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  Introduction 

1.1 Lipid biotechnology 
Lipid biotechnology covers the microbial production and biotechnological 

transformation of lipids and lipid-soluble compounds. Storage lipids in the form of 

triacylglycerols and their different fatty acid types are the main targets for 

biotechnological product development. To minor extent, phospholipids, sphingolipids, 

glycolipids, sterols and carotenoids, as well as, other lipid-soluble compounds are 

utilized for the production of bioactive molecules for cosmetics, nutrition and 

pharmaceuticals [1]. 

About 80% of the oil and fats produced worldwide are vegetable oils and the rest are 

from animal origin, with a declining tendency. About one quarter of global production 

come from soybean, palm, rapeseed and sunflower oils. Oleic acid (OA) from 

sunflower oil (SFO); linoleic acid (LA) from soybean oil (SBO); LA from linseed oil; 

erucic acid from rapeseed oil; and, ricinoleic acid (RA) from castor oil are the most 

important oils for bio/chemical transformations offering, in addition to the carboxy 

group, one or more insaturations, Table 1.1. Coconut (CCO) and palm kernel oil, lauric 

and mystiric acid, are very important in the production of surfactants [2]. 

Table 1.1. Fatty acid composition (w %) of common feedstock oils and fatsa. 
Fatty acidb CO PO SBO SFO COO CSO CCO CF BT 

C6:0       1   
C8:0       7   

C10:0       7   
C12:0       47  1 
C14:0  1    1 18 1 4 
C16:0 4 45 11 6 11 23 9 25 26 
C18:0 2 4 4 5 2 2 3 6 20 
C20:0          
C22:0    1      
C16:1      1  8 4 
C18:1 61 39 23 29 28 17 6 41 28 
C18:2 22 11 54 58 58 56 2 18 3 
C18:3 10  8 1 1   1  
C20:1 1         
Other         14 

aCO: canola oil; PO: palm oil; SBO: soybean oil; SFO: sunflower oil; COO: corn oil; 
CSO: cottonseed oil; CCO: coconut oil; CF: chicken fat; and, BT: beef tallow. 
bC6:0: caproic acid; C8:0: caprylic acid; C10:0: capric acid; C12:0: lauric acid; 
C14:0: mystiric acid; C16:0: palmitic acid; C18:0: stearic acid; C20:0: arachidic 
acid; C22:0: behenic acid; C16:1: palmitoleic acid; C18:1: oleic acid; C18:2: linoleic 
acid; C18:3: linolenic acid; C20:1: eicosenoic acid. 
Adapted from [3]. 

New plant oils containing fatty acids with new functionalities such as petroselenic 

acid (cis-6-octadecenoic acid), from Coriandrum sativum; calendic acid (trans-8,10-cis-

12-octadecatrienoic acid), from Calendula officinalis, α-eleostearic acid (cis-9-trans-

11,13-octadecatrienoic acid) from tung oil (Vernicia fordii); santalbic acid (trans-11-

octadecen-9-ynoic acid) from Santalum album; and, vernolic acid ((12S,13R)-epoxy-
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cis-9-octadecenoic acid) from Vernonia galamensis are becoming industrial available. 

The basic oleochemicals are free fatty acids, methyl esters, fatty alcohols and fatty 

amines, as well as, glycerol as a by-product. Their interesting new industrial 

applications are the usage as environmentally friendly industrial fluids and lubricants, 

insulating fluid for electric utilities such as transformers, and additive to asphalt [2].  

Modern methods of synthetic organic chemistry including enzymatic and microbial 

transformations were applied extensively to fatty compounds for the selective 

functionalization of the alkyl chain. Syntheses of long-chain diacids, ω-hydroxy-fatty 

acids, and ω-unsaturated-fatty acids as base chemicals derived from vegetable oils 

were developed. Interesting applications have been recently opened by the epoxidation 

of double bonds giving the possibility of photochemically initiated cationic curing and 

access to polyetherpolyols. Enantiomerically pure fatty acids as part of the chiral pool 

of nature can be used for the synthesis of nonracemic building blocks [2]. 

1.1.1 Oleic acid transformations by microorganisms 
For more than four thousand millions of years (4·109) bacteria have ability of 

transforming a huge range of substrates, due to the specificity (bond, functional group, 

substrate, stereo-, regio-, enantio-) of their enzymes, for obtaining energy and feed to 

grow. The mankind is almost starting to discover such great potentiality and use it for 

its own purpose; even though improving it. Such kind of reactions that take place in 

mild conditions in nature would be hardly difficult to carry out in a chemical way or even 

practically impossible. 

OA (cis-9-octadecenoic acid) is a common lipid in nature, especially in plant 

kingdom. Its biotransformation has being studied since decades ago. Piguevskh and 

Charik were the first in describing a transformation of OA by microorganisms. 10-

ketostearic acid (10-KSA), apart from other products, was produced by 

micro.ovrddot.organisms when olive oil was used [4]. Some years later, Davis et al. 

cited from an article of 1959 the synthesis of 9- and 10-KSA acids from the 

dehydrogenation of the corresponding hydroxystearic acids [5]. Wallen and 

collaborators published the single production of 10-hydroxystearic acid (10-HOSA) by a 

pseudomonad cultivated with OA as substrate [6]; and, in 1965, Schroepfer established 

the configuration of the hydroxyl group as R, (10R)-HOSA [7]. Furthermore, Wilde and 

Dawson presented the biohydrogenation of OA to stearic acid (octadecanoic acid; SA) 

by rumen microorganisms from sheeps [8]; and in the same year, Ogata and co-

workers synthetized α-ketoglutaric acid (2-oxopentanedioic acid) from OA by 

Micrococcus sp. [9]. 
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In 1970’s, OA became more relevant and diverse types of microorganisms were 

used for its modification. Fungi, like Blakeslea trispora and Torulopsis sp. were used for 

synthetizing caretenoids and lipids [10], and obtaining 17-L-hydroxyoleic acid [11], 

respectively. Aerobic and anaerobic bacteria from different sources (sheep rumen, 

human intestine or soil, inter alia) were cultivated to biohydrogenate or [12-14] 

degradate [15] OA and synthetize hydroxystearic acid [16, 17]. Moreover, enzymatic 

transformations started to take place with the hydration of the double bond [18], 

isomerization [19], dehydrogenation [20] and hydroxylation [21] of OA. 

In the following decade, efforts were also focused on transforming OA into (10R)-

HOSA and/or its corresponding oxo acid, 10-oxooctadecanoic acid, by different genus 

of bacteria: Corynebacterium [22]; Rhodococcus [23]; Norcadia [24, 25]. Moreover, this 

biotransformation was used as a model in the experimental adipocere formation, the fat 

hydrolysis of human corpses [26-28]. It was carried out by microorganisms as 

Micrococcus luteus or Flavobacterium meningosepticum.  

Two milestones were the biotransformation of OA into RA by Bacillus pumilus [29] 

and a soil bacterium strain, BMD I 20 [30], in significant amounts and the 

biotransformation of OA into a new biosurfactant, a dihydroxylated compound, by 

Pseudomonas aeruginosa 42A2 [31]. Finally, different new brand products were 

obtained from OA: diacids, as azelaic (nonanedioic acid) and pimelic (heptanedioic 

acid) acids by Micrococcus sp. [32], and cis-9-1,18-octadecenedioic acid by Candida 

tropicalis [33, 34]; and, a double unsaturated fatty acid by the action of a desaturase of 

Tetrahymena thermophila [35]. 

In 1990’s the conversion of OA into (10R)-HOSA [36-44], 10-oxostearic acid [45] 

and 10-ketostearic acid [46-50] were the most studied bioreactions. This OA hydration 

reaction and others previously described were continuously used as model of 

adipocere formation [51, 52].  

Some other new compounds were produced by biotransformation of OA, Figure 1.1: 

α,ω-dicarboxilic acids [53] and 3(R)-hydroxy-9(Z)-octadecenedioic acid [54, 55] by C. 

tropicalis and C. tropicalis M25, respectively; hydroxy-fatty acid (HFA) intermediates for 

the production of lactones as (R)-γ-dodecalactone by several species of yeasts [56-59]; 

diverse fattyamides by some Bacillus species [60, 61]; sophorose lipids by Candida 

bombolica ATCC 22214 [62]; oligosaccharide lipids and biosurfactants by 

Tsukamurella sp DSM 44370 [63]; and, poly(3-hydroxyalkanoates) (PHA) by 

Alcaligenes eutrophus, P. putida and P. mendocina 0806 [64-67] and poly(3-

hydroxybutyrates) (PHB) by some strains of Alcaligenes [68-70] an one of Aeromonas 

hydrophila [71].  
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Figure 1.1. The most important biotransformated products obtained from oleic acid. OA: 
oleic acid; AA: azelaic or nonanedioic acid; SA: stearic acid; (10R)-HOSA: 10(R)-hydroxy-
octadecanoic acid; LA: linoleic acid; FA: fatty amide, 9(Z)-octadecenamide; P-3HB: poly-3-
hydroxybutyrate; P-3HH: poly-3-hydroxyhexanoate; P-3HV: poly-3-hydroxyvalerate; P-4HV: 
poly-4-hydroxyvalerate; OASL: oleic acid sophorolipid; (10S)-HPOME: 10(S)-hydroperoxy-
8(E)-octadecenoic acid; (10S)-HOME: 10(S)-hydroperoxy-8(E)-octadecenoic acid; (7S,10S)-
DiHOME: 7,10(S,S)-hydroperoxy-8(E)-octadecenoic acid; RA: ricinoleic acid; γ-DL: γ-
dodecalactone; 10-KSA: 10-keto-octadecanoic acid; α,ω: 9(Z)-octadecenedioic acid; PA: 
pimelic or heptanedioic acid. 

Some other uncommon HFAs were produced: 15-, 16-, 17-hydroxy-9-octadecenoic 

acids by B. pumilus [72]; 3-hydroxy-9(Z)-ocradecenoic acid by Alcaligenes sp. 5-18 

[73]; 4-oxo-dodecanoic acid by M. luteus BL0-3 [74]; 7-hydroxy-16-oxo-9(Z)-

octadecenoic and 7-hydroxy-17-oxo-9(Z)-octadecenoic acids by Bacillus strain NRRL 

BD-447 [75, 76] and dihydrosterculic acid (cis-9,10-epoxy-nonadecanoic acid) by 

Lactobacillus plantarum [77].  

On the other hand, enzymatic transformation of OA started to gain importance and it 

was reflected on the number of works published. Enzymatic reactions were focused on 

∆6-desaturase to produce γ-linolenic acid [78] and ∆12-desaturase to obtain linoleic 

acid [79, 80]; on ω-hydroxylases from Vicia sativa to synthetize 18-hydroxy-9(Z)-

octadecenoic acid [81, 82]; on hydroperoxidases [83, 84] and peroxygenases [85] to 

finally obtain 9,10-epoxy-octadecanoic acid; on oleate 6-hydroxylase to form 6-

hydroxy-9(Z)-octadecenoic acid [86]; and, on lipoxygenases [87]. 

Finally, Hou and co-workers improved the production of 7,10(S,S)-dihydroxy-8(E)-

octadecenoic acid ((7S,10S)-DiHOME) up to the 60% [88]; one year later, they 
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postulated that 10(S)-hydroxy-8(E)-octadecenoic acid ((10S)-HOME) was an 

intermediate in the synthesis of the dihydroxylated compound by P aeruginosa PR3 

[89]; moreover, determined the total configuration of (7S,10S)-DiHOME [90]. 

Since 2000 to nowadays the hydration of OA into (10R)-HOSA and its dehydration 

to 10-KSA were still the most significant bioreaction [91-93]. These reactions were 

produced by bacteria as P. aeruginosa [94], Sphingobacterium thalpophilum [95], 

Acinobacter spp. or Enterobacter cloacae [96, 97], Stenotrophomonas nitritireducens 

[98, 99], Flavobacterium sp. DS5 [100] or Lactococcus lactis [101]. The hydration of OA 

was also carried out with oleate hydratases from S. maltophilia [102, 103], 

Lysinibacillus fusiformis [104, 105], Streptococcus pyogenes M49 [106] or with 

antigens from Lactobacillus rhamnosus LGG, L. plantarum ST-III, L. acidophilus NCFM 

and Bifidobacterium animalis [107].  

Moreover, OA hydration was investigated to produce (R)-γ-dodecalactone due to its 

aromatic properties by some fungi [108-110] and bacteria [111, 112]; even during malt 

whisky production was reported its synthesis [113] and some alkyl-γ-lactones showed 

fungicidal properties [114]. Another OA hydration for producing SA was also 

investigated using ruminal microorganisms [115, 116]. Ruminal bobine microorganisms 

were capable to isomerize OA to different trans isomers as well [117-119]. 

The compounds that appear in 1990’s were continuously produced: α,ω-dicarboxilic 

acids [120-122]; fatty amides [123, 124]; glycolipids [125] as sophorolipids [126, 127] or 

mannosylerythritol lipids (MEL) [128-130]; diverse kind of ω-HFA as ω-

hydroxynonanoic acid [131] or ω-1 [132-134], ω-2 and ω-3 HFA [135]. Some other rare 

HFA as 2(R)-hydroperoxy-9(Z)-octadecenoic acid by enzymes from a marine alga, 

Ulva pertusa [136], 7-hydroxy-8-octadecenoic acid by P. aeruginosa 2HS [137, 138], 9-

hydroxy-10(E)-octadecenoic, 10-hydroxy-8(E)-octadecenoic and 11-hydroxy-9(E)-

octadecenoic acids by P. sp. 32T3 [139], 3(R)-hydroxy-9(Z)-octadecenoic acid by S. 

maltophilia [140], 9(E)-octadecenoic acid by P. putida S12 [141], 10-hydroxy-12(Z)-

octadecenoic acid by S. acidamiphila [142] were synthetized. Furthermore, the 

enzymatic synthesis of cis-9,10-epoxyoctadecanoic acid from OA, hydrogen peroxide 

and lipase B from Candida antarctica (Novozym 435) was reported [143-145]. 

Other enzymatic reactions have been described using OA as substrate, especially 

with desaturases. OA have been modified by ∆5-desaturases [146, 147], ∆12 

desaturases to produce LA [148-151] or in combination with ∆6 in Yarrowia lipolitica to 

produce γ-linolenic acid [152, 153] and ∆15 [154, 155]. Moreover, hydroperoxidases, 

peroxygenases and lipoxygenases have been still used. 
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OA has been using as an important carbon source in the production of PHAs by P. 

mendocina 0806 [156], P. putida [157-160], P. aeruginosa [161, 162], P. corrugate 

[163], P. sp. [164, 165], P. aeruginosa 42A2 [166], P. guezenni [167], Burkholderia sp. 

USM [168], Pichia pastoris [169]; PHBs by Erwinia sp. USMI-20 [170], Spharotilus 

natans and P. sp. 0B17 [171], Ralstonia eutropha [172], Cupriavidus necator H16 [173] 

or PHB copolymers with 3-hydroxyvalerate by R. eutropha [174] or Bacillus sp. BA-019 

[175], 3-hydroxyhexanoate by Aeromonas hydrophila [176], 3-hydroxyvalerate and 4-

hydroxybutyrate [177] or 3-hydroxyalkanoates [178]. 

Finally, Kuo and co-workers modified the aeration system of a bioreactor to reduce 

foaming during production of (10S)-HOME and (7S,10S)-DiHOME from OA and, thus, 

the production of these HFAs was increased and control parameters of this 

biotransformation in bioreactor were optimized [179, 180]. When this bioreaction was 

fully controlled, Kuo and collaborators screened other Pseudomonads with a higher 

(10S)-HOME production rates than P. aeruginosa PR3 [181]. Another carbon source 

with high content in OA was tested for the production of these two HFAs, like safflower 

oil [182]. 

1.1.2 Pseudomonas aeruginosa 42A2 NCIB 40045 
P. aeruginosa very is a versatile bacteria that has colonized many natural and 

artificial environments. It is well known to perform a wide variety of bioreactions due to 

it can use a wide range of organic matter as a carbon source, evidencing its resilience 

ability. Even though, scientists in Renseelaer Polytechnic Institute, founded by NASA, 

reported that, during spaceflight inside the International Space Station, P. aeruginosa 

seem to adapt to the microgravity and the biofilms formed during spaceflight exhibited 

a column-and-canopy structure that has not observed on Earth [183]. P. aeruginosa is 

an opportunistic Gram-negative pathogen that typically causes urinary tract, respiratory 

system and soft tissue infections and a variety of systemic infections, particularly in 

patients with severe burns [184]. 

1.1.2.1 Oxidation of oleic acid 
Lipoxygenases (LOX) (EC. 1.13.11.12) are a non-heme iron enzymes which 

catalyzes the dioxygenation of polyunsaturated fatty acids with one or more 1Z,4Z-

pentadiene units to hydroperoxy-fatty acids. LOX were only considered a eukaryotic 

characteristic due to the major presence in mammals, fishes, small marine 

invertebrates, corals, plants, algae, fungi, mushrooms, yeast [185].  

LOXs are considered a versatile biocatalyst because of the different kind of 

reactions in which are involved. LOX produces hydroperoxy-fatty acids that are further 
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metabolized into various signaling compounds, such as leukotrienes and lipoxins in 

animals. Leukotrienes and lipoxins are reported to be involved in the inflammatory 

cascade, the formation of biological mediators and signaling molecules, the immune 

response and mobilization of lipids. In plants, green leaf like compounds and jasmonic 

acids were detected. These compounds are present in the plant defense system 

against pests, in the synthesis of oxylipins and germination or senescence. In corals, 

prostaglandin-like compounds and oxylipinds were detected [186]. Prostaglandins are 

locally acting messenger molecules in inflammatory mediation, act in hormone 

regulation, cause constriction or dilation in vascular smooth muscle cells and control 

cell growth.  

Despite of the unknown role of bacterial LOX, where are mainly found in Gram-

negative bacteria, it is thought that its function is associated to facilitate the dynamic 

plasticity of bacterial membranes. This might be an advantage for the colonization of a 

wide range of environments where bacteria have adapted and coped with the 

interaction of eukaryotes [187]. However, it is reported that bacterial LOX produced 

hydroperoxide-fatty acids, which are the precursors of HFAs. Some HFAs as 10-

hydroxy- and 13-hydroxyoctadecanoic acids and 14-hydroxynonadecanoic acid, are 

used as precursors of flavored lactones, γ-decanolide, δ-decanolide and γ-nonanolide, 

respectively [188]. 

 In 1988, P. aeruginosa 42A2 was demonstrated to oxidize OA to a new surfactant, 

a dihydroxy-fatty acid  [31]. This dihydroxilated biosurfactant reduces surface tension to 

30 mN·m-1 at 50ºC. This strain is characteristic because of the lack on the production of 

rhamnolipids. Afterwards, in 1994 production parameters of (7S,10S)-DiHOME were 

optimizated obtaining up to 7 g·l-1 of this new compound [189]. The stereochemistry of 

this product was later identified as (7S,10S)-DiHOME by Hou and collaborators [190] 

using P. aeruginosa PR3. Later, in 1997 it was proved that strain 42A2 synthesized 10-

hydroperoxy-8(E)-octadecenoic acid ((10S)-HPOME) and (10S)-HOME during 

production of this new biosurfactant [191]. The biotransformation of OA into these 

hydroxylated compounds needs a notable quantity of oxygen and this is proportional to 

the volumetric productivity of the oxidized compounds [192]. These studies were 

carried out in a stirred tank bioreactor where the production of (10S)-HOME was 

increased tenfold, from 0.65 to 7.4 g·l-1. Even, this bioreaction was realized with 

immobilized non-proliferanting cells of P. aeruginosa 42A2 on different carriers, being 

Celite R633 the support with the highest OA conversion, 50%, in 48 hours [193]; and, 

with lyophilized non-proliferating cells obtaining poorly conversion yields [194].  

In 2004, P. aeruginosa 42A2 LOX (42A2 LOX) was isolated and characterized; 

kinetics studies with different polyunsaturated fatty acids (PUFA) and OA, containing a 

9 



Introduction   

double bond in position 9, were assayed, being LA the most preferred by 42A2 LOX 

[195]. One year later, in 2005 Vidal-Mas and co-workers cloned and overexpressed 

42A2 LOX in E. coli BL21(DE3). Further kinetic experiments were carried out and 

confirmed the preference of the recombinant protein for LA [196]. Concurrently, P. 

aeruginosa 42A2 was used for first time to accumulate PHA using agro-industrial oily 

wastes as substrate [166] and subsequent different studies were performance to 

understand the effect of the fatty acid used as substrate on final PHA [197] and its 

physcochemical properties [198, 199]. 

On the other hand, the synthetic mechanism of (7S,10S)-DiHOME from OA was still 

unknown, until Martinez and collaborators discovered that in this reaction are involved 

to different enzymes, a dioxygenase and a hydroperoxy isomerase [200]. Finally, in 

2013 the structure of 42A2 LOX, the first available from a prokaryote organism, was 

crystallized and studied, suggesting the capacity of this enzyme for extracting and 

modifying unsaturated phospholipids from eukaryotic membranes; allowing a role in the 

interaction of P. aeruginosa 42A2 with host cells [201]. Ultimately, Hansen and Garreta 

discussed the biochemical aspects, the biological applications and some 

characteristics of bacterial LOX from a phylogenetic point of view, proposing the 

existence a new subfamily of bacterial LOX [187]. 

Another fatty acid, LA, was used as a carbon source in mineral cultures of P. 

aeruginosa 42A2 obtaining oxylipins with antifungal properties, specially a blend of two 

trihydroxylated isomers, 9,10(12),13-tihydroxy-11(10)-octadecenoic acid, never 

described before for the 42A2 strain [202]. To this date no further studies have been 

carried out with other fatty acids as a carbon source.  

1.1.2.2 Modification of oleic acid 
In 2003, estolides were detected in the cultures of P. aeruginosa 42A2 using OA as 

a single carbon source. ESTs are polyesters from fatty acids or HFA. ESTs naturally 

produced resulted a mixture of OA, (10S)-HOME and/or (7S,10S)-DiHOME forming 

oligomers up to six monomers by means of the action of P. aeruginosa 42A2 lipase 

[203]. 

Pseudomonas lipases have some advantages than other bacterial lipases in 

temperature, salt concentration and pH stability or substrate and reaction medium 

tolerability (organic solvents, ionic liquids, supercritical fluids, solvent-free or biphasic 

immiscible media) [204-207]. 

One of the most important reasons for the large number of applications of lipases is 

that they exhibit substrate, regio-, enantio- and stereospecificity, Table 1.2. Lipases of  
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Table 1.2.  Illustrative list of lipases whose X-ray structures have been determinated along 
with their specificity. Adapted from [204]. 
Lipase source  Specificity 
Bacterial Bacillus thermocatenulatus 1,3-regiospecific 
 Burkholderia glumae (Pseudomonas glumae) Non-specific 
 Burkholderia cepacia (Pseudomonas cepacia) Non-specific 
 Bacillus subtilis ─ 
 Chromobacterium viscosum Non-specific 
 Pseudomonas fluorescens Non-specific 
   
Fungal Aspergillus niger 1,3-regiospecific 
 Candida rugosa (Candida cylindracea) Non-specific 
 Candida antarctica A trans-specific 
 Candida antarctica B 1,3-regiospecific 
 Geotrichum candidum  cis-∆9 
 Mucor javanicus 1,3-regiospecific 
 Penicillium camembertii (Penicillium cyclopeum) 1,3-regiospecific 
 Penicillium expansum ─ 
 Rhizomucor miehei (Mucor miehei) 1,3-regiospecific 
 Rhizopus delemar 1,3-regiospecific 
 Rhizopus oryzae 1,3-regiospecific 
 Rhizopus niveus 1,3-regiospecific 
 Thermomyces lanuginose (Humicola lanuginosa) 1,3-regiospecific 
 Yarrowia lipolytica 1,3-regiospecific 
   
Plant Brassica napus (rapeseed) 1,3-regiospecific 
   
Animal Canis lupus familiaris (dogs) ─ 
 Equus caballus (equine) ─ 
 Porcine pancreatic lipase 1,3-regiospecific 
 Human pancreatic lipase 1,3-regiospecific 
 Sus scrofa (wild bear) ─ 

microbial origin, mainly bacterial and fungal, represent the most widely used class of 

enzymes in biotechnological applications (food, detergent, oil and fat, pharmaceutical, 

textile and leather, cosmetic and paper industries [205]) and organic chemistry [208]. 

It was found out that P. aeruginosa 42A2 produces two extracellular lipases, named 

LipA and LipC [209]. Both lipases reveal a high similarity each other; but, a substantial 

difference in the temperature optimum was reported. LipA showed a mesophilic 

activity, with an optimal temperature of 30ºC; meanwhile, LipC evidences a psicrophilic 

range of activity, between 4 and 20ºC [209]. Both lipases displayed a maximum activity 

with medium-chain fatty acids, specifically with caproic (hexanoic acid) and caprylic 

(octanoic acid) acids; however, LipC also showed a good activity towards long-fatty 

acids. In addition, LipC is a versatile enzyme due to its capability to tolerate high 

concentrations of ions and heavy metals, but result less thermo-stable than its 

homologus LipA [209]. 

Later, Cesarini and co-workers developed a rational system design to modify 

specific residues on the enzyme structure of LipC to improve its thermal stability. After 

a screening of more than 3000 mutants, only the clone D2_H8 evidenced a 7-fold 

increased thermostability compared with LipC wildtype. Its operational range of 

temperature was extended to 30ºC [210]. 
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1.2 Bioreactors in biotechnology 
Traditionally, microbiologists have played the dominant role in bioreaction 

development, with collaboration of experts from disciplines as biochemistry, genetics 

and chemical engineering. Whereas fermentation processes have been used since 

prehistoric days for producing cheese, bread, wine or beer, is in the last half century 

when the major breakthrough has taken place by means of technology [211]. 

A bioreactor is considered a system in which a biological conversion occurs through 

the action of enzymes, microorganisms or animal, fungal or plants cells. Specifically 

bioreactors are design for influencing in the metabolic networks to obtain a high yield, 

productivity and reproducibility of the desired product. Under these conditions a high 

selectivity is expected, especially when complex molecules as antibiotics, steroids, 

vitamins, proteins and certain sugars and organic acids are wanted [211]. Conversion 

rates must also be in mind with bioreactors; especially, in systems where biomass 

growth is important and depletion times of the reactants can take days. A bioreactor 

should not be considered as an isolated unit, but as an operational unit with upstream 

and downstream units within an overall process. 

Bioreactions can be carried out in a three different ways: i) processes that products 

are secreted to the culture media: primary and secondary metabolites; ii) processes 

that produce biomass; and, iii) processes that biotransform a susbtrates previously 

added to the culture media [211]. 

Most bioreactors fall into one of the following categories: unstirred or stirred vessels, 

bubble columns, airlift reactors, membrane reactors, fluidized or packed beds. 

Bioreactor types differ primarily with mode of agitation and aeration. Depending on the 

operational mode, bioreactors can operate in batch, fed-batch or semibatch, repetead 

fed-batch or cyclic fed-batch, repeated batch or cyclic batch and continuous mode. In 

some other classifications, another type of operational mode is included, perfusion cell 

culture. Perfusion mode is a variant of a continuous system with a cell retention device; 

but this technique is still in its infancy and it is not completely considered an operational 

mode itself [212]. The most important kind of bioreactor used in the laboratory and 

industry is the stirred tank bioreactor. 

1.2.1 Batch bioreactor 
Shaken bioreactors are used as fermentation systems since the beginning of the 

last century. Probably the first submerged fermentation in a shake flask was realised by 

Kluyver and Perquin in 1933 [213]. Nowadays shaken bioreactors are employed for a 

considerable variety of bioreactions. Most common is the use of conventional conical 

Erlenmeyer flasks with a volume from 25 ml up to 6 l. Baffled-shake flasks are mainly 
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used to reach higher oxygen transfer rates and enhancing mixing capacities at 

equivalent shaking frequencies compared to unbaffled flasks. The popularity of shake 

flasks as bioreactors is the simplicity of the system which enables the performance of a 

large number of parallel fermentations in small scale and are mainly used for screening 

and early bioreaction or bioprocess development in industry and academic research 

[214].  

Batch bioreaction systems provide some disadvantages: i) lower productivity levels 

due to time for filling, heating, sterilizing, cooling, emptying and cleaning the reactor; ii) 

increased focus on instrumentation due to frequent sterilization; iii) greater expense 

incurred in preparing several subcultures for inoculation; iv) higher costs for labor 

and/or process control for this non-stationary process; v) larger industrial hygiene risks 

due to potential contact with pathogenic microorganisms or toxins. 

In contrast the advantages include: i) reduced risk of contamination or cell mutation, 

due to a relatively brief growth period; ii) lower capital investment when compared to 

continuous processes for the same bioreactor volume; iii) more flexibility with varying 

product/biological systems; iv) higher raw material conversion levels, resulting from a 

controlled growth period. 

Outside the food and beverage industries, fermentation processes were initially 

associated with organic acids (acetic, citric, gluconic, itaconic or lactic acid) and 

solvents (acetone or butanol), and, later with the production of low-volume, high-added-

value products, such as vitamins, antibiotics or vaccines. More recently, there has been 

a trend to high-volume, low-added-value products such as single-cell protein and fuels. 

The deciding factor as to whether such processes are economically feasible is the 

capital cost of the single-purpose equipment required. 

1.3 Aeration systems 
In aerobic bioprocesses in any type of bioreactor, there are four basic factors that 

may limit the final performance of the process: mixing, oxygen, carbon dioxide and heat 

transfers [214]. Transfer of oxygen from a gaseous phase to a liquid one is key issue in 

many biotechnological processes, especially in microbial cultures due to oxygen is a 

key component in microbial metabolism, as well as, it could be a co-substrate in 

bioreactions. 

Enhancing microbial production represents an economic challenge for bioindustry. 

High cell density reactors imply controlling the interactions between microbial 

behaviour and transfer phenomena, since gas transfer eventually becomes a limiting 

factor [215]. This bottleneck is especially significant in large-scale bioreactors, bubble 

columns. 

13 



Introduction   

Depending on the mode of introducing the air or oxygen into the culture media, one 

division of bioreactors could be established: bubble columns, air-lift reactors and stirred 

tank bioreactors [214]. Stirred tank bioreactors are the most widely used bioreactor 

type to cultivate suspension cells, mainly due to the broad experience gain from 

microbial fermentation and chemical engineering fields over the last century and their 

relative easy design, operation and scale-up. 

Aeration of cell cultures bioreactors is usually performed by bubble aeration, bubble-

free aeration or indirect aeration [216]. Bubble aeration delivers large quantities of 

oxygen into the culture medium. Ascending or bursting bubbles in bubble aeration may 

damage shear stress sensitive cells. This fact leads to reduce cell viability and increase 

foam formation. 

Foaming is produced by i) aeration, ii) medium composition, iii) cell growth, iv) 

metabolite formation, v) surface-active substance formation or even by vi) vessel 

geometry [217]. Some amount of foaming during fermentation is acceptable, but 

excessive foaming requires some type of control action: i) addition of chemical 

antifoams, ii) installation of foam breakers, iii) reduce working culture volume, iv) 

connection with other vessels or v) reducing aeration and agitation. All these actions 

affect bioreaction yields and rate conversions negatively. New aeration systems and 

configurations have being developed to reduce foam formation during cultivation 

processes in stirred tank bioreactors: i) membranes, ii) ceramic and iii) metallic 

spargers and iv) non-dispersive devices based on absorption as surface aeration. The 

final decision depends on the mineral medium, microorganism and/or operator of the 

bioreactor.  

1.4 Predictive microbiology 
Biotechnology uses cellular systems to produce biomolecules that benefit society. 

The main challenge of biotechnology is the understanding of how cellular mechanisms 

result in functional responses. Through evolution, cellular systems have been 

optimized to overcome obstacles to survive including their purposeful reprogramming.  

Accordingly, a major obstacle limiting biotechnology applications is the complexity of 

the cellular systems with the biomolecules involved in these systems (proteins, DNA, 

RNA, lipids, etc.) and the large number of interactions between them [218]. These 

interactions are organized into vast complex networks which sense and execute 

cellular programs, biochemical networks, important for proliferation and survival. 

Computer simulations and modelling can be valuable tools for investigating such 

biochemical reaction networks that make up living systems [219]. 
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1.4.1 Process modelling 
Microbial modelling allows the description and prediction of microbial behaviours 

under specific environmental conditions [220]. Sensor technologies are rarely found 

that can provide real-time assessment of many intra- and extracellular activities. Those 

currently available tend to suffer from high complexity, insufficient accuracy, risk of 

contamination or insufficient robustness, which makes process states very difficult to 

characterize [212].  

Despite all those difficulties, process modelling and simulation techniques have 

gained enormous popularity because it facilitates process optimization. These set of 

tools give the possibility of exploring alternative routes and hypothetical changes of 

existing or new processes in-silico, before experimentation. This enables tedious 

experimentation to be directed and focused on speeding up bioprocess development 

[221].  

Process modelling can also be used to develop and evaluate process control 

strategies to ensure stability and desired efficiency over production characteristics as 

product quality, as well as, reducing manufacturing costs, risks and time [212, 221]. 

1.4.2 Mathematical models and types 
Although process modelling and simulations tools have been available for many 

years, the first software programs dedicated for bioprocessing showed up in the mid-

1990s. Today, several commercial programs, often with powerful graphic features, 

include advanced neural networks and fuzzy logic technologies and data analysis 

features to manipulate data sets for identifying inaccurate or corrupted data points 

[212]. 

An investigation of a bioreactor performance and its cell growth behaviour might be 

almost carried out in an empirical manner. Thereby, bioreactor should be studied under 

all possible operational conditions and the obtained results expressed as series of 

correlations, which could be used to hopefully estimated future operational conditions 

from a given new set of reaction parameters. Although this practice could be rather 

convenient, has many disadvantages as little real understanding of the process and a 

routine and long-time consuming way of proceeding [222].  

On the other hand, in a modelling exercise, it is necessary to determine all important 

parameters of a reactor and their effect on the reaction and mathematically defined 

them for incorporating in the mathematical model. Later, a basic group of experiments 

should be carried out to obtain different sets of experimental data, for confirming or 

rejecting the initial proposed mathematical model, by means of modelling and 
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simulation tools. The task of formulating mathematical equations is a positive factor 

that forces the clear formulation of basic concepts of the bioreaction [222]. 

Differences between the experimental and in-silico data may be used to further 

redefine and/or refine the model until good agreement is achieved. Once the model is 

established, it can be used to predict performances under different initial reaction 

conditions and design, optimize and control a process. At the end of the modelling 

exercise, a huge understanding of the process has been gained and the experimental 

time considerably reduced. 

Mathematical models, which describe the living cells cycle, have to represent the 

dynamic nature of the bioreaction, as general as possible and more complex as a 

consequence, less empirical and maybe reflecting the biochemistry of the 

microorganism in the bioreactor. On the basis of these conditions, the model should be 

set up based on a compromise between the detailed description of the bioreaction and 

the use to limited parameters to easily estimate and control it [223]. 

Mathematical models are in-silico tools that can be used to describe the past and 

future performance of biotechnological processes. They can be applied to processes 

operating at many different levels: from the action of an enzyme within a cell, to the 

growth of that cell in commercial bioreactor [224]. Mathematical models develop in the 

field of biotechnology are classified according to their scope in four areas: i) catalyst, 

kinetic models (KM) describing at molecular level the prediction of a reaction selectivity; 

ii) reaction, KM describing the mechanism and basic reaction rates based on inputs as 

concentration profiles or reaction media conditions as pH or temperature; iii) reactor, 

KM describing reaction kinetics incorporating macroscopic mass, energy and 

momentum balances; and, iv) process, models for the overall performance of the 

process, which include the interactions between operational units [221]. 

Moreover, various types and classifications of models are possible. Depending on 

mathematical modelling problems, they can be classified: by mathematical structure as 

deterministic or empirical; by complexity as simple or complex; by spatial resolution as 

nano, micro or macro; by temporal response as dynamic or steady-state; and, by 

purpose of application as design, analysis, control or optimization [221]. 

Another way to classify mathematical models was proposed by different authors. 

Roberts classified mathematical models by the microbiological event, bacterial 

behaviour over time, into kinetic and probabilistic models [225]. Roels and Kossen 

divided them depending on the modelling approach to the bioreaction as empirical and 

mechanistic [226]; and, Whiting and Buchanan by the number of variables considered 

in the mathematical expression as primary, secondary and tertiary [227]. 
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The last and most accepted classification of mathematical models is based on cell 

growth as structured or unstructured and segregated or non-segregated models [228]. 

A structured model attempts to describe intracellular processes in structural and 

physiological senses. However, cell behaviour is not completely understood, so a 

structured model in not applicable to the most bioreactions studied. Thus, the global 

relationships between cells and culture conditions are described with unstructured 

models. Segregated models consider different stages of the cell cycle in a precise 

moment of the culture without structuring the cell composition. Figure 1.2 shows the 

differences between these kinds of models. 
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Figure 1.2. Mathematical models. A: total cell biomass, B: cell 
parts, C: biomass parts and D: biomass and cell parts. 
Adapted from [222]. 

1.5 Estolides 
Nowadays estolides (EST) are defined as a class of polymeric molecules containing 

an unsaturated bond or hydroxyl group bonded to a carboxyl moiety of another acyl 

group. In 1920, Grund and co-workers were the first to coin the term estolides to define 

a mixture of esters of higher alcohols and acids produced from the oxidation, with air, 

of pentatriacontane, an hydrocarbon of 35 carbons [229]. Grund was also the first to 

use castor oil, the main source of RA (12-hydroxystearic acid) to obtain esters, ESTs, 

with a molecular weight above 3000 Da and describe the technical properties of this 

product [230]. Later, Bauer explore the possibility to use unsaturated fatty acids, α- and 

β-eleostearic acids [231], polyhydroxy acids, two different dihydroxystearic acids [232], 

and, OA [233] to chemically produce ESTs. 

In the following two decades, ESTs became an interesting group of chemicals. They 

were used, with lactones, lactides and esters, as a source of HFAs [234]; and, their first 
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applications as demulsifying agents [235], resinous compounds [236], highly elastic 

products [237], lubricants or additive agents in lubricants [238], plastizicers [239] or 

antifoamers [240] were developed. 

Between 1950 and 1970 efforts were focused on searching new properties and 

applications of ESTs as: gelled products [241], stabilizers and emulsifying agents [242], 

surface-active compounds [243], improved lubricating greases [244-246], and, 

intermediates in polyurethane synthesis [247]. Moreover, first’s exhaustive studies of 

the reaction conditions on EST synthesis were carried out using 12-hydroxy-

octadecanoic acid [248] and castor oil [249-251] as raw materials or including their 

thermal decomposition was studied [252]. Ten years later appeared the first publication 

using an spectroscopic technique, NMR, to determine the presence of ESTs [253]. 

In the following twenty years, no great advances were achieved in the synthesis of 

ESTs. Their synthesis from n-decane [254] or heated soybean oil [255] and the 

production of triglyceride-ESTs were the most important breakthroughs. Even ESTs 

applications seemed stagnant as emulsifiers [256], lubricants [257-259], antiwears 

[260] or plastiziers [261].  

1.5.1 Estolides in nature 
EST natural sources are mainly focused in the vegetal kingdom in minuscule 

quantities amounts. ESTs were found in the epicuticular wax of differents species of 

genus Juniperus [262, 263], Pinus [264-267], Picea [268] or Coniferae [269] and in the 

wax leaf of some conifers and allied orders [270-272]. There are also found in the cutin 

of plants [272], in oat kernels [273] and in oils of certain plants and fungi [274] and, 

even were detected in stored wheat flour, causing rancidity [275]. ESTs are rarely 

found in animal kingdom, but there are minute amounts in woolwax [276], beewax, 

sperm whale [277], in the defensive lipids from the glandular hairs of a caterpillar, 

Pieris rapae [278] and in human meibomian gland secretions [279, 280]. 

It is well know that HFA are suitable substrates for the synthesis of ESTs and can be 

found in high concentrations in seed oils of several plants: Euphoibiaceae, 

Brassicaceae, Cruciferae, Limmanthaceae, Compositae, Lesquerella cited in [281] and 

Umbelliferae [282]. 

1.5.2 Chemical synthesis 
As stated before, in 1991 chemical synthesis of ESTs started to gain relevance. 

Robert Kleiman was the promoter in this field; but, Terry A. Isbell and Steve Cermak 

are being the reference in chemical synthesis of ESTs using seed oils from plants as 

substrates. 
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The first works were carried out using meadowfoam fatty acids (mainly C20:1 

60.7%, positional and geometrical isomers), oleic acid (C18:1 n-9 90.4%) and 

sunflower oil (C18:1 n-9 72.6%) with inorganic strong acids, as perchloric, sulphuric, or 

even clays as catalyst at temperatures of 250ºC [283]. Such high temperatures 

produced undesirable products from branching, isomerization or lactonization reactions 

[284]. For avoiding these unwanted products and increasing EST yield (28%), reactions 

took place under an atmosphere of nitrogen [285]. It was in 1997 when reactions with 

OA were carried out using sulphuric acid as catalyst, at lower temperatures (55ºC) and 

reaction times were reduced to six hours achieving yields of 75% [286].  

