional exam-

ples, these boundary conditions allow to obtain physical realistic results for the first

stages of the failure process.

Second, we present a new combined formulation that allows the propagation of

cracks through a regularised bulk. To define the crack-path, instead of the classical

mechanical criteria, we propose to use a geometrical criterion. More specifically, given

a regularised damage field D (xxx), the discontinuity propagates following the direction
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dictated by the medial axis of the isoline (or isosurface in 3D) D (xxx) = D∗. That

is, a geometric tool widely used for image analysis, computer vision applications or

mesh generation purposes is used here to locate cracks. We illustrate the capabilities

of this new approach by carrying out different two- and three-dimensional numerical

tests.

Last, we propose a new criterion to estimate the energy not yet dissipated by the

bulk when switching models, so it can be transferred to the cohesive crack. This

ensures that the continuous and the continuous-discontinuous strategies are energet-

ically equivalent. Compared to other existing techniques, we present a strategy that

accounts for the different unloading branches of damage models thus better estimating

the energy that has to be transferred. We illustrate the performance of this technique

with one- and two-dimensional examples.
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Resum

Modelització cont́ınua-discont́ınua de la fallida de materials
quasi-fràgils: propagant fissures en un medi regularitzat

Elena Tamayo-Mas

En aquesta tesi, presentem una nova estratègia per tal de descriure el procés

de fallida de materials quasi-fràgils, com ara el formigó. T́ıpicament la simulació

numèrica d’aquest procés s’ha dut a terme mitjançant models de dany o models de

fractura. Els primers —models continus— descriuen la fractura com un procés de

localització de deformacions on el dany creix i es propaga. Els models de fractura, en

canvi, són models discontinus que introdueixen de manera expĺıcita discontinüıtats

en el camp de desplaçaments. Recentment s’han proposat estratègies que combinen

aquestes dues teories clàssiques. Tot i que aquestes formulacions alternatives per-

meten simular millor el procés de fallida, encara queden alguns aspectes per aclarir,

especialment pel que fa al canvi de models —de l’estratègia cont́ınua a la discont́ınua.

En aquesta tesi es presenta una nova estratègia cont́ınua-discont́ınua. El nostre

principal objectiu és proposar nous mètodes per tal de resoldre tres de les dificultats

que presenten aquests models combinats: (1) solucionar la dependència patològica

de la malla d’elements finits que presenten els models locals amb reblaniment; (2)

determinar la trajectòria de la fissura i (3) assegurar-se que el canvi de models —del

continu al discontinu— es fa de manera que les dues estratègies siguin energèticament

equivalents.

En primer lloc, ampliem l’ús —per tal de poder simular problemes dos i tres

dimensionals— d’una estratègia alternativa que regularitza el reblaniment de les

lleis de tensió-deformació. Aqúı la no-localitat s’introdueix a nivell del camp de

desplaçaments i no a través d’una variable interna com succeeix en les formulacions

estàndards. Per aquest motiu, proposem noves condicions de contorn combinades per

l’equació de regularització (pel camp de desplaçaments suavitzat). Tal com s’observa

en diferents exemples dos i tres dimensionals, aquestes condicions permeten simular

de manera f́ısicament realista les primeres etapes del procés de fallida.

En segon lloc, presentem una nova formulació combinada on les fissures es pro-

paguen a través del medi regularitzat. Per tal de definir la trajectòria d’aquestes

fissures, utilitzem un criteri geomètric, a diferència dels criteris mecànics clàssics. En
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particular, sigui D (xxx) un camp regularitzat de dany, les discontinüıtats es propaguen

seguint la direcció marcada per l’eix mitjà de la isoĺınia (o isosuperf́ıcie mitjana en

3D) D (xxx) = D∗. És a dir, utilitzem aqúı aquesta eina geomètrica —molt emprada

en d’altres aplicacions com ara l’anàlisi d’imatges, la visió artificial o la generació de

malles— per tal de propagar les fissures. En aquest cas, donem també exemples dos

i tres dimensionals.

Finalment, proposem un nou criteri per tal d’estimar l’energia que l’estructura

encara no ha dissipat en el moment en que canviem de model, per tal que pugui

ser transferida a la fissura cohesiva. D’aquesta manera, s’assegura que l’estratègia

cont́ınua i la cont́ınua-discont́ınua siguin energèticament equivalents. En comparació

amb d’altres tècniques, aquesta estratègia té en compte les diferents branques de

descàrrega dels models de dany i permet estimar de manera més precisa l’energia que

cal transmetre. Per tal de mostrar aquest balanç energètic es duen a terme diferents

exemples en una i dues dimensions.
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Raúl and Xevi. ¡Gracias por los pasteles, los cafés, las cenas y las birras! Eloi,
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resoldre’m tots els dubtes que he tingut d’X-FEM sempre que ho he necessitat i per fer
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solutions, where ũuu = (ũ, ũ), obtained with (b) Dirichlet, (c) homogeneous
Neumann, (d) non-homogeneous Neumann and (e) combined boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Validation test with (a) a tent function source term u(xxx). Solutions ob-
tained with (b) Dirichlet (ũx = ũy), (c) homogeneous Neumann (ũx = ũy),
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bined (ũy) boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Uniaxial tension test: problem statement. Displacements are restrained
at the left whereas displacements along the x axis are prescribed at the
right. A weakened region (dark grey) is considered to trigger localisation. 27

3.4 Uniaxial tension test: (a) force-displacement curves obtained with the
four analysed boundary conditions and damage profiles obtained with
(b) Dirichlet, (c) homogeneous Neumann, (d) non-homogeneous Neumann
and (e) combined boundary conditions. . . . . . . . . . . . . . . . . . . . 28

3.5 Close-up of the final damage distribution if Dirichlet boundary conditions
are prescribed for the regularisation equation. . . . . . . . . . . . . . . . 29

3.6 Three-point bending test: problem statement. . . . . . . . . . . . . . . . 29

3.7 Three-point bending test: (a) force-displacement curves obtained with
the four analysed boundary conditions and damage profiles obtained with
(b) Dirichlet, (c) homogeneous Neumann, (d) non-homogeneous Neumann
and (e) combined boundary conditions. . . . . . . . . . . . . . . . . . . . 30

3.8 Square plate under mode I loading conditions: problem statement. . . . . 31

xiii



3.9 Square plate under mode I loading conditions: (a) force-displacement
curves obtained with the four analysed boundary conditions and dam-
age profiles obtained with (b) Dirichlet, (c) homogeneous Neumann, (d)
non-homogeneous Neumann and (e) combined boundary conditions. . . . 32

3.10 Square plate under mode I loading conditions. Four meshes with different
element density and different imperfection sizes are used. . . . . . . . . . 33

3.11 Square plate under mode I loading conditions: (a) force-displacement
curves obtained with the four meshes and damage profiles obtained by
means of the mesh of (b) 20 × 21 elements, (c) 30 × 31 elements, (d)
40× 41 elements and (e) 50× 51 elements. . . . . . . . . . . . . . . . . . 34

3.12 Single-edge notched beam: problem statement (measures in millimetres). 34
3.13 Single-edge notched beam: (a) force-displacement curves obtained with

the three meshes and damage profiles obtained by means of the mesh with
(b) 1 221 elements, (c) 2 289 elements and (d) 8 991 elements. . . . . . . . 36

3.14 Three-point reinforced prestressed bending beam: problem statement (mea-
sures in centimetres). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.15 Three-point reinforced prestressed bending beam. Left column (damage
model based on smoothed displacements): (a) force-displacement curves
and damage profiles obtained by means of (c) ` = 0.1 cm, (e) ` = 0.2
cm and (g) ` = 0.5 cm. Right column (standard damage model): (b)
force-displacement curves and damage profiles obtained by means of (d)
` = 0.1 cm, (f) ` = 0.2 cm and (h) ` = 0.5 cm. . . . . . . . . . . . . . . . 40

4.1 Steel-fibre reinforced concrete beam subjected to three-point bending.
Courtesy of Climent Molins (UPC). . . . . . . . . . . . . . . . . . . . . . 42

4.2 Notations for a body with a crack subjected to loads and imposed dis-
placements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Given a damage domain (discontinuous line) and reducing the diffusion,
one observes that the damaged zone can be collapsed into a zero-thickness
line located in the middle of the diffuse zone. . . . . . . . . . . . . . . . . 49

4.4 Left column (2D case): (a) a 2D object, (c) bi-tangent interior circles, (e)
2D MA. Right column (3D case): (b) a 3D object, (d) bi-tangent interior
spheres, (f) 3D MA, often called medial surface. . . . . . . . . . . . . . . 50

4.5 (a) Given a domain Ω, (b) the bi-tangent interior balls are computed.
(c) Joining their centres, (d) the MA is obtained. (e) If only the circles
with separation angle greater than θ = π

2
are considered, (f) the spurious

branches are removed and (g) the θ−SMA is obtained. . . . . . . . . . . 51
4.6 (a) Separation angle S(P ) of a point P : adapted from Foskey et al. (2003).

(b) If there are more than two points of tangency, the separation angle
S(P ) is defined as the largest angle between P and each pair of points of
tangency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 (a) Medial axis of a Y-shaped domain. (b) θ−simplified medial axis of a
Y-shaped domain (θ = 2

3
π). . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiv



4.8 The θ−SMA as a tool to locate cracks: (a) Crack initiation; (b) θ−SMA
computation; (c) Crack propagation; (d) Finite element enrichment by
means of X-FEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Square plate under mode I loading conditions. (a) Number of obtained
branches with the θ−SMA as a function of the value of θ and θ−simplified
medial axis obtained with (b) θ = 0◦, (c) θ = 10◦, (d) θ = 50◦ and (e)
θ = 100◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Single-edge notched beam. (a) Number of obtained branches with the
θ−SMA as a function of the value of θ and θ−simplified medial axis ob-
tained with (b) θ = 0◦, (c) θ = 10◦, (d) θ = 50◦ and (e) θ = 100◦. . . . . 56

4.11 Crack-path obtained with D∗ = 0.6 (black), D∗ = 0.7 (grey) and D∗ = 0.8
(light grey) for (a) a square plate under mode I loading conditions and (b)
a single-edge notched beam. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 Three-point bending test: problem statement. . . . . . . . . . . . . . . 58

4.13 2D three-point bending test, CD approach: for increasing imposed dis-
placements u∗, damage and deformed patterns (× 100). . . . . . . . . . . 59

4.14 Three-point bending test: problem statement. . . . . . . . . . . . . . . . 60

4.15 3D three-point bending test, CD approach: for increasing imposed dis-
placements u∗, damage profiles and deformed patterns (× 100). . . . . . 60

4.16 Four-point bending beam: problem statement (measures in centimetres). 61

4.17 Four-point bending test, CD approach: for increasing imposed displace-
ments u∗, damage profiles and deformed patterns (× 100). . . . . . . . . 62

4.18 Single-edge notched beam, CD approach: for increasing imposed forces,
damage profiles and deformed patterns (× 50). . . . . . . . . . . . . . . . 63

4.19 Proposed continuous-discontinuous model. . . . . . . . . . . . . . . . . . 65

4.20 Four point bending test: (a) given a damage profile where the condition
D (xxx) = D∗ (D∗ = 0.2) results in three isolines, (b) the θ−simplified
medial axis allows to locate three cracks (close-up of the central zone). . 67

4.21 A crack line (dashed line) in a structured mesh with standard elements
(white), elements whose nodes are all enriched (dark grey) and blend-
ing elements (light grey). Nodes enriched with the asymptotic crack tip
functions and the sign function are indicated by circles and squares re-
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Chapter 1

Introduction

1.1 Motivation

The understanding of material failure —the reliable prediction of material degrada-

tion, crack initiation and propagation— is of vital importance in engineering and

materials science. To this end, both experimental, through which real material struc-

tures can be analysed, and numerical tests can be carried out. Although both ap-

proaches are complementary, there are several advantages of performing numerical

simulations. Indeed, compared to laboratory experiments, numerical tests can be

easily repeated and allow the analysis of full scale structures for long time periods at

a lower cost.

From a numerical viewpoint, failure of quasi-brittle materials —concrete or rocks,

for example— has been extensively studied. Traditionally, two different kinds of

approaches have been used: (a) damage mechanics, which belongs to the family of

continuous models, and (b) fracture mechanics, which falls in the family of discon-

tinuous models.

Continuum models for failure analysis —damage or softening plasticity— are char-

acterised by continuous displacement fields. As discussed by Lemaitre and Chaboche

(1990), they may describe the early stages of the failure process, between the un-

damaged state and macroscopic crack initiation. They are based on constitutive

laws with strain softening, which leads to an ill-posed problem —if standard local

models are used— when the peak in the stress-strain curve is reached. As a conse-

quence, and regarding numerical simulations, the solution with the smallest energy

1



1. Introduction

dissipation that is available in the finite dimensional solution space is obtained. To

overcome this physically unrealistic behaviour, different solutions have been proposed

in the literature, see Jirásek (2002) and the recent review by Rabczuk (2013). One

of these remedies are the so-called non-local continua, in which a non-local effect

is introduced either by integral-type (Pijaudier-Cabot and Bažant (1987), Bažant

and Jirásek (2002)) or gradient-type (de Borst et al. (1995), Peerlings et al. (1998))

formulations. However, despite the regularisation, they cannot be used to simulate

macroscopic cracks, since displacement discontinuities are not introduced.

In contrast to continuum models, with smeared cracks, fracture mechanics de-

scribes failure by means of a discontinuous displacement field. Hence, they can be

employed in order to capture the last stages of failure, when cracks are physically ob-

served. From a numerical viewpoint, their applications were first restricted, since the

standard finite element method (FEM), which performs well approximating smooth

functions, is not suited for the approximation of non-smooth solutions. Nevertheless,

different methods, see Jirásek and Belytschko (2002), such as the eXtended Finite

Element Method (X-FEM) (Belytschko and Black (1999), Moës et al. (1999)) have

emerged in order to overcome this limitation and nowadays discontinuous models

can adequately be used in the final stages of failure. However, discontinuous models

cannot describe neither damage inception nor its diffuse propagation.

Recently, some new approaches that merge these two classical theories —damage

and fracture mechanics— have emerged. The basic idea of these continuous-discon-

tinuous strategies is to employ damage mechanics in order to describe the inception

and the propagation of damage and fracture mechanics in order to deal with cracks

and material separation. Although they have proved efficient to simulate the whole

failure process, further research is needed to better understand their capabilities.

The objective of this dissertation is to present a new continuous-discontinuous

approach. For the early stages of the failure process, a gradient-enhanced model

based on smoothed displacements is employed. When damage parameter exceeds a

critical value, a discontinuous approximation of the displacement field is incorporated.

Special emphasis is placed on some of the arising difficulties when dealing with the

transition from regularised damage models to evolving cracks such as the crack path

tracking or the energetic consistency between the models.
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1.2 Goals and layout of this thesis

The objective of this thesis is to develop a finite element approach for quasi-brittle

failure that bridges damage and fracture mechanics. To this end, four goals have

been considered:

1. To extend the applicability of smoothed displacements to a multi-

dimensional setting. Introducing non-locality at the level of displacements

(rather than some internal variable) is an alternative way to obtain physically

realistic results and to avoid the typical pathological mesh sensitivity exhib-

ited by classical continuum theories. This idea, presented by Rodŕıguez-Ferran

et al. (2005), emerged as a computationally attractive approach to regularise

softening, but only the one-dimensional setting was considered. As discussed

by Jirásek and Marfia (2005), the extension to a multidimensional context

is not straightforward, since it requires either the modification of the aver-

aging operator (for the integral-type version) or appropriate boundary con-

ditions (for the gradient-type version). In Chapter 3, we focus on the im-

plicit gradient version of this alternative regularisation method. We discuss

the shortcomings of usual boundary conditions —Dirichlet, homogeneous Neu-

mann and non-homogeneous Neumann— and we propose new conditions —

combined conditions— that provide physically realistic results in two- and three-

dimensional settings.

2. To propose the continuous-discontinuous formulation based on non-

local displacements. Combined approaches have emerged as a suitable man-

ner to overcome the limitations of classical failure approaches —damage and

fracture mechanics. In Chapters 4 and 5, we describe how to merge smoothed

displacements with discontinuities. Firstly, in Chapter 4, we propose to drive

the model switching —from the continuous to the continuous-discontinuous

strategy— by means of a critical damage value Dcrit ' 1. Thus, we focus on the

coupling between smoothed displacements and traction-free cracks. Secondly,

in Chapter 5, the transition is induced by a critical damage value Dcrit < 1

thus introducing a cohesive crack. Details on the variational formulation of the

proposed model, on the consistent tangent matrix needed to attain quadratic

convergence in the full Newton-Raphson method and on its numerical integra-

3



1. Introduction

tion when dealing with cracked elements are given in Appendices A, B and C

respectively.

3. To propose a new criterion (based on geometrical assumptions) to

track the crack path. In a regularised continuous model, the crack path

cannot be analytically derived. In other words, fracture mechanics cannot be

employed, since the critical imperfection from which cracking initiates is un-

known. Therefore, other criteria should be used. Typically, this is tackled

from a mechanical point of view: Gauss-point mechanical quantities —non-

local stress, non-local strain or damage— ahead of the crack tip are used to

locate the propagating discontinuity. However, due to the singularity of the

stress and strain fields, an incorrect crack propagation may be derived. Hence,

in Chapter 4, we propose an alternative way of defining the direction of the

crack path: the discontinuity propagates following the direction dictated by the

medial axis, see Blum (1967), of the already formed damage field. Since this

technique is exclusively based on the shape of this regularised field, no mesh

sensitivity is observed when determining the crack direction.

4. To propose a new criterion to estimate the energy that needs to be

transferred to the cohesive interface. The equivalent crack concept states

that a damage zone can be replaced by a discrete crack provided that the two

models are energetically equivalent. Therefore, if the transition takes place

when the material is not fully degraded (if Dcrit < 1), the energy not yet dissi-

pated by the continuous approach should be transferred to the cohesive zone.

However, the applicability of this energy balance is hampered by one main

drawback: without carrying out a continuous simulation first, the amount of

energy to be transferred is not known. As a consequence, it needs to be esti-

mated. In Chapter 5 we discuss the shortcomings of not predicting accurately

the unloading response (as done in some existing combined techniques) and we

propose a new strategy that provides a more accurate approximation of the

fracture energy.
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Chapter 2

State of the art

This chapter provides an overview of some of the challenges when dealing with numer-

ical simulation of quasi-brittle failure. This overview focuses on strategies where the

bulk material is modelled as a continuum. First, continuum approaches —continuum

failure models— are considered in Section 2.2. Our main concern is to review the

existing techniques to eliminate the mesh dependence exhibited by local models with

softening. Second, continuum models with discontinuities —discontinuous failure

models— are addressed in Section 2.3. The advantages and disadvantages of some of

the most popular computational methods for fracture are discussed. Finally, differ-

ent continuous-discontinuous techniques are reviewed in Section 2.4. Special attention

toward the model switching —from the continuum to the discrete strategy— is given.

2.1 Introduction

Numerical simulation of failure of quasi-brittle materials —such as concrete or rocks—

is traditionally tackled from two different points of view: continuous and discontinu-

ous approaches. On the one hand, continuous approaches simulate failure assuming a

continuously differentiable displacement field throughout a continuum, thus leading

to a continuous strain field. Hence, cracks are represented by continuum regions that

have lost their load-carrying capacity. On the other hand, discontinuous approaches

describe cracks by means of a discontinuous displacement field. Therefore, the strain

field consists of two contributions: a regular part obtained by standard differentia-
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tion of the displacement field and a singular part dealing with the contribution of the

displacement jump.

In fact, and within the framework of non-linear finite element strategies for failure

simulation, discrete approaches can also be employed, see Grassl and Jirásek (2010).

They are considerably different from the two above-mentioned strategies, since they

describe failure processes by means of discrete elements that interact, see Kawai

(1978) and Cundall and Strack (1979). That is, the bulk of the material is not

modelled as a continuum —as done in continuous or discontinuous approaches— but

by means of particles or lattices. Since these approaches are not addressed in this

dissertation, the terms discontinuous and discrete will be used as synonyms to refer

to continuum models with discontinuities.

2.2 Continuous failure models

Description of quasi-brittle failure requires constitutive laws with strain softening.

That is, it requires stress-strain laws that are nearly linear up to the peak stress,

whereas they decrease after it is reached. This phenomenon may be conveniently

described by models based on continuum mechanics. If classical (local) continuum

theories are used, i.e. if the stress at a point uniquely depends on the strain history

at that point, strain softening leads to a physically unrealistic treatment of the en-

ergy dissipated during the failure process, see Jirásek (2007). This local dependence

between stress and strain leads to a process zone whose thickness may become ar-

bitrarily small. As a consequence, and regarding numerical simulations, the results

suffer from sensitivity to the discretisation parameters such as the mesh size. Indeed,

let us consider a bar under uniaxial tension (with imposed displacements at the free

side), see Figure 2.1(a). If a local damage model is used, both the slope of the post-

peak branch (in the force-displacement curve) and the strain profiles strongly depend

on the number of elements of the finite element mesh, see Figures 2.1(b) and 2.1(c)

respectively.

Different solutions have been proposed in the literature to remedy this physi-

cally unrealistic behaviour. For a general overview, we refer to the recent review by

Rabczuk (2013) and references therein. Here, some of the most popular techniques

are briefly reviewed.
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(a)

(b) (c)

Figure 2.1: If a local damage model is used to simulate a (a) uniaxial tension test, a
pathological mesh dependence is observed. Indeed, both (b) load-displacement curves
and (c) strain profiles depend on the mesh refinement.

Crack-band approach. A possible remedy is to use the crack band model presented

by Bažant and Oh (1983). This method, also called fracture energy approach or the

mesh-adjusted softening modulus, consists of adjusting the post-peak slope of the

stress-strain curve by means of the element size. This remedy presents one main

advantage. Despite the adjustment, the formulation remains local. Therefore, the

structure of the finite element code does not require major changes. This may be

easily exploited in many practical engineering computations. However, as discussed

by Jirásek and Bauer (2012), the applicability of this method is hampered by one

main drawback. The criterion for estimating the width of the crack band is not

straightforward. Although it is often considered as the element size, the effective

width of the localised band depends on the element type, the element shape and the

direction of the crack band with respect to the mesh edges.

Regularised formulations. These models, often called localisation limiters, in-

corporate an additional material parameter —the characteristic length— to prevent

strain localisation into an arbitrarily small volume. That is, the process zone is en-
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forced to have a certain minimum width. The main drawback of this remedy is the

quantitative determination of this internal length parameter. Indeed, it remains a

difficult and debated issue, since it cannot be directly measured and it may be only

inferred by inverse analysis of test results. Examples of these models include non-local

integral and gradient-enriched formulations.

In integral-type models, a certain variable is replaced by its non-local counterpart.

This is obtained by weighted averaging over a spatial neighbourhood of each point

under consideration. That is, the stress at a given point does not only depend on

the strain at that point but also on the strain of the considered neighbourhood. A

number of non-local formulations have been published, starting from the paper by

Pijaudier-Cabot and Bažant (1987). Nevertheless, as discussed by Jirásek (1998),

not all of them provide an appropriate description of the complete failure process.

Indeed, if the equivalent strain or the energy release rate are selected to incorporate

non-locality, the complete fracture is correctly reproduced. However, averaging the

damage variable or the inelastic stress may lead to spurious residual stresses and to

an unrealistic spread of the softening area. For a detailed overview of these non-local

models, we refer to the review by Bažant and Jirásek (2002).

Gradient-type non-local models, see de Borst et al. (1995) and Peerlings et al.

(1998), can be considered as an approximation to integral-type models, with a dif-

ferential —rather than integral— relation between local and non-local variables. In

other words, a partial differential equation (PDE) is added to the system relating

the local and non-local variables. Gradient-type formulations present one main ad-

vantage. From a mathematical viewpoint, they are local models, since non-local

interaction is accounted for by means of higher-order derivatives. Nevertheless, its

main drawback is the requirement of appropriate boundary conditions for the PDE,

which is still a debated issue.

In this dissertation, a gradient-enriched formulation is used to regularise soften-

ing.

2.3 Discontinuous failure models

Numerical simulation of failure phenomena can also be tackled by means of discon-

tinuous models. The main idea of these techniques is to consider a displacement

field with jumps across a line (in a two-dimensional setting) or a surface (in 3D
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problems). These jumps, technically named strong discontinuities, result then in an

unbounded strain field at the discontinuity. If strong discontinuities are used, see the

cohesive crack model introduced by Hillerborg et al. (1976), softening is described

by a traction-separation law, whose definition depends on the mode of fracture, see

Figure 2.2. Hence, tractions transmitted by the crack are related to the displacement

jump.

(a) (b) (c)

Figure 2.2: The three fracture modes: (a) mode I or opening mode, (b) mode II or
sliding mode and (c) mode III or tearing mode.

A number of different approaches accounting for displacement discontinuities have

been proposed in the literature, see for instance the pioneering works by Simo et al.

(1993), Simo and Oliver (1994) and Armero and Garikipati (1996). These techniques

allow a reliable simulation of failure processes, where macroscopic cracks arise. How-

ever, from a numerical point of view, a main difficulty appears. Indeed, standard

finite element approximations cannot capture these strong discontinuities and thus,

special techniques need to be used. Here, some of the existing computational meth-

ods to handle displacement discontinuities are briefly reviewed. For a more detailed

overview, we refer to the review articles of Jirásek and Belytschko (2002) and Rabczuk

(2013).

Remeshing. In remeshing methods, the standard FEM is used. Indeed, as long

as the element faces (or edges in 2D) are aligned with the crack and the nodes

located on these faces (or edges) are doubled, the standard finite element method can

properly account for displacement discontinuities. However, due to the propagating

nature of the crack, these requirements are only achieved if the finite element mesh
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is reconstructed at each time crack propagates. Although some interesting remeshing

techniques to model crack propagation can be found in the literature, see for instance

Bouchard et al. (2000), their applicability is hampered by one main drawback. It

requires repeatedly projecting variables of the initial mesh onto the new one, which

is difficult and computationally inefficient.

Embedded discontinuities. Embedded discontinuity models, see Jirásek (2000) for

a detailed review, enrich the approximation of the displacement field with additional

parameters that allow to capture displacement jumps. This technique, inspired by

the work of Ortiz et al. (1987) and Belytschko et al. (1988), is based on an elemental

enrichment. That is, the additional unknowns needed to account for the displacement

jumps are compacted at elemental level. Hence, small changes in finite element codes

are needed. In contrast to the above-mentioned technique, discontinuities do not need

to lie at element interfaces thus eliminating the need for continuous remeshing.

Extended Finite Element Method (X-FEM). In the past years, X-FEM, see

Belytschko and Black (1999) and Moës et al. (1999), has become one of the most

used techniques to simulate the presence of cracks in a finite element framework.

The main idea of this approach, based on the partition of unity concept (Melenk

and Babuška (1996), Babuška and Melenk (1997)), is to decompose the displacement

field into a continuous part and a discontinuous part. In other words, the standard

FE interpolation of the displacement field is enriched with discontinuous functions

(chosen depending on the kind of information that needs to be incorporated into the

solution), see Belytschko et al. (2009) and Fries and Belytschko (2010) for a detailed

overview of this technique.

Although embedded discontinuities and X-FEM are quite similar methods —they

are based on enrichment functions that are added to the standard finite element dis-

placement field—, the former is based on an elemental enrichment while the latter on

a nodal one. As discussed by Jirásek and Belytschko (2002), elements with embedded

discontinuities present some limitations. Indeed, in spite of the displacement enrich-

ment, the strain field on both sides of the crack is not fully uncoupled. Nevertheless,

in a more recent comparison, Oliver et al. (2006) observe that the different kind of

enrichment does not affect the accuracy of the representation of the discontinuity.

In this thesis, X-FEM is the technique used to introduce propagating cracks.

10



2.4. Continuous-discontinuous failure models

Apart from the above-mentioned strategies, there exist approaches of a different

nature that can be used to model fracture. Among these techniques, meshless methods

stand out. As pointed out first by Belytschko et al. (1996) and then by Nguyen et al.

(2008), due to the absence of a mesh, meshless methods can be efficiently used to

model evolving discontinuities. Another alternative approach to fracture consists of

using phase-field methods, see the pioneering works by Francfort and Marigo (1998)

and Bourdin et al. (2000), where the cracks are supposed to propagate along the

minimum energy path.

2.4 Continuous-discontinuous failure models

Continuous-discontinuous models (see for instance Mazars and Pijaudier-Cabot (1996),

Jirásek and Zimmermann (2001), Wells et al. (2002), Simone et al. (2003) and Comi

et al. (2007)) emerged to achieve a better characterisation of the whole failure process.

The basic idea of these integrated strategies is to combine continuous and discontinu-

ous descriptions of failure. The former allow to describe the early stages of the failure

process, between the undamaged state and macroscopic crack initiation. The latter

allow to incorporate into the model discontinuous displacement fields. Their main

features, shown in Figure 2.3, are summarised here:

• Continuous regime: in order to simulate the first stages of the failure pro-

cess, non-local continuous models are used. Thus, as discussed in Section 2.2,

the numerical difficulties, such as mesh dependence, exhibited by local failure

descriptions are overcome.

• Transition: at the end of each time step, the approach checks if the transition

criterion is fulfilled. In such a case, a discontinuity is introduced. Different

critical issues need to be taken into account:

– Switching criterion: the transition from a continuous to a discontinu-

ous model is carried out when the damage (the strain or the stress) field

reaches a critical damage (strain or stress) value. The definition of this

critical value has consequences. Indeed, if the transition is triggered when

the material is fully degraded, traction-free cracks can be introduced. Oth-

erwise, cohesive cracks need to be inserted. In general, few attention is

paid to this issue, although some attempts have been made to link this
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critical value to the element size, see Comi et al. (2007), thus ensuring

that the transition is triggered earlier if a coarser mesh is employed.

– Crack-path definition: the location and propagation of a crack in com-

bined strategies is hampered by one main drawback. Since linear elastic

fracture mechanics cannot be employed in a regularised bulk, the crack-

path cannot be analytically derived. Hence, alternative criteria should be

used. In fact, a few number of contributions address this issue and in

general, the path of the propagating crack is assumed to be known before-

hand.

– Energy consistency: in order to replace a damage zone by a crack, en-

ergetic considerations need to be accounted for. When switching models,

the energy not yet dissipated by the bulk needs to be transferred to the

cohesive crack. This idea, assumed in several of the exiting continuous-

discontinuous techniques, needs to be further investigated. Indeed, two

main shortcomings should be addressed. First, the computation of the re-

maining energy to be transferred to the cohesive interface is not straight-

forward without knowing the solution of a continuous reference model.

Second, the extension to a multidimensional setting of the available tech-

niques to estimate this quantity still needs to be improved.

• Discontinuous regime: once a crack is introduced, a discontinuous approach

is used to model the final stages of the failure process. Due to the appeal-

ing properties that X-FEM offers, most existing combined approaches use this

technique to deal with displacement discontinuities.

Different integrated strategies have already been proposed in the literature. With-

out attempting to be complete, in this section, some of these techniques are reviewed.

A first contribution of coupled models is given by Mazars and Pijaudier-Cabot

(1996), where thermodynamic relationships between the two classical theories are

presented. It is shown that it is possible to obtain the fracture energy from a non-

local damage model and vice versa, a crack may be represented by a damage zone.

Jirásek and Zimmermann (2001) propose to describe failure phenomena combin-

ing smeared cracks —for the early stages of material degradation— with embedded

discontinuities —for the stages where strain reaches a critical value. In other words,

at the beginning of the failure process, the bulk is characterised by a non-local dam-
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2.4. Continuous-discontinuous failure models

Non-local continuous model

Critical situation?No changes

Displacement discontinuities are introduced

Non-local continuous-discontinuous model

No

Yes

Figure 2.3: Scheme of a standard continuous-discontinuous model.

age model. Once a crack is introduced, the damage field is not allowed to increase

and the bulk material is treated as linear elastic with the stiffness that corresponds

to the secant unloading of the model.

In Wells et al. (2002), an additional improvement is achieved by using the par-

tition of unity concept to couple a softening viscoplasticity model with traction-free

discontinuities. Since the transition is driven at the later stages of the failure pro-

cess, no energetic considerations need to be taken into account. A similar coupled

continuous-discontinuous model is presented by Simone et al. (2003), where an im-

plicit gradient-enhanced continuum damage model is combined with a traction-free

crack that propagates following the direction of maximum accumulation of the non-

local equivalent strain.

In order to avoid one of the shortcomings of these strategies, where the tran-

sition takes place when damage tends to one, an alternative coupled approach can

13
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be employed, see Comi et al. (2007). The key idea is to define a critical damage

value Dcrit < 1 beyond which the transition is triggered. Then, an energetically

equivalent cohesive crack is introduced. In order to compute its fracture energy, an

energy balance is prescribed: the energy not yet dissipated by the continuous ap-

proach is transferred to the cohesive interface. Similar energetic assumptions are

made by Cazes et al. (2009), when dealing with elastic-damage models, and Cazes

et al. (2010), for damage-plasticity. Indeed, given a solution of a continuous reference

model, an energetic equivalent cohesive law is incrementally built. In Seabra et al.

(2011), an energetic balance is also prescribed to establish the crack surface in a

coupled continuous-discontinuous model for ductile materials. Cuvilliez et al. (2012)

also take into account these energetic considerations when proposing an alternative

combined approach. Indeed, in order to simulate the first stages of a failure process,

a gradient damage model, where the gradient of the damage field is used to regularise

softening, is employed. As soon as damage reaches a critical value the switching to

a cohesive crack —whose growth direction is known in advance— is carried out. In

order to allow the transition to occur at early stages of values, an energy conservation

between models is prescribed.

Another recent strategy is the regularised extended finite element approach (Re-

XFEM) by Benvenuti and Tralli (2012). They propose to characterise the failure

process by means of three different stages. In a first stage, a continuous damage

model is used. Then, when damage achieves a critical value, this continuous model is

switched to a regularised discontinuous approach (Re-XFEM). Finally, a purely dis-

continuous strategy, where the standard X-FEM is retrieved, is used. This approach

overcomes some of the shortcomings of existing techniques such as the pathologi-

cal mesh-dependence of local models and the energetic consistency at the transition.

However, it is only used for problems where the crack path is known a priori.

In addition to the reviewed strategies, there exist approaches of a different nature

where the importance of merging continuous and discontinuous formulations is also

highlighted.

On the one hand, cracks can be introduced as a post-processing technique. In-

deed, in Dufour et al. (2008) and Dufour et al. (2012), an integral non-local isotropic

damage model is used to simulate the whole failure process. Then, using the global

tracking algorithm proposed by Oliver and Huespe (2004), the crack path and the

crack opening are computed as a post-process of the continuous numerical solution.
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2.4. Continuous-discontinuous failure models

On the other hand, cracks can be easily located by means of the thick-level set

(TLS) approach. This strategy, first presented by Moës et al. (2011) and improved

by Bernard et al. (2012), considers damage as a function of a level set. Then, fully

damaged zones play the role of macro-cracks thus leading to not necessarily zero-

thickness discontinuities. Although it is a promising strategy to model the transition

between damage and fracture, further research is needed in order to include, for

instance, cohesive forces.
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Chapter 3

Continuous damage model with

smoothed displacements

In this chapter, the regularisation technique based on smoothed displacements is

extended to a two- and three-dimensional setting. In this formulation, mechanical

displacements uuu coexist with smoothed displacements ũuu, which are the solution of a

diffusion-reaction equation. Our main concern is to prescribe appropriate boundary

conditions to the regularisation equation. More specifically, since usual boundary

conditions —Dirichlet, homogeneous Neumann and non-homogeneous Neumann—

do not allow neither to regularise softening if damage starts on the boundary nor to

preserve volume, new conditions —combined conditions— are proposed. These sat-

isfy the necessary properties for regularisation: (a) reproducibility of order 1 (ũuu = uuu

if uuu is an affine field) in order to ensure that a constant strain field leads to a constant

stress, (b) displacement smoothing along the boundary and (c) volume preservation.

Different two- and three-dimensional examples have been carried out to illustrate

that smoothed displacements allow to preclude mesh dependence also in a multidi-

mensional setting.

3.1 Introduction

Regularised damage models —integral- and gradient-type formulations— are able

to overcome the well-known problems of standard approaches such as pathological
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3. Continuous damage model with smoothed displacements

mesh dependence thus providing an objective description of the first stages of failure

processes. The key idea of these formulations is to replace a certain variable by its

non-local counterpart. Typically, the selected variable to introduce this non-locality

is the internal state variable but a number of different proposals can be found in the

literature, as reviewed by Jirásek (1998).

One of these alternative formulations consists of selecting the displacement field

to incorporate non-locality, as presented and illustrated with a one-dimensional ex-

ample by Rodŕıguez-Ferran et al. (2005). As discussed, this new formulation is very

attractive from a computational viewpoint —especially regarding the computation of

the consistent tangent matrix. Moreover, adding non-locality at the level of displace-

ments —rather than some internal variable— has the advantage of not interfering

with the constitutive driver.

In this chapter, we extend the applicability of this gradient-enriched formulation

to a two- and three-dimensional setting. For the sake of simplicity, only elastic-scalar

damage models are considered here. However, as discussed by Rodŕıguez-Ferran et al.

(2011), smoothed displacements can be easily extended to other approaches such as

plasticity models. Specifically, in this chapter we propose:

1. To extend the applicability of this alternative formulation to a two-

and three-dimensional setting. We propose to analyse the regularisation

capabilities of this new formulation by means of two- and three-dimensional

problems. Different damage models and damage laws are analysed to illustrate

that smoothed displacements are an efficient way to regularise softening.

2. To prescribe new boundary conditions for the regularisation equation.

The advantage of using gradient-enriched formulations is that although they are

non-local models, they are local from a mathematical viewpoint, since non-local

interaction is accounted for by means of higher-order derivatives. Nevertheless,

their main disadvantage arises from the requirement of additional boundary

conditions. In Rodŕıguez-Ferran et al. (2005), Dirichlet boundary conditions

are prescribed for the regularisation equation. Nevertheless, as discussed by

Jirásek and Marfia (2006), they may have the negative effect of not allowing

displacement smoothing along the boundary. Here, in order to overcome this

difficulty, we propose to prescribe combined boundary conditions —Dirichlet

boundary conditions for the normal component of the displacement field and

18



3.2. Gradient-enhanced damage model

non-homogeneous Neumann boundary conditions for the tangential ones.

The structure of the chapter is as follows. In Section 3.2 the gradient version

of the damage model based on smoothed displacements is briefly reviewed. Special

emphasis is placed on the definition of the boundary conditions for the regularisation

equation in Section 3.3. The regularisation capabilities are illustrated by means of

some numerical examples in Section 3.4. Finally, the concluding remarks in Section

3.5 and the future directions in Section 3.6 close this chapter.

3.2 Gradient-enhanced damage model

In the implicit gradient-enhanced continuum model based on smoothed displace-

ments, two different displacement fields coexist: (a) the standard or local displace-

ment field uuu and (b) the gradient-enriched displacement field ũuu, which is the solution

of a partial differential equation with uuu as the source term. Analogously to the

diffusion-reaction equation

Ỹ (xxx)− `2∇2Ỹ (xxx) = Y (xxx) (3.1)

used in standard gradient-enhanced damage models —where the state variable Y is

selected to introduce non-locality and ` is the diffusion parameter with dimension of

length— here the regularisation PDE is the diffusion-reaction equation

ũuu (xxx)− `2∇2ũuu (xxx) = uuu (xxx) (3.2)

Hence, the key idea of this alternative formulation is to use this regularised displace-

ment field to drive damage evolution, see Table 3.1 for details. It should be stressed

that in Table 3.1, a strain-based model is considered. Indeed, the smoothed state

variable depends on the smoothed strain tensor. However, smoothed displacements

can also be used with stress-based damage models, as seen in Section 3.4.

3.3 Boundary conditions

In standard gradient-enriched formulations, boundary conditions for the non-local

state variable Ỹ are required, see Equation (3.1). Typically —we refer to the articles of
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3. Continuous damage model with smoothed displacements

Table 3.1: Gradient-enhanced damage model based on smoothed displacements.

Constitutive equation σσσ = (1−D)CCC : εεε

Strains εεε = ∇suuu

Smoothed displacements ũuu− `2∇2ũuu = uuu

Smoothed strains ε̃εε = ∇sũuu

Smoothed state variable Ỹ = Y (ε̃εε)

Damage evolution D = D(Ỹ )

Peerlings et al. (1998) and Peerlings et al. (2001)—, homogeneous Neumann boundary

conditions

∇Ỹ · nnn = 0 on ∂Ω (3.3)

are prescribed, where nnn denotes the outward unit normal to Ω.

The main reason for prescribing conditions (3.3) is the difficulty to specify a value

of Ỹ on the boundary. Indeed, due to the internal nature of the non-local state

variable, fixing Ỹ itself —that is, prescribing Dirichlet boundary conditions— seems

to be difficult to motivate on physical basis. It is noted here that homogeneous

Neumann boundary conditions are suggested also by Mühlhaus and Alfantis (1991)

when dealing with plasticity models.

From a physical point of view, these conditions have been widely debated. As dis-

cussed by Polizzotto (2003), boundary conditions (3.3) guarantee that regularisation

effects do not propagate through the boundary of the domain (insulation condition).

Finally, in Benvenuti et al. (2004), these conditions are not prescribed a priori but

they are obtained by means of a standard variational analysis.

Regarding the alternative formulation based on smoothed displacements, bound-

ary conditions for the smoothed displacement field ũuu must be imposed. Prescribing

boundary conditions at the level of displacements (rather than the internal variable

Ỹ ) seems easier to interpret. A natural option is to prescribe Dirichlet boundary

conditions

ũuu = uuu on ∂Ω (3.4)
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3.3. Boundary conditions

that have a clear physical interpretation: local and non-local displacements coin-

cide along all the domain boundary. That is, the material response remains local

at the boundary of the solid. This property guarantees one important requirement:

as pointed out by Krayani et al. (2009) and Pijaudier-Cabot and Dufour (2010),

non-locality should vanish at the boundary in its normal direction. As illustrated

by Rodŕıguez-Ferran et al. (2005), these conditions can be effectively used to obtain

physically realistic results in a one-dimensional setting. However, as discussed by

Jirásek and Marfia (2006), this may have the negative effect of not allowing displace-

ment smoothing along the boundary, since ũuu and uuu are imposed to be equal on ∂Ω.

Such effect, especially negative in problems where localisation starts at the boundary,

does not allow a correct widening of the damage zone.

In order to avoid this unwanted behaviour and analogously to the standard gra-

dient model, see Equation (3.3), homogeneous Neumann boundary conditions

∇ũuu · nnn = 000 on ∂Ω (3.5)

may be imposed. Note that by means of these conditions, smoothed displacements

ũuu do not need to be equal to uuu along all the boundary thus overcoming the main

drawback of conditions (3.4).