Later, EST 2-ethylhexyl esters were synthesized from meadow and cramble oils 

(erucic acid; C22:1 n-9 57.5%) to improve the lubricant properties of ESTs [287]. Pour 

points and kinematic viscosity values were enhanced compared with normal ESTs. 

Apart from that, the possibility of using saturated substrates or hydrogenated ESTs was 

explored for obtaining better lubricating properties [288, 289]. Another innovation was 

the use of lesquerella oil (C20:1 hydroxy 55.4%) [290]; coconut oil (C12:0 48.3%) [291]; 

cuphea oil (C10:0 65.6%) [292]; tallow (C18:1 n-9 43.3%) [293]; and, coriander oil 

(petroselenic acid; C18:1 n-12 73.5%) [282] as substrates for synthetizing a new brand 

of vegetal oil-based lubricants with superior cold temperature performance than those 

synthetized before. 

Finally, a new class ESTs are being produced recently: sulfo-ESTs, epoxidized-

ESTs and sulfirized-ESTs. Sulfo-ESTs are compounds with surfactants properties 

which are presented a in high efficiency formulations of laundry detergents [294, 295]. 

Expoxidized- [296] and sulfurized-ESTs have antiwear, lubricant and plasticizing 

properties [297]. Apart from that, two new ways of producing ESTs have appeared in 

scene offering unknown possibilities: the use of microwaves [298] and cross 

metathesis [299, 300]. 

1.5.3 Enzymatic synthesis 
Although Okamura and co-workers accidentally synthesized ESTs using a 

Geotrichum cadidum lipase during the hydrolysis of castor oil [301], Yamaguchi and 

collaborators were the pioneers in producing ESTs from castor oil using lipases [302]. 

Later, they reported the importance of controlling the amount of water present in the 

reaction media and showed the advantage of immobilizing the lipases; the reaction 

yield was improved, and the product obtained reached acid values (AV) of 40 [303-

305].  

Since RA ESTs applications arose, different strategies have been proved: (i) 

improving the immobilizing carriers [305, 306]; (ii) encapsulating lipases in a reverse 
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micelle [307]; and (iii) from 1997 to 2009, optimized reaction conditions in a bioreactor 

to increase the quality and quantity of ESTs production were reported [308-311]. 

Likewise, molecular sieves have been employed to adsorb water released during 

polycondensation in order to shift thermodynamic balance [312]. Several other 

methods, such as air drying [308], nitrogen bubbling, vacuum pressure, or a 

combination of these two, have also been employed [313].  

Recently, organic apolar solvents have started to be used as part of the reaction 

media in enzymatic reactions [314]; even, in ESTs synthesis [281]. However, organic 

solvents reduce synthetic stability of enzymes and mass transfer rates when substrates 

are not totally solubilized; hence, solvent-free systems have gain attention in the 

synthesis of ESTs due to they allow higher volumetric production than organic media, 

enzymes are easily separated from products and unreacted substrates. Furthermore, 

the absence of solvents makes the processes environmentally friendly [315]. 

1.5.3.1 Selectivity of lipases 
Lipases, triacylglycerol acylhydrolases (EC 3.1.1.3) are ubiquitous enzymes of 

considerable significance industrial potential; especially, in modern organic chemistry 

for production of chiral building blocks [206]. Lipases have been used for modification 

of fats and other kind of lipids by hydrolysis, esterification, transesterification or 

interestification. The utility of lipases is directly related with their ability to discriminate 

between particular fatty acids. 

Table 1.3. Lipases specificity over different cis/trans double bonds. 
Positional specificity Substrate Cite 

cis-4 all cis-4,7,10,13,16,19-docohexaenoic acid [316] 
cis-5 all cis-5,8,11,14,17-eicosapentaenoic acid [317] 
cis-6 cis-6-octadecenoic acid [317] 

 all cis-6,9,12,15-octadecatetraenoic acid  
 all cis-6,9,12-octadecatrienoic acid  

cis-8 all cis-8,11,14-eicosatrienoic acid [318] 
cis-9 cis-9-octadecenoic acid [318] 

 all cis-9,12,15-octadecenoic acid  
cis-11 all cis-9,11-octadecadienoic acid [319] 

 cis-11-eicosenoic acid [320] 
cis-12 all cis-9,12-octadecadienoic acid [321] 
cis-13 cis-13-docosenoic acid [320] 
cis-15 all cis-9,12,15-octadecatrienoic acid [321] 
trans-2 ̶ [322] 
trans-3 trans-3-hexadecenoic acid [323] 

 trans-3-octadecenoic acid  
 trans-3-cis-9,12-octadecatrienoic acid  

trans-6 trans-6-octadecenoic acid [316] 
trans-9 trans-9-octadecenoic acid [321] 
trans-10 trans-10,cis-12-octadecadienoic acid [324] 
trans-12 all trans-9,12-octadecadienoic acid [321] 
trans-15 all trans-9,12,15-octadecatrienoic acid [321] 
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There have been several works studying the selectivity of lipases towards 

unsaturated fatty acids having different positions of cis/trans double bonds summed up 

in the Table 1.3. The source of lipases used in these studies was very varied, from 

microorganisms, fungus specifically (Candida antarctica, Candida cylindracea, 

Geotrichum candidum, Mucor miehei, Rhizopus arrhizus, Rhizomucor miehei), to 

higher plants (Brassica napus, Carica papaya) through animals (porcine and human 

pancreatic lipases). 

1.6 Fatty acid ethyl esters 
Fatty acid ethyl esters (FAEE) are versatile group of compounds found in very 

different fields due to the number of carbons and instaurations and the presence of 

other functional groups along the fatty acid chain.  

Since 1981, a huge number of references, articles and reviews, has been published  

about FAEE as non-oxidative metabolites of ethanol intake [325, 326]. Long-chain 

FAEE (mainly ethyl palmitate, stearate, oleate, linoleate and arachidonate)  have been 

described as toxic metabolites because of their negative effect on intestinal epithelial 

barrier [327]; on pancreas [328]; oral tissues [329]; immune system [330]; on 

mononuclear cells [331]; myocardial tissue [332]; platelets [333]; hepatic cells [334]; on 

skeletal muscles [335]; atherosclerosis [336]; on erythrocyte morphology and stability 

[337]; and, brain [338]. Furthermore, FAEE have been described as biomarkers of 

ethanol intake in hair [339] and skin surface lipids [340] on adult people for drug 

analyses [341] or in forensic medicine [342]; and, in meconium of newborns to 

determine alcohol consumption during maternal pregnancy [343]. 

In contrast, volatile FAEE are odorants in important alcoholic beverages like wine 

[344, 345], cider [346], whisky [347, 348], white rum [349] and vodka [350]. Depending 

on the liquor, short- (C2-C5), medium-chain (C6-C12) FAEE or both are found in 

different proportions. 

ω-3 FAEE, particularly ethyl esters from eicosapentanoic and docohexaenoic acids, 

the two main PUFAs, have been extensively prescribed as dietary supplements in 

order to reduce cardiovascular risk [351], hypertriglyceridemia [352-354], inflammation 

of atherosclerotic plaques [355] and were evidenced to improve arterial stiffness in 

obese people [356]. Recent studies indicate that ω-3 PUFAs show serious potential as 

tumor sensitizing agents, improving drug delivery effectiveness in cancer treatment 

[357] and play an important role in the prevention of certain types of cancer [358, 359], 

such as breast [360-362] and colorectal cancers [363-365]. Moreover, ω-3 PUFAs have 

been show evidence of beneficial health effects in bone metabolism [366], joint 
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pain/swelling [367], brain function during aging [368] and psychiatric conditions (e.g. 

depression or bipolar disorder) [369, 370].  

The main source of ω-3 PUFAs and FAEEs is fish oil (e.g. mackerel, herring, 

sardines, salmon or tuna oil); even though, can be acquired from other sources as 

microalgae, krill oil or plants [371]. Different methods have been used to enrich fish oil 

to obtain highly purified ω-3 PUFAs and FAEEs oil. Ionic liquids containing aromatic 

rings [372], molecular distillation [373], supercritical carbon dioxide fractioning [374], 

urea complexation followed by high-vacuum rectification [375], silver-ion membranes 

[376] and supercritical fluid extraction of FAEEs in aqueous silver nitrate solutions [377] 

were used.  

Finally, ω-3, ω-6, ω-7 and ω-9 FAEEs have been described a novel bioactivity 

against oral pathogens [378, 379]. 

1.6.1 Enzymatic synthesis 
Production of FAEEs by lipases is clearly oriented to biodiesel. Biodiesel is an 

alternative energy source to conventional fuel. It combines environmental friendliness 

with biodegradability, low toxicity and renewability. Different kinds of feed-stokes can 

be used for biodiesel production. The choice of the source depends largely on the 

country and its climate [380] and also economics [381]. Thus, feed-stokes can be 

divided in three groups: i) virgin oils as soybean, rapeseed, canola, palm, corn, 

sunflower, cottonseed, peanut and coconut oil; ii) animals fats as beef tallow, chicken 

fat; and, iii) aquatic plants as algae and microalgae or Chlorella vulgaris which can 

produce 39% (w/w) of biomass rich in OA [382]. 

Enzymatic production of biodiesel is focused in the versatile activity of lipases, which 

facilitates the simultaneous catalysis of triglycerides and fatty acids by 

transesterification or esterification [383]. Moreover, enzymatic process can be operated 

at relatively low temperatures and atmospheric pressure, reducing energy consumption 

[384]. Considerable efforts have been made to increase bioreaction yields and different 

reaction medium have been assayed: the use of a co-solvent, tert-butanol blended with 

ethanol or methanol, with the aim of reducing oil viscosity and dissolving glycerol 

byproduct [385]; a salt-solution-based reaction system for maintaining an acceptable 

concentration of the alcohol [386]; supercritical carbon dioxide for enhancing mass 

transfer [387]; ionic liquids as reaction solvents as an alternative to volatile, toxic and 

flammable organic solvents [384]; or, solvent-free systems [281]. 
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The objectives of this work are: 

1. The optimization of hydroxy-fatty acids production from oleic acid in 

bioreactor: 

a. Designing a new aeration system for increasing trans-hydroxy-fatty 

acid production. 

b. Modelling the oxidation of oleic acid by Pseudomonas aeruginosa 

42A2 in bioreactor. 

2. Synthesis of a new family of estolides and other derivates, ethyl esters, from 

trans-hydroxy-fatty acids: 

a. Explorining different strategies for enzymatic synthesis of these 

compounds. 

b. Developing analytical and structural determination methods for 

detecting these products. 
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3.1 Microorganism and culture conditions 
3.1.1 Microorganism 
The microorganism used in this work was Pseudomonas aeruginosa 42A2, a 

gramnegative bacillus isolated from an aqueous sample contaminated with oily wastes. 

Initially it was registered as Pseudomonas sp. 42A2 NCIMB 40045 in the National 

Collections of Industrial and Marine Bacteria Ltd, Aberdeen, UK. Lately, it was 

identified as Pseudomonas aeruginosa by means of the ribosomic RNA sequencing of 

the 16S gene (reference AJ309500, Genbank). A hundred per cent homology was 

obtained with Pseudomonas aeruginosa PA01 16SrRNA gene [388]. The strain was 

preserved frozen, -80ºC, in cryobilles (AES CHEMUNEX S.A., Terrassa, Spain). 

3.1.2 Culture media 
The culture media used was a mineral media (MM1) composed of (g·l-1): CaCl2 

(0,01), NaNO3 (3,5), K2HPO4 (2,0), KH2PO4 (1,0), KCl (0,1), MgSO4·7H2O (0,5), 

FeSO4·7H2O (0,012) and 0,05 ml·l-1 of trace elements solution. Salt solutions were 

prepared hundred fold more concentrated than the final concentration indicated above. 

They were separately sterilized in an autoclaved (1 atm, 30 min, 121 ºC) for avoiding 

salt precipitation. Trace elements solution had the following composition (g·100 ml-1): 

H3BO3 (0,148), CuSO4·5H2O (0,196), MnSO4·H2O (0,154), Na2MoO4·2H2O (0,015), 

ZnSO4·7H2O (0,307). These were dissolved in distilled water and the solution was 

sterilized by filtration. 

Technical grade oleic acid (OA), 90% (Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany) was used as carbon source in this work. 20 g·l-1 of OA, 2% (v/v), were 

needed for the pre-inoculum and part of the bioreactor culture media preparations. In 

the bioreactor experiments, OA initial concentration was 10, 15 and 20 g·l-1 (1, 1.5 and 

2% (v/v), respectively), as stated in the text. 

3.1.3 Inoculum 
Inoculum preparation differed for baffled shake flasks or bioreactor cultures. In the 

baffle-shake flasks (Anorsa, Barcelona, España), pre-inoculum was prepared from a 24 

h solid nutritive TSA (Trypticase Soy Agar; Pronadisa, Barcelona, España) culture of P. 

aeruginosa 42A2 at 30ºC. Biomass was resuspended in 5 ml of NaCl sterilized solution 

(0.9% w/v; Panreac Química S.A., Castellar del Vallès, España). Suspension was 

adjusted to an optical density of 2.0±0.2 at 540 nm. Optical density was measured with 

a PharmaSpec UV-1700 series spectrophotometer (Shimadzu, Kyoto, Japan). Baffled 

shake flasks with 200 ml of culture media were inoculated with a 4ml-bacterial 

suspension, 2% (v/v).  
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In the bioreactor experiments, inoculum was obtained from the biomass generated 

in overnight cultures in 1l-baffled-shake flasks. Cultures were incubated for 18 h at 

30ºC in an orbital shaker. Inoculum was obtained from 400 ml of culture media. Cells 

were harvested by centrifugation (14,700×g for 30 min at 4ºC; Centrikon T-124, 

Kontron, Madrid, Spain) and resuspended with NaCl 0.9% (w/v) at 2% (v/v) to an 

optical density of 2.0±0.2 at 540 nm prior to inoculation into the bioreactor. A 40 ml 

bacterial suspension was inoculated per two liters of culture media, 2% (v/v). 

3.1.4 Baffled shake flasks 
1l-baffled-shake flasks, with a working volume of 200 ml, were covered with 

hydrophobic cotton. Prior to use, baffled shake flasks were sterilized with 180 ml of 

distilled water in autoclave (1 atm, 30 min, 121 ºC; Darlab K-400, Rubilabor, Rubi, 

Spain). Then, mineral salts, carbon source and inoculum were added. Flasks were 

incubated at a temperature of 30ºC in an orbital shaker, 150 rpm, during 18 h. 

Preparation of part of the culture media used in the bioreactor cultivations was 

obtained from cultures with 2l-baffled-shake flasks covered with hydrophobic cotton. 

The final working volume was 500 ml. Baffled shake flasks were sterilized previously 

with 450 ml of distilled water in autoclave (1 atm, 30 min, 121 ºC). After that, mineral 

salts, carbon source and inocula were added. Baffled shake flasks were incubated at 

30ºC during 48 h in an orbital shaker, 150 rpm. 

3.2 Bioreactor 
Bioreactor, with the volume of distilled water needed for a final working volume of 

two liters, was sterilized with dissolved oxygen and pH probes; the last one, previously 

calibrated with the pH 7 and 9 buffer solution from Mettler Toledo (Urdof, Switzerland). 

After introducing in the reaction vessel the culture media from the 2l-baffled-shake 

flasks (two thirds of the working volume), mineral salts and carbon source were added; 

set points were established in the control unit. Then, one stream of the culture media 

was pumped through the wetted wall column (WWC) to proceed the calibration of the 

dissolved oxygen probe. Finally, the inoculum was aseptically added to the reaction 

media through one of the reaction tank ports. 

All experiments were carried out at 30ºC. Temperature was automatically 

maintained by means of the control unit. Likewise, pH was maintained at 7.00±0.01 

with the addition of 2M NaOH and HCl solutions (Panreac Química S.A., Castellar del 

Vallès, Spain). The basic and acidic solutions were aseptically supplied with two 

peristaltic pumps controlled by of the control unit of the bioreactor. Volumetric air flow 

was set up between 2.5 and 7.5 l·min-1. Dissolved oxygen was measured with its 
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corresponding probe and set up at 30%; this value was kept constant through the 

stirring speed and air flow control by the control unit. Air flow was enriched with pure 

oxygen (Carburos Metálicos, Barcelona, España) when needed. 

3.2.1 Biostat® B 2 L bioreactor 
A Biostat® B 2 L bioreactor system (Sartorius Stedim, Melsungen, Germany) was 

used for producing hydroxy-fatty acid (HFA) by P. aeruginosa 42A2. It is a compact 

reaction systems equipped by a stirred tank reactor and a supplied control unit which 

ensures the automation of the process. 

 

 
 

 

 

 
 

 
 
 
 

 
Figure 3.1. Biostat® B 2 L bioreactor. 

 

3.2.1.1 Control unit 
The control unit contains the thermostate system, which allows the water flow 

through the jacket of the culture vessel, and all installations required for power supply, 

the supply of cooling water, pressurized air and oxygen and waste water removal. 

The upper front panel contains the operating terminal of the control system and in 

the lower front panel includes the main control switch, the fill-thermostate switch, a 

flowmeter for the control of the air supply and four peristaltic pumps. On the left side of 

the control unit all conectors for the supplies of the culture vessel are integrated: 

thermostate, cooling water, air, exhaust cooler, mains supply, power supply to stirring 

motor and sockets for electrodes and peripheral units. 

Thermostatting system includes a 600W electric heater. The operational 

temperature range is 0-60ºC. Stirring system includes a 180 W electronic motor. Two 

Rushton impellers were mounted to the stirrer shaft. Operational range is 50-1200 rpm. 

Air flow is regulated by an electrovalve and, at the same time, it is controlled for the 
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set-point values. The Microbiology laboratory has an air compressor which supplies the 

needed air to the reaction system. Control unit has a mixing gas system for enriching 

the air flow when needed. In the outlet gas stream there is an air filter (Ø 50 mm, 0.2 

µm; Millex®-FG, Bedford, USA) for supplying sterilized air to the WWC. Air flow range is 

2.5-7.5 l·min-1 and was enriched with oxygen (Carburos Metalicos, Barcelona, Spain) 

when needed. 

3.2.1.2 Culture vessel 
Culture vessel is a jacketed stirred tank of 2l working volume. It was made of 

borosilacate glass and the standard stirrer driven vessel have a height:diameter ratio of 

about 2:1. The vessel has four integrated side entry ports in the head space for acces 

to the interior culture vessel. The top-plate is connected to the upper flanged ring of the 

glass vessel with knurled screws. The top-plate contains several ports for assembly of 

electrodes and accessories. In addition four tubing connectors are welded into the top 

plate. The culture vessel is mounted into a supporting frame. Two handles allow easy 

transport. The holder of the storage bottles for addition solutions are welded to the 

bottom support. The vessel has an internal concave bottom section; this design was 

proven in fermentations of microorganisms and animal cells. All parts in contact with 

the medium were made of stainless steel 1.4571 and the O-rings consist of EPDM 

(ethylene-propylene diene monomer). 

Biostat® B used in this work has: a temperature probe Pt-100/200-4 (Sartorius 

Stedim, Melsungen, Germany); a 405-DPAS-SC-K8S/200 pH electrode from Mettler 

Toledo GmbH (Urdof, Switzerland); a dissolved oxygen probe 12/200 model 82 (Mettler 

Toledo GmbH, Urdof, Switzerland); and, level and foam probe are conductive 

electrodes model 884446/1 (Sartorius Stedim, Melsungen, Germany). 

3.2.1.3 Control systems 
Biostat® B bioreactor possesses different PDI (proportional-derivative-integral) 

control systems which are integrated in the control unit. Operating data were entered at 

the functional keyboard of the operator terminal in the upper front panel of the control 

unit. The integrated software offers all functions necessary for fermentor operation 

such as measurement and control of the parameters, the calibration of electrodes and 

the integrated pumps and the signal transfer from/to peripheral equipment. 

Standard measurement and control functions were temperature, stirring speed, pH-

value, dissolved oxygen, foam, level, air flow and volumetric flow of two different 

substrates. After power down, the system automatically restarts with the settings 
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before. If the interrupt takes longer than an adjustable failtime, the system proceeds as 

switching off by the main switch. 

Moreover, a computer was connected to the control unit in which MFCS/win 2.0 

software (Sartorius Stedim, Melsungen, Germany) was installed. This computer 

program allowed controlling the fermentor. It was used to save experimental data of the 

controlled variables and visualize online their values. 

3.2.2 Aeration system 
A non-dispersative aeration system was design to avoid the foam formation. The 

aeration was accomplished adapting a WWC. The design of the WWC was projected 

according to a mathematical model in which the objective variable was the time of 

exposure, te, of the Penetration Theory of Higbie [389]. For a given te, the liquid-phase 

mass-transfer coefficient in water, (kL)W, could be calculated using Equation 1: 

e

O2H2O
WL

t·
D2)k(

π
=

−         (1) 

where the diffusion coefficient of oxygen (O2) in water (H2O), DO2-H2O, is calculated 

according to the following expression, obtained from experimental data [390]: 

2)273T(910·59.3)273T(710·95.3510·14.1D O2H2O −−+−−+−=−   (2) 

according to the findings of Llorens and coworkers [391], (kL)W should be corrected 

because of the presence of a biosurfactant, (7S,10S)-DiHOME, in the culture media by: 

WLML )k()k( ⋅ψ=          (3) 

where ψ is the ratio between liquid-phase mass-transfer coefficients [391] and gets the 

value of 0.41 for an interfacial pressure (π’) greater than 0.016 N·m-1 [391]. π’ is the 

difference between the surface tension of water, 0.072 N·m-1, and the one of the 

culture media with biosurfactant, 0.030 N·m-1 [392]. 

From a mass balance in a dilute absorption system, the contact surface between the 

gas and liquid phases is given by: 

∫
−ρ⋅

=
2

1
eqWML

x

x xx
dx

)k(
LS         (4) 

where xeq is the molar fraction of oxygen in the equilibrium, x1 is molar fraction of 
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Figure 3.2. Scheme of the wetted wall 
column. L: molar flow of the stream 
through WWC. LDO i: Luminescent 
dissolvent oxygen probe in the position i 
of the WWC. xi: molar fraction of oxygen 
in position i of the stream L. 

 

 

 

 

 

 

 

oxygen in the stream of culture media saturated of oxygen that leaves the WWC; and, 

x2 is the stream that enters in the column and leaves the batch reactor, Figure 3.2. It 

was considered the assumption that all supplied oxygen in the WWC is consumed in 

the reactor, thus from a mass balance: 

2
2O

1 x
L

qx +=                     (5) 

where qO2 is oxygen requirements of bacteria and L is the molar flow of the stream that 

is oxygenated in the WWC. Integrating Equation 4 as a logarithmic mean, the following 

expression is obtained: 

2eq

1eq

2eq1eq

21

WML

xx
xxln

)xx()xx(
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LS

−
−

−−−
−

ρ⋅
=       (6) 

in which S is the outside surface of a 15 mm-outside-diameter cylinder. The 

mathematical process ends with the calculation of the height of the cylinder from the 

obtained te and (kL)M throughout the following formulas [393], to ensure that the outside 

surface is large enough: 

3
g·2L·

2'··2d·2·3h
3
2t W

e

ρ

ρµπ
⋅=        (7) 
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3.2.3 kLa determination 
Volumetric mass transfer coefficient (kLa) was determinated using static gassing out 

method. Reactor vessel was filled with two liters of distilled water; then the vessel was 

fluxed with pure nitrogen (Carburos Metalicos, Barcelona, Spain) until all oxygen was 

displaced from the media. At that point stirring, peristaltic pump (Ecoline VC380; 

Ismatec, Badalona, Spain) and air flow were connected. Dissolved oxygen 

concentration was measured with the probe described in section 3.2.1.2 and data were 

recorded by MFCS/win 2.0 software, section 3.2.1.3, for its ulterior processing. The 

increase in dissolved oxygen concentration (CO2(t)) is given by: 

( )(t)C*Ca·k
dt

dC
O2L

O2
−=         (9) 

where C* is the dissolved oxygen concentration in the equilibrium at working 

temperatute, 30ºC. Integrating Equation 9 the following expression is obtained, 

Equation 10: 

( ) ta·k(t)C*Cln LO2 ∆−=−         (10) 

kLa is the slope of a line when ( )(t)C*Cln O2−  is represented versus ∆t, Equation 10. 

3.3 Growth measure and production parameters 
3.3.1 Biomass determination 
Biomass (g·l-1) was determined gravimetrically as dried weight (X). An aliquot 5 ml, 

of the culture was withdrawn aseptically and centrifuged at 8000 rpm for 15 min. 

Afterwards, supernatant was discarded and biomass was washed with Milli-Q water or 

with a mixture of Milli-Q water:n-hexane (9:1) to remove residual carbon source. The 

cells were centrifuged again, resuspended in 2 ml of Milli-Q water and dried at 100ºC 

for 24 h in preweighed tubes. 

Concurrently, protein content was determined following the modified Lowry’s method 

from Bio-Rad (Bio-Rad DC Protein Assay, El Prat de Llobregat, España). Samples 

were analysed over a 96-well plate (Sterilin Limited, Newport, UK) to calculate their 

absorbance with a plate reader (Bio-Tek Instruments Inc. ELx800, Winoosky, USA). 

This plate reader was connected to a computer in which a computer programme (Bio-

Tek Instruments Inc., Winoosky, USA) allows the display and/or storage of the 
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experimental data. Protein quantitative determination was calculated using a calibration 

curve with bovine albumin supplied in the same kit. 

3.3.2 Nitrate ion determination 
Residual nitrogen source determination was carried out by quantification of nitrate 

ion concentration in the culture samples supernatant. After centrifuging the culture 

media aliquots, supernatants were analysed with QUANTOFIX® Nitrate-Nitrite test 

strips (Mancherey-Nagel GmbH & Co. KG., Düren, Germany). Nitrate concentration 

range was 10-500 mg·l-1. When was needed, dilutions of the supernatant samples were 

done with Milli-Q water. 

3.3.3 Phosphate ion determination 
Residual nitrogen source determination was carried out by quantification of 

phosphate ion concentration in the culture samples supernatant. After centrifuging the 

culture media samples, supernatants were analysed with QUANTOFIX® Phosphate test 

strips (Mancherey-Nagel GmbH & Co. KG., Düren, Germany). Phosphate 

concentration range was 3-100 mg·l-1. When was needed, dilutions of the supernatant 

samples were done with Milli-Q water. 

3.3.4 Hydroxy-fatty acids quantification 
A 2ml-supernatant sample was acidified with concentrated HCl until pH-value was 2. 

Then, two liquid organic extractions were carried out with 1ml of ethyl acetate (Fisher 

Scientific UK, Loughborough, UK). Phases were mixed through a REAX top 541 test 

tube shaker (Heidolph, Schwabach, Germany) and separated by centrifugation at 

10,000 rpm for 3 min. Organic phase was separated by means of a Pipetman Classic 

P1000 adjustable-pipette (Gibson, Middelton, USA). 

Quantitative analysis of OA, (10S)-HPOME, (10S)-HOME and (7S,10S)-DiHOME 

was carried out by liquid chromatography in a Shimadzu LC-9A Chromatograph (Kyoto, 

Japan). Samples were injected into the HPLC with a Sedex 55 light-scattering detector 

(Sedere, Alfortville Cedex, France) equipped with a Tracer Excel 120 C8 5µm column 

(150×4.6 mm) (Teknokroma, Sant Cugat del Vallès, Spain). Optimal separation was 

achieved with an elution gradient using A, acetonitrile (Fischer Scientific UK, 

Loughborough, UK) (0.1%, v/v acetic acid), and B, water (0.1%, v/v acetic acid), at a 

flow rate of 1 ml·min−1. The gradient (time (min), %B) used was as follows: (0, 70), (10, 

0), (15, 0), (20, 70), and (25, 70). The injection volume was 20 µl. A known homemade 

standard of each HFA and substrate was used to identify the retention times and to 

quantify the samples over a calibration curve. LabSolutions LCsolution (Shimadzu, 

Kyoto, Japón) was employed to manipulated chromatogram methods. 
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3.3.5 Yield coefficients determination 
The oxidation of OA into (10S)-HOME and (7S,10S)-DiHOME by P. aeruginosa 

42A2 could be described by two semireactions in series: 

232 COHPOME)S10(XNOOOA +−+→−++     (11a) 

2
cteX

2 CODiHOME)S10,S7(HOME)S10(OHPOME)S10( +−+− →+− =  (11b) 

in which (10S)-HPOME is considered an intermediate of the global process: 

→−++ 32 NOOOA  

2CODiHOME)S10,S7(HOME)S10(HPOME)S10(X +−+−+−+→  (12) 

From the experimental set of data, the following yields , ΥX/OA, Υ(10S)-HPOME/OA, Υ(10S)-

HOME/(10S)-HPOME and Υ(7S10S)-DiHOME/(10S)-HPOME, were determinated using the Equation 11 as 

first order regression fitting: 

z
z

z
i

i
i

MM
C

MM
C ∆Υ=∆         (13) 

where z is OA or (10S)-HPOME. Yield of CO2 on OA, ΥCO2/OA, for the first semireaction, 

and the yield of CO2 on (10S)-HPOME, ΥCO2/(10S)-HPOME; for the second one, were 

calculated from a C-mol macroscopic mass balance [394], Equation 14. 

1
z

i∑ =Υ           (14) 

and yield coefficients of O2 on substrate for each semireaction, ΥO2/OA and ΥO2/(10S)-

HPOME, were calculated from a redox balance for each semireaction, where א is the 

redox number of each compound: 

∑ =ℵ⋅Υ 0iz
i          (15) 

Yield coefficient of NO3
- on OA, ΥNO3/OA, was determinated from a nitrogen 

macroscopic mass balance [394], where the molecular formula of biomass is 

CH1.78O0.54N0.21P0.022. 

OA
X

OA
NO

Υ⋅=Υ 21.0
3

        (16) 

later, all the yield coefficients were refined by fitting with the simulation software, 

section 3.4.1.  
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Finally, volumetric productivity (PV) for each product (j) was calculated in g basis and 

C-mol basis, Equation 17: 

 ( )
t·MM

ΔCP
j

j
jV

∆
=          (17) 

3.3.6 Specific oxygen uptake rate 
Specific oxygen uptake rate (sOUR) was determinated by means of two luminescent 

dissolved oxygen probes (LDO 10103; Hach Lange, Alella, Spain) connected a digital 

two channel  multi meter (HQ40D; Hach Lange, Alella, Spain). Data were recorded in a 

USB memory in intervals of 1 min during whole batch process. Oxygen probes were 

installed in tubings that connected WWC and bioreactor vessel to determine dissolved 

oxygen concentration at the entrance and exit of the WWC, Figure 3.2. Probes 

measured dissolved oxygen concentration in mgO2·l-1. sOUR was calculated as follows: 

stX
OURsOUR =          (18) 

where Xst is the biomass in the stationary phase and OUR is calculated with Equation 

19. 

t
)C()C(OUR 22O12O

∆
−

=         (19) 

where (CO2)i are the oxygen concentrations measured by LDO probes in the 

corresponding position of the WWC, Figure 3.2. 

3.4 Modelling the hydroxy-fatty acids production 
3.4.1 Kinetic parameters determination procedure 
Different kinetic models were used to correlate the substrate concentration with 

microbial growth rate, µ versus S, with or without substrate inhibition and product 

formation. AQUASIM® (Swiss Federal Institute for Environmental Science and 

Technology, Dübendorf, Switzerland), a simulation software program, was used to 

determine the kinetic constants through the simulation of the experimental sets of data. 

AQUASIM® uses simplex minimization algorithm for minimizing the sum of the squares 

of the weighted deviations between experimental data and calculated model results, χ2. 

All data used with AQUASIM were expressed in C-molar basis.  

3.4.2 Mathematical model 
From the first semireaction, Equation 11a, the variation of X, OA and (10S)-HPOME 

concentrations with time could be described by the following expressions, respectively: 
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X1
X ·Cμ

dt
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=          (20) 
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and for the second semireaction, Equation 11b, where (10S)-HPOME is the substrate 

for the production of (10S)-HOME and (7S,10S)-DiHOME the following Equations are 

stablished:  

HPOME(10S)
HOME(10S) k·C

dt
dC

−
−

=        (23) 

X2
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HPOME(10S)
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Υ
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−
−

−
=     (24) 

and combining Equation 19, 20 and 21 could be obtained the variation of concentration 

of the hidroperoxide compound with time over the whole process: 

−−= −

−

−
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where µ1 and µ2 are the different kinetic models, Table 3.1, and the subindex refers to 

the corresponding semireaction of the process. 

Table 3.1. Kinetic models. 
Without substrate inhibition With substrate inhibition 
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3.5 Estolide production 
3.5.1 Monomer purification 
At the end of cultivation, the culture was centrifuged (14,700×g for 30 min at 4ºC), 

the supernatant was acidified to pH 2.0 with 37% HCl (Panreac, Castellar del Vallès, 

Spain), and two extractions were performed with a half volume of ethyl acetate (Fisher 

Scientific UK, Loughborough, UK). The organic phase was dried over an anhydrous 

sodium sulfate filter (Panreac, Castellar del Vallès, Spain), and the solvent of the 

combined extracts was evaporated with a rotary evaporator (Bücchi, Postfach, 

Switzerland), resulting in a yellow oil. Organic extracts were kept in vials at 4ºC under 

nitrogen to prevent further oxidation. The (10S)-HOME and (7S,10S)-DiHOME were 

purified by flash-chromatography in a glass column (50 cm long, 3 cm i.d.) filled with 

silica gel 60 (0.040–0.063 mm, Merck, Madrid, Spain). The mobile phase used was 

formed by n-hexane:diethyl ether:methanol (80:20:7; v:v:v) and a stream of nitrogen 

(Carburos Metalicos, Barcelona, Spain) was applied to obtain the purified products. 

The purified products were kept at 4ºC under nitrogen, as stated above. 

3.5.2 Estolide production from in (10S)-HOME in n-hexane 
3.5.2.1 Measurement of the reaction yield 

The reactions were monitored by titration to determine the acid value (AV) of the 

samples. After evaporating the organic solvent, a 30-mg aliquot of the reaction mixture 

was dissolved in 8 ml of absolute ethanol and diethyl ether (1:1 v/v). Titration was 

carried out with 0.05 M KOH, using phenolphthalein as the indicator. All samples were 

analysed in triplicate. The AV and the reaction yield were calculated as follows, 

Equation 26:  

( ) ·100
AV

)AV(AV
%η

substrate

productsubstrate −=       (26) 

3.5.2.2 Effect of the enzyme concentration 
Different quantities of Novozym 435, 0.3 to 1.5 g, were assayed in order to obtain 

the optimal amount of enzyme with 0.6 g of (10S)-HOME in 20 ml of n-hexane in a 100 

ml Erlenmeyer flask during 48 h at 50ºC. A rotator evaporator system was used to 

achieve an efficient degree of contact between the enzyme and the substrate, and the 

required temperature. All the reactions were carried out at atmospheric pressure. The 

reaction extension was calculated with the Equation 26 as stated above. A control was 

assayed in order to confirm that this reaction does not occur spontaneously. 
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3.5.2.3 Effect of the substrate/enzyme ratio 
0.5 g of Novozym 435 was used to study the polymerisation with different amounts 

of (10S)-HOME, 0.25-1.0 g. Enzymatic reaction was carried out in the same conditions 

as described in section 3.5.2.2, including a control. The yield reaction was calculated 

using Equation 25. 

3.5.2.4 Reusability of the enzyme 
Biocatalytic reaction was carried out with 0.5 g of organic substrate, (10S)-HOME, 

which was added to 0.5 g of enzyme. Reaction conditions were the same as in section 

3.5.2.2. After each cycle, the enzyme was removed from the reaction medium by 

filtration and rinsed with n-hexane several times. Finally, the solvent was evaporated 

under a stream of air at room temperature. Product was analyzed and the stability of 

the enzyme was determined as reaction yield, Equation 26. 

3.5.2.5 Screening of other lipases for estolides formation 
100 mg of C. rugosa lipase, lipase A from R. oryzae, Lipozyme RM IM, Lipozyme TL 

IM and Novozym 435 were assayed with 0.6 g of (10S)-HOME in 20 ml of n-hexane or 

iso-octane in a 100 ml Erlenmeyer flask during 48 h at 50 ºC. A rotator evaporator was 

used to attain the mixing degree and to control the necessary temperature. The 

polymerisation reactions were carried out at atmospheric pressure and the reaction 

yield was calculated with Equation 26. 

3.5.3 Estolide production from (10S)-HOME and (7S,10S)-DiHOME in a 
solvent-free media 

3.5.3.1 Measurement of the reaction yield 
The reaction yield was calculated as the consumption of the substrate by normal 

phase High Pressure Liquid Chromatography (HPLC). Normal-phase HPLC analyses 

were performed on a Thermo Separations Spectra System AS1000 

autosampler/injector (Fremont, USA) with a P2000 binary gradient pump from Thermo 

Separation Products (Fremont, USA) coupled to an Alltech ELSD 500 evaporative light 

scattering detector (Alltech Associates, Deerfield, USA). The chromatographic 

separation was carried out using a Dynamax Microsorb 60-8Si (250 mm x 4.6 mm, 8 

µm particle size) from Rainin Instrument Co. (Woburn, MA, USA). A 15-min run time 

was used to determine the conversion of the reaction. Mobile phase was composed of 

n-hexane:acetone (50:50) at a flow rate of 1 ml·min-1. The ELSD drift tube was set at 

56 ºC with the nebulizer set at 20 psi N2, providing a flow rate of 2.0 standard liters per 

minute. The yield of the reaction was calculated using Equation 27: 
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( ) ·100
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t substratesubstrate0 −
=       (27) 

3.5.3.2 Enzymatic reaction conditions 
Three different lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM) were 

employed to synthesize estolides from (10S)-HOME and (7S,10S)-DiHOME. Reaction 

was carried out in a 15 ml batch reactor magnetically stirred, 500 rpm. Reaction 

medium temperature, 80ºC, was kept constant using a J-Kem Scientific temperature 

controller (St. Louis, MO, USA). 3 g of (10S)-HOME or (7S,10S)-DiHOME) reacted with 

0.36 g of lipase (12% w/w) during 168 h. Enzymatic reactions took place under 

vacuum, 1.6 kPa of absolute pressure. Yield was calculated using Equation 27. 

3.5.4 Estolide production from saturated (10S)-HOME in a solvent free-media 
3.5.4.1 Measurement of the reaction yield 

Reaction yield was calculated as stated in section 3.5.3.1, Equation 27. 

3.5.4.2 Hydrogenation of (10S)-HOME 
Previous to the hydrogenation reaction, the hydroxyl group on carbon 10 was 

protected with BSA (bis(trimethylsilyl)acetamide; Sigma-Aldrich, St. Louis, MO, USA). 

15 g of (10S)-HOME reacted with 20 mL of BSA in presence of 10 ml of THF in a round 

flask magnetically stirred, 300 rpm, for 10 h. Temperature was set at 40ºC and was 

kept constant using a J-Kem Scientific temperature controller (St. Louis, MO, USA). At 

the end of the reaction, THF was removed by evaporation in a rotary evaporator 

(Bücchi, Postfach, Switzerland), obtaining a dark-yellow oil. 

Hydrogenation was performed by combining the dark-yellow oil with 1 g of Pd-C 

(Sigma-Aldrich, St. Louis, MO, USA) and 75 ml of ethyl acetate into a 100 ml stainless 

steel pressure reactor (Pressure Product Industries, Warminser, PA, USA). The reactor 

was charged to 200 psi with hydrogen. A temperature of 40ºC was maintained and the 

reaction was mixed, 300 rpm, for 5 h until consumption of hydrogen ceased. The 

reaction mixture was cooled to room temperature and the vented to atmospheric 

pressure. The product was separated from catalyst by vacuum filtration through Celite 

and #50 Whatman filter paper. Ethyl acetate was removed with a rotary evaporator.  

Reduced (10S)-HOME reacted with 1M HCl solution for extracting protecting group, 

TMS (trimethylsilyl), in the presence of THF as a solvent in a 200 ml round flask 

magnetically stirred, 300 rpm for 7 h. A temperature of 0ºC was kept constant by 

means of ice in the outside part of the round flask. THF was evaporated with a rotary 

evaporator. The excess of BSA was eliminated from the reduced (10S)-HOME by 
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distillation Kugelrohr under vacuum, 30 Pa of absolute pressure, at 100ºC for 6 h. The 

hydrogenated (10S)-HOME synthesis was confirmed by NMR. 