Nevertheless, these alternative conditions do not guarantee neither the locality

of the solution along the normal direction at the boundary nor another important

requirement: reproducibility of order 1. In standard gradient-enriched models, repro-

ducibility of constant functions must be ensured: given a constant local state variable

Y , Ỹ ≡ Y has to be solution of the regularisation equation (3.1) thus implying that

given a constant strain field εεε, the stress field

σσσ (xxx) = (1−D(Ỹ ))CCC : εεε (xxx) = (1−D (Y ))CCC : εεε (xxx) (3.6)

is also constant. Hence, and taking into account that εεε = ∇suuu, reproducibility of

order 1 should be ensured: given an affine displacement field uuu, ũuu = uuu has to be

solution of the regularisation equation (3.2).

Note that if homogeneous Neumann boundary conditions (3.5) are prescribed,

this is not guaranteed. Indeed, let us assume an affine vector field

uuu(xxx) = aaa+BBBxxx (3.7)
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3. Continuous damage model with smoothed displacements

where xxx = (x1, . . . , xnsd)T , aaa = (a1, . . . , ansd)T (where nsd denotes the number of

space dimensions) and BBB is a matrix. Then, the affine displacement field

ũuu(xxx) = aaa+BBBxxx (3.8)

is not the solution of the boundary problem consisting of equation (3.2) and conditions

(3.5), since the constraint

∇ũuu · nnn = BBB · nnn = 000 (3.9)

is not satisfied ∀BBB.

As suggested by the above discussion and in order to solve these difficulties —

smoothed displacement along the domain boundary and reproducibility of order 1—,

alternative boundary conditions should be prescribed. In Jirásek and Marfia (2006),

non-homogeneous Neumann boundary conditions

∇ũuu · nnn = ∇uuu · nnn on ∂Ω (3.10)

are proposed. Nevertheless, if these new conditions are prescribed, non-locality does

not vanish along the normal direction at the boundary of the solid. Moreover, they

pose another drawback: volume conservation is not ensured. Indeed, let us suppose

constant density and use the divergence theorem. Then,

0 =

∫
Ω

∇ · (ũuu− uuu) dΩ =

∫
∂Ω

(ũuu− uuu) · nnn dΓ (3.11)

that is satisfied with Dirichlet boundary conditions (since uuu and ũuu are equal along all

the boundary) but is not guaranteed with homogeneous or non-homogeneous Neu-

mann boundary conditions.

Note that preservation of volume may be interesting in some constitutive mod-

els. For example, let us assume that the regularised plasticity model presented in

Rodŕıguez-Ferran et al. (2011) is used. Then, given isochoric local strains (∇·uuu = 0),

isochoric non-local strains (∇ · ũuu = 0) are obtained if preservation of volume is pre-

scribed.

As an alternative to equations (3.4), (3.5) or (3.10) we propose here to use com-

bined boundary conditions. That is, to prescribe Dirichlet boundary conditions for

the normal component of the displacement field whereas non-homogeneous Neumann

boundary conditions are imposed for the tangential components

ũuu · nnn = uuu · nnn
∇ (ũuu · ttt1) · nnn = ∇ (uuu · ttt1) · nnn
∇ (ũuu · ttt2) · nnn = ∇ (uuu · ttt2) · nnn

 on ∂Ω (3.12)
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3.3. Boundary conditions

where nnn denotes the outward unit normal to Ω and ttt1, ttt2 are tangent vectors such

that {nnn, ttt1, ttt2} form an orthonormal basis for R3.

Note that by means of the boundary condition (3.12)1, the material response

remains local along the normal direction at the boundary of the solid and preservation

of volume is ensured, whereas with conditions (3.12)2 and (3.12)3, some relative slip

between local and non-local displacements is allowed. Moreover, reproducibility of

order 1 is guaranteed by means of these conditions, see Table 3.2 for a summary.

Table 3.2: Summary table: boundary conditions and their properties.

Homogeneous Non-homogeneous
Dirichlet Neumann Neumann Combined

Reproducibility
of order 1 X × X X

Displacement smoothing
along the boundary × X X X

Local response
normal to boundaries X × × X

Volume preservation X × × X

It is worth pointing out here that the resolution of the vector equation (3.2)

is equivalent to solving a scalar equation for each component of the vector field

separately only if the boundary conditions keep them uncoupled. This occurs if

boundary conditions (3.4), (3.5) or (3.10) are prescribed. Nevertheless, combined

boundary conditions (3.12) keep the components of the vector field uncoupled only in

the case where the boundary is parallel to the Cartesian planes. It must be stressed

that this coupling has no critical consequences. On the one hand, the components of

the vector field uuu are already coupled due to the equilibrium equation. On the other

hand, assuming the boundaries of the structure parallel to the Cartesian planes is

not very restrictive. Indeed, a wide range of examples with this property have been

carried out, see Section 3.4.

To illustrate the above discussion, the regularisation equation (3.2) defined on the

two-dimensional domain Ω = [0, 1] × [0, 1] —where uuu = (ux, uy) and ũuu = (ũx, ũy)—

and two different source terms uuu are considered. For the sake of simplicity, let us
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3. Continuous damage model with smoothed displacements

consider

u := ux = uy (3.13)

As a first test, the diffusion-reaction equation (3.2) is solved considering an affine

source term u, see Figure 3.1(a). On the one hand, as seen in Figure 3.1, given

an affine function u, solutions ũ = u are admitted if Dirichlet, non-homogeneous

Neumann or combined boundary conditions are prescribed. On the other hand, if ho-

mogeneous Neumann boundary conditions are used, a solution ũuu 6= (u, u) is obtained,

see Figure 3.1(c) thus leading to the following problem from a mechanical point of

view: given a constant strain field εεε(xxx), a non-constant stress field σσσ(xxx) is obtained,

see Table 3.1.

As a second test, the source term shown in Figure 3.2(a) is analysed. As seen

in Figure 3.2(b), Dirichlet boundary conditions do not allow a relative slip along the

boundary. However, this is permitted if Neumann boundary conditions are employed,

see Figures 3.2(c) and 3.2(d). By means of combined boundary conditions, the fields

ũx and ũy of Figures 3.2(e) and 3.2(f) are obtained. Note that the field ũy is not

smoothed along the boundary. Nevertheless, the displacement field ũx, the relevant

one for examples of mode I —see Section 3.4—, is smoothed along the boundary

{y = 0} ∪ {y = 1} .

3.4 Numerical examples

In this section we present some numerical examples to illustrate the capabilities of

the new method. On the one hand, in Section 3.4.1, the influence of the above

discussed boundary conditions is analysed. On the other hand, in Section 3.4.2, the

regularisation capabilities of the new model with combined boundary conditions are

illustrated.

3.4.1 Validation of the boundary conditions

The objective of this first section is to illustrate the influence of the above discussed

boundary conditions. To this end, different two- and three-dimensional benchmark

tests are carried out. For each of them, the four proposed boundary conditions are

considered.
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3.4. Numerical examples

(a)

(b) (c)

(d) (e)

Figure 3.1: Validation test with (a) an affine source term u(xxx) = u(x, y) = 1+x+5y.
ũ solutions, where ũuu = (ũ, ũ), obtained with (b) Dirichlet, (c) homogeneous Neumann,
(d) non-homogeneous Neumann and (e) combined boundary conditions.

Uniaxial tension test. As a first example, a uniaxial tension test is carried out.

In order to trigger localisation, the central part of the specimen is weakened (10%

reduction in Young’s modulus), see Figure 3.3.
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3. Continuous damage model with smoothed displacements

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Validation test with (a) a tent function source term u(xxx). Solutions
obtained with (b) Dirichlet (ũx = ũy), (c) homogeneous Neumann (ũx = ũy), (d)
non-homogeneous Neumann (ũx = ũy), (e) combined (ũx) and (f) combined (ũy)
boundary conditions.

The geometric and material parameters are summarised in Table 3.3. The sim-
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3.4. Numerical examples

Figure 3.3: Uniaxial tension test: problem statement. Displacements are restrained
at the left whereas displacements along the x axis are prescribed at the right. A
weakened region (dark grey) is considered to trigger localisation.

plified Mazars model (Mazars, 1986)

Y =

√√√√ 3∑
i=1

(max(0, εi))
2 (3.14)

with εi (i = 1, 2, 3) the principal strains is considered. A linear damage evolution law

D(Y ) =


0 if Y < Y0

Yf
Yf−Y0

(
1− Y0

Y

)
if Y0 < Y < Yf

1 if Yf < Y

(3.15)

with Y0 the damage initiation state variable and Yf the final state variable is used.

Note that the Poisson’s coefficient is set to ν = 0 in order to reproduce a purely one-

dimensional problem. A calculation with a uniform mesh of 10 000 (100 × 10 × 10)

eight-noded hexahedral elements is carried out.

The results are summarised in Figure 3.4. On the one hand, Dirichlet boundary

conditions lead to an underestimation of the dissipated energy through the failure

process. This behaviour was already observed by Tamayo-Mas and Rodŕıguez-Ferran

(2012) with the two-dimensional model and is due to the fact that essential conditions

do not allow to obtain smoothed displacements along the boundary. On the other

hand, as seen in Figure 3.4(b) and Figure 3.5, Dirichlet boundary conditions lead to

a lack of a one-dimensional behaviour, since they do not allow the damage zone to

be widened.
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Table 3.3: Uniaxial tension test: geometrical and material parameters.

Meaning Symbol Value
Length of the beam L 100 mm
Length of the weaker part LW 20 mm
Depth and height of the beam h 10 mm
Young’s modulus E 20 000 MPa
Young’s modulus of the weaker part EW 18 000 MPa
Damage initiation state variable Y0 10−4

Final state variable Yf 1.25× 10−2

Poisson’s ratio ν 0.00

Note that due to the simplicity of the test, no differences are observed by means

of the other boundary conditions. Indeed, if Neumann (both homogeneous and non-

homogeneous) or combined boundary conditions are prescribed, the expected one-

dimensional behaviour is observed, see Figures 3.4(a) and 3.4(c)-3.4(e) and Rodŕıguez-

Ferran et al. (2005).

(a)

(b) (c)

(d) (e)

Figure 3.4: Uniaxial tension test: (a) force-displacement curves obtained with the four
analysed boundary conditions and damage profiles obtained with (b) Dirichlet, (c)
homogeneous Neumann, (d) non-homogeneous Neumann and (e) combined boundary
conditions.

Three-point bending test. The second example concerns the simulation of a three-

point bending test in a three-dimensional setting, see Figure 3.6.
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3.4. Numerical examples

Figure 3.5: Close-up of the final damage distribution if Dirichlet boundary conditions
are prescribed for the regularisation equation.

Figure 3.6: Three-point bending test: problem statement.

The geometric and material parameters are summarised in Table 3.4. Here, the

truncated Rankine damage model

τ =
3∑
i=1

max(0, τi) (3.16)

with τi (i = 1, 2, 3) the principal effective stresses and an exponential damage evolu-

tion law

D(τ) = 1− τ0

τ
exp

(
−β(τ − τ0)

)
(3.17)

are considered. The calculation is carried out using a uniform mesh of 8 064 (63 ×
8× 16) eight-noded hexahedral elements.

The results are summarised in Figure 3.7. On the one hand, prescribing that

mechanical and smoothed displacements must be equal all along the boundary (that

is, prescribing Dirichlet boundary conditions) can be very restrictive, especially if
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Table 3.4: Three-point bending test: geometrical and material parameters.

Meaning Symbol Value
Length of the beam L 256 mm
Depth of the beam w 32 mm
Height of the beam h 64 mm
Young’s modulus E 30 000 MPa
Damage initiation equivalent effective stress τ0 3 MPa
Slope of the stress-strain relation β 1.67× 10−3 MPa−1

Poisson’s ratio ν 0.00

damage starts on the boundary. As also observed in the previous example, this may

lead to an underestimation of the dissipated energy, see Figure 3.7(a). On the other

hand, as seen in Figure 3.7(c), if homogeneous Neumann boundary conditions are

prescribed, the boundary is pathologically damaged. This behaviour is due to the

fact that reproducibility of order 1 is not ensured and was already observed in two-

dimensional examples, as discussed by Tamayo-Mas and Rodŕıguez-Ferran (2012).

(a)

(b) (c)

(d) (e)

Figure 3.7: Three-point bending test: (a) force-displacement curves obtained with
the four analysed boundary conditions and damage profiles obtained with (b) Dirich-
let, (c) homogeneous Neumann, (d) non-homogeneous Neumann and (e) combined
boundary conditions.
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Square plate under mode I loading conditions. The third example concerns

the simulation of a pure mode I problem in a two-dimensional setting. It deals with

the solution of a square plate in tension subjected to a prescribed displacement at

the top and bottom side and clamped at the right one, see Figure 3.8. In order to

cause localisation, a weakened region is considered.

Figure 3.8: Square plate under mode I loading conditions: problem statement.

The geometric and material parameters are summarised in Table 3.5. Here, the

simplified Mazars model, Equation (3.14), and a linear damage evolution law, Equa-

tion (3.15), are considered. The calculation is carried out using a uniform mesh of

1 640 (41× 40) bilinear quadrilateral elements.

The results are shown in Figure 3.9. On the one hand, since the mechanical

response at the top of the specimen strongly depends on the prescribed displacements,

small differences are observed between the different force-displacement curves, see

Figure 3.9(a). On the other hand, if reproducibility of order 1 is not ensured, the

boundary is pathologically damaged, see Figure 3.9(c).

3.4.2 Validation of the regularisation capabilities

The objective of this section is to illustrate the regularisation capabilities of the

proposed method. To this end, different two- and three-dimensional examples are
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Table 3.5: Square plate under mode I loading conditions: geometrical and material
parameters.

Meaning Symbol Value
Length of the plate L 10 cm
Length of the weaker part LW 1 cm
Width of the weaker part hW 1 finite element
Young’s modulus E 20 000 MPa
Young’s modulus of the weaker part EW 2 000 MPa
Damage threshold Y0 10−4

Final strain Yf 1.25× 10−2

Poisson’s ratio ν 0.3

(a)

(b) (c)

(d) (e)

Figure 3.9: Square plate under mode I loading conditions: (a) force-displacement
curves obtained with the four analysed boundary conditions and damage profiles ob-
tained with (b) Dirichlet, (c) homogeneous Neumann, (d) non-homogeneous Neumann
and (e) combined boundary conditions.

carried out by means of smoothed displacements with combined boundary conditions,

see Equation (3.12).

Square plate under mode I loading conditions. As a first example, the two-
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3.4. Numerical examples

dimensional square plate analysed in Section 3.4.1 is retrieved, see Figure 3.8. The

regularisation properties of the model are assessed by carrying out the analysis with

four different meshes of 20 × 21, 30 × 31, 40 × 41 and 50 × 51 elements, see Figure

3.10.

(a) Mesh 1: 20× 21 elements. (b) Mesh 2: 30× 31 elements.

(c) Mesh 3: 40× 41 elements. (d) Mesh 4: 50× 51 elements.

Figure 3.10: Square plate under mode I loading conditions. Four meshes with different
element density and different imperfection sizes are used.

The damage profiles and the force-displacement curves are shown in Figure 3.11.

As seen, the force-displacement curve and the width of damage band do not depend

on numerical parameters such as the finite element mesh or the imperfection size

needed to cause localisation.

Single-edge notched beam. As a second example, a single-edge notched beam sub-

jected to an antisymmetrical four-point loading is considered, see Rodŕıguez-Ferran

and Huerta (2000). Here, the three-dimensional domain is taken into account, see

Figure 3.12. The material parameters are summarised in Table 3.6.
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3. Continuous damage model with smoothed displacements

(a)

(b) (c)

(d) (e)

Figure 3.11: Square plate under mode I loading conditions: (a) force-displacement
curves obtained with the four meshes and damage profiles obtained by means of the
mesh of (b) 20 × 21 elements, (c) 30 × 31 elements, (d) 40 × 41 elements and (e)
50× 51 elements.

Figure 3.12: Single-edge notched beam: problem statement (measures in millimetres).

To carry out this test, the modified von Mises model, see de Vree et al. (1995),

Y =
k − 1

2k (1− 2ν)
I1 +

1

2k

√(
k − 1

1− 2ν
I1

)2

+
12k

(1 + ν)2J2 (3.18)

is considered, where k is the ratio of compressive strength to tensile strength, ν is the
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3.4. Numerical examples

Table 3.6: Single-edge notched beam: geometrical and material parameters.

Meaning Symbol Concrete Steel
Young’s modulus E 28 000 MPa 280 000 MPa
Poisson’s ratio ν 0.1 0.2
Compressive-to-tensile strength ratio k 10 10
Damage threshold Y0 1.5× 10−4

Residual strength A 0.8
Slope of the soft. branch at peak B 9 000

Poisson’s coefficient, I1 is the first invariant of the strain tensor and J2 is the second

invariant of the deviatoric strain tensor.

Thus, the exponential damage evolution

D = 1− Y0 (1− A)

Y
− A exp

(
−B (Y − Y0)

)
(3.19)

is considered.

The regularisation properties of the model are assessed by carrying out the analysis

with a fixed characteristic length ` = 2
√

10 mm and three different meshes. The

results are shown in Figure 3.13. As seen, neither the force-displacement curve nor

the width of damage profiles depend on the finite element mesh.

Three-point reinforced prestressed bending beam. As a third example, the

doubly notched reinforced prestressed beam subjected to three-point bending anal-

ysed in Cervera et al. (2011) is reproduced, see Figure 3.14.

The goal of this last example is to show the influence of the internal length scale

`. To this end, an analysis with a fixed finite element mesh and three different

characteristic lengths —` = 0.1 cm, ` = 0.2 cm and ` = 0.5 cm— is carried out. In

view of symmetry, only one half of the specimen —its right half— has been discretised.

The material parameters both for the web and the reinforcement are summarised in

Table 3.7.

The truncated Rankine damage model, Equation (3.16) with an exponential dam-

age evolution law, Equation (3.17), are considered for the beam web, whereas the

flanges are assumed elastic. The damage profiles and the force-displacement curves
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3. Continuous damage model with smoothed displacements

(a)

(b)

(c)

(d)

Figure 3.13: Single-edge notched beam: (a) force-displacement curves obtained with
the three meshes and damage profiles obtained by means of the mesh with (b) 1 221
elements, (c) 2 289 elements and (d) 8 991 elements.

Figure 3.14: Three-point reinforced prestressed bending beam: problem statement
(measures in centimetres).

are shown in Figure 3.15. As seen, both the ductility in the force-displacement re-

sponse and the width of the final damage profile increase with the internal length

scale.

For comparison purposes, the standard gradient-enhanced damage model, see
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3.5. Concluding remarks

Table 3.7: Three-point reinforced prestressed bending beam: material parameters.

Meaning Symbol Value
Young’s modulus of the web E 30 GPa
Young’s modulus of the reinforcement Er 200 GPa
Horizontal prestressing load H 50 kN
Damage threshold τ0 3 MPa
Slope of the stress-strain relation β 1.22× 10−2 MPa−1

Poisson’s ratio of the web ν 0.0
Fracture energy of the web G 25 J/m2

Equation (3.3), has also been implemented. The same analysis —with the same

finite element mesh and the same characteristic lengths— is carried out. As shown

in Figure 3.15, the results obtained with non-local displacements are similar to those

ones obtained with a non-local state variable.

3.5 Concluding remarks

In this chapter, we have extended the applicability to a two- and three-dimensional

setting of an alternative gradient-enriched continuous formulation to describe the

evolution of a failure process. The key idea of this new approach is to combine the

standard displacement field uuu with a smoothed displacement field ũuu, which drives

damage evolution and is the solution of a diffusion differential equation.

This new model presents three main advantages. First, introducing the gradient-

type enrichment at the level of displacements (rather than some internal variable) does

not interfere with the constitutive driver. Second, and from a computational view-

point, the computation of the consistent tangent matrix needed to achieve quadratic

convergence in Newton iterations is much simpler than for the standard models.

Third, the boundary conditions for the regularisation equation —for ũuu— have a clear

meaning. In this chapter, these boundary conditions have been analysed in detail.

The main results are:

• Dirichlet boundary conditions have a clear physical meaning: the two displace-

ment fields are imposed to coincide along all the domain boundary. Neverthe-
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3. Continuous damage model with smoothed displacements

less, in a multidimensional setting, this does not allow a correct widening of the

damage zone at the boundary, since displacement smoothing is not permitted.

• Analogously to the standard gradient model, homogeneous Neumann boundary

conditions may be prescribed. By means of these conditions, ũuu is smoothed

along the domain boundary but reproducibility of order 1 is not ensured.

• Non-homogeneous Neumann boundary conditions solve these difficulties. Nev-

ertheless, they do not ensure conservation of volume.

• In order to solve the above discussed difficulties, combined conditions are pro-

posed. They consist of prescribing Dirichlet boundary conditions for the normal

component of the displacement field and non-homogeneous Neumann boundary

conditions for the tangential ones. Therefore, preservation of volume is ensured

and a relative slip is admitted.

In order to illustrate the regularisation capabilities of the new formulation, where

non-locality is introduced by means of smoothed displacements with combined bound-

ary conditions, different two- and three-dimensional tests are carried out. The main

results are:

• Regularisation via smoothed displacement precludes mesh dependence also in

a multi-dimensional setting: numerical results do not suffer from pathological

mesh sensitivity and physically realistic force-displacement curves and damage

profiles are obtained.

• Both the ductility in the force-displacement response and the width of the final

damage band increase with the characteristic length `.

• The new model presents the same regularisation capabilities and qualitative

response than the standard model based on a smoothed state variable.