3.5.4.3 Enzymatic synthesis 
A 15 ml batch reactor magnetically stirred, 500 rpm, was used to synthesize 

enzymatically estolides from saturated (10S)-HOME. A temperature of 80ºC was kept 

constant using a J-Kem Scientific temperature controller (St. Louis, MO, USA). 2 g of 

saturated (10S)-HOME reacted with 0.24 g of Novozym 435 during 168 h. Chemical 

reaction was carried out under vacuum, 1.6 kPa of absolute pressure. Reaction yield 

was calculated using Equation 27. 

3.5.4.4 Chemical synthesis 
Reaction was carried out in a 15 ml batch reactor magnetically stirred, 500 rpm. A J-

Kem Scientific temperature controller (St. Louis, MO, USA) was used to maintain the 

temperature reaction at 80ºC. 2 g of saturated (10S)-HOME reacted during 168 h. 

Vacuum, 1.6 kPa of absolute pressure, was applied during the entire reaction. Yield 

was determinated with Equation 27. 

3.6 Ethyl esters production 
3.6.1 Ethyl esters production from (10S)-HOME and (7S,10S)-DiHOME in 

chloroform 
3.6.1.1 Measurement of the reaction yield 

Reaction yield was determinated as stated in section 3.5.2.1, Equation 26. 

3.6.1.2 Effect of the enzyme concentration 
To obtain the optimal amount of enzyme required for the esterification, 0.1 to 0.5 g 

of Novozym 435 were assayed with 0.5 g of (10S)-HOME or 0.5 g of (7S,10S)-

DiHOME in 19.6 ml of trichloromethane and 0.4 ml of ethanol (EtOH). The reactions 

were performed in 100 ml Erlenmeyer flasks for 12 h at 50ºC. A rotator evaporator 

system was used to achieve an efficient degree of contact between the enzyme and 

substrates, and for maintaining the required temperature. All the reactions were carried 

out at atmospheric pressure. The reaction extension was calculated with Equation 25, 

as stated above. A control without enzyme was also tested to confirm that this reaction 

did not occur spontaneously. 

3.6.1.3 Effect of substrate/enzyme ratio 
To study the esterification with different amounts of (10S)-HOME or (7S,10S)-

DiHOME (0.1-0.3 g), 0.1 g of Novozym 435 was used. Enzymatic reactions were 
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conducted in the same conditions as described in section 3.6.1.2, including a control 

without enzyme. The reaction yield was calculated using Equation 26. 

3.6.1.4 Reusability of the enzyme 
Reusability of the biocatalyst was assessed with 0.15 g of (10S)-HOME and 0.1 g of 

enzyme or 0.1 g of (7S,10S)-DiHOME with 0.1 g of Novozym 435 in 19.6 ml of 

trichloromethane and 0.4 ml of EtOH. Reaction conditions were the same as described 

in section 3.6.1.2. After each cycle, the enzyme was removed from the reaction 

medium by filtration and rinsed with trichloromethane several times. Finally, the solvent 

was evaporated under a stream of air at room temperature. The product was analysed 

and the stability of the enzyme determined using Equation 26. 

3.6.2 Ethyl esters production from (10S)-HOME and (7S,10S)-DiHOME in a 
solvent-free media 

3.6.2.1 Measurement of the reaction yield 
Reaction yield was calculated as stated in section 3.5.3.1, Equation 27. 

3.6.2.2 Effect of trans-hydroxy-fatty acid/ethanol ratio 
Esterification reactions took place in a 15 ml batch reactor magnetically stirred, 200 

rpm. Reaction medium temperature, 50ºC, was kept constant using a J-Kem Scientific 

temperature controller (St. Louis, MO, USA). Different molar ratios of pure EtOH and 

one mol of each HFA were tested, separately; 1 g of (10S)-HOME or (7S,10S)-

DiHOME), with 0.12 g of Novozym 435 during 24 h. All the reactions were carried out 

at atmospheric pressure. The extent of product formation for the reaction was 

calculated using Equation 27. 

3.6.2.3 Effect of the enzyme concentration 
Different quantities of Novozym 435, 0.001 to 0.18 g, were assayed in order to 

obtain the optimal enzyme amount in the esterification reactions with a molar ratio of 

each HFA to EtOH of 1:3. Esterifications were carried out under the same conditions as 

stated in section 3.6.2.2. The reaction yield was calculated with Equation 27. All the 

reactions were carried out at atmospheric pressure. A control without enzyme was 

assayed in order to confirm that this reaction does not occur spontaneously. 

3.6.2.4 Reusability of the enzyme 
Reusability of the biocatalyst was carried out using the optimal conditions found in 

the previous set of experiments: a molar ratio of HFA to EtOH of 1:3 and 0.06 g of 

Novozym 435 when (10S)-HOME was used as co-substrate and 0.10 g with (7S,10S)-

DiHOME. Reaction conditions were the same as described in section 3.6.2.2. After 
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each cycle, the enzyme was removed from the reaction medium by filtration and rinsed 

with n-hexane several times. In the set of experiments with (7S,10S)-DiHOME, after 

the fifth cycle the enzyme was rinsed with pure EtOH. Finally, the solvent was 

evaporated under a stream of air at room temperature until the enzyme reached a 

stable weight. Product was analyzed and the stability of the enzyme was determined 

based on reaction yield, Equation 27. 

3.7 Structural determination techniques 
3.7.1 Fourier transform infrared spectroscopy 
Infrared spectra were obtained using a Nicolet iZ10 FT-IR module with a smart 

endurance single bounce diamond ATR cell. Spectra over the 4000-650 cm-1 range 

were obtained by the co-addition of 32 scans with a resolution of 4 cm-1. Spectral 

manipulations, such as baseline adjustment, smoothing and normalisation, were 

performed with the OMNIC software package (Thermo Scientific, Karlsruhe, Germany). 

3.7.2 Nuclear magnetic resonance 
Two different nuclear magnetic resonance (NMR) spectrometers were used in this 

work: 

• A Varian NMSSytems 400 MHz spectrometer. 1H and 13C NMR experiments 

were recorded at 25ºC with a direct detection probe ASW. Fifty milligrams of each 

sample were dissolved in 0.7 ml of 99.8% CDCl3. Chemical shifts are expressed in ppm 

using tetramethylsilane as the internal standard for 1H, while CDCl3 was used as the 

internal standard in the 13C experiments. Thirty-two scans were used in the 1H 

experiments and 2000 scans in the 13C experiments. 1H-1H gradient correlated 

spectroscopic (gCOSY) and 1H-13C gradient heteronuclear single quantum coherence 

spectroscopic (gHSQC) measurements were also performed in the same conditions. 

• A Bruker (Karlsruhe, Germany) Avance 500 spectrometer. 1H and 13C NMR 

experiments were recorded using a 5 mm BBI probe with an absolute frequency of 

500.11 MHz for 1H and 125.76 MHz for 13C. COSY (correlation spectroscopy), HSQC 

(heteronuclear single quantum correlation), and HMBC (heteronuclear multiple bond 

correlation) two-dimensional spectra were also collected. Fifty milligrams of each 

sample were dissolved in 5 ml of 99.8 % CDCl3 (Cambridge Isotope Laboratories Inc. 

Andover, MA, USA). Chemical shifts are expressed in ppm using the same organic 

solvent as internal standard. 16 scans were used in 1H experiments, whereas 1024 

scans were used in 13C experiments. 
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3.7.3 MALDI-time-of-flight mass spectrometry 
MALDI-time of flight mass spectrometry (TOF MS) experiments were performed on 

a 4800 Plus MALDI TOF/TOF Analyzer (ABSciex ― 2010, USA). Samples were 

recorded in MS Reflector mode selecting positive ion detection. Desorption and 

ionization were achieved using a Nd-YAG laser (355 nm, 3-7 ns pulse, 200 Hz). Data 

were registered using 4000 Series Explorer software (ABSciex ― 2010, USA). A 2,5-

dihydroxybenzoic acid matrix was neutralized with lithium hydroxide (Sigma-Aldrich, St. 

Louis, MO, USA) as Cvacka and co-workers established [395]. Lithium salt matrix, 10 

mg·ml-1, was dissolved in a mixture of acetone:trichloromethane (2:1 v:v). 1 µl of the 

matrix solution was spotted on the target plate until complete evaporation of the 

organic solvent, afterwards, 1µl of the samples diluted in chloroform, 2.5 mg·ml-1, was 

deposited over the matrix spot and allowed to dry before analysis.  

In subsequent analyses with DHB matrix, it was saturated in 1 ml of acetonitrile by 

sonification. 1 µl of the sample, 2.5 mg·ml-1 of chloroform, was mixed with the same 

volume of the saturated acetonitrile and 1 µl of the final blend was spotted on the target 

plate until complete evaporation. 

3.7.4 Liquid chromatography coupled to mass spectrometry 
The chromatographic separation was carried out in a PerkinElmer (USA) Series 200 

liquid chromatographer coupled to a PE SCIEX API 150 EX single-quadrupole mass 

spectrometer (Applied Biosystems, USA). Column used was a Tracer Kromasil 100 C8 

column (250 mm x 46 mm, 5 µm) (Teknokroma, Spain). Separation was achieved with 

a gradient elution using: A: Acetonitrile (0.1 % v/v acetic acid); B: Acetone (0.1 % v/v 

acetic acid) at a flow rate of 0.5 ml·min-1. Gradient (time, % B): (0,35); (25,100); 

(30,100); (35,35); (40,35). All reported data were acquired with an APCI ionization 

source in negative mode with the following parameters: vapouriser temperature of 400 

ºC, nebuliser current 3 mA, declustering potencial -25 V, focusing potencial -110 V, 

entrance potencial -10 V and nitrogen as nebuliser and curtain gas with 10 and 12, 

arbitrary units. The scan data were obtained by scanning from m/z 100-2000 amu. In 

the analysis of estolides from ricinoleic acid, selected ion monitoring (SIM) technique 

was also used in order to detect high molecular mass olygomers with a better intensity 

signal. Ions selected were those, which correspond with the different possible 

olygomers synthesised. All data were registered using Analyst Software v.1.4.2 

(Applied Biosystems, USA). 
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3.7.5 Electrospray ionization mass spectrometry 
Mass spectrometry was performed using an Agilent LC/MSD TOF instrument 

equipped with a dual-nebuliser electrospray ionization source (ESI). Analyses were 

carried out in the positive ion mode. Samples were dissolved in a mixture of 

H2O:CH3CN (1:1 v/v) and infused into the electrospray source via an HPLC Agilent 

1100 pump at a flow rate of 200 µl·min-1. Nitrogen was used as the nebulising gas (15 

psi) and drying gas (7.0 l·min-1, 325ºC). The capillary and fragmentor voltages were set 

to 4000 V and 215 V, respectively. Mass range (m/z) was scanned from 50 to 1100 Da. 

The second nebuliser and calibrant delivery system were used to continuously 

introduce reference compounds for the mass correction using ions with m/z 121.0509 

(Purine) and 922.0098 (HP-0921). 

3.8 Physicochemical techniques 
3.8.1 Viscosity determination 
A Haake Mars Modular Advanced Rheometer System (Thermo Scientific, Karlsruhe, 

Germany) was used to determine dynamic or absolute viscosity (η’). Rheometer was 

connected to a computer for controlling it through a software packge, Haake RheoWin 

Job Manager (v 4.30.0023; Thermo Scientific, Karlsruhe, Germany). The sample was 

heated at desired temperature by means of a Haake C25 circulating bath with a Haake 

F6 controller (Thermo Scientific, Karlsruhe, Germany). The sensor used in those 

experiments was a 35 mm plate and cone with an angle of 1º with a shaft length of 77 

mm (C35/1º Ti L; Thermo Scientific, Karlsruhe, Germany). The lower plate was P35 Ti 

L (Thermo Scientific, Karlsruhe, Germany). Both are plug and play accessories and 

were made of titanium. The plate-cone sensor had an inertia moment (I) of 2.93·10-6 

kg·m2 and a constant shear stress factor (A) of 8.65·104 Pa·N-1·m-1; furthermore, the 

shear rate factor (M) was 50.60 rad·s-1. Sensor was calibrated with a viscosity standard 

(Brookfield, Middleboro, Ma, USA) with a viscosity of 5040 mPa·s at 25ºC. 

Dynamic viscosity was measured over four different shear rates and at three 

different temperatures, when was possible, 20, 40 and 60ºC. Data were visualized with 

the computer program and were recorded to calculate pre-exponential factor (A) and 

activation energy (Ea) of the Arrhenius-type relationship. This mathematical expression 

permits estimate viscosity as a function of temperature, Equation 28. 







−=

T·R
E·expAη' a          (28) 

Previous equation can be linearized as Equation 29: 
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( ) ( )
T·R

EAlnη'ln a
−=          (29) 

Finally, dynamic viscosity values at 40ºC were converted to kinematic viscosity 

through of density, section 3.8.3, with Equation 30, for comparing obtained values with 

those published in the literature. 

ρ
η

=υ
'           (30) 

3.8.2 Density determination 

Density (ρ) was determinated introducing 10 µl of a substance in a Kimble® 

microcapillary pipette (Sigma-Aldrich, St. Louis, MO, USA). Microcapillary pipettes 

were weighted before and after introducing the sample in an Adventure Pro Av114 

analytical scale (Ohaus Corp., Pine Brook, NJ, USA). 

3.8.3 Differential scanning calorimetry 
Differential scanning calorimetry (DSC) experiments were performance in an 

automatic Mettler Toledo DSC-30 calorimeter (Greinfesse, Switzerland). The data 

processing software was STARe System (Mettler Toledo, Greinfesse, Switzerland). An 

8-22 mg sample was weighted in an aluminium pan with a small pinhole in the lid. 

Thermograms were run at a heating rate of 10.0ºC/min from -100 to 500ºC under a 

nitrogen purge of 50 ml·min-1. Peaks were identified by peak temperature. 

3.8.4 Thermal gravimetric analysis 
A Mettler Toledo TGA-SDTA 851e/SF/1100 thermogravimetric analyser was used to 

run the samples, 18-38 mg, which were disposed in open alumina crucibles. The data 

processing software was STARe System (Mettler Toledo, Greinfesse, Switzerland). 

Thermograms were run at a heating rate of 10.0ºC/min from 30 to 600ºC under a 

nitrogen purge of 50 ml·min-1. Mass loss (%) was calculated from TG curves, based on 

the mass of the original sample. 
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4.1 Design of a non-dispersive aeration system 

Many industrial processes bioreactors, where the air is introduced in the culture 

media, are used to growth microorganisms for producing antibiotics, vaccines, steroids, 

vitamins, proteins, certain sugars and organic acids [396]. In some of these processes 

foam is normally produced during exponential growth phase. Foam is located at the air-

liquid interphase forming a layer or film. Depending on the origin of the foam, it results 

very unbreakable. Foam can even ruin batch. A ruined batch represents a considerable 

amount of money and time misspent. A variety of methods are available to combat 

foam formation: chemical, like silicone based formulations; and physic agents, like 

mechanical, acoustic and ultrasonic methods [397]. 

In previous works for producing trans-hydroxy-fatty acids (trans-HFA) from oleic acid 

(OA) in bioreactor by P. aeruginosa 42A2, an annular metallic sparger was used, 

producing large quantities of foam [398]. This type of foam is very stable and the 

mechanical foam-breaker supplied with the bioreaction system resulted useless. 

Moreover, the addition of some chemical antifoamers inhibited the bacterial growth. 

Later a ceramic diffuser with a porous diameter of 800 nm was used as sparger [399]. 

Foam formation was considerably reduced using this microsparger, but was still an 

uncontrollable bioreaction. Restraining foam formation in a bioreactor is a crucial point 

for two reasons: it allows the control of the fermentation itself and equipment can be 

optimized and it therefore minimises production costs [400].  

To overcome this problem, a new aeration system was developed to avoid bubble 

aeration: an adapted wetted-wall column (WWC) based on the Higbie Penetration 

theory [401]. Higbie Penetration theory is based on the mass transfer of a gas to a 

liquid phase which is in contact to a gaseous phase. Mass transfer is produced without 

chemical reaction and takes place into the gas-liquid interphase. 

This is the first time that a WWC was used as a non-dispersative aireation method 

and some considerations and hypothesis had to be assumed to calculate the time of 

exposure (te) of the liquid phase over the surface (S) of the column. The working 

temperature was 30ºC (303.15 K); the surface tension of the media was 0.030 N·m-1 

due to the presence of (7S,10S)-DiHOME in the culture media [402]; x2, the oxygen 

molar fraction of the stream that enter in the WWC (section 3.2.2), was supposed to 

have, as minimum, a 20% of the O2 concentration in the equilibrium, xeq, at the working 

temperature; the O2 concentration in the equilibrium at 30ºC is 7.6 mgO2·l
-1 [403]; the O2 

requirement data of P. aeruginosa 42A2 was considered 1.75·10-5 molO2·s
-1 [404];  and, 

the maximum molar flow (L) of the stream that enters in the WWC was 0.463 mol·s-1 

(0.5 l·min-1), assuming that the stream is a dilute aqueous solution. 
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With all these assumptions, an S value of 16.4 cm2 for the contact surface of the 

WWC was obtained, Equation 6. Considering that the outer diameter of the WWC was 

of 0.15 cm, a 12 cm height column was obtained with a te value of 0.159 s, Equations 1 

and 7, with a liquid-phase mass-transfer coefficient for O2 in the culture media ((kL)M) 

value of 21.5 cm·h-1 with equation 3. This 12 cm height column was calculated by the 

mathematical proposed, but in order to minimize the possible deviations and to ensure 

the proper oxygenation of the media, an 80 cm height column was used. According to 

this value, a (kL)M value of 21.5 cm·h-1 is slightly lower than those found in the literature 

by DeMoyer [405], 22-266 cm·h-1, for bubble columns and tanks. 

The 80 cm height column represents a WWC surface of 39.8 cm2 with a (kL)M of 

8.32 cm·h-1 and te of 1.06 s. This increment augmented te and reduced (kL)M compared 

with the previous situation, because both situations were calculated with the same 

molar flow (L). A larger L should be achieved to obtain anterior values of (kL)M and te. 

4.1.1 kLa determination 

Volumetric mass transfer coefficient (kLa) determination was performanced 

according to the static gassing out method [406] in water due to its simplicity and 

reproducibility, Equation 10. Different water flows and stirring speeds were tested to 

find out the best situation according to the initial reaction conditions: air flow of 2.5 

l·min-1, pH 7 and temperature 30ºC. Results are presented in Figure 4.1. 

Figure 4.1. kLa tendency over 
stirring speed and volumetric flow 
over wetted wall column. In all 
experiments air flow was 2.5 
l·min

-1
, 30ºC and pH 7. 

 

 

 

 

 

 

 

As can be seen, kLa has a proportional behaviour with stirring speed and the 

volumetric water flow that circulated through the WWC. It seems that stirring has no 

influence on kLa when water flow was 0.2 l·min-1, from 7.1 to 6.9 h-1. However, a big 

difference can be observed when water flow was 0.4 or 0.6 l·min-1; even, close values 

were obtained between these two situations. Thus, an intermediate solution was 

chosen: initial volumetric water flow was set 0.5 l·min-1, which is the middle value that 
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peristaltic can provide (0.01-1 l·min-1) and stirring speed of 500 rpm, from previous 

works is the minimal value for obtaining a good degree of mixing [399]. Hence, an 

interpolation was needed to work out the kLa value in this situation, 39.9 h-1: water flow 

0.5 l·min-1 and stirring speed 500 rpm. 

A kLa value of 39.9 h-1 is lower when is compared to previous findings: 200 h-1, in the 

production of (10S)-HOME by the same bacterial strain in bioreactor aerated with a 

round metallic sparger [398] or 217 h-1 when a 800 nm porus diameter ceramic sparger 

was used [399] under similar reaction conditions. Such low value could be explained 

because of the type absorption produced in the WWC. Despite this low value, foaming 

was completely reduced and a homogeneous culture media was achieved and HFA 

production rate were increased, as could be observed later. This is the first step in the 

optimization process of trans-HFA in bioreactor. 

4.2 Biotransformation kinetics 

P. aeruginosa 42A2 produces one hydroperoxide- and two hydroxy-fatty acids when 

OA used as carbon source in a mineral medium [407, 408]. HFA are interested 

compounds because of its use in a wide range of industrial products as resins, waxes, 

nylons, plastics, lubricants, cosmetics, and additives in coatings and paintings [409]. In 

order to produce these compounds in optimal conditions some processing parameters 

need to be monitored and controlled [410].  

Kinetics of OA conversion by P. aeruginosa 42A2 with different initial concentrations 

of OA, (COA)0, of 10, 15 and 20 g·l-1 are illustrated in Figure 4.2 A-F. OA was used as 

the carbon source for bacterial growth. Bacterial growth, expressed as biomass (X), 

increased until depletion of nitrates with the exception of 10 g·l-1 situation. At that point, 

bacterial growth entered into the stationary phase when (10S)-HPOME concentration 

reached a maximum. Furthermore, this maximum in concentration practically matches 

with the total consumption of OA. Afterwards the concentration of (10S)-HOME and 

(7S,10S)-DiHOME started on increasing considerably while the one of hydroperodixe 

dimished. This fact evidence that (10S)-HPOME is the substrate for the synthesis of 

(10S)-HOME and (7S,10S)-DiHOME as secondary metabolites [408] and the 

assumption that the production of hydroxy-fatty acids is performed in two steps, 

Equations 11a and 11b.  

232 COHPOME)S10(XNOOOA      (11a) 

2
cteX

2 CODiHOME)S10,S7(HOME)S10(OHPOME)S10(  
  (11b) 
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Figure 4.2. Kinetics of OA oxidation by P. aeruginosa 42A2 in bioreactor using a WWC 
as aerator system. A, B: OA initicial concentration 10 g·l

-1
. C, D: OA initicial concentration 

15 g·l
-1

. E, F: OA initicial concentration 20 g·l
-1

. OA: (♦); (10S)-HPOME: (■); (10S)-HOME: 
(▲); (7S,10S)-DiHOME: (x). NO3

-
 (–); X: (●). Experimental data are listed in Table A.1. 

As can be seen in Figure 4.2 E, a higher production of HFA, around 9 g·l-1 of each 

HFA, was obtained when (COA)0 was 20 g·l-1, despite of observing a longer lag phase. 

Whereas similar final concentrations of HFA, 6 g·l-1, were reached when (COA)0 was 10 

or 15 g·l-1, Figure 4.1 A and C. In all three situations, the biotransformation started with 

certain concentration of both HFA. As stated before in section 3.2.2, (7S,10S)-DiHOME 

is a biosurfactant and it was used for emulsifying initial OA. Initial concentrations of 

both HFA were taken into account on later calculations.  

Few references about production of HFA from OA are in the literature, but less are 

about the modelling production of them [411]. Product, (10S)-HPOME, (10S)-HOME 

and (7S,10S)-DiHOME, volumetric productivities (PV) for each batch was calculated by 

Equation 17, in a g and C-mol basis, Table 4.1.  
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Table 4.1. Product volumetric productivity for each batch. 

(COA)0 (10S)-HPOME (10S)-HOME (7S,10S)-DiHOME 

g·l
-1

 g·l
-1

·h
-1

 C-mol·l
-1

·h
-1

 g·l
-1

·h
-1

 C-mol·l
-1

·h
-1

 g·l
-1

·h
-1

 C-mol·l
-1

·h
-1

 
10 0.413 0.0236 0.146 0.0088 0.338 0.0194 
15 0.474 0.0271 0.205 0.0124 0.248 0.0142 
20 0.759 0.0435 0.287 0.0173 0.306 0.0175 

Experimental data are listed in Table A.1. 

As can be seen, (10S)-HPOME PV is proportional to the initial OA concentration, 

being the last batch which had the highest PV, 0.749 g·l-1·h-1 or 0.0435 C-mol·l-1·h-1
. 

(10S)-HOME PV follows the same pattern as the hydroperoxyl compound due to (10S)-

HOME production rate, Equation 23, is proportional to the hydroperoxyl concentration 

according to the mathematical proposed herein. On the other hand, (7S,10S)-DiHOME 

PV does not follow a clear tendency because of the dihydroxyl compound production is 

caused by an enzymatic system [408]. It seems that (7S,10S)-DiHOME PV slightly 

decreases from 10 to 20 g·l-1.  

Kuo and Lanser were the first on succeeding to produce (7S,10S)-DiHOME from OA 

in bioreactor; although, no details were published of the new designed aerator system. 

They reached a (7S,10S)-DiHOME final concentration of 8.9 g·l-1 after 96 hours, a PV of 

0.093 g·l
-1

·h
-1

,
 with a new aeration system which maintained a dissolved O2 

concentration between 40-60% of the saturation, but they did not avoid or reduce foam 

formation during the process. However, in the present work, a similar (7S,10S)-

DiHOME final concentration, 9.6 g·l-1, was reached after 30 hours avoiding foam 

formation using a WWC as aeration system. The lesser foam is produced, a better 

homogeneity of the culture medium is achieved and higher are the production rates. 

4.3 Yield coefficients and kinetic constants determination and modelling 

hydroxy-fatty acid production 

There is no work in the literature focused on modelling the bioconversion of OA into 

HFA. Main efforts are focus on modelling the growth of Pseudomonas strains for 

degrade of benzene compounds [400, 409]; but no mass balances are considered 

when yield coefficients were calculated.  

The different yield coefficients were calculated using Equations 13-16 from the 

experimental sets of data. They were used as starting point for the simulation with 

various kinetic models. The initial yield coefficients expressed on C-mol basis are 

presented in Table 4.2. Yields do not remain constant over the OA initial concentration 

range studied due to cellular cycle is different in each situation. Thus, modelling of the 

OA oxidation will be applied at each OA initial concentration. 
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Table 4.2. Yield coefficients (C-mol basis) obtained from the experimental sets of data 
and after simulation. 

 Experimental data After simulation 

 COA0 (g·l
-1

) COA0 (g·l
-1

) 
 10 15 20 10 15 20 

Semireaction 1       

X/OA 0.275 0.198 0.177 0.237 0.199 0.172 

(10S)-HPOME/OA 0.596 0.423 0.557 0.560 0.411 0.495 

X/(10S)-HPOME* 0.461 0.445 0.317 0.423 0.485 0.347 

O2/OA 0.187 0.540 0.391 0.295 0.556 0.483 

CO2/OA 0.129 0.389 0.267 0.203 0.391 0.334 

NO3/OA 0.059 0.042 0.038 0.051 0.043 0.037 

Semireaction 2       

(10S)-HOME/(10S)-HPOME 0.224 0.416 0.243 0.224 0.416 0.243 

(7S10S)-DiHOME/(10S)-HPOME
†
 0.434 0.239 0.479 0.450 0.233 0.419 

O2/(10S)-HPOME 0.459 0.458 0.373 0.437 0.466 0.454 

CO2/(10S)-HPOME 0.342 0.345 0.279 0.326 0.351 0.339 
*
Calculated from X/OA and (10S)-HPOME/OA; 

†
Not fitted with the simulation software. 

Seven different kinetic mathematical expressions were found in the literature, Table 

3.1. Aiba-Edward, Haldane and Yano-Koga models were chosen to evaluate the 

possible inhibitory effect of substrates over the bacteria. Other four models, Monod, 

Tessier, Contois and Mosser, were selected for comparing different mathematical 

expressions that express bacterial growth. 

Coefficient yields obtained from experimental sets of data in addition to the seven 

kinetic expressions were introduced in the mathematical model proposed, Equation 20-

21 and 23-25. Experimental sets of data were used as template for first step in the 

simulation process of the kinetic constants (max, KS, Ki and k) by AQUASIM® software. 

Yield coefficients and experimental data were expressed on C-mol basis to obtain 

consistent and comparable results for the three OA initial concentrations [412].  

Table 4.3 shows the results of the simulations. As can be seen, inhibitory constant 

(Ki) presents large values compared with saturation constant (KS) in both semireactions 

and three situations. It evidences that OA and (10S)-HPOME have no inhibitory effect 

over P. aeruginosa 42A2 in the first and second semireaction (Equation 11a and 11b), 

respectively. Within non-inhibitory kinetic models, Contois model presents kinetic 

constants values which are discordant with Monod, Tessier and Moser models, despite 

having the lowest χ2, the best agreement with experimental data. Monod model was 

the chosen due to its simplicity and agrees with simply enzymatic reactions that occur 

inside a bacterial cell, even having higher χ2 than Contois, Tessier or Moser models for 

modelling the oxidation of OA by P. aeruginosa 42A2 in bioreactor. Monod simulations 

could be observed in Figure A.1. 
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Table 4.4. Kinetic constants for Monod model. 

 Semireaction 1 Semireaction 2 

(COA)0  
(g·l

-1
) 

max  
(h

-1
) 

KS  
(C-mol·l

-1
) 

max  
(h

-1
) 

KS  
(C-mol·l

-1
) 

k  
(h

-1
) 

10 1.326 3.000 0.124 0.005 0.015 
15 0.234 0.400 0.097 0.005 0.042 
20 0.510 1.604 0.120 0.035 0.033 

Table 4.4 sum up the kinetic constant values for Monod model over the two 

semireactions. 15 g·l-1 situation presents a divergent values when compared with other 

two. This fact could be due to the slow bacterial growth over the exponential phase, 

Figure 4.1 D, when it is compared with other two, Figure 4.1 B and F. 

Apart from 15 g·l-1 situation, a tendency could be appreciated between kinetic 

constants and OA initial concentration. It seems that when OA initial concentration is 

increased, maximum specific growth (max) decreases as well as KS for the first 

semireaction. Stationary phase was reached in 8 h for the 10 g·l-1 batch compared with 

the 12 h for the 20 g·l-1; this event could explain this slightly inhibitory effect produced 

by OA over the studied OA initial concentration range. In the second semi reaction max 

and KS have a more stable values because (10S)-HPOME consumption to produce 

(10S)-HOME and (7S,10S)-DiHOME occurred along the stationary phase of the 

bacterial growth. On the other hand, (10S)-HOME first order kinetic constant increases 

due to the higher (10S)-HPOME concentration reached when OA initial concentration 

was increased, as can be seen from the Figures 4.1 A, C and E. To our knowlegde no 

enzyme was found to the responsible for the production of (10S)-HOME from (10S)-

HPOME; hence, a spontaneous first order reaction was consider as best option to 

model this transformation.  

X/OA (yield coefficient of X on OA), X/(10S)-HPOME (yield coefficient of X on (10S)-

HPOME) and (10S)-HPOME/(7S,10S)-DiHOME (yield coefficient of (10S)-HPOME on (7S,10S)-

HPOME) were refitted during simulation process due to these three yields are part of 

the mathematical model. From these three coefficient yields and Equations 14-16 were 

used to recalculated others presented in the Table 4.2.  

In the first semireaction could be observed that X/OA diminished when OA initial 

concentration increased; however, approximately is produced the same amount of 

(10S)-HPOME per unit of OA and the amount of O2 per unit of OA increased as well as 

CO2, respectively.  

The reduction on the formation of X, biomass, is compensated by an increment of 

the production of (10S)-HPOME. If yield coefficient of (10S)-HPOME on X, (10S)-

HPOME/X, would be calculated, which the inverse of X/(10S)-HPOME, (2.169, 2.247 and 3.155 

for 10, 15 and 20 g·l-1), it could be known which batch is the most efficient, in other 
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words, the situation with the highest productive biomass: the 20 g·l-1 batch in this study.  

Moreover, this is the reason because max is reduced and the possible certain inhibitory 

of OA is discarded. This metabolic increment is reflected by the O2 requirements and 

the CO2 production. 

In the second semireaction, all coefficients remained practically constant over the 

studied range because the synthesis of HFA from the hydroperoxide is produced over 

the stationary phase of the bacterial growth. Similarly, O2 requirements were the same 

in the three situations because of it as used the bacterial maintenance. The same 

reasoning could be applied to CO2. 

After applying mass balances and simulation process to the experimental data, 

oxidation of OA, 20 g·l-1, into HFA is defined as follows in a C-mol basis, as example: 

232 CO334.0HPOME)S10(495.0X172.0NO037.0O483.0OA   

 
cteX

2O454.0HPOME)S10(  

2
cteX

CO339.0DiHOME)S10,S7(419.0HOME)S10(243.0  
  

OA

OA

1
C1.604

C
510.0μ


  ; 

HPOME-(10S)

HPOME-(10S)
2

C035.0

C
120.0μ


 ; 

1h·033.0k   

4.4 Specific oxygen uptake rate 

Specific oxygen uptake rate (sOUR) was calculated to determinate P. aeruginosa 

42A2 oxygen requirements during oxidation of OA into HFAs. Oxygen uptake rate 

(OUR) could be defined as the quantity of dissolved oxygen consumed by cells per unit 

of time and volume. OUR was calculated according to Equation 19. 

OUR results are presented in Figure A.2. As can be seen OUR increased during first 

hours of the biotransformation along the biomass, X [413]. Afterwards, OUR stabilized 

in a value between 260 and 267 mgO2·l
-1·h-1, with the exception of 15 g·l-1 batch which 

reach a value of 210 mgO2·l
-1·h-1, Table 4.5.  During stationary phase, an oscillation in 

the OUR values were recorded. This oscillation was caused by the air enrichment with 

oxygen due to dissolved oxygen concentration in the culture media reached very low 

values. Moreover, it could be observed that the oscillation intensity was proportional to 

the OA initial concentration. 

Tabla 4.5. Respirometry values during OA oxidation by P. 
aeruginosa 42A2 at each OA initial concentration. 

(COA)0 

(g·l
-1

) 
OURmax 

(mgO2·l
-1

·h
-1

) 
Xst 

(g·l
-1

) 
sOURmax 

(mgO2·g
-1

·h
-1

) 

10 267 3.71 72.0 
15 210 5.19 40.5 
20 260 5.89 44.1 

(COA)0: OA initial concentration. (s)OUR: (specific) oxygen uptake 
rate. Xst: biomass in the stationary phase. 
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As stated before, there is no reference in the literature about respirometry of 

P.aeruginosa 42A2 in the production of HFA; but different OUR values were found for 

Pseudomonas genus. Kronemberger and co-workers obtained an OUR value of 100 

mgO2·l
-1·h-1 in the production of rhamnolipids, a class of biosurfactant, by P. aeruginosa  

from glycerol [413]. In contrast, higher OUR values were obtained using P. putida 

strains in the biosulfuration of dibenzothiophene, 403 mgO2·l
-1·h-1 [414], and 

hydroxylation of toluene, 3200 mgO2·l
-1·h-1 [415]. It seems that bacterial strains need 

larger quantities of oxygen to metabolised such toxic substrates than fatty acids or 

glycerol. 

sOUR was calculated with Equation 18 for each OA initial concentration using the X 

concentration in the stationary phase, Xst, Table 4.5. Gomez and collaborators using a 

P. putida strain in the biosulfuration of dibenzothiophene obtained an sOUR value of 

806 mgO2·g
-1·h-1 [414] due to the toxic nature of the substrate; however, Kronemberger 

and coworkers, in the production of rhamnolipids by P.aeruginosa determined a sOUR 

value of 85 mgO2·g
-1·h-1 [413] similar to the 72 mgO2·g

-1·h-1 of P.aeruginosa 42A2 in the 

oxidation of OA.  

4.5 Estolide production  

Estolides are a class of polyesters based on (hydroxy-) fatty acids mainly found in 

vegetable oils. Those have being produced in a chemical way since early 1990’s, but 

over last ten years an increasing attention has focused on producing them 

enzymatically with lipases. Estolides are formed by a secondary ester linkage which is 

more resistant to hydrolysis than those of triglycerides. Such characteristic property 

offers superior physical properties than vegetable and mineral oils when estolides are 

used for lubricant applications [397]. Furthermore, estolides have shown promising 

properties for their use in cosmetics or coatings [416]. 

A new family of estolides wants to be produced in two different non-conventional 

reaction media, apolar organic solvent and solvent-free system, to evaluate their 

properties and their future possible applications. 

4.5.1 Estolide production from (10S)-HOME in n-hexane 

(10S)-HOME, 10(S)-hydroxy-8(E)-octadecenoic acid, is an isomer of ricinoleic acid 

(RA), 12(R)-hydroxy-9(Z)-octadecenoic acid, with a trans double bond and an S 

hydroxyl moiety. Numerous works have been published for producing estolides from 

RA with lipases, but none with trans substrates. The selection of the proper lipase for 

that goal, as well as, the organic solvent and reaction conditions will be discussed 

straightforward.  
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4.5.1.1 Novozym 435 for (10S)-HOME esterification: enzyme amount and 

substrate/enzyme ratio.  

In terms of selectivity to a cis/trans configuration of the double bond in 9-

octadecenoic acid isomers, lipases were classified according to a ratio competitive 

factor (RCF) [417]. This factor describes the selectivity of one single lipase toward two 

substrates with the same leaving group and to two different acyl groups. Thus, in this 

study, Novozym 435 (lipase B of C. antarctica immobilized in acrylic resin), with an 

RCF of 0.7, was chosen because it is slightly more active with trans-9-octadecenoic 

isomers, it exhibits versatility and its optimal temperature of enzyme activity is 40–

60ºC. n-hexane with a log P of 3.5 [418] was chosen for generating compatible new 

compounds to be in cosmetic or food applications according to the European Directive 

2009/32/CE. Log P is a measurement of solvent polarity. Along with the partition 

coefficient and the enzyme/solvent interaction, log P may determine biocatalytic 

activity; this activity is low in solvents at log P < 2, moderate at log P between 2 and 4 

and high in a polar solvent with log P > 4 [419]. 

 

 

 

 

 

     A        B 

Figure 4.3. Optimization of the enzymatic reaction medium in n-hexane. A: Yield of the 
polymerisation with different amounts of enzyme, Novozym 435, in 0.6 g of (10S)-HOME 
at 50ºC during 48 h in n-hexane, 20 ml. B: Yield of the polymerisation with different 
amounts of (10S)-HOME/Novozym 435 ratio; 0.5 g of Novozym 435 were used in all 

experiments in 20 ml of n-hexane as organic solvent at 50ºC during 48 h. Yield ((%)) is 
calculated as percentage of the reduction of AV, Equation 21. 

Different amounts of enzyme were tested to establish the optimal amount of 

biocatalyst for 0.6 g of (10S)-HOME. The results are presented in Figure 4.3 A; it could 

be observed that the reaction yield increased with the amount of enzyme. At values 

near 0.5 g of enzyme, this yield was 35%, and it increased slightly to 42% at a 

substrate/enzyme ratio of 1.2 g·g−1. Thus, the thermodynamic limit for yield was very 

similar to this latter value. There are no data in the literature about polymerization with 

trans monomers, although this value is lower than the 58% obtained by Horchani and 

coworkers when using RA acid to produce estolides in n-hexane for 55 h at 55ºC [420]. 

Bódalo and collaborators obtained a 72% reaction yield when C. rugosa was 

immobilized in Lewatit Monoplus MP64, an anion exchange resin, for 150 h at 40ºC in 
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a solvent-free system [421]. Various substrate/enzyme ratios were tested to establish 

the optimal concentration of substrate to be used. As Figure 4.3 B shows, the yield 

increased up to a ratio of 1, after which the yield remained constant at 30%, indicating 

that an excess substrate concentration is not effective in enhancing the AV decrease. A 

similar ratio was found by Langone and co-workers after the conversion of oleic 

acid/methyl ricinoleate to estolides using Novozym 435 as a biocatalyst in a solvent-

free system for 48 h at 80ºC [419]. 

4.5.1.2 Reusability of the enzyme 

The use of enzymes or immobilized enzymes for repeated use may help decrease 

product cost and make the enzymatic process economically viable. The ability of 

Novozym 435, to retain its stability during recycling by using fatty acids as substrate 

was studied by several researchers [419, 422], although it may have drawbacks. Figure 

4.4 shows the profile of the polymerization yield during different cycles.  

Figure 4.4. Polymerisation yield 
and enzyme weight at each 
cycle in n-hexane. In all 
experiments 0.5 g of Novozym 
435 and 0.5 g of (10S)-HOME 
were dissolved in 20 ml of n-
hexane during 48 h at 50ºC. 
Yield is calculated as 
percentage of the reduction of 
AV. Novozym 435: (■); Yield 

((%)): (Bars). 
 
 
 

 

As observed, the synthetic stability of the enzyme decreased throughout the cycles 

assayed. The yield decreased by 53.3% after ten cycles, from 30.4% to 18.5%, 

whereas the enzyme weight increased. Although the biocatalyst was rinsed several 

times with n-hexane, a portion of the substrate remained adsorbed on the support due 

to the poor solubility of the (10S)-HOME in n-hexane. Langone and co-workers 

observed a similar reduction in enzyme stability (55%) in the production of estolides 

from OA and methyl ricinoleate in a solvent-free system when Novozym 435 was used 

for four batches [419]. In contrast, Radzi and collaborators [422] observed great 

synthetic stability even after nine cycles (91.9%) during the production of oleyl oleate in 

n-hexane for 1 h, indicating a negligible effect on enzyme stability. This indicates that 

using an appropriate apolar organic solvent may help maintain enzyme stability and 

solubilizing the substrate may help so as not to affect enzyme activity. 
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4.5.1.3 Structural determination of (10S)-HOME estolides 

A gel-permeation analysis of the polymers has certain difficulties that have been 

tried to overcome, such as the difficulty of separating different degrees of 

polymerization properly, especially when the molecular mass of the oligomers analysed 

does not differ enough. At this juncture, more than one gel permeation column is 

needed to achieve a good separation, which increases the analysis time and makes 

this technique tedious and expensive. Alternatively, Bayer and collaborators introduced 

coordination-ion-spray mass-spectrometry (CIS-MS), in which non-polar compounds or 

substances with weakly basic or acidic groups are detected, but with poor sensitivity 

[423]. MALDI time-of-flight (TOF) is ideally suited for polymer analysis because of the 

simplicity of the mass spectra [424], which show mainly single-charged quasi-molecular 

ions with little fragmentation when cationization salts are used.  

To this end, lipase-formed estolides from (10S)-HOME were analysed using RA 

estolides that were enzymatically produced as a control to confirm the validity of the 

following structural techniques: MALDI TOF mass spectrometry (MS) and liquid 

chromatography mass spectrometry. 

i. MALDI time-of-flight mass spectrometry  

Selecting an appropriate MALDI matrix, cationization salts and sample preparation 

techniques are critical success factors for obtaining a reliable mass spectrum from 

which to infer structural information [425]. Previously analysis experiments with RA 

estolides were carried out using DHB as matrix, showed highly fragmented mass 

spectra. DHB matrix was unable to stabilize such apolar compounds even with reduced 

desorption-ionization energy. A 2,5-dihydroxybenzoic acid (DHB) matrix, neutralized 

with lithium hydroxide (LiOH), was used to analyze RA estolides using the method 

developed by Cvacka and co-workers in order to analyze wax esters, esters from a 

fatty acid and a fatty alcohol. Thereafter, the goodness of another matrix will be discus 

for analysing estolides. 

Figure A.3 displays RA estolides, which were enzymatically produced using the 

method described by Bódalo and coworkers [426], were analysed with lithium DHB salt 

matrix. A relatively low-intensity peak of m/z 305.19 corresponded to the lithium 

molecular adduct of RA [RA+7Li]+ and a peak of m/z 287.19, due to the loss of water 

from the RA lithium adduct, appeared in the left side of the mass spectrum. Three more 

peaks in the central part of the spectra (585.53, 865.65 and 1145.87 m/z) stand out, 

and these peaks correspond to molecular adducts with lithium of di-estolide, [2RA-

H2O+7Li]+; tri-estolide, [3RA-2H2O+7Li]+; and, tetra-estolide, [4RA-3H2O+7Li]+. Finally, a 

very low-intensity peak, which coincides with the mass of the penta-estolide, [5RA-
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4H2O+7Li]+, appears in the high-mass field of the spectra, at m/z 1426. In contrast to 

the findings of Hayes and Kelly [427], who used a trans-3-indoleacrylic acid matrix with 

a sodium chloride solution to analyse polyhydric alcohol-poly (ricinoleic acid) species, 

lithium DHB salt matrix could be used to detect quasi-molecular ions with a molecular 

weight lower than 500 Da. Other matrices, DHB and -cyano-4-hydroxycinnamic acid, 

without cationization salts were tested to detect RA estolides, but highly fragmented 

mass spectra were obtained, making it tedious and difficult to identify the quasi-

molecular ions.  

   A             

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   B 

 

 

 

Figure 4.5. MALDI TOF MS analysis of (10S)-HOME polymerized 
in n-hexane. A: MALDI TOF mass spectrum of (10S)-HOME 
polymerized with Novozym 435 at 50ºC during 48 h; AV of the 
sample: 127.8 mgKOH·gsample

-1
; DHB matrix was neutralized with 

LiOH. B: Esctruture of the lithium molecular adducts of the 
monomer (top) and mono-estolide (bottom). 

When a sample of (10S)-HOME polymerized with Novozym 435 in n-hexane was 

analysed with an AV of 127.8 mgKOH·gsample
-1, Figure 4.5 A, two peak groups were 

found. In the first group, the lithium molecular adduct of the monomer [M+7Li]+ with m/z 

305.2 was observed. In the second group, a peak of m/z 585.4 was observed, which 

corresponds to the lithium adduct of the oligomer formed by two units of (10S)-HOME 

[2M-H2O+7Li]+. Structures of these compounds could be observed in Figure 4.5 B. 
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ii. Liquid chromatography coupled to mass spectrometry 

Estolides from RA were enzymatically produced using the method described by 

Bódalo and coworkers [426]. Thus, a sample with an AV of 68 mgKOH·gsample
-1, were 

used to confirm the validity of the LC MS technique applied in order to determine the  
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Figure 4.6. LC MS analysis of (10S)-HOME polymerized in n-
hexane. A: Full scan chromatogram of (10S)-HOME polymerized 
with Novozym 435 at 50ºC during 48 h; AV of the sample: 127.8 
mgKOH·gsample

-1
. B: Mass spectrum of the peak of 11.78 min: di-

estolide of (10S)-HOME. C: Structures of the di-estolide of (10S)-
HOME. 
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structure of the apolar polymers as polyesters of C18-hydroxyl-fatty acids. The apolar 

nature and chain length of this kind of compounds forced to use reduced APCI 

potentials to observe quasi-molecular ions. 

In addition, selected ion monitoring (SIM), Figure A.4, was used to detect high 

molecular mass oligomers with greater intensity. Six ions were selected, m/z 298, 578, 

858, 1138, 1419 and 1699, that correspond to RA and its oligomers [2RA-H2O]-, [3RA-

2H2O]-, [4RA-3H2O]-, [5RA-4H2O]- and [6RA-5H2O]-, respectively. The six-extracted 

ionsuperimposed chromatogram gives the retention times at which various selected 

ions are detected. As can be observed, the ion with m/z 298 appears at 7.28 min peak 

corresponds to the unreacted RA; and at the peaks (min) 12.07, 18.70, 24.29, 28.22 

and 30.94, an ion with m/z 298 appears as a marker of the cleavage of one of the ester 

bonds in the oligomers synthesized. However, ions with m/z 578 (red), 858 (green) and 

1138 (grey) are observed at retention times of 12.07, 18.70 and 24.29 min, 

respectively. Finally, ions with m/z 1419 and 1699 (not in the figure) are only detected 

at retention times of 28.22 and 30.94 min, respectively.  

A sample of the same (10S)-HOME polymerized in n-hexane with Novozym 435 

was analyzed, AV of 127.8 mgKOH·gsample
-1. As seen from Figure 4.6 A, two noticeable 

peaks at 7.25 and 11.78 min were detected in the full scan chromatogram. The mass 

spectrum of the 7.25 min peak is shown in Figure A.5, and an ion with m/z 297.3 

corresponding to the [M−H]− ion of (10S)-HOME can be detected. Likewise, the mass 

spectrum of the 11.78 min peak shows two main ions, Figure 4.6 B, m/z 577.7 and 

297.4. The first ion indicates the presence of an oligomer of two units of (10S)-HOME, 

[2M-H2O-H]−, and the second one represents the cleavage of the ester bond of the 

same compound, Figure 4.6 C, confirming the results found by MALDI TOF MS. 

4.5.1.4 Screening of other lipases for estolides formation 

According to the previous results, improvement of the reaction yield must be 

achieved for trans-estolides becoming applicable and atractive. Therefore, diverse 

lipases and another apolar organic solvent, iso-octane, were assayed. 

An aliquot of 0.6 g of (10S)-HOME was assayed with 100 mg of different lipases in  

Table 4.6. Reaction yield,  (%), in the lipase screening with different apolar solvents. 

Lipase RCF n-hexane iso-octane Specificity 

Novozym 435 0.7 11.7 16.0 non-specific 
Lipozyme RM IM 1.3 26.4 23.6 sn-1,3 
Candida rugosa 2.9 16.8 12.5 non-specific 
Rhizopus oryzae lipA

a
  3.7-4.1

b
 15.1 13.8 sn-1,3 

Lipozyme TL IM   36.4 32.7 sn-1,3 

Data are the average of two replicates. RCF: ratio competitive factor. 
a
 This lipase was kindly donated by Prof. Francisco Valero (Chem. Eng. Dept. UAB, 

Cerdanyola del Vallès, Spain). 
b
From Rhizopus arrhizus and Rhizopus delemar [417]. 
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both apolar organic solvents, n-hexane and iso-octane (log P = 4.5 [418]), for 48 h at 

50ºC. Table 4.3 summarizes the reaction yields, and the lipases are listed according to 

their ratio competitive factors (RCF).  

It was expected that higher reaction yields would be found with Novozym 435 

(11.7%) due to its low RCF (0.7); however, the observed values were lower than those 

of C. rugosa and R. oryzae lipases (16.8% and 15.1%, respectively), which both have 

an RCF higher than 1. On the other hand, Lipozyme RM IM and Lipozyme TL IM had 

RCF values of 26.4% and 36.4%, respectively. Although the specificity of the assayed 

lipases was listed with the aim of establishing a correlation with the yield observed, it 

seems that the non-specific lipases (Novozym 435 and C. rugosa) had lower reaction 

yields than did the sn-1,3-specific lipases (Lipozyme RM IM, Lipozyme TL IM and R. 

oryzae lipA) with the exception of lip A from R. oryzae. Moreover, it seems that RCF 

depends on the reaction conditions in which it was defined and they are slightly 

different from ones presented herein. However, Bódalo found that 1,3-selective lipases 

are unable to attack secondary alcohols [426]; perhaps, the configuration of the double 

bond and its relative position to the secondary alcohol had an important effect.  

In addition, iso-octane, another apolar organic solvent with a higher log P value was 

tested (4.5). Unlike n-hexane, iso-octane is not a compatible solvent in food 

applications; however, estolides produced with this apolar solvent can be used as 

lubricants in cosmetics, inks or coatings [428]. Iso-octane was selected to increase the 

solubility of the substrate (10S)-HOME and, thus, the reaction yield, but no significant 

differences were observed with n-hexane.  

It is notable that there is no relationship between the RCF and reaction yield when 

the enzymatic synthesis proceeds in an aqueous-free solvent. In relation to these 

results, a future study of the production of estolides with Lipozyme RM IM or Lipozyme 

TL IM and other reaction media is needed. In such study, there would be an increase in 

the polymerization conversion to test the physical properties of this new family of trans-

HFA estolides. 

4.5.2 Estolide production from (10S)-HOME and (7S,10S)-DiHOME in a solvent-

free media 

A few organic solvents can dissolve properly these new trans-HFA, but less of those 

could maintain an appropriate enzymatic stability of lipases. Thus, solvent-free systems 

for enzymatic synthesis arise as promising alternative to attain higher reaction yields, 

as well as, making the process environmental friendly and their products are adequate 

for a wide range of applications, particularly in food industries, where stringent  
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Figure 4.7. Enzymatic estolide production in a solvent-free medium. A: Enzymatic 
estolide production from (10S)-HOME with 12% (w/w) of three different lipases and 
vacuum (total preassure of 1.6 kPa) at 80ºC during 168 h. B: Enzymatic estolide 
production from (7S,10S)-DiHOME with 12% (w/w) of three different lipases and vacuum 
(total preassure of 1.6 kPa) at 80ºC during 168 h. N453: Novozym 435. L RM IM: 
Lipozyme RM IM. L TL IM: Lipozyme TL IM. 

 

Table 4.7. Final reaction yield,  (%), in estolide production in a solvent-free 
medium. 

Lipase RCF (10S)-HOME (7S,10S)-DiHOME 

Novozym 435 0.7 71.7 94.7 
Lipozyme RM IM 1.3 68.4 70.8 
Lipozyme TL IM   71.6 88.9 

 

regulations exist regarding solvent use [429]. Moreover, the absence of organic 

solvents in the reaction media avoids compound solubility and enzymatic stability 

problems. 

Two different types of trans-estolides are synthesized in a solvent-free system with 

three lipases Novozym 435, lipase B from C. antarctica; Lipozyme RM IM, lipase from 

R. miehei; and Lipozyme TL IM, lipase from Thermomyces lanuginosus. Enzymatic 

reactions were carried with 12% (w/w) of lipase, at 80ºC, under vacuum (1.6 kPa 

absolute preassure) and were magnetically stirred, 500 rpm, following the 

recommended conditions of Ortega [410]. 

Time course of the enzymatic reactions were analized by LC for 168 h. Figure 4.7 A 

shows kinetic reactions for (10S)-HOME when was used as substrate. As can be seen, 

Novozym 435 and Lipozyme RM IM presented comparable tendencies over the entire 

process; but Lipozyme TL IM with smaller reaction yields, finally reached a similar 

conversion to the other lipases, Table 4.7. According to the RCF [417], section 4.5.1.4, 

no clear conclusions could be obtained about selectivity of the lipases tested; however, 

Novozym 435 presents the highest reaction yield, 71.7%.  

Figure 4.7 B shows reaction yields over the polymerization process for the three 

lipases using (7S,10S)-DiHOME as substrate. Higher yields were achieved when 

compared with (10S)-HOME ones, Table 4.7. In this polymerization, the highest 
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reaction yield was for Novozym 435, 94.7%, followed by Lipozyme TL IM, 88.9%, and 

Lipozyme RM IM, 70.8%.  

These results contrast with reaction yields obtained in n-hexane in section 4.5.1.2. 

Greater reaction yields, 71.7%, were obtained in a solvent free-system in the 

production of estolides from (10S)-HOME compared with the previous apolar organic 

solvent system, 30.0%. Additionally, higher yields were accomplished when (7S,10S)-

DiHOME was the susbtrate, 94.7%, instead of (10S)-HOME, 71.7%, maybe caused by 

the extra hydroxyl group of (7S,10S)-DiHOME  

There are a no works in the literature about estolide production from trans-HFA in a 

solvent-free media due to these kind of substrates are uncommon in nature. But 

Aguieiras and partners tested these very three enzymes in the production of a mono-

estolide from OA and methyl ricinoleate (both with a cis unsaturation) being Novozym 

435 (6% w/w), the enzyme with the highest conversion, 33%, after 48 h at 80ºC [419]. 

In the same work, reaction yields for Lipozyme RM IM and TL IM were 13 and 14%, 

respectively. This very reaction was also studied by Horchani and coworkers with an 

immobilized Staphylococcus xylosus lipase. A 65% reaction yield was achieved after 

55 h at 55ºC [420], proving the great efficiency of this lipase. 

4.5.2.1 MALDI time-of-flight mass spectrometry 

As stated before, selecting the appropriate MALDI matrix, cationization salts and 

sample preparation techniques are critical success factors for obtaining a reliable mass 

spectrum from which to infer structural information [425] and saving time. Additionally 

another matrix was tested: DHB matrix saturated in acetonitrile. Price and coworkers 

used this matrix to analyze liamocins, polyesters of mannitol and C10 polyols lipids, 

with a reliable accuracy and sensitivity [399]. According to these findings, DHB 

saturated with acetonitrile was tested to detect oligomers with molecular mass higher 

than 1000 Da. Estolides were analysed in positive ion mode giving rise to sodium 

pseudomolecular ions with a good sensitivity; although, monomer sodium adduct could 

not be detected due to the nature of the matrix, in contrast to the lithium DHB matrix 

[430]. 

Prior to analyze trans-HFA estolides, RA estolides, which were enzymatically 

produced using the method described by Bódalo and coworkers [426], were analysed 

with DHB matrix saturated in acetonitrile. Figure A.6 shows the corresponding MALDI 

TOF mass spectrum. Different peaks stand out from others: m/z 601.5, 881.7, 1162.0, 

1443.2 and 1723.5. These ions correspond to the sodium adducts of a mono-estolide, 

[2RA-H2O+23Na]+; di-estolide, [3RA-2H2O+23Na]+; tri-estolide, [4RA-3H2O+23Na]+; tetra- 
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Figure 4.8. MALDI TOF mass spectra with DHB matrix saturated 
in acetonitrile. A: Estolides from (10S)-HOME polymerized with 
Novozym 435 (12% w/w) at 80ºC during 168 h and vacuum (total 
preassure of 1.6 kPa). B: Estolides from (7S,10S)-DiHOME 
polymerized with Novozym 435 (12% w/w) at 80ºC during 168 h 
and vacuum (total preassure of 1.6 kPa). 

estolide, [5RA-4H2O+23Na]+; penta-estolide, [6RA-5H2O+23Na]+; and hexa-estolide, 

[7RA-6H2O+23Na]+, respectively. A very low signal was observed for the last two peaks. 

Figure 4.8 A shows mass spectra of (10S)-HOME (M) estolides obtained after 

polymerization with Novozym 435 in a solvent-free system; mass spectra of other 

estolides synthetized by Lipozyme RM IM and TL IM are presented in Figure A.7. 

Different ions stand out from the rest, making possible an easier and faster 

identification of the olygomers produced. Ions are the following: m/z 601.5, [2M-

H20+23Na]+; 881.7, [3M-2H20+23Na]+; 1162.0, [4M-3H20+23Na]+; and 1442.2, [5M-

4H20+23Na]+. The ion m/z 1722.4, which refer to a penta-estolide, [6M’-5H20+23Na]+,  is 
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not appreciable in the figure 4.8 A; however, it was detected. Figure 4.8 B presents 

(7S,10S)-DiHOME (M’) estolides synthetized by Novozym 435. As can be seen, up to 

six pseudomolecular ions were detected. The first one with a m/z 633.5, [2M’-

H20+23Na]+, corresponds to a dimer, mono-estolide; lower mass ions were uncapable to 

detect with this matrix. Moreover, the following ions were also detected m/z 929.7, 

[3M’-2H20+23Na]+; 1226.0, [4M’-3H20+23Na]+; 1522.3, [5M’-4H20+23Na]+; 1819.5, [6M’-

5H20+23Na]+; and, 2115.7, [7M’-6H20+23Na]+. As could be observed, pseudomolecular 

ions of (7S,10S)-DiHOME estolides were detected with higher sensitivity because of 

they were produced in more quantity than (10S)-HOME ones; reaction yields were 

higher when the dihydroxylated compound was used as substrate, Table 4.7. Mass 

spectra of other estolides synthetized by Lipozyme RM IM and TL IM are presented in 

Figure A.8. 

4.5.2.2 Nuclear magnetic resonance 

NMR analyses were carried out to determine the structure of the estolides 

synthetized in a solvent-free system. A sample of each compound was analysed by 1H 

and 13C NMR. Moreover, 2D experiments were used to help in the structural 

determination. 13C and 1H NMR spectra of (10S)-HOME and (7S,10S)-DiHOME are 

presented in Figure 4.9 and 4.10 respectively. 

Figure 4.9 shows 13C spectra of (10S)-HOME and (7S,10S)-DiHOME estolides. 

Different common features in both figures will be commented. A signal for an ester 

carbonyl appears around 173 ppm (C1) [431]; moreover, signal of an acid carbonyl 

group, 179 ppm, is appreciable in the spectra, indicating a partial conversion of the 

substrate under reaction conditions, as observed from kinetics. Later, the signal of 24 

ppm which matches with C3, corresponds to a methylene carbon. Finally, the terminal 

methyl carbon (C18) of the chain appears at 14.10 ppm. 

trans-double bond in monohydroxylated estolides, Figure 4.9 A, has a chemical shift 

of 128.65 (C9) and 134.01 (C8) pmm; meanwhile, in the monomer or in the part of 

estolides molecules non affected by the ester bond is at 131.94 (C8) and 133.13 (C9) 

ppm. Furthermore, C2 and C10 signals are also modified downfield, from 33.94 to 

34.56 ppm, and from 73.27 to 74.79 ppm [432], respectively. Both signals and the ester 

carbonyl could be considered as key markers in the identification of estolide formation.  

In the case of the dihydroxylated estolides, Figure 4.9 B, oleofinic carbons (C8 and 

C9) appear together as one signal, 129.01 ppm. When they are not affected by the 

ester linkage have a chemical shift of 133.64 ppm, a higher signal due to both carbons 

are surrounded by two atoms of oxygen, which is an electronegative element. In this 

case, both types of C2 signals appear very close each other, around 34.48 ppm. 
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Figure 4.9. 
13

C NMR spectra of estolides produced in a solvent-
free medium. A: (10S)-HOME estolides produced by with Novozym 
435 (12% w/w) at 80ºC during 168 h and vacuum (total preassure 
of 1.6 kPa). B: (7S,10S)-DiHOME estolides produced by Novozym 
435 (12% w/w) at 80ºC during 168 h and vacuum (total preassure 
of 1.6 kPa). Chemical shifts are expressed in parts per million. 
Structure figures depicted in the figures are a guide to understand 
the different types of carbon present in the estolides. 
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Figure 4.10. 
1
H NMR spectra of estolides produced in a solvent-

free medium. A: (10S)-HOME estolides produced by with Novozym 
435 (12% w/w) at 80ºC during 168 h and vacuum (total preassure 
of 1.6 kPa). B: (7S,10S)-DiHOME estolides produced by Novozym 
435 (12% w/w) at 80ºC during 168 h and vacuum (total preassure 
of 1.6 kPa). Chemical shifts are expressed in parts per million. 
Structure figures depicted in the figures are a guide to understand 
the different types of proton present in the estolides. 
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A higher magnetic field would be necessary to identify with more accuracy each kind of 

C2 signals. Lastly, C7 and C10 signals present the same chemical shift as in the 

substrate, 72.45 ppm, due to the symmetry of the molecule across the double bond 

and shifted downfield, 73.84 ppm [432], when they are present in the estolide molecule. 

Estolide structure presented in the Figure 4.9 B is only a possible representation of the 

formed trans-estolide because of 500 MHz experiments could not precisely if the ester 

linkage was produced by C7, C10 or both. 

Figure 4.10 shows 1H spectra of (10S)-HOME and (7S,10S)-DiHOME estolides. 

Some common signals will be discuss ahead. The signal of the terminal methyl 

hydrogens (H18) are at 0.88 ppm and methylene hydrogens H3 and H7 have an 

downfield chemical shift of 1.61 and 2.02 ppm due to the presence of the carbonyl 

group and the trans-double bond, respectively.  

In the case of the monohydroxylated estolides, Figure 4.10 A, oleofinic hydrogens 

H8 and H9 have a chemical shift of 5.67 and 5.38 ppm, slightly different when they no 

affected by the ester linkage, 5.60 and 5.47 ppm, respective. Methylene hydrogens in 

the position 2 (H2) are also affected when are next to a ester carbonyl, 2.28 ppm, or an 

acid carbonyl 2.33 ppm [433]. Finally, methine hydrogen (H10) experimented a big 

change from 4.05 ppm when is next to the secondary alcohol to 5.19 ppm. This last 

signal is considered the most important for the identification of estolides synthesis in 

1H NMR spectra. 

When (7S,10S)-DiHOME estolides were analysed the following special features 

were found out, Figure 4.10 B. trans-double bond hydrogens (H8 and H9) appears as 

one signal, at 5.59 ppm in the polymerized part of the molecules and at 5.64 ppm in the 

substrate. Methine hydrogens (H7 and H10) are also found as one signal, like oleofinic 

hydrogens, due to the symmetry of the molecules in that point and by the low magnetic 

field in which (7S,10S)-DiHOME samples were analysed. These hydrogens have been 

downfielded from 4.08 to 5.22 ppm. Finally, H2 signal, 2.29 ppm, is composed by to 

signals, the acid and ester hydrogens; only observed in 2D experiments. 

Similar features can be observed for estolides synthetized by Lipozyme RM IM and 

Lipozyme TL IM. Their corresponding figures, Figure A.11-14, could be found in the 

Appendix. Finally, estolide number (EN) could be calculated according to the following 

formula: 

1

1i

'H10'

H10'H10
EN HOME)S10(





                (31a) 

1i

1i

'/10''H7'

/10'H7'H7/10
EN DiHOME)S10,S7(







              (31b) 
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where i represents the average number of monomers in the polyester, the degree of 

polymerization (DP) [434]. EN represents the average oligomeric distribution of the 

estolide [400]. From the integration of the signals H10+H10’, 4.05 ppm, and H10’’, 5.19 

ppm for monohydroxylated estolides, Figure 4.10 A; and H7/10+H7’/10’, 5.22 ppm, and 

H7’’/10’’, 4.08 ppm for dihydroxylated polyesters, Figure 4.10 B, and applying the 

corresponding Equation 31, the EN could be obtained and it is listed in Table 4.8. 

Table 4.8. Estolide number (EN) and degree of polymerization (DP) of the different 
estolides which were enzymatically synthesized. 

 (10S)-HOME (7S,10S)-DiHOME 

Lipase EN DP EN DP 
Novozym 435 2.00 3 0.67 5 
Lipozyme RM IM 1.59 2-3 0.43 2-3 
Lipozyme TL IM 1.15 2-3 0.64 4-5 

Table 4.8 shows the EN obtained from Equation 31 and the degree of 

polymerization (DP; i). As can be seen higher values are achieved when dihydroxylated 

compound was the substrate used. Moreover, Novozyme 435 resulted as the most 

effective catalyst of the three tested. The results agree with reaction yields previously 

showed in Table 4.7. 

Despite there is no reference in the literature about EN of trans-hydroxy-estolides, 

Isbell and coworkers chemically synthetized estolides from C18:1 monomers from 

lequerella and castor oils, both rich in HFA, with EN of 0.97 and 1.55 (DP = EN + 1), 

respectively [435]; very similar values to the ones obtained for (10S)-HOME, Table 4.8. 

According to these results and MALDI TOF-MS ones, production of estolides in a 

solvent-free system offers better yields and higher DP than production of estolides in n-

hexane. 

4.5.3 Estolide production from saturated (10S)-HOME in a solvent-free media 

A hydroxyl moiety in -position to a double bond becomes a highly nucleophilic 

reaction group from a chemical point of view and, maybe, an uncommon group for the 

catalytic centre of lipases because of it could present some steric hindrance. Hence, for 

reducing double bond selectivity of lipases, a saturated (10S)-HOME was produced to 

improved reaction yields and synthetizing another type of estolides. 

Saturated (10S)-HOME was chemically synthetized by means of protecting hydroxyl 

moiety with bis(trimethylsilyl)acetamide before catalytic hydrogenation. Previous 

hydrogenation experiments without such protecting group led to the modification of 

hydroxyl group apart from reducing the double bond. Finally, trimethylsilyl protecting 

group was detached from saturated (10S)-HOME in acidic conditions. Prior to 

polymerization all organic solvent traces were removed under vaccum. 
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4.5.3.1 Enzymatic and chemical synthesis 

Saturated (10S)-HOME was polymerized chemically and enzymatically to produced 

estolides. Time course reaction is shown in Figure 4.11.  

Figure 4.11. Saturated (10S)-
HOME polymerization. ER: 
Enzymatic reaction, synthesis of 
estolides from saturated (10S)-
HOME, 2 g, with Novozym 435 
12 % (w/w), 0.24 g, at 80ºC, 
stirred at 500 rpm during 168 h 
and vacuum, 1.6 kPa of absolute 
preassure. CR: Same reaction 
conditions as in ER without 
enzyme. RA Est: Estolides from 
RA, according to [410]. 12-
HOSA Est: estolides synthetized 
from 12-HOSA, 100 g, at 150ºC 
stirred at 500 rpm during 96 h. 

As can be seen, enzymatic reaction presents a better yield, 71.2%, than chemical 

one, 60.7%. Enzymatic reactions are known by their versatility and regio-, chemo- and 

enantioselectivity while operating under mild conditions [409] and here is presented 

one prove about their performance in front of chemical reactions. Moreover, two 

additional reactions were added to the Figure 4.11: the enzymatic production of RA 

estolides with C. rugosa [410] and the chemical synthesis of 12-hydroxystearic acid 

(12-HOSA) estolides under vacuum. As can be seen for RA estolides, despite the fact 

that reaction yield increased very fast in 48 h, it is not improved after that point, even 

the final conversion value, 64.9%, is lower than the one for the enzymatic reaction with 

saturated (10S)-HOME. It should also be remembered that RA is a HFA produced by 

nature and saturated (10S)-HOME is a synthetic one and higher yields should be 

expected for the first one. On the other hand, the production of 12-HOSA estolides has 

the highest yield after 168 h, 91.9%. The conversion difference with the chemical 

reaction of saturated (10S)-HOME is significant. Both HFA are saturated but differ in 

the position of the hydroxyl moiety and the stereochemistry of this quiral center: S for 

saturated (10S)-HOME and a mixture of both enantiomers for 12-HOSA.  

As stated before, it seems that the position of a hydroxyl moiety and its 

stereochemistry must be taken into account for synthetizing estolides from HFA. 

4.5.3.2 MALDI time-of-flight mass spectrometry 

According to the good results obtained previously in section 4.5.2.1 with estolides 

synthetized in a solvent-free system, DHB matrix saturated in acetonitrile was also 
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used to determine the number of oligomers produced. Must be remembered that ions 

are sodium adducts with positive charge. 

Figure 4.12 displays MALDI TOF MS spectra of saturated (10S)-HOME when was 

polymerized enzymatically, A, and chemically, B. In both mass spectra, some 

pseudomolecular ions stand out from others. Surprisingly, the ion corresponding to the 

unreacted saturated (10S)-HOME (S), m/z 324.2, have been detected [S+23Na]+, in 

contrast to previous analyses, section 4.5.2.1. Moreover, ions m/z 605.5, [2S-

H2O+23Na]+; 887.8, [3S-2H2O+23Na]+; 1170.1, [4S-3H2O+23Na]+; and 1453.4, [5S-

4H2O+23Na]+, which correspond to mono-, di-, tri- and tetra-estolide, respectively, were 
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Figure 4.12. MALDI TOF MS analyses of saturated (10S)-HOME 
estolides. A: Under enzymatic reaction at 80ºC during 168 h and 
vacuum (total preassure of 1.6 kPa). B: Under chemical reaction at 
80ºC during 168 h and vacuum (total preassure of 1.6 kPa). Matrix 
used was DHB saturated with acetonitrile. 
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detected. All these adducts were detected in both mass spectra; however, oligomers 

produced in the enzymatic reaction were detected with higher intensity than the 

chemical reaction, indicating a higher production of oligomers. As stated before, this 

signalling increase is proportional to the reaction yield. 

4.5.3.3 Magnetic nuclear resonance 

For confirming the nature of the oligomers synthetized a sample of each reaction 

was analized by NMR; additionally, 2D experiments were used to understand all 

signals in 1H and 13C NMR spectra. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13. 
13

C NMR spectrum of saturated (10S)-HOME 
estolides under enzymatic reaction at 80ºC during 168 h and 
vacuum (total preassure of 1.6 kPa). Chemical shifts are 
expressed in parts per million. Molecule structure depicted in the 
figure is a guide to understand the different types of carbon present 
in the estolides. 

Figure 4.13 shows 13C spectra of saturated (10S)-HOME estolides produce by 

Novozym 435, 12% (w/w) [436]. 13C NMR spectra of estolides produced by chemical 

reaction could be found in the Appendix, Figure A.16 A, as well as saturated (10S)-

HOME, Figure A.15. The main difference with polyesters commented in section 4.5.2.2 

(solvent-free) is the lack of oleofinic carbon signals around 132 ppm.  

However, the presence of an ester carbonyl signal, 179.18 ppm (C1) a methylene 

carbon (C2) at 34.01 ppm and a methine carbon (C10) at 74.09 ppm [433] confirm the 

formation of the saturated polyesters. Finally, a new signal of C9/11 methylene carbon 
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is shifted from 37.43 to 34.14 ppm by the ester bond. Two other carbon signals C3 and 

C18 become common with trans-estolides, 24.70 and 14.09 ppm, respectively. 

Figure 4.14 displays 1H spectrum of saturated (10S)-HOME estolides produce by 

Novozym 435, 12% (w/w). As stated before, 1H NMR spectra of estolides produced by 

chemical reaction could be found in the Appendix, Figure A.16 B. Figure 4.13 shows 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.14. 
1
H NMR spectrum of saturated (10S)-HOME estolides 

under enzymatic reaction conditions at 80ºC during 168 h and 
vacuum (total preassure of 1.6 kPa). Chemical shifts are 
expressed in parts per million. Structure molecule depicted in the 
figure is a guide to understand the different types of hydrogens 
present in the estolides. 

some important signals of an estolide. The methine signal (H10) at 4.86 ppm is 

indicative of an ester linkage [433]; this signal is downfielded from 3.59 ppm when is 

closed to an hydroxyl group. The methylene protons in  to the acid group (H2) are 

shifted from 2.33 to 2.27 ppm when are next to an ester bond [433]. Furthermore, 

methylene protons that surrounded position 10, H11/9 are shifted from 1.43 to 1.49 by 

the ester bond formation. As stated previously, NMR analyses with a 500 MHz 

magnetic field is insufficient to precisely distinguish between 9 and 11 proton signals. 

Finally, methyl hydrogens at position 18 with a chemical shift of 0.87 ppm and 

methylene hydrogens in  to the ester group (H3) at 1.61 ppm are shared signals to all 

the preceding commented estolides. Similar signals were found for saturated (10S)-
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HOME estolides chemically produced, Figure A.16 B; furthermore all these spectra 

could be compared with saturated (10S)-HOME ones, Figure A.9. 

Ultimately, DP could be calculated here from EN and Equation 31a for saturated 

estolides synthetized chemically and enzymatically. Signals selected for that purpose 

are at 3.59 ppm for H10’’ and 4.86 ppm for H10+H10’, Figure 4.14 and A.16 B.  

Table 4.9.  Estolide number (EN) and degree of polymerization (DP) of 
the different estolides synthetized. 

 

 Saturated (10S)-HOME 

 Chemically Enzymatically 
 EN DP EN DP 
 1.95 2-3 2.49 3-4 

 (10S)-HOME (7S,10S)-DiHOME 

Lipase EN DP EN DP 
Novozym 435 2.00 3 0.67 5 
Lipozyme RM IM 1.59 2-3 0.43 2-3 
Lipozyme TL IM 1.15 2-3 0.64 4-5 

 

Table 4.9 displays the different values obtained for EN and DP. As can be seen, the 

enzymatic reaction produced a higher EN, 2.49, than chemical reaction, 1.95. These 

EN values show that enzymatic reaction has a DP between 3 and 4 monomeric units 

and chemical reaction between 2 and 3, one oligomer less. EN is proportional to 

reaction yield. These values are slighty higher than those found out by Cermak and 

collaborators in the chemical production of an stearic-oleic capped estolide with a 

44.5% reaction yield, at 55ºC during 24 h. The DP of this estolide was 0.4, which 

means that approximately the fifty percent of the product is a mono-estolide [416], due 

to the low temperature and reaction time. 

When these values are compared with previous ones of (10S)-HOME, inserted in 

Table 4.9, no great improvements have been achieved from a synthetic point of view. 

DP was only augmented in one monomeric unit in the enzymatic reaction, meanwhile 

chemical one offer the same DP range. On the other hand, DP of saturated (10S)-

HOME estolides are lower than those obtained for (7S,10S)-DiHOME estolides 

produced by Novozym 435 and Lipozyme TL IM; because of, as stated before, EN and 

DP are totally related with reaction yield. 

Finally, EN and DP calculated from 1H NMR spectra confirm results observed from 

MALDI TOF-MS spectra: enzymatic reaction produced higher mass estolides than 

chemical reaction under the same synthetic conditions. 
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4.5.4 Physicochemical properties 

A few physicochemical properties of estolides produced from section 4.5.1 to 4.5.3 

were analysed in order to determine their viscosity and density () to compare them 

against the values of estolides previously published in the literature. Moreover, 

calorimetric analysis as differential scanning calorimetry (DSC) and thermal gravimetric 

analysis (TGA) were performanced to find out their characteristic calorimetric 

parameters. 

4.5.4.1 Viscosity determination 

This is the first time that estolides from trans-HFA are analyzed to determine their 

viscosity and few references of similar compounds were found in the literature. 

Estolides analysed in this section were considered as oligomers and not polymers 

strictly, due to their low DP values. Such simple molecules were determined as 

Newtonian fluids, because their viscosity remained constant over different shear rates. 

Dynamic or absolute viscosity (’) determination was run over three different 

temperatures (20, 40 and 60ºC) when was possible for calculating the pre-exponential 

factor (A) and activation energy (Ea) of the Arrhenius-type relationship [437]. This 

equation describes the dependence of viscosity on temperature, where A can be 

considered as the infinite-temperature viscosity value and Ea indicates the sensibility of 

a substance to the temperature [438]. Some authors consider that Ea gives much more 

accurate information to that given by the viscosity index, since this parameter is 

estimated from kinematic viscosities () at two limiting temperatures 40ºC and 100ºC 

[439]. Additionally,  was determined to compare ’ values obtained herein with 

kinematic viscosities (of other estolides previously published at 40ºC. 

In Table 4.10 pre-exponential factor, A, and activation energy, Ea, can be observed. 

Some of the monomers, (7S,10S)-DiHOME, 12-HOSA and saturated (10S)-HOME, did 

not melted at 60ºC; thus viscosity parameters could not be calculated. However, the 

two monohydroxylated compounds, (10S)-HOME and RA, present similar A values 

(9.47 and 2.77 10-10 Pa·s) and Ea values (49.9 and 53.3 kJ·mol-1). These small 

differences between these isomeric HFA are referred to the position and configuration 

of the hydroxyl moiety, as well as, their double bond.  

Estolides synthetized from (10S)-HOME present comparable A values; although, 

entrances (10S)-HOME n-hexane and (10S)-HOME TL IM values are slightly higher. 

Nevertheless, these discrepancies were not found on Ea values. All them fell on a small 

range values of 40.8 to 55.1 kJ·mol-1, indicating similar thermal susceptibilities to flow. 

(10S)-HOME estolides values are close to those found for PR estolides, Table 4.10. 
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Table 4.10. Viscosity analysis parameters from estolides and degree of polymerization (DP).    

Sample 
A·10

-10
  

(Pa·s) 

Ea  
(kJ·mol

-1
) 

  
(g·ml

-1
) 

   
(cSt) 

  
(%) 

DP 

(10S)-HOME 9.47 49.9 0.96 205   1 
(7S,10S)-DiHOME n.d. n.d. 0.99 n.d.   1 
RA 2.77 53.3 0.94 213   1 
Sat (10S)-HOME n.d. n.d. 0.93 n.d.   1 
12-HOSA n.d. n.d. 0.95 n.d.   1 
       
PR 16.1 50.9 0.98 478 64.9 4-5

†
 

(10S)-HOME n-hexane 180 40.8 0.96 112 30.0 1-2
†
 

(10S)-HOME N435 3.48 55.1 0.97 608 71.7 3 
(10S)-HOME RM IM 5.79 53.6 0.97 495 68.4 2-3 
(10S)-HOME TL IM 24.2 49.3 0.97 402 71.6 2-3 
       
(7S,10S)-DiHOME N435 3.62 59.1 1.00 2510 94.7 5 
(7S,10S)-DiHOME RM IM 0.14 67.7 1.02 3235 70.8 2-3 
(7S,10S)-DiHOME TL IM 1.06 62.7 1.00 3000 88.9 4-5 
       
Sat (10S)-HOME

 
ER

*
 0.050 65.4 0.95 417 71.2 3-4 

Sat (10S)-HOME
 
CR

 *
 0.007 72.1 0.95 746 60.7 2-3 

12-HOSA CR 1080 42.1 0.91 1284 91.9 4-5
†
 

A: Pre-exponential factor. Ea: Activation energy. : Density. : kinematic viscosity. : 
Reaction yield. DP: Degree of polymerization. RA: Ricinoleic acid 80%. Sat (10S)-HOME: 
Saturated (10S)-HOME. 12-HOSA: 12-hydroxystearic acid. PR: Polyricinoleic acid estolides. 
(10S)-HOME n-hexane: (10S)-HOME mono-estolide in n-hexane. (10S)-HOME N435: 
(10S)-HOME with Novozym 435 solvent-free. (10S)-HOME RM IM: (10S)-HOME with 
Lipozyme RM IM solvent-free. (10S)-HOME TL IM: (10S)-HOME with Lipozyme TL IM 
solvent-free. (7S,10S)-DiHOME N435: (7S,10S)-DiHOME with Novozym 435 solvent-free. 
(7S,10S)-DiHOME RM IM: (7S,10S)-DiHOME with Lipozyme RM IM solvent-free. (7S,10S)-
DiHOME TL IM: (7S,10S)-DiHOME with Lipozyme TL IM solvent-free. Sat (10S)-HOME ER: 
Saturated (10S)-HOME, enzymatic reaction. Sat (10S)-HOME CR: Saturated (10S)-HOME, 
chemical reaction. 12-HOSA CR: 12-HOSA estolides, chemical reaction. 
*
Obtained at 40 and 60ºC.