3.6 Future work

The work carried out in this chapter leaves some open research lines that need to be

addressed in the near future.
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3.6. Future work

Size effect. The capability to correctly reproduce size effect —the change of be-

haviour when the spatial dimensions are scaled— is an important issue to be consid-

ered, see Bažant (2000) for an overview of this scaling behaviour.

Together with softening regularisation, non-local models are expected to capture

size effects. In fact, among other reasons, non-locality was historically motivated by

the need to capture them, see Bažant and Jirásek (2002).

Hence, it would be interesting to investigate the capacity of the gradient-enhanced

damage model based on smoothed displacements to reproduce these scaling effects. In

Rodŕıguez-Ferran et al. (2011), a three-point bending test with seven different sizes

is carried out. Although the numerical experiments are in reasonable accordance

with Bažant’s Size Effect Law (SEL), further research is needed to analyse why the

correspondence with SEL is not as strong as perhaps would be expected.

Initiation of failure with non-local displacements. Regularised damage models

allow to overcome the well-known problems of local approaches such as pathological

mesh dependence. Nevertheless, they suffer some drawbacks such as damage initiation

when dealing with notched specimens.

Indeed, in quasi-brittle failure analyses of notched specimens, experimental tests

show that cracks should propagate from the notch. However, as shown by Simone

et al. (2004), numerical simulations predict that cracks appear away from the tip.

This pathological behaviour is due to the fact that in the presence of a predefined

notch, the maximum non-local equivalent strain is inaccurately predicted, since at

the crack tip, the stress field and thus the strains are singular —the stress and strain

become infinitely large as the distance r from the crack tip tends to 0.

Taking into account that at the crack tip displacements are not singular, aver-

aging the displacement field —that is, using smoothed displacements to regularise

softening— may lead to a correct damage initiation.
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3. Continuous damage model with smoothed displacements

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: Three-point reinforced prestressed bending beam. Left column (damage
model based on smoothed displacements): (a) force-displacement curves and damage
profiles obtained by means of (c) ` = 0.1 cm, (e) ` = 0.2 cm and (g) ` = 0.5 cm.
Right column (standard damage model): (b) force-displacement curves and damage
profiles obtained by means of (d) ` = 0.1 cm, (f) ` = 0.2 cm and (h) ` = 0.5 cm.
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Chapter 4

Continuous-discontinuous damage

model: non-cohesive cracks in a

regularised bulk

In this chapter we propose a new continuous-discontinuous strategy for the simulation

of failure. The continuous bulk is regularised by means of a gradient-enhanced damage

model, where non-locality is introduced at the level of displacements, see Chapter 3.

As soon as the damage parameter is close or equal to 1, a traction-free crack is

introduced. In order to determine the direction of crack growth, a new criterion is

proposed. In contrast to traditional techniques, where mechanical criteria are used

to define the crack path, here a geometrical approach is used. More specifically,

given a regularised damage field D (xxx), we propose to propagate the discontinuity

following the direction dictated by the medial axis of the isoline (or isosurface in 3D)

D (xxx) = D∗. The proposed approach is tested on different two- and three-dimensional

examples that illustrate that this combined methodology is able to deal with damage

growth and material separation.

4.1 Introduction

On the one hand, regularised damage models (see the integral-type techniques pro-

posed by Bažant and Lin (1988), Bažant and Pijaudier-Cabot (1988) and Comi (2001)
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4. Continuous-discontinuous damage model: non-cohesive cracks

and the gradient-type formulations by Peerlings et al. (1996) and Comi (1999) among

others) can be used to describe the early stages of the failure process. However, they

do not introduce displacement discontinuities. As a consequence, numerical interac-

tion between physically separated parts of the body persists, which may cause an

unrealistic spread of damage, see Comi et al. (2007). Furthermore, dealing with ma-

terial separation and explicitly modelling the crack geometry is necessary for many

applications. For instance, in hydraulic fracturing processes —such as fracturing of oil

and gas reservoirs— rock is fractured by an injected liquid whose hydraulic pressure

depends on the shape of the crack; in structural failure due to leakage, freezing of the

pore water or chemicals in the surrounding fluids, the flow of the fluid depends on

the geometry of the crack and in fibre-reinforced concrete structures, where concrete

contains fibrous materials that increase its structural stiffness, see Figure 4.1, the

bridging capacity of fibres depend on their orientation with respect to the crack.

(a)

(b)

(c)

Figure 4.1: Steel-fibre reinforced concrete beam subjected to three-point bending.
Courtesy of Climent Molins (UPC).

On the other hand, discontinuous models (see for instance the pioneering works

by Simo et al. (1993), Simo and Oliver (1994) and Armero and Garikipati (1996)) can

be used to describe the last stages of the failure process. Nevertheless, they cannot

describe neither damage inception nor its diffuse propagation.
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4.1. Introduction

As suggested by the above discussion, combining these two theories —using a

continuous-discontinuous approach— is a way to achieve a better characterisation of

the whole failure process. The main idea of these continuous-discontinuous strategies

is to employ damage mechanics in order to describe the inception and the propa-

gation of damage and fracture mechanics in order to deal with cracks and material

separation.

In this chapter, we present a new combined approach. Specifically, the main

contributions of this chapter are:

1. To propose a new combined formulation to simulate quasi-brittle fail-

ure. In this new formulation, an implicit gradient-enhanced damage model

based on smoothed displacements is used to simulate the initial stages of fail-

ure. As soon as a critical situation is achieved —the damage parameter at all

the integration points in a finite element reaches a critical value Dcrit ' 1— a

non-cohesive crack is introduced. Special emphasis is placed on the consistent

tangent matrix needed to attain quadratic convergence in the full Newton-

Raphson method.

2. To propose a new criterion to determine the crack path. One impor-

tant issue concerning the transition from the continuous to the discontinuous

approach is the location of a crack and the definition of the direction along

which it propagates. Regarding combined approaches, fracture mechanics can-

not be employed, since the critical imperfection from which cracking initiates

is unknown. Therefore, other criteria should be used. Here, the discontinuity

is propagated following the direction dictated by the medial axis of the already

damaged domain, a tool proposed by Blum (1967) that is widely used for image

analysis, computer vision applications or mesh generation.

The structure of the chapter is as follows. In Section 4.2 the new continuous-

discontinuous damage model based on smoothed displacements is presented. Section

4.3 deals with the new criterion to determine the crack path. The capabilities of

this new combined approach are illustrated by means of some numerical examples in

Section 4.4. Finally, the concluding remarks in Section 4.5 and the future directions

in Section 4.6 close this chapter.
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4. Continuous-discontinuous damage model: non-cohesive cracks

4.2 Gradient-enhanced damage model

To simulate the last stages of a failure process —where the damage parameter is

close to one—, we propose to couple the implicit gradient-enhanced model based on

smoothed displacements with propagating cracks. In this final stage of the process,

the bulk Ω is bounded by Γ = Γu ∪ Γt ∪ Γd, as shown in Figure 4.2. Prescribed

displacements are imposed on Γu, while tractions are imposed on Γt. The boundary

Γd consists of the boundary of the crack.

Figure 4.2: Notations for a body with a crack subjected to loads and imposed dis-
placements.

The key idea of this combined strategy is to characterise the problem fields —both

local and non-local displacements— by means of the eXtended finite element method

(X-FEM), see Belytschko and Black (1999) and Moës et al. (1999). Indeed, and with

X-FEM, uuu and ũuu can be decomposed as

uuu (xxx) = uuu1 (xxx) + ψ (xxx)uuu2 (xxx) (4.1a)

ũuu (xxx) = ũuu1 (xxx) + ψ (xxx) ũuu2 (xxx) (4.1b)

where uuui, ũuui (i = 1, 2) are continuous fields in Ω and ψ is the sign function centred at

the discontinuity Γd —equals 1 at one side of the discontinuity and equals −1 at the

other one. It is noted that if the body Ω is not entirely crossed by the discontinuity Γd,

ψ is ambiguously defined. Nevertheless, this ambiguity is not a critical issue, since

after the FE discretisation, the enrichment function is multiplied by nodal shape

functions that vanish in the region where ψ is ambiguous.

Moreover, the continuous parts uuu1 and ũuu1 correspond to the displacement field

without any crack, while the additional discontinuous fields ψuuu2 and ψũuu2 model the

crack.

It must be stressed that in Equation (4.1), both mechanical and smoothed dis-

placements are discontinuous. This requirement —the auxiliary displacement field ũuu
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4.2. Gradient-enhanced damage model

being discontinuous— is a natural choice. Indeed, let us consider the regularisation

equation (3.2) with ` = 0. Then, since the model is local, the expected solution

is uuu = ũuu and, therefore, given a discontinuous displacement field uuu the regularised

displacement field ũuu must also be discontinuous.

4.2.1 Governing equations

The strong form of the equilibrium equation and boundary conditions for the body

Ω̄ = Ω ∪ Γ without body forces is given by

∇ · σσσ = 0 in Ω (4.2a)

σσσ · nnn = t̄̄t̄t on Γt (4.2b)

σσσ · nnn = 0 on Γd (4.2c)

uuu = uuu∗ on Γu (4.2d)

where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement on the Dirichlet

boundary, t̄̄t̄t is the traction on the Neumann boundary and nnn is the outward unit

normal to the body. Note that in this chapter, the transition from a continuous to a

discontinuous strategy is carried out when the damage parameter is close to one thus

introducing a traction-free crack, see Equation (4.2c).

In the proposed formulation, the regularisation PDE (3.2) is employed to incorpo-

rate non-locality. Therefore, appropriate boundary conditions for ũuu must be defined.

Here, combined boundary conditions

ũuui · nnn = uuui · nnn
∇
(
ũuui · ttt1

)
· nnn = ∇ (uuui · ttt1) · nnn

∇
(
ũuui · ttt2

)
· nnn = ∇ (uuui · ttt2) · nnn

 on Γ (4.3)

where i = 1, 2, are prescribed for the continuous displacement fields ũuu1 and ũuu2, see

Section 3.3 for a detailed discussion.

Both equations —equilibrium and regularisation equations— are first cast in a

weak form to be subsequently linearised. Thus, the equilibrium equation (4.2) leads

to ∫
Ω

∇sω1 : σσσ dΩ =

∫
Γt

ω1 · t̄̄t̄t dΓ ∀ω1 ∈ H1(Ω) (4.4a)∫
Ω

ψ∇sω2 : σσσ dΩ =

∫
Γt

ψω2 · t̄ dΓ ∀ω2 ∈ H1(Ω) (4.4b)
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4. Continuous-discontinuous damage model: non-cohesive cracks

whereas the regularisation equation leads to

∫
Ω

ω̃1 · ũuu dΩ + `2

∫
Ω

∇ω̃1 :
(
∇ũuu1 + ψ∇ũuu2) dΩ =

∫
Ω

ω̃1 · uuu dΩ +

+ `2

∫
Γ

(
ω̃1 · ttt1

)
·
[
∇
(
uuu1 · ttt1

)
· nnn+ ψ∇

(
uuu2 · ttt1

)
· nnn
]

dΓ

+ `2

∫
Γ

(
ω̃1 · ttt2

)
·
[
∇
(
uuu1 · ttt2

)
· nnn+ ψ∇

(
uuu2 · ttt2

)
· nnn
]

dΓ (4.5a)∫
Ω

ψω̃2 · ũuu dΩ + `2

∫
Ω

∇ω̃2 :
(
ψ∇ũuu1 +∇ũuu2) dΩ =

∫
Ω

ψω̃2 · uuu dΩ +

+ `2

∫
Γ

(
ω̃2 · ttt1

)
·
[
ψ∇

(
uuu1 · ttt1

)
· nnn+∇

(
uuu2 · ttt1

)
· nnn
]

dΓ

+ `2

∫
Γ

(
ω̃2 · ttt2

)
·
[
ψ∇

(
uuu1 · ttt2

)
· nnn+∇

(
uuu2 · ttt2

)
· nnn
]

dΓ (4.5b)

where ω = ω1 + ψω2 and ω̃ = ω̃1 + ψω̃2 are the test functions, see Appendix A for

details.

4.2.2 Linearisation and consistent tangent matrix

Regarding the finite element discretisation, local and non-local displacements read,

in the domain of an element with enhanced nodes, as

uuu(xxx) ' uuuh(xxx) = N(xxx)u1 + ψ(xxx)N(xxx)u2 (4.6a)

ũuu(xxx) ' ũuuh(xxx) = N(xxx)ũ1 + ψ(xxx)N(xxx)ũ2 (4.6b)

where N is the matrix of standard finite element shape functions, u1, ũ1 are the basic

nodal degrees of freedom and u2, ũ2 are the enhanced ones. The discrete format of

the equilibrium equation, see Equations (4.4), leads to the discrete weak form∫
Ω

BTσσσ dΩ =

∫
Γt

NT t̄̄t̄t dΓ (4.7a)∫
Ω

ψBTσσσ dΩ =

∫
Γt

ψNT t̄̄t̄t dΓ (4.7b)

while the regularisation equation, see Equations (4.5), leads to

(M + `2D)ũ1 + (Mψ + `2Dψ)ũ2 = (M + `2KBC)ũ1 + (Mψ + `2Kψ,BC)u2 (4.8a)

(Mψ + `2Dψ)ũ1 + (M + `2D)ũ2 = (Mψ + `2Kψ,BC)u1 + (M + `2KBC)ũ2 (4.8b)

with matrices defined in Appendix B.

Some remarks about the discretisation:
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4.2. Gradient-enhanced damage model

• Equation (4.7a) is the standard non-linear system of equilibrium equations,

while Equation (4.7b) deals with the contribution of the crack. Indeed, the effect

of the displacement discontinuity is taken into account by enforcing equilibrium

of the enriched internal and external forces, see the terms in the LHS and in

the RHS of Equation (4.7b) respectively.

• Matrices Mψ and Dψ can be understood as enriched mass and diffusivity ma-

trices respectively, since the expression is the same as M and D except for the

enrichment function, see Appendix B.

• Note that the appealing symmetry of Equations (4.8) is due to the fact that

the enrichment function is the sign function (ψψ = +1).

Analogously to the continuous model, see Rodŕıguez-Ferran et al. (2005), smoothed

displacements are attractive from a computational viewpoint in the combined for-

mulation, especially regarding its consistent linearisation. Indeed, linearisation of

Equations (4.7) and (4.8) results in the tangent matrix

Ktan =


Ksec Kψ,sec Kloc Kψ,loc

Kψ,sec Ksec Kψ,loc Kloc

−(M + `2KBC) −(Mψ + `2Kψ,BC) M + `2D Mψ + `2Dψ

−(Mψ + `2Kψ,BC) −(M + `2KBC) Mψ + `2Dψ M + `2D

 ,
(4.9)

see Appendix B for details.

Note that in continuous approaches, the evaluation of the tangent matrix usually

requires the quadrature of functions that are polynomials —or functions that are

well approximated by polynomials. Hence, traditional quadrature rules, for example

Gauss quadratures, can be used. Nevertheless, in continuous-discontinuous strate-

gies, the approximation space is enriched by discontinuous functions, see the tangent

matrix (4.9). Therefore, alternative integration rules must be used. As reviewed by

Belytschko et al. (2009), several different methods can be found in the literature.

These methods include higher-order Gauss quadratures, adaptive quadratures and

subdomain quadratures. In this work, this last approach is used: when an element is

intersected by a discontinuity, it is subdivided into quadrature subdomains where a

standard Gauss rule is used, see Appendix C for details.
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4. Continuous-discontinuous damage model: non-cohesive cracks

4.3 Geometric criterion to determine the crack

path

One important issue concerning the transition from the continuous to the discon-

tinuous approach is the location of a crack and the definition of the direction along

which it propagates. Regarding combined approaches, fracture mechanics cannot be

employed, since the critical imperfection from which cracking initiates is unknown.

Therefore, other criteria should be used.

Traditionally, determining the direction of crack growth is tackled from a mechan-

ical point of view. In Jirásek and Zimmermann (2001), the crack is assumed to be

perpendicular to the direction of maximum principal stress or strain. In Simone et al.

(2003), the crack grows following the direction of maximum accumulation of the non-

local equivalent strain in a zone ahead of the discontinuity tip. Comi et al. (2007)

use the damage band to locate the propagating crack. They propose to approximate

the damage values in the process zone by a fourth-order polynomial and to locate

the crack perpendicular to the direction of maximum curvature of the interpolating

polynomial.

As seen in the above references, the key idea of these approaches is to use the

Gauss points values —non-local stress, non-local strain or damage— to define the

direction of crack growth. Nevertheless, due to the singularity of the stress and

strain fields at the crack tip, the value of these quantities may lead to an incorrect

crack propagation.

Here, an alternative way of defining the direction of crack growth is presented.

The main idea of this new approach is to avoid the use of mechanical criteria to

determine the advancing crack front thus using the geometry of the damaged zone

instead. More specifically, the idea is to collapse a damaged zone —which can be

understood as a crack of thickness equal to the damaged band— into a zero-thickness

crack. Taking into account that the width of the damaged zone is controlled by the

characteristic length `, and letting ` tend to zero, it can be intuitively seen that the

zero-thickness crack should be located in the middle of the damaged zone, see Figure

4.3.

This intuitive idea —going through the middle of a given domain— can be directly

formalised by means of the medial axis concept.
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4.3. Geometric criterion to determine the crack path

Figure 4.3: Given a damage domain (discontinuous line) and reducing the diffusion,
one observes that the damaged zone can be collapsed into a zero-thickness line located
in the middle of the diffuse zone.

4.3.1 Medial axis

The medial axis (MA) of a solid was first proposed by Blum (1967) as a geometric

tool in image analysis. Intuitively, the MA of an object —often called medial surface

when dealing with 3D objects— can be thought of as its skeleton. Mathematically,

the MA of a solid is defined as the loci of centres of bi-tangent interior balls, see

Figure 4.4.

Although this geometric tool is widely used in computer image analysis or for

mesh generation purposes, the computation of the MA is a difficult task due to its

instability, since it is heavily sensitive to details in the boundary of the object, see

Figures 4.5(a)-4.5(d). In order to overcome this main drawback, different simplified

and stable versions of the MA can be found in the literature, see Pizer et al. (2003)

for a detailed survey.

One of these stable criteria is based on the separation angle, see Foskey et al.

(2003). Let us consider a point P of the MA and let P1, P2 denote the two points

of tangency of the interior ball with centre at P to the object. Then, the separation

angle of this point S(P ) is the value in [0, π] such that

S(P ) = ∠P1PP2, (4.10)

see Figure 4.6(a). More generally, if there are more than two points of tangency, see
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4. Continuous-discontinuous damage model: non-cohesive cracks

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Left column (2D case): (a) a 2D object, (c) bi-tangent interior circles, (e)
2D MA. Right column (3D case): (b) a 3D object, (d) bi-tangent interior spheres, (f)
3D MA, often called medial surface.

Figure 4.6(b), the separation angle S(P ) is defined as the largest angle between P

and each pair of points of tangency

S(P ) = max
P1,P2∈T (P )

(∠P1PP2) (4.11)

where T (P ) denote the set of points of tangency of the interior ball with centre at P

to the object.

Therefore, and given an angle θ ∈ [0, π], the θ−SMA of an object is defined as

the set of points of the MA with separation angle greater than θ. As seen in Figures

4.5(e)-4.5(g), this modified definition allows to remove the spurious branches that

appear when computing the MA. It is noted here, that the use of the θ−SMA does

not lead to only one crack. Indeed, this tool allows to consider the coalescence and

branching of cracks, see Figure 4.7.
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4.3. Geometric criterion to determine the crack path

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.5: (a) Given a domain Ω, (b) the bi-tangent interior balls are computed. (c)
Joining their centres, (d) the MA is obtained. (e) If only the circles with separation
angle greater than θ = π

2
are considered, (f) the spurious branches are removed and

(g) the θ−SMA is obtained.

4.3.2 The θ−simplified medial axis as a tool to locate cracks

Once the transition criterion is fulfilled, a propagating crack is introduced. Note that

since the crack is introduced when damage is close to one, it can be considered as a

traction-free crack. The proposed strategy consists of different steps:

• Crack initiation: as done in Cervera et al. (2010), we will assume that a crack

may start only from the boundary of the structure. Therefore, once the damage
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4. Continuous-discontinuous damage model: non-cohesive cracks

(a) (b)

Figure 4.6: (a) Separation angle S(P ) of a point P : adapted from Foskey et al.
(2003). (b) If there are more than two points of tangency, the separation angle S(P )
is defined as the largest angle between P and each pair of points of tangency.

(a) (b)

Figure 4.7: (a) Medial axis of a Y-shaped domain. (b) θ−simplified medial axis of a
Y-shaped domain (θ = 2

3
π).

parameter reaches a value Dcrit ' 1 in an element located on the boundary of

the mesh, a crack is introduced in that element, see Figure 4.8(a). Moreover,

the damage parameter in that cracked element is fixed to Dcrit. Hence, the

damage parameter in the cracked element does not evolve anymore and the

material in the surrounding unloads.

• θ−SMA computation: in order to define the direction of crack growth, and

suggested by Section 4.3.1, the θ−SMA of the already damaged domain is com-

52



4.3. Geometric criterion to determine the crack path

puted, see Figure 4.8(b). More specifically, the θ−SMA of the isoline (or the

isosurface in 3D) D (xxx) = D∗ is computed. It must be stressed that the exact

computation of the MA is difficult in general due to the sensitivity to pertur-

bations. Nevertheless, there are many available open-source software packages

that allow to compute it in a user-friendly manner. Here, the Matlab routines

by Suresh (2013) and the C++ code by Yoshizawa (2013) have been used to

compute the MA of 2D and 3D solids respectively. Then, we have modified

them to compute the θ−SMA. In particular, given an angle θ ∈ [0, π], the

points belonging to the MA with a separation angle lower than θ are removed.

• Crack propagation: once the crack tip is located and the θ−SMA is computed,

the direction of crack propagation may be defined. The discontinuity goes from

the crack tip following the direction dictated by the θ−SMA until D > Dcrit is

no longer satisfied, see Figure 4.8(c). Note that the problem is solved by means

of an incremental-iterative scheme and within each step, the crack length is

fixed. In other words, crack propagation only takes place at the end of a time

step.

• Finite element enrichment: to model a crack tip, the displacement jump at the

discontinuity tip is set to zero. In order to prevent crack opening and sliding

at the current crack tip, only standard degrees of freedom for the nodes of the

edge containing the crack tip are considered, see Figure 4.8(d). As soon as the

discontinuity is extended to the next element, nodes behind the crack tip are

enriched.

As seen in step 2, in order to compute the θ-SMA, two different parameters must

be considered: the value of the separation angle θ and the value of the isoline (or

isosurface) D (xxx) = D∗.

Setting the value of the separation angle θ. In this work, the θ−simplified

medial axis and the θ−simplified medial surface are used to locate the crack through

the middle of the damaged bulk. That is, their main goal is to avoid the spurious

cracks emanating from the main crack. Different examples —all of them introduced

in Chapter 3— have been carried out in order to analyse the sensitivity to this value.

First, the two-dimensional square plate under mode I loading conditions is re-

trieved. As seen in Figure 4.9, the spurious branches appear with low values of θ.
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crack 

initiation

D = 0

D = 0

D = Dcrit

(a)
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Figure 4.8: The θ−SMA as a tool to locate cracks: (a) Crack initiation; (b) θ−SMA
computation; (c) Crack propagation; (d) Finite element enrichment by means of X-
FEM.

Nevertheless, with a separation angle large enough, only the main discontinuity is

captured.

Second, the two-dimensional single-edge notched beam is analysed. Analogous

results are obtained, see Figure 4.10. On the one hand, if a low value of θ is considered,

several spurious branches are obtained. This is due to the fact that this algorithm is

unstable —small variations in the boundary of the solid may lead to large changes

in its medial axis. On the other hand, if higher values of θ are considered, only the

main discontinuity is captured.

To sum up, the sensitivity to the value of θ is minimal provided that θ is large

enough (with θ > π
2

only the main path is typically obtained).
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4.3. Geometric criterion to determine the crack path

(a)

(b) (c) (d) (e)

Figure 4.9: Square plate under mode I loading conditions. (a) Number of obtained
branches with the θ−SMA as a function of the value of θ and θ−simplified medial
axis obtained with (b) θ = 0◦, (c) θ = 10◦, (d) θ = 50◦ and (e) θ = 100◦.

Setting the value of the isoline (or the isosurface) D (xxx) = D∗. To com-

pute the θ−SMA, the domain D (xxx) = D∗ has to be determined. Since damage

is a smoothed field, little differences are expected for different values of D∗. This

behaviour is assessed by carrying out the θ−SMA computation of the two previous

examples. Both for the square plate under mode I loading conditions and the single-

edge notched beam, a fixed separation angle θ = 100◦ and three different values of

D∗ are considered.

As seen in Figure 4.11, the crack-path obtained with a higher value of D∗ overlaps

the predicted crack-path with a lower D∗. The only difference concerns the length
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4. Continuous-discontinuous damage model: non-cohesive cracks

(a)

(b) (c) (d) (e)

Figure 4.10: Single-edge notched beam. (a) Number of obtained branches with the
θ−SMA as a function of the value of θ and θ−simplified medial axis obtained with
(b) θ = 0◦, (c) θ = 10◦, (d) θ = 50◦ and (e) θ = 100◦.

of the predicted crack-path. Indeed, if a higher value of D∗ is considered, a shorter

crack-path is obtained, see for instance Figure 4.11(a). Hence, in such a case, the

θ-SMA computation needs to be repeated more often during the numerical simulation.
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4.4. Numerical examples

(a) (b)

Figure 4.11: Crack-path obtained with D∗ = 0.6 (black), D∗ = 0.7 (grey) and D∗ =
0.8 (light grey) for (a) a square plate under mode I loading conditions and (b) a
single-edge notched beam.

4.4 Numerical examples

In this section we present some numerical examples to illustrate the capabilities of the

new continuous-discontinuous method. Both two- and three-dimensional examples

are carried out.

Two-dimensional three-point bending test. To begin with, a two-dimensional

three-point bending test is considered, see Figure 4.12. A uniform mesh of 1 640

(41 × 40) quadrilateral elements has been used. The main goal of this first analysis

is to check whether the medial axis allows to predict the expected crack path.

The geometric and material parameters are summarised in Table 4.1. Here, the

simplified Mazars damage model, see Equation (3.14), is considered. The exponential

damage evolution law

D(Y ) = 1− Y0

Y
exp

(
−β(Y − Y0)

)
(4.12)

with Y0 the damage initiation state variable and β the slope of the stress-strain

relation at the peak, is used.

The damage patterns and the force-displacement curves are shown in Figure 4.13.

On the one hand, in Figure 4.13(a), both the force-displacement curves obtained with

a continuous and with a combined strategy are plotted. As expected, since the crack
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4. Continuous-discontinuous damage model: non-cohesive cracks

Figure 4.12: Three-point bending test: problem statement.

Table 4.1: Three-point bending test: geometrical and material parameters.

Meaning Symbol Value
Length of the beam L 300 mm
Height of the beam h 100 mm
Young’s modulus E 30 000 MPa
Damage initiation state variable Y0 10−4

Slope of the stress-strain relation β 121.93
Poisson’s ratio ν 0.00

is introduced when damage is close to one, the energy dissipated by a continuous-

discontinuous approach with a traction-free crack is similar to the energy dissipated

by a continuous model. On the other hand, Figures 4.13(b)-4.13(g) show the obtained

results in terms of damage and deformation patterns (amplified by a factor of 100) for

some increasing imposed displacements u∗. Firstly, the continuous gradient-enhanced

damage model with smoothed displacements is used. A characteristic length ` = 0.01

mm is considered. As seen in Figures 4.13(b)-4.13(c), the non-local regularisation

technique allows to obtain physically realistic results. Secondly, as soon as a critical

situation is achieved —the damage parameter at all the integration points in a finite

element is larger than Dcrit = 0.9999— a traction-free discontinuity is introduced.

As expected, see Figure 4.13(d), the crack is introduced in the middle of the beam.

Then, the continuous-discontinuous approach is employed. In order to know the

direction along which the traction-free crack propagates, the θ−SMA is computed.

As expected, see Figures 4.13(e)-4.13(g), by means of this geometric tool, a straight
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crack propagating upwards is predicted.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.13: 2D three-point bending test, CD approach: for increasing imposed dis-
placements u∗, damage and deformed patterns (× 100).

Three-dimensional three-point bending test. As a second test, the previous

example with a three-dimensional geometry, see Figure 4.14, is considered. A uniform

mesh of 4 920 (41 × 40 × 3) eight-noded hexahedral elements has been used. The

geometric and material parameters summarised in Table 4.1 are employed. Again,

the simplified Mazars damage model, Equation (3.14), with an exponential evolution

law, Equation (4.12), are used.

Figure 4.15 shows the obtained results in terms of force-displacement curves, dam-

age and deformation patterns (amplified by a factor of 100) for some increasing im-

posed displacements u∗. As shown, analogous results to the two-dimensional ones are

obtained: the simplified medial surface allows to locate the crack where expected.

Four-point bending beam. As a third example, the four-point bending beam

numerically analysed in Cervera et al. (2011) is reproduced, see Figure 4.16. In view

of the central symmetry of the problem, only one half of the specimen has been

discretised. A non-uniform mesh of 4 888 quadrilateral elements has been used. The

material parameters are summarised in Table 4.2.
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4. Continuous-discontinuous damage model: non-cohesive cracks

Figure 4.14: Three-point bending test: problem statement.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.15: 3D three-point bending test, CD approach: for increasing imposed dis-
placements u∗, damage profiles and deformed patterns (× 100).

Here, the truncated Rankine damage model, see Equation (3.16), and an expo-

nential damage evolution law, see Equation (3.17), are considered.

For some increasing imposed displacements u∗, force-displacement curves, damage

and deformation patterns (amplified by a factor of 100) are shown in Figure 4.17. For

convenience purposes, a close-up of the central damaged area is depicted. On the one
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4.4. Numerical examples

Figure 4.16: Four-point bending beam: problem statement (measures in centimetres).

Table 4.2: Four-point bending beam: material parameters.

Meaning Symbol Value
Young’s modulus E 30 GPa
Damage initiation equivalent effective stress τ0 2 MPa
Fracture energy G 100 J/m2

Poisson’s ratio ν 0.2
Characteristic length ` 0.3 cm
Softening parameter β 8.1× 10−3 MPa−1

hand, Figure 4.17(a) shows the obtained results in terms of force-displacement curves.

As shown in the previous examples, since the traction-free crack is introduced when

damage reaches a critical value Dcrit = 0.9999, the energy dissipated by a combined

approach is similar to the energy dissipated by a continuous model. On the other

hand, as seen in Figures 4.17(b)-4.17(c), the continuous gradient-enhanced damage

model with smoothed displacements is used for the first stages of the process. As

soon as a critical situation is achieved, a crack that propagates through the middle

of the regularised damaged bulk is introduced, see Figures 4.17(d)-4.17(g).

Single-edge notched beam. To finish with, the three-dimensional single-edge

notched beam analysed in Section 3.4.2 is retrieved, see Figure 3.12. The same

material parameters are used, see Table 3.6. Again, the modified von Mises model,
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4. Continuous-discontinuous damage model: non-cohesive cracks

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.17: Four-point bending test, CD approach: for increasing imposed displace-
ments u∗, damage profiles and deformed patterns (× 100).

see Equation (3.18), and the exponential damage evolution, see Equation (3.19), are

considered. A non-uniform mesh of 407 eight-noded hexahedral elements has been

used.

For some increasing imposed forces, force-displacement curves, damage and de-

formation patterns (amplified by a factor of 50) are shown in Figure 4.18. Here the

traction-free crack is introduced when damage reaches a critical value Dcrit = 0.99.

On the one hand, as shown in Figure 4.18(a), the energy dissipated by a combined

approach is similar to the energy dissipated by a continuous model. On the other

hand, as seen in Figures 4.18(b)-4.18(g), the θ−SMA (with θ = π
2
) allows to locate the

traction-free crack through the middle of the damaged bulk also in a three-dimensional

setting.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.18: Single-edge notched beam, CD approach: for increasing imposed forces,
damage profiles and deformed patterns (× 50).

4.5 Concluding remarks

In this chapter, a new continuous-discontinuous damage model is presented, see Figure

4.19. The key idea of this new approach is to couple a gradient-enriched formulation

with an extended finite element approach thus enabling to simulate the entire fracture

process —from formation of micro-cracks to the possible development of macro-cracks.

This new combined strategy is characterised by the following features:

• In order to describe the first stages of the failure process, a gradient-enriched

continuous formulation is used. Here, smoothed displacements are used to reg-

ularise the continuous bulk, see Chapter 3.

• At the end of each time step, the approach checks if the damage parameter is

equal to a critical value Dcrit ' 1 in an element located on the boundary of the

mesh. In such a case, a traction-free crack is introduced.
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4. Continuous-discontinuous damage model: non-cohesive cracks

• The discrete crack is introduced into the model according to the eXtended Fi-

nite Element Method (X-FEM). Hence, both the standard displacement field

uuu and the gradient-enhanced displacement field ũuu are enriched with discontin-

uous functions satisfying the partition of unity concept. In particular, the sign

function is used.

• The direction of propagation is determined by means of the already formed

damage field. In particular, the traction-free crack propagates following the

direction dictated by the θ− simplified medial axis (in 2D) or the θ−simplified

medial surface (in 3D) of the domain D (xxx) = D∗. Neither choosing the value

of the separation angle θ nor the value of the isoline D (xxx) = D∗ are critical

issues. Indeed:

– In this thesis, the θ−simplified medial axis and the θ−simplified medial

surface are used to locate the crack through the middle of the damaged

bulk. That is, their main goal is not to allow shape recognition or im-

age reconstruction —their usual applications— but to avoid the spurious

cracks emanating from the main crack. Hence, θ should be large enough

to capture only the main discontinuity. In the presented examples, with

θ > π
2
, the main crack is obtained.

– As seen in the presented numerical tests, if the damage field is smooth

enough, the same qualitative results are obtained with different values of

D∗.

It is noted that, since the damaged bulk is regularised, the damage band —and

thus the crack path— do not depend on the finite element mesh. Nevertheless,

for computational convenience, the crack is let to propagate so that the tip

always belongs to an element side.

• Analogously to the continuous model, smoothed displacements are attractive

from a computational viewpoint in the combined formulation. Indeed, lineari-

sation of the regularisation equations leads to a tangent block matrix, see Equa-

tion (4.9). In order to compute it, different matrices are needed: the standard

M and the enhanced Mψ mass matrices and the standard D and the enhanced

Dψ diffusivity matrices. The standard M and D matrices, already obtained
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in Rodŕıguez-Ferran et al. (2005) are constant. However, the enhanced matri-

ces may change during the numerical simulation, since the crack propagates

through the continuous bulk.

Non-local continuous model
with smoothed displacements

D ' 1?No changes

A traction-free crack is introduced
Crack-growth direction: medial axis

Non-local continuous-discontinuous
model with smoothed displacements

No

Yes

Figure 4.19: Proposed continuous-discontinuous model.

The proposed approach is tested on different two- and three-dimensional examples

that illustrate that this combined methodology is able to deal with damage growth

and material separation. The main results are:

• Both the medial axis and the medial surface allow to determine the direction

of crack growth.

• The transition from a continuous to a continuous-discontinuous failure descrip-

tion with traction-free cracks is energetically consistent if it takes place when

damage reaches a critical value Dcrit ' 1. Therefore, the force-displacement
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4. Continuous-discontinuous damage model: non-cohesive cracks

curves obtained with the proposed continuous-discontinuous strategy are simi-

lar to the curves obtained with a fully continuous description.

• Nevertheless, introducing a crack when Dcrit ' 1 may be very restrictive, since

the elements with high damage —but lower than Dcrit— are not cracked. There-

fore, a continuous-discontinuous description with Dcrit < 1 may be suitable for

many applications thus leading to the need of introducing cohesive cracks, see

Chapter 5.

4.6 Future work

The work carried out in this chapter leaves some open research lines that need to be

addressed in the near future.

Extension of the existing code to include multiple non-intersecting cracks.

In this thesis, problems involving one single crack propagating through the continuous

bulk are analysed. Nevertheless, for some numerical tests (see for instance the four-

point bending beam of Section 4.4 if no central symmetry is assumed), it is necessary

to deal with n non-intersecting discontinuities (n > 1).

Since the medial axis is able to locate n cracks when the condition D (xxx) = D∗

results in n isolines, see Figure 4.20, the only change needed in the proposed strategy

is the further extension of the finite element approximation. Indeed, if a body Ω̄

is crossed by n non-intersecting cracks, both the standard uuu and the enhanced ũuu

displacement fields can be decomposed as

uuu(xxx) ' uuuh(xxx) = N(xxx)u1 +
n+1∑
i=2

ψi (xxx) ui (4.13a)

ũuu(xxx) ' ũuuh(xxx) = N(xxx)ũ1 +
n+1∑
i=2

ψi (xxx) ũi (4.13b)

where ui and ũi, ∀ i = 1 ÷ n + 1, are continuous functions on Ω̄ and ψi are sign

functions centred at the discontinuity surface Γi.

Crack branching. As discussed in Section 4.3.1, see Figure 4.7, the medial axis al-

lows to capture crack branching. Nevertheless, in order to take into account branched

and intersecting discontinuities, the X-FEM should be further enhanced.
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(a) (b)

Figure 4.20: Four point bending test: (a) given a damage profile where the condition
D (xxx) = D∗ (D∗ = 0.2) results in three isolines, (b) the θ−simplified medial axis
allows to locate three cracks (close-up of the central zone).

Different enrichments may be used. On the one hand, Daux et al. (2000) propose a

new discontinuous junction function that allows to account for a branched crack. On

the other hand, as discussed by Zlotnik and Dı́ez (2009) in the context of a n−phase

flow problem, a hierarchical enrichment can be introduced.

Addition of crack tip functions to the finite element approximation. For

the sake of simplicity, the crack tip has been assumed to belong to an element edge.

Nevertheless, in a more general case, see Figure 4.21, the crack tip may lie within an

element.

Figure 4.21: A crack line (dashed line) in a structured mesh with standard elements
(white), elements whose nodes are all enriched (dark grey) and blending elements
(light grey). Nodes enriched with the asymptotic crack tip functions and the sign
function are indicated by circles and squares respectively. Adapted from Moës et al.
(1999).

In such a case, the sign function ψ cannot adequately describe the discontinu-

ity and asymptotic crack tip functions should be used to enrich the finite element
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approximation, see Belytschko and Black (1999) and Stolarska et al. (2001).

Extension of the proposed method to simulate fracking. As discussed in

Section 4.1, the explicit modelling of cracks allows to simulate different phenomena

such as hydrofracturing, commonly known as fracking. By means of this technique,

a mixture of water, sand and chemicals is injected at high pressure into a drill hole

to create fractures thus allowing the extraction of fluids such as gas or petroleum.

Hence, it would be interesting to use the proposed continuous-discontinuous strategy

to model this phenomenon. In order to do it, we believe that few changes are needed,

since the only extra term that needs to be accounted for is the fluid pressure.
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Chapter 5

Continuous-discontinuous damage

model: cohesive cracks via an

energy-transfer process

In this chapter we extend the applicability of the combined strategy presented in

Chapter 4 to cohesive cracks. For the early stages of the failure process, a gradient-

enhanced model based on smoothed displacements is employed. As soon as the dam-

age parameter exceeds a critical value (Dcrit < 1) a cohesive crack is introduced. Our

main concern is to define the cohesive law in such a way that the continuous and the

continuous-discontinuous approaches are energetically equivalent. More specifically,

a new criterion to determine the fracture energy not yet dissipated in the damaged

bulk is proposed. This energy balance is tested on different examples to show that

by means of this new criterion, a better approximation of the energy that has to be

transferred to the cohesive crack is computed.

5.1 Introduction

Numerical simulation of failure of quasi-brittle materials is traditionally tackled from

two different points of view: damage and fracture mechanics. As discussed in Chapter

4, reconciling these two theories is a way to achieve a better characterisation of the

whole failure process.
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An important issue concerning the switching from the continuum to the discrete

approach to fracture is deciding when this transition takes place. In Chapter 4, the

model switching occurs when the damage parameter in a finite element reaches a

critical value Dcrit ' 1. However, as discussed in Comi et al. (2007), if the damage

parameter reaches values close to one, non-local interaction remains active even when

the local strength tends to zero. Hence, an unrealistic spread of damage may occur.

In order to avoid this behaviour, model switching can be driven by a critical dam-

age value Dcrit less than 1. Nevertheless, this poses another problem: if a traction-free

crack is introduced, see Chapter 4, conservation of energy is not ensured. Indeed, if

Dcrit < 1, the transition takes place when the material is not fully degraded and thus,

some residual energy remains to be dissipated by the continuous strategy. Therefore,

this remaining energy is not transferred to the combined strategy and the continuous

and the continuous-discontinuous approaches are not energetically consistent.

One possible solution to this problem consists of introducing cohesive cracks. If

cohesive discontinuities are introduced, see the pioneering works of Dugdale (1960)

and Barenblatt (1962), separation occurs across an extended crack tip or a cohesive

zone, see Figure 5.1(a). Thus, they are suitable to model any existing interaction

between the two faces of the macroscopic crack. Such a situation occurs, for instance,

in fibre-reinforced concrete structures, see Figure 5.1(b).

(a) (b)

Figure 5.1: (a) A cohesive crack can be used to model (b) steel-fibre reinforced
concrete beams (courtesy of Climent Molins, UPC).

In this chapter, we extend the applicability of the continuous-discontinuous strat-

egy with traction-free cracks, see Chapter 4, to energetically equivalent cohesive

cracks. Specifically, the main contributions of this chapter are:

1. To propose a new combined formulation with cohesive cracks. The
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continuous-discontinuous strategy presented in Chapter 4 is extended to include

cohesive cracks. In this new formulation, an implicit gradient-enhanced damage

model based on smoothed displacements is used to simulate the initial stages

of failure. As soon as a critical situation is achieved —damage parameter at

all the integration points of a finite element exceeds a critical damage value

Dcrit < 1— a cohesive crack is introduced.

2. To propose a new criterion to estimate the energy not yet dissipated

by the bulk. One important issue concerning the switching from damage to

fracture —if cohesive cracks are introduced— is the definition of the cohesive

law. One means of obtaining the properties of this law is by transferring to

the cohesive crack the energy not yet dissipated by the bulk. Nevertheless, this

poses a substantial difficulty: after the switching —from the continuous to the

continuous-discontinuous strategy— the continuous model is no longer used.

Hence, the energy that needs to be transferred is not known at model switching

and needs to be estimated. In order to do it, different strategies may be used.

Here, a new criterion is proposed. The actual unloading behaviour —either

softening or secant-elastic— of each point in the continuous bulk is estimated.

Thus, compared to other strategies where all the points in the damaged bulk are

assumed to unload following the softening branch, the energy to be transferred

is more accurately computed.