 †
Estimated 

(7S,10S)-DiHOME estolides follow the same pattern as (10S)-HOME ones, close 

values for infinite-temperature viscosity and activation energy. On the other hand, A 

and Ea values for dihydroxylated estolides are higher than monohydrylated ones, 

indicating that they are more viscous compounds. This tendency is reflected by higher 

reaction yields and DP, as could be observed for entrance (7S,10S)-DiHOME N435 to 

(7S,10S)-DiHOME TL IM when are compared to (10S)-HOME estolide group in Table 

4.10.  

Finally, saturated estolides were analysed. Saturated (10S)-HOME estolides present 

very low A values (0.050 and 0.007 10-10 Pa·s) when compared to 12-HOSA CR 

estolides (1080·10-10 Pa·s). No reasoning was found for that situation, because Ea 

(42.1 kJ·mol-1) is in the same range as the two other saturated estolides (65.4 and 72.1 

kJ·mol-1). Moreover, these Ea values are the highest of all compounds listed in Table 

4.10, indicating that saturated (10S)-HOME estolides are (proportionally to the DP) the 

compounds which offer the largest resistance to flow. Few references have been found 

about Ea of HFA, but García-Zapateiro and co-workers determined the Ea values of 

estolides chemically produced from high-oleic sunflower oil in a range of 36.7-40.5 
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kJ·mol-1 [437]. These values are slightly lower when are compared to those found for 

(10S)-HOME estolides and PR, maybe, caused by the presence of a double bond and 

hydroxyl moieties.  

Furthermore, kinematic viscosity, , of the diverse types of produced estolides was 

calculated. As could be observed, (10S)-HOME and RA have similar valuesbecause of 

both are isomeric compounds, 205 and 213 cSt, respectively. (7S,10S)-DiHOME, RA, 

12-HOSA and Sat (10S)-HOME viscosities could not be calculated due to at 40ºC still 

remain solid. Valeri and Meirelles determined an OA viscosity as of 19.7 cSt [440]. 

Such low value gives an idea the contribution of a trans double bond and one single 

hydroxyl moiety to the viscosity when is compared to the monohydroxylated 

compounds.  

The unsaturated monohydroxylated estolides have  values between 400 and 500 

cSt, with the exception of compound (10S)-HOME n-hexane, 112 cSt, because its DP 

is very low; and (10S)-HOME N435, 608 cSt. It is abnormally higher when is compared 

with entrance (10S)-HOME TL IM. These values are very similar to that found for  of 

PR, 478 cSt, despite of a higher DP. This fact indicates a larger contribution of a trans 

double bond than a cis one to viscosity. In any case, all these compound and PR 

present higher  when are compared to their corresponding substrates by the 

polymerization effect. The dihydroxylated estolides have the highest  of all the 

compounds listed, 2510-3235 cSt. This was expected since (7S,10S)-DiHOME 

remained solid at 40ºC and the higher DP obtained in their polymerization reactions. 

Viscosity values for the dihydroxylated estolides are six-fold higher, as average, than 

monohydroxylated ones. This increment is caused by the extra hydroxyl group in 

position 7 and hydrogen bonds. The most similar compounds found in the literature are 

oleic-castor and oleic–lesquerella estolides, probably mono-estolides, produced by 

Cermak and coworkers [441] from cis-HFA (RA and 14-hydroxy-11(Z)-eicosenoic acid, 

respectively), which had a viscosity value of 34.5 and 35.4 cSt, respectively. These low 

values contrast with previous ones due to the different DP obtained in each, probably 

to the cis configuration of the double bond. 

Finally, saturated (10S)-HOME estolides (Sat (10S)-HOME ER and Sat (10S)-

HOME CR) have lower viscosity values, 417 and 746 cSt, than 12-HOSA CR, 1284 

cSt. This fact is due to 12-HOSA remained solid at 40ºC and its DP higher than Sat 

(10S)-HOME ER and Sat (10S)-HOME CR entrances. Furthermore,  value for Sat 

(10S)-HOME CR polyesters are higher than Sat (10S)-HOME ER one, despite of 

having a lower DP. It is believed that in chemical reaction, some other compounds as 

by-products could be produced and they would be responsible for this almost two-fold 
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increase in viscosity value, 746 cSt, respect to entrance Sat (10S)-HOME ER, 417 cSt. 

There were no differences in  values of saturated (10S)-HOME estolides when were 

compared to unsaturated (10S)-HOME ones. It seems that a saturated and trans-

estolides have the same behaviour from a rheological point of view. Cermak and 

collaborators hydrogenated oleic-castor and oleic-lesquerella estolides, obtaining a 

viscosity values of 68.3 and 37.0 cSt, respectively [441]. Viscosity was increased as 

they previously published [434], because the initial estolides have a cis unsaturation. 

Finally, it is worthy to remark that depending on the possible future applications of 

trans-estolides different parameters,  or DP, will be taken into account for optimizing 

synthetic reaction, apart from the nature of the initial substrate: position and 

configuration of the hydroxyl moiety and double bond. 

4.5.4.2 Calorimetric analyses 

Thermal analyses include a family of techniques that, when used together to 

characterize material properties, will yield information regarding how material will 

perform under a wide range of temperatures. DSC provides quantitative and qualitative 

information about physical and chemical changes that involve endothermic or 

exothermic processes or changes in heat capacity. TGA measures the amount and  

 Table 4.11. Calorimetric analysis parameters of estolides. 

Sample 
Tg 

(ºC) 
Tonset1 

(ºC) 

H1 
(J·g

-1
) 

Tonset2 

(ºC) 
H2 

(J·g
-1
) 

Tonset3 

(ºC) 
H3 

(J·g
-1
) 

Residue 
(%) 

(10S)-HOME -60 119 -7.08 196 47.33 315 -161.3 0.35 
(7S,10S)-DiHOME -49 185 37.79 277 -56.16 366 147.3 1.23 
RA -70     308 120.67 390 -172.9 0.77 
Sat (10S)-HOME -10         325 192.1 1.66 
12-HOSA -11         327 372.8 0.12 
         
PR -61 127 -15.74 306 106.95 380 -188.7 1.90 
(10S)-HOME n-hexane -72     224 28.90 336 -371.9 0.55 
(10S)-HOME N435 -63     213 33.97 323 -174.1 2.27 
(10S)-HOME RM IM -64     217 35.73 322 -174.0 1.57 
(10S)-HOME TL IM -66     218 27.64 338 -252.9 1.73 
         
(7S,10S)-DiHOME N435 -50 187 34.37 295 -30.18 362 -118.9 1.37 
(7S,10S)-DiHOME RM IM -49 200 28.22 302 -36.23 370 -105.5 1.12 
(7S,10S)-DiHOME TL IM -50 201 18.97 300 -37.07 364 -133.5 2.74 
         
Sat (10S)-HOME

 
ER

*
 -18         313 206.0 2.07 

Sat (10S)-HOME
 
CR

 *
 -14         324 287.6 2.13 

12-HOSA CR -13         323 371.4 0.11 

Tg: Glass transition temperature. Tonset: Initial temperature of H. H: Decomposition 
enthalpy. RA: Ricinoleic acid 80%. Sat (10S)-HOME: Saturated (10S)-HOME. 12-HOSA: 12-
hydroxystearic acid. PR: Polyricinoleic acid estolides. (10S)-HOME n-hexane: (10S)-HOME 
mono-estolide in n-hexane. (10S)-HOME N435: (10S)-HOME with Novozym 435 solvent-
free. (10S)-HOME RM IM: (10S)-HOME with Lipozyme RM IM solvent-free. (10S)-HOME TL 
IM: (10S)-HOME with Lipozyme TL IM solvent-free. (7S,10S)-DiHOME N435: (7S,10S)-
DiHOME with Novozym 435 solvent-free. (7S,10S)-DiHOME RM IM: (7S,10S)-DiHOME with 
Lipozyme RM IM solvent-free. (7S,10S)-DiHOME TL IM: (7S,10S)-DiHOME with Lipozyme 
TL IM solvent-free. Sat (10S)-HOME ER: Saturated (10S)-HOME, enzymatic reaction. Sat 
(10S)-HOME CR: Saturated (10S)-HOME, chemical reaction. 12-HOSA CR: 12-HOSA 
estolides, chemical reaction. 
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rate of change in sample weight as a function of time or temperature. Thermal 

parameters obtained from those techniques can be observed in Table 4.11. 

Table 4.11 displays different calorimetric parameters obtained from DSC and TGA 

curves. Tg, glass transition temperature could be determined for all estolides analyzed 

in this section, which indicate that this kind of polyesters are amorphous compounds. 

Melting point is not listed in Table 4.11, due to it could be only detected for (7S,10S)-

DiHOME, 56ºC, hence is the only compound which presents a crystalline structure. 

This fact could be caused by the hydrogen bonds produced by the two hydroxyl groups 

and the acid moiety in the trans-HFA.  

Tg of the monomers seems to present some especial features. As can be seen, 

monohydroxylated and monounsaturated substrates, (10S)-HOME and RA, present the 

lowest Tg, -60ºC and -70ºC, respectively, which is very similar. Then, it is found out that 

for (7S,10S)-DiHOME Tg was -49ºC; and finally monohydroxylated and saturated 

substrates, saturated (10S)-HOME and 12-HOSA, have the highest Tg, -10ºC and         

-11ºC, respectively. The following Tg tendency could be established: 

monohydroxylated-saturated, monohydroxylated-monounsaturated and dihydroxylated-

monounsaturated, if it were because (7S,10S)-DiHOME has certain crystalline 

structure that increments its Tg value. 

Tg values for produced estolides do not greatly differ from their substrates Tg with 

the only exception of PR, -61ºC, which increased regarding to RA, -70ºC. Entrances 

(10S)-HOME n-hexane to (10S)-HOME TL IM, present slightly lower Tg values, around 

-65ºC, than their corresponding substrate, (10S)-HOME, -60ºC. Similar results are 

observed for (7S,10S)-DiHOME N435 to (7S,10S)-DiHOME TL IM estolides. In this 

case their Tg practically remains constant, -50ºC, when is compared to (7S,10S)-

DiHOME, -49ºC. Finally, Sat (10S)-HOME ER, Sat (10S)-HOME CR and 12-HOSA CR 

saturated estolides have similar Tg values than their substrates, saturated (10S)-HOME 

and 12-HOSA. Estolides Sat (10S)-HOME ER and Sat (10S)-HOME CR, -18ºC and -

14ºC, respectively, have lowered their Tg respecting to saturated (10S)-HOME, -10ºC. 

On the other hand, Tg of 12-HOSA CR compound, -13ºC, is comparable to 12-HOSA, -

11ºC. 

According to these values, estolides produced in this section could be used as 

lubricating oils, one of the main applications of estolides [428], as long as the lowest 

temperature end of the working range will be higher than their Tg. Tg is defined as the 

temperature in which a compound changes its rigid and brittle state to another soft and 

malleable, only present in amorphous substances. 

Additionally, different decomposition enthalpies (H) and their initial temperature 

(Tonset) of these H were listed in Table 4.11, obtained from DSC curves. trans-HFA, 
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(10S)-HOME and (7S,10S)-DiHOME, present three different H. Two exothermic 

enthalpy, negative value, and an endothermic one, positive value. In contrast, RA, has 

two H, one of each type, and saturates substrates, 12-HOSA and saturated (10S)-

HOME, have an endothermic one, with similar Tonset, 327ºC and 325ºC, respectively. 

(10S)-HOME n-hexane to (10S)-HOME TL IM estolides, present two H which their 

Tonset is approximately 217ºC (+) and 326ºC (-), but (10S)-HOME has three H with the 

following Tonset: 119ºC (-), 196ºC (+) and 315ºC (-). Those estolides lack of the initial 

exothermic H. On the other hand, PR exhibits an extra initial H respecting RA, 127 

ºC (-); however, other two are coincident at 307ºC (+) and 385ºC (-). Regarding to 

dihydroxylated estolides, (7S,10S)-DiHOME N435 to (7S,10S)-DiHOME TL IM 

polyesters possess three H at 195ºC (+), 300ºC (-) and 365ºC (-) which are very 

similar to their initial substrate, (7S,10S)-DiHOME, at 185ºC (+), 277ºC (-) and 366ºC  

(-). This similarity is not found in monohydroxylated compounds. Finally, saturated 

estolides, Sat (10S)-HOME ER to 12-HOSA CR, show only one H at 320ºC (+) as 

their substrates, saturated (10S)-HOME and 12-HOSA, 326ºC (+). At that point 

decomposition and compound fusion is produced at the same time, but in other 

estolides and substrates, decomposition is produced in different stages. In 

monohydroxylated compounds, with the exception of RA and PR, decomposition is 

produced in two stages and in dihydroxylated ones, in three.  

It is important to note that saturated and dihydroxylated estolides maintain the 

number and natures of H and their corresponding Tonset respect to their substrates; not 

as monohydroxylated polyesters. 

4.6 Ethyl esters production 

There is great interest on producing biodiesel from natural sources as vegetable oils 

or animal fats. Usually, biodiesel, (m)ethyl fatty ethyl esters are produced enzymatically 

from fatty acids by esterification and/or from triglycerides by transesterification. On the 

other hand, HFA, mainly RA as castor oil, have not been extensively used to produce 

their corresponding (m)ethyl esters. Furthermore, some fatty acid ethyl esters (FAEE) 

have been described as aromatic compounds in fruit and wine [413-415]. In this 

section, two different trans-HFA ethyl esters are enzymatically produced in non-

conventional media. 

4.6.1 Ethyl esters production from (10S)-HOME and (7S,10S)-DiHOME in 

chloroform 

As stated before, Novozym 435 was chosen due to its ability to react with trans-9-

octadecenoic acids [417], its versatility, and the optimal temperature range of its activity 
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(40-60ºC). The poor solubility of (10S)-HOME in n-hexane negatively affects the 

production yield of estolides [430], section 4.5.1. Thus, to improve the solubility of 

(10S)-HOME and (7S,10S)-DiHOME, both were dissolved in chloroform, log P of 1.97, 

a polar organic solvent that enhances their solubility. Log P provides a measure of the 

lipophilic versus hydrophilic nature of a compound [442] that could affect biocatalytic 

activity in the solvent.  

4.6.1.1 Effect of the enzyme concentration 

Different amounts of the lipase were assayed to determine the optimal quantity that 

reacted with 0.5 g of (10S)-HOME and 0.4 ml of ethanol (oil to ethanol molar ratio of 

1:4). Results are presented in Figure 4.15. The reaction yield increased with the 

amount of enzyme, until a plateau was reached, in the presence of approximately 0.10 

g of Novozym 435 and 0.5 g of (10S)-HOME, in which a yield of 89.1% was reached. 

After this point, the reaction yield remained constant, even though when the enzyme 

amount was increased. Thus, a thermodynamic balance between the limiting substrate, 

(10S)-HOME, and the lipase had been reached at this point. The same pattern was 

observed when 0.5 g of (7S,10S)-DiHOME and 0.4 ml of ethanol  (oil-to-ethanol molar 

ratio of 1:4) were reacted with different concentrations of the lipase, Figure 4.15. A 

conversion rate of 89.9% was achieved in 12 hours at 50ºC using 0.10 g of Novozym 

435. At higher enzyme concentrations, no increases in the reaction yield were detected 

for either trans-HFA. At this moment, there are currently no data in the literature about 

the production of ethyl esters from trans-HFA. These yields are slightly higher than the 

81.4% obtained by Oliveira and collaborators, who used castor oil, mainly RA, and the 

same concentration of Novozym 435 used here at 65ºC for 8 hours, with ethanol as 

solvent (oil-to-ethanol ratio of 1:10) [443]. 

Figure 4.15. Effect of 
Novozym 435 concentration 
on ethyl ester production of 
(10S)-HOME, 0.5 g, and 
(7S,10S)-DiHOME, 0.5 g, with 
EtOH, 0.4 ml, at 50ºC during 
12 h in 19.6 ml of chloroform. 
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4.6.1.2 Effect of the substrate/enzyme ratio 

Various substrate/enzyme ratios were tested to establish the optimal concentration of 

trans-HFA. Figure 4.16 illustrates the results with (10S)-HOME as the substrate. The 

reaction yield increased with the substrate/enzyme ratio up to the ratio of 1.5 g·g-1 (0.15 

g of (10S)-HOME per 0.10 g of Novozym 435). After that, the yield remained constant 

at 87.0%. Similar was observed with (7S,10S)-DiHOME, Figure 4.16; however, the 

highest reaction yield here was 90.3%, which was obtained with a ratio of 1 g·g-1 (0.10 

g of (7S,10S)-DiHOME per 0.10 g of Novozym 435). Afterwards, no further upturn was 

detected. 

Figure 4.16. Effect of trans-
HFA:Novozym 435 ratio on 
the ethyl ester production of 
(10S)-HOME or (7S,10S)-
DiHOME with 0.1 g of lipase 
and 0.4 ml of EtOH at 50ºC 
during 12 h in 19.6 ml of 
chloroform. 

 

 

 

 

 

4.6.1.3 Resusability of the enzyme 

The reusability of Novozym 435 was studied by assessing the trans-HFA conversion 

rates after consecutive batch cycles under optimal reaction conditions. Reuse of the 

lipase in several reactions reduces reaction costs and makes it an economically 

feasible process [420], which can operate in batch or continuous regimes. The ability of 

Novozym 435 to retain its stability during recycling with HFAs as the substrate has 

already been studied [419, 422]. 

Figure 4.17 shows the reaction yields in the polymerisation of the two trans-HFAs in 

different cycles, as well as the enzyme weight in each process. The synthetic stability 

of the enzyme remained constant for fifteen cycles. When (10S)-HOME was the 

substrate, the conversion rate reached 86.1%, on average, while in the assays with 

(7S,10S)-DiHOME, the average conversion rate was 90.3%. Differences in enzyme 

stability between these two trans-HFAs were less than 5%, indicating the non-

specificity of Novozym 435 for the two trans-HFAs as substrates when chloroform was 

used as solvent. This behaviour differed from that earlier found by Martin-Arjol and 

coworkers, who observed that Novozym 435 stability decreased by 53.3% in ten cycles  
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Figure 4.17. Yield of the 
esterification (bars) and 
enzyme weight (lines) at 
each cycle. Optimal reaction 
conditions were used in all 
experiments. HOME: (10S)-
HOME; DiHOME: (7S,10S)-
DiHOME; N435 HOME: 
Novozym 435 weight when 
(10S)-HOME was used as 
substrate; and, N435 
DiHOME: Novozym 435 
weight when (7S,10S)-HOME 
was used as substrate. 

 

 
during the synthesis of monoestolides using (10S)-HOME as the substrate in n-hexane 

[430], section 4.5.1.2.  Langone and collaborators observed a similar reduction in the 

stability of the same enzyme, 55%, in the production of estolides from OA and methyl 

ricinoleate after four cycles in a solvent-free system [419]. On the other hand, Radzi 

and partners noted high synthetic stability even after nine cycles, 91.9%, during the 

production of oleyl oleate in n-hexane [422]. Thus, the nature of the substrates and the 

organic solvent play an important role in the enzymatic stability of Novozym 435. 

4.6.1.4 Structural determination 

i. Fourier transform infrared spectroscopy  

One sample of each trans-HFA ethyl ester obtained in the optimal reaction 

conditions was analysed to determine the functional groups present in the two new 

compounds as well as the initial substrates (10S)-HOME and (7S,10S)-DiHOME. 

 The FTIR spectra of (10S)-HOME and its corresponding ethyl ester showed one 

main difference, Figure A.17: the stretching of the carbonyl gave a peak at 1709 cm-1 in 

the free fatty acid and at 1736 cm-1 in the ethyl ester  [444]. In the case of the 

dihydroxy-fatty acid, the band corresponding to the carbonyl stretching in the free fatty 

acid, 1693 cm-1, was displaced to 1738 cm-1 in its ethyl ester, Figure A.17, 

demonstrating in both cases the formation of an ester linkage. These findings are 

consistent with the work of Zagonel and coworkers, who monitored soybean oil 

ethanolysis by FTIR multivariate analysis models [445]. 

ii. Nuclear magnetic resonance 

NMR analyses were carried out to determine the structure of the ethyl esters 

synthesized. A sample of each compound produced in optimal reaction conditions was 

analysed by 1H and 13C NMR.  
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Figure 4.18. 
13

C NMR spectra of ethyl esters in chloroform. A: 
(10S)-HOME ethyl ester. B: (7S,10S)-HOME ethyl ester. Ethyl 
esters were synthetized in optimal conditions: trans-HFA:Novozym 
435 ratio of 1.5 and 1 g·g

-1
 for (10S)-HOME and (7S,10S)-

DiHOME, respectively; 0.1 g of lipase, 0.4 ml of EtOH, 50ºC and 
19.6 ml of chloroform.. Chemical shifts are expressed in parts per 
million. 

 
 
 



  Results and Discussion 

 

91 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
        A 

 

 

 

 

 

 

 

 

 

 

 

      B 
 

 
Figure 4.19. 

1
H NMR spectra of ethyl esters in chloroform. A: 

(10S)-HOME ethyl ester. B: (7S,10S)-HOME ethyl ester. Ethyl 
esters were synthetized in optimal conditions: trans-HFA:Novozym 
435 ratio of 1.5 and 1 g·g

-1
 for (10S)-HOME and (7S,10S)-

DiHOME, respectively; 0.1 g of lipase, 0.4 ml of EtOH, 50ºC and 
19.6 ml of chloroform. Chemical shifts are expressed in parts per 
million.  
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Figure 4.18 shows the 13C NMR spectra obtained for the two ethyl esters. In both 

spectra, a double signal of the methylenic carbons appeared at 14.06 and 14.20 ppm. 

The signal at 14.20 ppm corresponded to the methyl carbon of the ethyl ester side 

chain (C20) and the one at 14.06 ppm to the methyl carbon of the fatty acid side chain 

(C18). The signal at 60.16 ppm was due to the methylene carbon of the ethyl ester 

(C19) [446]. Finally, a signal for an ester carbonyl appeared at 173.80 ppm (C1) [447].  

Moreover, no signal corresponding to an acid carbonyl, 179.15 ppm, was 

appreciable in the spectra, indicating total conversion of the substrates in the optimal 

reaction conditions. Additionally, the signals at 24.84 and 34.25 ppm represented the 

methylene carbons of the trans-HFA chain at positions 3 and 2, respectively. The ones 

at 72-73 ppm indicated the methine carbons that bond with hydroxyl moieties (C7 and 

C10), while the signals at 131-134 ppm represented the olefinic carbons of the trans 

double bond (C8 and C9). Finally, there was a signal at 31.83 ppm only in the 

monohydroxy ethyl ester spectrum, which corresponded to the methylene carbon at 

position 7.  

In both 1H NMR spectra, Figure 4.19, a sharp quartet appeared at 4.10 ppm. This 

corresponded to the methylenic hydrogens of the ethyl ester (H19); however, the 

methyl hydrogens of the same part of the molecule were noticeable at 1.24 ppm (H20) 

[399], slightly overlapping with the methine hydrogens, 4.04 ppm, of the trans-HFA side 

chain (H7 and H10). These signals confirmed the formation of the trans-HFA ethyl 

esters by Novozym 435 in organic media. Moreover, different types of signals 

appeared in each 1H NMR spectrum, indicating different compounds.  

In the 1H NMR spectrum of the monohydroxy ethyl ester, Figure 4.19 A, the oleofinic 

hydrogen signals appeared between 5.45 and 5.59 ppm (H9 and H8, respectively). The 

methine hydrogen close to the hydroxyl group, H10, demonstrated a chemical shift to 

4.02 ppm. Other interesting findings included a triplet at 2.28 ppm, which corresponded 

to the hydrogens next to the carbonyl group (H2); a chemical shift of 1.62 ppm is for the 

hydrogens at position 3 as a result of the effect of the carbonyl group; and, a signal at 

2.01 ppm represents the influence of the trans double bond on the hydrogens at 

position 7. In the 1H NMR spectrum of the dihydroxy ethyl ester, Figure 4.19 B, the 

hydrogens of the trans double bond underwent a chemical shift of 5.63 ppm (H8 and 

H9). In this case, there were two methine hydrogens, H7 and H10, close to the 

hydroxyl groups, with a chemical shift of 4.06 ppm. The presence of a hydroxyl moiety 

at position 7 shifted the signal downfield, from 2.01 to 4.06 ppm. The downfield 

methylenic signals were the same as stated above, with the exception of the hydrogens 

at position 7. 
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iii. Electrospray ionization mass spectrometry 

Electrospray ionization mass spectrometry (ESI-MS) was applied to determine the 

mass of the compounds formed during the enzymatic synthesis. The spectrum of the 

(10S)-HOME ethyl ester is presented in Figure 4.20 A, showing two main ions with m/z 

121.0509 and 922.0098 corresponding to the two internal references. Other important 

ion was the one with m/z 309.2789, which represented the loss of a water molecule 

from the (10S)-HOME ethyl ester (M), [M-H2O+1H]+. In addition to these, a group of 

low-intensity ions of between 300-400 Daltons (Da) (enlargement) was of great 

significance. This group included ions with m/z of 344.3154 and 349.2718, which 

corresponded to the molecular adducts of the M with ammonium and sodium cations, 

[M+NH4]
+ and [M+23Na]+, respectively. These three adducts were consistent with a 

mass of 326.5159 Da, further confirming the synthesis of a monohydroxy fatty ethyl 

ester.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. ESI MS analyses of ethyl esters produced in chloroform. A: 
Mass spectrum of monohydroxylated ethyl ester. B: Mass spectrum of 
dihydroxylated ethyl ester. Synthesis was carried out under optimal 
conditions: trans-HFA:Novozym 435 ratio of 1.5 and 1 g·g

-1
 for (10S)-

HOME and (7S,10S)-DiHOME, respectively; 0.1 g of lipase, 0.4 ml of 
EtOH, 50ºC and 19.6 ml of chloroform. 
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As can be observed in Figure 4.20 B, three main ions appeared for the (7S,10S)-

DiHOME ethyl ester. Two of them corresponded to the internal references and the 

other one, with m/z of 360.3106, to the molecular adduct of the (7S,10S)-DiHOME ethyl 

ester (M’) with an ammonium cation, [M’+NH4]
+. Moreover, two ions with a lower 

intensity, m/z 365.2662 and 707.5429, which represented the sodium molecular 

adducts of M’ and 2M’, [M’+23Na]+ and [2M’+23Na]+, respectively, were relevant. Finally, 

another ion with m/z 325.2736 represented the loss of a water molecule from the ethyl 

ester, [M’-H2O+H]+. These four molecular adducts confirmed the synthesis of a 

dihydroxy fatty ethyl ester with a mass of 342.5153 Da. 

4.6.2 Ethyl esters production from (10S)-HOME and (7S,10S)-DiHOME in a 

solvent-free media 

According to the previous results obtained in solvent-free media, it was decided to 

synthetize trans-HFA ethyl esters in this non-conventional reaction medium despite the 

high reaction yields obtained in chloroform. 

4.6.2.1 Effect of trans-hydroxy-fatty acid/ethanol ratio 

Hydroxy-fatty acids, positionally different from RA, were used to synthesize their 

corresponding ethyl esters in solvent-free media. Different molar ratios of trans-HFA to 

EtOH were assayed to determine the optimal molar ratio to maximize reaction yield 

with 0.12 g of Novozym 435 at 50ºC during 24 h, Figure 4.21.  

Figure 4.21. Effect of the 
molar ratio of trans-HFA to 
EtOH on the yield of ethyl 
esters synthesis with 
Novozym 435, 0.12 g, at 
50ºC during 24 h in a solvent-
free medium. 

 

 

 

 

 

It could be observed in Figure 4.21 that both trans-HFA presented the same pattern, 

reaction yield increased from molar ratio 1:1 to 1:3, then, conversion remained 

practically constant. The optimal molar ratio was 1:3 (trans-HFA/EtOH) considering 

both the reaction yield and the future possible production costs. There are no data in 

the literature about the production of trans-HFA ethyl esters, although this molar ratio 

value, trans-HFA to EtOH of 1:3, agrees with that found in the production of methyl 

esters from a vegetable oil (a soybean and rapeseed oil mixture) in a solvent-free 
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system for 36 h at 30ºC [448] and with the one in the production of fatty acid ethyl 

esters from camellia oil soapstocks and diethyl carbonate, instead of a short-chain 

alcohol, for 24 h at 50°C [449], both using Novozym 435. 

4.6.2.2 Effect of the enzyme concentration 

Different amounts of enzyme were tested to establish the optimal amount of 

biocatalyst for a trans-HFA to EtOH molar ratio of 1:3, Figure 4.22. As observed, higher 

yields were achieved when (7S,10S)-DiHOME was used as a substrate, 98%, whereas 

the 90% of the monohydroxylated compound. However, less quantity of Novozym 435 

was needed to reach higher yields with (10S)-HOME, 0.06 g, than using the 

dihydroxylated fatty acid, 0.10 g. The amounts of enzyme needed in each reaction 

system, 0.06 and 0.10 g, when (10S)-HOME and (7S,10S)-DiHOME were used as 

substrate, respectively, which represent 8.6 and 14.3% (w/v), respectively, were in the 

same range of Novozym 435 concentration, 10–15% (w/v), used in the production of 

fatty acid ethyl esters from palm oil fatty acids in a solvent-free medium [450]. 

Figure 4.22. Effect of 
Novozym 435 of the yield of 
the ethyl esters synthesis 
with a molar ratio of trans-
HFA to EtOH of 1:3 at 50ºC 
during 24 h in a solvent-free 
medium. 

 

 

 

 

 

4.6.2.3 Reusability of the enzyme 

The synthetic stability of Novozym 435 was studied under the optimal reaction 

conditions as well as the enzyme weight after each cycle, Figure 4.23. When (10S)-

HOME was used as substrate, the enzyme synthetic stability remained constant 

around 79.0% even after ten reaction cycles; and, enzyme weight never exceeded a 

value of 0.07 g. In contrast, when (7S,10S)-DiHOME was used, enzyme stability 

dropped abruptly after the third cycle, reaching a yield of 16.3%. An enzyme stability 

reduction of 81.4% was detected after five cycles, which occurred with an increase on 

enzyme weight. After these five trials, the enzyme was rinsed with EtOH to desorb the 

(7S,10S)-DiHOME from the Novozym 435 carrier. As a consequence, the enzymatic 

stability was partially recovered, 37.4%, and within the next five cycles diminished 

slowly to 19.8%; and, the enzyme weight did not increase as seen in the first five  
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Figure 4.23. Yield of the 
esterification (bars) and 
enzyme weight (lines) at each 
cycle. Optimal reaction 
conditions were used in all 
experiments. HOME: (10S)-
HOME. DiHOME: (7S,10S)-
DiHOME. N435 HOME: 
Novozym 435 weight when 
(10S)-HOME was used. N435 
DiHOME: Novozym 435 
weight when (7S,10S)-HOME 
was used. 
 

cycles. The weight of the enzyme was notably affected by the rinses with EtOH. EtOH 

removed more quantity of (7S,10S)-DiHOME than n-hexane from the enzyme carrier 

improving the stability of Novozym 435. This fact indicated that (7S,10S)-DiHOME was 

adsorbed on the enzyme carrier compromising the synthetic performance of Novozym 

435 under the reaction conditions tested, as it was already demonstrated in the 

production of estolides from (10S)-HOME in n-hexane with the same commercial lipase 

[430], section 4.5.1.2. 

4.6.2.4 Structural determination 

i. Fourier transformed infrared spectroscopy 

One sample of each starting substrate and trans-HFA ethyl ester synthesized under 

optimal reaction conditions was analyzed to determine the functional groups present, 

Figure A.18. In both cases, FTIR spectra from substrates to their corresponding ethyl 

esters showed one main difference: the movement of a carbonyl stretch corresponding 

to the free fatty acid to a carbonyl stretch of an ester bond. In the case of the 

monohydroxylated compound, a frequency of 1709 cm−1 corresponding to the 

stretching of the carbonyl in an acid moiety moved to a frequency of 1736 cm−1 

corresponding to the stretching of carbonyl in an ester compound. In the case of the 

dihydroxyfatty acid, the movement of the carbonyl band shifted from 1693 cm−1 to 1738 

cm−1. These results agree with the work of Zagonel and co-workers in the ethanolysis 

of soybean oil [445]. 

ii. MALDI time-of-flight mass spectrometry  

trans-HFA esters synthesized in optimal reaction conditions were analyzed by 

MALDI-TOF-MS with a DHB lithium matrix to determine the molecular mass of these 

compounds, Figure 4.24. In the spectrum of (10S)-HOME ethyl ester (M), Figure 4.24 

A, two groups of ions are noticeable. In the low-mass ion group, an ion of m/z 333.2 

stands out. This ion corresponds to molecular adduct of M with lithium, [M+7Li]+. 
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The two low-intensity ions of m/z 349.2 and 365.2 are important. These are the 

molecular adducts of M with sodium and potassium, respectively: [M+23Na]+ and 

[M+39K]+. These three adducts give a molecular mass of M of 326.2 Da. In the second 

group, there is a high-intensity ion of m/z 613.5. This ion is the molecular lithium adduct 

of a mono-estolide ethyl ester (1M), [1M+7Li]+. Next to this ion, there is a lower-intensity 

signal of m/z 629.5 which  
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Figure 4.24. MALDI TOF mass spectra of ethyl esters produced in a 

solvent-free medium. A: (10S)-HOME ethyl ester. B: (7S,10S)-DiHOME 

ethyl ester. Ethyl esters were synthesized under optimal conditions: 

trans-HFA:EtOH 1:3 mol·mol
-1

, 0.06 g of Novozym 435 for (10S)-HOME 

and 0.10 g of Novozym 435 for (7S,10S)-DiHOME at 50ºC during 24 h. 
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corresponds to the sodium molecular adduct of 1M, [1M+23Na]+. The molecular mass 

obtained for the mono-estolide ethyl ester from these two adducts is 606.5 Da. Finally, 

a very low-intensity ion, m/z 893.7, is noticeable. This ion is the lithium adduct of a di-

estolide ethyl ester (2M), [2M+7Li]+, with a mass of 886.7 Da.  

The (7S,10S)-DiHOME ethyl ester (M′) spectrum, Figure 4.24 B, shows one main 

ion of m/z 349.2 which corresponds to molecular adduct of M′ with lithium, [M′+7Li]+. 

Next to it, there are two low-intensity ions of m/z 365.2 and 381.2. These two ions 

represent the molecular adducts of M′ with sodium and potassium, respectively; 

[M′+23Na]+ and [M′+39K]+. These three adducts give a mass of 342.2 Da for M′. Then, 

there is another important group ofions in which an m/z 645.5 ion stands out. This ion 

is the molecular adduct of a mono-estolide ethyl ester with lithium, [1M′+7Li]+, and the 

potassium molecular adduct of 1M′, [1M′+23Na]+, is also noticeable with a mass of 

677.5 Da. These two adducts reveal a mass for 1M′ of 638.5 Da. Ultimately, a low-

intensity ion of m/z 941.7 reveals the formation of a di-estolide ethyl ester, [2M′+7Li]+, 

with a molecular mass of 934.7 Da. 

iii. Nuclear magnetic resonance  

As could be observed in (10S)-HOME and (7S,10S)-DiHOME ethyl ester 13C NMR 

spectra, Figure 4.25 A and B, respectively, a signal for an ester carbonyl appears at 

173.76 ppm (C1) [431]; moreover, no signal of an acid carbonyl group, 179.15 ppm, is 

appreciable in the spectra, indicating a total conversion under the optimal reaction 

conditions described previously. A double signal of the terminal methyl carbons 

appeared at 14.00 and 14.15 ppm. The signal of 14.15 ppm corresponds to the methyl 

carbon of the ethyl ester side chain (C20) and the one at 14.00 ppm to the methyl 

carbon of the trans-HFA side (C18). The signal at 60.10 ppm is due to the methylene 

carbon of the ethyl ester side (C19); the ones at 72–73 ppm indicate the methine 

carbons in which the hydroxy groups are bonded (C10 and C7 in the case of 

dihydroxylated ethyl ester); and the signals at 131–134 ppm represent the olefinic 

carbons of the trans double bond (C8 and C9). Finally, the signals at 34 ppm 

correspond to the methylene carbon next to the carbonyl moiety in the trans-HFA side 

chain (C2) and the signal of 24 ppm is another methylene on carbon C3.  

In (10S)-HOME and (7S,10S)-DiHOME ethyl ester 1H NMR spectra, Figure 4.26 A 

and B, the signal of the terminal methyl hydrogens are at 0.86 and 1.23 ppm. The 

downfield signal corresponds to the methyl hydrogens of the ethyl ester side chain 

(H20) and the other one to the methyl hydrogens of the trans-HFA chain (H1). 4.10 

ppm represents a downfield methylene hydrogen signal next to ester moiety in the ethyl  
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Figure 4.25. 
13

C NMR spectra of ethyl esters produced in a solvent-free 
medium. A: (10S)-HOME ethyl ester. B: 

13
C spectrum of (7S,10S)-HOME 

ethyl ester. Ethyl esters were synthesized under optimal conditions: 
trans-HFA:EtOH 1:3 mol·mol

-1
, 0.06 g of Novozym 435 for (10S)-HOME 

and 0.10 g of Novozym 435 for (7S,10S)-DiHOME at 50ºC during 24 h. 
Chemical shifts are expressed in parts per million. 
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Figure 4.26. 

1
H NMR spectra of ethyl esters produced in a solvent-free 

medium. A: (10S)-HOME ethyl ester. B: (7S,10S)-HOME ethyl ester. 
Ethyl esters were synthesized under optimal conditions: trans-HFA:EtOH 
1:3 mol·mol

-1
, 0.06 g of Novozym 435 for (10S)-HOME and 0.10 g of 

Novozym 435 for (7S,10S)-DiHOME at 50ºC during 24 h. Chemical shifts 
are expressed in parts per million. Chemical shifts are expressed in parts 
per million.  
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ester side (H19). The methine hydrogens, which are bounded to the same carbon as 

hydroxyl moiety, have a chemical shift of 4.03 ppm (H10 and H7 in the case of 

dihydroxylated ethyl ester). In the case of the (10S)-HOME ethyl ester, the methylenic 

hydrogens next to the double bond (H7) appear at 2.00 ppm. Ultimately, the methylene 

hydrogens H2 and H3 have a chemical shift of 2.26 and 1.60 ppm, respectively. Finally, 

there is a signal in both 1H NMR spectra which are important. There is a low-intensity 

quadruplet, 5.18 ppm, in the 1H NMR from the monohydroxylated ethyl ester which 

corresponds to a methine signal. This methine signal reveals the formation of estolides 

and is downfielded by the effect of the trans-double bond.  

The integration of that signal, H10+H10’ in the case of the monohydroxylated 

compounds and H7/10+H7’/10’’ for dihydroxylated ones, and compared to non-afected 

ones let calculate EN [447] using Equation 31a and 31b. EN for the monohydroxylated 

sample is 0.29. EN indicates that the average formation of estolide ethyl esters is one-

third of the sample since an EN value of 1.00 would represent that the whole sample is 

a mono-estolide. In the case of the dihydroxylated ethyl ester, an EN value of 0.13 was 

obtained from Equation 31b. This fact reveals that the average formation of estolide 

ethyl esters is more than one-third of the sample, a 39%; because a EN value of 0.33 

would be a for a total mono-estolide sample. The synthesis of mono-estolide ethyl 

esters confirms the capability of Novozym 435 to synthetize estolides from trans-HFA. 

4.6.3 Physicochemical properties 

trans-FAEE described in section 4.6.1 and 4.6.2 were analysed to determine some 

of their physicochemical properties as in section 4.5.4. 

4.6.3.1 Viscosity determination 

trans-HFA ethyl esters were synthetized as alternative aromatic compounds. It must 

remember that syntheses in a solvent-free medium produced estolides ethyl esters 

apart from the corresponding ethyl esters. Dynamic or absolute viscosity, ’, was 

determined and Arrhenius-type relationship factors [437] as well, instead of viscosity 

index. Finally, viscosity values at 40ºC were compared with bibliographic ones [437]. 

trans-HFA ethyl esters were determined as Newtonian fluids because their viscosity 

was independent of the shear rate applied. Table 4.12 displays Arrhenius-type 

parameters A, the infinite-temperature viscosity value, and Ea, the stability of the liquid 

[438]. A values for ethyl esters ((10S)-HOME EE and (7S,10S)-DiHOME EE), 3490 and 

278 10-10 Pa·s, are higher than (10S)-HOME one, 9.47 10-10 Pa·s. Likewise occurs with 

estolide ethyl esters ((10S)-HOME Est EE and (7S,10S)-DiHOME Est EE), 625 and 

7.02 10-10 Pa·s. Surprisingly, dihydroxylated esters ((7S,10S)-DiHOME EE and  
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Taula 4.12. Viscosity analysis parameters from trans-HFA ethyl esters. 