The structure of the chapter is as follows. In Section 5.2 the combined damage

model with cohesive cracks is presented. Section 5.3 deals with the new criterion to

determine the energy to be transferred to the cohesive crack. The capabilities of this

new combined approach are illustrated by means of some numerical examples in two

dimensions. Finally, the concluding remarks in Section 5.4 and the future directions

in Section 5.5 close this chapter.

5.2 Gradient-enhanced damage model

As discussed in the previous chapter, see Section 4.2, as soon as a discontinuity is

introduced, the bulk Ω is bounded by Γ = Γu ∪ Γt ∪ Γd, see Figure 5.2(a) and the

problem fields are characterised by means of the X-FEM, see Equation (4.1).
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5. Continuous-discontinuous damage model: cohesive cracks

In this chapter, the discontinuity is a cohesive crack. Its orientation is given by

a unit vector nnn perpendicular to the discontinuity surface. By means of this vector,

the two faces of the discontinuity Γ+
d and Γ−d can be distinguished, see Figure 5.2(b).

(a) (b)

Figure 5.2: (a) Notations for a body with a crack subjected to loads and imposed
displacements. (b) Notations for the cohesive crack.

5.2.1 Governing equations

The strong form of the equilibrium equation and boundary conditions for the body

Ω̄ = Ω ∪ Γ without body forces and a cohesive discontinuity Γd is given by

∇ · σσσ = 0 in Ω (5.1a)

σσσ · nnn = t̄̄t̄t on Γt (5.1b)

σσσ · nnn = t̄d on Γd (5.1c)

uuu = uuu∗ on Γu (5.1d)

where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement on the Dirichlet

boundary, t̄̄t̄t is the traction on the Neumann boundary, t̄d is the traction on the dis-

continuity surface and nnn is the outward unit normal to the body. Note that equation

(5.1c) represents traction continuity at the discontinuity surface Γd.

The cohesive tractions are considered to be a function of the crack opening JuuuK,
defined as the difference between uuu+ and uuu−, where uuu+ = uuuΓ+

d
and uuu− = uuuΓ−

d
. That is

JuuuK = uuu+ − uuu− on Γd (5.2)
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5.2. Gradient-enhanced damage model

(a) (b) (c)

Figure 5.3: Typical one-dimensional cohesive models: (a) initially rigid linear cohe-
sive model, (b) initially rigid exponential cohesive model, (c) initially elastic linear
cohesive model. Adapted from Rabczuk (2013).

Different cohesive models can be found in the literature. As reviewed by Rabczuk

(2013), both initially rigid and initially elastic models can be considered. On the

one hand, initially rigid models are based on a monotonic decrease in the cohesive

traction, see Figures 5.3(a) and 5.3(b). On the other hand, initially elastic models

are characterised by an initial positive slope, see Figure 5.3(c). In this chapter, only

initially rigid models are considered, since the increase in the cohesive traction of

initially elastic models may lead to an increase of the neighbouring stresses and thus,

to spurious cracking.

The equilibrium equation is first cast in a weak form to be subsequently linearised.

Following standard procedures, see Appendix A for details, equation (5.1) leads to

∫
Ω

∇sω1 : σσσ dΩ =

∫
Γt

ω1 · t̄̄t̄t dΓ ∀ω1 ∈ H1(Ω) (5.3a)∫
Ω

ψ∇sω2 : σσσ dΩ + 2

∫
Γd

ω2 · t̄̄t̄td dΓ =

∫
Γt

ψω2 · t̄ dΓ ∀ω2 ∈ H1(Ω) (5.3b)

It is noted that equation (5.3a) was already obtained in Chapter 4 when dealing

with traction-free cracks, while in equation (5.3b) an extra term regarding the cohesive

forces appears.

Regarding the regularisation of the bulk, smoothed displacements are employed.

Hence, combined boundary conditions are prescribed for the continuous displacement

fields ũuu1 and ũuu2, see Equation (4.3), thus leading to the same two weak statements

of Chapter 4, see Equation (4.5).
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5. Continuous-discontinuous damage model: cohesive cracks

5.2.2 Linearisation and consistent tangent matrix

The discrete format of the equilibrium equation, see Equations (5.3), leads to the

governing equations ∫
Ω

BTσσσ dΩ =

∫
Γt

NT t̄̄t̄t dΓ (5.4a)∫
Ω

ψBTσσσ dΩ + 2

∫
Γd

NT t̄̄t̄td dΓ =

∫
Γt

ψNT t̄̄t̄t dΓ (5.4b)

As discussed in Section 4.2.2, the regularisation equation leads to the governing

equations (4.8).

Therefore, the only difference between introducing a traction-free crack and a

cohesive crack is the second term in the LHS of Equation (5.4b). Indeed, if traction-

free cracks are introduced, t̄̄t̄td = 000. Nevertheless, if a cohesive crack is considered,

˙̄td = fff (Ju̇uuK) (5.5)

with fff relating traction rate ˙̄td and displacement jump rate Ju̇uuK.
Linearisation of Equations (5.4) and (4.8) leads to the consistent tangent matrix

Ktan =


Ksec Kψ,sec Kloc Kψ,loc

Kψ,sec Ksec + Kcohesion Kψ,loc Kloc

−(M + `2KBC) −(Mψ + `2Kψ,BC) M + `2D Mψ + `2Dψ

−(Mψ + `2Kψ,BC) −(M + `2KBC) Mψ + `2Dψ M + `2D

 ,
(5.6)

with matrices defined in Section 4.2.2. That is, the only difference between introduc-

ing a traction-free crack and a cohesive crack is the cohesive matrix Kcohesion. Indeed,

if traction-free cracks are considered, Kcohesion = 0 whereas if cohesive cracks are

introduced,

Kcohesion = 2

∫
Ω

NT ∂t̄̄t̄td
∂u2

dΩ (5.7)

5.3 Energy balance to determine the cohesive law

One important issue concerning the transition from a continuous approach to cohesive

cracks is the description of the cohesive law. One means of obtaining the properties of

this traction-displacement relation is by enforcing that the energy not yet dissipated

by the bulk when switching models is transferred to the cohesive crack. This idea
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5.3. Energy balance to determine the cohesive law

inspired the equivalent crack concept, see Mazars and Pijaudier-Cabot (1996), and

has been used in some combined approaches, see Comi et al. (2007), Cazes et al.

(2009) and Cuvilliez et al. (2012).

The strategy here proposed is based on the same idea. That is, the energy dis-

sipated with a continuous model, ΨC , and with a continuous-discontinuous model,

ΨCD, are prescribed to be equal:

ΨC = ΨCD (5.8)

It is noted that, at model switching, the analysis with the continuous model is in-

terrupted and replaced by the continuous-discontinuous strategy. Therefore, without

a reference continuous simulation, ΨC is not known and needs to be estimated.

The key idea of our new strategy is the way the energy dissipated by the continuous

model ΨC is computed. For the sake of clarity, this new proposal is first discussed

by means of a one-dimensional problem, see Section 5.3.1. Then, the extension to

multidimensional settings is considered, see Section 5.3.2.

5.3.1 Energy balance for a uniaxial tension test

The proposed energy balance is first discussed by means of a uniaxial tension test,

see Figure 5.4(a).

The one-dimensional particularisations of the damage model with smoothed dis-

placements, see Table 3.1, with Y (ε) = ε and a linear softening law, see Equation

(3.15) and Figure 5.4(b), are used.

A central part of the bar is weakened (10% reduction in Young’s modulus) to

trigger localisation. A uniform mesh of 105 elements is considered and the geomet-

ric and material parameters are summarised in Table 5.1. The numerical tests are

displacement-controlled.

Local continuum damage model. To begin with, a local damage model is consid-

ered. First, a continuous simulation is carried out. The results are shown in Figure

5.5.

On the one hand, Figure 5.5(a) shows the force-displacement curve. It is noted

that it exhibits the two expected branches. Indeed, since in the first load increments
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5. Continuous-discontinuous damage model: cohesive cracks

(a) (b)

Figure 5.4: Uniaxial tension test: (a) problem statement; (b) linear softening law.

Table 5.1: Uniaxial tension test: geometrical and material parameters.

Meaning Symbol Value
Length of the bar L 100 mm
Length of the weaker part LW 14 mm
Cross-section of bar A 1 mm2

Young’s modulus E 20 000 MPa
Young’s modulus of the weaker part EW 18 000 MPa
Damage initiation state variable ε0 10−4

Final state variable εf 1.25× 10−2

the strain is lower than ε0 in all the bar, a first elastic branch with positive slope

∆F

∆u
=

1
L−LW

E
+ LW

EW

= 196.88 N/mm (5.9)

is observed. Once the strain reaches the damage initiation threshold in the weak-

ened part, all points in LW unload following the softening branch. Due to equi-

librium, the rest of the bar unloads following the elastic branch thus leading to a

force-displacement curve with negative slope

∆F

∆u
=

1
L−LW

E
+ LW

Esoft

= −10.62 N/mm (5.10)

where Esoft = σmax

ε0−εf
, with σmax = EW ε0.

On the other hand, Figure 5.5(b) shows the damage profiles D. Due to locality,

the width of the damage profile λD is equal to the length of the weakened part LW . In
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5.3. Energy balance to determine the cohesive law

(a) (b)

Figure 5.5: Uniaxial tension test (continuous strategy with a local damage model):
(a) force-displacement curves; (b) damage profiles.

addition, since a continuous strategy is used from the beginning to the end of failure,

the damage parameter reaches a maximum value equal to 1, see the State C in Figure

5.5(b).

Let us now consider that as soon as damage reaches a critical value Dcrit = 0.9

(the state A shown in Figure 5.5), a cohesive crack is introduced at x = L
2

and the

proposed continuous-discontinuous strategy is used. This model switching —from the

continuous to the combined strategy— entails two main changes.

First, damage is fixed to Dcrit in all points in LW . Hence, from that moment on, all

these points unload following the secant unloading branch with slope EW (1−Dcrit),

see Figure 5.6(a), while the rest of the bar unloads following the elastic branch with

slope E, see Figure 5.6(b).

Second, after the switching, no more energy dissipation in the bulk occurs, since

all points unload elastically. In other words, the energy dissipated by the bulk if

a combined technique is used is the energy already dissipated in the bulk at model

switching. Therefore, in order to ensure energy consistency —that is, continuous and

continuous-discontinuous strategy should dissipate the same amount of energy— the

energy not yet dissipated by the bulk (when switching models) needs to be transferred

to the cohesive crack. If a local damage model is employed, this quantity, see Figure

5.7(a), can be exactly computed. Indeed, recalling first that the cross-section of the
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5. Continuous-discontinuous damage model: cohesive cracks

(a) (b)

Figure 5.6: Once damage reaches a critical value, the model switching is carried out.
Hence, (a) points in LW unload following the secant unloading branch with slope
EW (1−Dcrit) while (b) the rest of the bar unloads following the elastic branch with
slope E.

bar is A = 1 mm2, the equivalence σ ≡ F holds. Thus, for each point of the bar, the

energy not yet dissipated is (at model switching) a known quantity. First, due to the

elastic response, outside the damaged zone, this quantity is

ψC = 0 (5.11)

Second, for each point in LW , the energy not yet dissipated is equal to

ψC =
1

2
σcritεcrit +

1

2
σcrit (εf − εcrit) =

1

2
σcritεf , (5.12)

see Figure 5.7(b). Therefore the total amount of energy that needs to be transferred

to the cohesive crack is

Ψtransfer = LW
1

2
σcritεf . (5.13)

Since the unloading behaviour of the damage model is linear, it is natural to en-

force the same behaviour for the cohesive law. Therefore, a linear traction-separation

law with slope T is considered, see Figure 5.8. Then, the exact value of T is obtained

by prescribing that the energy not yet dissipated by the bulk at model switching, see
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5.3. Energy balance to determine the cohesive law

(a) (b)

Figure 5.7: (a) The energy that needs to be transferred to the crack (striped area)
can be exactly computed due to the local behaviour of the solution. (b) Outside the
damaged zone, this quantity is 0, while for each point inside LW , this quantity is
1
2
σcritεf .

Equation (5.13), is transferred to the crack. Thus,

T = − σcrit

LW εf
= −9.40 N/mm3 (5.14)

Figure 5.8: If a linear traction-separation law is considered, the energy dissipated by

the crack (area under the σ − JuK curve) is −σ2
crit

2T
.

The results for the continuous and the combined strategies are shown in Figure

5.9. As shown in Figure 5.9(a), the two strategies are energetically equivalent. Indeed,

the force-displacement curve obtained with the combined strategy overlaps the curve

obtained with the continuous approach. The difference between these two strategies

can be seen in Figure 5.9(b). On the one hand, if a continuous strategy is employed,
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5. Continuous-discontinuous damage model: cohesive cracks

the damage profile reaches a maximum value equal to 1. On the other hand, if a

combined strategy is used, damage is fixed to Dcrit = 0.9 in all points of LW . That

is, after switching, all energy dissipation is due to crack opening and there is no more

energy dissipation due to bulk degradation.

(a) (b)

Figure 5.9: Uniaxial tension test (continuous and continuous-discontinuous ap-
proaches with a local damage model): (a) force-displacement curves; (b) damage
profiles.

Non-local continuum damage model. The uniaxial tension test is simulated now

with a non-local damage model. A characteristic length ` =
√

5 mm is chosen. First,

the continuous strategy is employed. Results are shown in Figure 5.10.

Figure 5.10(a) shows the force-displacement curve. Analogous to local results, a

first elastic branch, whose slope is given by Equation (5.9), is observed. Nevertheless,

due to non-locality, the force-displacement behaviour after the peak force is reached

is qualitatively different. If a local model is used, all points in LW reach the damage

initiation strain ε0 at the same time and all points start to unload following the soft-

ening branch simultaneously. Thus, the stiffness of the bar is piecewise constant: E,

Esoft, E. However, if a non-local model is employed, the non-homogeneous behaviour

leads to a stiffness that is not piecewise constant.

Damage profiles are shown in Figure 5.10(b). Analogous to local results, see

Figure 5.5(b), if a continuous strategy is employed from the beginning to the end of
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5.3. Energy balance to determine the cohesive law

(a) (b)

Figure 5.10: Uniaxial tension test (continuous strategy with a non-local damage
model): (a) force-displacement curves; (b) damage profiles.

failure, the damage parameter reaches a maximum value equal to 1, see the State C in

Figure 5.10(b). Nevertheless, compared to local damage results, two main differences

arise. First, the damage profile is not piecewise constant. Second, the width of

damage profile λD is not equal to the length of the weakened part. In fact, it does

not depend on LW but on the characteristic length `. These two key differences result

from non-locality.

As discussed for the local model, let us consider now that as soon as damage

reaches a critical value Dcrit = 0.9 (the state A shown in Figure 5.10), a cohesive

crack (with a linear traction-separation law, see Figure 5.8) is introduced at x = L
2

and the proposed continuous-discontinuous strategy is used. As discussed above, this

model switching has two main consequences.

First, due to the cohesive law, all points in λD unload following the secant un-

loading branch with slope

E(x)
(

1−D(x)
)

=

 EW

(
1−D(x)

)
if x ∈ LW

E
(

1−D(x)
)

otherwise
(5.15)

Note that, compared to the local framework, only the point located at x = L
2
, see

Figure 5.11(b), unloads following the branch with slope EW (1−Dcrit). Indeed, the

rest of the points in λD unload following the secant unloading branch with the stiffness
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5. Continuous-discontinuous damage model: cohesive cracks

at model switching, see Figure 5.11(a) while the rest of the bar unloads following the

elastic branch with slope E, see Figure 5.11(c).

(a) (b) (c)

Figure 5.11: Once damage reaches a critical value, the model switching is carried
out. Hence, (a) points in λD unload following the secant unloading branch with slope

E (x)
(

1−D (x)
)

. In contrast to local models, (b) here only the point x = L
2

unloads

following the branch with slope EW (1−Dcrit). (c) All points outside the damaged
zone λD unload following the elastic branch with slope E.

Second, analogous to the local model, no more energy dissipation in the bulk

occurs after switching strategies. Therefore, in order to ensure energy consistency,

the energy not yet dissipated by the bulk needs to be transferred to the cohesive

crack. If a non-local damage model is employed, this quantity, see Figure 5.12(a),

cannot be exactly computed (without a reference continuous simulation). Indeed, for

each point of the bar, the energy not yet dissipated depends on the unloading branch,

which is not known at model switching, see Figure 5.12(b). Therefore, it needs to be

estimated as accurately as possible.

One possible way to estimate this energy consists of assuming that all points in

λD unload following the local softening branch (from switching to zero stress). This

assumption, shown schematically in Figure 5.13 and made by Comi et al. (2007),

is quite crude if a non-local model is used: due to non-locality, only the point x =
L
2

unloads following this softening branch, while all the other points in λD unload

secantly to the origin. Hence, this leads to an overestimation of the energy to be

transferred to the cohesive crack.

A more accurate estimation may be obtained if the unloading behaviour —either

secant or softening— is taken into account. The key idea of our method is to estimate
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5.3. Energy balance to determine the cohesive law

(a) (b)

Figure 5.12: (a) In contrast to local models, the energy that needs to be transferred
to the crack (the energy not yet dissipated by the bulk at model switching) cannot
be exactly computed, since (b) for each point in λD, the energy not yet dissipated
depends on an unloading behaviour, which is not known at model switching.

the energy to be transferred by means of the tangent line to σ (ε) at model switching,

see Figure 5.14.

It must be stressed that a better approximation of the energy to be transferred

may be obtained if, after switching models, some load increments with the continu-

ous approach are carried out, see Figure 5.15. Indeed, once the model switching is

determined, some extra load steps with the continuous model can be carried out to

estimate the energy not yet dissipated by the bulk with more accuracy and hence, the

cohesive crack law. Then, back to the switching point, the simulation is resumed with

the continuous-discontinuous strategy. The computational cost of this refinement is

marginal, because only a few load steps are computed twice (first with the continuous

approach and then with the continuous-discontinuous one).

The results for the combined strategy (with the cohesive slope obtained by pre-

scribing the proposed energy balance) are shown in Figure 5.16. Both the continuous

and continuous-discontinuous results are plotted.

In Figure 5.16(b), the profiles D are shown. As discussed for the local model, the

damage profile reaches a maximum value equal to 1 if a continuous strategy is used.

If a combined technique is employed, damage is fixed to Dcrit at x = L
2

and, after

switching, there is no more energy dissipation due to bulk deformation.

Figure 5.16(a) shows the force-displacement curves. Here, the cohesive parameter

T computed by means of the tangent line to σ (ε) at switching point is used. As seen,
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5. Continuous-discontinuous damage model: cohesive cracks

Figure 5.13: If all points in λD are considered to unload following the softening
branch, the energy to be transferred is overestimated.

Figure 5.14: For a given point in λD, the energy not yet dissipated by the bulk
(striped area) is estimated with the tangent line to σ (ε) (dash-dot line). Hence, an
approximation (light grey area) of the actual remaining energy is computed.

the area under the combined force-displacement curve (Area = 2.88 mJ) is larger

than twice the area under the continuous curve (Area = 1.29 mJ). This is due to the

fact that the energy to be transferred to the cohesive crack has been overestimated.

In order to obtain a better approximation of this energy, and suggested by the above
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(a) (b) (c)

Figure 5.15: (a) If the energy to be transferred is estimated by means of the tangent
line to σ (ε) at model switching (black circle), a worse approximation is obtained
than (b) if the tangent to σ (ε) with some more load steps (white circle) is used. (c)
The more load steps, the more accurate estimation of the energy not yet dissipated
is obtained.

(a) (b)

Figure 5.16: Uniaxial tension test (continuous and continuous-discontinuous ap-
proaches with a non-local damage model): (a) force displacement curves; (b) damage
profiles.

discussion, some extra load steps with the continuous technique are carried out. Thus,

a better solution, see Figure 5.17(a), is obtained. It is observed that the more extra

steps we use, the more accurate the energy to be transferred is, see Figure 5.17(b).

It is noted that the linear behaviour of the force-displacement curve obtained

with the combined approach is due to two reasons. First, a linear cohesive law is

considered. Second, once the crack is introduced, the stiffness of the bar is constant.

Indeed, since damage is frozen in all the damaged bulk, each point of the damaged
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5. Continuous-discontinuous damage model: cohesive cracks

(a) (b)

Figure 5.17: The more extra load steps are carried out with the continuous approach,
the more accurate the energy to be transferred is estimated.

band unloads with a constant elastic stiffness E(x) ·
(

1−D(x)
)

.

5.3.2 Energy balance for a multidimensional problem

The extension of the proposed energy balance to a multidimensional setting is dis-

cussed in this section by means of a two-dimensional three-point bending test. Here,

the simplified Mazars damage model, see Equation (3.14), and a bilinear damage

evolution law, see Equation (3.15), are considered. A uniform mesh of 1 640 (41×40)

bilinear quadrilateral elements is used and the geometric and material parameters are

summarised in Table 5.2.

Table 5.2: Three-point bending test: geometrical and material parameters.

Meaning Symbol Value
Length of the beam L 300 mm
Height of the beam h 100 mm
Young’s modulus E 30 000 MPa
Damage initiation state variable Y0 10−4

Final state variable Yf 1.25× 10−2

Poisson’s ratio ν 0.00
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5.3. Energy balance to determine the cohesive law

To begin with, a continuous simulation is carried out. A characteristic length

` = 1 mm is considered. Results are shown in Figure 5.18.

(a) (b)

Figure 5.18: Three-point bending test (continuous approach): (a) force-displacement
curve; (b) damage pattern.

Let us now consider that as soon as damage reaches a critical value Dcrit = 0.995 in

a finite element located on the boundary of the mesh, a cohesive crack is introduced

in that element and the proposed combined strategy is used. Due to the mode I

behaviour of the three point bending test, the traction-separation law

t̄d =

{
t̄n

t̄s

}
= T

{
JuuuKn
JuuuKs

}
+

{
tcrit

0

}
=

(
T 0

0 0

){
JuuuKn
JuuuKs

}
+

{
tcrit

0

}
(5.16)

is employed, where JuuuKn and JuuuKs are the normal and sliding components of the crack

opening JuuuK respectively and tcrit is the critical normal component of the traction

vector.

This model switching —from the continuous to the combined strategy— entails

one main consequence: damage in the cracked element is fixed to Dcrit and all points

of this element start to unload following the branch with slope E (1−Dcrit). In

addition, points located near the crack faces unload following the secant branch with

the stiffness at model switching.

Nevertheless, in contrast to the one-dimensional framework, ahead of the crack

tip, damage keeps growing. In other words, the energy dissipated by the bulk if a

combined technique is used is not the energy already dissipated in the bulk at model

switching. This difference —between the one- and the multi-dimensional settings—

is crucial when prescribing the energy balance. Indeed, in the uniaxial tension test

discussed above, the energy balance is prescribed in all points of the bar, since all
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points unload secantly once the crack is introduced. However, if two- and three-

dimensional problems are considered, the energy balance should be only prescribed

in the area where points unload secantly.

In order to define this zone, that we have called crack influence zone, the following

technique is used. First, the perpendicular to the direction of crack growth at the

crack tip is considered. Then, the crack influence zone is defined as the area behind

the crack tip, see Figure 5.19.

Figure 5.19: The perpendicular to the direction of crack growth allows to define the
crack influence zone (striped area).

Once this area is defined, the energy balance presented by means of the uniaxial

tension test can be used. That is, for each point in the crack influence zone, the

energy not yet dissipated by the bulk is transferred to the crack. In order to estimate

it, the tangent line to each component of σσσ (Y ), with Y the state variable of the

damage model, is used.

The results for the the continuous and combined strategies are shown in Figure

5.20. Both the force-displacement curves, see Figure 5.20(a), and the damage pattern,

see Figure 5.20(b) are shown. For comparison purposes, two different values of the

cohesive parameter T are considered. First, the energy balance proposed by Comi

et al. (2007) is employed. That is, an energy balance considering that all points unload

following a softening branch is enforced. Second, our energy balance is prescribed. It

is noted that considering the unloading behaviour of each point in the crack influence

zone —either softening or secant— the energy to be transferred is more accurately

estimated.

As discussed, the main difference between the one- and the multidimensional

setting is the domain where the energy balance is prescribed. Indeed, in 1D, the

energy equilibrium is prescribed in all the damaged band. However, in 2D or 3D, the
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(a) (b)

Figure 5.20: Three-point bending test (continuous and continuous-discontinuous ap-
proaches): (a) force-displacement curves; (b) damage pattern.

so-called crack influence zone must be defined. One means of avoiding the definition

of this zone is to use a one-dimensional reference continuous simulation to extract the

cohesive parameter T . In other words, as soon as the model switching is determined,

an equivalent uniaxial tension test —that is, a uniaxial test with the same geometrical

and material parameters of the multidimensional test— is carried out to compute the

cohesive parameter T .

The capabilities of this new approximation are illustrated here by means of the

previous three-point bending test. Indeed, as soon as damage reaches a critical value

Dcrit = 0.995 in a finite element located on the boundary of the mesh, a cohesive

crack, whose law is given by the softening parameter T in Equation (5.16), is in-

troduced. To compute the cohesive parameter, the one-dimensional energy balance

discussed in Section 5.3.1 —with the material and geometrical parameters of the

three-point bending test— is prescribed. Results are shown in Figure 5.21. As seen,

little differences are observed if the energy balance is prescribed by means of the one-

dimensional uniaxial test or with the two-dimensional setting. However, regarding

the computational cost, this alternative way to define T is very appealing.

5.4 Concluding remarks

The continuous-discontinuous damage model presented in Chapter 4 has been ex-

tended to cohesive cracks. In order to describe the first stages of failure, a non-local

continuous formulation with smoothed displacements is proposed. At the end of each
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Figure 5.21: Three-point bending test (continuous and continuous-discontinuous ap-
proaches).

time step, the approach checks if the damage parameter is equal to a critical value

Dcrit < 1 in an element located on the boundary of the mesh. In such a case, a crack is

introduced and the X-FEM is used to enrich the standard and the gradient-enhanced

displacement fields, see Figure 5.22.

As suggested by the equivalent crack concept, the cohesive crack law is defined in

such a way that the energy dissipated with a continuous model and with a continuous-

discontinuous model are equal. The main difficulty of this energy balance is that after

the switching —from the continuum to the discrete strategy— the continuous model

is interrupted. Hence, without a reference continuous simulation, the energy to be

transferred is not known and needs to be estimated.

Regarding this energy balance, the main results are:

• In order to estimate the energy to be transferred, a uniaxial tension test is first

considered. In such a case, the model switching entails two main consequences.

First, damage is fixed in all the damaged part. Hence, after changing models,

all points start to unload elastically with the secant stiffness at model switching.

Second, no more energy dissipation in the bulk occurs. Therefore, in order to

ensure energy consistency, the energy not yet dissipated by the bulk (when

switching models) needs to be transferred to the cohesive crack.
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5.4. Concluding remarks

Non-local continuous model
with smoothed displacements

D = Dcrit < 1?No changes

A cohesive crack is introduced
Cohesive law: energy balance con-
sidering the unloading behaviour

Non-local continuous-discontinuous
model with smoothed displacements

No

Yes

Figure 5.22: Proposed continuous-discontinuous model.

– If a local damage model is considered, this quantity can be exactly com-

puted.

– With a non-local damage model, the energy to be transferred depends on

the unloading branch, which is not known at model switching. In order

to approximate it, we propose to use the tangent line to σ(ε) at model

switching. Thus, an accurate estimation of the energy to be transferred is

obtained. As discussed, if more accuracy is needed, some extra load steps

with the continuous model can be carried out. Indeed, once the model

switching is determined, some extra load steps with the continuous model

can be performed. Then, back to the switching point, the simulation is

resumed with the continuous-discontinuous strategy.

• In order to extend to a two- and three-dimensional setting the proposed strategy,

a main difficulty arises. Indeed, in contrast to the one-dimensional framework,
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5. Continuous-discontinuous damage model: cohesive cracks

ahead of the crack tip, damage keeps growing. Hence, the energy balance cannot

be prescribed in all the damaged bulk but only in the crack influence zone. In

other words, it should be prescribed in those points that unload following the

secant branch.

Regarding the linearisation and the consistent tangent matrix needed to attain

quadratic convergence in the Newton-Raphson method, little changes are needed com-

pared to the strategy of Chapter 4. Indeed, the only difference between introducing

a traction-free crack and a cohesive crack is an extra term where the cohesive forces

appear thus leading to an extra block matrix in the tangent matrix.

5.5 Future work

The work carried out in this chapter leaves some open research lines to be addressed

in the future.

Extension of the proposed energy balance to mode II and mode III loading

conditions. So far the proposed energy balance has been tested by means of a three-

point bending test. That is, only mode I loading conditions have been considered.

Hence, it would be interesting to retrieve some of the numerical examples carried out

in Chapter 4 with a lower critical damage value and include cohesive cracks.

Approximation of the energy to be transferred by means of a uniaxial

tension test (even in a two- and three-dimensional setting). As discussed

by means of the three-point bending tension test, carrying out a one-dimensional

reference continuous simulation to extract the cohesive parameter T is an appealing

way to compute the energetically equivalent cohesive crack law. Hence, it would be

interesting to analyse the capabilities of this alternative way to define the cohesive

slope in a more generalised setting.
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Chapter 6

Summary and future work

6.1 Summary

In this dissertation we have developed a new finite element approach for quasi-brittle

failure that bridges damage and fracture mechanics. To this end, four main contri-

butions —discussed in detail in the previous three chapters— have been presented.

Here, we summarise the principal results:

1. We have extended the applicability of smoothed displacements to a

two- and three-dimensional setting. In Chapter 3, we have extended the

applicability to a multidimensional setting of an alternative gradient-enriched

continuous formulation to simulate a failure process. The key idea of this

new approach, presented and illustrated with a one-dimensional example by

Rodŕıguez-Ferran et al. (2005), is to use a smoothed displacement field ũuu, which

is the solution of a partial differential equation, to drive damage evolution.

As discussed by Jirásek and Marfia (2005), the extension of this alternative

gradient-enhanced formulation to a multidimensional context is not straight-

forward. Indeed, Dirichlet boundary conditions —prescribed in the one-dimen-

sional setting— do not allow a correct widening of the damage zone at the

boundary when dealing with two- and three-dimensional problems; homoge-

neous Neumann conditions —prescribed for the standard gradient model— do

not guarantee that a constant strain field leads to constant stresses and non-

homogeneous Neumann conditions do not ensure conservation of volume.
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6. Summary and future work

Hence, in order to overcome these limitations, combined boundary conditions

are proposed in this dissertation. They consist of prescribing Dirichlet bound-

ary conditions for the normal component of the displacement field and non-

homogeneous Neumann boundary conditions for the tangential ones. As illus-

trated by means of different numerical simulations, regularisation via smoothed

displacement —if combined boundary conditions are prescribed for ũuu— pre-

cludes mesh dependence also in a multidimensional setting.

2. We have proposed a new continuous-discontinuous formulation based

on smoothed displacements. A new continuous-discontinuous damage model

is presented in Chapters 4 and 5. The key idea of this new strategy is to com-

bine the gradient-enriched formulation discussed in Chapter 3 with an extended

finite element approach. Thus, the entire failure process —from formation of

micro-cracks to the possible development of macro-cracks— may be described.

The switching from the continuum to the discrete approach occurs when the

damage parameter in a finite element located on the boundary of the mesh

reaches a critical value Dcrit. Firstly, in Chapter 4, Dcrit ' 1. Thus, we fo-

cus on the coupling between smoothed displacements and traction-free cracks.

Secondly, in Chapter 5, Dcrit < 1 thus introducing a cohesive crack.

As discussed in these chapters and in the three appendices, smoothed displace-

ments are attractive from a computational viewpoint. Indeed, in order to cal-

culate the tangent block matrix obtained after the linearisation of the regular-

isation equation, we need to compute the standard mass M and diffusivity D

matrices, which are constant through all the simulation, and the enriched mass

Mψ and diffusivity Dψ matrices, which only change when the crack propagates.

Regarding the combined boundary conditions, matrix KBC is also constant

through all the simulation, while Kψ,BC only changes when the crack grows.

3. We have proposed a new criterion (based on geometrical assump-

tions) to track the crack path. Chapter 4 focuses on one of the main

issues concerning the switching from a continuous approach to discrete cracks:

the definition of the crack path. Indeed, in a regularised continuum, the di-

rection along which the crack propagates cannot be analytically derived and

hence, other criteria should be used. In this dissertation, instead of the classi-

cal mechanical criteria, we propose to define the crack-path using a geometrical
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6.2. Future work

criterion. In particular, given a regularised damage field D (xxx), we propose

to propagate the crack following the direction dictated by the medial axis of

the isoline (or isosurface in 3D) D (xxx) = D∗. In other words, a geometric tool

widely used for image analysis, computer vision applications or mesh generation

purposes is used here to locate cracks.

As illustrated by means of different two- and three-dimensional examples, since

this technique is exclusively based on the shape of the regularised damage field,

no mesh sensitivity is observed when determining the crack direction.

4. We have proposed a new criterion to estimate the energy that needs

to be transferred to the cohesive crack. In Chapter 5, we have introduced a

new method to estimate the energy to be transferred at model switching —from

the continuous to the continuous-discontinuous strategy. In contrast to other

existing techniques, see for instance Cazes et al. (2010), this method allows to

estimate the amount of energy to be transferred without knowing a solution of

a continuous reference model in advance. The main idea of this new technique

consists of predicting the unloading behaviour —either softening or secant— of

each point in the continuous bulk. Thus, compared to other strategies where all

the points in the damaged bulk are considered to unload following the softening

branch, see Comi et al. (2007), the energy to be transferred is more accurately

computed.

Firstly, the proposed method is illustrated with a uniaxial tension test. As seen,

approximating the unloading branch by means of the tangent line to σ(ε) at

model switching provides a better approximation of the energy to be transferred

than other exiting techniques. Secondly, the strategy is extended to a two- and

three-dimensional setting. In such a case, the energy balance must be only

prescribed in the crack influence zone and not in all points of the damaged

bulk.

6.2 Future work

The work carried out in this dissertation leaves several topics to be addressed in the

near future. These open research lines —discussed in detail in the previous three

chapters— are summarised here:
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6. Summary and future work

1. To investigate the capacity of smoothed displacements to describe

fundamental problems when dealing with quasi-brittle structures. In

this dissertation, we have analysed the capabilities of smoothed displacements

to overcome the pathological mesh dependence exhibited by local approaches.

Apart from precluding mesh dependence, it would be also interesting to investi-

gate the capacity of smoothed displacements to tackle other fundamental issues

of quasi-brittle failure, such as size effects —the change of behaviour when the

spatial dimensions are scaled— or damage initiation when dealing with notched

specimens —damage initiation requires that damage starts at the notch tip, not

inside the specimen.

2. To further extend the finite element approximation to simulate more

general tests. In this dissertation, problems involving one single crack prop-

agating through the continuum are analysed. Nevertheless, if the finite ele-

ment approximation is further extended, more general problems may be tack-

led. For instance, problems including multiple cracks —either non-intersecting

or branched discontinuities— or cracks lying within a finite element —with the

crack tip not necessarily coincident with an element edge— can be considered.

3. To extend the applicability of the proposed energy balance to mode

II and mode III loading conditions. In this dissertation, the proposed

energy balance is tested with mode I loading conditions. Therefore, it would

be interesting to extend the proposed method to problems involving different

modes of fracture.

4. To take advantage of discrete cracks to save computational time. On

the one hand, regularised continuous formulations provide a reliable descrip-

tion of the first stages of failure processes as long as the finite element mesh

employed in the simulations is fine enough. On the other hand, the use of the

eXtended Finite Element Method (X-FEM) allows to describe failure on rela-

tively coarse meshes. Thus, it would be interesting to take advantage of this

property. Indeed, we would like to explore the consequences of including a local

derefiner —after model switching— to obtain a coarser finite element mesh and

save computational time.
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Appendix A

Variational formulation with

smoothed displacements

In this appendix the variational formulation of the proposed model is derived: both

the equilibrium and the regularisation equations with combined boundary conditions

are cast in a weak form. First, in Section A.1, the continuous model is taken into

account. Regarding the regularisation equation, special emphasis is placed on the way

combined boundary conditions are prescribed. Second, in Section A.2, the continuous-

discontinuous model is considered. Attention is focused on the way discontinuities

are introduced.

A.1 Continuous model

A.1.1 Equilibrium equation

In this first section, the equilibrium equation without body forces

∇ · σσσ = 0 in Ω (A.1a)

σσσ · nnn = t̄̄t̄t on Γt (A.1b)

uuu = uuu∗ on Γu (A.1c)

where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement on the Dirichlet

boundary, t̄̄t̄t is the traction on the Neumann boundary and nnn is the outward unit

normal to the body, is cast in a weak form.
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A. Variational formulation with smoothed displacements

The space of trial local displacements is defined by the function uuu (xxx), where

uuu ∈ Uuuu =
{
uuu | uuu ∈ H1(Ω) and uuu |Γu = uuu∗

}
(A.2)

with H1(Ω) a Sobolev space. Analogously, the space of admissible displacement

variations is defined by the test function ω (xxx) with

ω ∈ Wuuu,0 =
{
ω | ω ∈ H1(Ω) and ω|Γu = 0

}
(A.3)

Following standard procedures, Equation (A.1) leads to∫
Ω

∇sω : σσσ dΩ =

∫
Γt

ω · t̄̄t̄t dΓ ∀ω ∈ H1(Ω) (A.4)

A.1.2 Regularisation equation

Similarly to the equilibrium equation, the regularisation PDE

ũuu (xxx)− `2∇2ũuu (xxx) = uuu (xxx) (A.5)

with combined boundary conditions is also cast in a weak form.

Analogously to local displacements, the space of trial smoothed displacements is

defined by the function ũuu (xxx) where

ũuu ∈ Uũuu =
{
ũuu | ũuu ∈ H1(Ω) and ũuu · nnn = uuu · nnn on Γ

}
(A.6)

Analogously, the space of admissible smoothed displacement variations is defined

by the test function ω̃ (xxx) with

ω̃ ∈ Wũuu,0 =
{
ω̃ | ω̃ ∈ H1(Ω) and ω̃ · nnn = 000 on Γ

}
(A.7)

Following standard procedures, the regularisation equation (A.5) is multiplied by

the test function ω̃ (xxx) and integrated over the domain Ω thus leading to∫
Ω

ω̃ · ũuu dΩ + `2

∫
Ω

∇ω̃ : ∇ũuu dΩ− `2

∫
Γ

ω̃ · ∇ũuu · nnn dΓ =

∫
Ω

ω̃ · uuu dΩ (A.8)

Considering the orthonormal basis of R3 formed by the normal vector nnn and the

tangent vectors ttt1 and ttt2, and taking into account that ω̃ ·nnn = 000 on Γ, see Equation

(A.7),∫
Γ

ω̃ · ∇ũuu · nnn dΓ =

∫
Γ

(ω̃ · ttt1) · (∇ (ũuu · ttt1) · nnn) + (ω̃ · ttt2) · (∇ (ũuu · ttt2) · nnn) dΓ

=

∫
Γ

(ω̃ · ttt1) · (∇ (uuu · ttt1) · nnn) + (ω̃ · ttt2) · (∇ (uuu · ttt2) · nnn) dΓ(A.9)
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A.2. Continuous-discontinuous model

where in the last equality, combined boundary conditions are prescribed. Hence,

∀ω̃ ∈ H1(Ω), Equation (A.8) leads to∫
Ω

ω̃ · ũuu dΩ + `2

∫
Ω

∇ω̃ : ∇ũuu dΩ =

∫
Ω

ω̃ · uuu dΩ +

+ `2

∫
Γ

(ω̃ · ttt1) · (∇ (uuu · ttt1) · nnn) + (ω̃ · ttt2) · (∇ (uuu · ttt2) · nnn) dΓ (A.10)

A.2 Continuous-discontinuous model

A.2.1 Equilibrium equation

Here, the weak form of the the equilibrium equation without body forces

∇ · σσσ = 0 in Ω (A.11a)

σσσ · nnn = t̄̄t̄t on Γt (A.11b)

σσσ · nnn = t̄d on Γd (A.11c)

uuu = uuu∗ on Γu (A.11d)

is derived. On the one hand, if traction-free cracks are considered, see Chapter 4,

t̄d = 0. On the other hand, if cohesive cracks are taken into account, see Chapter 5,

˙̄td = fff (Ju̇uuK) (A.12)

with fff relating traction rate ˙̄td and displacement jump rate Ju̇uuK.
In a continuous-discontinuous model, the space of trial local displacements is

defined by the function

uuu (xxx) = uuu1 (xxx) + ψ (xxx)uuu2 (xxx) (A.13)

where ψ is the sign function centred at the discontinuity Γd and

uuu1 ∈ Uuuu =
{
uuu | uuu ∈ H1(Ω) and uuu |Γu = uuu∗

}
(A.14a)

uuu2 ∈ Uuuu,0 =
{
uuu | uuu ∈ H1(Ω) and uuu |Γu = 000

}
(A.14b)

with H1(Ω) a Sobolev space. Analogously, the space of admissible displacement

variations is defined by the test function ω (xxx) = ω1 (xxx) + ψ(xxx)ω2 (xxx) with

ω1,ω2 ∈ Wuuu,0 =
{
ω | ω ∈ H1(Ω) and ω|Γu = 0

}
(A.15)

99



A. Variational formulation with smoothed displacements

Then, following standard procedures, Equation (A.11) leads to∫
Ω

∇sω1 : σσσ dΩ =

∫
Γt

ω1 · t̄̄t̄t dΓ ∀ω1 ∈ H1(Ω) (A.16a)∫
Ω

ψ∇sω2 : σσσ dΩ + 2

∫
Γd

ω2 · t̄̄t̄td dΓ =

∫
Γt

ψω2 · t̄ dΓ ∀ω2 ∈ H1(Ω)(A.16b)

Note that equation (A.16a) is the standard weak form, see Equation (A.4), while

equation (A.16b) takes into account the contribution of the crack.