Sample 
A·10

-10
  

(Pa·s) 

Ea  
(kJ·mol

-1
) 

  
(g·ml

-1
) 

   
(cSt) 

  
(%) 

DP 

(10S)-HOME 9.47 49.9 0.96 205   1 
(7S,10S)-DiHOME     0.99     1 
       
(10S)-HOME EE 3490 29.2 0.94 26 87.0 1 
(7S,10S)-DiHOME EE 278 39.9 1.02 120 90.3 1 
       
(10S)-HOME Est EE 625 34.7 0.94 39 90.0 1-2 
(7S,10S)-DiHOME Est EE 7.02 51.2 0.97 240 98.0 1-2 

A: Pre-exponential factor. Ea: Activation energy. : Density. : Kinematic viscosity. : 
Reaction yield. (10S)-HOME EE: (10S)-HOME ethyl ester in chloroform. (7S,10S)-
DiHOME EE: (7S,10S)-DiHOME ethyl ester in chloroform. (10S)-HOME Est EE: (10S)-
HOME ethyl ester in solvent-free. (7S,10S)-DiHOME Est EE: (7S,10S)-DiHOME ethyl 
ester in solvent-free. 

(7S,10S)-DiHOME Est EE) have lower values, 278 and 7.02 10-10 Pa·s, than 

monohydroxylated ones ((10S)-HOME EE and ((10S)-HOME Est EE) 3490 and 625  

10-10 Pa·s, despite of having an extra hydroxyl group. On the other hand, Ea values 

have other pattern. trans-ethyl esters ((10S)-HOME EE and (7S,10S)-DiHOME EE) 

and estolides ethyl esters ((10S)-HOME Est EE and (7S,10S)-DiHOME Est EE) have 

lower Ea values (29.2, 39.9, 34.7 and 51.2  kJ·mol-1, respectively) than their 

corresponding substrates. Moreover, ethyl esters have lower Ea values than estolides 

ethyl esters due to they are simpler molecules and required less energy for flowing.  

Kinematic viscosity () values follow the same tendency as Ea. It is broadly know 

that (m)ethyl esters have lower viscosities values than their corresponding free acids 

[434]. However, it can be appreciated the difference between mono- and 

dihydroxylated compounds. Entrance (7S,10S)-DiHOME EE, 120 cSt, presents a five-

fold increment in  value respected to compound (10S)-HOME EE, 26 cSt. 

Approximately the same increment, six-fold, is observed when  of the compounds 

(10S)-HOME Est EE, 26 cSt, and (7S,10S)-DiHOME Est EE, 120 cSt, are compared. 

As state before, estolide ethyl esters, (10S)-HOME Est EE and (7S,10S)-DiHOME Est 

EE, present higher  values because are more complex molecules than ethyl esters, 

(10S)-HOME EE and (7S,10S)-DiHOME EE.  

Different values of were found in the literature for biodiesel from castor oil, from 

10.75 to 24 cSt [451, 452], slightly low than (10S)-HOME ethyl ester enzymatically 

produced in chloroform, 26 cSt, Table 4.12. Despite of (10S)-HOME and RA, the main 

fatty acid of castor oil, are isomers, the trans configuration of the double bond confers 

higher values of viscosity and the addition of an extra hydroxyl moiety to the molecule, 

(7S,10S)-DiHOME EE, sharply increases viscosity values, 120 cSt, affecting the 

unexplored applications of these new compounds. 
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Viscosity values of (10S)-HOME Est EE and (7S,10S)-DiHOME Est EE entrances 

from table 4.12, 39 and 240 cST, respectively, are greater than ones for castor- and 

lesquerella-2-ethylhexyl estolides, probably mono-estolides, 22 and 15.4 cSt, reported 

by Cermak and co-workers [441]. They established that 2-ethylhexyl group diminishes 

viscosity respect to the ethyl group in estolides. 

4.6.3.2 Calorimetric analyses 

Calorimetric analyses, differential scanning calorimetry (DSC) and thermal 

gravimetric analysis (TGA), were performanced to determine glass transition 

temperature (Tg), decomposition enthalpies (H) and residue percentage. As state 

previously, these thermal analyses were carried out to test the physical and chemical 

changes of these new compounds, table 4.13. 

Taula 4.13. Calorimetric analysis parameters from trans-HFA ethyl esters. 

Sample 
Tg 

(ºC) 
Tonset1 

(ºC) 

H1 
(J·g

-1
) 

Tonset2 

(ºC) 
H2 

(J·g
-1

) 

Tonset3 

(ºC) 
H3 

(J·g
-1
) 

Residue 
(%) 

(10S)-HOME -60 119 -7.08 196 47.33 315 -161.3 0.35 
(7S,10S)-DiHOME -49 185 37.79 277 -56.16 366 147.3 1.23 
         
(10S)-HOME EE -70 115 -21.64 212 39.44 350 -292.7 0.38 
(7S,10S)-DiHOME EE -65 114 -6.99 218 40.38 347 -248.9 1.32 
(10S)-HOME Est EE -81 93 -21.46 228 38.76 352 -209.3 0.56 
(7S,10S)-DiHOME Est EE -58 105 -45.84 290 -25.36 365 -181.3 0.93 

Tg: Glass transition temperature Tonset: Initial temperature of H. H: Decomposition 
enthalpy. (10S)-HOME EE: (10S)-HOME ethyl ester in chloroform. (7S,10S)-DiHOME EE: 
(7S,10S)-DiHOME ethyl ester in chloroform. (10S)-HOME Est EE: (10S)-HOME ethyl ester 
in solvent-free. (7S,10S)-DiHOME Est EE: (7S,10S)-DiHOME ethyl ester in solvent-free. 

Table 4.13 shows Tg values of the different ester produced in section 4.6. As could 

be observed, all ethyl esters and estolides ethyl esters have lower Tg values than their 

corresponding substrates. Ethyl esters, (10S)-HOME EE and (7S,10S)-DiHOME EE, 

have lower Tg values, -70 and -65ºC, respectively, than their substrates, (10S)-HOME, 

-60ºC, and (7S,10S)-DiHOME, -49ºC. Moreover, estolides ethyl esters, (10S)-HOME 

Est EE and (7S,10S)-DiHOME Est EE, Tg values, -81ºC and -58ºC, are lower than 

ethyl ester ones, with the exception of entrance (7S,10S)-DiHOME Est EE, which is 

abnormally higher. This tendency can be clearly appreciated with monohydroxylated 

compounds: substrate, -60ºC; (10S)-HOME EE, -70ºC; and (10S)-HOME Est EE, -

81ºC. 

Finally, decomposition enthalpies (H) and their initial temperature (Tonset) were 

listed in Table 4.13. In this case, ethyl esters and estolides ethyl esters maintain the 

three H. Entrance (10S)-HOME EE has increases its three Tonset (115ºC (-), 212ºC (+) 

and 350ºC (-)) respecting its substrate, 119ºC (-), 196ºC (+) and 315ºC (-). On the 

other hand, entrance (7S,10S)-DiHOME EE has reduced its three Tonset (114ºC (-), 

218ºC (+), 347ºC (-)) when compared to (7S,10S)-DiHOME, 185ºC (+), 277ºC (-) and 
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366ºC (+). Regarding to estolides ethyl esters, no clear tendency is observed on their 

Tonset and H when are compared to their corresponding substrate. Certain variability 

can be appreciated, even in the sign of the H. However, when compounds are 

compared within groups, (10S)-HOME EE with (7S,10S)-DiHOME EE and (10S)-

HOME Est EE with (7S,10S)-DiHOME Est EE, it can be observed that Tonset  and H 

have similar values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

 

 

 





  Conclusions 

 

 

 

The conclusions of this work are: 

1. A new non-dispersive aeration system has been designed and implemented 

successfully, with a kLa of 39.9 h-1, which is lower than traditional bubbling 

systems. 

2. The transformation of oleic acid in trans-hydroxy-fatty acids by P. 

aeruginosa 42A2 in bioreactor has been modelled using Monod kinetic 

model. 

3. A new family of estolides from trans-hydroxy-fatty acids has been 

synthesized in n-hexane (degree of polymerization: 1-2) and solvent-free 

media (degree of polymerization: 2-5) with lipases. 

4. Saturated (10S)-HOME and their corresponding estolides have been 

enzymatically and chemically produced as an alternative to trans-estolides. 

5. trans-hydroxy-fatty ethyl esters haven been produced in chloroform (degree 

of polymerization: 1) and in solvent-free media (degree of polymerization: 1-

2) with Novozym 435. 

6. Liquid chromatography mass spectrometry, MALDI time-of-flight mass 

spectrometry and nuclear magnetic resonance techniques have been 

adapted to analyze this two new series of trans-esters. 

7. These new compounds haven been determined as Newtonian fluids, as well 

as their amorphous nature. 
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Table A.1. Experimental sets of data from OA oxidation in bioreactor 
experiments by P. aeruginosa 42A2. 

 

Concentration (g·l-1) 

Time (h) OA (10S)-HPOME (10S)-HOME (7S,10S)-DiHOME X NO3
- 

0.0 9.57 0.00 1.10 2.10 0.24 2.55 

1.5 8.09 0.27 1.20 2.20 0.30 2.50 

3.0 6.80 0.32 1.27 2.30 1.00 1.75 

4.5 5.80 0.61 1.26 2.47 2.00 1.00 

6.0 4.56 1.06 1.30 2.80 3.04 0.75 

7.5 4.14 1.98 1.44 3.17 3.74 0.50 

10.5 2.24 4.74 1.78 4.28 3.64 0.18 

13.5 0.00 5.58 2.16 5.16 3.98 0.10 

16.5 0.00 3.28 2.82 6.45 3.60 0.05 

19.5 0.00 1.84 2.85 6.60 3.86 0.05 

22.5 0.00 1.15 2.51 6.25 3.68 0.00 

0 15.20 0.00 1.08 2.05 0.24 2.55 

0.5 15.30 0.50 0.55 1.72 0.30 2.50 

1 15.40 0.59 0.62 1.92 0.40 2.50 

2 15.43 0.71 0.67 2.02 0.50 2.50 

4 13.16 1.17 0.50 1.97 0.60 1.00 

6 12.41 2.23 0.62 2.18 1.00 0.75 

8 9.67 3.73 0.57 2.43 2.50 0.50 

10.5 7.81 4.95 0.91 2.60 3.64 0.38 

13.5 4.34 6.82 1.11 3.19 4.62 0.25 

16.5 0.77 7.82 2.43 4.36 5.14 0.05 

20.5 0.00 2.65 4.46 5.45 5.22 0.00 

23.5 0.00 0.00 5.53 6.11 5.17 0.00 

25.5 0.00 0.00 5.24 6.32 5.23 0.00 

0 19.65 0.00 1.54 1.15 0.24 2.55 

2 19.50 1.38 1.28 1.22 0.30 1.00 

4 17.50 2.49 0.87 1.19 0.50 0.50 

6 15.05 5.00 0.93 1.81 1.70 0.50 

8 9.82 7.00 1.06 2.07 3.24 0.25 

12 2.86 9.11 2.28 3.05 6.36 0.05 

15 0.70 8.03 4.73 4.10 5.86 0.00 

18 0.00 6.18 7.17 5.65 5.96 0.00 

21 0.00 3.33 7.19 6.49 5.84 0.00 

23 0.00 2.18 7.52 7.64 6.64 0.00 

25 0.00 0.00 8.62 8.02 6.36 0.00 

28 0.00 0.00 7.37 8.03 5.90 0.00 

30 0.00 0.00 8.60 9.18 6.06 0.00 
OA: Oleic acid. (10S)-HPOME: 10(S)-hydroperoxy-8(E)-octadecenoic acid. 
(10S)-HOME: 10(S)-hydroxy-8(E)-octadecenoic acid. (7S,10S)-DiHOME: 
7,10(S,S)-hydroxy-8(E)-octadecenoic acid. X: biomass. NO3

-
: nitrates. 
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Figure A.1. Resulted simulations of the experimental data when 
Monod equation was introducted in the mathematical model. A: 
Oleic acid initial concentration of 10 g·l

-1
. B: Oleic acid initial 

concentration of 15 g·l
-1

. C: Oleic acid initial concentration 20 g·l
-1

. 

Dots: experimental data. Lines: simulated data. Units in mol·l
-1

. 
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Figure A.2. Oxygen uptake rate (OUR) during OA oxidation by P. 
aeruginosa 42A2. A: OA initial concentration of 10 g·l

-1
. B: OA 

initial concentration of 15 g·l
-1

. C: OA initial concentration of 20 g·l
-1
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Figure A.3. MALDI TOF mass spectrum of estolides from RA of a sample with 

an AV of 68 mgKOH·gsample
-1

. DHB matrix was neutralized with LiOH. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. Six extracted ion chromatogram. Ions m/z 298 (blue) (7.28, 12.07, 
18.70, 24.29, 28.22, 30.94 min), 578 (red) (12.07 min), 858 (green) (18.70 min), 
1138 (grey) (24.29 min), 1419 (28.22 min) and 1699 (30.94 min) of the estolides 
from RA, AV of 68 mgKOH·gsample

-1
. 
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Figure A.5. Mass spectrum of the peak of 7.25 min: (10S)-HOME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6. MALDI TOF mass spectrum of estolides from RA of a sample with 

an AV of 68 mgKOH·gsample
-1

. DHB matrix was saturated in acetonitrile. 
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Figure A.7. MALDI TOF mass spectra with DHB saturated in acetonitrile, (10S)-
HOME. A: (10S)-HOME polymerized with Lipozyme RM IM (12% w/w) at 80ºC 
during 168 h and vacuum (total preassure of 1.6 kPa). B: (10S)-HOME 
polymerized with Lipozyme TL IM (12% w/w) at 80ºC during 168 h and vacuum 
(total preassure of 1.6 kPa). 
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Figure A.8. MALDI TOF-MS spectra with DHB saturated in acetonitrile, 
(7S,10S)-DiHOME. A: (7S,10S)-DiHOME polymerized with Lipozyme RM IM 
(12% w/w) at 80ºC during 168 h and vacuum (total preassure of 1.6 kPa). B: 
(7S,10S)-DiHOME polymerized with Lipozyme TL IM (12% w/w) at 80ºC during 
168 h and vacuum (total preassure of 1.6 kPa). 
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Figure A.9. (10S)-HOME NMR spectra. A: 
13

C NMR spectrum. B: 
1
H NMR spectrum. (10S)-HOME was 91% pure. Chemical shifts 

are expressed in parts per million. 
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Figure A.10. (7S,10S)-DiHOME NMR spectra. A: 
13

C NMR 
spectrum of (7S,10S)-HOME. B: 

1
H NMR spectrum of (7S,10S)-

HOME. (7S,10S)-HOME was 96% pure. Chemical shifts are 

expressed in parts per million. 
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Figure A.11. NMR spectra of (10S)-HOME estolides synthesized 
by Lipozyme RM IM.  A: 

13
C NMR spectrum. B: 

1
H NMR spectrum. 

Estolides were synthetized by Lipozyme RM IM (12% w/w) at 80ºC 
during 168 h and vacuum (total preassure of 1.6 kPa) in a solvent-
free medium. Chemical shifts are expressed in parts per million. 
Depicted molecules in the figures are a guide to understand the 
different types of atoms present in the polyesters. 
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Figure A.12. NMR spectra of (10S)-HOME estolides synthesized 
by Lipozyme TL IM. A: 

13
C NMR spectrum. B: 

1
H NMR spectrum. 

Estolides were produced by Lipozyme TL IM (12% w/w) at 80ºC 
during 168 h and vacuum (total preassure of 1.6 kPa) in a solvent-
free medium. Chemical shifts are expressed in parts per million. 
Depicted molecules in the figures are a guide to understand the 
different types of atoms present in the polyesters. 
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Figure A.13. NMR spectra of (7S,10S)-DiHOME estolides 
synthesized by Lipozyme RM IM. A: 

13
C NMR spectrum. B: 

1
H 

NMR spectrum. Estolides were produced by Lipozyme RM IM 
(12% w/w) at 80ºC during 168 h and vacuum (total preassure of 
1.6 kPa) in a solvent-free medium. Chemical shifts are expressed 
in parts per million. Depicted molecules in the figures are a guide 
to understand the different types of atoms present in the 
polyesters. 
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Figure A.14. NMR spectra of (7S,10S)-DiHOME estolides 
synthesized by Lipozyme TL IM. A: 

13
C NMR spectrum. B: 

1
H NMR 

spectrum. Estolides were produced by Lipozyme TL IM (12% w/w) 
at 80ºC during 168 h and vacuum (total preassure of 1.6 kPa) in a 
solvent-free medium. Chemical shifts are expressed in parts per 
million. Depicted molecules in the figures are a guide to 
understand the different types of atoms present in the polyesters. 



Appendix   

146 

 

                            

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.15. NMR spectra of saturated (10S)-HOME. A: 
13

C 
NMR spectrum. B: 

1
H NMR spectrum. Chemical shifts are 

expressed in parts per million. 
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Figure A.16. NMR spectra of saturated (10S)-HOME estolides 
chemically produced. A: 

13
C NMR spectrum. B: 

1
H NMR spectrum. 

Reaction conditions were: 80ºC during 168 h and vacuum (total 
preassure of 1.6 kPa) in a solvent-free medium. Chemical shifts 
are expressed in parts per million. Depicted molecules in the 
figures are a guide to understand the different types of atoms 
present in the polyesters. 
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Figure A.17. Fourier transformed infrared spectroscopy spectra of trans-HFA ethyl 
esters. A: (10S)-HOME; B: (10S)-HOME ethyl ester; C: (7S,10S)-DiHOME; and, D: 
(7S,10S)-DiHOME ethyl ester. 
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Figure A.18. Fourier transformed infrared spectroscopy spectra of trans-HFA estolide 
ethyl esters. A: (10S)-HOME; B: (10S)-HOME estolides ethyl ester; C: (7S,10S)-
DiHOME; and, D: (7S,10S)-DiHOME estolides ethyl ester. 
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Abstract Pseudomonas aeruginosa 42A2 growing on
waste frying oils is capable to synthesize polyhydroxyalkanoic
acids (PHAs) and hydroxy-fatty acids as a result of several
enzymatic conversions. In order to study the physiological role
of PHA biosynthesis in P. aeruginosa with respect to the
synthesis of hydroxy-fatty acids, an unmarked deletion
mutant deficient for PHA biosynthesis was generated in
P. aeruginosa 42A2. A combination of the sacB-based
negative selection system with a cre-lox antibiotic marker
recycling method was used for mutant isolation. Electron
microscopy, nuclear magnetic resonance analysis, and
transmission electron microscopy confirmed that PHA
accumulation was completely abolished in the mutant
strain. Interestingly, the new mutant strain showed higher
carbon and oxygen uptake rate than the wild-type strain
and higher efficiency in the conversion of oleic acid into
(E)-10-hydroxy-8-octadecenic acid-octadecenoic acid.

Keywords Pseudomonas aeruginosa . PHA-negative
mutant . sacB-based negative selection . cre-lox antibiotic
recycling . Hydroxy-fatty acids

Introduction

A large number of microorganisms synthesize polyhydrox-
yalkanoic acids (PHAs), which are accumulated as intracellu-
lar, water-insoluble inclusions (Rehm and Steinbuchel 1999) in
the cytoplasm. This occurs under stress situations for cell
populations, like a relative excess of carbon source and a
nitrogen, magnesium, or phosphorous depletion (Lee 1996;
Luengo et al. 2003; Prieto et al. 2007). The genus
Pseudomonas can synthesize and accumulate large amounts
of medium chain length PHAs constituted by various 3-
hydroxy-fatty acids with carbon chain lengths ranging from 6
to 14 carbon atoms. The production and composition of PHAs
depend on the microorganism itself as well as on its PHA
synthases (PhaC) specificities, on the nature of the carbon
source, and on the metabolic routes involved (Rehm and
Steinbuchel 1999; Witholt and Kessler 1999; Rehm 2003).

Pseudomonas aeruginosa 42A2 (NCIMB 40045) was
isolated from a waste oil-contaminated water sample.
When growing on waste oils, P. aeruginosa 42A2
produces intracellular PHAs and various extracellular
products: (E)-7,10-dihydroxy-8-octadecenoic [(7S,10S)-
DiHOME]; (E)-10-hydroperoxy-8E-octadecenoic acid
[(10S)-HPOME], and (E)-10-hydroxy-8-octadecenoic
[(10S)-HOME] (Guerrero et al. 1997). Several enzymes
are involved in the hydroxylated fatty acid production
(Busquets et al. 2004; Martinez et al. 2010). These
compounds can be further polymerized into estolides by
means of one or more secreted lipases (Erhan and Isbell
1997; Pelaez et al. 2003; Bofill et al. 2010).
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With the aim to improve the production yield of secreted
hydroxy-fatty acids, a P. aeruginosa 42A2 negative PHA
mutant was generated. The resulting mutant was evaluated
for the production of HOME and DiHOME.

Materials and methods

Bacterial strains, plasmids, and growth conditions

Escherichia coli and P. aeruginosa strains and the plasmids
used in this work are listed in Table 1. E. coli DH5α or
S17.1 were used as recipient strains for recombinant
plasmids and were grown in Luria–Bertani medium (LB)
(Panreac, Spain) at 37°C (supplemented with 10 μg
gentamicin/ml or 100 μg ampicillin/ml, when necessary).
P. aeruginosa 42A2 (NCIMB 40045) was routinely grown
in LBmedium at 30°C. Cultures were incubated on a reciprocal

rotary shaker (150 rpm), and the required antibiotics
added at appropriate concentrations: 350 μg carbenicillin/ml,
350 μg gentamicin/ml, 350 μg tetracycline/ml, and
300 μg kanamycin/ml. Electroporated P. aeruginosa cells
were grown in SOC medium at 30°C (Hanahan 1983). For
kinetics of product formation (PHA and hydroxy-fatty
acid), growth was performed in a 2-l bioreactor saline
medium composed of the following salts (in grams per
liter): CaCl2 (0.01), NaNO3 (3.5), K2HPO4 (2.0), KH2PO4

(1.0), KCl (0.1), MgSO4·7H2O (0.5), FeSO4·7H2O
(0.012), and 0.05 ml/l of trace elements solution. The
trace element solution was as follows (in milligrams per
100 milliliter): H3BO3 (148), CuSO4·5H2O (196),
MnSO4·H2O (154) , Na2MoO4·2H2O (15) , and
ZnSO4·7H2O (307). This medium was supplemented with
2% waste frying oil (WFO) (olive:sunflower oil, 50:50 v/v)
containing oleic acid as the major component (41. 65%)
(Fernandez et al. 2005).

Table 1 Bacterial strains, plasmids, and primers used in this work

Strains Relevant traits Reference

Pseudomonas aeruginosa

42A2 NCIMB 40045a Bassas et al. 2006

42A2 ΔAGmD 42A2 containing chromosomal deletion of phaC1-Z-C2 genes
and an insertion of a Gm resistance cassette

This study

42A2 ΔAD 42A2 containing chromosomal deletion of phaC1-Z-C2 genes This study

Escherichia coli

DH5a F−, gyrA96, recA1, relA1, endA1 thi-1, hsdR17 (rk
− mk

+),
glnV44, deorD(lacZYA-argF)u169, [f80dD(lacZ)M15]

Hanahan 1983

S17-1 recA; harbors the ttra genes of plasmid RP4 in the chromosome; proA thi- Simon et al. 1983

Plasmids Relevant traits Reference

pGEM®-T ApR, lacZ, lacI Promega, Spain

pGEM-TAD ApR, pGEM-T vector containing AD amplified insert This study

pUCGmlox ApR, GmR, pUC18-based vector containing the lox flanked aacC1
(Gm resistance cassette) gene

Quénée et al. 2005

pEx100Tlink ApR, pEX100T with a MCS Quénée et al. 2005

pEx100TAD ApR, pEX100Tlink vector containing AD This study

pEx100TAGmD ApR, GmR, pEX100TAD vector containing the lox flanked aacC1 gene
(Gmlox) inside the AD amplified insert

This study

pCM157 TcR, cre expression vector Marx et al. 2002

Name Sequence (5′→3′) Reference

(A) U58 5′ GCGAATTCGATGAGTCAGAAGAAC 3′ This study

(B) L555 BamHIa 5′ CGGATCCTGTCTACAGTAGCTCGTTGTTCACCAGGTCCTTG 3′ This study

(C) U3973 BamHIa 5′ ACCAACTGTAGACAGGATCCGGCCGGCAACTGCGCAAGGTCAG 3′ This study

(D) L4730 5′ GGCCGAAGCTTTCAGCGTATATGC 3′ This study

(E) U 11 5′ CTTCGTCTTCCGGACCATC 3′ This study

(F) l 823 5′ GGAACGGACGAGGGTGCAT 3′ This study

aBamHI restriction site in bold
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Inoculum preparation and bioreactor cultivation

The bioreactor was inoculated with 200 ml of an overnight
culture in a saline medium containing 20 g/l of WFO as
carbon substrate. Incubation was carried out on an orbital
shaker for 18 h at 150 rpm rotational speed and 30°C.
Cells were harvested by centrifugation and resuspended
at 2% (v/v) to an optical density of 2 at 540 nm prior to
inoculation into the bioreactor.

Cultures were carried out at a working volume of 2 l in
a 3-l benchtop bioreactor (Biostat B. Braun Biotech
International GmbH, Melsungen, Germany), using the
mineral salts medium described above. During the culture,
dissolved oxygen was monitored continuously with an O2

electrode (Ingold 12/200 B. Braun Biotech. International
GmbH, Melsungen, Germany) and maintained at 30%
oxygen saturation by cascade automatic control of the
stirrer speed, 500–700 rpm, with an air flow between 2.5
and 7.5 l/min. Air flow was enriched with industrial
oxygen (Carburos Metálicos, Barcelona, Spain) when
needed. CO2 was measured by titration of the air flow
exhaust from the bioreactor at time intervals. Temperature
was maintained at 30°C with a temperature sensor Pt-100/
200-4 (B. Braun Biotech. International GmbH, Melsun-
gen, Germany). The pH was kept at 7 automatically using
two solutions of HCl (2 M) and NaOH (2 M). Data were
registered in an external computer connected to the control
unit of the bioreactor. The software used was MFCS/win
2.0 (B. Braun Biotech International, Sartorius, Mesulgen,
Germany).

Molecular manipulation procedures

Standard nucleic acid manipulation techniques were
employed as described (Sambrook 2001). Plasmid DNA
was purified using commercial kits (Illustra_PlasmidPrep,
GE Healthcare, UK). Restriction nucleases (Roche,
Suisse) and taq or pfu polymerases (Biotools, Spain) were
used according to the manufacturer's instructions. To
obtain the nucleotide sequences of DNA, the PCR-
amplified fragments were analyzed as described (Sanger
et al. 1977). Competent E. coli cells were routinely
transformed following the standard procedures (Sambrook
2001), and conjugation between E. coli S17.1 and P.
aeruginosa 42A2 was performed following the protocol
described (Quenee et al. 2005). Electroporation of P.
aeruginosa was performed as previously described (Smith
and Iglewski 1989), using competent cells obtained after
centrifuging an overnight culture of cells resuspended in
cold sucrose (0.3 M) and six washing steps in half volume
of a cold 0.3 M sucrose solution (Solaiman 1998).
Competent cells (50 μl) were mixed with 0.5–3 μl
plasmid DNA and electroporated using a Bio-Rad Gene

Pulser II electroporator equipped with a Pulse Controller
Plus module. The variables of the electroporation system
were set at 129 Ω, 5 ms, and 2 kV.

Construction of a P. aeruginosa 42A2 PHA negative
mutant

An isogenic phaC1-phaZ-phaC2 knockout mutant of P.
aeruginosa 42A2 was obtained by replacement of the 3′
end of phaC1, the whole phaZ, and the 5′ end of phaC2
genes, using a gentamicin resistance cassette (Quenee et al.
2005). PCR amplification of the truncated pha cluster and
further cloning of the released fragment into the suicide
vector pEX100T (Table 1; Quenee et al. 2005) were used to
obtain the desired construct. Primers A and B (Table 1)
were used for the amplification of the phaC1 5′ segment,
whereas primers C and D (Table 1) allowed the amplifica-
tion of the phaC2 3′ fragment. The gentamicin resistance
cassette inserted between the two amplified DNA fragments
was extracted from BamHI-digested pUCGmlox (Quenee et
al. 2005).

Allele exchange was performed in two steps involving
homologous recombination, as described before (Quenee et
al. 2005). Initially, a single-crossover event allowed
integration of the suicide plasmid in the strain’s genome
resulting in an insertional mutant containing the wild-type
and mutant alleles. In the second step, a double recombi-
nant was obtained by sacB-mediated sucrose counter-
selection in the presence of gentamicin. As a result, the
desired P. aeruginosa 42A2 chromosomal deletion mutant
for PHA synthase was obtained (Fig. 1).

The isogenic mutant obtained—P. aeruginosa 42A2
ΔAGmD—was verified by PCR amplification employing
either primers E and F (Table 1), which bind to the 5′- and
3′-ends of the phaZ gene, or using primers A and D,
binding upstream the phaC1 start codon and close to the
phaC2 stop codon, respectively. The amplified products
were analyzed by gel electrophoresis and DNA sequencing
for confirmation.

Gentamicin resistance extraction from P. aeruginosa 42A2
ΔAGmD

Plasmid pCM157 coding for recombinase Cre was electro-
porated into P. aeruginosa 42A2 ΔAGmD to remove the
gentamicin cassette. The pCM157 IncP origin of replica-
tion (oriV) and a tetracycline resistance marker allows this
plasmid to be maintained and selected in P. aeruginosa. A
tetracycline-resistant (TcR) transconjugant clone from
mutant P. aeruginosa 42A2 ΔAGmD was grown over-
night in LB supplemented with tetracycline in order to
allow the expression of Cre recombinase, used to remove
the Gm resistance cassette (Quenee et al. 2005) (Fig. 2).
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Plasmid pCM157 was then cured from the strain by three
successive growth cycles in LB without tetracycline. The
selected mutant clone, P. aeruginosa 42A2 ΔAD, was
thus sensitive to both gentamicin and tetracycline.

Nile Red staining and fluorescence microscopy

For PHA granule visualization, cells from parental and
mutant P. aeruginosa 42A2 strains were stained with Nile
Red and analyzed by fluorescence microscopy. Stock

solutions of Nile Red (Sigma, 0.25 mg/ml) in DMSO
were prepared and stored protected from light. Staining
was carried out on unfixed cells suspended in Ringer ¼
(Sharlau, Spain), using a l:100 dye dilution. Fluorescence
microscopy studies were carried out with a BX-40
Olympus Photomicroscope equipped for epi-illumination.
Nile Red fluorescence was detected at red spectral setting,
using a 515–560-nm band pass exciter filter, a 580-nm
center wavelength chromatic beam splitter, and a 590-nm
long pass barrier filter (Spiekermann et al. 1999).
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Fig. 1 Schematic representation
of the construction of
P. aeruginosa mutants with
PHA synthase genes knocked
out. A generation of the mutant
fragment by overlapping
extension PCR; B cloning of
the new mutant DNA fragment
into pEX100Tlink, an allelic
exchange vector allowing
sacB-based negative selection;
C insertion of lox-flanked
aaC1 gen (gentamicin
resistance) from pUCGmlox
at a unique site inside the insert,
resulting in the suicide vector
pEX100TAGmD. The latter was
transferred to P. aeruginosa
42A2 and exchanged with the
chromosome to generate the
desired deletion mutant.
D Upon transformation and
allelic exchange, and given that
the allelic exchange vector
cannot replicate, positive GmR,
sucrose-resistant, and CbS

colonies were selected
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Transmission electron microscopy

Transmission electron microscopy (TEM) of parental
and mutant strains was carried out by embedding
glutaraldehyde fixed and OsO4, K3Fe(CN)6-stained cells
in 2.5% agar. Samples were then dehydrated, included in
Spurr resin, and left to polymerize for 48 h at 60°C
(Spurr 1969). Ultrathin sections (30–90 nm thick) were
deposited on a copper grid, stained with 2% uranyl acetate
for 30 min, and viewed with a Phillips EM 301
microscope, with accelerating voltages of 60 kV. Images
were acquired with a Megaview III camera using the
software SoftImaging (Olympus, Germany).

Isocitrate liase activity assay

Isocitrate liase activity was assayed using crude extracts
of P. aeruginosa strains harvested by centrifugation in
the middle of the exponential growth phase (15 h). It
was measured as millimolar of glyoxylate produced by
milligrams of protein (in millimolar Gly/mg prot). Cells
were suspended in 50 mM Tris–HCl (pH 7.3) with a
protease inhibitor cocktail tablet (Complete Mini, EDTA-
free, Roche, USA). Then they were disrupted by freezing
and thawing and by sonication. Finally cell debris was
removed by 15 min centrifugation at 4°C and 14,000×g
(Centrikon T-124, Kontron, Italy) and the clear supernatant
was used as protein extract. The protein concentration
was determined by Thermo Scientific NanoDrop 1,000
Spectrophotometer (Thermo, USA).

Enzyme activity was spectrophotometrically determined
by monitoring the production of glyoxylate with 2,4-

dinitrophenylhydrazine (2,4-DNPH) at 450 nm and using
glyoxylate as standard (Katsuki et al. 1971; Romanov et al.
1999). Protein extracts (15 μg) were mixed in 25 mM
Tris–HCl (pH 7.3) containing 5 mM MgCl2, 2 mM
isocitrate, and 600 μl of this reaction mixture were
incubated for 15 min at room temperature. The reaction
was stopped by adding 100 μl of 2,4-DNPH solution
(5 mM in 2 N HCl, stable up to 2 weeks stored in
darkness) followed by incubation at room temperature
for 15 min. The samples were diluted adding 1 ml of
water and 1 ml of freshly prepared alkaline solution
(1 M sodium phosphate adjusted to pH 12.5 with
NaOH). After 15-min incubation at room temperature,
the absorbance at 450 nm was measured in a Shimadzu
UV-1700 spectrophotometer (Shimadzu, Kyoto, Japan).

Determination of biomass and growth parameters

Cell dry weight (CDW) was determined gravimetrically. An
aliquot (15 ml) of the culture was withdrawn aseptically
and centrifuged at 20,000×g for 20 min at 4°C (Kontron,
Italy). The supernatant was discarded, and the cell pellet
was washed twice with deionized water/hexane solution
(10:1) to remove contaminating residual carbon source and
residual culture medium, and then washed twice with
deionized water. The washed cells were dried at 100°C
for 24 h in a hot air oven to a constant weight in preweighed
tubes and then cooled in a desiccator and weighed. All
measurements were made in triplicate. Cell concentration was
expressed as gram CDW/l. Residual biomass (RB) was
defined as CDW minus PHA weight and expressed as gram
of RB/l. Cell growth (×, grams per liter) was also monitored

aacC1lox loxA D
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A lox D
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aacC1lox lox

lox

1298

P. aeruginosa 42A2 ΔAGmD
chromosomal DNA   

Cre-recombinase 
expression

P. aeruginosa 42A2 ΔAD
chromosomal DNA    

a

M   1   2   3   4

b

2,238 kbp

1,402 kbp

Fig. 2 a Isolation of an unmarked mutant after Cre-recombinase-
mediated excision of the Gm marker. b PCR analysis of the allelic
exchange and subsequent marker removal. Primers forward and
reverse flanking the phaC1-phaZ-phaC2 genes were used to
amplify across the entire three genes. The molecular weight standard

in the first lane is a 1-kb DNA Ladder (Promega, Spain), the
subsequent lines are: 1 → colonial PCR of P. aeruginosa 42A2, 2 →
colonial PCR of P. aeruginosa 42A2 ΔAGmD (2,238 kb), 3 →
colonial PCR of P. aeruginosa 47T2 AD (1,402 kb), 4 → colonial
PCR of P. aeruginosa 42A2 ΔAD (1,402 kb)
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by measuring the protein content of the culture, following
Lowry’s method (Lowry et al. 1951). All measures were
carried out in triplicate. Nitrate concentration was determined
by the nitrate test (Merck 111170, Germany).

PHA extraction, purification, and determination

Cells were harvested at time intervals after centrifugation at
20,000×g for 20 min, washed, centrifuged, resuspended in
distilled water, and finally lyophylized in a Cryodos-50
system (Telstar, Spain) at −56°C and 10−2 mbar. Lyophilized
biomass was extracted with hot chloroform for 3 h at 80°C.
The chloroform solution was filtered to remove any
remaining cell debris and concentrated by rotary evapo-
ration (Bücchi, Switzerland). PHAs were then purified by
precipitation of the chloroform solution through dropwise
addition to cold methanol. The methanol–chloroform
mixture was decanted, and the pure polymer was washed
with ice-cold methanol. Purified PHAs were then
dissolved in chloroform, concentrated to dryness under
vacuum (Bücchi, Switzerland), and weighed prior to
storage under N2 at −20°C (Bassas et al. 2008).

NMR analysis

The 1H- analysis of the PHA samples was carried out on a
Mercury-400F system (Varian VNMRS-400, Inc., CA). The
400 MHz 1H-NMR spectra were recorded at 25°C using an
acquisition time of 2.55 s, spectral width of 6,410 Hz, and
pulses of 2 s. The samples were diluted in CDCl3. Chemical
shifts in parts per million were relative to TMS at 0 ppm as
internal standard.

Hydroxy-fatty acid extraction and analysis

Culture samples were removed from the bioreactor at
time intervals, centrifuged, and the cells discarded. The
supernatant samples were acidified to pH 3 with 2 M
HCl and extracted twice with chloroform/methanol (2:1
v/v). The resulting extracts were dried over anhydrous
sodium sulfate, filtered, and the solvent removed with a
rotary evaporator. The corresponding organic extracts
were then analyzed by a thin-layer chromatography
(TLC, Macherey-Nagel, Germany) (Christie 2003; Joh et
al. 1995) and liquid chromatography.

Liquid chromatography

Quantitative analysis of the hydroxylated fatty acids
(10S)-HOME, (7S,10S)-DiHOME, and oleic acid as a
measure of the remaining WFO was carried out by liquid
chromatography in a Shimadzu LC-9A Chromatograph.
(Shimadzu, Japan). Samples were injected in the HPLC with

a light-scattering detector, Sedex 55 (SEDERE, France),
equipped with a Tracer Excel 120 C8 column (5 μ, 150×
4.6 mm) (Teknokroma, Spain). Optimal separation was
achieved with an elution gradient using A, acetonitrile (0.1%
v/v acetic acid) and B, water (0.1% v/v acetic acid) at a flow
rate of 1 ml/min. The gradient (time, percent solution B) used
was as follows: (0, 70); (10, 0); (15, 0); (20, 70); and (25, 70).
Injection volume was 50 μl. A known home-made standard
of each hydroxylated fatty acid and oleic acid was used for
the identification of the retention times and quantification of
the samples.

Results

Generation of a P. aeruginosa 42A2 negative mutant
for PHA production

In order to study the interaction of PHA biosynthesis in P.
aeruginosa with respect to the production of (10S)-HOME
and (7S,10S)-DiHOME, an isogenic phaC1-phaZ-phaC2
knockout mutant was generated by insertional inactivation
of the chromosomal phaC1-phaZ-phaC2 gene region
(Fig. 1). For this purpose, plasmid pEX100TAGmD
(Table 1), containing a gentamicin resistance cassette
replacing most of the two synthase genes (phaC1 and
phaC2) plus the entire phaZ gene, was constructed. This
construction was transferred by conjugation into P. aeruginosa
42A2, and gentamicin/sucrose-resistant transformants,
which were putative double recombinant clones carrying
an interrupted phaC1-phaZ-phaC2 gene region, were
selected (Quenee et al. 2005). A selected mutant clone
was analyzed by PCR amplification, using primers E and
F (Table 1), which bind to the 5′- and to the 3′-ends of the
phaZ gene, respectively. As expected, no PCR product
was obtained from mutant genomic DNA, whereas the
predicted PCR product of about 0.8 kb was obtained from
wild-type strain genomic DNA (not shown), indicating
that the mutation was indeed the result of a double
recombination event in which the phaC1-phaZ-phaC2
gene region was interrupted by the gentamicin resistance
cassette (Fig. 1). This was further confirmed by PCR
amplification using primers A and D (Table 1) binding to
the 5′-end of phaC1 (A) and to the 3′-end of phaC2 (D),
respectively. In this occasion, the expected 2.3 kb DNA
product was obtained after amplification of mutant
chromosomal DNA (not shown). Finally, confirmation of
the correct disposition of the knockout isogenic chromosomal
mutant was performed by DNA sequencing, showing that
the gentamicin resistance cassette was indeed inserted in the
phaC1-phaZ-phaC2 gene region. Thus, mutant P. aeruginosa
42A2 ΔAGmD, with the phaC1 and C2 synthase genes
abolished, was obtained.
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Antibiotic marker removal

For the generation of an unmarked P. aeruginosa 42A2
mutant, the gentamicin-resistant (GmR) antibiotic cassette
was removed from the previous construction (Quenee et al.
2005). For this purpose, plasmid pCM157 (Table 1),
carrying a TcR and an IncP origin of replication (oriV) that
allows replication in P. aeruginosa was introduced by
electroporation into P. aeruginosa 42A2 ΔAGmD (Fig. 2).
Transconjugant clones were grown overnight in LB
supplemented with tetracycline to allow expression of Cre
recombinase, responsible for the removal of the resistance
cassette aacC1 lox. Plasmid pCM157 was then cured from
the mutant strain resulting in an unmarked mutant clone—
P. aeruginosa 42A2 ΔAD—that was sensitive to both,
gentamicin and tetracycline, as a result of Cre recombinase-
mediated excision of the Gm marker (Fig. 2a). The
presence of the desired deletion in the unmarked mutant
was verified by DNA sequencing and colony PCR, using
primers A and D (Fig. 2b).

Synthesis of PHA by the phaC1-phaZ-phaC2 deletion
mutant P. aeruginosa 42A2 ΔAD

For PHA biosynthesis analysis, cells of parental and mutant
P. aeruginosa 42A2 strains were cultured under PHA-
accumulating conditions on mineral medium containing 2%
(v/v) WFO. Four different assays [fluorescence microscopy
(not shown), transmission electron microscopy, NMR

analysis, and PHA content determination] were carried out
in parallel to assess the PHA production in the PHA-
negative mutant obtained, using the parental strain as a
control (Fig. 3). Fluorescence microscopy and TEM images
showed no PHA granule accumulation in P. aeruginosa
42A2 ΔAD mutant (Fig. 3e, f), whereas abundant PHA
granules appeared inside P. aeruginosa 42A2 parental strain
cells (Fig. 3c, d).

The cell extracts of both strains (P. aeruginosa 42A2
and the PHA mutant) were analyzed by NMR (Fig. 3a).
1H-NMR spectra of the biopolymer obtained with the
wild-type P. aeruginosa 42A2 strain displayed the most
relevant signals corresponding to PHA polymer. The peaks
at 0.8 and at 1.2 ppm were assigned to the methyl and
methylene groups in the side chain, respectively. The
peaks at 2.5 and 5.2 ppm represent the methylene groups
at α-position and the methine group at β-position of the
ester, respectively. The signal of the olefinic protons in
the side chain appeared in the expected region between
5.25 and 5.35 ppm. The signals at 2.0 and 2.35 ppm
belong to protons adjacent to the double bonds. These
peaks were not found in P. aeruginosa 42A2 ΔAD,
indicating a complete lack of PHA in the mutant strain
(Fig. 3b). The NMR spectra showed PHA production only
in the wild-type strain, while in the impaired mutant, only
signals related to fatty acids, probably belonging to the
cell membrane, were observed. Therefore, we can conclude
that the newly constructed 42A2 ΔAD cannot synthesize
PHA.

Fig. 3 Analysis of PHA production in P. aeruginosa 42A2 parental
and mutant strains. Left 1H-NMR spectra monitored on mercury-400F
(400 MHz) of purified PHAs obtained from P. aeruginosa 42A2 (a)
and the PHA negative mutant 42A2 ΔAD (b). On the wild-type strain
spectra A, the peaks at 0.8 and 1.2 ppm were assigned to the methyl
and methylene groups in the side chain, respectively. The peaks at
2.5 ppm (1) and 5.2 ppm (2) correspond to the methylene groups at α-
position and the methine group at β-position of the ester, respectively.

The signal of the olefinic protons in the side chain appeared in the
expected region between 5.25 and 5.35 ppm. The signals at 2.0 and
2.35 ppm belong to protons adjacent to the double bonds. Right
Transmission electron microphotographs of cells obtained from
cultures of P. aeruginosa 42A2 (c and d) and the PHA-negative
mutant 42A2 ΔAD (e and f) grown on minimal medium supple-
mented with waste frying oils at 30°C. Scale bars are 200 nm in c and
e and 1 μm in d and f
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Synthesis of hydroxylated fatty acids
by the phaC1-phaZ-phaC2 deletion mutant

Once confirmed that mutant P. aeruginosa 42A2 ΔAD
was not able to synthesize PHA, the production of the
exo-products (7S,10S)-DiHOME and (10S)-HOME was
investigated. The LC chromatograms of the supernatant
of organic extracts indicated that no other hydroxy-fatty
acids than (7S,10S)-DiHOME or (10S)-HOME was
produced by both strains. The absence of unpolymerized
3-hydroxyalkanoic acids is remarkable, that is, the
building blocks for PHA synthesis did not accumulate in
the supernatant of any strain.

Kinetics of the exo-product accumulation of the wild
type and mutant strain is shown in Fig. 4. The mutant
strain displayed a growth rate of μ=0.09 h−1, whereas for
the wild-type strain was μ=0.14 h−1. The growth yields of
the mutant strain on carbon and nitrogen (YX/C and YX/N)
for protein, calculated at the end of the culture, were 0.08
and 0.47, respectively, lower than those of wild-type strain
(YX/C 0.1 and YX/N 0.74). The carbon consumption rate in
the mutant strain was qc=0.46 gC/gX·h, higher than that
calculated for the wild type strain, qc=0.38 gC/gX·h.

Interestingly, the production yield (YP/X) was 12.8 g/g in
the case of the mutant strain, higher than that obtained for
the wild-type strain (8.7 g/g). However, the product
volumetric production rate (qp) was similar for both strains,
being qp=0.41 gP/l·h and qp=0.46 gP/l·h for the mutant and
the wild-type strains, respectively.

Differences were observed in the accumulation profile of
the exoproducts between both strains. In cultures of the
mutant strain, (10S)-HOME steadily increased along the
incubation time, achieving at the end of the culture a
volumetric productivity of 0.37 g of (10S)-HOME/l·h,

whereas in the case of the wild-type strain, maximum
(10S)-HOME was achieved after 18 h of incubation,
resulting in a volumetric productivity of 0.66 g (10S)-
HOME/l·h. The carbon conversion yield in the mutant
strain was YHOME/C 0.84 g/g, being YHOME/C 0.68 g/g for
the wild-type strain. Higher cellular yield, YHOME/X 11.6 g/g,
was found in the mutant compared with the wild-type strain,
YHOME/X 3.4 g/g.

With regard to the accumulation of (7S,10S)-DiHOME, it
is noticeable that a negligible amount of product was
accumulated in the case of the mutant strain (only 1.31 g/
l at the end of the incubation time), that is a production rate
of qDiHOME/C of 0.04 gDiHOME/l·h. The overall conversion
yield in the mutant strain was YDiHOME/C 0.09 g/g. These
values were much lower than those calculated for the wild-
type strain, qDiHOME/C 0.26 g DiHOME/l·h, and YDiHOME/C=
0.41 g/g. The cellular yield for (7S,10S)-DiHOME produc-
tion in the mutant strain was YDiHOME/X=1.1 g/g, whereas
it was higher for the wild-type strain, YDiHOME/X=4.2 g/g.

The specific oxygen consumption rate (sOUR) calculated
for the process was sOUR=214 mgO2/mgX·h for mutant
42A2 ΔAD. This value is critically different than that
observed for the wild-type strain, sOUR=163 mgO2/mgX·h.
In order to better understand the consumption of oxygen
and the production of carbon dioxide (being in the
mutant and wild-type strains 1.53 molCO2/molX and
0.78 molCO2/molX, respectively), the carbon flow
through the central metabolism was checked by measuring
the level of isocitrate liase. The enzyme activity accounted
was 15.14 mM Gly/mg prot in the case of the mutant
strain, while the isocitrate liase activity found for the
wild-type strain was 7.57 mM Gly/mg prot, suggesting
that the carbon flow was driven through the glyoxylate
pathway in the mutant strain.
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Fig. 4 Time course of growth and product formation of P. aeruginosa
42A2 wild type (a) and P. aeruginosa 42A2 ΔAD mutant (b) when
cultivated in a mineral medium in a 3 l Braun Biotech reactor (see text
for conditions). Polyhydroxyalkanoic acids (PHAs) (filled circle);

Carbon substrate (diamond); Sodium nitrate (multiplication sign);
Protein (asterisk); (E)-10-hydroxy-8-octadecenoic acid, (HOME) (filled
square); (E)-7,10-dihydroxy-8-octadecenoic acid, (DiHOME) (triangle)
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Discussion

A knockout mutant deficient for PHA biosynthesis was
constructed in P. aeruginosa 42A2. This was done in order
to evaluate the putative relationship of PHA biosynthesis
and the production of hydroxylated fatty acids, considering
the wild-type strain for comparative purposes. The isogenic
knockout mutant P. aeruginosa 42A2 ΔAD was generated
by means of insertional inactivation of the phaC1-phaZ-
phaC2 gene region encoding the two PHA synthases and
the intracellular PHA depolymerase. This mutant was
generated by combining efficient negative selection against
single-crossover ex-conjugants, due to the sacB presence,
with the antibiotic marker recycling cre-lox strategy
(Quenee et al. 2005). This methodology allows allelic
exchange between a target gene and a gentamicin cassette
flanked by the two lox sequences. A tetracycline plasmid
expressing Cre recombinase was then introduced in the
mutant strain to catalyze excision of the lox-flanked
resistance marker. This functional cre-lox recycling antibiotic
marker system allows the creation of P. aeruginosa strains
with multiple mutations, without modifying the antibiotic
resistance profile when compared to the parental strain P.
aeruginosa 42A2.

Effective DNA exchange and recycling of the resistance
marker were monitored by PCR amplification and sequencing,
and the phenotypic effect of the deletion was confirmed by
examining the PHA accumulation profiles of the mutant
strain with respect to those of the wild type. As it is well
known, PHA accumulation occurs in discrete inclusions
inside the cell (Fernandez et al. 2005; Steinbuchel and
Valentin 1995). A thin section of wild-type P. aeruginosa
42A2 containing PHA inclusions is shown in Fig. 3, where
PHA granules appear in TEM micrographs as light
intracellular inclusions with a diameter of 200–400 nm,
depending on the granule. As expected, TEM and
epifluorescence microscopy (not shown), together with
NMR analysis (Fig. 3) revealed that the mutant P. aeruginosa
42A2 ΔAD, deleted for the phaC1-phaZ-phaC2 genes, was
impared for PHA production. NMR analysis confirmed
PHA accumulation in the case of P. aeruginosa 42A2,
whereas for the mutant P. aeruginosa 42A2 ΔAD, the
NMR showed only the presence of few free fatty acids,
probably belonging to the cell membrane. These results
were further corroborated by the lack of accumulation of
PHA in the mutant strain, whereas accumulation in the
wild-type strain was 23% w/w.

Strain P. aeruginosa 42A2 also produces hydroxy-fatty
acids as extracellular products (Fernandez et al. 2005). The
influence of PHA synthesis in hydroxy-fatty acid produc-
tion by P. aeruginosa was investigated for the first time
with regard to the carbon balance influencing the synthesis
of hydroxylated fatty acids. In addition, having such a

specific mutation in the phaC1-phaZ-phaC2 region, any
effect on other gene expression could be expected (Ouyang
et al. 2007), since PhaC encodes for a PHA synthase using
the substrate (R)-3-hydroxyacyl-CoA, and PhaZ encodes
for a PHA depolymerase (Rehm et al. 2001; de Eugenio et
al. 2007).

The new mutant P. aeruginosa 42A2 ΔAD grew slower
than the parental strain. A stoichiometric approach of
the kinetics of the culture was undertaken on the basis
of the volumetric production rate, the specific produc-
tion rates, the cellular yield, the conversion, and the
oxygen uptake.

Two noticeable features were observed: (1) the carbon
consumption rate for the mutant strain was higher than of
the wild-type strain. This fact was reflected in the cellular
yield for carbon as well as the cellular yield for nitrogen,
the mutant strain being less efficient in nitrogen assimila-
tion; (2) the specific yield of carbon dioxide formation in
the mutant strain was twofold compared to the wild-type
strain, which was consistent with the specific oxygen
uptake found in the case of the mutant (214 mgO2/mgX·h),
compared to the wild-type strain (163 mgO2/mgX·h).

These data led us to focus on the central metabolism of
carbon. It is well known that bacterial populations can cope
with a variety of stress situations, such as high amounts of
alkylic carbon substrates like those used in this study, where
medium/long chain length fatty acids are contained in the
waste frying oils. The uptake of fatty acids in Pseudomonas to
produce PHA occurs through different mechanisms (Rehm
et al. 1998; Sudesh et al. 2000), being the β-oxidation
pathway one of the main routes leading to the increase of
acetyl-CoA within the cell. High concentrations of this
metabolic intermediate produce a metabolic stress. The
cellular strategy to release the accumulated intracellular
acetyl-CoA is to activate the glyoxylate pathway to
shorten the tricarboxylic acid cycle. Similar situations
occur with PHA mutants of other Pseudomonas strains
(A. Prieto, personal communication). The critical increase
in the isocitrate liase activity found in this work for the
mutant strain is consistent with the physiological role of
PHA as an electron sink for excess reducing power,
developed when bacteria grow under an excess of carbon
substrate (Hocking and Marcessault 1998).

It is noteworthy to remark the poor accumulation of
DiHOME by the mutant strain. The wild-type strain is
3.5-fold more efficient, on basis of cellular yield, than
the mutant strain. This might be a consequence of the
oxygen being driven towards the energy metabolism of
cells, since the two oxygens in the hydroxyl group derive
from the same molecule of O2, as previously reported
(Martinez et al. 2010). Significantly, the cellular yield of
the mutant strain for HOME synthesis was 3.6-fold higher
than for the wild-type strain.
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In this work, a mutant on PHA production was obtained.
The new mutant was a highly efficient strain for the
production of (E)-10-hydroxy-8-octadecenoic acid when
incubated with a rich oleic acid substrate. Some interesting
effects due to the lack of PHA synthesis were observed,
especially on the specific oxygen uptake and the increase of
carbon dioxide production.
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a  b  s  t  r  a  c  t

In this  study,  Novozym  435,  a lipase  B from  Candida  antarctica,  was used  for fatty  acid  polymerization.
For  the  first  time,  an  apolar  reaction  media,  n-hexane,  was  used  to  synthesize  in vitro  estolides  from
trans-hydroxy-fatty  acids  derived  from  the  biotransformation  of  oleic  acid  by Pseudomonas  aeruginosa
42A2  NCIMB  40045.  We  studied  the  effects  of  the  substrate,  the  enzyme  ratio,  the  enzyme  stability
and  the  reusability  of the  biocatalyst.  To  determine  the  structure  of  the  oligomers  formed,  both  liquid
eywords:
ipase
ovozym 435

rans-hydroxy-fatty acids

chromatography  mass  spectrometry  and  MALDI-TOF  mass  spectrometry,  with  a DHB  matrix  neutralized
with lithium  hydroxide,  were  used  to obtain  simpler  mass  spectra.  Estolides  composed  of  two  units  of
(10S)-HOME  were  synthesized  with  a reaction  yield  of 30%.  Finally,  various  lipases  were  screened,  and
another apolar  organic  solvent,  iso-octane,  was  assayed  to try  to increase  the  reaction  yield.

©  2012  Elsevier  Ltd.  All  rights  reserved.

stolides
ALDI-TOF

. Introduction

Estolides, a class of polymeric molecules containing an unsatu-
ated bond or hydroxy-fatty acids bonded to a carboxyl moiety of
nother acyl group [1],  have been detected in the seed oil of sev-
ral plants: Euphorbiaceae,  Brasicaceae, Cruciferae,  Limmanthaceae,
ompositae and, most notably, the genus Lesquerella [1–3]. Estolides
ave also been found in secretions from the glandular hairs of

 caterpillar, Pieris rapae [4],  and in human meibum as a wax
ster (WE) [5].  Finally, it should be noted that estolides were also
etected in cultures of Pseudomonas aeruginosa 42A2 when culti-
ated with oleic acid [6].

There is great interest in producing estolides and their deriva-
ives as biodegradable lubricants, functional fluids, cosmetics, inks
r coatings [7].  To this end, the first attempt to produce estolides
elied on the polymerization of ricinoleic acid from castor oil [8] or
leic acid in a reaction that required a temperature of 250 ◦C under
ressure [9].  Currently, estolides are produced chemically from
egetable oils (soybean, meadow foam, lesquerella, castor, coconut
r palm kernel oils) composed of unsaturated fatty acids of ten or
ore carbon atoms [9–11]. To overcome these extreme conditions
nd to prevent side effects due to the use of an inorganic catalyst, a
iocatalytic method with random lipases from Candida rugosa [12],
andida antarctica or Rhizomucor miehei [13,14] was developed.

∗ Corresponding author.
E-mail address: amanresa@ub.edu (A. Manresa).

359-5113/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.procbio.2012.12.006
The starting materials of this method were ricinoleic acid (RA),
12(R)-hydroxy-9(Z)-octadecenoic acid, or lesquerolic acid, 14(R)-
hydroxy-11(Z)-icosenoic acid [1,15].

Although there are a large number of reports about the bio-
transformation of lipids with lipases, there are few studies on the
polymerization of hydroxy-fatty acids by lipases. In 1989, Yam-
aguchi et al. were the first to report the esterification of castor oil in
a two-step enzymatic reaction to obtain estolides with a high yield
[16]. Later, they reported the importance of controlling the amount
of water present in the reaction media and showed the advan-
tage of immobilizing the lipases; the reaction yield was improved,
and the product obtained reached acid values (AV) of 40 [17–19].
With estolides from ricinoleic acid applications arising, different
strategies have been tested: (i) improving the immobilizing carri-
ers [19,20]; (ii) encapsulating lipases in a reverse micelle [1];  and
(iii) from 1997 to 2009, optimized reaction conditions in a biore-
actor to increase the quality and quantity of estolides production
were reported [12,21–23].  More recently, organic apolar solvents
have started to be used as part of the reaction media [24] and to
introduce new applications of ricinoleic acid estolides in the food
industry [12]. Likewise, molecular sieves have been employed to
adsorb water released during polycondensation in order to shift
thermodynamic balance [25]. Several other methods, such as air
drying [12], nitrogen bubbling, vacuum pressure, or a combination

of these two, have also been employed [26].

Little has been documented about the polymerization of
trans-hydroxy-acids with specific lipases toward trans-monomers.
The studies by Borgdorf and Warwel, in which thirty-nine

dx.doi.org/10.1016/j.procbio.2012.12.006
http://www.sciencedirect.com/science/journal/13595113
http://www.elsevier.com/locate/procbio
mailto:amanresa@ub.edu
dx.doi.org/10.1016/j.procbio.2012.12.006
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ommercial lipases were classified according to a ratio competitive
actor (RCF), are very helpful in determining substrate selectivity
oward isomeric 9-octadecenoic acids in n-hexane [27].

It is a difficult to both detect and characterize estolides. Gas
hromatography coupled with mass spectrometry has proven use-
ess due to the high boiling point of estolides [28–30].  In recent
ears, matrix-assisted laser desorption/ionization time-of-flight
ass spectrometry (MALDI-TOF-MS) has emerged as a powerful

echnique to analyze synthetic polymers. Cvacka and co-workers
nalyzed WE  using the MALDI-TOF-MS technique with a matrix
f lithium salt of 2,5-dihydroxybenzoic acid (DBH) to increase the
ntensity of the signal for obtaining a good reproducibility [31].
hey were able to characterize natural samples of WE  with great
ccuracy.

The primary goal of this research is to develop new bio-based
aterials from agroindustrial wastes. To this end, oleic acid, which

s present to a high degree in residual oily wastes, was used as
 substrate for the production of 10(S)-hydroxy-8(E)-octadecenoic
nd 7,10(S,S)-dihydroxy-8(E)-octadecenoic acids ((10S)-HOME and
7S,10S)-DiHOME, respectively) by P. aeruginosa 42A2. Next, the

onomer (10S)-HOME was used to synthesize estolides in vitro
ith Novozym 435. MALDI-TOF-MS and LC–MS techniques were
sed to determine the estolides’ structure. Finally, lipases were
creened in an organic medium to improve the reaction yield of
he catalytic synthesis of estolides.

. Materials and methods

.1. Materials

P. aeruginosa 42A2 NCIMB 40045 was maintained on TSA (Trypticase soy agar;
ifco, Franklin lakes, IL, USA) slants at 30 ◦C and after an incubation period of 24 h
as  kept at 4 ◦C and subcultured every two  weeks. The strain was  preserved frozen

−80 ◦C) in cryobilles (AES CHEMUNEX S.A., Terrassa, Spain). A lipase from C. rugosa
1104 units/mg solid) was  purchased from Sigma–Aldrich (Madrid, Spain). Novozym
35, immobilized lipase B from C. antarctica (10,000 propyl laureate units/g solid),
ipozyme RM IM (an immobilized lipase from R. miehei,  275 interestification units/g
olid) and Lipozyme TL IM (a lipase from Thermomyces lanuginosus, 250 interestifi-
ation units/g solid) were generous gifts from Novozym A/S (Bagsvaerd, Denmark).
ipase A from Rhizopus oryzae was  donated by Prof. Francisco Valero (Chem Eng
ept UAB, Cerdanyola del Vallès, Spain). Analytical grade n-hexane, methanol and
iethyl ether were purchased from Carlo-Erba Reagents-SdS (Sabadell, Spain). Ana-

ytical grade iso-octane for spectroscopy UV–IR and potassium hydroxide (KOH) 85%
ere purchased from Panreac (Castellar del Vallès, Spain). Ricinoleic acid (RA) 80%
as  supplied by Fluka (Madrid, Spain) and oleic acid (OA) technical grade 90% was
urchased from Sigma–Aldrich (Madrid, Spain).

.2. Production and quantification of monomers

P.  aeruginosa 42A2 NCIMB 40045 was cultured in the following saline medium
in  g l−1): CaCl2 (0.01), NaNO3 (3.5), K2HPO4 (2.0), KH2PO4 (1.0), KCl (0.1),

gSO4·7H2O (0.5), FeSO4·7H2O (0.012) and 0.05 ml  l−1 trace elements solution. The
race elements solution was as follows (in mg  100 ml−1): H3BO3 (148), CuSO4·5H2O
196), MnSO4·H2O (154), Na2MoO4·2H2O (15) and ZnSO4·7H2O (307). This medium
as  supplemented with OA at 2% (v/v).

The bioreactor was  inoculated with 200 ml  of a 24 h culture in a saline medium
ontaining 20 g l−1 OA as a carbon source. The inoculum-culture was  carried out
n  an orbital shaker for 18 h at 150 rpm rotational speed and 30 ◦C. Cells were har-
ested by centrifugation (14,700 × g for 30 min  at 4 ◦C) and resuspended with NaCl
.9%  (w/v) at 2% (v/v) to an optical density of 2.0 at 540 nm prior to inoculation

nto the bioreactor. The cultures were cultivated at a working volume of 2 l in a 3-
 bench top bioreactor (Biostat B. Braun Biotech International GmbH, Melsungen,
ermany) using the mineral salts medium described above. During the culture, dis-
olved oxygen was  monitored continuously with an O2 electrode (Ingold 12/200 B.
raun Biotech. International GmbH, Melsungen, Germany) and maintained at 30%
xygen saturation by automatic cascade control of the stirrer speed, 500–700 rpm,
ith an air flow between 2.5 and 7.5 l min−1. The air flow was enriched with oxy-

en (Carburos Metálicos, Spain) when needed. The temperature was  measured at
0 ◦C by a Pt-100/200-4 temperature sensor (B. Braun Biotech. International GmbH,
elsungen, Germany). The pH was automatically kept at 7.0 using 2 M HCl and 2 M

aOH solutions. The data were recorded using an external computer connected to

he  control unit of the bioreactor. The software used was  MFCS/win 2.0 (B. Braun
iotech International, Sartorius, Mesulgen, Germany). The culture was  maintained
ntil all 10(S)-hydroperoxy-8(E)-octadecenoic acid ((10S)-HPOME) was converted
o (10S)-HOME and (7S,10S)-DiHOME.
emistry 48 (2013) 224–230 225

Quantitative analysis of OA, (10S)-HPOME, (10S)-HOME and (7S,10S)-DiHOME
was  carried out by liquid chromatography in a Shimadzu LC-9A Chromatograph
(Kyoto, Japan). Samples were injected into the HPLC with a Sedex 55 light-scattering
detector (Sedere, Alfortville Cedex, France) equipped with a Tracer Excel 120 C8 col-
umn  (5 �m,  150 mm × 4.6 mm)  (Teknokroma, Sant Cugat del Vallès, Spain). Optimal
separation was  achieved with an elution gradient using A, acetonitrile (Fischer Sci-
entific, Madrid, Spain) (0.1%, v/v acetic acid), and B, water (0.1%, v/v acetic acid),
at  a flow rate of 1 ml min−1. The gradient (time (min), %B) used was as follows: (0,
70),  (10, 0), (15, 0), (20, 70), and (25, 70). The injection volume was 20 �l. A known
homemade standard of each hydroxy-fatty acid and substrate was  used to identify
the  retention times and to quantify the samples. Cell growth was calculated as dry
cell  weight. The biomass of the samples was  placed in an oven at 100 ◦C for 24 h. The
nitrate concentration was determined using QUANTOFIX® nitrate/nitrite test strips
(Macherey-Nagel, Düren, Germany). All concentrations are expressed in g l−1.

2.3. Purification of trans-hydroxy-fatty acids

At the end of cultivation, the culture was centrifuged (14,700 × g for 30 min
at  4 ◦C), the supernatant was acidified to pH 2.0 with 37% HCl (Panreac, Castellar
del Vallès, Spain), and two extractions were performed with a half volume of ethyl
acetate (Carlo-Erba Reagents-SdS, Sabadell, Spain). The organic phase was  dried over
an  anhydrous sodium sulfate filter (Panreac, Castellar del Vallès, Spain), and the
solvent of the combined extracts was evaporated with a rotary evaporator (Bücchi,
Postfach, Switzerland), resulting in a yellow oil. Organic extracts were kept in vials
at  4 ◦C under nitrogen to prevent further oxidation. The (10S)-HOME  and (7S,10S)-
DiHOME were purified by flash-chromatography in a glass column (50 cm long and
with 3 cm inner diameter) filled with silica gel 60 (0.040–0.063 mm,  Merck, Madrid,
Spain). The mobile phase used was formed by n-hexane:diethyl ether:methanol
(80:20:7, v:v:v) and a stream of nitrogen (Carburos Metálicos, Barcelona, Spain)
was  applied to obtain the purified products. The purified products were kept at 4 ◦C
under nitrogen, as stated above.

2.4. Product yields and productivity of monomers

The whole specific product yield (YP/X (Eq. (1))) and specific (10S)-HOME and
(7S,10S)-DiHOME yields (Y(10S)-HOME/X and Y(7S,10S)-HOME/X (Eq. (2))), were calculated
over  the entire process as the productivity of each hydroxy-fatty acid, q(10S)-HOME,
q(7S,10S)-DiHOME, instead of the OA consumption rate, qOA, which was  calculated over
the first 15 h of cultivation (Eq. (3)).

YP/X (g g−1) = �C((10S)-HOME) + �C(7S, 10S)-DiHOME)
�C(X)

(1)

Y(10S)-HOME/X (g g−1) = �C(10S)-HOME
�C(X)

;

Y(7S,10S)-DiHOME/X (g g−1) = �C(7S,  10S)-DiHOME
�C(X)

(2)

q(7S,10S)-DiHOME (g l−1 h−1) = �C((7S, 10S)-DiHOME)
�t

; qOA (g l−1 h−1) = �C(OA)
�t

(3)

2.5. Measurement of the reaction yield of estolides synthesis

The reactions were monitored by titration to determine the acid value (AV)
[23] of the samples. After evaporating the organic solvent, a 30 mg aliquot of the
reaction mixture was  titrated with 0.05 M KOH using phenolphthalein as indicator.
All  samples were analyzed in triplicate. The AV and the yield of the reaction were
calculated as follows (Eq. (4)):

�  (%) = AVsubstrate − AVproduct

AVsubstrate
· 100 (4)

2.6.  Effect of enzyme concentration

Different quantities of Novozym 435 (0.3–1.5 g) were assayed to obtain the opti-
mal  amount of enzyme for a reaction with 0.6 g of (10S)-HOME in 20 ml of n-hexane
in  a 100 ml  Erlenmeyer flask for 48 h at 50 ◦C. A rotary evaporator system was  used to
achieve an efficient degree of contact between the enzyme and the substrate and to
maintain the required temperature. All reactions were carried out at atmospheric
pressure. The reaction extension was calculated using Eq. (4),  as shown above. A
control was assayed to confirm that this reaction does not occur spontaneously.

2.7. Effect of substrate/enzyme ratio with Novozym 435
An aliquot of 0.5 g of Novozym 435 was used to study polymerization with dif-
ferent amounts of (10S)-HOME (0.25–1.0 g). The enzymatic reaction was  performed
under the same conditions described above and included a control. The yield of the
reaction was  calculated with Eq. (4).
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Fig. 1. Time course of growth and product formation of P. aeruginosa 42A2 when

Various substrate/enzyme ratios were tested to establish the
optimal concentration of substrate to be used. As Fig. 3 shows, the
yield increased up to a ratio of 1, after which the yield remained

Table 1
Experimental data of the production process of (10S)-HOME. i: OA, (10S)-HOME,
(7S,10S)-DiHOME and products.

Compound Yi/X (g g−1) qi (g l−1 h−1) Purity (%) Purification
recovery (%)

OA 3.42 1.267 – –
(10S)-HOME 1.23 0.237 91 43
(7S,10S)-DiHOME 1.39 0.267 96 29
26 I. Martin-Arjol et al. / Proces

.8.  Reusability of the Novozym 435 biocatalyst

The biocatalytic reaction was performed with 0.5 g of organic substrate (10S)-
OME, which was added to 0.5 g of enzyme. The reaction conditions were the same
s  described above. After each cycle, the enzyme was removed from the reaction
edium by filtration and then rinsed with n-hexane several times. Finally, the sol-

ent  was  evaporated under a stream of air at room temperature. The product was
nalyzed, and the stability of the enzyme was determined as the reaction yield.

.9. Screening of other lipases for estolides formation

An aliquot of 100 mg  of C. rugosa lipase, lipase A from R. oryzae,  Lipozyme RM
M,  Lipozyme TL IM and Novozym 435 were assayed with 0.6 g of (10S)-HOME in
0  ml of n-hexane or iso-octane in a 100 ml  Erlenmeyer flask for 48 h at 50 ◦C. A
otary evaporator was used to attain a high mixing degree and to control the nec-
ssary temperature. The polymerization reactions were carried out at atmospheric
ressure, and the reaction extension was calculated with Eq. (4).

.10. Liquid chromatography coupled to mass spectrometry (LC–MS)

Chromatographic separation was carried out in a Perkin-Elmer (Whaltham, MA,
SA) Series 200 liquid chromatographer coupled to a PE SCIEX API 150 EX single-
uadrupole mass spectrometer (Applied Biosystems, Carlsbad, CA, USA). A Tracer
romasil 100 C8 column (250 mm × 46 mm,  5 �m)  (Teknokroma, Sant Cugat del
allès, Spain) was used. Separation was achieved with a gradient elution using A:
cetonitrile (0.1%, v/v acetic acid); B: acetone (0.1%, v/v acetic acid) at a flow rate of
.5 ml  min−1. Gradient (time (min), %B): (0, 35), (25, 100), (30, 100), (35, 35), (40, 35).
ll  reported data were acquired with an APCI ionization source in negative mode
sing the following parameters: vaporizer temperature of 400 ◦C, 3 mA nebulizer
urrent, −25 V declustering potential, −110 V focusing potential, −10 V entrance
otential and nitrogen as a nebulizer and curtain gas with 10 and 12 arbitrary units.
he scan data were obtained by scanning from m/z 100–2000 amu. For the analysis of
stolides from ricinoleic acid, the selected ion monitoring (SIM) technique was  used
o  detect high molecular mass oligomers with a better signal. The ions selected were
hose corresponding to the different oligomers synthesized. All data were recorded
sing Analyst Software v. 1.4.2 (Applied Biosystems, Carlsbad, CA, USA).

.11. MALDI-time-of-flight mass spectrometry (TOF-MS) structural determination

MALDI-TOF-MS experiments were performed on a 4800 Plus MALDI-TOF/TOF
nalyzer (ABSciex – 2010, Framingham, MA,  USA). The samples were analyzed in
S  Reflector mode using positive ion detection. Desorption and ionization were

chieved with an Nd-YAG laser (355 nm, 3–7 ns pulse, 200 Hz). The data were
ecorded using 4000 Series Explorer software (ABSciex – 2010, Framingham, MA,
SA). A 2,5-dihydroxybenzoic acid matrix was neutralized with lithium hydroxide

Sigma–Aldrich, Madrid, Spain), as Cvacka and co-workers established [31]. Lithium
alt matrix, 10 mg  ml−1, was  dissolved in a mixture of acetone:trichloromethane
2:1, v:v). An aliquot of 1 �l of the matrix solution was spotted on the target plate
ntil the organic solvent evaporated completely. Then, 1 �l of the samples diluted

n  2.5 mg  ml−1 trichloromethane was deposited over the matrix spot and allowed
o dry before analysis.

. Results and discussion

.1. Production of trans-hydroxy-fatty acids by submerged
ermentation

P. aeruginosa 42A2 NCIMB 40045 was isolated from an olive
il-contaminated site. This strain catalyzes the conversion of oleic
cid (OA) into new derivatives of the trans-configuration: 10(S)-
ydroxy-8(E)-octadecenoic acid ((10S)-HOME)) and 7,10(S,S)-
ihydroxy-8(E)-octadecenoic acid ((7S,10S)-DiHOME)) [32]. As
ig. 1 shows, the maximum production of (10S)-HOME and
7S,10S)-DiHOME was achieved at the end of the incubation
8.6 and 9.2 g l−1, respectively), i.e.,  89% of substrate conver-
ion. The entire specific product yield, YP/X, was 2.62 g g−1, and
he OA consumption rate, qOA, was 1.267 g l−1 h−1. The pro-
uctivity of (10S)-HOME, q(10S)-HOME, was 0.237 g l−1 h−1 with a
ell yield, Y(10S)-HOME/X, of 1.23 g g−1. The (7S,10S)-DiHOME pro-
uctivity, q(7S,10S)-DiHOME, was 0.267 g l−1 h−1, and its cell yield,
(7S,10S)-DiHOME/X, was 1.39 g g−1. After organic extraction (10S)-

OME was purified up to 91% purity, and (7S,10S)-DiHOME was
urified to 96%. Table 1 summarizes the calculations of trans-
ydroxy-fatty acid production from OA by P. aeruginosa 42A2 in
he bioreactor.
cultivated in a mineral medium in a 3-L B. Braun Biotech reactor (see text for condi-
tions). OA: (�); (10S)-HOME: (�); (7S,10S)-DiHOME: (�); NO3

−: (�); dry cell weight:
(*).

3.2. Novozym 435 for trans-hydroxy-fatty acid isomer
esterification: enzyme amount and substrate/enzyme ratio

In terms of selectivity to a cis/trans configuration of the double
bond in 9-octadecenoic acid isomers, the lipases were classified
according to a ratio competitive factor (RCF) [27]. This factor
describes the selectivity of one single lipase toward two substrates
with the same leaving group and to two different acyl groups.
Thus, in this study, Novozym 435, with an RCF of 0.7, was chosen
because it is slightly more active with trans-9-octadecenoic iso-
mers, it exhibits versatility, and its optimal temperature of enzyme
activity is 40–60 ◦C. To generate compatible new compounds in cos-
metic or food applications, n-hexane with a log P of 3.5 [33] was
chosen. Log P is a measurement of solvent polarity. Along with the
partition coefficient and the enzyme/solvent interaction, log P may
determine biocatalytic activity; this activity is low in solvents at
log P < 2, moderate at log P between 2 and 4 and high in a polar
solvent with log P > 4 [34].

Different amounts of enzyme were tested to establish the opti-
mal  amount of biocatalyst for 0.6 g of (10S)-HOME. The results are
given in Fig. 2. It could be observed that the reaction yield increased
with the amount of enzyme. At values near 0.5 g of enzyme, this
yield was  35%, and it increased slightly to 42% at a substrate/enzyme
ratio of 1.2 g g−1. Thus, the thermodynamic limit for yield was very
similar to this latter value. There are no data in the literature about
polymerization with trans monomers, although this value is lower
than the 58% obtained by Horchani et al. when using ricinoleic acid
to produce estolides in n-hexane for 55 h at 55 ◦C [25]. Bódalo et al.
obtained a 72% reaction yield when C. rugosa was immobilized in
Lewatit Monoplus MP64, an anion exchange resin, for 150 h at 40 ◦C
in a solvent-free system [23].
Products 2.62 0.504 – –

OA: oleic acid; (10S)-HOME: 10(S)-hydroxy-8(E)-octadecenoic acid; (7S,10S)-
DiHOME: 7,10(S,S)-dihydroxy-8(E)-octadecenoic acid; products: (10S)-HOME and
(7S,10S)-DiHOME. Data are the average of three replicates.



I. Martin-Arjol et al. / Process Biochemistry 48 (2013) 224–230 227

0

10

20

30

40

50

0 0.5 1 1.5

(%
)

Novozym 435  (g)

F
4
a

c
i
f
a
c

3

m
e
4
s

f
d
5
w
w
t
h
e
a
c
a

F
H
i
p

0.50

0.55

0.60

0.65

0.70

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

No
vo

zy
m

e 
43

5 
(g

)

(%
)

Cyc le

 (%) Novozy me 43 5

Fig. 4. Yield of the polymerization and enzyme weight at each cycle. In all exper-

ig. 2. Yield of the polymerization with different amounts of enzyme, Novozyme
35, in 0.6 g of (10S)-HOME at 50 ◦C during 48 h in n-hexane, 20 ml.  Yield is calculated
s  percentage of the reduction of AV.

onstant at 30%, indicating that an excess substrate concentration
s not effective in enhancing the AV decrease. A similar ratio was
ound by Langone and co-workers after the conversion of oleic
cid/methyl ricinoleate to estolides using Novozym 435 as a bio-
atalyst in a solvent-free system for 48 h at 80 ◦C [34].

.3. Effect of enzyme stability

The use of enzymes or immobilized enzymes for repeated use
ay  help decrease product cost and make the enzymatic process

conomically viable. The ability of lipase B of C. antarctica,  Novozym
35, to retain its stability during recycling by using fatty acids as
ubstrate was studied by several researchers [34,35].

Fig. 4 shows the profile of the polymerization yield during dif-
erent cycles. As observed, the synthetic stability of the enzyme
ecreased throughout the cycles assayed. The yield decreased by
3.3% after ten cycles, from 30.4% to 18.5%, whereas the enzyme
eight increased. Although the biocatalyst was rinsed several times
ith n-hexane, a portion of the substrate remained adsorbed on

he support due to the poor solubility of the (10S)-HOME in n-
exane. Langone and co-workers observed a similar reduction in
nzyme stability (55%) in the production of estolides from oleic acid

nd methyl ricinoleate with Novozym 435 in four batches [34]. In
ontrast, Radzi et al. [35] observed great synthetic stability even
fter nine cycles (91.9%) during the production of oleyl oleate in
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ig. 3. Yield of the polymerization with different amounts of (10S)-
OME/Novozyme 435 ratio. 0.5 g of Novozyme 435 were used in all experiments

n 20 ml of n-hexane as organic solvent at 50 ◦C during 48 h. Yield is calculated as
ercentage of the reduction of AV.
iments 0.5 g of Novozyme 435 and 0.5 g of (10S)-HOME were dissolved in 20 ml  of
n-hexane during 48 h at 50 ◦C. Yield is calculated as percentage of the reduction of
AV.  Novozyme 435: (�); bars: yield.

n-hexane for 1 h, indicating a negligible effect on enzyme stability.
This indicates that using an appropriate apolar organic solvent may
help maintain enzyme stability and solubilizing the substrate may
help so as not to affect enzyme activity.

3.4. Structural determination of (10S)-HOME estolides

A gel-permeation analysis of the polymers has certain dif-
ficulties that we  tried to overcome, such as the difficulty of
separating different degrees of polymerization properly, especially
when the molecular mass of the oligomers analyzed does not
differ enough. At this juncture, more than one gel permeation
column is needed to achieve a good separation, which increases
the analysis time and makes this technique tedious and expen-
sive. Alternatively, Bayer et al. introduced coordination-ion-spray
mass-spectrometry (CIS-MS), in which non-polar compounds or
substances with weakly basic or acidic groups are detected, but
with poor sensitivity [36]. MALDI-TOF is ideally suited for poly-
mer  analysis because of the simplicity of the mass spectra [37],
which show mainly single-charged quasi-molecular ions with lit-
tle fragmentation when cationization salts are used. To this end,
lipase-formed estolides from (10S)-HOME were analyzed using
ricinoleic acid estolides that were enzymatically produced as a con-
trol to confirm the validity of the following structural techniques:
liquid chromatography–mass spectrometry and MALDI-time-of-
flight mass spectrometry.