A.2.2 Regularisation equation

Analogously to local displacements, the space of trial smoothed displacements is

defined by the function

ũuu (xxx) = ũuu1 (xxx) + ψ (xxx) ũuu2 (xxx) (A.17)

where ψ is the sign function centred at Γd and

ũuu1, ũuu2 ∈ Uũuu =
{
ũuu | ũuu ∈ H1(Ω) and ũuu · nnn = uuu · nnn on Γ

}
(A.18)

Analogously, the space of admissible smoothed displacement variations is defined by

the test function

ω̃ (xxx) = ω̃1 (xxx) + ψ (xxx) ω̃2 (xxx) (A.19)

with

ω̃1, ω̃2 ∈ Wũuu,0 =
{
ω̃ | ω̃ ∈ H1(Ω) and ω · nnn = 000 on Γ

}
(A.20)

Taking first variations ω̃1 (ω̃2 = 000) and then variations ω̃2 (ω̃1 = 000), the final

form of the variational statement yields to∫
Ω

ω̃1 · ũuu dΩ + `2

∫
Ω

∇ω̃1 :
(
∇ũuu1 + ψ∇ũuu2) dΩ =

∫
Ω

ω̃1 · uuu dΩ +

+ `2

∫
Γ

(
ω̃1 · ttt1

)
·
[
∇
(
uuu1 · ttt1

)
· nnn+ ψ∇

(
uuu2 · ttt1

)
· nnn
]

dΓ

+ `2

∫
Γ

(
ω̃1 · ttt2

)
·
[
∇
(
uuu1 · ttt2

)
· nnn+ ψ∇

(
uuu2 · ttt2

)
· nnn
]

dΓ (A.21a)∫
Ω

ψω̃2 · ũuu dΩ + `2

∫
Ω

∇ω̃2 :
(
ψ∇ũuu1 +∇ũuu2) dΩ =

∫
Ω

ψω̃2 · uuu dΩ +

+ `2

∫
Γ

(
ω̃2 · ttt1

)
·
[
ψ∇

(
uuu1 · ttt1

)
· nnn+∇

(
uuu2 · ttt1

)
· nnn
]

dΓ

+ `2

∫
Γ

(
ω̃2 · ttt2

)
·
[
ψ∇

(
uuu1 · ttt2

)
· nnn+∇

(
uuu2 · ttt2

)
· nnn
]

dΓ (A.21b)
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A.2. Continuous-discontinuous model

∀ω̃1,∀ω̃2 ∈ H1(Ω).

Note that the appealing symmetry of Equation (A.21) is due to the fact that the

enrichment function is the sign function (ψψ = +1).
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Appendix B

Consistent linearisation of the

equilibrium and regularisation

equations

The new model based on smoothed displacements is very attractive from a compu-

tational viewpoint, especially regarding the computation of the consistent tangent

matrix needed to achieve quadratic convergence in the Newton-Raphson method. In

this appendix, this consistent linearisation is presented. First, in Section B.1, the

expression of the consistent tangent matrix of the continuous model is reviewed. Sec-

ond, in Section B.2, the consistent tangent matrix of the continuous-discontinuous

model is derived.

B.1 Continuous model

Finite element discretisation of the weak form of the equilibrium and regularisation

equations, see Equations (A.4) and (A.10) leads to the two discrete weak forms

requil(u, ũ) := fint(u, ũ)− fext = 0 (B.1a)

rregu(u, ũ) := −(M + `2KBC)u + (M + `2D)ũ = 0 (B.1b)

where
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B. Consistent linearisation of the governing equations

fint =

∫
Ω

BTσσσ dΩ (B.2a)

fext =

∫
Γt

NT t̄̄t̄t dΓ (B.2b)

M =

∫
Ω

NTN dΩ (B.2c)

D =

∫
Ω

∇NT∇N dΩ (B.2d)

KBC =

∫
Γ

NT
(
tttT1 ttt1 + tttT2 ttt2

)
∇N · nnn dΓ (B.2e)

with N the matrix of shape functions, ∇N the matrix of shape function gradients

and B the matrix of shape function derivatives.

Linearisation of Equations (B.1) results in the tangent matrix

Ktan =

[
Ku,u Ku,ũ

Kũ,u Kũ,ũ

]
(B.3)

with the matrices defined in Table B.1.

Table B.1: Block matrices of the continuous consistent tangent matrix.

Ku,u :=
∫

Ω
BTCCCB dΩ Ku,ũ := −

∫
Ω

BTCCCεεεD′(Ỹ )∂Ỹ
∂ε̃εε

B dΩ
Kũ,u := −(M + `2KBC) Kũ,ũ := M + `2D

Some remarks about the tangent matrix (B.3):

• Matrices Ku,u and Ku,ũ are the secant and the local tangent matrices already

obtained by Rodŕıguez-Ferran et al. (2005).

• Matrices M and D are the mass and diffusivity matrices already obtained by

Rodŕıguez-Ferran et al. (2005). They are both constant, due to the linearity of

the regularisation equation.

• The only difference between matrix (B.3) and the tangent matrix obtained

by Rodŕıguez-Ferran et al. (2005) resides in matrix KBC. Indeed, if Dirichlet

boundary conditions are prescribed for the smoothed displacement field ũuu (as

done in the cited reference), KBC = 0 thus leading to Kũ,u = −M.
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B.2. Continuous-discontinuous model

B.2 Continuous-discontinuous model

Finite element discretisation of the weak form of the equilibrium and regularisation

equations, see Equations (A.16) and (A.21), leads to the four discrete weak equations

requil,u1(u, ũ) := fint,u1(u, ũ)− fext,u1 = 0 (B.4a)

requil,u2(u, ũ) := fint,u2(u, ũ)− fext,u2 = 0 (B.4b)

rregu,u1 := −(M + `2KBC)u1 − (Mψ + `2Kψ,BC)u2

+(M + `2D)ũ1 + (Mψ + `2Dψ)ũ2 = 0 (B.4c)

rregu,u2 := −(Mψ + `2Kψ,BC)u1 − (M + `2KBC)u2

+(Mψ + `2Dψ)ũ1 + (M + `2D)ũ2 = 0 (B.4d)

where fint,u1 and fext,u1 are the internal and external forces defined in Equations (B.2a)

and (B.2b) respectively, M is the standard mass matrix, see Equation (B.2c), D is

the standard diffusivity matrix, see Equation (B.2d), and KBC is the matrix that

takes into account the combined boundary conditions, see Equation (B.2e), whereas

fint,u2 =

∫
Ω

ψBTσσσ dΩ + 2

∫
Γd

NT t̄̄t̄td dΓ (B.5a)

fext,u2 =

∫
Γt

ψNT t̄̄t̄t dΓ (B.5b)

Mψ =

∫
Ω

ψNTN dΩ (B.5c)

Dψ =

∫
Ω

ψ∇NT∇N dΩ (B.5d)

Kψ,BC =

∫
Γ

ψNT
(
tttT1 ttt1 + tttT2 ttt2

)
∇N · nnn dΓ (B.5e)

Note that if traction-free cracks are considered, see Chapter 4, t̄̄t̄td = 000, thus leading

to fint,u2 =
∫

Ω
ψBTσσσ dΩ.

Linearisation of Equations (B.4) results in the tangent matrix

Ktan =


Ku1,u1 Ku1,u2 Ku1,ũ1 Ku1,ũ2

Ku2,u1 Ku2,u2 Ku2,ũ1 Ku2,ũ2

Kũ1,u1 Kũ1,u2 Kũ1,ũ1 Kũ1,ũ2

Kũ2,u1 Kũ2,u2 Kũ2,ũ1 Kũ2,ũ2

 (B.6)

with the matrices defined in Table B.2.

Some remarks about the tangent matrix (B.6):

105



B. Consistent linearisation of the governing equations

Table B.2: Block matrices of the continuous-discontinuous consistent tangent matrix.

Ku1,u1 :=
∫

Ω
BTCCCB dΩ Ku1,u2 :=

∫
Ω
ψΓd

BTCCCB dΩ

Ku1,ũ1 := −
∫

Ω
BTCCCεεεD′(Ỹ )∂Ỹ

∂ε̃εε
B dΩ Ku1,ũ2 := −

∫
Ω
ψBTCCCεεεD′(Ỹ )∂Ỹ

∂ε̃εε
B dΩ

Ku2,u1 :=
∫

Ω
ψBTCCCB dΩ Ku2,u2 :=

∫
Ω

BTCCCB dΩ + Kcohesion

Ku2,ũ1 := −
∫

Ω
ψBTCCCεεεD′(Ỹ )∂Ỹ

∂ε̃εε
B dΩ Ku2,ũ2 := −

∫
Ω

BTCCCεεεD′(Ỹ )∂Ỹ
∂ε̃εε

B dΩ

Kũ1,u1 := −(M + `2KBC) Kũ1,u2 := −(Mψ + `2Kψ,BC)

Kũ1,ũ1 := M + `2D Kũ1,ũ2 := Mψ + `2Dψ

Kũ2,u1 := −(Mψ + `2Kψ,BC) Kũ2,u2 := −(M + `2KBC)

Kũ2,ũ1 := Mψ + `2Dψ Kũ2,ũ2 := M + `2D

• Matrix Ku1,u1 and the first term in matrix Ku2,u2 are the secant tangent matri-

ces already obtained in the continuous model. Matrices Ku1,u2 and Ku2,u1 may

be understood as enriched secant tangent matrices, since the expression is the

same, except for the enrichment function.

• Matrices Ku1,ũ1 and Ku2,ũ2 are the local tangent matrices. Analogously to

secant matrix, matrices Ku1,ũ2 and Ku2,ũ1 can be understood as enriched local

tangent matrices.

• Matrices M and D are the mass and diffusivity matrices already obtained in

the continuous model. They are both constant. Matrices Mψ and Dψ can be

understood as enriched mass and enriched diffusivity matrices.

• Matrices KBC and Kψ,BC take into account the combined boundary conditions.

• It must be stressed that Equation (4.6) is a compact way to express the finite

element approximation of the local and non-local displacements after the in-

troduction of the discontinuity. Indeed, let I denote the set of all nodes in the

finite element mesh and J the set of nodes of elements crossed by the crack

(denoted here as nstd. and nenr. respectively). Then, Equation (4.6) can also be
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B.2. Continuous-discontinuous model

expressed as

uuu (xxx) ' uuuh (xxx) =
∑
i∈I

Ni (xxx) u1
i +

∑
j∈J

ψ (xxx) Nj (xxx) u2
j (B.7a)

ũuu (xxx) ' ũuuh (xxx) =
∑
i∈I

Ni (xxx) ũ1
i +

∑
j∈J

ψ (xxx) Nj (xxx) ũ2
j (B.7b)

where ψ is the sign function and Ni = NiIn, with Ni the standard bilinear

shape function associated with node i and In the identity matrix of size the

dimension of the problem n (n = 1, 2, 3). Thus, for the sake of simplicity, in

Equation (4.6), N denotes both the array that multiplies the standard nodal

degrees of freedom u1 and ũ1 —of dimension ndof × ndof, with ndof the number

of standard degrees of freedom (ndof = n×nstd.)— and the array that multiplies

the enriched nodal degrees of freedom u2 and ũ2 —of dimension ndof∗ × ndof∗ ,

with ndof∗ the number of enriched degrees of freedom (ndof∗ = n× nenr.).

Analogous comments hold for the array B. It denotes both the array that

multiplies the standard u1, ũ1 and the enriched u2, ũ2 nodal degrees of freedom.

Therefore, due to this abuse of notation, the mass matrix in Kũ1,u1 , for instance,

has dimension ndof×ndof, while the mass matrix in Kũ2,u2 has dimension ndof∗×
ndof∗ .

• The dimensions of all the enriched matrices change during the numerical simu-

lation, since the number of enriched nodes nenr. varies during the computation.

In particular, Mψ, Dψ and Kψ,BC are also affected by this change of dimensions.

Indeed, let Mk,i
ψ and Dk,i

ψ denote the enriched mass and the enriched diffusivity

matrices at a Newton iteration i within a time step k. Besides, let Kk,i
ψ,BC denote

the matrix concerning the combined boundary conditions at a iteration i within

a time step k.

On the one hand, since the crack length is considered to be constant during a

fixed step,

Mk,i
ψ = Mk,i−1

ψ ∀i (B.8a)

Dk,i
ψ = Dk,i−1

ψ ∀i (B.8b)

Kk,i
ψ,BC = Kk,i−1

ψ,BC ∀i (B.8c)
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B. Consistent linearisation of the governing equations

and the subscript i may be dropped. On the other hand, if the crack length at

time step k − 1 is the same at time step k,

Mk
ψ = Mk−1

ψ (B.9a)

Dk
ψ = Dk−1

ψ (B.9b)

Kk
ψ,BC = Kk−1

ψ,BC (B.9c)

That is, in contrast to the continuous tangent matrix, where all the block ma-

trices regarding the regularisation equation are constant, here the block ma-

trices regarding the continuous-discontinuous regularisation equation are not

constant. Nevertheless, they change only in those steps where the crack propa-

gates —a low number compared to the total number of load steps of the entire

simulation.

• As discussed in Appendix A, the appealing symmetry of Equation (B.6) is due

to the fact that the enrichment function is the sign function (ψψ = +1). Indeed,

let us consider the mass matrix of Kũ2,ũ2 . It must be stressed that the property∫
Ω

ψNTψN dΩ =

∫
Ω

NTN dΩ (B.10)

has been considered.

• Matrix Kcohesion takes into account the cohesive law of the crack. On the one

hand, if traction-free cracks are considered, Kcohesion = 0. On the other hand,

if cohesive laws are considered, the traction rate at the discontinuity

˙̄tttd = TJu̇K = T
(
Nu̇2

)
|Γd

(B.11)

is introduced, where T relates traction rate ˙̄tttd and displacement jump rate Ju̇K.
Therefore, if a linear cohesive law is considered, see Chapter 5,

Kcohesion = 2

∫
Γd

NTTN dΓ (B.12)
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Appendix C

Numerical integration in X-FEM

An important issue in the implementation of X-FEM is the numerical integration

of the weak form. Traditional quadrature rules such as Gauss quadratures cannot

adequately integrate discontinuous functions. Therefore, for elements cut by the

crack, alternative integration rules should be used, see Belytschko et al. (2009) for

a detailed review of these methods. One of these alternative methods consists of

subdividing the cracked element into quadrature subdomains with boundaries aligned

with the discontinuity, see Moës et al. (1999). In this appendix, this alternative

integration scheme is reviewed. Both the two- and three-dimensional schemes are

presented. More specifically, the schemes for quadrilateral and hexahedral elements

are considered. For illustrative purposes, the numerical integration of the mass matrix

in cracked quadrilaterals, Section C.1, and hexahedra, Section C.2, is analysed in

detail.

C.1 Quadrature in cracked quadrilaterals

Let us assume a quadrilateral element and a set of points Qi (i = 1 . . . N) belonging

to the simplified medial axis of the isoline D (xxx) = D∗, see Figure C.1(a). Applying

first the standard bilinear transformation —from the actual geometry to the refer-

ence element— the set of points Pi = Φ(Qi) belonging to the bilinear quadrilateral

reference element are obtained, see Figure C.1(b).

Then, the crack is considered to be the straight line r := aξ + bη + c = 0 such
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C. Numerical integration in X-FEM

(a) (b) (c)

Figure C.1: (a) The quadrilateral element and the set of points Qi that belong to
the θ−SMA of the isoline D (xxx) = D∗ (b) are mapped to the bilinear reference
element. (c) Then, the propagating discontinuity is obtained by minimising the sum
of distances from Pi to the crack r.

that the sum of distances from Pi to the line r

D =
N∑
i=1

di =
n∑
i=1

d(r, Pi) =
|aξi + bηi + c|√

a2 + b2
(C.1)

is minimum, see Figure C.1(c).

Hence, the crack is assumed to be a piecewise linear interface in the reference

domain. Then, as proposed by Moës et al. (1999), the cracked quadrilateral is de-

composed into subelements whose boundaries align with the discontinuity, see Figure

C.2(a). Although special quadratures are available for polygons with n edges, a

further decomposition into quadrilaterals and triangles is useful. In this work, the

cracked quadrilateral element is decomposed into two subelements that are further

triangulated, see Figure C.2(b). Then, each triangular subdomain is mapped to a

parent unit triangle over which a standard Gauss quadrature may be considered,

since the functions to be integrated are continuous within the triangles, see Figure

C.2(c).

C.1.1 Numerical integration of the mass matrix

As discussed in Appendix B, smoothed displacements are attractive from a compu-

tational viewpoint, especially regarding the computation of the consistent tangent

matrix needed to achieve quadratic convergence in the Newton-Raphson method, see

Equation (B.6). Regarding the finite element discretisation of the regularisation equa-
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C.1. Quadrature in cracked quadrilaterals

(a) (b) (c)

Figure C.2: (a) The straight crack cuts the reference element into a triangle and
a pentagon, (b) which is further divided into triangles. (c) Then, each triangular
subdomain is mapped to a parent unit triangle.

tion, the mass and the diffusivity matrices —both the standard and the enriched—

need to be exactly computed. Note that if the shape functions are exactly integrated

—that is, the mass matrix is exactly computed—, the shape function gradients are

also exactly integrated thus leading to the exact integration of the diffusivity ma-

trix. Hence, for illustrative purposes, the integration of the enriched mass matrix is

analysed in detail.

To compute the mass matrix, we need to integrate

I :=

∫
Ω

f(x, y) dx dy (C.2)

where f(x, y) = Ni(x, y)Nj(x, y).

Applying the first transformation —from the actual geometry to the reference

element— one obtains

I :=

∫
Ω

f(x, y) dx dy =

∫ 1

−1

∫ 1

−1

f∗(ξ, η) · |J(ξ, η)| dξ dη (C.3)

where f∗(ξ, η) = f(Φξ(ξ, η),Φη(ξ, η)) and J denotes the determinant of the Jacobian

matrix of this first transformation.

Then, applying the second transformation —from each triangular subdomain to

the parent unit triangle— one obtains

I :=
S∑
i=1

g(ξ̂, η̂) (C.4)
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C. Numerical integration in X-FEM

where S is the number of triangular subdomains and

g(ξ̂, η̂) =

∫ 1

0

∫ 1−η̂

0

f∗∗(ξ̂, η̂) · |J(Φ̂ξ̂(ξ̂, η̂), Φ̂η̂(ξ̂, η̂))| · |Ĵ(ξ̂, η̂)| dξ̂ dη̂ (C.5)

where f∗∗(ξ̂, η̂) = f∗(Φ̂ξ̂(ξ̂, η̂), Φ̂η̂(ξ̂, η̂)) and Ĵ denotes the determinant of the Jacobian

matrix of the second transformation.

Therefore, and regarding the first transformation, the monomials of maximum

degree to be exactly integrated are

NiNj → ξ2η2

|J(ξ, η)| → ξ, η

ξ3η2, ξ2η3

Since the second transformation is linear, the monomials of maximum degree to be

exactly integrated are ξ3η2, ξ2η3, which leads to a quadrature of degree 5 for triangles

(e.g. a quadrature with Ng = 7 points), see Felippa (2004).

C.2 Quadrature in cracked hexahedra

Let us suppose a hexahedral element and a set of points Qi (i = 1 . . . N) belonging

to the simplified medial surface of the isosurface D (xxx) = D∗, see Figure C.3(a).

Analogously to a two-dimensional setting, the crack is considered to be the plane

Π := aξ+ bη+ cζ+d = 0 such that the sum of distances from Pi = Φ(Qi), see Figure

C.3(b), to the plane Π

D =
N∑
i=1

di =
n∑
i=1

d(Π, Pi) =
|aξi + bηi + cζi + d|√

a2 + b2 + c2
(C.6)

is minimum, see Figure C.3(c).

Then, the cracked hexahedral element is decomposed into two polyhedra whose

boundaries align with the discontinuity, see Figure C.4(a), that are further decom-

posed into tetrahedral subelements, see Figure C.4(b). Then, each tetrahedral subele-

ment is mapped to a unit tetrahedron, see Figure C.4(c).

C.2.1 Numerical integration of the mass matrix

Analogously to the two-dimensional case, the enriched mass —and diffusivity— ma-

trices must be computed. In a three-dimensional setting, to compute the mass matrix,
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C.2. Quadrature in cracked hexahedra

(a) (b) (c)

Figure C.3: (a) The hexahedral element and the set of points Qi that belong to the
θ−SMA of the isosurface D (xxx) = D∗ (b) are mapped to the eight-noded reference
element. (c) Then, the propagating discontinuity is obtained by minimising the sum
of distances from Pi to the crack Π.

(a) (b) (c)

Figure C.4: (a) The plane cuts the reference element into two different polyhedra,
(b) which is further divided into tetrahedra. (c) Then, each tetrahedral subdomain
is mapped to a parent unit tetrahedron.

we need to integrate

I :=

∫
Ω

f(x, y, z) dx dy dz (C.7)

where f(x, y, z) = Ni(x, y, z)Nj(x, y, z).

Applying the first transformation —from the actual geometry to the reference

element— one obtains

I :=

∫
Ω

f(x, y, z) dx dy dz =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f∗(ξ, η, ζ) · |J(ξ, η, ζ)| dξ dη dζ (C.8)
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C. Numerical integration in X-FEM

where f∗(ξ, η, ζ) = f(Φξ(ξ, η, ζ),Φη(ξ, η, ζ),Φζ(ξ, η, ζ)) and J denotes the determinant

of the Jacobian matrix of this first transformation.

Analogously to a two-dimensional setting, see Section C.1, the second transforma-

tion is linear. Therefore, the monomials of maximum degree to be exactly integrated

are

NiNj → ξ2η2ζ2

|J(ξ, η, ζ)| → ξ2ηζ, ξη2ζ, ξηζ2

ξ4η3ζ3, ξ3η4ζ3, ξ3η3ζ4

thus leading to a quadrature of degree 10 for tetrahedra.
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Hillerborg, A., M. Modéer, and P. E. Petersson (1976). Analysis of crack formation
and crack growth in concrete by means of fracture mechanics and finite elements.
Cement and Concrete Research 6 (6), 773–781. doi: 10.1016/0008-8846(76)90007-7.
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Jirásek, M. (2000). Comparative study on finite elements with embedded discontinu-
ities. Computer Methods in Applied Mechanics and Engineering 188 (1-3), 307–330.
doi: 10.1016/S0045-7825(99)00154-1.
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Tamayo-Mas, E. and A. Rodŕıguez-Ferran (2012). Condiciones de contorno en
modelos de gradiente con desplazamientos suavizados. Revista Internacional de
Métodos Numéricos para Cálculo y Diseño en Ingenieŕıa 28 (3), 170–176. doi:
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