3.4.1. Liquid chromatography–mass spectrometry (LC–MS)
structural determination

Estolides from RA were enzymatically produced using the
method described by Bódalo et al. [22]. Thus, RA estolides, with
an AV of 68 mgKOH g−1

sample, were used to confirm the validity of
the LC–MS techniques applied in order to determine the struc-
ture of the apolar polymers as polyesters of C18-hydroxyl-fatty
acids. In addition, selected ion monitoring (SIM) was used to detect
high molecular mass oligomers with greater intensity. Six ions
were selected, m/z 298, 578, 858, 1138, 1419 and 1699, that corre-
spond to RA and its oligomers [2RA-H2O], [3RA-2H2O], [4RA-3H2O],
[5RA-4H2O] and [6RA-5H2O], respectively. The six-extracted ion-
superimposed chromatogram (Fig. S1, Supporting Information)
gives the retention times at which various selected ions are
detected. As can be observed, the ion with m/z  298 appears at

7.28 min  peak is unreacted RA; and at the peaks (min) 12.07, 18.70,
24.29, 28.22 and 30.94, an ion with m/z 298 appears as a marker of
the cleavage of one of the ester bonds in the oligomers synthesized.
However, ions with m/z 578 (red), 858 (green) and 1138 (gray) are
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Fig. 5. (a) Full scan chromatogram of (10S)-HOME polymerized with Novozyme
435 at 50 ◦C during 48 h; AV of the sample of 127.8 mgKOH g−1

sample
. (b) Mass spectra
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Table 2
Reaction yield, � (%), in the lipase screening with different apolar solvents.

Lipase RCFa n-hexane Iso-octane Specificity

Novozyme 435 0.7 11.7 16.0 Non specific
Lipozyme RM IM 1.3 26.4 23.6 sn-1,3
Candida rugosa 2.9 16.8 12.5 Non specific
Rhizopus oryzae lip A 3.7–4.1b 15.1 13.8 sn-1,3
Lipozyme TL IM – 36.4 32.7 sn-1,3

Table 2 summarizes the reaction yields, and the lipases are listed
f  the peak of 7.25 min retention time: (10S)-HOME. (c) Mass spectra of the peak of
1.78 min  retention time: dimmer of (10S)-HOME.

nly observed at retention times of 12.07, 18.70 and 24.29 min,
espectively. Finally, ions with m/z  1419 and 1699 (not in the fig-
re) are only detected at retention times of 28.22 and 30.94 min,
espectively.

A sample of (10S)-HOME polymerized in n-hexane with

ovozym 435 was analyzed, with an AV of 127.8 mgKOH g−1

sample.
s seen from Fig. 5a, two noticeable peaks at 7.25 and 11.78 min
ere detected in the full scan chromatogram. The mass spectrum
Data are the average of two replicates.
a Ratio competitive factor (1/˛)cis/(1/˛)trans.
b From Rhizopus arrhizus and Rhizopus delemar (Borgdorf and Warwel [27]).

of the 7.25 min  peak is shown in Fig. 5b, and an ion with m/z  297.3
corresponding to the [M−H]− ion of (10S)-HOME can be detected.
Likewise, the mass spectrum of the 11.78 min  peak shows two main
ions (Fig. 5c), m/z 577.8 and 297.5. The first ion indicates the pres-
ence of an oligomer of two units of (10S)-HOME, [2M-H2O-H]−,
and the second one represents the cleavage of the ester bond of the
same compound.

3.4.2. MALDI-time-of-flight mass spectrometry (TOF-MS)
structural determination

Selecting an appropriate MALDI matrix, cationization salts and
sample preparation techniques are critical success factors for
obtaining a reliable mass spectrum from which to infer structural
information [31]. A 2,5-dihydroxybenzoic acid (DHB) matrix, neu-
tralized with lithium hydroxide, was used to analyze RA estolides
using the method developed by Cvacka and co-workers in order
to analyze wax esters, esters from a fatty acid and a fatty alcohol.
As can be observed (Fig. S2, Supporting Information), a relatively
low-intensity peak of m/z 305.19 corresponded to the lithium
molecular adduct of RA [RA+Li7]+; a peak of m/z  287.19 appeared
due to the loss of water from the RA lithium adduct. Three peaks
in the central part of the spectra (585.53, 865.65 and 1145.87 m/z)
stand out, and these peaks correspond to molecular adducts with
lithium: [2RA-H2O+Li7]+, [3RA-2H2O+Li7]+ and [4RA-3H2O+Li7]+.
Finally, a very low-intensity peak, which coincides with the mass
of the [5RA-4H2O+Li7]+ oligomer, appears in the high-mass field
of the spectra, at m/z 1426. In contrast to the findings of Hayes
and Kelly [38], who used a trans-3-indoleacrylic acid matrix with a
sodium chloride solution to analyze polyhydric alcohol-poly (rici-
noleic acid) species, lithium DHB salt matrix could be used to
detect quasi-molecular ions with a molecular weight lower than
500 Da. Other matrices, DHB and �-cyano-4-hydroxycinnamic acid,
without cationization salts were tested to detect ricinoleic acid
estolides, but highly fragmented mass spectra were obtained, mak-
ing it tedious and difficult to identify the quasi-molecular ions.

When a sample of (10S)-HOME polymerized with Novozym
435 in n-hexane was analyzed with an AV of 127.8 mgKOH g−1

sample
(Fig. 6), two groups of peaks were found. In the first group, the
lithium molecular adduct of the monomer [M+Li7]+ with m/z  305.2
was observed. In the second group, a peak of m/z 585.4 was
observed, which corresponds to the lithium adduct of the oligomer
formed by two  units of (10S)-HOME [2M-H2O+Li7]+, thus con-
firming the results found by liquid chromatography.

3.5. Screening of other lipases for estolides formation

Finally, some other lipases were tested to improve the conver-
sion rate of estolide production. An aliquot of 0.6 g of (10S)-HOME
was assayed with 100 mg  of different lipases in both apolar organic
solvents, n-hexane and iso-octane (log P = 4.5 [33]), for 48 h at 50 ◦C.
according to their ratio competitive factors (RCF). It is notable that
there is no relationship between the RCF and the yield of the reac-
tion when the reaction proceeds in an aqueous-free solvent. It was
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ig. 6. MALDI-TOF mass spectra of (10S)-HOME polymerized with Novozyme 435
27.8  mgKOH g−1

sample
.

xpected that higher reaction yields would be found with Novozym
35 (11.7%) due to its low RCF (0.7), but the observed values were
imilar to those of C. rugosa and R. oryzae lipases (16.8% and 15.1%,
espectively), which both have an RCF higher than 1. On the other
and, Lipozyme RM IM and Lipozyme TL IM had RCF values of 26.4%
nd 36.4%, respectively. Although the specificity of the assayed
ipases was listed with the aim of establishing a correlation with
he yield observed, it seems that the non-specific lipases (Novozym
35 and C. rugosa) had lower reaction yields than did the sn-1,3-
pecific lipases (Lipozyme RM IM,  Lipozyme TL IM and R. oryzae lip
) with the exception of lip A from R. oryzae.  However, Bódalo found

hat 1,3-selective lipases are unable to attack secondary alcohols
22]; perhaps, the configuration of the double bond and its relative
osition to the secondary alcohol had an important effect.

In addition, iso-octane, another apolar organic solvent with a
igher log P value was tested (4.5). Unlike n-hexane, iso-octane is
ot a compatible solvent in food applications. However, estolides
roduced with this apolar solvent can be used as lubricants in cos-
etics, inks or coatings [7].  Iso-octane was selected to increase the

olubility of the substrate (10S)-HOME and, thus, the reaction yield,
ut no significant differences were observed. Given these results, a
uture study of the production of estolides with Lipozyme RM IM
r Lipozyme TL IM and an apolar organic solvent that enhances the
olubility of (10S)-HOME is needed. In such a study, there would be
n increase in the polymerization conversion to test the physical
roperties of this new family of trans-estolides.

. Conclusions

For the first time, estolides from a trans-hydroxy fatty acid (10S)-
OME, have been synthesized in vitro using Novozym 435, lipase

 of C. antarctica,  in an apolar organic medium and n-hexane. The
eaction media were optimized to achieve a 30% reaction yield, at

hich point two structural techniques were used to determine the
ature of the synthesized products: MALDI-TOF-MS and LC–MS.
y adapting the analysis conditions, especially using a lithium-
HB-salt matrix for the MALDI experiments, simpler mass spectra
◦C during 48 h using a matrix of DHB neutralized with LiOH; AV of the sample of

were obtained and the identity of the quasi-molecular ions of the
products became clear. Estolides of two units of (10S)-HOME were
detected. Because the results show no high conversion yields, a new
array of reaction media with diverse apolar solvents and lipases is
possible.
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Appendix A. Nomenclature

(10S)-HOME 10(S)-hydroxy-8(E)-octadecenoic acid
(7S,10S)-DiHOME 7,10(S,S)-dihydroxy-8(E)-octadecenoic acid
amu  atomic mass units [Da]
AV acid value [mgKOH g−1

sample]

C((10S)-HOME) concentration of (10S)-HOME [g l−1]
C((7S,10S)-DiHOME) concentration of (7S,10S)-DiHOME [g l−1]
C(X) concentration of biomass as dry cell weight [g l−1]
CIS coordination-ion-spray
CKOH concentration of potassium hydroxide [M]
Da Daltons

DHB 2,5-dihydroxybenzoic acid
LC liquid chromatography
log P partition coefficient [–]
M (10S)-HOME
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ALDI matrix-assisted laser desorption/ionization
MKOH molecular mass of potassium hydroxide [g mol−1]
S mass spectrometry
A oleic acid, 9(Z)-octadecenoic acid
(10S)-HOME (10S)-HOME productivity [g l−1 h−1]
(7S,10S)-DiHOME (7S,10S)-DiHOME productivity [g l−1 h−1]
OA OA consumption rate [g l−1 h−1]
A ricinoleic acid, 12(R)-hydroxy-9(Z)-octadecenoic acid
CF ratio competitive factor (1/˛)cis/(1/˛)trans [–]

 time [h]
OF time-of-flight
KOH volume of potassium hydroxide [ml]
E wax esters
sample sample weight [g]

 dry cell weight [g l−1]
(10S)-HOME/X specific (10S)-HOME yield [g g−1]
(7S,10S)-HOME/X specific (7S,10S)-DiHOME yield [g g−1]
P/X whole specific product yield [g g−1]

 increment [–]
competitive factor [–]

 reaction yield [%]

ppendix B. Supplementary data

Supplementary data associated with this article can be
ound, in the online version, at http://dx.doi.org/10.1016/j.
rocbio.2012.12.006.
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Figure S1. Six extracted ion chromatogram of ions m/z 298 (blue) (7.28, 12.07, 18.70, 24.29, 28.22, 
30.94 min), 578 (red) (12.07 min), 858 (green) (18.70 min), 1138 (gray) (24.29 min), 1419 (28.22 min) 
and 1699 (30.94 min) of the estolides from ricinoleic acid, AV of 68 mgKOH·gsample

-1. 
 
 
 
 
 

 
 Figure S2. MALDI-TOF mass spectra of estolides from ricinoleic acid of a sample of an AV of 68 
mgKOH·gsample

-1 using a DHB matrix neutralised with LiOH. 
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Abstract Novozym 435, lipase B from Candida antarctica,
was used in this study for the production of ethyl esters. For
the first time, trans-hydroxy-fatty acid ethyl esters were
synthesized in vitro in solvent-free media. We studied the
effects of the substrate–ethanol molar ratio and enzyme
synthetic stability of the biocatalyst. To determine the struc-
ture of the formed compounds, Fourier transformed infrared
spectroscopy, nuclear magnetic resonance, andmatrix-assisted
laser desorption/ionization–time-of-flight mass spectrometry
were used, three less time-consuming structural techniques.
trans-Hydroxy-fatty acid ethyl esters were synthesized with
a reaction yield of 90 % or higher with optimal reaction
conditions.

Keywords Lipase . Novozym 435 . trans-Hydroxy-fatty
acids . Ethyl esters . Solvent-free media

Introduction

Hydroxy fatty acids (HFA) are known as functional oxylipins
containing hydroxyl groups on fatty acid backbones. HFA are
common in nature, especially in mammals, plant systems, and
in microorganisms (Hou 2008). HFA are important industrial
materials because the hydroxyl group confers special proper-
ties such as higher viscosity and reactivity. HFA are used in a
wide range of industrial products as resins, waxes, nylons,
plastics, lubricants, cosmetics, and additives in coatings and
paints (Kim et al. 2000). Moreover, HFA could be used as
intermediates in the production of biodegradable plastics,
cyclic lactones, and pharmaceutical agents (Wang et al.
2012). Given that HFAs have great commercial potential,
many efforts have been made to produce them in a chemical
or biological manner.

In 1988, Mercadé and co-workers reported the production
of a new HFA, 7,10(S,S)-hydroxy-8(E)-octadecenoic acid, by
Pseudomonas aeruginosa 42A2 when cultivated in a mineral
salt medium using oleic acid as carbon source; it was shown to
have surfactant properties (Mercade et al. 1988). Later, in
1997, P. aeruginosa 42A2 was shown to also produce 10(S)-
hydroperoxy-8(E)-octadecenoic ((10S)-HPOME)1 and 10(S)-
hydroxy-8(E)-octadecenoic ((10S)-HOME) acids (Guerrero
et al. 1997) after 24 h using the same reaction conditions.
Recently, Martinez and collaborators proved that (10S)-
HPOME is the intermediate in the enzymatic oxidation of
oleic acid to (7S,10S)-DiHOME whereas (10S)-HOME is
produced as a chemical reduction of the (10S)-HPOME. The
reaction is performed by a hydroperoxide isomerase also
located in the periplasm (Martinez et al. 2010). These two

1 In the acronyms HPOME, HOME, or DiHOME, M stands for
monoenoic (acid).
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enzymatic reactions are known as diol synthase activity.
Further studies are being carried out to understand the (10S)-
HOME production.

Though there are a huge number of reports about the
biotransformation of fatty acids with lipases, there are few
about the esterification of hydroxy-fatty acids with ethanol by
lipases. Biodiesel is known as a mixture of fatty acid esters,
preferentially methyl and ethyl esters, which is obtained from
edible, nonedible, waste oils, and/or animal fats (Aguieiras
et al. 2011; Su et al. 2011; Véras et al. 2011; Soumanou et al.
2012; Raitaa et al. 2011). Attention is focused on enzymatic
transesterifications of triglycerides or free fatty acids with
methanol or ethanol to produce biodiesel; however, trans-
HFA as raw materials have not been taken into account to
produce biodiesel; only a few works focused on esterification
of ricinoleic acid are published (de Oliveira et al. 2004).

This work was undertaken to evaluate the suitability of
producing trans-HFA ethyl esters with Novozym 435 in
solvent-free media. An optimization of the reaction media
was carried out, and different structural techniques were used
to determine structural properties of the synthesized com-
pounds: Fourier transformed infrared spectroscopy (IR),
magnetic nuclear resonance (NMR), and matrix-assisted la-
ser desorption/ionization–time-of-flight mass spectrometry
(MALDI-TOF-MS).

Material and methods

Material

Novozym 435 (immobilized lipase B of Candida antarctica)
was a generous gift fromNovozymA/S (Bagsvaerd, Denmark).
Absolute ethanol (EtOH) was supplied by Decon Laboratories
Inc. (King of Prussia, PA, USA). Experimental conditions for
the production and purification of trans-HFA, (10S)-HOME,
and (7S,10S)-DiHOME were the same as reported before
(Martin-Arjol et al. 2013).

Measurement of the reaction yield

The reaction yield was calculated as the consumption of the
substrate by normal-phase high-pressure liquid chromatogra-
phy (HPLC). Normal-phase HPLC analyses were performed
on a Thermo Separations Spectra SystemAS1000 autosampler/
injector (Fremont, USA) with a P2000 binary gradient pump
from Thermo Separation Products (Fremont, USA) coupled
to an Alltech ELSD 500 evaporative light scattering detector
(Alltech Associates, Deerfield, USA). The chromatographic
separation was carried out using a Dynamax Microsorb 60-
8Si (250 mm×4.6 mm, 8 μm particle size) from Rainin
Instrument Co. (Woburn, MA, USA). A 15-min run time
was used to determine the conversion of the reaction. The

mobile phase was composed of n-hexane/acetone (50:50) at
a flow rate of 1 ml min−1. The ELSD drift tube was set at
56 °C with the nebulizer set at 20 psi N2, providing a
flowrate of 2.0 standard liters per minute. The yield of the
reaction was calculated using Eq. 1.

η %ð Þ ¼ Asubstrate 0 � Asubstrate tð Þ
Asubstrate 0

⋅100 ð1Þ

Effect of ethanol on trans-HFA molar ratio

Esterification reactions took place in a 15-ml batch reactor
magnetically stirred, 200 rpm. The reaction medium tempera-
ture, 50 °C, was kept constant using a J-Kem Scientific temper-
ature controller (St. Louis, MO, USA). Different molar ratios of
pure EtOH and 1mol of each trans-HFAwere tested separately;
1 g of (10S)-HOME or (7S,10S)-DiHOME, with 0.12 g of
Novozym 435 during 24 h. All the reactions were carried out
at atmospheric pressure. The extent of product formation for the
reaction was calculated using Eq. 1 as stated above.

Effect of lipase concentration

Different quantities of Novozym 435, 0.001 to 0.18 g, were
assayed in order to obtain the optimal enzyme amount in the
esterification reactions with a molar ratio of each trans-HFA to
ethanol of 1:3. Esterifications were carried out under the same
conditions as stated above. The reaction yield was calculated
with Eq. 1. All the reactions were carried out at atmospheric
pressure. A control without enzyme was assayed in order to
confirm that this reaction does not occur spontaneously.

Reusability of the Novozym 435

Reusability of the biocatalyst was carried out using the optimal
conditions found in the previous set of experiments: a molar
ratio of trans-HFA to ethanol of 1:3 and 0.06 g of Novozym
435 when (10S)-HOME was used as cosubstrate and 0.10 g
with (7S,10S)-DiHOME. Reaction conditions were the same as
described above. After each cycle, the enzyme was removed
from the reaction medium by filtration and rinsed with n-
hexane several times. In the set of experiments with (7S,10S)-
DiHOME, after the fifth cycle, the enzyme was rinsed with
pure ethanol. Finally, the solvent was evaporated under a
stream of air at room temperature until the enzyme reached a
stable weight. The product was analyzed, and the stability of
the enzyme was determined based on reaction yield (Eq. 1).

Fourier transformed infrared spectroscopy

Infrared spectra were obtained using a Nicolet iZ10 FTIR
module with a smart endurance single-bounce diamond ATR
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cell. Spectra over the 4,000–650 cm−1 range were obtained
by the co-addition of 32 scans with a resolution of 4 cm−1.
Spectral manipulation such as baseline adjustment, smooth-
ing, and normalization was performed using OMNIC
(Thermo Scientific, USA) software package.

Nuclear magnetic resonance

1H and 13C NMR experiments were recorded on a Bruker
(Karlsruhe, Germany) Avance 500 spectrometer using a 5-
mm BBI probe with an absolute frequency of 500.11 MHz
for 1H and 125.76 MHz for 13C. Correlation spectroscopy,
heteronuclear single quantum correlation, and heteronuclear
multiple bond correlation two-dimensional spectra were also
collected. Fifty milligrams of each sample was dissolved in
5 ml of 99.8 % CDCl3 (Cambridge Isotope Laboratories Inc.
Andover, MA, USA). Chemical shifts are expressed in parts
per million using the same organic solvent as internal stan-
dard. Sixteen scans were used in 1H experiments, whereas
1,024 scans were used in 13C experiments.

MALDI-TOF-MS

MALDI-TOF-MS experiments were performed on a 4800 Plus
MALDI-TOF/TOF Analyzer (ABSciex—2010, Framingham,
MA, USA). The samples were analyzed inMS Reflector mode
using positive ion detection. Desorption and ionization were
achieved with an Nd–YAG laser (355 nm, 3–7 ns pulse,
200 Hz). The data were recorded using 4000 Series Explorer
software (ABSciex—2010, Framingham, MA, USA). A 2,5-
dihydroxybenzoic acid matrix was neutralized with lithium
hydroxide (Sigma-Aldrich, Madrid, Spain), as Vrkoslav and
co-workers established (Vrkoslav et al. 2008). Lithium salt
matrix, 10 mg·ml−1, was dissolved in a mixture of acetone/
chloroform (2:1 v/v). An aliquot of 1 μl of the matrix solution
was spotted on the target plate until the organic solvent
evaporated completely. Then, 1 μl of the samples diluted
in 2.5mgml−1 trichloromethanewas deposited over thematrix
spot and allowed to dry before analysis.

Results

Effect of trans-HFA on ethanol molar ratio

Different molar ratios of trans-HFA to EtOH were assayed to
determine the optimal molar ratio to maximize reaction yield
with 0.12 g of Novozym 435 at 50 °C during 24 h (Fig. 1). It
could be observed that both trans-HFA presented the same
pattern, reaction yield increased from molar ratio 1:1 to 1:3,
and afterwards, conversion remained practically constant. The
optimal molar ratio was 1:3 (trans-HFA/EtOH) considering
both the reaction yield and the future production costs.

Effect of lipase concentration

Different amounts of enzyme were tested to establish the
optimal amount of biocatalyst for a trans-HFA to EtOH
molar ratio of 1:3 (Fig. 2). As observed, higher yields were
achieved when (7S,10S)-DiHOME was used as a substrate
(98 %) instead of using the monohydroxylated compound
(90 %). However, less quantity of Novozym 435 was needed
to reach higher yields when (10S)-HOME, 0.06 g, than using
the dihydroxylated fatty acid, 0.10 g.

Reusability of the Novozym 435

The synthetic stability of Novozym 435 was studied under
the optimal reaction conditions as well as the enzyme weight
after each cycle (Fig. 3). When (10S)-HOME was used as
substrate, the enzyme synthetic stability remained constant
around 79 % even after ten reaction cycles; and, enzyme
weight never exceeded a value of 0.07 g. In contrast, when
(7S,10S)-DiHOME was used, enzyme stability dropped
abruptly after the fifth cycle, reaching a yield of 16.3 %.
An enzyme stability reduction of 81.4 % was detected after
five cycles, which occurred with an increase on enzyme
weight. After these five trials, the enzyme was rinsed with
EtOH to dessorb the (7S,10S)-DiHOME from the carrier of
Novozym 435. As a consequence, the enzymatic stability
was partially recovered, 37.4 %, and within the next five
cycles diminished slowly to 19.8 %; and, the enzyme weight
did not increase as seen in the first five cycles.

Fourier transformed infrared spectroscopy

One sample of each starting substrate and trans-HFA ethyl ester
synthesized under optimal reaction conditions was analyzed to
determine the functional groups present (Fig. S1). In both cases,
FTIR spectra from substrates to their corresponding ethyl esters
showed one main difference: the movement of a carbonyl
stretch corresponding to the free fatty acid to a carbonyl stretch
of an ester bond. In the case of the monohydroxylated com-
pound, a frequency of 1709 cm−1 corresponding to the
stretching of the carbonyl (υC=O) in a acid moiety moved to a
frequency of 1736 cm−1 corresponding to the stretching of
carbonyl in an ester compound. In the case of the dihydroxy-
fatty acid, the movement of the carbonyl band shifted from
1693 cm−1 to 1738 cm−1.

Nuclear magnetic resonance structural determination

As could be observed in (10S)-HOME and (7S,10S)-DiHOME
ethyl ester 13C NMR spectra (Fig. 4) a signal for an ester
carbonyl appears at 173.76 ppm (C1); moreover, no signal of
an acid carbonyl group, 179.15 ppm, is appreciable in the
spectra, indicating a total conversion under the optimal reaction
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conditions described previously. A double signal of the termi-
nal methyl carbons appeared at 14.00 and 14.15 ppm. The
signal of 14.15 ppm corresponds to the methyl carbon of the
ethyl ester side chain (C20) and the one at 14.00 ppm to the
methyl carbon of the trans-HFA side (C18). The signal at
60.10 ppm is due to the methylene carbon of the ethyl ester
side (C19); the ones at 72–73 ppm indicate the methine car-
bons in which the hydroxy groups are bonded (C10 and C7 in
the case of dihydroxylated ethyl ester); and the signals at 131–
134 ppm represent the olefinic carbons of the trans-double
bond (C8 and C9). Finally, the signals at 34 ppm correspond to
the methylene carbon next to the carbonyl moiety in the trans-
HFA side chain (C2) and the signal of 24 ppm is another
methylene on carbon C3.

In (10S)-HOME and (7S,10S)-DiHOME ethyl ester 1H
NMR spectra (Fig S2) the signal of the terminal methyl hydro-
gens are at 0.86 and 1.23 ppm. The downfield signal corre-
sponds to the methyl hydrogens of the ethyl ester side chain
(H20) and the other one to the methyl hydrogens of the trans-
HFA chain (H1). 4.10 ppm represents a downfield methylene
hydrogen signal next to ester moiety in the ethyl ester side
(H19). The methine hydrogens, which are bounded to the same
carbon as hydroxyl moiety, have a chemical shift of 4.03 ppm
(H10 and H7 in the case of dihydroxylated ethyl ester). In the

case of the (10S)-HOME ethyl ester, the methylenic hydrogens
next to the double bond (H7) appear at 2.00 ppm. Ultimately,
the methylene hydrogens H2 and H3 have a chemical shift of
2.26 and 1.60 ppm, respectively.

Finally, there is a signal in both 1H NMR spectra which
are important. There is a low-intensity quadruplet, 5.16 ppm,
in the 1H NMR from the monohydroxylated ethyl ester
which corresponds to a methine signal. This methine signal
reveals the formation of estolides and is downfield of satu-
rated estolides caused by the effect of the trans-double bond.
The integration of the estolide (HE) and H7/10 signals pro-
vided a ratio for the number of estolide-ester bonds, estolides
number (EN), calculated as:

EN ¼ HE=H10 or H7=10 ð2Þ

giving a value of 0.29. This value indicates that the average
formation of an estolide ethyl ester is a small part of the
sample since and EN value of 1.00 would represent that
100 % of the sample is a monoestolide. In the case of the
dihydroxylated ethyl ester 1H NMR spectrum, this estolide
signal has a chemical shift of 5.20 ppm and an EN value of
0.13, which reveals that the average formation of one
monoestolide ethyl ester, is minimal.
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MALDI-TOF-MS

trans-HFA esters synthesized in optimal reaction conditions
were analyzed by MALDI-TOF-MS to determine the molec-
ular mass of these compounds (Fig. 5). In the spectrum of
(10S)-HOME ethyl ester (M), two groups of ions are notice-
able. In the low-mass ion group, an ion of m/z 333.2 stands
out. This ion corresponds to molecular adduct of M with
lithium, [M+7Li]+. The two low-intensity ions of m/z 349.2
and 365.2 are important. These are the molecular adducts of
M with sodium and potassium, respectively: [M+23Na]+ and
[M+39K]+. These three adducts give a molecular mass of M
of 326.2 Da. In the second group, there is a high-intensity ion
of m/z 613.5. This ion is the molecular lithium adduct of a
monoestolide ethyl ester (M1), [M1+

7Li]+. Next to this ion,
there is a lower-intensity signal of m/z 629.5 which corre-
sponds to the sodium molecular adduct of M1, [M1+

23Na]+.
The molecular mass obtained for the monoestolide ethyl
ester from these two adducts is 606.5 Da. Finally, a very
low-intensity ion, m/z 893.7, is noticeable. This ion is the
lithium adduct of a diestolide ethyl ester (M2), [M2+

7Li]+,
with a mass of 886.7 Da.

The (7S,10S)-DiHOME ethyl ester (M′) spectrum shows
one main ion of m/z 349.2 which corresponds to molecular
adduct of M′ with lithium, [M′+7Li]+. Next to it, there are
two low-intensity ions of m/z 365.2 and 381.2. These two
ions represent the molecular adducts of M′ with sodium
and potassium, respectively; [M′+23Na]+ and [M′+39K]+.
These three adducts give a mass of 342.2 Da for M′.
Then, there is another important group of ions in which
an m/z 645.5 ion stands out. This ion is the molecular
adduct of a monoestolide ethyl ester with lithium, [M′1+

7Li]+,
and the potassium molecular adduct of M′1, [M′1+

23Na]+,
is also noticeable with a mass of 677.5 Da. These two
adducts reveal a mass for M′1 of 638.5 Da. Ultimately, a
low-intensity ion of m/z 941.7 reveals the formation of a
diestolide ethyl ester, [M′2+

7Li]+, with a molecular mass
of 934.7 Da.

Discussion

This is the first time in which hydroxy-fatty acids, positionally
different from ricinoleic acid, were used to synthesize their
corresponding ethyl esters in solvent-free media. The trans-
HFA to EtOH molar ratio and the amount of enzyme,
Novozym 435, were studied to find the reaction conditions
that maximize the in vitro conversion yield. There are no data
in the literature about the production of trans-HFA ethyl
esters, although this molar ratio value, trans-HFA to EtOH
of 1:3, agrees with the one found in the production of methyl
esters from a vegetable oil (a soybean and rapeseed oil
mixture) in a solvent-free system for 36 h at 30 °C (Watanabe
et al. 2000) and with the one in the production of fatty acid
ethyl esters from camellia oil soapstocks and diethyl carbon-
ate, instead of a short-chain alcohol, for 24 h at 50 °C (Wang
and Cao 2011), both using Novozym 435. The amounts of
enzyme needed in each reaction system, 0.06 and 0.10 g,
when (10S)-HOME and (7S,10S)-DiHOME were used as
substrate, respectively, which represent 8.6 and 14.3 %
(w/v), respectively, were in the same range of Novozym 435
concentration, 10–15 % (w/v), used in the production of fatty
acid ethyl esters from palm oil fatty acids in a solvent-free
medium (Véras et al. 2011). The reusability or synthetic
stability of Novozym 435 was tested during ten cycles with
no appreciable loss of activity when (10S)-HOME was
used as substrate; however, with (7S,10S)-DiHOME, the
enzyme stability was reduced dramatically after the second
batch. After the fifth cycle, the biocatalyst was rinsed
several times with EtOH, and synthetic stability was recovered
immediately and reduced at a slower rate during the subse-
quent cycles. Likewise, the weight of the enzyme was notably
affected by the rinses with EtOH. EtOH removed more quan-
tity of (7S,10S)-DiHOME than n-hexane from the enzyme
carrier improving the stability of Novozym 435. This fact
indicated that (7S,10S)-DiHOMEwas adsorbed on the enzyme
carrier compromising the synthetic performance of Novozym
435 under the reaction conditions tested, as it was already
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Fig. 4 13C spectra of (10S)-
HOME ethyl ester (a) and
(7S,10S)-DiHOME ethyl ester
(b). Chemical shifts are
expressed in parts per million
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demonstrated in the production of estolides from (10S)-HOME
in n-hexane with the same commercial lipase (Martin-Arjol
et al. 2013).

Different non-time-consuming structural techniques (Ghesti
et al. 2007) were used to determine the nature of the com-
pounds synthesized. FTIR revealed the presence of ester bonds
by the identification of the stretching band of a carbonyl present
in an ester group (Zagonel et al. 2004). NMR experiments
exposed the same conclusion by the identification of a signal
of 173.80 ppm corresponding to a carbonyl ester moiety in 13C

analyses (Isbell and Kleiman 1994). On the other hand, the
absence of acid carbonyl signal on 13C analyses emphasizes the
total conversion of trans-HFA in their corresponding ethyl ester
when they were produced under the optimal reaction condi-
tions. Moreover, 1H NMR analyses showed the synthesis of
monoestolide ethyl esters of each trans-HFA. We previously
reported the capability of Novozym 435 to synthesize (10S)-
HOME monoestolides in apolar organic media (Martin-Arjol
et al. 2013). Furthermore, the average oligomeric distribution
of estolide ethyl esters is calculated based on the integration of

Fig. 5 MALDI-TOF-MS
spectra of (10S)-HOME ethyl
ester (a) and (7S,10S)-DiHOME
ethyl ester (b)
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HE and H10 or H7/10 proton signals (Isbell et al. 1994).
Finally, a 2,5-dihydroxybenzoic acid matrix neutralized with
lithium hydroxide was used to obtain less fragmented spectra in
MALDI-TOF-MS analyses (Vrkoslav et al. 2008). This struc-
tural technique was used to determine the molecular mass of
the trans-HFA ethyl esters produced, confirming the synthesis
of monoestolide ethyl esters as well as paralleling the results
obtained by NMR analyses.
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	1.1 Lipid biotechnology
	About 80% of the oil and fats produced worldwide are vegetable oils and the rest are from animal origin, with a declining tendency. About one quarter of global production come from soybean, palm, rapeseed and sunflower oils. Oleic acid (OA) from sunfl...
	aCO: canola oil; PO: palm oil; SBO: soybean oil; SFO: sunflower oil; COO: corn oil; CSO: cottonseed oil; CCO: coconut oil; CF: chicken fat; and, BT: beef tallow.
	bC6:0: caproic acid; C8:0: caprylic acid; C10:0: capric acid; C12:0: lauric acid; C14:0: mystiric acid; C16:0: palmitic acid; C18:0: stearic acid; C20:0: arachidic acid; C22:0: behenic acid; C16:1: palmitoleic acid; C18:1: oleic acid; C18:2: linoleic ...
	Adapted from [3].
	1.1.1 Oleic acid transformations by microorganisms
	For more than four thousand millions of years (4 109) bacteria have ability of transforming a huge range of substrates, due to the specificity (bond, functional group, substrate, stereo-, regio-, enantio-) of their enzymes, for obtaining energy and fe...
	OA (cis-9-octadecenoic acid) is a common lipid in nature, especially in plant kingdom. Its biotransformation has being studied since decades ago. Piguevskh and Charik were the first in describing a transformation of OA by microorganisms. 10-ketosteari...
	In 1970’s, OA became more relevant and diverse types of microorganisms were used for its modification. Fungi, like Blakeslea trispora and Torulopsis sp. were used for synthetizing caretenoids and lipids [10], and obtaining 17-L-hydroxyoleic acid [11],...
	In the following decade, efforts were also focused on transforming OA into (10R)-HOSA and/or its corresponding oxo acid, 10-oxooctadecanoic acid, by different genus of bacteria: Corynebacterium [22]; Rhodococcus [23]; Norcadia [24, 25]. Moreover, this...
	Two milestones were the biotransformation of OA into RA by Bacillus pumilus [29] and a soil bacterium strain, BMD I 20 [30], in significant amounts and the biotransformation of OA into a new biosurfactant, a dihydroxylated compound, by Pseudomonas aer...
	In 1990’s the conversion of OA into (10R)-HOSA [36-44], 10-oxostearic acid [45] and 10-ketostearic acid [46-50] were the most studied bioreactions. This OA hydration reaction and others previously described were continuously used as model of adipocere...
	Some other new compounds were produced by biotransformation of OA, Figure 1.1: ,-dicarboxilic acids [53] and 3(R)-hydroxy-9(Z)-octadecenedioic acid [54, 55] by C. tropicalis and C. tropicalis M25, respectively; hydroxy-fatty acid (HFA) intermediates...
	Some other uncommon HFAs were produced: 15-, 16-, 17-hydroxy-9-octadecenoic acids by B. pumilus [72]; 3-hydroxy-9(Z)-ocradecenoic acid by Alcaligenes sp. 5-18 [73]; 4-oxo-dodecanoic acid by M. luteus BL0-3 [74]; 7-hydroxy-16-oxo-9(Z)-octadecenoic and ...
	On the other hand, enzymatic transformation of OA started to gain importance and it was reflected on the number of works published. Enzymatic reactions were focused on 6-desaturase to produce -linolenic acid [78] and 12-desaturase to obtain linolei...
	Finally, Hou and co-workers improved the production of 7,10(S,S)-dihydroxy-8(E)-octadecenoic acid ((7S,10S)-DiHOME) up to the 60% [88]; one year later, they postulated that 10(S)-hydroxy-8(E)-octadecenoic acid ((10S)-HOME) was an intermediate in the s...
	Since 2000 to nowadays the hydration of OA into (10R)-HOSA and its dehydration to 10-KSA were still the most significant bioreaction [91-93]. These reactions were produced by bacteria as P. aeruginosa [94], Sphingobacterium thalpophilum [95], Acinobac...
	Moreover, OA hydration was investigated to produce (R)--dodecalactone due to its aromatic properties by some fungi [108-110] and bacteria [111, 112]; even during malt whisky production was reported its synthesis [113] and some alkyl--lactones showed...
	The compounds that appear in 1990’s were continuously produced: ,-dicarboxilic acids [120-122]; fatty amides [123, 124]; glycolipids [125] as sophorolipids [126, 127] or mannosylerythritol lipids (MEL) [128-130]
	Other enzymatic reactions have been described using OA as substrate, especially with desaturases. OA have been modified by 5-desaturases [146, 147], 12 desaturases to produce LA [148-151] or in combination with 6 in Yarrowia lipolitica to produce ...
	OA has been using as an important carbon source in the production of PHAs by P. mendocina 0806 [156], P. putida [157-160], P. aeruginosa [161, 162], P. corrugate [163], P. sp. [164, 165]
	Finally, Kuo and co-workers modified the aeration system of a bioreactor to reduce foaming during production of (10S)-HOME and (7S,10S)-DiHOME from OA and, thus, the production of these HFAs was increased and control parameters of this biotransformati...
	1.1.2 Pseudomonas aeruginosa 42A2 NCIB 40045
	1.1.2.1 Oxidation of oleic acid
	Lipoxygenases (LOX) (EC. 1.13.11.12) are a non-heme iron enzymes which catalyzes the dioxygenation of polyunsaturated fatty acids with one or more 1Z,4Z-pentadiene units to hydroperoxy-fatty acids. LOX were only considered a eukaryotic characteristic ...
	LOXs are considered a versatile biocatalyst because of the different kind of reactions in which are involved. LOX produces hydroperoxy-fatty acids that are further metabolized into various signaling compounds, such as leukotrienes and lipoxins in anim...
	Despite of the unknown role of bacterial LOX, where are mainly found in Gram-negative bacteria, it is thought that its function is associated to facilitate the dynamic plasticity of bacterial membranes. This might be an advantage for the colonization ...
	In 1988, P. aeruginosa 42A2 was demonstrated to oxidize OA to a new surfactant, a dihydroxy-fatty acid  [31]. This dihydroxilated biosurfactant reduces surface tension to 30 mN m-1 at 50ºC. This strain is characteristic because of the lack on the pro...
	In 2004, P. aeruginosa 42A2 LOX (42A2 LOX) was isolated and characterized; kinetics studies with different polyunsaturated fatty acids (PUFA) and OA, containing a double bond in position 9, were assayed, being LA the most preferred by 42A2 LOX [195]. ...
	On the other hand, the synthetic mechanism of (7S,10S)-DiHOME from OA was still unknown, until Martinez and collaborators discovered that in this reaction are involved to different enzymes, a dioxygenase and a hydroperoxy isomerase [200]. Finally, in ...
	Another fatty acid, LA, was used as a carbon source in mineral cultures of P. aeruginosa 42A2 obtaining oxylipins with antifungal properties, specially a blend of two trihydroxylated isomers, 9,10(12),13-tihydroxy-11(10)-octadecenoic acid, never descr...
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	(1)
	where the diffusion coefficient of oxygen (O2) in water (H2O), DO2-H2O, is calculated according to the following expression, obtained from experimental data [390]:
	(2)
	according to the findings of Llorens and coworkers [391], (kL)W should be corrected because of the presence of a biosurfactant, (7S,10S)-DiHOME, in the culture media by:
	(3)
	where ψ is the ratio between liquid-phase mass-transfer coefficients [391] and gets the value of 0.41 for an interfacial pressure (π’) greater than 0.016 N m-1 [391]. ’ is the difference between the surface tension of water, 0.072 N m-1, and the one ...
	(4)
	where xeq is the molar fraction of oxygen in the equilibrium, x1 is molar fraction of
	Figure 3.2. Scheme of the wetted wall column. L: molar flow of the stream through WWC. LDO i: Luminescent dissolvent oxygen probe in the position i of the WWC. xi: molar fraction of oxygen in position i of the stream L.
	oxygen in the stream of culture media saturated of oxygen that leaves the WWC; and, x2 is the stream that enters in the column and leaves the batch reactor, Figure 3.2. It was considered the assumption that all supplied oxygen in the WWC is consumed i...
	(5)
	where qO2 is oxygen requirements of bacteria and L is the molar flow of the stream that is oxygenated in the WWC. Integrating Equation 4 as a logarithmic mean, the following expression is obtained:
	(6)
	in which S is the outside surface of a 15 mm-outside-diameter cylinder. The mathematical process ends with the calculation of the height of the cylinder from the obtained te and (kL)M throughout the following formulas [393], to ensure that the outside...
	(7)
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